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Martingales and Numeraires

13.1 The Martingale Property

The most important and profound concept that the reader may have gained
from the material presented in this book so far is that of risk neutrality, which
can be summarized as follows:

Today’s price of a (tradable) financial instrument is equal to the discounted
expectation of its future price if this expectation is calculated with respect to
the risk-neutral probability measure.

At this point, we recommend that the reader reviews Sects. 7.1.3, 7.2.1
and 9.2.3. We will now elaborate on the concept of risk neutrality.
The risk-neutral probability is an example of a martingale measure. Mar-

tingale measures are a specific class of probability measures satisfying the
property—as we are about to see—described in Eq. 13.1. For an intuitive
explanation of the term measure: probability distributions can be interpreted
as measures since the expectation of a function f (X) of a random variable X,
having a distribution with density function p, can be interpreted as an integral
with respect to a certain integral measure:

E [f (X)] =
∫

f (x) p(x)dx︸ ︷︷ ︸
Integral Measure
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By replacing the Riemann integral measure dx with the probability measure
p(x)dx, we obtain the expectation of the random variable f (X) by integrat-
ing the function f with respect to this probability measure.

Martingale theory is an intensively researched field of mathematics, and
recognizing that the price process of a derivative can be interpreted as a mar-
tingale allows the application of martingale theory in the valuation of financial
instruments. Because of its generality, the utilization of martingale theory
requires very few of the assumptions listed in Chap. 4, namely Assumptions 1,
2, 3, 5. For sake of simplification, we assume that Assumption 4 from Chap. 4
is fulfilled, too. The methods presented here will not be discussed in complete
mathematical detail, but will be motivated by our “experience” of the subject
gained in previous sections.

The results in Sect. 9.2.3 are based on the somewhat surprising observation
that the probability p′ of an upward move u in the underlying price in
the real world does not appear in Eqs. 9.8 or 9.13. Only the risk-neutral
probability plays a role. This observation led to Eq. 9.20 and the interpretation
of derivative prices as expectations taken with respect to a certain probability
measure.

At this stage, we wish to generalize this concept. Consider again the
derivation of Eq. 9.8. The specific type of the financial instrument V does not
come into play. The discussion took place in the context of options merely for
simplicity’s sake, making use of none of the properties particular to options.
Hence, Eq. 9.20 holds for all financial instruments whose value is governed
by the price of the underlying S. Furthermore, at no point in the derivation
did the process S have to have a particular form. This means that Eq. 9.20
holds for arbitrary instruments on arbitrary underlyings, in other words, for
all general processes of the form 2.19. Such processes are much more general
than the simple randomwalk given by Eq. 2.23, for example. This is of decisive
importance in the analysis of term structure models. In fact, the generality of
Eq. 9.20 goes still further. Using B(T , T ) = 1, Eq. 9.20 can be written as

V (t)

B(t, T )
= E

[
V (T )

B(T , T )

]
,

where we recall that the expectation at time t has been taken with respect to
the risk-neutral probability p.

Defining the normalized price as

Z(t) := V (t)

B(t, T )
,
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we arrive at the elegant form

Z(t) = E [Z(T )] . (13.1)

In other words:

The normalized price at time t is given by the expectation (with respect to p) of
the future normalized price.

This expresses the martingale property in its “purest” form.We can also say:

The normalized price is a martingale (with respect to p).

Normalizing the price means nothing other than expressing the price of
the instrument in units of zero bonds maturing at T rather than in monetary
units such as euros. Thus, the numerical price does not tell us how much the
instrument costs in euros but how much the instrument costs in terms of zero
bonds.
Having shown that the martingale property holds (within limits1) for

arbitrary financial instruments on arbitrary underlyings, we now show that it
also holds for arbitrary normalizing factors. This indicates the truly general
character of the martingale property.

13.2 The Numeraire

In financial literature, the normalizing instrument is commonly referred to as
numeraire. In our discussions here, we will frequently use the more intuitive
expression normalization. We will now show that not only zero bonds but
arbitrary (tradable) financial instruments may serve as normalizing factors,
i.e., as numeraires. The numeraire used does not even have to refer to the
underlying S (the zero bond does not do so either). Let S be the price of an
underlying,V the price of an arbitrary financial instrument on this underlying,

1The limits are that the underlying has to follow a general Ito process of the form 2.19 and that the financial
instrument as well as the normalizing factor have to be traded instruments, see Sect. 14.4.
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and Y another arbitrary financial instrument (in our previous discussions, the
zero bond was chosen to play the role of Y ). As in the derivation of Eq. 9.8, let
the time evolution of the price of the underlying be described by a binomial
tree such as given in Eq. 9.2, for example.

We intend to construct a portfolio composed of α underlyings whose prices
are given by the process S and β of the financial instruments with a price
process given by Y :

�(t) = αtS(t) + βtY (t) . (13.2)

We require this portfolio to have a value equal to that of the derivative V in all
states of the world one time step later. Note that both the normalizing factor
Y and the underlying S must be tradable since otherwise the “α underlyings
at price S” or the “β instruments at price Y ” could be neither purchased
nor sold on the market and the construction of such a portfolio would be
impossible. Since the normalizing instrument Y can, as will be shown, be
chosen arbitrarily, there is no shortage of candidates for Y ; we simply select
any tradable instrument as the numeraire.

However, it is often the case that while a financial instrument on an
underlying is tradable, the underlying itself is not tradable. This situation
arises quite frequently. For example, the forward price S(t, T ) (see Eq. 6.1)
is generally not tradable even if the associated spot price S(t) is the price of
a tradable instrument (such as a stock). Despite this fact, the forward price
is often used as an underlying; the reader is referred to Eqs. 8.8 or 8.9 for
examples. Also, as we will show in detail in Sect. 14.4, interest rates are not
tradable either, in contrast to bonds which are financial instruments having the
interest rate as an “underlying”. In such cases, a second tradable instrumentUS

having S as its underlying is chosen in addition to the numeraire instrument Y .
The only restriction in the choice of this second instrument is that it must not
be possible to construct US by a portfolio consisting solely of the numeraire
instrument (we need two truly “linearly independent” instruments).

A portfolio can now be constructed similar to Eq. 13.2 by replacing the
non-tradable underlying S with the tradable instrument US . A non-tradable
underlying does not, in principle, complicate the situation as long as a
tradable instrument on the underlying US (which cannot be represented by
the numeraire instrument) can be found.2

2If S itself is tradable, it can, of course, be chosen as the (tradable) instrument US . If this is the case, we
merely need to replace US with S in all pertinent equations derived in the following material.
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�(t) = αtUS(t) + βtY (t) . (13.3)

The portfolio thus constructed is required to have the same value as the
derivative V after proceeding by one time step. Hence

αtUSu
+ βtYu = �u

!= Vu

αtUSd
+ βtYd = �d

!= Vd . (13.4)

We end up with two equations for both cases S(t + δt) = Su and S(t +
δt) = Sd .
The weights α and β satisfying both of these equations can now be uniquely

determined.3

αt = VuYd − VdYu

USu
Yd − USd

Yu

, βt = VdUSu
− VuUSd

USu
Yd − USd

Yu

. (13.5)

If in all events the derivative and the portfolio have the same value at time
t + δt , their values must also be equal at time t . Otherwise an arbitrage
opportunity would exist.

