
11
Monte Carlo Simulations

Having recognized the fact that prices of financial instruments can be cal-
culated as discounted future expectations (with respect to a risk-neutral
probability measure), the idea of calculating such expectations by simulating
the (stochastic) evolution of the underlyings several times and subsequently
averaging the results somehow is not far removed. In fact, this relatively simple
idea is widely used and is successful even in the valuation of very exotic options
for which other methods are either too complicated or completely unsuitable,
the only requirement being the availability of sufficient computation time.
Before proceeding with financial applications of Monte Carlo techniques, we
begin with a presentation of the technique itself.
If random events occur often enough, they can be used to answer diverse

questions statistically. This has long been common knowledge in science and
we have seen a vast increase in applications with the advance of modern
computers, since computers suddenly made it possible to generate “random”
events cheaply and in large numbers, or in the language of the specialist, to
simulate them. Ever since, computer simulations have been indispensable in
science, and since lately also in the modern financial world. Since generating
“random” events lies at the core of such simulations, the name Monte Carlo
simulation has become accepted despite the fact that the method’s namesake
city in Monaco could never generate as many random events as are sometimes
necessary in practice, even if all the casinos in Monte Carlo were open non-
stop for business every day for a million years. From this point of view, the
computer can far outperform the roulette table.
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With simulations, it has become possible to solve problems for which classi-
cal solutions fail, e.g. if the dimensionality of the problem is to high (regarding
for example most equity basket products with three or more different stocks
in the basket), or if the problem at hand could not be formulated in terms of
a partial differential equation (e.g. the multi-factor LIBOR market model).
Use of Monte-Carlo simulations, on the other hand, allow for the direct
simulation of stochastic differentials. Even complex path dependencies with
the final pay off depending highly on the evolution path of the underlying over
time can be modeled by means of Monte Carlo methods without difficulty,
since the various paths are simulated directly anyway. Lattice methods (trees,
finite differences) can be used to solve path-dependent problems only in some
special, simple cases or with great computational effort.

In addition, computer simulations allow to perform a what-if-analysis, with
which in short time many different scenarios could be simulated and analyzed.
The scenarios to be simulated could be given as fixed parameter sets (static
simulation, without any stochastic parameters, and are therefore no Monte
Carlo simulations) or randomly synthesized by application of a set of rules
(dynamicMonte Carlo simulation). The recently becoming increasingly popular
stress tests are nothing else then computer simulations, too. Finally, computer
simulations are fairly easy to implement and understood.

This advantages do have a price: computer simulations require lots of
computation time, and especially for low-dimensional problems, this is a
significant disadvantagewith respect to latticemethods. Also, it is very difficult
and time intensive to calculate sensitivities with required accuracy. Therefore,
MC simulations are often themethod of last resort, i.e.MC simulations should
in general only be used if other alternative methods fail.

Assumptions

A Monte Carlo simulation in its most general form consistent with arbitrage-
free pricing requires only the assumptions eliminating arbitrage opportunities,
i.e., Assumptions 1, 2, 3, 4 and 5 from Chap. 4. In addition, at first, we
constrain our considerations to European options only. As will be shown
later, the valuation of American Options with Monte Carlo methods requires
significant extra effort.

The Monte Carlo method presented in the following is based on the
random walk equation 2.17 with constant drift and volatility. Hence, because
of Eq. 9.25 for pricing in a risk-neutral world, constant yields must also
be assumed. This means that for the method presented, the additional
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Assumptions 7, 9, 11 and 12 from Chap. 4 are also made. The assumptions
of constant interest rates and volatilities naturally imply that interest rates
and volatilities are non-stochastic, i.e., Assumptions 8 and 10 hold as well.
Generalization to time-dependent parameters is possible without problems,
though.
These extensive assumptions are made to allow a clear presentation of the

material but are, in principle, not necessary for performing Monte Carlo
simulations. For example, not only the underlying price, but also the volatility
can be simultaneously simulated as stochastic processes (for instance also as
a random walk). Since then two of the parameters involved are stochastic
processes, the random walk occurs now in two dimensions. Of course, the
volatility of the volatility and also the drift of the volatility would be required
as parameters in such a situation. The simulation then proceeds as follows:
first, a value for the volatility is simulated. Using this simulated volatility as
a parameter, the next step for the underlying price is simulated. The two
random walks are thus not independent of one another since the random
walk describing the volatility affects that of the price. In reality, it can often be
observed that the converse holds as well, i.e., the price of the underlying has
an influence on the volatility (low volatility for rising prices and high volatility
for falling prices). This effect can be incorporated into the simulation using a
special form for the drift of the volatility random walk, which depends on the
underlying price, for example as “volatility-drift = rdt/S(t)”.
When simulating interest rates for pricing caps or floors, for example,

