
22
The Variance-Covariance Method

The variance-covariance method makes use of covariances (volatilities and
correlations) of the risk factors and the sensitivities of the portfolio values
with respect to these risk factors with the goal of approximating the value
at risk. This method leads directly to the final result, i.e., the portfolio’s value
at risk, based on the properties of the assumed portfolio value’s probability
distribution; no simulation of market data scenarios is involved. The variance-
covariance method utilizes linear approximations of the risk factors themselves
throughout the entire calculation, often neglecting the drift as well. In view of
Eq. 21.25, we have

δSi(t) ≈ Si(t) [μiδt + δZi] ≈ Si(t)δZi . (22.1)

The main idea characterizing this method, however, is that the portfolio
value V is expanded in its Taylor series as a function of its risk factors
Si, i = 1, . . . n, and approximated by breaking off after the first or second
order term. Let

S(t) =
⎛
⎜⎝

S1(t)
...

Sn(t)

⎞
⎟⎠
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denote the vector of risk factors. The Taylor expansion for the change in
portfolio value δV (S) up to second order is

δV (S(t)) = V (S(t) + δS(t)) − V (S(t))

≈
n∑
i

∂V

∂Si

δSi(t) + 1

2

n∑
i,j

δSi(t)
∂2V

∂Si∂Sj

δSj (t) (22.2)

=
n∑
i

�iδSi(t) + 1

2

n∑
i,j

δSi(t)�ijδSj (t)

≈
n∑
i

�̃i [μiδt + δZi] + 1

2

n∑
i,j

[μiδt + δZi] �̃ij

[
μjδt + δZj

]

(22.3)

≈
n∑
i

�̃i δZi + 1

2

n∑
i,j

δZi�̃ij δZj . (22.4)

In Eq. 22.2, the portfolio value has been approximated by its Taylor expansion.
In Eq. 22.3, the risk factor changes were linear approximate according to
Eq. 22.1, and finally, in Eq. 22.4, the average returns have been neglected.
The last line in 22.4 is referred to as the delta-gamma approximation. Taking
the Taylor expansion up to linear order only is called delta approximation
correspondingly, resulting in an approximation solely consisting of the first
of the two sums appearing in the last equation in 22.4.

The abbreviations �i and �ij , as usual, denote the sensitivities (at time t )
of V with respect to the risk factors

�i := ∂V

∂Si

, �ij := ∂2V

∂Si∂Sj

, i, j = 1, . . . n .

Note here that the mixed partial derivatives arise in the expression for �ij . In
the literature, the matrix �ij is sometimes called the Hessian matrix.
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We will see below that the sensitivities usually appear in connection with
the current levels Si(t) and Sj(t). The notation �̃i and �̃ij will be used to
denote these sensitivities multiplied by the current levels:

�̃i := Si(t)
∂V

∂Si

, �̃ij := Si(t)Sj(t)
∂2V

∂Si∂Sj

. (22.5)

Using �̃i and �̃ij will prove to substantially simplify the notation. Interpreting
the �̃i as components of a vector �̃, and �̃ij as the elements of a matrix �̃,
Eq. 22.4 can be written in vector form as

δV (S(t)) = (
�̃1 · · · �̃n

)
⎛
⎜⎝

δZ1
...

δZn

⎞
⎟⎠

+ 1

2

(
δZ1 · · · δZn

)
⎛
⎜⎝

�̃1,1 · · · �̃1,n

...
. . .

...

�̃n,1 · · · �̃n,n

⎞
⎟⎠

⎛
⎜⎝

δZ1
...

δZn

⎞
⎟⎠

= �̃
T
δZ+1

2
δZT �̃δZ .

The approximation of V (S) through its Taylor series expansion up to second
order is presented in Fig. 22.1 for a straddle (a portfolio made up of a call
and a put option) on a risk factor S. The figure has been extracted from
the Excel workbook Straddle.xlsm available in the download section [50].
We can recognize that the delta-gamma approximation for a simple payoff
profile is quite a good approximation. For somewhat more complicated
portfolios, however, the delta-gamma approximation fails to be a reasonable
representation of the payoff profile. In such cases, we recommend using one of
the simulation methods presented in Chap. 23 instead of the Delta-Gamma
method. However, the drawback of the simulation approach is of course the
significant increase of numerical computations required.
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Fig. 22.1 Black-Scholes price of a straddle (strike = 100, time to maturity = 1 year) on
an underlying S (volatility 25%, dividend yield 6%, repo rate 3%). The dashed line is the
delta-gamma proxy, the dotted line is the simple delta proxy. The Taylor expansion was
done about S = 95

22.1 Portfolios vs. Financial Instruments

Although we continually refer to portfolio sensitivities, the same results hold
for individual financial instruments as well. In fact, sensitivity of a portfolio
composed of financial instruments on the same underlying as described in
Sect. 12.4.1 can be obtained by simply adding together the sensitivities of
the individual instruments. This is the approach most commonly taken when
calculating portfolio sensitivities. For the sake of clarity, we once again present
this method explicitly here.

Consider a portfolio with a value V consisting of M different financial
instruments with values Vk ,k = 1, . . .M . Nk denotes the number of each
instrument with value Vk held in the portfolio. The total value of the portfolio
is naturally the sum of the values of each individual position

V (t) =
M∑

k=1

NkVk(S(t)) . (22.6)
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The change in value δV (t) of this portfolio is (approximated up to second
order)

δV (S(t)) =
M∑

k=1

NkδVk(S(t))

≈
M∑

k=1

Nk

⎡
⎣

n∑
i

∂Vk

∂Si

δSi(t) + 1

2

n∑
i,j

δSi(t)
∂2Vk

∂Si∂Sj

δSj (t)

⎤
⎦

=
M∑

k=1

Nk

n∑
i

�k
i δSi(t) + 1

2

M∑
k=1

Nk

n∑
i,j

δSi(t)�
k
ijδSj (t) ,

(22.7)

where the sensitivities of the financial instruments have been introduced in
the last step. For example, �k

i is the linear sensitivity of the kth financial
instrument in the portfolio with respect to the ith risk factor, etc.:

�k
i := ∂Vk

∂Si

, �k
ij := ∂2Vk

∂Si∂Sj

, i, j = 1, . . . n; k = 1, . . .M .

Simply rearranging the terms makes it clear that the summing over the index
k (which denotes the different financial instruments) yields the portfolio
sensitivities:

δV (S(t)) =
n∑
i

δSi(t)

M∑
k=1

Nk�
k
i + 1

2

n∑
i,j

δSi(t)δSj(t)

M∑
k=1

Nk�
k
ij

=
n∑
i

δSi(t)�i + 1

2

n∑
i,j

δSi(t)δSj(t)�ij ,

Thus, a portfolio sensitivity like �i , for example, contains the sensitivities
of all instruments in the portfolio (including all the position sizes Nk) with
respect to the considered risk factor. This then yields (as is intuitively clear)
the sensitivities of the entire portfolio as sums over the sensitivities of all
instruments in the portfolio:

�i =
M∑

k=1

Nk�
k
i , �ij =

M∑
k=1

Nk�
k
ij .
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In practice, this procedure is usually referred to as position mapping. Using the
approximation in Eq. 22.1 for the change in risk factor, we finally obtain an
expression for the portfolio’s change in value as

δV (S(t)) ≈
n∑
i

�̃i [μiδt + δZi] + 1

2

n∑
i,j

[μiδt + δZi] �̃ij

[
μjδt + δZj

]

≈
n∑
i

�̃i δZi + 1

2

n∑
i,j

δZi�̃ij δZj ,

using the modified portfolio sensitivities defined as in Eq. 22.5:

�̃i := Si(t)�i = Si(t)

M∑
k=1

Nk�
k
i (22.8)

�̃ij := Si(t)Sj(t)�ij = Si(t)Sj(t)

M∑
k=1

Nk�
k
ij .

