
31
Market Parameter from Historical Time Series

Having shown in the previous sections how statistical parameters such as the
volatility can be obtained implicitly from the prices of derivatives traded in
the market (if they are not quoted directly anyway), we now proceed with
presenting in the following section, how such statistical figures, one of which is
the volatility, could be determined by analyzing the historical time series. These
volatilities are called real world or historic volatilities in contrast to implicit or
risk-neutral volatilities.
Depending on the usage, either risk-neutral or real-world volatilities are

applied. The risk-neutral or arbitrage-free valuation of derivatives requires risk-
neural volatilities (as one might have guessed), since otherwise it would be
impossible to match the price quotes of (simple) options, which are used for
dynamic hedging that is essential for the risk-neutral valuation approach. On
the other hand, the purpose of risk management is to calculate the risk of
a potential real-world loss especially of those risks, which are not explicitly
(statically) hedged. Here, real-world volatilities are needed.
Time series analysis is a broad topic in the field of statistics whose application

here will be limited to those areas which serve the purposes of this book. A
much more general and wide-reaching presentation can be found in [86], for
example.
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31.1 Historical Averages as Estimates
for Expected Values

Based on a time series of some risk factor (e.g. a stock price), we start with
calculating for every price change the logarithm of the ratio of new and
old price, which equals in linear approximation the relative price change,
see Eq. 30.9. The statistical measures we estimate are then related to the
logarithm of risk factor, e.g. the stock price. This is always handy, if we consider
lognormally distributed risk factors. For stock prices, this is the case, at least in
first order approximation. Interest rates used to be considered as lognormally
distributed, too, as long as the interest rates does not become to low or even
negative. For normally distributed risk factors (e.g. interest rates in domains
with low or negative interest rates), the absolute difference of price for risk
factor changes would be used. The statistical methods described below work
in both cases, and for a historical as well as for a simulated time series.

From the expectation and the variance of this variable the historical volatility
σ and the historical mean returnμ can be determined by recording the relative
changes over a period of length δt along a historical (or simulated) path:

μ = 1

δt
E [X] , σ 2 = 1

δt
Var [X]

with X = ln

(
S(t + δt)

S(t)

)
≈ S(t + δt) − S(t)

S(t)
. (31.1)

The historical correlation between two price processes is likewise determined
from the relative changes. With Y denoting the change of the second price
(analogous to X as defined above), the correlation, as defined in Eq. A.14, is

ρ = cov [XY ]√
Var [X] Var [Y ]

.

These equations make it apparent that a procedure is required enabling the
determination of the expectation and variance from time series data. It is well
known from statistics that from n measurements Xi , which are realizations of
a random variable X, the mean 〈X〉 (and more generally the mean 〈f (X)〉 of
a function of X) can be computed in the following way

〈X〉 = 1

n

n∑
i=1

Xi , 〈f (X)〉 = 1

n

n∑
i=1

f (Xi) .
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The law of large numbers states that these means approximate the desired
expectations and variances as follows1:

〈f (X)〉 n→∞−→ E [f (X)]

〈
f (X)2〉 − 〈f (X)〉2 n→∞−→ n − 1

n
var [f (X)] . (31.2)

This result may seem trivial or the difference between the actual parameters
(the right-hand side) and the measured approximation (left-hand side) may be
unclear to the reader. This difference, however, is fundamental: the theoretical
value (the right-hand side) can never be precisely known; it can only be
estimated more or less exactly through the computation of means of measured
data. Such “means of measured data” are called estimators in statistics to distin-
guish them from the true values. Examples of estimators are the expectations
on the left-hand sides in Eq. 31.2. More estimators will be introduces in the
following sections.
The expectation and variance of X are needed for the description of the

risk factor X. For this, the means of the realizations of the random variablesX
and X2 are needed. The determination of the error made in making these
estimates requires X4 as well (see Sect. 31.2). Therefore, for any time series
analysis the computation of the following measures are especially helpful:

〈X〉 = 1

n

n∑
i=1

Xi ,
〈
X2

〉 = 1

n

n∑
i=1

X2
i ,

〈
X4

〉 = 1

n

n∑
i=1

X4
i . (31.3)

These measures are called the 1., 2. and 4. moment of the distribution. In
general, the n-th moment mk of a distribution is defined as

mk = 1

n

n∑
i=1

Xk
i .

