
12
Hedging

The replication of derivatives with a portfolio consisting of underlyings and a
bank account as, for example, in Eq. 9.3, can be used to hedge the derivative’s
risk resulting from the stochastic movement of its underlying (or conversely
a derivative could be used to hedge such a portfolio). This is accomplished
by going short in the portfolio and long in the derivative or vice versa. This
idea can be extended to hedging against influences other than the underlying
price, for example, changes in the volatility, interest rate, etc. Such concepts
of safeguarding against a risk factor have already made their appearance in
arbitrage arguments in previous chapters and will be presented in their general
form in this chapter. In addition to the fundamental Assumptions 1, 2, 3,
4 and 5 from Chap. 4, continuous trading will also be assumed below, i.e.,
Assumption 6. We will allow the underlying to perform a general Ito process1
of the Form 2.19 and assume that it pays a dividend yield q .

12.1 Hedging Derivatives with Spot Transactions

Consider first the change in the value V of a derivative resulting from the
change in the price S of its underlying. V , as a function of the stochastic
process S, is also a stochastic process. From Ito’s lemma in the form of Eq. 2.22

1Thus, we are a more general here than Assumption 7 from Chap. 4.
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this process is explicitly

dV (S, t) =
[
∂V

∂t
+ 1

2
b2(S, t)

∂2V

∂S2

]
dt + ∂V

∂S
dS(t) . (12.1)

In a similar manner as in Sect. 7.1.1, we will now construct a portfolio which
replicates (hedges) the derivative in Eq. 12.1. This portfolio will consist of a
certain number � of underlyings and an amount g of money borrowed from
or invested in the capital market. This portfolio is constructed to have the same
value as the derivative,

V = �S + g . (12.2)

To ensure that the derivative is perfectly hedged for at least a short time span
dt , it is required that the change in its value over dt to be the same as that
of the derivative. The change in value of the derivative is given by Eq. 12.1.
The value of the portfolio consisting of money and the underlying changes as
already described in Eq. 9.3, for example. For small time intervals dt, B and
1/B can be approximates by (1 − r dt) and (1 + r dt), respectively, for all
compounding conventions. The same approximation holds for Bq . Denoting
the change in S by dS, the change in the value of the portfolio can be expressed
by

d(�S + g) = �(S + dS)(1 + q dt) + g(1 + r dt)︸ ︷︷ ︸
new value

− (� S + g)︸ ︷︷ ︸
old value

= � dS + (� q S + r g)dt + � q dS dt

= � dS + (� q S + r g)dt + · · · (12.3)

where in the last line only the first order terms in dS and dt are considered.
To ensure that this change corresponds exactly to a change in the value of the
derivative, the coefficients of dt and dS must be the same as those appearing in
Eq. 12.1. Equating the coefficients of dS yields the well known result that the
number of underlyings required for the hedge, called the hedge ratio, must
be equal to the sensitivity of the derivative with respect to its underlying.
Combined with Eq. 12.2 we can determine the amount of money in the bank
account required for the hedge as well:

�(t) = ∂V

∂S(t)
⇒ g(t) = V − S(t)

∂V

∂S(t)
. (12.4)
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Thus, with information on the value Vs and its first partial derivative with
respect to the underlying, it is possible to construct a portfolio hedging the
derivative perfectly over the next time step. The partial derivatives of the price
function are often referred to as the sensitivities (see Sect. 12.4).
We have yet to exploit the second condition, which is the equality of the

coefficients of dt in Eqs. 12.1 and 12.3. This yields

�S(t)q + rg = ∂V

∂t
+ 1

2
b2(S, t)

∂2V

∂S2
.

Inserting Eq. 12.4 for�S and g, we recognize the famous differential equation
of Black and Scholes for derivatives on the spot price S on an underlying:

∂V

∂t
+ (r − q)S

∂V

∂ S
+ 1

2
b2(S, t)

∂2V

∂S2
= r V . (12.5)

If we write (without loss of generality) the parameters a and b as in Eq. 7.1 we
immediately see that Eq. 12.5 is exactly equal to Eq. 7.8.
As all other derivation of the Black-Scholes PDE, this most simple deriva-

tion of the Black-Scholes differential equation, does not specify the derivative
under consideration in any way. No information about the payoff profile
or any other property characterizing the derivative is necessary. Only the
properties of the underlying are used, these being that the underlying earns
a dividend yield q and that its price is governed by a stochastic process of
the form 2.19. Thus, there is only one equation for the construction of the
hedging portfolio and one differential equation for the price of all derivatives
on this underlying. The different derivative instruments can be distinguished
from one another solely on the basis of their respective initial and/or boundary
conditions (for example, the payoff profile of an option at maturity or the
fact that a forward contract is worth nothing at the time when the contract is
entered into).
In effect, the value of the option is equivalent to the total cost of the hedge,

i.e. the replication of the pay off profile by the carefully chosen portfolio (the
replicating portfolio). The whole theory and practice of arbitrage free valuation
of derivatives is based on this fundamental assumption that the value of an
option is equivalent to the total cost to hedge it.
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12.1.1 Hedging of Forwards and Futures

Forward and futures contracts belong to the most simple derivatives. There-
fore, they will serve as an example how to apply Eqs. 12.4 and 12.5 to hedge
derivatives with spot trades. We adopt here the commonly used convention of
continuous compounding.

Consider first a forward contract. The value of a forward with delivery price
K , assuming continuous compounding, is given by Eq. 6.5 as

f (t, T , K) = [S(t, T ) − K] B(t, T ) = e−q(T −t)S(t) − e−r(T −t)K .

The partial derivatives of this function appearing in Eqs. 12.4 and 12.5 are

∂f

∂t
= q e−q(T −t)S − re−r(T −t)K ,

∂f

∂S
= e−q(T −t) ,

∂2 f

∂S2
= 0 .

Thus, Eq. 12.4 yields

�(t) = e−q(T −t) , g(t) = −e−r(T −t)K .

