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Interest Rates and Term Structure Models

So far, with only few exceptions (e.g. Sect. 8.3.3), we have considered interest
rates as being deterministic or even constant. This directly contradicts to the
simple existence of interest rate options. If interest rates were deterministic
and hence predictable with certainty for all future times, we would know for
certain if a given interest rate option is either worthless (because it is out-of-the-
money) or otherwise would be a simple forward contract (if it is in-the-money)
and could be priced by simple cash flow discounting.
Nevertheless, interest ratesmay assumed to be deterministic, if the derivative

underlying are shares (or some other asset class like FX or commodities) and
if the term to expiry is rather short (e.g. less than 3 years), since in such a
case, the value of an equity derivative is much more sensitive to changes of
the underlying share price than to changes of the interest rate level. Also, the
volatility of share prices is often much higher than interest rate volatilities.1
Empirical studies (e.g. see [109, 145]) also demonstrate that different effects of
“false” assumptions (in particular, the assumed equality of forward and futures
prices) tend to cancel out each other.
Methods for interest rate modeling and valuation of interest rate options

have been for more than 20 years and area of active research in financial
mathematics. Term structure models are used to model the stochastic changes
observed in interest rate curves, similar to the way stock prices and exchange
rates are modeled with an underlying stochastic process S(t).2

1As we will see later, e.g. in Sect. 30.1 ff, there is more beyond Black-Scholes.
2The Black-76 model for simple interest rate options can be derived as a special case of the more complex
Heath-Jarrow-Morton term structure model.
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In contrast to a stock price or exchange rate S(t), an interest rate R(t, T )

depends on two time variables, namely on the time t at which the interest rate
is being considered and on thematurity T of the term over which the interest is
to be paid. Usually, interest is paid at a higher rate for longer terms τ := T − t

(i.e., later maturities) than for shorter ones. For a fixed time t (today), the set
of all interest rates for the various maturity dates T form a curve called the
term structure. Theoretically, each point in this curve is a stochastic variable
associated with a single maturity. The term structure is thus theoretically a
continuum of infinitely many stochastic variables. From a practical point of
view, these processes are naturally very strongly correlated; the interest rate
over a term of 3 years and 1 day is (almost) the same as that over a term of 3
years and 0 days and so on. In practice, market participants therefore consider
only finitely many terms whose lengths lie well distinct from one another (for
example, terms τ = T − t of 1 day, 1 month, 3 months, 6 months, 9 months,
1 year, 2 years, 3 years, 5 years, 10 years and so on), depending on which liquid
market quotes have been used to build up the curve.Motivated by the results of
principle component analysis (see for instance Sect. 34.2) which show that well
over 90% of the dynamics of the yield curve can be explained by just one or two
stochastic factors, most term structure models go a step further and reduce the
number of factors driving the stochastic evolution of the entire term structure
to just a few stochastic variables (e.g. 1 or 2 for simple term structure models).
These models are referred to as 1-factor or 2-factor, for example, depending on
the number of stochastic variables.

14.1 Instantaneous Spot Rates and Instantaneous
Forward Rates

Many simple 1-factor models are based on a stochastic process of the form
specified in Eq. 2.19, where the stochastic factor is usually assumed to be a very
short term rate, called instantaneous interest rate. These rates take the form of
either an instantaneous spot rate (also called the instantaneous short rate) or an
instantaneous forward rate.3 The terms τ = T − t belonging to these rates
are infinitesimally short, i.e., we consider the limit τ → 0, or equivalently
T → t .

3This approach is to be differentiated from market rate models (which are also used to be called Brace-
Gatarek-Musiela models or (BGM models for short). For such models, forward interest rates over longer
periods (e.g. the 3-months LIBOR rate), but distinct start dates, are modeled (see Sect. 14.13 and [19]).
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In the following discussion, we adopt the convention of continuous com-
pounding usually observed in the literature. This allows the instantaneous rates
to be defined quite easily. The instantaneous spot rate r(t) is defined by

e−r(t)dt := lim
dt→0

B(t, t + dt)

r(t) = − lim
dt→0

ln B(t, t + dt)

dt
. (14.1)

The instantaneous forward rate f (t, T ) is defined by

e−f (t,T )dT := lim
dT →0

B(T , T + dT |t ) = lim
dT →0

B(t, T + dT )

B(t, T )

f (t, T ) = − lim
dT →0

1

dT
ln

B(t, T + dT )

B(t, T )
= − lim

dT →0

ln B(t, T + dT ) − ln B(t, T )

dT
,

where Eq. 2.7 has been used. Thus

f (t, T ) = −∂ ln B(t, T )

∂T
. (14.2)

Integrating this equation over dT and making use of the fact that B(t, t) = 1
yields

∫ T

t

f (t, s)ds = −
∫ T

t

∂ ln B(t, s)

∂s
ds = − ln B(t, T )+ln B(t, t)︸ ︷︷ ︸

1

= − ln B(t, T ) ,

and therefore

B(t, T ) = exp

[
−
∫ T

t

f (t, s)ds

]
. (14.3)

This, together with Eq. 2.7, implies that the forward rate over a finite time
interval of length T ′ −T is the average of the instantaneous forward rates over
this interval:

R(T , T ′∣∣ t ) = − 1

T ′ − T
ln

B(t, T ′)
B(t, T )

= 1

T ′ − T

∫ T ′

T

f (t, s)ds .

(14.4)
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The definitions of instantaneous spot and forward rate imply that both are
interest rates with continuous compounding (see also Table 2.5).

The relation between the forward rates and zero bond yields (spot rates over
finite time intervals of length T − t ) can be established as well by inserting the
explicit form of the discount factor for continuous compounding into Eq. 14.2
and taking the derivative with respect to T :

f (t, T ) = −∂ (ln exp [−R(t, T )(T − t)])

∂T
= ∂ [R(t, T )(T − t)]

∂T
,

And after application of the product rule

f (t, T ) = R(t, T ) + (T − t )
∂R(t,T )

∂T
. (14.5)

The forward rates are greater than the spot rates for ∂R(t, T )/∂T > 0, i.e., for
term structures (interest rate term structure = spot rates R(t, T ) as a function
of T ) whose values increase with T .

Finally, we make note of the relationship between the instantaneous forward
rate and the instantaneous spot rate. This is simply

r(t) = lim
T →t

f (t, T ) . (14.6)

In anticipation of the following sections we stress here that all of the above
equations hold in any arbitrary probability measure, i.e., irrespective of any
choice of numeraire, since they have been derived directly from the definitions
of the instantaneous interest rates.

14.2 Important Numeraire Instruments

As was shown in Chap. 13 in great detail, the value V of an arbitrary, tradable
interest rate instrument4 normalized with an arbitrary, tradable financial
instrument Y is a process Z = V/Y which, according to Eq. 13.15, is a
martingale

Z(t) = EY
t [Z(u)] ∀u ≥ t .

4In spot rate models, every interest rate instrument can be interpreted as a derivative V on the underlying
S(t) = r(t) or S(t) = ln r(t).
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The martingale measure at time t with respect to which the expectation EY
t is

calculated depends on the choice of the numeraire instrument Y . In principle,
any arbitrary tradable instrument can be used as the numeraire. An appropriate
choice of numeraire, however, is a deciding factor in enabling an elegant
solution of specific problems to be found. Two numeraire instruments are
particularly popular (not only for term structure models but for other models
as well). These will be introduced in the following sections.

14.2.1 The Risk-Neutral Measure

We define β(t0, t) as the value of a bank account or money market account.
This is the value one monetary unit (for example, 1 euro) has at time t , if it
was invested at a time t0 < t and was subsequently always compounded at
the current spot rate, with the interest earnings being immediately reinvested
in the same account at the current spot rate. Intuitively, we could imagine
reinvesting ever decreasing interest payments earned over ever shorter interest
periods, the number of interest periods finally approaching infinity. The value
of such an account can be written in terms of the instantaneous spot rate as

β(t0, t) = exp

[∫ t

t0

r(s)ds

]
. (14.7)

In the risk-neutral measure this bank account, Eq. 14.7, is used as the
numeraire.

Y (t) = β(t0, t) = exp

[∫ t

t0

r(s)ds

]
for arbitrary t0 ≤ t .

This numeraire has the advantage of satisfying the important property speci-
fied in Eq. 13.34. Since

dY (t)

dt
= r(t)Y (t) .

we have

dY (t) = Y (t + dt) − Y (t) =
(
er(t)dt − 1

)
Y (t) ≈ r(t)Y (t)dt
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Both r(t) and Y(t) are known at time t (even if they are stochastic variables
and as such not yet known for the future time t + dt ). This implies that the
process m(t) = r(t)Y (t) is previsible as required in Eq. 13.34.

With this numeraire the martingale property Eq. 13.15 becomes

V (t)

β(t0, t)
= Eβ

t

[
V (u)

β(t0, u)

]
∀u ≥ t ≥ t0 .

Note that the initial time point t0 in the money account can be chosen at will.
For every t0 we obtain another, different risk-neutral measure. Setting t0 = t

and using β(t, t) = 1 reduces the above expression to

V (t) = Eβ
t

[
V (u)

β(t, u)

]
= Eβ

t

[
e− ∫ u

t
r(s)dsV (u)

]
∀u ≥ t , (14.8)

which directly yields the price of the financial instrument. In words:

With respect to the risk-neutral measure, today’s value of a financial instrument
is equal to the expectation of the discounted future value.

This is not the same as the discounted future expectation. In this measure,
the discounting is performed first and then the expectation is calculated.
Discounting means division by the numeraire.

We take as an example, the value at time t of a zero-coupon bond with
maturity u, i.e., we set V (t) = B(t, u) and consequently V (u) = B(u, u) =
1, in Eq. 14.8 to obtain

B(t, u) = Eβ
t

[
1

β(t, u)

]
= Eβ

t

[
e− ∫ u

t
r(s)ds

]
. (14.9)

The bond price is the expectation with respect to the risk neutral measure
of the reciprocal of the bank account. Comparing this with Eq. 14.3, which
always holds, yields the relationship between the instantaneous forward rates
and the future instantaneous spot rates with respect to the risk-neutralmeasure

e− ∫ u
t f (t,s)ds = Eβ

t

[
e− ∫ u

t r(s)ds
]

.
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The future price of an instrument V is V (u) for u > t and is unknown at
time t . It is well known that this must be distinguished from the forward price
V (t, u), which is known at time t since it follows from arbitrage arguments
(see Eq. 6.1). If the instrument under consideration pays no dividends between
t and u, the forward price is

V (t, u) = V (t)

B(t, u)
with u > t . (14.10)

The forward price, Eq. 14.10, of an instrument with respect to the risk-neutral
measure is given by

V (t)

B(t, u)
= 1

B(t, u)
Eβ

t

[
V (u)

β(t, u)

]
= Eβ

t

[
e− ∫ u

t
(r(s)−f (t,s))dsV (u)

]
∀u ≥ t ,

(14.11)

where Eq. 14.3 was used, exploiting the fact the instantaneous forward rates
are by definition known at time t and thus can be included in or taken out of
the expectation operator as desired.

14.2.2 The Forward-Neutral Measure

For the forward-neutral measure or T -emphterminal measure (to emphasize
the fixed end date T ), a zero bond is used as the numeraire (see Eq. 14.3)

Y (t) = B(t, T ) = exp

[
−
∫ T

t

f (t, s)ds

]
for arbitrary T > t .

This numeraire has the property prescribed in Eq. 13.34 as well:

dY (t)

dt
= f (t, t)Y (t) = r(t)Y (t) .

Both r(t) and Y(t) are known values at time t , implying the previsibility of
m(t) = r(t)Y (t) as required in Eq. 13.34.
With this choice, the martingale property equation 13.15 becomes

V (t)

B(t, T )
= ET

t

[
V (u)

B(u, T )

]
∀T ≥ u ≥ t .



294 H.-P. Deutsch and M. W. Beinker

The index T of E represents here always the maturity of the zero bond
numeraire. Observe that T can be selected arbitrarily. For each choice of T ,
we obtain a different normalizing factor and thus another forward-neutral
measure. Setting T = u and using the fact that B(u, u) = 1 we obtain the
following price for a financial instrument

V (t) = B(t, u)Eu
t [V (u)] = e− ∫ u

t
f (t,s)dsEu

t [V (u)] ∀u ≥ t . (14.12)

Today’s value of a financial instrument is equal to the discounted expectation of
its future value taken with respect to the forward neutral measure.

The expectation is first taken with respect to this measure and then discounted.
Discounting means multiplication by the numeraire.

The forward price, Eq. 14.10, for an interest rate instrument is, with respect
to this measure, exactly equal to the expected future price, hence the name
“forward-neutral”

V (t)

B(t, u)
= Eu

t [V (u)] ∀u ≥ t . (14.13)

14.3 The Special Case of Deterministic Interest
Rates

The reader may be somewhat confused, since in earlier chapters (see in
particular Eq. 9.20), prices of financial instruments were always calculated
by discounting the future expectation using B(t, T ), which, from the above
discussion, would indicate that the forward-neutral measure was used in the
calculations. The measure was, however, always referred to as the risk-neutral
measure. In those chapters however, interest rates were always assumed to be
completely deterministic (or in many cases even constant). We will now show
that for deterministic interest rates, the forward-neutral and the risk-neutral
measures are identical.

Consider a portfolio consisting of a zero bond B(t, T ) and a loan made
at time t to finance the purchase of the zero bond. The interest rate on
this loan is floating and is always equal to the current spot rate for each
interest period δt . After one such period δt, the loan debt will have grown
to B(t, T ) exp(r(t)δt). The portfolio thus constructed has no value at time t
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and the evolution of the entire portfolio over one time step δt is known exactly
at time t , and therefore involves no risk. Because arbitrage is not possible and
no risk is taken, the portfolio must have no value for all later times as well.
Thus, at time t + δt the value of the zero bond must be equal to the value of
the loan

B(t + δt, T ) = B(t, T ) exp(r(t)δt) .

So far, everything is as it was as for stochastic interest rates. On the right-hand
side of the above equation there appear only terms which are known at time t .
The difference comes in the next time step: for deterministic interest rates, the
spot rates at all later times u > t are known at time t as well. After two interest
periods, the credit debt will have grown to B(t, T ) exp(r(t)δt)exp(r(t +
δt)δt) with a known interest rate r(t + δt). Again, no risk is taken since the
rate r(t + δt) is already known at time t . Therefore, because the market is
arbitrage free, the portfolio must still be worthless at time t +2δt and the loan
must therefore still equal the value of the zero bond. Proceeding analogously
over n time steps, we obtain the value of the zero bond as

B(t + nδt, T ) = B(t, T ) exp

[
n−1∑
i=0

(r(t + iδt)δt)

]
.

Taking the limit as δt → 0, the value of the bond at time u := t + nδt is

B(u, T ) = B(t, T ) exp

[∫ u

t

r(s)ds

]
with u ≥ t .

