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Preface to Fifth Edition

When the fourth edition of this book has been published, the financial crisis
was already in full swing. It took a while, though, until its sustainable impact
on the pricing of derivatives and the measurement of their risks became
obvious. Meanwhile, new standards have been established. This fifth edition
follows the goal to explain the most important consequences in a clear and
intelligible manner.

This required to add a new chapter on the valuation of credit risk of
derivatives. The chapter on the construction of interest rate curves has been
completely rewritten, since the current multi-curve universe is substantially
different from the former one curve framework of the world prior to the
financial crisis. Cross references throughout the whole book refer to these new
chapters to demonstrate, where these changes have an impact. The hope was
to maintain the character of the book consistently throughout all chapters.

In addition, we took the opportunity to modernize and restructure the
entire book. This includes modifications of tiny details (e.g., discount factors
have no longer the interest rate as index, since this would cause confusion
in a multi-curve setting). Tables and figures have been re-formatted, and the
structure of the chapters have been modified. For pedagogical reasons, the
section dealing with bi- and trinomial trees precedes now the chapter on finite
differencemethods. The systematic of financial instruments was re-arranged to
better highlight the essentially different features of the different instruments.
For the same reason, the part on financial instruments was divided into more
chapters and significantly extended, especially with respect to FX and credit
derivatives. Some additional day count conventions have been added and links
to the (significantly changed and still changing) regulatory requirements have
been updated.
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vi Preface to Fifth Edition

The example excel spread sheets have also been updated and extended.
These examples are no longer delivered on CD, but can be obtained via a
web page accompanying this book [50].

Without the support of my colleagues and of d-fine this new edition would
not have surfaced. Especially, I would like to thank Hans-Peter Deutsch, who
always supported me with great enthusiasm during this project. Even though,
it still took more than 5 years after the publication of the 5th edition in
German that this English version of the 5th edition could be finalized. It
turned out that the many updates and tiny differences accumulated over the
years made it quite difficult to bring the English edition again in line with the
new German edition.

Friedrichsdorf, Germany Mark W. Beinker
March 2019

The original version of this book was revised. Copyright statement was not included in the original version
and the same has been updated in this revised version. An erratum to this book can be found at https://
doi.org/10.1007/978-3-030-22899-6_36

https://doi.org/10.1007/978-3-030-22899-6_36
https://doi.org/10.1007/978-3-030-22899-6_36


Preface to Fourth Edition

The philosophy of this book is to provide an introduction to the valuation
and risk management of modern financial instruments formulated in precise
(and mathematically correct) expressions, covering all pertinent topics with
a consistent and exact notation and with a depth of detail sufficient to give
the reader a truly sound understanding of the material. An understanding
which even places the reader in a position to independently develop pric-
ing and risk management algorithms (including actually writing computer
programs), should this be necessary. Such tasks will greatly be facilitated by
the website [50] accompanying the book. This website contains Microsoft
ExcelTM workbooks presenting concrete realizations of the concepts discussed
in the book in the form of executable algorithms. Of course, the reader has
full access to all source codes of the Visual BasicTM modules as well as to
all calculations done in the spread sheet cells. The website thus contains a
collection of literally thousands of examples providing the reader with valuable
assistance in understanding the complex material and serving as the potential
basis for the further development of the reader’s own particular pricing and
risk management procedures.

The book should equip the reader with a wide array of tools needed for all
essential topics in the field of modern market risk management and derivatives
pricing. The reader is not expected to have previous knowledge of finance, but
rather a sound mathematical and analytical background typical of scientists,
mathematicians, computer scientists, engineers, etc. The novice is not even
required to be familiar with ideas as fundamental as compounding interest.
The book, however, is certainly also of interest to the experienced risk manager
or financial engineer, since the concepts introduced are widely elaborated upon
and analyzed down to the very foundations, making a comprehension of the
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viii Preface to Fourth Edition

material possible which goes significantly beyond the level held to be “common
knowledge” in this field.

Since the beauty of a room behind a closed door is of little use if the door
itself cannot be found, emphasis has been placed on providing an easy entry
into the analysis of each of the various topics. As the author does not wish to
lose the reader at the outset, or expect the reader to first engage in the study
of quoted literature before proceeding, the book is practically self-contained.
An explanation of almost every expression or notion needed can be found in
the book itself, ranging from compounding interest to term structure models,
from expectation to Value at Risk, from time series analysis to GARCH
models, from arbitrage to differential equations and exotic options, from the
normal distribution to martingales, and so on.

The selection of the topics and the nature of their presentation result to
a great extent from my personal experience as a consultant in the world of
financial services; first with the Financial Risk Consulting division of Arthur
Andersen in Germany, which it has been my pleasure to establish and direct
for many years, and later with the consulting firm d-fine, which is in fact this
former Financial Risk Consulting division, now operating as a company of
its own. In these functions, I have been in a position to observe and identify
exactly what knowledge and methods are required in the financial world as
well as to see what tools are indispensable for a newcomer to this world.

I would like to take this opportunity to thank many of the (in part former)
members of the Financial Risk Consulting team and of d-fine for their valuable
input and many fruitful discussions not only concerning this book, but also
in our day to day consulting work.

Niedernhausen, Germany Hans-Peter Deutsch
October 2008
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Part I
Fundamentals



1
Introduction

The explosive development of derivative financial instruments continues to
provide new possibilities and increasing flexibility to manage finance and risk
in a way specifically tailored to the needs of individual investors or firms.
This holds in particular for banks and financial services companies who deal
primarily with financial products, but is also becoming increasingly important
in other sectors as well. Active financial and risk management in corporate
treasury can make a significant contribution to the stability and profitability
of a company. For example, the terms (price, interest rate, etc.) of transactions
to be concluded at a future date can be fixed today, if desired even giving
the company the option of declining to go ahead with the transaction later
on. These types of transactions obviously have some very attractive uses such
as arranging a long-term fixed-rate credit agreement at a specified interest
rate a year in advance of the actual transaction with the option to forgo the
agreement if the anticipated need for money proves to have been unwarranted
(this scenario is realized using what is known as a “payer swaption”) or
providing a safeguard against fluctuations in a foreign currency exchange
rate by establishing a minimum rate of exchange today for changing foreign
currency into euros at a future date (using a foreign currency option).
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030-22899-6_1) contains supplementary material, which is available to authorized users.
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However, the complexity of today’s financial instruments and markets and
the growing pace of technological progress have led to an almost uncontrol-
lable increase in the risks involved in trading and treasury while simultaneously
reducing drastically the time available for decision making. Thus, the inap-
propriate use of financial instruments may quickly result in losses wiping out
gains achieved over years in a company’s primary business (for example, the
production and sale of automobiles or computer chips).

In recent years we have seen an increase in the number of sizable losses
incurred in consequence of derivative transactions which, in some cases, have
resulted in bankruptcy. This phenomenon has not been restricted to banks but
has involved companies in various other sectors as well. Spectacular examples
include Metallgesellschaft (oil futures), Procter & Gamble (speculation with
exotic “power options”), Orange County (interest rate derivatives, highly
leveraged portfolio), Barings (very large, open index futures positions), Daiwa
Bank (short-termUSBonds),NatWestMarkets (incorrect valuation of options
in consequence of incorrect volatility assumptions), the hedge fund LTCM,
the Subprime-Crisis in the US 2007/2008 (ABS structures), Societe Generale
(speculations of a single equity trader), etc., etc.

Not only have financial instruments become increasingly risky (“more
volatile”), so have the markets themselves. Since the beginning of the 1980s
we have seen a fundamental change to the economic framework in the
financial world. In today’s investment environment, yields, foreign currency
exchange rates, commodity and stock prices can shift daily to an extent which
would have been inconceivable in previous years. Increased market fluctuation
(volatility) is the financial markets’ reaction to developments such as the
accumulation of capital, the globalization of financial markets, an increase in
the budget deficits of the leading industrialized nations and the dismantling
of government regulations, to name just a few.

The main prerequisite for the continued success of a bank or treasury
department in an environment of highly volatile markets and extremely com-
plex (and thus very sensitive) financial instruments is a sound understanding
of the products being traded and efficient management of the risk involved in
these transactions. Derivatives are therefore the main reason for and the most
effectivemeans of conducting risk management, and thus can be viewed as the
be-all and end-all of risk management.

The pricing of derivatives and structured financial instruments is the
foundation, the conditio sine qua non, of all risk management. To this end,
all derivatives under consideration, regardless of their complexity, are broken
down into their basic components and systematically categorized as spot,
futures and option transactions. This process is called stripping. Understanding
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the fundamental instruments and their valuation, as well as “stripping” poses
a serious challenge for those involved, requiring skills which in the past were
not called for to any extent in the financial world, such as the following

• Theoretical demands: statistics, probability theory, time series analysis, etc.,
essential to the understanding of concepts such as “value at risk” and the
estimation of underlyings and their correlation; differential equations, mar-
tingale theory, numerical analysis, financial mathematics, etc., for pricing
financial instruments.

• Trading demands: understanding the function of increasingly compli-
cated securities and transactions (e.g., by stripping); making “imaginative”
choices of derivatives or constructing new instruments to realize a particular
strategy while taking into consideration the often surprising “side effects”;
developing complicated hedging strategies; operating highly complex com-
puter systems.

• IT demands: client-server computing, distributed systems, object-oriented
programming, new operating systems, network engineering, real time infor-
mation distribution, Internet and intranet architecture and increasingly
support for parallel algorithms on computer grids, multi-core CPUs and
graphic processors (GPUs).

The theoretical and trading aspects in particular pervade all business
hierarchies, since it is equally important for the trader/ treasurer to be able
to understand the risk involved in his or her portfolio as it is for a managing
director or the board of directors whose decisions are based on this informa-
tion.

Thus, the aim of this book is to provide a detailed presentation of the
methods and procedures used in pricing financial instruments and identifying,
quantifying and controlling risk. The book is structured as follows:

Part I introduces the fundamental market parameters which govern the
price and risk of financial instruments. These include the price of stocks,
commodities, currencies, etc. and naturally interest rates. A stochastic model,
known as the random walk and its generalization, the Ito process, will be used
to model these fundamental risks, also known as risk factors, and will serve to
describe both the deterministic and the random aspects of the risk factors. In
doing so, an additional parameter, called volatility will, similar to the above
mentioned risk factors, play an important role in the price and risk accorded
to a financial instrument.

Finally, in Part I, the most common instruments for trading the risk
factors are introduced. Trading is defined as the acceptance of risk or risk



6 H.-P. Deutsch and M. W. Beinker

factors, through a financial instrument, in return for a certain yield from the
instrument and/or specified payments from a contracting party. Conversely, a
financial instrument can of course also be used to transfer risk to a contracting
party in exchange for paying a specified yield and/or amount to the risk-taking
party. In Part I, the functionality of several of the most important financial
instruments will be introduced without entering into a discussion of their
valuation, which is frequently very complicated.

Once the fundamental risks and the financial instruments used for trading
them have been introduced, the building blocks for further analysis will have
been defined. This will allow us to proceed with the actual topic of this
book, namely determining the prices and the risks of these building blocks.
For this, the same fundamental methods will be repeatedly applied to many
different financial instruments. In order to make this clear, Part II introduces
the most important methods for pricing and hedging in their full generality—
independent of any specific instrument. As a result, this section is rather
theoretical and technical. The concepts elaborated upon in Part II will then be
applied to specific financial instruments in Part III. This separate treatment of
general methods and specific financial instruments will contribute to a clearer
understanding of this rather complex material.

Once the pricing of the most common financial instruments has been
dealt with in Part III, the determination of the risks associated with these
instruments will be presented in Part IV. The information about the prices
and risks of financial instruments can then be used for decision making,
specifically of course for trading decisions and the management of investment
portfolios. This is demonstrated in Part V. Finally, methods for determining
and analyzing the market data and historical time series of market risk factors
will be the topic of Part VI.



2
Fundamental Risk Factors of Financial

Markets

The fundamental risk factors in financial markets are the market parameters
which determine the price of the financial instruments being traded. They
include foreign currency exchange rates and the price of commodities and
stocks and, of course, interest rates. Fluctuations in these fundamental risks
induce fluctuations in the prices of the financial instruments which they
underlie. They constitute an inherent market risk in the financial instruments
and are therefore referred to as risk factors. The risk factors of a financial instru-
ment are the market parameters (interest rates, foreign currency exchange
rates, commodity and stock prices), which, through their fluctuation, produce
a change in the price of the financial instrument. The above mentioned
risk factors do not exhaust the list of the possible risk factors associated
with a financial instrument nor do all risk factors affect the price of each
instrument; for example, the value of a 5 year coupon bond in Swiss Francs
is not determined by the current market price of gold. The first step in risk
management is thus to identify the relevant risk factors of a specified financial
instrument.

2.1 Interest Rates

Various different conventions are used in the markets to calculate interest pay-
ments. For example, interest rates on securities sold in the US money markets
(T-bills, T-bill futures) are computed using linear compounding, whereas in the
European money market, simple compounding is used. Interest rates in the

© The Author(s) 2019
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capital markets are calculated using discrete or annual compounding while
option prices are determined using the continuous compounding convention.
While these conventions are not essential for a principle understanding of
financial instruments and risk management they are of central importance
for the implementation of any pricing, trading or risk management system.
Before entering into a general discussion of interest rates in Sect. 2.1.5, we will
therefore introduce the most important compounding conventions here.

2.1.1 Day Count Conventions

Before one of the many compounding conventions are applied to calculate
the interest on a certain amount over a period between the time (date) t and
a later time T , the number of days between t and T over which interest is
accrued must first be counted. The beginning, the end and the length of this
time period (measured in years) must be precisely specified. To do this there
are again different conventions used in different markets, known as day count
conventions, DCC for short.

Therefore, a time difference T − t measured in years depends in general
on the chosen day count convention. To make this explicit, we will often use
the expression τ(t, T ) (year fraction) for the time period from time t to T

measured in years with a given day count convention. These market usances
are usually specified by making use of a forward slash notation: the method
for counting the days of the month are specified in front of the slash, the
number of days of the year after the slash. A list of the most commonly used
conventions is presented in Table 2.1. These conventions compute the length
of an interest rate period as follows:

• Actual/365f: The actual number of calendar days between t and T are
counted and divided by 365 to obtain the interest period in years regardless

Table 2.1 The commonly used day count conventions

Common designation Alternative designation

Act/365f Act/365(f), Act/365(fixed), Act/365fixed
Act/360
30/360 BondBasis, Bond, 30
30E/360 EuroBondBasis, EuroBond, 30E
Act/Act Act/Act ISDA, Act, Act/365(l), Act/365leap
ICMA Act/Act, Act/Act ICMA, Act/Act ISMA
BD/252 Brasilian



2 Fundamental Risk Factors of Financial Markets 9

of whether the year concerned is a leap year. This distinguishes the Actu-
al/365f convention from the Act/Act in years.

• Actual/360: The actual number of calendar days between t and T are
counted and divided by 360 to obtain the interest period in years.

• 30/360:The days are counted as if there were exactly 30 days in eachmonth
and exactly 360 days in every year. In addition, the following holds:

– If the beginning of the interest period falls on the 31st of the month, the
beginning is moved from the 31st to the 30th of the same month for the
purpose of the calculation.

– If the end of the interest period falls on the 31st of the month, it is moved
forward for the purposes of the calculation to the 1st of the next month
unless the beginning of the interest period falls on the 30th or 31st of a
month. In this case, the end of the interest period is moved from the 31st
to the 30th of the same month.

• 30E/360: The days are counted as if there were exactly 30 days in each
month and exactly 360 days in each year. In addition, the following holds:

– If the beginning of the interest period falls on the 31st of the month, the
beginning is moved from the 31st to the 30th of the same month for the
purpose of the calculation.

– If the end of the interest period falls on the 31st of the month, the end
of the period is moved to the 30th of the same month for the purpose
of the calculation (this differentiates this day count convention from the
30/360 convention).

• Act/Act: The actual number of calendar days are counted and divided by
the actual number of days in the year, i.e. parts of the time period falling in
leap years are divided by 366, otherwise the divisor is 365. Often, the same
notion is used for other day count conventions as well, so you need to be
cautious.

• ICMA is a specific convention proposed by the International CapitalMarket
Association, which is frequently used as standard convention for bond
emissions. The number of days equals the actual number of days. The
calculation of the divisor is based on the coupon payment frequency m

(i.e. number of coupon payments per year) of the bond and the rolling
day DR, which is the start date for the roll out of all coupon periods,
which are subsequently adjusted due to business day rules (see Sect. 2.1.2).
Next, the natural length L (i.e. without any further adjustments) of the
considered time period is calculated. The divisor is set to the product mL

of natural length L and coupon frequency m. This method guarantees that
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any coupon period, which start and end days fall together with the rolled
out and according to business day rules adjusted dates, has exactly the length
L/12 in years. Only periods, which have been shortened or lengthened by
some days may differ.

• BD/252 counts only the business days, divided by the number of business
days per year, which is fixed to 252.

These conventions for calculating the time between two dates can also be
expressed in formulas:

Act/365f : D2 − D1

365

Act/360 : D2 − D1

360

30/360 : J2 − J1 + M2 − M1

12
(2.1)

+ T2 − min(T1, 30) − max(T2 − 30, 0) ∗ feb(T1 − 29)

360

30E/360 : J2 − J1 + M2 − M1

12
+ min(T2, 30) − min(T1, 30)

360

Act/Act : J2 − J1 + D2 − Date(J2, 1, 1)

Date(J2 + 1, 1, 1) − Date(J2, 1, 1)

− D1 − Date(1, 1, J1)

Date(J1 + 1, 1, 1) − Date(J1, 1, 1)

ICMA : D2 − D1

m
(
Adjusted(DR + m/12 months) − Adjusted(DR)

)

BD/252 : business days between D1 and D2

252
.

The notation should be read as follows:D1 denotes the start date of the interest
period,D2 the end date.D1 consists of the number T1 for the days,M1 for the
months and J1 for the years; D2 is defined analogously. m is the number of
coupon payments per year and DR the rolling date, which is the start date for
the roll out of all coupon start and end dates. The function “Date” delivers the
running number for each given date. The counting of this running number
begins at some time in the distant past, for example January 1, 1900. Then the
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date function (as defined in Microsoft Excel, for instance; please note that for
compatibility reasons Microsoft Excel counts the (actually non-existing) date
February 29th, 1900 by default also as a valid date) yields the value 35,728 for
Date (1997, 10, 25). This is the running number corresponding to October
25, 1997. The function “feb(x)” is defined as equal to zero for x ≤ 0, and
1 otherwise. The function min(x, y) yields the smaller of the two values x

and y, and the function max(x, y) yields the larger of the two. In general,
the difference D2 − D1 is actually the number of days between D1 and D2,
including D1 but excluding D2. The single exception is the last premium
period of aCredit Default Swap (CDS), which includes both,D1 andD2 and is
thus one day longer than, e.g., the equivalent interest rate period. The function
Adjusted(D) adjusts the date D according to a given business day rule (see
Sect. 2.1.2) to fall on a business day.

The computation of time periods using these day count conventions is
demonstrated in Table 2.2 and in the Excel-Sheet Usance.xls available in
the download section [50] accompanying this book. The time period has
been chosen to yield different results for different conventions. The period
starts at February 15th, 2012 and ends on December 31st, 2012. The chosen
business day calendar is TARGET2 (the official calendar for the EUR zone)
with February 15th, 2012 as roll date and period length of onemonth. The time
period has been intentionally selected to contain the 29th of February in order
to demonstrate the difference between the Act/Act and Act/365f conventions.
Furthermore, the interest period was chosen to end on the 31st of the month
to illustrate the difference between the 30/360 and 30/E360 conventions.

Table 2.2 Determining the length of a time period using different day count conven-
tions. The time periodwas chosen to yield a different length (in years) in each day count
convention

Time period
Days Years

Act/365f 320 0.87671233
Act/360 320 0.88888889
30/360 316 0.87777778
30E/360 315 0.875
Act/Act 320 0.87431694
ICMA 320 0.87356322
BD/252 223 0.88492063
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2.1.2 Business Day Conventions

Establishing a day count convention is not sufficient to uniquely determine
interest periods. The value dates of the cash flows must also be defined, i.e., the
number of days following the end of an interest period T on which the interest
payment must be settled. Several different conventions govern this calculation
as well. Furthermore, there are conventions to account for weekends and
holidays. If the value date falls on a bank holiday, for example, should payment
be made on the day before or after the holiday? And finally, bank holidays
themselves vary from country to country. The conventions governing these
questions are called business day conventions,BDC for short. These conventions
transfer the value dates of a cash flow away from weekends and bank holidays
in accordance with the rules compiled in Table 2.3.

Table 2.4 shows as an example the adjustment of March 31st, 2012 and
January 1st, 2012. These example dates fall on either a weekend or bank holiday
(according to TARGET2 calendar). For the EUR zone, TARGET2 is the
official bank holiday calendar. TARGET2 is the short form of Trans-European
Automated Real-Time Gross Settlement Express Transfer System (2nd ver-
sion), the settlement system for money transfers between banks operating in
the EUR zone. TARGET2 replaced on May 19th, 2008 the preceding system
(or collection of systems) TARGET. The TARGET2 holidays are January 1st,
Good Friday, EasterMonday,May 1st, andDecember 25th and 26th. All other
days, except for Saturdays and Sundays, are business days.

Table 2.3 Business day conventions

Convention Adjustment to

Following Following business day
Modified following Following business day as long as this falls within the same

month; otherwise the preceding business day
Preceding Preceding business day
Modified preceding Preceding business day as long as it falls within the same

month; otherwise the following business day (used rarely
or never)

Table 2.4 Effects of business day conventions

Convention Adjustment March 31st, 2012 Adjustment January 1st, 2012

Following April 2nd, 2012 January 2nd, 2012
Modified following March 30th, 2012 January 2nd, 2012
Preceding March 30th, 2012 December 30th, 2011
Modified preceding March 30th, 2012 January 2nd, 2012
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For interest rate instruments, a further distinction is made between whether
the adjustment convention holds solely for the payment date of an interest
period or for itsmaturity date as well. Thematurity date determines the length
of the interest rate period and thus affects the amount of the interest payment
(if the length of an interest period is longer, the amount of the interest payment
to be made is naturally higher). The payment date determineswhen the interest
payments are actuallymade (usually one or two business days after thematurity
date) and therefore affects how strongly a payment is discounted, in other
words, today’s value of the payment (a later payment is obviously worth less
than an earlier one); it is thus relevant when the payment is actually made and
not when it was due.

If the maturity date of a financial instrument is specified as fixed, i.e., non-
moveable, it is not adjusted. However, the payment date is still adjusted in
accordance with the business day convention for the instrument concerned.
The rollover day of an interest rate instrument determines on which day
and month of each year the rollover from one interest period into the next
is to take place, i.e., when the maturity and payment dates of individual
interest payments occur. Depending on the selected business day convention,
a decision is made as to how the maturity and payment dates, derived from
the rollover date, are to be adjusted. For example, federal bonds are commonly
agreed to be fixed. This means that only the payment date is adjusted to the
next valid business day while thematurity date is always the same as the rollover
day. For swaps, on the other hand, both the payment and maturity dates are
adjusted to the next valid business day subsequent to the rollover day.

All these conventions make trading substantially more complicated without
causing a fundamental change in the properties of the instruments being
traded. They are actually unnecessary but the markets are inconceivable
without them because of strong historical ties. This is particularly true of
holiday calendars, some of which even have religious roots.

2.1.3 Discount Factors

In order to concentrate on the essentials, a general notation will be observed
in this book which holds for all compounding, day count, business day and
other market conventions. To accomplish this, discount factors rather than
interest rates will be employed throughout. The discount factor is the value by
which a cash flow to be paid at a time T is multiplied in order to obtain the
value of the cash flow at an earlier time t (for example, today). In general, an
amount of money today is worth more than the same amount of money which



14 H.-P. Deutsch and M. W. Beinker

is accessible not before a future date T , because of the missing choice to either
spend the money, invest it in a profit-gearing asset, or just leave it alone until
T . This option has a positive value, the so-called time value of money.1 Thus,
the discount factor is generally less than 1 (but greater than 0). A discount
factor for discounting from a time T back to an earlier time t will be referred
to using the notation

B(t, T ) (2.2)

The letter B is used since a discount factor is identical to the price at time t of
a zero bond with maturity T and nominal of one currency unit (i.e. 1 EUR).

The discount factor yields the value of a future payment today (discounting).
Conversely, the future value of a payment today (compounding) is obtained by
multiplying the payment by B−1(t, T ). The interest accrued between times t

and T is thus the difference between the compounded value and the original
amount, i.e., the original amount multiplied by the factor (B−1(t, T ) − 1).

2.1.4 Compounding Methods

Over time, various methods for calculating interest have been established.
The explicit form of the discounting and compounding factors and of the
interest accrued (based on a notional=1) are shown for the four most common
compounding methods in Table 2.5. At each stage in this book, the results
expressed in the general notation given in the first line of Table 2.5 can be
converted directly into the explicit expressions of the desired compounding
method by replacing the general expression with the appropriate entries in
Table 2.5, given the fact that discount factors offer a convention-independent
way to express these factors.

These discount factors are obtained from intuitive considerations which are
now described in detail for each compounding method. Note that interest
rates quotes are always relate to a specific time unit. Typically, interest rates
are given as a percentage per year (i.e. per annum), quoting interest rates per
month or even per day is the exception. The actual length of the time period
over which interest is paid, and which has to bemeasured in terms of day count
convention consistent with the quoted interest rate, is independent from the
above mentioned time unit. For example, an interest rate quote of 6% is only

1In case of negative interest rate, the time value may become negative, since negative interest rates can be
viewed as storage costs.
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Table 2.5 Interest rate factors in general notation and their specific form for the three
most commonly used compounding methods. Linear compounding is an exception,
since it should not be seen as an additional compounding method rather than an
approximation for short time periods of the simple compounding method and is
only mentioned for sake of completeness. Calculation of interest requires always the
specification of a compounding method, therefore, it is not possible to calculate
accrued interest if only the discount factor is given

Discount factor Compounding factor Interest accrued

General B(t, T ) B−1(t, T ) Not defined
Continuous e−R(T −t) eR(T −t) eR(T −t) − 1
Discrete (1 + R

m
)−m(T −t) (1 + R

m
)m(T −t) (1 + R

m
)m(T −t) − 1

Simple [1 + R(T − t)]−1 1 + R(T − t) R(T − t)

Linear 1 − R(T − t) 1 + R(T − t) R(T − t)

complete if the related time unit (e.g. per annum, if nothing else is given) and
day count convention (e.g. act/365) is also specified.

Simple Compounding

For simple compounding the interest paid at the end of the term agreed upon
is calculated by simply applying the rule of three: if an interest rate R per time
unit has been agreed upon and the interest period (T − t ) spans n time units,
the interest payable is simply the product n multiplied by R. If the period
(T − t ) is measured in the same unit (e.g., years) as that used to quote the
interest rate (e.g., interest rate is quoted per annum) then we simply have n =
(T −t ) and the interest paid simply equalsR(T −t ) as indicated in Table 2.5. If
capital in the amount K0 has been invested, the interest earned resulting from
simple compounding is obtained by multiplyingK0 by R(T − t ). The capital
held at maturity from an investment paying, for example, 6% per annum over
a quarter of a year is thus

K = K0(1 + 6
%

year
∗ 0.25year) = K0(1 + 6% ∗ 0.25) = K0 [1 + R(T − t)] .

The compounding factor is thus 1 + R(T − t ). The discount factor is the
reciprocal of the compounding factor. Simple compounding is often used in
money markets where interest periods (T − t ) are usually less than one year
or for fixed income instruments with periodic interest rate payments (without
compounding interest rate over more than on period).
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Discrete Compounding

In contrast to simple compounding, discrete compounding takes compounding
effects into account. It is used for long term investments (longer than one
interest period), if during the investment period no interest is actually paid
out. Therefore, the length of the interest period or the frequency of assumed
interest periods per year is required as an additional parameter. Typical interest
periods are annual, semi-annual, quarterly, monthly, or daily, though again the
interest rate quote refers to interest paid per annum, with the full investment
period T − t given in fraction of years. In the following, m denotes the
number of interest periods per year. Then, interest is calculated as if after
each interest period the interest is immediately re-invested at the same interest
rate. Or, to put it otherwise, the invested capital is increased by the interest
due. The assumed interest amount for each period is calculated by means
of simple compounding. An interest rate of 5% with m = 2 (semi-annual
compounding) would thus yield after half a year (one interest period) an
invested capital K1 of

K1 = K0

(
1 + 5%

2

)2×0,5

= K0(1 + 2, 5%) = K0(1 + R/2) .

This capital is reinvested over the next time unit (the second year) in exactly
the same manner. Thus, after one year the investor’s capital has increased to

K2 = K1(1 + R/2) = K0(1 + R/2)(1 + R/2) = K0(1 + R/2)2 .

In the second period, interest is accrued on the interest earned in the first
period in addition to the initial investment capital. This is called compounded
interest. Likewise, after the third period, the investor’s capital is given by

K3 = K2(1 + R/2) = K0(1 + R/2)3

and so on. The compounding factor thus obtained is (1 + R/m)mn where
n is the length of the full investment period in years and m the number of
interest periods per year, or, more general, the compounding factor is equal to
(1 + R/m)m(T −t) as in Table 2.5. Here, m(T − t ) is not necessarily a whole
number. The calculation remains the same for T − t = 3.5, for example.
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Continuous Compounding

In the case of continuous compounding, the calculation is performed as if
interest payments were made after each infinitesimal small time increment
(each payment calculated using simple compounding) with the accumulated
interest being immediately reinvested at the same rate. Therefore, it can be
considered as the limit of the discrete compounding method for infinitesimal
small interest periods. Thismethod is frequently used formodeling derivatives,
because of its convenient mathematical features, easing the life of financial
mathematicians significantly. Since different compounding methods can be
easily converted into each other, you have the free choice of using the most
convenient method for doing your math. However, the interest rates for
real interest coupons paid by fixed income instruments are never quoted as
continuous compounding rates.

The total capital accumulated on an investment over a time period of T − t

calculated by this method is then

K(T −t) = lim
m→∞K0

(
1 + 1

m
R

)(T −t)m

= K0e
R(T −t) . (2.3)

The compounding factor is thus given by eR(T −t) as indicated in Table 2.5.
Here, Euler’s number e, also called the natural number, arises. Its value is
approximately

e ≈ 2, 718281828459 . . .

Euler’s number to the power of some number x is called the exponential
function, which is defined by means of the limit in Eq. 2.3:

exp(x) := ex := lim
m→∞

(
1 + x

m

)m

.

Linear Compounding

Linear compounding is justified for very short periods of time T − t . For such
times, the product R(T − t ) is also very small. For example, if R = 3% per
annumand the time tomaturity T −t is onemonth= 0.083 years, the product
R(T − t ) = 0.0025. The square of this product is considerably smaller,
namely R(T − t )2 = 0.00000625. Thus, in the case of linear compounding,
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only terms of order R(T − t ) are of any importance, i.e., all non-linear terms
are simply neglected. If we represent the discount factor, which is always the
inverse of the compounding factor, as a geometric series2 neglecting all terms
of higher order, we obtain the discount factor given in Table 2.5:

[1 + R(T − t)]−1 ≈ 1 − R(T − t)︸ ︷︷ ︸
linear terms

+ (R(T − t))2 ± · · ·︸ ︷︷ ︸
higher order terms are neglected!

.

It follows, in strict linear approximation, that the general rule that the
reciprocal is identical to the inverse discount factor holds also for linear
compounding. However, since this condition is only approximatively true,
linear compounding is inferior to other compounding methods and should
be used only as an approximation for simple compounding. Since the advent
of computers, it’s practical importance has diminished. Therefore, we won’t
use this method within the rest of the book.

Convention-Dependent Interest Rates

Today’s value of a future cash flow is determined by the discount factor for
the proper time period. On the other hand, the discount factor could easily be
calculated as today’s value of the cash flow divided by its amount (or its value
at pay date). However, expressing discount factors in terms of interest rates
requires the application of compounding methods and day count conventions,
which is demonstrated by the very different formulas for discount factors in
Table 2.5. After all, today’s value of a monetary unit paid in the future must
be independent of the convention used for discounting.

Other than discount factors, interest rates depend on the methods and
conventions used. The impact of conventions is fully “absorbed” in the interest
rates. As a useful consequence, equalizing discount factors expressed in differ-
ent compounding methods as shown in Table 2.5 enables the transformation
of a given interest rate from one compounding convention into another:

e−Rcontinuous(T −t) = 1

(1 + Rdiscrete/m)m(T −t)
= 1

1 + Rsimple(T − t)
.

2The expansion used here is (1 + x)−1 = 1 − x + x2 − x3 + x4 − x5 ± · · · . The result is now obtained
by substituting R(T − t) for x.
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For example, the interest rate necessary to generate a discount factor in discrete
discounting (with m = 1, i.e. annual compounding) with the same numerical
value as a given discount factor in continuous compounding is

Rannual = eRcontinuous − 1, Rcontinuous = ln(1 + Rannual) .

If for discrete compounding the interest period is identical to the compound-
ing period, the relation is very simple, i.e. if 1

m
= T − t we have:

1
(

1 + Rdiscrete
m

)m(T −t)
= 1

1 + Rdiscrete(T − t)
= B(t, T ) ,

or

R(T − t ) = B−1(t, T ) − 1 . (2.4)

In this special case, the expression for the discount factor is identical to the
case of simple compounding. This relation will be used frequently throughout
the book.

However, not only the effects of the compounding methods but also the
effects of the day count convention are absorbed in the interest rates. This is
demonstrated in the Excel-sheet Usance.xlsx available from the download
area and in Table 2.6. The interest period is the same as in Table 2.2, but
the different day count conventions generate different time lengths (measured
in years). The discount factor must be the same for all conventions. The
interest rates associated with this single discount factor, however, are strongly

Table 2.6 Interest rates for the same discount factor based on different day count and
compounding conventions. The interest period is the same as in Table 2.2. The value of
the discount factor for this period is 0, 98261858

Zeitperiode Zero-Raten [in %]
Tage Jahre Linear Einfach Diskret Contin.

Act/365f 320 0.87671233 1.983 2.018 2.020 2.000
Act/360 320 0.88888889 1.955 1.990 1.992 1.973
30/360 316 0.87777778 1.980 2.015 2.018 1.998
30/E360 315 0.875 1.986 2.022 2.024 2.004
Act/Act 320 0.87431694 1.988 2.023 2.026 2.005
ICMA 320 0.87356322 1.990 2.025 2.027 2.007
BD/252 223 0.88492063 1.964 1.999 2.001 1.981
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influenced by both the day count convention as well as the compounding
convention. They vary between 1.955% and 2.027%.

As already mentioned, all of the conventions introduced here are actually
unnecessary for understanding financial instruments. In order to concentrate
on the essentials, discount factors rather than interest rates will be predomi-
nantly used in this book. For any concrete calculation, the reader should be
able

• to write down explicitly the required discounting factor using Table 2.5 and
• to calculate the time length T − t using Eq. 2.1 (along with the Excel-sheet

Usance.xlsx)
• after the exact dates t and T in the appropriate business day convention as

specified in Table 2.3 have been determined.

In what follows, we will therefore work only with the general discount factor
given in Eq. 2.2.

2.1.5 Spot Rates

Spot rates are the current yields on securities which generate only one single
payment (cash flow) upon maturity. A zero coupon bond is an example of such
a security as are coupon bonds whose last coupon payment prior to maturity
has already been made. The spot rates as a function of time to maturity T is
called the spot rate curve or the term structure. These spot rate curves can be
represented by the discount factors BR(t, T ).

2.1.6 Forward Rates

Forward rates are the future spot rates from today’s point of view which are
consistent with the current spot rates. The pay-off profile of many interest rate
products is based on a forward interest rate F(t, tfix, T , T ′), which is fixed at
a future time tfix and which relates to the future interest period from T to T ′
with tfix ≤ T < T ′. Of course, from today’s point of view with t < tfix, the
actual value of this interest rate is yet unknown.

The forward rate as of today can be derived from the following arbitrage
argument: One monetary unit is to be invested today (time t ) until a specified
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T time′
Tt (today)

Fig. 2.1 The sequence of the times t, T and T ′

maturity date T ′. The investor can consider the following two investment
strategies:

1. Invest the monetary unit without adjusting the position until the maturity
date T ′, or

2. Invest the monetary unit until some time T where T < T ′, and at time T

immediately reinvest the interest earned together with the original amount
until the maturity date T ′.

If the investor were able to fix today the interest rate for the future period
between T and T ′ (see Fig. 2.1), then the total return for both strategies must
be the same. If this were not the case, the investor would have an opportunity
to earn a profit without risk, i.e., an arbitrage opportunity (see Sect. 6.1). If
the yield from the first strategy were higher, an investor could raise capital
according to the second strategy and invest this capital according to the first.
Financing the investment using the second strategy requires less interest than
the total return on investing in the first. Thus, since all interest rates are fixed
at time t , a profit would have been made without risk or investment capital
at time t . Conversely, if the total return of the first strategy is lower than
that of the second, the investor could finance the second investment strategy
according to the terms of the first. Again, this gives the investor an arbitrage
opportunity.

The interest rate fixed at time t for the future time period between T and T ′
which eliminates any possible arbitrage opportunity, i.e., which is consistent
with the spot rates at time t , is the forward rate R(T , T ′|t ). The notation for
the analogous forward discount factor, i.e. the price of a zero bond at the future
time T which pays one monetary unit at T ′ > T is

B(T , T ′|t ) . (2.5)

The condition eliminating the arbitrage opportunity can be summarized
as follows: the compounding factor using the spot rate from t to T ′ must be
equal to the compounding factor of the spot rate from t to T multiplied by
the compounding factor of the forward rate from T to T ′. The compounding
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factors are the inverse of the corresponding discount factors as indicated in
Table 2.5. Consequently, the following equalitymust hold to prevent arbitrage:

B−1(t, T ′)︸ ︷︷ ︸
Spot

= B−1(t, T )︸ ︷︷ ︸
Spot

B−1(T , T ′|t)︸ ︷︷ ︸
Forward

or equivalently,

B(t, T ′)︸ ︷︷ ︸
Spot

= B(t, T )︸ ︷︷ ︸
Spot

B(T , T ′|t )︸ ︷︷ ︸
Forward

∀ t ≤ T ≤ T ′ . (2.6)

The forward discount factors can thus be uniquely determined from today’s
discount factors:

B(T , T ′|t ) = B(t, T ′)
B(t, T )

∀ t ≤ T ≤ T ′ . (2.7)

The last two equations are quite fundamental. They will be used repeatedly
in what follows to simplify formulas involving terms with products and
quotients of discount factors. With the aid of these equations, many essential
properties of financial instruments depending on interest rates can be derived
without ever having to specify the compounding convention. This helps to
clarify questions as to whether certain properties under consideration are
intrinsic properties of the instruments themselves or merely results of the
compounding convention being used. For example, the difference between
Macaulay Duration and Modified Duration (see Chap. 5) is not an inherent
property of bonds but merely an effect resulting from applying a particular
compounding convention. In the case of continuous compounding, for exam-
ple, there is no difference between the two!

At this point we provide an example demonstrating the usefulness of Eq. 2.6
and Table 2.5. We give explicitly the forward rates as a function of the spot
rates for each of the three common compounding co nventions:

R(T, T ′|t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(t, T ′)(T ′ − t) − R(t, T )(T − t)

T ′ − T
Continuous Compounding

[
1 + R(t, T ′)

] T ′−t
T ′−T

[1 + R(t, T )]
T −t

T ′−T

− 1 Discrete Compounding

[
1 + R(t, T ′)(T ′ − t)

1 + R(t, T )(T − t)
− 1

]
/(T ′ − T ) Simple Compounding

.
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spot
forward ratesterm rate

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151 2.20%

2 2.50% 1 2.80% 3.25% 3.67% 4.08% 4.36% 4.65% 4.83% 5.02% 5.20% 5.28% 5.37% 5.45% 5.49% 5.52% 5.54%

3 2.90% 2 3.70% 4.11% 4.51% 4.76% 5.03% 5.18% 5.34% 5.51% 5.56% 5.63% 5.70% 5.72% 5.74% 5.74%

4 3.30% 3 4.51% 4.91% 5.11% 5.36% 5.47% 5.61% 5.77% 5.80% 5.84% 5.90% 5.90% 5.91% 5.90%

5 3.70% 4 5.32% 5.41% 5.65% 5.71% 5.83% 5.98% 5.98% 6.01% 6.06% 6.04% 6.04% 6.02%

6 4.00% 5 5.51% 5.82% 5.85% 5.96% 6.11% 6.10% 6.11% 6.15% 6.12% 6.11% 6.08%

7 4.30% 6 6.12% 6.01% 6.11% 6.26% 6.21% 6.21% 6.24% 6.20% 6.18% 6.14%

8 4.50% 7 5.91% 6.11% 6.31% 6.24% 6.23% 6.26% 6.21% 6.18% 6.14%

9 4.70% 8 6.31% 6.52% 6.35% 6.31% 6.33% 6.26% 6.22% 6.17%

10 4.90% 9 6.72% 6.36% 6.31% 6.33% 6.25% 6.21% 6.15%

11 5.00% 10 6.01% 6.11% 6.21% 6.13% 6.10% 6.05%

12 5.10% 11 6.21% 6.31% 6.17% 6.13% 6.06%

13 5.20% 12 6.41% 6.15% 6.10% 6.02%

14 5.25% 13 5.90% 5.95% 5.90%

15 5.30% 14 6.00% 5.89%

16 5.33% 15 5.78%

0%

2%

4%

6%

1 5 10

Fig. 2.2 Forward rates for periods starting in T = 1, 2, . . . , 15 years for terms T ′ − T =
1, 2, . . . , 15 years. From line to line the start points T of the forward periods change by
one year. From column to column the lengths T ′ − T of the forward periods change
by one year. The inset graphic shows, from top to bottom, the current term structure
along with the forward term structures in 1, 5 and 10 years

This clearly demonstrates the advantage of using the general notation for
discount factors 2.7 introduced above. In Fig. 2.2, the forward rates are
calculated from the spot rates taken from the Excel sheet PlainVanilla.xls
(see examples on accompanying website [50]) using the above formulas for
annual, discrete compounding over a period of 15 years.

Since coupon payments are generally calculated by means of the simple
compounding methods, we demonstrate here explicitly how F(t, tfix, T , T ′)
depends on the (forward) discount factor:

F(t, tfix, T , T ′) = 1

τ(T , T ′)
(B−1(T , T ′|t ) − 1) . (2.8)

The forward rate calculated in this way is the risk neutral or risk free3
forward rate, which can be calculated by means of risk neutral discount factors
B(t, T ) only. For actually traded forward rates, an additional tenor basis has
to be taken into account, which is an add-on of a few basis points to the risk
neutral forward rate. Amajor cause for the tenor basis is that unsecured interest
payments bear credit default risk which is the higher the longer the term to
payment date is. The tenor basis could be specified as an explicit add-on (the

3“risk free” in the sense of free from credit default risk.
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tenor basis spread) or by replacing B(t, T ) by a forward yield curve or tenor
curve (see Sect. 15.2 also).

2.2 Market Prices

Let S(t) be the spot price at time t of a stock, a commodity, or a currency. The
dividend-adjusted spot price S̃(t, T ) at time t is the price net of the value of
all dividends paid between the times t and T . It is given by

S̃(t, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S(t) no dividend

S(t) − D(t ′)B(t, t ′) dividend payment D due at time t ′

S(t)e−q(T −t ) dividend yield q

S(t) − D(t ′)S(t, t ′) rel. discrete dividend D(t ′) due at time t ′

.

(2.9)

The dividend adjustment is thus accomplished by subtracting the value of
dividends, discounted back to time t at the spot rate R, from the spot price,
or—in the case of a dividend yield q—discounting the spot price from T back
to t using the dividend yield q . In the following, the notation Bq(t, T ) =
exp[−qτ(t, T )] might be used as an alternative way to express the dividend
yield, making use of the formal similarity to discount factors. For example,
currencies are mathematically equivalent to stocks with dividend yields, where
q represents the risk-free interest rate (in continuous compounding) in the
foreign currency. Similar, for commodities q is replaced by the difference
between the convenience yield and the cost of carry (expressed as a yield,
see later). Relative or proportional discrete dividends are proportional to
the underlying price at the dividend payment date. The dividend cash flow
therefore depends on the forward price S(t, t ′).

When considering stock indices, the dividend payments from the assets in
the index are commonly averaged out to result in a dividend yield q of the
index rather than considering each dividend of each stock as an individual
payment. However, performance indices, such as the German DAX, which
require that dividends be reinvested in the index should not be adjusted for
dividend payments.4

4Except for effects caused by taxation (corporate tax).
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2.3 An Intuitive Model for Financial Risk Factors

2.3.1 Random Walks as the Basis for Pricing and Risk
Models

The random walk is a mathematical model which is frequently used to charac-
terize the random nature of real processes. The concept of the randomwalk has
attained enormous importance in the modern financial world. Most option
pricing models (such as the Black-Scholes model) and several methods used
in modern risk management (for example, the variance-covariance method)
and, of course, Monte Carlo simulations are based on the assumption that
market prices are in part driven by a random element which can be represented
by a random walk. It is therefore worthwhile to acquire an understanding
of random walks if only to develop an intuitive comprehension of stochastic
processes which are at the heart of this book.

A random walk can be described as follows: starting from some point in
space, we travel a random distance in a randomly selected direction. Having
arrived at a new point, another such step of random length and direction
is taken. Each individual step in the procedure has a length and direction
and thus can be represented as a vector as shown in Fig. 2.3. The completed
random walk is a series of such vectors. Each base point of a vector is the end
point of its predecessor.

At this point, we ask the following important question: what is the distance
from the starting point after having completed a random walk consisting of n
steps?5 In other words: how large is the “end-to-end distance” represented by
the length of the vector R in Fig. 2.3? The length and direction of the vector
R are random since R is the sum of random steps. As a result, only statistical
statements are available to describe the properties of this vector. For example,
the length of this vector cannot be determined with certainty but we could
calculate its mean length. This requires a large number of random walks with
the same number of steps.

For each of these random walks, the square of the Euclidean norm of the
end-to-end vector R is determined and used to calculate the mean

〈
R2

〉
. The

mean end-to-end distance is than defined as the square root of this value. A
Monte Carlo simulation (see Chap. 11) could be carried out to generate the
random walks and obtain an estimate for the mean

〈
R2

〉
by measuring R2, the

square of the end-to-end vector, of each simulated random walk and then take

5Figure 2.3 for instance shows a random walk with n = 8.
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Fig. 2.3 A random walk with 8 steps in two dimensions

the average of these. In doing so, it can be observed that the square of the end-
to-end vector is, on average, proportional to the number of steps taken in the
random walk.6

E
[
R2

]
≈ 〈R2〉 ∝ n ,

Here E[x] denotes the expectation of a random variable x and 〈x〉 denotes its
mean value.7 This holds irrespective of the dimension of the space in which
the random walk occurs. The same result holds for a random walk on a line,
in a plane as in Fig. 2.3 or in a 15-dimensional Euclidean space [52].

The expectation of the end-to-end vector itself is equal to zero, i.e., E[R] =
0. This is immediate since the end-to-end vector R points in any direction
with equal likelihood and therefore all these vectors cancel each other out in
the average. In consequence, the variance Var[x] of the end-to-end vector is
given by:

Var(R) ≡ E
[
(R−E [R])2

]
= E

[
R2] ∝ n .

The variance of the end-to-end vector is thus also proportional to n. The
standard deviation, defined as the square root of the variance, is consequently
proportional to

√
n. This is the reason why the uncertainty in future market

prices increases proportionally to the square root of time since, as will be shown
in Sect. 2.3.2, the time corresponds to the number of steps when a random
walk is used to model and interpret price movements. Many well-known rules
in financial mathematics, for example, that the overnight value at risk is to

6The symbol “∝” means “is proportional to”.
7As shown in Sect. 31.1, the expectation converges to the mean value in the limit of an infinitesimal
number of measurements.
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be multiplied by a factor consisting of the square root of the liquidation
period or that the conversion of daily volatilities into monthly volatilities is
accomplished by multiplying by the square root of the number of days in the
month, have their origin in the fact that the variance of the end-to-end vector
of a random walk is proportional to the number of random steps!

The relation E[R2] ∝ n is so fundamental, that it is worthwhile to
understand its theoretical meaning. As mentioned above, a random walk
consists of a series of ‘step’ vectors. According to the rules of vector addition,
the end-to-end vector is merely the sum of these vectors: R = ∑n

i=1 ri. Since
each individual step vector, ri points in any direction with the same likelihood,
the expectation of each step is E[ri] = 0 just as for the end-to-end vector. Since
each of the steps are independent of one another and therefore uncorrelated,
we have

E[ri · rj] = E[ri]︸︷︷︸
=0

· E[rj]︸︷︷︸
=0

= 0 ∀ i �= j, i, j = 1, . . . , n .

