
32
Time Series Modeling

Time series analysis aims to develop a model, which describes the time series
in all its measurable features. This goes far beyond than merely determining
statistical parameters from observed time series data (such as the variance,
correlation, etc.) as described in Chap. 31. Estimators such as those appearing
in Eq. 31.5 are examples of how parameters can be estimated which are
subsequently used to model the stochastic process governing the time series
(for example, a random walk with drift μ and volatility σ ). To develop a
model that is capable of simulation a time series with similar features is the
principle goal of time series analysis. The object is thus to interpret a series of
observed data points {Xt}, for example a historical price or volatility evolution
(in this way acquiring a fundamental understanding of the process) and to
model the processes underlying the observed historical evolution. In this sense,
the historical sequence of data points is interpreted as just one realization of the
time series process. The parameters of the process are then estimated from the
available data and can subsequently be used in making forecasts, for example.
As much structure as possible should be extracted from a given data

sequence and then transferred to the model. Let {̂Xt} be the time series
generated by the model process (called the estimated time series). The dif-
ference between this and the actually observed data points {Xt} are called
residues {Xt − ̂Xt}. These should consist of only “noise”, i.e., they should be
unpredictable random numbers.
In order to be able to fit a time series model, the “raw data”, i.e., the sequence

of historical data points, must sometimes undergo a pre-treatment. In this
procedure, trends and seasonal components are first eliminated and a changemay
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be made to the scale of the data, so that the resulting sequence is a stationary
time series.1 A stationary time series is characterized by the time invariance
of its expectation, variance and covariance. In particular, the expectation
and variance are constant. Without loss of generality, the expectation can be
assumed to be zero since it can be eliminated during the pre-treatment through
a centering of the time series. This is accomplished by subtracting the mean
X = 1

T

∑T
t=1 Xt from every data point in the time series {Xt}.

As just discussed, the stationarity of a time series implies E [Xt] = E [X] ∀t

and the autocovariance Eq. 31.14 becomes

cov(Xt+h, Xt) = E[Xt+h Xt ] − E [X]E[X] = E[Xt+h Xt ] . (32.1)

The final equality in the above equation holds if the time series has been
centered in the pre-treatment. We will always assume this to be the case.
Furthermore, the autocovariance and autocorrelation (just as the variance) are
independent of t if the time series is stationary, and therefore depend only on
the time lag h. We frequently write

γ (h) := cov(Xt+h, Xt)

Likewise, if the time series is stationary we have �(t, h) = �(h) in the
autocorrelation Eq. 31.13. The following useful symmetry relations can be
derived directly from the stationarity of the time series (this can be shown
by substituting t with t ′ = t − h):

γ (−h) = γ (h) , �(−h) = �(h) . (32.2)

From definition 31.14, we can immediately obtain an estimate2 for the
autocorrelation and the autocovariance of a stationary data sequence

γ̂ (h) = ĉov(Xt+h, Xt ) = 1

T

T −h
∑

t=1

(Xt+h − 〈X〉)(Xt − 〈X〉) , �̂(h) = γ̂ (h)

γ̂ (0)

(32.3)

1More precisely, we are dealing with a weakly stationary time series in what follows.
2In the following material, we will distinguish the estimator of a parameter from the parameter itself with
a “hat” notation.
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Fig. 32.1 Daily returns of the FTSE index as an example of a stationary data series. The
crash in October 1987 is clearly visible

for h ∈ N0. The autocovariances (and autocorrelations) are usually computed
for at most h ≤ 40. Note that h has to be substantially smaller than T in all
cases; the estimation is otherwise too inexact.3
Of course, we can fit different time series models to a stationary time series

(after having undergone a pre-treatment if necessary) and then compare their
goodness of fit and forecasting performance. Thus the following three general
steps must be taken when modeling a given sequence of data points

1. Pre-treatment of the data sequence to generate a stationary series (elimina-
tion of trend and seasonal components, transformation of scale, etc.).

2. Estimation and/or fitting of the time series model and its parameters.
3. Evaluation of the goodness of fit and forecasting performance on the basis of

which a decision is made as to whether the tested model should be accepted
or a new model selected (step 2).

Figure 32.1 shows the daily relative change (returns) of the FTSE Index
taken from the daily data from Jan-01-1987 through Apr-01-1998 (2,935 days).