V (t) = �(t) = αtUS(t) + βtY (t)

= VuYd − VdYu

USu
Yd − USd

Yu

US(t) + VdUSu
− VuUSd

USu
Yd − USd

Yu

Y (t) . (13.6)

It is exactly at this point that the assumption of an arbitrage free market
enters into our discussion. As we continue with the derivation, we will
clearly recognize how this assumption, together with the normalizing factor
Y , uniquely determines the martingale probability p. Collecting terms with
respect to the coefficients of Vu and Vd , we obtain

V (t) = Vu

YdUS(t) − USd
Y (t)

USuYd − USd
Yu

+ Vd

USuY (t) − YuUS(t)

USuYd − USd
Yu

.

In view of our goal of finding a representation of the value of the derivative
normalized with respect to the numeraire instrument Y , we rewrite the above

3E.g., α may be determined by multiplying the first equation with Yd and the second equation with
Yu and subtraction of the resulting equations. Similar, β could be determined by multiplying the first
equation with USd

and the second equation with USu
and, again, subtraction of the resulting equations.
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equation in the form

V (t)

Y (t)
= Vu

Yu

YdUS(t)/Y (t) − USd

USuYd/Yu − USd

+ Vd

Yd

USu − YuUS(t)/Y (t)

USu − USd
Yu/Yd

.

This equation can now be written as

Z(t) = Zupu + Zdpd (13.7)

by defining the normalized prices as

ZS(t) := V (t)

Y (t)
, Z

u,d
S (t + δt) := VSu,d

(t + δt)

Yu,d(t + δt)

and the “probabilities” as

pu := Yd
US

Y
− USd

USu

Yd

Yu
− USd

= YuYdUS − YuYUSd

YdYUSu
− YuYUSd

=
US

Y
− USd

Yd

USu

Yu
− USd

Yd

pd := USu
− Yu

US

Y

USu
− USd

Yu

Yd

= YdYUSu
− YdYuUS

YdYUSu
− YuYUSd

=
USu

Yu
− US

Y

USu

Yu
− USd

Yd

. (13.8)

where the last expressions are obtained by dividing both the numerator
and denominator by YuYdY . Note that these p are independent of the
derivative V . They depend explicitly only on the normalizing factor Y and the
instrument US . The form of these functions arose from the assumption of an
arbitrage-free market as expressed in Eq. 13.6. If pu and pd could actually be
interpreted as probabilities, Eq. 13.7 would have the form indicated in Eq. 13.1.
Before showing that this is the case, we make the following remark on the
computation of p in practice: Instead of expressing p in terms of US and Y ,
as just presented, Eq. 13.7 can be used to write p as a function of Z (and thus
of V and Y ). Making use of the equality pd = 1 − pu yields

pu = Z(t) − Zd

Zu − Zd

. (13.9)

This is a method frequently employed in explicitly computing martingale
probabilities in practice. This expression has the disadvantage that the inde-
pendence of p on the derivative V is not immediately recognizable.
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Before we can interpret p as a probability, it remains to show that p does
in fact satisfy all requisite properties. The following conditions, holding for all
probabilities, must be checked4:

pu + pd = 1 , pu ≥ 0 , pd ≥ 0 (13.10)

Using simple algebra, it follows immediately from the explicit representation
in Eq. 13.8 that pu + pd = 1 holds. In order to recognize the implications of
the other two conditions, note that pu and pd have a common denominator
USu

Yu
− USd

Yd
. This factor is greater than zero if and only if the normalized price of

US in the “down state” is smaller than in the “up state”. This is not necessarily
always the case,5 since “up” and “down” are defined by the unnormalized
underlying price S (Su > Sd by definition) and not by the normalized price of
the instrument US . If such should be the case, i.e., if the denominator should
be less than zero, both numerators must be less than zero as well. Just as both
numerators must be greater then zero if the denominator is greater than zero.
In summary,

USu

Yu

>
US

Y
>

USd

Yd

for Su > S > Sd

or (13.11)

USu

Yu

<
US

Y
<

USd

Yd

for Su > S > Sd

must hold. The normalized price of the instrument US must therefore be a
strictly monotone function of the underlying price. If this is not the case, we
are immediately presented with an arbitrage opportunity. Let us assume for
instance, that USu

Yu
< US

Y
>

USd

Yd
. This market inefficiency could be exploited

by selling (short selling) the instrument US at time t and using the proceeds
to purchase a = US/Y of the instrument Y. This is always possible as both Y

and US are tradable instruments. This portfolio has a value at time t of

−US + aY = −US + (
US

Y
)Y = 0

4If all three of these conditions hold, it follows immediately that pu ≤ 1 and pd ≤ 1 as well.
5Even when S is tradable, allowing US to be replaced by the underlying, there are several common
instruments that violate this condition when used as a normalizing instrument. For example, the value C

of a plain vanilla call on S increases faster (in percentage terms) than S itself, implying for the quotient
S

C(S)
that S2

C(S2)
<

S1
C(S1)

for S2 > S1.
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One time step later, the portfolio’s value is, in all events u and d, positive since

−USu
+ aYu = −USu

+ (
US

Y
)Yu = Yu

[
−USu

Yu

+ US

Y

]
︸ ︷︷ ︸

>0

> 0

−USd
+ aYd = −USd

+ (
US

Y
)Yd = Yd

[
−USd

Yd

+ US

Y

]
︸ ︷︷ ︸

>0

> 0

This strategy leads to a certain profit without placing investment capital at
risk. The fact that the value of the portfolio is positive in both possible states
u and d can be directly attributed to the assumption that US

Y
is greater than

both USd

Yd
and USu

Yu
, thereby violating the condition in Eq. 13.11. Conversely, if

USu

Yu
> US

Y
<

USd

Yd
, an analogous arbitrage opportunity arises by following the

strategy of going long in US and short in a = US/Y of the instrument Y .
It follows immediately from these arbitrage considerations that, if the

market is arbitrage free, the condition in Eq. 13.11 is automatically satisfied by
every tradable financial instrument playing the role of the numeraire and every
tradable instrument US on the underlying and, in consequence, need not be
verified in practice. pu and pd in Eq. 13.8 are therefore actually probabilities
(they satisfy all the properties in 13.10), implying that the normalized price
Z = V/Y (and thus the normalized prices of all tradable instruments on S)

is a martingale. Or conversely, if it were possible to find a tradable instrument
US on S whose price, normalized with respect to numeraire instrument Y ,
is not a martingale, a portfolio consisting of instruments US and Y could be
constructed, making arbitrage possible.

13.3 Self-financing Portfolio Strategies

The discussion given above was restricted to one single discrete time step. The
extension to arbitrarily many discrete time steps is completely analogous. As
described in Chap. 9, we obtain at every node of the tree a replicating portfolio
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consisting of the numeraire instrument and a financial instrument on the
underlying (or the underlying itself if it is tradable6) in order to replicate both
possible derivative prices in the next step. Such a replication of the derivative
V through a portfolio composed of US and Y (or S and Y, if S is tradable)
corresponds to a hedge of V (for more on this subject, see Chap. 12). As we
move from one time step to the next, this hedge is constantly adjusted by
adjusting the value of the weights αt and βt of the (financial instrument on
the) underlying and the numeraire.
Two conditions must be fulfilled to make this adjustment. First, it must be

possible to specify the weights at the beginning of a time step and they must
not depend on later realizations of the spot price. That is, the weights αt and
βt required to replicate exactly the derivative one time step later at t + δt in all
cases need to be known at time t . In other words, it is predictable (previsble)
at time t which weights αt and βt will replicate the derivative at time t + δt .
Such a process, which’s value at one time step later is known at any time step
is called previsable process. The second condition demands that the portfolio
is self financing. This implies that the required adjustments of the weights by
selling or buying US must be reflected by similar buying or selling an equal
amount of the numeraireY . In other words, at no timemoneymust be injected
to or withdrawn from the hedge portfolio of underlying and numeraire. Such
a strategy is called self-financing.
To ensure that the first condition is met, we consider again Eq. 13.5:

αt = VuYd − VdYu

USuYd − USd
Yu

, βt = VdUSu − VuUSd

USuYd − USd
Yu

.