If multiple correlated prices are involved, the following means for each pair of
prices are also necessary:

〈XY 〉 = 1

n

n∑
i=1

XiYi ,
〈
(XY)2〉 = 1

n

n∑
i=1

X2
i Y

2
i . (31.4)

1The factor (n − 1) /n of the variance is necessary if the estimator for the variance is to be unbiased. See
any introductory statistics textbook for more on this subject.
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These are the composite moments m1,1 and m2,2 of the time series X and Y .
From these values, historical estimates for the mean return, volatility and
correlation can be obtained:

μ = 1

δt
E [X] ≈ 1

δt
〈X〉 (31.5)

σ = 1√
δt

√
var [X] ≈ 1√

δt

√
n

n − 1

√〈
X2

〉 − 〈X〉2

ρ = cov [XY ]√
var [X]

√
var [Y ]

≈ 〈XY 〉 − 〈X〉 〈Y 〉√〈
X2

〉 − 〈X〉2
√〈

Y 2
〉 − 〈Y 〉2

.

31.2 Error Estimates

Estimating the error in the measured values is essential for evaluating their
meaningfulness. It is therefore insufficient to provide a value as the result of
making observations since the actual theoretical value is not obtained (and
will never be obtained) from measured data. It is more appropriate to find an
interval on the basis of observed data within which the theoretical value lies.

A claim such as “the historical price volatility is 20% per year” is not very
meaningful if nothing is said about the error associated with such a claim, for
example 0.5% or 50%. A valid statement on the other hand might be “the
historical price volatility is 20% ± 3% per year”. This means that the actual
volatility lies with high probability somewhere between 17% and 23% per
year. The safer you need to be, i.e. the higher the probability should be that
the value lies indeed in this interval, the greater the interval will be, if the range
of parameter values is not restricted for other reasons (e.g., in case of a dice the
result of a valid throw is with 100% probability between 1 and 6).

In this section, several simple methods for determining the statistical error
are introduced and its calculation will be demonstrated explicitly for the
volatility and correlation. We begin by assuming that data in a time series
(referred to as observed values or measurements) are pair wise independent
and in consequence uncorrelated. Finally, we will briefly show how to test
whether measurements are independent and how to proceed in the case that
they are not, i.e., how to account for autocorrelations. Naturally, the subject
is quite technical. Error estimation is theoretically quite simple but lengthy.
Nonetheless, anyone who wishes to conduct a serious analysis of historical or
simulated data should understand and apply this material.
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There are two different types of error. The first is the statistical error, which is
a consequence of the fact that only a finite number of measurements are taken.
The second is the systematic error. These are errors arising from a fundamental
mistake (for example, a programming error in aMonte Carlo simulation). The
failure to decrease with an increasing number of measurements is characteristic
of a systematic error (as opposed to the statistical error). Only the statistical
error will be dealt with in this section.

31.2.1 Uncorrelated Measurements

The determination of expectations is accomplished through calculating the
mean of the observed values as in Eq. 31.5. For a sufficiently large number n

of measurements

E [X] ≈ 〈X〉 , var [X] ≈ n

n − 1

(〈
X2

〉 − 〈X〉2
)

(31.6)

holds. The central question is: what is the (statistical) error involved in
estimating these parameters as above? The n observations are realizations of the
random variables Xi , i = 1, . . . n. The mean is the weighted sum over these
random variables Xi and as such is again a random variable. The statistical
error will be defined as the standard deviation of this new random variable,
or equivalently, the error is the square root of the variance of the mean. A
fundamental result from the field of statistics is

〈X〉 = 1

n

n∑
i=1

Xi ⇒ (31.7)

var [〈X〉] = 1

n
var [X] if E

[
XiXj

] = 0 for i 	= j .

The variance of the mean of uncorrelated, identically distributed random
variables is equal to the variance of the random variable itself divided by
the number of observations. This result combined with the approximation
in Eq. 31.6 for the variance yields the statistical error (denoted below by the
symbol δ) defined as the standard deviation of the mean

δ 〈X〉 ≡ √
var [〈X〉] =

√
1

n
var [X] ≈

√〈
X2

〉 − 〈X〉2

n − 1
. (31.8)
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This holds in general for the mean of a function of the random variable X:

δ 〈f (X)〉 =
√

1

n
var [f (X)] ≈

√〈
f (X)2

〉 − 〈f (X)〉2

n − 1
. (31.9)

The statistical error in the estimation of the mean return as defined in Eq. 31.5
is thus2

δμ ≈ 1

δt
√

n − 1

√〈
X2

〉 − 〈X〉2 . (31.10)

