
23
Simulation Methods

23.1 Monte Carlo Simulation

In the calculation of the value at risk by means of Monte Carlo simulations,
all of the risk factors influencing a portfolio are simulated over the liquidation
period δt as stochastic processes satisfying, for example, Eq. 2.17 or even more
general processes of the form 2.19. The value at risk as a function of the
risk factors themselves are taken into complete consideration using Eq. 21.16
sometimes neglecting the drift in the simulation if the liquidation period is
short:
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As explained in Sect. 21.2, the value at risk of a long position in an underlying
is only then equal to that of a short position if the drift is neglected and the
linear approximation has been used. Since the linear approximation is usually
not assumed in the Monte Carlo method, the VaR value of a long position
will not equal that of a short position on the same underlying.
In carrying out the simulation, it will be taken into consideration that

the risk factors are not independent of one another, but are correlated. This
has already been demonstrated in Sect. 11.3.2 for the case of two correlated
underlying prices. Processes of the form 2.17 involve Wiener processes whose
stochastic components are coupled as given by the covariance matrix 21.22.
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In other words, the logarithmic changes in the risk factors are multivariate
normally distributed with the covariance matrix 21.22. In this way, market
scenarios (combinations of all risk factors) possibly occurring up to the end
of the liquidation period (up to time T ) are simulated. The portfolio values at
the conclusion of the liquidation period are then computed on the basis of all
these simulated market scenarios. With this information, the distribution of
the potential portfolio values at the conclusion of the liquidation period can be
approximated. The value at risk can then be obtained through the statistical
evaluation of this portfolio value distribution.

The advantage of the Monte Carlo simulation compared to other methods
(such as the variance-covariance method) is that for the portfolio valuation for
each market scenario we can in principle use the same valuation methods as
for determining the portfolio’s current value. No additional approximations
for the valuation of the financial instruments in the portfolio need to be made
(called full valuation). In principal, the same valuation methods used for the
daily valuation could also be used for the value at risk calculation Nevertheless,
it is in practice often not possible to use the same (computationally intensive)
routines for both the valuation of a portfolio with respect to, for example,
10,000 scenarios as for (one single) determination of the portfolio’s current
value, themark-to-market. It is therefore often necessary to use simpler and less
precise methods for the revaluation of financial instruments with respect to the
Monte Carlo scenarios. The statistical error arising in connection with such
simulation methods is also unavoidable since only a finite number of scenarios
can be simulated and thus only mean values rather than expectations can be
computed (see Sect. 31.2 for more on this subject).

23.1.1 The Risk Factors as Correlated Random Walks

A random number generator usually produces single, uncorrelated random
numbers. However, with the methods described in Sect. 21.5.3, via the
Cholesky decomposition A of the covariance matrix, uncorrelated random
numbers can be transformed into correlated ones. This can be exploited when
carrying out Monte Carlo simulations:

With the help of the Cholesky decomposition A of the covariance matrix
standard normally distributed random variables Xj are transformed into
components of a multivariate normally distributed random vector Yj , for
j = 1, 2, . . . , n whose covariances are given in Eq. 21.22:

Yi =
n∑

j=1

AijXj .
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The random walks of the risk factors expressed in terms of the random
variables Yj are

d ln Sj(t + δt) = μj δt + Yj .

Similar to Eq. 11.2, the values of the risk factors for a scenario simulated to
occur at the end of the time interval δt are

ln Sj(t + δt) = ln Sj (t) + μj δt + Yj

Sj (t + δt) = eYj eμj δtSj (t) j = 1, . . . , n , (23.1)

where here, as has received mention on numerous occasions, the drifts μj are
often neglected in the analysis.
To generate a complete market scenario for the time t + δt a random

number Yj for each risk factor is required. The portfolio is then revaluated
at the value date t + δt on the basis of this scenario. We thus obtain a
simulated portfolio value at the end of the liquidation period. The approach
in a Monte Carlo simulation in risk management is summarized below. This
type of simulation is sometimes called structured Monte Carlo.

23.1.2 Structured Monte Carlo

Simulation

• Generate n standard normally distributed, uncorrelated random num-
bers Xj , one for each risk factor.

• Generate correlated random numbers Yj , j = 1, 2, . . . , n using the
equation

Yi =
n∑

j=1

AijXj .

The elements of the matrix A are given through the Cholesky decomposi-
tion of the covariance matrix in accordance with Eq. 21.41.

• Using these Yj , the risk factors for the simulated scenario at the end of a
time interval δt are calculated via Eq. 23.1. If the portfolio contains path-
dependent derivatives, it is not possibly to simply jump to the end of the
liquidation period in a single step if the liquidation period is longer than
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one day. Smaller steps are necessary to simulate the paths of the risk factors
up to the conclusion of the liquidation period similar to Eq. 11.1, instead of
simulating directly with Eq. 11.2.