The terms Vu,d , Yu,d and USu,Sd
depend on S(t) (since then Su resp. Sd are

determined), but don’t depend on S(t + δt), i.e., the actual realization of S at
time t + δt . Therefore, it is a previsible process and the first condition is met.
Next, we consider the time development of the hedge-portfolio �(t) and

the derivative V (t) to verify the second condition. At the start time t we have
by construction

V (t) = �t(t) = αtUS(t) + βtY (t) .

6InChap. 9, the normalizing instrumentY was taken to be the zero bondB with a face value ofB(T , T ) =
1 and weight βt = g(t). The value of this zero bond changed from t to t + δt from Y = B(t, T ) to
Yu = Yd = B(t, T )B(t)−1 with B(t) = B(t, t + dt). The weight αt of the underlying was denoted by
�.
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The index t of �t(t) indicates here that we consider the hedge portfolio with
parameters αt and βt , as determined at time t . One time step late, we have

�t(t + δt) = αtUS(t + δt) + βtY (t + δt) .

Now we determine new values for α and β belonging to time t + δt and the
hedge portfolio will be re-adjusted. Thus, we get for the new portfolio

V (t + δt) = �t+δt (t + δt) = αt+δtUS(t + δt) + βt+δtY (t + δt) .

Our hedging strategy is self-financing if and only if the portfolio value before
and after the re-adjustment is the same:

�t+δt (t + δt) = �t(t + δt) = αtUS(t + δt) + βtY (t + δt) . (13.12)

Since αt and βt are determined according to Eq. 13.4, it follows immediately
that Eq. 13.12 is also true in all possible scenarios of our binomial world (S(t+
δt) = Su or S(t + δt) = Sd ). Therefore, the strategy is self-financing by
construction.

It is worthwhile to consider this fact from another point of view which
allows us to quickly verify whether or not a portfolio is self financing. The
total difference δ�(t) in the value of a portfolio for a certain trading strategy
over a time span δt equals the difference in the value at time t + δt of the
portfolio set up at time t + δt and the value at time t of the portfolio set up
at time t , thus

δ�(t) = �t+δt (t + δt) − �t(t) = �t(t + δt) − �t(t)︸ ︷︷ ︸
δ�Market

+ �t+δt (t + δt) − �t(t + δt)︸ ︷︷ ︸
δ�Trading

.

We arrive at the second equation by simply inserting a zero in the form
0 = �t(t + δt) − �t(t + δt). It is now easy to recognize both components
contributing to the total change in �: δ�Market is the change in value of the
portfolio resulting from changes in the market without having adjusted the
positions in the portfolio. δ�Trading is the difference at time t +δt between the
value of the new portfolio and that of the old portfolio, i.e., the value change
resulting solely from trading. For the strategy to be self financing, δ�Trading

must equal zero since the value of the old portfolio must provide exactly the
funds necessary to finance the new portfolio. Consider for example a portfolio
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composed of two instruments having the form �(t) = αtUS(t) + βtY (t) as
above:

δ�Market = �t(t + δt) − �t(t) = αt [US(t + δt) − US(t)]︸ ︷︷ ︸
δUS (t)

+ βt [Y (t + δt) − Y (t)]︸ ︷︷ ︸
δY (t)

δ�Trading = �t+δt (t + δt) − �t(t)

= US(t + δt)[α(t + δt) − αt ]︸ ︷︷ ︸
δαt

+ Y (t + δt)[β(t + δt) − βt ]︸ ︷︷ ︸
δβ(t)

,

that is,

δ�(t) = αtδUS(t) + βtδY (t) + US(t + δt)δαt + Y(t + δt)δβt

= αtδUS(t) + βtδY (t) for a self financing strategy. (13.13)

This implies that the strategy is self financing if and only if the total change in
the portfolio’s value from one adjustment period to the next can be explained
exclusively by market changes. This holds for infinitesimal time steps as well:

�(t) = αtUS(t) + βtY (t) self financing strategy

⇐⇒ d�(t) = αtdUS(t) + βtdY (t) . (13.14)

From this point of view, we again consider the structure of Eq. 13.13. The
change δ� over the next time step is composed of the change δU and the
change δY. At time t , neither the value of δU nor of δY are known (we cannot
even say if these are “upward” or “downward”), but the coefficients αt and βt

controlling the influence of these changes on δ� are known at time t .
Compare this with the general Ito process given in Eq. 2.19. The coefficients

a(S, t) and b(S, t) which control the next step in the process are also already
known at time t . These coefficients a and b are also previsible processes.

13.4 Generalization to Continuous Time

The profound and important concepts presented above can be summarized as
follows:

• For any arbitrary underlying S which follows a stochastic process of the
general form indicated in Eq. 2.19,
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• and any tradable instrument U with S as its underlying (or S itself if it is
tradable)

• and any other arbitrary, tradable, financial instrument Y (numeraire),
• the assumption of an arbitrage-free market implies the existence of a

(numeraire-dependent) unique probability measure p,
• such that the current, normalized price Z = V/Y (also called the relative

price) of an arbitrary, tradable, financial instrument V on S

• equals the expectation of the future normalized price and thus, Z is a
martingale with respect to p.

• This statement holds because a self financing portfolio strategy with pre-
visible weights can be followed which replicates (hedges) the price of the
financial instrument V at all times.

The expectation is taken at time t with respect to the Y -dependent
probability measure p. This dependence is given explicitly by Eq. 13.8 (in the
context of a binomial tree over one time step). To emphasize this dependence,
the expectation is often equipped with the subscript t and the superscript Y :

Z(t) = EY
t [Z(u)] ∀u ≥ t . (13.15)

The intuitive interpretation of Eq. 13.15 is that the expected change in the
normalized price of the tradable instrument is zero with respect to this
probability measure, in other words, the normalized price has no drift. This
implies that in this measure such a normalized price process has the form given
in Eq. 2.19 with no drift term:

dZ(t) = bZ(S, t) dW̃ mit dW̃ ∼ X
√

dt, X ∼ N(0, 1) . (13.16)

Here, dW̃ is a Brownianmotion and bZ a (previsible) process which is different
for each different instrument.

The material presented thus far has been restricted to discrete time steps.
But the above statements hold in continuous time as well. To see this, several
fundamental theorems from stochastic analysis are required. In the following,
the insights gained in the study of discrete processes will be carried over to
the continuous case and the necessary theorems from stochastic analysis will
be used (without proof ) when needed. In addition to extending the results
already obtained to the time continuous case, the object of the following
discussion is to provide a deeper understanding of the general approach to
pricing derivatives, in particular, an understanding of role of the drift of an
underlying.
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We therefore consider a very general (not necessarily tradable) underlying
S, which, in the real world, is governed by an Ito process satisfying Eq. 2.19,
i.e.

dS(t) = a(S, t) dt + b(S, t) dW with dW ∼ X
√

dt, X ∼ N(0, 1) .