With this information about the individual steps, we immediately obtain

E
[
R2

] = E

⎡

⎣
n∑

i=1

ri ·
n∑

j=1

rj

⎤

⎦ =
n∑

i,j=1

E
[
ri · rj

]

=
n∑

i=1

E [ri · ri] +
n∑

i,j=1
i �=j

E
[
ri · rj

]

︸ ︷︷ ︸
0

= n b2

where the constant b denotes the mean length of a single step:

b2 = 1

n

n∑

i=1

E[r2i ]

and as such is the constant of proportionality in the relation E[R2] ∝ n. At
no point did the dimension enter into the above derivation. The equation
E[R2] = b2n thus holds in any dimension and is an expression of a funda-
mental property of random walks, namely their self-similarity: the statistical
properties of a random walk are always the same, regardless of the degree
of detail with which they are observed. In other words, a step in a random
walk can itself be represented as the end-to-end vector of a random walk with
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“smaller” steps. Likewise, the end-to-end vector of a random walk can itself be
considered a single step of a “coarser” random walk (coarse graining).

As yet, only the so called moments (expectation, variance, etc.) of the prob-
ability distribution p(R) have received mention. However, the distribution
of R itself can be determined as well. In general, the end-to-end vector of a
randomwalk in a d-dimensional space has a normal distribution. The concrete
expression of this fact in one dimension (the most important case for the
financial applications) is given by [52]

p(R) = 1√
2πVar(R)

exp

[
−(R − E[R])2

2Var(R)

]
(2.10)

where

E[R] = 0 Var(R) = b2n . (2.11)

Equations 2.10 and 2.11, together with the principle of self-similarity are
the quintessential properties of the theory of random walks introduced here.
They comprise all that is necessary for their application in the field of finance.
For example, the “normal distribution assumption” for price movements is an
immediate consequence of the theory of random walks. Contrary to popular
belief, the normality of the distribution of relative price changes need not be
assumed. It follows automatically that if market prices (or more precisely, the
logarithm of the market prices, see below) behave as random walks, they must
be normally distributed with a density function as given in 2.10. In finan-
cial literature, random walks are often defined having normally distributed
individual step vectors. By doing so the “normal distribution assumption” is
“injected” into the definition of the random walk. This assumption is equally
unnecessary! As mentioned above, a random walk is defined as a series of
completely random steps. Absolutely no assumptions have been made on the
distribution of the individual steps or their sum. The fact that the end-to-end
vector has a normal distribution follows automatically as a consequence of the
central limit theorem.

2.3.2 Risk Factors as Random Walks

A random variable z(t), whose values change randomly with time t is called
a stochastic process. The process is called Markov if its future behavior is
influenced solely by its value at the present time t . This means intuitively
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that the future behavior is independent of the path taken to reach the present
value. Assuming that the current value of a risk factor, such as a stock price or
an interest rate, contains all the information about its historical development
(this is calledweakmarket efficiency), it follows that the subsequent values taken
on by such a risk factor depend only on the current price and other external
effects, such as politics, but not on the past prices or rates. Market prices can
then assumed to be Markov processes.

In order to derive a model for the Markov process S(t) representing the
time-evolution of a risk factor, we assume that the process can be split into
a random and a deterministic component. The deterministic component is
called the drift. We will begin our discussion with an analysis of the random
component.

The derivation of the model describing the random component given here
is fundamentally different from that which is commonly found in the related
literature and is based on the general properties of the random walk, Eq. 2.10
and Eq. 2.11. The literature usually begins with the introduction of a model
and proceeds with a presentation of calculations and results following from the
model assumption. It is more intuitive, however, to begin with a derivation
of the model itself, i.e., to illustrate the steps and describe the motivation
leading to its construction. Thus, this section serves the dual purpose of
introducing a model for future analysis and an example of the modeling
process. What follows is a detailed discussion of how we can construct a model
describing a real phenomenon by means of abstraction (and intuition!) which
is simple enough to allow a mathematical and/or computational analysis but
still complex enough to capture the essential features of the real phenomenon.

A real process, for example the closing prices of a stock on 500 days, might
look like the points shown in Fig. 2.4. We propose to model this process. To
do so, several questions must first be answered:

• What is the fundamental idea behind the model?
As mentioned above, the random properties of many processes can be traced
back to the general concept of the random walk. We therefore use the
random walk as the basis for our model.

• A random walk in which dimension?
A market price can rise or fall, i.e., can change in only two directions. A
random walk in d-dimensional space allows for an upward or downward
change in d linearly independent directions, i.e., there are 2d possible
changes in direction. Thus, the dimension required for the description of
just upward or downward changes is d = 1.
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S1 S2 S3 S4 S5S0

dt

Fig. 2.4 End-of-day values of a stock price over a period of 500 trading days. The values
after 0, 100, 200, . . . , 500 days are denoted by S0, S1, S2, . . . , S5

• Which real parameter is described by the number of steps n in the random walk?
In order to observe a change in price (in other words for a step in a random
walk to be taken), one thing must occur: time must pass. If the price is
observed in regular, fixed time intervals dt (for example, every 100 days
as in Fig. 2.4, or daily or hourly, etc.), then the amount of time passing
between steps is dt . If the entire random walk occurs between t (=today)
and a future date T then

T − t = ndt . (2.12)

Since dt is a constant, the number of steps n is proportional to the time in
which the random walk occurs, i.e., proportional to T − t .

• Which real parameter should be modeled by a random walk?
At first glance, we might take the market price of a risk factor. The market
price evolution S5−S0 over the entire period in Fig. 2.4 can be decomposed
into individual steps as follows:

S5 − S0 = (S0 − S1) − (S2 − S1) + (S3 − S2) + (S4 − S3) + (S5 − S4),
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or more generally,

Sn − S0 =
n∑

i=1

dSi with dSi = Si − Si−1 .

If the market price itself were a random walk, then as a result of the
self similarity property, the individual steps dSi would also be random
walks. The price differences however are real cash amounts given in euros,
for example. This would mean that a security costing 1000 euros would
experience the same fluctuations (in euros) as one costing only 10 euros.
This is surely not the case. It would make much more sense to consider
relative fluctuations. Our next candidate for a step in our random walk
could therefore be the ratio Si/Si−1. The ratio of the last price to the first
is given by

S5

S0
= S1

S0

S2

S1

S3

S2

S4

S3

S5

S4
,

or more generally,

Sn

S0
=

n∏

i=1

Si

Si−1
.

This is the product of the individual steps and not their sum. A randomwalk
however, is a vector and as such must always be the sum of its component
steps. In light of this fact, the ratios Si/Si−1are completely unsuitable for
the steps of a random walk as they are not even vectors! However, the
ratios Si/Si−1, which make economic sense, can be utilized by converting
the products into sums by taking the logarithm of both sides of the above
equation. The functional equation for the logarithm is given by

ln(a × b) = ln(a) + ln(b) , ln(a/b) = ln(a) − ln(b) .

Thus taking the logarithm of both sides of the above product yields

ln(
S5

S0
) = ln(

S1

S0
) + ln(

S2

S1
) + ln(

S3

S2
) + ln(

S4

S3
) + ln(

S5

S4
),
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or more generally,

ln(
Sn

S0
) =

n∑

i=1

ln(
Si

S0i − 1
)

and thus,

ln(Sn) − ln(S0) =
n∑

i=1

d ln(Si) with d ln(Si) = ln(Si) − ln(Si−1) .

This looks exactly like our first attempt with the sole exception that the
market price S has been replaced with its logarithm ln(S). This small
change makes it possible to satisfy both the economic requirement that the
proportional changes in the market price be modeled and the mathematical
requirement that a random walk be the sum of its component steps.

We have thus completed the fundamental construction of our model: The
random component of a market price is modeled by interpreting the logarithm of
the price as a one-dimensional random walk with independently and identically
distributed (iid) random steps and the number of these steps being proportional to
the length of time during which the random walk takes place.

Now we are in a position to apply what we know about random walks to
draw conclusions about the evolution of market prices. It follows fromEq. 2.10
that the end-to-end vector R = ln(S(T )/S(t)) is normally distributed with
expectation and variance as given in Eq. 2.11. Because in our model the time
and the number of steps in the randomwalk are related as in Eq. 2.12, the time
dependence of the end-to-end vector’s variance can be calculated as

E
[

ln

(
S(T )

S(t)

)]
= 0 , Var

[
ln

(
S(T )

S(t)

)]
= b2n = σ 2(T − t ) .

(2.13)

The logarithm of the market price is normally distributed, its variance being
proportional to the time. The constant of proportionality σ 2 is well defined,
even in the limiting case of the time intervals dt becoming infinitesimal.
The standard deviation, defined as the square root of the variance, is thus
proportional to the square root of the time. The constant of proportionality
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σ is called volatility. Making use of Eqs. 2.13 and 2.12 gives us

σ 2 = b2

dt
= 1

T − t
Var

[
ln

(
S(T )

S(t)

)]
. (2.14)

Note again that the normal distribution has not been assumed at any point in
this argument. Nor has it been assumed that the standard deviation increases
proportionally to the square root of the time. The model consists solely of the
statement above, that the logarithm of themarket price is modeled as a random
walk. The rest follows automatically! Owing to the self-similarity property,
each step of the random walk, regardless of its length can be interpreted as a
random walk itself. It follows that all changes d ln(S) in the logarithm of the
market price over an infinitesimally small time interval dt are also normally
distributed with an expectation of zero and the following variance:

Var [d ln (S(t))] = Var [ln (S(t + dt)) − ln (S(t))] (2.15)

= Var
[

ln

(
S(t + dt)

S(t)

)]
= σ 2dt .

Therefore the process d ln (S(t)) is very similar to a very prominent and well
understood process appearing time and again in physics, biology and other
sciences, called theWiener process which, for instance, describes what is known
as Brownian motion in physics. Such aWiener processW is a stochastic process
which changes randomly by an amount dW over a time interval dt. These
changes dW are normally distributed with a mean of zero and with a variance
equal to the length of the time interval passed during the change, i.e., with a
variance equal to dt. Or written more compactly:

dW ∼ X
√

dt with X ∼ N(0, 1) . (2.16)

Here, as always in this book, the notation N(x, y) denotes the normal
distribution with mean x and variance y, i.e., N(0, 1) denotes the standard
normal distribution.8 The sign “∼” in these circumstances is to be read as “is
distributed as”. Equation 2.16 thus means in words: “dW is distributed as

√
dt

times a random number X. This random number X in turn is distributed
according to the standard normal distribution.” The definition 2.16 together

8The normal distribution and the standard normal distribution are presented in detail in Sect. A.4.3.
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with the property 2.15 allows us to write the process for the infinitesimal
random change d ln (S(t)) very compactly as

d ln (S(t)) = σ dW .

We have now arrived at the point where the discussion in the literature usually
begins.

The only model parameter which has as yet been introduced is the volatility
σ . This, however, is insufficient to provide an adequate description of the
behavior of risk factors. For example, two parameters (denoted by u and d)
are required for the binomial model dealt with in Chap. 9. All risk factors
will be required to have an additional essential property, namely that they be
martingales.9 This subject will receive detailed discussion in Chap. 13. The
intuitive meaning of the martingale property is that the current value of a
risk factor can be represented as the appropriately discounted expected future
value. In order to ensure that this property is satisfied when modeling market
movements with a random walk, two parameters are required. To provide a
motivation10 for the second parameter in our random walk, we consider the
following: the end-to-end vector in our 1-dimensional random walk is given
by R = ln [S(T )] − ln [S(t)]. If our random walk is to serve as a model for
a stock price which, in the long term, should show a positive mean return,
then the expectation of the end-to-end vector should not be equal to zero but
should grow with time. This is incorporated into the model by introducing a
deterministic term, called the drift:

d ln [S(t)] = μdt + σdW . (2.17)

Since no additional random component has been introduced into the model,
ln(S(t)) retains the normal distribution with variance σ 2(T − t ) after the
passage of time from t to T . The expectation, however, is now given byμ(T −
t ). The addition of the drift into our random walk has the consequence that
the mean of the random walk is no longer 0 but rather μ(T − t ).

9At least as long as the risk factors are tradeable, see Chap. 13.
10This is only a motivation based on the example and not a general explanation for a drift. For example,
when considering an interest rate as a risk factor, there is no reason to believe that the change in the interest
rate should show a “mean return”. The more general and profounder explanation for the drift is that the
risk factors must modeled in such a way that there exists a probability measure in which all (tradeable and
properly normalized) financial instruments are martingales.
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Table 2.7 Statistical properties of the logarithm of a risk factor and of the risk factor
itself

Normal distribution Lognormal distribution

Random variable x = ln
(

S(t+dt)
S(t)

)
x = S(t+dt)

S(t)

Density 1√
2πσ 2dt

e
− (x−μdt)2

2σ 2dt
1

x
√

2πσ 2dt
e
− (ln(x)−μdt)2

2σ 2dt

P(x ≤ a) 1√
2πσ 2dt

a∫

−∞
e
− (x−μdt)2

2σ 2dt dx 1√
2πσ 2dt

ln(a)∫

−∞
e
− (x−μdt)2

2σ 2dt dx

Expectation μdt e(μ+σ 2/2)dt

Variance σ 2dt e2μdt (e2σ 2dt − eσ 2dt )

0
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Fig. 2.5 The distribution from Table 2.7 with μdt = 0 and σ
√

dt = 1. With these
parameters the normal distribution has mean 0 and variance 1 while the lognormal
distribution has mean

√
e ≈ 1, 65 and variance e2 − e ≈ 4, 67

A random variable whose logarithm has a normal distribution has a log-
normal distribution. The price S(t) is thus lognormally distributed. The
most important properties of ln(S) and S summarized in Table 2.7, see also
Sect. A.4.

In Fig. 2.5, the density functions and cumulative probabilities of the normal
and lognormal distribution are shown. Here, the parameters μdt and σ

√
dt

have been set equal to 0 and 1, respectively.
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The random walk model just derived can, of course, be generalized by
allowing for non-constant drifts and volatilities. If σ is expressed as in Eq. 2.14
in terms of the variance and if the yield is left in its most general form as
a function of time t and the market price S(t) at time t , Eq. 2.17 can be
expressed in the following generalized form:

d ln (S(t)) = μ(S(t), t)dt + X
√
Var[d ln (S(t))] (2.18)

with X ∼ N(0, 1) .

This equation is now in the general form of a stochastic diffusion process
as given by Eq. 2.19 and is the starting point for more general stochastic
models for themarket parameters. These will receive a detailed treatment in the
following chapter. Concrete examples of such generalized stochastic processes
can be found in Sect. 32.1.

2.4 Ito Processes and Stochastic Analysis

In the previous section, risk factors in financial markets were introduced
and a motivation and derivation of an intuitive model (the random walk)
was provided to describe them. Now, this section will be devoted to the
more theoretical fundamentals underlying these concepts, namely to stochastic
analysis. Stochastic analysis is the branch of mathematics dealing with the
investigation of stochastic processes. Particularly close attention will be paid
to results which find application in finance. This subject is naturally quite
theoretical, but should give the interested reader a deeper understanding of
relationships between different fundamental concepts in financial mathemat-
ics. Nevertheless, the reader who is less interested in the mathematical details
may skip over the rest of this Chapter and continue directly on to Chap. 3.

2.4.1 General Diffusion Processes

All stochastic processes in this book which will be used to model risk factors
satisfy—as long as there is only one single random variable involved—an
equation of the following form:

dS(t) = a (S, t) dt + b(S, t) dW with dW ∼ X
√

dt , X ∼ N(0, 1) .

(2.19)
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Here,W denotes—as always—a Brownianmotion andX a standard normally
distributed random variable. Processes satisfying an equation of this type are
called diffusion processes or Ito processes. These quite general stochastic processes
have long since been the subject of research in the field of stochastic analysis.

The parameters a(S, t) and b(S, t) are called the drift rate and the volatility
of the Ito process. They may depend on the time t, on the stochastic process
S or on both. The interpretation of the variable S depends on the particular
application under consideration. In the simple models derived in Sect. 2.3,
for example in Eq. 2.17, the logarithm of the risk factor was modeled as the
stochastic variable. These models are of the form 2.19 with the stochastic
variable being given by ln(S), where b(S, t) = σ and a (S, t) = μ.

The first moments of the conditional probability distribution of the general
Ito process are

E [dS(t)] = a(S, t) dt

Var [dS(t)] = E
[
(dS − E [dS])2

]
= E

[
(b(S, t) dW)2

]
= b(S, t)2dt

E
[
dS(t)2

]
= E

[
(a(S, t)dt + b(S, t)dW)2

]
≈b(t, S)2dt + higher order terms in dt .

2.4.2 Ito’s Lemma

A very important question is which stochastic differential equation is satisfied
by a function f (S) of a stochastic variable S, i.e., what change df is induced
by an infinitesimal change dS in S. This question is answered by Ito’s famous
lemma, the proof of which will be sketched in this section. Typically, when
we are interested in small changes in a function f , a Taylor series expansion is
calculated for df . The only subtlety in our case (and this is critical) is that,
because of Eq. 2.19, a stochastic variable is now involved:

df (S, t) = ∂f

∂S
dS + ∂f

∂t
dt + 1

2

∂2f

∂S2
(dS)2 + 1

2

∂2f

∂t2
(dt)2 + · · ·

= ∂f

∂S
[a (S, t) dt + b(S, t) dW ]︸ ︷︷ ︸

dS

+ ∂f

∂t
dt

+ 1

2

∂2f

∂S2

[
b2(S, t) dW 2 + 2a (S, t) b(S, t) dWdt

] + O(dt2) .
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In this case we can not, as is usually the case, neglect the non-linear terms since
the Brownian motion is of the order dW ∼ √

dt and thus dW 2 is not small
in comparison with dt . In fact, it can be shown that the square of Brownian
motion has the following properties:

E
[
dW 2] = dt

Var
[
dW 2

] ∼ dt2 .

Thus, the variance of dW 2 vanishes in the linear order of dt. This means
that, in linear order, dW 2 is no longer stochastic but can be set equal to its
expectation, i.e.,

dW 2 ≈ dt . (2.20)

This is the central idea of Ito’s lemma. Making this substitution and then
ignoring all terms of order greater than dt , making use of the fact that
dW ∼ √

dt immediately gives the equation for infinitesimal (limit dt → 0)
changes in the function f (S, t)

df (S, t) =
[
∂f

∂S
a (S, t) + ∂f

∂t
+ 1

2

∂2f

∂S2
b2(S, t)

]
dt + ∂f

∂S
b(S, t) dW .

(2.21)

This is Ito’s famous lemma. This equation has the same structure as Eq. 2.19.
The function f is thus also an Ito process with its drift rate and volatility given
by

af (S, t) = ∂ f

∂S
a(S, t) + ∂ f

∂ t
+ 1

2
b2(S, t)

∂2 f

∂ S2

bf (s, t) = ∂ f

∂ S
b(s, t) .

Equation 2.21 appears rather complicated. In practice, it is sufficient to
remember the essential idea, namely Eq. 2.20. The equation can then be
derived from a “mechanical” application of Taylor’s theorem up to the linear
term in dt and quadratic term in dW andmaking the substitution dW 2 = dt .
A useful form of Eq. 2.21 can be obtained by observing that the terms involving
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∂f

∂S
can be collected and expressed in terms of the process dS in accordancewith

Eq. 2.19:

df (S, t) =
[
∂f

∂t
+ 1

2

∂2f

∂S2
b2(S, t)

]
dt + ∂f

∂S
dS(t) . (2.22)

The Process for the Risk Factor Itself

Ito’s lemma is a powerful tool which will be applied frequently in this book.
For example, we can immediately obtain the process for the market price from
the process describing the logarithm of the market price given by Eq. 2.17.
To do so, we define the stochastic variable11 y = ln(S(t)) and choose for f

the function given by f (y, t) = ey(t). The original process y(t) = ln(S(t))

satisfies the Eq. 2.17, i.e.,

dy(t) = μdt + σ dW .

The required derivatives of f can be easily calculated and applying Ito’s lemma
we obtain

f (y, t) = ey ⇒ ∂ f

∂ y
= f ,

∂ f

∂ t
= 0 ,

∂2 f

∂ y2
= f

df (y, t) =
(

f (y, t)μ + 1

2
σ 2f (y, t)

)
dt + f (y, t) σ dW .

Setting S(t) = f (y, t) yields:

dS(t) = S(t)

(
μ + σ 2

2

)
dt + S(t)σ dW . (2.23)

In the literature, an equivalent approach is sometimes taken to arrive at
this equation. A random walk model for the risk factor S(t) is introduced
in the first place (and not for its logarithm as done here) with a subsequent
application of Ito’s lemma to derive the process for ln(S(t)). Explicitly, one
begins with the process

dS(t) = S(t)μ̃ dt + S(t)σ dW (2.24)

11Instead of S, another letter is used for the stochastic variable here in order to avoid confusion in the
notation.
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obtaining from Ito’s lemma12

d ln(S(t)) = (μ̃ − σ 2

2
) dt + S(t)σ dW . (2.25)

This result corresponds to Eqs. 2.23 and 2.17 in our development with a
somewhat modified drift.

μ̃ = μ + σ 2

2
. (2.26)

The model is thus exactly the same, only the drift must be reinterpreted, see
Eqs. 2.30 and 2.32 below.

The formulation of 2.23 and 2.24, in which the risk factor (and not its
logarithm) is directly modeled as a stochastic process, of course also has the
form of a diffusion process as in Eq. 2.19, with the choice of a and b given by
b(S, t) = S(t)σ and a (S, t) = S(t)μ̃ or equivalently, a(S, t) = S(t)(μ +
σ 2/2).

The Process for the Risk Factor over a Finite Time Interval

Equation 2.19 describes the infinitesimal change in S and thus determines the
differential of S. We are therefore dealing with a (partial) differential equation.
Because it contains the stochastic component dW , it is referred to as a stochastic
partial differential equation, often abbreviated by SDE. Special cases such as
Eq. 2.23, for example, are SDEs as well.

With the aid of Ito’s lemma and the general diffusion process, Eq. 2.19, an
equation for finite changes in S (over a finite, positive time span δt ) can be
derived by solving the SPDE 2.23 (which holds for infinitesimal changes dS).
For this purpose, we use the process 2.19 with a (y, t) = 0 and b(y, t) = 1,
i.e., simply13 dy(t) = dW(t). Now we construct a function S of the stochastic
variable y by

S(y, t) := S0 exp (μt + σy)

12Equation 2.21 with f (S, t) = ln(S(t)).
13In order to avoid confusion in the notation, we denote the stochastic variable by y.
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where y(t) = W(t) is the value of the Wiener process at time t, and S0 is an
arbitrary factor. Ito’s lemma gives us the process for S induced by the process
dy:

dS =

⎡

⎢⎢⎢
⎣

∂S

∂y︸︷︷︸
σS

a(y, t)︸ ︷︷ ︸
0

+ ∂S

∂t︸︷︷︸
μS

+ 1

2
b(y, t)2
︸ ︷︷ ︸

1

∂2S

∂y2
︸︷︷︸
σ 2S

⎤

⎥⎥⎥
⎦

dt + ∂S

∂y︸︷︷︸
σS

b(y, t)︸ ︷︷ ︸
1

dW

= (μ + σ 2

2
)S dt + σS dW .

This corresponds exactly to the process in Eq. 2.23. This means that the
process S thus constructed satisfies the stochastic differential equation 2.23,
i.e., is a solution of this SPDE. Simply making the substitution t → t + δt

we obtain

S(t + δt) = S0 exp (μt + μδt + σy(t + δt))

= S0 exp (μδt + σW(t + δt))

= S0 exp (σW(t) + μδt + σδW) ,

where in the second step we absorbed exp (μt) in the (still arbitrary) S0 and in
the third step we adopted the notation δW for a change in a Brownian motion
after the passing of a finite time interval δt :

δW := W(t + δt) − W(t) �⇒ δW ∼ N(0, δt) . (2.27)

The first term in the exponent refers to (already known) values at time t . It
can also be absorbed into the (still arbitrary) factor S0, i.e.,

S(t + δt) = S0 exp (μδt + σδW) .

Finally, the (still arbitrary) S0 is chosen so that S(t +δt)
δt→0= S(t) holds. This

corresponds to the initial condition for the solution of the SPDE. Thus, we
obtain the change in S corresponding to Eq. 2.23 for a finite, positive time
span δt :

S(t + δt) = S(t) exp (μδt + σδW) where δW ∼ N(0, δt) . (2.28)
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Analogously, Eq. 2.24 gives the corresponding change in S over a finite,
positive time span δt as:

S(t + δt) = S(t) exp

(
(μ̃ − σ 2

2
)δt + σδW

)
where δW ∼ N(0, δt) .

(2.29)

The Drift and the Expected Return

With the risk factor evolution over finite time spans at our disposal, we are now
able to answer a question which often confuses market participants: which is
the mean (or expected) return of the risk factor over a finite time span? Is it the
driftμ of ln S as in Eq. 2.17 or the drift μ̃ of S itself as in Eq. 2.24? The answer
to this question does in fact depend on the compounding methods used.

In continuous compounding, if a security is worth S(t) at time t and worth
S(t + δt) at time t + δt then the return R of this security over this time span
is defined by the equation S(t + δt) = S(t)eRδt , i.e.,

R ≡ 1

δt
ln

(
S(t + δt)

S(t)

)

= 1

δt
ln

(
S(t) exp (μδt + σδW)

S(t)

)

= μ + σ

δt
δW ,

where we have used Eq. 2.28 for S(t + δt). The mean (or expected) return
is of course simply the expectation of this return. Since δW ∼N(0, δt), i.e.,
E[δW ] = 0, this expectation is

E[R] = μ = μ̃ − σ 2

2
. (2.30)

Thus, in continuous compounding the drift parameterμ is the mean return.14
In other compounding methods, things are different. We look at linear

compounding as an example, since this method is especially important for

14Note that the expectation of the logarithm of the market price was required for the determination of the
mean return not the expectation of the market price itself.
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the following reason: Very often, the return R is defined as the relative price
change over a time period. This very natural definition is in fact equivalent to
linear compounding:

R δt ≡ S(t + δt) − S(t)

S(t)

⇐⇒ S(t) (1 + Rδt) = S(t + δt) . (2.31)

In the last line we recognize the linear compounding factor as in Table 2.5.
Using now Eq. 2.28 for S(t + δt) we find:

1 + Rδt = exp (μδt + σδW) .

In contrast to the situation in continuous compounding, we now do not
have a logarithm at our disposal to conveniently get rid of the (non-linear)
exponential function. Thus, before we can take any expectations we need to
expand the exp-function:

exp (μδt + σδW) = 1 + μδt + σδW + 1

2
(μδt + σδW)2 + O(δW 3)

= 1 + μδt + σδW + 1

2
σ 2δW 2 + O(δW 3)

= 1 + μδt + σδW + 1

2
σ 2δt + O(δW 3) .

where in the last step we have used Eq. 2.20. Now we can take the expectations
and exploit E[δW ] = 0 to find that up to linear order in δt we have

1 + E[R]δt = E
[

1 + μδt + σδW + 1

2
σ 2δt + O(δW 3)

]

= 1 + E [μδt] + E [σδW ]︸ ︷︷ ︸
0

+ E
[

1

2
σ 2δt

]
+ E

[O(δW 3)
]

︸ ︷︷ ︸
O(δW 4)=O(δt2)

= 1 + μδt + 1

2
σ 2δt + O(δt2) .
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Extracting E[R] on the left side yields

E[R] = 1 + (
μ + σ 2/2

)
δt − 1

δt
+ O(δt) .

Therefore, in linear compounding

E[R] ≈ μ + σ 2

2
= μ̃ . (2.32)

2.4.3 Transition Probabilities, Forward and Backward
Equation

Since S in Eq. 2.19 is a stochastic process, its exact evolution over time cannot
be described even by solving the stochastic differential equation. This becomes
clear in the above examples where the solutions to Eqs. 2.28 and 2.29 still
contain a random component δW ∼N(0, δt). However, probabilities can be
given for the stochastic process at time t ′ to take on values between a and b,
given that the value of S at an earlier time t is known. A formal notation for
this probability is

P(a ≤ S(t ′) ≤ b |S(t) = S ) =
∫ b

a

p(S ′, t ′ |S, t )dS ′ . (2.33a)

where the transition probabilities denoted by p(S ′, t ′ |S, t ) indicate the prob-
ability that the stochastic variable at time t ′ is exactly equal to S ′, on the
condition that it was equal to S at time t . The transition probability15 contains
all information about the associated stochastic process 2.19. This fact prompts
a more detailed investigation of transition probabilities.

The Forward Equation

The time evolution of the transition probabilities driven by the stochastic
process 2.19 can be described using two differential equations. One of these
equations involves the derivative with respect to the future variables S ′, t ′ and

15This concept of transition probabilities is quite similar to the concept of (Feynman-) propagators used
in quantum field theories of elementary particle physics.
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answers the question: if the stochastic process is equal to S at time t , what
distribution does it have at a later time t ′ > t ? This equation is called the
forward equation, also known as the Fokker-Planck equation. It is explicitly
given by16

∂p

∂t ′ − 1

2

∂2

∂S ′2
[
b(S ′, t ′)2p

] + ∂

∂S ′
[
a(S ′, t ′)p

] = 0 . (2.34)

The initial condition that the value of the process at time t ′ = t is exactly
equal to S can be formally expressed with the help of the Dirac delta function

p(S′, t ′ = t | S, t ) = δ(S′ − S) .

The solution to the forward equation with this initial condition describes the
widening of the probability distribution of the process over time starting from
the “sharp” delta function. The forward equation is useful in situations where S

has an established value at a fixed time and we are interested in the probability
distribution of S at a later time, in other words, when information available
now is to be used to calculate forward in time.

The Backward Equation

In mathematical finance, we are more often interested in the opposite situ-
ation: information at a future point in time is known (for example, at the
maturity of an option) and we wish to calculate values backwards to an earlier
point in time (today, say). To do so, we require a differential equation involving
derivatives with respect to the earlier time variables S and t which answers
the question: given that the stochastic variable is equal to S ′ at time t ′, how
is the stochastic process distributed at an earlier point in time t < t ′? This
question can be answered using the backward or Kolmogorov equation This is
given explicitly by

∂p

∂t
+ 1

2
b2(S, t)

∂2p

∂S2
+ a(S, t)

∂p

∂S
= 0 . (2.35)

16To simplify the notation, we neglect here the arguments of p, a habit we will continue to observe often
in the remainder of this chapter. If p stands in an equation without an argument, it should be read as
p(S′, t ′ |S, t ).
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The associated initial condition is given by

p(S′, t ′
∣∣S, t = t ′ ) = δ(S − S′) .

Note that for all process whose parameters a and b are not dependent on S,
the only difference between the forward and backward equation is the sign of
the term involving the second derivative.

A Derivation of the Forward and Backward Equations

Both the forward equation 2.34 and the backward equation 2.35 are of such
a fundamental nature that it is possible to complete their derivation on the
basis of first principles. This derivation involves quite extensive calculations
(essentially, taking products of Taylor series) which the reader need not
necessarily work through (the reader who does not wish to take the time
is recommended to continue on to Sect. 2.4.4). However, experience shows
that one tends to feel somewhat ill at ease when such fundamental equations
simply appear out of thin air and are accepted without a sound explanation.
Therefore, the derivation of the forward and backward equation is presented
explicitly here in greater detail than is commonly found in the literature on
mathematical finance. This gives the reader the opportunity to obtain a real
understanding of these two fundamental equations.

We begin by deriving the forward equation. We split the probability that
the stochastic process will travel from (S, t) to (S ′, t ′) into the probability that
by time t ′ − δt it will have arrived at S ′ − δS, S ′ + δS or S ′ and then will
proceed to S ′ in the remaining time δt with the probabilities δp+, δp− and
δp0, respectively, thus

p(S ′, t ′ |S, t ) = p(S ′ − δS, t ′ − δt |S, t )δp+(S ′ − δS, t ′ − δt) (2.36)

+ p(S ′, t ′ − δt |S, t )δp0(S
′, t ′ − δt)

+ p(S ′ + δS, t ′ − δt |S, t )δp−(S ′ + δS, t ′ − δt)

where

δp±(S, t) := p(S ± δS, t + δt |S, t )

δp0(S, t) := p(S, t + δt |S, t ) = 1 − δp+(S, t) − δp−(S, t) .
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t′t′ − δt

S ′ − δS

S ′ + δS

S ′

Fig. 2.6 The trinomial tree used to derive the forward equation

Intuitively δp+ is the probability that the process will increase by δS in the
short time span δt , δp− the probability that it will decrease by δS in the time
span δt , and δp0 is the probability that it will remain constant in the time
span δt . Other possibilities for this stochastic process within this time span are
not admitted. This split of the probabilities is graphically represented by the
trinomial tree in Fig. 2.6.

The relationship between these δp and the stochastic process 2.19 results
from the requirement that the first two moments, i.e., the expectation and the
variance of the discrete process defined for the trinomial tree, agree with the
first two moments of the continuous Ito process in the limit as δt → dt → 0.
The expectation of δS is

E [δS] = δp+δS + δp00 − δp−δS = (δp+ − δp−)δS .

By definition, its variance is given by

var [δS] = E
[
(δS − E [δS])2

]

= δp+(δS − E [δS])2 + δp−(−δS − E [δS])2 + δp0(0 − E [δS])2 .

Substituting E[δS] = (δp+ −δp−)δS and δp0 = 1−δp+ −δp− yields, after
several simple algebraic manipulations

Var [δS] = [δp+(1 − δp+ + δp−)2 + δp−(1 + δp+ − δp−)2

+ (1 − δp+ − δp−)(δp+ − δp−)2]δS2

= (δp+ + δp−)(1 − (δp+ + δp−))δS2

≈ (δp+ + δp−)δS2 .
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where only terms up to order δpδS2 were considered in the last step. The
requirement that the expectation and the variance be equal to those of the Ito
process 2.19 as δt → dt → 0, i.e., up to linear order in δt means that

(δp+ − δp−)δS = E [δS]
δS→dS−→ E [dS] = a(S, t)dt

(δp+ + δp−)δS2 ≈ Var [δS]
δS→dS−→ Var [dS] = b(S, t)2dt .

This is obviously achieved by choosing

δp±(S, t) = 1

2

δt

δS2

[±a(S, t)δS + b(S, t)2] . (2.37)

And, in order to retain the equality δp0 = 1 − δp+ − δp− we have

δp0(S, t) = 1 − δt

δS2
b(S, t)2 .

Substituting these values in our original equation 2.36 and expanding all terms
appearing in this expression in a Taylor series about the point (S ′, t ′) up to
order δt finally yields the forward equation. As a result of Ito’s lemma we have
δS2 ∼ δt. This means that all terms of order 1, δS, δS2 and δt are retained
and all higher order terms can be neglected. Note that δt/δS2 in Eq. 2.37 is
of order 1. Explicitly, the Taylor series for p is given by:

p(S′ ± δS, t ′ − δt |S, t ) = p(S′, t ′ |S, t ) ± ∂p

∂S′ δS + 1

2

∂2p

∂S′2 δS2 − ∂p

∂t ′
δt + · · ·

p(S′, t ′ − δt |S, t ) = p(S′, t ′ |S, t ) − ∂p

∂t ′ δt + · · ·

But now, all terms involving δp must also be expanded in consideration of
Eq. 2.37:

δp+(S′ − δS, t ′ − δt) ≈ δp+(S′, t ′) − ∂δp+
∂S′ δS + 1

2

∂2δp+
∂S′2 δS2 − ∂δp+

∂t ′
δt + · · ·

≈ 1

2

δt

δS2

[
b2 + aδS

]
− 1

2

δt

δS2

[
∂b2

∂S′ + ∂a

∂S′ δS
]

δS

+ 1

4
δt

[
∂2b2

∂S′2 + ∂2a

∂S′2 δS

]
−1

2

δt

δS2

[
∂b2

∂t ′
+ ∂a

∂t ′
δS

]
δt + · · ·
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≈ 1

2

δt

δS2
b2 + 1

2

δt

δS2

[
a − ∂b2

∂S′

]
δS

+ 1

2

[
1

2

∂2b2

∂S′2 − δt

δS2

∂b2

∂t ′
− ∂a

∂S′

]
δt

where in the last step, the terms are written in increasing order and those of
order ∼ δSδt or smaller are neglected. Analogously we obtain

δp−(S ′ + δS, t ′ − δt) ≈ 1

2

δt

δS2
b2 − 1

2

δt

δS2

[
a − ∂b2

∂S ′

]
δS

+ 1

2

[
1

2

∂2b2

∂S ′2 − δt

δS2

∂b2

∂t ′ − ∂a

∂S ′

]
δt ,

and finally, for the probability of remaining at S ′:

δp0(S
′, t ′ − δt) ≈ δp0(S

′, t ′) − ∂δp0

∂t ′
δt + · · · ≈ 1 − δt

δS2
b2 + δt

δS2

∂b2

∂t ′
δt .

These expansions substituted in Eq. 2.36 give

p ≈
[
p − ∂p

∂S′ δS + 1

2

∂2p

∂S′2 δS2 − ∂p

∂t ′
δt

]

×
(

1

2

δt

δS2
b2 + 1

2

δt

δS2

[
a − ∂b2

∂S′

]
δS + 1

2

[
1

2

∂2b2

∂S′2 − δt

δS2

∂b2

∂t ′
− ∂a

∂S′

]
δt

)

+
[
p − ∂p

∂t ′
δt

](
1 − δt

δS2
b2 + δt

δS2

∂b2

∂t ′
δt

)

+
[
p + ∂p

∂S′ δS + 1

2

∂2p

∂S′2 δS2 − ∂p

∂t ′
δt

]

×
(

1

2

δt

δS2
b2 − 1

2

δt

δS2

[
a − ∂b2

∂S′

]
δS + 1

2

[
1

2

∂2b2

∂S′2 − δt

δS2

∂b2

∂t ′
− ∂a

∂S′

]
δt

)

where all values appearing in the equation are evaluated at (S ′, t ′). Taking the
product and neglecting all terms of order ∼ δSδt or smaller, we obtain, in
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linear order of δt :

p ≈ p + pδt

(
1

2

∂2b2

∂S ′2 − ∂a

∂S ′

)
− ∂p

∂S ′ δS
δt

δS2

[
a − ∂b2

∂S ′

]
δS

+ 1

2

∂2p

∂S ′2 δS2 δt

δS2
b2 − ∂p

∂t ′ δt .

This immediately yields the forward equation:

0 = 1

2

∂2p

∂S ′2 b2 + p(
1

2

∂2b2

∂S ′2 − ∂a

∂S ′ ) − ∂p

∂S ′ (a − ∂b2

∂S ′ ) − ∂p

∂t ′

0 = 1

2

∂2p

∂S ′2 b2 + ∂p

∂S ′
∂b2

∂S ′ + 1

2
p

∂2b2

∂S ′2 − p
∂a

∂S ′ − ∂p

∂S ′ a − ∂p

∂t ′

0 = 1

2

∂2

∂S ′2 (b2p) − ∂

∂S ′ (a p) − ∂p

∂t ′ .

The derivation of the backward equation is analogous but requires consider-
ably less effort: since the variable in a trinomial tree has only three possibilities
to travel from a point S ′ at time t ′ over the next time step δt , the probability
that the variable will be equal to S ′ at time t ′ is equal to the sum of the
probabilities that it will travel to either S ′ + δS, S ′ − δS or S ′ under the
condition that it started at S at time t , see Fig. 2.7.

t′ t′ + δt

S ′ − δS

S ′ + δS

S ′

Fig. 2.7 The trinomial tree used to derive the backward equation
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Thus we can state

p(S ′, t ′ |S, t ) = p(S ′ + δS, t ′ + δt |S, t )δp+(S ′, t ′)

+ p(S ′, t ′ + δt |S, t )δp0(S
′, t ′)

+ p(S ′ − δS, t ′ + δt |S, t )δp−(S ′, t ′) .

This equation means in words: the probability of being S ′ at time t ′ equals

• the probability of being S ′+δS at time t ′+δt multiplied by the probability
of having made an “up move” in the time interval from t ′ bis t ′ + δt ,

• plus the probability of being S ′ − δS at time t ′ + δt multiplied by the
probability of having made a “down move” in the time interval from t ′ to
t ′ + δt

• plus the probability of being S ′ at time t ′+δt multiplied by the probability
of having made a “null move” in the time interval from t ′ to t ′ + δt .

We can now see immediately that the backward equation is more easily
derived than its counterpart since the probabilities δp are needed at the
point (S ′, t ′), and consequently, a Taylor series expansion about this point
is unnecessary. We only need the Taylor series expansion of p given by

p =
[
p + ∂p

∂S ′ δS + 1

2

∂2p

∂S ′2 δS2 + ∂p

∂t ′δt
]

1

2

δt

δS2

[
b2 + aδS

]

+
[
p + ∂p

∂t ′ δt
][

1 − δt

δS2
b2

]

+
[
p − ∂p

∂S ′ δS + 1

2

∂2p

∂S ′2 δS2 + ∂p

∂t ′ δt
]

1

2

δt

δS2

[
b2 − aδS

]
.

All terms appearing in the above expression are evaluated at the point (S ′, t ′).
Taking the products and neglecting all terms of order∼ δSδt or smaller gives,
in linear order of δt ,

p = p + ∂p

∂S′ δS
δt

δS2
aδS + 1

2

∂2p

∂S′2 δS2 δt

δS2
b2 + ∂p

∂t ′
δt .

Which, after rearranging the terms, immediately yields the backward equa-
tion 2.35.
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2.4.4 Forward and Backward Equation
in the Black-Scholes World

We consider the simple example of the process given by Eq. 2.24, namely
dS(t) = S(t)μ̃ dt + S(t)σdW , i.e., we simply have

a(S ′, t ′) = S ′μ̃

b(S ′, t ′) = S ′σ .

This process, or its equivalent 2.17, is, as has been shown above, the simplest
process of relevance in mathematical finance. Reasonable and often even
analytical expressions for the prices of financial instruments can be obtained
by solving these equations. For example, we will later show that such processes
form the basis for the famous Black-Scholes option pricing formula. We thus
speak of the Black-Scholes world when referring to the description of market
parameters using such processes. With these assumptions, the backward
equation becomes

∂p

∂t
+ 1

2
σ 2S2 ∂2p

∂S2
+ μ̃S

∂p

∂S
= 0 ,

and likewise the forward equation is simply17

∂p

∂t ′
− σ 2

2
S′2 ∂2p

∂S′2 +
[
μ̃ − σ 2

]
S′ ∂p

∂S′ +
[
μ̃ − σ 2

]
p = 0 .

17The derivation of this equation is a simple application of the product rule:

∂p

∂t ′
− 1

2

∂2

∂S′2
[
S′2σ 2p

]
+ ∂

∂S′
[
S′μ̃ p

] = 0

∂p

∂t ′
− σ 2

2

∂

∂S′

[
2S′p + S′2 ∂p

∂S′

]
+ μ̃

[
p + S′ ∂p

∂S′

]
= 0

∂p

∂t ′
− σ 2

2

[
2p + 2S′ ∂p

∂S′ + S′2 ∂2p

∂S′2

]
+ μ̃

[
p + S′ ∂p

∂S′

]
= 0 .
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The solution to this differential equation with the above initial condition
p(S ′, t | S, t ) = δ(S ′ − S) provides an explicit example for a transition
probability:

p(S′, t ′ | S, t ) = 1

S′√2πσ 2(t ′ − t)
exp

{
− [

ln(S′/S) − (μ̃ − σ 2/2)(t ′ − t)
]2

2σ 2(t ′ − t)

}

.

(2.38)

The corresponding equation and its solution for the equivalent process 2.23
can of course be found by simply making the substitution μ̃ = μ + σ 2/2 in
accordance with 2.26.



3
Financial Instruments: A System
of Derivatives and Underlyings

As mentioned in the introduction, trading can be defined as an agreement
between two parties in which one of the two consciously accepts a financial
risk in return for the receipt of a specified payment or at least the expectation
of such a payment at same future time from the counterparty. Financial
instruments, also called financial products, are instruments which make such
a risk mitigation by risk transfer possible. The purpose of this section is to
present a classification of such instruments in a system of underlyings and
derivatives, with a special focus on interest rate instruments, with their broad
variety of complex structures. However, instruments on other risk factors, e.g.
equity prices or foreign exchange (FX) rates, can be classified in amostly similar
manner.Otherwise, the particular differenceswill bementioned explicitly. The
classification of financial instruments and transactions will be based on criteria
like term to maturity, optionality, or risk structure.

3.1 Issuer and Counterparties

An institution in need of capital may decide instead of negotiating a debt
contract with its bank to sell securities to the public. Such securities are often
tradable or fungible. In the following, we will use the term security for any such
tradable assets, regardless of the concrete legal definition.

In this case, the creditor, who bought the securities, may decide and any
time to sell them (in full or partially) a third party. This transaction would
include three parties: the buyer, the debtor or issuer of the security, and the
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seller or original creditor. The buyer and seller are the two counterparties of the
transaction. For over-the-counter orOTC trades, both parties of the transaction
negotiate directly the conditions of the transaction. This is in contrast to
exchange traded contracts, where the conditions are defined by the exchange,
who is an intermediary between buyer and seller of the contract. Therefore,
exchange traded products are more standardized. If an institution decides to
sell a financial product via an exchange instead of OTC, the financial product
needs to be securitized, i.e. turned into a security of which the institution
becomes the issuer. This require to fulfill some additional requirements,
however.

The further classification of financial transactions differentiates the term
until the transaction can be considered as closed (difference between spot
trades and non-spot trades like forwards, futures, swaps, and options) and
the term, until all risks involved in this transaction terminate (e.g., difference
between money market and capital market). In general, both time horizons
differ, e.g. in the case of spot transaction of a long term security.

3.2 Spot Transactions

In the spot market, transactions take place in which financial instruments
are immediately (more precisely, as of the current value date or spot date)
exchanged and paid for. Selling or buying a security at spot day is a spot
transaction, regardless of the complexity or term to maturity of the underlying
security, which could be a share, bond or even a securitized credit portfolio (e.g.
an Asset Backed Security or ABS).

Foreign exchange transaction are denoted as FX spot trade is a, exchanging
an amount of money in one currency against an amount in another currency
of equal value at spot day, given the current foreign exchange rate. E.g.,
counterparty A pays to counterparty B the amount of €100 and gets in
exchange from counterparty B the amount 135$.

In the FX and money market, it is quite common to trade at even shorter
maturities, i.e. settlement day is before spot day, to invest or borrow money in
home or foreign currency for just one day (or more accurate: one night). E.g.,
for an over-night deposit or o/n deposit, counterparty A would pay an amount
N at the trading day and gets back one business day later the same amount
N plus interest for one day Ronτon from his counterparty B. Here, Ron is the
o/n-interest rate and τon the timeperiod until the next business day, usually one
day, over weekends, it could be 3 calendar days, measured in years. Similar, a
tomorrow-next deposit or t/n deposit starts on the next business day and ends
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one business day later (usually spot day). These instruments are used to roll
over liquidity cash positions from one day to the next and still earning interest
on these cash amounts. Cash positions in foreign currencies are rolled forward
in much the same way by means of FX swaps (see next section).

3.3 Forward Transactions

Derivative securities, or short derivatives, can be divided into conditional and
unconditional forward transactions. A conditional forward transaction grants
one party of the contract certain rights whereas the other party assumes certain
obligations. In contrast, an unconditional forward transaction is an agreement
that is binding on both parties. Warrants, options, and instruments similar to
them, e.g., caps and floors, can be classified as conditional derivatives. Futures
and forwards, on the other hand, are assigned to the unconditional derivatives.

3.3.1 Forward Rate Agreements and Forwards

Forward rate agreements (abbreviated FRAs) are the oldest and thus probably
the most simple interest rate instruments. A forward rate agreement is an
agreement between to parties to lend or borrow short-term money at a fixed
rate of interest at some time (usually a few months) in the future. The agreed
upon fixed rate is referred to as the FRA rate or forward rate.

If the reference interest rate, e.g., EURIBOR, exceeds the agreed FRA rate
at maturity, the buyer realizes a profit and receives a cash settlement payment
from the seller. However, if the reference rate at maturity is lower, the buyer
suffers a loss and compensates the seller (in form of a cash settlement). It
follows that the buyer pays the FRA rate and receives in return the current
interest rate from the seller.

A FRA is usually purchased in combination with a loan or other credit
obligation. The buyer of a FRA protects herself against rising interest rates. If
the reference interest rate (for example, the EURIBOR) at maturity lies above
the FRA rate, the buyer makes a profit (which can be used to compensate for
the higher interest rate on the loan). If the reference rate lies below the FRA
rate, the buyer takes a loss (but on the other hand has to pay lower interest on
the loan).

Conversely, the seller of a FRA protects him or herself against falling interest
rates. He or she could for instance sell a FRA to lock in (at least for the FRA
period) a certain interest yield on a floating rate investment. If the reference
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rate (e.g., EURIBOR) at the FRA’s maturity is lower than the FRA rate, the
seller receives a cash settlement which can be used to increase the (then low)
yield from the investment. If the EURIBOR at FRA maturity is higher than
the FRA rate, the seller has to pay a cash settlement (but then will have a high
yield from his investment).

If the reference rate at the fixing time is equal to the FRA rate, neither
a profit nor a loss is realized. Two additional factors should be taken into
account with respect to FRAs. Both parties of the contract face a counterparty
credit risk (credit default risk). This is because depending on the interest rate
level at maturity of the FRA, either party receives or is obliged to make a cash
settlement payment. The second aspect is that no liquid funds are exchanged
at the transaction or during the life of the contract. Only at maturity of the
FRA will the contract be settled if the current interest rate does not equal the
FRA rate.