Adding the sensitivities of the financial instruments and multiplying by the
current levels of the risk factors to obtain these modified portfolio sensitivities
is sometimes referred to as VaR mapping.

22.2 The Delta-Normal Method

In the delta-normal method, the Taylor series 22.4 of the portfolio value is
broken off after the linear term.

δV (S(t)) ≈
n∑
i

∂V

∂Si

δSi(t) (22.9)

≈
n∑
i

�̃i [μiδt + δZi]

≈
n∑
i

�̃i δZi = �̃
T
δZ .
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22.2.1 The Value at Risk with Respect to a Single Risk
Factor

For a single risk factor this means

δV (S(t)) ≈ �δS(t) (22.10)

with the sensitivity � := ∂V/∂S. The change in the portfolio’s value is thus
approximated to be a linear function of the change in the underlying risk
factor. This corresponds to the situation described in Sect. 21.3. There, the
constant of proportionality (the sensitivity) was not� butN or−N for a long
or short position, respectively. The linear approximation implies intuitively
that a portfolio with a linear sensitivity � with respect to a risk factor can
be interpreted as a portfolio consisting of � risk factors. The only subtlety
in this argumentation is that in Sect. 21.3, we distinguished between a long
and a short position, treating the two cases differently on the basis of whether
the proportionality constant N was positive or negative (which leads to the
two different VaRs in Eq. 21.16). However, we cannot know a priori whether
� is greater or less than 0. We do know, however, that V is linear and in
consequence, a monotone function of S. Therefore, in the sense of Eq. 21.6,
the results following from Eq. 21.16 hold with the correspondence �=̂N for
� > 0, and �=̂ − N for � < 0. Using this fact allows us to write

VaRV (c) ≈ max
{
�̃

[
1 − exp

(
μδt + Q1−cσ

√
δt
)]

,

�̃
[
1 − exp

(
μδt − Q1−cσ

√
δt
)]}

(22.11)

using the notation �̃ := S(t)� = S(t)∂V/∂S. As usual, Q1−c is the (1 − c)

percentile of the standard normal distribution.1 The maximum function in
Eq. 21.6 effects the correct choice for the VaR. If � > 0, the lower bound of
the confidence interval of the risk factor2 is relevant and consequently the VaR
function as defined above takes on the value corresponding to a long position
in Eq. 21.16. Likewise for � < 0, the upper bound of the confidence interval
of the risk factor3 is relevant and the above defined maximum function takes
on the value corresponding to the VaR of the short position in Eq. 21.16.

1For all relevant confidence levels, this percentile is a negative number, see Eq. 21.13.
2This corresponds to the percentile Q1−c of the standard normal distribution.
3This corresponds to the percentile −Q1−c = Qc of the standard normal distribution.
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In all our deliberations up to this point, only the portfolio value has been
approximated with Eq. 22.10. The change in the risk factor in Eq. 22.11 is still
exact. Approximating this risk factor change with Eq. 22.1, the VaR becomes

VaRV (c) ≈ max{�̃
[
−μδt − Q1−cσ

√
δt
]
,

�̃
[
−μδt + Q1−cσ

√
δt
]
}

This corresponds exactly to Eq. 21.19, since �̃=̂N for �̃ > 0 and �̃=̂ − N

for �̃ < 0.
The common summand −�̃μδt can now be taken out of the maximum

function

VaRV (c) ≈ max
{
−�̃Q1−cσ

√
δt, +�̃Q1−cσ

√
δt
}

− �̃μδt

=
∣∣∣�̃Q1−cσ

√
δt

∣∣∣ − �̃μδt (22.12)

In this approximation, the maximum function produces precisely the absolute
value of the risk which is caused by the volatility of the risk factor. A positive
driftμ of the risk factor reduces the portfolio risk when �̃ > 0 (intuitively, the
portfolio then represents a long position). If, on the other hand, the portfolio
sensitivity is negative, i.e., �̃ < 0, a positive drift increases the portfolio risk
(intuitively, the portfolio represents a short position). The drift’s influence is
of course lost if the drift is neglected in the approximation. The value at risk
then reduces to

VaRV (c) ≈
∣∣∣�̃Q1−cσ

√
δt

∣∣∣ (22.13)

where the absolute value makes it immediately clear that the sign of the
portfolio sensitivity no longer plays a role.

22.2.2 The Value at Risk with Respect to Several Risk
Factors

In the previous section, linear approximations enabled us to reduce the VaR
with respect to a single risk factor to that of a position consisting of �

instruments representing the risk factor. We were then able, as was done in
Sect. 21.3, to deduce information about the unknown distribution of the
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portfolio’s value V from the known distribution of the risk factor S. The
extension of these results to the case of several risk factors is not trivial even for
the delta-normal approximation. Only by using the roughest approximation
in Eq. 22.1 for the change in the risk factors, namely δSi(t) ≈ Si(t)δZi, can
we manage to avoid involving the distribution of V in the discussion.
The approximation Eq. 21.26, i.e. δS(t) ≈ S(t)δZ, led to the value at

risk Eq. 22.13 with respect to a single risk factor. Squaring both sides of this
equation yields

VaR2
V (c) ≈ �̃2 (Q1−c′)2 σ 2δt

= �2 (Q1−c′)2 S(t)2σ 2δt

= �2 (Q1−c′)2 S(t)2 var [δZ]

= �2 (Q1−c′)2 var [δS(t)] ,

since the approximation in Eq. 21.26 allows the approximation of the variance
of δS(t) with S(t)2 var [δZ]. On the other hand, the variance of V can be
calculated from Eq. 22.10 simply as

var [δV ] ≈ var [�δS(t)] = �2 var [δS(t)] .

This means that this approximation can be used to express the square of the
value at risk in terms of a multiple of the variance of the portfolio:

VaR2
V (c) ≈ (Q1−c′)2 �2 var [δS(t)]

= (Q1−c′)2 var [δV ] .

Now, only the variance of the portfolio’s value needs to be determined for the
computation of the VaR and not its distribution or its percentiles.
If several risk factors are involved, Eq. 22.9 can be used to write the

portfolio’s change in value, δV , in the approximation given by Eq. 21.26,
as a linear combination of normally distributed random variables δZi (with
deterministic coefficients �̃i)

δV ≈
n∑

i=1

�̃iδZi .

The variance of a sum of random variables is equal to the sum of the
covariances of these random variable as can be seen from Eq. A.17. The
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variance of the portfolio value is thus

var [δV ] ≈
n∑

i,j=1

�̃i�̃j cov
[
δZi, δZj

]

=
n∑

i,j=1

�̃iδ�ij �̃j (22.14)

= δt

n∑
i,j=1

�̃iσiρijσj �̃j ,

where the definition of the covariance matrix in Eq. 21.22 was used in the last
step. This means that the value at risk can be approximated as

VaRV (c) ≈ |Q1−c|
√

var [δV ]

= |Q1−c|
√

�̃δ��̃

= |Q1−c|
√

δt

√√√√
n∑

i,j=1

�̃iσiρijσj �̃j . (22.15)

This is the central equation for the delta-normal method. It summarizes all
assumptions, approximations, and computation methods of the delta-normal
method.4

4If all portfolio sensitivities are non-negative (which is often the case for instance for a private investor’s
portfolio containing only long positions), then this equation can be rewritten in an alternative and quite
intuitive form. Let VaRi (c) denote the value at risk of the portfolio with respect to a particular risk
factor Si . Using Eq. 22.13, we can approximate this by

VaRi (c) ≈
∣∣∣�̃iQ1−cσi

√
δt

∣∣∣ .