The mean of a function is to be distinguished from the function of the mean
if the function is not linear: 〈f (X)〉 	= f (〈X〉). Thus, the error of a function
of an uncertain value z (in the case under discussion, z = 〈X〉) cannot be
computed directly in general. A Taylor series expansion of the function can
provide assistance in such cases. The propagation of error can be obtained from
this Taylor series:

f = f (z) mit z = z ± δ z ⇒ δ f =
∣∣∣∣δ z

∂ f

∂ z

∣∣∣∣ + 1

2

∣∣∣∣(δ z)2 ∂2f

∂ z2

∣∣∣∣+ · · ·

The vertical lines in the above equation indicate the absolute value. This can
be generalized for functions of multiple variables with associated errors. Such
expressions quickly become very lengthy. Restricting our consideration to the
first (linear) terms, we obtain what is known as the quadratic error propagation.

f = f (z1, z2, . . . , zk) with zi = zi ± δ zi

⇒ δ f ≈
∣∣∣∣∣

k∑
i=1

δ zi

∂ f

∂ zi

∣∣∣∣∣ =
√√√√ k∑

i=1

(
δ zi

∂ f

∂ zi

)2

. (31.11)

2Here, the δ in δt denotes the length of a time interval between two data points in the time series and not
the “error in t”.
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This law will be required in order to determine the error involved in measuring
the variance since

var [X] ≈ n

n − 1

(〈
X2〉 − 〈X〉2) = f (z1, z2) with

z1 = 〈X〉 , z2 = 〈
X2〉 , f (z1, z2) = n

n − 1

(
z2 − z2

1

)

⇒ ∂ f

∂ z1
= − 2n

n − 1
z1 ,

∂ f

∂ z2
= n

n − 1
.

The error of f , calculated with quadratic error propagation, is then

δ f ≈
√(

δ z1
∂ f

∂ z1

)2

+
(

δ z2
∂ f

∂ z2

)2

=
√(

δ z1
2n

n − 1
z1

)2

+
(

δ z2
n

n − 1

)2

= n

n − 1

√
4z2

1 (δ z1)
2 + (δ z2)

2 .

Since z1 and z2 are means of X and f (X) = X2 respectively, their errors are
respectively,

z1 = 〈X〉 ⇒ δ z1 = δ 〈X〉 ≈ 1√
n − 1

√〈
X2

〉 − 〈X〉2

z2 = 〈
X2

〉 ⇒ δ z2 = δ
〈
X2

〉 ≈ 1√
n − 1

√〈
X4

〉 − 〈
X2

〉2
.

Substituting these into the expression for δf yields

δ f ≈ 1√
n − 1

n

n − 1

√
4 〈X〉2

(〈
X2

〉 − 〈X〉2
) +

(〈
X4

〉 − 〈
X2

〉2)

= 1√
n − 1

n

n − 1

√〈
X4

〉 − 〈
X2

〉2 + 4
〈
X2

〉 〈X〉2 − 4 〈X〉4 .
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This is the statistical error made in measuring the variance var[X]. In order
to determine this error when analyzing historical time series, the means of X,
X2 and X4 must be measured.

Likewise, the error of the volatility σ can be determined through the
following deliberations

σ [X] ≡ 1√
δt

√
var [X] ≈ 1√

δt

√
n

n − 1

√〈
X2

〉 − 〈X〉2 = 1√
δt

g(z1, z2)

with z1 = 〈X〉 , z2 = 〈
X2〉 , g(z1, z2) =

√
n

n − 1

√
z2 − z2

1 ⇒

∂ g

∂ z1
= −

√
n

n − 1

z1√
z2 − z2

1

,
∂ g

∂ z2
= 1

2

√
n

n − 1

1√
z2 − z2

1

.

An analogous calculation as above yields

δ σ ≈ 1√
δt

1√
n − 1

√
n

n − 1

√〈
X4

〉 − 〈
X2

〉2 + 4
〈
X2

〉 〈X〉2 − 4 〈X〉4

2
√〈

X2
〉 − 〈X〉2

(31.12)

for the error in the measured volatility. The expression for the error of the
correlation between two prices X and Y is even longer as it is represented by
a function of five means:

ρ[X,Y ] ≡ cov[XY ]√
var[X]var[Y ] ≈ 〈XY 〉 − 〈x〉〈Y 〉√〈X2〉 − 〈X〉2

√〈Y 2〉 − 〈Y 〉2
= ρ(z1, z2, z3, z4, z5)

where z1 = 〈X〉, z2 = 〈Y 〉, z3 = 〈X2〉, z4 = 〈Y 2〉, z5 = 〈XY 〉

ρ = z5 − z1z2√
z3 − z2

1

√
z4 − z2

2

The derivatives of the correlation with respect to the zi are

∂ρ

∂z1
= −ρ

(
z1 + z2

z5 − z1z2

)