3The fact that only T appears in the denominator in Eq. 32.3 instead of T − h, as one might expect,
guarantees that the estimator for the covariance matrix [γ̂ (i − j)]Ti,j=1 is automatically positive definite.
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This sequence of data points is defined as

Xt = Yt − Yt−1

Yt−1
, (32.4)

where {Yt} represents the original data sequence of FTSE values. The data set
{Xt} consists of 2,934 values. According to Eq. 30.9, the relative changes in
Eq. 32.4 are approximately equal to the difference of the logarithms if the daily
changes are sufficiently small:

Xt ≈ ln(Yt ) − ln(Yt−1) . (32.5)

This is the first difference of the logarithm of the original sequence of FTSE
index values. The above example represents a typical pre-treatment procedure
performed on the data. Instead of the original data {Yt}, which is by no means
stationary (drift	= 0 and variance increase with time as ∼ σ t ), we generate a
stationary data sequence as in Eq. 32.5 through standard transformations in
time series analysis. Specifically in our case, what is known as Box-Cox scaling
(taking the logarithm of the original data) was performed and subsequently
the first differences were calculated for the purpose of trend elimination.
Stationary time series data like these are then used in the further analysis, in
particular, when fitting a model to the data.

The above example should provide sufficient motivation for the pre-
treatment of a time series. The interested reader is referred to Chap. 35 for
further discussion of pre-treating time series data to generate stationary time
series. We will assume from now on that the given time series have already
been pre-treated, i.e., potential trends and seasonal components have already
been eliminated and scaling transformations have already been performed
appropriately, so that the resulting data sequences are stationary. Such a
stationary time series is given by a sequence of random variables {Xt}, t ∈ N.

32.1 Stationary Time Series and Autoregressive
Models

This chapter introduces a basic approach in time series analysis employing
a specific time series model, called autoregressive model. We then continue
by extending the results to the case of a time-dependent variance (GARCH
model) which finds application in modeling volatility clustering in financial
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time series. This technique is widely used in modeling the time evolution of
volatilities.
Rather than working under the idealized assumption of time-continuous

processes, the processes modeled in this chapter are truly discrete in time.
The discussion is geared to the needs of the user. We will forgo mathematical
rigor and in most cases the proofs of results will not be given. Not taking
these “shortcuts” would increase the expanse of this chapter considerably.
However, the attempt will be made to provide thorough reasoning for all
results presented.
A process for modeling a time series of stock prices, for example, has already

been encountered in this text: the random walk. An important property of
the random walk is the Markov property. Recall that the Markov property
states that the next step in a random walk depends solely on its current value,
but not on the values taken on at any previous times. If such a Markov
process is unsatisfactory for modeling the properties of the time series under
consideration, an obvious generalization would be to allow for the influence
of past values of the process. Processes whose current values can be affected by
values attained in the past are called autoregressive. In order to characterize these
processes, we must first distinguish between the unconditional and conditional
variance denoted by var[Xt] and var[Xt |Xt−1, . . . , X1], respectively. The
unconditional variance is the variance we are familiar with from previous
chapters, whereas the conditional variance is the variance of Xt under the
condition thatXt−1, . . . , X1 have occurred. Analogously, wemust differentiate
between the conditional and unconditional expectation denoted by E[Xt] and
E[Xt |Xt−1, . . . , X1], respectively, where the last is the expectation ofXt under
the condition thatXt−1, . . . , X1 have occurred. There is no difference between
the two when the process under consideration is independent of its history.

32.1.1 AR(p) Processes

Having made these preparatory remarks and definitions, we now want to
consider processes whose current values are influenced by one or more of their
predecessors. If, for example, the effect of the p previous values of a time series
on the current value is linear, the process is referred to as an autoregressive process
of order p, and denoted by AR(p). The general autoregressive process of pth
order makes use of p process values in the past to generate a representation of
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today’s value, or explicitly

Xt = φ1Xt−1 + φ2Xt−2 + · · ·φpXt−p + εt (32.6)

=
p
∑

i=1

φiXt−i + εt , εt ∼ N(0, σ 2) .

The changes εt here are independent of all previous time series valuesXs , s <

t , and thus represent an injection of truly new information into the process4. In
particular, this means that cov[Xi, εj ] is always zero. The conditional variance
and conditional expectation of the process are

E[Xt |Xt−1, . . . , X1] =
p
∑

i=1

φiXt−i (32.7)

var[Xt |Xt−1, . . . , X1] = var[εt] = σ 2 .

It can be shown that stationarity is guaranteed if the zeros zk of the characteristic
polynomial5

1 − φ1z − φ2z
2 − · · · − φpzp = 0 (32.8)

lie outside of the closed unit disk, i.e., when the norm |zk| is larger than 1 for
all zeros zk. In particular, if the process is stationary then the unconditional
expectation and variance have the following properties: E[Xt] = E[Xt−i]
and var[Xt] = var[Xt−i]. Exploiting this, we can easily calculate explicit
expressions for the unconditional expectation and variance. The unconditional
expectation E[Xt] is

E[Xt ] = E[
p
∑

i=1

φiXt−i + εt ] =
p
∑

i=1

φi E [Xt−i]
︸ ︷︷ ︸

E[Xt ]

+ E [εt ]
︸ ︷︷ ︸

0

= E [Xt ]
p
∑

i=1

φi .