Thus, for the special case that none of the portfolio deltas is negative, the VaR with respect to all risk
factors can be obtained by computing the square root of the weighted sum of the products of all the VaRs
with respect to the individual risk factors. The weights under consideration are the respective correlations
between the risk factors:

VaRV (c) ≈
√√√√

n∑
i,j=1

VaRi (c)ρijVaRj (c) falls�̃i ≥ 0∀i ∈ {1, . . . , n} . (22.16)
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In the linear approximation, the effect of the drifts can be subsequently
introduced into the approximation. The expected change in portfolio value is
calculated using the deltas and the drifts of the risk factors. Analogously to
Eq. 22.12 for a single risk factor, this expected change is then subtracted from
the value at risk of the portfolio given in Eq. 22.15:

VaRV (c) ≈ |Q1−c|
√

δt

√√√√
n∑

i,j=1

�̃iσiρijσj �̃j − δt
∑

i

�̃i μi . (22.17)

The delta-normal approach to the calculation of the value at risk can be
summarized as follows:

• Calculate the sensitivities of the portfolio with respect to all risk factors.
• Multiply the covariance matrix with the sensitivities of the portfolio and

the current values of the risk factors as in Eq. 22.14 to obtain the variance
of the portfolio. The covariance matrix’s elements consist of the product of
volatilities and correlations of the risk factors as defined in Eq. 21.22.

• Multiply the portfolio variance as in Eq. 22.15 by the liquidation period
and the square of the percentile corresponding to the desired confidence
interval (for example, −2.326 for 99% confidence).

• The square root of the thus obtained number is the value at risk of the entire
portfolio, neglecting the effect of the drifts of the risk factors.

• The effect of the drifts can be taken into account using Eq. 22.17.

For future reference we re-write the final Value at Risk in Eq. 22.17 in terms
of the covariances for the logarithmic changes and in terms of the covariances
of the returns. According to Eqs. 21.27 and 21.28 the difference is an overall
factor δt :

VaRV (c) ≈ |Q1−c|
√√√√

n∑
i,j=1

�̃i�̃j cov
[
δ ln Si, δ ln Sj

] −
∑

i

�̃iE [δ ln Si]

= δt |Q1−c|
√√√√

n∑
i,j=1

�̃i�̃j cov
[
ri, rj

] − δt
∑

i

�̃iE [ri] .

(22.18)

Here, the ri are the historic portfolio returns over holding periods of length
δt , each return annualized.
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These two forms of the VaR are very important in practice, when one is
given historical time series of risk factor prices Si or annualized risk factor
returns ri rather then the volatilities and correlations needed in Eq. 22.17,
which otherwise would have to be calculated or bought from some market
data vendor.

22.3 The Delta-Gamma Method

The delta-gamma method for calculating the portfolio’s VaR makes use of
the Taylor series expansion of the value of the portfolio up to and including
the second order terms along with the approximation in Eq. 22.1 for the risk
factors. The starting point for the delta-gamma method is thus the last line in
Eq. 22.4, which when written in vector notation is given by

δV (S(t)) = �̃
T
δZ+1

2
δZT �̃δZ (22.19)

where

δZ ∼ N(0, δ�) 	⇒ cov[δZi , δZj ] = σiρij σjδt , E [δZi ] = 0 .

The right-hand side of Eq. 22.19 can not be written as the sum of the
contributions of each risk factor as was the case for the delta-normal method:

n∑
i

�̃i δZi + 1

2

n∑
i,j

δZi �̃ij δZj �=
n∑
i

(contribution of the i-th risk factor) .

The contributions of the individual risk factors can not be considered sep-
arately since they are coupled in the above equation by the matrix �̃. Fur-
thermore the random variables δZj are not independent. They are correlated
through the covariance matrix δ�. Two essential elements of the method
presented here are5:

• Using the Cholesky decomposition of the covariance matrix δ� to trans-
form the δZj into independent random variables.

5This goes back to a paper by Rouvinez, see [166].
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• Diagonalizing the gamma matrix �̃ thereby decoupling the contributions
of the individual risk factors.

Also after the Cholesky decompositions, and in contrast to the delta-normal
case, it is still not possible in the situation of Eq. 22.19 to reduce the VaR with
respect to a risk factor to the VaR of a position consisting of � of these risk
factors. Thus the (unknown) distribution of the portfolio value can no longer be
substituted by the (known) distribution of the individual risk factors, as could
still be done in Sect. 21.3. Instead, the distribution of δV must be determined
directly in order to calculate the value at risk defined in Eqs. 21.2 or 21.3. A
third essential step of the delta-gamma method presented here involves the
determination of the distribution of δV .

22.3.1 Decoupling of the Risk Factors

Motivated by Eq. 21.40, we first introduce a matrix A satisfying the prop-
erty 21.35. This matrix can be constructed through the Cholesky decomposi-
tion of the covariance matrix as described in detail in Sect. 21.5.3. This matrix
transforms the correlated δZi into uncorrelated random variables. With this
goal in mind, we rewrite Eq. 22.19, first introducing identity matrices into the
equation and then replacing them with AA−1 or (AT )−1AT as follows:

δV (S(t)) = �̃
T
1 δZ+1

2
δZT 1 �̃ 1 δZ

= �̃
T
AA−1 δZ+1

2
δZT (AT )−1AT �̃ AA−1 δZ

= �̃
T
AA−1 δZ+1

2
δZT (A−1)TAT �̃ AA−1 δZ

= �̃
T
A (A−1 δZ)+1

2
(A−1δZ)TAT �̃A (A−1δZ) .

In the penultimate step, the property 21.39 has been used; recall that this
holds for every invertible matrix. In the last step, the parentheses are intended
to emphasize the fact that δZ only appears in combination with A−1. We
have shown before that the components of the vector A−1δZ are iid random
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variables, see Eq. 21.40. We can therefore write

δV (S(t)) = �̃
T
A δY+1

2
δYTM δY

mit δY:= A−1δZ ∼ N(0, 1), iid (22.20)

und M := AT �̃A .

Thus, the first goal has been accomplished. The δZi have been transformed
into iid random variables δYi .

Because �̃ is by definition a symmetric matrix, i.e., �̃ij = �̃ji , we can show
that the newly defined matrixM is symmetric as well:

Mij = (
AT �̃A

)
ij

=
∑

k

∑
m

(AT )ik�̃kmAmj

=
∑

k

∑
m

(AT )ik�̃mkAmj =
∑

k

∑
m

Amj �̃mk(A
T )ik

=
∑

k

∑
m

(AT )jm�̃mkAki = (
AT �̃A

)
ji

= Mji .

22.3.2 Diagonalization of the Gamma Matrix

The next step is to decouple the contributions to δV of the individual random
variables in Eq. 22.20. This is accomplished by diagonalizing the gamma
matrix, or more precisely, the transformed gamma matrix M introduced in
Eq. 22.20. Diagonalizing a matrix is a standard procedure in linear algebra. We
refer the reader to the relevant literature.6 We nevertheless take the opportunity
to demonstrate the fundamental operations for diagonalizing a matrix here
since they contain essential elements of the practical value at risk computations
to be performed in the delta-gamma method.

