
25
Backtesting: Checking the Applied Methods

A comparison of the value at risk figures delivered by a risk management
system with the actual value changes of a portfolio allows an estimation of
the qualitative and quantitative “goodness” of the risk model. Comparisons
of realized values with previously calculated values are called backtesting
procedures.

25.1 Profit and Loss Computations

There are several different profit & loss (or P&L) methods which can be used
for comparison with the value at risk. The differences in these methods reflect
the differences in the fundamental “philosophy” behind them.

• The Dirty Profit & Loss: The actual P&L of the portfolio, including all
changes in position, fees paid and received, commission, etc. over the value
at risk period are compiled and compared with the value at risk previously
calculated. Position changes arise from continued trading during the value
at risk period, the maturing of positions in the portfolio (for example,
futures and options), the knock-in or knock-out of barrier options, coupon
payments of bonds, etc. The effect of continued trading is not, in general,
contained in the value at risk model. The dirty P&L is therefore only
suitable for evaluating trading performance and not for the evaluation of
model performance.

© The Author(s) 2019
H.-P. Deutsch, M. W. Beinker, Derivatives and Internal Models, Finance and Capital
Markets Series, https://doi.org/10.1007/978-3-030-22899-6_25

575

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22899-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-22899-6_25


576 H.-P. Deutsch and M. W. Beinker

• The Cleaned Profit & Loss: The cleaned P&L is calculated in the same way
as the dirty P&L but without taking position changes into account which
result from continued trading during the value at risk period. Furthermore,
the payment and receipt of fees and commissions are also omitted from the
calculation. However, the cleaned P&L still contains the position changes
resulting from the maturity of instruments occurring during the value at
risk period (such as options and futures) or other position effects caused
by the market (as opposed to the trader) such as the knock-out or knock-
in of barrier options, coupon payments of bonds, etc. The cleaned P&L is
therefore suitable to evaluate the model performance of risk models which
take account of such maturity effects. The Monte Carlo simulation, for
example, allows for such effects, the Variance-Covariance method, on the
other hand, does not.

• The Clean Profit & Loss: Finally, the clean P&L is calculated in the same
ways as the cleaned P&L but with reversing the effects of the maturing of
positions during the value at risk period. In calculating the clean P&L, the
value of the exact same portfolio as that existing upon initial calculation
of the value at risk is re-calculated with the new market data observed
at the conclusion of the value at risk period. Of course, a record of the
initial portfolio positions at the time of the value at risk computation must
have been kept. The clean P&L is thus suitable for evaluating the model
performance of risk models such as the Variance-Covariance method which
do not account for aging effects of the positions.

Independent of the chosen profit & loss method, the profit & loss per
backtesting period is recorded for the evaluation of the goodness of the value
at risk. Additionally, a record is kept for the calculated value at risk of the
portfolio per backtesting-period. The data required for backtesting is thus not
very large: neither historical time series nor a history of the portfolio positions
must be maintained. Only two values per portfolio must be recorded in order
to save the history of the portfolio, namely the value at risk and the associated
P&L of the portfolio to be compared with the value at risk. In most cases, the
P&L will be more favorable than the value at risk, and in others less favorable.
Counting the number of times that the P&L is less favorable than the value at
risk enables statistical conclusions about the goodness of the utilized model to
be drawn. This is the fundamental idea behind backtesting. The superversing
authorities require banks to perform such a backtesting procedure to validate
the value at risk calculation (see Sect. 21.1). In the following, we present a
standard method for implementing a backtesting procedure.