In order to hedge a (short) forward, e−q(T −t) underlyings must be purchased
and an amount e−r(T −t)K of cash must be raised. Substituting the value of
the forward and its derivative into Eq. 12.5 shows that the Black-Scholes
differential equation is satisfied:

qe−q(T −t)S − re−r(T −t)K + (r − q)Se−q(T−t) = re−q(T −t)S − re−r(T −t)K .

Now consider a futures contract. From a valuation perspective, the essential
difference compared to a forward contract is the obligatory maintenance of a
margin account. As a consequence, every price change of the futures contract is
reflected by an equivalent change of the margin account balance. The margin
account is similar to a bank account. The buyer or seller of the futures contract
receives interest on the margin account, but has no direct access to the money
in the account. At the trade day of the futures contract, the buyer/seller must
transfer an initial margin on the account. If the futures price raises or falls later,
the margin account balance raises or falls by the same amount. If the margin
account balance falls below a certain level, fresh money must be transferred
to the account, otherwise the whole position will be closed out. On the other
hand, if the margin account balance raise beyond a certain level, money could
be transferred back if the balance exceeds certain trigger levels. This is called
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variation margin. Neglecting default risk, it can be assumed that the money
for initial and variation margin can be borrowed for the risk-free interest rate.
Also, the margin account itself is assumed to pay interest based on the risk-
free interest.2 We will denote the total cash amount (which can be negative or
positive) as gF (t).
Let’s consider the evolution of the total value of the futures position over

time. This development is completely reflected in the development of the
function gF (t). Contrary to a forward contract, a futures contract does not
define a fixed strike price to be paid at maturity in exchange of the underlying.
Instead, the buyer of the futures contract will have to pay at maturity the then
current spot price, while the difference of forward and future spot price at
trade date is at maturity identical to the balance of the variation margin (plus
accumulated interest). We need the following derivatives of gF (t):

∂gF

∂t
= −(r − q)e(r−q)(T−t)S + rgF ,

∂gF

∂S
= e(r−q)(T−t) ,

∂2gF

∂S2
= 0 .

Inserting these in Eq. 12.4 yields

�(t) = e(r−q)(T−t) , g(t) = gF (t) .

Therefore, hedging a (short) futures contract requires to buy e(r−q)(T −t)

underlyings and to borrow an amount of −g(t) = gF (T ) currency units.
Inserting the value of the Portfolio gF (t) into Eq. 12.5 shows that gF (t) fulfills
the Black-Scholes differential equation:

−(r − q)e(r−q)(T−t)S + rgF + (r − q)e(r−q)(T−t)S = rgF .

The mindful reader may wonder, in which way gF (t) differs from the
fair value F(S, t, T ,K) of the futures contract, which itself does not fulfill
the Black-Scholes equation. According to Eq. 6.6 the fair value of a futures
contract is

F(S, t, T , K) = e(r−q)(T−t)S(t) − K ,

2Reality, as often, is more complex. E.g. the actual margin interest rates may differ from the risk-free
interest rate or maybe floored at zero, while the risk-free interest rate might be allowed to become negative.
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where K is the futures price at trade date. In contrast to gF (t) the fair
value does not contain the accumulated interest, since they have already been
realized.

12.2 Hedging Derivatives with Forward Contracts

The portfolio for the synthetic derivative is now to be constructed using
forward contracts instead of spot transactions. We cannot merely replace the
spot price with the forward price in Eq. 12.3 since the forward price itself is
not tradable. Forward and futures contracts on the other hand are tradable.

12.2.1 Hedging with Forwards

Since futures satisfy the Black Scholes differential equation only upon conclu-
sion of the contract, we will avoid this difficulty at this point and begin by
using forwards to construct the synthetic derivative. The hedging portfolio is
then

�f (t)f (t, T ′, K) + g(t) = �f (t)
[
S(t, T ′) − K

]
B(t, T ′) + g(t) with T ′ ≥ T > t ,

where the subscript f indicates that the hedge is accomplished with forwards.
T denotes the maturity of the derivative and T ′ the maturity of the forward
contract. Note that the condition T ′ ≥ T is not strictly necessary for our
considerations, but it is convenient since it ensures that the hedge does not
“vanish” before thematurityT of the derivative. If T ′ < T it would be required
to roll over the hedge into another forward contract (with a later maturity) at
time T ′ or earlier.

In the time span dt this portfolio changes its value as a result of changes in
the forward price and the discount factor as follows:

d(� f f + g) = �f

[
S(t, T ′) + dS(t, T ′) − K

]
B(t, T ′)(1 + rdt) + g(t)(1 + rdt)︸ ︷︷ ︸

new value

− �f

[
S(t, T ′) − K

]
B(t, T ′) + g(t)︸ ︷︷ ︸

old value

= �f B(t, T ′)dS(t, T ′) + �f

[
S(t, T ′) − K

]
B(t, T ′)r dt + gr dt + · · ·

= �f B(t, T ′)
∂S(t, T ′)

∂S(t)
dS(t) + �f (t)f (t, T ′,K)r dt + g r dt + · · · ,

(12.6)
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where again we consider only changes which are of linear order in dt or dS.
In the last equation, the change in the forward price dS(t, T ′) was rewritten
in terms of a change in the spot price to facilitate the comparison of the
coefficients with the associated coefficients in Eq. 12.1 for the change in the
price of the derivative. Equating the coefficients of dS in the above mentioned
expressions now yields:

�f (t) = 1

B(t, T ′)
∂V/∂S(t)

∂S(t, T ′)/∂S(t)
= 1

B(t, T ′)
∂V

∂S(t, T ′)
.