If the underlying in the contract is not an interest rate (e.g., LIBOR,
EURIBOR) but a fixed rate security (for example, a government obligation,
government bond, mortgage bond, promissory note, etc.) then such a forward
transaction is simply referred to as a forward. An FX forward or FX outright
is an exchange of cash flows in different currencies, which differs from a FX
spot transaction only by the fact, that the settlement date is not equal to, but
later than the spot date. In the inter-banking-market, the most liquidly traded
type of FX forward transactions are FX swaps, which is a combination of a FX
spot and a FX outright. We will have a closer look at these FX transactions in
Sect. 16.2.

3.3.2 Financial Futures

Although commodity futures have been traded on organized exchanges since
1860, financial futures are a rather recent addition to the market. In the US,
active trading in commodity futures began at the beginning of the nineteenth
century. It was no coincidence that the Chicago Board of Trade (CBOT ) was
founded as early as 1848; this was where wheat contracts were first traded.
In the course of the following years, additional commodity exchanges were
founded, for example in New York and London.

Trade in financial forward transactions is relatively recent; trading in these
instruments commenced in Chicago in 1972 on the International Monetary
Market (IMM ). The first transactions were concluded for foreign currencies.
In Germany, futures have been traded since the establishment of the Deutsche
Terminbörse (DTB, now called the EUREX ) in 1990.
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The basic idea behind futures is identical to that of forward rate agreements
and forwards. Futures are a further development in forward transactions,
which go back as far as the seventeenth century. Hence, futures have the
same payoff profile as forwards. The essential difference between forwards
and futures is that contract elements are not individually negotiated. A
future is a standardized forward transaction. The underlying security, the
volume, the time of settlement, and other payment and delivery conditions
are standardized and are set by the exchange (for example, EUREX, LIFFE).
Futures are usually not exercised but closed out prior to maturity by entering
into a trade opposite to the original one.

Similar to forward transactions, both parties to a futures contract take on
a counterparty risk. The counterparty risk in the case of futures, however, is
lower by orders of magnitude; it is in fact negligible. Futures markets have
developed two mechanisms for the elimination of counterparty risk. The first
involves the settlement of a potential payment not at maturity but daily. If,
for example, the forward price of the futures underlying increases, the holder
of a futures contract makes a profit. For a forward transaction, the profit in
the form of a settlement payment cannot be realized until the maturity of the
forward transaction, i.e., at the end of the forward’s lifetime. For futures, in
contrast, the profit is credited directly to a so-called margin account on a daily
basis. Similarly, in the case of a loss, the corresponding amount is debited
from the account. In the language of the futures market, these daily profit
and loss payments are referred to as daily settlement. The daily sum credited or
debited to the margin account is called the variation margin. Since the time to
repayment is reduced to one day by the daily settlement, the counterparty risk
is accordingly smaller.

In addition to the variation margin, a second mechanism reducing the
counterparty risk is the risk-basedmarginwhich everymarket participant has to
set aside. These are securities which must be set aside by the investors to cover
potential settlement risk. Clear rules establish the amount of margin required
by each exchange. These rules are based on price fluctuations associated with
futures. For example, the EUREX requests payment of a so-called additional
margin (originally called the initial margin) for every Bund future contract
(contract size of 100,000 euros) entered into, to guarantee the ability to make
any settlement payments later on. If the value of the contract increases in the
course of a business day, the profit is credited to the margin account. On
the other hand, if the value of the contract falls, the loss is charged to the
account. Should the margin account balance fall below the additional margin,
the market participant must deposit additional funds to ensure the minimum
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level of the additional margin. This subsequent payment request is referred to
as a margin call. If the market participant fails to meet this obligation, his or
her position is perforce closed out. These two precautionary measures serve to
further reduce the counterparty risk.

There is another difference between forward transactions and futures.While
two parties close a contract directly with one another in the case of a forward,
the exchange plays the role of a clearing house for futures and guarantees the
settlement of the contract. The market participant thus need not estimate the
counterparty risk of an arbitrary trading partner but solely that represented by
the exchange itself. The counterparty risk is thus transferred to the exchange.

A further advantage of futures lies in their liquidity (market depth) in the
markets. The standardization results in a concentration on trading in only a
few instruments. This high liquidity leads to a lower demand-dependent price
fluctuations and to lower transaction costs.

The very low credit default risk of exchanges is the primary reason why
regulators enforce market participants to transfer standardized OTC trades
to central counterparties or short CCPs, as set by the European Market Infras-
tructure Regulation or EMIR. E.g., (see Sect. 3.3.3) fall already under this
regulation. CCPs reduce credit default risks by similar means as an exchange,
but do not originate the trades. Market participants may settle their trades
directly (as direct member of a CCP) or through other direct members via a
CCP. The effective reduction of the number of counterparty increases further
the netting efficiency, i.e. the netting of future payments to be sold or received
from various transactions) , since a larger part of the portfolio is settled with a
single counterparty.

3.3.3 Swaps

A plain vanilla swap is an agreement in which two parties agree to exchange a
series of fixed interest payments for a series of floating interest payments.While
the fixed leg of the swap has the character of a fixed rate bond, the floating
leg refers to a variable, short-term interest rate (the 6-month EURIBOR for
instance) which is “fixed” at some agreed upon future dates.

Thus, swaps combine two portfolios (the legs) and the interest is usually
earned on the same nominal principal for both legs. However, different
compounding and payment conventions might be specified. A standard or
plain vanilla swap consists of series of coupon payments, called the coupon
strip in exchange for a series of EURIBOR payments, the EURIBOR strip.
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For a plain vanilla swap in EUR, both strips have the same maturity but
may roll over at different dates. Typically, the fixed leg pays interest annually
in accordance with the 30/360 compounding convention. The floating leg,
in contrast, pays semi-annually and the Act/360 compounding convention is
used. TheTARGETholiday calendar is used to determine bank holidays. Swaps
and their most important variants will be discussed in Sect. 15.7ff in more
detail.

3.4 Options

With FRAs, forwards, futures and swaps, both parties enter into a contractual
obligation. All agreed upon payments will have to be paid (as long as no
party defaults before maturity), though the payment amount may vary with
the interest rate level. In contrast to this, the buyer of an option obtains a
right. Options furnish the buyer with a claim to payment or delivery which is
conditional on market events and terms agreed upon in advance. The buyer
of the option then has the choice of exercising this right or allowing it to
expire without exercise. The buyer will only do exercise if this would be to his
advantage. If exercising has a doubtless and evident advantage to the buyer,
he might have to notify the option seller explicitly to exercise the option, if
exercise is evidently and obviously to the advantage of the buyer, the option
could also be automatically exercised. depending on the contract. The seller
of the option always has an obligation.

Options are divided into two basic types: options to buy and options to sell,
referred to as calls and puts, respectively.

Options which are traded on an exchange are called exchange traded options.
On the EUREX, for example, options on stocks, the DAX index, the Bobl
future, and the Bund future are traded.

In addition to options traded on the various exchanges, individually
designed options, called OTC-options (OTC is an abbreviation for over the
counter), are traded directly between financial institutions and corporations
rather than on an exchange. All the features of an OTC option can be freely
specified between the counterparties, independent of the standardization
required for options traded on an exchange. Options or option rights can also
be embedded in other instruments. These options are referred to as embedded
options or embeddos. The most common types are warrant bonds, which are
composed of straight bonds and attached warrants. Shortly after issue the
warrants are usually detached from the bonds and traded independently as
securities, viz. as warrants. Additionally, there exist securities with attached
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rights that resemble options. In these instruments, the attached rights also
exhibit option-like properties. In this case, however, these cannot be detached
from the underlying security. Examples are callable and putable bonds.

Generally speaking, an option is an agreement between two contract parties
in which the seller guarantees the buyer the right to buy (call) or sell (put) an
underlying at a previously agreed upon price either within a certain time period
(American option) or on a certain date (European option). The seller of the
option, guarantees this right in exchange for payment of a certain cash amount
called the option premium. The price for which the underlying is to be bought
or sold is called the strike or strike price. The date up to which (American
options) or on which (European options) the option may be exercised by the
buyer is called the maturity date.

An option is said to be at the money when its strike is equal to the current
underlying price. If the current underlying price is such that the option holder
would make money by exercising the option now, then the option is said to be
in the money. If the current underlying price is such that the holder would not
make money by exercising the option now, then the option is said to be out of
the money.

Sometimes there is confusion among investors about the expressions put
and call. For stocks, a long position in calls wagers on an increase in the
stock price, whereas the holder of a long put position hopes for a decline in
the stock price. For interest rate instruments, the situation is somewhat more
complicated. For example: A bank has issued a floater and wishes to hedge itself
against rising short-term rates (6-month EURIBOR). One possibility would
be to take a long position in a call on the 6-month EURIBOR. The higher
the 6-month EURIBOR increases, the more valuable the call. The underlying
is the interest rate. The same hedging result is obtained when taking a long
position in puts on an interest rate instrument (for example, on the 3-month
EUR future). The future loses value if short-term rates rise. The further the
price of the future falls the higher the value of the put on the future). The
underlying of the put is the future and not the interest rate. The desired result
is attained by both strategies: the bank accomplishes the hedge against rising
short-term rates since it can compensate for the higher interest rates it has
to pay for the floater through the profits resulting from the long call on the
6-month EURIBOR or the long put on the 3-month Euro future.

A cap is an agreement between the seller of the cap and the buyer according
to which the seller pays the buyer the difference in the interest earned on a
nominal with respect to a reference rate (e.g., a floating market rate such as
EURIBOR) and that earned on an agreed upon fixed strike rate, should this
fixed rate be exceeded by the reference rate. Different modes of payment are
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used in practice: in some cases, the discounted payoff is made at the maturity
of the option (“early”), otherwise, payment is made upon maturity of the
respective EURIBOR period (“standard”). Viewed analytically, a cap can be
interpreted as a series (portfolio) of European call options on a reference rate
with various maturities. The buyer of a cap (long cap) profits from an increase
in interest rates. Caps are employed primarily to hedge against interest rate risk
arising in consequence of variable financing (floaters, for instance). They can
also be used when speculating on rising interest rates. Moreover, variations in
the term structure effect a corresponding change in the value of the option.
Floors are the counterpart of a cap. While caps limit a floating rate from

above, the floor limits them from below (lower interest rate limit). A floor
is an agreement between the seller of the floor (short floor) and the buyer
(long floor) in which the seller pays the buyer the difference in interest on a
nominal calculated with respect to a floating market rate (for example, the 6-
month EURIBOR) and a fixed strike rate established in the floor, should the
market rate fall below this fixed rate. Floors are employed in hedging against
risks involved in floating rate investments (such as floating rate notes). From
the analytical point of view, a floor can be interpreted as a series (a portfolio)
of European put options on the reference market rate with various maturities.
Collars are a combination of caps and floors. The purchase of a collar (long

collar) corresponds to simultaneously buying a cap (long cap) and selling a
floor (short floor) where the strike of the floor is lower than that of the cap.
With the purchase of a collar, the buyer obtains the right to receive a settlement
payment from the seller should the reference rate exceed the cap rate, must
however make payment to the seller should the reference rate sink below the
floor rate. In this way, the buyer of a collar ensures that for him the interest
rate effectively stays within a specified range whose upper and lower limits are
established by the cap and floor rates, respectively. The purpose of a collar is
to reduce the costs of the cap involved. The long position in the collar receives
a premium through the short floor position which lowers the price of the long
cap position. However, an investor can then only profit from falling interest
rates up to the lower interest rate limit of the collar.
Swaptions are interest rate instruments having a swap as an underlying.They

thus give the holder the right to enter into the underlying swap. The strike of
the swap is quoted in the form of the specified swap rate.1 Both “cash” and
“swap” are typical as modes of settlement; upon exercise of the swap, either a

1Swap rates should not be mixed up with swap points, which is the difference between the FX forward
rate and the FX spot rate.
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cash payment is made in settlement or the underlying swap is actually entered
into.

In Part III, the structure and function of these and other financial instru-
ments will be discussed in far greater detail. Perhaps the most important
point in understanding financial instruments is their valuation and in this
connection, the concept of hedging. Hence, the most important methods
of pricing and hedging will be introduced in the following Part II before
we subsequently apply them to today’s most common financial products in
Part III.

3.5 Classification of Fixed Income Securities

The main characteristics of interest rate instruments is that they can be
represented as a right to one or several payments (cash flows) which may be
either fixed or variable and will occur at some future dates. The amount of
these cash flows is determined from the length of the respective interest periods
and the associated interest rates quoted according to the convention particular
to the market under consideration. The following parameters may be used
to define the cash flow structure of an instrument, in particular, to establish
the times on which payments are to be made: valuation date, rollover date,
maturity date, payment date, reset or fixing date, frequency of the coupon
payments per year (e.g., 1, 3, 6 and 12 months), over-long or partial first or
final period, number of interest periods, conventions (day count conventions,
business day conventions, etc.).

We differentiate between the start of an interest period, the maturity of the
interest period and the payment date. The start of the interest period is the
date upon which interest begins to accumulate. The maturity is the date on
which interest stops accumulating, in other words, it is the end of the interest
period. The payment date is the date on which the payment is actually made.

The rollover date is the date on which the current interest period ends and
the next begins. Knowledge of the rollover date is quite important since it
specifies the first date as seen from today after which regular cash flows occur
with a specified frequency. The interest, accrued over the full term of the
interest period, is paid at the payment date. Payments dates are either identical
to the period end date or are delayed by a few days, e.g. by one or two business
days after period end date. Payment dates need to be adjusted according to
the specified business day rules, since they must not fall on a bank holiday,
to enable the bank to settle the payment on the payment day. Start and end
date may also be adjusted, but this is not a requirement. As an alternative to
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the specification of the roll date, every start, end and payment date might be
specified explicitly, e.g. if interest periods are irregular.

Fixed Income instruments are differentiated by the term to maturity, where
instruments with a term to maturity of less than 2 years belong to the
money market and instruments with longer terms to the capital market. If the
instrument is a security, they are calledmoney market security or capital market
security.

3.5.1 Money Market Securities

In contrast to the capital market, where securities with terms of up to 30 years
or more are traded, the moneymarket encompasses all short-term instruments,
with terms (i.e., times to maturity) of up to one year. Occasionally, instruments
with terms of up to two years are referred to as money market instruments.
The money market itself can be divided into two categories, depending on
whether or not the money market instrument pays regular interest. Figure 3.1
shows examples of commonly traded money market instruments.

Tradable

Spot Money Market
Short-Term Investments and Loans

Not Tradable

Discount Papers

Treasury Bills

BTF
Bon du Tresor a Taux Fixe

Finanzierungsschätze
Financing Treasury Bills

Coupon Papers

Certificates of Deposit

Floating Rate Notes

Bonds With Term < 1 Year

Commercial Papers

Not Tradable

Fixed-Term Deposit

Banker‘s Acceptance

Time Deposit

Tradable

Fig. 3.1 Examples of common money market instruments
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Discount Papers

Papers which are traded at a discount of their nominal value and do not
regularly pay interest are referred to as discount papers. The interest rate at issue
is determined by the difference between the issue price and the nominal value.
The buyer pays the current price equal to the nominal less the discount and
receives the entire nominal at maturity in return. Typical examples of discount
papers are treasury bills and commercial papers in the US or the UK or BTFs
(bons du Tresor a taux fixe) in France.

Commercial papers, or CPs for short, are short-term, unsecured, tradable
obligations issued by banks and corporations. In Germany, commercial papers
can be issued with terms ranging from seven days up to two years. A
commercial paper program represents the general framework for an agreement
between the issuer and the banks appointed to place the paper. It gives the
issuer the right but not the obligation to issue short-term papers into the
market at any time. Such a program has the character of a continual emission
since the CP can be issued at various times in various amounts over a longer
period of time. The terms of commercial papers have an upper limit of two
years and are closely related to the so-calledmedium-term note program under
which partial obligations with a term of at least two years are issued. The
commercial paper program fills the gap to the medium-term note program.

Interest Bearing Securities

Papers having one or more regular interest payments are referred to as interest
bearing securities or coupon bearing securities. They are issued at face value.
Certificates of deposit, floating rate notes, reverse floaters and short-term capital
market papers are included in this category.

Certificates of deposit (CD), are tradable money market papers issued by
banks having a term between 30 days and 4 years. Essentially, CDs are
securitized time deposits in banks.

Floating rate notes (also called floaters or FRNs) are bonds whose interest
payments vary depending on a current market rate. The interest rates are
regularly adjusted to a reference rate (for example, the LIBOR or EURIBOR),
in general, to a money market rate. Hence, floaters, despite often having longer
terms are also assigned to the category of money market papers. As opposed to
other floaters (reverse floaters, for example), these normal floaters are referred
to as plain vanilla. Plain vanilla is an American term for simple papers without
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any particular attributes such as options or convertibility rights. These simple
floaters are to be considered as floating rate notes in their most basic form.

The most important difference between a floater and a fixed rate instrument
is the nominal interest rate. While for a fixed rate paper, the nominal interest
rate is fixed over the entire lifetime of the paper, the nominal rate of the
floater fluctuates. The nominal interest rate changes according to the current
level of the reference market rate; a decrease in short-term rates results in a
corresponding decline in the interest yield of a floater. Investors expecting a
decline in money market rates will therefore usually close out their positions
in plain vanilla floaters.

Amore complex variant of plain vanilla floaters are reverse floater, sometimes
referred to as bull floating rate notes. Like plain vanilla floaters, reverse floaters
are papers paying interest at a variable rate, depending on the level of the
current money market rate. Also like normal floaters, the interest is paid in
regular intervals, e.g., every six months. However, while the interest yields of
a plain vanilla floater increases with rising money market rates, the opposite is
true of the reverse floater (hence the name). For a reverse floater, the current
money market rate is subtracted from a fixed base rate.

Long-term papers on the capital market such as federal bonds and obliga-
tions, mortgage bonds, jumbo bonds and municipal bonds are indeed issued
with longer terms than money market papers. However, the residual time to
maturity naturally decreases constantly with the passing of time. Therefore,
these papers, initially designated as capital market papers, are comparable with
money market papers in the last year of their lifetime.

Time and Notice Deposits

The name time deposit signifies a deposit at a bank which is invested for a
certain time (fixed deposits) or with an agreed upon term of notice (deposits
at notice). Fixed deposits are deposits at a bank or savings institution with
individual, fixed and unalterable maturities, amounts and interest rates, all
agreed upon in advance. The conditions depend on current interest rates as
well as the term of the deposit. The amount deposited also plays a deciding
role; usually, the more invested, the higher the interest paid.

Investors gain somewhat more flexibility in comparison to fixed deposits by
placing their savings in deposits at notice. For these deposits, a period is agreed
upon which the investor must give notice in advance if he or she wants to
withdraw the invested funds. Withdrawal notice can be one day, 48 hours,
seven days or even three months. In comparison to fixed deposits, deposits at
notice play a subordinate role.
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Trading Conventions for Money Market Instruments

Similar to papers sold on the capital markets, the yields of money market
papers are quoted publicly. Yields are always per year, in other words, they are
annualized. However, different conventions for calculating yields are observed
on the different international markets, as was illustrated in Sect. 2.1. The
annualized yields are influenced by the day count convention and compound-
ing method used. The day count conventions vary in the calculation of the
number of days per year as well as the days of the month. The usual day
count convention in the money market is the Act/360 convention. Examples
of instruments whose interest is calculated in accordance with this day count
convention are commercial papers, treasury bills and floating rate notes in the
US. In Germany, quotes have been published in accordance to this convention
since July 1, 1990 for inter-bank trading. Act/360 is employed elsewhere
in Europe as well. Floaters are also calculated employing this method. The
method Act/360 is also referred to as the international or French method. It is
frequently called the euro interest convention as well. Alternatively, Act/365 is
used in several markets. Sterling commercial papers, for instance, are quoted in
accordance with this method; it is sometimes referred to as the Englishmethod.

In addition, the 30/360 convention was employed in particular in trading
bonds and obligations; with the introduction of the euro, it was phased out
and replaced with the Act/Act or ICMA convention. The 30/360 convention
assumes that each year has 360 days, each month 30 days. The 30/360
convention is also referred to as the German method. The Act/Act method
calculates with the actual number of days of the month and year. In Germany,
the 30/360 convention is still applied, in particular for mortgage bonds
issued before 1999. Some existing issues have already changed over to the
Act/Act convention (for example, all government bonds and all jumbo bonds)
New issues in the euro zone are computed in accordance with the Act/Act
convention.

If yields are determined for money market instruments which pay interest
several times within a single year (or in its lifetime if this happens to be less than
one year in duration), a conversion into an annual yield (annualization) can be
accomplished with or without compounding interest effects. Yields which do not
take compounded effects into consideration (linear and simple compounding)
are referred to as nominal yields or nominal rates. These methods of computing
yields predominate in most money markets. We already provided a detailed
description of the different compounding conventions in Sect. 2.1.
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Table 3.1 Some examples of international money market instruments

Yield Day Typical term
Instrument calculation count on issue

Treasury bill Discount rate Act/360 13, 26, 52 weeks
EURIBOR MMY Act/360 1, 2, 3,…,12 months
Commercial Paper USD (CP) Discount rate Act/360 7 days to 2 years
Commercial Paper GBP (CP) Discount rate Act/365 7 days to 2 years
Certificate of Deposit USD (CD) MMY Act/360 7 days to 1 year
Federal Financing Treasuries Discount rate Act/Act 1 or 2 years

On the international money markets, money market papers are traded in
accordance with linear (discount rate) or simple compounding (money market
yields).

Discount papers are generally traded on the basis of the discount rate
(DR). The discount rate is not a yield since, in contrast to a yield, it is not
calculated by reference to invested capital, but on the nominal principal of the
instrument. Examples of discount papers traded in foreignmarkets are treasury
bills in the United States

The money market yield (MMY ) or CD-equivalent yield is computed for
money market instruments having interest payments. An example is the cer-
tificate of Deposit (CD). Table 3.1 provides an overview of the most important
details of several money market instruments on the international money
markets.

3.5.2 Capital Market Securities

Capital market papers are long-term interest rate instruments with a term (time
to maturity) longer than one year. Papers with terms longer than 30 years
are available, for instance in Germany. Typically, however, such papers have
a term of ten years. The prices and yields of these long-term instruments are
computed with compounded interest. Figure 3.2 illustrates some examples of
common capital market papers.

Long-term interest rate instruments can also be divided into discount
instruments and coupon bearing securities. The only difference between long-
term to short-term interest rate instruments is that multiple interest payments
are involved, instead of only one for most money market instruments.
Zero coupon bonds (or zero bonds for short) are tradable interest instruments

which can be classified as discount securities. Like financing treasury notes,
zero bonds are interest instruments without regular interest payments. The
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Tradable

Capital Market
Long-Term Investments and Loans

Not Tradable

Discount Papers

Zero Bonds

Finanzierungsschätze
Financing Treasury Bonds

Coupon Papers

Government Notes

Government Bonds

Mortgage Bonds
Pfandbriefe

Not Tradable

Tradable

Bundesschatzbrief Typ B
Federal Bond Type B

Promissory Notes
Schuldscheindarlehen

Gilts
Gilt-Edged Securities

OATs
Obligations Assimilables du Tresor

Bundesschatzbrief Typ A
Federal Bond Type A

Fig. 3.2 Examples of common capital market securities

issue price is significantly lower than the redemption price. The difference
between both determines the yield to maturity. We can distinguish between
zeros issued with discount, which are issued well below par, e.g., at 60%, and
capital growth bonds, which are repaid well above par, e.g., 230%. Zero coupon
bonds with discount are issued most frequently.

The interest instruments introduced below are exclusively straight bonds
(one exception isBundesschatzbrief Typ B). Straight bonds are instruments with
the following features:

• Fixed coupon interest rate, which is constant during time to maturity
• Redemption at par (i.e., 100%)
• Fixed life span
• Payment of the full price at issue or purchase
• No embedded option rights
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Treasury notes (in Germany called Bundesschatzanweisungen) are securities
issued by the government with maturity periods of up to two years. Treasury
notes are fixed-rate coupon-bearing securities with 100% repayment at matu-
rity.Bundesobligationen (orBOBL for short) have times tomaturity of five years
and are also issued by the German government. The interest is paid annually
and redemption is also made at face value. Both instruments are medium-term
and therefore comparable to US Treasury notes.
Mortgage bonds and jumbo bonds are interest instruments issued bymortgage

banks and public sector banks used for refinancing mortgage loans. Public
mortgage bonds and municipal bonds are issued for financing tasks of public
institutions (cities, communities). Mortgage bonds and municipal bonds pay
annual interest and are repaid in full at maturity.

Government bonds are securities issued by the government with terms up to
30 years, annual interest payments and redemption at par. Examples of these
are the Bundesanleihen in Germany, US Treasury bonds in the United States or
the French OATs ( obligation assimilable du Trésor).
Schuldscheindarlehen in Germany are promissory notes or loans issued by

banks, states and the federal government which are not traded on an exchange.
A promissory loan is a transferable contract between the lender and borrower.
A promissory loan, from a legal point of view, does not fall into the category
of securities. The lifetime can be as long as 15 years.

On many international government bond markets the interest payment
is made semi-annually. This convention can be found especially in Anglo-
American bond markets. Table 3.2 gives an overview.

Table 3.2 Interest payment modes in international bond markets

National bond market Coupon frequency Yield computation

Australia Semi-annual Semi-annual yield
Belgium Annual Annual yield
Federal Republic of Germany Annual Annual yield
France Annual Annual yield
United Kingdom Semi-annual Semi-annual yield
Japan Semi-annual Simple yield-to-maturity
Italy Semi-annual Semi-annual yield
Canada Semi-annual Semi-annual yield
Netherlands Annual Annual yield
Austria Annual Annual yield
Sweden Annual Annual yield
Switzerland Annual Annual yield
Spain Annual Annual yield
United States Semi-annual Semi-annual yield



Part II
Methods



4
Overview of the Assumptions

To apply the common methods for pricing and risk management we need to
make assumptions which are necessary for the construction of the associated
models. A complete list of all model assumptions made in this book are
summarized here in order to provide an overview of the numerous conditions
and assumptions arising in the various methods. For each pricing and risk
managementmethod discussed in the following chapters, we will specify which
of these assumptions are needed for their application. Beforehand, it should
be noted that all these assumptions can at best approximate reality more or less
accurate and in times of a crisis often not even that.

1. Given identical costs and risks, investors always prefer the strategy earning
the greatest profit.
This is one of the fundamental motivations for trading.No one deliberately
forgoes a profit.

2. There are no arbitrage opportunities.
Should opportunities exist allowing a profit to be made without risk
and additional costs, they would be exploited by arbitrageurs until an
“equilibrium” is reestablished in the market in short term.

3. The markets have infinite liquidity.
Unlimited quantities of financial instruments are available for purchase
and sale at any time without affecting their price. As is indicated in its the
formulation, this assumption becomes increasingly questionable the more
illiquid the market for the instrument becomes. In practice, liquidity risks
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are reflected in broad bid/ask spreads. Thus, Assumption 5 usually implies
Assumption 3.

4. There is no counterparty risk.
The price of an instrument is solely a function of market parameters (prices
of the risk factors, underlyings, volatility) and is in no way dependent on the
instrument’s seller. This is a good approximation for products traded on an
exchange which also acts as a clearing house. This, of course, is not the case
when dealing with OTC transactions. The quantitative treatment of credit
and counterparty risks has in recent years rapidly developed. Nowadays, it
is market best practice to include default risk of derivatives in valuation and
risk management (see Chap. 20).

5. There is no “friction” in the market.
Market friction is a general term referring to all costs involved in trading.
These include transaction costs, bid/ask spreads, (opportunity) costs of
margins, taxes, etc. All such costs not belonging to the actual investment are
neglected. This is by no means a bad approximation for large institutions.

6. Continuous trading is possible.
This means that the time between two trades can be arbitrarily small
as can the differences in price and the number of instruments traded.
The assumption that trading can take place in arbitrarily short time
intervals is an approximation for the simple reason that no exchange is
always open for trade (weekends, bank holidays). Furthermore, infinitely
many adjustments in a continuous hedging strategy would cause infinitely
high transaction costs if Assumption 5 did not hold. This means that
Assumption 5must hold if Assumption 6 is to make sense. The assumption
that arbitrarily small price differences are possible can be problematic for
options which are well out of the money. For example, the smallest possible
price change of bond futures (“tick size”) usually is 0.01 which is small in
comparison to the futures quote, say 99.8. Therefore, the assumption of
continuously changing prices is good for futures. However, for an option
on the future which is far out of the money, a change in the futures price
by one tick can result in a change in the price of the option of 50% of its
value. Thus, such options do not have continuous price changes.

7. The logarithm of the relative price change of a risk factor is a random walk.
In light of Sect. 2.3, this implies that the price of a risk factor is lognormally
distributed.

8. Interest rates are not stochastic.
Intuitively, this means that the evolution of interest rates over time does
not involve a random component but is completely deterministic. In such
a world, future interest rates are known today.



4 Overview of the Assumptions 77

9. Interest rates are constant.
This means that future interest rates are not only known today, they have
today’s value as well. Interest rates do not change in the course of time.

10. The volatilities of risk factors are not stochastic.
Intuitively, this means that the volatilities as a function of time do not
involve a random component but are completely deterministic. Future
volatilities are known today.

11. The volatilities of risk factors are constant.
This means that future volatilities are not only known today, they have the
same value as today as well. Volatilities do not change in the course of time.

12. Dividend yields of risk factors are constant.
In many pricing models for derivatives on equities, the dividend (yield) of
an underlying is a parameter which is assumed to be constant throughout
the term of the derivative contract.

13. Correlations between the risk factors are not stochastic.
As with volatilities, the evolution of the correlations over time has no
random component. Future correlations are known today. As in the case of
volatilities, this is not often the case in reality.

14. Dividends are deterministic.
In reality, dividends depend on the p&l progression of the company and
the decision of the board of directors resp. the shareholder assembly and
will be fixed at least once a year. Regardless, most models assume that time
and amount of all future dividend payments are known in advance until
maturity of the derivative.



5
Present Value Methods, Yields
and Traditional Risk Measures

Present value methods determine the value of a financial instrument by
discounting all future cash flows resulting from the instrument. Applying this
method requires few assumptions. Only Assumptions 1, 2, 3, 4 and 5 from
Chap. 4 are necessary.

5.1 Present Value and Yield to Maturity

Suppose that between the time t and maturity T of a security, there are n dates
ti on which cash flows C(ti), i = 1, . . . , n are due. The present value V (t, T )

of a security1 is the sum of all future cash flows due between t and T , where
each cash flow C(ti) is discounted at the spot rate belonging to the maturity
ti of the corresponding cash flow:

V (t, T ) =
n∑

i=m+1

B(t, ti) C(ti) (5.1)

where

TE = t0 < t1 < · · · < tm−1 < tm︸ ︷︷ ︸
Past

≤ t < tm+1 < tm+2 < · · · < tn = T
︸ ︷︷ ︸

Future

.

1In this book, the value of a financial instruments will usually be denoted by V .
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Here, TE denotes the security’s date of issue. If all the cash flows are known,
the valuation of the security follows from the current discount factors for all
future payment days tm+1, tm+2, . . . tn. Whenever dealing with interest rate
instruments, we use the notation t0 = TE for the date of issue, tm for the
date of the last cash flow before the present value date t, and tn = T for the
maturity date. Consequently, all future cash flows will occur between times
tm+1 and tn while all past cash flows have occurred between times t0 and tm.

Since the reader may be unfamiliar with the general notation for the
discount factor used throughout this book, examples are provided in this
section expressing the present values and sensitivities explicitly for continuous
and discrete compounding. This is accomplished by substituting the general
expression for the discount factor with the expressions for the desired com-
pounding method found in Table 2.5. Substituting in Eq. 5.1 with continuous
compounding yields a present value of

V (t, T ) =
n∑

i=m+1

e−R(ti−t)C(ti) .

Likewise, for annual discrete compounding

V (t, T ) =
n∑

i=m+1

C(ti )

(1 + RA(t, ti ))
(ti−t)

=
n∑

i=m+1

BA (RA(t, ti ), t, ti ) C(ti ), with BA(v, t1, t2) ≡ 1

(1 + r)(t2−t1)
.

An important parameter of a bond is its yield to maturity, abbreviated by
YTM. This is the compounding rate obtained if the bond is held until maturity
while reinvesting all cash flows received immediately at the same rate, these also
being held until maturity. If the interest rate term structure were perfectly flat
until the bond matures (i.e., constant with yield R̄) this would be equal to the
yield to maturity.2 Thus, instead of discounting using the current zero coupon
bond yields, the cash flows can be discounted using the yield to maturity to
obtain the current present value, called the dirty price of the bond. Therefore,
R̄ is given implicitly by Eq. 5.1: if all future cash flows are discounted at the

2This is generally true if and only if both yields are represented using the same compounding method,
e.g. annual discrete compounding.
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same yield to maturity R̄, the resulting value must be equal to the current
present value of the security, i.e.

n∑

i=m+1

BA(R̄, t, ti) C(ti) =
n∑

i=m+1

B(t, ti) C(ti) . (5.2)

This establishes the relationship between the YTM of the instrument and
the current spot rates. In general, the yield to maturity cannot be calculated
analytically from this equation; R̄ must usually be computed using a numerical
iteration procedure.

The YTM can be interpreted as the average yield of a security until maturity,
but is not an appropriate measure for the performance of the security over a
term shorter than the term to maturity (this is already indicated by the name
“yield to maturity”!). If the intention is to sell the security before maturity, the
value at the future settle day as well as the YTM at that time will depend on
the future interest rate level and the future YTMwill differ from today’s YTM.

5.2 Internal Rate of Return and Net Present
Value

The internal rate of return (IRR), denoted by RE , is defined as the constant
annual compounding interest rate which, when applied to all (including past)
cash flows associated with an instrument or portfolio, makes the of the sum
of all these cash flows equal to zero. Here, past cash flows are compounded at
the internal rate of return while those in the future are discounted at the same
rate, thus

0 =
m∑

i=1

BA
−1(RE, ti, t)C(ti)︸ ︷︷ ︸

pas cash flows

+
n∑

i=m+1

BA(RE, t, ti)C(ti)︸ ︷︷ ︸
future cash flows

with t1 < · · · < tm ≤ t ≤ tm+1 < · · · < tn = T

where 1 ≤ m, m + 1 ≤ n . (5.3)

This implicit definition of the internal rate of return can be used to solve
for RE via a numerical iteration procedure. Neither spot rates nor present
values appear in the above condition, only the cash flows. For instruments
paying a floating rate, the cash flows are affected by the market, but for fixed



82 H.-P. Deutsch and M. W. Beinker

rate instruments, all cash flows are determined in advance and thus for such
instruments the internal rate of return is completely independent of the current
market. It is, however, influenced by the market situation at the time the
instrument was purchased since the purchase price C(t1) of the instrument
depends on the market situation and appears in the above equation (with a
negative sign since it is a payment).

Consider for example a simple bond with a term of 6.5 years paying an
annual rate of 6% on its nominal. Let’s assume that the bond paid its last
coupon 6 months previous to the present date and was purchased 2 months
ago for 102.5% (of its nominal value) plus the accrued interest for the four
months (in this example, 2%). All future cash flows (coupons and redemption
upon maturity) are incoming and thus positive. In this example, the internal
rate of return must be chosen so that the discounted future cash flows are equal
to the purchase payment compounded at the same rate.

The internal rate of return can be interpreted as the constant interest rate at
which the portfolio yield compounds the investments in the portfolio for the
life of the portfolio (i.e., from purchase to sale or to the due date of the last
cash flow).3

Starting from the above equation defining the internal rate of return, we
can define a further quantity, known as the net present value or NPV. The
NPV of an instrument is its current present value plus all the past cash flows
compounded at the internal rate of return:

NPV (t, T ) =
m∑

j=1

BRE
(tj , t)

−1C(tj)︸ ︷︷ ︸
Past Cash-Flows

+
n∑

j=m+1

BR(ti, t)C(ti)

︸ ︷︷ ︸
Present Value

where ti < · · · < tm ≤ t ≤ tm+1 < · · · < tn = T

and 1 ≤ m,m + 1 ≤ n (5.4)

The difference between this and Eq. 5.3 is that future cash flows are not
discounted at the IRR but at the spot rates and thus represent the present value.
According to Eq. 5.3, the sum of the past cash flows compounded at the IRR
is exactly the negative value of the sum of the future cash flows discounted at

3Often in definitions of the internal rate of return (and of the NPV) the future cash flows are discounted,
while the past cash flows are not compounded. This inconsistency makes a reasonable interpretation of the
NPV and IRR practically impossible. The definitions of NPV and IRR introduced here are more general
and accurate.
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the IRR. Thus, the NPV can be interpreted as the difference between the sum
of the future cash flows discounted at the IRR on the one hand and at the spot
rates on the other:

NPV (t, T ) =
n∑

i=m+1

[B(ti , t) − BA(RE, ti, t)] C(ti)

According to the definition of the YTM given in Eq. 5.2, the sum of future
cash flows discounted at the YTM instead of the spot rates also yields the
present value. Thus, if the YTM equals the IRR, the NPV will be zero:

The instrument’s internal rate of return equals its yield to maturity if and only if
the net present value is zero.

If the IRR is higher (lower) than the YTM, the instrument will have a
positive (negative) NPV.

In Table 5.1 (from the sheet IRR in the Excel workbook PlainVanilla.xlsx
on the accompanying web page), the YTM, IRR and NPV have been calcu-
lated for a portfolio. Only the cash flows for the portfolio are required. The
actual instruments generating these cash flows are irrelevant. In the column
“Discounted Using Spot Rate”, the future cash flows have been discounted at
the current spot rates. The sum of these values yields the present value of the
portfolio. In the column “Discounted Using YTM”, the future cash flows are
discounted at the YTM. In accordance with Eq. 5.2, the YTM was adjusted
until the sum of the discounted cash flows was equal to the present value
calculated using the current spot rates (we have utilized the Excel function
“Goal Seek” to make the field “PV Difference” equal zero). In the column
“Discounted/Compounded Using IRR” all cash flows were discounted or
compounded, respectively, at the IRR, adjusting the IRR until the sum of
all cash flows in this column equaled zero (see Eq. 5.3). Finally, the NPV was
determined according to Eq. 5.4 as the sum of the present value and the past
cash flows compounded at the IRR. This is the difference between the future
cash flows discounted at the IRR and YTM, respectively. The NPV is negative
and the IRR of the portfolio lies significantly under the current YTM.

The IRR and NPV are suitable for measuring the performance of a portfolio
(or a trader), but are by no means parameters relevant to valuation or risk
management. This is due to the fact that the past cash flows influence these
parameters. But the value of an instrument (and thus its risk resulting from a
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Table 5.1 Cash flow table of a portfolio

Yield curve Portfolio cash flows
Discounted Discounted Compounded/

Payment Time Spot Cash using spot using discounted
date 30E/360 rate flow rates YTM using IRR

31.10.99 −1,142 0
30.06.00 −0.642 −323,784 −333,439
31.12.00 −0.142 50,000 50,325
21.02.01 −189,774 −189,774
30.06.01 0.358 2.20% 50,000 49,612 48,769 49,186
31.12.01 0.861 3.20% 50,000 48,662 47,093 48,067
30.06.02 1.358 4.50% 60,000 56,518 54,590 56,382
31.12.02 1.861 5.50% 60,000 54,310 52,714 55,099
30.06.03 2.358 6.30% 60,000 51,949 50,922 53,858
31.12.03 2.861 7.10% 70,000 57,526 57,367 61,404
30.06.04 3.358 7.90% 70,000 54,225 55,417 60,022
31.12.04 3.861 8.50% 70,000 51,086 53,513 58,656
30.06.05 4.358 9.00% −15,000 −10,303 −11,077 −12,286
31.12.05 4.861 9.30% 0 0 0
30.06.06 5.358 9.50% 40,000 24,596 27,554 31,297
31.12.06 5.861 9.60% 0 0 0
30.06.07 6.358 9.70% 0 0 0
31.12.07 6.861 9.80% 30,000 15,796 18,614 21,912
30.06.08 7.358 9.90% −15,000 −7,489 −8,991 −10,709

Values as of YTM and IRR 7.20% 4.69%
21.02.01 Past cash flows −472,887

Future cash flows 446,487 446,487 472,887

potential change in its value) is independent of its history. The market price
of an instrument is completely independent of the past cash flows that may
have been generated by the instrument or portfolio previously. Since the risk
of an instrument is by definition a reflection of the potential future change in
the its price, the same argument holds for risk management.

For example, a single instrument could have different NPVs and IRRs, if a
trader bought the instrument in the past at a cheaper price than another trader
at the same time, or if two traders bought the same instrument at the same price
but on different dates. It is in fact quite unlikely that the same instrument in
different portfolios will have exactly the same NPV and IRR since for this to
happen, the instruments must be purchased at exactly the same time and price
(or the price difference must correspond exactly to compounding at the IRR
for the period between the differing purchase dates).
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5.3 Accrued Interest, Residual Debt and Par
Rates

The residual debt of an instrument is the amount of outstanding debt on which
interest must be paid, i.e., the open claims against the issuer of the instrument.
The accrued interest is the outstanding interest having accumulated at a
contractually agreed fixed interest rate K in the time between the last payment
date tm and t (=today). Accrued interest only makes sense when dealing
with fixed rate instruments or for those instruments whose interest rates are
established at the beginning of each interest period. In spite of that, it is a
common requirement to estimate for accounting purposes accrued interest
for variable interest coupons, which need to be adjusted with every change of
the interest rate term structure. Especially, the total amount of accrued interest
might even be diminished from one day to the next, though no cash flow was
paid.

In our general notation

Accrued interest = KN(tm)(tm − t) with tm ≤ t < tm+1 ,

with N(tm) denoting the residual debt as of the last coupon payment.4 For
instruments which have no amortization payments in the time between today
and maturity, the residual debt immediately after a payment date is always
equal to the face value N . However, if repayments have already been made by
time tm, the residual debt is accordingly smaller.

Since a fixed interest rate K results in a debt at time t consisting of the
residual debt as of the preceding payment date tm plus the interest accrued
since that time, the residual debt at time t is the residual debt from the last
payment date compounded up to today at the rate K :

N(t)︸︷︷︸
Residual Debt

at Time t

= N(tm)︸ ︷︷ ︸
Residual Debt
at Time tm

+ KN(tm)(t − tm)︸ ︷︷ ︸
Accrued Interest

= N(tm) (1 + K(tm − t )) .

4For interest rate periods shorter than one year, interest is accrued linear over the interest period, in line
with the linear compounding method. For longer interest periods, interest accrued is often calculated by
means of annual compounding. For very long periods (e.g. long term zero bonds), the difference can be
very significant.
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The clean price Vclean(t, T ) of a financial instrument is defined as the present
value less the accrued interest based on a face value of 100, that is

Vclean(t, T ) =
n∑

i=m+1

B(t, ti)C(ti)
100

N(tm)
− 100K(tm − t) .

An interest rate instrument (or a portfolio consisting of interest rate
instruments) is quoted at par if its present value is equal to the residual debt
of the instrument, i.e.,

N(t)
!=

n∑

i=m+1

B(t, ti )C(ti ) where t1 < · · · < tm ≤ t ≤ tm+1 < · · · < tn = T

(5.5)

or equivalently, when the clean price is equal to the residual debt at the previous
payment date N(tm) = Vclean(t, T ). This is a generalization of the usual
definition for bonds and applies to all interest rate instruments and even to
portfolios with arbitrary cash flows. A simple bond (with the redemption of
the full nominal being made at maturity) is quoted at par if the clean price is
equal to its face value.

Prices of bonds traded as securities at an exchange are in general quoted as
Clean Prices, i.e. accrued interest needs to be added to the quoted price to get
the actual price to be paid (i.e., the Dirty Price. To avoid any ambiguity with
respect to the compounding method used, accrued interest is always linearly
accrued, or, which is the same, calculated by simple compounding.

The par rate of a fixed rate instrument (for example, bonds, fixed rate
mortgages, etc.) is defined as the rate K̄ which the instrument should have
as its fixed rate in order for the instrument to be quoted at par. Par rates are
only defined for fixed rate instruments. For such instruments, the residual
debt and the cash flows are dependent on K . The at-par condition given by
Eq. 5.5 for N(t)) solved for K = K̄ yields the par rate of the instrument
as a function of the current spot rate. Of particular importance are the par
rates of coupon bonds paying an annual coupon calculated using discrete
compounding. Graphing these par rates as a function of time to the maturity
of the coupon bonds gives a curve called the par yield curve.

To summarize, Table 5.2 comprises a list of all interest rates introduced
in this section. The table indicates how each of the three interest rates just
presented, namely the IRR, the par rate and the YTM, can be calculated from
those established by the market (spot rate) and the instrument (coupon rate).
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Table 5.2 Summary of the different yields

Replaced rate Sum of discounted cash flows equals

IRR Spot rate Sum of compounded past cash flows
Par rate Fixed rate Residual debt
YTM Spot rate Present value

For example, replacing the spot rate by the YTM for discounting of the cash
flows will result in a value equal to the present value.

From this table it is apparent that the par rate is a function of the spot rates
but not of the coupon rate (the par rate replaces the coupon rate). Conversely,
the YTM is a function of the coupon rate and not explicitly of the spot rates
(these are replaced by the YTM). Naturally, the YTM depends implicitly on
the spot rates since the spot rates affect the present value (whose value should
be attained by adding up the future cash flows discounted at the YTM). Thus,
the par rate of an instrument changes when the spot rate changes, in contrast to
the YTMwhich changes when either the coupon rate or the spot rates change.
From this behavior, it follows that the par rate and the YTM can only be equal
for a particular combination of spot rates (determined by the market) and
coupon rates (given by the instrument), e.g. for a bond with annual coupon
payments it follows:

Par rate and yield to maturity of an interest rate instrument are equal if and only
if the instrument is quoted at par.

We will demonstrate this relation in the following. As a simplification, the
nominal is assumed to be constant, however, the general result would still be
valid in case of nominal increases or repayments at coupon dates. The par
rate K̄ of a fixed income instrument is defined as the fixed interest rate the
instrument would need to have such that its present value is equal to its residual
debt (see Eq. 5.2). This relation is valid at a payment date t = tm, too. On
the other hand, the present value could be calculated using Eq. 5.2 by means
of the YTM. Therefore, if the fixed coupon rate equals the par rate, we get at
payment date t = tm:

N =
n∑

i=m+1

BA(R̄, tm, ti)C(ti) . (5.6)
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The cash flows C(ti) depend on the fixed rate (here equal to the par rate):

C(ti) = NK̄ for i < n

C(tn) = N(1 + K̄) .

We have used here that the coupon is paid annually, i.e. ti − ti−1 = 1. Further,

BA(R̄, tm, ti) =
(

1

1 + R̄

)i−m

.

Setting K̄ = R̄ and replacing in Eq. 5.6 yields

N =
n∑

i=m+1

(
1

1 + R̄

)i−m

NR̄ +
(

1

1 + R̄

)n−m

N

=
n−1∑

i=m+1

(
1

1 + R̄

)i−m

NR̄ +
(

1

1 + R̄

)n−m

N(1 + R̄)

=
n−1∑

i=m+1

(
1

1 + R̄

)i−m

NR̄ +
(

1

1 + R̄

)n−1−m

N . (5.7)

Repeating this step m − n times, we get the final result N = N . This
demonstrates, that Eq. 5.6 is always fulfilled, if K̄ = R̄.

It should be noted that this relation is not valid, if t �= tm, in which case
the left side of Eq. 5.6 would have an additional term for the accrued interest,
which need to be calculated by simple compounding. Since YTM is given in
discrete, annual compounding, YTM and par rate would differ slightly. For
the same reason it was necessary to restrict the relation to instruments with
annual coupon payments, because only for periods of exactly one year both
compounding methods, annually and simple compounding, yield identical
results.
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5.4 Traditional Sensitivities of Interest Rate
Instruments

5.4.1 Average Lifetime and Macaulay Duration

The simplest feature characterizing a security whose value derives from future
cash flows is its mean (residual) lifetime. The mean is the weighted average
taken over the time periods until each future coupon payment. The weight
accorded to a particular period is exactly equal to the contribution of the
corresponding cash flow to the present value of the security. This mean lifetime
is called the Macaulay duration.

DMacaulay(t) =
n∑

i=m+1

(ti − t )
B(t, ti) C(ti)

V (t)

=
n∑

i=m+1

(ti − t )

⎡

⎢
⎢⎢
⎣

B(t, ti) C(ti)
n∑

k=m+1
B(t, tk) C(tk)

⎤

⎥
⎥⎥
⎦

. (5.8)

TheMacaulay duration has an interesting property: If a time interval of length
dt (during which no cash flow payment was due) has passed since the last
calculation of the Macaulay duration, the new Macaulay duration is simply
given by the difference of the old value less the elapsed time dt.

DMacaulay(t + dt) = DMacaulay(t) − dt if t + dt < tm+1 .

The derivation of this result is trivial. We only need Eq. 2.7 and to make use
of the fact that the sum over all weights equals one:

DMacaulay(t + dt) =
n∑

i=m+1

(ti − t − dt)

[
B(t + dt, ti)C(ti)

V (t + dt)

]

=
n∑

i=m+1

(ti − t )

[
B(t + dt, ti)C(ti)

V (t + dt)

]

− dt

[ ∑n
i=m+1 B(t + dt, ti)C(ti)∑n
k=m+1 B(t + dt, tk)C(tk)

]

︸ ︷︷ ︸
1
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= B(t, t + dt)

B(t, t + dt)

n∑

i=m+1

(ti − t )

[
B(t, ti)C(ti)

V (t)

]

︸ ︷︷ ︸
DMacaulay(t)

− dt

= DMacaulay(t) − dt .