25 Backtesting: Checking the Applied Methods 577

25.2 The Traffic Light Approach of the
Supervising Authorities

25.2.1 Adjusting the Value at Risk (Yellow Zone)

The value at risk is a statistical statement. In general, some of the changes in the
portfolio’s values will be less favorable than the calculated value at risk. Such
changes are referred to as outliers in the following discussion. At a confidence
level c the probability of such an outlier is 1 − c. The expected number of
outliers in n backtesting periods with respect to this level of confidence is thus

E [k] = n(1 − c) , (25.1)

where k denotes the number of outliers observed in the n backtesting periods.
The value k is not always equal to its expectation; it is a random variable. A
deviation of the observed k from the expected number of outliers does not
necessarily imply that a model is incorrect. Such an observation may be the
result of pure chance. This is particularly true for small deviations from the
expected value. In such cases, one speaks of the yellow zone, in which the
supervising authorities will accept the model, but require that the value at
risk is increased in the following manner.
The realization of k outliers actually observed in backtesting allows the

definition of a new confidence level c′ with respect to which the observed
number is equal to the expectation:

k = n(1 − c′) ⇒ c′ = 1 − k/n . (25.2)

From the observed outliers, it can be concluded that the value at risk from the
model does not correspond to the confidence level c, but to a confidence level
c′; or at least that the experimental basis for a confidence c′ is greater than for
c. The given VaR is then interpreted with respect to a confidence level of c′.
A VaR which better corresponds to the claimed confidence c is then obtained
from the given value of the VaR through multiplication by the ratio of the
percentiles (confidence interval bounds) Q1−c and Q1−c′ in accordance with
Eq. 21.20, respectively Eq. 22.15:

VaR(c, t, T ) ≈ Q1−c

Q1−c′
VaR(1 − k

n
︸ ︷︷ ︸

c′

, t, T ) . (25.3)
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In order to use this equation, all assumptions and approximations of the delta-
normal method must be made. These are:

• The risk factors are random walks, i.e., they are lognormally distributed
implying that Q1−c = Q

N(0,1)
1−c .

• The drifts of the risk factors are neglected in the calculation.
• The exponential time evolutions of the risk factors are linearly approxi-

mated.
• The dependence of the portfolio value on the risk factors is linearly approx-

imated. In particular, the portfolio value is also assumed to be lognormally
distributed.

Since, for logarithmic changes, all of the variables under consideration are
assumed to be normally distributed, the Q1−c′ percentile can be calculated as

c′ = 1 − k

n
= 1 − 1√

2π

Q1−c′
∫

−∞
e−x2/2dx .

For example, if backtesting over 250 periods is performed resulting in the
observation of 6 logarithmic portfolio value changes outside of the claimed
confidence interval at a confidence level of 99%, the percentiles Q1−c and
Q1−c′ are given by

0, 99 = 1√
2π

Q1−c
∫

−∞
e−x2/2dx ⇒ Q1−c ≈ 2, 326

1 − 6

250
= 0, 976 = 1√

2π

Q1−c′
∫

−∞
e−x2/2dx ⇒ Q1−c′ ≈ 1, 972 .

The confidence level of the value at risk calculated by the model is now
assumed to be not 99% as claimed but rather 97.6% as calculated on the
basis of the actual events. The value at risk must thus be adjusted by a factor of
Q1−c/Q1−c′ = 2.326/1.972 = 1.18. This now larger value at risk is the value
which can, based on actual observations, be relied upon with a confidence of
99%.
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25.2.2 Criteria for Rejecting a Model (Red Zone)

Adjusting the value at risk as described above may not be applied for arbitrary
values of k. It is allowed only if the difference between the observed value of k
and its expectation with respect to the claimed confidence c can be reasonably
explained by fluctuations due to the randomness involved. If the number of
outliers is too far removed from the expected value, chance is no longer a
plausible explanation and the reasons for the deviation lie in all probability
on fundamental errors in the model itself. Here, the notion is used that the
deviation of the measured results from the expected results are significant. The
supervising authorities say that the model is in the red zone.
The field of statistics provides hypothesis tests which serve to check whether

or not the observed deviation from a claimed value can be plausibly explained
by random fluctuations. If not, such a deviation is considered significant and
the tested hypothesis is in all probability not true. But again, absolute statements
cannot be made on the basis of statistics. From such a hypothesis test we
can only conclude with a certain probability that it was correct to reject (or
accept) the hypothesis. The possibility remains that the hypothesis is rejected
(accepted) although it is true (false). In statistics, these kind of errors are
referred to as type-I error (rejection of a correct hypothesis) and type-II error
(acceptance of a wrong hypothesis).
The hypothesis made when backtesting an internal model is that the