This holds for every u ≥ t, in particular for u = T . Thus, observing that
B(T , T ) = 1, we obtain the price of a zero bond for deterministic interest
rates:

B(t, T ) = exp

[
−
∫ T

t

r(s)ds

]
= 1

β(t, T )
, (14.14)

where in the last step the definition of a bank account, Eq. 14.7, was used.
Hence, for deterministic interest rates, the numeraireB(t, T ) associated to the
forward-neutral measure is equal to the reciprocal 1/β(t, T ) of the numeraire
of the risk-neutral measure. Substituting this into Eq. 14.8, we obtain

V (t) = Eβ
t

[
V (u)

β(t, u)

]
= Eβ

t [B(t, u)V (u)] = B(t, u)Eβ
t [V (u)] ,



296 H.-P. Deutsch and M. W. Beinker

where in the last step we havemade use of the fact thatB(t, u) is known at time
t , is therefore not stochastic and can be factored out of the expectation. The
price of a financial instrument must, however, be independent of the measure
used in its computation. In consequence, comparison of this equation with
Eq. 14.12 immediately yields the equation

B(t, u)Eu
t [V (u)] = V (t) = B(t, u)Eβ

t [V (u)] ,

and thus Eu
t [V (u)] =Eβ

t [V (u)]. This implies that both measures are identical
if interest rates are deterministic.

The fundamental difference between the general case and deterministic
interest rates is that the price of a zero bond in Eq. 14.14 is given by the
future spot rates. Of course, the general equation 14.3 stating that the price of
a zero bond is given by the current forward rates continues to hold. We might
suspect that this is closely related to the fact that the future instantaneous spot
rates must equal the current instantaneous forward rates if interest rates are
deterministic. This is in fact the case since the derivative of Eq. 14.14 with
respect to T gives

r(T ) = − ∂

∂T
ln B(t, T ) .

Comparing this with Eq. 14.2, which holds in general, yields

f (t, T ) = r(T ) ∀t, T with t ≤ T .

Thus, if interest rates are deterministic, the instantaneous forward rates are
indeed equal to the (known) future instantaneous spot rates. Since the right-
hand side of this equation is not dependent on t , this must be true for the left-
hand side as well. Hence, if interest rates are deterministic, the instantaneous
forward rates are independent of the present time t .

14.4 Tradable and Non-tradable Variables

As was emphasized at the end of the Sect. 13.2, both the numeraire Y and the
financial instrument V must be tradable instruments in order for the mar-
tingale property Eq. 13.1 to hold. Otherwise, potential arbitrage opportunities
cannot be exploited by trading and in this way fail to violate the assumption
of an arbitrage-free market. This realization, which may seem trivial from our
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modern perspective, was in the past by no means trivial. In fact, there exist
pricingmethods which assume that non-tradable variables have the martingale
property. The mistake made in doing so is then (approximately) corrected after
the fact by making a so-called convexity adjustment (see Sect. 14.5).
One example of a non-tradable variable is the yield of a tradable instrument

whose price is a non-linear function of its yield. Take, for example, a zero
bond B with lifetime τ . The yield r of the zero bond depends non-linearly
on its price (except if the linear compounding convention has been adopted;
see Table 2.5). For example, for simple compounding the price of the zero
bond is B = (1 + rτ)−1 . The zero bond is obviously a tradable instrument.
Therefore its future expectation taken with respect to the forward-neutral
measure as in Eq. 14.13 must be equal to its forward price.

B(T , T + τ | t ) = ET
t [B(T , T + τ)]

= ET
t

[
1

1 + r(T , T + τ)τ

]
≥ 1

1 + ET
t [r(T , T + τ)] τ

.

The lower-equal sign in the above expression follows from Jensen’s inequality.5
In general, the expectation of the price is not equal to the price calculated
with the expectation of the yield because of the non-linearity in the relation
between the price and the yield. How big the difference is depends on the
applied interest rate term structure model.
On the other hand, the forward rate for the time period between T and

T + τ is by definition equal to the yield of a forward zero bond over this
period; for linear compounding explicitly:

1

1 + rf (T , T + τ | t )τ = B(t, T + τ)

B(t, T )
≡ B(T , T + τ | t ) . (14.15)

Comparing this with the above expression for the forward price of the bond
gives

1

1 + rf (T , T + τ | t )τ ≥ 1

1 + ET
t [r(T , T + τ)] τ

	⇒ rf (T , T + τ | t ) ≤ ET
t [r(T , T + τ)] .

5For convex function f and stochastic variable X, Jensen’s inequality states that f (E[X]) ≤ E[f (X)].
The above equation follows from the convexity (all points f (x) with a < x < b lie below a straight line
through points f (a) and f (b)) of function f (x) = 1/(1 + ax).
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Therefore, the forward rate can not simply (i.e. model independently) be
equalized with the future expectation of the spot rate taken with respect to
the forward-neutral measure. Because of Eq. 14.12, zero bond yields are no
martingales with respect to the forward-neutral measure. Since all tradable
instruments must be martingales with respect to the forward-neutral measure,
zero bond yields can not be tradable.

What about products depending linearly on the forward rate? With
Eq. 14.15 we have

rf (T , T + τ |t ) = 1

τ

(
B(t, T )

B(t, T + τ)
− 1

)
. (14.16)

On the other hand, we could express the zero bond B(t, T ) in terms of the
expectation in the (T + τ)-forward measure

B(t, T )

B(t, T + τ)
= ET +τ

t

[
B(T , T )

B(T , T + τ)

]
. (14.17)

Comparison of Eq. 14.16 with Eq. 14.17 yields directly

rf (T , T + τ |t ) = ET +τ
t

[
rf (T , T + τ |t )] = ET +τ

t [r(T , T + τ)] .

(14.18)

That’s the fundamental reason why, for example, in forward rate agreements
or caplets and floorlets (which, of course, are tradable), the difference between
the future LIBOR and the strike is not paid out at the LIBOR fixing at the
beginning of the relevant interest period but at the end of that period (see
Sects. 15.2 and 18.6.3,6 respectively). This has the effect that we are not really
dealing with a forward contract (or an option) on a future interest rate, but
rather with a forward contract (or an option) on future zero bonds, i.e., on
tradable instruments. The same holds for swaps, caps and floors, which are
nothing other than a series of forward rate agreements, caplets and floorlets,
respectively, strung together.

6In practice, a FRA pays out at maturity (i.e. at the beginning of the interest rate period) the present value
of a virtual future payment at the end of the period. This reduces the credit default risk. If, as we did here,
credit default risk is neglected, or if the trade is sufficiently collateralized, this does not have a significant
impact.



14 Interest Rates and Term Structure Models 299

14.5 Convexity Adjustments

According to Eq. 14.12, today’s priceV (t) of a financial instrument normalized
with respect to the forward-neutral numeraire (or if interest rates are consid-
ered deterministic) is equal to its discounted future expectation. If the future
time for which the expectation is calculated is chosen to be the maturity date T

of the instrument, then the price of the instrument is equal to the discounted
future expectation of its payoff profile V (T ). For instruments whose payoff
profiles are linear functions of the underlying S, i.e., V (S, T ) = a + bS, the
expectation of the payoff profile is equal to the payoff profile of the expectation
of the underlying:

E [V (S, T )] = E [a + bS] =
∫ ∞

−∞
[a + bS] p(S)dS = a

∫ ∞

−∞
p(S)dS + b

∫ ∞

−∞
S p(S)dS

= a + bET
t [S] , (14.19)

where p denotes the probability density of the pertinent martingale measure.
Although the prices of most instruments (for example, the zero bond) are

non-linear functions of their underlyings, there do exist transactions with
linear payoff profiles for which Eq. 14.19 holds, for example forward contracts.
The payoff profile of a forward contract with maturity T and delivery price K

is known to be S(T ) − K . The expectation of this payoff profile is simply the
expectation of the underlying less the delivery price:

E [V (S, T )] = E [S(T ) − K] = E [S(T )] − K .

If the underlying S of the forward contract is itself a tradable instrument
(for example, a stock), we can now go a step further. With respect to the
forward-neutral normalization (or in the case of deterministic interest rates),
the future expectation of any tradable instrument is equal to its current forward
price in accordance with Eq. 14.13, i.e., ET

t [S(T )] = S(t, T ). Furthermore,
Eq. 14.12 states that with respect to this measure, today’s price is equal to
the discounted future expectation. So in summary (and in agreement with
Eq. 6.5):

V (S, t) = B(t, T )ET
t [V (S, T )]

= B(t, T )
(
ET

t [S(T )] − K
)

= B(t, T )(S(t, T ) − K) .
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In the first of the above equations, we used Eq. 14.12. In the second line we
made use of the fact that the payoff profile is a linear function of the underlying
and hence, that Eq. 14.19 holds, while in the third equation, we finally used
of the namesake property of the forward-neutral measure, Eq. 14.13.

The mistake made in some traditional pricing methods corresponds to
precisely this last step, i.e., simply replacing the future expectation of the
underlying as in Eq. 14.13 with the forward price of the underlying even if
the underlying is not a tradable instrument (and as such, is not a martingale
with respect to the forward-neutral measure and does not satisfy Eq. 14.13).
This mistake is then corrected (approximately) after the fact by a convexity
adjustment.

The convexity adjustment is defined as the difference between the future
expectation of the underlying (with respect to the forward-neutral measure)
and the forward price of the underlying

Convexity Adjustment ≡ ET
t [S(T )] − S(t, T ) . (14.20)

For interest rate underlyings, it is often the case that convexity adjustment
need to be taken into account. As shown in Sect. 14.4, zero bond yields are
no tradable instruments, because the relation between those yields and related
prices of the (tradable) instruments are non-linear, according to Table 2.5:

B(t, t + τ) =
⎧⎨
⎩

exp (−rτ) continuous
(1 + r)−τ discrete
(1 + rτ)−1 simple .

(14.21)

We now want to determine an approximation for the convexity adjustment of
the yield of such a zero bond, i.e., we want to determine

Convexity Adjustment = ET
t [r(T , T + τ)] − rf (T , T + τ | t) .

Here we have written out explicitly the time dependence of the zero bond
yields: r(T , T + τ) is the (unknown future) spot rate at time T for a period of
length τ starting at time T . The forward rate for that same period, as known at
time t , is denoted by rf (T , T + τ | t ). To find the expectation of the unknown
future spot rate we expand the (also unknown) future bond price formally
written as function of r as B(T , T + τ) = B(r, T , T + τ) as a Taylor series



14 Interest Rates and Term Structure Models 301

up to second order around the (known) forward rate rf = r(T , T + τ | t ):

B(r, T , T + τ ) =
∞∑

n=0

1

n!
[
r(T , T + τ ) − rf (T , T + τ | t )]n ∂nB(r, T , T + τ )

∂rn

∣∣∣∣
r=rf

≈ Brf + [r − rf
]

B ′∣∣
r=rf

+
[
r − rf

]2
2

B ′′∣∣
r=rf

,

where in the last line we have dropped all time arguments for ease of notation.
We now calculate the forward-neutral expectation of this bond price:

ET
t [B]︸ ︷︷ ︸
Br

≈ Brf
+ B ′∣∣

r=rf
ET

t

[
r − rf

]+ 1

2
B ′′∣∣

r=rf
ET

t

[
(r − rf )2

]
︸ ︷︷ ︸

≈var[r]

.

(14.22)

Here, we used the fact that B and its derivatives are evaluated at rf which is
known at time t . Therefore, B and its derivative can be factored out of the
expectation.
On the left-hand side appears the expectation of the bond price with respect

to the forward-neutral measure. This is, since bonds are tradable, exactly the
forward bond price and, by the definition of the forward rate rf , is identical
to B(rf , T , T + τ).

The expectation ET
t

[
(r − rf )2

]
is approximately equal to the variance of

r(T , T + τ) (it would be exactly this variance if rf = ET
t [r]). To express this

variance in terms of values known at time t , the variance is approximated by
the variance of the forward rate, i.e.:

ET
t

[
(r − rf )2] ≈ Var [r] ≈ Var

[
rf

] = r2
f σ 2

f (T − t ) . (14.23)

Here the volatility σf of the forward rate rf , called the forward volatility,
appears. This is (at least in principle) known at time t .
Substituting all of the above into Eq. 14.22 yields

0 ≈ B ′∣∣
r=rf

(
ET

t [r] − rf

)
+ 1

2
B ′′∣∣

r=rf
r2
f σ 2

f (T − t) .

This can now be solved for the desired expectation of the future spot rate:

ET
t [r] ≈ rf −1

2
r2
f σ 2

f (T − t )
B ′′∣∣

r=rf

B ′|r=rf︸ ︷︷ ︸
convexity adjustment

. (14.24)
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Within these approximations, i.e., by expanding the bond price up to second
order (see Eq. 14.22) and with the approximations in Eq. 14.23, the future
expectation of the interest rate can thus be approximated by the forward rate
adjusted by the amount:

ET
t [r(T , T + τ)] − rf (T , T + τ | t )

≈ −1

2
rf (T , T + τ | t )2σ 2

f (T − t )
B ′′(r, T , T + τ)

∣∣
r=rf

B ′(r, T , T + τ)|r=rf

(14.25)

=

⎧⎪⎨
⎪⎩

1
2rf (T , T + τ | t )2σ 2

f (T − t )τ continuous
1
2rf (T , T + τ | t )2σ 2

f (T − t ) τ(τ+1)

1+rf
discrete

rf (T , T + τ | t )2σ 2
f (T − t ) τ

1+τrf
simple.

Here, the convexity adjustments for all compounding conventions listed in
Eq. 14.21 have been explicitly calculated.

14.5.1 In-Arrears Swaps

As an example, we consider a forward contract on an interest rate index (zero
bond yield). As was mentioned at the end of Sect. 14.4, no convexity correction
is required for a standard forward rate agreement, if the payment of the interest
rate (difference), which is fixed at the start of the period, is at the end of the
period (resp. if the present value of the virtual cash flow at the end of the
period is paid at the start of the period). Effectively, such contracts are forward
contracts on (tradable) zero bonds. The same holds for plain vanilla swaps
since such a swap can be interpreted as a portfolio of forward rate agreements.

But there are swaps for which the difference between the future interest
rate index, e.g. LIBOR, and the fixed side is paid at the same time when the
LIBOR rate is fixed. Or, to put it the other way round: the interest payable
is determined only at the time when payment is to be made, i.e., at the end
of the corresponding interest period. Such instruments are called In-Arrears
Swaps. Here indeed the underlying is directly the LIBOR rate which is not a
tradable instrument. If we nevertheless wish to price such an instrument as if
we could replace the future expectation of the underlying (with respect to the
forward-neutral measure) with the forward rate, the resulting error must be
corrected, at least approximately, by the convexity adjustment.
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For the sake of simplicity, we consider only one period of an In-Arrears
Swap, an In-Arrears Forward Rate Agreement (FRA)7 so to speak. This has
a principal N , a fixed interest rate K and extends over a period from T to
T + τ . A potential compensation payment is calculated by means of simple
compounding and flows at the beginning of this period, i.e., directly at time T

when the LIBOR rate r(T , T + τ) is fixed. Such an FRA has a payoff profile
given by

V (r(T , T + τ), T ) = Nτ [r(T , T + τ) − K] . (14.26)

This is a linear function of the underlying r. The expectation of the payoff
profile is thus simply

E [V (r(T , T + τ), T )] = NτE [r(T , T + τ)] − NτK , (14.27)

and its value today is this expectation, takenwith respect to the forward-neutral
measure, discounted back to today

V (r(T , T + τ), t) = B(r, t, T )Nτ
(
ET

t [r(T , T + τ)] − K
)

.

