
10
Numerical Solutions Using Finite Differences

One of the best known and widely used numerical methods to solve partial
differential equations in finance and elsewhere is the finite difference method.
Finite difference methods are very powerful and flexible as well. They can
be applied to a wide variety of various derivatives. Different exercise modes,
including European (exercise at expiry only), American (exercise at any time)
or Bermudan (exercise at a limited set of exercise dates), could be implemented
without major problems. In comparison with the tree methods introduced in
Chap. 9, the finite difference method possesses superior convergence features,
which justifies the greater initial effort for its implementation. Therefore, we
will provide a very detailed discussion of this important method.
Finite difference methods approximate the partial derivatives appearing

in partial differential equations like the Black-Scholes equation 7.8 using
finite difference quotients. The equation is then solved on a grid spanned
by the linearly independent variables (for example, time t and price S of the
underlying) appearing in the PDE.1 Doing so, we obtain a solution surface
which represents the price on each of the grid points (S, t). In general, a
PDE has an unbounded number of solutions. Usually we are only interested
in a solution which satisfies specific boundary and/or initial conditions. The
finite differencemethod requires the specification of both boundary and initial
conditions.

1In the following we will often use the abbreviation PDE for “partial differential equation”, as is common
practice in the related literature.

© The Author(s) 2019
H.-P. Deutsch, M. W. Beinker, Derivatives and Internal Models, Finance and Capital
Markets Series, https://doi.org/10.1007/978-3-030-22899-6_10

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22899-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-22899-6_10

166 H.-P. Deutsch and M. W. Beinker

Since finite differences can be applied in quite general settings, we will
require only the assumptions needed for arbitrage free trading, i.e., Assump-
tions 1, 2, 3,5 from Chap. 4, with the additional Assumption 6. Assumption 6
ensures that the variables in the problem are continuous. This is necessary if
we want to obtain differentiable solutions. In order to provide a manageable
overview of finite differences, we will restrict the treatment in the examples
given here to random walks (Assumption 7) with non-stochastic interest rates
and volatilities (Assumptions 8 and 10, respectively). In addition, we will not
consider counter party default risk (Assumption 4).

10.1 Discretizing the Black-Scholes Equation

Below, the Black-Scholes Differential Eq. 7.8 will be solved numerically with
the help of finite difference methods. In the literature, Eq. 7.8 is often
transformed into an equation based on a new variable given by Z = ln(S).
Such an equation has the advantage that the coefficients no longer depend
explicitly on S. On occasion, it is claimed that a further advantage of this
change of variable is that a uniform grid inZ is numericallymore efficient than
a uniform grid in S. However, the differences are usually negligible and this
argument does not hold for barrier options. Furthermore, it is often preferable
to use a non-uniform grid.We could distribute the grid points logarithmically,
for example so that the non-uniform grid in S corresponds to a uniform grid in
Z. In view of these considerations, we will continue to use the Black-Scholes
equation in the form given by 7.8. But we will present the finite difference
method for general non-uniform grids.

The finite difference method now consists in determining the value V of a
financial instrument on a grid with coordinates S and t by approximating the
partial derivatives with finite differences. We will restrict the discussion here
to a rectangular grid allowing, however, the distance between grid points to be
non-uniform. Such a grid is completely determined by the grid points in the
S and t directions denoted by:

Si ; i = 0, 1, 2, . . . , M (10.1)

tj ; j = 0, 1, 2, . . . , N

We introduce the notation Wi,j = W(Si, tj) for the solution’s approximation
in order to distinguish it from the exact solution V (Si, tj) evaluated at points
on the grid.

10 Numerical Solutions Using Finite Differences 167

For the sake of clarity we will at several instances start with a grid whose time
steps as well as the steps in the direction of the underlying price are uniformly
spaced. For such uniform grids the spacing between grid points is simply

Si − Si−1 = δS ∀i �⇒ Si = S0 + i δS (10.2)

tj − tj−1 = δt ∀j �⇒ ti = t0 + i δt .

We will then, however, always generalize our discussion to non-uniform grids.
The fundamental idea behind the method presented here is to determine

the value of the derivative from the values at neighboring time points. Since
the value of the derivative (as a function of the underlying’s price) is usually
known at maturity (it is given a priori by the payoff profile P(S) as a function
of S), we proceed using the strategy of starting at maturity tN = T and
calculating backwards to time tN−1, from there calculating back to tN−2 and
so on. To accomplish this, we express the value of the instrument in terms
of its Taylor series with respect to time, and express the time derivatives
appearing in the Taylor expansion in terms of the derivatives with respect to
the underlying price by using the Black-Scholes PDE. Here, the similarity to
backward induction as described in Sect. 14.6.1 is not accidental.
Using the Black Scholes equation 7.8, the partial derivative of V with

respect to time is expressed in terms of derivatives with respecto to S:

∂V (S, t)

∂t
= r(t)V (S, t) − [r(t) − q(t)] S

∂V (S, t)

∂S
− 1

2
σ 2(S, t)S2 ∂2V (S, t)

∂S2
.

(10.3)

The partial derivatives with respect to S in this equation are approximated by
quotients of finite differences, as will be explicitly demonstrated in the next
sections.

10.1.1 The Explicit Method

In the explicit method, the Taylor series expansion is used to calculate values
at an earlier time t − δt from the values at time t :

V (S, t − δt) = V (S, t) − δt
∂V (S, t)

∂t
+ O(δt2) .

168 H.-P. Deutsch and M. W. Beinker

The last term on the right-hand side of the equation states that no terms
will be considered which are of order two or greater with respect to the time
difference δt . If the time difference is small enough, we can assume that the
time dependence of V (S, t) can be adequately described if we simply neglect
terms of order O(δt2). Note that on the left-hand side of the above equation,
the derivative of the value evaluated at time t − δt appears, whereas the
right-hand side consists of terms evaluated at time t . The trick is now not
to express the right-hand side in terms of a difference quotient in time (we
would not have accomplished anything by doing so since it would involve
introducing another time point t − δt or t + δt) but rather to express the
time derivative in terms of partial derivatives with respect to S obtained from
the Black-Scholes equation 7.8. These partial derivatives with respect to S are
evaluated at time t so that the value of the derivative at an earlier time t − δt

can in fact be recovered solely from information available at time t . Here, we
explicitly calculate earlier values from those (known) values from a later time.
This method is thus referred to as the explicit method.

10.1.2 The Implicit Method

In the implicit method, we use the Taylor series expansion in the time variable
to obtain an expression for values at a later time t + δt from the values at
time t :

V (S, t + δt) = V (S, t) + δt
∂V (S, t)

∂t
+ O(δt2) .

In this case, later (known) values are expanded in terms of earlier (unknown)
ones. This expansion can only be used implicitly to calculate the unknown
values from the known ones, hence the name implicit method.

10.1.3 Combinations of Explicit and Implicit Methods
(Crank-Nicolson)

The two methods described above can be combined by taking a linear
combination of the two respective Taylor series expansions. To avoid the
appearance of three different time points in the resulting expression (t − δt, t

and t + δt) a change in variable in one of the Taylor series should be made.

10 Numerical Solutions Using Finite Differences 169

For example, the transformation t → t + δt in the Taylor series expansion for
the explicit method (and dividing by δt) yields an equation of the form:

V (S, t + δt) − V (S, t)

δt
= ∂V (S, t + δt)

∂t
+ O(δt) . (10.4)

Here, we have rearranged the Taylor series so that the left-hand side is written
in terms of a difference quotient in t , while on the right-hand side a differential
quotient appears (which will later be replaced by a difference quotient with
respect to the underlying price). Note that dividing through by δt has the
effect of reducing the order of the error term to a linear order in δt . An
analogous procedure for the implicit method allows its respective Taylor series
to be rearranged as well (here, a variable transformation is unnecessary since
the series is already expressed in terms of t and t + δt):

V (S, t + δt) − V (S, t)

δt
= ∂V (S, t)

∂t
+ O(δt) . (10.5)

The only thing now distinguishing the two expressions is that the differential
quotient on the right-hand side (and thus, the difference quotients with respect
to S yet to be determined) is written in terms of the time t , whereas in
the expression derived from the explicit method, the differential quotient is
expressed in terms of the later time point t + δt . Naturally, the equality holds
if we take any linear combination of the two equations:

V (S, t + δt) − V (S, t)

δt
= (1 − θ)

∂V (S, t + δt)

∂t
+ θ

∂V (S, t)

∂t
+ O(δt) , 0 ≤ θ ≤ 1 .

Note the following correspondence2 between the notation above and the
discrete notation introduced in Eq. 10.1:

S =̂ Si , t =̂ tj , t + δt =̂ tj+1

Wi,j = W(Si, tj) =̂V (S, t)

Wi,j+1 = W(Si, tj+1) =̂V (S, t + δt) .

2The sign =̂ means “corresponds to”.

170 H.-P. Deutsch and M. W. Beinker

In the discrete notation the above equation reads

Wi,j+1 − Wi,j

tj+1 − tj
= (1 − θ)

∂V (Si, tj+1)

∂t
+ θ

∂V (Si, tj)

∂t
+ O

(

tj+1 − tj
)

, 0 ≤ θ ≤ 1 .

(10.6)

In this notation, the equation holds for non-uniform grids, as well. Setting
θ = 1, we obtain the implicit method, with θ = 0 the explicit method. The
particular choice of θ = 1/2 has a special name. It is known as the Crank-
Nicolson method.

Equations 10.4 and 10.5 can also be interpreted as follows: the difference
quotients (“finite differences”) on the left-hand side of the equations are
approximations of the differential quotients with respect to time found on
the right-hand side of the equations.