• Perform a new valuation of the portfolio with respect to these simulated risk
factors. If computationally possible a full valuation is preferable.1

Thus, one single market scenario is simulated and the portfolio is re-valued
with respect to this single scenario. This simulation is now repeated (for
example, 10,000 times) in order to generate numerous scenarios and a portfolio
value for each of these scenarios. Finally, the statistical evaluation is performed.

Evaluation

The change in the value of the portfolio observed in the i-th simulated scenario
will be denoted by δVi , the vector containing all risk factor values in the i-th
simulated scenario by Si . We let m denote the number of simulations and n

the number of relevant risk factors. For every simulated scenario, the induced
simulated value change of the portfolio is the difference between the portfolio’s
value with respect to the simulated scenario and its current value:

δVi = V (Si(t + δt)) − V (S(t)) with i = 1, . . . , m . (23.2)

We thus obtain m simulated value changes. The value at risk of the Monte
Carlo simulation is the minimum of these δVi , where a certain number of the
least favorable value changes are ignored dependent on the desired confidence
level. For 95% confidence, for example, these are 5% of the least favorable
value changes. For 10,000 simulated scenarios, for example, the 500 worst
scenarios are ignored. We denote by δV1−c the most favorable of the value
changes which are ignored at a level of confidence c. The value at risk of the
portfolio is now the least favorable result among the set of results remaining
after those (1 − c)% least favorable simulations have been removed from
consideration or equivalently, the least favorable value greater than V1−c:

VaRV (c) = − min
i

{δVi | δVi > δV1−c } with i = 1, . . . , m .

(23.3)

1If the portfolio valuation requires for example Monte Carlo pricing methods for some (exotic) financial
instruments, these additionalMonte Carlo simulations (for pricing) have to run inside the simulation loop
for the VaR calculation. Clearly this may lead to unacceptably large computation times.
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With a confidence c, the portfolio will depreciate in value by no more than
this value at risk by the end of the liquidation period.

23.2 Historical Simulation

Historical simulations are performed by investigating historical time series with
the objective of identifying market changes which have actually occurred in
the past and using these changes to compute the value at risk. The covariance
matrix in Eq. 21.22 is not necessary for a historical simulation nor is it
necessary to assume that the risk factors behave as random walks with constant
yields and volatilities or even that they behave as random walks at all! This
freedom from model assumptions is the primary advantage of this method.
The independence from model assumptions is at the expense of involved

data management. While only three values provide sufficient statistical infor-
mation about the past behavior of two risk factors (both volatilities and
the correlation between the two) for variance-covariance and Monte Carlo
methods, entire time series of prices for all risk factors relevant to the portfolio
must be kept for a historical simulation to be performed. For example,
the closing prices of every underlying for the previous 250 days. For two
underlyings, this amounts to 500 values in comparison to just the 3 required
for the methods mentioned above. Often, these 3 parameter are estimated
based on historical data (if the data is not delivered by an external vendor). In
this case, the Variance-Covariance and the Monte Carlo methods require the
storage and maintenance of historical data as well. From the historical time
series, the value changes δSj (δti) of all risk factors Sj over time intervals δti
with the same length as the liquidation period are determined over the entire
available history of the risk factors2:

δSj (δti ) = Sj (t − i δt + δt) − Sj (t − i δt) with i = 1, . . . ,m ; j = 1, . . . , n .

(23.4)

For example, the time series over 250 days yields 249 daily changes or 240
changes for a liquidation period of 10 days.3
The historical risk factor changes applied to the price of the risk factors

at time t (today) provide m different scenarios. For reasons of consistency,

2The number of available liquidation periods obtained from the historical time span for which data is
available is denoted by m, the number of relevant risk factors again by n.
3In the second case, the liquidation periods overlap resulting in auto-correlations.
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the relative changes are often be applied to today’s price rather than the
absolute changes.4 For each scenario i the thus induced value change δVi of
the portfolio V is computed. This can be accomplished with a full valuation
of the portfolio. However, in practice it is often the case that a simple linear
(delta valuation) or quadratic (delta-gamma valuation) approximation as in
Eq. 22.4 is performed.

In this way,m “historical” value changes δV (ti) are generated from the past
time series data. The value at risk of a historical simulation is now the mini-
mum of all δVi , where—similar to the Monte Carlo simulation—unfavorable
changes in the portfolio’s value falling outside a previously specified confidence
interval are ignored. For a confidence level of 95%, for example, and a history
consisting of 250 days, the 12 worst out of the 249 portfolio value changes are
not considered when finding the minimum over daily changes.

If δV1−c denotes the most favorable change among the ignored value
changes at a confidence level of c, then the value at risk of the portfolio is
the least favorable portfolio change greater than V1−c:

VaRV (c) = − min
i

{δVi | δVi > δV1−c } with i = 1, . . . , m .

With a confidence c, the portfolio at the end of the liquidation period
depreciates by an amount no larger than this value at risk.