Up to now, all the equations are exact. The calculation of the future expectation
is now performed either using a term structure model or an approximation by
means of the convexity adjustments given in Eq. 14.24:

V (r(T , T + τ ), t)

= B(r, t, T )Nτ
(
ET

t [r(T , T + τ )] − K
)

≈ B(r, t, T )Nτ

(
rf (T , T + τ | t)

−1

2
r2
f (T , T + τ | t)σ 2

f (T − t)
B ′′(r, T , T + τ )

∣∣
r=rf

B ′(r, T , T + τ )|r=rf

− K

)

= B(r, t, T )Nτ

(
rf (T , T + τ | t) + r2

f (T , T + τ | t)σ 2
f (T − t)

τ

1 + τrf
− K

)
.

(14.28)

7An In-Arrears Swap is simply a portfolio consisting of such FRAs.
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The convexity adjustment for simple compounding has been used in the last
step, since the specified instrument prescribes this compounding convention.
Thus for rf , we must use the forward rate with respect to simple compounding
as well.

Again, we emphasize that above considerations hold only for those instru-
ments whose payoff profiles are linear functions of the underlying. Equa-
tion 14.19 holds only in this case and only than does the expectation of the
underlying come into play. For instruments with non-linear payoff profiles, on
the other hand, the expectation of the payoff profilemust be calculated directly.
For example, for a plain vanilla call the expectation of the payoff profile is, in
contrast to Eq. 14.19

E [max {S(T ) − K, 0}] =
∫ ∞

−∞
max {S − K, 0}p(S)dS

=
∫ ∞

K

(S − K)p(S)dS �= max {E [S(T )] − K, 0} .

14.5.2 Money Market Futures

The above example of a In-Arrears FRA may appear a bit academic to the
reader. In reality though, money market futures are among the most actively
traded interest derivatives and are nothing other than In-Arrears FRAs traded
on an exchange, most commonly based on the 3-month LIBOR or the
EURIBOR.

A money market future with a nominal N , a fixed rate K over a period
from T to T + τ yields (theoretically) at maturity T a compensation payment
calculated using simple compounding as in Eq. 14.26, thus

V (T ) = Nτ [r(T , T + τ) − K] .

Since this instrument has a future-styled payment mode, the changes in the
position’s value do not remain unrealized until maturity T , but are immediately
realized on a margin account. As explained in Sect. 6.1.4, this has the effect
that today’s value of a futures position is equal to the future expectation of the
payoff profile without discounting. This expectation of the future payoff profile
is given by Eq. 14.27. The value of a money market future at time t is then, in
contrast to Eq. 14.28, simply:

V (t) = Nτ
(
ET

t [r(T , T + τ)] − K
)

. (14.29)
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This is obviously equal to zero whenK =E[r(T , T + τ)]. The fixed rateK of
a money market future is in fact always chosen so that the value of the contract
is zero at the time when the contract is entered into. The fixed rate K of a
money market futures contracted at time t thus gives directly the information
on the opinion of the market on the value of E[r(T , T + τ)], in other words,
on the future expectation of the interest rate. Since the interest rate is not a
tradable instrument, this is not equal to the forward rate.
Money market futures are often used in constructing spot rate curves for

maturities ranging from approximately three months to two years (we refer
the reader to Part VI). To construct spot rate curves from such contracts, the
forward rates associated with these transactions are needed, since we can use
these to calculate the spot rates quite easily by utilizing Eq. 2.6, for example. To
determine the forward rate rf (T , T + τ | t ) from the market’s opinion on the
future LIBOR expectation obtained from quotes on money market futures, the
convexity adjustment must be subtracted from the expectation as in Eq. 14.20
to obtain

rf (T , T + τ | t) = ET
t [r(T , T + τ )] − Convexity Adjustment

≈ ET
t [r(T , T + τ )]

+ 1

2
r2
f (T , T + τ | t)σ 2

f (T − t)
B ′′(r, T , T + τ )

∣∣
r=rf

B ′(r, T , T + τ )|r=rf

= ET
t [r(T , T + τ )] − r2

f (T , T + τ | t)σ 2
f (T − t)

τ

1 + τ rf
,

(14.30)

where in the last step the approximation in Eq. 14.25 for the convexity
adjustment for the linear compounding convention is used. This is a non-
linear equation which can be solved numerically for the unknown rf .

As has been often emphasized, the convexity adjustments presented above
are only approximations since they derive from an approximation of the
theoretical value of ET

t [r(T , T + τ)], see Eq. 14.24). The future expectation
ET

t [r(T , T + τ)] can, however, be calculated by other means, for exam-
ple, using a term structure model. We then obtain another expression for
ET

t [r(T , T + τ)], and not Eq. 14.24. Since the forward rates are determined
solely from arbitrage considerations (independent of any model) as in Eq. 2.6,
this implies that also another expression for the convexity adjustment is
obtained. The convexity adjustment is thus dependent on the method (the
term structure model) being used. To ensure consistency, the convexity
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adjustment for the money market futures used in constructing the spot rate
curves should be consistent with the term structure model applied for pricing.

Quotation for Money Market Futures

In Europe, money market futures are traded primarily on the LIFFE. Futures
on the 3-month LIBOR in pound sterling (short sterling future), in US dollars
(euro dollar future), in euros (euro EUR future) and in Swiss franc (euro Swiss
future) are available for trade on this exchange. Futures in euros on the 3-
month EURIBOR and on the 1-month EURIBOR are available for trade on
the EUREX.

Money market futures are quoted in a way which takes some getting used
to. Not the delivery priceET

t [r(T , T + τ)] is quoted, i.e., the fixed interest
rate for which the future has no value, but rather

QuoteMoney Market Future = 100% − ET
t [r(T , T + τ)] .

A quote of 96.52%, for example, for a money market future means that in
the opinion of the market, the expectation (in the forward neutral measure)
for the future 3-month rate is E[r(T , T + τ)] = 3.48%. The value at time t

of a futures position contracted at time t = 0 with K =EB
0 [r(T , T + τ)] is

given, according to Eq. 14.29, by

V (t) = Nτ
(
ET

t [r(T , T + τ)] − ET
0 [r(T , T + τ)]

)
= Nτ

(
1 − ET

0 [r(T , T + τ)]
)

︸ ︷︷ ︸
Quote at Time t=0

− Nτ
(
1 − ET

t [r(T , T + τ)]
)

︸ ︷︷ ︸
Quote at Time t

.

A money market future on a 3-month LIBOR (i.e., τ = 1/4) with a nominal
amount of N = 1,000,000 euros which was agreed to at a quoted price of
96.52% and which is currently quoted as 95.95% is thus valued at

V (t) = 1.000.000 EUR × 1
4 (96, 52% − 95, 95%)

= 1.425 EUR .

This amount is deposited in a margin amount. A change in the value of this
position is directly reflected by a corresponding daily adjustment in the balance
of the margin account.
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14.6 Arbitrage-Free Interest Rate Trees Grid (Tree)
Models

Construction of arbitrage-free tree models begins with the assumption that
the martingale property Eq. 13.15 holds, justifying the name arbitrage free.8
An appropriate normalizing factor (numeraire) is selected and the integrals
necessary for the computation of the expectations (with respect to the chosen
measure) are discretized in a tree-structure. This procedure will be demon-
strated explicitly in this section for 1-factor short rate models, i.e., for models
which have the instantaneous short rate, defined in Eq. 14.1, as their one and
only stochastic driver.
We will use the risk-neutral measure and the associated numeraire, which is

the bank account. The price of every interest rate instrument is then given by
Eq. 14.8. We discretize first with respect to time by partitioning the time axis
in intervals of length δt taking this length to be so small that the (stochastic)
short rate can be assumed to be constant over this interval. Then Eq. 14.8 for
u = t + δt becomes

V (t) = Eβ
t

[
e− ∫ t+δt

t
r(s)dsV (t + δt)

]
(14.31)

≈ Eβ
t

[
e−r(t)δtV (t + δt)

]
= e−r(t)δtEβ

t [V (t + δt)]

= B(t, t + δt)Eβ
t [V (t + δt)] .

In calculating the integral, we have made use of the assumption that r is
approximately constant on the interval of integration. Variables which are
known at time t can be factored out of the expectation. According to the last
equation, the risk-neutral price and the forward-neutral price (see Eq. 14.12)
cannot be distinguished from one another over the very short time interval
δt. This is in agreement with Sect. 14.3, since r is taken to be constant (in
particular, deterministic) over this short time interval. The equality, however,
does not hold for longer time spans, since r changes randomly from one time
interval δt to the next. Thus, globally, we are still within the framework of
the risk-neutral measure even though the local equations may look “forward
neutral”.

8More traditional models, known as equilibrium models, will not be investigated here. Our discussion will
be restricted to arbitrage-free pricing methods.
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14.6.1 Backward Induction

What we have accomplished up to this point is to factor the numeraire
(the bank account) out of the expectation. It now remains to calculate the
expectation of the instrument’s price. To this end, we discretize the continuous
range of V after a time step of length δt into finitely many values, i.e., starting
from the value of V at time t , the value should be allowed to take on only
finitely many different values after the next time step. Allowing two different
values generates a binomial tree, three a trinomial tree, etc. Since the financial
instrument V under consideration is an interest rate instrument, the different
values potentially taken on by V at time t+δt result directly from the different
possible interest rate term structures which might exist at t + δt. Since one
of the model assumptions was that the evolution of the entire interest rate
curve is driven by the instantaneous short rate, it follows that the different
values attained by V are ultimately determined by the values this short rate
can take on.

We will work below with binomial trees. We assume that the short rate
increases to the value ru or decreases to the value rd with a probability p and
1−p, respectively.We have more than one possibility at our disposal to ensure
that the martingale property is satisfied (and thus eliminating arbitrage). Either
we fix the values ru and rd and selects the probability p accordingly so that the
market is governed by an arbitrage-free measure (this, for example, is done in
finite difference methods where the grid is given at the onset of the analysis),
or we specify the probability p first and subsequently select appropriate values
for ru and rd . We will take the second path in our discussion here. We set

p = 1/2 (14.32)

and determine the value of the short rate (i.e., the discount factors) on all nodes
of the tree so that the short rate process as described by the tree guarantees
arbitrage freedom at time t . The binomial tree with p = 1/2 allows the
expectation in Eq. 14.31 to be written as

V (t) ≈ B(t, t + δt)Eβ
t [V (t + δt)]

≈ B(t, t + δt) [p V (ru, t + δt) + (1 − p)V (rd, t + δt)]

= B(t, t + δt)

[
1

2
V (ru, t + δt) + 1

2V (rd, t + δt)

]

= B(t, t + δt)
[

1
2Vu + 1

2Vd

]
,

(14.33)
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where in the last step, the short form notation Vu := V (ru, t + δt), etc. has
been introduced.
One time step later, the short rate branches again (and in consequence, the

price of the financial instrument does as well): ru → ru u with probability p,
and ru → ru d with probability 1 − p, and similarly for rd . In addition, note
that at time t + δt , two different discount factors B(t + δt, t + 2δt) appear,
according to whether the short rate rose to ru or fell to rd in the previous
step. To emphasize the difference, the discount factors are indexed with the
associated short rate. Vu, for example, is then expressed as

Vu ≈ Bru(t + δt, t + 2δt) Eβ
t [Vu(t + 2δt)]

≈ Bru(t + 1δt, t + 2δt)

[
1

2
V (ruu, t + 2δt) + 1

2
V (rud, t + 2δt)

]

= Bu

[
1

2
Vuu + 1

2
Vud

]
,

where in the last step the short form notation Vuu := V (ruu, t + 2δt),
analogous to that introduced above, has been used, and also the short form
notation Bu := Bru

(t + 1δt, t + 2δt). Analogously,

Vd ≈ Bd

[
1

2
Vdu + 1

2
Vdd

]
.

Substituting this into Eq. 14.33, the price V (t) given by a binomial tree with
two steps can be calculated as

V (t) ≈ B(t, t + δt)

[
1

2
Bu

[
1

2
Vuu + 1

2
Vud

]
+ 1

2
Bd

[
1

2
Vdu + 1

2
Vdd

]]
.

(14.34)

Proceeding analogously, Vdd ≈ Bdd

[
1
2Vddu + 1

2Vddd

]
, etc., the price at time

t calculated from the prices three time steps later is given by

V (t) ≈ B(t, t + δt) [1

2
Bu [1

2
Buu [1

2
Vuuu + 1

2
Vuud] + 1

2
Bud [1

2
Vudu + 1

2
Vudd ]]

+ 1

2
Bd [1

2
Bdu [1

2
Vduu + 1

2
Vdud ] + 1

2
Bdd [1

2
Vddu + 1

2
Vddd ]]] ,

(14.35)
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and so on. Calculating backwards through the tree (backward induction) is
completely analogous to the treatment of options on stocks and exchange rates
with binomial trees as described in Chap. 9.

In order to ensure that any arbitrage opportunity has been eliminated,
the short rates ru, rd, ruud (and in consequence, the discount factors
Bu, Bd, Buud), etc. must be chosen so that the prices calculated using the
tree actually agree with the market prices of traded instruments. In particular,
zero bonds (and thus today’s term structure) must be exactly reproduced.
However, at each time point t + iδt , there are just as many unknowns as a
(non-recombinant) binomial tree has nodes, namely 2i starting with ruu...u

continuing through all permutations of up and down moves until rdd...d . The
number of unknowns increases exponentially with the number of time steps!
So many conditions cannot conceivably be generated by the market prices
of tradable instruments. In particular, no such functional relation between
the number of interest rate instruments on the market and the number of
time steps (depending only on the numerical implementation) in a tree could
possibly exist. Therefore, based on this principle, another condition must first
be established preventing the exponential growth of the number of unknowns
with respect to increasing i.