observed value changes of a portfolio lie within the confidence interval
specified by the calculated value at risk with a probability of c, in other words,
that with a probability c the observed value changes are more favorable than
the computed value at risk. To check this claim, we test whether the observed
portfolio’s value changes actually lie within the respective confidence interval.
This is done for every VaR period over the entire backtesting time span.
The observed results can be categorized into two possible outcomes: the

change in the portfolio’s value is either more favorable than the respective VaR
or not. This corresponds to the Bernoulli experiment described in Sect. A.4.2 in
full detail. We could associate the event that an actual portfolio change ismore
favorable (or equally favorable) than the VaR with the outcome “tails” when
tossing a coin and likewise the event that the portfolio change is less favorable
than the VaR to the outcome “heads”. The probability of observing k “heads”
in n trials (less favorable than the VaR) is binomially distributed (see Eq. A.41)
where the binomial probability p is the probability of the outcome “heads”.
In our case here p is then equal to the claimed probability that the portfolio
change lies outside of the confidence interval, i.e., p = 1 − c. The number of
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outliers should therefore be binomially distributed with a density

Bn,p(k) =
(

n

k

)

pk(1 − p)n−k with p = 1 − c = 1 − N(Q1−c) ,

(25.4)

where N(Q1−c) denotes the probability that a standard normally distributed
variable is ≤ 1 − c, see Eq. A.53. Assuming that the model is correct, Bn,p(k)

is the probability that precisely k outliers are observed. The probability that at
most k outliers are observed is then

k
∑

i=0

Bn,p(i) =
k

∑

i=0

(

n

i

)

pi(1 − p)n−i . (25.5)

Again, assuming that the model is correct, the probability of observing more
than k outliers is then

1 −
k

∑

i=0

Bn,p(i) =
n

∑

i=k+1

(

n

i

)

pi(1 − p)n−i . (25.6)

This is equal to the probability that the model is correct assuming that k or
more outliers are observed. Therefore, this is the probability of making a type-
I error (the rejection of a correct model) when the hypothesis is rejected if k

or more outliers are observed.
The determination of a Type-II error (acceptance of a false hypothesis)

requires that the true probabilities for outcomes of the false model have to
be known—a luxurious situation which almost never happens in practice. To
be more specific: If a hypothesis test accepts a model for up to k outliers, then
the probability that a false model is accepted equals the true probability for
the event that this false model produces k or fewer outliers. Let’s consider a
simple example: Assume that a false model claims a is 99% confidence for its
calculated VaR-numbers while the true confidence for these VaR-number is
only 95%. If one accepts that model’s VaR-numbers as a 99% VaR as long as
only up to 9 out of 250 backtesting periods produce an outlier, one makes a
Type-II error (see Eq. 25.5 with n = 250, p = 5%) with a probability of

9
∑

i=0

Bn,p(i) =
9

∑

i=0

(

250

i

)

0, 05i ∗ (0, 95)250−i ≈ 19, 46% .
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It should be clear from these considerations that type-II errors only play a
minor role in practice since it is very rarely the case that they can be determined
in a sensible way.
The supervising authorities make their decision on establishing the limits

for the red zone based on the probability of a type-I error (rejection of a
correct model). The model is said to be in the red zone for a number of
outliers k if the rejection of the model formore than k outliers has a probability
for a type-I error of less than 0.01%. Using Eqs. 25.6 and 25.5, we find
this to be the case when the probability (calculated with the model under
consideration) of at most k outliers is ≥ 99.99% under the assumption that
the model under consideration is correct. For n = 250 backtesting periods,
the probability of at most 9 outliers equals 99.975% (see the Excel Workbook
BinomialBacktest.xls from the download section [50]). The probability of
at most 10 outliers is equal to 99.995% and is thus larger than 99.99%. The
red zone established by the supervising authorities for 250 backtesting periods
therefore begins at 10 outliers although the probability of making a type-I
error (which is the probability for more than 9 outliers) is 0.025%, i.e., greater
than 0.01%. The probability of a type-I error when deciding to reject the
model if more than k = 10 (in other words, 11 or more) outliers are observed
is 0.005%, smaller than the required 0.01%. Nonetheless, 10 outliers within
250 backtesting periods is already deemed to belong to the red zone.1