5.4.2 Modified Duration and Convexity

The methods for pricing financial instruments introduced in this book are
applied in risk management when determining the value of a portfolio in any
given scenario. This can be extremely time consuming. In order to obtain a
quick risk assessment without repeating time-consuming pricing calculations
for each different scenario, approximation techniques have been developed
which are all based on the same procedure, i.e. utilization of Sensitivities:

LetV be the price of a financial instrument and S the price of the underlying
risk factor, i.e. a market parameter which follows some stochastic process (for
instance a share price or interest rate index). Here, we will consider a single
risk factor only, though in general more than one risk factor is relevant. The
most important risk factor is usually the price or value of the underlying and
the sensitivity of the price of the instrument with respect to changes in the
underlying the corresponding risk measure. The price is generally a complex
function of S (calculated by means of discounted cash flow method or option
price theory or some combination of these) which, however, admits a Taylor
series representation.

V (S + dS, t) = V (S, t) +
∞∑

k=1

1

k!
∂kV (S, t)

∂Sk
(dS)k .

In such a Taylor series, the price of the instrument whose underlying has
changed slightly changed to S + dS is calculated by adding the infinite
series above to the price V (S, t) corresponding to the original value of the
underlying S. The terms of the sum involve all powers (dS)k of the change
in the underlying dS. If this change is small (for example, 1 basis point =
0.01% = 0.0001), its powers are particularly small for large k (for example,
(0.0001)2 = 0.00000001, (0.0001)3 = 0.000000000001, etc.). Thus, for
small changes in S, we can obtain a good approximation of the price by
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truncating the series after the first few terms.5 In this way the infinite sum
is approximated by

dV (S, t) =
∞∑

k=1

1

k!
∂kV (S, t)

∂Sk
(dS)k ≈ ∂V (S, t)

∂S
dS + 1

2

∂2V (S, t)

∂S2
(dS)2 ,

(5.9)

where dVS = VS+dS − VS denotes the difference between the old and
new price of the instrument. In the traditional terminology of interest rate
management and if S represents the yield to maturity, the coefficients of the
first two powers of dS (divided by the original price V ) are referred to as
the modified duration and the convexity. In modern risk management, these
coefficients are called delta and gamma, where S is any arbitrary underlying.

More precisely, the modified duration is defined as the (negative) derivative
of the price with respect to R̄ (YTM) divided by the price, i.e., the (negative)
relative sensitivity of the security to linear changes in the yield to maturity, see
Eq. 5.10. The minus sign reflects the effect that bond prices decline as interest
rates rise. Assuming that the cash flows themselves are independent of the
interest rate, Eq. 5.2 gives the following expression for the modified duration:

Dmod = − 1

V

∂V

∂R̄
= −

n∑

i=m+1

C(ti)

V

∂BR̄(t, ti)

∂R̄
. (5.10)

This is the general expression for all compounding methods. For example, for
continuous compounding it reads explicitly

Dmod = − 1

V

∂V

∂R̄
= 1

V

n∑

i=m+1

(ti − t )C(ti) exp
[−R̄(ti − t )

]

=
n∑

i=m+1

(ti − t )

⎡

⎢⎢⎢
⎣

C(ti) exp
[−R̄(ti − t )

]

n∑

j=m+1
C(tj) exp

[−R̄(tj − t )
]

⎤

⎥⎥⎥
⎦

= DMacaulay .

5The method of expanding a function in a Taylor series for small changes in its parameters, neglecting all
but the parameter terms up to a certain power (here, the second power) is well established and frequently
used in practice with verifiable correctness (assuming the variables under consideration are continuous).
This is not simply an academic “mathematical trick” but a method which finds constant application in the
financial world. Almost all hedging strategies as well as the variance-covariancemethods used in calculating
the value at risk, for example, find their basis in this procedure. The samemethod has already been applied
when we presented Ito’s lemma in Sect. 2.4.2.
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The last expression allows an intuitive interpretation: it is a weighted average
of the “future cash flow maturities” ti − t , where the maturity of each cash flow
contributes to the average with the weight specified in brackets. This weight
is just the proportional contribution of the corresponding cash flow to the
present value of the security. The modified duration is thus, for continuous
compounding, equal to the Macaulay duration. This result makes it clear that
the Macaulay duration (which was defined as the average cash flow maturity)
contains information about the sensitivity of the security with respect to yield
changes and can thus be used as a risk measure.

For annual compounding, the modified duration given in Eq. 5.10 becomes

Dmod = 1

V

∂V

∂R
= − 1

V

n∑

i=m+1

(ti − t )
C(ti)

(1 + R̄)(ti−t+1)

= 1

1 + R̄

n∑

i=m+1

(ti − t )

⎡

⎢⎢⎢
⎣

C(ti)/(1 + R̄)(ti−t)

n∑

i=m+1
C(tj)/(1 + R̄)(tj−t)

⎤

⎥⎥⎥
⎦

= DMacaulay

1 + R̄

Thus, for annual compounding the modified duration is not equal to the
Macaulay duration (the weighted average of the cash flow maturities). Instead,
the Macaulay duration must be modified by a factor 1/(1 + R̄). This is the
reason for the namemodified duration.Note that amodification is unnecessary
for continuous compounding. It is thus solely an effect of the compounding
method applied.

Regardless of whether the compounding is computed continuously or
annually, the unit of both the Macaulay duration and the modified duration
is “years” since both deal with an average duration multiplied, in the case of
the modified duration and annual compounding, by the dimensionless factor6
1/(1 + R̄).

6Actually, the interest rates should be measured in units of inverse time, since they describe a relative gain
per time unit. In the case of annual discrete compounding, the divisor, i.e. the number of compounding
periods per year, is usually suppressed because of its value of 1. With this divisor, which has the same unit
as the interest rate, to term becomes dimensionless.



5 Present Value Methods, Yields and Traditional Risk Measures 93

According to Eq. 5.9, the modified duration is defined precisely so that it
gives a linear approximation of the relative price change when multiplied by
the change in the yield to maturity:

dV ≈ ∂V

∂R̄
dR̄ = −V Dmod dR̄ �⇒ dV

V
= −Dmod dR̄ . (5.11)

Setting dR̄ = 1% per year makes the numerical value of relative price dV/V

(measured in percent) equal to the numeric value of the modified duration.
This provides an intuitive interpretation of the modified duration: the numeric
value of the modified duration is equal to the percentage change in the price
when the yield changes by 1% per year. This interpretation of the numeric
value is often (incorrectly) used as the definition of the modified duration
itself, though this holds only in linear approximation.

Substituting one basis point for the change in yield, i.e., dR̄ = 0, 01%
per year instead of 1% per year, we obtain the absolute price change dV =
−V DmoddR referred to as the basis point value.

In order to obtain a more precise measure of the sensitivity of a security
with respect to its yield to maturity, the linear approximation can be improved
by including the second order term of the above mentioned Taylor series of
the price function (Eq. 5.9) in our considerations. This term measures the
sensitivity of the present value with respect to the square of the change in yield.
Intuitively, it describes the curvature of the price curve and is therefore referred
to as the convexity. Assuming that the cash flows themselves are independent
of the YTM and making use of Eq. 5.2, the convexity of the present value is
given by

1

V

∂2 V

∂R̄2
=

n∑

i=m+1

C(ti)

V

∂2 BA(R̄, t, ti)

∂R̄2
. (5.12)

This general expression holds for all compoundingmethods.When the interest
is compounded continuously, it reads explicitly

1

V

∂2V

∂R̄2
= 1

V

n∑

i=m+1

(ti − t )2C(ti)e
−R̄(ti−t)

=
n∑

i=m+1

(ti − t )2

⎡

⎢⎢
⎢
⎣

C(ti) exp
[−R̄(ti − t )

]

n∑

j=m+1
C(tj) exp

[−R̄(tj − t )
]

⎤

⎥⎥
⎥
⎦

.



94 H.-P. Deutsch and M. W. Beinker

For annual compounding, the explicit expression is given by

1

V

∂2V

∂R̄2
= − 1

V

n∑

i=m+1

∂

∂R̄

(ti − t)C(ti )

(1 + R̄)(ti−t+1)

= 1

(1 + R̄)2

n∑

i=m+1

(ti − t)(ti − t + 1)

[
C(ti)/(1 + R̄)(ti−t )

∑n
j=m+1 C(tj )/(1 + R̄)(tj−t )

]
.

As is the case for the duration, the cash flow weights appear in the brackets.
The convexity can thus be interpreted as the weighted average of the squared
cash flow maturities.

As yet, the sensitivities have only been considered with respect to the yield
to maturity.We could also calculate the sensitivities with respect to the current
spot rates. To do so, the original form of the present value given by Eq. 5.1 is
differentiated with respect to the spot rates valid for the cash flow maturities,
called the key rates. In general, the derivative of a price with respect to the
current spot rate is referred to as the yield delta. In analogy to the modified
duration, the key rate durations are defined as the negative yield deltas with
respect to the key rates divided by the price:

D
key
i = − 1

V

∂V

∂Ri︸︷︷︸
Yield Delta

= − 1

V
C(ti)

∂B(Ri, t, ti)

∂Ri︸ ︷︷ ︸
Yield Delta

. (5.13)

A linear approximation of the proportional change in the present value of the
instrument resulting from a change in the term structure of interest rates is
thus

dV

V
= 1

V

∑

i

∂V

∂Ri

dRi = −
∑

i

D
key
i dRi . (5.14)

Note that the change differs for each key rate Ri = (ti) ; the yield curve
could be “bent”. This method allows risk calculations for far more complicated
scenarios in comparison to just using modified duration which, as we recall,
is based on a flat term structure of interest rates at the level of the yield to
maturity. Themodified duration can therefore only show the effect of a parallel
shift of the term structure.
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5.4.3 Summation of Traditional Sensitivities

In contrast to the “modern” sensitivities (delta, gamma, vega, etc.) of options
etc., which give the absolute sensitivity (the amount of money by which the
value changes when a parameter is modified), the traditional sensitivities
indicate a relative sensitivity (the percentage change in the value of an instru-
ment when a parameter is modified). In consequence, modern sensitivities of
instruments can simply be added up in order (obeying the sign) to obtain
the total sensitivity of all instruments in a given portfolio with respect to a
particular parameter (net delta, net gamma, etc.). This is not the case for the
traditional sensitivities.

The second andmore important difference between traditional andmodern
sensitivities is that the modern sensitivities refer to market parameters such as
spot rates which are relevant for most instruments. The traditional sensitivities,
however, most often refer to instrument-specific properties, such as yield to
maturity. For example, how should we interpret the modified duration of a
portfolio consisting of a 5-year bond and a 10-year bond? The sensitivity with
respect to the 5-year YMT or the 10-year YMT? Despite these difficulties, it
is possible to define total traditional sensitivities for an entire portfolio. To do
so, we need to perform the following four steps:

1. First, a mark-to-market valuation of the entire portfolio is performed in
accordance with 5.1 by discounting all future cash flows at the current spot
rates.

2. The YTM of the entire portfolio is determined according to Eq. 5.2. All
cash flows are discounted at the same interest rate. This rate is varied until
the present value calculated in Step 1 is attained.

3. In the equations for the sensitivities of the individual instruments, the
YTM of each instrument is replaced by the YTM of the entire portfolio.
For example, consider the modified duration of a zero coupon bond at
time t with maturity T which, in discrete compounding, is given by,
“(T −t )/(1+R)”, whereR denotes the YTMof the zero coupon bond. This
YTM is replaced by the YTM of the entire portfolio yielding the sensitivity
of the zero bond with respect to the YTM of the portfolio.

4. Each sensitivity of a particular instrument (with respect to the YTM of
the portfolio) is multiplied by the present value of the corresponding
instrument. The sum of these products divided by the present value of the
portfolio is the desired sensitivity of the portfolio.
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The last two steps can be combined in one equation. The modified duration
and convexity of a portfolio consisting of two instruments A and B with
respect to the YTM R̄A+B of the portfolio, and the key rate duration of this
portfolio with respect to a spot rate R (which is the same for all instruments
in the portfolio) are7:

Dmod(A + B)R̄A+B
= 1

A + B

(
A Dmod(A)R̄A+B

+ B Dmod(B)R̄A+B

)

Convexity(A + B)R̄A+B
= 1

A + B

(
AConvexity(A)R̄A+B

+ B Convexity(B)R̄A+B

)

Dkey(A + B)R = 1

A + B

(
A Dkey(A)R + B Dkey(B)R

)
. (5.15)

We have denoted the present value of instrument A by simply A, and
analogously for instrument B. The situation for the key rate duration is
somewhat simpler since this is a sensitivity with respect to the spot rates. Spot
rates are not instrument-specific parameters and consequently the first two
steps need not be performed.

Traditional sensitivities can be calculated in this way even for modern
instruments such as futures contracts. A futures contract corresponds to a
portfolio consisting of the cash flows of the underlying occurring subsequent
to the futures contract’s maturity plus the cash flow resulting from the futures
contract’s delivery price upon its maturity. The YTM is calculated for a
portfolio with these cash flows. Each individual cash flow is regarded as a zero
bond and the modified durations and/or the convexities of these zero bonds
are added up according to the above equations.

7The derivation of these equations is trivial and will only be shown for the modified duration:

Dmod(A + B)R̄A+B
= − 1

A+B
∂ (A+B)

∂R̄A+B
= 1

A+B

(
− ∂ A

∂R̄A+B
− ∂B

∂R̄A+B

)

= 1
A+B

⎛

⎜
⎜⎜⎜
⎝

− 1

A

∂A

∂R̄A+B︸ ︷︷ ︸
Dmod (A)

A + − 1

B

∂B

∂R̄A+B︸ ︷︷ ︸
Dmod (B)

B

⎞

⎟
⎟⎟⎟
⎠

.



6
Arbitrage

Arbitrage considerations alone are sufficient for deriving relations such as the
put-call parity or determining forward prices. Such arguments require only
very few assumptions; we need only Assumptions 1, 2, 3, and 5 from Chap. 4
to be satisfied. For simplicity, we will further assume the absence of credit
default risk, i.e. require that Assumption 4 is also satisfied.

6.1 Forward and Futures Contracts

Forward and futures contracts are transactions in which the purchase or sale of
an underlying S at a later date T for a fixed price, called the delivery price K ,
is agreed upon as of the current value date t . In this book, the value of such
a contract is denoted by fS(t, T ,K) or, for futures contracts (see below), by
FS(t, T ,K). If the delivery price at time t is chosen such that the value of the
forward or futures contract is zero, then the delivery price is also referred to as
the forward price. Throughout this book, the forward price of an underlying
with a price S(t) at the current time t will be denoted by S(t, T ) where the
later time T is the maturity of the corresponding forward contract.

6.1.1 Forward Price and Cash and Carry Arbitrage

The following Cash & Carry Arbitrage can be used to determine the value
of a forward contract fS(t, T ,K) and subsequently the forward price
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S(t, T ) of an underlying with a spot price S(t). Consider the following two
portfolios:

• Portfolio structure

– Portfolio A consists of a forward contract on an underlying for which the
delivery price K is to be paid at time T and a cash sum invested at an
interest rate R to yield precisely the delivery price at time T .

– Portfolio B consists of the underlying and a loan in the amount of the
present value of the dividends to be received at time t ′ between the
present time and time T .

• Value of the portfolio at time t

– Portfolio A at time t is worth fS(t, T ,K), the value of the forward
contract plus the value B(t, T )K of the cash.

– Portfolio B at time t is worth S(t), the value of the underlying, plus the
negative (since it is a loan) present value of the dividend payment to be
made at the (later) time t ′, i.e., −B(t, t ′)D(t ′). The total value of the
portfolio is thus the dividend-adjusted spot price as given in Eq. 5.3.
(The argument is completely analogous for the case of a dividend yield).

• Value of the Portfolio at time T

– Portfolio A at time T is worth S(T ) − K , the value of the forward
contract, plus B(t, T )KB−1(t, T ) = K , from the cash, thus having in
total a value of S(T ). In Portfolio A, the delivery price of the forward
contract is paid using the cash and the accrued interest earned. The
portfolio now consists of the underlying at its current spot price S(T ).

– Portfolio B at time T is worth +D(t ′)B−1(t ′, T ), the value of the
underlying plus the dividend paid at t ′ and then compounded up to
time T and, in addition, the amount −B(t, t ′)D(t ′)B−1(t, T ) =
−D(t ′)B−1(t ′, T ) from the loan. Thus the whole portfolio is worth in
total S(T ). In Portfolio B, the loan is repaid using the dividend payment
received at time t ′ and invested up to time T . As for PortfolioA, Portfolio
B contains exactly the underlying at time T .

Thus, both portfolios have the same value at time T . Their value at earlier
times must therefore also be equal since otherwise the investor would be
presented with the following arbitrage opportunity: if PortfolioA, for example,
was worth more than PortfolioB at time t , an investor could sellA (“go short”)
and buy B with the proceeds keeping the difference. At time T , the value
of both portfolios must be the same, as demonstrated above. Thus the short
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position can be offset exactly by the long position without any additional
payment. Thus, a profit can be made without risk or capital by investing
according to this strategy at time t . Analogously, if B was worth more than A,
an investor could (short) sell B and buy A. In order to eliminate such arbitrage
opportunities, the value of both portfolios at time t must be equal:

fS(t, T ,K) + K B(t, T ) =
S̃(t,T )

︷ ︸︸ ︷
S(t) − B(t, t ′)D(t ′)

⇒ fS(t, T ,K) = S̃(t, T ) − K B(t, T ) .

The forward price S(t, T ) of the underlying is now defined as the delivery
priceK for which the forward contract is worth nothing at time t . This means
that for K = S(t, T ) we have fS = 0 in the above equation. Thus we obtain
for the forward price the explicit expression:

S(t, T ) = S̃(t, T )

B(t, T )
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t)

B(t, T )
No Dividends

S(t)

B(t, T )
− D(t ′)

B(t ′, T |t) Dividend Payment D z. Zt. t ′

e−q(T −t )

B(t, T )
S(t) Dividend Yield q

1 − D(t ′)
B(t, T )

S(t) rel. Dividend D(t ′) at time t ′

,

(6.1)

where in the case of dividend payments Eq. 2.7 is used. In this case the
forward discount factor for the period between the dividend date t ′ and
the maturity T is needed. For compounding the relative discrete dividend
payments D(t ′)S(t, t ′) we have used the simple expression

D(t ′)S(t, t ′)
B(t ′, T |t) = D(t ′)S(t)

B(t, t ′)B(t ′, T |t) = D(t ′)S(t)

B(t, T )
.

In any case, the forward price depends on the spot price, the interest rates and
the dividend only, but does not depend on how the spot price evolves until T .
Instead, the forward price just reflects the costs for replicating the future cash
flows, i.e. the refinancing costs of the contract.

Conversely, using the forward and spot prices the present value d(t, T ) at
time t of dividend payments or dividend yields accrued in the time period
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T −t can be determined. These are referred to as implied dividends and implied
dividend yields, respectively:

d(t, T ) ≡ S(t) − S̃(t, T ) = S(t) − B(t, T )S(t, T )

Bq(t, T ) = e−q(T −t) ≡ S̃(t, T )

S(t)
= B(t, T )

S(t, T )

S(t)
. (6.2)

6.1.2 The Stochastic Process for the Forward Price

Having established the forward price as a function of the risk factor S as given
by Eq. 6.1, we make the Random-Walk-Assumption 2.17 and proceed as in
Sect. 2.4.2, applying Ito’s lemma (see Eq. 2.21) to obtain a stochastic process
for the forward price S(t, T ). Making use of Eq. 6.1 we define in the case of a
dividend yield, here in terms of continuous compounding

f (y, t) := S(t, T ) = Bq(t, T )

B(t, T )
ey(S), with y(S) = ln(S) .

The derivatives needed for the application of Ito’s lemma are given by

∂f

∂y
= f = S(t, T ),

∂2f

∂y2
= f = S(t, T )

∂f

∂t
= ey(S) ∂

∂t

[
Bq(t, T )

B(t, T )

]
= S(t)

∂

∂t
e(r−q)(T −t) = −(r − q)S(t, T ) .

Substituting this in the Ito formula yields the process for the forward price

dS(t, T ) =
(

S(t, T )μ + S(t)
∂

∂t

[
B(q, t, T )

B(t, T )

]
+ 1

2
σ 2S(t, T )

)
dt + S(t, T )σ dW

= S(t, T )

(
μ − r + q + 1

2
σ 2

)
dt + S(t, T )σ dW . (6.3)

In anticipation of later chapters we note the following: we will later show
that the freedomof arbitrage condition enforces for the valuation of derivatives
a particular choice for the drift μ. This choice will be referred to as the “risk-
neutral” value (see for example Eq. 9.25). With this choice for the drift, the
process for the forward price is reduced to

dS(t, T ) = S(t, T )σ dW . (6.4)
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This indicates that the forward price process is drift-free in a risk-neutral world.
It is worth mentioning that stochastic term of the forward price process is
identical to the stochastic term of the spot price process. This important result
will be used frequently in the following.

6.1.3 Forward Positions

As we have seen, S(t, T ) is the delivery price of a forward contract agreed upon
at time t with maturity T and is referred to as the forward price. This is not to
be confused with the value of a forward contract (which upon conclusion of the
contract is equal to zero, for example). The value at time t of a forward contract
entered into at some earlier time t0 < t with a forward price K = S(t0, T ),
valid at that time, can be obtained by considering the following argument:

Entering into a second forward contract (in addition to the first forward
contract as described above) at time t for the sale of the underlying at maturity
T at the current forward price S(t, T ) has the effect that at maturity T the
underlying is bought for the priceK (on the basis of the first forward contract)
and immediately sold at the price S(t, T ) (on the basis of the second contract).
The cash flow at maturity is thus S(t, T ) − K . This value discounted back to
time t gives the value of the portfolio consisting of both forward contracts at
time t . Since the value at time t of a forward contract with a delivery price
S(t, T ) is zero, the value of the portfolio is identical to the value of the forward
contract with a delivery price K . Upon consideration of Eq. 6.1, we conclude
that

fS(t, T ,K) = [S(t, T ) − K] B(t, T ) = S̃(t, T ) − K B(t, T ) (6.5)

6.1.4 Futures Positions and Basis Risk

For valuation purposes, the essential difference between a forward and a futures
contract is that futures are instruments which are traded on an exchange. The
exchange, taking on the role of a clearing house, demands that margins be paid.
The variation margin has the effect that the daily fluctuations in the value of a
futures position (unrealized profit and loss) are credited or debited to amargin
account whichmust be settled at the end of the trading day. Fluctuations in the
forward prices therefore result in an immediate cash flow rather than one paid
at maturity T . For this reason, the cash flow—in contrast to that of a forward
contract—is not discounted in the valuation of a futures contract. The value
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of a futures position with the same data as the above defined forward contract
is simply:

FS(t, T ,K) = S(t, T ) − K = B−1(t, T )S̃(t, T ) − K . (6.6)

The forward price S(t, T ) is, strictly speaking, the delivery price of a
forward contract concluded at time t with maturity T . It can be shown that
delivery prices of futures are equal to those of forwards if interest rates are
assumed to be deterministic. In this book, it will almost1 always be assumed
that this (i.e., Assumption 8 from Chap. 4) is the case when dealing with
forwards and futures, i.e., the delivery price for both contracts will be given by
Eq. 6.1.

The difference between the spot and delivery price is called the basis.2 The
basis b(t, T ), as can be seen from Eq. 6.1, depends on the interest rate and the
dividends of the underlying:

b(t, T ) = S(t, T ) − S(t) = S̃(t, T )

B(t, T )
− S(t) .

Basis trading is the attempt to make a profit from the fluctuations in the basis.
The value of a portfolio consisting, for example, of a long futures contract with
a delivery price K and a short position in the underlying itself is given by

FS(t, T , K) − S(t) = S(t, T ) − K − S(t) = b(t, T ) − K .

Since K is constant, the change in the value of this portfolio result solely from
the change in the basis. The only risk involved in holding such a portfolio
results directly from the basis alone and as such is referred to as the basis risk.

6.2 Options

6.2.1 Upper and Lower Bounds for Option Prices

A plain vanilla European option gives the holder the same rights as a forward
contract but without the obligations of the forward contract. For a long

1Except for the chapters dealing with stochastic interest rates, i.e. Chaps. 13 and 14.
2In general, basis denotes a most often very “small” difference between two similar prices, indices or other
key values and is used in many different situations.
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forward position, for example, the underlying must be bought at the price
K agreed to in the contract even if it is available at a lower spot price S(T ) at
maturity T . The associated call option, however, will be exercised by the holder
if doing so does not result in a loss, i.e., the option will be exercised only when
S(T ) > K. This is why the price of a plain vanilla European option is at least
as high as that of the corresponding forward position. The price of an American
option, owing to its additional right allowing the holder to exercise at any time
up to maturity, is at least as high as its intrinsic value (proceeds obtained by
exercising, i.e., payoff profile). Besides, the right to exercise the option early
can only increase its value in comparison to its European counterpart. These
relationships are summarized in Table 6.1, using Eq. 6.5 for the value of a
forward position.

Throughout this book we will denote the value at time t of a European call
and put on an underlying S with strike priceK andmaturity T by cS(t, T ,K)

and pS(t, T ,K), respectively, as in Table 6.1. For American options, capital
letters will be used in the notation, i.e., CS(t, T ,K) and PS(t, T ,K).

Any violation of the relations listed in Table 6.1 results in an arbitrage
opportunity which can be realized by selling the over-valued instrument and
buying the other instrument with the proceeds. If, for example, the price of a
call were higher than that of the underlying (the last relation in the first line), an
investor could sell the call and buy the underlying with the proceeds, keeping
the difference. If the call is exercised, the investor delivers the underlying and
receives (in addition to the money already earned from the difference) the
strike price K in exchange. If the call is not exercised, the investor receives
(again, in addition to the money already earned from the difference) the
amount earned from the sale of the underlying at the spot price at maturity.

Because of the last relation in the second row in Table 6.1, a put can be worth
no more than the strike price K (this occurs when the value of the underlying
is zero). This fact will prove to be important when deciding whether to exercise
an American option before maturity.

Table 6.1 Boundaries for the values of plain vanilla options

European

Call max
{

0, S̃(t, T ) − K B(t, T )
}

≤ cS(t, T ,K) ≤ CS(t, T ,K)

Put max
{

0,K B(t, T ) − S̃(t, T )
}

≤ pS(t, T ,K) ≤ PS(t, T ,K)

American
Call max {0, S(t) − K} ≤ CS(t, T ,K) ≤ S(t)

Put max {0,K − S(t)} ≤ PS(t, T ,K) ≤ K
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6.2.2 Early Exercise of American Options

For American options, the right to exercise can be exercised over the entire
term of the option. In the following, we would like to answer the question
when it is optimal to exercise the option before option maturity.

An American option must always be at least as worth as the corresponding
Forward contract (the option holder has more rights, but no obligations).
Therefore, it follows with Eq. 6.5 that the following relations hold for Ameri-
can Call resp. Put options:

CS(t, T ,K) ≥ fS(t, T ,K) = S̃(t, T ) − B(t, T )K

PS(t, T ,K) ≥ −fS(t, T ,K) = −S̃(t, T ) + B(t, T )K .

The criterion for the early exercise of American options is that the proceeds
gained by exercising be greater than the value of the option, i.e., S(t) − K >

CS(t, T ,K) and K − S(t) > PS(t, T ,K) for a call and put, respectively.
Inserting this condition into the above relation and using the spot price
adjusted for dividend payments Eq. 6.2, the early exercise condition for the
call is

S(t) − K > S̃(t, T ) − B(t, T )K

= S(t) − d(t, T )︸ ︷︷ ︸
S̃(t,T )

− B(t, T )K .

The procedure is analogous for the put. Canceling the spot price on both sides,
we get the following constrained on the dividend of the underlying for optimal
early exercise:

d(t, T ) > K [1 − B(t, T )] for Calls (6.7)

d(t, T ) < K [1 − B(t, T )] for Puts .

The strike price K , invested in risk-free securities from t until maturity T ,
earns an interest yield ofK

[
B−1(t, T ) − 1

]
. The present value of this amount

at time t is given by

B(t, T )K
[
B−1(t, T ) − 1

]
= K [1 − B(t, T )] .
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In view of these considerations, Eq. 6.7 can be intuitively interpreted as
follows:

• American puts should be exercised prior to maturity if the present value
d(t, T ) of the dividend (which one forgoes upon early exercise) is less than
the interest yield earned on the strike price (obtained when exercising early).

• American calls should only be exercised if the present value of the dividends
(which are gained by exercising early) is greater than the interest yield earned
on the strike price (which is lost upon early exercise). Since the interest
yield on the strike price is always greater than or equal to zero, calls on
underlyings which pay no dividends should never be exercised before
maturity.

6.2.3 Relationships Between Puts and Calls

As an example of the effect an arbitrage-free market has on options, consider
the following two portfolios:

• Portfolio structure

– Portfolio A consists of a European call (long) with strike price K and
maturity T , and a European put (short) also with strike price K and
maturity T , both on the same underlying S.

– Portfolio B consists of a forward contract (long) to buy the underlying
upon maturity T at the delivery price K .

• Value of the portfolio at time t

– Portfolio A has at time t a value of cS(t, T ,K) − pS(t, T ,K) from the
long call and the short put.

– Portfolio B has at time t a value of fS(t, T ,K) from the long forward.

• Portfolio value at time T

– Portfolio A has at time T a value of S(T )− K from exercising the call if
S(T ) > K or −(K − S(T )) from exercising the put if S(T ) < K . In
either case the portfolio is worth S(T ) − K .

– Portfolio B has at time T a value of S(T ) − K from the maturity of the
forward.

If both portfolios have the same value at time T , they must be worth the
same at earlier times t as well to prevent arbitrage opportunities. Setting the
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values of the two portfolios equal yields the famous put-call parity for European
options:

Call minus put equals forward

One interpretation of this relation is: a European call is the same as a forward
contract on the underlying plus a guarantee (the put) that the underlying is
worth no less than the agreed upon delivery price at maturity. If, for example,
an investor is certain that the underlying price will rise and wishes to make the
most out of this information, he or she should buy forward contracts and not
calls since by doing so, the (in the investor’s opinion unnecessary) insurance
premium guarding against a falling price is saved.

If the strike price K is equal to the current delivery price S(t, T ), the
value of the forward equals zero. From the put-call parity we can immediately
conclude that in this case the price of the put must equal the price of the call.

A put-call parity for American options can be derived using similar arbitrage
arguments. The possibility of exercising early has the consequence that it can
be expressed only in terms of an inequality. Using Eq. 6.5 for the value of a
forward contract, the parities can be expressed as follows:

European cS(t, T , K) − pS(t, T , K) = S̃(t, T ) − K B(t, T ) = fS(t, T , K)

American S̃(t, T ) − K ≤ CS(t, T , K) − PS(t, T , K) ≤ S(t) − K B(t, T ) .

(6.8)

A further relation between European puts and calls is known as the call-put
symmetry:

cS(t, T , K) = K

S(T )
pS(t, T ,

S(T )2

K
) ,

As the put-call parity, this relation is easily obtained by observing that the
payments at maturity on the left and right-hand side of the above equation
are the same. This symmetry can in theory be used, for example, to hedge
exotic options (barriers and look-backs). Note however, that determining the
strike price of the put and the number of puts required in the portfolio in
the above equation requires that the future spot price S(T ) of the underlying
at maturity (not the forward price S(t, T )!) must be known. This makes the
call-put symmetry difficult to apply in practice.



7
The Black-Scholes Differential Equation

Having used arbitrage considerations to derive various properties of deriva-
tives, in particular of option prices (upper and lower bounds, parities, etc.),
we now demonstrate how such arbitrage arguments, with the help of results
from stochastic analysis, namely Ito’s formula 2.22, can be used to derive the
famous Black-Scholes equation. Along with the Assumptions 1, 2, 3, and 5
from Chap. 4, the additional assumption that continuous trading is possible is
essential to establishing the equation, i.e., in the following we assume that
Assumption 6 from Chap. 4 holds. For simplification, we begin with the
case without credit default risk, i.e. we make the additional Assumption 4
from Chap. 4. The Black-Scholes equation is a partial differential equation
which must be satisfied by every price function of path-independent European
derivatives on a single underlying.1 Consequently, one method of pricing
derivatives consists in solving this differential equation satisfying the boundary
conditions corresponding to the situation being investigated. In fact, even
quite a number of path-dependent options obey this differential equation.
A prominent example is the barrier option. In general however, the price of
path-dependent options cannot be represented as a solution to the Black-
Scholes equation. It is possible to surmount these difficulties by imbedding
the state space in a higher dimensional space defining one or several addi-
tional variables in an appropriate manner to represent the different paths.

1Path independence is necessary for the derivative’s value V to be only a function of t and the current
underlying price S. Path-dependent prices V are functions of further variables which themselves are
dependent on the history of the underlying. The total differential of V is then no longer given by Eq. 2.22;
additional terms must be included in the expression.
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This method is demonstrated explicitly by Wilmott for Asian options with
arithmetic means [192]. As we will see below, the valuation of American
options can also be accomplished via the Black-Scholes equation (with free
boundary conditions).

The Black-Scholes equation can be derived in several different ways. The
derivation presented here is the most intuitive and, being based on arbitrage
arguments, is somewhat less technical (with the exception of Ito’s lemma) since
the arguments are largely economical in nature. In addition to presenting
its derivation, we will establish its relationship to an equation called the
diffusion equation or heat equation and then illustrate amathematically deeper
derivation of the Black-Scholes equation using the backward equation 2.35.
Another approach to the Black-Scholes equation which does not involve an
application of Ito’s lemma will later be presented in Sect. 12.1 for the derivation
of Eq. 12.5. For the sake of consistency with the situation considered there, we
will here investigate derivatives on underlyings with a dividend yield q.

7.1 Derivation of the Black-Scholes Equation
from Arbitrage Arguments

We denote the value at time t of a derivative on an underlying S by V (S, t).

Here, as is usually the case in this book, the letter V is used as the general
notation for the price (value) of a derivative without further specifying the
derivative. The underlying is governed by a stochastic process satisfying
Eq. 2.19.Without loss of generality, we write the mean return and the volatility
in terms of relative (with respect to S) parameters μ̃ and σ , i.e.,

a(S, t) = S μ̃(S, t)

b(S, t) = S σ(S, t) , (7.1)

so that the stochastic process has the form

dS = μ̃(S, t)S dt + σ(S, t)S dW . (7.2)

The well-known process given by Eq. 2.24 is a special case of the one
introduced here where the price yield (drift) μ̃ and volatility σ are constant.
The process under investigation here is just a reformulation of the Ito Process
Eq. 2.19 and is thus just as general as 2.19.
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7.1.1 The Black-Scholes Equation for European Options

The value V of a derivative on this underlying is a function of a stochastic
variable and is therefore also stochastic. In accordance with Ito’s lemma 2.22,
V satisfies the following equation in which the term containing dS represents
the stochastic component of the change in the value of the derivative:

dV (S, t) =
(

∂V

∂t
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2

)
dt + ∂V

∂S
dS . (7.3)

A portfolio can now be constructed consisting of the derivative V (S, t) and
underlyings where the number of underlyings in the portfolio is denoted by
�. We denote the value of this portfolio by �

� = V (S, t) + �S . (7.4)

The change in the underlying during a small time interval of length dt

(analogous to Eq. 12.3) results from the stochastic change dS and the dividend
yield accumulated at a rate q during this time interval:

d(�S) ≈ �dS + �S q(t)dt ,

where the linear approximation of the continuous compounding dividend
yield was used. The total differential of the entire portfolio � is thus

d� = dV + d(�S) =
(

∂V

∂t
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2 + �Sq(t)

)
dt +

(
∂V

∂S
+ �

)
dS .

(7.5)

Choosing the number of underlyings in the portfolio such that

�
!= −∂V/∂S , (7.6)

has the effect that the coefficient of the stochastic term dS vanishes in the
above expression for the change in the portfolio process. Thus, a portfolio can
be constructed in such a way that the change in its value is generated solely by
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a progression dt in time. This is called a delta hedge. The total differential of
the corresponding portfolio is now given by

d� =
(

∂V

∂t
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
− q(t)S

∂V

∂S

)
dt .

This no longer contains a stochastic term. It follows that � is risk-free and
as such increases at the same rate as given by the risk free interest rate r(t),
otherwise arbitrage would be possible. Thus,

d�
!=
[
B−1(t, t + dt) − 1

]
� dt ≈ r(t)� dt = r(t)

[
V (S, t) − ∂V

∂S
S

]
dt ,

where the definition of the portfolio’s value, Eq. 7.4, is substituted in the
last step. Equating the two expressions for d� immediately yields the partial
differential equation which must be satisfied by V (S, t):

∂V

∂t
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
− q(t)S

∂V

∂S︸ ︷︷ ︸
Yield from a �-Hedged Portfolio

= r(t)

[
V − S

∂V

∂S

]

︸ ︷︷ ︸
Yield from a Bank Account

. (7.7)

This is the famous Black-Scholes differential equation. From the arbitrage
argument used in its derivation, we immediately see the intuitive meaning of
this differential equation, namely that the yield (per time) earned from a delta-
hedged portfolio must be equal to the yield earned from a risk-free investment
(bank account) in the amount of the value of the portfolio. This interpretation
is very useful in understanding and working with the Black-Scholes equation.
In the literature, the equation is usually written in the following form:

∂V

∂t
+ [r(t) − q(t)]S

∂V

∂S
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
− r(t)V = 0 . (7.8)

Note that no reference has been made to the nature of the derivative in
the above derivation (with the exception of path independence and the Euro-
pean mode of exercise). An assumption about the underlying, however, has
been made, namely Eq. 7.2. Consequently, all European, path-independent
derivatives on underlyings given by the general stochastic process 7.2 satisfy
the above differential equation. The coefficients r, q and σ are functions of t

or S or of both.
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In general, differential equations have an infinite number of quite different
solutions. Thus the prices of quite different derivatives can satisfy the same
differential equation. Introducing the additional requirement that boundary
conditions be satisfied as well as the differential equation, reduces the number
of solutions from an infinite number to exactly one. Seen from this perspective,
different derivatives (on the same underlying) are distinguished only by
requiring different boundary conditions to be satisfied. As the name suggests,
boundary conditions are conditions which the solution of the differential
equation must satisfy at the boundary of the set on which it solves the
differential equation. This set is a subset of the solution’s domain of definition.
In our case, the arguments of the solution are the variables S and t and the
associated set is a subset of the plane spanned by S and t . For example, for a
plain vanilla call or put, the set lies between S = 0 and S = ∞ and between
t =today and t = T .

The boundary condition in the time coordinate is called the initial con-
dition. The initial condition for an option is that the value V (S, T ) of the
derivative at maturity T must be given by its payoff P (which is a function of
the price of the underlying)2:

V (S, t = T ) = P(S) . (7.9)

The payoff profile P(S) is established in the derivatives contract.
The boundary conditions in the S-coordinate are often obtained from

asymptotic considerations (for example, the value of a plain vanilla call is zero
at S = 0). For some exotic options, boundary conditions in the S-coordinate
are explicitly specified in the option contract. For example, a knock-out option
contract specifies that the value of the option is zero if S attains a barrier H ,
in other words when S = H .

7.1.2 The Black-Scholes Inequality for American Options

American options differ from European options in that the holder has the
right to exercise the option beforematurity. This additional right, under certain
circumstances, makes the American option more valuable than its European

2The fact that the “initial condition” in our case belongs really to the end of the time period under
consideration is just a question of vocabulary and should not confuse the reader. Alternatively one can
introduce a new time variable t̃ := T − t (sometimes called term to maturity). Then the initial condition
belongs to the lowest value of t̃ , namely t̃ = 0.
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counterpart. We will now show the variant of the Black-Scholes differential
equation that American options must satisfy.

The change in the option’s price is again given by the total differential
equation 7.3. The stochastic component is contained in the dS-term only.
We again construct a portfolio � consisting of the derivative V (S, t) and �

underlyings:

� = V (S, t) + �S .

The total differential of this portfolio is again of the form 7.5 and the
stochastic component can, as before, be eliminated by choosing the number
of underlyings in the portfolio as � = −∂V/∂S. The portfolio thus
constructed is risk-free. From arbitrage considerations, we conclude that a
risk-free portfolio can yield no more than the risk-free interest rate. But it is
certainly possible that it may earn less than the risk-free rate if the holder of
the option chooses to exercise the option at a less than optimal time, in other
words if the option is exercised when it should have been held or held when
it should have been exercised (the holder of a European option cannot make
this mistake as European options do not entail the right to early exercise).
Consequently, a risk-free portfolio containing American options can at best
earn a yield equal to the risk-free rate if the option is optimally exercised,
otherwise less is earned. The relation for American options corresponding to
the Black-Scholes equation.7.7 is thus

∂V

∂t
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
− q(t)S

∂V

∂S︸ ︷︷ ︸
Yield from a �-Hedged portfolio

≤ r(t)

[
V − S

∂V

∂S

]

︸ ︷︷ ︸
Yield from a Bank Account

or, written in the form corresponding to Eq. 7.8:

∂V

∂t
+ [r(t) − q(t)]S

∂V

∂S
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
− r(t)V ≤ 0 . (7.10)

Since the option can be exercised at any time, it is always worth at least the
amount given by its payoff profile. In addition to the initial condition, Eq. 7.9
(which also holds for American options), i.e.

V (S, t = T ) = P(S) , (7.11)
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the following inequality must therefore always hold

V (S, t) ≥ P(S) ∀t . (7.12)

Intuitively, the two inequalities 7.10 and 7.12 imply the two possible cases:

• Either the value of the option is, on a certain parameter set of S and t ,
greater than the payoff profile (i.e., Eq. 7.12 is a strict inequality) in which
case the right to early exercise is worthless. Thus the option behaves as a
European option on this parameter set and therefore Eq. 7.10 holds as an
equality.

• On the set of S and t where the option’s value is not greater than its payoff
profile (i.e., Eq. 7.12 holds as an equality), it would not be reasonable to
hold the option. In this case, the holder should exercise early. Therefore the
“risk-free” portfolio including the option would earn less than the risk-free
rate since the risk-free rate can only be obtained by exercising optimally.
Thus, in this case Eq. 7.10 holds as a strict inequality.

In summary: there exist two different parameter sets (regions in the (S, t)-
plane). In one region we have

∂V

∂t
+ [r(t) − q(t)] S

∂V

∂S
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
− r(t)V = 0 andV (S, t) > P(S).

(7.13)

and in the other region we have

∂V

∂t
+ [r(t) − q(t)] S

∂V

∂S
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2 − r(t)V < 0 andV (S, t) = P(S) .

(7.14)

The boundary between these parameter sets is a curve denoted by S∗(t), called
the optimal exercise boundary on which the option is exercised optimally. For
values of S(t) on one side of this curve, the option should be held, on the
other side, the option should have been exercised earlier. Optimal exercise
occurs directly on the curve. On the set where Eq. 7.12 holds as an equality,
the value of the option need not be computed since it is simply given by the
payoff profile. It remains to calculate its value on the set where its behavior
is European. We must therefore find a solution to Eq. 7.10 as an equality on
a parameter set whose boundary is given by the optimal exercise boundary
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S∗(t) and which in addition satisfies the initial condition given by Eq. 7.11.
The difficulty is that the optimal exercise boundary is not known a priori.
This type of problem is known as a free boundary condition.3 For values on the
boundary S∗(t), the value of the option (as a solution of 7.13) must be equal to
the payoff profile. If it were greater, the option holder would not exercise (the
boundary would thus lie elsewhere), whereas a smaller value would yield an
arbitrage opportunity (buying the option and exercising immediately). Thus,
the option price must be continuous on the boundary:

V (S = S∗, t) = P(S = S∗) ∀t .

The boundary curve S∗(t) is positioned to give the option the greatest possible
value at the boundary for all t (this is precisely the meaning of optimal exercise).
For most options (but not, for example, digitals), this means that the first
derivative of the option price with respect to S is continuous on the boundary:

∂V (S, t)

∂S

∣∣
∣∣
S=S∗

= ∂P (S)

∂S

∣∣
∣∣
S=S∗

.

These two conditions (the continuity of the option price function and its first
derivative) in general enable the determination of the free boundary S∗(t).

7.1.3 A First Contact with the Risk-Neutral World

The mean return (drift) μ̃ of the underlying does not appear in the general
differential equation 7.8 for European derivatives nor in the corresponding
(in)equalities 7.13 and 7.14 for American derivatives. If a parameter does not
appear in the differential equation nor the boundary condition, it is completely
irrelevant for the problem under consideration. The drift of the underlying
therefore has absolutely no influence on the value of a derivative on the
underlying concerned! It was somehow “lost” in the derivation. This occurred
exactly at that point where the delta hedge, Eq. 7.6, was introduced into the
equation to eliminate the stochastic component. Here, μ̃ eliminated as well.
The volatility σ also appears in the stochastic component dS. Contrary to
μ̃, the volatility σ remains a parameter in the hedged portfolio since, as a

3In contrast, for European options, the Black-Scholes differential equation is always solved on the set
S = 0 to S = ∞. The boundary is thus always fixed and known for European options.
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consequence of the Ito lemma, it has entered into the deterministic component
of Eq. 7.3, i.e., into the dt -term.

Apart from this purely technical explanation, from an economical point
of view it is at first glance quite extraordinary that a parameter as important
as the mean return of an underlying should have absolutely no effect on the
value of derivatives on that underlying. In fact, most investors expect a mean
rate of return as compensation for accepting the risk of investing at all. And
they expect the compensation to be higher the greater the risk. The fact that
the mean return has no influence on the price of a derivative (no matter
how large the risk—represented by the volatility σ—is!) can be interpreted
in the following way: the valuation occurs in a world in which investors are
indifferent to the risk involved in investing. This is referred to as risk neutrality
or a risk-neutral valuation.

The valuation of derivatives takes place in a risk-neutral worldwith objective
parameters. This, however, is not the real world. In reality, comparing a risky
with a less risky stock and all other conditions identical, an investor would
always prefer to buy the less risky stock, unless the higher risk is compensated
by an appropriately higher mean return. The mean return is determined by
the real world drift μ̃.

Contrary, a bank trading derivatives will generally hedge itself against all
market (and to some extend credit) risk of its total derivatives position. As
shown above, the hedging procedure will eliminate all dependence of the real
world drift μ̃, which is replaced by the risk neutral drift, which is identical
to the risk free interest rate. An investor buying a derivative as an asset for
speculation is not hedged and is only interested in the performance of the asset
in the real world. From the investor’s perspective, the Equation derived above
would not make any sense. Therefore, considering the valuation of derivatives,
it is always necessary to keep in mind in which world the valuation should be
performed, the real or the risk neutral world.

7.2 The Black-Scholes Equation
and the Backward Equation

Having completed a derivation of the Black-Scholes equation providing the
advantage of an intuitive interpretation4 in accordance with Eq. 7.7, which
can be simply extended to apply to American options, we now proceed from

4The Black-Scholes equation simply means that the yield from a delta-hedged portfolio must equal the
yield from a risk-free investment.
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the fundamental principles of stochastic analysis introduced in Sect. 2.4 to
establish a connection between the equations derived there (in particular the
backward equation) and the Black-Scholes equation and thus the pricing
of derivatives. The transition probabilities p(S ′, t ′ |S, t ) for the stochastic
processes satisfying Eq. 2.19 will prove to be very useful for this purpose.

As previously mentioned, the transition probabilitiesp(S ′, t ′ |S, t ) contain
all available information about the stochastic process. All pertinent values can
be established when this function is known. A value of particular interest is the
expectation of a function f (S ′, t ′) at a future date t ′ = T based on information
available today.5 We denote the expectation by the letter E, thus

E(S, t, T ) = E
[
f (S ′, t ′ = T )

∣∣ at time t the process S ′ is equal to S
]

= E
[
f (S ′, T )

∣∣S ′(t) = S
]

.

This expectation can be expressed in terms of the transition probabilities of
the stochastic process starting today from the point (S, t) and traveling to the
future point (S ′, t ′ = T ) as

E(S, t, T ) =
∫ ∞

−∞
f (S′, T )p(S′, T |S, t )dS′ .

Taking the derivative of this expression with respect to t , taking note of the
fact that f depends on the time T , but not on t , we obtain an equation for
the change in this expectation with respect to a change in time

∂E(S, t, T )

∂t
=

∫ ∞

−∞
f (S′, T )

∂p(S′, T |S, t )

∂t
dS′ .

We now immediately see that the change in this expectation is completely
governed by the time derivative of the transition probability p. Since we wish
to establish values at an earlier time point proceeding backwards from later
information, we substitute the backward equation 2.35 for the time derivative

5In applications, this function f (S, T ) is often the payoff profile of a derivative.
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of p in the above integral. This allows us to express the ∂p/∂t in terms of
derivatives with respect to S:

∂E(S, t, T )

∂t
=

∫ ∞

−∞
f (S′, T )

[
−1

2
b2(S, t)

∂2p

∂S2 − a(S, t)
∂p

∂S

]
dS′

= −1

2
b2(S, t)

∫ ∞

−∞
f (S′, T )

∂2p

∂S2 dS′ − a(S, t)

∫ ∞

−∞
f (S′, T )

∂p

∂S
dS′

= −1

2
b2(S, t)

∂2

∂S2

∫ ∞

−∞
f (S′, T )pdS′

︸ ︷︷ ︸
E(S,t,T )

− a(S, t)
∂

∂S

∫ ∞

−∞
f (S′, T )pdS′

︸ ︷︷ ︸
E(S,t,T )

.