Using Eq. 6.1 for the dividend yield, we can calculate the derivative of the
forward price with respect to the spot price and thus obtain the following
expression for the hedge ratio:

�f (t) = 1

Bq(t, T )

∂V

∂S(t)
= 1

B(t, T ′)
∂V

∂S(t, T ′)
. (12.7)

In other words, the number of forwards required to hedge the derivative is
equal to the sensitivity of the derivative with respect to the spot price com-
pounded at the dividend yield up to maturity of the derivative, or equivalently,
is equal to the sensitivity with respect to the forward price compounded at the
risk-free rate up to maturity of the hedging instrument (the forward).
Since by construction, the value of the replicating portfolio is equal to the

value of the derivative we can determine the amount of cash needed for the
hedge:

g(t) = V − f (S, t, T ′,K)�f (t) . (12.8)

We have thus completely determined the hedging portfolio using solely
information derived from the price of the derivative and its sensitivities.
Before we establish a mathematical expression obtained from comparison

of the coefficients of dt in Eqs. 12.1 and 12.6, we change the coordinates in
Eq. 12.1 to transform the second derivative of the price with respect to spot
price S(t) into a derivative with respect to the forward price S(t, T ′). This is
accomplished using 6.1.

∂

∂S(t)
= ∂S(t, T ′)

∂S(t)

∂

∂S(t, T ′)
= Bq(t, T

′)
B(t, T ′)

∂

∂ S(t, T ′)

∂2

∂S2(t)
= ∂

∂S(t)

Bq(t, T
′)

B(t, T ′)
∂

∂S(t, T ′)
= B2

q (t, T
′)

B2(t, T ′)
∂2

∂S2(t, T ′)
. (12.9)
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Equating now the coefficient of dt and using Eq. 12.8 for g yields

∂V

∂t
+ 1

2
b2(S, t)

B2
q(t, T ′)

B2(t, T ′)
∂2V

∂S2(t, T ′)
= rV .

This is the Black-Scholes differential equation for derivatives on the forward
price of an underlying.

To put this in a more familiar form we rewrite (without loss of generality)
the parameter b as in Eq. 7.1 and use Eq. 6.1 to introduce the forward price
into the parameter b, i.e.,

b(S, t) =: σ(S, t)S(t) = σ(S, t)
B(t, T ′)
Bq(t, T ′)

S(t, T ′) . (12.10)

With this substitution we arrive at the well-known form of the Black-Scholes
differential equation for derivative on the forward price of an underlying:

∂V

∂t
+ σ 2

2
S2(t, T ′)

∂2V

∂S2(t, T ′)
= r V . (12.11)

As in Sect. 12.1, only one equation is needed for the construction of the
hedging portfolio with forward contracts, and there is only one differential
equation for all derivatives on the forward price. Different derivatives can be
distinguished from one another only through their respective initial and/or
boundary conditions.

Note the absence of a first derivative term with respect to the forward price.
Equation 12.5 (which is the corresponding Black-Scholes PDE for derivatives
on the spot price of an underlying) would look quite similar to Eq. 12.11
for an underlying which earns a dividend yield q being exactly equal to the
risk free rate r . In fact, both equations would look identical if this underlying
would have S(t, T ′) as its spot price. Herein lies the deeper explanation for the
“recipe” for pricing options on futures as given in Eq. 8.8: a derivative on the
forward price can be priced as a derivative on the spot price of an (artificial)
underlying whose spot price is equal to S(t, T ′) and whose dividend yield
equals the risk-free rate.
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12.2.2 Hedging with Futures

If futures are used to construct a synthetic derivative, we have to deal with
the additional complexity that the margin account balance depends on when
and how many futures contracts have been bought or sold. Since we assume
that the margin account is compounded with the same interest rate as the
risk-free cash amount borrowed or lend g(t), we consider the margin account
as part of the total cash balance or bank account. Then, we need to consider
the futures contract’s price (which equals the forward price) changes, only. As
hedging instrument, we use a futures contract with fixed maturity T .3 Since
the futures price equals the forward price S(t, T ′), we get

�F (t)S(t, T ′) + g(t) with T ′ ≥ T > t .

Changes in the futures contract price and the bank account in the time interval
dt cause the value of the portfolio to change as follows

d(�F S(t, T ′) + g) = �F

[
S(t, T ′) + dS(t, T ′)

] + g (1 + rdt)︸ ︷︷ ︸
new value

− �F

[
S(t, T ′)

] + g︸ ︷︷ ︸
old value

= �F dS(t, T ′) + gr dt + · · ·

= �F

∂S(t, T ′)
∂S(t)

dS(t) + gr dt + · · · , (12.12)

where again we consider only the parameter changes of linear order in dt or
dS, neglecting all higher order terms. In the last equation, the change in the
futures price has been replaced by the corresponding expression with respect to
a change in the spot price, facilitating a direct comparison with the coefficients
in Eq. 12.1 for the change in the price of the derivative. Setting the coefficients
of dS in both expressions equal yields

�F (t) = ∂V/∂S(t)

∂S(t, T ′)/∂S(t)
= ∂V

∂S(t, T ′)
.

3Here again the condition T ′ ≥ T is not strictly necessary but convenient since it ensures that the hedge
does not “vanish” before maturity T of the derivative. Again, T ′ < T would require to roll over the hedge
into another futures contract (with a later maturity) at time T ′ or earlier.
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Equation 6.1 for the forward price of an underlying earning a dividend yield
q gives the partial derivative of VS with respect to the spot price.

�F(t) = B(t, T ′)
Bq(t, T ′)

∂V

∂S(t)
= ∂V

∂S(t, T ′)
. (12.13)

In other words, the number of futures required to hedge a derivative is equal
to the sensitivity of the derivative with respect to the spot price compounded at
the rate obtained by using the risk-free rate reduced by the dividend yield. Or
equivalently, the number of futures needed equals the sensitivity with respect
to the forward price.

By definition, the value of the hedging portfolio must be equal to the value
of the derivative. It follows that the amount of money needed for the hedge is
given by

g(t) = V − FS(t, T
′, K)�F(t) . (12.14)

We have thus completely determined the hedging portfolio using solely the
information derived from the value of the derivative instrument and its
sensitivities.