The above approximations are exact up to linear terms in δt . There are
several methods available for approximating partial derivatives using finite
differences. A greater accuracy can be obtained if, for instance, all three time
points tj−1, tj and tj+1 are included in the finite differences approximating
the time derivative. Then the approximation is exact up to second order. This
three-time procedure requires that the time derivative be approximated by a
carefully selected convex combination of forward, backward and symmetric
finite differences. Another possibility is to use symmetric finite differences.
This also gives an approximation exact up to second order, however, does not
lead to a stable procedure for solving the differential equation. In this book we
will not pursue such more precise approximations for the time derivative.

10.1.4 Symmetric Finite Differences of the Underlying
Price

For the sake of consistency, the difference quotients with respect to the
underlying price S should be exact up to order O(δS2) since it follows from
the random walk assumption that dS ∼ √

dt and thus

δt ∼ δS2 .

This means that in order to attain the same degree of accuracy as in the time
direction, the approximation in the S direction must be exact up to order
O(δS2). To achieve this we will use symmetric differences to approximate the

10 Numerical Solutions Using Finite Differences 171

derivatives of first and second order with respect to the underlying needed for
Eq. 10.3.
In order to demonstrate the concepts without making the notation unneces-

sarily complicated, we begin by assuming that the distance between grid points
is constant as in Eq. 10.2 and then generalize to non-uniform grids. As above,
we expand the value function in its Taylor series, this time in the S dimension:

V (S − δS, t) = V (S, t) − δS
∂V (S, t)

∂S
+ 1

2
δS2 ∂2V (S, t)

∂S2

− 1

6
δS3 ∂3V (S, t)

∂S3
+ O(δS4)

V (S + δS, t) = V (S, t) + δS
∂V (S, t)

∂S
+ 1

2
δS2 ∂2V (S, t)

∂S2

+ 1

6
δS3 ∂3V (S, t)

∂S3
+ O(δS4) .

Subtracting the first equation from the second and subsequently dividing by
δS yields an approximation of the first derivative which is exact up to second
order O(δS2). Adding the two equations and then dividing by δS2 yields an
approximation of the second derivative which is also exact up to second order
O(δS2):

∂V (S, t)

∂S
= V (S + δS, t) − V (S − δS, t)

2 δS
+ O(δS2) (10.7)

∂2V (S, t)

∂S2
= V (S + δS, t) − 2 V (S, t) + V (S − δS, t)

δS2
+ O(δS2) .

For general, non-uniforms grids, the above expressions are somewhat more
complicated and their derivation is a bit more technical. The principle,
however, remains the same: the partial derivatives of V with respect to the
underlying evaluated at point Si can be approximated up to order two with
symmetric differences. To this end, V evaluated at Si−1and Si+1, is first
expanded in its Taylor series about the points Si :

V (Si−1, t) = V (Si, t) − ∂V (Si, t)

∂S
(Si − Si−1)

+ 1

2

∂2V (Si, t)

∂S2
(Si − Si−1)

2 + O
(

(Si − Si−1)
3
)

172 H.-P. Deutsch and M. W. Beinker

V (Si+1, t) = V (Si, t) + ∂V (Si, t)

∂S
(Si+1 − Si)

+ 1

2

∂2V (Si, t)

∂S2
(Si+1 − Si)

2 + O
(

(Si+1 − Si)
3) .

We need this approximation for the partial derivatives to be exact up to second
order. We thus neglect all terms of order O((δSmax)

3) where δSmax denotes
the greatest distance between two neighboring nodes in the S-grid. Unlike
the uniform grid case, mere addition and subtraction of the two equations
does not isolate the desired differential quotients since is possible that (Si −
Si−1) 	= (Si+1 − Si). To overcome this inconvenience, we attempt to express
the differential quotients as a linear combination of the function evaluated at
the points Si , Si−1and Si+1. We begin by assuming that the first derivative can
be written as

∂V (Si, t)

∂S
= aV (Si−1, t) + bV (Si, t) + cV (Si+1, t) .

Substituting the above Taylor series for V (Si+1, t) and V (Si−1, t) into this
equation and using the linear independence of V (Si, t),

∂V (Si ,t)

∂S
and ∂2V (Si,t)

∂S2

to compare their coefficients leads to the following system of equations for the
unknown coefficients a, b and c

a + b + c = 0

−(Si − Si−1)a + (Si+1 − Si)c = 1

(Si − Si−1)
2a + (Si+1 − Si)

2c = 0

which has the solution

a = − Si+1 − Si

(Si − Si−1)(Si+1 − Si−1)

b =
(

Si+1 − Si

Si − Si−1
− Si − Si−1

Si+1 − Si

)

1

Si+1 − Si−1

c = + Si − Si−1

(Si+1 − Si)(Si+1 − Si−1)

10 Numerical Solutions Using Finite Differences 173

The desired approximation of the first partial derivative with respect to S is
thus

∂V (Si, t)

∂S
= 1

Si+1 − Si−1

[

−Si+1 − Si

Si − Si−1
V (Si−1, t) (10.8)

+
(

Si+1 − Si

Si − Si−1
− Si − Si−1

Si+1 − Si

)

V (Si, t) + Si − Si−1

Si+1 − Si

V (Si+1, t)

]

+ O
(

(δSmax)
2
)

For the special case of a uniform S-grid with Si+1 − Si = Si − Si−1 = δS,

this reduces to the expression in Eq. 10.7.
The same approach can be taken to isolate the second derivative. This

time, we assume that the second derivative can be represented as a linear
combination of the value function evaluated at the points Si−1, Si and Si+1:

∂2V (Si, t)

∂S2
= aV (Si−1, t) + bV (Si, t) + cV (Si+1, t) .

As was done above, the Taylor expansions for V (Si+1, t) and V (Si−1, t) are
substituted into this equation. Comparing the coefficients of V (Si, t), ∂V (Si ,t)

∂S

and ∂2V (Si,t)

∂S2 again leads to a system of equations for the unknown coefficients
a, b and c, now given by

a + b + c = 0

−(Si − Si−1)a + (Si+1 − Si)c = 0

(Si − Si−1)
2a + (Si+1 − Si)

2c = 2

which has the solution

a = 2

(Si − Si−1)(Si+1 − Si−1)

b = − 2

Si+1 − Si−1

(

1

Si − Si−1
+ 1

Si+1 − Si

)

c = 2

(Si+1 − Si)(Si+1 − Si−1)
.

174 H.-P. Deutsch and M. W. Beinker

The approximation of the second derivative of V with respect to S is now
given by

∂2V (Si, t)

∂S2
= 2

Si+1 − Si−1
[V (Si−1, t)

Si − Si−1
(10.9)

−
(

1

Si − Si−1
+ 1

Si+1 − Si

)

V (Si, t) + V (Si+1, t)

Si+1 − Si

] + O(δSmax) .

For a uniform S-grid this reduces to the expression in Eq. 10.7.

10.2 Difference Schemes

The approximations for the derivatives with respect to S can now be sub-
stituted into Eq. 10.3. For the sake of simplicity, we again consider first the
case of a uniform grid as in Eq. 10.2, i.e., we will use the approximation
given by Eq. 10.7. Under this assumption Si = S0 + i δS holds and the
approximation 10.3 for the differential quotient with respect to t evaluated
at the point t = tj takes the form

∂V (Si, tj)

∂t
≈ rjWi,j − (rj − qj) Si

Wi+1,j − Wi−1,j

2δS

− 1

2
σ 2

i,j S2
i

Wi+1,j − 2 Wi,j + Wi−1,j

δ S2

= Ai,jWi−1,j + Bi,jWi,j + Ci,jWi+1,j

where

Ai,j = Si

2δS
(rj − qj − Si

δS
σ 2

i,j)

Bi,j = rj +
(

Si

δS

)2

σ 2
i,j (10.10)

Ci,j = − Si

2δS
(rj − qj + Si

δS
σ 2

i,j) .

10 Numerical Solutions Using Finite Differences 175

On the right-hand side of the equation, we have again denoted the approxi-
mation of the exact solution V (Si, tj) evaluated at the grid points by Wi,j =
W(Si, tj). At this stage, we allow the interest rate and the volatility to depend
on time. This is the only reason why the coefficients A,B and C have been
equipped with the index j . For time-independent interest rates and volatilities,
the index j on the coefficients is superfluous.
The corresponding expression for the non-uniform grid has exactly the same

structure with somewhat more complicated coefficients A,B and C. Replac-
ing the partial derivatives with respect to S with their approximations 10.8
and 10.9 for the non-uniform grid in 10.3 yields the following expression for
the differential quotient with respect to t evaluated at t = tj

∂V (Si, tj)

∂t
≈ rj Wi,j − (rj − qj) Si{ 1

Si+1 − Si−1
[−Si+1 − Si

Si − Si−1
Wi−1,j

+
(

Si+1 − Si

Si − Si−1
− Si − Si−1

Si+1 − Si

)

Wi,j + Si − Si−1

Si+1 − Si

Wi+1,j]}

− 1

2
σ 2

i,j S2
i {

2

Si+1 − Si−1
[Wi−1,j

Si − Si−1

−
(

1

Si − Si−1
+ 1

Si+1 − Si

)

Wi,j + Wi+1,j

Si+1 − Si

]}

= Si

(Si+1 − Si−1)(Si − Si−1)

{

(rj − qj)(Si+1 − Si) − σ 2
i,j Si

}

Wi−1,j

+ {rj − (rj − qj) Si

Si+1 − Si−1

(

Si+1 − Si

Si − Si−1
− Si − Si−1

Si+1 − Si

)

+ σ 2
i,j S2

i

Si+1 − Si−1

(

1

Si − Si−1
+ 1

Si+1 − Si

)

} Wi,j

− Si

(Si+1 − Si−1)(Si+1 − Si)

{

(rj − qj)(Si − Si−1) + σ 2
i,j Si

}

Wi+1,j .