In the first step we have simply used definition 32.6 for Xt . The second step
is merely the linearity of the expectation operator. In the third step we have
finally used the decisive properties of the process, namely stationarity of the

4The notation εt will always indicate independent, identically N(0, σ 2)-distributed random variables.
Another common definition is εt ∼ W(0, σ 2), where W stands for white noise. This is a somewhat more
general statement and is used in reference to random variables which are not normally distributed as well.
5This polynomial plays a central role in the theory of time series.
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expectation and randomness of the residues. The result is therefore

E[Xt ]
(

1 −
p
∑

i=1

φi

)

= 0

This implies that the unconditional expectation must be zero since stationarity
guarantees that the sum of the φi is not equal to one.6
The unconditional variance can be computed using similar arguments

var[Xt ] = var[
p
∑

i=1

φiXt−i + εt ]

=
p
∑

i,j=1

φiφj cov[Xt−i, Xt−j ] +
p
∑

i=1

φicov[Xt−i, εt ] + var[εt ]

=
p
∑

i,j=1

φiφj cov[Xt−i, Xt−j ] + 0 + σ 2

= var[Xt ]
p
∑

i,j=1

φiφj�(i − j) + σ 2 ,

where we used Eq. A.17 and—in the last step—definition 31.13 for stationary
processes. Solving for var[Xt] yields immediately

var[Xt] = σ 2

1 −∑p

i,j=1 φiφj�(i − j)
. (32.9)

An expression for the autocorrelation function � of the process can be obtained
bymultiplying both sides of Eq. 32.6 byXt−h and taking the expectation. Here
stationarity is used in form of Eqs. 32.2 and 32.1:

�(h) = �(−h) = cov(Xt−h,Xt)

cov(Xt, Xt)
= E(Xt−h,Xt)

E(X2
t )

= 1

E(X2
t )
E(Xt−h,

p
∑

i=1

φiXt−i + εt )

6This can be shown using the characteristic polynomial.
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= 1

E(X2
t )

p
∑

i=1

φiE(Xt−h,Xt−i) + 1

E(X2
t )
E(Xt−h, εt )
︸ ︷︷ ︸

0

=
p
∑

i=1

φi

E(Xt−h+i, Xt)

E(X2
t )

=
p
∑

i=1

φi

E(Xt−(h−i), Xt)

E(X2
t )

,

and thus

�(h) =
p
∑

i=1

φi�(h − i) . (32.10)

These are the Yule-Walker equations for the autocorrelations �. The autocor-
relations can thus be computed recursively by setting the initial condition
�(0) = 1. Consider the following example of an AR(2) process:

�(1) = φ1�(1 − 1) + φ2�(1 − 2) = φ11 + φ2�(1) ⇒ �(1) = φ1

1 − φ2

�(2) = φ1�(1) + φ2�(0) = φ2
1

1 − φ2
+ φ2 , and so on.

Here, the symmetry indicated in Eq. 32.2 was used together with Eq. 32.10.
Substituting these autocorrelations into Eq. 32.9 finally yields the uncondi-
tional variance of an AR(2) process:

var[Xt ] = σ 2

1 − φ2
1�(1 − 1) − φ1φ2�(1 − 2) − φ2φ1�(2 − 1) − φ2

2�(2 − 2)

= σ 2

1 − φ2
1 − φ2

2 − 2φ1φ2�(1)
= σ 2

1 − φ2
1 − φ2

2 − 2φ2
1φ2/(1 − φ2)

In practice, however, the autocorrelations should be computed from the
original data series itself with the aid of Eq. 32.3, instead of from the
coefficients φi, i = 1, 2, . . . , p which themselves are only estimated values.
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The Autoregressive Process of First Order

We now consider the most simple case, namely p = 1. Explicitly, the
autoregressive process of first order AR(1) is defined as

Xt = φXt−1 + εt , εt ∼ N(0, σ 2) . (32.11)

The stationarity condition for this process implies that |φ| < 1 since Eq. 32.8
states simply that

1 − φz = 0 for some z where |z| > 1 .

The conditional variance and conditional expectation of the process are

E[Xt |Xt−1, . . . , X1] = φXt−1

var[Xt |Xt−1, . . . , X1] = var[εt ] = σ 2 .

The unconditional expectation is equal to zero as was shown above to hold for
general AR(p) processes. The unconditional variance can be calculated as

var[Xt] = var[φXt−1 + εt ]
= φ2var[Xt−1] + φcov[Xt−1, εt ] + var[εt]
= φ2var[Xt] + 0 + σ 2 �⇒

var[Xt] = σ 2

1 − φ2
. . (32.12)

Recursively constructing future values via Eq. 32.11 starting from Xt yields

Xt+h = φXt+h−1 + εt+h

= φ2Xt+h−2 + φεt+h−1 + εt+h

· · ·

= φhXt +
h−1
∑

i=0

φiεt+h−i
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The autocovariance of the AR(1) thus becomes explicitly

cov(Xt+h,Xt) = cov(φhXt +
h−1
∑

i=0

φiεt+h−i , Xt)

= φhcov(Xt, Xt) +
h−1
∑

i=0

φicov(εt+h−i, Xt)
︸ ︷︷ ︸

0

= φhvar[Xt]

= φh σ 2

1 − φ2
.