25.2.3 The Green Zone

The boundary of the red zone is the upper boundary of the yellow zone.
Analogously, a lower boundary of the yellow zone has been defined. No add-
on is required if the observed number of outliers lies below this boundary.
This zone is called the green zone. The model is said to be in the yellow
zone for a number of outliers k if the rejection of the model for more than k

outliers has a probability for a type-I error of less than 5.00%. Using Eqs. 25.6
and 25.5, we find this to be the case when the probability of at most k outliers
is ≥ 95% under the assumption that the model is correct. For n = 250
backtesting periods for example, the probability of at most 4 outliers is equal to
89.22% (see the Excel workbook BinomialBacktest.xls from the download
section [50]). The probability of at most 5 outliers on the other hand is
95.88%. Thus, the supervising authorities establish the boundary for the

1It may seem inconsistent that the supervising authorities establish k as the boundary for the red zone
although this k corresponds to a type-I error of greater than 0.01%. This is the rule, however.



582 H.-P. Deutsch and M. W. Beinker

yellow zone as k = 5 for 250 backtesting periods, although the probability
of a type-I error in this case is 10.78%, i.e., greater than 5%. For the rejection
of the model with more than 5 outliers, the probability of a type-I error is
4.12%.

These three zones established by the supervising authorities, motivate the
name traffic light approach.

25.2.4 Multiplication Factor and Add-On

As a rule, the value at risk calculated with the model must be multiplied by
a factor of three even when it is found to be in the green zone for the simple
reason that it has not been computed in accordance with the standardmethods
but by means of an internal model (this is just a rule of thumb, though). In
the yellow zone, the VaR must additionally be multiplied by the ratio of the
two percentiles Q1−c and Q1−c′ as prescribed in Eq. 25.3 where Q1−c′ is the
value established from Eq. 25.2. The multiplication factor for the yellow zone
is thus 3Q1−c/Q1−c′ . The amount by which the multiplication factor exceeds
the factor 3 is referred to as the add-on

Add-on = 3
Q1−c

Q1−c′
− 3 ≈ 6, 978

Q1−c′
− 3 ,

where in the last step the confidence level c = 99% (required in SolvV
(Germany) resp. CRR) for the standard normal distribution, N(Q1−c) = 1%,
and consequently Q1−c ≈ 2.326 was used.

The concepts described above are illustrated in detail in the Excel work-
book BinomialBacktest.xls. All of the probabilities mentioned above, the
boundaries between the different zones and the add-ons in the yellow zone
are computed. The number of backtesting periods as well as the required
confidences and the probability thresholds for the boundaries between the
zones can be modified and the subsequent effects of these modifications
immediately computed. In Fig. 25.1, these values are presented for n = 250
backtesting periods and a confidence of c = 99%.

In Table 25.1, the add-ons are again explicitly displayed for the situation
in Fig. 25.1 (rounded in increments of 0.05). This table can be found in the
SolvV resp. the (CRR). For the red zone, an add-on of one is set and the model
is later subjected to a new test.

Despite the multiplication factor, the value at risk computed with internal
models is often lower than that calculated in accordance with the standard
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Fig. 25.1 Value at risk backtesting by means of a binomial test for 250 backtesting
periods and 99% VaR confidence

Table 25.1 The table of add-ons for 250 backtesting periods as shown in the text of
the German law

k Add-on Zone

4 0,00 Green
5 0.40 Yellow
6 0.50 Yellow
7 0.65 Yellow
8 0.75 Yellow
9 0.85 Yellow
≥ 10 1.00 Red

methods, since the correlation and compensation effects are more accurately
taken into account. In many cases, the VaR of a portfolio computed according
to an internal model is, despite the multiplication factor, is significantly lower
than that computed with the standard methods.
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