Thus, as was the case for the uniform grid

∂V (Si, tj)

∂t
≈ Ai,j Wi−1,j + Bi,j Wi,j + Ci,j Wi+1,j , (10.11)

176 H.-P. Deutsch and M. W. Beinker

with the slightly more complicated coefficients

Ai,j = Si

(Si+1 − Si−1)(Si − Si−1)

{

(rj − qj)(Si+1 − Si) − σ 2
i,j Si

}

(10.12)

Bi,j = rj + Si

(Si+1 − Si−1)
{−(rj − qj)

(

Si+1 − Si

Si − Si−1
− Si − Si−1

Si+1 − Si

)

+ σ 2
i,j Si

(

1

Si − Si−1
+ 1

Si+1 − Si

)

}

Ci,j = − Si

(Si+1 − Si−1)(Si+1 − Si)

{

(rj − qj)(Si − Si−1) + σ 2
i,j Si

}

.

For non-uniform grids as well, the time dependence of the coefficients A,B

and C is solely a consequence of the time dependence of r and σ . For time-
independent interest rates and volatilities, the coefficients need not have an
index j . For uniform grids (at least in the S-direction), in other words, for
Si = S0 + i δS, the above expression for the coefficients reduces to 10.10.

Substituting this approximation 10.11 for the differential quotient with
respect to t in the general equation 10.6 finally gives the generalized form of
the finite difference scheme for non-uniform grids:

θAi,j Wi−1,j + (θBi,j + 1

tj+1 − tj
) Wi,j + θCi,j Wi+1,j (10.13)

≈ Wi,j+1

(tj+1 − tj)
− (1 − θ)

[

Ai,j+1 Wi−1,j+1 + Bi,j+1 Wi,j+1 + Ci,j+1 Wi+1,j+1
]

.

As in 10.6, θ can take on arbitrary values between 0 and 1 giving the implicit
method for θ = 1, the explicit method for θ = 0 and the Crank-Nicolson
method for θ = 1/2. In order to illustrate the importance of this difference
equation, note that the values to be calculated on the left-hand side of the
equation consist of terms evaluated at time point tj whereas those on the right-
hand side concern only values at time point tj+1, and as such are known,
having been calculated in the previous step. Thus, for every (inner) underlying
grid point i there is one equation connecting three option values at tj+1 with
three values at tj .

The range of the time index j here is always j = 0, . . . N −1 since j = N

is already given by the initial condition, i.e., the payoff profile at maturity
T = tN . The range of the S-index i (see Eq. 10.1) is at least i = 1, . . . ,M −1,

10 Numerical Solutions Using Finite Differences 177

but can take on the values including i = 0 and/or i = M (depending on
the boundary conditions to be satisfied, see below). The difference equation
for i = 0 and i = M seems problematic at first glance since values of
W are required at points not defined in the grid, for example “ W0−1,j ” or
“WM+1,j ”. As will be shown below, these problems can in fact be overcome by
consideration of the boundary conditions themselves.
The difference scheme can be written in matrix form (here, for the case

where the range of the index i is given by i = 1, . . . ,M − 1; other cases can
be expressed analogously):

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1 b1 c1 0 · · · · · · . . . 0

0 a2 b2 c2 0
...

... 0 a3 b3 c3 0
...

... 0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · 0 aM−1 bM−1 cM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

M+1 columns and M−1 rows

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W0,j

W1,j

W2,j

...

...

...

...

WM,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

M+1 rows

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

D1,j

D2,j

...

...

...

...

DM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

M−1 rows

(10.14)

where

ai = θAi,j , bi = θBi,j + 1

tj+1 − tj
, ci = θCi,j

Di,j = Wi,j+1

(tj+1 − tj)
− (1 − θ)

[

Ai, j+1 Wi−1,j+1 + Bi,j+1 Wi,j+1 + Ci,j+1 Wi+1,j+1
]

.

The Di,j on the right-hand side depend only on the values at time tj+1 which
have already been calculated in the previous step and are hence completely
determined. For each time step j, we have (M − 1) equations for (M + 1)

unknown Wi,j. Other ranges for the index i give the same result: the system
of equations is underdetermined; there are two equations fewer than there are
unknowns. The two additional equations needed to solve the above system are
provided by two boundary conditions.

178 H.-P. Deutsch and M. W. Beinker

10.2.1 Initial Conditions

Besides the specification of boundary conditions with respect to the S variable,
we also need a boundary condition with respect to the t variable (so called
initial condition) to be satisfied in order to obtain a unique solution to the
above defined difference equation. The initial condition is specified by the
payoff profile P(S) of the derivative concerned, i.e., by the valueV (S, tN = T)

given by

V (S, T) = P(S)

or in the discrete “grid notation”

Wi,N = Pi .

For example, for the payoff profile P(S) for a European call option with strike
price K , the initial condition is given by

V (S, T) = P(S) = max(S − K, 0) �⇒ Wi,N = max(Si − K, 0) .

10.2.2 Dirichlet Boundary Conditions

If either the terms of the option contract (for example, barrier options) or
some other information allow us to specify directly the value of the option
for certain values of S, these values can be used as boundary conditions for
the S-grid. Such boundary conditions where the option value itself is given
at the boundary are called Dirichlet boundary conditions. Let RU denote these
given option values at the upper boundary SM , andRL denote the given option
values at the lower boundary S0, i.e.:

V (SM, t) = RU(t), V (S0, t) = RL(t)

or in the discrete “grid notation”

WM,j = RU
j , W0,j = RL

j .

It is often the case that only approximations for RU
j and RL

j are known. If this
is the case, the difference scheme provides an approximation which is at best
as good as this approximation for the boundary conditions. If, for example,

10 Numerical Solutions Using Finite Differences 179

the Crank-Nicolson scheme is applied but the boundary condition can only
be approximated in the first order of S, then the solution procedure as a whole
is exact up to first order even though the Crank-Nicolson scheme provides an
approximation which is exact up to second order.
Two of the option values to be calculated for each time j are thus specified

directly if Dirichlet boundary conditions are given. The dimension of the
problem (in the sense of dimension equals number of unknowns) is therefore
only (M −1). This is exactly the number of equations in 10.14. Our goal now
is to transform Eq. 10.14 into a system consisting of a square matrix, i.e., to
reduce the dimension “in each direction” to (M − 1). To keep the boundary
conditions separate, we write the vector of option values in the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W0,j

W1,j

W2,j

...

...

...

...

WM,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
W1,j

W2,j

...

...

...

WM−1,j

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W0,j

0
...
...
...
...

0
WM,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In the first vector, only the (yet to be determined) option values away from
the boundary of the grid appear. We call this the unknown vector. The
second vector contains only the (already specified) values of the option on the
boundary. We refer to this vector as the known vector. The matrix in Eq. 10.14
acts on both of these vectors. Let us first consider the unknown vector: the only
element in the first column of the matrix, namely a1, acts only on the first row
of the unknown vector. This, however, equals zero. We obtain from the matrix
multiplication of the unknown vector the same result as if the first column in
the matrix and the first row in the vector were removed. The situation is the
same for the last column of the matrix and the last row of the unknown vector.
Thus we can simply remove the last column of the matrix and the last row of
the unknown vector without changing the result of the matrix multiplication.

180 H.-P. Deutsch and M. W. Beinker

Matrix multiplication of the full matrix in Eq. 10.14 with the known vector
is explicitly performed. Combining everything the system of equations in
Eq. 10.14 can be equivalently written using an (M − 1) × (M − 1) matrix:
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1 c1 0 · · · · · · 0
a2 b2 c2 0 . . .

0 a3 b3 c3
.

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . cM−2

0 · · · · · · 0 aM−1 bM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

A

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W1,j

W2,j

...

...

...

WM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

Wj

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1 W0,j

0
...
...

0
cM−1 WM,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

D1,j

D2,j

...

...

DM−2,j

DM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(10.15)

⇔

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1 c1 0 · · · · · · 0
a2 b2 c2 0 . . .

0 a3 b3 c3
.

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . cM−2

0 · · · · · · 0 aM−1 bM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

A

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W1,j

W2,j

...

...

...

WM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

Wj

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1,j

d2,j

...

...

dM−2,j

dM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with coeffitions

ai = θAi,j , bi = θBi,j + 1

tj+1 − tj
, ci = θCi,j for i = 1, . . . ,M − 1

di,j = Wi,j+1

(tj+1 − tj)
for i = 2, . . . ,M − 2

− (1 − θ)
[

Ai, j+1 Wi−1,j+1 + Bi,j+1 Wi,j+1 + Ci,j+1 Wi+1,j+1
]

d1,j = W1,j+1

(tj+1 − tj)
− (1 − θ)

[

B1, j+1 W1,j+1 + C1,j+1 W2,j+1
]

(10.16)

−
[

θA1,j RL
j + (1 − θ)A1,j+1 RL

j+1

]

dM−1,j = WM−1,j+1

(tj+1 − tj)
− (1 − θ)

[

AM−1,j+1 WM−2,j+1 + BM−1,j+1 WM−1,j+1
]

−
[

θCM−1,j RU
j + (1 − θ)CM−1,j+1 RU

j+1

]

.