(13.17)

Let U(S, t) denote the price of a tradable, financial instrument with an
underlying S. The process for U in the real world, according to Ito’s lemma, is
given by Eq. 2.21 as

dU(S, t) = aU(S, t)dt + ∂U

∂S
b(S, t) dW with

aU(S, t) := ∂U

∂S
a (S, t) + ∂U

∂t
+ 1

2

∂2U

∂S2
b(S, t)2 , (13.18)

Here aU(S, t) denotes the drift of U .
Furthermore, we select an arbitrary, tradable instrument Y as the numeraire

instrument. Note, however, that the choice of the numeraire Y is not com-
pletely arbitrary. It has always been tacitly assumed that our market is driven by
just one single random factor (one-factor model), namely the Brownian motion
dW in Eq. 2.19. The numeraire instrument may indeed be any arbitrary,
deterministic or stochastic instrument, but if it has a stochastic component,
it must be driven by the same random walk as the underlying S. If not, the
resulting model would be a multi-factor model, and in consequence could
not be completely “spanned” by the two instruments U and Y . Analogous
to Eq. 2.19, the most general process describing the numeraire instrument Y

satisfies

dY(t) = m(Y, t) dt + n(Y, t) dW with dW ∼ X
√

dt, X ∼ N(0, 1)

(13.19)

with (previsible) processes m and n and the same random walk dW , which
drives the random component of the underlying S in Eq. 13.17.
Motivated by our experience with Sect. 13.1, we seek a probability measure

with respect to which the prices of all tradable instruments (which depend
on no stochastic factors other than the Brownian motion dW in Eq. 13.17)
normalized with the numeraire instrument Y are martingales. We are as yet
quite far from attaining this goal. We start by aiming at the short-term goal of
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finding a measure for which the normalized price

Z(S, t) := U(S, t)

Y (t)
(13.20)

of a single selected instrument U is a martingale. The product rule establishes
the following equation for the process Z7:

dZ = d
[
Y−1U

] = Ud
[
Y−1] + Y−1dU + dUd

[
Y−1] (13.21)

The differential dU was already specified above. The differential of f (Y ) :=
Y−1 is obtained through an application of Ito’s lemma, Eq. 2.21, under
consideration of ∂f/∂Y = −1/Y 2, ∂2f/∂Y 2 = 2/Y 3 and ∂f/∂t = 0.
Simple substitution gives

d
[
Y−1

]
=
[
− 1

Y 2
m + 1

Y 3
n2
]

dt − 1

Y 2
n dW

The last term in Eq. 13.21 appears since the product of the two differentials
contains not only higher order terms but also a term ∼ dW 2 which is linear
in dt (see Eq. 2.20), explicitly:

dUd
[
Y−1

] =
(

aUdt + ∂U

∂S
b dW

)
1

Y 2

([−m + n2/Y
]
dt − n dW

)

= −∂U

∂S
b

n

Y 2
(dW)2︸ ︷︷ ︸

∼dt

+ O (dtdW) .

This effect clearly stems from the fact that both dU and dY are no ordinary
but stochastic differentials.8 Altogether dZ becomes

dZ = U

Y

([
n2

Y 2
− m

Y

]
dt − n

Y
dW

)
+ aU

Y
dt + ∂U

∂S

b

Y
dW − ∂U

∂S

bn

Y 2
dt

7We suppress the arguments of U, Y, a, b,m and n in order to keep the notation simple. The arguments
of these variables are always those as given in Eqs. 13.17 and 13.19.
8Equation 13.21 can be proven formally by applying Ito’s lemma (in the version for two stochastic variables)
to the function f (U, Y ) = U Y−1.



13 Martingales and Numeraires 267

=
(

b

Y

∂U

∂S
− n

Y

U

Y

)
dW +

(
aU

Y
+
[

n2

Y 2
− m

Y

]
U

Y
− bn

Y 2

∂U

∂S

)
dt

=
(

b

Y

∂U

∂S
− n

Y

U

Y

)⎧⎨
⎩dW +

aU +
[

n2

Y 2 − m
Y

]
U − b n

Y
∂U
∂S

b ∂U
∂S

− nU
Y

dt

⎫⎬
⎭ ,

(13.22)

where the coefficient of dW is factored out “by force” in the final step. We
seek a probability measure with respect to which Z is a martingale, or in other
words, a process of the form specified in Eq. 13.16. The process dZ would
have the desired form if a measure existed with respect to which

dW̃ := dW +
aU +

[
n2

Y 2 − m
Y

]
U − b n

Y
∂U
∂S

b ∂U
∂S

− nU
Y

dt (13.23)

were a standard Brownian motion, i.e.,

dW̃ ∼ X
√

dt mitX ∼ N(0, 1) .

Stochastic analysis delivers just such a theorem, namely the famous Girsanov
Theorem:

Theorem 1 (Girsanov) Let W(t) be a Brownian motion with respect to a
probability measure P , and γ (t) a previsible process which (for some future time
T ) satisfies the boundedness condition

EP
[

exp

(
1

2

∫ T

0
γ (t)dt

)]
< ∞

Then there exists a measureQ, equivalent9 to P , with respect to which

W̃ (t) = W(t) +
∫ t

0
γ (s)ds

9Two probability measures are called equivalent if they agree exactly on what is possible and what is
impossible. I.e. an event is impossible (probability zero) in one probability measure if and only if it is
impossible in all equivalent probability measures.
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is a Brownian motion. This implies that

dW(t) + γ (t)dt = dW̃(t) ∼ X
√

dt with X ∼ N(0, 1)

Conversely, in the measureQ the original processW(t) is a Brownian motion with
an additional drift component, −γ (t): dW(t) = dW̃(t) − γ (t)dt

In order to apply the theorem, the coefficient of dt in Eq. 13.23 must
be identified with the process γ (t) in the Girsanov Theorem. We begin
by observing that this coefficient depends only on variables which can be
evaluated at time t and as such can itself be determined at time t . This
implies that it is previsible. Proceeding under the assumption that the technical
boundedness condition in the theorem is satisfied (this will always be the case
in our models), the theorem provides a measure with respect to which dW̃

is in fact a simple Brownian motion. dZ in Eq. 13.22 then has a form as in
Eq. 13.16 with

bZ(S, t) = b

Y

∂U

∂S
− n

Y

U

Y
. (13.24)

Canwe now conclude thatZ is a martingale with respect to this measure?Does
the absence of a drift in Eq. 13.16 directly imply10 the martingale property in
Eq. 13.1? Again, stochastic analysis provides theorems which ensures (if certain
technical conditions are satisfied, see [11, page 79], for example) that this is
the case. The measure for which dZ has the form 13.16 is thus a martingale
measure.

We have thus attained our first goal by finding a measure with respect to
which the normalized price of one selected instrumentU (or for S if S should
be tradable) is a martingale. The only requirement made of the instrument U

is that it be tradable. Thus, for every arbitrary, tradable financial instrument
(with S as an underlying) there exists a martingale measure. This measure
could, at this point in the discussion, be different for each instrument U , in
other words, it may be dependent on our choice ofU (just as it depends on the
choice of numeraire instrument Y ). It remains to show that the normalized
price of every tradable instrument (with S as its underlying) is a martingale
with respect to the same probability measure. In the discrete case, the essential
point was that a self financing strategy for a portfolio consisting of U and Y

10We have already shown the reverse implication above.
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exists which replicates V exactly. We will need another important theorem
from stochastic analysis to establish this for the time continuous case:

Theorem 2 (Martingale Representation) If Z is a martingale with respect to
the probability measure P with a volatility which is non-zero almost everywhere
with probability P = 1, i.e., if Z follows a stochastic process satisfying

dZ = bZ(t)dW with P [bZ(t) �= 0] = 1 ∀t

with a previsible process bZ(t), and if there exists in this measure another
martingale X, then there exists a previsible process α(t) such that

dX = α(t)dZ

Or equivalently in integral form

X(t) = X(0) +
∫ t

0
α(s)dZ(s)

The processα(t) is unique. Furthermore,α and bZ together satisfy the boundedness
condition

E
[

exp

(
1

2

∫ T

0
α2(t)b2

Z(t)dt

)]
< ∞ .