Eq. 2.17 can naturally be replaced by a more complex process corresponding to
a term structure model such as Heath-Jarrow-Morton, Ho-Lee, Hull-White,
etc. Mean reversion, for example, intuitively corresponds to a random walk
under the influence of an external force which has the effect of “driving” the
random walk back to an asymptotic mean value.

11.1 A Simple Example: The Area of a Disk

First, we will make some effort to understand clearly the essence of the Monte
Carlo simulation, before the method will be applied to an actual problem.
Therefore, at this point we present a very simple example of the idea behind
the Monte Carlo method before entering into a discussion of applications in
the financial world. As known from elementary mathematics, the area of a disk
of radius R is πR2, the product of the square of the radius with the constant
π , already known to the ancient Egyptians: π = 3.14159... A disk with a
radius of one meter, R = 1m, thus has an area of π × (1m)2 = 3.14159m2.
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2 m

1 m

Fig. 11.1 A disk with diameter 2m in a square with sides of length 2m

Supposing we had never heard of the number π , this fact can be ascertained
with the help of random events. To do so, we simply place square box with
sides of length 2m containing a “pie dish” as shown in Fig. 11.1 out in the rain.
The pie dish represents the disk of radius 1m whose area is to be determined.
We know that the square has an area of 2m× 2m = 4m2. The random events
are the falling raindrops. Assuming that the raindrops fall evenly on the square,
then the area of the disk can be given by

disk area = number of raindrops falling on the disk
number of raindrops falling on the entire square

× 4m2 .

In this way, the area of a disk can be determined with the help of random
events.

The same “Experiment” admits another interpretation. If the equation “disk
area = πR2“ is known, then the value of π can be determined:

π = disk area
R2

= disk area
1m2

= 4 × number of raindrops falling on the disk
number of raindrops falling on the entire square

.
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Thus, with the help of randomly falling raindrops, the value of the natural
constant π has been determined.
The primary application of Monte Carlo methods—in particular in the

financial world—is the calculation of integrals. For example, the price of an
option can be expressed as the integral of its payoff profile with respect to
an appropriate probability measure associated to the price of its underlying
at maturity. Making use of our disc-example, we give a third interpretation of
the experiment described above to illustrate how random events can be used to
calculate an integral: as is known from elementary mathematics, a semi-circle
can be represented as the graph of a function. Choosing the x- and y-axis as
shown in Fig. 11.1, the ancient Pythagorean Theorem says that the points (x, y)

on the circle all satisfy x2 + y2 = R2 = 1, thus the upper semi-circle is
the graph of the function y = √

1 − x2. The lower semi-circle is the graph
of the function y = −√

1 − x2. As is well know from any introduction to
mathematical analysis, integrating a function gives the area under the curve
given by the graph of that function. Since the upper semi-circle is represented
by the graph of the function y = √

1 − x2, the area of the half-disk can be
determined by integrating:

1∫

−1

√
1 − x2dx = 1

2
Area of the disk

= 2
Number of raindrops falling on the disc

Number of raindrops falling on the entire square
.

Thus, we have calculated this integral with the help of randomly falling
raindrops.
Note that the quantity we want to calculated using random events is by no

means random itself: the area of a disk of radius 1m2 never changes nor does
the value of π or the value of the above integral. We could ask the question:
does rain know anything about geometry and circles? Or about the natural
constant π ? Or about integration? Probably not. However, this information
can be obtained if we are clever enough to ask the right questions! The only
condition, the randomly falling raindrops had to meet, was that they fall
evenly, or more precisely, that the probability for them to fall on any particular
point in the square is exactly the same as to fall on any other point in the square.
For example, on a square field with an area of 1000 square miles, it might be
raining in some places and sunny in others. Such a field would be completely
unsuitable for our experiment.
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The “machine” used to generate the random events, whether the rain or a
computer, is completely irrelevant. The events merely have to be “sufficiently
random” and their probability distribution must be known. If this is the case,
calculations can be performed with an accuracy which is limited solely by the
machine’s capacity to produce the random events: according to the laws of
statistics, the accuracy of results improves as the number of random events
involved in the simulation increases (see Sect. 31.2).