∂ρ

∂z2
= −ρ

(
z2 + z1

z5 − z1z2

)
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∂ρ

∂z3
= ∂ρ

∂z4
= ρ

2

∂ρ

∂z5
= ρ

z5 − z1z2

The errors of the zi are as in Eq. 31.9

δz2
1 = 〈X2〉 − 〈X〉2

n − 1
, δz2

2 = 〈Y 2〉 − 〈Y 〉2

n − 1

δz2
3 = 〈X4〉 − 〈X2〉2

n − 1
, δz2

4 = 〈Y 4〉 − 〈Y 2〉2

n − 1

δz2
5 = 〈X2Y 2〉 − 〈XY 〉2

n − 1
.

All these results inserted into Eq. 31.11 yields the statistical error of the
correlation

∂ρ ≈
√√√√ 5∑

i=1

(
δzi

∂ ρ

∂ zi

)2

.

Table 31.1 illustrates the application of Eq. 31.5 for the measurement of the
mean return and the volatility from a data set with n = 250 observations and
the estimation of their statistical errors in accordance with Eqs. 31.10 and 31.12.
In addition to the relative price changes X, the second and fourth powers are
measured. Using these means, the above equations are used to compute the
mean return and the volatility as well as the errors involved in estimating these
two parameters.
The data set was generated by a simulated random walk with a yield

of 6.00% and a volatility of 20.00%. The measured values could thus be
compared with the “true values” (a luxury naturally not at our disposal when
using historical data). The true values lie within the error of the measurement.
The error is naturally large since the number of measurements taken is

so small. As the number of measurements gets bigger, we see that the error
decreases as the inverse of square root of the number of measurements; a
tenfold decrease in the statistical error can thus only be accomplished if a
sample size 100 times as large is placed at our disposal.



740 H.-P. Deutsch and M. W. Beinker

Table 31.1 Measuring the yield, the volatility and their errors from a (simulated) data
series of 250 “measurements”. The parameters used to simulate the data set are shown
for comparison

Yield per δt Vol per δt

Simulated 6.00% 20.00%
Measured 5.99% 19.70%
Error 1.25% 1.00%
x x2 x4

Averages
0.05986719 0.04223756 0.00502627

Data n

−0.070,8944,77 0.005,026,027 2.526,09 ×10−05 1
−0.014,768,650 0.000,218,113 4.757,33 ×10−08 2
0.011,417,976 0.000,130,37 1.699,64 ×10−08 3

−0.066,321,993 0.004,398,607 1.934,77 ×10−05 4
−0.113,237,822 0.012,822,804 0.000,164,424 5
0.089,718,194 0.008,049,354 6.479,21 ×10−05 6
0.200,262,728 0.040,105,16 0.001,608,424 7
0.329,164,502 0.108,349,270 0.011,739,564 8

−0.003,557,309 1.265,44 ×10−05 1.601,35 ×10−10 9
−0.066,032,319 0.004,360,267 1.901,19 ×10−05 10
0.266,072,855 0.070,794,764 0.005,011,899 11

−0.173,980,700 0.030,269,284 0.000,916,23 12
0.193,003,141 3.725,02 ×10−02 0.001387578 13

−0.044,716,037 0.001,999,524 3.998,1 ×10−06 14
−0.038,558,758 0.001,486,778 2.2105,1 ×10−06 15
−0.033,664,767 0.001,133,317 1.284,41 ×10−06 16
. . . . . . . . . . . .

It is essential to be aware that errors are also only statistical quantities.
Therefore we can not be sure that the interval defined by the error actually
contains the true value of the estimated parameter; there is only a certain
probability that this is the case. If we have reason to believe that the measured
estimator, such as the mean return, is normally distributed, then there is
approximately 68% probability that the true parameter will lie within the
error interval, since the error is defined as one standard deviation. Thus,
the probability for the true value to lie outside the range obtained from the
statistical error is approximately 32% in this case. If this uncertainty is too
large, we could of course define the statistical error to correspond to two or
three standard deviations or more. We only need to multiply the error in the
derivations above by the desiredmultiplicative factor. For example, if we define
the error as two standard deviations and the measured estimator is normally
distributed, then the probability that the true value will lie within the new
error interval is 95.4%.
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As is clear from the above, we need the probability distribution of the
measured estimator if we want to assign confidence levels to error intervals.
It can by no means be taken for granted that the measured estimator has the
same distribution as the random variables in the time series. If, for instance,
the random variables X in the time series are uniformly distributed on a finite
interval [a, b] then the estimator for μ as defined in Eq. 31.5 is (for large n)
approximately normally distributed (because of the central limit theorem, see
Sect. A.4.3). If, however, the random variablesX in the time series are normally
distributed, then the estimator forμ is also normally distributed. However, the
estimator for the variance is in this case a χ2-distributed variable. This can be
seen as follows: according to Eqs. 31.6 and 31.3, the estimator for the variance
is

var [X] ≈ n

n − 1

(〈
X2

〉
− 〈X〉2

)
= n

n − 1

(
1

n

n∑
i=1

X2
i − 〈X〉2

)
.