The autocorrelation is therefore simply φh, and as such is an exponentially
decreasing function of h. The same result can of course be obtained from the
Yule-Walker equations

�(h) =
1
∑

i=1

φi�(h − i) = φ�(h − 1) = φ2�(h − 2) = · · · = φh�(h − h)
︸ ︷︷ ︸

1

.

It is worthwhile to consider a random walk from this point of view. A
(one-dimensional) random walk is by definition constructed by adding an
independent, identically distributed random variable (iid, for short) with
variance σ 2 to the last value of attained in the walk. The random walk can
thus be written as

Xt = Xt−1 + εt , εt ∼ N(0, σ 2) .

It follows from this definition that the conditional variance of the random
walk is σ 2 and the expectation equals zero. The random walk corresponds to
an AR(1) process with φ = 1. This contradicts the stationarity criterion |φ| <

1! The random walk is therefore a non-stationary AR(1) process. The non-
stationarity can be seen explicitly by considering the unconditional variance:

var[Xt] = var[Xt−1 + εt ]
= var[Xt−1] + cov[Xt−1, εt ] + var[εt]
= var[Xt−1] + 0 + σ 2 .
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Thus, for all σ 	= 0 we have var[Xt−1] 	= var[Xt], i.e., the process cannot
be stationary. Therefore we cannot obtain a closed from expression similar to
Eq. 32.12 for the unconditional variance (this can also be seen from the fact
that if φ = 1, Eq. 32.12 would imply a division by zero). The unconditional
variance can, however, be determined recursively

var[Xt ] = kσ 2 + var[Xt−k] .

Assuming from the outset that a valueXt=0 is known (and because it is known,
has zero variance) we obtain the well-known property of the random walk

var[Xt ] = tσ 2 .

The variance is thus time dependent; this is a further indication that the
random walk is not stationary. Since the variance is linear in the time variable,
the standard deviation is proportional to the square root of time. This is the
well-known square root law for scaling the volatility with time.
Another special case of an AR(1) process is white noise which has an

expectation equal to zero and constant variance. It is defined by

Xt = εt .

The random variables{εt} are iid random variables with variance σ 2. This
corresponds to the AR(1) process with φ = 0. The stationarity criterion
|φ| < 1 is satisfied and the above results for the stationary AR(1) process can
be applied with φ = 0, for example, cov(Xt+h, Xt) = 0 and var(Xt) = σ 2.

32.1.2 Univariate GARCH(p, q) Processes

The conditional variance of the AR(p) processes introduced above was always
a constant function of time; in each case it was equal to the variance of εt . This,
however, is not usually the case for financial time series. Take, for example, the
returns of the FTSE data set in Fig. 32.1. It is clear to see that the variance of
the data sequence is not constant as a function of time. On the contrary, the
process goes through both calm and quite volatile periods. It is much more
probable that large price swings will occur close to other large price swings
than to small swings. This behavior is typical of financial time series and
is referred to as volatility clustering or simply clustering. A process which is
capable of modeling such behavior is the GARCH(p, q) process, which will
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be introduced below. The decisive difference between GARCH and AR(p)
processes is that not only past values of Xt are used in the construction of a
GARCH process, but past values of the variance enter into the construction
as well. The GARCH(p, q) process is defined as

Xt = √

Htεt with Ht = α0 +
p
∑

i=1

βiHt−i +
q
∑

j=1

αjX
2
t−j , εt ∼ N(0, 1) ,

(32.13)

where the {εt} are iid standard normally distributed. The {εt} are independent
of Xt . Therefore, the time series{Xt} is nothing else than white noise {εt} with
a time-dependent variance which is determined by the coefficients {Ht }. These
Ht take into consideration the past values of the time series and the variance.
If the {Xt} are large (distant from the equilibrium value which is in this case
zero as E[εt ] = 0), then so is {Ht}. For small values {Xt} the opposite holds.
In this way, clustering can be modeled. The order q indicates how many past
values of the time series {Xt} influence the current valueHt . Correspondingly,
p is the number of past values of the variance itself which affects the current
value of Ht . In order to ensure that the variance is positive, the parameters
must satisfy the following conditions:

α0 ≥ 0 (32.14)

β1 ≥ 0

k
∑

j=0

αj+1β
k−j

1 ≥ 0, k = 0, . . . , q − 1 .