How would the above experiment have been conducted with a computer?
Nowadays, most programming languages such as Pascal, Fortran, C, C++, etc.
and the common spread sheet programs, such as Microsoft Excel (or Visual
Basic) or Lotus 1-2-3, are equipped with random number generators. These are
(small) programs or functions which usually generate uniformly distributed
random numbers between 0 and 1. Simulating a random event such as a falling
raindrop with a computer is accomplished by generating two such random
numbersZ1 andZ2 to simulate the coordinates (one x- and one y-coordinate)
of the point on which the raindrop falls. Since the simulated random numbers
are all between 0 and 1 the generator producing such coordinates simulates
raindrops falling only in the shaded area in Fig. 11.1. To simulate raindrops
falling on the entire square, the following transformation must be made:

x = 2Z1 − 1 , y = 2Z2 − 1 .

Because this transformation is linear, x and y are uniformly distributed
random variables, as are Z1 and Z2. Thus, the coordinates of a raindrop
in the square have been determined. The simulation of the random event is
complete and we can continue with the evaluation. As in the case of raindrops,
two events must be counted:

• The total number of “raindrops” falling in the square. This, however,
is exactly the number of simulated random events, since no coordinates
were generated which lie outside of the square (we make no unnecessary
simulations). This means that this counter will be increased by one after
each random event has been simulated.

• The number of “raindrops” falling within the circle. According to Pythago-
ras, these are the random events whose coordinates x and y satisfy the
inequality x2 + y2 ≤ 1. This means that after each random event,
the counter is only increased by one if the generated event satisfies this
inequality.
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If, for example, 10,000 events were simulated (this requires the generation
of 20,000 random numbers, one for each coordinate), of which, for example,
7851 satisfy the above inequality, we obtain

Area of the disk ≈ 0, 7851 ∗ 4m2 = 3, 1404m2

π ≈ 0, 7851 ∗ 4 = 3, 1404

1∫

−1

√
1 − x2 dx ≈ 0, 7851 ∗ 2 = 1, 5702 .

Of course, this result is not exact, but the statistical error involved can be
determined as described in Sect. 31.2. In principle, this error can be reduced
almost arbitrarily by increasing the number of simulated random events, as
long as computer capacity allows it.

11.2 The General Approach to Monte Carlo
Simulations

Wecan extract the general procedure for conducting aMonte Carlo simulation
from the above example which will be summarized here to provide the reader
with a “recipe” for performing such simulations. Each step will be explained
by reference to its corresponding step in the above disk experiment as well as
to the simulation of a random walk.

1. Generate the random numbers required for aMonte Carlo step, usually
from a uniform distribution between 0 and 1.
In the disk experiment, a Monte Carlo step corresponds to the falling of
a simulated “raindrop”. Two random numbers were required. To simulate
a random walk, a Monte Carlo step represents a step in the random walk.
One random number is required for each dimension of the space in which
the random walk occurs.

2. Transform the random numbers to generate numbers according to a
desired distribution.
In the disk experiment, the uniformly distributed random numbers gen-
erated between 0 and 1 were transformed to yield uniformly distributed
random numbers between −1 and 1. For a random walk, they are trans-
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formed to normally distributed random numbers. Section A.5 presents
methods for doing this.

3. Perform a Monte Carlo step using the random numbers generated.
In the case of the disk, this corresponds to the falling of a “raindrop”. For
the random walk, it consists of adding one time step to the random walk.

4. Repeat steps 1, 2 and 3 until the system reaches the state required for
the proposed investigation.
For a random walk consisting of n steps, the required state is attained
when n Monte Carlo simulations have been carried out. For the disk, the
evaluation can take place after each single Monte Carlo step.