This theorem states intuitively that (if the volatility is non-zero), two martin-
gales differ at most by a previsible process. This implies that any martingale
can be represented by any other martingale and a previsible process.
As yet, we only have one martingale in our measure, namely Z, the

normalized price of U. In order to apply the theorem, we need a second
martingale.And since we wish to gather information about the price of another
arbitrary financial instrument V, we must construct a second martingale from
this instrument V . We do this with the help of yet another quite simple
theorem:

Theorem 3 (Tower Law) For any arbitrary function V , depending on events
occurring up to some specified future time T > t, the expectation at time t of
V (T ) with respect to any arbitrary probability measure P ,

E(t) := EPt [V (T )]
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is a martingale with respect to P , explicitly

E(t) = EPt [E(u)] ∀u > t

It is easy to see that this theorem is true: substituting the definition of E

into the claim that E(t) is a martingale reads

EP
t [V (T )] = EP

t

[
EP

u [V (T )]
] ∀u > t (13.25)

This implies that in taking the expectation at time u and subsequently taking
the expectation of this expectation at an earlier time t we arrive at the same result
as if we had directly taken the expectation with respect to the earlier time t in
the first place. The reader should become familiar with this idea by verifying
it using the binomial or trinomial trees presented in Figs. 9.1 or 9.2.

The payoff profile V (T ) of a financial instrument with maturity T is
a function depending only on events (values of the underlying process S)
occurring up to time T .The Tower Law states that the expectation of this payoff
profile is a martingale with respect to every probability measure, in particular
with respect to the martingale measure of Z from Eq. 13.20. Thus, we have
found two processes which are martingales with respect to this measure,
namely Z(t) and EY

t [V (T )].
But we want more. We want the (appropriately normalized) price V (t)

itself to be a martingale, not merely the expectation of the payoff profile
V (T ). In the discrete case (and in the continuous case for U as well),
this was accomplished by considering the normalized prices. We therefore
consider instead of V the payoff profile normalized with Y , V (T )/Y (T ).The
expectation (taken at time t with respect to the martingale measure of Z) of
this function

E(t) := EY
t

[
V (T )

Y (T )

]

is, because of the Tower Law, also a martingale, which we denote by E(t)

in what follows. Furthermore, the payoff of V at maturity t = T is exactly
replicated by the product Y(t)E(t) since

Y(T )E(T ) = Y(T )EY
T

[
V (T )

Y (T )

]
= Y(T )

V (T )

Y (T )
= V (T ) (13.26)
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It is now clear how the existence of a replicating portfolio can be established
through an application of the martingale representation theorem: the martin-
gale in question is E(t), the expectation of the normalized derivative price
at maturity, and as our second martingale we take Z(t) from Eq. 13.20,
the normalized price of the initially selected tradable instrument U . The
martingale representation theorem now states that (if the volatility of Z is
always non-zero) the process E(t) differs from the process Z(t) only by a
previsible process αt :

dE = αtdZ (13.27)

We use this previsible process now to construct a portfolio consisting of αt

of the instrument U and βt of the numeraire instrument Y as was done
in Eq. 13.3. This is always possible since αt is previsible by the Martingale
Representation Theorem and both U and Y are tradable.

�(t) = αtU(t) + βtY (t) . (13.28)

This portfolio should equal Y(t)E(t) for all times t ≤ T since, according to
Eq. 13.26, it then replicates the payoff of V upon its maturity exactly, i.e.,
when t = T . From this condition, we can derive the number βt of numeraire
instruments required for the replicating portfolio:

Y(t)E(t) = �(t) = αtU(t) + βtY (t)

⇐⇒ βt = E(t) − αt

U(t)

Y (t)
= E(t) − αtZ(t) . (13.29)

We have thus established the existence of a replicating portfolio. It remains
to show that this portfolio is self financing, because only if no injection or
withdrawal of capital is required throughout the lifetime of the derivative can
we deduce the equality of the portfolio’s value and the value of the instrument
V . To this end, we consider the total change in the value of the portfolio in
light of Eq. 13.14:

d� = d (YE)

= EdY + YdE + dEdY

= EdY + YαdZ + αdZdY

= [β + αZ] dY + αYdZ + αdZdY
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= α [ZdY + YdZ + dZdY ] + βdY

= α d(ZY)︸ ︷︷ ︸
U

+ β dY ,

where in the second equality the (stochastic) product rule for stochastic
integrals has been applied, in the third equality the Martingale Representation
Theorem in form of Eq. 13.27, and in the fourth, Eq. 13.29 in the form
E(t) = βt+αtZ(t)has been used. In the last equation the (stochastic) product
rule has been applied again. The equation now states that the total change in
the portfolio defined in Eq. 13.28 results solely from the change in price of the
instruments U and Y and not from any adjustment of the positions α or β:

d�(t) = αtdU(t) + βtdY (t) .

Thus, via Eq. 13.14 the portfolio is self financing. The value of the portfolio is
by construction �(t) = Y(t)E(t) for all times. According to Eq. 13.26, this
replicates the payoff profile V (T ) exactly at time T . The value of the portfolio
must therefore equal that of the derivative for all previous times as well:

V (t) = �(t) = Y(t)E(t) = Y(t)EY
t

[
V (T )

Y (T )

]
(13.30)

and thus

V (t)

Y (t)
= EY

t

[
V (T )

Y (T )

]
(13.31)

Therefore, the normalized price of the tradable financial instrument V is
a martingale in the same probability measure with respect to which the
normalized price of the instrument U is a martingale. Since V was chosen
arbitrarily, this implies that the normalized price of all tradable instruments
are martingales with respect to the same probability measure.

Furthermore, the process αt can be calculated explicitly. Equation 13.27
states that αt is the change ofE per change inZ or in other words the derivative
of E with respect to Z. Using Eqs. 13.20 and 13.30, both Z and E can be
expressed in terms of the prices of tradable instruments (known at time t )

αt = ∂E(t)

∂Z(t)
= ∂ [V (t)/Y (t)]

∂ [U(t)/Y (t)]
. (13.32)
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The process α(t) corresponds to the sensitivity � introduced in Chap. 12. It
follows that Eq. 13.29 can be applied to calculate β(t) at time t explicitly as
well.

βt = E(t) − αtZ(t) = V (S, t)

Y (t)
− U(S, t)

Y (t)

∂ [V (S, t)/Y (t)]

∂ [U(S, t)/Y (t)]
.

We have thus accomplished our goal, having shown that the normalized
prices V/Y of all tradable instruments are martingales with respect to the
martingalemeasure ofZ = U/Y . The only question remaining is whether this
measure is unique or whether several such measures may exist. To answer this
question we apply yet another theorem from stochastic analysis which states
that for complete markets11 the martingale measure obtained above is unique.
The theorem [89] is stated explicitly here12:

Theorem 4 (Harrison-Pliska) A market consisting of financial instruments
and a numeraire instrument is arbitrage free if and only if there exists a measure,
equivalent to the real world measure, with respect to which the prices of all financial
instruments normalized with the numeraire instrument are martingales. This
measure is unique if and only if the market is complete.

Summary
At this stage, it is helpful to summarize what has been done in this section.
The summary corresponds to the summary at the beginning of the Sect. 13.4
(which was done for discrete time steps).

• We select a tradable instrument Y as the numeraire and another tradable
instrument U which has S as an underlying (if S itself is tradable, S can be
chosen directly).