This implies that α1 ≥ 0 always holds, the other αi however, may be negative.
Furthermore, the time series {Xt} should be (weakly) stationary to prevent it
from “drifting away”. The following condition is sufficient to guarantee this
stationarity:

p
∑

i=1

βi +
q
∑

j=1

αj < 1 . (32.15)
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The two most important properties of this process pertain to the conditional
expectation and the conditional variance

E[Xt |Xt−1, . . . , X1] = 0 and (32.16)

var[Xt |Xt−1, . . . , X1] = Ht = α0 +
p
∑

i=1

βiHt−i +
q
∑

j=1

αjX
2
t−j

The first equation holds because E[εt] = 0, the second because var[εt ] =
1. The Ht are thus the conditional variances of the process. The conditional
expectation (under the condition that all X up to time t − 1 are known) of
Ht is simply Ht itself since no stochastic variable ε appears in Eq. 32.13 where
Ht is defined, and thus

E[Ht |Xt−1, . . . , X1] = Ht = α0 +
p
∑

i=1

βiHt−i +
q
∑

j=1

αjX
2
t−j . (32.17)

H is thus always known one time step in advance of X. This may seem trivial
but will be quite useful in Sect. 33.2 when making volatility forecasts.
The unconditional variance is by definition

var[Xt] = E[X2
t ] − E[Xt]2

= E[Htε
2
t ] − E[√Htεt ]2

= E[Ht ]E[ε2
t ] − (E[√Ht ]E[εt ])2 ,

where in the last step we have made use of the fact that {εt} are uncorrelated
with {Ht }. Furthermore, since the {εt} are iid N(0, 1) distributed

E[εt ] = 0 and E[ε2
t ] = E[ε2

t ] − 0 = E[ε2
t ] − (E[εt ])2 = var[εt ] = 1

and therefore

var[Xt] = E[Ht ] = α0 +
p
∑

i=1

βiE[Ht−i] +
q
∑

j=1

αjE[X2
t−j ] .

Just as the εt , the Xt have zero expectation, which also implies that E[X2
t ] =

var[Xt]. Under consideration of this relation and the stationarity (constant
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variance), all of the expectations involving squared terms in the above equation
can be written as the variance of Xt :

E[X2
t−j ] = var[Xt−j ] = var[Xt]

E[Ht−i] = var[Xt−j ] = var[Xt] .

This leads to the following equation for the unconditional variance:

var[Xt] = α0 +
p
∑

i=1

βivar[Xt] +
q
∑

j=1

αjvar[Xt] ⇐⇒

var[Xt] = α0

1 − ∑q

i=1 αi −∑p

j=1 βj

=: α̃0 . (32.18)

This unconditional variance can of course also be estimated from the observed
data, i.e., as usual through the computation of the empirical variance estimator
over a large number of realizations of {Xt}.

The GARCH(p, q) process can be expressed in terms of the unconditional
variance α̃0 as follows:

Ht = α0 +
p
∑

i=1

βiHt−i +
q
∑

j=1

αjX
2
t−j

= α0

1 − ∑q

i=1 αi − ∑p

j=1 βj

1 − ∑q

i=1 αi − ∑p

j=1 βj

+
p
∑

i=1

βiHt−i +
q
∑

j=1

αjX
2
t−j

= α̃0 − α̃0

q
∑

i=1

αi − α̃0

p
∑

j=1

βj +
p
∑

i=1

βiHt−i +
q
∑

j=1

αjX
2
t−j

= α̃0 +
p
∑

i=1

βi(Ht−i − α̃0) +
q
∑

j=1

αj(X
2
t−j − α̃0) . (32.19)

The conditional variance Ht can thus be interpreted as the unconditional
variance α̃0 plus the sum of the distances from this unconditional variance. If
all αj and βi are greater than zero (which is always the case for a GARCH(1,1)
process), this form of the conditional variance has another interpretation:
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The βi terms cause a kind of persistence of the variance which serves to model
the volatility clustering phenomenon: the greaterHt−i becomes in comparison
to the long-term expectation α̃0 (the unconditional variance), the greater the
positive contribution of these terms to Ht ; the Ht tend to get even larger.
Conversely, for values of Ht−i which are smaller than α̃0 the contribution of
these terms become negative and thus Ht will tend to get even smaller.
The terms involving αi describe the reaction of the volatility to the process

itself. Values X2
t−j larger than α̃0 favor a growth in the variance; values X2

t−j

smaller than α̃0 result in a negative contribution and thus favor a decline in
the variance. If the process itself describes a price change, as is common in the
financial world, this is precisely the effect that strong price changes tend to
induce growth in volatility.
Overall, these properties lead us to expect that GARCH models are indeed

an appropriate choice for modeling certain phenomena observed in the
financial markets (in particular, volatility clustering and the reaction of the
volatility to price changes). In practice, we often set p = 1 and even q = 1.
It has been shown that significantly better results are not achieved with larger
values of p and q and thus the number of parameters to be estimated would
be unnecessarily increased.