The eigenvectors ei of a matrixM are the non-zero vectors which are mapped
by M to the same vector multiplied by a number (called a scalar in algebra):

Mei = λiei ⇔
(M − λi1) ei = 0 . (22.21)

6The most important results required for the analysis here receive a clear and concise treatment in [78],
for example.
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These scalars λi are called eigenvalues of the matrix. As known from linear
algebra, an equation of this kind has a non-trivial solution ei �= 0 if and only
if the matrix (M − λi1) is singular. For this to be the case, the determinant of
this matrix must be zero:

det (M−λi1) = 0 . (22.22)

The solutions of Eq. 22.22 are the eigenvalues λi . Having determined these
values, they can be substituted into Eq. 22.21 to determine the eigenvectors
ei of the matrix. The eigenvectors have as yet only been defined up to a
multiplicative scalar since if ei solves Eq. 22.21 then cei does as well, for any
arbitrary scalar c. The uniqueness of the eigenvalues can be guaranteed by
demanding that the eigenvectors have norm 1:

(ei)T ei = 1 (22.23)

As is known from linear algebra, a symmetric, non-singular n × n matrix
has n linearly independent eigenvectors which are orthogonal. This means
that the inner product of each pair of different eigenvectors equals zero
(graphically: the angle formed by the two vectors is 90 degrees). Together with
the normalization the eigenvectors thus have the following property

(ei)T ej =
∑

k

ei
ke

j

k = δij (22.24)

where δij denotes the well-known Kronecker delta. A collection of vectors
satisfying this property is called orthonormal. Since we have shown that the
n × n matrix M in Eq. 22.20 is symmetric, we can be sure that it indeed has
n orthonormal eigenvectors satisfying Eq. 22.24.
To clarify the notation for these eigenvectors: The subscript k and the

superscript i of ei
k identify this value as the k-th component of the i-th

eigenvector ei .

ej =

⎛
⎜⎜⎜⎜⎝

e
j

1

e
j

2
...

e
j
n

⎞
⎟⎟⎟⎟⎠
, (ej )T =

(
e
j

1 e
j

2 · · · e
j
n

)
, j = 1, . . . , n .
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A matrix O can now be constructed whose column vectors are composed of
the eigenvectors of M:

O = (
e1 e2 . . . en

) =

⎛
⎜⎜⎜⎜⎝

e1
1 e2

1 · · · en
1

e1
2 e2

2

...
...

. . .
...

e1
n · · · · · · en

n

⎞
⎟⎟⎟⎟⎠

⇒ Oij = e
j

i . (22.25)

The j th eigenvector ej is in the j th column of the matrix. In the ith row, we
find the ith components of all eigenvectors. As we will soon see, this matrix
is an indispensable tool for the purpose of the diagonalization. As can be
immediately verified7

OTO = 1 (22.26)

and therefore also

OT = O−1 ⇒ OOT = 1 . (22.27)

Equation 22.26 characterizes a group of matrices known as orthonormal
transformations. Applying such a matrix to a vector effects a rotation of the
vector.

The eigenvalues of the matrixM can be used to construct a matrix as well,
namely the diagonal matrix

λ =

⎛
⎜⎜⎜⎜⎝

λ1 0 · · · 0

0 λ2
...

...
. . .

...

0 · · · · · · λn

⎞
⎟⎟⎟⎟⎠

. (22.28)

From Eq. 22.21, it follows immediately that the relation

MO = Oλ (22.29)

7(OT O
)
ij

= ∑
k(O

T )ikOkj = ∑
k ei

ke
j
k = δij .
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holds for the matricesM,O and λ. Suchmatrix equations can often be verified
quite easily by comparing the matrix elements individually:

(MO)ij =
∑

k

MikOkj =
∑

k

Mike
j

k = (
Mej

)
i

= (
λj ej

)
i
= λje

j

i = Oijλj = (Oλ)ij .

The decisive step in the above proof is the first equality in the second line
where the eigenvector equation 22.21 was used. Multiplying both sides of this
equation from the left by the matrixOT and using Eq. 22.26 directly yields the
desired diagonalization of M, since λ is a diagonal matrix:

OTMO = OT Oλ = λ . (22.30)

Multiplying both sides of Eq. 22.29 from the right by the matrixOT and using
Eq. 22.27, also yields a very useful representation of M, namely the spectral
representation (also referred to as eigenvector decomposition)

M = OλOT =
∑

k

λk

(
ek(ek)T

)
.

We are now in a position to introduce the diagonalized matrix OTMO
into Eq. 22.20 by inserting identity matrices in Eq. 22.20 and subsequently
replacing them by OOT . Equation 22.27 ensures that equality is maintained.

δV (S(t)) = �̃
T
A 1 δY+1

2
δYT 1M1 δY

= �̃
T
AOOT δY + 1

2
δYTOOT MO︸ ︷︷ ︸

λ

OT δY

= �̃
T
AO

(
OT δY

)+1

2

(
OT δY

)T
λ
(
OT δY

)
.

In the last equality, the parentheses are meant to emphasize that δY appears
only in combination with OT . In consequence, we can write

δV (S(t)) = �̃
T
AO δX+1

2
δXT λδX

mit δX := OT δY = OTA−1δZ (22.31)

und λ:= OTMO = OTAT �̃AO .
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The δYi were iid, standard normally distributed random variables. This was
accomplished in the previous section by the mapping A−1. Now to achieve
the diagonalization of the gamma matrix, the random variables must undergo
a further transformation under the mapping OT . The question remains as to
whether the accomplishments of the previous section was undone by this new
transformation, in other words, whether the transformed random variables
have remained independent. We therefore consider the covariance of the new
random variables

cov[δXi, δXj ] = cov

[∑
k

OT
ikδYk,

∑
m

OT
jmYm

]

=
∑

k

∑
m

OT
ikO

T
jmcov[δYk, δYm]︸ ︷︷ ︸

δkm

=
∑

k

OT
ikO

T
jk

=
∑

k

OT
ikOkj = (

OTO
)
ij

= 1ij = δij .

The covariances have remained invariant under the transformationOT . Thus,
the new random variables are also uncorrelated and all have variance 1. Also,
the zero expectation does not change under the transformation OT :

E[δXi ] = E

[∑
k

OT
ikδYk

]
=

∑
k

OT
ikE[δYk]︸ ︷︷ ︸

0

.

Since matrix multiplication is a linear transformation (we are operating in
the realm of linear algebra), the form of the distribution remains the same
as well. In summary, the new random variables are uncorrelated and all
have the same standard-normal distribution. We have argued after Eq. 21.40
that such variables are indeed iid random variables. Summarizing the above
deliberations, we can write for the δXi :

δX ∼ N(0, 1), iid .

We have only used property 22.26, i.e., the iid property of random variables
remains invariant under every orthonormal transformation.
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If we define a “transformed sensitivity vector” as

L : = OT AT �̃

(which implies for its transposed LT = �̃
T
AO), the portfolio-change

Eq. 22.31 can be brought into the following simple form

δV (S(t)) = LT δX+1

2
δXT λδX with δX ∼ N(0, 1) (22.32)

or, expressed component-wise

δV (S(t)) =
∑

i

[
Li δXi+1

2
λiδX

2
i

]
=

∑
i

δVi

mit δVi = Li δXi+1

2
λiδX

2
i , i = 1, . . . , n . (22.33)

The change in the portfolio’s value is now the decoupled sum of the individual
contributions of iid random variables as was our original intention.
At this stage, we collect all transformations involved inmapping the original

random variables in Eq. 22.19 into the iid random variables in the above
expression Eq. 22.32:

δX := OTA−1δZ, λ := OTAT �̃ AO, L := OTAT �̃ .

From Eq. 22.27 we know that OTA−1 = O−1A−1 = (AO)−1. We now
recognize that all of these transformations can be represented with a single
matrix defined as

D := AO (22.34)

With this matrix, the transformations become simply

δX := D−1δZ, λ := DT �̃ D, L := DT �̃ . (22.35)

The matrix D directly diagonalizes the gamma matrix �̃ (as opposed to O,
which diagonalizes the matrix M ). In addition, D is by definition, an
orthonormal transformation (a “rotation”) of A, the Cholesky decomposition
of the covariance matrix. D is likewise a “square root” of the covariance
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matrix, since the square of a matrix remains invariant under orthonormal
transformations of the matrix. Explicitly:

DDT = AO(AO)T = AOOTAT = A1AT = AAT = δ� . (22.36)

Therefore, the matrix D satisfies both tasks, namely the decoupling of the
gamma matrix and the transformation of the correlated random variables into
uncorrelated ones.