Requiring that the tree be recombinant for all financial instruments with
path-independent payoff profiles presents itself as a good candidate for the
above mentioned condition, i.e., that Vud = Vdu, Vuud = Vudu = Vdu u,

etc. This can only happen if the tree for the underlying also recombines. A
recombinant binomial tree is known to have only i + 1 nodes after i steps.
This fact will be accounted for in our notation. The nodes of the tree at
which we arrive having traveled upwards i times and downwards j times is
uniquely determined by the ordered pair (i, j ), irrespective of the order in
which these upward and downward steps were taken. This is because the tree
is recombinant. Therefore we denote the value of the financial instrument at
this node with V (i, j) and the nodes themselves with the ordered pairs (i, j )

as presented in Fig. 14.1. For example, V (1, 2) = Vudd = Vdud = Vddu, etc.
We use the same notation for the short rate and for the zero bonds evaluated

at the nodes:

(i, j ) = Node after i up moves and j down moves

r(i, j ) = Instantaneous short rate at the node (i, j )

V (i, j ) = Value of an interest rate instrument at the node (i, j )

B(i, j) = exp {−r(i, j )δt} . (14.36)
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(0,0)

(0,2)

(0,1)

(1,1)

(1,0)

(2,0)

(0,3)

(1,2)

(2,1)

(3,0)

(0,4)

(1,3)

(2,2)

(3,1)

(4,0)

Fig. 14.1 The binomial tree with the indexing showing the number of up and down
moves required to get to the nodes starting from node (0, 0). For instance it takes two
up moves and one down move to get to the node (2, 1)

In particular, B(t, t + δt) = B(0, 0). In this notation, the prices of (path
independent) financial instruments can be written after one binomial step in
a recombinant tree as

V (t) = V (0, 0)

≈ V (1, 0)
1

2
B(0, 0)

+ V (0, 1)
1

2
B(0, 0) (14.37)

Of course, this equation holds not only for the node (0, 0) but for any arbitrary
node (i, j ) in the tree

V (i, j) ≈ B(i, j)

[
1

2
V (i + 1, j ) + 1

2
V (i, j + 1)

]
(14.38)

This equation applied to V (1, 0) and V (0, 1) yields the price after two
binomial steps

V (t) ≈ V (2, 0)
1

4
B(0, 0) B(1, 0)

+ V (1, 1)
1

4
B(0, 0) [B(1, 0) + B(0, 1)]

+ V (0, 2)
1

4
B(0, 0) B(0, 1) (14.39)
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and after three

V (t) ≈ V (3, 0)
1

8
B(0, 0)B(1, 0)B(2, 0)

+ V (2, 1)
1

8
B(0, 0) [B(1, 0)B(2, 0) + B(1, 1) [B(1, 0) + B(0, 1)]]

+ V (1, 2)
1

8
B(0, 0) [B(0, 1)B(0, 2) + B(1, 1) [B(1, 0) + B(0, 1)]]

+ V (0, 3)
1

8
B(0, 0)B(0, 1)B(0, 2) (14.40)

and so on. The expressions were purposely written in terms of the prices at the
last node in each branch.

14.6.2 Forward Induction and Green’s Functions

Although backward induction was simplified greatly by the requirement
that the tree be recombinant, we are still not yet prepared to calculate an
instrument’s price since the instantaneous discounting factors B(i, j) at the
nodes (i, j ) �= (0, 0) remain unknown. Before we construct a tree for the
instantaneous discount factors (i.e., for the short rate, see Eq. 14.36) via a
procedure, known as forward induction, on the basis of arbitrage considera-
tions, we introduce a class of extremely useful “artificial” instruments. One
such artificial instrument whose value at time t is denoted by G(i, j) pays
by definition one monetary unit if and only if the underlying (the short rate)
attains the tree node (i, j ) at time t + (i + j)δt . This is the node at which
we arrive having traveled upwards i times and downward j times, regardless
of the order in which the upward and downward moves occurred as the tree
is recombinant. G(i, j) then is the value at time t of a single monetary unit
paid out at one single node of the tree, namely at node (i, j ). In this sense,
G is the system’s reaction to a perturbation of magnitude one at a single point
in the system. This is analogous to the Green’s functions in physics. We will
therefore refer to G as a Green’s function. By definition,

G(0, 0) ≡ 1 . (14.41)
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In order to establish further values of the Green’s function, we just have to
set the value V (i, j) in the above Eqs. 14.37, 14.39 and 14.40 equal to one at
exactly one node and zero on all the other nodes. Equation 14.37 then yields

G(1, 0) = 1

2
B(0, 0) = G(0, 1) (14.42)

From Eq. 14.39 we obtain

G(2, 0) = 1

4
B(0, 0) B(1, 0) = 1

2
G(1, 0)B(1, 0)

G(0, 2) = 1

4
B(0, 0) B(0, 1) = 1

2
G(0, 1)B(0, 1)

G(1, 1) = 1

4
B(0, 0) [B(1, 0) + B(0, 1)] = 1

2
G(1, 0)B(1, 0) + 1

2
G(0, 1)B(0, 1)

and finally Eq. 14.40 gives

G(3, 0) = 1

2
G(2, 0)B(2, 0)

G(0, 3) = 1

2
G(0, 2)B(0, 2)

G(2, 1) = 1

2
G(2, 0)B(2.0) + 1

2
G(1, 1)B1, 1)

G(1, 2) = 1

2
G(0, 2)B(0, 2) + 1

2
G(1, 1)B(1, 1) .

The following general recursion relation can be easily verified (this will be
proven for an even more general case later)

G(i, j) = 1

2
G(i, j − 1)B(i, j − 1) + 1

2
G(i − 1, j)B(i − 1, j) for i > 0, j > 0

G(i, 0) = 1

2
G(i − 1, 0)B(i − 1, 0)

G(0, j) = 1

2
G(0, j − 1)B(0, j − 1) (14.43)

The prices of all path-independent interest rate instruments can be represented
as linear combinations of the Green’s function evaluated at diverse nodes on
the tree since each payment profile of the form f (r, T ) can be distributed on
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the nodes (i, j ) as appropriate:

f (r, T ) → fT (i, j) := f (r(i, j), T ) with t + (i + j)δt = T ∀i, j .

The value at time t of each individual payment fT (i, j ) at node (i, j ) is
naturally equal to the Green’s function belonging to this node (which has a
value of exactly one monetary unit) multiplied by the number of monetary
units that are to be paid, i.e., multiplied by fT (i, j ). The total value of the
financial instrument V (t) with this payoff profile is then simply

V (t, T ) =
∑
(i,j)

fT (i, j) G(i, j) with t + (i + j)δt = T ∀i, j ,

where
∑

(i,j) denotes “the sum over the nodes (i, j )”. This can be immediately
generalized to instruments with payoff profiles defined on arbitrary nodes
(which need not all lie in the set of nodes corresponding to a time T )

V (t) =
∑
(i,j)

f (i, j )G(i, j) for arbitrary payoff profiles f (i, j) .

(14.44)

Path independence here is therefore not the restriction that the payoff profile
depend only on a time point T . The payoff profile can depend on (the interest
rate at) all possible nodes at all times, not however, on the path taken to arrive
at these nodes (since this information is not available in the recombinant tree).

As a simple example, we consider the value of a zero bond B(t, T ), an
instrument that pays one monetary unit at time T , regardless of the state of
the underlying

B(t, T ) =
∑
(i,j)

G(i, j) for t + (i + j)δt = T (14.45)

=
n∑

i=0

G(i, n − i) for n = T − t

δt
.

This theoretical price has to exactly match the market price of the zero bond
to prevent arbitrage. If the current term structure is available (for example,
because it has been constructed on the basis of traded benchmark bonds for
some maturities and interpolations in between) this term structure yields the
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market price for all zero bondsB(t, T ). In particular it yields the market prices
for all those zero bonds maturing at times t + iδt corresponding to the time
steps of the binomial tree. Those have to be matched by Eq. 14.45. Hence, we
obtain one single condition for each time step t + iδt. For example, for i = 1

B(t, t + 1δt) =
∑
(i,j)

G(i, j) with i + j = 1

= G(1, 0) + G(0, 1)

= B(0, 0) ,

where in the last step, the Green’s function as in Eq. 14.42 is introduced into
the equation. This simply checks for consistency: the discount factor at the
first node of our tree (the right-hand side) must be equal to the market price
for the zero bond with maturity T = t + δt (left-hand side). It becomes more
interesting at the next maturity date:

B(t, t + 2δt) =
∑
(i,j)

G(i, j) with i + j = 2

= G(2, 0) + G(1, 1) + G(0, 2)

= 1

2
G(1, 0)B(1, 0) + 1

2
G(1, 0)B(1, 0)

+ 1

2
G(0, 1)B(0, 1) + 1

2
G(0, 1)B(0, 1)

= G(1, 0)B(1, 0) + G(0, 1)B(0, 1) .

We have used Eq. 14.43 to calculate backwards from the Green’s function at
the time corresponding to i + j = 2 to the previous time step, i.e., to the
time for which i + j = 1. The Green’s function G(1, 0) at the earlier time
step t + 1δt is already known (see Eq. 14.42). The resulting equation is the
arbitrage condition for the instantaneous discount factorsB(1, 0) andB(0, 1)

at the tree nodes (1, 0) and (0, 1).This procedure can be generalized to n time
steps. In accordance with Eq. 14.45 we write

B(t, t + nδt) =
n∑

i=0

G(i, n − i) .



316 H.-P. Deutsch and M. W. Beinker

At this point we separate the boundary terms from the rest of the sum, since
these obey another recursion in Eq. 14.43. Now applying Eq. 14.43, we see
that

B(t, t + nδt) = G(0, n) +
n−1∑
i=1

G(i, n − i) + G(n, 0)

= 1

2
G(0, n − 1)B(0, n − 1) + 1

2

n−1∑
i=1

G(i, n − i − 1)B(i, n − i − 1)

+ 1

2

n−1∑
i=1

G(i − 1, n − i)B(i − 1, n − i) + 1

2
G(n − 1, 0)B(n − 1, 0) .

The boundary terms combine this expression into a simple sum. To see this,
we use the index k = i − 1 in the second sum

B(t, t + nδt) = 1

2
G(0, n − 1)B(0, n − 1) + 1

2

n−1∑
i=1

G(i, n − i − 1)B(i, n − i − 1)

+ 1

2

n−2∑
k=0

G(k, n − k − 1)B(k, n − k − 1) + 1

2
G(n − 1, 0)B(n − 1, 0) .

Both boundary terms now have exactly the form needed to extend the index
range in both sums to 0 through n − 1. This means that the no arbitrage
requirement can be represented as a simple recursion formula by means of the
Green’s function:

B(t, t + nδt) =
n−1∑
i=0

G(i, n − i − 1)B(i, n − i − 1) . (14.46)

Remember: on the left we have the market price of a zero bond, while on the
right we have the values to be determined for the interest rate tree, i.e., the
instantaneous discount factors at the nodes. The values on the right-hand side
are all in terms of nodes corresponding to the time point

t + [i + (n − i − 1)] δt = t + (n − 1)δt ,

i.e., the time step prior to the maturity t + nδt of the zero bond on the
left. The Green’s function evaluated at this earlier time point has already
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been calculated in the previous iteration step so that Eq. 14.46 represents an
arbitrage condition for the instantaneous discount factors at the nodes at time
point t + (n − 1)δt . Having determined the discount factors, we can use the
recursion for the Green’s function, Eq. 14.43, to determine the values of the
Green’s function at the time point t + nδt. These are subsequently used again
in the arbitrage condition, Eq. 14.46, to calculate the next discount factors
for the time step t + nδt. These are then used to calculate the next Green’s
function values for t + (n + 1)δt utilizing Eq. 14.43 and so on. In this way,
an arbitrage-free interest rate tree is constructed using forward induction from
today into the future. Nevertheless, Eq. 14.46 contains several (to be precise
n) unknown discount factors which cannot be uniquely determined by only
one arbitrage condition (except, of course, for the case n = 1). In other words,
the exact reproduction of the term structure at time t is already attained singly
from the fact the instantaneous discount factors and the Green’s function at
each node satisfy Eqs. 14.46 and 14.43. But this does not fix the numerical
values of all instantaneous discount factors—or short rates r(i, j ). Additional
information (as we will see below, the volatility) extracted from the market as
well as an explicit specification of a stochastic process of the form 2.19 for the
short rate is needed to fix the numerical values of r(i, j ). Before we start on
this point however, we will first introduce a few more concepts which hold in
general, i.e., for every interest rate tree, irrespective of the specification of a
specific stochastic process.

14.7 Market Rates vs. Instantaneous Rates

The valuation of financial instruments using the Green’s function as in
Eq. 14.44 above is only possible for those instruments whose payoff profiles are
functions of the instantaneous short rate.9 This is not usually the case for traded
instruments, however. Typical interest rate underlyings for traded instruments
are 3-month or 6-month LIBOR rates, which belong to longer time periods.
Choosing such a long period as time distant in the tree, the calculation would
no longer be accurate enough formany applications. In contrast to the chapters
on stock or FX options, the stochastic process being simulated (the short rate)
does not describe the evolution of the underlying (the 3-month LIBOR, for
example) of the instrument to be priced! This problem can be overcome in

9Or for financial instruments whose payoff profile is independent of the short rate, such as a zero bond,
for which f (i, j) = 1 for t + (i + j)�t = T and f (i, j) = 0 otherwise.
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some cases, as for floaters and forward rate agreements, since, as will be seen in
Eqs. 15.21 or 15.4, their prices at time t can be interpreted as a combination of
zero bond prices and as such can be priced exactly using Eq. 14.46. However,
the decomposition into zero bonds will not be possible for options such as
caps and floors on the 3-month LIBOR whose general payoff functions are
given by Eq. 18.2 and, adopting the usual market practice of using simple
compounding over the cap period, through Eq. 18.2 (or when interpreted as
bond options by Eq. 18.6). In such cases, before the payoff profile at nodes
(m, n) with t + (m + n)δt = T can be calculated, the value of the underlying
on each of these nodes must first be determined. The question now is: how
do we calculate the underlying of interest (for example, a 3-month rate, a 6-
month rate, a swap rate, etc.) at all nodes corresponding to the exercise date T

from the stochastic process (the tree) of the instantaneous short rate?
As soon as the payoff profile at all nodes is known, the value of all (path

independent) financials instruments at time t , i.e., at the node (0, 0), are
directly given by Eq. 14.44. As with the node (0, 0), the value of all instruments
(in particular, of all zero bonds and thus all interest rates over arbitrary interest
periods) would be known at an arbitrary node (m, n) if the “Green’s functions”
were known for that node.

14.7.1 Arrow-Debreu Prices

Arrow-Debreu prices (ADPs for short) are generalized Green’s functions whose
reference point is a fixed but arbitrary node (m, n) rather than the origin node
(0, 0). The Arrow-Debreu price Gm,n(i, j ) is the value at node (m, n) of an
instrument paying onemonetary unit at node (i, j ). The Arrow-Debreu prices
at the node (m = 0, n = 0) are, of course, simply the values of the Green’s
function introduced above:

G(i, j) = G0,0(i, j) .