12.3 Hedge-Ratios for Arbitrary Combinations
of Financial Instruments

An analogous approach to those described above can be taken to derive a
formula for the number of an arbitrary hedge instrument required to replicate
an arbitrary derivative. The number of hedging instruments is always equal
to the sensitivity of the derivative with respect to this hedging instrument.
Intuitively, if the value h of a hedge instrument changes by the amount dh,
then the value V of the derivative changes by the amount dV . The quotient
dV/dh is precisely the number of hedging instruments needed to compensate
for the change dV in the derivative. For very small changes, this quotient
approaches the differential quotient. Any instrument can assume the role of
either the derivative or the hedging instrument. Since the value obtained by
differentiating a derivative with respect to an arbitrary hedging instrument
cannot, in general, be calculated directly, a common reference variable, usually
the spot price S(t), is introduced with respect to which both the partial
derivative of the value as well as the partial derivative of the hedging instrument
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Table 12.1 Sensitivities for options and forward contracts with respect to the spot price
S(t). x and x′ are defined as in Eqs. 8.7 and 8.8

Underlying (Spot) 1
Futures Bq(t, T )B(t, T )−1

Forward Bq(t, T )

Call Put
Option on spot price Bq(t, T )N(x) −Bq(t, T )N(−x)

Option on futures Bq(t, T ′) B(t,T )
B(t,T ′)N(x′) −Bq(t, T ′) B(t,T )

B(t,T ′)N(−x′)

Option on forward Bq(t, T ′)N(x′) −Bq(t, T ′)N(−x′)

is known. The equation for this general hedge ratio is therefore

� DerivateV with
Hedging Instrumenth

= ∂V

∂h
= ∂V

∂S

[
∂h

∂S

]−1

. (12.15)

Consequently, the sensitivities of all financial instruments with respect to the
spot price must be available if the hedge ratio is to be calculated for an arbitrary
combination of these instruments. In general, though, it is not recommended
to use hedging instruments which introduce additional risk factors the original
trade is not sensitive to (e.g. additional foreign exchange risk). The sensitivities
already dealt with in the last section, i.e., the sensitivities of the option, forward
and spot transactions with respect to the spot price are listed in Table 12.1 (for
the Black-Scholes world). For forward contracts, they follow from Eqs. 6.1,
6.5 and 6.6, which were derived using arbitrage arguments. For options, the
sensitivities follow directly from the Black-Scholes equations 8.7, 8.8 and 8.9.
Readers wishing to reproduce these results themselves are advised to use the

following property4 of N′(x − σ
√

T − t):

N′(x − σ
√

T − t) = Bq(t, T ) S(t)

B(t, T )K
N′(x) . (12.16)

4To prove Eq. 12.16 we first write

N′(x − σ
√

T − t) = 1√
2π

e− 1
2 (x−σ

√
T −t)2 = 1√

2π
e− x2

2

︸ ︷︷ ︸
N′(x)

exσ
√

T −t− 1
2 σ 2(T −t)

The relation is now obtained by substituting the definition of x, Eq. 8.5, into the second exponential
term.
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Here, N′ denotes the derivative of the cumulative standard normal distribution
with respect to its argument:

N′(y) ≡ d

dy
N(y) = 1√

2π
e

−y2

2

The entries in Table 12.1 together with Eq. 12.1 provide all the information
needed to determine the hedge ratio for every conceivable combination of
these financial instruments in the Black-Scholes world. We now present three
examples to illustrate this.

a) Hedging a put on the spot price with futures:

�Put on spot
with futures

= ∂V

∂S

[
∂h

∂S

]−1

= −Bq(t, T )N(−x)

[
Bq(t, T

′)
B(t, T ′)

]−1

= −B(t, T ′)
Bq(t, T )

Bq(t, T ′)
N(−x) .

A long put on the spot can thus be replicated by a short position consisting
of

B(t, T ′)N(−x)/Bq(T , T ′∣∣ t)
futures. Or interpreted as a hedge, a long put can be hedged by a long
position in this number of futures.

b) Hedging a put on a future with forward contracts:

�Put on futures
with forward

= ∂V

∂S

[
∂h

∂ S

]−1

= −Bq(t, T ′) B(t, T )

B(t, T ′)
N(−x ′)

[
Bq(t, T ′)

]−1

= − B(t, T )

B(t, T ′)
N(−x ′) .

A long put on the future can be replicated with a short position of

N(−x ′)/B(T , T ′∣∣ t)
forwards. Or interpreted as a hedge, a long put can be hedged by a long
position in this number of forwards.
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c) Hedging a call on the spot with puts on a future:

�Call on spot with
put on futures

= ∂V

∂S

[
∂h

∂ S

]−1

= Bq(t, T )N(x)

[
−Bq(t, T

′) B(t, T )

B(t, T ′)
N(−x′)

]−1

= −B(t, T ′)
B(t, T )

Bq(t, T )

Bq(T , T ′)
N(x)

N(−x′)
.

A long call on the spot can thus be replicated by a short position in

B(T , T ′∣∣ t)N(x)

Bq(T , T ′| t)N(−x ′)

puts on the future. Or interpreted as a hedge, the long call can be hedged
by a long position in this number of puts on the future.

12.4 “Greek” Risk Management with Sensitivities

12.4.1 Sensitivities and a Portfolio’s Change in Value

The sensitivity of a financial instrument with respect to a parameter is defined
as a variable that, when multiplied by a (small) parameter change, yields the
change in the value of the instrument resulting from this parameter change.

Price change = sensitivity × parameter change

The sensitivity is thus the derivative of the price with respect to the
parameter. Since options depend on several such parameters such as the price
of the underlying, the time to maturity, the volatility, the dividend yield of the
underlying and the risk-free market rate, the sensitivities listed in Table 12.2
are of particular interest.
The first of these sensitivities, namely �, has already been used in Sect. 12.1

to construct a replicating portfolio. In Eq. 12.15 the hedge ratio� was defined
in greater generality as the sensitivity of the derivative with respect to the
price change of the hedging instrument. In the special case where the hedging
instrument is the underlying itself, this general hedging ratio and the delta
listed in Table 12.2 agree.
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Table 12.2 Definitions of the “Greeks”

Symbol Name Definition Interpretation

� Delta
∂V

∂S
Price change resulting from change
of underlying spot price

� Gamma
∂2 V

∂S2 Change of delta resulting from
change of underlying spot price

� Omega
S

V

∂V

∂S
Relative price change (in %) resulting
from relative change (in %) of
underlying spot price