As a little consistence check, using the matrix D we immediately recognize
the equivalence of Eqs. 22.32 and 22.19:

δV (S(t)) = (
DT �̃

)T
D−1δZ+1

2

(
D−1δZ

)T
DT �̃ DD−1δZ

= �̃
T
DD−1︸ ︷︷ ︸

1

δZ+1

2
δZT

(
DT

)−1
DT

︸ ︷︷ ︸
1

˜� DD−1︸ ︷︷ ︸
1

δZ ,

where Eq. 21.39 was again used in verifying this equivalence.

22.3.3 The Distribution of the Portfolio Value Changes

Having decoupled the individual contributions to δV in Eq. 22.33 into
standard normally distributed iid random variables, we can now determine the
distribution of the sum. δV is nevertheless not simply the sum of normally dis-
tributed random variables alone, since the expression also includes the square
of normally distributed random variables. These additional random variables
represent the difference in complexity compared to the delta-normal method.
According to Sect. A.4.6, the square of a standard normally distributed random
variable is χ2-distributed with one degree of freedom. We can thus write
Eq. 22.33 as

δV (S(t)) =
n∑

i=1

Li δXi + 1

2

n∑
i=1

λiX̃i with δXi ∼ N(0, 1), X̃i ∼ χ2(1) .

However, the X̃i are not independent random variables since we obviously
have

X̃i = (δXi)
2 ∀i .
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We need to re-write δV in such a way that every term appearing is statistically
independent of every other term. First note that a δXi is independent of every
other term in δV if and only if the corresponding eigenvalue λi is zero, since in
this case the corresponding X̃i does not appear in the sum. We will emphasize
this by introducing the index set J which contains only the indices of non-zero
eigenvalues:

J = {
1, . . . , n

∣∣λj �= 0
}

. (22.37)

With this index set we can write8

δV (S(t)) =
∑
i /∈J

Li δXi +
∑
j∈J

Lj δXj + 1

2

∑
j∈J

λj δX
2
j (22.38)

=
∑
i /∈J

Li δXi +
∑
j∈J

[
Lj δXj + 1

2
λj δX

2
j

]
.

The first sum in Eq. 22.38 is actually a sum of normally distributed random
variables and as such is again a normally distributed random variable which
we denote by u0. The expectation of this random variable can be calculated as

E [u0] = E

[∑
i /∈J

Li δXi

]
=

n∑
i=1

LiE [ δXi ]︸ ︷︷ ︸
0

= 0 .

and the variance is

var [u0] = var

[∑
i /∈J

Li δXi

]
=

∑
i,j /∈J

cov
[
Li δXi, Lj δXj

]

=
∑
i,j /∈J

LiLjcov
[
δXi, δXj

]
︸ ︷︷ ︸

δij

=
∑
i /∈J

L2
i .

8The notation i /∈ J denotes all indices i with eigenvalue λi = 0, i.e., the set {1, . . . , n |λi = 0 }.
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with the components Li of the transformed sensitivity vector L defined in
Eq. 22.35. Thus

u0 :=
∑
i /∈J

Li δX ∼ N

(
0,

∑
i /∈J

L2
i

)
.

Consider now the sums over j ∈ J in Eq. 22.38. To combine the dependent
random numbers δXj and δX2

j in the square brackets of Eq. 22.38 into one
single random number, we complete the square for each j ∈ J :

1

2
λjδX

2
j + Lj δXj = 1

2
λj

(
δX2

j + 2
Lj

λj

δXj

)
= 1

2
λj

(
δXj + Lj

λj

)2

− L2
j

2λj

.

Since δXj is a standard normal random variable, we have

δXj ∼ N(0, 1) 	⇒ δXj + Lj

λj

∼ N
(

Lj

λj

, 1

)
.

Therefore, according to Eq. A.94 in Sect. A.4.6 uj := (
δXj + Lj/λj

)2 has
a non-central χ2-distribution with one degree of freedom and non-central
parameter L2

j /λ
2
j :

(
δXj + Lj

λj

)2

=: uj ∼ χ2

(
1,

L2
j

λ2
j

)
∀j ∈ J .

In summary, δV has now become a sum of non-central χ2-distributed
random variables uj plus a normally distributed random variable u0 (plus a
constant), where all the random variables appearing are independent of each
other:

δV (S(t)) = u0 + 1

2

∑
j∈J

λjuj − 1

2

∑
j∈J

L2
j /λj

︸ ︷︷ ︸
constant

(22.39)

mit u0 ∼ N(0,
∑
i /∈J

L2
i ) , uj ∼ χ2

(
1, (Lj/λj )

2
)
, j ∈ J .
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The problem now consists in determining the distribution of the sum of inde-
pendent but differently distributed random variables (or at least its percentiles).
According to Eq. 21.4, the value at risk at a specified confidence level is then
computed with precisely these percentiles or, equivalently, by inverting the
cumulative distribution function of δV .

22.3.4 Moments of the Portfolio Value Distribution

We begin by calculating the moments of the random variable δV . The first
moments, the expectation, the variance, etc. (see Eqs. A.22 and A.23) have
intuitive interpretations and their explicit forms provide an intuitive con-
ception of the distribution. In addition, approximations for the distribution
(the Johnson approximation) and for the percentiles (the Cornish-Fisher
approximation) will later be presented which can be computed with the
moments.
The Moment Generating Function is a very useful tool for calculating the

moments. The moment generating function (abbreviated as MGF ) Gx of a
random variable x with density function pdf(x) is defined in Sect. A.3.1 by

Gx(s) ≡ E[esx] =
∫ ∞

−∞
esx pdf(x)dx =

∞∑
n=0

sn

n! E[xn] , (22.40)

where in the last step the exponential function esx has been expanded in its
Taylor series. The namemoment generating function stems from the fact, stated
mathematically in Eq. A.27, that the derivatives of the function Gx(s) with
respect to s evaluated at s = 0 generate the moments of the random variable x

E[xn] = ∂nGx(s)

∂sn

∣∣∣∣
s=0

. (22.41)

As demonstrated in Sect. A.3.1, the MGF can be explicitly computed for
many distributions from their integral representation, Eq. A.25. In particular,
according to Eq. A.57, the MGF of u0, i.e., the MGF of a N(0,

∑
i /∈J L2

i )

distributed random variable is given by

Gu0(s) = exp

(
1

2
s2

∑
i /∈J

L2
i

)
(22.42)
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while Eq. A.95 gives the MGF of uj , i.e., of a non-central χ2-distribution
with one degree of freedom χ2(1, (Lj/λj )

2)

Guj
(s) = 1√

1 − 2s
exp

{
s

1 − 2s

L2
j

λ2
j

}
, j ∈ J . (22.43)

This function is well-defined for s < 1/2, which is sufficient for our needs
since as is clear from Eq. 22.41 that we are particularly interested in values of s
in a neighborhood of zero.

The usefulness of the MGF in the calculation of the distribution of δV in
Eq. 22.39 stems from the fact that according to Eq. A.30 the MGF of the sum
of independent random variables x, y is simply the product of the MGFs of
each of the random variables:

Gx+y(s) = Gx(s)Gy(s) (22.44)

and that furthermore, from Eq. A.31

Gax+b(s) = ebsGx(as) . (22.45)

for all non-stochastic values a, b and random variables x. The MGF of δV

can thus be written as the product of the each of the MGFs appearing in the
sum:

GδV (s) = exp

⎧⎨
⎩−s

∑
j∈J

L2
j

2λj

⎫⎬
⎭Gu0(s)

∏
j∈J

Guj

(
1

2
λjs

)
.