In the last step, we have made use of the fact that f (S ′, T ) depends on S ′, but
not on S and that the derivatives with respect to S thus have no effect on f .
We conclude that the expectation E itself satisfies the backward equation

∂E

∂t
+ 1

2
b(S, t)2 ∂2E

∂S2
+ a(S, t)

∂E

∂S
= 0 , (7.15)

with a somewhat different boundary condition than p, namely

E(S, t = T , T ) = f (S, T ) .

Writing the parameters a and b as relative parameters as in Eq. 7.1, we see that
the differential equation for E is quite similar to the Black-Scholes equation

∂E

∂t
+ 1

2
σ(S, t)2S2 ∂2E

∂S2
+ μ̃(S, t)S

∂E

∂S
= 0 .

As in Eq. 7.8 the terms∼ ∂/∂t, ∼ S ∂/∂S and∼ S 2∂2/∂S2 appear. Only the
term not involving derivatives is missing, i.e., that corresponding to “r(t)V ”
in Eq. 7.8.

We consider therefore the discounted future expectation (denoted by V

below) of an arbitrary function f (S ′, T )

V (S, t, T ) = B(t, T )E(S, t, T )

= B(t, T )

∫ ∞

−∞
f (S ′, T )p(S ′, T |S, t )dS ′ . (7.16)
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The derivative of this expression with respect to time t is

∂V

∂t
= ∂B(t, T )

∂t

∫ ∞

−∞
f (S ′, T )p(S ′, T |S, t )dS ′

︸ ︷︷ ︸
B(t,T )−1V

+ B(t, T )

∫ ∞

−∞
f (S ′, T )

∂p(S ′, T |S, t )

∂t
dS ′ .

Using an argument analogous to the one presented above, the substitution of
the backward equation for ∂p/∂t yields6

∂V

∂t
+ 1

2
b2(S, t)

∂2V

∂S2
+ a(S, t)

∂V

∂S
= V

∂

∂t
ln (B(t, T )) (7.17)

with the same boundary condition as for E, namely

V (S, t = T , T ) = f (S, T ) .

This corresponds exactly to Eq. 7.15 with an addition “source” term appearing
as a consequence of discounting. Again writing the parameters a and b as
relative parameters as in Eq. 7.1, the equation takes the form

∂V

∂t
+ 1

2
σ 2(S, t)S2 ∂2V

∂S2
+ μ̃(S, t)S

∂V

∂S
= V

∂

∂t
ln (B(t, T )) . (7.18)

For continuous discounting we have

∂

∂t
ln (B(t, T )) = r(t) .

7.2.1 A Second Contact with the Risk-Neutral World

Thus, the differential equation 7.18 for the (until now) abstract value of a
“discounted expectation”—including the boundary condition—has the same

6We have also used the following general property of the logarithm:

∂

∂t
ln (B) = 1

B

∂B

∂t
.
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structure as the Black-Scholes differential equation for pricing derivatives, 7.8.
In fact, we only need to choose the parameter μ̃ so that μ̃(S, t) = r(t)−q(t)

and the differential equation for the discounted expectation is identical to the
Black-Scholes equation! This then has the following interpretation: the price
of a derivative with a payoff profile f (S, T ) is the same as the discounted
expectation of this payoff profile if and only if the drift of the underlying is
given by7

μ̃ = r − q or equivalently

μ = r − q − σ 2

2
. (7.19)

Here, we also see that the actual drift (mean return) of the underlying has
absolutely no effect on the valuation of the derivative. We again encounter risk
neutrality, as in Sect. 7.1.3. The approach via the backward equation however,
provides a much clearer interpretation of risk neutrality:

• The price of a derivative can be expressed as the discounted expectation of
its payoff profile.

• To do so, the drift of the underlying must be precisely specified as in
Eq. 7.19. This is called the risk-neutral drift.

As will be seen later, choosing a drift corresponds to choosing a particular
probability measure with respect to which the expectation is to be taken.
The choice in Eq. 7.19 is therefore referred to as the choice of a risk-neutral
probability measure.

7.3 The Relationship to the Heat Equation

The Black-Scholes equation is a linear, parabolic partial differential equation
of second order. The simplest parabolic partial differential equation (PPDE) of
second order is the heat equation or diffusion equation. This equation has the
simple form

∂2u

∂x2
= ∂u

∂τ
(7.20)

7In the second equation, Eq. 2.26 was used in the conversion to the drift μ = μ̃−σ 2/2 of the stochastic
process for the returns ln(S).
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with x being the space variable and τ the time variable. It is one of the most
thoroughly investigated equations in physics and applied mathematics. The
Black-Scholes equation for constant yields (interest rates and dividends) and
constant volatility can, as will be shown below, be transformed into the heat
equation with appropriate changes in variables. The Black-Scholes equation
and the heat equation have several interesting properties in common. For
example, the time derivative in both equations is of first order. The solution to
the equation thus has a time orientation. This corresponds to the property that
heat flow is not reversible: if, for example, a point on an otherwise cold metal
rod is heated, the passage of time leads to a uniform distribution of the heat
over the entire rod. The singularity, represented by the application of the heat
at a single point, is quickly smoothed out over the entire piece of metal. This
property applies to the Black-Scholes equation as well. The time orientation of
the Black-Scholes equation, however, is such that time flows from the future
into the past. Non-smooth payoff functions (the payoffs of plain vanilla puts
and calls have a “corner” at the strike price ) become smooth immediately as
time begins to move backwards from T . The analogy to the heat equation is,
however, not only very useful for obtaining an intuitive understanding of the
Black-Scholes equation. The biggest advantage of comparing the two is that
the heat equation is one of the best-understood partial differential equations
andmany results holding for it may be extended to the Black-Scholes equation.
We have the results of nearly two hundred years of research at our disposal. For
example, the general solution to Eq. 7.20 with initial condition

u(x, τ = 0) = u0(x)

is given by

u(x, τ) = 1

2
√

πτ

∫ ∞

−∞
e−(x−y)2/4τ u0(y) dy . (7.21)

Thus, it is worthwhile to transform the Black-Scholes equation into the heat
equation in order to make use of the results already known for the heat
equation and extend them to Eq. 7.8. We will therefore now explicitly present
the changes of variables required for this transformation.
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First, we write V in a more convenient form in order to eliminate the term
not involving derivatives, i.e., to eliminate the rV in Eq. 7.8:

V =: e−r(T −t)u �⇒ ∂V

∂t
= rV + e−r(T −t) ∂u

∂t

∂V

∂S
= e−r(T −t) ∂u

∂S
,

∂2V

∂S2
= e−r(T −t) ∂

2u

∂S2
.

This transforms the equation and boundary condition into

∂u

∂t
+ (r − q)S

∂u

∂S
+ 1

2
σ 2S2 ∂2u

∂S2
= 0 , u(S, t = T ) = P(S) .

We now replace the time t by a dimensionless variable which measures
the derivative’s time to maturity. This also effects the reversal of the time
orientation in the differential equation8:

z := σ 2

2
(T − t) �⇒ ∂

∂t
= ∂z

∂t

∂

∂z
= −σ 2

2

∂

∂z
.

At this stage we have made use of the fact that the volatility σ does not depend
explicitly on the time t . This transforms the differential equation and the initial
condition into

−σ 2

2

∂u

∂z
+ (r − q)S

∂u

∂S
+ 1

2
σ 2S2 ∂2u

∂S2
= 0 , u(S, z = 0) = P(S) .

In order to eliminate the S dependence of the coefficients, we replace S

with the logarithm of S. The argument of the logarithm must, however, be
dimensionless. We thus divide by a constant K which has the same dimension
as S. A natural choice for this constant would be the strike price of the option
which appears in the payoff profile.

y := ln(
S

K
) �⇒ S = Key , S

∂

∂S
= S

∂y

∂S

∂

∂y
= S

K

S

1

K

∂

∂y
= ∂

∂y

∂2

∂y2
= S

∂

∂S
(S

∂

∂S
) = S

∂S

∂S︸︷︷︸
1

∂

∂S
+ S2 ∂2

∂S2
�⇒ S2 ∂2

∂S2
= ∂2

∂y2
− ∂

∂y
.

8Note that by definition the volatility has the dimension 1/
√
time, i.e. σ 2 has the dimension 1/time,

thus making the variable z dimensionless.
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The resulting differential equation and boundary condition is then given by

−∂u

∂z
+

[
2(r − q)

σ 2
− 1

]
∂u

∂y
+ ∂2u

∂y2
= 0 , u(y, z = 0) = P(Key) .

The term involving the first derivative with respect to y can also be eliminated.
For this, a new variable x is needed which depends on both y and z. The
change in variable will involve both “old” variables. In consequence, two “new”
variables x and τ need to be introduced. The transformation of the derivatives
is accomplished using the Jacobian determinant which can be found in any
introductory textbook on analysis:

x := y + (
2(r − q)

σ 2
− 1)z , τ := z �⇒

∂

∂y
= ∂x

∂y

∂

∂x
+ ∂τ

∂y

∂

∂τ
= 1

∂

∂x
+ 0

∂2

∂y2
= ∂

∂y

(
∂

∂y

)
= ∂

∂y

∂

∂x
= ∂2

∂x2

∂

∂z
= ∂x

∂z

∂

∂x
+ ∂τ

∂z

∂

∂τ
= (

2(r − q)

σ 2
− 1)

∂

∂x
+ 1

∂

∂τ
.

Here we havemade use of the fact that r, q and σ do not depend on y (and thus
on S) nor on z (thus t ). This completes the transformation of the differential
equation and initial condition to

∂2u

∂x2
= ∂u

∂τ
, u0(x) ≡ u(x, τ = 0) = P(Kex) . (7.22)

This is simply the heat equation. The strategy for calculating option prices is
therefore to find a solution u of the heat equation in terms of the variables x

and τ and then to substitute the transformed variables by the original variables
as follows:

τ = z = σ 2

2
(T − t )

x = y + (
2(r − q)

σ 2
− 1)z = ln(

S

K
) + (r − q − σ 2

2
)(T − t )

u = er(T −t)V (7.23)

u0(x) = P(Kex,K) ,

thereby expressing the solution in terms of the original financial variables.



8
Integral Forms and Analytic Solutions

in the Black-Scholes World

In addition to Assumptions 1, 2, 3, 4, 5 and 6 from Chap. 4 required to
set up the differential equation in Chap. 7, we will now further simplify
our model by assuming that the parameters involved (interest rates, dividend
yields, volatility) are constant (Assumptions 9, 11 and thus 7 from Chap. 4)
despite the fact that these assumptions are quite unrealistic. These were the
assumptions for which Fischer Black and Myron Scholes derived their famous
analytic expression for the price of a plain vanilla option, the Black-Scholes
option pricing formula.1

For this reason, we often speak of the Black-Scholes world when working
with these assumptions. In the Black-Scholes world, solutions of the Black-
Scholes differential equation (i.e., option prices) for some payoff profiles (for
example for plain vanilla calls and puts) can be given in closed form. We will
now present two elegant methods to derive such closed form solutions.

1The mathematician Louis Bachelier was actually the first to derive analytical expressions for the valuation
of options in 1900 [7]. However, Bachelier’s derivation is based on other assumptions and his work has
been forgotten for a long time. Only through the work of Black and Scholes and nonetheless because
of the availability of computers, the use of mathematical formulas and methods has become a market
standard for the valuation of derivatives.
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8.1 Option Prices as Solutions of the Heat
Equation

The first and perhaps most natural approach would be to take advantage of
the constant parameter assumptions to transform the Black-Scholes equation
into the heat equation 7.22 as presented above. Since the solution to the heat
equation is known and given by Eq. 7.21 we simply need to write the initial
condition corresponding to the desired financial instrument in terms of the
variables x and τ , and, in accordance with Eq. 7.23, transform the solution
u back in terms of the original financial variables. We now demonstrate this
technique using a plain vanilla call as an example.

Expressing the payoff profile of the call in the variables of the heat equation
gives

P(S) = max(S − K, 0)

�⇒ u0(x) = P(Kex) = max(Kex − K, 0) = K max(ex − 1, 0) .

Substituting this into Eq. 7.21 immediately yields the solution in integral form
for this initial condition

u(x, τ) = 1

2
√

πτ

∫ ∞

−∞
e−(x−y)2/4τ u0(y) dy . (8.1)

This integral form is not only valid for plain vanilla calls but for arbitrary
European payoff profiles and the resulting initial conditions u0. The integral
can be computed numerically using, for example, the Monte Carlo method.
Decades of research on numerical methods for computing integrals can be
taken advantage of here.

In the case of the plain vanilla call, however, it is in fact possible to obtain
a closed analytical form of the solution of the above integral. Substituting the
initial condition for the call into the above equation yields

u(x, τ) = K

2
√

πτ

∫ ∞

−∞
e−(x−y)2/4τ max(ey − 1, 0) dy

= K

2
√

πτ

∫ ∞

0
e−(x−y)2/4τ (ey − 1) dy

= K

2
√

πτ

∫ ∞

0
ey−(x−y)2/4τ dy − K

2
√

πτ

∫ ∞

0
e−(x−y)2/4τ dy .



8 Integral Forms and Analytic Solutions in the Black-Scholes World 125

The second of the two integrals above can be computed after making the
change in variable ỹ ≡ (x −y)/

√
2τ implying dy = −√

2τdỹ . The integral
bounds must then be transformed as follows: 0 → x/

√
2τ and ∞ → −∞.

The integral has now become an integral over the density function of the
standard normal distribution:

K
1√
2π

∫ x/
√

2τ

−∞
e−ỹ2/2 dỹ = K N

(
x√
2τ

)
,

where N(x) denotes the cumulative normal distribution given by Eq. A.49.
The first of the above two integrals can be calculated by completing the squares
as follows

y − (x − y)2

4τ
= τ + x − (y − x − 2τ)2

4τ

This transforms the integral into

K√
2π

√
2τ

eτ+x

∫ ∞

0
e
− (y−x−2τ )2

2
√

2τ
2

dy

The remaining integral can now again be expressed in terms of the standard
normal distribution. The necessary change in variable is ỹ ≡ −(y − x −
2τ)/

√
2τ . Combining all these results the solution becomes

u(x, τ) = K ex+τ N
(

x√
2τ

+ √
2τ

)
− K N

(
x√
2τ

)
.

Substituting now for the original variables using Eq. 7.23 gives

er(T −t)V (S, t) = K eln( S
K

)+(r−q)(T −t)

× N

(
ln( S

K
) + (r − q − σ 2

2 )(T − t )
√

σ 2(T − t )
+

√
σ 2(T − t )

)

− K N

(
ln( S

K
) + (r − q − σ 2

2 )(T − t )
√

σ 2(T − t )

)

.
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After multiplying by e−r(T −t), we finally obtain the famous Black-Scholes
formula for the price of a European call:

V (S, t) = e−q(T −t)S N (x) − e−r(T −t)K N(x − σ
√

(T − t )) (8.2)

where

x ≡ ln( S
K

) + (r − q)(T − t )
√

σ 2(T − t )
+ 1

2
σ
√

(T − t ) .

This formula is still generally valid, if interest rate and volatility are time-
dependent, but deterministic. In this case, the constant interest rate and the
constant volatility just need to be replaced by their average values r̃ and σ̃ with

r̃ = 1

T − t

∫ T

t

r(s) ds and

σ̃ =
√

1

T − t

∫ T

t

σ 2(s) ds .

8.2 Option Prices and Transition Probabilities

We will now show how the foundations of stochastic analysis laid in Sect. 2.4
can be used to price options. In Sect. 7.2, we have seen that with the risk-
neutral choice of drift, the prices of derivatives are given by the discounted
expectation of the payoff profile, Eq. 7.16. This expectation is determined
using the transition probabilities p(S ′, t ′ |S, t ). If these are known, cal-
culating the price of the option reduces to simply calculating the integral.
In the Black-Scholes world, i.e., for the simple process 2.23, the transition
probabilities are given explicitly by Eq. 2.38 with μ̃ = μ + σ 2/2. Thus,
Eq. 7.16 becomes the integral form for the price of an arbitrary derivative with
an associated payoff profile f (S, T ):

V (S, t, T ) = B(t, T )

∫ ∞

−∞
f (S′, T )p(S′, T |S, t )dS′

= B(t, T )
√

2πσ 2(T − t)

∫ ∞

−∞
f (S′, T ) exp

{
− [

ln(S′/S) − μ(T − t)
]2

2σ 2(T − t)

}
dS′

S′ .

(8.3)
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This integral can be computed numerically for arbitrary payoff profiles
f (S, T ) and is equal to the price of the derivative for the risk-neutral choice
of the drift as specified in Eq. 7.19.

For some special payoff profiles, the integral can even be solved analytically,
or reduced to an expression in terms of known functions. We demonstrate this
using the concrete example of a plain vanilla call option with payoff profile
f (S ′, T ) = max(S ′ − K, 0). For this payoff profile, the integral can be
written as

V (S, t, T ) = B(t, T )
√

2πσ 2(T − t)

∫ ∞

K

(S′ − K) exp

{
− [

ln(S′/S) − μ(T − t)
]2

2σ 2(T − t)

}
dS′

S′ .

The substitution u := ln(S ′/S) simplifies the integral to

V (S, t, T ) = B(t, T )
√

2πσ 2(T − t)

∫ ∞

ln(K/S)

(Seu − K) exp

{
− [u − μ(T − t)]2

2σ 2(T − t)

}

du

(8.4)

=: B(t, T )SI1 − B(t, T )KI2 .

Both integrals I1 and I2 can be easily calculated. In the first integral we
complete the square in the argument of the exp-function:

u − [u − μ(T − t)]2

2σ 2(T − t)
= − u2 − 2μ(T − t)u + μ2(T − t)2 − 2σ 2(T − t)u

2σ 2(T − t)

= −
[
u −

(
μ + σ 2

)
(T − t)

]2 −
(
μ + σ 2

)2
(T − t)2 + μ2(T − t)2

2σ 2(T − t)

= −
[
u −

(
μ + σ 2

)
(T − t)

]2 −
(
σ 4 + 2μσ 2

)
(T − t)2

2σ 2(T − t)

=
−

[
u −

(
μ + σ 2

)
(T − t)

]2

2σ 2(T − t)
+

(

μ + σ 2

2

)

(T − t) .
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Thus, the first integral becomes

I1 ≡ 1
√

2πσ 2(T − t )

∫ ∞

ln(K/S)

exp

{

u − [u − μ(T − t )]2

2σ 2(T − t )

}

du

= e(μ+σ 2/2)(T −t)

√
2πσ 2(T − t )

∫ ∞

ln(K/S)

exp

{
− [

u − (
μ + σ 2

)
(T − t )

]2

2σ 2(T − t )

}

du .

With the substitution

y := −u − (
μ + σ 2

)
(T − t )

√
σ 2(T − t )

⇒

dy

du
= −1/

√
σ 2(T − t ) ⇒ du = −

√
σ 2(T − t )dy

the upper and lower limits of integration become

yupper = −∞ − (
μ + σ 2

)
(T − t)

√
σ 2(T − t)

= −∞

ylower = − ln(K/S) − (
μ + σ 2

)
(T − t)

√
σ 2(T − t)

= ln(S/K) + (
μ + σ 2

)
(T − t)

√
σ 2(T − t)

.

Exchanging the upper and lower limits results in a change in the sign of the
integral. This is compensated for by the sign of du. Combining the above
results, I1 becomes after this substitution

I1 = e(μ+σ 2/2)(T −t) 1√
2π

∫ ln(S/K)+(μ+σ2)(T −t)√
σ2(T −t)

−∞
exp

{−y2

2

}
dy

= e(μ+σ 2/2)(T −t)N

(
ln(S/K) + (

μ + σ 2
)
(T − t )

√
σ 2(T − t )

)

,

where, as usual, N denotes the cumulative standard normal distribution.
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The second integral can be computed after making the substitution y :=
−(u − μ(T − t ))/

√
σ 2(T − t ):

I2 ≡ 1
√

2πσ 2(T − t )

∫ ∞

ln(K/S)

exp

{
1

2

− [u − μ(T − t )]2

σ 2(T − t )

}

du

= 1√
2π

∫ ln(S/K)+μ(T −t)√
σ2(T −t)

−∞
exp

{
−y2

2

}
dy

= N

(
ln(S/K) + μ(T − t )

√
σ 2(T − t )

)

The generalization of Eq. 7.19 for the risk-neutral choice of drift in arbitrary
compounding methods is (see Eq. 9.25)

μ(T − t) := ln

(
Bq(t, T )

B(t, T )

)
− σ 2

2
(T − t)}

with Bq(t, T ) = exp(−q(T − t )). This simplifies the integrals further to

I1 = Bq(t, T )

B(t, T )
N (x) I2 = N

(
x − σ

√
T − t

)
.

where x is, as usual, given by

x = ln(
Bq(t,T )S

B(t,T )K
) + 1

2σ 2(T − t )
√

σ 2(T − t )
. (8.5)

Collecting these results, we obtain the price of a plain vanilla call as

V (S, t, T ) = B(t, T )SI1 − B(t, T )KI2

= Bq(t, T )S(t)N (x) − B(t, T )K N
(
x − σ

√
T − t

)
.

(8.6)

Again, this is the famous Black-Scholes option pricing formula and corresponds
exactly to Eq. 8.2 for continuous compounding.
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8.3 Compilation of Black-Scholes Option Prices
for Different Underlyings

8.3.1 Options on the Spot Price

The above derivation holds for a call on an underlying with a continuous
compounding dividend yield. However, in reality, dividends are paid as discrete
amount at only a few days per year, often once a year only. Such a discrete
dividend payment could either be modeled as a fixed absolute amount
(absolute discrete dividend) or as an amount relative to the spot price at the
ex-dividend date (relative discrete dividend). A simple approach for taking
discrete dividends into account is to adjust the spot price of the underlying by
subtracting the value of the dividend for the considered time period according
to Eq. 2.9. The adjusted spot price can be modeled like an underlying that
does not pay any dividends. The payoff profile and the Black-Scholes value
are summarized here for puts and calls. The payoff profiles at time T are:

cS(T , T ,K) = max {0, S(T ) − K}
pS(T , T ,K) = max {0,K − S(T )} .

The Black-Scholes option prices at time t are:

cS(t, T ,K) = S̃(t, T )N( x) − K B(t, T )N( x − σ
√

T − t)

pS(t, T ,K) = −S̃(t, T )N(−x) + K B(t, T )N(−x + σ
√

T − t )

(8.7)

where

x =
ln

(
S̃(t,T )

K B(t,T )

)

σ
√

T − t
+ 1

2
σ
√

T − t =
ln

(
S(t,T )

K

)

σ
√

T − t
+ 1

2
σ
√

T − t .

The application of this famous Black-Scholes option pricing formula
to option portfolios is demonstrated in detail in the Excel workbook
BlackScholesModel.xls from the download section [50]. In this workbook,
the derivatives of the option price with respect to its parameters, called the
Greeks, are also computed in anticipation of Chap. 12. The workbook can be
used as a complete option calculator (the fields colored yellow are the input
fields).
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8.3.2 Options on the Forward Price

The underlying is now not the spot price S(t) but the forward price S(t, T ′)
for a time T ′ ≥ T , where T is the maturity date of the option. Options on
the forward price refer to either futures or forwards. If physical settlement was
agreed, exercising the option yields in both cases to the payment of the value of
the underlying forward contract. In addition, the exerciser of the option goes
long (in the case of a call) or short (in the case of a put) in the forward contract
concerned.2 Since the value of a futures and forward position according to
Eqs. 6.6 and 6.5, respectively, are different, the payoff profile and thus the
value of options on these contracts are different as well.

Options on Futures

Upon maturity at time T of the option, the value of the future with a maturity
date T ′ ≥ T is paid if this value is positive. The payoff profiles are

cF (T , T ,K) = max
{
0, FS(T , T ′,K)

} = max
{
0, S(T , T ′) − K

}

pF (T , T ,K) = max
{
0, −FS(T , T ′,K)

} = max
{
0,K − S(T , T ′)

}
.

Amethod often used to find the Black-Scholes price is to transform the payoff
profile into a payoff profile of a known option. For this reason, we write the
payoff profile of the call as

cF (T , T , K) = Bq(T , T ′)
B(T , T ′)

max

{
0, S(T ) − B(T , T ′)

Bq(T , T ′)
K

}
.

where we have used Eq. 6.1 for the forward price at time T (for the case of
a dividend yield q). Thus, the price of a call on a future with strike price K

can be written as the price of Bq/B calls on the spot price with strike price
KB/Bq . The argument for the put is completely analogous. A call on a future
with strike price K thus has the same payoff profile as Bq/B calls on the spot
with strike price KB/Bq. Thanks to of Eq. 8.7, the price of an option on

2But of course with the then valid forward price as the delivery price so that the forward contract—as
always—has zero value when entered into.
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the spot price is known. Substituting KB/Bq for the strike price and using
Eq. 2.7 for B and Bq yields:

cS(t, T ,K) = Bq(T , T ′)
B(T , T ′)

[Bq(t, T )S(t)N(x ′)

− B(t, T )K
B(T , T ′)
Bq(T , T ′)

N(x ′ − σ
√

T − t)]

= Bq(t, T
′)

B(T , T ′)
S(t)N(x ′) − B(t, T )KN(x ′ − σ

√
T − t) .

Here, x ′ corresponds to the x in Eq. 8.7 with the modified strike price:

x ′ =
ln

(
Bq(t,T )S(t)

B(t,T )[K B(T ,T ′)/Bq (T ,T ′)]

)

σ
√

T − t
+ 1

2
σ
√

T − t

=
ln

(
Bq(t,T

′)S(t)

B(t,T ′)K

)

σ
√

T − t
+ 1

2
σ
√

T − t .

Now, again with the help of Eq. 6.1, the spot price S(t) is written in terms of
the actual underlying, namely the forward price. Using the expression for B

in Eq. 2.7 finally gives the Black-Scholes price for options on futures:

cF (t, T ,K) = B(t, T )
[
S(t, T ′)N(x ′) − K N(x ′ − σ

√
T − t)

]

pF(t, T ,K) = B(t, T )
[
−S(t, T ′)N(−x ′) + K N(−x ′ + σ

√
T − t)

]

(8.8)

where

x ′ =
ln

(
S(t,T ′)

K

)

σ
√

T − t
+ 1

2
σ
√

T − t .

Comparing this with the corresponding prices for options on the spot prices,
Eq. 8.7, for the special case of an underlying whose dividend yield is exactly
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equal to the risk-free interest rate, in other words where (from Eq. 2.9)
S̃(t, T ) = B(t, T )S(t), we obtain the following “cookbook” recipe:

Plain vanilla option on futures can be priced like options on the spot price of an
(artificial) underlying whose spot price is equal to S(t, T ′) and whose dividend
yield is equal to the risk free rate r.

If the future matures at the same date as the option, i.e., if T ′ = T , then
there is (because of Eq. 6.1) no difference in either the payoff profile or the
price of the option on the future and the option on the spot price. In this case
Eq. 8.8 (i.e., pricing options using the forward price, even if it is an option on
the spot price) is referred to as the Black-76 model.

In summary, if either T = T ′ or q = r , there is no difference in the option
on a futures contract and the option on a spot price.

Options on Forwards

On the maturity date T of the option, the value of the forward maturing on
T ′ ≥ T will be paid to the holder of a call if this value is positive. This is
different from the value of the future since in the case of a forward, the value
is discounted from maturity T

′ back to T (see Eq. 6.5). The payoff profiles
are thus:

cf (T , T , K) = max
{
0, fS(T , T ′, K)

} = B(T , T ′) max
{
0, S(T , T ′) − K

}

pf (T , T , K) = max
{
0, −fS(T , T ′, K)

} = B(T , T ′) max
{
0, K − S(T , T ′)

}
.

Comparing this with the payoff profiles for options on futures shows that an
option on a forward corresponds to B options on the future. Therefore the
Black-Scholes prices can be immediately obtained from Eq. 8.8

cf (t, T ,K) = B(t, T ′)
[
S(t, T ′)N(x ′) − K N(x ′ − σ

√
T − t )

]

pf (t, T ,K) = B(t, T ′)
[
−S(t, T ′)N(−x ′) + K N(−x ′ + σ

√
T − t)

]

(8.9)
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with x′ defined as in Eq. 8.8. The difference between this and Eq. 8.8 is that for
options on forwards the discounting is done from the maturity of the forward
contract T ′, whereas for options on futures the discounting is done from the
maturity of the option T .

If the forward matures on the same date as the option, T ′ = T , there is
no difference in the payoff profile or in the Black-Scholes price between an
option on the forward and an option on the spot price. In this case, the prices
of an option on the spot, an option on a future and an option on a forward
are all equal.

8.3.3 Options on Interest Rates

Forward Volatilities

In the derivation of the Black-Scholes equation for options on the forward
price, it has been assumed that volatility remained constant throughout.
Therefore, in Eq. 8.8 and Eq. 8.9 the volatility of the spot price is used, though
the underlying is the forward price. That is because the volatility of the forward
price and the spot price are the same if the volatility is constant. This model
is commonly referred to as the Black-76 model.

The Black-76 model is commonly used especially when the underlying S is
an interest rate or an interest rate instrument (like a bond, for instance). It can
be shown that the Black-76model holds even when the Black-Scholes assump-
tions are weakened somewhat. The underlying process must not necessarily be
a random walk with constant volatility. It is sufficient that the logarithm of the
underlying S(T ) at option maturity is normally distributed. The variance of
the distribution of ln(S(T )) will be written as

var [ln S(T )] = σ(T )2T

The parameter σ(T ) is called the forward volatility. It is the volatility of the
underlying price S(T ) atmaturityT . Because the Black-76model “lives” in the
Black-Scholes world, interest rates are assumed to be non-stochastic. Therefore
the forward price S(t, T ) and the future price S(T ) are equal if the underlying
S is an interest rate or an interest rate instrument.3 At an earlier time t < T

we can thus use the forward price S(t, T ) for S(T ) and the current volatility
of this forward price for the forward volatility.

3This will be shown explicitly in Sect. 14.3.
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Normally Versus Log Normally Distributed Interest Rates

The Black-76 model is applied to options on interest rate instruments such
as bonds as well as to options which depend directly on interest rates, such as
caps and floors. For S(t, T ) we take either the forward price of the underlying
instrument (for example, of the bond) or the forward rate of the reference
interest rate (3-month LIBOR rate in 6 months, for example). In both cases
the application of the Black-76 model implicitly assumes that each underly-
ing (bond price or interest rate) is lognormally distributed. However, both
assumptions contradict each other. Yields are the logarithms of relative price
changes. If, in the case of a bond option, it is assumed that these logarithms
are normally distributed, the interest rates (=yields) cannot simultaneously be
lognormally distributed. This is, however, common market practice: bond
options are priced under the assumption that bond prices are lognormally
distributed, i.e., that interest rates are normally distributed.On the other hand,
caps, floors and collars are priced under the assumption that interest rates are
lognormally distributed (similarly, swaptions are priced under the assumption
of lognormal swap rates).

Though, this inconsistency does not imply that the option prices are also
inconsistent, since the used volatilities are different (bond price volatility vs.
interest rate volatility). As will be shown in Sect. 30.3.3, price volatility and
yield volatility are related to one another through the modified duration, see
Eq. 30.18 (in linear approximation).

Now the question arises, which of both assumptions is indeed correct?
Actually, both assumptions are neither completely wrong nor fully true.
Empirical analysis of interest rate time series shows that the distribution of
interest rates depends on the interest rate level (e.g., see [161]). For low or
very high interest rate levels (i.e. lower than 1.2% or greater than 5.6%),4
the distribution of interest rate is lognormal, while within these boundaries
the distribution is normal. Common interest rate models, modeling the time
evolution of the full interest rate term structure, with consistent modeling
of e.g. Caps as well as bond options, usually assume either normally or
lognormally distributed interest rates. For a more detailed discussion of the
pros and cons of various models see Chap. 14.

4However, own studies conclude that it is not possible with statistical significance to discriminate between
the lognormally and normally distributed interest rate assumption; at least with a advent of negative
interest rates the (unmodified) lognormally distribution assumptions has to be ruled out for low interest
rate levels.
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Here, it should be enough to note that simple interest rate options are prices
by means of Black-75 and that the according underlying is assumed to be
lognormally distributed. In Case of Caps, Floors and Collars, the underlying
is a forward interest rate, in the case of bond options it is the bond price and in
the case of swaptions the (forward) swap rate (the assumption of lognormally
distributed swap rates, which is a weighted sum of forward rates, is inconsistent
with the assumption of lognormally distributed forward rates as well as with
the assumption of normally distributed forward rates).

The Black-76 formula could best be understood as a vehicle to price option
in an intuitively, simple form (by expressing the price in terms of the Black-76
volatility). Then, the inconsistent assumptions do not cause any trouble, if the
markets are kept thoroughly separated and not mixed up.

With negative interest rates in some markets, the Black-76 is increasingly
replaced by normal models or shifted log normal models (i.e. assuming that
rates plus an offset are lognormally distributed).

Black-76 Model for Interest Rate Options

With the above interpretations of the input parameters and under the assump-
tions described above, Eq. 8.8 yields the Black-76 model for interest rate
options. Explicitly:

c(t, T ,K) = B(t, T )
[

S(t, T )N( x) − K N( x − σ
√

T − t)
]

p(t, T ,K) = B(t, T )
[
−S(t, T )N(−x) + K N(−x + σ

√
T − t)

]
,

(8.10)

where

x =
ln

(
S(t,T )

K

)

σ
√

T − t
+ 1

2
σ
√

T − t .

Here, S(t, T ) is either the forward rate of the underlying interest rate or
forward price of an underlying interest rate instrument (like a bond, for
example). This equation forms the basis for pricing interest rate option in the
Black-Scholes world. Formally, the difference between this and Eq. 8.8 is that
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the forward price with respect to the option’s maturity is used, i.e., T = T ′. As
mentioned after Eq. 8.8, there is no difference in this case between an option
on a forward price and an option on a spot price. We could just as well work
with Eq. 8.7. The only subtlety involved is that the forward volatility or the
volatility of the forward rate should be used.



9
Binomial and Trinomial Trees

Binomial and trinomial trees are very intuitive and comparatively easy to
implement tools to calculate prices and sensitivity parameters of derivatives
while avoiding direct reference to the fundamental differential equations
governing the price of the instrument. In practice, tree methods are applied
occasionally only nowadays, since other methods, e.g. the finite difference
methods (see Chap. 10), show significantly superior numerical features with
respect to stability, accuracy, and flexibility. For pedagogical reasons however,
it is useful to learn these tree methods, because of the illustrative and direct
approach to the valuation of financial derivatives.

In addition to the usual assumptions when excluding arbitrage opportu-
nities (Assumptions 1, 2, 3, and 5), non-stochastic interest rates and default
risk (Assumptions 8 and 4) of Chap. 4 will be also assumed in the subsequent
sections. These assumptions allow a general theory of binomial trees to be
presented. In order to actually calculate option prices, the underlying must
be assumed to behave according to a model. Thus, from Sect. 9.3 onwards,
it will be assumed that the underlying can be modeled as a random walk
with non-stochastic volatility, i.e., the additional Assumptions 7 and 10 from
Chap. 4 will be made. Furthermore, we will assume that the underlying earns
a dividend yield in accordance with Eq. 2.9 rather than discrete dividend
payments.
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9.1 General Trees

9.1.1 Evolution of the Underlying and the Replicating
Portfolio

Generally, in a tree procedure, the time span in question (the lifetime of the
derivative) between t and T is divided into n time intervals of equal length dt :

T − t = n dt . (9.1)

In each such time interval the underlying price S(t) may increase in value to
u S (with u > 1) with a probability p′, or it may decrease in value to dS (with
d < 1) with a probability (1 − p′)

S(t) →
〈

Su(t + dt) = u(t)S(t) with probability p′

Sd(t + dt) = d(t)S(t) with probability 1 − p′ .
(9.2)

After three steps, for example, the price can take on 23 = 8 possible values:

S(t) →
〈

u(t)S(t)

〈u(t + dt)u(t)S(t)

〈
u(t + 2dt)u(t + dt)u(t)S(t)

d(t + 2dt)u(t + dt)u(t)S(t)

d(t + dt)u(t)S(t)

〈
u(t + 2dt)d(t + dt)u(t)S(t)

d(t + 2dt)d(t + dt)u(t)S(t)

d(t)S(t)

〈u(t + dt)d(t)S(t)

〈
u(t + 2dt)u(t + dt)d(t)S(t)

d(t + 2dt)u(t + dt)d(t)S(t)

d(t + dt)d(t)S(t)

〈
u(t + 2dt)d(t + dt)d(t)S(t)

d(t + 2dt)d(t + dt)d(t)S(t) .

Consider now a portfolio consisting of� underlyings and g monetary units
in cash. If the dividend yield q earned in the time interval dt is paid, the cash
is compounded at a risk-free rate r and the price of the underlying behaves as
described above, the value of the portfolio after dt is given by

�(t)S(t) + g(t) →
〈
� (t)u(t)S(t)B−1

q (t) + g(t)B−1(t)

� (t)d(t)S(t)B−1
q (t) + g(t)B−1(t) .

(9.3)
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Here, for the sake of simplifying the notation for the discount factors over a
small time interval dt we have defined

B(t) := B(t, t + dt) , Bq(t) := Bq(t, t + dt) . (9.4)

In the following sections, � and g will be chosen so that the price of this
portfolio behaves exactly as does the value of the derivative we wish to price.
This value of the portfolio will then replicate the value of the derivative at each
time point and is thus referred to as the replicating portfolio.

9.1.2 Evolution of the Derivative

If the underlying moves in accordance with Eq. 9.2 in the time interval dt,

the price V of a derivative on this underlying evolves in accordance with

V (S, t) →
〈

V (Su, t + dt)

V (Sd, t + dt) ,

where V u and V d represent the value of a derivative1 whose underlying has
a price of Su and Sd, respectively. Setting the value of the portfolio (Eq. 9.3)
equal to the value of the derivative at time t as well as after the next binomial
step t + dt , we obtain the following three equations:

V (S, t) = �(t) S(t) + g(t) (9.5)

V (Su, t + dt) = �(t) u(t)S(t)B−1
q (t) + g(t)B−1(t) (9.6)

V (Sd, t + dt) = �(t) d(t)S(t)B−1
q (t) + g(t)B−1(t) (9.7)

1In order to emphasize that this method is valid for all kinds of derivatives, we will continue to denote the
value of the derivative with the letter V .
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These can be easily rearranged2 to express the number of underlyings, the cash
amount and the value of the derivative at time t in terms of values at time t+dt :

�(t) = V (Su, t + dt) − V (Sd, t + dt)

[u(t) − d(t)]S(t)/Bq(t)

g(t) = u(t) V (Sd, t + dt) − d(t) V (Su, t + dt)

[u(t) − d(t)]/B(t)

V (S, t) = B(t) [p(t)V (Su, t + dt) + (1 − p(t))V (Sd, t + dt)] (9.8)

where

p(t) = Bq(t)/B(t) − d(t)

u(t) − d(t)
. (9.9)

In Eq. 9.8, we have succeeded in expressing the unknown value of the
derivative at time t in terms of quantities known at time t , namely Bq(t),

B(t), u(t) and d(t), (in Chap. 13, we will show how the values of u and d

are determined) and the (likewise unknown) derivative values at time t + dt .
The reader might ask what this has accomplished. This expression will in deed
prove to be useful if the value of the derivative at a future time is known. Such
a future time is, for example, the maturity date T of the derivative. At this
time, the value of the derivative as a function of the underlying price is given
explicitly by its payoff profile, and as such, is known. The strategy is thus to
repeat the procedure described above until reaching a time at which the value
of the option is known (in most cases, maturity T ). This procedure will be
demonstrated below.

Equation 9.8 holds for European derivatives since it is implicitly assumed
that the option still exists after a time step has been taken. In order to account
for the possibility of exercising early as in the case of derivatives with American
features, the derivative’s value as given in Eq. 9.8 is compared with its intrinsic

2Subtracting Eq. 9.7 from Eq. 9.6 yields

V u
S − V d

S = �(t) (u − d)S(t)B−1
q (t) .

This allows us to isolate the �(t) term easily. Multiplying Eq. 9.7 by u, and Eq. 9.6 by d and subtracting
the results yields

u V d
S − d V u

S = (u − d)g(t)B−1(t) .

This can be readily solved for g(t). Substituting the expressions thus obtained for �(t) and g(t) into
Eq. 9.5 yields the value of the derivative VS(t, T ,K).
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value at each node in the tree. Then the larger of the two values is taken as
the derivative price at that node. For instance for American calls and puts
with payoff profiles S(t) − K and K − S(t), respectively, Eq. 9.8 would be
replaced by

CS(t) = max
{
B(t)

[
p(t)Cu

S(t + dt) + (1 − p(t))Cd
S(t + dt)

]
, S(t) − K

}

PS(t) = max
{
B(t)

[
p(t)P u

S (t + dt) + (1 − p(t))P d
S (t + dt)

]
, K − S(t)

}
.

9.1.3 Forward Contracts

The evolution of the replicating portfolio consisting of underlyings and cash
in a bank account is described by Eq. 9.3. According to Eq. 6.6, the evolution
of a futures position is given by

V (S, t) →
〈

V (Su, t + dt) = Su(t + dt, T ) − S(t, T )

V (Sd, t + dt) = Sd(t + dt, T ) − S(t, T ) .

Here, it is not the value of the future at time t which is unknown (this is equal
to zero since K = S(t, T )), but the forward price of the underlying S(t, T ).
Setting the portfolio equal to the future at both time t and at the next time in
the binomial tree t + dt yields three equations:

0 = V (S, t) = �(t) S(t) + g(t) (9.10)

Su(t + dt, T ) − S(t, T ) = V (Su, t + dt) = �(t) u(t)S(t)B−1
q (t) + g(t)B−1(t)

(9.11)

Sd(t + dt, T ) − S(t, T ) = V (Sd, t + dt) = �(t) d(t)S(t)B−1
q (t) + g(t)B−1(t)

(9.12)

With the help of these three equations, the number of underlyings, the money
in the bank account and the forward price at time t can (making use of the
expression p defined in Eq. 9.9) be expressed3 in terms of the forward price

3Subtracting Eq. 9.11 from Eq. 9.12 yields

Su(t + dt, T ) − Sd (t + dt, T ) = �(t) (u − d)S(t)B−1
q (t) .
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at time t + dt :

�(t) = Su(t + dt, T ) − Sd(t + dt, T )

[u(t) − d(t)]S(t)Bq(t)
(9.13)

g(t) = −Su(t + dt, T ) − Sd(t + dt, T )

[u(t) − d(t)]Bq(t)

S(t, T ) = p(t)Su(t + dt, T ) + (1 − p(t))Sd(t + dt, T ) .

9.2 Recombining Trees

9.2.1 The Underlying

If the parameters u and d are independent of time4

u(t + j dt) = u(t) ≡ u ∀j , d(t + j dt) = d(t) ≡ d ∀j

then obviously udS(t) = duS(t) holds, i.e., an upward move followed by a
downward move results in the same underlying price as a downward move
followed by an upward move. Thus the tree is forced to recombine. This
significantly reduces the number of possible nodes, making the computation
much more efficient. Such a recombining binomial tree has the form depicted
in Fig. 9.1. The probability for a single path ending at S(T ) = ujdn−j S(t) is

p′j (1 − p′)n−j .

The number of all paths ending at S(T ) = ujdn−j S(t) can be deduced from
permutation laws and is given by the binomial coefficient

(
n

j

)
≡ n!

j !(n − j)! .

This allows us to easily isolate �(t). Because of Eq. 9.10, g(t) = −�(t)S(t) holds, which immediately
yields g(t) if �(t) is known. Substituting the expressions for �(t) and g(t) into Eq. 9.11 or Eq. 9.12
yields, after a simple calculation, the forward price S(t, T ).
4It is possible to construct recombining trees with time-dependent u and d, if at the same time some other
constraint, e.g. constant time steps, is dropped.
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Fig. 9.1 The first steps in a recombining binomial tree

The probability in the above tree of arriving at a value S(T ) = ujdn−j S(t)

regardless of the path taken to get there is equal to the number of such paths
multiplied by the probability of realizing such a path.

P
[
S(T ) = ujdn−j S(t)

] =
(

n

j

)
p′j (1 − p′)n−j = Bn,p′(j) . (9.14)

This is the definition of the probability density function of the binomial
distribution, see Sect. A.4.2. This is how the binomial distribution enters into
the binomial trees.

9.2.2 The Binomial Distribution for European Derivatives

In addition to the assumptions made at the beginning of Chap. 9 and the one
just made, namely that the parameters u and d are constant over time, we will
henceforth assume that the yields (interest rates and dividends) are constant
over time as well, i.e., that Assumptions 9 and 12 from Chap. 4 hold5:

B(t + j dt) = B(t) ∀j , Bq(t + j dt) = Bq(t) ∀j . (9.15)

In consequence, the parameter p defined in Eq. 9.9 is time independent as
well:

p(t + j dt) = p(t) = p ∀j .

5On both sides we use here again the short notation defined in Eq. 9.4.
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Equation 9.8 holds not only at time t but for other times as well, for example
at time t + dt . This is true for both V u

S and V d
S :

V (Su, t + dt) = B(t) [p V (Suu, t + 2dt) + (1 − p)V (Sud, t + 2dt)]

V (Sd, t + dt) = B(t) [p V (Sud, t + 2dt) + (1 − p)V (Sdd, t + 2dt)] .

Substitution into Eq. 9.8 leads to an expression for V (S, t) as a function of
the derivative price at time t + 2dt. Analogous expressions can be obtained
for V uu

S , V ud
S , etc. This recursive procedure performed iteratively for n =

(T − t )/dt binomial steps gives

V (S, t) = B(t, T )

n∑

j=0

(
n

j

)
pj(1 − p)n−jV

(
ujdn−j S(t), T

)

= B(t, T )

n∑

j=0

Bn,p(j)V
(
ujdn−jS(t), T

)
, (9.16)

where the second line was obtained by observing that
(
n

j

)
pj(1 − p)n−j

corresponds to a binomial probability density Bn,p(j) but with parameters
n and p (not with p′ as in Eq. 9.14).

Thus the value of the derivative at time t has been expressed as a sum over
its values at a later time T . If this time T is chosen to be the maturity then the
value of the derivative at time t is written in terms of its payoff profile. This
reads explicitly for European calls and puts

cs(t) = B(t, T )

n∑

j=0

(
n

j

)
pj(1 − p)n−j max

{
0, ujdn−j S(t) − K

}

ps(t) = B(t, T )

n∑

j=0

(
n

j

)
pj(1 − p)n−j max

{
0,K − ujdn−j S(t)

}
.

Because of the maximum function appearing in the summand, the sum for
the call is effectively taken over the values of j for which ujdn−jS(t) is larger
than K . This condition can be written as (u/d)j > d−nK/S. Taking the
logarithm of both sides yields the equivalent condition

j > ln

(
K

S(t)dn

)
/ ln

(u

d

)
.
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The sum is taken over whole numbers j. The smallest whole number greater
than the right-hand side in the above inequality is

y = 1 + Trunc
(

ln(
K

S(t)dn
)/ ln(

u

d
)

)
, (9.17)

where the function “Trunc” is defined as the greatest whole number smaller
than the argument (decimal values are simply truncated and not rounded).
The number y defined in Eq. 9.17 is thus the lower limit in the sum for the
call (correspondingly, the sum for the put is taken over the whole numbers j

ranging from 0 to the upper limit y − 1). The value of a call is thus

cs(t) = S(t)B(t, T )

n∑

j=y

(
n

j

)
pj (1 − p)n−j uj dn−j − KB(t, T )

n∑

j=y

(
n

j

)
pj (1 − p)n−j

︸ ︷︷ ︸
Bn,p(j≥y)

.

According to Eq. A.42, the last sum is the probability that a binomially
distributed random variable (where Bn,p denotes the binomial distribution
with parameters n andp) is greater than or equal to y. Under Assumption 9.15
that yields are constant, i.e., Br(t) = Br independent of t , we can write

B(t, T ) =
n−1∏

k=0

B(t + kdt) = Bn , Bq(t, T ) = Bn
q .

Now the first sum can be represented as a binomial probability as well:

cs(t) = S(t)Bq(t, T )

n∑

j=y

(
n

j

)
pjuj Bn

Bn
q

(1 − p)n−j dn−j (9.18)

− KB(t, T )

n∑

j=y

(
n

j

)
pj (1 − p)n−j

= S(t)Bq(t, T )

n∑

j=y

(
n

j

)
p̂j (1 − p̂)n−j

︸ ︷︷ ︸
Bn,p̂(j≥y)

− KB(t, T )

n∑

j=y

(
n

j

)
pj (1 − p)n−j

︸ ︷︷ ︸
Bn,p(j≥y)
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where6

p̂ = u
B

Bq

p ⇒ 1 − p̂ = d
B

Bq

(1 − p) .

The value of a European put can be determined analogously with the help
of the binomial distribution. So the prices of European options expressed in
terms of binomial distributions are

cs(t) = Bq(t, T ) S(t)Bn,p̂(j ≥ y) − B(t, T )KBn,p(j ≥ y)

ps(t) = −Bq(t, T ) S(t)
[
1 − Bn,p̂(j ≥ y)

] + B(t, T ) K
[
1 − Bn,p(j ≥ y)

]
.