10 Numerical Solutions Using Finite Differences 181

Along the way, the result of the matrix multiplication with the known vector
(i.e., with the boundary condition) has been brought over to the right-hand
side. This right-hand side (the di,j) only depends on the values at the time
points tj+1 (which have already been calculated in the previous step) and on
the (given) boundary conditions. The di,j are thus completely determined.
The only unknowns in this system are the (M − 1) elements of the vector
Wj . These can now be calculated if it is possible to invert the matrix A.
Because of the special form of thematrix (the only non-zero elements are in the
diagonal and the two off-diagonals), a calculation-intensive matrix inversion
can be avoided. Instead, we employ a very fast procedure, known as the L-U
decomposition. To this end, we decompose the matrix A into the product of
a matrix L, which contains non-zero elements only in the diagonal and the
“lower” off-diagonal and a matrix U whose only non-zero elements are found
in the diagonal and the “upper” off-diagonal:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 · · · · · · · · · 0

l2 1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . . lM−2 1 0
0 · · · · · · 0 lM−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

L

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1 u1 0 0

0 h2 u2 0 . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

... 0
. . . uM−2

0 · · · · · · · · · 0 hM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

U

.

From this ansatz the elements of the matrices L and U are determined to be

ui = ci for i = 1, . . .M − 2
h1 = b1

li = ai

hi−1
for i = 2, . . .M − 1

hi = bi − li ui−1 for i = 2, . . .M − 1 .

Calculating the elements in the order indicated above, we can easily compute
all the elements appearing in both matrices. Inverting L andU is quite simple.
We begin by writing

AWj = LUWj
︸ ︷︷ ︸

x

=: Lx

182 H.-P. Deutsch and M. W. Beinker

and solve the system for our newly defined vector x:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 · · · · · · · · · 0

l2 1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . . lM−2 1 0
0 · · · · · · 0 lM−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

x2
...
...
...

xM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1,j

d2,j

d3,j

...

...

dM−2,j

dM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

To solve this system for x, we start with the first row of the matrix which
contains only one non-zero element and proceed from top to bottom to obtain

x1 = d1,j

xi = di,j − li xi−1 f ori = 2 . . .M − 1 .

Now, with vector x is known, the option values Wi,j can simply be calculated
from the above definition of x by solving the equation U Wj = x:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1 u1 0 0

0 h2 u2 0 . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

... 0
. . . uM−2

0 · · · · · · · · · 0 hM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W1,j

W2,j

...

...

...

WM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

x2
...
...
...

xM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

To “invert” the matrix U, we begin this time with the last row of the matrix
and work our way up to obtain

WM−1,j = xM−1

hM−1
(10.17)

Wi,j = xi − uiWi+1,j

hi

for i = 1 . . . M − 2

10 Numerical Solutions Using Finite Differences 183

Thus, we have found an explicit solution for the general finite difference
scheme 10.13, expressing the option values at time tj in terms of the values at a
later time point tj+1 under consideration of the given values at the boundaries.
We will now consider the plain vanilla put and call as well as the barrier

option as examples for the application of this scheme with Dirichlet boundary
conditions. While, in principle, we must find the values of the plain vanilla
options on the entire set from S = 0 to S = ∞, the value of the barrier option
is specified directly in the option contract on one side of the barrier (and on
the barrier itself). The area to be covered by its grid is thus smaller than that
for plain vanilla options.
Let us, however, begin by considering plain vanilla options. For these

options, the boundary conditions must be specified at “S = 0” and “S = ∞”.
We choose a lower bound S0 small enough, such that the value of the call for
such values of the underlying price is negligible (the option is well out of the
money). Furthermore, we choose an upper bound SM large enough, such that
the value of a put is negligible for such values of the underlying price (the
option is well out of the money). The put-call parity is then used to establish
the other boundary values for each of the two options. Recall that for European
options on an underlying paying a dividend yield q the put-call parity, Eq. 6.8,
is given by:

Price(Call) − Price(Put) = Price(Forward) = Se−q(T −t) − Ke−r(T −t) .

The right-hand side is the value of a forward contract3 with strike price K .
Since the put at the upper boundary is worthless, the call option has the same
value as the forward contract (the option is so far in the money that it will
be exercised with certainty). Conversely, the call at the lower boundary is
worthless, therefore the put has the same value as a short forward contract
(the option is so far in the money that it will be exercised with certainty).
Summarizing, we have the following Dirichlet boundary conditions for the
plain vanilla options:

S0 ≈ 0 SM ≈ ∞
call RL

j = 0 RU
j = SMe−q(T −tj) − Ke−r(T −tj)

put RL
j = −S0e

−q(T −tj) + Ke−r(T −tj) RU
j = 0

3For the sake of simplicity, the price of the forward contract is given for the case of a flat interest rate term
structure, a flat dividend yield curve and no discrete dividend payments. However, this relation also holds
for interest rates and dividend yields which are time-dependent.

184 H.-P. Deutsch and M. W. Beinker

Wenow take an up-and-out barrier call option as an example of a somewhat
exotic and path dependent option and specify its boundary condition. The
initial condition and the boundary condition for S = 0 is exactly the same as
that of a plain vanilla call but as soon as S attains the upper barrier levelH , the
option becomes worthless. Often, the option’s holder still receives a payment
if the barrier is reached, the so-called rebate. Let us assume that the rebate R

is due at precisely the knock-out time point (i.e., the instant when S touches
or breaches the barrier). Then, the option’s value is given by the value of the
rebate, namely R. It is thus convenient to select the upper boundary of the
grid as SM = H . The boundary condition for such a barrier option is then
simply WM,j = R.

10.2.3 Neumann Boundary Condition

It often occurs that the first derivative of the option price S is specified at the
boundary of the grid rather than the option price itself,

∂V (S, t)

∂S

∣

∣

∣

∣

S=SM

= RU(t),
∂V (S, t)

∂S

∣

∣

∣

∣

S=S0

= RL(t) .

Boundary conditions of this type are called Neumann boundary conditions.4
Since these boundary conditions do not directly specify the values of the
solution (the option values) on the boundary, all (M + 1) values must be
calculated in each time slice. The dimension (the number of values to be
calculated) of the problem is thus (M + 1). In order to obtain the same
number of equations, the index i in Eq. 10.13 must range from 0 to M . As
a result, two “additional unknowns”, namely “W−1,j” and “WM+1,j ” appear
in the system of equations. The two Neumann boundary conditions will be
used to eliminate these additional unknowns. In comparison to the Dirichlet
conditions, we will then have system of equations consisting of two more
equations but exactly as many equations as unknowns.

Since we use three point finite differences in S-direction (see for example
Eq. 10.8) the grid must be extended at both boundaries by one virtual grid
point in S-direction for each index j . In other words, we add two additional
grid points S−1 and SM+1 at each time point tj . This means that the index i in

4As already pointed out in the section on Dirichlet boundary conditions, the solution is at best as exact
as the given boundary conditions. This is important in all cases where there are only approximations to
the boundary conditions RU (t) and RL(t) available.

10 Numerical Solutions Using Finite Differences 185

the difference equation 10.13 takes on the values i = 0, . . . , M . In the finite
difference approximation 10.8 of the first derivative with respect to S, we can
substitute the respective Neumann conditions for the cases i = 0 and i = M

on the left-hand side of the equation and then rearrange the terms so that the
option values outside the grid are expressed in terms of those defined within
the grid and the boundary conditions. This yields

WM+1,j ≈
(

SM+1 − SM

SM − SM−1

)2

WM−1,j +
[

1 −
(

SM+1 − SM

SM − SM−1

)2
]

WM,j

+ SM+1 − SM

SM − SM−1
(SM+1 − SM−1)R

U
j

at the upper boundary, i.e., for i = M. Likewise for i = 0 on the lower
boundary we have

W−1,j ≈
[

1 −
(

S0 − S−1

S1 − S0

)2
]

W0,j +
(

S0 − S−1

S1 − S0

)2

W1,j

− S0 − S−1

S1 − S0
(S1 − S−1)R

L
j .

Substituting these expressions into Eq. 10.11, we obtain the approximation for
the differential quotient with respect to time at the boundary of the S-grid.
For the upper boundary, this gives:

∂V (SM, tj)

∂t
≈ AM,j WM−1, j + BM,j WM,j

+ CM,j {
(

SM+1 − SM

SM − SM−1

)2

WM−1,j +
[

1 −
(

SM+1 − SM

SM − SM−1

)2
]

WM,j

+ SM+1 − SM

SM − SM−1
(SM+1 − SM−1)R

U
j }

= A∗
M,j WM−1,j + B∗

M,j WM,j

+ SM+1 − SM

SM − SM−1
(SM+1 − SM−1)R

U
j CM,j

186 H.-P. Deutsch and M. W. Beinker

where

A∗
M,j = AM,j +

(

SM+1 − SM

SM − SM−1

)2

CM,j

B∗
M,j = BM,j +

[

1 −
(

SM+1 − SM

SM − SM−1

)2
]

CM,j .

Likewise for the lower boundary:

∂V (S0, tj)

∂t
≈ A0,j {

[

1 −
(

S0 − S−1

S1 − S0

)2
]

W0, j +
(

S0 − S−1

S1 − S0

)2

W1,j

− S0 − S−1

S1 − S0
(S1 − S−1)R

L
j } + B0,j W0, j + C0,j W1,j

= B∗
0,j W0,j + C∗

0,j W1,j − S0 − S−1

S1 − S0
(S1 − S−1)R

L
j A0,j

where

B∗
0,j = B0,j +

[

1 −
(

S0 − S−1

S1 − S0

)2
]

A0,j

C∗
0,j = C0,j +

(

S0 − S−1

S1 − S0

)2

A0,j .