At this point we can clearly see the greatest disadvantage of this method: the
weak statistical information on the basis of which the probabilistic conclusions
such as confidence levels are drawn. Despite the effort in data management of
all relevant historical time series, usually only a dozen (in the above example)
or so values remain for the final analysis, namely those falling below the lower
boundary of the confidence interval. The probabilistic conclusion is drawn on
the basis of these few values. In contrast, the statistical basis deriving from
10,000 Monte Carlo simulation runs is approximately 50 times larger (of
course, this statistical advantage of the Monte Carlo method is at the expense
of assuming that the risk factors are random walks). In addition, the results
could be biased because of autocorrelation effects due to the overlapping time
intervals.

A further disadvantage of historical simulations is the following effect:
For each change of position in a portfolio (after each transaction), the new

4A historical change for example, a 12 point change in the DAX index which stood at 1200 at the outset of
a liquidation period is quite different from a 12 point change when the DAX is at 7000. A relative change
of 1% (i.e., 70 points) is therefore more suitable. This is not necessarily the best choice for all possible risk
factors, though. For interest rates, absolute shifts are also applied frequently.
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portfolio (and its value changes) must be recalculated for all 250 days. In doing
so, it may happen that another historical risk factor change affects the make-up
of the set falling outside the confidence interval for the new portfolio so that
suddenly the value at risk based on another scenario is relevant. Thus, a trader,
after entering into a transaction intended to optimize the VaR according to the
original scenario, is then informed of a value at risk computed on the basis of
another scenario. This greatly increases the difficulty of evaluating the success
of the transaction.
In general, the historical simulation is carried out by simulating the same

risk factors, which are required for the risk-neutral valuation of the portfolio,
i.e. volatilities implied from quoted option prices (if the volatilities are not
quoted directly anyway) instead of historical volatilities based on historical
time series of, e.g. quoted share prices. Therefore, the value at risk is based
on the portfolio’s simulated risk-neutral present values, based on real-world
historical changes of the underlying risk factors.

23.3 Crash and Stress Testing: Worst Case
Scenarios

Each value at risk concept introduced up to this point yields the potential
loss in the course of a liquidation period and the probability with which no
bigger loss occurs. The confidence levels most commonly used are 95% or
99%. This means that losses amounting to the value at risk or higher actually
occur between 2 and 12 times per year, as they actually should. Otherwise the
model on the basis of which these probabilities are derived is incorrect. The
value at risk can thus not be considered a worst case scenario, but rather as
part of daily business: losses of this magnitude must occur on average once
a month at a confidence level of 95%! Accordingly, the value of these losses
must be kept below an acceptably small limit.
In order to obtain a measure of a portfolio’s risk should a catastrophe occur,

a worst case or crash scenario is constructed by hand through the explicit
specification of all risk factors influencing the portfolio. The portfolio is
then revaluated on the basis of this market scenario. Such a scenario could,
for example, be the financial crisis 2008/2009. The difference between the
calculated value and the current portfolio value is the “value at risk” of the
portfolio with respect to the crash-scenario. Obviously, this value expresses
the potential loss as a result of the crash but no information is available about
the probability of such an event.
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A further method used to get a feeling for the risk of a portfolio in the case
of rare and very unfavorable market developments is to use 6 or 8 standard
deviations from the expectation as the boundary of the confidence interval
rather than the usual 1.65 or 2.36, i.e. to consider selected, extreme scenarios.
This approach is sometimes referred to as a stress test. In this way, a potential
loss is obtained as well as a theoretical probability that a loss of this magnitude
is incurred. For example, for a standard normal distribution, the probability of
a loss of more than six standard deviations in a one-sided confidence interval
is approximately one to one billion:

1 − 1√
2π

∞∫

−6

e−x2/2dx ≈ 9, 86610−10 ≈ 10−9 .

No great importance should be attached to such probability statements
since the random walk assumptions, constant volatilities and correlations, for
instance, are in all probability no longer satisfied when such events occur. As
a rule, market scenarios of this type change the correlations drastically and
the volatilities explode. Thus, de facto, stress tests, like crash tests, provide
information on the potential loss involved without specifying the probability
of such an event.

23.4 Advantages and Disadvantages of the
Commonly Used Value at Risk Methods

In Table 23.1 the advantages and disadvantages of the VaRmethods introduced
above are summarized. A “+” in the method column indicates that this particu-
larmethod has the advantage of the property associatedwith the corresponding
row. A “−” means that it has the disadvantage of the corresponding row. No
entry indicates that the method does not have the property of the row under
consideration. A symbol in parentheses means that the indicated property is
usually assumed in the application of the method but that the advantage or
disadvantage is not, in principle, characteristic of the method.
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Table 23.1 The pros and cons of the most common value at risk methods

Variance- Monte Historical
covariance Carlo simulation

Models risk factors as random walks − −
Assumes constant vol & correlation − (−)

Requires historical time series −
Requires vol & correlations (−) (−)

Neglects the mean yield −
Linear proxy for risk factors − (−)

Linear proxy for prices (delta valuation) − − −
Full valuation + +
Specified scenarios + +
Specified probabilities + +
Based on large data sets +
Valid for long liquidation periods +
Takes vega risk into account (+) +
Takes theta risk into account + +
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