It follows immediately from the geometry of the tree that a monetary unit
at node (i, j ) can generate non-zero prices at a node (m, n) only if (i, j ) is
attainablewhen starting from the node (m, n).We know thatm upmoves have
already occurred at node (m, n). These upmoves cannot be undone, even if the
following steps consist only of down moves since the index m merely counts
the number of up moves having been made up to this point. This implies that
for all nodes (i, j ) attainable from the starting node (m, n), the condition
i ≥ m must hold. Likewise, n down moves have already occurred at node
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(m, n) which cannot be reversed. As before, this means that the condition
j ≥ n must hold for all nodes (i, j ) which are attainable from the starting
point (m, n). All other Arrow-Debreu prices must be zero:

Gm,n(i, j ) = 0 ∀m > i

Gm,n(i, j ) = 0 ∀n > j (14.47)

Gi,j (i, j ) = 1 ∀i, j ,

where the last property is included solely for the sake of completeness, being
in itself trivial: one monetary unit at node (i, j ) is, of course, worth exactly
one monetary unit at this node. This corresponds to property Eq. 14.41 of the
Green’s function.
A further fundamental property of Arrow-Debreu prices follows from

Eq. 14.38, which holds for the value of any instrument at any node in the
tree. Setting either V (i + 1, j ) = 1 and V (i, j + 1) = 0 or V (i + 1, j ) = 0
and V (i, j + 1) = 1, yields the instantaneous Arrow-Debreu prices, i.e., the
Arrow-Debreu prices over a time step of length δt

Gi,j (i + 1, j ) = 1

2
B(i, j) = Gi,j (i, j + 1) . (14.48)

The instantaneous Arrow-Debreu prices are thus half the instantaneous dis-
count factors. This accomplishes the first step in the calculation of the
Arrow-Debreu prices. We now merely require a generalization of the recursion
relation given in Eq. 14.43 in order to determine all subsequent Arrow-
Debreu prices. To this end, consider one monetary unit at node (i, j ) at time
t + (i + j)δt . Because of the binomial structure of the tree, non-zero Arrow-
Debreu prices are generated by this monetary unit at two nodes in the previous
time slice, that is at nodes (i, j − 1) and (i − 1, j ). The sum of the ADPs of
both of these prices at a still earlier node (m, n) must then be equal to the
Arrow-Debreu price at node (m, n) of the whole, original monetary unit at
node (i, j ). This is illustrated in Fig. 14.2. This means that the Arrow-Debreu
prices obey the following recursion:

Gm,n(i, j) = Gm,n(i, j − 1)Gi,j−1(i, j) + Gm,n(i − 1, j)Gi−1,j (i, j) .
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C

Fig. 14.2 Amonetary unit (black dot) at node (2, 2) generates ADPs at nodes (2, 1) and
(1, 2) and also at all the earlier ‘striped’ nodes. The monetary unit must have the same
influence (shown as line A) on a striped node, e.g. on node (0, 1), as both ADPs it has
induced at nodes (2, 1) and (1, 2) together (shown as lines B and C)

Substituting the corresponding discount factors for both of the instantaneous
Arrow-Debreu prices as given in Eq. 14.48, the recursion relation becomes

Gm,n(i, j) = Gm,n(i, j − 1)
1

2
B(i, j − 1) + Gm,n(i − 1, j)

1

2
B(i − 1, j)for i ≥ m, j ≥ n .

(14.49)

Together with the fundamental properties in Eq. 14.47, this recursion deter-
mines uniquely all Arrow-Debreu prices. For example, for m = i or n = j

Eq. 14.47 implies that one of the Arrow-Debreu prices on the right-hand side
is equal to zero.10 This allows the recursion to be carried out explicitly for these
cases:

Gi,n(i, j ) = Gi,n(i, j − 1)
1

2
B(i, j − 1) = 1

2j−n

j−n∏
k=1

B(i, j − k)

Gm,j (i, j ) = Gm,j (i − 1, j )
1

2
B(i − 1, j ) = 1

2i−m

i−m∏
k=1

B(i − k, j) .

(14.50)

10For m = i we have Gi,n(i − 1, j) = 0 and for n = j we have Gm,j (i, j − 1) = 0.
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In particular, both of these equations hold at the boundary of the tree. The
first equation with i = 0 (i.e., no up move) represents the lower boundary, the
second with j = 0 (i.e., no down move) the upper boundary of the tree.
With these Arrow-Debreu prices, the value of any arbitrary financial

instrument with a payoff profile given by f (i, j) at any arbitrary node (m, n)

is, analogous to Eq. 14.44, simply

V (m, n) =
∑
(i, j)

Gm,n(i, j ) f (i, j ) . (14.51)

In particular, the valueBτ(m,n) of a zero bond at the node (m, n), whose time
to maturity at this node is given by τ , is likewise given by Eq. 14.51 where i

and j satisfy the following three conditions

i + j = m + n + τ/δt

i ≥ m

j ≥ n .

The first of the three conditions characterizes all nodes corresponding to the
time m+n+ τ/δt, the maturity of the zero bond. The payoff profile f (i, j)

of the zero bond equals one at precisely these nodes and zero elsewhere. This
condition allows j to be expressed in terms of i. The limits in the sum
appearing in Eq. 14.51 can be specified explicitly by the other two conditions
which, as a result of Eq. 14.47must always be satisfied: the lower limit is i ≥ m,

the upper limit follows fromm+n+τ/δt−i = j ≥ nwhich can be rewritten
as i ≤ m + τ/δt. The value of the zero bond at node (m, n) with a time to
maturity of τ is thus given explicitly by

Bτ(m, n) =
m+τ/δt∑

i=m

Gm,n(i, m + n + τ/δt − i) . (14.52)

Thus, at each node of the tree, a complete (future) term structure (i.e., future
interest rates for arbitrary times to maturity) can be constructed from Arrow-
Debreu prices, since the interest rate at node (m, n) for any arbitrary time to
maturity τ is by definition (for continuous compounding) given by

rτ (m, n) = −1

τ
ln Bτ(m, n) . (14.53)
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With simple compounding, which is the common convention for typical
interest rate indexes like 3-months LIBOR, it follows analogously:

rτ (m, n) = 1

τ

(
B−1

τ (m, n) − 1
)

, (14.54)

so that we are now in a position to price any arbitrary derivative on an
underlying whose value can be derived from the term structure.

14.7.2 Pricing Caplets Using Arrow-Debreu Prices

In anticipation of Part III, where caps and floors will be defined, we will
demonstrate explicitly how the price of a caplet on a 3-month rate with
principal N , strike rate K , exercise time (maturity, to be assumed to be equal
to forward rate fixing time) T and payment date T ′ = T + τ (with τ =
3 months) can be expressed solely in terms of Arrow-Debreu prices. Observe
that the stochastic process for the short rate need not be specified in order to
do so. What will be shown here holds for any arbitrary arbitrage-free short rate
model.

Consistent with Eq. 18.2 for the payoff profile of a caplet, we will adopt the
market convention of using simple compounding over a single caplet period
(in this case 3 months), which can be calculated by using Eq. 14.54. The 3-
month rate at which the payoff profile is to be evaluated at each node (m, n)

with t + (m + n)δt = T , or equivalently, n = (T − t )/δt − m is thus:

rτ (m, a − m) = 1

τ

[
Bτ(m, a − m)−1 − 1

]
(14.55)

=
(

bδt

m+b∑
i=m

Gm,a−m(i, a + b − i)

)−1

− 1

bδt

for all 0 ≤ m ≤ a ,

where we have defined

a := (T − t)/δt , b := τ/δt .

This is the underlying of our caplet at all nodes relevant to the caplet’s payoff
profile. According to the payoff profile in Eq. 18.2, the values of the caplet at
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exercise date T , i.e., at nodes (m, a − m) with 0 ≤ m ≤ a, are given by

f (m, a − m) = τN Bτ (m, a − m) max {rτ (m, a − m) − K, 0} .

Both the discount factor Bτ appearing in the payoff profile as well as the
underlying (the interest rate rτ ) can be expressed in terms of the Arrow-Debreu
prices:

f (m, a − m) = N

m+b∑
i=m

Gm,a−m(i, a + b − i)

× max

⎧⎨
⎩
(

m+b∑
i=m

Gm,a−m(i, a + b − i)

)−1

− 1 − τK, 0

⎫⎬
⎭ .

Equation 14.44 now directly yields the value of this payoff profile, i.e., the
caplet value, at time t

ccap(T , T + τ, K |t ) =
a∑

m=0

G(m, a − m)f (m, a − m)

= N

a∑
m=0

G0,0(m, a − m)

m+b∑
i=m

Gm,a−m(i, a + b − i)

× max

⎧⎨
⎩
(

m+b∑
i=m

Gm,a−m(i, a + b − i)

)−1

− 1 − τK, 0

⎫⎬
⎭ .

The price of the caplet has now been expressed completely in terms of the
Arrow-Debreu prices. Since these prices can be determined using the recursion
relations 14.49 and 14.50 with initial values given by Eqs. 14.47 and 14.48, this
procedure can be used to price any interest rate instrument.

Practical Implementation of Arrow-Debreu Prices

Arrow-Debreu prices have four indices, two for the position of the cash flow
in the tree and two for the position at which the effect of the cash flow is
felt. The numerical implementation thus requires in principle the construction
of a four-dimensional field, which leads to computer memory problems for
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somewhat finer trees as well as performance problems in the computation of
all the ADPs. It will prove to be unnecessary in most cases to compute all of the
ADPs. In the above case of caplets, for example, it is only necessary to compute
the ADPs of the form Gm,a−m(i, a+b− i) with the fixed parameters a and b.

Thus, only two of the four above mentioned indices are free, namely m and i.

Consequently, it is entirely sufficient to determine the two-dimensional field

G̃m,i := Gm,a−m(i, a + b − i)

thereby reducing the numerical effort involved considerably. The effort is now
only the same as that needed in the determination of the Green’s function.

14.8 Explicit Specification of Short Rate Models

Up to this point, the pricing procedure has remained quite general in that no
specific term structure model has been used. None of the relations introduced
above can as yet be used to calculate an explicit numerical value since,
as mentioned above, the arbitrage condition in Eq. 14.46 is by no means
sufficient to determine all the (unknown) discount factors appearing in this
equation. From now on, we suppose that the term structure model is of the
general form 2.19 where we restrict ourselves to functions b(r, t) of the form
b(r, t) = b(t)rβ, i.e. models of the form

dr(t) = a (r, t) dt + b(t)rβ dW . (14.56)

If the exponent β = 0,

dr(t) = a (r, t) dt + b(t) dW , (14.57)

we end up with a normal model or Gaussian model. In the special case that
parameter a is also independent of r , the model is called Ho-Lee Model. Such
models with normally distributed short rate have the advantage that they are
very easy to implement (for example, as a tree). The Ho-Lee model

dr(t) = a(t)dt + b(t) dW

for constant b is even analytically tractable (for this special case the model
was originally invented [97]). It used to be seen as a disadvantage that normal
models allow for negative interest rates and that the volatility is absolute rather
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than relative with respect to the forward rates. However, with the advent of real
negative interest rates for EUR and CHF, these features turned out to be clear
advantages, at least for the EUR and CHF currency area. Normal models also
tend to be easier calibrated in markets with low, but positive interest rates,
avoiding the tendency to push the interest rate level away from zero.
The second class of short rate models does not specify a stochastic process

for the short rate itself, but for its logarithm:

d ln r(t) = a (r, t) dt + b(r, t) dW (14.58)

These models are thus referred to as lognormal models. In the special case of the
volatility b being independent of r , this process is called the Black–Derman-
Toy model, which has been especially designed for the binomial tree, as well
as the Black Karasinski model. Sections 14.11.2 discusses short rate models
in more detail. Such lognormal models have the disadvantage that they are
much more difficult to implement and cannot be solved analytically. Negative
interest rates cannot occur in these models and the parameter b represents the
relative volatility, simplifying fitting this model to relative volatilities observed
in markets with strictly positive interest rates. Such models can be transformed
into models for r via the Ito formula,11 Eq. 2.21:

dr(t) =
[
r(t)a (r, t) + 1

2
b2(r, t)r(t)

]
dt + r(t) b(r, t) dW . (14.59)

The numerical evaluation of lognormal models is easier to implement when
written in this form.

14.8.1 The Effect of Volatility

According to the Girsanov Theorem (see Sect. 13.4), the drift a(r, t) is
uniquely determined by the probability measure used. We fixed this probabil-
ity measure “by hand” when we required the condition specified in Eq. 14.32
to be satisfied. In doing so, we implicitly fixed the drift as well. The drift

11For this, we need to consider the following: ln r(t) in Eq. 14.58 corresponds to S in Eq. 2.21. For the
function f we take f (S) = eS (since this is exactly r). The partial derivatives appearing in Eq. 2.21 are
then simply ∂f/∂t = 0 and ∂f/∂S = ∂2f/∂S2 = f = r .
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can thus no longer be given as “input” into the specification of the stochastic
process. Since different normal and lognormal models differ only in their drift,
this implies that a special choice for Eq. 14.32 effectively belongs to a special
choice of the normal resp. lognormal model, namely the Ho Lee and Black
Derman Toy model. Only the volatility remains as a parameter through which
market information (in addition to the bond prices) may enter into our model
for the determination of the discount factors in Eq. 14.46. We will now show
that if the volatility is given for the time step n, exactly n − 1 conditions are
generated on the n instantaneous discount factors at time n. Taken together
with the arbitrage condition given by Eq. 14.46, requiring that the observed
market price of the zero bond with maturity T = t + nδt be reproduced by
the model, we have exactly as many conditions as unknowns and the interest
rate tree can be uniquely constructed.

In general, from the viewpoint of the node (i, j ), the variance of a variable x

(we can think of x as representing, for example, the short rate r or its logarithm
ln r) is caused by its possible two different values in the next time step, either
xu or xd . The expectation and variance for random variables of this type are
given by12

E [x] = pxu + (1 − p)xd (14.60)

Var [x] = p(1 − p)(xu − xd)
2 ,

In particular, for the case p = 1/2 the variance is given by Var[x] = (xu −
xd)

2/4.
On the other hand, for models of the form given by Eqs. 14.57 and 14.58,

the variance of the stochastic variable x (with x = r resp. x = ln r) over an
interval of time of length δt is given by b(r, t)2δt .

12Substituting the expectation into the definition of the variance defined as the expectation of the squared
deviation from the expectation gives

Var [x] = E
[
(x − E [x])2

]

= p (xu − E [x])2 + (1 − p) (xd − E [x])2

= p (xu − pxu − (1 − p)xd )2 + (1 − p) (xd − pxu − (1 − p)xd )2 .

Multiplying out and collecting terms yields the desired expression.
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14.8.2 Normal Models

For models of the form in Eq. 14.57 the variance of the short rate at node (i, j )

must satisfy:

b(i, j )
√

δt = √Var [r(i, j )] = 1

2
[r(i + 1, j ) − r(i, j + 1)]

	⇒ r(i + 1, j ) = r(i, j + 1) + 2b(i, j )
√

δt . (14.61)

This enables us to establish a recursion formula (after performing the sub-
stitution i + 1 → i) for the instantaneous discount factors at all nodes
corresponding to the time slice n = i + j

B(i, j) = exp {− r(i, j )δt}
= exp

{
−
[
r(i − 1, j + 1) + 2b(i − 1, j )

√
δt
]
δt
}

= exp
{
− 2b(i − 1, j )

√
δtδt

}
exp {− r(i − 1, j + 1)δt}

= exp
{
− 2b(i − 1, j )

√
δtδt

}
B(i − 1, j + 1) ,

or

B(i, j) = α(i − 1, j)B(i − 1, j + 1) mit α(i, j) = exp
{
− 2b(i, j)δt3/2

}
.