� Vega
∂V

∂σ
Price change resulting from change
of volatility of underlying

	 Theta
∂V

∂t
Price change resulting from change
of time to maturity

ρ Rho
∂V

∂r
Price change resulting from change
of the risk-free rate

ρq Rhoq

∂V

∂q
Price change resulting from change
of dividend yield of underlying

Any method used to calculate the price of an option can be used to calculate
the sensitivities, even if the explicit expressions for the sensitivities cannot be
obtained directly. The price model must simply be applied twice: the first
time to calculate the price with the current parameters and a second time
for a valuation with one of the parameters slightly changed. The difference
between these two option values divided by the parameter change yields an
approximation for the sensitivity of the option with respect to that parameter.
Approximating the second derivative (as for gamma, for example) requires
the price to be calculated with respect to three different parameter values. In
summary: as soon as a pricing method is available we can calculate sensitivities
by approximating the differential quotients in Table 12.2 with difference
quotients as follows:

Delta ≈ V (S + δS) − V (S)

δS
,Gamma ≈ V (S + δS) − 2V (S) + V (S − δS)

δS2

Vega ≈ V (σ + δσ ) − V (σ )

δσ
, Theta ≈ V (t + δt) − V (t)

δt

Rhor ≈ V (r + δr) − V (r)

δr
, Rhoq ≈ V (q + δq) − V (q)

δq
(12.17)



12 Hedging 241

The risk of an instrument (or a portfolio) can be measured by its reaction
to changes in the parameters influencing its price. In other words, the more
sensitive it is to parameter changes, the “riskier” the instrument is. For this
reason, the sensitivities are also known as risk ratios. A commonly used method
of risk management is to control these sensitivities, i.e., to set limits on or
targets for their values, for instance. The possibilities and limitations of this
kind of risk management become clear, when we consider the Taylor series
representation for small parameter changes: The value V depends on all of the
above listed parameters: V = V (t, S, σ, q, r). A change in value is thus

dV = ∂V

∂t
dt + ∂V

∂ S
dS + ∂V

∂σ
dσ + ∂V

∂r
dr + ∂V

∂q
dq + 1

2

∂2 V

∂S2
dS2 + · · ·

= 	 dt + �dS + � dσ + ρ dr + ρq dq + 1

2
� dS2 + · · ·

The coefficients of all linear parameter changes are given by sensitivities.
A linear approximation holds only for small parameter changes. This is
especially true for highly non-linear instruments. Because of the particularly
strong influence of the underlying price, the effect of its quadratic change
has been included in the above expression resulting in the appearance of the
sensitivity �.
All risk variables in Table 12.2 (with the exception of the variable �) have

the important property that the sensitivity of a portfolio with respect to a risk
factor is equal to the sum of the sensitivities of its component instruments to
this risk factor, i.e., the sensitivities are linear. For a portfolio consisting of n

instruments of type A and m of type B we can therefore write

�(nA + m B) = n �(A) + m�(B) likewise for �,	,�, ρ, ρq

(12.18)

This property makes it possible to make a portfolio delta-neutral, for example:
given n, �(A) and �(B), it is possible to make the portfolio’s delta, �(nA+
mB), equal to zero, by choosing m = −n�(A)/�(B). This is called a
delta hedge. The portfolio is then (in linear approximation) insensitive to
small changes in the price of the underlying S. In the special case that the
instrument B is the underlying itself we have �(B) = 1. This is reflected in
the result given in Sect. 12.1 that the number of underlyings needed to hedge
a particular instrument is obtained by taking the derivative of the value of
the instrument with respect to the underlying. We can now observe that the
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hedge methods introduced in Sect. 12.1 were delta hedges and represent only
in linear approximation a safeguard against the risk resulting from a change
in the underlying. This is no limitation under the (idealized) assumption of
continuous trading with zero transaction cost, though.

Likewise, a portfolio can be constructed which is gamma, theta, vega
or rho neutral. In general, for Plain Vanilla options, Delta and Vega are
hedged at least.5 Even several sensitivities of the portfolio can be neutralized
simultaneously but more than one hedging instrument is then required to do
so. In general, we need at least as many different hedging instruments as the
number of sensitivities to be neutralized. For example, if a portfolio consisting
of n instruments of typeA is to be delta and gamma hedged, we would require
two hedging instruments B1 and B2. The condition that the delta and the
gamma of the portfolio be equal to zero means that

�(nA + m1 B1 + m2 B2) = n �(A) + m1 �(B1) + m2 �(B2) = 0

�(n A + m1 B1 + m2 B2) = n �(A) + m1 �(B1) + m2 �(B2) = 0

Solving this system of equations yields the number of hedging instrumentsm1

and m2 for the delta and gamma hedged portfolio:

m1 = −n
�(B2)�(A) − �(B2)�(A)

�(B2)�(B1) − �(B2)�(B1)
, m2 = −n

�(B1)�(A) − �(B1)�(A)

�(B1)�(B2) − �(B1)�(B2)

From the Black-Scholes differential equation 12.5 we can obtain a relation,
which the different sensitivities of all financial instrumentsmust satisfy. Simply
replace the partial derivatives in Eq. 12.5 by the corresponding sensitivities to
obtain

	 + (r − q)S� + 1

2
b2� = r V .

One consequence of this equation is, for example, the following statement:
The change value of a delta and gamma neutral portfolio per time (i.e., 	) is
equal to its current value multiplied by the risk-free interest rate.