All preparations have now been made for specifying the difference
scheme 10.13 at the boundaries. Replacing the differential quotient with
respect to time in Eq. 10.6 with the above approximation gives

θA∗
M,j WM−1,j + (θB∗

M,j + 1

tj+1 − tj
)WM,j

≈ WM,j+1

(tj+1 − tj)
− (1 − θ)

[

A∗
M,j+1 WM−1,j+1 + B∗

M,j+1 WM,j+1
]

− SM+1 − SM

SM − SM−1
(SM+1 − SM−1)

[

θRU
j CM,j + (1 − θ)RU

j+1 CM,j+1
]

10 Numerical Solutions Using Finite Differences 187

for the upper boundary. Likewise, the difference scheme for the lower bound-
ary is obtained as

(θB∗
0,j + 1

tj+1 − tj
) W0,j + θC∗

0, j W1,j

≈ W0,j+1

(tj+1 − tj)
− (1 − θ)

[

B∗
0,j+1 W0,j+1 + C∗

0,j+1 W1,j+1
]

+ S0 − S−1

S1 − S0
(S1 − S−1)

[

θRL
j A0,j + (1 − θ)RL

j+1A0,j+1
]

.

Combining the above results, the finite difference scheme 10.13 for Neumann
boundary conditions can be written in the following matrix form:
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b0 c0 0 0 0 0 . . . 0
a1 b1 c1 0 0 0 . . . 0
0 a2 b2 c2 0 0 . . . 0
0 0 a3 b3 c3 0 . . . 0

0 0 0
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . . 0
... 0 aM−1 bM−1 cM−1

0 0 aM bM

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

A

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W0,j

W1,j

W2,j

WM,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

Wj

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d0,j

d1,j

d2,j

dM,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

dj

(10.18)

where

ai = θAi,j , bi = θBi,j + 1

tj+1 − tj
, ci = θCi,j for i = 1, . . . ,M − 1

di,j = Wi,j+1

(tj+1 − tj)
for i = 1, . . . ,M − 1

− (1 − θ)
[

Ai, j+1 Wi−1,j+1 + Bi,j+1 Wi,j+1 + Ci,j+1 Wi+1,j+1
]

aM = θA∗
M,j , bM = θB∗

M,j + 1

tj+1 − tj
,

dM,j = WM,j+1

(tj+1 − tj)
− (1 − θ)

[

A∗
M, j+1 WM−1,j+1 + B∗

M,j+1 WM,j+1

]

− SM+1 − SM

SM − SM−1
(SM+1 − SM−1)

[

θRU
j CM,j + (1 − θ)RU

j+1 CM,j+1

]

188 H.-P. Deutsch and M. W. Beinker

b0 = θB∗
0,j + 1

tj+1 − tj
, c0 = θC∗

0,j

d0,j = W0,j+1

(tj+1 − tj)
− (1 − θ)

[

B∗
0, j+1 W0,j+1 + C∗

0,j+1 W1,j+1

]

+ S0 − S−1

S1 − S0
(S1 − S−1)

[

θRL
j A0,j + (1 − θ)RL

j+1A0,j+1

]

.

(10.19)

This system of equationsmust be solved for each time step taking the boundary
conditions into consideration. The right-hand side of Eq. 10.18 consists only
of values evaluated at time point tj+1 (which have already been computed in
the previous step) and of the (given) boundary conditions. The di,j are thus
completely determined. The system of equations has the same structure as in
the corresponding system 10.15 for the Dirichlet problem except that it is two
dimensions larger. Here, A is a (M + 1) × (M + 1) matrix. This is explained
by the fact that the grid has been extended at the upper and lower boundary in
the S-direction. The simple structure of the matrix A again allows to perform
a L-U decomposition. As before, we begin by setting A Wj = LU Wj =: Lx
and, exactly as was the case for Dirichlet boundary conditions, we obtain

ui = ci for i = 0, . . .M − 1

h0 = b0

li = ai

hi−1
for i = 1, . . .M

hi = bi − li ui−1 for i = 1, . . .M

x0 = d0,j

xi = di,j − li xi−1 for i = 1 . . . M

WM,j = xM

hM

Wi,j = xi − uiWi+1,j

hi

for i = 0 . . . M − 1 .

(10.20)

The only difference is that the range of the index i has been extended and that
ai, bi, ci, di are now given by Eq. 10.19.

As an example of the Neumann problem, we consider the plain vanilla
put and call. Neumann boundary conditions are usually easier to determine
than Dirichlet conditions. For S0 the call is well out of the money and

10 Numerical Solutions Using Finite Differences 189

the dependence of the price on S can be assumed to be negligible. The
corresponding boundary condition is thus ∂V (S,t)

∂S

∣

∣

∣

S=S0

= 0. For extremely
large S, the call is way in the money and thus its behavior is approximated
by the payoff profile. The derivative in the S direction is thus 1 with the
corresponding boundary condition given by ∂V (S,t)

∂S

∣

∣

∣

S=S0

= 1. The behavior
of the put is the exact opposite. Summarizing, the Neumann boundary
conditions for the plain vanilla put and call are given by:

S0 ≈ 0 SM ≈ ∞ tN = T

call RL
j = 0 RU

j = 1 Pi = max(Si − K, 0)

put RL
j = −1 RU

j = 0 Pi = max(K − Si, 0)

For the sake of completeness, we have also included the initial conditions in
the table.
The type of boundary condition selected for the analysis depends on the

type of option being priced. For plain vanilla options, Neumann boundary
conditions are attractive because they can be easily calculated. The pricing
of a forward contract at each time point (which must be done to establish the
Dirichlet boundary conditions), on the other hand, can be tedious, particularly
when the term structure is not flat and discrete dividends must be taken into
consideration.
For Knock-out barrier options, however, the exact value of the option

at the barrier is known (0 or the rebate), while the change of its value at
the boundary is unknown. In this case, it makes sense to use the Dirichlet
boundary conditions. In addition, a combination of Dirichlet and Neumann
boundary conditions can be applied to one and the same problem as needed.

10.2.4 Generalized Neumann Boundary Conditions

It is possible to generalize the Neumann boundary condition by a simple
method that does not need any explicit information on boundary conditions
with respect to S. Valuation of derivatives most often deals with diffusion
problems, with the Black Scholes equation being its most prominent example.
Diffusion problems share the property that the pay off profile is being
smoothed or “smeared out” the more the farther away the expiry is in the
future. At the same time, the pay off profile is a simple linear function of S for

190 H.-P. Deutsch and M. W. Beinker

very small or very large S. Consequently, at the boundaries, the fair value can
be approximated as a linear function of S.5

A linear function has the property that the second derivative is zero.
Therefore, instead of specifying the value of the first derivative at the boundary,
which is a standard Neumann condition, we may specify the value of the
second derivative, which is (almost) independent of the option type (i.e. it
is equal to zero) as a generalized Neumann condition.

We assume a grid in dimension S with M + 1 nodes S0, S1, S2, . . . , SM ,
with S0 and SM being virtual grid nodes. They will be derived from the con-
straint of zero second order derivatives at the boundaries and thus eliminated.

First consider the lower boundary i = 1. We calculate the unknown value
W0,j by setting Eq. 10.9 to zero for the second derivative with respect to S at
node i = 1:

2

S2 − S0

[

W0,j

S1 − S0
−
(

1

S1 − S0
+ 1

S2 − S1

)

W1,j + W2,j

S2 − S1

]

= 0 .

(10.21)

The virtual grid node S0 may be chosen freely. For simplicity, we set S1 −S0 =
S2 − S1, i.e. S0 = 2S1 − S2. Then, all terms in Eq. 10.21 have the same
denominator. If follows:

W0,j − 2W1,j + W2,j = 0

⇔ W0,j = 2W1,j − W2,j .

An analogous expression can be derived for node M :

⇔ WM,j = 2WM−1,j − WM−2,j .

Now, the problem is reduced to a system of Dirichlet type (Eq. 10.14) with
known W0,j and WM,j . Alternatively, it is also possible to set a1 in 10.15 to
zero and replace b1 by b̃1 = b1 +2a1 and c1 by c̃1 = c1 −a1. With this, W0,j

5One of the rare exceptions to this rule is a power option without cap, with a pay off profile proportional
to S2. Such options are of minor relevance in praxis.

10 Numerical Solutions Using Finite Differences 191

has been eliminated. Analogous, WM,j can be eliminated as well. This is the
same as replacing Eq. 10.15 by

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1 + 2a2 c1 − a1 0 · · · · · · 0

a2 b2 c2 0 . . .

0 a3 b3 c3
.

.

..
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . cM−2

0 · · · · · · 0 aM−1 − cM−1 bM−1 + 2cM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W1,j

W2,j

..

.

.

..

...

WM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

D1,j

D2,j

...

...

DM−2,j

DM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with the same coefficients as in Eq. 10.16.

10.2.5 Free Boundary Conditions for American Options

Thus far our discussion has been restricted to European options. Finite
difference methods can also be extended to American options. The right to
early exercise must, of course, be taken into account in pricing the option. The
Black-Scholes equation holds only on a restricted set and must be replaced by
the two (in)equalities given by Eqs. 7.13 and 7.14. Equivalently expressed, the
Black-Scholes equation 7.13 holds on a parameter set with a free boundary
given by S∗(t). This line S∗(t) separates the parameter set where the Black-
Scholes equation holds from the parameter set where the value of the option is
simply given by the payoff profile 7.14. Directly on this curve S∗(t) we have

V (S∗(t), t) = P(S∗(t)) .