The MGFs of each of the individual random variables are given explicitly in
Eqs. 22.42 and 22.43. Substituting s by λjs/2 in Eq. 22.43 yields the required
MGF for the argument λjs/2:

Guj

(
1

2
λjs

)
= 1√

1 − λj s
exp

{
L2

j

2λj

s

1 − λj s

}
.
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We thus obtain an explicit expression for the moment generating function of
the distribution of the portfolio’s value changes:

GδV (s) = exp

⎧⎨
⎩−s

∑
j∈J

L2
j

2λj

⎫⎬
⎭ exp

(
1

2
s2

∑
i /∈J

L2
i

) ∏
j∈J

1√
1 − λj s

exp

{
L2

j

2λj

s

1 − λj s

}

= exp

(
1

2
s2

∑
i /∈J

L2
i

) ∏
j∈J

[
1√

1 − λj s
exp

{
L2

j

2λj

s

1 − λjs

}
exp

{
−s

L2
j

2λj

}]

= exp

(
1

2
s2

∑
i /∈J

L2
i

) ∏
j∈J

[
1√

1 − λj s
exp

{
L2

j

2λj

s

(
1

1 − λjs
− 1

)}]
.

Using the same denominator in the second exp-function finally yields

GδV (s) = exp

(
1

2
s2

∑
i /∈J

L2
i

)∏
j∈J

1√
1 − λjs

exp

{
1

2
L2

j

s2

1 − λjs

}
.

(22.46)

This can be simplified even further by the following trick: Since λi = 0 for all
i /∈ J , we can re-write the first exp-function in the following way:

exp

(
1

2
s2

∑
i /∈J

L2
i

)
=

∏
i /∈J

exp

(
1

2
s2L2

i

)
=

∏
i /∈J

1√
1 − λis

exp

{
1

2
L2

i

s2

1 − λis

}
.

Using this form in Eq. 22.46 allows us to write δV very compactly as a product
over all indexes j = 1, . . . , n

GδV (s) =
n∏

j=1

1√
1 − λj s

exp

{
1

2
L2

j

s2

1 − λj s

}
. (22.47)

This function is well-defined for all s < minj∈J

(
1

2|λi |
)
, which is sufficient

for our needs since because of Eq. 22.41, we are only interested in values of s

which are close to zero.
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Now, using Eq. 22.41, arbitrary moments of δV can be computed. We start
the calculation of the first moment by introducing the abbreviation

aj := 1

2
L2

j

s2

1 − λj s
.

Application of the well-known product rule yields

E[δV ] = ∂GδV (s)

∂s

∣∣∣∣
s=0

= ∂

∂s

n∏
j=1

eaj

√
1 − λjs

∣∣∣∣∣∣
s=0

=
n∑

j=1

(
∂

∂s

eaj

√
1 − λjs

)
n∏

k=1,k �=j

eak

√
1 − λks

∣∣∣∣∣∣
s=0

.

The derivative we need to calculate is

∂

∂s

eaj

√
1 − λjs

= eaj
∂

∂s

1√
1 − λj s

+ 1√
1 − λj s

∂

∂s
eaj

=
1
2λje

aj

(
1 − λjs

)3/2 +
1
2L

2
j e

aj

√
1 − λj s

(
2s

1 − λj s
+ λj s2

(
1 − λjs

)2

)

= 1

2

eaj

(
1 − λj s

)3/2

(
λj + 2L2

j s + λjL
2
j

s2

1 − λjs

)
.

For s = 0 almost all terms vanish and we are left with λj/2. Thus E[δV ]
becomes simply

E[δV ] =
n∑

j=1

1

2
λj

∏
k∈J,k �=j

eak

√
1 − λks

∣∣∣∣∣∣
s=0

= 1

2

n∑
j=1

λj .

The expectation of the portfolio’s value changes in the delta-gamma approxi-
mation Eq. 22.4 is thus just half the sum of the eigenvalues of the transformed
gammamatrixM. This is by definitionhalf the trace of the eigenvaluematrixλ.
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With Eqs. 22.35 and 22.36 we arrive at the conclusion that the expectation of
δV equals half the trace of the product of the gammamatrix and the covariance
matrix9:

E[δV ] = 1

2
tr (λ) = 1

2
tr
(
DT �̃ D

) = 1

2
tr
(
�̃ DDT

) = 1

2
tr
(
�̃ δ�

)
.

(22.48)

Note that the drifts of all risk factors have been neglected (see Eqs. 22.19
and 22.1). The risk factors are thus all approximated to be drift-free. But then,
for a portfolio depending only linearly on the risk factors (or in the linear
approximation of the delta-normal method) the expectation (the drift) of
the portfolio value changes also equals zero. In Eq. 22.48, the expectation
(the drift) of the portfolio changes is not zero because non-linear effects were
taken into consideration. It is readily seen that the gamma matrix gives rise to
the drift of δV in contrast to the linear sensitivities �̃ which do not appear
in 22.48.
To find out more about the distribution of δV , we proceed by computing

its variance. According to Eq. A.5 the variance is the second central moment
which can be calculated via Eq. A.29:

var[δV ] = E[(δV − E[δV ])2]

= ∂2

∂s2
exp (−sE[δV ]) GδV (s)

∣∣∣∣
s=0

= ∂2

∂s2
exp

(
−s

1

2

n∑
i=1

λi

)
n∏

j=1

exp
(

1
2L

2
j

s2

1−λj s

)
√

1 − λj s

∣∣∣∣∣∣
s=0

= ∂2

∂s2

n∏
j=1

1√
1 − λj s

exp

(
1

2
L2

j

s2

1 − λjs
− 1

2
λjs

)∣∣∣∣∣∣
s=0

= ∂2

∂s2

n∏
j=1

aj

∣∣∣∣∣∣
s=0

(22.49)

9Here the well-known cyclic property of the trace has been used: tr (ABC ) = tr (BCA ) for arbitrary
matrices A,B,C.
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with the abbreviation

aj := 1√
1 − λjs

exp

(
1

2
L2

j

s2

1 − λjs
− 1

2
λjs

)
.

The second derivative of this product is quite involved.We nonetheless present
it explicitly here to demonstrate how moments of δV can be determined in
practice. Such moments are needed quite often, for instance for the Cornish-
Fisher expansion. We start by repeatedly applying the product rule to arrive at

∂2

∂s2

n∏
j=1

aj = ∂

∂s

⎛
⎝

n∑
j=1

∂aj

∂s

n∏
k=1,k �=j

ak

⎞
⎠

=
n∑

j=1

(
∂

∂s

∂aj

∂s

) n∏
k=1,k �=j

ak +
n∑

j=1

∂aj

∂s

∂

∂s

n∏
k=1,k �=j

ak

=
n∑

j=1

∂2aj

∂s2

n∏
k=1,k �=j

ak +
n∑

j=1

∂aj

∂s

n∑
k=1,k �=j

∂ak

∂s

n∏
m=1,

m�=k, m�=j

am .

(22.50)

Thus, we mainly have to differentiate aj . For ease of notation, we introduce
yet another abbreviation, namely

bj := 1

2
L2

j

s2

1 − λjs
− 1

2
λjs 	⇒ aj = ebj

√
1 − λj s

.

The first derivative with respect to aj is now calculated as

∂aj

∂s
= 1√

1 − λj s

∂ebj

∂s
+ ebj

∂

∂s

1√
1 − λj s

= ebj

√
1 − λj s

(
s L2

j

1 − λj s
+

1
2s

2L2
j λj(

1 − λjs
)2 − λj

2

)
+

1
2ebj λj(

1 − λj s
)3/2

= sL2
j e

bj

(
1 − λjs

)3/2 +
1
2s2L2

j e
bj λj(

1 − λjs
)5/2 −

1
2e

bj λj(
1 − λj s

)1/2 +
1
2e

bj λj(
1 − λj s

)3/2 .