32.1.3 Simulation of GARCH Processes

One of the examples to be found in the Excel workbook Garch.xlsx from
the download section [50] is the simulation of a GARCH(1,1) process. The first
simulated value X1 of the time series is obtained, according to Eq. 32.13, from
a realization of a standard normal random variable followed by multiplication
of this number by

√
H1. Subsequently, H2 is computed from the values now

known at time t = 1. Then, a realization X2 is generated from a standard
normal random variable and multiplied by

√
H2. This procedure is repeated

until the end of the time series is reached.
In order to generate a GARCH(p, q) process, q values of the X process

X−q+1, X−q+2, . . ., X0

and p values of the conditional variance

H−p+1, H−p+2, . . . , H0
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Fig. 32.2 Simulated GARCH(1,1) process. The first 100 values have not been used.
Clustering can clearly be observed

must be given in order to be able to compute the first conditional variance H1

as indicated in Eq. 32.13. The choice of these initial values is not unique but
the orders of magnitude of the time series values and the variances should at
least be correct. The unconditional expectation E[Xt] and the unconditional
variance var[Xt] are therefore good candidates for this choice. The first values
of the generated time series should then be rejected (often, 50 values are
sufficient), since they still include the above “initial conditions”. After taking
several steps, realizations of the desired GARCH process can be generated.
Figure 32.2 illustrates a simulated GARCH process.

Such simulated time series can be implemented to test optimization meth-
ods which have the objective of “finding” parameters from the simulated data
series which have been previously used for the simulation. After all, if a data set
is given (real or simulated), the parameters of a model have to be determined.
Methods for doing this are the subject of the next section.

32.2 Calibration of Time Series Models

All of the time series models introduced above include parameters which may
be varied for the purpose of fitting the model “optimally” to the time series
data. We represent these parameters as a parameter vector θ. For an AR(p)
process, the free parameters are the φi and σ 2 while the GARCH(p, q) has
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the free parameters αi and βi . Thus

θ = (φ1, φ2, . . . , φp, σ 2) for AR(p)
θ = (α0, α1, . . . , αq, β1, β2, . . . βp) for GARCH(p, q) .

Awidely used estimation procedure for the determination of unknown param-
eters in statistics is themaximum likelihood estimator.This procedure selects the
parameter values which maximize the likelihood of the model being correct.
These are just the parameter values which maximize the probability (called
the likelihood) that the values observed will be realized by the assumed model.
Using the model, the probability is expressed as a function of the parameters θ .
Then this probability function is maximized by varying the parameter values.
The parameter values for which the probability function attains a maximum
corresponds to a “best fit” of the model to the given data sequence. They are
the most probable parameter values given the information available (i.e., given
the available time series). This procedure will now be performed explicitly for
both an AR(p) and a GARCH(p,q) process.

32.2.1 Parameter Estimation for AR(p) Processes

The likelihood for the AR(p) process is obtained as follows: from Eqs. 32.6
and 32.7 we can see that if we assume an AR(p) process with a parameter
vector

θ = (φ1, φ2, . . . , φp, σ 2)

then Xt has the normal distribution

N(

p
∑

i=1

φiXt−i , σ 2)

The conditional probability for one single observed value of Xt (also called
the conditional likelihood of Xt ) is thus

Lθ(Xt |Xt−1, Xt−2, . . . , Xt−p)

= 1√
2πσ 2

exp

⎧

⎨

⎩

− 1

2σ 2

[

Xt −
p
∑

i=1

φiXt−i

]2
⎫

⎬

⎭

.
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The total likelihood for all T measured data points is in consequence of the
independence of εt simply a product of all conditional likelihoods:

Lθ(X1, X2, . . . , XT ) =
T
∏

t=1

Lθ(Xt | Xt−1, Xt−2, . . . , Xt−p)

= 1

(2π)T/2 σT

T
∏

t=1

exp

⎧

⎨

⎩

− 1

2σ 2

[

Xt −
p
∑

i=1

φiXt−i

]2
⎫

⎬

⎭

.

Observe that for the likelihoods of the first data points Xt where t < p + 1,a
further p data points {X0, X−1, . . . , X−p+1} are required in advance. The
extent of the data sequence needed is thus a data set encompassing T +p data
points.

Maximizing this likelihood through the variation of the parameters
φ1, φ2, . . . , φp and σ 2, we obtain the parameters {φ1, φ2, . . . , φp, σ 2}
which, under the given model assumptions,7 actually maximizes the (model)
probability that the observed realization {Xt} will actually appear. It is,
however, simpler to maximize the logarithm of the likelihood (because of
the size of the terms involved and the fact that sums are more easily dealt with
than products). Since the logarithm function is strictly monotone increasing,
the maximum of the likelihood function is attained for the same parameter
values as the maximum of the logarithm of the likelihood function. The
log-likelihood function for the AR(p) process is given by

Lθ = −T

2
ln(2πσ 2) − 1

2σ 2

T
∑

t=1

[

Xt −
p
∑

i=1

φiXt−i

]2

.