• We then find the probability measure for which Z = U/Y is a martingale.
The Girsanov-Theorem guarantees that this is always possible via a suitable
drift transformation as long as a technical boundedness condition is satis-
fied.

• The Martingale Representation Theorem and the Tower Law enable the
construction of a self financing portfolio composed of the instrumentsU and
Y which replicates the payoff profile at maturity of any arbitrary, tradable

11A market is called complete if there exists a replicating portfolio for each financial instrument in the
market.
12As always, the term “if and only if” means that one follows from the other and vice versa.



274 H.-P. Deutsch and M. W. Beinker

instrument V having S as an underlying. The value of this replicating
portfolio is given by Eq. 13.30 where the expectation is taken with respect
to the martingale measure of Z = U/Y .

• This portfolio must be equal to the value of the derivative V (t) for all times
before maturity if the market is arbitrage free. This means that, according
to Eq. 13.31, the normalized price V/Y with respect to the martingale
measure ofZ is likewise a martingale. Thus, having obtained (via Girsanov)
a martingale measure for Z, the normalized price V/Y of all other tradable
instruments are martingales with respect to this same measure.

• Finally, the Harrison-Pliska Theorem states that this measure is unique in
complete markets: in complete markets there exists for each numeraire
instrument one singlemeasure with respect to which all tradable instruments
normalized with this numeraire are martingales.

13.5 The Drift

With respect to the martingale measure, the price processes of all instruments
normalized by the numeraire instrument Y are drift-free. The expected changes
in the normalized prices of tradable instruments are thus exactly equal to zero.
What can we say about the process of the underlying with respect to this
measure? The model Eq. 2.19 was set up to describe the underlying in the
real world. As we have seen however, the valuation of financial instruments
is accomplished in a world governed by the probability with respect to which
normalized prices of tradable instruments are martingales, i.e., processes of the
form indicated in Eq. 13.16. Hence, it is important to know how the underlying
process is transformed when the real probability measure is transformed into
the martingale measure.

Not only do we know that a martingale measure exists (and is unique in a
complete market) for Z = U/Y with respect to which Z can be represented
by a process of the form in Eq. 13.16. We also know from Eqs. 13.23 and 13.24
the explicit relationships between the variables in the real world and the
world governed by the martingale measure. We now make use of Eq. 13.23
in particular, to express the underlying S as given by the process 13.17 with
respect to the Brownianmotion dW in the real world in terms of the Brownian
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motion dW̃ with respect to the martingale measure (using the explicit form
for au from Eq. 13.18):

dS = a dt + b dW

= adt + b

⎧⎨
⎩dW̃ −

au +
[

n2

Y 2 − m
Y

]
U − b n

Y
∂U
∂S

b ∂U
∂S

− nU
Y

dt

⎫⎬
⎭

= adt −
∂U
∂S

a + ∂U
∂t

+ 1
2

∂2U
∂S2 b2 +

[
n2

Y 2 − m
Y

]
U − b n

Y
∂U
∂S

∂U
∂S

− n
b

U
Y

dt + bdW̃

=
b n

Y
∂U
∂S

− a n
b

U
Y

− ∂U
∂t

− 1
2

∂2U
∂S2 b2 −

[
n2

Y 2 − m
Y

]
U

∂U
∂S

− n
b

U
Y

dt + bdW̃ .

(13.33)

This equation explicitly specifies the underlying process with respect to the
martingale measure.
Note that in the transition from the real world measure to the martingale

measure, only the drift of the underlying has changed and not the volatility;
the coefficient of the Brownian motion remains b(S, t). This is not merely
coincidence but a natural consequence of the Girsanov Theorem which
intuitively states that a transformation between two equivalent probability
measures effects nothing more than a change in the drift.
We should further note that the Harrison-Pliska Theorem states that the

martingale measure in complete markets (we will from now on always assume
that the market is complete, if nothing else is explicitly stated) is unique. This
implies that the drift of S, used in the valuation of financial instruments on S

is unique as well, up to the choice of the numeraire instrument Y .
In the last equality in 13.33 the drift a(S, t) in the real world has been

written to share a common denominator with the second term ∼ dt . In doing
so, we observe that the terms ∼ ∂U

∂S
a cancel each other and the drift in the real

world enters into the equation corresponding to the martingale measure only
in the form of n

b
U
Y
a. For numeraire instruments Y satisfying Eq. 13.19 with

n(Y, t) = 0 ∀Y, t , i.e., for numeraires with processes of the form

dY(t) = m(Y, t) dt (13.34)
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the drift a of the real world disappears completely for the martingale measure
associated with Y ! Regardless of the drift a(S, t) chosen in the model, a(S, t)

is completely irrelevant for the valuation of financial instruments if the
numeraire chosen is a process of the form specified in Eq. 13.34.

Equation 13.34 by no means implies that Y must be deterministic, since
m(Y, t) is not assumed to be deterministic but only previsible.13 This means
that at time t the evolution of Y is only known for the step immediately
following t , but not for later steps.

As has already been mentioned on more than one occasion, the choice of
instrument to be used as the normalizing factor (the numeraire) is arbitrary
but this choice significantly affects whether a specific problem can be solved
elegantly or awkwardly. This is analogous to the selection of a suitable
system of coordinates when solving problems in physics, for example. We
see from Eq. 13.33 that an appropriate choice of numeraire can simplify
calculations substantially. The numeraire should always be chosen to be of the
form 13.34 for some previsible process m. This is always possible in practice
and all numeraire instruments in this book satisfy this property.14 For such
numeraires,m/Y in Eq. 13.33 is precisely the yield of the numeraire instrument,
since Eq. 13.34 obviously implies:

m = dY

dt
�⇒ m

Y
= 1

Y

dY

dt
= d ln Y

dt
. (13.35)

Using this equation and n = 0, the drift transformation equation 13.23
becomes

dW̃ = dW + aU − d ln Y
dt

U

b ∂U
∂S

dt

= dW + 1

b

[
aU

(
∂U

∂S

)−1

− d ln Y

dt

(
∂ ln U

∂S

)−1
]

dt (13.36)

13A previsible process is a stochastic process whose current value can be determined from information
available at the previous time step. Intuitively, it is a stochastic process “shifted back” one step in time.
14This will be shown below explicitly for all numeraire instruments used.
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and the underlying process in Eq. 13.33 reduces to

dS(t) = ã(S, t) dt + b(S, t)dW̃ mit

ã(S, t) =
(

∂U(S, t)

∂S

)−1 [
U(S, t)

d ln Y (t)

dt
− ∂U(S, t)

∂t
− b2(S, t)

2

∂2U(S, t)

∂S2

]
.

(13.37)

Only the tradable instrument U and the numeraire Y (and their respective
derivatives) and the “volatility“ b(S, t) of the underlying process S appear
in this expression. As already noted, the real underlying drift a(S, t) has
disappeared completely.
Since the prices of financial instruments must obviously be independent of

the method used to compute them, the following theorem holds irrespective
of the choice of numeraire:

Theorem 5 Suppose there exists a numeraire Y in an arbitrage-free market
satisfying Eq. 13.34 with a previsible process m(Y, t). Then the drift of the
underlying in the real world is irrelevant to the prices of financial instruments.
Arbitrage freedom alone determines the prices of financial instruments and not the
expectation of the market with respect to the evolution of the underlying.