(14.62)

Recursive substitution into this equation allows each instantaneous discount
factor in the nodes corresponding to this time slice to be expressed in terms of
a single discount factor at the “lowest” node (0, i + j):

B(i, j) = α(i − 1, j )B(i − 1, j + 1)

= α(i − 1, j )α(i − 2, j + 1)B(i − 2, j + 2)

= α(i − 1, j )α(i − 2, j + 1)α(i − 3, j + 2)B(i − 3, j + 3)

= · · ·
= B(0, j + i)

i∏
k=1

α(i − k, j + k − 1) .
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Observe that only α-parameters (volatility information) in the time slice i −
k + j + k − 1 = i + j − 1 are required for the determination of this value,
i.e., information from the previous time step. Volatility information for the
value of the interest rate at the node actually being calculated (i.e., for the
spacing of the nodes at the time slice (i + j)) is not required; these values
are determined with volatility information from the immediately proceeding
time! This (perhaps counter-intuitive) property is of course nothing other than
the previsibility which we always require for the coefficients of dW and dt in
all models of the form 2.19 or 13.17. At this point now, we get an intuitive
picture (see also Fig. 14.3) what it means that a and b in Eq. 2.19 are previsible
processes. This previsibility is the deeper mathematical reason for why we are
able calculate anything at all.

Using this expression for B(i, j) with j = n − i − 1 and substituting it
into the arbitrage condition, Eq. 14.46, we obtain the arbitrage condition for
the discount factor B(0, n − 1) at the lowest node of the time slice (n − 1):

B(t, t + nδt) = B(0, n − 1)

n−1∑
i=0

G(i, n − i − 1)

i∏
k=1

α(i − k, n − i + k − 2) ,

(0,0)

(0,2)

(0,1)

(1,1)

(1,0)

(2,0)

(0,3)

(1,2)

(2,1)
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(0,4)

(1,3)

(2,2)
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volatility

volatility

volatility

volatility

bond price

discount-
factor

Fig. 14.3 Flow of information when constructing the short rate tree. The discount
factor at the lowest node needs the market price of the zero bond maturing one
time step later and all volatility information from one time step earlier. For the other
discount factors in the time slice it suffices to know the discount factors already
calculated at lower nodes in the same time slice and the volatility at the neighboring
node one time step earlier
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which, after a simple change of index n → (n + 1), yields the arbitrage
condition for the discount factor B(0, n) at the lowest node of time slice n:

B(t, t + (n + 1)δt) = B(0, n)

n∑
i=0

G(i, n − i)

i∏
k=1

α(i − k, n − i + k − 1) .

(14.63)

The left-hand side is the given market price of a zero bond with maturity at
time slice (n+1), which must be reproduced using zero bonds and the Green’s
function on time slice n. The α’s on the right-hand side are all defined on time
slice (n − 1) and are given by the volatility governing the process at this time
point. This condition now actually contains only one unknown and can be
solved easily for B(0, n):

B(0, n) = B(t, t + (n + 1)δt)∑n
i=0 G(i, n − i)

∏i
k=1 α(i − k, n − i + k − 1)

.

From this single value B(0, n) we obtain all further instantaneous discount
factors in this time slice by repeated application of Eq. 14.62. Note that we find
ourselves at time n at this point of the iteration. The instantaneous discount
factors in the time slice n are determined from the price of the bond maturing
at time (n + 1) and volatility information from the immediately preceding
time step (n − 1). This is illustrated in Fig. 14.3.
Having established the instantaneous discount factors, an expression for the

instantaneous short rates results immediately from Eqs. 14.36 and 14.62

r(i, j ) = − 1

δt
ln B(i, j) = − ln B(i − 1, j + 1)

δt
− ln α(i − 1, j )

δt

= r(i − 1, j + 1) + 2b(i − 1, j )
√

δt

= . . .

= r(0, j + i) + 2
√

δt

i∑
k=1

b(i − k, j + k − 1) . (14.64)

For volatility structures depending only on time (but not on the interest rate),
the volatility values on time slice n are all identical. We can therefore set them
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equal to the volatility at the lowest node (0, n). Thus

b(i, j ) = b(0, i + j) = b(0, n) ≡ σ(t + nδt)

α(i, j ) = α(0, i + j) = α(0, n) ∀i, jmit i + j = n , (14.65)

and Eq. 14.62 reduces to

B(i, j) = α(0, n − 1)B(i − 1, j + 1)

= αi(0, n − 1) B(0, n) mit i + j = n .

Equation 14.61 then implies that the short rate in the tree at time slice n

changes from node to node by a constant term 2σ
√

δt

r(i, j ) = r(i − 1, j + 1) + 2σ(t + (n − 1)δt)
√

δt

= r(0, n) + 2 i σ (t + (n − 1)δt)
√

δt . (14.66)

The arbitrage condition for this discount factor at the lowest node of time slice
n reduces to

B(t, t + (n + 1)δt) = B(0, n)

n∑
i=0

G(i, n − i)αi(0, n − 1) .

14.8.3 Lognormal Models

An analogous procedure for lognormal models can be obtained as follows: in
models of the form specified in Eq. 14.58, b(i, j )2δt is the variance of the
logarithm of the short rate. Therefore, as seen from the node (i, j ), we have

b(i, j )
√

δt = √Var [ln r(i, j )] = 1

2
[ln r(i + 1, j ) − ln r(i, j + 1)] = 1

2
ln(

r(i + 1, j )

r(i, j + 1)

	⇒ r(i + 1, j ) = r(i, j + 1) exp
{

2b(i, j )
√

δt
}

(14.67)

This enables us to establish a recursion formula13 (after performing the
substitution i + 1 → i) for the instantaneous discount factors at all nodes

13Here we use the property exp {ax} = (exp {x})a of the exponential function with a = e2b(i−1,j)
√

δt .
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in time slice n = i + j

B(i, j) = exp {−r(i, j)δt} = exp
{
−r(i − 1, j + 1)e2b(i−1,j )

√
δtδt
}

= [exp {−r(i − 1, j + 1)δt}]e2b(i−1,j)
√

δt = B(i − 1, j + 1)e
2b(i−1,j)

√
δt

,

or

B(i, j) = B(i − 1, j + 1)α(i−1,j ) mit α(i, j) = exp
{
+ 2b(i, j)δt1/2

}
.

(14.68)

This is quite similar to the corresponding equation for normal models
(Eq. 14.62), but since the volatility information enters the equation as an
exponent rather than a factor in the recursion, the structure is somewhat
more complicated. Furthermore, a comparison with Eq. 14.62 reveals a sign
change in the expression for α. Nevertheless, a simple trick enables us to find
a structure which is quite similar to that given in Eq. 14.62. Taking logarithms
in Eq. 14.68 yields a recursion relation for the logarithm of the discount factors
having the same structure as Eq. 14.62:

ln B(i, j) = α(i − 1, j) ln B(i − 1, j + 1) .

This recursion can be carried out explicitly giving

ln B(i, j) = α(i − 1, j ) ln B(i − 1, j + 1)

= α(i − 1, j )α(i − 2, j + 1) ln B(i − 2, j + 2)

= α(i − 1, j )α(i − 2, j + 1)α(i − 3, j + 2) ln B(i − 3, j + 3)

= · · ·

= [ln B(0, j + i)]
i∏

k=1

α(i − k, j + k − 1) ,

and allowing the instantaneous discount factors in time slice n to be written
as a function of the “lowest” node (0, i + j):

B(i, j) = exp

{
[ln B(0, j + i)]

i∏
k=1

α(i − k, j + k − 1)

}

= B(0, j + i)
∏i

k=1 α(i−k,j+k−1) .
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Using this B(i, j) for j = n − i − 1 in the arbitrage condition Eq. 14.46 we
obtain, after performing an index transformation n → (n + 1), the arbitrage
condition for the discount factor B(0, n) at the lowest node in time slice n.

B(t, t + (n + 1)δt) =
n∑

i=0

G(i, n − i) exp

{
[ln B(0, n)]

i∏
k=1

α(i − k, n − i + k − 1)

}

(14.69)

=
n∑

i=0

G(i, n − i)B(0, n)
∏i

k=1 α(i−k,n−i+k−1) .

This can only be solved numerically for B(0, n) using, for example, the well-
known Newton-Raphson method.14 From this value B(0, n) we obtain all
further instantaneous discount factors in this time slice by repeated application
of Eq. 14.68. We now have a similar situation as for normal models, see
Fig. 14.3: the discount factors in the time slice n are calculated from the price
of the zero bond maturing in the following time slice (n + 1) and from the
volatility information from the immediately preceding time slice (n − 1).

Having established the instantaneous discount factors, the short rates follow
immediately from Eqs. 14.36 and 14.68.

r(i, j ) = − 1

δt
ln B(i, j) = −α(i − 1, j )

ln B(i − 1, j + 1)

δt

= r(i − 1, j + 1)α(i − 1, j ) = . . .

= r(0, j + i)

i∏
k=1

α(i − k, j + k − 1) . (14.70)

14To solve a non-linear equation of the form f (x) = 0, the Newton-Raphson method uses the following
iteration to find the points were the function f equals zero: having an estimate xi for a zero of f , a better
estimate is obtained from the formula

xi+1 = xi − f (xi )

(
∂f

∂x

∣∣∣∣
x=xi

)−1

.

We usually start the procedure with a rough estimate x0 and iterate until the difference between xi+1 and
xi is sufficiently small for the required purpose. The iteration sequence converges if

∣∣∣∣f ∂2f /∂2x

(∂f /∂x)2

∣∣∣∣ < 1

holds in a neighborhood of the zero of f . This can always assumed to be the case in our applications.
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Exact Reproduction of the Term Structure with the Lognormal
Model

Alternatively, we can proceed from the process for the short rate in the log-
normal model obtained from Ito’s lemma, Eq. 14.59, and derive all equations
exactly in the form obtained for the normal model, in particular Eq. 14.63,
the only difference being that α is then given by

α(i, j) = exp
{− 2b(i, j )r(i, j )δt3/2

}
. (14.71)

The r(i, j ) needed for this equation were calculated in the previous iteration
step, so that all terms in Eq. 14.63 are known. Thus, this equation can be
solved analytically for the lowest bond, even though we are working within
the context of the lognormal model.
Both of these two possible methods, i.e., the standard method of solving

Eq. 14.69 by means of the Newton-Raphson method, as well as the more
elegant method through Eqs. 14.59 and 14.63 with α as in Eq. 14.71, are
demonstrated in detail in the Excel workbook TermStructureModels.xlsx
from the download section [50].
With the interest rate independency of the volatility structure Eq. 14.65

holds again. Thus, Eq. 14.62 reduces to

B(i, j) = B(i − 1, j + 1)α(0,n−1)

= B(0, n)αi(0,n−1) with i + j = n

where α(i, j) = exp
{

2σ(t + nδt)
√

δt
}

. Equation 14.67 implies that the
short rate is simply to be multiplied by a constant factor α(0, n − 1) when
moving from one node to the next in time slice n of the tree, thus

r(i, j ) = r(i − 1, j + 1)α(0, n − 1)

= r(0, n)αi(0, n − 1) , (14.72)

and the arbitrage condition for the discount factor at the lowest node of the
time slice n reduces to

B(t, t + (n + 1)δt) =
n∑

i=0

G(i, n − i)B(0, n)αi(0,n−1) .
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14.9 The Example Program
TermStructureModels.xlsm

14.9.1 Construction of Interest Rate Trees and Option
Pricing

We now demonstrate explicitly how the interest rate tree is constructed for a
given term structure, or equivalently, for given market prices of zero bonds,

B(t, t + iδt) for i = 1 . . . n

and given volatilities

b(r, t + iδt) for i = 0 . . . n − 1 .

The calculation of option prices from this interest rate tree—once it has
been constructed—has already been discussed in Sect. 14.7.2 in detail for
any arbitrary arbitrage-free short rate term structure model using caplets as
an example.

• Time step i = 0
According to Eq. 14.47, or in particular according to Eq. 14.41, the Green’s
function at the node (0, 0) is simply

G(0, 0) = 1 .

From Eq. 14.46, it then follows that the discount factor at node (0, 0) can
be obtained directly from the market price B(t, t + 1δt) of the zero bond:

B(t, t + 1δt) = G(0, 0)B(0, 0) = B(0, 0) .

• Time step i = 1
The discount factors just computed together with the Green’s function
evaluated at the node (0, 0) are substituted into the recursion relation
Eq. 14.43 to determine the values of the Green’s function at the next nodes:

G(1, 0) = 1

2
G(0, 0)B(0, 0)

G(0, 1) = 1

2
G(0, 0)B(0, 0) .
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These values, the volatility information from the previous time slice and the
price of the zero bond maturing at the next time slice are all used to obtain
the discount factor at the lower boundary which here is the node (0, 1).
With Eq. 14.63 for the normal model, the discount factor at this node is
obtained as

B(0, 1) = B(t, t + 2δt)

G(0, 1) + G(1, 0)α(0, 0)
.

Application of the recursion relation in Eq. 14.62 yields the other
discount factor required for this step

B(1, 0) = α(0, 0)B(0, 1) .

Analogously, the arbitrage condition for the discount factor on the lower
boundary in the lognormal model is, according to Eq. 14.69,

B(t, t + 2δt) = G(0, 1)B(0, 1)+ G(1, 0)B(0, 1)α(0,0) ,

which can only be solved numerically (using the Newton Raphson method,
for example) for B(0, 1). Having solved the equation, the next discount
factor for this time slice can be obtained immediately using Eq. 14.68:

B(1, 0) = B(0, 1)α(0,0) .

• Time step i = 2
The discount factors just calculated together with the Green’s function are
substituted into the recursion 14.43 to obtain the values of the Green’s
function evaluated at the nodes corresponding to this time step

G(1, 1) = 1

2
G(1, 0)B(1, 0) + 1

2
G(0, 1)G(0, 1)

G(2, 0) = 1

2
G(1, 0)B(1, 0)

G(0, 2) = 1

2
G(0, 1)B(0, 1) .

Using these values as well as the volatility information from the previous
time slice and the market price of the zero bond maturing at the next time
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slice, Eq. 14.63 for the normal model can be applied to obtain the discount
factor at the lower boundary, i.e., at node (0, 2)

B(t, t + 3δt) = B(0, 2)

2∑
i=0

G(i, 2 − i)

i∏
k=1

α(i − k, 1 − i + k)

= B(0, 2)G(0, 2)

+ B(0, 2)G(1, 1)α(0, 1)

+ B(0, 2)G(2, 0)α(1, 0)α(0,1) ,

which yields for B(0, 2)

B(0, 2) = B(t, t + 3δt)

G(0, 2) + G(1, 1)α(0, 1) + G(2, 0)α(1, 0)α(0, 1)
.

Applying the recursion formula 14.62 yields the next discount factors
belonging to this time step

B(1, 1) = α(0, 1)B(0, 2)

B(2, 0) = α(1, 0)B(1, 1) .

Analogously for the lognormal model, the arbitrage condition Eq. 14.69
for the discount factors on the lower boundary is used to obtain

B(t, t + 3δt) = G(0, 2)B(0, 2) + G(1, 1)B(0, 2)α(0,1) + G(2, 0)B(0, 2)α(1,0)α(0,1) ,

where again we can be solve for B(0, 2) numerically. Once B(0, 2) is
known, the additional discount factors for this time step can be computed
immediately using Eq. 14.68:

B(1, 1) = B(0, 2)α(0,1)

B(2, 0) = B(1, 1)α(1,0) .