This is a Dirichlet boundary condition. The boundary condition is called free
because S∗(t) is not known a priori.
A simple solution for this problem can be found using the explicit finite

difference procedure. As for the European option, we start by determining a
solution vector Wi,j , i = 0, 1, . . . , M for a time step j . An intermediate cal-
culation is performed to determine the solution vector ˜Wi,j for the American
option. In this calculation, the European price is determined and compared to
the intrinsic value P(S). The value of the American option is then defined as
the larger of the two, i.e.,

˜Wi,j = max
[

Wi,j , P (Si)
]

.

192 H.-P. Deutsch and M. W. Beinker

The procedure continues with the next time step using this solution vector.
If an implicit (or mixed) finite difference procedure is utilized, this will not

be exact since the vector Wi,j will already have been used implicitly in its
calculation. Therefore the procedure can in principle not be split into the above
two steps. It can be shown, however, that the error in doing so remains small
if the grid in t is fine enough. In particular, if the distance between two time
points is one day or less, the error is often negligible. An additional trick can be
used for call options. It is known that the exercise of a call option can only be
optimal (if at all) immediately before the payment of a discrete dividend. We
can thus introduce extra time points on and immediately preceding the due
dates of the dividend payments with a time difference of, for example, half a
day, and thus minimize the error.

In any case, in addition to the free boundary conditions, values for the
upper and lower boundaries of the S-grid must also be specified. This is
already clear from the explicit procedure described above. We can obviously
only compare the solution vector for a European option with the payoff
profile if this vector has already been determined. To determine this solution
vector for the European option, we need two boundary conditions. They can
be either Neumann, Dirichlet, or more general boundary conditions (such
as the second derivative equals zero). For an American option all boundary
conditions involving derivatives are generally the same as for the corresponding
European option. The maximum of the payoff profile and the boundary
condition of the corresponding European option is a good candidate for the
Dirichlet boundary condition. Thus, for American plain vanilla put and call
options:

Call

S0 ≈ 0 RL
j = 0

SM ≈ ∞ RU
j = max

[

SMe−q(T −tj) − Ke−r(T −tj), SM − K
]

tN = T Pi = max(Si − K, 0)

Put

S0 ≈ 0 RL
j = max

[−S0e
−q(T −tj) + Ke−r(T −tj),−S0 + K

]

SM ≈ ∞ RU
j = 0

tN = T Pi = max(K − Si, 0)

Note that for American options this is not enough. We also need to specify the
conditions on the free boundary S∗(t). And before we can do this, we need to
determine S∗(t) in the first place.

10 Numerical Solutions Using Finite Differences 193

The Lamberton and Lapeyre Procedure

In many cases, the free boundary lies on only one side of the grid. For this
case, a suitable procedure for evaluating the American put options has been
suggested by Lamberton and Lapeyre [129]. This procedure does not necessitate
any appreciable additional computational effort. It simply varies the order of
operations needed to solve the system of equations for one time step. We will
now present this procedure.
TheDirichlet boundary condition for the plain vanilla option as given above

will be used as the specified boundary condition (other types of boundary
conditions could also have been used). The difference scheme then has the
form given in Eq. 10.15 with coefficients given by Eq. 10.16. Before introducing
the procedure, we consider the following limiting cases: the exercise region for
a put option must lie in regions where the value of S is small since for large S

(for S > K) the intrinsic value of a put is zero; the option only has a time
value. For calls (if at all), the exercise region must lie in regions where S is large
since for small S (for S < K), the intrinsic value of the call is zero.
We now consider the iteration scheme 10.17. In this scheme, we start by

determining the value of WM−1,j . This is an option value for large S. From
the above consideration we know that an optimal early exercise of an American
call option cannot happen in the small S region, but could happen in the
large S region. Therefore we have to allow for this possibility at the grid point
(SM−1, tj). Should it indeed be optimal to exercise in this time step then
the value WM−1,j must be replaced by the intrinsic value. This fact can be
incorporated into our scheme using the expression

˜WM−1,j = max

[

xM−1

hM−1
, SM−1 − K

]

for our calculation of ˜WM−1,j instead of 10.17. We thus obtain the correct
boundary value ˜WM−1,j for the American call option. In the next step we use

˜WM−2,j = max

[

xM−2 − uM−2 ˜WM−1,j

hM−2
, SM−2 − K

]

instead of the corresponding expression 10.17 for the European option. Like-
wise, this leads to the correct result since the value ˜WM−1,j for an American
option was calculated correctly before. This means, however, that an American

194 H.-P. Deutsch and M. W. Beinker

call option is correctly computed even with implicit or mixed methods if we
simply substitute

˜Wi,j = max

[

xi − ui
˜Wi+1,j

hi

, Si − K

]

for i = M − 2,M − 3, . . . , 2, 1 at every time step. The procedure just
described started with large S (Index i = M − 1) and computes step-wise
to smaller values of S. This makes it only suitable for call options.

The procedure must be modified for puts. Instead of an LU decomposition
we now carry out a UL decomposition, for which the upper and lower trian-
gular matrices appear in reverse order. The decomposition of the coefficient
matrix A is then given by:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1 u1 0 0

0 h2 u2 0 . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

... 0
. . . uM−2

0 · · · · · · · · · 0 hM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

U

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 · · · · · · · · · 0

l2 1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . . lM−2 1 0
0 · · · · · · 0 lM−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

︸ ︷︷ ︸

L

The matrix elements differ only slightly for those given by the LU decompo-
sition:

ui = ci for i = 1, . . .M − 2
hM−1 = bM−1

li = ai

hi
for i = 2, . . .M − 1

hi = bi − li+1 ui for i = 1, . . .M − 2

The decisive difference is that hi is iteratively determined from large values
down to small ones (instead of small to large). Proceeding in this way, the
matrix elements of U and L can be easily calculated. Analogously to the case
of the LU decomposition we set

AWj = ULWj
︸ ︷︷ ︸

x

=: Ux

10 Numerical Solutions Using Finite Differences 195

and first solve the system of equations for the new vector x:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1 u1 0 0

0 h2 u2 0 . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

... 0
. . . uM−2

0 · · · · · · · · · 0 hM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

x2
...
...
...

xM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1,j

d2,j

d3,j

...

...

dM−2,j

dM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

To compute x we start with the row in the matrix which contains only one
non-zero element, i.e., the last row, and proceed from bottom to top to obtain

xM−1 = dM−1,j

hM−1

xi = di,j − ui xi+1

hi

for i = 1 . . .M − 2 .

Now that x is known, the desired option values Wi,j can be calculated from
the definition of x, solving the equation L Wj = x:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 · · · · · · · · · 0

l2 1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . . lM−2 1 0
0 · · · · · · 0 lM−1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W1,j

W2,j

...

...

...

WM−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

x2
...
...
...

xM−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

To “invert” the matrix L, we start with the row containing only one non-zero
element, working from top to bottom to obtain

W1,j = x1

Wi,j = xi − liWi−1,j for i = 2 . . . M − 1 .

Now, the iteration begins with the small index values, i.e., with small S-values.
This is what we need since from the limit considerations above we know that

196 H.-P. Deutsch and M. W. Beinker

optimal early exercise of an American put option can only happen in the small
S region. Therefore we have to start in this region to “capture” the early exercise
possibilities correctly. This is completely analogous to the case of an American
call presented above, where we also started in the region where early exercise
could be possible (it was the large S region in that case).

Consequently, we now obtain correct values of American put options for
implicit and mixed methods by setting:

˜W1,j = max [x1, S1 − K]

˜Wi,j = max
[

xi − li ˜Wi−1,j , Si − K
]

for i = 2 . . .M − 1 .

10.3 Convergence Criteria

As for all numerical methods, the essential question to be answered before
implementing finite differences is whether the procedure is stable, i.e., whether
the numerical solution in fact converges towards the actual solution. To
motivate this complex subject, we first consider as an example the special case
θ = 0, i.e., the explicit method. As can be seen from Eqs. 10.16 and 10.19,
the off-diagonal terms are zero regardless of the type of boundary conditions
used. This implies that the system of equations is completely uncoupled. For
example, for Eq. 10.16, the system of equations reduces to

W0,j = (1 − (tj+1 − tj)
(

B1,j+1 + 2A1,j+1
))

W1, j+1

− (tj+1 − tj)
(

C1,j+1 − A1,j+1
)

W2,j+1

Wi,j = (1 − (tj+1 − tj)Bi,j+1
)

Wi, j+1 for i = 1. . .M − 1
(10.22)

− (tj+1 − tj)Ai,j+1 Wi−1,j+1 − (tj+1 − tj)Ci,j+1 Wi+1,j+1

WM−1,j = (1 − (tj+1 − tj)
(

BM−1,j+1 + 2CM−1,j+1
))

WM−1, j+1

− (tj+1 − tj)
(

AM−1,j+1 − CM,j+1
)

WM−2,j+1 .

This means that we obtain the unknown values at time point tj directly
(without carrying out any matrix inversion!) in terms of the values already
calculated for time point tj+1. This result can also be obtained much simpler
and more directly by starting with Eq. 10.4 for the explicit method rather than
from the more general expression 10.6.