The Xi are all normally distributed and the mean 〈X〉 is also normally
distributed in this case. Therefore the estimator for the variance is a sum of
squared normally distributed random variables and as such χ2-distributed (see
Sect. A.4.6).

31.2.2 Error of Autocorrelated Measurements

Themethods described above for the determination of the statistical error hold
only for uncorrelated measurements. That means, it has been tacitly assumed
that the n measurements in a time series come from independent observations.
However, independence is an assumption which often cannot be made, in
particular in time series analysis (for example, in the case of moving average
methods, see Sect. 33.4). Daily changes in a moving 30-day price average, for
example (the mean of prices observed over the previous 30 days is computed)
will remain small from one day to the next since in each daily adjustment, only
the oldest price is replaced by the most recently observed value, the other 29
prices in the average remain the same. The measurement of such a variable is
highly correlated with the measurement made on the previous day. In such a
situation, error considerations must be modified significantly.
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Autocorrelation and Autocovariance

A correlation of one and the same variable with itself is called autocorrelation.3
Just as correlation measures the (linear) dependency between two different
random processes, autocorrelation measures the (linear) dependency between
a process has on itself. The autocorrelation is defined by

�(t, h) = cov(Xt+h, Xt)

cov(Xt,Xt)
= cov(Xt+h,Xt)

var(Xt)
, (31.13)

where the definition of the autocovariance is completely analogous to the
definition of the covariance between two different random variables (see
Eq. A.10)

cov(Xt+h, Xt) = E [(Xt+h − E [Xt+h]) (Xt − E [Xt ])] (31.14)

= E [Xt+hXt] − E [Xt+h] E [Xt] .

We arrive at the final equality by merely taking the product in the previous
expression and using the linearity of the expectation. The resulting equation
corresponds to A.11. Definition 31.14 immediately establishes the relation
between the autocovariance and the variance

cov(Xt, Xt) = E[(Xt − E [Xt])(Xt − E [Xt])] = var(Xt) .

which has already been used in establishing the last equality in Eq. 31.13.
The autocorrelation in Eq. 31.13 also corresponds to the ordinary correla-

tion known from statistics. If the time series is stationary4 (in particular, if the
variance of the process remains constant), var(Xt) = var(Xt+h) holds and ρ

can be written in a form corresponding to Eq. A.14:

�(h) = cov(Xt+h, Xt)√
var(Xt+h)

√
var(Xt)

.

3Autocorrelations do not appear merely in certain measurement methods but are in general inherent to
non-Markov processes, i.e. for processes whose current value is influenced by past values. See Sect. 32.1
for more on this topic. It should be noted that correlation measures only linear dependencies, though.
4This means intuitively that the parameters describing the time series are time independent, see Chap. 32.
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This is just the definition of the correlation of the random variable Xt+h with
the random variableXt , irrespective of whether these random variables belong
to the same time series.

Autocorrelation Time and Error Estimates

With the autocorrelations above we can estimate an autocorrelation timewhich
specifies the number of time steps needed between two measurements in
order to guarantee that the two measurements are (at least approximately)
uncorrelated. The autocorrelation time τ is defined through the autocorrelation
Eq. 31.13 in the following manner

τ(t) ≡ 1

2

∞∑
h=−∞

�(t, h) = 1

2

∞∑
h=−∞

cov(Xt+h, Xt)

cov(Xt,Xt)
. (31.15)