5This is common practice even in cases in which the option is priced by means of Black-Scholes or some
other model that assumes deterministic volatility. For Hedging, it is assumed in contrast to the model
assumptions that the underlying volatility might indeed change. The practice proofs that this improves
hedge efficiency, leading to the conclusion that the model with deterministic volatility is insufficient. Such
a hedge is also called out of model hedge.
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Table 12.3 Examples of Omega and Delta

strike = 70 EUR strike = 90 EUR

Price 10.18 EUR 0.04 EUR
Delta 0.992 0.024
Omega 7.79 47.41

12.4.2 Omega and Beta

In contrast to the delta which gives the absolute price change of the derivative
(in monetary units) resulting from an absolute change of one monetary unit
in the underlying, omega is the relative price change of the derivative (in %)
resulting from a relative change in the underlying6:

� ≡ [V (S + dS) − V (S)] / |V (S)|
dS/S

= S

|V (S)|�

In situations where a trader is instructed to invest a specific amount of money
rather than in a certain number of instruments, this allows a significantly
better assessment of the risk than the (much more prominent) delta. A simple
example will serve to clarify this point.
Assume that 10,000 euros are to be invested either in a call with a strike

price of 90 euros on an underlying paying no dividend with a spot price of 80
euros or in a call on the same underlying with strike price of 70 euros. Suppose
the annualized volatility of this underlying is 20%. Both options mature in 30
days. At a risk-free rate of 3% per annum, Eq. 8.7 (implemented in the Excel
workbook BlackScholesModel.xls on the accompanying website [50])
gives the prices and risk ratios shown in Table 12.3.
The sensitivity delta is almost 50 times greater for the call with a strike price

of 70 euros than for the call with the strike price of 90 euros. Is the call with
a strike of 70 euros riskier? If we have the choice of buying a certain number
of the strike-70 calls or the same number of strike-90 calls then yes, since we
could lose a lot more with a certain number of the strike-70 calls than with the
same number of strike-90 calls. But this is solely because the price of the strike-
70 call is so much higher than the price of the strike-90 call! The higher risk is
entirely due to the significantly larger investment: if we invest more euros we
can lose more euros.

6The absolute value of V (S) in this definition has the effect that omega always has the same sign as delta,
even for a position with a negative present value.
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But if the same amount of money is to be invested, a portfolio with strike-90
calls (250,250 of these calls can be purchased for 10,000 euros) is significantly
riskier than a portfolio with strike-70 calls (only 982 of these calls can be
purchased for 10,000 euros). This risk is impressively quantified by omega,
also called the elasticity. For the strike-70 call portfolio, a 1.60 euros (=2%)
decline in the underlying’s price results in a loss of value of 7.79 * 2 %, or
1,558 euros. However, the strike-90 call portfolio loses 47.41*2% of its value,
a sum of 9,482 euros. Investing in the strike-90 calls, a relatively small change
in the price of the underlying (2%) almost wipes out the entire investment.
On the other hand, a slight increase in the price of the underlying can just as
easily double the value of the strike-90 call portfolio. Thus, the volatility of
the option equals omega times the volatility of the underlying

σOption = �σUnderlying (12.19)

A similar relation can also be shown to hold for the expected return of an
option (in the real world). The market requires, as a compensation for the risk
of an investment, a higher expected return of the security under consideration
compared to the risk-free rate. Since the risk (as represented by the volatility)
of an option on that security is omega times as high as the risk of the security
itself, the compensation for taking the risk of investing in the option must be
omega times as high as well:

μOption − r = �(μUnderlying − r) (12.20)

We can now establish a connection with the CAPM (capital asset pricing
model). The variable β (beta) in the CAPM relates the risk premium of a
security to the risk premium of a portfolio representing the entire market (with
the corresponding diversification). Indices such as the DAX or the Dow Jones
are constructed to represent such entire markets. To be more specific: the beta
of a security with a price S with respect to an index with a price I is defined as
the covariance of the price with the index divided by the variance of the index
(see Eq. A.20 in Appendix A):

βSI = cov [S, I ]

var [I ]
= σS

σI

ρSI (12.21)

This variable can be interpreted as follows: should the value I of the index
increase by 1%, then the price S of the security will (on average) increase by
beta %. The relative change of S is thus beta times the relative change in I .



12 Hedging 245

βSI = relative change in S resulting from a change in I

relative change in I
(12.22)

= (dS)/S

(dI)/I
= I

S

dS

dI

This corresponds to the definition of omega if S is interpreted as a financial
instrument having the index I as an underlying. Within the capital asset
pricing model the risk premium for investing in S is shown to be

μS − r = βS,I (μI − r) (12.23)

Substituting this for the risk premium of the underlying S in Eq. 12.20 gives

μOption − r = �βS,I (μI − r)

Thus, the risk premium for investing in the option is omega times beta
multiplied by the risk premium for investing in the entire market. We could
therefore also use Eq. 12.23 to define a beta for the option as well.

βOption = �βUnderlying (12.24)

Volatility, risk premium and the beta of an option are thus obtained by simply
multiplying the corresponding variables for the underlying by the elasticity
omega.

12.4.3 Summation of Sensitivities of Different
Underlyings

The summation of sensitivities presented in Sect. 12.4.1 is only possible if
they are sensitivities of instruments on the same underlying. It is often the
case, however, that a portfolio consists of instruments on several different
underlyings. The net delta of such a portfolio is not simply the sum of the
deltas of the individual instruments. For example, in a chemical portfolio with
options on Bayer and BASF stocks, the delta of the Bayer option with respect
to the Bayer stock price cannot be added to the delta of the BASF option with
respect to the BASF stock price to obtain the portfolio’s delta. We must first
answer the question: Which stock should we chose as the reference underlying
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in calculating the sensitivity of our portfolio in the above example? Bayer or
BASF?