(22.51)
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For s = 0 the first two terms in the last line vanish and the last two terms just
compensate each other so that ∂aj/∂s vanishes completely at s = 0:

∂aj

∂s

∣∣∣∣
s=0

= −1

2
ebj λj + 1

2
ebj λj = 0 . (22.52)

Therefore only the term involving the second derivative in Eq. 22.50 con-
tributes to Eq. 22.49. Using the result 22.51, this second derivative is explicitly:

∂2aj

∂s2
= ∂

∂s

[
sL2

j e
bj

(
1 − λj s

)3/2
+

1
2s2L2

j e
bj λj

(
1 − λj s

)5/2
−

1
2ebj λj(

1 − λj s
)1/2

+
1
2ebj λj(

1 − λjs
)3/2

]

= L2
j

∂ebj

∂s

s(
1 − λj s

)3/2
+ L2

j e
bj

3

2

λj s(
1 − λjs

)5/2
+ L2

j e
bj

1(
1 − λj s

)3/2

+ 1

2
L2

j

∂ebj

∂s

λj s
2

(
1 − λjs

)5/2
+ 5

4
L2

j e
bj

λ2
j s

2

(
1 − λjs

)7/2
+ L2

j e
bj

λj s(
1 − λjs

)5/2

− 1

2

∂ebj

∂s

λj(
1 − λjs

)1/2
− 1

4
ebj

λ2
j(

1 − λjs
)3/2

+ 1

2

∂ebj

∂s

λj(
1 − λjs

)3/2
+ 3

4
ebj

λ2
j(

1 − λjs
)3/2

.

Most terms above have s as a factor. They all vanish for s = 0. The only terms
remaining are:

∂2aj

∂s2

∣∣∣∣
s=0

= L2
j e

bj − 1

2

∂ebj

∂s
λj − 1

4
ebj λ2

j + 1

2

∂ebj

∂s
λj + 3

4
ebj λ2

j

= ebj︸︷︷︸
1 for s=0

(
L2

j + 1

2
λ2

j

)
. (22.53)

Inserting all these results into Eq. 22.49 finally yields

var[δV ] =
n∑

j=1

∂2aj

∂s2
+

n∑
j=1

∂aj

∂s

n∑
k=1,k �=j

∂ak

∂s

∣∣∣∣∣∣
s=0
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=
n∑

j=1

∂2aj

∂s2

∣∣∣∣∣∣
s=0

=
n∑

j=1

(
L2

j + 1

2
λ2

j

)
,

In the first step we used Eq. 22.50 and ak|s=0 = 1. In the second step the
result 22.52 was inserted and in the third step the result 22.53. The sum

∑
L2

j

is just the square of the transformed sensitivity vector and
∑

λ2
j is the trace of

the square of the matrix of eigenvalues, i.e.,

var[δV ] = LT L + 1

2
tr
(
λ2

)
.

Finally, making use of the transformations in Eq. 22.35 and applying
Eq. 22.36, the variance of the portfolio’s value change in the framework
of the delta-gamma method becomes

var[δV ] = �̃
T
DDT �̃ + 1

2
tr
(
DT �̃ DDT �̃ D

)

= �̃
T
δ��̃ + 1

2
tr

(
�̃ δ��̃ δ�

)
. (22.54)

Note that the first term resulting from the linear portfolio sensitivities �̃ is
identical to the portfolio variance in the delta-normal method (see Eq. 22.14).
The non-linear sensitivities �̃ effect a correction of the linear portfolio variance
which has a form similar to the drift correction from the non-linear term in
Eq. 22.48. While in Eq. 22.48, the trace of the product of the gamma matrix
and the covariance matrix was relevant, now the trace of the square of this
product is required for computing the variance.

The variance is the second central moment of the random variable. The
central moments μi of a random variable are defined in general terms in
Eq. A.23 as the “expectation of powers of the deviation from the expectation”:

μi := E[(δV − E[δV ])i], i > 1 .

Analogously to the approach for the first two moments demonstrated above,
we can continue to calculate the further moments of δV . The first (central)
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moments are compiled here:

μ : = E[δV ] = 1

2
tr

(
�̃ δ�

)

μ2 = E[(δV − E[δV ])2] = �̃
T
δ��̃ + 1

2
tr

(
(�̃ δ�)2)

μ3 = E[(δV − E[δV ])3] = 3�̃
T
δ� �̃ δ� �̃ + tr

(
(�̃ δ�)3) (22.55)

μ4 = E[(δV − E[δV ])4] = 12�̃
T
δ� (�̃ δ�)2 �̃ + 3 tr

(
(�̃ δ�)4) + 3μ2

2 .

In this way, a great deal of additional information about the distribution of
δV can be generated. For instance skewness and kurtosis of the distribution of
δV are10

Schiefe ≡ μ3

μ
3/2
2

= 3�̃
T
δ� �̃ δ� �̃ + tr (�̃ δ�)3

(
�̃

T
δ��̃ + 1

2 tr (�̃ δ�)2
)3/2

Kurtosis ≡ μ4

μ2
2

= 12�̃
T
δ� (�̃ δ�)2 �̃ + 3 tr

(
(�̃ δ�)4

) + 3μ2
2(

�̃
T
δ��̃ + 1

2 tr (�̃ δ�)2
)2 .

A percentile, however, is needed for the computation of the value at risk as
given in Eq. 21.4.

Johnson Transformation

Computation of a percentile necessitates knowledge of the distribution of
the random variable directly and not of its moments. In order to be able to
proceed, we could assume a particular functional form of the distribution
and then establish a relation between the parameters of this functional form
and the moments of the random variable via moment matching. Since the
moments, as shown above, can be explicitly computed, the parameters of
the assumed distribution can thus be determined. For example, if we assume
that a random variable is normally or lognormally distributed, we would take
Eqs. 22.48 and 22.54 as parameter values. Additional functional forms for

10Recall that a normal distribution has skewness 0 and kurtosis 3, see Eq. A.59.
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approximating the distribution of δV were suggested by Johnson [114]. These
Johnson transformations have four parameters which can be determined from
the first four moments in Eq. 22.55. They represent a substantially better
approximation than, for example a lognormal distribution.

Cornish-Fisher Expansion

One possibility of approximating the percentiles of a distribution from its
central moments and the percentiles QN(0,1) of the standard normal distribu-
tion is the Cornish-Fisher expansion. Since this expansion makes use of the
standard normal distribution, we must first transform δV into a centered and
normalized random variable δ̃V with expectation 0 and variance 1. This is
accomplished by defining

δ̃V := δV − E[δV ]√
var[δV ] = δV − μ√

μ2
.

The percentile of the distribution of δ̃V can now be approximated with the
Cornish-Fisher expansion [41, 196] as follows

Qcpf
δ̃V ≈ QN(0,1) + 1

6

[
(QN(0,1))2 − 1

] μ3

μ
3/2
2

+ 1

24

[
(QN(0,1))3 − 3QN(0,1)

] (μ4

μ2
2

− 3

)
(22.56)

− 1

36

[
2 (QN(0,1))3 − 5QN(0,1)

]( μ3

μ
3/2
2

)2

,

where the expansion is taken up to the order, which uses only the first four
moments from Eq. 22.55. The probability that δ̃V is less than a number a is,
naturally, the same as the probability that δV is less than μ + √

μ2 a. Thus

QcpfδV = μ + √
μ2 Qcpf

δ̃V .

holds for the percentiles. From Eq. 21.4, the value at risk is thus

VaR(c) = −Q
cpfδV
1−c = −μ − √

μ2 Q
cpfδ̃V
1−c ,
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where we now can use the approximation 22.56 for Qδ̃V

1−c since the percentiles
of the standard normal distribution for the confidence level (1 − c) are well
known (see for instance Eq. 21.13).