In this context, it is interesting to consider the behavior of the non-
normalized process of the tradable instrument U in the martingale measure.
The process 13.18 in the real world is transformed via Eq. 13.36 to

dU = aUdt + ∂U

∂S
b dW

= aUdt + ∂U

∂S
b

{
dW̃ − 1

b

[
aU

(
∂U

∂S

)−1

− d ln Y

dt

(
∂ ln U

∂S

)−1
]

dt

}

= aUdt + ∂U

∂S
b dW̃ −

[
aU − U

d ln Y

dt

]
dt ,

and thus

dU(S, t) = d ln Y(t)

dt
U(S, t)dt + b(S, t)

∂U(S, t)

∂S
dW̃ . (13.38)
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The drift of a tradable instrument in the martingale measure for a numeraire
of the form specified in Eq. 13.34 is thus simply the product of the price of
the instrument and the yield of the numeraire!

Theorem 6 The expected yield (defined as the expected logarithmic price change
per time) of a tradable financial instrument in the martingale measure with
a numeraire of the form 13.34 is always equal to the yield of the numeraire
instrument.

EY
t

[
dU(S, t)

U(S, t)

]
= d ln Y(t)

dt
dt . (13.39)

In Eqs. 13.38 and 13.39, a tradable instrument is denoted by the letter U but
these properties naturally hold for all tradable instrument since, as discussed
in detail in the previous section, all tradable instruments are martingales with
respect to the same probability measure. The instrument U is not essentially
different from other tradable instruments in the market.

13.6 The Market Price of Risk

As emphasized several times previously, all tradable instruments U in a com-
plete, arbitrage-free market (normalized with respect to a selected numeraire)
have the same martingale measure. This implies that dW̃ in Eq. 13.23 is
always the same Brownianmotion for this measure. Since the Brownianmotion
dW of the underlying in the real world is not dependent on the specific
financial instrument either, this must hold for the difference dW̃ − dW as
well. The change in drift from dW to dW̃ in Eq. 13.23 must be the same
for every tradable instrument U . This implies that for two arbitrary tradable
instruments, U1(S, t) and U2(S, t) the following must hold:

aU1 +
[

n2

Y 2 − m
Y

]
U1 − b n

Y

∂U1
∂S

b ∂U1
∂S

− nU1
Y

=
aU2 +

[
n2

Y 2 − m
Y

]
U2 − b n

Y

∂U2
∂S

b ∂U2
∂S

− nU2
Y

,

(13.40)

where aUi
denotes the drift of Ui in the real world in accordance with

Eq. 13.18. The existence of a unique measure with respect to which all
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normalized, tradable instruments are martingales satisfying Eq. 13.16 can be
formulated equivalently as follows: regardless of the appearance of the drift of
the financial instrument in the real world, the combination of this drift with
other characteristics of the financial instrument and the numeraire as specified
in Eq. 13.40 must be the same for all financial instruments. This combination
has its own name; it is known as the market price of risk.15 The market price of
risk γU for an instrument U is defined by

γU(t) :=
aU +

[
n2

Y 2 − m
Y

]
U − b n

Y
∂U
∂S

b ∂U
∂S

− nU
Y

(13.41)

= 1

b

[
aU

(
∂U

∂S

)−1

− d ln Y

dt

(
∂ ln U

∂S

)−1
]

with aU as in Eq. 13.18. This expression simplifies further if the numeraire
fulfills Eq. 13.34:

γU (t) = 1

b

[
aU

(
∂U

∂S

)−1

− d ln Y

dt

(
∂ ln U

∂S

)−1
]

.

From this definition and Eq. 13.40 it is now immediate that the following
theorem holds.

Theorem 7 The market price of risk is identical for all tradable instruments in a
complete, arbitrage-free market.

Comparing the definition in Eq. 13.41 with Eq. 13.23 and Eq. 13.22
immediately gives

Theorem 8 The previsible process γ (t) in the Girsanov Theorem effecting the
drift transformation for the transition from the probability measure in the real
world to the martingale measure is the market price of risk.

Let us consider the process given by Eq. 13.18 representing a tradable
instrument U in the real world from this point of view. The drift aU in the
real world can by Definition 13.41 be expressed in terms of the market price

15The motivation for this name will become clear further below, when we look at certain special cases.
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of risk:

aU = γU b
∂U

∂S
+ U

d ln Y

dt
.

Substituting this expression into Eq. 13.18 yields the process for a tradable
financial instrument in the real world, expressed in terms of the market price
of risk:

dU(S, t) =
[
γU(t) b(s, t)

∂U(S, t)

∂S
+ d ln Y (t)

dt
U(S, t)

]
dt + b(S, t)

∂U(S, t)

∂S
dW .

(13.42)

The valuation of the financial instrument is accomplished not in the real world
but in that governed by the martingale measure. In the martingale measure,
the instrument U is a process satisfying Eq. 13.38. Comparing this process
with Eq. 13.42 directly yields the following “recipe”:

Theorem 9 Setting the market price of risk equal to zero in the expression for the
stochastic process (more explicitly in the differential equation which is satisfied by
this process) which governs the financial instrument in the real world immediately
yields the stochastic process (i.e., the differential equation) which is to be applied
in the valuation of this instrument.

13.7 Tradable Underlyings

The equations in the previous section appear relatively complicated because
we have assumed throughout that the underlying S is not necessarily tradable.
If the underlying is in fact tradable, it can be used in place of the instrument
U directly with the consequence that

U = S �⇒ ∂U

∂S
= 1 ,

∂2U

∂S2
= 0 = ∂U

∂t
= 0 . (13.43)

The general equation 13.33 for this special case reduces to

dS =
b n

Y
− a n

b
S
Y

−
[

n2

Y 2 − m
Y

]
S

1 − n
b

S
Y

dt + bdW̃ .
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The corresponding Eq. 13.37 for a more appropriate choice of numeraire
instrument satisfying Eq. 13.34 further reduces to

dS(t) = S(t)
d ln Y(t)

dt
dt + b(S, t)dW̃ , (13.44)

which, of course, agrees with Eq. 13.38, this equation holding for every
tradable instrument. The expectation of the yield (defined as the expected
relative price change per time) of a tradable underlying in the martingale
measure is thus (as for every tradable instrument) always equal to the yield
of the numeraire instrument.
The market price of risk γS(t) for a tradable underlying is obtained from

Eq. 13.41 with 13.43 as

γS(t) =
a +

[
n2

Y 2 − m
Y

]
S − b n

Y

b − nS
Y

, (13.45)

where a = a(S, t) is the underlying drift in the real world (see Eq. 13.17). For
a well-chosen numeraire of the form 13.34 we get:

γS(t) = a(S, t)

b(S, t)
− S(t)

b(S, t)

d ln Y

dt
.

With this, the process Eq. 13.17 in the real world (in consistence with
Eq. 13.42) becomes

dS(t) =
[
b(S, t)γS(t) + d ln Y(t)

dt
S(t)

]
dt + b(S, t) dW . (13.46)

Comparison with Eq. 13.44 again yields the “recipe” (which holds for all
tradable instruments and hence for S as well) that the market price of risk
must simply be set equal to zero for valuation purposes.
Note that these considerations are valid for a still very general case: In our

treatment, it has only been assumed that the underlying is tradable and that
the numeraire instrument is of the form 13.34.
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13.8 Applications in the Black-Scholes World

Special cases of the general material discussed above have been encountered
in Sects. 7.1.3, 7.2.1 and 9.2.3 in various “disguises”. The irrelevance of the
real world drift became most apparent in Sect. 9.3. There, the requirement
that the expectation of the underlying, computed using its stochastic process,
must equal the expectation of the underlying resulting from the martingale
property16 led to Eq. 9.25, i.e., an explicit specification of the drift to be used
in the valuation. The volatility σ , in contrast, was subject to no such condition
and remained the same.