Usually, only stationary time series are investigated (see Chap. 32). Then � is
only dependent on the time difference h between the observations and not on
the time point t . The autocorrelation time is then likewise independent of t ,
i.e., a constant. For uncorrelated observations we have �(t, h) = δh,0 (where
δh,0 again denotes the Kronecker delta) and therefore simply τ = 1/2.
If the number n of observations is much larger than the autocorrelation

time τ it can be shown that

δ 〈X〉 ≈
√

2 τ

n
var [X] ≈

√
2 τ

n − 1

[〈
X2

〉 − 〈X〉2
]

for n >> τ

(31.16)

holds for the mean error of X. This reduces to Eq. 31.8 if the measurements
are uncorrelated since then we have τ = 1/2.
The autocorrelation time (and thus the autocorrelations) must be measured

if the error in Eq. 31.16 is to be determined. An estimator for the autocovariance
is given by

cov(Xt+h, Xt) ≈ 1

n − |h|
∑

i,j
i−j=|h|

XiXj −
(

1

n

n∑
i=1

Xi

)2

. (31.17)
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For h = 0 this estimator is similar to Eq. 31.6 but the factor n/(n − 1) is not
reproduced (for large n however, this factor is very close to 1):

var [Xt ] = cov(Xt , Xt) ≈ 1

n

∑
i,j
i=j

XiXj −
(

1

n

n∑
i=1

Xi

)2

=
〈
X2

t

〉
− 〈Xt 〉2 .

As can be seen from Eq. 31.15, the autocorrelations between h = −∞ and
h = −∞must in theory bemeasured for the calculation of the autocorrelation
time. In practice, a suitable cutoff (n − ñ) can be chosen to limit the sum in
Eq. 31.15 to a finite one, neglecting the autocorrelations that are so small that
they contribute almost nothing to the sum. Substituting the estimator for the
autocovariance, Eq. 31.17, then yields the estimator for the autocorrelation
time.

τ ≈ 1

2

(n−ñ)∑
h=−(n−ñ)

cov(Xt+h, Xt)

cov(Xt,Xt)
with τ << ñ << n

≈ 1

2

1〈
X2

〉 − 〈X〉2

n−ñ∑
h=ñ−n

⎡
⎢⎢⎣ 1

n − |h|
∑

i,j
i−j=|h|

XiXj − 〈X〉2

⎤
⎥⎥⎦ .

All this substituted into Eq. 31.16 finally provides a possibility of estimating
the error of a mean taking autocorrelations into account:

δ 〈X〉 ≈

√√√√√√√
1

n − 1

n−ñ∑
h=ñ−n

⎡
⎢⎢⎣ 1

n − |h|
∑

i,j
i−j=|h|

XiXj − 〈X〉2

⎤
⎥⎥⎦ .

There are thus two possibilities of taking the autocorrelations into consid-
eration:

• Wewait for at least as long as the autocorrelation time before taking a second
measurement; the measurements would then be uncorrelated.

• We do not wait for the autocorrelation time to pass (e.g., because it is
to short, for instance) and use the above expression for the error of the
correlated observations.
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31.3 Return and Covariance Estimates

We will now present some commonly used estimators for returns and covari-
ances. The importance of return estimates is unquestionable for any invest-
ment decision. Just as important are covariance estimates for quantifying the
risk, as shown for instance in Sect. 21.5. In addition, estimates for other
quantities like volatilities, correlations and Betas can be derived from the
covariance estimates. For all estimates we will use historical risk factor market
prices Si, i = 0, 1, . . . K at times

tn = t0 + n dt with n = 0, . . . , N .

The estimates will be done at time

t = tN > t0

and the window used for the estimates ranges from t0 until tN . Regular sizes
of such time windows range from ca. 30 day to ca. 2 years. We will denote by
δt the time span over which the estimations will be made. This time span is
also called investment horizon, holding period or liquidation period . The time
span between to adjacent data in the time series will be denoted by dt . We will
present a situation often occurring in practice, namely that the holding period
does not have the same length as dt . To still have a clear presentation of the
issues we will, however, assume that the holding period is a multiple of dt :

δt = m dt .

Using time series of daily settlement prices, for instance, one can calculate
estimators for holding periods of m days (e.g., weekly or monthly estimators).

31.3.1 Return Estimates

The risk factor returns over the holding period δt , i.e., the logarithmic price
changes will be denoted by ri .

ri(t) = 1

δt
ln

[
Si(t + δt)

Si(t)

]
for i = 0, . . . ,K . (31.18)
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The historical prices Si(tn) in a time series with N + 1 prices at times tn with

tn − tn−1 = dt for all n = 1, . . . , N

can be translated into historical returns for all past holding periods (all with
length δt ):

ri(tn−m) = 1

δt
ln

[
Si(tn)

Si(tn−m)

]
for i = 0, . . . , K and n = m, . . . , N .

(31.19)

The return at the current time t = tN over the next holding period δt (which
still lies in the future) is only known for the risk free investment (this is the
risk free rate). For all risky investments, however, the future prices Si(tN + δt)

are not yet known. Thus, the returns cannot be calculated but can only be
estimated. We will use μi (tN) to denote the estimator for ri(tN).