5. Measurements: measure the system variables of interest.
In the case of the disk, we measure the number of “raindrops” falling within
the disk. For a random walk, for example, the “end-to-end” distance could
be measured.

6. Repeat steps 1, 2, 3, 4 and 5 until enough systems for a statistical
analysis have been generated.
For the disk, many “raindrops” must be simulated; for the price evolution
of an underlying, many random walks must be generated.

7. Final Analysis: compute the means of the measured variables and
determine the statistical error.
For the disk, this was the ratio of the number of raindrops falling within
the disk to the total number simulated. For a random walk it could be, for
example, the mean length of all measured end-to-end vectors (or the square
of their Euclidean norm).

11.3 Monte Carlo Simulation of Risk Factors

11.3.1 Simulation of the Evolution of a Single Risk Factor

On the basis of Eq. 2.17, the time interval from t to T is divided inton intervals
of length δt where n equals the number of steps. The price of a risk factor is
to be simulated as a random walk over this time interval. The random walk
equation 2.17 (or its equivalent form 2.23) holds for infinitesimal changes in
ln(S) occurring in an infinitesimally small time span dt . The time step δt used
for the simulation is not infinitesimally small, however. Therefore we do not
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use the stochastic PDE 2.17 (or 2.23) itself but its solution, Eq. 2.28. Taking
the logarithm on both sides of this solution yields1:

ln (S(t + δt)) = ln (S(t)) + μ δt + σX
√

δt with X ∼ N(0, 1) .

This is a recursion: Knowledge of ln(S) at time t enables the calculation of
ln(S) at the next time point t + δt . To emphasize this point, we enumerate
the time points, i.e., we introduce the following notation:

ti = t + i δt where i = 0, 1, . . . , n d. h. t0 = t , tn = T .

Denoting the ith (standard normally distributed) random number by Xi =
X(ti), we obtain the basis of the simulation of a risk factor whose behavior is
governed by Eq. 2.17 in terms of the notation just introduced:

ln (S(ti)) = ln (S(ti−1))+μ δt+σ Xi

√
δt , i = 1, . . . , n . . (11.1)

This equation is suitable for a direct simulation: ln(S(ti−1)) is the end-point
of a randomwalk after i−1 steps. In the next step, the value “μδt+σ Xi

√
δt”

will be added on to this end point, yielding the end point of the random walk
after i steps, namely ln(S(ti)).
A concrete example at this point may clarify this procedure.With a volatility

of σ = 20% per year, a drift of μ = 6% per year and a time step δt = 1
day = 1/365 years, Eq. 11.1 gives the following simple recursion relation:

ln (S(ti)) = ln (S(ti−1)) + 0, 06

365
+ 0, 2

√
1/356 Xi

= ln (S(ti−1)) + 0, 0001644 + 0, 01046 Xi .

The contribution of the drift to each step is approximately one hundred times
smaller than that of the volatility. This explains the negligible effect of the
drift for small time spans T − t . However, over longer time periods, the drift
cannot be ignored. Figure 11.3 shows the result of a simulation over a longer

1To be able to work with standard normally distributed random numbers we also used Eqs. 2.16 and 2.27
here. Those Equations say that the Wiener-Process δW has the same distribution as

√
δt times a standard

normally distributed random number:

δW ∼ X
√

δt with X ∼ N(0, 1) .
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Fig. 11.2 Simulation of ln(S(t)/S(0)) by means of normally distributed random num-
bers. 1 step corresponds to 1 day, with a total number of 2,000 steps. The annual
volatility is 20% and the average drift is 0

time span of 2,000 days with respect to this recursion. To emphasize the effect
of the drift, the 2,000 randomly generated values of Xi were saved and used
again for the recursion, this time setting μ = 0. The result is presented in
Fig. 11.2. The values at the end of the simulation performed with the drift
(Fig. 11.3) are approximately twice as large as those for the simulation with
zero drift.