Having chosen a reference underlying Si from among all the instruments Sk

in the portfolio with respect to which the sensitivities of the entire portfolio
are to be calculated, we must then proceed by expressing the sensitivities of
the remaining underlyings in terms of the sensitivity of this chosen reference.
The Betas of the Sk with respect to the Si can be used in the calculation
of such an expression. From the volatilities of the prices and the pair wise
correlation between the underlyings, we can use Eqs. 12.21 or A.20 to calculate
the necessary Betas, even when neither of the prices is an index. From the
sensitivity�k of an instrument with valueVk on the underlying Sk we can then
deduce the sensitivity�i of this instrument with respect to another underlying
Si by using Eq. 12.22:

�i = dVk

dSi

= dSk

dSi

∂Vk

∂Sk

= dSk

dSi

�k = Sk

Si

βki�k = Skσk

Siσi

ρki�k . (12.25)

In the second to last step, Eq. 12.22 in the form “dS/dI = βSIS/I” is
applied while in the last step we make use of Eq. 12.21. Having in this
manner transformed the sensitivities with respect to the underlyings Sk into
sensitivities with respect to the selected reference underlying Si , we can now
simply add them up to calculate the total sensitivity of the portfolio since they
now refer to the same underlying. The sensitivity of the entire portfolio with
respect to the reference underlying is thus given by

�total
i = 1

Si

∑
k

Sk βik �k = 1

Siσi

∑
k

Sk σk ρik �k . (12.26)

This reference underlying can (but need not) be an index on a relevant business
sector, for example. Such a combination of securities on different underlyings
makes sense when the underlyings are highly correlated. The correlation of the
underlyings, or at least the correlation with the selected reference underlying,
must be known for the following two reasons:

• They are necessary for the transformation of the deltas in accordance with
Eq. 12.25.

• Sound decisions as to a reasonable choice of the above mentioned combi-
nation of securities can only be made on the basis of the correlations.
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12.5 Computation of the Greek Risk Variables

Having introduced theGreeks and their applications in the last section, we will
now give a short discussion on their determination using the most important
pricing methods.

12.5.1 Sensitivities in the Binomial Model

In order to obtain the price changes in the binomial model resulting from
a change in the underlying’s spot price, under the assumption that all other
parameters (including the time) remain the same, we require several different
spot prices for the same time. This is the case for all times except at the
beginning of the tree. To obtain more than one spot price at time t , we
start the tree at least one time step earlier for each order of differentiation
desired. The highest order derivative with respect to S which will be needed
is that for gamma, i.e., the second derivative. Thus we let the tree start two
time steps in the past, i.e., at time t − 2dt . In doing so, we generate (in a
recombinant tree) three different price evolutions uuS, udS and ddS. The
tree should be constructed in such a way that the middle price evolution udS

represents the actual existing spot price S(t). This implies that the tree must
start at S(t − 2dt) = e−2μdtS(t) if we wish to apply the procedure given
by Eq. 9.30. If Eq. 9.31 is to be utilized instead, the tree should begin with
S(t −2dt) = S(t). Let V (t) denote the value of any given financial derivative
(or portfolio) on the spot price S. For a binomial tree beginning two time steps
before the present time t, the following sensitivities can be calculated directly
within the same tree:

� ≈ V uu(t) − V dd(t)

(u2 − d2)S(t − 2δt)
≈ V uu(t) − V ud(t)

u(u − d)S(t − 2δt)
≈ V ud(t) − V dd(t)

d(u − d)S(t − 2δt)

� = u d S(t − 2δt)

V ud(t)
� (12.27)

� = 2
d V uu(t) − (u + d)V ud(t) + uV dd(t)

ud(u − d)(u2 − d2)S2(t − 2δt)

	 = V uudd(t + 2δt) − V (t − 2δt)

4δt
≈ V uudd(t + 2δt) − V ud(t)

2δt

≈ V ud(t) − V (t − 2δt)

2δt
.
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Other sensitivities such as vega and rho can only be determined via Eq. 12.17:
we have to calculate the price for a slightly modified volatility or risk-free rate,
respectively, with a completely new tree, subsequently dividing the difference
between the old and the new option price by the respective change in the
parameter to obtain the desired sensitivity.

For the first-order partial derivatives of the price, namely delta, omega
and theta, the binomial model provides three different choices: a symmetric
derivative, an asymmetric derivative for which the price change with respect to
an increasing parameter value is used, and an asymmetric derivative for which
the price change with respect to a declining parameter value is used. All these
alternatives are displayed in Eq. 12.27.

We have previously introduced a somewhat different equation for delta (see
Eq. 9.8). The difference is that in the earlier expressions for delta, the time
was not assumed to be strictly constant but changed by dt. The price change
induced by this time change is compensated for by the other form of the delta
so that both methods are correct up to the order of precision obtained by using
the binomial model.

The equation for Theta is, strictly speaking, only correct for the procedure
given by Eq. 9.31 since in this procedure, the derivative prices used all contain
the same underlying price. In the procedure given by Eq. 9.30, however, not
only does the time change but, because of the drift appearing in u and d,

the underlying S changes as well. Consequently, a change in the option price
resulting solely because of a time change is not obtained. This is one (more)
reason why Eq. 9.31 is used almost exclusively in this text.

The expression for gamma can be obtained from the following argument:
gamma is by definition the change of delta per change of the underlying. At
time t we have two deltas at our disposal, these being the two unsymmetrical
derivatives in Eq. 12.27

�u ≈ V uu(t) − V ud(t)

u(u − d)S(t − 2δt)
, �d ≈ V ud(t) − V dd(t)

d(u − d)S(t − 2δt)
.

�u is the delta between the upper and middle node at time t . Similarly �d

is the delta between the middle and lower node. The difference between
these two deltas will serve as the delta change needed to calculate gamma.
In addition we need the values of the underlying belonging to those two deltas
since gamma is the delta change per corresponding underlying change. As the
underlying value belonging to �u we use the average (denoted by Su) of the
underlying values at the upper and middle nodes. Similarly we use the average
(denoted by Sd) of the underlying values at the lower and middle nodes as the
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underlying value belonging to �d .

Su = 1

2
[uu + ud] S(t − 2δt) = 1

2
u(u + d)S(t − 2δt)

Sd = 1

2
[dd + ud] S(t − 2δt) = 1

2
d(u + d)S(t − 2δt)

With respect to these underlying values �u and �d are even symmetric deriva-
tives. Gamma is now simply the delta difference divided by the difference in
underlying values:

� = �u − �d

Su − Sd

= 1

Su − Sd

[
V uu(t) − V ud(t)

]
/u − [

V ud(t) − V dd(t)
]
/d

(u − d)S(t − 2δt)

= 1

Su − Sd

d
[
V uu(t) − V ud(t)

] − u
[
V ud(t) − V dd(t)

]
ud(u − d)S(t − 2δt)

= 2

(u − d)(u + d)S(t − 2δt)

dV uu(t) − (u + d)V ud(t) + uV dd(t)

ud(u − d)S(t − 2δt)
.