The Moving Average (MA) Estimator

The common moving average estimator is simply the (equally weighted) mean
of all historical returns over past time spans of length δt within the time
window used for the estimation.5

μi (tN) = 1

N − m + 1

N∑
n=m

ri(tn−m)

= 1

(N − m + 1) δt

N∑
n=m

ln

[
Si(tn)

Si(tn−m)

]
.

The logarithm appearing above can be written as a sum over historical dt -
returns since everything except the first and the last term cancels in the

5Of course, this estimator is strongly autocorrelated since one time step later N −m out of the N −m+1
values in the sum are still the same.
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following sum:

m∑
k=1

ln

[
Si(tn−k+1)

Si(tn−k)

]
= ln [Si(tn)] − ln [Si(tn−1)] +

ln [Si(tn−1)] − ln [Si(tn−2)] +
. . .+
ln [Si(tn−m+1)] − ln [Si(tn−m)]

= ln [Si(tn)] − ln [Si(tn−m)] = ln

[
Si(tn)

Si(tn−m)

]
.

Inserting this into the expression forμi (tN) andmaking the index substitution
x = n − k yields:

μi (tN) = 1

(N − m + 1) δt

N∑
n=m

m∑
k=1

ln

[
Si(tn−k+1)

Si(tn−k)

]

= 1

(N − m + 1) δt

m∑
k=1

N−k∑
x=m−k

ln

[
Si(tx+1)

Si(tx)

]
. (31.20)

Now we have expressed μi (tN) as a sum over dt -returns (in contrast to δt -
returns). Again, almost everything cancels in the sum over x

N−k∑
x=m−k

ln

[
Si(tx+1)

Si(tx)

]
= ln

[
Si(tN−k+1)

Si(tm−k)

]
,

leaving us with

μi (tN) = 1

(N − m + 1) δt

m∑
k=1

ln

[
Si(tN−k+1)

Si(tm−k)

]
. (31.21)

The remaining sum contains only m terms now, instead of N . This clearly
shows the fundamental problem with return estimates: only historical prices
in the earliest and latest time period δt contribute. All prices in between are
simply not used! This becomes especially severe for dt = δt , i.e., for m = 1.
In this case only the very first and the very last price of the time window
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contribute:

μi (tN ) = 1

N δt
ln

[
Si(tN )

Si(t0)

]
.

Two Alternatives for the Moving Average

One way to circumvent this problem is to use historical returns over time spans
with different lengths (N − n) dt , all ending today. Based onDefinition 31.18,
we can construct an estimator using these historical returns in the following
way:

μi (tN) = 1

N

N−1∑
n=0

1

(N − n) dt
ln

[
Si(tN)

Si(tn)

]
︸ ︷︷ ︸

return from tn to tN

= 1

N dt

N−1∑
n=0

1

N − n
ln

[
Si(tN)

Si(tn)

]
. (31.22)

Observe that in this estimator we have dt (and not δt ) appearing in the
denominator. All historical prices (even the ones way back in the past) enter
with their influence still relevant today, namely with the return over the
corresponding time span ending today. The historical returns over long time
periods enter with the sameweight as returns of shorter time periods. Thus, old
prices are effectively under-weighted since the corresponding returns, although
belonging to long time spans, have nomore influence then returns over shorter
time spans (resulting from more recent prices).

If older prices are to be as important as more recent ones, we can give the
historical returns weights proportional to the length of the time spans they
belong to: the longer the time span, the more weight the corresponding returns
gets. An estimator with this feature is

μi (tN) = 1∑N−1
k=0 (N − k)︸ ︷︷ ︸
numeraire

N−1∑
n=0

(N − n)︸ ︷︷ ︸
time weight

· ln [Si(tN)/Si(tn)]

(N − n) dt︸ ︷︷ ︸
yield from tn to tN

= 2

N(N + 1)dt

N−1∑
n=0

ln

[
Si(tN)

Si(tn)

]
, (31.23)
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where we have used
∑N−1

k=0 (N − k) = N(N + 1)/2, which can be shown
easily.6

The Exponentially Weighted Moving Average (EWMA)

A very well known method is the exponentially weighted moving average esti-
mator, or EWMA for short. In this estimator, the historical data are weighted
less and less the further in the past they lie. This is accomplished by a damping
factor λ in the following way:

μi (tN) = 1

M

N∑
n=m

λN−nri(tn−m) with 0 < λ ≤ 1 and M :=
N∑

k=m

λN−k .