Such a curve represents one possible price progression over time, called a
path of the risk factor. Repeating the simulation, we obtain an additional path.
The simulation of many such paths yields the probability distributions for the
price at each time point ti in the simulated time span, in other words the
probability distribution of the paths. In particular, we obtain a distribution of
the values of the risk factor at the end point tn = T . The simulated price of
the risk factor at time tn = T is obtained by adding up the n steps generated
in accordance with Eq. 11.1:

ln (S(tn)) = ln (S(t0)) + μ

n∑
i=1

δt +
n∑

i=1

Xi σ
√

δt .
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Fig. 11.3 The same random walk as in Fig. 11.2 but with a drift (mean return) of 6%
per year

If the volatility σ is assumed to be constant, it can be factored out of the above
sum. The length of the time steps δt are the same for each Monte Carlo step
and thus

ln (S(tn)) = ln (S(t0)) + μ n δt + σ
√

δt

n∑
i=1

Xi .

The sum of n independent, standard normally distributed random variables is
again a normally distributed random variable with expectation 0 and variance
n, i.e., the standard deviation of the sum is

√
n. If only the end distribution

(the distribution of Sn) is of interest and not the path of the underlying (each
of the Si) taken during the time span under consideration, the sum of the
n standard normally distributed random variables Xi can be replaced by a
standard normally distributed random variable X multiplied by

√
n :

n∑
i=1

Xi → √
n X .
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In doing so, the simulated underlying price at the end of the time period under
consideration can be generated with a single random number directly. Using
nδt = T − t from the definition of δt we can thus write

ln (S(T )) = ln (S(t)) + (T − t )μ + σ
√

T − t X . (11.2)

The path taken by the underlying during the simulation is of interest only
for certain exotic, path-dependent derivatives (see Chap. 19). Otherwise, in
particular for pricing and risk management of European-style instruments
where the underlying price is relevant only at maturity (or at the end of the
liquidation period in the case of risk management), the efficiency of a Monte
Carlo simulation can be significantly improved by this simplification.

11.3.2 Simulation of Several Correlated Risk Factors

We are often interested in the progression of several risk factors rather than just
one. The risk management of a portfolio, for example, requires the simulation
of all risk factors affecting the portfolio. Since those are usually not statistically
independent of one another, we are confronted with the question of how
the correlation between risk factor processes can be incorporated into the
simulation. The general approach for an arbitrarily large number of different
securities is presented in Sect. 23.1. Here, we restrict the discussion to the
important special case of two correlated prices. This can be used, for example,
in determining the price of exchange options.2

The two price processes S1 and S2 have drifts μ1 and μ2, volatilities σ1 and
σ2, respectively, and a correlation ρ12. The logarithm of the random walks will
again be used to model the time evolution of the risk factors:

δ ln S1(t) = μ1 δt + Y1

δ ln S2(t) = μ2 δt + Y2 with correlated random variables Y1, Y2 .

How should correlated pairs of random variables be constructed? First, the two
equations for δ ln(Si) are combined by interpreting the indexed equations as
components of a random vector.

(
δ ln S1(t)

δ ln S2(t)

)
=

(
μ1

μ2

)
δt +

(
Y1

Y2

)
.

2See Sect. 19.1.5.
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If the prices were uncorrelated, the random variablesYi would be independent,
normally distributed random variables with variance σ 2

i δt . However, since the
prices are correlated, it is not sufficient to simply specify the variance of both
variables in order to fully determine the distribution. Instead the covariance is
needed to describe both the variances and the correlations. Since several Yi (in
this case, two) may come into play when constructing the random vector, the
covariance is not a single number but a matrix, called the covariance matrix.
As will be presented in detail in Sect. 21.5, the covariance matrix δ� of two
random variables is composed of the correlations and the standard deviations
of the associated random variables as follows:

δ� =
(

δ�11 δ�12

δ�21 δ�22

)
where δ�ij = ρij︸︷︷︸

Correlation
von i mit j

σi

√
δt︸ ︷︷ ︸

Standard
dev. ofi

σj

√
δt︸ ︷︷ ︸

Standard
dev. ofj

for i, j = 1, 2 .

(11.3)

Correlations are symmetric, i.e., ρij= ρji . Also, ρii = 1, in other words a risk
factor is always fully correlated with itself. With ρ = ρ12 = ρ21 the covariance
matrix of two risk factors becomes

δ� = δt

(
σ 2

1 ρ σ1σ2

ρ σ1σ2 σ 2
2

)
.