Equation 9.25 holds for a very special case, namely when (a) the underlying
behaves as in Eq. 2.23 and (b) is tradable, (c) the numeraire is given by Y(t) =
B(t, T ) and (d) interest rates and volatilities are constant; in short, in the
Black-Scholes world. Let us therefore apply the general results of the above
sections to this special situation as an example.

Firstly, a zero bondB(t, T ) is chosen as the numeraire instrument maturing
at some arbitrary future time T . The process for B in the real world is of the
form 13.34. For continuous compounding, we have explicitly

dY ≡ dB(t, T ) = dB(t, T )

dt
dt = rB(t, T )dt �⇒ d ln Y(t)

dt
= r .

(13.47)

The special process, Eq. 2.23 (or Eq. 2.24) corresponds to the general process,
Eq. 13.17 with the parameters

a(S, t) = μ̃S(t) =
(

μ + σ 2

2

)
S(t)

b(S, t) = σS(t) .

Since the underlying is tradable, Eq. 13.44 can be applied directly to obtain
the underlying process in the martingale measure

dS(t) = rS(t) dt + σS(t)dW̃ .

16There, instead of the general formulation “expectation with respect to the martingale measure”, the
expression “risk neutral expectation” was used.
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This process and not 2.23 is to be used in the valuation of the financial
instrument. Comparison of this process with Eq. 2.23 shows that the choice

μ = r − σ 2/2 or equivalently μ̃ = r (13.48)

for the drift transforms the real world process directly to the process to be
used for pricing, in agreement with Eq. 9.25 (dividend yield equal to zero).
The market price of risk of the underlying is simply

γS(t) = a(S, t) − rS(t)

b(S, t)
= μ̃ − r

σ
(13.49)

in this special case and is exactly equal to zero for μ̃ = r . In fact “setting the
market price of risk equal to zero” is equivalent to “choosing the correct drift
for pricing”.
Equation 13.49 provides the motivation for the name “market price of risk”.

In the special case considered here the underlying drift in the real world is
simply a(S, t) = μ̃S(t). The expectation of the underlying-yield is thus
a(S, t)/S(t) = μ̃. This implies that μ̃ − r represents the excess yield above
the risk-free rate, which is expected from the underlying in the real world.
If the volatility σ is viewed as a measure of the risk of the underlying, then
the market price of risk γS (at least in the context of this special case) can be
interpreted as the excess yield above the risk-free rate per risk unit σ which
the market expects from the underlying. This is, so to speak, the price (in the
form of an excess yield above the risk-free rate) which the market demands for
the risk of investing in the underlying. In the real world, the market is by no
means risk neutral, but rather expects higher yields for higher risks; the market
price of risk illustrates this clearly.
Note that the market price of risk in Eq. 13.49 is identical to the so

called Sharpe Ratio [138, 139] heavily used in asset management and portfolio
optimization since more than 50 years. Very generally, the Sharpe Ratio is
defined as the expected excess return (above the risk free rate) of an investment
divided by the investment risk (measured as its volatility).

Sharpe Ratio ≡ R − rf

σ

Our case above corresponds to an investment in a single risky asset, namely
in the risk factor S. As we have shown in Eq. 2.32, the drift μ̃ appearing
in Eq. 13.49 is the expected return for linear compounding. Since in asset
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management returns are usually defined as relative (as opposed to logarithmic)
price changes, linear compounding is indeed applicable (see Eq. 2.31). Thus,
μ̃ in Eq. 13.49 exactly corresponds to the expected return R used in portfolio
management for an investment in S. And therefore the Sharpe Ratio and the
market price of risk are the same thing, see also [49].

To conclude this section we will now show that we can actually use all of
this information aboutmartingales and drifts to really calculate something.We
consider below only payoff profiles of path-independent instruments. These
are payoff profiles which depend solely on the value of the underlying at
maturity T and not on the path taken by the process S between t and T .
For such processes

V (S, T ) = V (S(T ), T ) .

holds. Therefore we only need the distribution of S at time T (and not the
distribution of all paths of S between t and T ). Choosing the zero bond as
the numeraire instrument, Y(t) = B(t, T ), Eq. 13.31 for the price V of a
financial instrument becomes

V (S, t) = Y (t)EY
t

[
V (S, T )

Y (T )

]
= B(t, T )EY

t [V (S(T ), T )] .

sinceB(T , T ) = 1.We againmodel the underlying with the simple process in
Eq. 2.23. The associated underlying process over a finite time interval of length
δt = T − t , i.e., the solution of the stochastic differential equation 2.23 for
S, has already been given in Eq. 2.28 for an arbitrary drift μ, and thus for an
arbitrary probability measure, namely

S(T ) = S(t) exp [μ(T − t ) + σWT −t ] mit WT −t ∼ N(0, T − t )

= S(t) exp [x] with x ∼ N
(
μ(T − t ), σ 2(T − t )

)
. (13.50)

The distribution of S(T ) is therefore S(t) multiplied by the exponential of
the normal distribution with expectation μ(T − t ) and variance σ 2(T − t ).

Using this, the expectation of the function

V (S(T ), T ) = V (S(t)ex, T ) =: g(x)
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can be computed explicitly:

Et [V (S(T ), T )] =: Et [g(x)] =
∫ ∞

−∞
g(x)p(x)dx

with the probability density of the normal distribution (see Eq. A.46)

p(x) = 1√
2πσ 2(T − t)

exp

[
− (x − μ(T − t))2

2σ 2(T − t)

]
.

Thus

Et [V (S(T ), T )] = 1√
2πσ 2(T − t)

∫ ∞

−∞
V
(
S(t)ex, T

)
exp

[
− (x − μ(T − t))2

2σ 2(T − t)

]
dx .

This is the expectation of the payoff profile with respect to a probability
measure associated withμ, for instance with respect to the probabilitymeasure
in the real world if μ represents the drift in the real world. To allow the use of
this expectation for the valuation of the instrument V , it must be computed
with respect to the (in a complete market, unique) martingale measure. This
is accomplished through the choice of drift in accordance with Eq. 13.48. The
price of V then becomes

V (S, t) = B(t, T )EY
t [V (S(T ), T )]

= B(t, T )√
2πσ 2(T − t)

∫ ∞

−∞
V
(
S(t)ex, T

)
exp

⎡
⎢⎣−

[
x −

(
r − 1

2σ 2
)

(T − t)
]2

2σ 2(T − t)

⎤
⎥⎦ dx .

(13.51)

This equation holds in complete generality for every financial instrument with
a non-path dependent payoff profile V (S(T ), T ) on an underlying S of the
form specified in Eq. 2.23.
To be more specific, we now use the payoff profile of a plain vanilla call as

an example:

V (S(T ), T ) = max {S(T ) − K, 0} = max
{
exS(t) − K, 0

}
.

with x as defined in Eq. 13.50. This payoff profile is only non-zero when
exS(t) ≥ K , or equivalently when x ≥ ln (K/S(t)). Equation 13.51 for the
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price of the call is then

V (S, t) = B(t, T )√
2πσ 2(T − t)

∫ ∞

ln(K/S(t))

[
exS(t) − K

]
exp

⎡
⎢⎣−

(
x −

(
r − σ 2

2

)
(T − t)

)2

2σ 2(T − t)

⎤
⎥⎦ dx .

This (withμ = r−σ 2/2) is in complete agreement with Eq. 8.4, for example.
In connection with Eq. 8.4 it has been demonstrated how this integral can be
computed explicitly. The result is the famous Black-Scholes equation 8.6.
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