(31.24)

With Eq. 31.19 for the historical returns this can be written as

μi (tN) = 1

M δt

N∑
n=m

λN−n ln

[
Si(tn)

Si(tn−m)

]
(31.25)

In contrast to the simple moving average, Eq. 31.21, the price logarithms of
adjacent time periods dt do not cancels each other since they are differently
weighted. Thus all prices influence the estimator.
By adjusting the parameter λ, the EWMA estimator can be made similar to

the estimator in Eq. 31.22 as well as to the estimator in Eq. 31.23. For λ = 1
the EWMA estimator equals the simple moving average in Eq. 31.21.

6On one hand we get with the index transformation i := N − k

N−1∑
k=0

(N − k) =
i=1∑
i=N

i =
N∑

i=1

i; .

On the other hand we have
N−1∑
k=0

(N − k) = N2 −
N−1∑
k=0

k = N2 −
N∑

i=1

(i − 1) = N2 + N −
N∑

i=1

i .

Equating both results yields

N∑
i=1

i = N2 + N −
N∑

i=1

i �⇒
N∑

i=1

i = N(N + 1)/2 .
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All the above return estimates are demonstrated in the Excel-Workbook
ReturnEstimates.xls. Although neither the root mean square errors nor the
Correlations with the ex post realized returns point out any clear favorite, one
can see from the graphical presentation of the return time series that Eq. 31.23
looks like the best compromise between quite stable historical evolvement and
still fast reaction to market movements; even when large time windows are
used for the estimation.

31.3.2 Covariance Estimates

The entries δ
ij in the covariance matrix, Eq. 21.22, i.e., the risk factor
covariances can be determined via Eq. 21.28 using the return covariances

δ
ij ≡ cov
[
δ ln Si, δ ln Sj

] = δt2 cov
[
ri, rj

]

Similarly to the moving average estimators of the mean returns, the moving
average estimators for the covariances of the returns over the holding period
with length δt = mdt at time tN are

cov
[
ri , rj

]
(tN ) = 1

N − m

n=N∑
n=m

[ri(tn−m) − μi (tN)]
[
rj (tn−m) − μj (tN )

]
,

with r as in Eq. 31.19 and μ as in Eq. 31.21. Explicitly:

cov
[
ri, rj

]
(tN ) (31.26)

= 1

N − m

n=N∑
n=m

(
1

δt
ln

[
Si(tn)

Si(tn−m)

]
− μi (tN )

)(
1

δt
ln

[
Sj (tn)

Sj (tn−m)

]
− μj (tN )

)
.

The EWMA estimator is analogously

cov
[
ri, rj

]
(tN ) (31.27)

= 1

M − 1

n=N∑
n=m

λN−n

[
1

δt
ln

[
Si(tn)

Si(tn−m)

]
− μi (tN )

] [
1

δt
ln

[
Sj (tn)

Sj (tn−m)

]
− μj (tN )

]

with μ from Eq. 31.25 and M from Eq. 31.24.
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From these covariance estimates the volatility can be determined according
to Eq. 21.30

σi (tN) = √
δt cov [ri, ri] (tN) for i = 0, . . . , K . (31.28)

With the moving average estimate, Eq. 31.26, this yields the simply moving
average volatility estimate. With Eq. 31.27, this yields the EWMA volatility
estimate. The difference between these estimates and the ones presented in
Sect. 33.4 is that in Sect. 33.4 we assume μi ≡ 0.
The correlations resulting from the above covariances are according to their

definition (see for example Eq. 31.5)

ρi,j (tN) = cov
[
ri, rj

]
(tN)

√
cov [ri, ri] (tN)

√
cov

[
rj , rj

]
(tN)

for i, j = 0, . . . ,K

(31.29)

Again, this yields the moving average or the EWMA estimate depending on
which estimate is used for the covariance.
In the Capital Asset Pricing Model (CAPM) there is a ratio Beta , which

relates the evolvement of risk factors Si(t) to the evolvement of a benchmark
S0(t). As a rule, this benchmark represents a whole market and is usually an
index. Beta is calculated from a regression of the risk factors time series with
the benchmark time series, see Sect. 28.1. Estimates for Beta directly follow
from the covariance estimates: the Beta of the i-th risk factor at time tN is

βi (tN) = cov [ri, r0] (tN)

cov [r0, r0] (tN)
= ρi,0 (tN)

σi (tN)

σ0 (tN)
for i = 1, . . . , K .

(31.30)

Again, this yields the moving average or the EWMA estimate for β, depending
on which estimate is used for the covariance.
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