In order to generate normally distributed random numbers Yi with correlation
matrix δ� from independent, standard normally distributed random variables
Xi, the “square root” A of the matrix δ� is needed. This matrix satisfies the
condition

AAT = δ� ,

where AT denotes the transpose of the matrix obtained by writing the column
vectors of the matrix A as row vectors. As shown in detail in Sect. 21.5.3, this
matrix yields the desired transformation

Y = AX where

X = vector of standard normally distributed, uncorrelated random variables

Y = vector of normally distributed, correlated random variables with

covariance matrix δ� .
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The “square root of a matrix” can be obtained using a procedure from linear
algebra called Cholesky decomposition. The general form of this decomposition
is given in Sect. 21.5.3. Here, we restrict our consideration to 2 × 2 matrices,
carrying out the procedure explicitly for this case. We begin by assuming that
the matrix A has the following form:

A =
(

a11 0
a21 a22

)
�⇒ AT =

(
a11 a21

0 a22

)
.

The components aij can now be determined from the requirement that the
equation AAT = δ� be satisfied:

AAT = δ�(
a11 0
a21 a22

)(
a11 a21

0 a22

)
=

(
δ�11 δ�12

δ�21 δ�22

)

(
a2

11 a11a21

a11a21 a2
21 + a2

22

)
=

(
δ�11 δ�12

δ�21 δ�22

)
.

Comparing the components on both sides yields a linear system of equations
for the aij :

a2
11 = δ�11 ⇒ a11 = √

δ�11 = σ1

√
δt

a11a21 = δ�12 ⇒ a21 = δ�12√
δ�11

= ρ σ2

√
δt

a2
21 + a2

22 = δ�22 ⇒ a22 =
√

δ�22 − δ�2
12

δ�11
=

√
1 − ρ2 σ2

√
δt .

Where Eq. 11.3 was also used. Now that the matrix elements have been
determined, this matrix can be used to generate the correlated random
numbers:

Y = AX(
Y1

Y2

)(
a11 0
a21 a22

)(
X1

X2

)
= √

δt

(
σ1 0
ρσ2

√
(1 − ρ2)σ2

)(
X1

X2

)
,
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and thus

Y1 = √
δt σ1 X1

Y2 = √
δt ρ σ2 X1 + √

δt
√

1 − ρ2 σ2 X2 . (11.4)

We can now formulate a random walk equation for two correlated price
processes in terms of two uncorrelated standard normally distributed random
variables X1, X2:

δ ln S1(t) = μ1 δt + σ1 X1

√
δt

δ ln S2(t) = μ2 δt + σ2 (ρX1 +
√

1 − ρ2X2)
√

δt . (11.5)

The first equation has the form of a single randomwalk. The correlation affects
only the second equation. The interpretation of this representation is that the
second price is correlated with the first. Since the correlations are symmetric,
this interpretation is irrelevant for the final result. Assuming another form for
the matrix A (or simply renaming the Yi) would yield the result that the first
price is correlated with the second. This holds in general: we can select any risk
factor (for example, the one we feel most comfortable working with) as the
leading factor and simulate it independently. Then all correlations appear in
the evolutions of the other risk factors.
Exactly as in the previous section, the random walk equations 11.5 now

provide the basis for the recursionwhich can be programmed in aMonte Carlo
simulation:

ln S1(ti) = ln S1(ti−1) + μ1 δt + σ1 X1(ti)
√

δt , i = 1, . . . , n

ln S2(ti) = ln S2(ti−1) + μ2 δt + σ2

[
ρX1(ti) +

√
1 − ρ2X2(ti)

]√
δt .

(11.6)

Or, if only the values at the end of the time period under consideration are of
interest but not the paths of the risk factors:

ln S1(T ) = ln S1(t) + μ1 (T − t ) + σ1

√
T − tX1

ln S2(T ) = ln S2(t) + μ2 (T − t ) + σ2

√
T − t

[
ρX1 +

√
1 − ρ2X2

]
.