(9.19)

Note the similarity to the famous Black-Scholes equation (see, for example
Eq. 8.6 or Eq. 8.7). The difference is that the binomial distribution appears
in the above expression in place of the normal distribution. In Sect. 9.4,
we will see that the binomial distribution for infinitesimally small intervals
dt converges towards a normal distribution and thus the binomial model
approaches the Black-Scholes model in the limit dt → 0.

As another example of the above procedure we demonstrate how the forward
price can be determined by iterating Eq. 9.13 for n = (T − t )/dt binomial
steps

S(t, T ) =
n∑

j=0

(
n

j

)
pj(1 − p)n−jujdn−jS(t) ,

6Writing Su = uS and Sd = dS in the third equation in 9.13 and using Eq. 6.1 for S(t, T ) yields

Bq

B
S(t) = p u S(t) + (1 − p) d S(t) .

Dividing by the left-hand side gives

1 = p
B

Bq

u + (1 − p)
B

Bq

d .

It then follows immediately that

1 − p̂ ≡ 1 − u
B

Bq

p = d
B

Bq

(1 − p) .
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where the spot price S(T ) for the forward contract after n steps is substituted
into the equation, since the maturity date T will have been reached after this
time. Under the assumption of constant interest rates and dividend yields, we
obtain

S(t, T ) = Bq(t, T )

B(t, T )
S(t)

n∑

j=0

(
n

j

)
pjuj Bn

Bn
q

(1 − p)n−jdn−j

= Bq(t, T )

B(t, T )
S(t)

n∑

j=0

(
n

j

)
p̂j (1 − p̂)n−j = Bq(t, T )

B(t, T )
S(t)Bn,p̂(j ≥ 0)

︸ ︷︷ ︸
1

,

corresponding to the result in Eq. 6.1 obtained solely on the basis of arbitrage
considerations.

9.2.3 A Third Contact with the Risk-Neutral World

Neither for derivatives (see Eq. 9.8) nor for forward prices (see Eq. 9.13) does
the probability p′ for the underlying S to increase to Su (see, for example
Eq. 9.2) enter into any equation. The valuation of derivatives (or forward
prices) does not depend on the probability that the underlying rises or falls!
Instead, it depends on the value p as defined in Eq. 9.9. If we could interpret
p as a kind of “artificial probability”, and if for pricing purposes we could
put ourselves into an “artificial world” in which, after one step, the price of
the underlying is given by Su with this “probability” p (and not with the
probability p′as in the real world), then the probability for the underlying to
decrease to Sd over one time step would be (1 − p) in this “artificial world”.
The expression in brackets in Eq. 9.8 would then just be the expectation of
the derivative price one time step later with respect to the probability p in
the artificial world. This holds for many time steps as well, since the binomial
density Bn,p(j) appearing in Eq. 9.16 is the probability in the artificial world
for the underlying to arrive at the value S(T ) = ujdn−j S(t); just as Eq. 9.14
was this probability in the real world. The sum in Eq. 9.16 over all the
derivative values is then the expectation of the derivative value at the future
time T in the artificial world.

We can summarize our observations in the following way: In an artificial
world, where the probability of an up-move is p (and not p′ as in the real
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world), today’s price of a derivative is the expectation of its future price
discounted back to today.

V (S, t) = B(t, T )Ep [V (S, T )] Derivat (z. B. Option) auf S . (9.20)

The notation “Ep[]” here means: “expectation with respect to the probability
p”.

Likewise, the forward price of the underlying in Eq. 9.13 is exactly the
expectation of the underlying’s price at the future time T with respect to the
probability p:

S(t, T ) = Ep [S(T )] Forward Price of S . (9.21)

In the case of forward prices (which are not tradable financial instruments
themselves) the expectation is not discounted.

By substituting Eq. 6.1 for S(t, T ) into the above equation it follows that the
dividend-adjusted spot price of the underlying (which is a tradable financial
instrument) likewise can be expressed as the discounted expectation with
respect to this probability

S̃(t, T ) = B(t, T )Ep [S(T )] Spot price S . (9.22)

As in Sects. 7.1.3 and 7.2.1, it does not matter if the underlying is expected
to rise or fall in the real world. This plays no role in the valuation of derivatives
on the underlying.The valuation is independent of the expected changes in the
underlying. In contrast to the real world where investors are compensated for
taking the risk of investing in an underlying by the underlying’s mean return,
this mean return doesn’t play any role at all in the artificial world used for
pricing derivatives. This artificial world is thus neutral to the risk inherent in
the underlying and is therefore called the risk-neutral world and the probability
p is called the risk-neutral probability. We are again confronted with the risk
neutrality described in Sects. 7.1.3 and 7.2.1.

This risk neutrality is caused by the fact that the option buyer would
hedge himself against the risk of an unfavorable development of the option
underlying by entering into a portfolio of shares and cash, which replicates
the option pay off at expiry. Therefore, he has eliminated the risk and his
total position is risk neutral. The cost for the derivative is identical to the cost
of this replication strategy. Would the seller value the derivative differently,
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an arbitrage opportunity would arise, since the potential buyer could apply
the replication strategy in order to earn a risk-less profit. Likewise, because of
this effect, different market participants would be able to agree on the same
option price independently of their estimate of the future development of the
underlying. Based on these arbitrage considerations making use of the fact
that options and futures can be replicated by a portfolio consisting of the
underlying and risk-free assets, it follows that a purely objective, risk-neutral
probability p for an up-move in a risk-neutral world exists, eliminating any
subjectivity (see Eq. 9.9). On the other hand, a derivative buyer, who does
plan to hedge his derivative position by means of a strategy replicating the pay
off profile (and also does not need this derivative to hedge some other existing
positions), would rely on a valuation of the derivative based on his subjective
judgment about the future market development. He would indeed seek his
advantage in making a profit by means of the difference between risk neutral
valuation and the real world development. Of course, this strategy would not
be risk-free anymore.

To see how powerful Eqs. 9.20, 9.21 and 9.22 are, we have to be more
specific. We now choose a stochastic process for the underlying. In what
follows, we will assume that the relative changes of S(t) behave as a random
walk as in Eq. 2.17, i.e., we will rely on Assumption 7 from Chap. 4. But
Eq. 2.17 was established to model the behavior of S in the real world.7 We
will show later,8 however, that if S performs a random walk in the real world,
it also performs a random walk in the risk-neutral world. The distribution and
first moments of such a random walk are those given in Table 2.7 at the end
of Sect. 2.3. Thus, the underlying is lognormally distributed with expectation

〈S(T )〉 = S(t)e(μ+σ 2/2)(T −t) . (9.23)

In the risk-neutral world (i.e., in the world we need for pricing) this expec-
tation has to be equal to the expectation Ep [S(T )] with respect to the
risk-neutral probability p:

〈S(T )〉 != Ep [S(T )] .

7A “risk-neutral” world was never mentioned in the vicinity of Eq. 2.17, nor in the whole of Chap. 2.
8We will explicitly show this in great detail and on a much more fundamental basis in Chap. 13 when we
discuss the famous Girsanov theorem.
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Substituting Eqs. 9.22 and 9.23 into this requirement completely determines
the drift μ of the underlying in the risk-neutral world, i.e., the drift to be used
for pricing:

S(t)e(μ+σ 2/2)(T −t) != S̃(t, T )

B(t, T )

⇔ μ
!= 1

T − t
ln

(
S̃(t, T )

S(t)B(t,T )

)

− σ 2

2
.

Using the forward price equation 9.21 instead, we obtain the drift from the
ratio of forward price to spot price:

S(t)e(μ+σ 2/2)(T −t) != S(t, T )

⇔ μ
!= 1

T − t
ln

(
S(t, T )

S(t)

)
− σ 2

2
. (9.24)

With a dividend yield q and continuous compounding, we obtain, for
example,

μ = 1

T − t
ln

(
Bq(t, T )

B(t, T )

)
− σ 2

2
= r − q − σ 2

2
, (9.25)

where the first equality holds as a result of the assumed dividend yield and the
second is valid for continuous compounding. But this is exactly Eq. 7.19.

As was pointed out in Eq. 2.30, the drift μ is exactly equal to the expected
return of the underlying. This means that the expected return in the risk-
neutral world (i.e., with respect to the probability p) is objectively given
through the risk-free interest rate and the dividends (or through the ratio of
forward price to spot price) and the volatility, independent of an investor’s
opinion as to whether the price will rise or fall. The parameter μ thus
determined is called the risk-neutral yield or the risk-neutral drift.

We note for later reference that all this holds for any arbitrary time span
T − t , for instances also for one time step dt in a binomial tree:

μ dt = ln

(
Bq(t)

B(t)

)
− σ 2

2
dt . (9.26)
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9.3 Random Walk and Binomial Parameters

Risk neutrality is the essential link connecting the stochastic model describing
the underlying with the pricing method used for a derivative. This will be
demonstrated for the binomial model. The parameters u and d must first be
determined before the binomial model can be applied in pricing derivatives.
The choice of these parameters has a significant influence on derivative and
forward prices thus calculated. To make a reasonable choice of u and d further
assumptions concerning the behavior of the underlying must be made, i.e., a
stochastic process for the underlying must be specified. We will again assume
that the relative changes of S(t) behave as a random walk as in Eq. 2.17
and are therefore normally distributed with moments of the form given in
Table 2.7 at the end of Sect. 2.3. On the other hand we know from the previous
sections that in a binomial tree the underlying S is distributed according to
the binomial distribution, see Eq. 9.14, where for pricing purposes we have to
replace the real world probability p′ by the risk-neutral “probability” p. We
will now relate the randomwalk parametersμ and σ to the parameters u and d

of the binomial tree by matching the moments of the random walk distribution
to the moments of the binomial distribution. We will ensure that we work
in the risk-neutral world (i.e., that we determine the parameters needed for
pricing) by using p as defined in Eq. 9.9 for the binomial tree and by using
the risk-neutral drift defined in Eq. 9.25 for the random walk.

In the following derivation, we will assume that the parameters u and d are
constant over time until maturity. After j up-moves and n − j down-moves,
the final value S(T ) and thus the logarithm of the relative price change is

S(T ) = ujdn−jS(t) ⇒ ln

(
S(T )

S(t)

)
= j ln

(u

d

)
+ n ln(d) .

S(T ) (and thus j ) is binomially distributed in our binomial model and from
Eq. A.44, it follow that 〈j 〉 = np and var(j) = np(1 − p).

For the random walk model, on the other hand, the expectation and
variance of the logarithmic changes of S are equal to the drift and the square
of the volatility, each multiplied by the time difference T − t (see the first
column of Table 2.7). Thus matching the first two moments of the random
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walk distribution to the distribution induced by the binomial tree yields

μ(T − t ) =
〈
ln

(
S(T )

S(t)

)〉
= 〈j 〉︸︷︷︸

np

ln
(u

d

)
+ n ln(d)

σ 2(T − t ) = var
(

ln

(
S(T )

S(t)

))
= var (j)︸ ︷︷ ︸

np(1−p)

(
ln

(u

d

))2
. (9.27)

Because dt = (T − t )/n this can be written as

μdt = p ln
(u

d

)
+ ln(d)

σ 2dt = p(1 − p)
(

ln
(u

d

))2
.

Now we use Eq. 9.9 for the risk-neutral probability p and Eq. 9.26 for the
risk-neutral drift μ to establish a system of two (non-linear!) equations for the
two unknown binomial parameters u and d :

ln

(
Bq

B

)
− σ 2

2
dt = Bq/B − d

u − d
ln

(u

d

)
+ ln(d)

σ 2dt =
(
Bq/B − d

) (
u − Bq/B

)

(u − d)2

(
ln

(u

d

))2
. (9.28)

There exist several closed form solutions to this system which are exact up
to linear order in dt . One such solution is given by

u = Bq

B
e−(σ 2/2)dt+σ

√
dt , d = Bq

B
e−(σ 2/2)dt−σ

√
dt . (9.29)

Inserting this into Eq. 9.9 for the risk-neutral probability yields

p = e(σ 2/2)dt − e−σ
√

dt

e+σ
√

dt − e−σ
√

dt
= e(σ 2/2)dt − e−σ

√
dt

2 sinh(σ
√

dt)
,

where we have used the definition of the hyperbolic sine function in
the last step. Using Eq. 9.26 (which is equivalent to exp (μ dt) =
exp

(−σ 2dt/2
)
Bq/B) we can bring the parameters u and d into a more
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intuitive form using the risk-neutral drift:

u = eμdt+σ
√

dt , d = eμdt−σ
√

dt .

Thus, in this solution the drift only appears in the parameters u and d , while
the probability p is determined solely from knowledge of the volatility. For
small values of dt and assuming continuous compounding, the Taylor series
representation of the exponential function expanded up to linear terms in dt

gives

u ≈ 1 + σ
√

dt + (q − r) dt , d ≈ 1 − σ
√

dt + (q − r) dt , p ≈ 1/2 .

(9.30)

Since in this solution both the volatility and the risk neutral drift appear in
u and d , we must assume constant volatilities and because of Eq. 9.25 also
constant yields and dividends, i.e., Assumptions 9, 11 and 12 from Chap. 4, to
ensure that the parameters u and d are constant over time and, in consequence,
that the tree recombines.

Another frequently used solution of Eq. 9.28 for which it suffices to assume
constant volatilities (Assumption 11) is

u = e+σ
√

dt , d = e−σ
√

dt ⇒ p = Bq/B − e−σ
√

dt

2 sinh(σ
√

dt)
= e(q−r)dt − e−σ

√
dt

2 sinh(σ
√

dt)
,

(9.31)

where the last step is of course only valid for continuous compounding. In
this solution, the volatility alone completely determines the parameters u and
d . Observe that u(t) = 1/d(t) holds. As long as the volatility is constant
(allowing the parameters u and d to remain constant over time), the tree is
recombining since the starting price is recovered after an up-move followed by
a down-move:

u(t) d(t + dt) = u(t + dt)d(t) = u(t)/u(t) = 1 .

The ease in the construction and analysis of binomial trees resulting from
this relation prompts us to utilize the solution given by Eq. 9.31 exclusively
in the remainder of this book whenever we use binomial trees. For small
time intervals dt , the Taylor series representation of the exponential function
expanded up to and including terms of linear order in dt yields the following
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approximations for u, d and p:

u ≈ 1 + σ
√

dt + σ 2

2
dt, d ≈ 1 − σ

√
dt + σ 2

2
dt , p ≈ 1

2

(
1 + μ

σ

√
dt

)
,

where again the risk-neutral drift μ is used to simplify the last expression.
A detailed demonstration of the application of binomial trees for the

valuation of an option portfolio is provided in the Excel workbook Binomial-
Tree.xls. In anticipation of Chap. 12, the evaluation of the Greeks (derivatives
of the option price with respect to its parameters) using binomial trees also
receives attention. This workbook can be used as a small but fully functioning
option calculator (as always, the yellow fields are the input fields).

9.4 The Binomial Model with Infinitesimal Steps

In this section, the Black-Scholes option pricing formula is derived directly
from the binomial model for European options as given by Eq. 9.19. A deeper
insight into the relationship between these two important methods in option
pricing (finding solutions to a differential equation on the one hand and the
calculation of (discounted) expectations on the other) can be gained from an
understanding of this derivation. The reader less interested in mathematics
may choose to continue on to the next section.

A classical result from statistics, the Moivre-Laplace theorem, states that the
binomial distribution converges towards a normal distribution as the number
n of the observed trials approaches infinity. The statement of the theorem in
integral form can be expressed as

Bn,p(a ≤ j − np√
np(1 − p)

≤ b)
n→∞−→ N(b) − N(a) = 1√

2π

b∫

a

e−z2/2dz .

The left-hand side of the equation denotes the probability that the stan-
dardized form of a binomially distributed random variable j (i.e., j less its
expectation divided by its standard deviation) will lie in the interval between
a and b, while the right-hand side is simply the probability that a standard
normally distributed random variable will take on values lying within the same
interval.

We can exploit this theorem to see what happens to Eq. 9.19 as the time
interval dt converges towards zero, i.e., as the number n of steps in the
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binomial tree approaches infinity. This will be demonstrated for a call, the
procedure for a put being completely analogous.

We need, for example, to determine the limit of Bn,p(y ≤ j) in Eq. 9.19
For arbitrary constants f and g with g > 0, the probability that y ≤ j is
of course equal to the probability that (y − f )/g ≤ (j − f )/g. We take
advantage of this fact9 to manipulate Bn,p(y ≤ j) into a suitable form to
apply the Moivre-Laplace theorem:

Bn,p(y ≤ j) = Bn,p

(
y − np√
np(1 − p)

≤ j − np√
np(1 − p)

≤ ∞
)

n→∞−→ N(∞)︸ ︷︷ ︸
1

− N
(

y − np√
np(1 − p)

)

= N
(

np − y√
np(1 − p)

)
,

where in the last step the symmetry property of the normal distribution,
Eq. A.54, is used.

Equations 9.27 and 9.17 deliver the necessary elements for computing (np−
y)/

√
np(1 − p):

np = 1

ln(u/d)
(μ(T − t) − n ln(d)) ,

√
np(1 − p) = 1

ln(u/d)
σ
√

T − t

and

y =
ln

(
K

S(t)dn

)

ln(u/d)
+ ε =

ln
(

K
S(t)

)
− n ln(d) + ε ln(u/d)

ln(u/d)
mit 0 < ε ≤ 1 .

Here, ε represents the difference between ln(K/Sdn)/ ln(u/d) and the small-
est whole number greater than this value. We will show immediately that the
term ε ln(u/d) becomes arbitrarily small. Substituting accordingly yields the
argument for the standard normal distribution above:

np − y√
np(1 − p)

= ln(S(t)/K) + μ(T − t) − ε ln(u/d)

σ
√

T − t
.

9With the choice f = np und g = √
np(1 − p) .
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In both solutions 9.29 and 9.31 the ratio u/d converges towards 1 as n → ∞
(i.e., dt → 0), thus by continuity, ln(u/d) converges towards zero. Thus, the
limit for infinitely many binomial steps becomes

np − y√
np(1 − p)

n→∞−→ ln(S(t)/K) + μ(T − t)

σ
√

T − t
= x − σ

√
T − t .

Using now Eq. 9.25 for the risk-neutral drift we can write

np − y√
np(1 − p)

n→∞−→ x − σ
√

T − t

where we have defined the abbreviation x as in Eq. 8.5:

x = 1

σ
√

T − t
ln

(
S(t) Bq(t, T )

K B(t, T )

)
+ 1

2
σ
√

T − t .

The limit of Bn,p(y ≤ j) is thus established. Proceeding analogously,
we can calculate the limit of the other binomial probability in Eq. 9.19. In
summary, for an infinite number of binomial steps in a finite time interval,
the behavior of the binomial distribution is given by

Bn,p(y ≤ j)
n→∞−→ N

(
x − σ

√
T − t

)
, Bn,p̂(y ≤ j)

n→∞−→ N (x) .

Using these convergence relations, we obtain the value of a call as the number
of binomial steps approaches infinity to be

cs(t)
n→∞= S(t)Bq(t, T )N(x) − KB(t, T )N(x − σ

√
T − t) . (9.32)

This is in complete agreement with Eq. 8.6 and is thus (again!) the famous
Black-Scholes option pricing formula.

9.4.1 Components of the Black-Scholes Option Pricing
Formula

In the above section the Black-Scholes formula was derived from Eqs. 9.18
and 9.19. We can see from this derivation that the cumulative normal distri-
bution found next to the discounted strike price B(t, T )K is the risk-neutral
probability for the price of the underlying to be larger than the strike price.
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Table 9.1 Interpretation of the various components in the Black-Scholes option pricing
formulae for plain vanilla calls and puts. All probabilities mentioned are risk-neutral.
The lower four terms are required for replicating (hedge) calls resp. puts

N(x − σ
√

T − t) Risk-neutral exercise probability for call
N(−x + σ

√
T − t) Risk-neutral exercise probability for put

KB(t, T ) Present value (PV) of cash flow at exercise
Bq(t, T )N(x) Number of underlyings to buy for replicating the call
Bq(t, T )N(−x) Number of underlyings to buy for replicating the put
KB(t, T )N(x − σ

√
T − t) Amount to be borrowed for call replication

KB(t, T )N(−x + σ
√

T − t) Amount to be borrowed for put replication

This is referred to as the risk-neutral exercise probability. A comparison with the
replicating portfolio in Eq. 9.3 shows that the number �(t) of underlyings
needed to replicate the option is given by the factor next to S(t) in Eq. 9.32,
namely Bq(t, T )N(x), while the amount g(t) of money in the bank account
is given by the second summand in Eq. 9.32. The intuitive interpretations of
these values in the Black-Scholes formulae for puts and calls are collected in
Table 9.1.

9.5 Trinomial Trees

Trinomial trees present us with an alternative method to binomial trees. The
form of a trinomial tree is represented graphically in Fig. 9.2. The j th step
of the tree at time tj is connected, not with two other nodes in the next
step (as was the case for the binomial tree), but with three. The price paid
for this additional degree of freedom is additional computational effort. The
advantage is that a trinomial tree can always be constructed in such a way that
it recombines and in addition, achieves the same degree of accuracy as the
binomial tree with fewer time steps. The trinomial tree has 2j + 1 nodes after
j steps where the time t is indexed with j = 0. The length of the time steps
may vary. The value of the underlying at the ith node after j steps is denoted
by Sji where

i = −j, −j + 1, . . . , j − 1, j .

Each node at time step j branches into three nodes at time step j + 1, with a
probability being associated with each of these branches.10 Starting from Sji ,

10All probabilities appearing in this context are risk-neutral probabilities.
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(0,0)  (1,0)     

(1,-1)        

(1,1)  

Fig. 9.2 A simple trinomial tree

we denote by p+ the probability that the underlying will increase from Sji to
the value Sj+1,i+1 at time step (j + 1). Correspondingly, denote by p0 and
p− the probabilities that the underlying at time step (j + 1) will take on the
values Sj+1,i and Sj+1,i−1, respectively. Each of these probabilities must be
≥ 0 and ≤ 1. In addition:

p+ + p0 + p− = 1 . (9.33)

For the binomial tree,11 a portfolio can be constructed consisting of a
position � in the underlying and money g in a bank account whose value
replicates the option price exactly at each time step. This is also possible for
trinomial trees. Though, because of the addition of the third attainable value
for the underlying after one time step, just two parameters � and g are not
sufficient to determine a replicating portfolio that replicates exactly all three
possible states after one time step. Therefore, we need to make a further
choice before all parameters could be determined unequivocally. Because of
this additional degree of freedom, trinomial trees can be more flexibly adopted
for different purposes.

To do so, it is sufficient to choose the probabilities p+, p0 and p− and the
nodes Sji so that the tree reflects the probability distribution of the underlying.
Again, we assume that the underlying price is lognormally distributed (this

11The binomial tree usually assumes a constant time step dt . In the most general case, this assumption is
not necessary.
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corresponds to Assumption 7 from Chap. 4). The lognormal distribution is
completely determined by two parameters, the expectation and the variance of
the logarithm.Thus, two conditions are sufficient to adapt the trinomial tree to
a lognormal distribution. Like in Eq. 9.23, the expectation for the lognormally
distributed random variable after a time step of length dt starting from the
node Sji (with the risk-neutral drift Eq. 9.25) is given by

E
[
S(tj+1)

] = Sjie
(r−q)dt .

On the other hand, from the tree we have

E
[
S(tj+1)

] = p+Sj+1,i+1 + p0Sj+1,i + p−Sj+1,i−1 .

Setting these two expressions equal to one another yields one equation for the
determination of the probabilities:

Sjie
(r−q)dt = p+Sj+1,i+1 + p0Sj+1,i + p−Sj+1,i−1 . (9.34)

Analogously, taking the expression for the variance of the lognormal distribu-
tion shown in Table 2.7 at the end of Sect. 2.3 we have

Var
[
S(tj+1)

] = S2
ij e

2(r−q)dt
(
eσ 2dt − 1

)
.

It is sometimes easier to work with the expectation of S2(tj+1) rather than the
variance and such is the case here. With the help of Eq. A.7 we obtain this
expectation as

E
[
S2(tj+1)

] = S2
jie

2(r−q)dt
(
eσ 2dt − 1

)
+ S2

jie
2(r−q)dt

= S2
jie

2(r−q)dt eσ 2dt .

Expressed in terms of the probabilities for the trinomial tree, the same
expectation is given by

E
[
S2(tj+1)

]
= p+S2

j+1,i+1 + p0S2
j+1,i + p−S2

j+1,i−1 .

Combining the two above expressions gives

S2
jie

2(r−q)dt eσ 2dt = p+S2
j+1,i+1 + p0S2

j+1,i + p−S2
j+1,i−1 . (9.35)
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Equations 9.33, 9.34 and 9.35 are sufficient to fit the trinomial tree to the
lognormal distribution. Of course, only three of the six parameters p+, p0,
p−, Sj+1,i+1, Sj+1,i and Sj+1,i−1 will be determined. In general, these will be
the probabilities. The nodes can then be arbitrarily selected.

The actual option pricing now proceeds as for a binomial tree. Vji denotes
the price of the option at the ith node of the j th time step. We assume
that the tree consists of N time steps with j = 0, 1, . . . , N . To price a
European option, the nodes are initialized with the payoff profile of the option
at maturity tN = T . In the case of a call option we have:

VNi = max(SNi − X, 0) .

The calculation then rolls backwards through the tree. The option value is
calculated iteratively for a time step using the values just calculated at the next
time step starting with j = N − 1 and working back to j = 0:

Vji = B(tj , tj+1)
[
p+Vj+1,i+1 + p0Vj+1,i + p−Vj+1,i−1

]
.

V00 is the present value of the option at time t0 = t (assuming that S00

is the price of the underlying at t = t0). It should be emphasized that the
model admits both time-dependent interest rates and volatilities. To take this
into consideration either the nodes need to be selected accordingly or the
probabilities must be made time-dependent. American options are treated in
the same manner as they are treated in binomial trees. Barrier options should
be calculated by choosing the nodes such that they lie directly on the barrier.

9.5.1 The Trinomial Tree as an Improved Binomial Tree

After two time steps a recombining binomial tree has exactly three distinct
nodes. This is equal to the number of nodes in the trinomial tree after one
step. Since the nodes of the trinomial tree can be freely chosen, it is possible to
generate a trinomial tree (with an even number of time steps) corresponding
to any given recombining binomial tree. Such a trinomial tree yields the exact
same results as the binomial tree, but in only half the time steps. This will be
demonstrated for the binomial tree with parameters u, d, and p as given in
Eq. 9.31 serving as an example. Starting from the node Sij , we can choose the
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nodes at time tj+1 = tj + 2 dt as follows:

Sj+1,i+1 = u2Sij

Sj+1,i = Sij

Sj+1,i−1 = d2Sij .

where dt is the length of one time step in the binomial tree and hence 2 dt

is the length of one time step in the trinomial tree. The probabilities for the
trinomial tree are easily obtained from the probability p in the binomial tree:

p+ = p2 , p0 = 2p(1 − p) , p− = (1 − p)2 .

The values for the probabilities are consistent with those in Eqs. 9.33, 9.34
and 9.35.

The trinomial tree converges faster than the corresponding binomial tree
because it requires only half as many steps. Approximately half of the nodes
in the binomial tree need not be computed. This advantage is, however not
quite as great as it may seem at first glance. It is known that the results of
the binomial tree oscillate strongly when the number of time steps increases
by one. The best results are obtained by averaging two calculations with N

and N + 1 time steps (which doubles the required computation time). This
trick cannot be exploited when using trinomial trees.Moreover, the parameters
specified above are not an optimal choice for the trinomial tree.



10
Numerical Solutions Using Finite Differences

One of the best known and widely used numerical methods to solve partial
differential equations in finance and elsewhere is the finite difference method.
Finite difference methods are very powerful and flexible as well. They can
be applied to a wide variety of various derivatives. Different exercise modes,
including European (exercise at expiry only), American (exercise at any time)
or Bermudan (exercise at a limited set of exercise dates), could be implemented
without major problems. In comparison with the tree methods introduced in
Chap. 9, the finite difference method possesses superior convergence features,
which justifies the greater initial effort for its implementation. Therefore, we
will provide a very detailed discussion of this important method.

Finite difference methods approximate the partial derivatives appearing
in partial differential equations like the Black-Scholes equation 7.8 using
finite difference quotients. The equation is then solved on a grid spanned
by the linearly independent variables (for example, time t and price S of the
underlying) appearing in the PDE.1 Doing so, we obtain a solution surface
which represents the price on each of the grid points (S, t). In general, a
PDE has an unbounded number of solutions. Usually we are only interested
in a solution which satisfies specific boundary and/or initial conditions. The
finite differencemethod requires the specification of both boundary and initial
conditions.

1In the following we will often use the abbreviation PDE for “partial differential equation”, as is common
practice in the related literature.
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Since finite differences can be applied in quite general settings, we will
require only the assumptions needed for arbitrage free trading, i.e., Assump-
tions 1, 2, 3,5 from Chap. 4, with the additional Assumption 6. Assumption 6
ensures that the variables in the problem are continuous. This is necessary if
we want to obtain differentiable solutions. In order to provide a manageable
overview of finite differences, we will restrict the treatment in the examples
given here to random walks (Assumption 7) with non-stochastic interest rates
and volatilities (Assumptions 8 and 10, respectively). In addition, we will not
consider counter party default risk (Assumption 4).

10.1 Discretizing the Black-Scholes Equation

Below, the Black-Scholes Differential Eq. 7.8 will be solved numerically with
the help of finite difference methods. In the literature, Eq. 7.8 is often
transformed into an equation based on a new variable given by Z = ln(S).
Such an equation has the advantage that the coefficients no longer depend
explicitly on S. On occasion, it is claimed that a further advantage of this
change of variable is that a uniform grid inZ is numericallymore efficient than
a uniform grid in S. However, the differences are usually negligible and this
argument does not hold for barrier options. Furthermore, it is often preferable
to use a non-uniform grid.We could distribute the grid points logarithmically,
for example so that the non-uniform grid in S corresponds to a uniform grid in
Z. In view of these considerations, we will continue to use the Black-Scholes
equation in the form given by 7.8. But we will present the finite difference
method for general non-uniform grids.

The finite difference method now consists in determining the value V of a
financial instrument on a grid with coordinates S and t by approximating the
partial derivatives with finite differences. We will restrict the discussion here
to a rectangular grid allowing, however, the distance between grid points to be
non-uniform. Such a grid is completely determined by the grid points in the
S and t directions denoted by:

Si ; i = 0, 1, 2, . . . , M (10.1)

tj ; j = 0, 1, 2, . . . , N

We introduce the notation Wi,j = W(Si, tj ) for the solution’s approximation
in order to distinguish it from the exact solution V (Si, tj ) evaluated at points
on the grid.
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For the sake of clarity we will at several instances start with a grid whose time
steps as well as the steps in the direction of the underlying price are uniformly
spaced. For such uniform grids the spacing between grid points is simply

Si − Si−1 = δS ∀i �⇒ Si = S0 + i δS (10.2)

tj − tj−1 = δt ∀j �⇒ ti = t0 + i δt .

We will then, however, always generalize our discussion to non-uniform grids.
The fundamental idea behind the method presented here is to determine

the value of the derivative from the values at neighboring time points. Since
the value of the derivative (as a function of the underlying’s price) is usually
known at maturity (it is given a priori by the payoff profile P(S) as a function
of S), we proceed using the strategy of starting at maturity tN = T and
calculating backwards to time tN−1, from there calculating back to tN−2 and
so on. To accomplish this, we express the value of the instrument in terms
of its Taylor series with respect to time, and express the time derivatives
appearing in the Taylor expansion in terms of the derivatives with respect to
the underlying price by using the Black-Scholes PDE. Here, the similarity to
backward induction as described in Sect. 14.6.1 is not accidental.

Using the Black Scholes equation 7.8, the partial derivative of V with
respect to time is expressed in terms of derivatives with respecto to S:

∂V (S, t)

∂t
= r(t)V (S, t) − [r(t) − q(t)] S

∂V (S, t)

∂S
− 1

2
σ 2(S, t)S2 ∂2V (S, t)

∂S2
.

(10.3)

The partial derivatives with respect to S in this equation are approximated by
quotients of finite differences, as will be explicitly demonstrated in the next
sections.

10.1.1 The Explicit Method

In the explicit method, the Taylor series expansion is used to calculate values
at an earlier time t − δt from the values at time t :

V (S, t − δt) = V (S, t) − δt
∂V (S, t)

∂t
+ O(δt2) .
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The last term on the right-hand side of the equation states that no terms
will be considered which are of order two or greater with respect to the time
difference δt . If the time difference is small enough, we can assume that the
time dependence of V (S, t) can be adequately described if we simply neglect
terms of order O(δt2). Note that on the left-hand side of the above equation,
the derivative of the value evaluated at time t − δt appears, whereas the
right-hand side consists of terms evaluated at time t . The trick is now not
to express the right-hand side in terms of a difference quotient in time (we
would not have accomplished anything by doing so since it would involve
introducing another time point t − δt or t + δt ) but rather to express the
time derivative in terms of partial derivatives with respect to S obtained from
the Black-Scholes equation 7.8. These partial derivatives with respect to S are
evaluated at time t so that the value of the derivative at an earlier time t − δt

can in fact be recovered solely from information available at time t . Here, we
explicitly calculate earlier values from those (known) values from a later time.
This method is thus referred to as the explicit method.

10.1.2 The Implicit Method

In the implicit method, we use the Taylor series expansion in the time variable
to obtain an expression for values at a later time t + δt from the values at
time t :

V (S, t + δt) = V (S, t) + δt
∂V (S, t)

∂t
+ O(δt2) .

In this case, later (known) values are expanded in terms of earlier (unknown)
ones. This expansion can only be used implicitly to calculate the unknown
values from the known ones, hence the name implicit method.

10.1.3 Combinations of Explicit and Implicit Methods
(Crank-Nicolson)

The two methods described above can be combined by taking a linear
combination of the two respective Taylor series expansions. To avoid the
appearance of three different time points in the resulting expression (t − δt, t

and t + δt ) a change in variable in one of the Taylor series should be made.
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For example, the transformation t → t + δt in the Taylor series expansion for
the explicit method (and dividing by δt ) yields an equation of the form:

V (S, t + δt) − V (S, t)

δt
= ∂V (S, t + δt)

∂t
+ O(δt) . (10.4)

Here, we have rearranged the Taylor series so that the left-hand side is written
in terms of a difference quotient in t , while on the right-hand side a differential
quotient appears (which will later be replaced by a difference quotient with
respect to the underlying price). Note that dividing through by δt has the
effect of reducing the order of the error term to a linear order in δt . An
analogous procedure for the implicit method allows its respective Taylor series
to be rearranged as well (here, a variable transformation is unnecessary since
the series is already expressed in terms of t and t + δt ):

V (S, t + δt) − V (S, t)

δt
= ∂V (S, t)

∂t
+ O(δt) . (10.5)

The only thing now distinguishing the two expressions is that the differential
quotient on the right-hand side (and thus, the difference quotients with respect
to S yet to be determined) is written in terms of the time t , whereas in
the expression derived from the explicit method, the differential quotient is
expressed in terms of the later time point t + δt . Naturally, the equality holds
if we take any linear combination of the two equations:

V (S, t + δt) − V (S, t)

δt
= (1 − θ)

∂V (S, t + δt)

∂t
+ θ

∂V (S, t)

∂t
+ O(δt) , 0 ≤ θ ≤ 1 .

Note the following correspondence2 between the notation above and the
discrete notation introduced in Eq. 10.1:

S =̂ Si , t =̂ tj , t + δt =̂ tj+1

Wi,j = W(Si, tj ) =̂V (S, t)

Wi,j+1 = W(Si, tj+1) =̂V (S, t + δt) .

2The sign =̂ means “corresponds to”.
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In the discrete notation the above equation reads

Wi,j+1 − Wi,j

tj+1 − tj
= (1 − θ)

∂V (Si, tj+1)

∂t
+ θ

∂V (Si, tj )

∂t
+ O

(
tj+1 − tj

)
, 0 ≤ θ ≤ 1 .

(10.6)

In this notation, the equation holds for non-uniform grids, as well. Setting
θ = 1, we obtain the implicit method, with θ = 0 the explicit method. The
particular choice of θ = 1/2 has a special name. It is known as the Crank-
Nicolson method.

Equations 10.4 and 10.5 can also be interpreted as follows: the difference
quotients (“finite differences”) on the left-hand side of the equations are
approximations of the differential quotients with respect to time found on
the right-hand side of the equations.

The above approximations are exact up to linear terms in δt . There are
several methods available for approximating partial derivatives using finite
differences. A greater accuracy can be obtained if, for instance, all three time
points tj−1, tj and tj+1 are included in the finite differences approximating
the time derivative. Then the approximation is exact up to second order. This
three-time procedure requires that the time derivative be approximated by a
carefully selected convex combination of forward, backward and symmetric
finite differences. Another possibility is to use symmetric finite differences.
This also gives an approximation exact up to second order, however, does not
lead to a stable procedure for solving the differential equation. In this book we
will not pursue such more precise approximations for the time derivative.

10.1.4 Symmetric Finite Differences of the Underlying
Price

For the sake of consistency, the difference quotients with respect to the
underlying price S should be exact up to order O(δS2) since it follows from
the random walk assumption that dS ∼ √

dt and thus

δt ∼ δS2 .

This means that in order to attain the same degree of accuracy as in the time
direction, the approximation in the S direction must be exact up to order
O(δS2). To achieve this we will use symmetric differences to approximate the
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derivatives of first and second order with respect to the underlying needed for
Eq. 10.3.

In order to demonstrate the concepts without making the notation unneces-
sarily complicated, we begin by assuming that the distance between grid points
is constant as in Eq. 10.2 and then generalize to non-uniform grids. As above,
we expand the value function in its Taylor series, this time in the S dimension:

V (S − δS, t) = V (S, t) − δS
∂V (S, t)

∂S
+ 1

2
δS2 ∂2V (S, t)

∂S2

− 1

6
δS3 ∂3V (S, t)

∂S3
+ O(δS4)

V (S + δS, t) = V (S, t) + δS
∂V (S, t)

∂S
+ 1

2
δS2 ∂2V (S, t)

∂S2

+ 1

6
δS3 ∂3V (S, t)

∂S3
+ O(δS4) .

Subtracting the first equation from the second and subsequently dividing by
δS yields an approximation of the first derivative which is exact up to second
order O(δS2). Adding the two equations and then dividing by δS2 yields an
approximation of the second derivative which is also exact up to second order
O(δS2):

∂V (S, t)

∂S
= V (S + δS, t) − V (S − δS, t)

2 δS
+ O(δS2) (10.7)

∂2V (S, t)

∂S2
= V (S + δS, t) − 2 V (S, t) + V (S − δS, t)

δS2
+ O(δS2) .

For general, non-uniforms grids, the above expressions are somewhat more
complicated and their derivation is a bit more technical. The principle,
however, remains the same: the partial derivatives of V with respect to the
underlying evaluated at point Si can be approximated up to order two with
symmetric differences. To this end, V evaluated at Si−1and Si+1, is first
expanded in its Taylor series about the points Si :

V (Si−1, t) = V (Si, t) − ∂V (Si, t)

∂S
(Si − Si−1)

+ 1

2

∂2V (Si, t)

∂S2
(Si − Si−1)

2 + O
(
(Si − Si−1)

3
)
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V (Si+1, t) = V (Si, t) + ∂V (Si, t)

∂S
(Si+1 − Si)

+ 1

2

∂2V (Si, t)

∂S2
(Si+1 − Si)

2 + O
(
(Si+1 − Si)

3) .

We need this approximation for the partial derivatives to be exact up to second
order. We thus neglect all terms of order O((δSmax)

3) where δSmax denotes
the greatest distance between two neighboring nodes in the S-grid. Unlike
the uniform grid case, mere addition and subtraction of the two equations
does not isolate the desired differential quotients since is possible that (Si −
Si−1) �= (Si+1 − Si). To overcome this inconvenience, we attempt to express
the differential quotients as a linear combination of the function evaluated at
the points Si , Si−1and Si+1. We begin by assuming that the first derivative can
be written as

∂V (Si, t)

∂S
= aV (Si−1, t) + bV (Si, t) + cV (Si+1, t) .

Substituting the above Taylor series for V (Si+1, t) and V (Si−1, t) into this
equation and using the linear independence of V (Si, t),

∂V (Si ,t)

∂S
and ∂2V (Si,t)

∂S2

to compare their coefficients leads to the following system of equations for the
unknown coefficients a, b and c

a + b + c = 0

−(Si − Si−1)a + (Si+1 − Si)c = 1

(Si − Si−1)
2a + (Si+1 − Si)

2c = 0

which has the solution

a = − Si+1 − Si

(Si − Si−1)(Si+1 − Si−1)

b =
(

Si+1 − Si

Si − Si−1
− Si − Si−1

Si+1 − Si

)
1

Si+1 − Si−1

c = + Si − Si−1

(Si+1 − Si)(Si+1 − Si−1)
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The desired approximation of the first partial derivative with respect to S is
thus

∂V (Si, t)

∂S
= 1

Si+1 − Si−1

[
−Si+1 − Si

Si − Si−1
V (Si−1, t) (10.8)

+
(

Si+1 − Si

Si − Si−1
− Si − Si−1

Si+1 − Si

)
V (Si, t) + Si − Si−1

Si+1 − Si

V (Si+1, t)

]

+ O
(
(δSmax)

2
)

For the special case of a uniform S-grid with Si+1 − Si = Si − Si−1 = δS,

this reduces to the expression in Eq. 10.7.
The same approach can be taken to isolate the second derivative. This

time, we assume that the second derivative can be represented as a linear
combination of the value function evaluated at the points Si−1, Si and Si+1:

∂2V (Si, t)

∂S2
= aV (Si−1, t) + bV (Si, t) + cV (Si+1, t) .

As was done above, the Taylor expansions for V (Si+1, t) and V (Si−1, t) are
substituted into this equation. Comparing the coefficients of V (Si, t), ∂V (Si ,t)

∂S

and ∂2V (Si,t)

∂S2 again leads to a system of equations for the unknown coefficients
a, b and c, now given by

a + b + c = 0

−(Si − Si−1)a + (Si+1 − Si)c = 0

(Si − Si−1)
2a + (Si+1 − Si)

2c = 2

which has the solution

a = 2

(Si − Si−1)(Si+1 − Si−1)

b = − 2

Si+1 − Si−1

(
1

Si − Si−1
+ 1

Si+1 − Si

)

c = 2

(Si+1 − Si)(Si+1 − Si−1)
.
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The approximation of the second derivative of V with respect to S is now
given by

∂2V (Si, t)

∂S2
= 2

Si+1 − Si−1
[V (Si−1, t)

Si − Si−1
(10.9)

−
(

1

Si − Si−1
+ 1

Si+1 − Si

)
V (Si, t) + V (Si+1, t)

Si+1 − Si

] + O(δSmax) .

For a uniform S-grid this reduces to the expression in Eq. 10.7.

10.2 Difference Schemes

The approximations for the derivatives with respect to S can now be sub-
stituted into Eq. 10.3. For the sake of simplicity, we again consider first the
case of a uniform grid as in Eq. 10.2, i.e., we will use the approximation
given by Eq. 10.7. Under this assumption Si = S0 + i δS holds and the
approximation 10.3 for the differential quotient with respect to t evaluated
at the point t = tj takes the form

∂V (Si, tj )

∂t
≈ rjWi,j − (rj − qj ) Si

Wi+1,j − Wi−1,j

2δS

− 1

2
σ 2

i,j S2
i

Wi+1,j − 2 Wi,j + Wi−1,j

δ S2

= Ai,jWi−1,j + Bi,jWi,j + Ci,jWi+1,j

where

Ai,j = Si

2δS
(rj − qj − Si

δS
σ 2

i,j )

Bi,j = rj +
(

Si

δS

)2

σ 2
i,j (10.10)

Ci,j = − Si

2δS
(rj − qj + Si

δS
σ 2

i,j ) .
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On the right-hand side of the equation, we have again denoted the approxi-
mation of the exact solution V (Si, tj ) evaluated at the grid points by Wi,j =
W(Si, tj ). At this stage, we allow the interest rate and the volatility to depend
on time. This is the only reason why the coefficients A,B and C have been
equipped with the index j . For time-independent interest rates and volatilities,
the index j on the coefficients is superfluous.

The corresponding expression for the non-uniform grid has exactly the same
structure with somewhat more complicated coefficients A,B and C. Replac-
ing the partial derivatives with respect to S with their approximations 10.8
and 10.9 for the non-uniform grid in 10.3 yields the following expression for
the differential quotient with respect to t evaluated at t = tj

∂V (Si, tj )

∂t
≈ rj Wi,j − (rj − qj ) Si{ 1

Si+1 − Si−1
[−Si+1 − Si

Si − Si−1
Wi−1,j

+
(

Si+1 − Si

Si − Si−1
− Si − Si−1

Si+1 − Si

)
Wi,j + Si − Si−1

Si+1 − Si

Wi+1,j ]}

− 1

2
σ 2

i,j S2
i {

2

Si+1 − Si−1
[ Wi−1,j

Si − Si−1

−
(

1

Si − Si−1
+ 1

Si+1 − Si

)
Wi,j + Wi+1,j

Si+1 − Si

]}

= Si

(Si+1 − Si−1)(Si − Si−1)

{
(rj − qj )(Si+1 − Si) − σ 2

i,j Si

}
Wi−1,j

+ {rj − (rj − qj ) Si

Si+1 − Si−1

(
Si+1 − Si

Si − Si−1
− Si − Si−1

Si+1 − Si

)

+ σ 2
i,j S2

i

Si+1 − Si−1

(
1

Si − Si−1
+ 1

Si+1 − Si

)
} Wi,j

− Si

(Si+1 − Si−1)(Si+1 − Si)

{
(rj − qj )(Si − Si−1) + σ 2

i,j Si

}
Wi+1,j .

Thus, as was the case for the uniform grid

∂V (Si, tj )

∂t
≈ Ai,j Wi−1,j + Bi,j Wi,j + Ci,j Wi+1,j , (10.11)
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with the slightly more complicated coefficients

Ai,j = Si

(Si+1 − Si−1)(Si − Si−1)

{
(rj − qj )(Si+1 − Si) − σ 2

i,j Si

}

(10.12)

Bi,j = rj + Si

(Si+1 − Si−1)
{−(rj − qj )

(
Si+1 − Si

Si − Si−1
− Si − Si−1

Si+1 − Si

)

+ σ 2
i,j Si

(
1

Si − Si−1
+ 1

Si+1 − Si

)
}

Ci,j = − Si

(Si+1 − Si−1)(Si+1 − Si)

{
(rj − qj )(Si − Si−1) + σ 2

i,j Si

}
.

For non-uniform grids as well, the time dependence of the coefficients A,B

and C is solely a consequence of the time dependence of r and σ . For time-
independent interest rates and volatilities, the coefficients need not have an
index j . For uniform grids (at least in the S-direction), in other words, for
Si = S0 + i δS, the above expression for the coefficients reduces to 10.10.

Substituting this approximation 10.11 for the differential quotient with
respect to t in the general equation 10.6 finally gives the generalized form of
the finite difference scheme for non-uniform grids:

θAi,j Wi−1,j + (θBi,j + 1

tj+1 − tj
) Wi,j + θCi,j Wi+1,j (10.13)

≈ Wi,j+1

(tj+1 − tj )
− (1 − θ)

[
Ai,j+1 Wi−1,j+1 + Bi,j+1 Wi,j+1 + Ci,j+1 Wi+1,j+1

]
.

As in 10.6, θ can take on arbitrary values between 0 and 1 giving the implicit
method for θ = 1, the explicit method for θ = 0 and the Crank-Nicolson
method for θ = 1/2. In order to illustrate the importance of this difference
equation, note that the values to be calculated on the left-hand side of the
equation consist of terms evaluated at time point tj whereas those on the right-
hand side concern only values at time point tj+1, and as such are known,
having been calculated in the previous step. Thus, for every (inner) underlying
grid point i there is one equation connecting three option values at tj+1 with
three values at tj .

The range of the time index j here is always j = 0, . . . N −1 since j = N

is already given by the initial condition, i.e., the payoff profile at maturity
T = tN . The range of the S-index i (see Eq. 10.1) is at least i = 1, . . . ,M −1,
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but can take on the values including i = 0 and/or i = M (depending on
the boundary conditions to be satisfied, see below). The difference equation
for i = 0 and i = M seems problematic at first glance since values of
W are required at points not defined in the grid, for example “ W0−1,j ” or
“WM+1,j ”. As will be shown below, these problems can in fact be overcome by
consideration of the boundary conditions themselves.

The difference scheme can be written in matrix form (here, for the case
where the range of the index i is given by i = 1, . . . ,M − 1; other cases can
be expressed analogously):

⎛

⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜
⎝

a1 b1 c1 0 · · · · · · . . . 0

0 a2 b2 c2 0
...

... 0 a3 b3 c3 0
...

... 0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · 0 aM−1 bM−1 cM−1

⎞

⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟
⎠

︸ ︷︷ ︸
M+1 columns and M−1 rows

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎝

W0,j

W1,j

W2,j

...

...

...

...

WM,j

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
M+1 rows

=

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜⎜
⎝

D1,j

D2,j

...

...

...

...

DM−1,j

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟⎟
⎠

︸ ︷︷ ︸
M−1 rows

(10.14)

where

ai = θAi,j , bi = θBi,j + 1

tj+1 − tj
, ci = θCi,j

Di,j = Wi,j+1

(tj+1 − tj )
− (1 − θ)

[
Ai, j+1 Wi−1,j+1 + Bi,j+1 Wi,j+1 + Ci,j+1 Wi+1,j+1

]
.