10 Numerical Solutions Using Finite Differences 197

Table 10.1 Properties of the three most commonly used finite difference methods

Scheme θ Numerical effort Convergence Stability

Implicit 1.0 Large Slow Unlimited
Explicit 0.0 Minor Slow Limited
Crank-Nicolson 0.5 Large Fast Unlimited

At this point the reader could ask why we have taken the trouble of
introducing the generalized expression involving θ when the explicit method is
so simple. For this we have to understand how the parameter θ influences the
properties of the finite difference scheme. An important criterion is stability.
Table 10.1 contains an overview of the three most commonly used values of θ .
A difference scheme is called stable if small deviations from the correct

solution do not grow arbitrarily fast (no faster than exponentially) with time.6
If a difference scheme is not stable, errors in the approximation arising in an
iteration step are amplified by calculating backwards in the time-grid from
one iteration step to the next. Obviously, a difference scheme is only useful if
it is stable, since deviations from the correct solution would otherwise grow
faster than exponentially when calculating backwards through the grid, finally
yielding a result with an arbitrarily large error. It can be shown that for θ ≥ 0.5,
the finite difference scheme is always stable, independent of the choice of grid.
A difference scheme converges towards the correct solution if it is both stable

and consistent. Consistency is satisfied if the difference scheme applied to a
smooth function at a fixed time point gives an arbitrarily good approximation
of the solution to the differential equation by making the grid fine enough.
Consistency thus means “convergence for one time step”. If the system is
consistent and stable, i.e., the growth of the error over one iteration step is
bounded, the scheme converges entirely, i.e., over all time steps.
There exists a criterion for the stability of an explicit difference scheme

(θ = 0) for the well-known heat equation 7.22 which, as we have seen, is
closely related to the Black-Scholes equation. This criterion is (expressed in
the variables from Eq. 7.22):

δτ

δx2
≤ 1

2
.

6Independent of the number of time steps.

198 H.-P. Deutsch and M. W. Beinker

For the Black-Scholes equation, the stability condition is considerably more
complicated [181]:

1

2

[

(r(t) − q(t))S
δt

δS

]2

≤ 1

2
σ(S, t)2S2 δt

(δS)2 ≤ 1

2
. (10.23)

We are, in fact, now dealing with two inequalities. The inequality appearing
on the left in the above expression is generally satisfied for the usual values
for r , q and σ. The second inequality however, poses a strong restriction in
the application of the explicit method since it requires the number of time
steps to increase quadratically with the number of the S-steps (i.e., as δS

becomes smaller). A consequence of the S-dependence of this criterion is that
the difference scheme can be stable on one part of the grid and unstable on
the other. Such local instabilities often go unnoticed, but lead to incorrect
results; for example, negative prices could arise. Such an example can be found
in Hull [103]. The criterion 10.23 for stability can be generalized further:
the generalized difference scheme for non-uniform grids remains stable for
θ < 0.5 when the following holds for the second inequality:

(tj+1 − tj)

(Si+1 − Si)2
σ 2

i,j S
2
i ≤ 1

2(1 − 2θ)
, θ <

1

2
.

The Crank-Nicolson method θ = 0.5 has an advantage over the implicit
and explicit methods in that it converges considerably faster. Because of
the averaging of the finite differences at times tj and tj+1, this method is
exact up to second order although the time derivative corresponds to only a
first order approximation. Achieving the same degree of accuracy using the
implicit method would require considerably more time steps. The Crank-
Nicolson method loses some of its efficient convergence when the initial
and/or boundary conditions become less smooth. In many applications, for
instance, the first derivative of the initial condition is not continuous. This
is already the case for the plain vanilla option (at the strike). However, the
discontinuity at that point leads to a negligible inaccuracy in the option price.
A significant error, however, can be found for the value of the delta, while
the values for gamma at the point of the discontinuity can be so extreme that
the error may exceed 100%. As a result, it may be the case that the gamma
for the plain vanilla option cannot be computed with sufficient accuracy
when the spot price equals the strike price (the first derivative of the payoff
is discontinuous at this point). In such situations the implicit method is
often the only suitable method for calculating gamma with sufficient accuracy.

10 Numerical Solutions Using Finite Differences 199

Another possibility would be to use a three-time-level approximation of the
time derivative which also has the effect of smoothing the oscillations. A
detailed description of this and other procedures can be found, for example,
in the works of Smith [176] and Willmott [191].

10.3.1 Improving the Convergence Properties

If only few time steps are chosen, we observe that the results oscillate strongly
with the number of time steps used [176]. Nonetheless, as few as 20 time steps
are already sufficient to obtain stable results for a plain vanilla option with a
time to maturity of six months. But it is usually worthwhile to increase the
number of time steps, depending on the accuracy required and the available
computation time. Note however, that the improvement in the approximation
resulting from increasing the number of time steps is limited. Improving the
approximation requires a refinement of both the time-grid as well as the S-
grid. The proportion of the number of t -points to the number of S-points
in the grid depends on the lifetime of the option, the required width of the
S-grid (see below) and the type of difference scheme applied. The Crank-
Nicolson scheme, for example, requires a significantly coarser t -grid to attain
comparable accuracy to that obtained from using the implicit method with
the otherwise same parameters. Experimenting with these parameters is in any
case recommended.
In general, it makes sense to start with a uniform grid. An analysis of the

solution surface, i.e., the price function at each point of the grid quickly reveals
information about the time regions at which new grid points should be intro-
duced. Figure 10.1 shows such a solution surface for an American call option
with discrete dividend payments (see also the next section) approximately half
way through its lifetime. Additional time points have been introduced at and
immediately before the due date of the dividend payment. Doing so exactly
incorporates the dividend payment into the calculation. We can clearly see
where exercising shortly before the dividend payment is optimal (the jump
occurs as a result). Likewise, it makes sense to introduce additional grid points
in the time region shortly before the maturity of the option since there the
curvature of the solution surface is quite large.
At every time point where an external shock such as a dividend payment

occurs, the addition of grid points prevents the oscillation of the solution
dependent on the number of t -grid points. This also holds for the S-grid at
the points where the payoff function is discontinuous. For example, it makes
sense to choose the strike price as a grid point, and also the underlying value S

200 H.-P. Deutsch and M. W. Beinker

0.18
0.185

0.19
0.195

0.2
0.205

0.21
0.215

50

60

70

80

90

100

110

120

0

5

10

15

20

25

Fig. 10.1 Part of the solution surface of an American plain vanilla call on an underlying
with a discrete dividend payment

for which the option price is to be determined. Likewise the barrier of a barrier
option should ideally be directly on the grid.However, a non-uniform grid can
reduce accuracy, since, for example, the Crank-Nicolson scheme is exact up to
second order only for a uniform grid in t . In practice serious consideration
should thus be giving as to where and whether additional grid points should
be introduced.7

A good choice of whole S-region, i.e., of S0 and SM+1 can substantially
increase the accuracy attained. A rule of thumb is commonly used for choosing
S0 and SM+1, such as

S0 = 1

4
min(S,K)

SM+1 = 4 max(S, K) ,

where here, S is the spot price of the underlying at time t = 0 and K the
strike price of the option. The S-region thus obtained, however, (depending
on the values of other parameters such as the volatility and the interest rate

7Experience shows that increasing/decreasing the step size in a regular manner works often well.

10 Numerical Solutions Using Finite Differences 201

term structure) seldom leads to an optimally accuracy if the t -grid and the
number of S-steps are assumed as given.
Alternatively, we could attempt to find the minimum (andmaximum) value

the underlying can attain in its lifetime with a given probability. This can be
done if the underlying’s cumulative probability distributionP has already been
established. In the simplest cases, even an analytic formula for this probability
can be derived (see Sect. A.4). In order to obtain minimal (maximal) S-values
for a given probability (confidence) c, the expression P(x ≤ a) = c must be
solved for a, the percentile of the underlying’s distribution corresponding to the
confidence level c. It is often worth the trouble to make this single calculation
for each valuation to establish the S-region since it can result in a more precise
solution with substantially fewer S-steps.

10.4 Discrete Dividends

Consideration of discrete dividends represents a further complication. The
particular difficulty is that the different methods available rely on different
assumptions. One commonly used method is based on the separation of
the stochastic and deterministic components of the stochastic process S.

The dividend payments correspond to the deterministic component. One
assumption is thus that the exact value of the dividend payment is known
a priori. The present value Dt of the dividends which are to be paid until
maturity of the option is subtracted from the spot rate S of the underlying:

˜S = S − Dt .

Instead of S we now use˜S as the new variable in the Black-Scholes equation.
Dt is the nominal value of the dividends discounted back to t (where t denotes
the time step currently under consideration). This process is consistent with
the Black-Scholes formula for the pricing of a plain vanilla European option.
There, discrete dividends are generally taken into consideration by subtracting
the present value of the dividends from the spot price of the underlying.
Consequently, the same volatility holds for both cases. Note however, that the
intrinsic value of the option is still given by

max(S − X, 0) = max(˜S + Dt − X, 0) .

This value is required to determine the free boundary condition for an early
exercise of the option.

202 H.-P. Deutsch and M. W. Beinker

In the world of finite differences, we have an additional and fundamentally
different method at our disposal. We first rewrite Eq. 7.8 replacing the
dividend term q(t)S resulting from the dividend rate q(t) with D(S, t):

∂V

∂t
+ (r(t)S − D(S, t))

∂V

∂S
+ 1

2
σ(S, t)S2 ∂2V

∂S2
= r(t)V .

The new termD(S, t) represents the nominal value of the dividend payments
at time t . If no dividends are paid at time t, the value of this function D(S, t)

is equal to zero. D(S, t) is thus highly discontinuous. At time τ of a dividend
payment, the option price must remain continuous, although the spot price
of S is reduced by the amount given by the dividend payment D:

lim
ε→0

V (S(τ − ε), τ − ε) = lim
ε→0

V (S(τ + ε), τ + ε) ε > 0 ,

where

lim
ε→0

S(t − ε) = S

lim
ε→0

S(t + ε) = S − D .