This corresponds exactly to the gamma in Eq. 12.27.
A detailed demonstration on how to determine the sensitivities of an

option portfolio using the binomial model is provided in the Excel workbook
BinomialTree.xls.

12.5.2 Sensitivities in the Black-Scholes Model

Since the Black-Scholes model provides analytic solutions for option prices,
the sensitivities can be determined immediately by calculating the required
partial derivatives directly. The sensitivities of a plain vanilla call and put on
an underlying with spot price S earning a yield q will serve as an example and
are given below. The expressions appearing here arise from differentiating7 the

7Only the explicit dependence and not the implicit dependence of the option on the parameters under
consideration play a role when calculating these partial derivatives. In determining theta, for example,
the time dependence of S should not be taken into consideration, since this dependence is implicit for
the option price. This means that in taking the partial derivatives, S, t, r, q and σ are to be viewed as
independent parameters.
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function in Eq. 8.7 and exploiting the relation in Eq. 12.16. The sensitivities of
options on futures and forwards can be calculated similarly by differentiating
the functions given in Eqs. 8.8 and 8.9.

�Call = Bq(t, T )N(x) , �Put = Bq(t, T ) [N(x) − 1]

�Call = Bq(t, T )N′(x)

S(t)σ
√

T − t
= �Put

	Call = −Bq(t, T )S(t)N′(x)σ

2
√

T − t
+ S(t)N(x)

∂Bq(t, T )

∂t
− KN(x − σ

√
T − t)

∂B(t, T )

∂t

	Put = −Bq(t, T )S(t)N′(x)σ

2
√

T − t
− S(t)N(−x)

∂Bq(t, T )

∂t

+ KN(−x + σ
√

T − t)
∂B(t, T )

∂t

�Call = Bq(t, T )S(t)N′(x)
√

T − t = �Put

ρCall = −KN(x − σ
√

T − t)
∂B(t, T )

∂r
, ρPut = KN(−x + σ

√
T − t)

∂B(t, T )

∂t

ρqCall = S(t)N(x)
∂Bq(t, T )

∂q
, ρqPut = −S(t)N(−x)

∂Bq(t, T )

∂q
. (12.28)

Here, x is as defined in Eq. 8.5 and N′ again denotes the derivative of the
cumulative standard normal distribution with respect to its argument:

N′(x) = dN(x)

dx
= e−x2/2

√
2π

The Excel workbooks BlackScholes.xls and Straddle.xls demonstrate
these sensitivities. In BlackScholes.xls, the hedging of a portfolio consisting
of puts, calls and underlyings is demonstrated and in Straddle.xls, the
behavior of the sensitivities of a straddle as a function of the underlying is
described.

12.5.3 Sensitivities by Means of Finite Difference
Methods

In principle, every numerical algorithm used to compute the price of an
option can also be applied for the determination of the sensitivities or Greeks.
All numerical procedures for computing the sensitivities are in essence based
on the same fundamental idea displayed in Eq. 12.17. Two option prices
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are computed. These prices differ since one of the risk factors used in their
determination was slightly different. The sensitivity of the option price with
respect to that particular risk factor is then the difference between the two
option prices divided by the difference in the risk factor.
With finite difference methods—as with binomial trees—some sensitivities

can be calculated (as finite differences) directly on the grid used for pricing
without having to go through the lengthy procedure based on Eq. 12.17. In
fact, a finite difference scheme does nothing other than calculate (approxima-
tions for) the derivatives with respect to S and t at each time step. The relevant
formulas have already been presented in Chap. 10. Explicitly, Eq. 10.8 directly
yields delta, Eq. 10.9 gamma, and Eq. 10.11 Theta. Calculating Greeks directly
on the grid has proved to yield results which are significantly more exact8 than
procedures based on Eq. 12.17. Hence, the Greeks should be calculated on the
grid whenever possible.
Vega and rho, however, cannot be calculated directly from an (S, t)-grid

and so for these sensitivities we have to rely on Eq. 12.17, i.e., the calculation
must be run through twice, in each case with a slight change in the respective
parameter.
The determination of the sensitivities of an options portfolio using

finite difference methods is shown in the Excel workbook FiniteDiffer-
enceMethod.xlsm from the download section [50].

12.5.4 Sensitivities by Means of Monte Carlo Simulations

When using Monte Carlo simulations in determining the sensitivities, the
computations are always performed in accordance with Eq. 12.17. This means
the two simulations are performed with slightly different values for the
parameter under consideration but with exactly the same random numbers.
The difference between the two option prices divided by the difference in

the parameter value gives an approximation of the desired sensitivity. Differ-
entiating twice, as for gamma, for example, is accomplished in accordance
with Eq. 12.17 with three different simulations for three different parameter
values. Each simulation must be performed with the same random numbers.
The computation of the sensitivities by means of Monte Carlo simulations
is demonstrated in full detail for an option portfolio in the Excel workbook
MonteCarloSimulation.xlsm from the download section [50].

8For instance, we might otherwise observe that the sensitivities oscillate as a function of the spot price of
the underlying.


	12 Hedging
	12.1 Hedging Derivatives with Spot Transactions
	12.1.1 Hedging of Forwards and Futures

	12.2 Hedging Derivatives with Forward Contracts
	12.2.1 Hedging with Forwards
	12.2.2 Hedging with Futures

	12.3 Hedge-Ratios for Arbitrary Combinations of Financial Instruments
	12.4 ``Greek'' Risk Management with Sensitivities
	12.4.1 Sensitivities and a Portfolio's Change in Value
	12.4.2 Omega and Beta
	12.4.3 Summation of Sensitivities of Different Underlyings

	12.5 Computation of the Greek Risk Variables
	12.5.1 Sensitivities in the Binomial Model
	12.5.2 Sensitivities in the Black-Scholes Model
	12.5.3 Sensitivities by Means of Finite Difference Methods
	12.5.4 Sensitivities by Means of Monte Carlo Simulations