This procedure is repeated until the entire tree has been constructed up to
maturity T + τ (maturity of the derivative to be priced plus the lifetime of the
underlying). After this has been done, all required Arrow-Debreu prices can
be determined using Eqs. 14.47, 14.48 and 14.49 and finally, these ADPs are
used in pricing the derivative as demonstrated in Sect. 14.7.2 for caplets.
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This is all demonstrated explicitly for normal models (referred to there
as Ho-Lee models) and lognormal models (referred to as Black-Derman-
Toy models) in the Excel workbook TermStructureModels.xlsm from the
download section [50]. To emphasize that the interest rate tree is independent
of the derivative being priced, the structure of the Visual Basic code is
extremely modular: first, a short rate tree is generated. This remains in the
main memory of the computer until it is used to compute the value of
any desired underlying dependent on the term structure (for example a 3-
month zero bond yield or a swap rate, etc.) using Arrow-Debreu prices
and subsequently pricing any chosen (path-independent) derivative on that
underlying with a European payoff mode. Plain vanilla caplets and floorlets
on the 3-month rate serve as examples, with an explicit demonstration of their
valuation being included in the workbook.

14.9.2 Absolute and Relative Volatilities

As already mentioned, the volatility input for lognormal models has to have
the form of a relative volatility (for example, 14% of the current underlying
value). For normal models, an absolute volatility (for example, 0.75 percentage
points15) is required.
If, for comparison, we would like to transform absolute volatilities into

relative ones and vice versa, an appropriate reference rate is required in
addition.Here, the forward rate of the underlying at the maturity of the derivative
being priced is a natural choice. This is especially true if we intend to compare
the volatilities with the Black-76 volatility, since it is exactly this forward rate
which is used as the underlying in the Black-76 model.16 Therefore the Black-
76 volatility quoted in the market belongs to this forward rate. For these
reasons, this forward rate has been selected as the multiplicative factor in the
Excel workbook TermStructureModels.xlsm.
As can be seen from Eq. 14.59, the factor of the stochastic term differs

by the additional multiplication with the short rate. The product of relative

15At an interest rate of 6% this would correspond to a relative volatility of 14%.
16As emphasized in Eq. 14.55, the forward rate for the caplet period τ within linear compounding serves
as the underlying of a cap in the payoff profile. This has already been accounted for in the term structure
model through Eq. 14.55. To obtain the correct forward rate as input for the Black-76 model in the
Excel workbook TermStructureModels.xlsm from the download section [50] from the current term
structure (which holds for continuous compounding), we first determine the forward discount factors
using Eq. 2.7. From those discount factors the desired forward rates for linear compounding are given by
r = (B−1 − 1

)
/τ .
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volatility and short rate is equivalent to the absolute volatility in a Gaussian
or normal model. Since the short rate is different at each note for a given
time slice, the absolute volatility is different at each node in a log-normal
model, while it was the same at each node in a normal model. This is the
substantial difference between both models. Indeed, it is enough to change a
single line in the implementation of the Gaussian model to transform it into
the implementation of a log-normal model according to Eq. 14.59.

14.9.3 Calibration of Volatilities

The current term structure and volatility structure are required as input for
the construction of an interest rate tree. In practice, the volatilities b(r, t +
iδt) themselves are generally not known. Only the prices of options traded
on the market (caps, floors, swaptions, etc.) can be observed directly. The tree
must then be constructed, leaving the volatilities unspecified as free parameters
which are then adjusted until the observed market prices of the options are
reproduced by the model. Fitting the parameters b(r, t + iδt) to the market
prices in this manner is referred to as the calibration of the model.

There are many ways of performing such a calibration. For instance
we can—exactly as was done when reproducing the market prices of zero
bonds—reproduce the market prices of the options stepwise through the tree,
beginning with the shortest option lifetimes and proceeding through to the
longest. This procedure is demonstrated explicitly in the Excel workbook
TermStructureModels.xlsm from the download section [50] where the
prices of a strip of caplets at the 3-month rate are available, whose underly-
ings (the respective 3-month rates) cover the time span under consideration
without overlap, i.e.

Tk+1 = Tk + τ .

where Tk is the maturity of the kth caplet and τ is the lifetime of the
underlying. The calibration starts by assuming that the volatility in the tree
between times t and T1 + τ is constant,

b(r, t + iδt) = b(T1) for all r and all i with t ≤ t + iδt ≤ T1 + τ .

This constant volatility is adjusted (using Newton-Raphson) until the price
computed using the tree equals the known market price of the first caplet.



14 Interest Rates and Term Structure Models 339

To reproduce the second known caplet price, we assume that the volatility
remains equal to the (just calibrated) b(T1) for the time between t and T1 +τ,

and is constant (although still unknown) at all nodes for times between T1 +τ

and T2 + τ :

b(r, t + iδt) = b(T2) for all r and all i with T1 + τ < t + iδt ≤ T2 + τ .

This constant volatility is then adjusted (again using Newton-Raphson) so
that the price for the second caplet computed using the tree is equal to the
observed market price of this caplet. To reproduce the third caplet price we
assume, as above, that the (just calibrated) volatilities computed for the time
span from t to T2 + τ continue to be valid, and adjust the volatility at all
nodes associated to the times between T2 + τ and T3 + τ until the price of the
third caplet computed using the tree matches the observed market price of this
caplet, and so on.17 By this method, we obtain a piecewise constant function
for the volatility18 as a function of time, independent of r .
Such a calibration process yields different volatility values b(r, t + iδt)

for each different term structure model. We therefore refer to the respective
volatilities by the name of the model with we are working, for exampleHo-Lee
volatilities, Black-Derman-Toy volatilities, Hull-White volatilities, etc. For this
reason, it is generally not possible to simply take the Black-76 volatilities as
the input values for b(r, t + iδt). The tiresome process of calibrating to the
observed option prices is in most cases unavoidable.
The market quotes option prices often in terms of log-normal volatilities

(or, recently, normal model vols), from which prices could be calculated
by applying the Black-Scholes resp. Black’76 or Bachelier (for normal vols)
formula. Since all other input parameters, e.g. underlying interest rates, are
commonly known, the Black-76 model is simply a translation algorithm for
moving between the two different ways of quoting the option price, i.e. price
vs. volatility.19 An advantage of quoting volatilities rather than prices is that
volatilities change less frequently than other parameters like interest rates. Also,
volatilities offer an illustrative, easy to interpret way of comparing options with
different strikes and terms to expiry. Therefore, the Black-76 model (or the

17Alternatively, the volatilities can be (simultaneously) calibrated using a least squares fit. We then
minimize the sum of the quadratic differences between the calculated and the traded option prices by
varying the volatilities.
18Naturally, this procedure can be extended if a “caplet-price-surface”, i.e. caplet prices with different times
to maturity and different strikes, is available to obtain a calibrated volatility surface as a function of time
and moneyness (the relative or absolute difference between underlying and strike).
19Though, in some cases, market makers quote both, prices and volatilities, at the same time.
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equivalent normal model) is better understood as a quoting vehicle rather than
a pricing model. The procedure behind the quoting is as follows: the market
maker calculates the price of an interest rate option which she wishes to quote
to the market using the term structure model of her choice (maybe calibrated
to other liquid option prices). Before quoting, this price is first translated into
a volatility using the Black-76 model. It is this volatility that is quoted on the
market. The volatility quoted is simply that which, when used as an input
parameter in the Black-76 model, reproduces the price calculated with the
bank’s (perhaps very complicated and proprietary) term structure model.

The calibration to given (Black-76) caplet (or floorlet) prices are
demonstrated in the Excel Workbook TermStructureModels.xlsm from
the download section [50]. The calibration to other instruments such as
swaption prices is considerably more complicated in its implementation, but
is based on the same principles:

1. Calculation of all required Arrow-Debreu prices from the existing tree.
2. Generation of the necessary underlyings, namely the swap rate under

consideration, from the Arrow-Debreu prices.
3. Calculation of the payoff profiles of the swaption at the nodes correspond-

ing to the swaptionmaturity date based on the value of the underlying (swap
rate) and with the help of the Arrow-Debreu prices

4. Calculation of the swaption prices at node (0, 0) by discounting the payoff
profile with the Green’s function

5. Adjusting the volatility in the interest rate tree until the swaption price
computed using the tree agrees with the price quoted on the market.

14.10 Monte Carlo on the Tree

In the discussion above, it was emphasized that only path-independent deriva-
tives in the sense of Eq. 14.44 could be priced using the methods introduced
in this chapter since the trees recombine and as a result information on the
history of the short rate path is lost. However, by combining the presented trees
with Monte-Carlo simulations, it becomes possible to price path-dependent
derivatives with a pay off profile depending on the past realizations of the
interest rate This kind of Monte-Carlo simulation works as follows:

• First observe that the tree needs to be generated (and calibrated!) only once
(as described above) and then stays in the memory of the computer.
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• The short rate paths are then simulated by jumping randomly from node to
node in the tree, always proceeding one time step further with each jump.

• Simulating the jumps from node to node with the appropriate transition
probabilities (in our case p = 1/2 for up as well as for down moves, see
Eq. 14.32) of the chosen martingale measure (in our case the risk-neutral
measure, see Eq. 14.31) ensures that the simulated paths already have the
correct probability weight needed for pricing financial instruments. This
procedure is called importance sampling.20

• For each simulated path of the short rate the corresponding path of the
underlying (for instance 3-month LIBOR) must be calculated using Arrow-
Debreu prices.

• At the end of each simulated path the payoff of the derivative resulting from
the underlying having taken this path is calculated.

• This payoff is then discounted back to the current time t (i.e., to node
(0, 0)) at the short rates along the simulated path, since after all, we still are
within the risk-neutral measure, see Eq. 14.31.

• After many (usually several thousand) paths have been simulated, the
(several thousand) generated discounted payoff values can then simply
be averaged to yield an estimation for the risk-neutral expectation of the
discounted payoff. Here the very simple arithmetic average (with equal
weights) of the discounted payoff values can be used without worrying
about the correct probability weight of each payoff value since the payoff
values (more precisely the paths which generated the payoff values) have
already been simulated with the correct (risk-neutral) probability. This
is (besides the effectiveness in sampling the phase space) another great
advantage of importance sampling.

• According to Eq. 14.8, the risk-neutral expectation calculated in this way is
directly the desired derivative price.

20Doing a move with its associated probability only ensures a very effective sampling of the phase space
(the set of all possible values of the simulated variables): phase space regions (values of the simulated
variables) which have low probabilities (and therefore contribute only little to the desired averages of
whatever needs to be measured by the simulation) are only visited with low probability (i.e. rarely) while
phase space regions with high probabilities (which contribute a lot to the desired averages) are visited with
high probability (i.e. often). Because of this feature importance sampling is heavily used in thousands of
Monte-Carlo applications, especially in physics, meteorology and other sciences which rely on large-scale
simulations.
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14.11 The Drift in Term Structure Models

At this stage, it makes sense to reconcile the practical computations in Chap. 14
with the profound concepts from the related theory presented in Chap. 13. We
first consider the relationship between the underlying instantaneous interest
rates and tradable instruments such as zero bonds. We defer proceeding with
the short rate models introduced above to take a brief excursion to the models
in which the instantaneous forward rate plays the role of the underlying.

14.11.1 Heath-Jarrow-Morton Models

We see from the fundamental Eqs. 14.2 or 14.3 and 14.5 that the instantaneous
forward rates can be used to generate the prices B(t, T ) of all zero bonds as
well as the entire interest rate term structureR(t, T ). The three descriptions of
the term structure, the zero bond prices B(t, T ), the zero bond yieldsR(t, T )

and the instantaneous forward rates f (t, T ) are equivalent. Of these three
variables, only a single one needs to be chosen to be modeled by a general
stochastic process of the form specified in Eq. 2.19. We take, for example, the
forward rates f (t, T ) to be modeled by a process of the form:

df (t, T ) = a(t, T ) dt + b(t, T ) dW with dW = X
√

dt, X ∼ N(0, 1) .

(14.73)

As mentioned previously, all bond prices and thus the entire term structure
can be generated from the solution of this equation. An entire class of term
structure models, the Heath-Jarrow-Morton models (HJM models for short)
take this approach of employing the forward rates as the driving factor of the
term structure.

Like all interest rates, the instantaneous forward rates are not tradable (see
Sect. 14.4). In Chap. 13, and in particular in Sects. 13.4 and 13.5, a detailed
discussion can be found on how to proceed when the underlying is not
tradable; we choose a tradable instrument U whose price U(S, t) is a function
of the underlying. Then all of the results shown in Chap. 13 hold:

• The Harrison-Pliska Theorem establishes the uniqueness (in complete mar-
kets) of the probability measure with respect to which the prices of trad-
able financial instruments normalized with an arbitrarily chosen, tradable
numeraire instrument Y are martingales.

• According to the Girsanov Theorem, this implies that there is only one single
underlying drift which may be used for pricing.
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• In addition, the drift of the underlying in the real world plays absolutely
no role in the world governed by the martingale measure if the numeraire
instrument Y satisfies the property 13.34 (which is always the case).

The existence of a function U(S, t) relating the underlying S to a tradable
instrument U is the deciding factor for the validity of the above results. If
the underlying is the instantaneous forward rate f (t, T ), such a functional
relation to a tradable instrument exists, namely Eq. 14.3 for the zero bond
price B(t, T ), and thus the results found in Chap. 13 hold for the Heath-
Jarrow-Morton models. In particular, for every complete market, there exists
for each numeraire instrument exactly one single underlying drift which may
be used for pricing. Therefore, as far as pricing is concerned, the HJM model
is uniquely determined by the specification of the volatility term b(t, T ) in
Eq. 14.73 (whichmodels the process in the real world). TheGirsanov Theorem
implies that the transition from the real world into the world governed by the
martingale measure only effects a (in this case unique) change in the drift;
the volatility term b(t, T ) is invariant under this transformation. Indeed, the
forward rate process in the risk-neutral measure corresponding to the real
world process in Eq. 14.73 has the following appearance [92]:

df (t, T ) =
[
b(t, T )

∫ T

t

b(t, s)ds

]
dt + b(t, T ) dW̃ ,

Here dW̃ denotes the standard Brownian motion with respect to the martin-
gale measure. The coefficient of dt appearing in square brackets is the drift
with respect to the martingale measure. This formula shows explicitly that
for HJM models, the entire model (including the drift) is uniquely specified
through the volatility b(t, T ). The drift to be used in the valuation is unique,
in complete agreement with the general statements made in Chap. 13.