This jump in S can be simulated with finite difference methods by first
determining the solution vector at time τ . Subsequently, the vector is trans-
lated by D so that the continuity condition is satisfied. If necessary, missing
intermediate values must be determined by interpolation, or in the case of
boundary values, by extrapolation.

10.5 Example

The download website [50] accompanying this book contains a complete,
executable example program written in Visual Basic (see FiniteDiffer-
enceMethod.xlsm). The program was not written for optimal performance,
but was structured in such a way as to incorporate all the concepts introduced
in this section. For example, the S-grid is recalculated for every new time step
(which, of course, need not be done if the grid is uniform). The volatility,
interest rates and payoff are separated into individual functions to clearly
organize the points at which such structures could be loaded externally via
interfaces. If, for example, the interest rate or volatility is constant, this effort
is superfluous. The program is structured to be, for the most part, self-

10 Numerical Solutions Using Finite Differences 203

explanatory with helpful comments incorporated into the code. It can serve
as a starting point for generating optimal-performance variants suitable for
specific problems. This Excel workbook also demonstrates the calculation of
option sensitivities, known asGreeks, which will be introduced in detail later in
Chap. 12. Thus, this workbook can serve as a complete little option calculator
(the yellow fields are input fields, a standard which applies to all workbooks
on the accompanying website [50]).
In addition to the L-U decomposition introduced above, the example

includes a further method for solving a system of equations, which is widely
used in practice. The method is a very old procedure referred to as Gaussian
elimination. Gaussian elimination is just as fast as the L-U decomposition and
can be applied to both American and European options. The idea is even
simpler than that of the L-U decomposition. Instead of decomposing the
matrix in Eq. 10.15 into the matrix product of an upper and lower triangular
matrix, it is transformed into a single triangular matrix with non-zero terms
appearing only in the diagonal and a single off-diagonal. There are two possible
ways of doing this: the matrix can be transformed into an upper or lower
triangular matrix by eliminating the lower off-diagonal or upper off-diagonal
terms respectively.
The first element in the lower off-diagonal, a2, is eliminated by multiplying

the first row of the matrix by a2/b1, and subtracting the result from the
second row. After doing so, the second row contains only two elements, namely
b′

2 = b1 − c1a2/b1 in diagonal and c2 in the upper off-diagonal. This
procedure is repeated analogously by multiplying the second row by a3/b

′
2

and subtracting from the third, and so on. In terms of the system of equations,
this means that certain equations are multiplied by constants and subtracted
from one another. These are the usual operations implemented when solving
a system of equations. In performing such operations, it is clear (in contrast to
the L-U decomposition) that the right-hand side of the equation also changes.
Carrying out this procedure for the entire matrix yields the following system
of equations:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b′
1 c1 0 · · · · · · 0

0 b′
2 c2 0 . . .

... 0 b′
3 c3

.
...

. . .
. . .

. . . 0
...

. . .
. . . cM−2

0 · · · · · · · · · 0 b′
M−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W1, j

W2, j

...

...

...

WM−1, j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d ′
1, j

d ′
2, j
...
...

d ′
M−2, j

d ′
M−1, j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

204 H.-P. Deutsch and M. W. Beinker

where

b′
1 = b1 , d ′

1, j = d1,j

b′
i = bi − ci−1

ai

b′
i−1

, d ′
i, j = di, j − d ′

i−1, j

ai

b′
i−1

, ∀i = 2, . . . , M − 1 .

This system can be solved quite easily by starting with the row containing only
one non-zero term, in this case the last row, and working upwards from the
bottom. We obtain the option values

˜WM−1, j = max

[

d ′
M−1, j

b′
M−1

, P (SM−1)

]

˜Wi, j = max

[

d ′
i, j − ci

˜Wi+1, j

b′
i

, P (Si)

]

∀i = 1, . . . ,M − 2 .

To this extent, this method offers an alternative to the L-U decomposition
for the valuation of European options. The free boundary condition for
American options is dealt with, as in the method of Lamberton and Lapeyre,
by calculating the value of the option by Gaussian elimination as if it were
European and, at each time step, comparing it with the intrinsic value of the
option P(S), i.e., the payoff profile. The value of the American option at this
time point is then defined as the greater of the two. The components of the
solution vector ˜Wi,j are thus given by

˜WM−1, j = max

[

d ′
M−1, j

b′
M−1

, P (SM−1)

]

˜Wi, j = max

[

d ′
i, j − ci

˜Wi+1, j

b′
i

, P (Si)

]

∀i = 1, . . . ,M − 2 .

As was already stressed earlier when we presented the method of Lamberton
and Lapeyre, this procedure functions only when we calculates along the S-grid
points starting from the exercise region, where the value of the option is given
by its intrinsic value (the payoff profile), toward the region where the Black-
Scholes equation holds. Otherwise, we would observe an edge or jump at the
transition from one region into the other. The Gaussian elimination procedure
described above starts from largeS (index i = M−1) and calculates backwards

10 Numerical Solutions Using Finite Differences 205

step by step towards smaller values of S. This works fine for call options since
early exercise of a call can only (if at all) be optimal for large S because for
small S (for S < K) the intrinsic value of the call is of course zero.
For put options, however, the exercise region can only lie in areas where

the value of S is small, since for large S (for S > K), the intrinsic value
of the put is zero, the option itself having only a time value. Therefore the
second possibility for performing a Gaussian elimination has to be used for
puts, namely eliminating the upper off-diagonal. This results in a procedure
which begins with small S proceeding step by step towards larger S-values.
The upper off-diagonal is eliminated by multiplying the last row of the matrix
by cM−2/bM−1, subtracting the result from the next to last row. Proceeding
analogously, the newly created next to last row is multiplied by cM−3/b

′
M−2

and subtracted from the row lying immediately above it, and so on. Performing
this procedure for the entire matrix yields the following system of equations:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b′
1 0 · · · · · · · · · 0

a2 b′
2 0

...

0 a3 b′
3 0

...
...

. . .
. . .

. . .
. . .

...
...

. . . aM−2 b′
M−2 0

0 · · · · · · 0 aM−1 b′
M−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

W1, j

W2, j

...

...

...

WM−1, j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d ′
1, j

d ′
2, j
...
...

d ′
M−2, j

d ′
M−1, j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where

b′
M−1 = bM−1 , d ′

M−1, j = dM−1, j

b′
i = bi − ai+1

ci

b′
i+1

, d ′
i, j = di, j − d ′

i+1, j

ci

b′
i+1

, ∀i = 1,. . . , M − 2 .

This system can be solved quite easily by starting with the row containing only
one non-zero element, in this case the first row, and proceeding from top to
bottom. We thus obtain the option values

W1, j = d ′
1,j

b′
1

Wi, j = d ′
i,j − aiWi−1,j

b′
i

∀i = 2, . . . , M − 1 .

206 H.-P. Deutsch and M. W. Beinker

The components of the solution vector ˜Wi,j for an American option with
payoff P(S) is given by

˜W1, j = max

[

d ′
1,j

b′
1

, P (S1)

]

˜Wi, j = max

[

d ′
i,j − ai

˜Wi−1, j

b′
i

, P (Si)

]

∀i = 2, . . . ,M − 1 .

10.5.1 Relationship Between Explicit Finite Difference
and Tree Methods

Numerically, the trinomial tree and the explicit method of finite differences are
equivalent, at least in certain special cases. Consider the ith node of the time
step j . This corresponds to an underlying price Sji . This node is connected
to the nodes i + 1, i and i − 1 of the time step j + 1. The value of the option
Vji at node i of the time step j is given by

Vji = B(tj , tj+1)
[

p+Vj+1,i+1 + p0Vj+1,i + p−Vj+1,i−1

]

.

The analogous expression for the explicit finite difference method is given by
Eq. 10.22 with the coefficients given by Eq. 10.12 (or Eq. 10.10 for uniform
grids):

Wi,j = (

1 − (tj+1 − tj)Bi,j+1
)

Wi, j+1 − (tj+1 − tj)Ai,j+1 Wi−1,j+1

− (tj+1 − tj)Ci,j+1 Wi+1,j+1 .

We immediately see the similarity in structure. The probabilities can be
easily associated with the coefficients of Wi+1,j+1, Wi,j+1 and Wi−1,j+1. This
requires the grid points of the finite difference grid to correspond exactly to
the nodes of the trinomial tree and thus the restriction Sji = Sj+1,i to hold
for the nodes of the trinomial tree. The finite difference grid was constructed
specifically to satisfy just this very condition (even for non-uniform grids) to
prevent the expressions for the finite differences from becoming unnecessarily
complicated. The trinomial tree appears more flexible from this point of view.
However, it has all the disadvantages associated with the explicit method.
Moreover, a procedure corresponding to the implicit or Crank-Nicolson
method is not available for trinomial trees.

	10 Numerical Solutions Using Finite Differences
	10.1 Discretizing the Black-Scholes Equation
	10.1.1 The Explicit Method
	10.1.2 The Implicit Method
	10.1.3 Combinations of Explicit and Implicit Methods (Crank-Nicolson)
	10.1.4 Symmetric Finite Differences of the Underlying Price

	10.2 Difference Schemes
	10.2.1 Initial Conditions
	10.2.2 Dirichlet Boundary Conditions
	10.2.3 Neumann Boundary Condition
	10.2.4 Generalized Neumann Boundary Conditions
	10.2.5 Free Boundary Conditions for American Options
	The Lamberton and Lapeyre Procedure

	10.3 Convergence Criteria
	10.3.1 Improving the Convergence Properties

	10.4 Discrete Dividends
	10.5 Example
	10.5.1 Relationship Between Explicit Finite Difference and Tree Methods