22.3.5 Fourier-Transformation of the Portfolio Value
Distribution

While a great deal of information about the distribution function can be
gleaned from the computation of the moments with the moment generating
function, we are still not able to calculate the distribution itself directly.
Characteristic functions (CFs), however, generate the distribution directly (this
can at least be accomplished numerically). As defined in Sect. A.3.2, the
characteristic function �x of a random variable x with density function pdf(x)

is11

�x(s) ≡ E[eisx] =
∫ ∞

−∞
eisx pdf(x)dx . (22.57)

This is precisely the definition of the Fourier transformation of the density
function. As demonstrated in Sect. A.3.2, the CFs of many random variables
with density functions can be computed explicitly. In particular, the CF of u0,
i.e., the CF of a normally distributed random variable N(0,

∑
i /∈J L2

i ) is given
by

�u0(s) = exp

(
−1

2
s2

∑
i /∈J

L2
i

)
(22.58)

And according to Eq. A.97, the CF of the uj , i.e., of a non-central χ2-
distributed random variable with one degree of freedom χ2(1, (Lj/λj )

2) is
given by

�uj
(s) = 1√

1 − 2is
exp

{
is

1 − 2is

L2
j

λ2
j

}
, j ∈ J , i ≡ √−1 . (22.59)

11Here, i denotes the imaginary number satisfying the property i2 = −1, thus intuitively i = √−1.
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Similarly to the moment generating function, the usefulness of the CF in
computing the distribution of δV in Eq. 22.39 stems from the property A.34.
The CF of a sum of independent random variables x, y is simply the product
of the CFs of each of these variables:

�x+y(s) = �x(s)�y(s) (22.60)

Furthermore, according to Eq. A.35,

�ax+b(s) = eibs�x(as) . (22.61)

holds for all non-stochastic values a, b and random variables x. Thus the CF
of δV can be expressed as the product of the CFs of the random variables
appearing in the definition of δV :

�δV (s) = exp

⎧⎨
⎩−is

∑
j∈J

L2
j

2λj

⎫⎬
⎭�u0(s)

∏
j∈J

�uj

(
1

2
λjs

)
. (22.62)

The CFs of the individual random variables are given explicitly in Eqs. 22.58
and 22.59. We now have all information at our disposal to calculate an explicit
expression for the characteristic function of the distribution of δV . The result
is of course the same as Eq. 22.46 for the MGF with the obvious substitution
s → is:

�δV (s) = exp

(
−1

2
s2

∑
i /∈J

L2
i

)∏
j∈J

1√
1 − iλj s

exp

{
−1

2
L2

j

s2

1 − iλj s

}
.

(22.63)

Since λi = 0 for i /∈ J ,we can—as we did with the MGF—write the first
exp-function as

exp

(
−1

2
s2

∑
i /∈J

L2
i

)
=

∏
i /∈J

1√
1 − iλis

exp

{
−1

2
L2

i

s2

1 − iλis

}
.
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Thus, the characteristic function can be written as a product over all indexes j :

�δV (s) =
n∏

j=1

1√
1 − iλj s

exp

{
−1

2
L2

j

s2

1 − iλj s

}
mit i ≡ √−1 .

(22.64)

In contrast to the moment generating function, there exists an inverse trans-
formation for the characteristic function, namely the inverse Fourier Transfor-
mation (see Sect. A.3.2). From Eq. 22.64 the density function pdf(δV ) can
thus be computed (at least numerically).

pdfδV (x) = 1

2π

∫ ∞

−∞
e−isx�δV (s)ds

= 1

2π

∫ ∞

−∞
e−isx

n∏
j=1

exp
{
−1

2L2
j

s2

1−iλj s

}
√

1 − iλj s
ds . (22.65)

The cumulative probability function of δV can now be obtained through the
(numerical) integration of this probability density

cpfδV (c) ≡
∫ c

−∞
pdfδV (x)dx

= 1

2π

∫ c

−∞

∫ ∞

−∞
e−isx

n∏
j=1

exp
{
−1

2L2
j

s2

1−iλj s

}
√

1 − iλj s
ds dx .

Amethod which can likewise be applied in practice does not use the Fourier
transformation of the density, but the Fourier transformation of the cumulative
distribution directly:

Fx(s) ≡
∫ ∞

−∞
eisx cpf(x)dx .

This Fourier transformation has the analogous properties to those indicated
in Eqs. 22.61 and 22.60. Hence, the Fourier transformation of the cumulative
distribution function of the portfolio’s change is (up to a constant)

FδV (s) ∼ Fu0(s)
∏
j∈J

Fuj

(
1

2
λj s

)
. (22.66)
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analogous to Eq. 22.62. Here, the individual Fourier transformations of the
cumulative distribution function of a normally distributed random variable
(for u0) and the cumulative distribution of the non-central χ2 random
variables with one degree of freedom (for the uj ) appear. These can only
be computed numerically. Then, the results as shown in Eq. 22.66 are
multiplied in Fourier space. Finally, the function FδV (s) thus obtained must
be transformed back with the inverse Fourier transformation to obtain the
cumulative probability function of δV as

cpfδV (x) = 1

2π

∫ ∞

−∞
e−isxFδV (s)ds . (22.67)

The Wiener-Chintchine theorem states that the approach just described is
equivalent to taking the convolution of the cumulative distribution func-
tions. The twice computed Fourier transformation is numerically preferable
to computing the convolution. The recommended method for numerically
performing Fourier transformations (or inverse Fourier transformations like
Eq. 22.67) is the fast Fourier transformation (FFT). This method requires
significantly fewer computations as compared to other common procedures
for numerical integration.12

22.3.6 Monte Carlo Simulation of the Portfolio Value
Distribution

Calculating the cumulative distribution of δV with characteristic functions
involves complicated numerical procedures. Using moment-generating func-
tions to calculate the moments we need additional assumptions and approxi-
mations to establish a relation between those moments and the distribution or
the percentiles.13 All methods introduced here therefore offer sufficient scope
for error to creep into the calculations. Additionally, significant difficulties are
often involved in calculating the gamma and covariance matrices. Hence, it is
by all means legitimate to apply a simple Monte Carlo simulation, instead of
the often complicated methods described above, to generate the distribution
of δV . The statistical error in doing so is often no larger than the errors of the

12In contrast to other common numerical procedures, the FFT reduces the number of necessary
multiplications from order O(N2) to O(N ln(N)). See, for example [20] or [156].
13It should not be forgotten that the Delta-Gamma method itself is only an approximation of the
portfolio’s value obtained from the second-order Taylor series approximation.
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above methods assuming of course that a sufficient number of simulation runs
have been carried out.
For a Monte Carlo Simulation we proceed directly from Eq. 22.33. n nor-

mally distributed random numbers are generated with which the simulated
change in the portfolio’s value can be immediately computed with the expres-
sion

δV =
n∑

i=1

[
Li δXi+1

2
λiδX

2
i

]
.

This procedure is repeated N times (as a rule, several thousand times) thus
obtaining N simulated changes in the portfolio’s value from which the distri-
bution of δV can be approximated. The percentiles of this distribution can be
approximated by simply sorting the simulated values of δV in increasing order
as described in Sect. 23.1 (a detailed discussion of value at risk computations
using the Monte Carlo Method can be found in this section).
Here, in contrast to the method described in Sect. 23.1, we do not simulate

each single risk factor separately. Instead, the portfolio change is directly
calculated based on Eq. 22.33. Therefore, no time consuming revaluation
of the portfolio for the each generated scenarios is required. However, before
the simulation can be performed, the eigenvalues of the transformed gamma
matrix must be calculated by solving Eq. 22.22, and the transformed sensi-
tivities Li need to be determined as well. Because of Eqs. 22.35 and 22.34,
both the Cholesky decomposition of the covariance matrix as well as the
eigenvectors of the gamma matrix must be computed. The eigenvectors are
determined by solving Eq. 22.21.
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