The Di,j on the right-hand side depend only on the values at time tj+1 which
have already been calculated in the previous step and are hence completely
determined. For each time step j, we have (M − 1) equations for (M + 1)

unknown Wi,j. Other ranges for the index i give the same result: the system
of equations is underdetermined; there are two equations fewer than there are
unknowns. The two additional equations needed to solve the above system are
provided by two boundary conditions.
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10.2.1 Initial Conditions

Besides the specification of boundary conditions with respect to the S variable,
we also need a boundary condition with respect to the t variable (so called
initial condition) to be satisfied in order to obtain a unique solution to the
above defined difference equation. The initial condition is specified by the
payoff profile P(S) of the derivative concerned, i.e., by the valueV (S, tN = T )

given by

V (S, T ) = P(S)

or in the discrete “grid notation”

Wi,N = Pi .

For example, for the payoff profile P(S) for a European call option with strike
price K , the initial condition is given by

V (S, T ) = P(S) = max(S − K, 0) �⇒ Wi,N = max(Si − K, 0) .

10.2.2 Dirichlet Boundary Conditions

If either the terms of the option contract (for example, barrier options) or
some other information allow us to specify directly the value of the option
for certain values of S, these values can be used as boundary conditions for
the S-grid. Such boundary conditions where the option value itself is given
at the boundary are called Dirichlet boundary conditions. Let RU denote these
given option values at the upper boundary SM , andRL denote the given option
values at the lower boundary S0, i.e.:

V (SM, t) = RU(t), V (S0, t) = RL(t)

or in the discrete “grid notation”

WM,j = RU
j , W0,j = RL

j .

It is often the case that only approximations for RU
j and RL

j are known. If this
is the case, the difference scheme provides an approximation which is at best
as good as this approximation for the boundary conditions. If, for example,
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the Crank-Nicolson scheme is applied but the boundary condition can only
be approximated in the first order of S, then the solution procedure as a whole
is exact up to first order even though the Crank-Nicolson scheme provides an
approximation which is exact up to second order.

Two of the option values to be calculated for each time j are thus specified
directly if Dirichlet boundary conditions are given. The dimension of the
problem (in the sense of dimension equals number of unknowns) is therefore
only (M −1). This is exactly the number of equations in 10.14. Our goal now
is to transform Eq. 10.14 into a system consisting of a square matrix, i.e., to
reduce the dimension “in each direction” to (M − 1). To keep the boundary
conditions separate, we write the vector of option values in the form

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎜
⎝

W0,j

W1,j

W2,j

...

...

...

...

WM,j

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎝

0
W1,j

W2,j

...

...

...

WM−1,j

0

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎠

+

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎜
⎝

W0,j

0
...
...
...
...

0
WM,j

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

In the first vector, only the (yet to be determined) option values away from
the boundary of the grid appear. We call this the unknown vector. The
second vector contains only the (already specified) values of the option on the
boundary. We refer to this vector as the known vector. The matrix in Eq. 10.14
acts on both of these vectors. Let us first consider the unknown vector: the only
element in the first column of the matrix, namely a1, acts only on the first row
of the unknown vector. This, however, equals zero. We obtain from the matrix
multiplication of the unknown vector the same result as if the first column in
the matrix and the first row in the vector were removed. The situation is the
same for the last column of the matrix and the last row of the unknown vector.
Thus we can simply remove the last column of the matrix and the last row of
the unknown vector without changing the result of the matrix multiplication.
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Matrix multiplication of the full matrix in Eq. 10.14 with the known vector
is explicitly performed. Combining everything the system of equations in
Eq. 10.14 can be equivalently written using an (M − 1) × (M − 1) matrix:
⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

b1 c1 0 · · · · · · 0
a2 b2 c2 0 . . .

0 a3 b3 c3
. . . . . .

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . cM−2

0 · · · · · · 0 aM−1 bM−1

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
A

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

W1,j

W2,j

...

...

...

WM−1,j

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Wj

+

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

a1 W0,j

0
...
...

0
cM−1 WM,j

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

D1,j

D2,j

...

...

DM−2,j

DM−1,j

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

(10.15)

⇔

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

b1 c1 0 · · · · · · 0
a2 b2 c2 0 . . .

0 a3 b3 c3
. . . . . .

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . cM−2

0 · · · · · · 0 aM−1 bM−1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
A

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

W1,j

W2,j

...

...

...

WM−1,j

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Wj

=

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

d1,j

d2,j

...

...

dM−2,j

dM−1,j

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

with coeffitions

ai = θAi,j , bi = θBi,j + 1

tj+1 − tj
, ci = θCi,j for i = 1, . . . ,M − 1

di,j = Wi,j+1

(tj+1 − tj )
for i = 2, . . . ,M − 2

− (1 − θ)
[
Ai, j+1 Wi−1,j+1 + Bi,j+1 Wi,j+1 + Ci,j+1 Wi+1,j+1

]

d1,j = W1,j+1

(tj+1 − tj )
− (1 − θ)

[
B1, j+1 W1,j+1 + C1,j+1 W2,j+1

]
(10.16)

−
[
θA1,j RL

j + (1 − θ)A1,j+1 RL
j+1

]

dM−1,j = WM−1,j+1

(tj+1 − tj )
− (1 − θ)

[
AM−1,j+1 WM−2,j+1 + BM−1,j+1 WM−1,j+1

]

−
[
θCM−1,j RU

j + (1 − θ)CM−1,j+1 RU
j+1

]
.
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Along the way, the result of the matrix multiplication with the known vector
(i.e., with the boundary condition) has been brought over to the right-hand
side. This right-hand side (the di,j ) only depends on the values at the time
points tj+1 (which have already been calculated in the previous step) and on
the (given) boundary conditions. The di,j are thus completely determined.
The only unknowns in this system are the (M − 1) elements of the vector
Wj . These can now be calculated if it is possible to invert the matrix A.
Because of the special form of thematrix (the only non-zero elements are in the
diagonal and the two off-diagonals), a calculation-intensive matrix inversion
can be avoided. Instead, we employ a very fast procedure, known as the L-U
decomposition. To this end, we decompose the matrix A into the product of
a matrix L, which contains non-zero elements only in the diagonal and the
“lower” off-diagonal and a matrix U whose only non-zero elements are found
in the diagonal and the “upper” off-diagonal:

A =

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜
⎝

1 0 · · · · · · · · · 0

l2 1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . . lM−2 1 0
0 · · · · · · 0 lM−1 1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟
⎠

︸ ︷︷ ︸
L

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜
⎝

h1 u1 0 . . . . . . 0

0 h2 u2 0 . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

... 0
. . . uM−2

0 · · · · · · · · · 0 hM−1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟
⎠

︸ ︷︷ ︸
U

.

From this ansatz the elements of the matrices L and U are determined to be

ui = ci for i = 1, . . .M − 2
h1 = b1

li = ai

hi−1
for i = 2, . . .M − 1

hi = bi − li ui−1 for i = 2, . . .M − 1 .

Calculating the elements in the order indicated above, we can easily compute
all the elements appearing in both matrices. Inverting L andU is quite simple.
We begin by writing

AWj = LUWj︸ ︷︷ ︸
x

=: Lx
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and solve the system for our newly defined vector x:

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

1 0 · · · · · · · · · 0

l2 1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . . lM−2 1 0
0 · · · · · · 0 lM−1 1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

x1

x2
...
...
...

xM−1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜⎜
⎝

d1,j

d2,j

d3,j

...

...

dM−2,j

dM−1,j

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟⎟
⎠

.

To solve this system for x, we start with the first row of the matrix which
contains only one non-zero element and proceed from top to bottom to obtain

x1 = d1,j

xi = di,j − li xi−1 f ori = 2 . . .M − 1 .

Now, with vector x is known, the option values Wi,j can simply be calculated
from the above definition of x by solving the equation U Wj = x:

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜
⎝

h1 u1 0 . . . . . . 0

0 h2 u2 0 . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

... 0
. . . uM−2

0 · · · · · · · · · 0 hM−1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟
⎠

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜
⎝

W1,j

W2,j

...

...

...

WM−1,j

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜
⎝

x1

x2
...
...
...

xM−1

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟
⎠

.

To “invert” the matrix U, we begin this time with the last row of the matrix
and work our way up to obtain

WM−1,j = xM−1

hM−1
(10.17)

Wi,j = xi − uiWi+1,j

hi

for i = 1 . . . M − 2
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Thus, we have found an explicit solution for the general finite difference
scheme 10.13, expressing the option values at time tj in terms of the values at a
later time point tj+1 under consideration of the given values at the boundaries.

We will now consider the plain vanilla put and call as well as the barrier
option as examples for the application of this scheme with Dirichlet boundary
conditions. While, in principle, we must find the values of the plain vanilla
options on the entire set from S = 0 to S = ∞, the value of the barrier option
is specified directly in the option contract on one side of the barrier (and on
the barrier itself ). The area to be covered by its grid is thus smaller than that
for plain vanilla options.

Let us, however, begin by considering plain vanilla options. For these
options, the boundary conditions must be specified at “S = 0” and “S = ∞”.
We choose a lower bound S0 small enough, such that the value of the call for
such values of the underlying price is negligible (the option is well out of the
money). Furthermore, we choose an upper bound SM large enough, such that
the value of a put is negligible for such values of the underlying price (the
option is well out of the money). The put-call parity is then used to establish
the other boundary values for each of the two options. Recall that for European
options on an underlying paying a dividend yield q the put-call parity, Eq. 6.8,
is given by:

Price(Call) − Price(Put) = Price(Forward) = Se−q(T −t) − Ke−r(T −t) .

The right-hand side is the value of a forward contract3 with strike price K .
Since the put at the upper boundary is worthless, the call option has the same
value as the forward contract (the option is so far in the money that it will
be exercised with certainty). Conversely, the call at the lower boundary is
worthless, therefore the put has the same value as a short forward contract
(the option is so far in the money that it will be exercised with certainty).
Summarizing, we have the following Dirichlet boundary conditions for the
plain vanilla options:

S0 ≈ 0 SM ≈ ∞
call RL

j = 0 RU
j = SMe−q(T −tj ) − Ke−r(T −tj )

put RL
j = −S0e

−q(T −tj ) + Ke−r(T −tj ) RU
j = 0

3For the sake of simplicity, the price of the forward contract is given for the case of a flat interest rate term
structure, a flat dividend yield curve and no discrete dividend payments. However, this relation also holds
for interest rates and dividend yields which are time-dependent.
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Wenow take an up-and-out barrier call option as an example of a somewhat
exotic and path dependent option and specify its boundary condition. The
initial condition and the boundary condition for S = 0 is exactly the same as
that of a plain vanilla call but as soon as S attains the upper barrier level H , the
option becomes worthless. Often, the option’s holder still receives a payment
if the barrier is reached, the so-called rebate. Let us assume that the rebate R

is due at precisely the knock-out time point (i.e., the instant when S touches
or breaches the barrier). Then, the option’s value is given by the value of the
rebate, namely R. It is thus convenient to select the upper boundary of the
grid as SM = H . The boundary condition for such a barrier option is then
simply WM,j = R.

10.2.3 Neumann Boundary Condition

It often occurs that the first derivative of the option price S is specified at the
boundary of the grid rather than the option price itself,

∂V (S, t)

∂S

∣∣∣
∣
S=SM

= RU(t),
∂V (S, t)

∂S

∣∣∣
∣
S=S0

= RL(t) .

Boundary conditions of this type are called Neumann boundary conditions.4
Since these boundary conditions do not directly specify the values of the
solution (the option values) on the boundary, all (M + 1) values must be
calculated in each time slice. The dimension (the number of values to be
calculated) of the problem is thus (M + 1). In order to obtain the same
number of equations, the index i in Eq. 10.13 must range from 0 to M . As
a result, two “additional unknowns”, namely “W−1,j” and “WM+1,j ” appear
in the system of equations. The two Neumann boundary conditions will be
used to eliminate these additional unknowns. In comparison to the Dirichlet
conditions, we will then have system of equations consisting of two more
equations but exactly as many equations as unknowns.

Since we use three point finite differences in S-direction (see for example
Eq. 10.8) the grid must be extended at both boundaries by one virtual grid
point in S-direction for each index j . In other words, we add two additional
grid points S−1 and SM+1 at each time point tj . This means that the index i in

4As already pointed out in the section on Dirichlet boundary conditions, the solution is at best as exact
as the given boundary conditions. This is important in all cases where there are only approximations to
the boundary conditions RU (t) and RL(t) available.
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the difference equation 10.13 takes on the values i = 0, . . . , M . In the finite
difference approximation 10.8 of the first derivative with respect to S, we can
substitute the respective Neumann conditions for the cases i = 0 and i = M

on the left-hand side of the equation and then rearrange the terms so that the
option values outside the grid are expressed in terms of those defined within
the grid and the boundary conditions. This yields

WM+1,j ≈
(

SM+1 − SM

SM − SM−1

)2

WM−1,j +
[

1 −
(

SM+1 − SM

SM − SM−1

)2
]

WM,j

+ SM+1 − SM

SM − SM−1
(SM+1 − SM−1)R

U
j

at the upper boundary, i.e., for i = M. Likewise for i = 0 on the lower
boundary we have

W−1,j ≈
[

1 −
(

S0 − S−1

S1 − S0

)2
]

W0,j +
(

S0 − S−1

S1 − S0

)2

W1,j

− S0 − S−1

S1 − S0
(S1 − S−1)R

L
j .

Substituting these expressions into Eq. 10.11, we obtain the approximation for
the differential quotient with respect to time at the boundary of the S-grid.
For the upper boundary, this gives:

∂V (SM, tj )

∂t
≈ AM,j WM−1, j + BM,j WM,j

+ CM,j {
(

SM+1 − SM

SM − SM−1

)2

WM−1,j +
[

1 −
(

SM+1 − SM

SM − SM−1

)2
]

WM,j

+ SM+1 − SM

SM − SM−1
(SM+1 − SM−1)R

U
j }

= A∗
M,j WM−1,j + B∗

M,j WM,j

+ SM+1 − SM

SM − SM−1
(SM+1 − SM−1)R

U
j CM,j
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where

A∗
M,j = AM,j +

(
SM+1 − SM

SM − SM−1

)2

CM,j

B∗
M,j = BM,j +

[

1 −
(

SM+1 − SM

SM − SM−1

)2
]

CM,j .

Likewise for the lower boundary:

∂V (S0, tj )

∂t
≈ A0,j {

[

1 −
(

S0 − S−1

S1 − S0

)2
]

W0, j +
(

S0 − S−1

S1 − S0

)2

W1,j

− S0 − S−1

S1 − S0
(S1 − S−1)R

L
j } + B0,j W0, j + C0,j W1,j

= B∗
0,j W0,j + C∗

0,j W1,j − S0 − S−1

S1 − S0
(S1 − S−1)R

L
j A0,j

where

B∗
0,j = B0,j +

[

1 −
(

S0 − S−1

S1 − S0

)2
]

A0,j

C∗
0,j = C0,j +

(
S0 − S−1

S1 − S0

)2

A0,j .

All preparations have now been made for specifying the difference
scheme 10.13 at the boundaries. Replacing the differential quotient with
respect to time in Eq. 10.6 with the above approximation gives

θA∗
M,j WM−1,j + (θB∗

M,j + 1

tj+1 − tj
)WM,j

≈ WM,j+1

(tj+1 − tj )
− (1 − θ)

[
A∗

M,j+1 WM−1,j+1 + B∗
M,j+1 WM,j+1

]

− SM+1 − SM

SM − SM−1
(SM+1 − SM−1)

[
θRU

j CM,j + (1 − θ)RU
j+1 CM,j+1

]
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for the upper boundary. Likewise, the difference scheme for the lower bound-
ary is obtained as

(θB∗
0,j + 1

tj+1 − tj
) W0,j + θC∗

0, j W1,j

≈ W0,j+1

(tj+1 − tj )
− (1 − θ)

[
B∗

0,j+1 W0,j+1 + C∗
0,j+1 W1,j+1

]

+ S0 − S−1

S1 − S0
(S1 − S−1)

[
θRL

j A0,j + (1 − θ)RL
j+1A0,j+1

]
.

Combining the above results, the finite difference scheme 10.13 for Neumann
boundary conditions can be written in the following matrix form:
⎛

⎜⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎜
⎝

b0 c0 0 0 0 0 . . . 0
a1 b1 c1 0 0 0 . . . 0
0 a2 b2 c2 0 0 . . . 0
0 0 a3 b3 c3 0 . . . 0

0 0 0
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . . 0
... 0 aM−1 bM−1 cM−1

0 . . . . . . . . . . . . 0 aM bM

⎞

⎟⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎟
⎠

︸ ︷︷ ︸
A

⎛

⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎝

W0,j

W1,j

W2,j

WM,j

⎞

⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
Wj

=

⎛

⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎝

d0,j

d1,j

d2,j

dM,j

⎞

⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
dj

(10.18)

where

ai = θAi,j , bi = θBi,j + 1

tj+1 − tj
, ci = θCi,j for i = 1, . . . ,M − 1

di,j = Wi,j+1

(tj+1 − tj )
for i = 1, . . . ,M − 1

− (1 − θ)
[
Ai, j+1 Wi−1,j+1 + Bi,j+1 Wi,j+1 + Ci,j+1 Wi+1,j+1

]

aM = θA∗
M,j , bM = θB∗

M,j + 1

tj+1 − tj
,

dM,j = WM,j+1

(tj+1 − tj )
− (1 − θ)

[
A∗

M, j+1 WM−1,j+1 + B∗
M,j+1 WM,j+1

]

− SM+1 − SM

SM − SM−1
(SM+1 − SM−1)

[
θRU

j CM,j + (1 − θ)RU
j+1 CM,j+1

]
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b0 = θB∗
0,j + 1

tj+1 − tj
, c0 = θC∗

0,j

d0,j = W0,j+1

(tj+1 − tj )
− (1 − θ)

[
B∗

0, j+1 W0,j+1 + C∗
0,j+1 W1,j+1

]

+ S0 − S−1

S1 − S0
(S1 − S−1)

[
θRL

j A0,j + (1 − θ)RL
j+1A0,j+1

]
.

(10.19)

This system of equationsmust be solved for each time step taking the boundary
conditions into consideration. The right-hand side of Eq. 10.18 consists only
of values evaluated at time point tj+1 (which have already been computed in
the previous step) and of the (given) boundary conditions. The di,j are thus
completely determined. The system of equations has the same structure as in
the corresponding system 10.15 for the Dirichlet problem except that it is two
dimensions larger. Here, A is a (M + 1) × (M + 1) matrix. This is explained
by the fact that the grid has been extended at the upper and lower boundary in
the S-direction. The simple structure of the matrix A again allows to perform
a L-U decomposition. As before, we begin by setting A Wj = LU Wj =: Lx
and, exactly as was the case for Dirichlet boundary conditions, we obtain

ui = ci for i = 0, . . .M − 1

h0 = b0

li = ai

hi−1
for i = 1, . . .M

hi = bi − li ui−1 for i = 1, . . .M

x0 = d0,j

xi = di,j − li xi−1 for i = 1 . . . M

WM,j = xM

hM

Wi,j = xi − uiWi+1,j

hi

for i = 0 . . . M − 1 .

(10.20)

The only difference is that the range of the index i has been extended and that
ai, bi, ci, di are now given by Eq. 10.19.

As an example of the Neumann problem, we consider the plain vanilla
put and call. Neumann boundary conditions are usually easier to determine
than Dirichlet conditions. For S0 the call is well out of the money and
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the dependence of the price on S can be assumed to be negligible. The
corresponding boundary condition is thus ∂V (S,t)

∂S

∣∣
∣
S=S0

= 0. For extremely
large S, the call is way in the money and thus its behavior is approximated
by the payoff profile. The derivative in the S direction is thus 1 with the
corresponding boundary condition given by ∂V (S,t)

∂S

∣∣∣
S=S0

= 1. The behavior
of the put is the exact opposite. Summarizing, the Neumann boundary
conditions for the plain vanilla put and call are given by:

S0 ≈ 0 SM ≈ ∞ tN = T

call RL
j = 0 RU

j = 1 Pi = max(Si − K, 0)

put RL
j = −1 RU

j = 0 Pi = max(K − Si, 0)

For the sake of completeness, we have also included the initial conditions in
the table.

The type of boundary condition selected for the analysis depends on the
type of option being priced. For plain vanilla options, Neumann boundary
conditions are attractive because they can be easily calculated. The pricing
of a forward contract at each time point (which must be done to establish the
Dirichlet boundary conditions), on the other hand, can be tedious, particularly
when the term structure is not flat and discrete dividends must be taken into
consideration.

For Knock-out barrier options, however, the exact value of the option
at the barrier is known (0 or the rebate), while the change of its value at
the boundary is unknown. In this case, it makes sense to use the Dirichlet
boundary conditions. In addition, a combination of Dirichlet and Neumann
boundary conditions can be applied to one and the same problem as needed.

10.2.4 Generalized Neumann Boundary Conditions

It is possible to generalize the Neumann boundary condition by a simple
method that does not need any explicit information on boundary conditions
with respect to S. Valuation of derivatives most often deals with diffusion
problems, with the Black Scholes equation being its most prominent example.
Diffusion problems share the property that the pay off profile is being
smoothed or “smeared out” the more the farther away the expiry is in the
future. At the same time, the pay off profile is a simple linear function of S for
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very small or very large S. Consequently, at the boundaries, the fair value can
be approximated as a linear function of S.5

A linear function has the property that the second derivative is zero.
Therefore, instead of specifying the value of the first derivative at the boundary,
which is a standard Neumann condition, we may specify the value of the
second derivative, which is (almost) independent of the option type (i.e. it
is equal to zero) as a generalized Neumann condition.

We assume a grid in dimension S with M + 1 nodes S0, S1, S2, . . . , SM ,
with S0 and SM being virtual grid nodes. They will be derived from the con-
straint of zero second order derivatives at the boundaries and thus eliminated.

First consider the lower boundary i = 1. We calculate the unknown value
W0,j by setting Eq. 10.9 to zero for the second derivative with respect to S at
node i = 1:

2

S2 − S0

[
W0,j

S1 − S0
−

(
1

S1 − S0
+ 1

S2 − S1

)
W1,j + W2,j

S2 − S1

]
= 0 .

(10.21)

The virtual grid node S0 may be chosen freely. For simplicity, we set S1 −S0 =
S2 − S1, i.e. S0 = 2S1 − S2. Then, all terms in Eq. 10.21 have the same
denominator. If follows:

W0,j − 2W1,j + W2,j = 0

⇔ W0,j = 2W1,j − W2,j .

An analogous expression can be derived for node M :

⇔ WM,j = 2WM−1,j − WM−2,j .

Now, the problem is reduced to a system of Dirichlet type (Eq. 10.14) with
known W0,j and WM,j . Alternatively, it is also possible to set a1 in 10.15 to
zero and replace b1 by b̃1 = b1 +2a1 and c1 by c̃1 = c1 −a1. With this, W0,j

5One of the rare exceptions to this rule is a power option without cap, with a pay off profile proportional
to S2. Such options are of minor relevance in praxis.
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has been eliminated. Analogous, WM,j can be eliminated as well. This is the
same as replacing Eq. 10.15 by

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

b1 + 2a2 c1 − a1 0 · · · · · · 0

a2 b2 c2 0 . . .

0 a3 b3 c3
. . . . . .

.

..
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . cM−2

0 · · · · · · 0 aM−1 − cM−1 bM−1 + 2cM−1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

W1,j

W2,j

..

.

.

..

...

WM−1,j

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

D1,j

D2,j

...

...

DM−2,j

DM−1,j

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

with the same coefficients as in Eq. 10.16.

10.2.5 Free Boundary Conditions for American Options

Thus far our discussion has been restricted to European options. Finite
difference methods can also be extended to American options. The right to
early exercise must, of course, be taken into account in pricing the option. The
Black-Scholes equation holds only on a restricted set and must be replaced by
the two (in)equalities given by Eqs. 7.13 and 7.14. Equivalently expressed, the
Black-Scholes equation 7.13 holds on a parameter set with a free boundary
given by S∗(t). This line S∗(t) separates the parameter set where the Black-
Scholes equation holds from the parameter set where the value of the option is
simply given by the payoff profile 7.14. Directly on this curve S∗(t) we have

V (S∗(t), t) = P(S∗(t)) .

This is a Dirichlet boundary condition. The boundary condition is called free
because S∗(t) is not known a priori.

A simple solution for this problem can be found using the explicit finite
difference procedure. As for the European option, we start by determining a
solution vector Wi,j , i = 0, 1, . . . , M for a time step j . An intermediate cal-
culation is performed to determine the solution vector W̃i,j for the American
option. In this calculation, the European price is determined and compared to
the intrinsic value P(S). The value of the American option is then defined as
the larger of the two, i.e.,

W̃i,j = max
[
Wi,j , P (Si)

]
.
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The procedure continues with the next time step using this solution vector.
If an implicit (or mixed) finite difference procedure is utilized, this will not

be exact since the vector Wi,j will already have been used implicitly in its
calculation. Therefore the procedure can in principle not be split into the above
two steps. It can be shown, however, that the error in doing so remains small
if the grid in t is fine enough. In particular, if the distance between two time
points is one day or less, the error is often negligible. An additional trick can be
used for call options. It is known that the exercise of a call option can only be
optimal (if at all) immediately before the payment of a discrete dividend. We
can thus introduce extra time points on and immediately preceding the due
dates of the dividend payments with a time difference of, for example, half a
day, and thus minimize the error.

In any case, in addition to the free boundary conditions, values for the
upper and lower boundaries of the S-grid must also be specified. This is
already clear from the explicit procedure described above. We can obviously
only compare the solution vector for a European option with the payoff
profile if this vector has already been determined. To determine this solution
vector for the European option, we need two boundary conditions. They can
be either Neumann, Dirichlet, or more general boundary conditions (such
as the second derivative equals zero). For an American option all boundary
conditions involving derivatives are generally the same as for the corresponding
European option. The maximum of the payoff profile and the boundary
condition of the corresponding European option is a good candidate for the
Dirichlet boundary condition. Thus, for American plain vanilla put and call
options:

Call

S0 ≈ 0 RL
j = 0

SM ≈ ∞ RU
j = max

[
SMe−q(T −tj ) − Ke−r(T −tj ), SM − K

]

tN = T Pi = max(Si − K, 0)

Put

S0 ≈ 0 RL
j = max

[−S0e
−q(T −tj ) + Ke−r(T −tj ),−S0 + K

]

SM ≈ ∞ RU
j = 0

tN = T Pi = max(K − Si, 0)

Note that for American options this is not enough. We also need to specify the
conditions on the free boundary S∗(t). And before we can do this, we need to
determine S∗(t) in the first place.
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The Lamberton and Lapeyre Procedure

In many cases, the free boundary lies on only one side of the grid. For this
case, a suitable procedure for evaluating the American put options has been
suggested by Lamberton and Lapeyre [129]. This procedure does not necessitate
any appreciable additional computational effort. It simply varies the order of
operations needed to solve the system of equations for one time step. We will
now present this procedure.

TheDirichlet boundary condition for the plain vanilla option as given above
will be used as the specified boundary condition (other types of boundary
conditions could also have been used). The difference scheme then has the
form given in Eq. 10.15 with coefficients given by Eq. 10.16. Before introducing
the procedure, we consider the following limiting cases: the exercise region for
a put option must lie in regions where the value of S is small since for large S

(for S > K ) the intrinsic value of a put is zero; the option only has a time
value. For calls (if at all), the exercise region must lie in regions where S is large
since for small S (for S < K ), the intrinsic value of the call is zero.

We now consider the iteration scheme 10.17. In this scheme, we start by
determining the value of WM−1,j . This is an option value for large S. From
the above consideration we know that an optimal early exercise of an American
call option cannot happen in the small S region, but could happen in the
large S region. Therefore we have to allow for this possibility at the grid point
(SM−1, tj ). Should it indeed be optimal to exercise in this time step then
the value WM−1,j must be replaced by the intrinsic value. This fact can be
incorporated into our scheme using the expression

W̃M−1,j = max

[
xM−1

hM−1
, SM−1 − K

]

for our calculation of W̃M−1,j instead of 10.17. We thus obtain the correct
boundary value W̃M−1,j for the American call option. In the next step we use

W̃M−2,j = max

[
xM−2 − uM−2W̃M−1,j

hM−2
, SM−2 − K

]

instead of the corresponding expression 10.17 for the European option. Like-
wise, this leads to the correct result since the value W̃M−1,j for an American
option was calculated correctly before. This means, however, that an American
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call option is correctly computed even with implicit or mixed methods if we
simply substitute

W̃i,j = max

[
xi − uiW̃i+1,j

hi

, Si − K

]

for i = M − 2,M − 3, . . . , 2, 1 at every time step. The procedure just
described started with large S (Index i = M − 1) and computes step-wise
to smaller values of S. This makes it only suitable for call options.

The procedure must be modified for puts. Instead of an LU decomposition
we now carry out a UL decomposition, for which the upper and lower trian-
gular matrices appear in reverse order. The decomposition of the coefficient
matrix A is then given by:

A =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

h1 u1 0 . . . . . . 0

0 h2 u2 0 . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

... 0
. . . uM−2

0 · · · · · · · · · 0 hM−1

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
U

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

1 0 · · · · · · · · · 0

l2 1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . . lM−2 1 0
0 · · · · · · 0 lM−1 1

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
L

The matrix elements differ only slightly for those given by the LU decompo-
sition:

ui = ci for i = 1, . . .M − 2
hM−1 = bM−1

li = ai

hi
for i = 2, . . .M − 1

hi = bi − li+1 ui for i = 1, . . .M − 2

The decisive difference is that hi is iteratively determined from large values
down to small ones (instead of small to large). Proceeding in this way, the
matrix elements of U and L can be easily calculated. Analogously to the case
of the LU decomposition we set

AWj = ULWj︸ ︷︷ ︸
x

=: Ux
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and first solve the system of equations for the new vector x:

⎛

⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎜
⎝

h1 u1 0 . . . . . . 0

0 h2 u2 0 . . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

... 0
. . . uM−2

0 · · · · · · · · · 0 hM−1

⎞

⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎟
⎠

⎛

⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎜
⎝

x1

x2
...
...
...

xM−1

⎞

⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

d1,j

d2,j

d3,j

...

...

dM−2,j

dM−1,j

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

To compute x we start with the row in the matrix which contains only one
non-zero element, i.e., the last row, and proceed from bottom to top to obtain

xM−1 = dM−1,j

hM−1

xi = di,j − ui xi+1

hi

for i = 1 . . .M − 2 .

Now that x is known, the desired option values Wi,j can be calculated from
the definition of x, solving the equation L Wj = x:

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

1 0 · · · · · · · · · 0

l2 1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . . lM−2 1 0
0 · · · · · · 0 lM−1 1

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

W1,j

W2,j

...

...

...

WM−1,j

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

x1

x2
...
...
...

xM−1

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

.

To “invert” the matrix L, we start with the row containing only one non-zero
element, working from top to bottom to obtain

W1,j = x1

Wi,j = xi − liWi−1,j for i = 2 . . . M − 1 .

Now, the iteration begins with the small index values, i.e., with small S-values.
This is what we need since from the limit considerations above we know that
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optimal early exercise of an American put option can only happen in the small
S region. Therefore we have to start in this region to “capture” the early exercise
possibilities correctly. This is completely analogous to the case of an American
call presented above, where we also started in the region where early exercise
could be possible (it was the large S region in that case).

Consequently, we now obtain correct values of American put options for
implicit and mixed methods by setting:

W̃1,j = max [x1, S1 − K]

W̃i,j = max
[
xi − liW̃i−1,j , Si − K

]
for i = 2 . . .M − 1 .

10.3 Convergence Criteria

As for all numerical methods, the essential question to be answered before
implementing finite differences is whether the procedure is stable, i.e., whether
the numerical solution in fact converges towards the actual solution. To
motivate this complex subject, we first consider as an example the special case
θ = 0, i.e., the explicit method. As can be seen from Eqs. 10.16 and 10.19,
the off-diagonal terms are zero regardless of the type of boundary conditions
used. This implies that the system of equations is completely uncoupled. For
example, for Eq. 10.16, the system of equations reduces to

W0,j = (
1 − (tj+1 − tj )

(
B1,j+1 + 2A1,j+1

))
W1, j+1

− (tj+1 − tj )
(
C1,j+1 − A1,j+1

)
W2,j+1

Wi,j = (
1 − (tj+1 − tj )Bi,j+1

)
Wi, j+1 for i = 1. . .M − 1

(10.22)

− (tj+1 − tj )Ai,j+1 Wi−1,j+1 − (tj+1 − tj )Ci,j+1 Wi+1,j+1

WM−1,j = (
1 − (tj+1 − tj )

(
BM−1,j+1 + 2CM−1,j+1

))
WM−1, j+1

− (tj+1 − tj )
(
AM−1,j+1 − CM,j+1

)
WM−2,j+1 .

This means that we obtain the unknown values at time point tj directly
(without carrying out any matrix inversion!) in terms of the values already
calculated for time point tj+1. This result can also be obtained much simpler
and more directly by starting with Eq. 10.4 for the explicit method rather than
from the more general expression 10.6.
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Table 10.1 Properties of the three most commonly used finite difference methods

Scheme θ Numerical effort Convergence Stability

Implicit 1.0 Large Slow Unlimited
Explicit 0.0 Minor Slow Limited
Crank-Nicolson 0.5 Large Fast Unlimited

At this point the reader could ask why we have taken the trouble of
introducing the generalized expression involving θ when the explicit method is
so simple. For this we have to understand how the parameter θ influences the
properties of the finite difference scheme. An important criterion is stability.
Table 10.1 contains an overview of the three most commonly used values of θ .

A difference scheme is called stable if small deviations from the correct
solution do not grow arbitrarily fast (no faster than exponentially) with time.6
If a difference scheme is not stable, errors in the approximation arising in an
iteration step are amplified by calculating backwards in the time-grid from
one iteration step to the next. Obviously, a difference scheme is only useful if
it is stable, since deviations from the correct solution would otherwise grow
faster than exponentially when calculating backwards through the grid, finally
yielding a result with an arbitrarily large error. It can be shown that for θ ≥ 0.5,
the finite difference scheme is always stable, independent of the choice of grid.

A difference scheme converges towards the correct solution if it is both stable
and consistent. Consistency is satisfied if the difference scheme applied to a
smooth function at a fixed time point gives an arbitrarily good approximation
of the solution to the differential equation by making the grid fine enough.
Consistency thus means “convergence for one time step”. If the system is
consistent and stable, i.e., the growth of the error over one iteration step is
bounded, the scheme converges entirely, i.e., over all time steps.

There exists a criterion for the stability of an explicit difference scheme
(θ = 0) for the well-known heat equation 7.22 which, as we have seen, is
closely related to the Black-Scholes equation. This criterion is (expressed in
the variables from Eq. 7.22):

δτ

δx2
≤ 1

2
.

6Independent of the number of time steps.
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For the Black-Scholes equation, the stability condition is considerably more
complicated [181]:

1

2

[
(r(t) − q(t))S

δt

δS

]2

≤ 1

2
σ(S, t)2S2 δt

(δS)2 ≤ 1

2
. (10.23)

We are, in fact, now dealing with two inequalities. The inequality appearing
on the left in the above expression is generally satisfied for the usual values
for r , q and σ. The second inequality however, poses a strong restriction in
the application of the explicit method since it requires the number of time
steps to increase quadratically with the number of the S-steps (i.e., as δS

becomes smaller). A consequence of the S-dependence of this criterion is that
the difference scheme can be stable on one part of the grid and unstable on
the other. Such local instabilities often go unnoticed, but lead to incorrect
results; for example, negative prices could arise. Such an example can be found
in Hull [103]. The criterion 10.23 for stability can be generalized further:
the generalized difference scheme for non-uniform grids remains stable for
θ < 0.5 when the following holds for the second inequality:

(tj+1 − tj )

(Si+1 − Si)2
σ 2

i,j S
2
i ≤ 1

2(1 − 2θ)
, θ <

1

2
.

The Crank-Nicolson method θ = 0.5 has an advantage over the implicit
and explicit methods in that it converges considerably faster. Because of
the averaging of the finite differences at times tj and tj+1, this method is
exact up to second order although the time derivative corresponds to only a
first order approximation. Achieving the same degree of accuracy using the
implicit method would require considerably more time steps. The Crank-
Nicolson method loses some of its efficient convergence when the initial
and/or boundary conditions become less smooth. In many applications, for
instance, the first derivative of the initial condition is not continuous. This
is already the case for the plain vanilla option (at the strike). However, the
discontinuity at that point leads to a negligible inaccuracy in the option price.
A significant error, however, can be found for the value of the delta, while
the values for gamma at the point of the discontinuity can be so extreme that
the error may exceed 100%. As a result, it may be the case that the gamma
for the plain vanilla option cannot be computed with sufficient accuracy
when the spot price equals the strike price (the first derivative of the payoff
is discontinuous at this point). In such situations the implicit method is
often the only suitable method for calculating gamma with sufficient accuracy.
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Another possibility would be to use a three-time-level approximation of the
time derivative which also has the effect of smoothing the oscillations. A
detailed description of this and other procedures can be found, for example,
in the works of Smith [176] and Willmott [191].

10.3.1 Improving the Convergence Properties

If only few time steps are chosen, we observe that the results oscillate strongly
with the number of time steps used [176]. Nonetheless, as few as 20 time steps
are already sufficient to obtain stable results for a plain vanilla option with a
time to maturity of six months. But it is usually worthwhile to increase the
number of time steps, depending on the accuracy required and the available
computation time. Note however, that the improvement in the approximation
resulting from increasing the number of time steps is limited. Improving the
approximation requires a refinement of both the time-grid as well as the S-
grid. The proportion of the number of t -points to the number of S-points
in the grid depends on the lifetime of the option, the required width of the
S-grid (see below) and the type of difference scheme applied. The Crank-
Nicolson scheme, for example, requires a significantly coarser t -grid to attain
comparable accuracy to that obtained from using the implicit method with
the otherwise same parameters. Experimenting with these parameters is in any
case recommended.

In general, it makes sense to start with a uniform grid. An analysis of the
solution surface, i.e., the price function at each point of the grid quickly reveals
information about the time regions at which new grid points should be intro-
duced. Figure 10.1 shows such a solution surface for an American call option
with discrete dividend payments (see also the next section) approximately half
way through its lifetime. Additional time points have been introduced at and
immediately before the due date of the dividend payment. Doing so exactly
incorporates the dividend payment into the calculation. We can clearly see
where exercising shortly before the dividend payment is optimal (the jump
occurs as a result). Likewise, it makes sense to introduce additional grid points
in the time region shortly before the maturity of the option since there the
curvature of the solution surface is quite large.

At every time point where an external shock such as a dividend payment
occurs, the addition of grid points prevents the oscillation of the solution
dependent on the number of t -grid points. This also holds for the S-grid at
the points where the payoff function is discontinuous. For example, it makes
sense to choose the strike price as a grid point, and also the underlying value S
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Fig. 10.1 Part of the solution surface of an American plain vanilla call on an underlying
with a discrete dividend payment

for which the option price is to be determined. Likewise the barrier of a barrier
option should ideally be directly on the grid.However, a non-uniform grid can
reduce accuracy, since, for example, the Crank-Nicolson scheme is exact up to
second order only for a uniform grid in t . In practice serious consideration
should thus be giving as to where and whether additional grid points should
be introduced.7

A good choice of whole S-region, i.e., of S0 and SM+1 can substantially
increase the accuracy attained. A rule of thumb is commonly used for choosing
S0 and SM+1, such as

S0 = 1

4
min(S,K)

SM+1 = 4 max(S, K) ,

where here, S is the spot price of the underlying at time t = 0 and K the
strike price of the option. The S-region thus obtained, however, (depending
on the values of other parameters such as the volatility and the interest rate

7Experience shows that increasing/decreasing the step size in a regular manner works often well.
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term structure) seldom leads to an optimally accuracy if the t -grid and the
number of S-steps are assumed as given.

Alternatively, we could attempt to find the minimum (andmaximum) value
the underlying can attain in its lifetime with a given probability. This can be
done if the underlying’s cumulative probability distributionP has already been
established. In the simplest cases, even an analytic formula for this probability
can be derived (see Sect. A.4). In order to obtain minimal (maximal) S-values
for a given probability (confidence) c, the expression P(x ≤ a) = c must be
solved for a, the percentile of the underlying’s distribution corresponding to the
confidence level c. It is often worth the trouble to make this single calculation
for each valuation to establish the S-region since it can result in a more precise
solution with substantially fewer S-steps.

10.4 Discrete Dividends

Consideration of discrete dividends represents a further complication. The
particular difficulty is that the different methods available rely on different
assumptions. One commonly used method is based on the separation of
the stochastic and deterministic components of the stochastic process S.

The dividend payments correspond to the deterministic component. One
assumption is thus that the exact value of the dividend payment is known
a priori. The present value Dt of the dividends which are to be paid until
maturity of the option is subtracted from the spot rate S of the underlying:

S̃ = S − Dt .

Instead of S we now use S̃ as the new variable in the Black-Scholes equation.
Dt is the nominal value of the dividends discounted back to t (where t denotes
the time step currently under consideration). This process is consistent with
the Black-Scholes formula for the pricing of a plain vanilla European option.
There, discrete dividends are generally taken into consideration by subtracting
the present value of the dividends from the spot price of the underlying.
Consequently, the same volatility holds for both cases. Note however, that the
intrinsic value of the option is still given by

max(S − X, 0) = max(S̃ + Dt − X, 0) .

This value is required to determine the free boundary condition for an early
exercise of the option.



202 H.-P. Deutsch and M. W. Beinker

In the world of finite differences, we have an additional and fundamentally
different method at our disposal. We first rewrite Eq. 7.8 replacing the
dividend term q(t)S resulting from the dividend rate q(t) with D(S, t):

∂V

∂t
+ (r(t)S − D(S, t))

∂V

∂S
+ 1

2
σ(S, t)S2 ∂2V

∂S2
= r(t)V .

The new term D(S, t) represents the nominal value of the dividend payments
at time t . If no dividends are paid at time t, the value of this function D(S, t)

is equal to zero. D(S, t) is thus highly discontinuous. At time τ of a dividend
payment, the option price must remain continuous, although the spot price
of S is reduced by the amount given by the dividend payment D:

lim
ε→0

V (S(τ − ε), τ − ε) = lim
ε→0

V (S(τ + ε), τ + ε) ε > 0 ,

where

lim
ε→0

S(t − ε) = S

lim
ε→0

S(t + ε) = S − D .

This jump in S can be simulated with finite difference methods by first
determining the solution vector at time τ . Subsequently, the vector is trans-
lated by D so that the continuity condition is satisfied. If necessary, missing
intermediate values must be determined by interpolation, or in the case of
boundary values, by extrapolation.

10.5 Example

The download website [50] accompanying this book contains a complete,
executable example program written in Visual Basic (see FiniteDiffer-
enceMethod.xlsm). The program was not written for optimal performance,
but was structured in such a way as to incorporate all the concepts introduced
in this section. For example, the S-grid is recalculated for every new time step
(which, of course, need not be done if the grid is uniform). The volatility,
interest rates and payoff are separated into individual functions to clearly
organize the points at which such structures could be loaded externally via
interfaces. If, for example, the interest rate or volatility is constant, this effort
is superfluous. The program is structured to be, for the most part, self-
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explanatory with helpful comments incorporated into the code. It can serve
as a starting point for generating optimal-performance variants suitable for
specific problems. This Excel workbook also demonstrates the calculation of
option sensitivities, known asGreeks, which will be introduced in detail later in
Chap. 12. Thus, this workbook can serve as a complete little option calculator
(the yellow fields are input fields, a standard which applies to all workbooks
on the accompanying website [50]).

In addition to the L-U decomposition introduced above, the example
includes a further method for solving a system of equations, which is widely
used in practice. The method is a very old procedure referred to as Gaussian
elimination. Gaussian elimination is just as fast as the L-U decomposition and
can be applied to both American and European options. The idea is even
simpler than that of the L-U decomposition. Instead of decomposing the
matrix in Eq. 10.15 into the matrix product of an upper and lower triangular
matrix, it is transformed into a single triangular matrix with non-zero terms
appearing only in the diagonal and a single off-diagonal. There are two possible
ways of doing this: the matrix can be transformed into an upper or lower
triangular matrix by eliminating the lower off-diagonal or upper off-diagonal
terms respectively.

The first element in the lower off-diagonal, a2, is eliminated by multiplying
the first row of the matrix by a2/b1, and subtracting the result from the
second row. After doing so, the second row contains only two elements, namely
b′

2 = b1 − c1a2/b1 in diagonal and c2 in the upper off-diagonal. This
procedure is repeated analogously by multiplying the second row by a3/b

′
2

and subtracting from the third, and so on. In terms of the system of equations,
this means that certain equations are multiplied by constants and subtracted
from one another. These are the usual operations implemented when solving
a system of equations. In performing such operations, it is clear (in contrast to
the L-U decomposition) that the right-hand side of the equation also changes.
Carrying out this procedure for the entire matrix yields the following system
of equations:

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

b′
1 c1 0 · · · · · · 0

0 b′
2 c2 0 . . .

... 0 b′
3 c3

. . . . . .
...

. . .
. . .

. . . 0
...

. . .
. . . cM−2

0 · · · · · · · · · 0 b′
M−1

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

W1, j

W2, j

...

...

...

WM−1, j

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

d ′
1, j

d ′
2, j
...
...

d ′
M−2, j

d ′
M−1, j

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠
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where

b′
1 = b1 , d ′

1, j = d1,j

b′
i = bi − ci−1

ai

b′
i−1

, d ′
i, j = di, j − d ′

i−1, j

ai

b′
i−1

, ∀i = 2, . . . , M − 1 .

This system can be solved quite easily by starting with the row containing only
one non-zero term, in this case the last row, and working upwards from the
bottom. We obtain the option values

W̃M−1, j = max

[
d ′

M−1, j

b′
M−1

, P (SM−1)

]

W̃i, j = max

[
d ′

i, j − ci W̃i+1, j

b′
i

, P (Si)

]

∀i = 1, . . . ,M − 2 .

To this extent, this method offers an alternative to the L-U decomposition
for the valuation of European options. The free boundary condition for
American options is dealt with, as in the method of Lamberton and Lapeyre,
by calculating the value of the option by Gaussian elimination as if it were
European and, at each time step, comparing it with the intrinsic value of the
option P(S), i.e., the payoff profile. The value of the American option at this
time point is then defined as the greater of the two. The components of the
solution vector W̃i,j are thus given by

W̃M−1, j = max

[
d ′

M−1, j

b′
M−1

, P (SM−1)

]

W̃i, j = max

[
d ′

i, j − ci W̃i+1, j

b′
i

, P (Si)

]

∀i = 1, . . . ,M − 2 .

As was already stressed earlier when we presented the method of Lamberton
and Lapeyre, this procedure functions only when we calculates along the S-grid
points starting from the exercise region, where the value of the option is given
by its intrinsic value (the payoff profile), toward the region where the Black-
Scholes equation holds. Otherwise, we would observe an edge or jump at the
transition from one region into the other. The Gaussian elimination procedure
described above starts from largeS (index i = M−1) and calculates backwards
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step by step towards smaller values of S. This works fine for call options since
early exercise of a call can only (if at all) be optimal for large S because for
small S (for S < K) the intrinsic value of the call is of course zero.

For put options, however, the exercise region can only lie in areas where
the value of S is small, since for large S (for S > K ), the intrinsic value
of the put is zero, the option itself having only a time value. Therefore the
second possibility for performing a Gaussian elimination has to be used for
puts, namely eliminating the upper off-diagonal. This results in a procedure
which begins with small S proceeding step by step towards larger S-values.
The upper off-diagonal is eliminated by multiplying the last row of the matrix
by cM−2/bM−1, subtracting the result from the next to last row. Proceeding
analogously, the newly created next to last row is multiplied by cM−3/b

′
M−2

and subtracted from the row lying immediately above it, and so on. Performing
this procedure for the entire matrix yields the following system of equations:

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎝

b′
1 0 · · · · · · · · · 0

a2 b′
2 0

...

0 a3 b′
3 0

...
...

. . .
. . .

. . .
. . .

...
...

. . . aM−2 b′
M−2 0

0 · · · · · · 0 aM−1 b′
M−1

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎝

W1, j

W2, j

...

...

...

WM−1, j

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎝

d ′
1, j

d ′
2, j
...
...

d ′
M−2, j

d ′
M−1, j

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎠

where

b′
M−1 = bM−1 , d ′

M−1, j = dM−1, j

b′
i = bi − ai+1

ci

b′
i+1

, d ′
i, j = di, j − d ′

i+1, j

ci

b′
i+1

, ∀i = 1,. . . , M − 2 .

This system can be solved quite easily by starting with the row containing only
one non-zero element, in this case the first row, and proceeding from top to
bottom. We thus obtain the option values

W1, j = d ′
1,j

b′
1

Wi, j = d ′
i,j − aiWi−1,j

b′
i

∀i = 2, . . . , M − 1 .
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The components of the solution vector W̃i,j for an American option with
payoff P(S) is given by

W̃1, j = max

[
d ′

1,j

b′
1

, P (S1)

]

W̃i, j = max

[
d ′

i,j − ai W̃i−1, j

b′
i

, P (Si)

]

∀i = 2, . . . ,M − 1 .