(11.7)
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The Excel workbook from the download site [50]MonteCarloDemo.xlsx
includes a demonstration of the Monte Carlo simulation of a risk factor. For
demonstration purposes, the simulation is accomplished using Excel cell
functions without programming in Visual-Basic. Of course, this would be
too slow for use in real applications. We therefore also provide a workbook
entitled MonteCarloSimulation.xlsm which contains an executable Visual
Basic module for Monte Carlo simulations.

11.4 Pricing

According to Eq. 9.20 the value at time t of a financial instrument can
be determined from the expectation of its price at a future time T , if this
expectation is taken with respect to the risk-neutral probability distribution of
the underlying. A clever choice of T can make pricing the instrument using
Monte Carlo simulations quite easy. If T is chosen to be the maturity of the
derivative, then the derivative’s price at time T is simply given by the payoff
profile P . Thus, if the underlying S is simulated according to Eq. 11.1 up to
time T we can easily obtain a simulated probability distribution for the payoff
values. This works also for path dependent instruments if we measure the
relevant path-dependent quantities along the way (like for instance average of
the simulated underlying values for specified days in the case of Asian options).
The mean of all these simulated payoff values is then used as an estimator
for the expectation of the payoff. According to Eq. 9.20, discounting3 this
estimator back to time t yields an estimator for the value of the instrument
at time t , if the calculation of the mean has been carried out with respect to
the risk-neutral probability. To ensure that this is the case, the risk factor must
be simulated with respect to this probability. This is accomplished by simply
choosing the drift of the random walk to be risk-neutral in accordance with
Eq. 9.25.

Thus, the approach for pricing derivatives using Monte Carlo simulations
is basically clear: We simulate the underlying (or more precisely the logarithm
of the underlying value) in a risk-neutral world up to the time of maturity in
accordance with Eq. 11.1 (for path-independent derivatives we can even use
Eq. 11.2 and save a lot of computing time), and then measure the (discounted)
mean of the payoff profile. In order to determine the error involved as discussed

3For future styled instruments, whose value changes are settled by daily adjustments in a margin account
(as is the case for futures, for example), today’s price is directly related to this expectation without any
discounting, see Eqs. 6.6 and 9.21.
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in Sect. 31.2, the mean of the square of the payoff profile must be measured,
too. That’s all. The calculation of option prices using the Monte Carlo
method merely involves determining the mean of certain functions during
the simulation.
An essential point, however, should not be overlooked. The time of exercise

must be known, otherwise it is not clear “up to when” the price is to
be simulated. For American or Bermudan Options we do not have this
information up front. Section 11.5 describes methods for calculating at least
lower bounds for the option values, which could be used to approximate the
exact solution quite accurately.
A detailed demonstration of the application of the Monte Carlo method

to the valuation of an option portfolio is provided in the Excel workbook
MonteCarloSimulation.xlsx from the download site [50]. By making
appropriate adjustments in the valuation part of the Visual Basic module, this
program can be used to price all sorts of European derivatives4 in the context
of the Black-Scholes world (constant yields and volatility). In anticipation of
Chap. 12, the calculation ofGreeks, i.e., the sensitivities of the derivative’s price
with respect to its parameters, is also demonstrated in the workbook. The
workbook can be used as a small but complete option calculator (as always,
the yellow fields are the input fields).

11.5 American Monte Carlo

TheMonte Carlomethods can be extended for the valuation for options with a
Bermudan or American exercise profile. As first step, American exercise can be
approximated by Bermudan exercise. The higher the frequency of Bermudan
exercise days (i.e. daily), the better the continuous exercise right will be
approximated. For numerical computations, this discretization of continuous
time to a set of distinct time points is anyway required. Therefore, it is only a
matter of required accuracy and available computer time, how small the time
steps must resp. should be chosen. Thus, in the following, we only consider
Bermudan exercise rights.
The second problem is more difficult to solve. At each potential exercise day

te we need to decide, whether the option should be exercised or not. Besides
the price of the underlying (directly simulated by the Monte Carlo method)
used to calculate the pay off in case of exercise (exercise value), we need to

4See also Sect. 19.3.1.
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compute the price of the option to calculate the value of exercise at some later
point of time (hold value). A simple approach would start for simulated path at
each exercise date a newMonte Carlo simulation with many paths to simulate
the future price of the option. With this approach, computing time increases
dramatically with the number of exercise dates of the option and the number
of simulated paths. Similar to non-recombining tree, this method is usually
not feasible. Therefore, various authors have suggested alternative methods, of
which the most widely known (and used) is probably the work of Longstaff ans
Schwartz [135]. This method is also known as the Longstaff Schwartz method.
Another, alternative approach, will be presented in Sect. 14.10.