φ1, φ2, . . . , φp appear only in the last expression (the sum), which
appears with a negative sign in the log-likelihood function. The values
of φ1, φ2, . . . , φp which maximize the log-likelihood function therefore
minimize the expression

T
∑

t=1

[

Xt −
p
∑

i=1

φiXt−i

]2

(32.20)

7The model assumption is that the time series was generated by an AR(p) process.
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This, however, is just a sum of the quadratic deviations. The desired parameter
estimates {̂φ1,̂φ2, . . . ,̂φp} are thus the solution to a least squares problem.
The ̂φt can thus be determined independently from the variance σ 2. The
estimation of the variance is obtained from simple calculus by taking the
derivative of the log-likelihood function with respect to σ 2 and setting the
resulting value equal to zero (after substituting the optimal φi , namely thêφi):

∂Lθ

∂σ 2
= −T

2

∂ ln(2πσ 2)

∂σ 2
− ∂

∂σ 2

⎛

⎝

1

2σ 2

T
∑

t=1

[

Xt −
p
∑

i=1

̂φiXt−i

]2
⎞

⎠

= − T

2σ 2
+ 1

2σ 4

T
∑

t=1

[

Xt −
p
∑

i=1

̂φiXt−i

]2
!= 0 .

The optimal estimate for σ 2 becomes

σ̂ 2 = 1

T

T
∑

t=1

[

Xt −
p
∑

i=1

̂φiXt−i

]2

. (32.21)

For example, the maximum likelihood estimator for φ1 in the AR(1) process in
Eq. 32.11, obtained by minimizing the expression in 32.20, can be determined
through the following computation:

0 = ∂

∂φ1

T
∑

t=1

[Xt − φ1Xt−1]2 = 2
T
∑

t=1

(Xt − φ1Xt−1)(−Xt−1)

= 2φ1

T
∑

j=1

X2
j−1 − 2

T
∑

t=1

Xt−1 Xt �⇒

̂φ1 =
∑T

t=1 Xt−1 Xt
∑T

j=1 X2
j−1

.
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Substituting this into Eq. 32.21 yields the maximum likelihood estimator for
σ 2

σ̂ 2 = 1

T

T
∑

t=1

[

Xt − ̂φ1Xt−1
]2

= 1

T

T
∑

t=1

[

Xt − Xt−1

∑T
i=1 Xi−1 Xi
∑T

j=1 X2
j−1

]2

.

32.2.2 Parameter Estimation for GARCH(p, q) Processes

The likelihood for the GARCH(p, q) process is obtained as follows: from
Eqs. 32.13 and 32.16 we see that

Xt |{Xt−1, . . . , Xt−q, Ht−1, . . . , Ht−p} ∼ N(0, Ht) .

This implies that, given the information {Xt−1, . . . , Xt−q,Ht−1, . . . , Ht−p},
Xt is normally distributed according to N(0,Ht). The conditional likelihood
for one single observation Xt is then

Lθ(Xt |{Xt−1, . . . , Xt−q, Ht−1, . . . , Ht−p}) = 1√
2πHt

e−X2
t /2Ht

where

Ht = α0 +
p
∑

i=1

βiHt−i +
q
∑

j=1

αjX
2
t−j

and with a parameter vector

θ = (α0, α1, . . . , αq, β1, . . . , βp) .

The overall likelihood of all observations together is, in consequence of the
independence of {εt}, merely the product

Lθ =
T
∏

t=1

Lθ(Xt |{Xt−q , . . . , Xt−1, Ht−p, . . . , Ht−1}) =
T
∏

t=1

1√
2πHt

e−X2
t /2Ht .
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Observe that for the likelihood of the first data point X1 further data points
{X0, X−1, . . . , X−q+1, H0, H−1, . . . ,H−p+1} are required in advance. The
total required data sequence {Xt} thus encompasses T + q data points. If
T + q observations of Xt are available, the first are required as information
in advance, the remaining T are included in the likelihood function as
observed data. In addition the values {H0,H−1, . . . , H−p+1} are required as
information in advance. In choosing the size of T it is necessary to make a
compromise between the exactness of the estimator (T is chosen to be as large
as possible) and the time scale with which the market mechanisms change (T is
chosen to be as small as possible).
Maximizing this likelihood function by allowing the parameter values in θ

to vary, we obtain the parameters which, under the model assumption (a
GARCH(p, q) process), maximize the probability of a realization of the
market values {Xt} observed. It is again easier to work with the log-likelihood
function in determining this maximum. Since the log function is strictly
monotone increasing, the maximum of the likelihood and the log-likelihood
function is attained at the same parameter point. The log-likelihood for the
GARCH(p, q) process is given by

Lθ =
T
∑

t=1

ln Lθ(Xt |{Xt−q, . . . , Xt−1,Ht−p, . . . , Ht−1})

=
T
∑

t=1

ln

(

1√
2πHt

e−X2
t /2Ht

)

= −T

2
ln(2π) − 1

2

T
∑

t=1

ln(Ht) − 1

2

T
∑

t=1

X2
t

Ht

(32.22)

where

Ht = Ht(θ) = α0 +
p
∑

j=1

βjHt−j +
q
∑

k=1

αkX
2
t−k .