14.11.2 Short Rate Models

As opposed to the HJM models, the term structure models in Sect. 14.6 make
use of the instantaneous spot rate defined in Eq. 14.1 as the driving factor.
However, a one-to-one mapping between the spot rates and the zero bond
prices does not exist and in consequence, no one-to-one mapping between the
spot rates and the term structure R(t, T ) can exist either. The instantaneous
spot rates are not sufficient to generate the term structure. This is indicated
by the fact that the instantaneous spot rate r(t) is a function of a single time
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variable t in contrast to the processes B(t, T ), R(t, T ) (and f (t, T ) as well!),
which are functions of two time variables. Taking the limit dt → 0 in the
definition of the instantaneous short rate in Eq. 14.1 results in the loss of
the second argument (and thus in the loss of the corresponding information).
This can be seen explicitly in Eq. 14.6. For this reason, there is no analogy to
Eq. 14.3 relating the instantaneous spot rates directly to the zero bond prices.
The best possible alternative available is to determine the bond prices from the
expectations of the short rates (see for example Eq. 14.9), but not directly as a
function of the short rates. This has significant consequences:

The results presented in Chap. 13, in particular those in Sects. 13.4 and 13.5
(regarding the martingale measure, unique drift, etc.), can be shown for non-
tradable underlyings only if there exists a tradable instrument whose price
process is a function of the underlying. This direct functional relationship
between the underlying (the instantaneous spot rate) and a tradable instrument
is missing in short rate models. Or from the view point of the Harrison-Pliska
Theorem: since r(t) contains less information than f (t, T ) or B(t, T ), the
market is not complete for short rate models. For this reason, the martingale
measure in short ratemodels is not uniquely determined by fixing the numeraire
instrument. Thus, the Girsanov theorem asserts that we retain the freedom
of choosing from various drift terms in the model. The information lost in
the transition shown in Eq. 14.6, for example, must be reinserted into the
model “by hand”. This is accomplished by directly specifying a drift in the
world governed by the martingale measure. This is the essential difference in
the models here compared to those encountered in the previous chapters,
where the drift was always specified in the real world. The situation for short
rate models is different; the drift is specifically chosen for the world governed
by the martingale measure rather than for the real world. Only through this
drift specification is the martingale measure uniquely determined in short rate
models.

Frequently, it is seen as a requirement that the has drift shows an effect
called mean reversion which is observed in the evolution of interest rates but
not seen in e.g., stock prices. Interest rates do not rise or fall to arbitrarily high
or low levels but tend to oscillate back and forth about a long-termmean. This
can be modeled with a drift in the functional form μ − vr for some v > 0:
for values of r small enough so that vr < μ holds, the drift is positive and,
consequently, r tends on average toward larger values. Conversely, for values
of r large enough so that vr > μ holds, the drift is negative and r tends to
drift toward smaller values on average. The interest rate thus tends to drift
toward a mean value μ at a rate ν. Naturally, a stochastic component driven
by ∼ dW is superimposed onto this deterministic movement. An example of
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amean reversion model is theHull-White model [104]. This model specifies the
following stochastic process for the short rate with respect to the risk-neutral
martingale measure:

dr(t) = [μ(t) − v(t)r] dt + σ(t) dW (14.74)

This is only one of many examples. Several well-known models, each named
after their respective “inventors” can be distinguished from one another, after
having separated them into categories of normal and lognormal models,
essentially through the form of their drift. The best known representatives
of these models are summarized in the following list:

• Normal models dr(t) = a (r, t)dt + b(r, t) dW

– Stationary models b(r, t) = σ

∗ Arbitrage-free models

· Hull-White a (r, t) = μ(t) − vr (mean reverting)
· Ho-Lee a (r, t) = μ(t)

∗ Equilibrium models (not arbitrage free because of too few degrees of
freedom)

· Vasiceck a (r, t) = μ − vr (mean reverting)
· Rendleman-Barter a (r, t) = μ

– Non-stationary models b(r, t) = σ(t)

• Lognormal models d ln r(t) = a (r, t)dt + b(r, t) dW

– Stationary models b(r, t) = σ

– Non-stationary models b(r, t) = σ(t)

∗ Arbitrage-free models

· Black-Karasinski a (r, t) = μ(t) − v(t) ln r (mean reverting)
· Black-Derman-Toy a (r, t) = μ(t) − ∂σ (t)/∂t

σ (t)
ln r

The models are called either stationary21 or non-stationary depending on
whether or not the volatility is assumed to be a function of time.22 The models

21This is not to be confused with the definition of stationary time series in Chap. 32.
22Ho-Lee and Hull-White are often applied for time-dependent volatilities. Their inventors, however,
originally assumed constant volatilities.
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allowing for neither a time dependence nor an r dependence in the drift or
volatility terms (Vasiceck, Rendleman-Barter) obviously cannot reproduce the
current term structure arbitrage-free. For these models, only a “best fit” can
be obtained (for example by minimizing the root mean square error). These
models are referred to as equilibrium models. Since equilibriummodels are not
arbitrage free, they will receive no further attention in this book. Nowadays
they are no longer very important in practice.

The volatility of dr is independent of r in normal models and proportional
to r in lognormal models (see, Eq. 14.59). An intermediate scheme between
these two possibilities is the Cox-Ingersoll-Ross model [42] for which the
volatility is assumed to be proportional to

√
r.

dr = (μ − vr)dt + σ
√

rdW .

Note that all these processes are modeled in the risk-neutral martingale
measure directly, i.e., should be used directly in the valuation of the financial
instrument under consideration without first performing a drift transforma-
tion through an application of the Girsanov Theorem. The volatility term is
invariant under the Girsanov transformation. This implies that the volatility
taken for the valuation is the same as that observed in the real world. The
form taken on by the drift, however, is a result of the particular choice of the
measure (coordinate system) established for pricing through an application of
the Girsanov Theorem and as such, a rather artificial construct. It is thus not
readily apparent why a specific form of drift (for example mean reversion)
should be modeled in a specific (for example risk-neutral) artificial world
(dependent on the selection of a particular numeraire) when our intuitive
conception of the drift actually pertains to the real world.

Or more precisely: according to the Girsanov Theorem, the process
modeled with respect to the martingale measure differs from the real
world process by a previsible process γ (r, t). This previsible process is
arbitrary (with the restriction that it must satisfy the boundedness condition
E
[
exp

(
1
2

∫ T

0 γ (r, t)dt
)]

< ∞). Therefore the choice of model with respect
to a martingale measure provides as good as no information about the drift of
the short rate in the real world. For example, the model given by Eq. 14.74
has a mean reversion in the world governed by the martingale measure, but
has the form

dr(t) = [μ(t) − v(t)r(t) + γ (r, t)] dt + σ(t) dW
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in the real world with a (practically) arbitrary previsible process γ (r, t). It is
therefore by no means clear that this process shows any mean reversion in the
real world.
After having placed such emphasis on the necessity of specifying a drift,

i.e., a martingale measure, explicitly in short rate models (despite the results
in Chap. 13 the martingale measure is not unique here, even when the
numeraire has been fixed), the attentive reader will surely have asked why
only the volatility but no drift information has entered as input into our
explicit computations in Sect. 14.8. For both the normal and the lognormal
models, the interest rate trees were constructed in their entirety and no drift
information from the specific stochastic processes was needed at any point.
This stems from the condition in Eq. 14.32, which we introduced “by hand”

for the sake of simplicity; the probability of an up move was simply set to
p = 1/2. Through this choice, we have explicitly selected one particular
measure from the family of arbitrage-free martingale measures belonging to
the risk-neutral numeraire instrument (the bank account). This fixed the drift
in accordance with the Girsanov Theorem. We can also see this fact explicitly
since the drift can be quite simply determined from the generated tree. As was
shown in Sect. 14.8 for the variance, it follows from the general equation 14.60
for a binomial tree with p = 1/2 that the expectations of the short rate as seen
from the node (i, j ) are

a(i, j)δt = E [r(i, j)] = 1
2 [r(i + 1, j) + r(i, j + 1)] normal model

a(i, j)δt = E [ln r(i, j)] = 1
2 [ln r(i + 1, j) + ln r(i, j + 1)] log-normal model,

from which the drift at each node in the tree can be immediately determined
since all the short rates have already been established (the tree has already been
built).
For example, Eq. 14.66 can be used to compute the drift in a normal model

with r-independent volatility as

a(i, j)normal = r(0, i + j + 1)

δt
+ (2i + 1)

σ (t + (i + j)δt)√
δt

.
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Analogously, the drift for log-normal models with r-independent volatility
b(0, n) = σ(t + nδt) can be computed explicitly, employing Eq. 14.72 and
α as in Eq. 14.68:

a(i, j )log-normal = 1

2δt
[ln r(i + 1, j ) + ln r(i, j + 1)]

= 1

δt

[
ln r(0, i + j + 1) + (i + 1

2
) ln α(0, i + j)

]

= ln r(0, i + j + 1)

δt
+ (2i + 1)

σ (t + (i + j)δt)√
δt

.

Had the probability of an up move not been fixed at 1/2, a free parameter
p would remain unspecified in Eq. 14.60 which (if dependent on time and
perhaps on r as well) would allow for many different drift functions.

14.12 Short Rate Models with Discrete
Compounding

The discount factor over a single time period used in this chapter was always
of the form B(t, t + δt) = e−r(t)δt (see for example Eq. 14.36). Intuitively,
in view of Eq. 2.3, this means that interest has been paid infinitely often
in the reference period δt , and that these payments were then immediately
reinvested at the same rate. Strictly speaking, this contradicts the concept of a
tree model, for which time has been discretized into intervals of positive length
δt , implying by definition that nothing can happen in between these times. To
be consistent, we should have therefore used discrete compounding, allowing
the payment and immediate reinvestment of interest solely after each δt . Then,
only in the limiting case δt → 0 will the discount factor for continuous
compounding be obtained. If we wish to be consistent, we would therefore
have to write

B(t, t + δt) = 1

1 + r(t)δt
−→
δt→0

e−r(t)δt .

Despite the inconsistency, the discount factor for continuous compounding
is commonly used in the literature. In this section, we will collect and present
the differences caused by using discrete rather than continuous compounding
and, in doing so, show how short rate models with discrete compounding



14 Interest Rates and Term Structure Models 349

can be treated. The discount factor in Eq. 14.36 has the following form when
adopting the convention of discrete compounding

B(i, j) = 1

1 + r(i, j )δt
. (14.75)

Formulating recursion equations as in Eqs. 14.62 or 14.68 for these discount
factors B(i, j) in a time slice or for the lowest zero bond in a time slice
(see Eqs. 14.63 and 14.69) is quite awkward. Such conditions are more easily
formulated for the interest rate r(i, j ). All recursion relations for the short rate
follow from the arbitrage condition for the Green’s function, Eq. 14.46. This
expression for the instantaneous discount factor in the form of Eq. 14.75 is

B(t, t + nδt) =
n−1∑
i=0

G(i, n − i − 1)

1 + r(i, n − i − 1)δt
. (14.76)

14.12.1 Normal Models

If the short rate r(i, j ) in Eq. 14.75 is governed by a stochastic process of the
form given in Eq. 14.57, then Eq. 14.61 holds. The recursion relation for the
short rate in the normal model is given by Eq. 14.64:

r(i, j ) = r(i − 1, j + 1) + 2b(i − 1, j )
√

δt

= r(0, j + i) + 2
√

δt

i∑
k=1

b(i − k, j + k − 1) . (14.77)

Substituting this into Eq. 14.76 with j = n − i − 1 and performing the
transformation n → n + 1, we obtain a condition analogous to Eq. 14.63 for
the interest rate r(0, n) at the lowest node in the time slice n

B(t, t + (n+ 1)δt) =
n∑

i=0

G(i, n − i)

1 + r(0, n)δt + 2δt3/2
∑i

k=1 b(i − k, n − i + k − 1)
.

This equation can only be solved numerically for r(0, n). Once this value
is known, Eq. 14.77 provides all other r(i, j ) on the time slice n. From
the r(i, j ), the discount factors can then be calculated immediately using
Eq. 14.75. Note that in the case of discrete compounding, the arbitrage
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condition, Eq. 14.76, can no longer be solved analytically, not even in the
context of the normal model.

14.12.2 Lognormal Models

If the short rate r(i, j ) in Eq. 14.75 is governed by a stochastic process of the
form 14.58, then Eq. 14.67 holds. The recursion relation for the short rate in
the lognormal model is given by Eq. 14.70:

r(i + 1, j ) = r(i, j + 1) exp
{

2b(i, j )
√

δt
}

= r(0, j + i)

i∏
k=1

α(i − k, j + k − 1) (14.78)

with α(i, j) as defined in Eq. 14.68. Substituting this into Eq. 14.76 with
j = n − i − 1, and performing the transformation n → n + 1, we obtain
the condition on the interest rate r(0, n) at the lowest node in the time slice
n analogous to Eq. 14.69

B(t, t + (n + 1)δt) =
n∑

i=0

G(i, n − i)

1 + r(0, n)δt
∏i

k=1 α(i − k, n − i + k − 1)
.

Again, this can only be solved for r(0, n) numerically. Once this has been
done, the other values r(i, j ) in the time slice n can be calculated immediately
using Eq. 14.78. The discount factors are finally determined from the r(i, j )

using Eq. 14.75.

14.13 Other Interest Rate Models

The world of interest rate models is not limited to the models presented so far.
Instead, there are a couple of other models used in practice. For example, a
further, quite important class of models are market models, which in contrast
to Heath Jarrow Morton models use forward rates for finite periods as driving
factors. The LIBORmarket model plays here an especially dominant role. Such
a model may use, e.g., 6M LIBOR rates as driving factors. For a time horizon
of 30 years, a model with 60 non-overlapping forward rates as stochastic factors
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could be constructed. Each forward rate follows a log-normal (or, alternatively,
normal) process, which are not independent, but correlated with each other. In
general, the number of independent stochastic drivers is reduced by means of
a principal component analysis (see Chap. 34) to a few factors only (typically,
3 or 4). Each forward rate is a martingale in its own T measure, where T is
the end date of the period the interest rate belongs to. By application of a
unique numeraire to all 60 forward rates, a drift term is implied by the change
of numeraire. For an extensive discussion of the LIBOR market model see for
example [4, 21].


	14 Interest Rates and Term Structure Models
	14.1 Instantaneous Spot Rates and Instantaneous Forward Rates
	14.2 Important Numeraire Instruments
	14.2.1 The Risk-Neutral Measure
	14.2.2 The Forward-Neutral Measure

	14.3 The Special Case of Deterministic Interest Rates
	14.4 Tradable and Non-tradable Variables
	14.5 Convexity Adjustments
	14.5.1 In-Arrears Swaps
	14.5.2 Money Market Futures
	Quotation for Money Market Futures


	14.6 Arbitrage-Free Interest Rate Trees Grid (Tree) Models
	14.6.1 Backward Induction
	14.6.2 Forward Induction and Green's Functions

	14.7 Market Rates vs. Instantaneous Rates
	14.7.1 Arrow-Debreu Prices
	14.7.2 Pricing Caplets Using Arrow-Debreu Prices
	Practical Implementation of Arrow-Debreu Prices


	14.8 Explicit Specification of Short Rate Models
	14.8.1 The Effect of Volatility
	14.8.2 Normal Models
	14.8.3 Lognormal Models
	Exact Reproduction of the Term Structure with the Lognormal Model


	14.9 The Example Program TermStructureModels.xlsm
	14.9.1 Construction of Interest Rate Trees and Option Pricing
	14.9.2 Absolute and Relative Volatilities
	14.9.3 Calibration of Volatilities

	14.10 Monte Carlo on the Tree
	14.11 The Drift in Term Structure Models
	14.11.1 Heath-Jarrow-Morton Models
	14.11.2 Short Rate Models

	14.12 Short Rate Models with Discrete Compounding
	14.12.1 Normal Models
	14.12.2 Lognormal Models

	14.13 Other Interest Rate Models