The general idea of American Monte Carlo method is to calculate the
optimal exercise time based on key figures well known at the time of exercise.
This key figures should have the best explanatory power for the considered
problem. For a Plain Vanilla American option, this could be the relative
moneyness

x = K − S(te)

S(te)
.

Here, S(te) is the simulated underlying price at the (potential) exercise time.
K is, as usual, the strike of the option. Then, the hold value can be modeled as
a function h(x). E.g., a simple approach would be a 2nd degree polynomial.

h(x) = a2x
2 + a1x + a0 .

In the beginning, the 3 parameters a0, a1, a2 are unknown and need to be
determined. This is down in a simulation run preceding the final simulation
for calculating the full option. In this pre-run, only the underlying price will
be simulated. For each path i = 1, 2, . . . , n and each possible exercise date tj
with t > tj < T and j = 1, 2, . . . ,m, the simulated underlying price Si,j is
computed and stored. Then, we will go backwards in time through all paths.
At the final exercise date tm, the hold value of the option can be computed (it
will be either exercised at this date or expires worthless) as pay off at time T

discounted from T to tm. For discounting, the numeraire simulated for each
path can be used. For each of the n paths, the hold value Hm is calculated
separately. Then, using an optimization algorithm, the 3 parameters a0, a1,
a2 will be determined such that the n values Hm can be approximated by the
function h(x) as close as possible. By approximating Hm by h(x), we describe
the hold value bymeans of parameter x which is well known at time tm without
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using the information of the future (unknown) underlying price at time T we
needed to calculate Hm.
Next, we can go one step back to date tm−1 and calculate the hold values

Hm−1 for each path. Now, we need take into account the possibility of exercise
at time tm. This would be exactly the case if the inner value c(tm) of the
option at date tm is worth more than the hold value, since the option buyer
seeks to maximize the profit. Therefore, for each path, the hold value Hm−1 is
calculated as discounted value of max[c(tm),Hm]. After the hold values have
been determined, we use again an optimizer over all paths to determine another
set of three parameters a0, a1, a2 tominimize the differences between h(x) and
theHm−1. This procedure is repeated until for each exercise date an optimal set
of parameters has been found. Finally, we have n functions hi(x) determined,
each function modeling the hold value of the option at one exercise date.
At last, the simulation to calculate the full Bermudan option could be

exercised. For this, we simulate again many Monte Carlo paths (in general
more than has been used for optimizing the parameters for approximating the
hold value, e.g. 10n paths). As with the “normal”Monte Carlomethod, we will
go forward in time. At each exercise date tj we check, whether c(tj ) > hj (x) is
fulfilled. If so, the option will be exercised. If not, we continue the simulation
to the next exercise date, until either the option is exercised or matured. Then,
the price can be calculated the sum of all cash flows per path discounted with
the numeraire averaged over all simulated paths. To avoid a numerical bias, it
is important to make sure that the random numbers used in the pre-run and
those in the second (full) run are independent.
In this way, it is possible to compute a lower bound to the actual value

for the Bermudan option. The better the choice of function h(·), the better
the lower bound will approximate the real value. This can be seen very easily:
In the end, h(·) serves as a mathematically fixed exercise strategy and is only
dependent on parameters well known at the exercise date. If we have made a
bad choice for h(·), our exercise decision will be suboptimal and we would not
be able to receive the full value of the option.
A drawback of this approach is the fact that a good choice for h(·) is often

not easily found. The choice of moneyness as explanatory variable in a second
order polynomial is probably not the best choice, if the well-known functional
form of the intrinsic value of a Amerikan Plain Vanilla option is envisaged. The
weighted sum of European Plain Vanilla options for each exercise date might
be a better choice. Unless there is no benchmark price, a polynomial is a good
starting point. Since we know that we will get only a lower limit, it is useful to
experiment with various approaches for h(·) and finally chose that function,
for which the simulated American options had maximum value.
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