This is the function which must now be maximized through the variation
of the parameter vector θ . The space of valid parameters θ is limited by
the constraints stated in Eqs. 32.14 and 32.15. This represents an additional
difficulty for the optimization. The optimization is quite difficult because (as
opposed to the AR(1) process) maximizing the likelihood function cannot be



774 H.-P. Deutsch and M. W. Beinker

computed analytically but must be accomplished by means of a numerical
optimization procedure. As the function to be maximized has multiple local
maxima, a complex “likelihood surface” further complicates the optimization
process since local optimization methods, such as gradient methods, are
unsuitable if the initial value is not well chosen, i.e., if it does not lie close
to the global maximum. A suitable algorithm for finding a global maximum
in such a situation is simulated annealing.

32.2.3 Simulated Annealing

Simulated annealing is a numerical algorithm used to find a global minimum
or maximum of a given function. Its construction is motivated by an effect
observed in physics, namely cooling. The cooling of a physical body results in
its moving through decreasing energy states traveling a path ending in a state
of minimum energy. The simulated annealing algorithm attempts to imitate
this process. The function whose minimum is to be found thus corresponds
to the energy of the physical body.

As a physical body cools, the temperature T declines resulting in a steady
loss of energy. The body is composed of billions of atoms which all make
a contribution to its total energy. This being the case, there are a multitude
of possible energy states with a multitude of local energy minima. If the
temperature declines very slowly, the body surprisingly finds its global min-
imum (for example, the atoms in the body may assume a characteristic lattice
configuration). A simple approach to this can be taken from thermodynamics:
the probability of a body being in a state with energy E when the temperature
of the body is T is proportional to the Boltzmann factor, exp(−E/kT ):

P(E) ∼ exp

(

− E

kT

)

,

where k is a thermodynamic constant, the Boltzmann constant. It follows that
a higher energy state can be attained at a certain temperature though the
probability of such an event declines with a decline in temperature. In this
way, “unfavorable” energy states can be attained and thus the system can escape
from local energy minima. However, if the temperature drops too quickly, the
body remains in a so-calledmeta-stable state and cannot reach its global energy
minimum.8 It is therefore of utmost importance to cool the body slowly.

8Physicist speak in such cases of “frustrated” systems. An example of such a frustrated system is glass.
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This strategy observed in nature is now to be simulated on a computer. In
order to replicate the natural scenario, a configuration space (the domain of
possible values of the pertinent parameters θ ) must be defined. This might
be a connected set but could also consist of discrete values ( combinatorial
optimization). In addition, a mechanism is required governing the transition
from one configuration to another. And finally, we need a scheme for the
cooling process controlling the decline in “temperature” T (T0 → T1 →
· · · → Tn → · · · ). The last two points mentioned are of particular
importance; the change-of-configuration mechanism determine how efficient
the configuration space is sampled while the second of the above requirements
serves to realize the “slow cooling”.
For each temperature the parameter sequence forms a Markov chain. Each

new test point θ is accepted with the probability9

P = min
{

e−[f (θp)−f (θp−1)]/T , 1
}

where θp−1 represents the previously accepted parameter configuration. The
function f is the function to beminimized for each specific problem and is, for
example, the (negative) log-likelihood function from Eq. 32.22. This function
corresponds to the energy function in physics.
After having traveled a certain number of steps in the Markov chain, the

temperature declines according to some mechanism which could for instance
be as simple as

Tn = αTn−1 (0 < α < 1) .

A newMarkov chain is then started. The starting point for the new chain is the
end point of the previous chain. In a concrete optimization, the temperature
is naturally not to be understood in the physical sense; it is merely an
abstract parameter directing the course of the optimization by controlling the
transition probability in the Markov chain. However, we choose to retain the
designations temperature or cooling scheme as a reminder of the procedure’s
origin. Figure 32.3 shows a schematic representation of the algorithm.
Simulated annealing is demonstrated in the Excel workbook Garch.xlsx

by means of a VBA program. The algorithm in the workbook is used to fit the

9The minimum function is only required since a probability can be at most equal to one.
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PPPP T3

PPPP Tm

Fig. 32.3 Simulated annealing using m Markov chains with n steps in each chain. If the
cooling is slow enough and m and n are large enough, then θmn is a good approximation
of the parameter vector necessary to achieve the global minimum of the function f

parameters of a GARCH(1,1) process making use of the first 400 points of a
given (simulated) data set. No emphasis is placed on the speed of computation
since our object is to demonstrate the fundamental principles as clearly as
possible.
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