10.5.1 Relationship Between Explicit Finite Difference
and Tree Methods

Numerically, the trinomial tree and the explicit method of finite differences are
equivalent, at least in certain special cases. Consider the ith node of the time
step j . This corresponds to an underlying price Sji . This node is connected
to the nodes i + 1, i and i − 1 of the time step j + 1. The value of the option
Vji at node i of the time step j is given by

Vji = B(tj , tj+1)
[
p+Vj+1,i+1 + p0Vj+1,i + p−Vj+1,i−1

]
.

The analogous expression for the explicit finite difference method is given by
Eq. 10.22 with the coefficients given by Eq. 10.12 (or Eq. 10.10 for uniform
grids):

Wi,j = (
1 − (tj+1 − tj )Bi,j+1

)
Wi, j+1 − (tj+1 − tj )Ai,j+1 Wi−1,j+1

− (tj+1 − tj )Ci,j+1 Wi+1,j+1 .

We immediately see the similarity in structure. The probabilities can be
easily associated with the coefficients of Wi+1,j+1, Wi,j+1 and Wi−1,j+1. This
requires the grid points of the finite difference grid to correspond exactly to
the nodes of the trinomial tree and thus the restriction Sji = Sj+1,i to hold
for the nodes of the trinomial tree. The finite difference grid was constructed
specifically to satisfy just this very condition (even for non-uniform grids) to
prevent the expressions for the finite differences from becoming unnecessarily
complicated. The trinomial tree appears more flexible from this point of view.
However, it has all the disadvantages associated with the explicit method.
Moreover, a procedure corresponding to the implicit or Crank-Nicolson
method is not available for trinomial trees.



11
Monte Carlo Simulations

Having recognized the fact that prices of financial instruments can be cal-
culated as discounted future expectations (with respect to a risk-neutral
probability measure), the idea of calculating such expectations by simulating
the (stochastic) evolution of the underlyings several times and subsequently
averaging the results somehow is not far removed. In fact, this relatively simple
idea is widely used and is successful even in the valuation of very exotic options
for which other methods are either too complicated or completely unsuitable,
the only requirement being the availability of sufficient computation time.
Before proceeding with financial applications of Monte Carlo techniques, we
begin with a presentation of the technique itself.

If random events occur often enough, they can be used to answer diverse
questions statistically. This has long been common knowledge in science and
we have seen a vast increase in applications with the advance of modern
computers, since computers suddenly made it possible to generate “random”
events cheaply and in large numbers, or in the language of the specialist, to
simulate them. Ever since, computer simulations have been indispensable in
science, and since lately also in the modern financial world. Since generating
“random” events lies at the core of such simulations, the name Monte Carlo
simulation has become accepted despite the fact that the method’s namesake
city in Monaco could never generate as many random events as are sometimes
necessary in practice, even if all the casinos in Monte Carlo were open non-
stop for business every day for a million years. From this point of view, the
computer can far outperform the roulette table.
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With simulations, it has become possible to solve problems for which classi-
cal solutions fail, e.g. if the dimensionality of the problem is to high (regarding
for example most equity basket products with three or more different stocks
in the basket), or if the problem at hand could not be formulated in terms of
a partial differential equation (e.g. the multi-factor LIBOR market model).
Use of Monte-Carlo simulations, on the other hand, allow for the direct
simulation of stochastic differentials. Even complex path dependencies with
the final pay off depending highly on the evolution path of the underlying over
time can be modeled by means of Monte Carlo methods without difficulty,
since the various paths are simulated directly anyway. Lattice methods (trees,
finite differences) can be used to solve path-dependent problems only in some
special, simple cases or with great computational effort.

In addition, computer simulations allow to perform a what-if-analysis, with
which in short time many different scenarios could be simulated and analyzed.
The scenarios to be simulated could be given as fixed parameter sets (static
simulation, without any stochastic parameters, and are therefore no Monte
Carlo simulations) or randomly synthesized by application of a set of rules
(dynamicMonte Carlo simulation). The recently becoming increasingly popular
stress tests are nothing else then computer simulations, too. Finally, computer
simulations are fairly easy to implement and understood.

This advantages do have a price: computer simulations require lots of
computation time, and especially for low-dimensional problems, this is a
significant disadvantagewith respect to latticemethods. Also, it is very difficult
and time intensive to calculate sensitivities with required accuracy. Therefore,
MC simulations are often themethod of last resort, i.e.MC simulations should
in general only be used if other alternative methods fail.

Assumptions

A Monte Carlo simulation in its most general form consistent with arbitrage-
free pricing requires only the assumptions eliminating arbitrage opportunities,
i.e., Assumptions 1, 2, 3, 4 and 5 from Chap. 4. In addition, at first, we
constrain our considerations to European options only. As will be shown
later, the valuation of American Options with Monte Carlo methods requires
significant extra effort.

The Monte Carlo method presented in the following is based on the
random walk equation 2.17 with constant drift and volatility. Hence, because
of Eq. 9.25 for pricing in a risk-neutral world, constant yields must also
be assumed. This means that for the method presented, the additional
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Assumptions 7, 9, 11 and 12 from Chap. 4 are also made. The assumptions
of constant interest rates and volatilities naturally imply that interest rates
and volatilities are non-stochastic, i.e., Assumptions 8 and 10 hold as well.
Generalization to time-dependent parameters is possible without problems,
though.

These extensive assumptions are made to allow a clear presentation of the
material but are, in principle, not necessary for performing Monte Carlo
simulations. For example, not only the underlying price, but also the volatility
can be simultaneously simulated as stochastic processes (for instance also as
a random walk). Since then two of the parameters involved are stochastic
processes, the random walk occurs now in two dimensions. Of course, the
volatility of the volatility and also the drift of the volatility would be required
as parameters in such a situation. The simulation then proceeds as follows:
first, a value for the volatility is simulated. Using this simulated volatility as
a parameter, the next step for the underlying price is simulated. The two
random walks are thus not independent of one another since the random
walk describing the volatility affects that of the price. In reality, it can often be
observed that the converse holds as well, i.e., the price of the underlying has
an influence on the volatility (low volatility for rising prices and high volatility
for falling prices). This effect can be incorporated into the simulation using a
special form for the drift of the volatility random walk, which depends on the
underlying price, for example as “volatility-drift = rdt/S(t)”.

When simulating interest rates for pricing caps or floors, for example,
Eq. 2.17 can naturally be replaced by a more complex process corresponding to
a term structure model such as Heath-Jarrow-Morton, Ho-Lee, Hull-White,
etc. Mean reversion, for example, intuitively corresponds to a random walk
under the influence of an external force which has the effect of “driving” the
random walk back to an asymptotic mean value.

11.1 A Simple Example: The Area of a Disk

First, we will make some effort to understand clearly the essence of the Monte
Carlo simulation, before the method will be applied to an actual problem.
Therefore, at this point we present a very simple example of the idea behind
the Monte Carlo method before entering into a discussion of applications in
the financial world. As known from elementary mathematics, the area of a disk
of radius R is πR2, the product of the square of the radius with the constant
π , already known to the ancient Egyptians: π = 3.14159... A disk with a
radius of one meter, R = 1m, thus has an area of π × (1m)2 = 3.14159m2.
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2 m

1 m

Fig. 11.1 A disk with diameter 2m in a square with sides of length 2m

Supposing we had never heard of the number π , this fact can be ascertained
with the help of random events. To do so, we simply place square box with
sides of length 2m containing a “pie dish” as shown in Fig. 11.1 out in the rain.
The pie dish represents the disk of radius 1m whose area is to be determined.
We know that the square has an area of 2m× 2m = 4m2. The random events
are the falling raindrops. Assuming that the raindrops fall evenly on the square,
then the area of the disk can be given by

disk area = number of raindrops falling on the disk
number of raindrops falling on the entire square

× 4m2 .

In this way, the area of a disk can be determined with the help of random
events.

The same “Experiment” admits another interpretation. If the equation “disk
area = πR2“ is known, then the value of π can be determined:

π = disk area
R2

= disk area
1m2

= 4 × number of raindrops falling on the disk
number of raindrops falling on the entire square

.
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Thus, with the help of randomly falling raindrops, the value of the natural
constant π has been determined.

The primary application of Monte Carlo methods—in particular in the
financial world—is the calculation of integrals. For example, the price of an
option can be expressed as the integral of its payoff profile with respect to
an appropriate probability measure associated to the price of its underlying
at maturity. Making use of our disc-example, we give a third interpretation of
the experiment described above to illustrate how random events can be used to
calculate an integral: as is known from elementary mathematics, a semi-circle
can be represented as the graph of a function. Choosing the x- and y-axis as
shown in Fig. 11.1, the ancient Pythagorean Theorem says that the points (x, y)

on the circle all satisfy x2 + y2 = R2 = 1, thus the upper semi-circle is
the graph of the function y = √

1 − x2. The lower semi-circle is the graph
of the function y = −√

1 − x2. As is well know from any introduction to
mathematical analysis, integrating a function gives the area under the curve
given by the graph of that function. Since the upper semi-circle is represented
by the graph of the function y = √

1 − x2, the area of the half-disk can be
determined by integrating:

1∫

−1

√
1 − x2dx = 1

2
Area of the disk

= 2
Number of raindrops falling on the disc

Number of raindrops falling on the entire square
.

Thus, we have calculated this integral with the help of randomly falling
raindrops.

Note that the quantity we want to calculated using random events is by no
means random itself: the area of a disk of radius 1m2 never changes nor does
the value of π or the value of the above integral. We could ask the question:
does rain know anything about geometry and circles? Or about the natural
constant π ? Or about integration? Probably not. However, this information
can be obtained if we are clever enough to ask the right questions! The only
condition, the randomly falling raindrops had to meet, was that they fall
evenly, or more precisely, that the probability for them to fall on any particular
point in the square is exactly the same as to fall on any other point in the square.
For example, on a square field with an area of 1000 square miles, it might be
raining in some places and sunny in others. Such a field would be completely
unsuitable for our experiment.
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The “machine” used to generate the random events, whether the rain or a
computer, is completely irrelevant. The events merely have to be “sufficiently
random” and their probability distribution must be known. If this is the case,
calculations can be performed with an accuracy which is limited solely by the
machine’s capacity to produce the random events: according to the laws of
statistics, the accuracy of results improves as the number of random events
involved in the simulation increases (see Sect. 31.2).

How would the above experiment have been conducted with a computer?
Nowadays, most programming languages such as Pascal, Fortran, C, C++, etc.
and the common spread sheet programs, such as Microsoft Excel (or Visual
Basic) or Lotus 1-2-3, are equipped with random number generators. These are
(small) programs or functions which usually generate uniformly distributed
random numbers between 0 and 1. Simulating a random event such as a falling
raindrop with a computer is accomplished by generating two such random
numbersZ1 andZ2 to simulate the coordinates (one x- and one y-coordinate)
of the point on which the raindrop falls. Since the simulated random numbers
are all between 0 and 1 the generator producing such coordinates simulates
raindrops falling only in the shaded area in Fig. 11.1. To simulate raindrops
falling on the entire square, the following transformation must be made:

x = 2Z1 − 1 , y = 2Z2 − 1 .

Because this transformation is linear, x and y are uniformly distributed
random variables, as are Z1 and Z2. Thus, the coordinates of a raindrop
in the square have been determined. The simulation of the random event is
complete and we can continue with the evaluation. As in the case of raindrops,
two events must be counted:

• The total number of “raindrops” falling in the square. This, however,
is exactly the number of simulated random events, since no coordinates
were generated which lie outside of the square (we make no unnecessary
simulations). This means that this counter will be increased by one after
each random event has been simulated.

• The number of “raindrops” falling within the circle. According to Pythago-
ras, these are the random events whose coordinates x and y satisfy the
inequality x2 + y2 ≤ 1. This means that after each random event,
the counter is only increased by one if the generated event satisfies this
inequality.
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If, for example, 10,000 events were simulated (this requires the generation
of 20,000 random numbers, one for each coordinate), of which, for example,
7851 satisfy the above inequality, we obtain

Area of the disk ≈ 0, 7851 ∗ 4m2 = 3, 1404m2

π ≈ 0, 7851 ∗ 4 = 3, 1404

1∫

−1

√
1 − x2 dx ≈ 0, 7851 ∗ 2 = 1, 5702 .

Of course, this result is not exact, but the statistical error involved can be
determined as described in Sect. 31.2. In principle, this error can be reduced
almost arbitrarily by increasing the number of simulated random events, as
long as computer capacity allows it.

11.2 The General Approach to Monte Carlo
Simulations

Wecan extract the general procedure for conducting aMonte Carlo simulation
from the above example which will be summarized here to provide the reader
with a “recipe” for performing such simulations. Each step will be explained
by reference to its corresponding step in the above disk experiment as well as
to the simulation of a random walk.

1. Generate the random numbers required for aMonte Carlo step, usually
from a uniform distribution between 0 and 1.
In the disk experiment, a Monte Carlo step corresponds to the falling of
a simulated “raindrop”. Two random numbers were required. To simulate
a random walk, a Monte Carlo step represents a step in the random walk.
One random number is required for each dimension of the space in which
the random walk occurs.

2. Transform the random numbers to generate numbers according to a
desired distribution.
In the disk experiment, the uniformly distributed random numbers gen-
erated between 0 and 1 were transformed to yield uniformly distributed
random numbers between −1 and 1. For a random walk, they are trans-



214 H.-P. Deutsch and M. W. Beinker

formed to normally distributed random numbers. Section A.5 presents
methods for doing this.

3. Perform a Monte Carlo step using the random numbers generated.
In the case of the disk, this corresponds to the falling of a “raindrop”. For
the random walk, it consists of adding one time step to the random walk.

4. Repeat steps 1, 2 and 3 until the system reaches the state required for
the proposed investigation.
For a random walk consisting of n steps, the required state is attained
when n Monte Carlo simulations have been carried out. For the disk, the
evaluation can take place after each single Monte Carlo step.

5. Measurements: measure the system variables of interest.
In the case of the disk, we measure the number of “raindrops” falling within
the disk. For a random walk, for example, the “end-to-end” distance could
be measured.

6. Repeat steps 1, 2, 3, 4 and 5 until enough systems for a statistical
analysis have been generated.
For the disk, many “raindrops” must be simulated; for the price evolution
of an underlying, many random walks must be generated.

7. Final Analysis: compute the means of the measured variables and
determine the statistical error.
For the disk, this was the ratio of the number of raindrops falling within
the disk to the total number simulated. For a random walk it could be, for
example, the mean length of all measured end-to-end vectors (or the square
of their Euclidean norm).

11.3 Monte Carlo Simulation of Risk Factors

11.3.1 Simulation of the Evolution of a Single Risk Factor

On the basis of Eq. 2.17, the time interval from t to T is divided inton intervals
of length δt where n equals the number of steps. The price of a risk factor is
to be simulated as a random walk over this time interval. The random walk
equation 2.17 (or its equivalent form 2.23) holds for infinitesimal changes in
ln(S) occurring in an infinitesimally small time span dt . The time step δt used
for the simulation is not infinitesimally small, however. Therefore we do not
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use the stochastic PDE 2.17 (or 2.23) itself but its solution, Eq. 2.28. Taking
the logarithm on both sides of this solution yields1:

ln (S(t + δt)) = ln (S(t)) + μ δt + σX
√

δt with X ∼ N(0, 1) .

This is a recursion: Knowledge of ln(S) at time t enables the calculation of
ln(S) at the next time point t + δt . To emphasize this point, we enumerate
the time points, i.e., we introduce the following notation:

ti = t + i δt where i = 0, 1, . . . , n d. h. t0 = t , tn = T .

Denoting the ith (standard normally distributed) random number by Xi =
X(ti), we obtain the basis of the simulation of a risk factor whose behavior is
governed by Eq. 2.17 in terms of the notation just introduced:

ln (S(ti)) = ln (S(ti−1))+μ δt+σ Xi

√
δt , i = 1, . . . , n . . (11.1)

This equation is suitable for a direct simulation: ln(S(ti−1)) is the end-point
of a randomwalk after i−1 steps. In the next step, the value “μδt+σ Xi

√
δt”

will be added on to this end point, yielding the end point of the random walk
after i steps, namely ln(S(ti)).

A concrete example at this point may clarify this procedure.With a volatility
of σ = 20% per year, a drift of μ = 6% per year and a time step δt = 1
day = 1/365 years, Eq. 11.1 gives the following simple recursion relation:

ln (S(ti)) = ln (S(ti−1)) + 0, 06

365
+ 0, 2

√
1/356 Xi

= ln (S(ti−1)) + 0, 0001644 + 0, 01046 Xi .

The contribution of the drift to each step is approximately one hundred times
smaller than that of the volatility. This explains the negligible effect of the
drift for small time spans T − t . However, over longer time periods, the drift
cannot be ignored. Figure 11.3 shows the result of a simulation over a longer

1To be able to work with standard normally distributed random numbers we also used Eqs. 2.16 and 2.27
here. Those Equations say that the Wiener-Process δW has the same distribution as

√
δt times a standard

normally distributed random number:

δW ∼ X
√

δt with X ∼ N(0, 1) .
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Fig. 11.2 Simulation of ln(S(t)/S(0)) by means of normally distributed random num-
bers. 1 step corresponds to 1 day, with a total number of 2,000 steps. The annual
volatility is 20% and the average drift is 0

time span of 2,000 days with respect to this recursion. To emphasize the effect
of the drift, the 2,000 randomly generated values of Xi were saved and used
again for the recursion, this time setting μ = 0. The result is presented in
Fig. 11.2. The values at the end of the simulation performed with the drift
(Fig. 11.3) are approximately twice as large as those for the simulation with
zero drift.

Such a curve represents one possible price progression over time, called a
path of the risk factor. Repeating the simulation, we obtain an additional path.
The simulation of many such paths yields the probability distributions for the
price at each time point ti in the simulated time span, in other words the
probability distribution of the paths. In particular, we obtain a distribution of
the values of the risk factor at the end point tn = T . The simulated price of
the risk factor at time tn = T is obtained by adding up the n steps generated
in accordance with Eq. 11.1:

ln (S(tn)) = ln (S(t0)) + μ

n∑

i=1

δt +
n∑

i=1

Xi σ
√

δt .
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Fig. 11.3 The same random walk as in Fig. 11.2 but with a drift (mean return) of 6%
per year

If the volatility σ is assumed to be constant, it can be factored out of the above
sum. The length of the time steps δt are the same for each Monte Carlo step
and thus

ln (S(tn)) = ln (S(t0)) + μ n δt + σ
√

δt

n∑

i=1

Xi .

The sum of n independent, standard normally distributed random variables is
again a normally distributed random variable with expectation 0 and variance
n, i.e., the standard deviation of the sum is

√
n. If only the end distribution

(the distribution of Sn) is of interest and not the path of the underlying (each
of the Si) taken during the time span under consideration, the sum of the
n standard normally distributed random variables Xi can be replaced by a
standard normally distributed random variable X multiplied by

√
n :

n∑

i=1

Xi → √
n X .
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In doing so, the simulated underlying price at the end of the time period under
consideration can be generated with a single random number directly. Using
nδt = T − t from the definition of δt we can thus write

ln (S(T )) = ln (S(t)) + (T − t )μ + σ
√

T − t X . (11.2)

The path taken by the underlying during the simulation is of interest only
for certain exotic, path-dependent derivatives (see Chap. 19). Otherwise, in
particular for pricing and risk management of European-style instruments
where the underlying price is relevant only at maturity (or at the end of the
liquidation period in the case of risk management), the efficiency of a Monte
Carlo simulation can be significantly improved by this simplification.

11.3.2 Simulation of Several Correlated Risk Factors

We are often interested in the progression of several risk factors rather than just
one. The risk management of a portfolio, for example, requires the simulation
of all risk factors affecting the portfolio. Since those are usually not statistically
independent of one another, we are confronted with the question of how
the correlation between risk factor processes can be incorporated into the
simulation. The general approach for an arbitrarily large number of different
securities is presented in Sect. 23.1. Here, we restrict the discussion to the
important special case of two correlated prices. This can be used, for example,
in determining the price of exchange options.2

The two price processes S1 and S2 have drifts μ1 and μ2, volatilities σ1 and
σ2, respectively, and a correlation ρ12. The logarithm of the random walks will
again be used to model the time evolution of the risk factors:

δ ln S1(t) = μ1 δt + Y1

δ ln S2(t) = μ2 δt + Y2 with correlated random variables Y1, Y2 .

How should correlated pairs of random variables be constructed? First, the two
equations for δ ln(Si) are combined by interpreting the indexed equations as
components of a random vector.

(
δ ln S1(t)

δ ln S2(t)

)

=
(

μ1

μ2

)

δt +
(

Y1

Y2

)

.

2See Sect. 19.1.5.
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If the prices were uncorrelated, the random variablesYi would be independent,
normally distributed random variables with variance σ 2

i δt . However, since the
prices are correlated, it is not sufficient to simply specify the variance of both
variables in order to fully determine the distribution. Instead the covariance is
needed to describe both the variances and the correlations. Since several Yi (in
this case, two) may come into play when constructing the random vector, the
covariance is not a single number but a matrix, called the covariance matrix.
As will be presented in detail in Sect. 21.5, the covariance matrix δ� of two
random variables is composed of the correlations and the standard deviations
of the associated random variables as follows:

δ� =
(

δ�11 δ�12

δ�21 δ�22

)

where δ�ij = ρij︸︷︷︸
Correlation
von i mit j

σi

√
δt

︸ ︷︷ ︸
Standard
dev. ofi

σj

√
δt

︸ ︷︷ ︸
Standard
dev. ofj

for i, j = 1, 2 .

(11.3)

Correlations are symmetric, i.e., ρij= ρji . Also, ρii = 1, in other words a risk
factor is always fully correlated with itself. With ρ = ρ12 = ρ21 the covariance
matrix of two risk factors becomes

δ� = δt

(
σ 2

1 ρ σ1σ2

ρ σ1σ2 σ 2
2

)

.

In order to generate normally distributed random numbers Yi with correlation
matrix δ� from independent, standard normally distributed random variables
Xi, the “square root” A of the matrix δ� is needed. This matrix satisfies the
condition

AAT = δ� ,

where AT denotes the transpose of the matrix obtained by writing the column
vectors of the matrix A as row vectors. As shown in detail in Sect. 21.5.3, this
matrix yields the desired transformation

Y = AX where

X = vector of standard normally distributed, uncorrelated random variables

Y = vector of normally distributed, correlated random variables with

covariance matrix δ� .
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The “square root of a matrix” can be obtained using a procedure from linear
algebra called Cholesky decomposition. The general form of this decomposition
is given in Sect. 21.5.3. Here, we restrict our consideration to 2 × 2 matrices,
carrying out the procedure explicitly for this case. We begin by assuming that
the matrix A has the following form:

A =
(

a11 0
a21 a22

)

�⇒ AT =
(

a11 a21

0 a22

)

.

The components aij can now be determined from the requirement that the
equation AAT = δ� be satisfied:

AAT = δ�
(

a11 0
a21 a22

)(
a11 a21

0 a22

)
=

(
δ�11 δ�12

δ�21 δ�22

)

(
a2

11 a11a21

a11a21 a2
21 + a2

22

)
=

(
δ�11 δ�12

δ�21 δ�22

)
.

Comparing the components on both sides yields a linear system of equations
for the aij :

a2
11 = δ�11 ⇒ a11 = √

δ�11 = σ1

√
δt

a11a21 = δ�12 ⇒ a21 = δ�12√
δ�11

= ρ σ2

√
δt

a2
21 + a2

22 = δ�22 ⇒ a22 =
√

δ�22 − δ�2
12

δ�11
=

√
1 − ρ2 σ2

√
δt .

Where Eq. 11.3 was also used. Now that the matrix elements have been
determined, this matrix can be used to generate the correlated random
numbers:

Y = AX
(

Y1

Y2

)(
a11 0
a21 a22

)(
X1

X2

)
= √

δt

(
σ1 0
ρσ2

√
(1 − ρ2)σ2

)(
X1

X2

)
,
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and thus

Y1 = √
δt σ1 X1

Y2 = √
δt ρ σ2 X1 + √

δt
√

1 − ρ2 σ2 X2 . (11.4)

We can now formulate a random walk equation for two correlated price
processes in terms of two uncorrelated standard normally distributed random
variables X1, X2:

δ ln S1(t) = μ1 δt + σ1 X1

√
δt

δ ln S2(t) = μ2 δt + σ2 (ρX1 +
√

1 − ρ2X2)
√

δt . (11.5)

The first equation has the form of a single randomwalk. The correlation affects
only the second equation. The interpretation of this representation is that the
second price is correlated with the first. Since the correlations are symmetric,
this interpretation is irrelevant for the final result. Assuming another form for
the matrix A (or simply renaming the Yi) would yield the result that the first
price is correlated with the second. This holds in general: we can select any risk
factor (for example, the one we feel most comfortable working with) as the
leading factor and simulate it independently. Then all correlations appear in
the evolutions of the other risk factors.

Exactly as in the previous section, the random walk equations 11.5 now
provide the basis for the recursionwhich can be programmed in aMonte Carlo
simulation:

ln S1(ti) = ln S1(ti−1) + μ1 δt + σ1 X1(ti)
√

δt , i = 1, . . . , n

ln S2(ti) = ln S2(ti−1) + μ2 δt + σ2

[
ρX1(ti) +

√
1 − ρ2X2(ti)

]√
δt .

(11.6)

Or, if only the values at the end of the time period under consideration are of
interest but not the paths of the risk factors:

ln S1(T ) = ln S1(t) + μ1 (T − t ) + σ1

√
T − tX1

ln S2(T ) = ln S2(t) + μ2 (T − t ) + σ2

√
T − t

[
ρX1 +

√
1 − ρ2X2

]
.

(11.7)
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The Excel workbook from the download site [50]MonteCarloDemo.xlsx
includes a demonstration of the Monte Carlo simulation of a risk factor. For
demonstration purposes, the simulation is accomplished using Excel cell
functions without programming in Visual-Basic. Of course, this would be
too slow for use in real applications. We therefore also provide a workbook
entitled MonteCarloSimulation.xlsm which contains an executable Visual
Basic module for Monte Carlo simulations.

11.4 Pricing

According to Eq. 9.20 the value at time t of a financial instrument can
be determined from the expectation of its price at a future time T , if this
expectation is taken with respect to the risk-neutral probability distribution of
the underlying. A clever choice of T can make pricing the instrument using
Monte Carlo simulations quite easy. If T is chosen to be the maturity of the
derivative, then the derivative’s price at time T is simply given by the payoff
profile P . Thus, if the underlying S is simulated according to Eq. 11.1 up to
time T we can easily obtain a simulated probability distribution for the payoff
values. This works also for path dependent instruments if we measure the
relevant path-dependent quantities along the way (like for instance average of
the simulated underlying values for specified days in the case of Asian options).
The mean of all these simulated payoff values is then used as an estimator
for the expectation of the payoff. According to Eq. 9.20, discounting3 this
estimator back to time t yields an estimator for the value of the instrument
at time t , if the calculation of the mean has been carried out with respect to
the risk-neutral probability. To ensure that this is the case, the risk factor must
be simulated with respect to this probability. This is accomplished by simply
choosing the drift of the random walk to be risk-neutral in accordance with
Eq. 9.25.

Thus, the approach for pricing derivatives using Monte Carlo simulations
is basically clear: We simulate the underlying (or more precisely the logarithm
of the underlying value) in a risk-neutral world up to the time of maturity in
accordance with Eq. 11.1 (for path-independent derivatives we can even use
Eq. 11.2 and save a lot of computing time), and then measure the (discounted)
mean of the payoff profile. In order to determine the error involved as discussed

3For future styled instruments, whose value changes are settled by daily adjustments in a margin account
(as is the case for futures, for example), today’s price is directly related to this expectation without any
discounting, see Eqs. 6.6 and 9.21.
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in Sect. 31.2, the mean of the square of the payoff profile must be measured,
too. That’s all. The calculation of option prices using the Monte Carlo
method merely involves determining the mean of certain functions during
the simulation.

An essential point, however, should not be overlooked. The time of exercise
must be known, otherwise it is not clear “up to when” the price is to
be simulated. For American or Bermudan Options we do not have this
information up front. Section 11.5 describes methods for calculating at least
lower bounds for the option values, which could be used to approximate the
exact solution quite accurately.

A detailed demonstration of the application of the Monte Carlo method
to the valuation of an option portfolio is provided in the Excel workbook
MonteCarloSimulation.xlsx from the download site [50]. By making
appropriate adjustments in the valuation part of the Visual Basic module, this
program can be used to price all sorts of European derivatives4 in the context
of the Black-Scholes world (constant yields and volatility). In anticipation of
Chap. 12, the calculation ofGreeks, i.e., the sensitivities of the derivative’s price
with respect to its parameters, is also demonstrated in the workbook. The
workbook can be used as a small but complete option calculator (as always,
the yellow fields are the input fields).

11.5 American Monte Carlo

TheMonte Carlomethods can be extended for the valuation for options with a
Bermudan or American exercise profile. As first step, American exercise can be
approximated by Bermudan exercise. The higher the frequency of Bermudan
exercise days (i.e. daily), the better the continuous exercise right will be
approximated. For numerical computations, this discretization of continuous
time to a set of distinct time points is anyway required. Therefore, it is only a
matter of required accuracy and available computer time, how small the time
steps must resp. should be chosen. Thus, in the following, we only consider
Bermudan exercise rights.

The second problem is more difficult to solve. At each potential exercise day
te we need to decide, whether the option should be exercised or not. Besides
the price of the underlying (directly simulated by the Monte Carlo method)
used to calculate the pay off in case of exercise (exercise value), we need to

4See also Sect. 19.3.1.
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compute the price of the option to calculate the value of exercise at some later
point of time (hold value). A simple approach would start for simulated path at
each exercise date a newMonte Carlo simulation with many paths to simulate
the future price of the option. With this approach, computing time increases
dramatically with the number of exercise dates of the option and the number
of simulated paths. Similar to non-recombining tree, this method is usually
not feasible. Therefore, various authors have suggested alternative methods, of
which the most widely known (and used) is probably the work of Longstaff ans
Schwartz [135]. This method is also known as the Longstaff Schwartz method.
Another, alternative approach, will be presented in Sect. 14.10.

The general idea of American Monte Carlo method is to calculate the
optimal exercise time based on key figures well known at the time of exercise.
This key figures should have the best explanatory power for the considered
problem. For a Plain Vanilla American option, this could be the relative
moneyness

x = K − S(te)

S(te)
.

Here, S(te) is the simulated underlying price at the (potential) exercise time.
K is, as usual, the strike of the option. Then, the hold value can be modeled as
a function h(x). E.g., a simple approach would be a 2nd degree polynomial.

h(x) = a2x
2 + a1x + a0 .

In the beginning, the 3 parameters a0, a1, a2 are unknown and need to be
determined. This is down in a simulation run preceding the final simulation
for calculating the full option. In this pre-run, only the underlying price will
be simulated. For each path i = 1, 2, . . . , n and each possible exercise date tj
with t > tj < T and j = 1, 2, . . . ,m, the simulated underlying price Si,j is
computed and stored. Then, we will go backwards in time through all paths.
At the final exercise date tm, the hold value of the option can be computed (it
will be either exercised at this date or expires worthless) as pay off at time T

discounted from T to tm. For discounting, the numeraire simulated for each
path can be used. For each of the n paths, the hold value Hm is calculated
separately. Then, using an optimization algorithm, the 3 parameters a0, a1,
a2 will be determined such that the n values Hm can be approximated by the
function h(x) as close as possible. By approximating Hm by h(x), we describe
the hold value bymeans of parameter x which is well known at time tm without



11 Monte Carlo Simulations 225

using the information of the future (unknown) underlying price at time T we
needed to calculate Hm.

Next, we can go one step back to date tm−1 and calculate the hold values
Hm−1 for each path. Now, we need take into account the possibility of exercise
at time tm. This would be exactly the case if the inner value c(tm) of the
option at date tm is worth more than the hold value, since the option buyer
seeks to maximize the profit. Therefore, for each path, the hold value Hm−1 is
calculated as discounted value of max[c(tm),Hm]. After the hold values have
been determined, we use again an optimizer over all paths to determine another
set of three parameters a0, a1, a2 tominimize the differences between h(x) and
theHm−1. This procedure is repeated until for each exercise date an optimal set
of parameters has been found. Finally, we have n functions hi(x) determined,
each function modeling the hold value of the option at one exercise date.

At last, the simulation to calculate the full Bermudan option could be
exercised. For this, we simulate again many Monte Carlo paths (in general
more than has been used for optimizing the parameters for approximating the
hold value, e.g. 10n paths). As with the “normal”Monte Carlomethod, we will
go forward in time. At each exercise date tj we check, whether c(tj ) > hj (x) is
fulfilled. If so, the option will be exercised. If not, we continue the simulation
to the next exercise date, until either the option is exercised or matured. Then,
the price can be calculated the sum of all cash flows per path discounted with
the numeraire averaged over all simulated paths. To avoid a numerical bias, it
is important to make sure that the random numbers used in the pre-run and
those in the second (full) run are independent.

In this way, it is possible to compute a lower bound to the actual value
for the Bermudan option. The better the choice of function h(·), the better
the lower bound will approximate the real value. This can be seen very easily:
In the end, h(·) serves as a mathematically fixed exercise strategy and is only
dependent on parameters well known at the exercise date. If we have made a
bad choice for h(·), our exercise decision will be suboptimal and we would not
be able to receive the full value of the option.

A drawback of this approach is the fact that a good choice for h(·) is often
not easily found. The choice of moneyness as explanatory variable in a second
order polynomial is probably not the best choice, if the well-known functional
form of the intrinsic value of a Amerikan Plain Vanilla option is envisaged. The
weighted sum of European Plain Vanilla options for each exercise date might
be a better choice. Unless there is no benchmark price, a polynomial is a good
starting point. Since we know that we will get only a lower limit, it is useful to
experiment with various approaches for h(·) and finally chose that function,
for which the simulated American options had maximum value.
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Hedging

The replication of derivatives with a portfolio consisting of underlyings and a
bank account as, for example, in Eq. 9.3, can be used to hedge the derivative’s
risk resulting from the stochastic movement of its underlying (or conversely
a derivative could be used to hedge such a portfolio). This is accomplished
by going short in the portfolio and long in the derivative or vice versa. This
idea can be extended to hedging against influences other than the underlying
price, for example, changes in the volatility, interest rate, etc. Such concepts
of safeguarding against a risk factor have already made their appearance in
arbitrage arguments in previous chapters and will be presented in their general
form in this chapter. In addition to the fundamental Assumptions 1, 2, 3,
4 and 5 from Chap. 4, continuous trading will also be assumed below, i.e.,
Assumption 6. We will allow the underlying to perform a general Ito process1
of the Form 2.19 and assume that it pays a dividend yield q .

12.1 Hedging Derivatives with Spot Transactions

Consider first the change in the value V of a derivative resulting from the
change in the price S of its underlying. V , as a function of the stochastic
process S, is also a stochastic process. From Ito’s lemma in the form of Eq. 2.22

1Thus, we are a more general here than Assumption 7 from Chap. 4.
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this process is explicitly

dV (S, t) =
[
∂V

∂t
+ 1

2
b2(S, t)

∂2V

∂S2

]
dt + ∂V

∂S
dS(t) . (12.1)

In a similar manner as in Sect. 7.1.1, we will now construct a portfolio which
replicates (hedges) the derivative in Eq. 12.1. This portfolio will consist of a
certain number � of underlyings and an amount g of money borrowed from
or invested in the capital market. This portfolio is constructed to have the same
value as the derivative,

V = �S + g . (12.2)

To ensure that the derivative is perfectly hedged for at least a short time span
dt , it is required that the change in its value over dt to be the same as that
of the derivative. The change in value of the derivative is given by Eq. 12.1.
The value of the portfolio consisting of money and the underlying changes as
already described in Eq. 9.3, for example. For small time intervals dt, B and
1/B can be approximates by (1 − r dt) and (1 + r dt), respectively, for all
compounding conventions. The same approximation holds for Bq . Denoting
the change in S by dS, the change in the value of the portfolio can be expressed
by

d(�S + g) = �(S + dS)(1 + q dt) + g(1 + r dt)︸ ︷︷ ︸
new value

− (� S + g)︸ ︷︷ ︸
old value

= � dS + (� q S + r g)dt + � q dS dt

= � dS + (� q S + r g)dt + · · · (12.3)

where in the last line only the first order terms in dS and dt are considered.
To ensure that this change corresponds exactly to a change in the value of the
derivative, the coefficients of dt and dS must be the same as those appearing in
Eq. 12.1. Equating the coefficients of dS yields the well known result that the
number of underlyings required for the hedge, called the hedge ratio, must
be equal to the sensitivity of the derivative with respect to its underlying.
Combined with Eq. 12.2 we can determine the amount of money in the bank
account required for the hedge as well:

�(t) = ∂V

∂S(t)
⇒ g(t) = V − S(t)

∂V

∂S(t)
. (12.4)
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Thus, with information on the value Vs and its first partial derivative with
respect to the underlying, it is possible to construct a portfolio hedging the
derivative perfectly over the next time step. The partial derivatives of the price
function are often referred to as the sensitivities (see Sect. 12.4).

We have yet to exploit the second condition, which is the equality of the
coefficients of dt in Eqs. 12.1 and 12.3. This yields

�S(t)q + rg = ∂V

∂t
+ 1

2
b2(S, t)

∂2V

∂S2
.

Inserting Eq. 12.4 for�S and g, we recognize the famous differential equation
of Black and Scholes for derivatives on the spot price S on an underlying:

∂V

∂t
+ (r − q)S

∂V

∂ S
+ 1

2
b2(S, t)

∂2V

∂S2
= r V . (12.5)

If we write (without loss of generality) the parameters a and b as in Eq. 7.1 we
immediately see that Eq. 12.5 is exactly equal to Eq. 7.8.

As all other derivation of the Black-Scholes PDE, this most simple deriva-
tion of the Black-Scholes differential equation, does not specify the derivative
under consideration in any way. No information about the payoff profile
or any other property characterizing the derivative is necessary. Only the
properties of the underlying are used, these being that the underlying earns
a dividend yield q and that its price is governed by a stochastic process of
the form 2.19. Thus, there is only one equation for the construction of the
hedging portfolio and one differential equation for the price of all derivatives
on this underlying. The different derivative instruments can be distinguished
from one another solely on the basis of their respective initial and/or boundary
conditions (for example, the payoff profile of an option at maturity or the
fact that a forward contract is worth nothing at the time when the contract is
entered into).

In effect, the value of the option is equivalent to the total cost of the hedge,
i.e. the replication of the pay off profile by the carefully chosen portfolio (the
replicating portfolio). The whole theory and practice of arbitrage free valuation
of derivatives is based on this fundamental assumption that the value of an
option is equivalent to the total cost to hedge it.
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12.1.1 Hedging of Forwards and Futures

Forward and futures contracts belong to the most simple derivatives. There-
fore, they will serve as an example how to apply Eqs. 12.4 and 12.5 to hedge
derivatives with spot trades. We adopt here the commonly used convention of
continuous compounding.

Consider first a forward contract. The value of a forward with delivery price
K , assuming continuous compounding, is given by Eq. 6.5 as

f (t, T , K) = [S(t, T ) − K] B(t, T ) = e−q(T −t)S(t) − e−r(T −t)K .

The partial derivatives of this function appearing in Eqs. 12.4 and 12.5 are

∂f

∂t
= q e−q(T −t)S − re−r(T −t)K ,

∂f

∂S
= e−q(T −t) ,

∂2 f

∂S2
= 0 .

Thus, Eq. 12.4 yields

�(t) = e−q(T −t) , g(t) = −e−r(T −t)K .

In order to hedge a (short) forward, e−q(T −t) underlyings must be purchased
and an amount e−r(T −t)K of cash must be raised. Substituting the value of
the forward and its derivative into Eq. 12.5 shows that the Black-Scholes
differential equation is satisfied:

qe−q(T −t)S − re−r(T −t)K + (r − q)Se−q(T−t) = re−q(T −t)S − re−r(T −t)K .

Now consider a futures contract. From a valuation perspective, the essential
difference compared to a forward contract is the obligatory maintenance of a
margin account. As a consequence, every price change of the futures contract is
reflected by an equivalent change of the margin account balance. The margin
account is similar to a bank account. The buyer or seller of the futures contract
receives interest on the margin account, but has no direct access to the money
in the account. At the trade day of the futures contract, the buyer/seller must
transfer an initial margin on the account. If the futures price raises or falls later,
the margin account balance raises or falls by the same amount. If the margin
account balance falls below a certain level, fresh money must be transferred
to the account, otherwise the whole position will be closed out. On the other
hand, if the margin account balance raise beyond a certain level, money could
be transferred back if the balance exceeds certain trigger levels. This is called
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variation margin. Neglecting default risk, it can be assumed that the money
for initial and variation margin can be borrowed for the risk-free interest rate.
Also, the margin account itself is assumed to pay interest based on the risk-
free interest.2 We will denote the total cash amount (which can be negative or
positive) as gF (t).

Let’s consider the evolution of the total value of the futures position over
time. This development is completely reflected in the development of the
function gF (t). Contrary to a forward contract, a futures contract does not
define a fixed strike price to be paid at maturity in exchange of the underlying.
Instead, the buyer of the futures contract will have to pay at maturity the then
current spot price, while the difference of forward and future spot price at
trade date is at maturity identical to the balance of the variation margin (plus
accumulated interest). We need the following derivatives of gF (t):

∂gF

∂t
= −(r − q)e(r−q)(T−t)S + rgF ,

∂gF

∂S
= e(r−q)(T−t) ,

∂2gF

∂S2
= 0 .

Inserting these in Eq. 12.4 yields

�(t) = e(r−q)(T−t) , g(t) = gF (t) .

Therefore, hedging a (short) futures contract requires to buy e(r−q)(T −t)

underlyings and to borrow an amount of −g(t) = gF (T ) currency units.
Inserting the value of the Portfolio gF (t) into Eq. 12.5 shows that gF (t) fulfills
the Black-Scholes differential equation:

−(r − q)e(r−q)(T−t)S + rgF + (r − q)e(r−q)(T−t)S = rgF .

The mindful reader may wonder, in which way gF (t) differs from the
fair value F(S, t, T ,K) of the futures contract, which itself does not fulfill
the Black-Scholes equation. According to Eq. 6.6 the fair value of a futures
contract is

F(S, t, T , K) = e(r−q)(T−t)S(t) − K ,

2Reality, as often, is more complex. E.g. the actual margin interest rates may differ from the risk-free
interest rate or maybe floored at zero, while the risk-free interest rate might be allowed to become negative.
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where K is the futures price at trade date. In contrast to gF (t) the fair
value does not contain the accumulated interest, since they have already been
realized.

12.2 Hedging Derivatives with Forward Contracts

The portfolio for the synthetic derivative is now to be constructed using
forward contracts instead of spot transactions. We cannot merely replace the
spot price with the forward price in Eq. 12.3 since the forward price itself is
not tradable. Forward and futures contracts on the other hand are tradable.

12.2.1 Hedging with Forwards

Since futures satisfy the Black Scholes differential equation only upon conclu-
sion of the contract, we will avoid this difficulty at this point and begin by
using forwards to construct the synthetic derivative. The hedging portfolio is
then

�f (t)f (t, T ′, K) + g(t) = �f (t)
[
S(t, T ′) − K

]
B(t, T ′) + g(t) with T ′ ≥ T > t ,

where the subscript f indicates that the hedge is accomplished with forwards.
T denotes the maturity of the derivative and T ′ the maturity of the forward
contract. Note that the condition T ′ ≥ T is not strictly necessary for our
considerations, but it is convenient since it ensures that the hedge does not
“vanish” before thematurityT of the derivative. If T ′ < T it would be required
to roll over the hedge into another forward contract (with a later maturity) at
time T ′ or earlier.

In the time span dt this portfolio changes its value as a result of changes in
the forward price and the discount factor as follows:

d(� f f + g) = �f

[
S(t, T ′) + dS(t, T ′) − K

]
B(t, T ′)(1 + rdt) + g(t)(1 + rdt)

︸ ︷︷ ︸
new value

− �f

[
S(t, T ′) − K

]
B(t, T ′) + g(t)

︸ ︷︷ ︸
old value

= �f B(t, T ′)dS(t, T ′) + �f

[
S(t, T ′) − K

]
B(t, T ′)r dt + gr dt + · · ·

= �f B(t, T ′)
∂S(t, T ′)

∂S(t)
dS(t) + �f (t)f (t, T ′,K)r dt + g r dt + · · · ,

(12.6)



12 Hedging 233

where again we consider only changes which are of linear order in dt or dS.
In the last equation, the change in the forward price dS(t, T ′) was rewritten
in terms of a change in the spot price to facilitate the comparison of the
coefficients with the associated coefficients in Eq. 12.1 for the change in the
price of the derivative. Equating the coefficients of dS in the above mentioned
expressions now yields:

�f (t) = 1

B(t, T ′)
∂V/∂S(t)

∂S(t, T ′)/∂S(t)
= 1

B(t, T ′)
∂V

∂S(t, T ′)
.

Using Eq. 6.1 for the dividend yield, we can calculate the derivative of the
forward price with respect to the spot price and thus obtain the following
expression for the hedge ratio:

�f (t) = 1

Bq(t, T )

∂V

∂S(t)
= 1

B(t, T ′)
∂V

∂S(t, T ′)
. (12.7)

In other words, the number of forwards required to hedge the derivative is
equal to the sensitivity of the derivative with respect to the spot price com-
pounded at the dividend yield up to maturity of the derivative, or equivalently,
is equal to the sensitivity with respect to the forward price compounded at the
risk-free rate up to maturity of the hedging instrument (the forward).

Since by construction, the value of the replicating portfolio is equal to the
value of the derivative we can determine the amount of cash needed for the
hedge:

g(t) = V − f (S, t, T ′,K)�f (t) . (12.8)

We have thus completely determined the hedging portfolio using solely
information derived from the price of the derivative and its sensitivities.

Before we establish a mathematical expression obtained from comparison
of the coefficients of dt in Eqs. 12.1 and 12.6, we change the coordinates in
Eq. 12.1 to transform the second derivative of the price with respect to spot
price S(t) into a derivative with respect to the forward price S(t, T ′). This is
accomplished using 6.1.

∂

∂S(t)
= ∂S(t, T ′)

∂S(t)

∂

∂S(t, T ′)
= Bq(t, T

′)
B(t, T ′)

∂

∂ S(t, T ′)

∂2

∂S2(t)
= ∂

∂S(t)

Bq(t, T
′)

B(t, T ′)
∂

∂S(t, T ′)
= B2

q (t, T
′)

B2(t, T ′)
∂2

∂S2(t, T ′)
. (12.9)
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Equating now the coefficient of dt and using Eq. 12.8 for g yields

∂V

∂t
+ 1

2
b2(S, t)

B2
q(t, T ′)

B2(t, T ′)
∂2V

∂S2(t, T ′)
= rV .

This is the Black-Scholes differential equation for derivatives on the forward
price of an underlying.

To put this in a more familiar form we rewrite (without loss of generality)
the parameter b as in Eq. 7.1 and use Eq. 6.1 to introduce the forward price
into the parameter b, i.e.,

b(S, t) =: σ(S, t)S(t) = σ(S, t)
B(t, T ′)
Bq(t, T ′)

S(t, T ′) . (12.10)

With this substitution we arrive at the well-known form of the Black-Scholes
differential equation for derivative on the forward price of an underlying:

∂V

∂t
+ σ 2

2
S2(t, T ′)

∂2V

∂S2(t, T ′)
= r V . (12.11)

As in Sect. 12.1, only one equation is needed for the construction of the
hedging portfolio with forward contracts, and there is only one differential
equation for all derivatives on the forward price. Different derivatives can be
distinguished from one another only through their respective initial and/or
boundary conditions.

Note the absence of a first derivative term with respect to the forward price.
Equation 12.5 (which is the corresponding Black-Scholes PDE for derivatives
on the spot price of an underlying) would look quite similar to Eq. 12.11
for an underlying which earns a dividend yield q being exactly equal to the
risk free rate r . In fact, both equations would look identical if this underlying
would have S(t, T ′) as its spot price. Herein lies the deeper explanation for the
“recipe” for pricing options on futures as given in Eq. 8.8: a derivative on the
forward price can be priced as a derivative on the spot price of an (artificial)
underlying whose spot price is equal to S(t, T ′) and whose dividend yield
equals the risk-free rate.
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12.2.2 Hedging with Futures

If futures are used to construct a synthetic derivative, we have to deal with
the additional complexity that the margin account balance depends on when
and how many futures contracts have been bought or sold. Since we assume
that the margin account is compounded with the same interest rate as the
risk-free cash amount borrowed or lend g(t), we consider the margin account
as part of the total cash balance or bank account. Then, we need to consider
the futures contract’s price (which equals the forward price) changes, only. As
hedging instrument, we use a futures contract with fixed maturity T .3 Since
the futures price equals the forward price S(t, T ′), we get

�F (t)S(t, T ′) + g(t) with T ′ ≥ T > t .

Changes in the futures contract price and the bank account in the time interval
dt cause the value of the portfolio to change as follows

d(�F S(t, T ′) + g) = �F

[
S(t, T ′) + dS(t, T ′)

] + g (1 + rdt)
︸ ︷︷ ︸

new value

− �F

[
S(t, T ′)

] + g
︸ ︷︷ ︸

old value

= �F dS(t, T ′) + gr dt + · · ·

= �F

∂S(t, T ′)
∂S(t)

dS(t) + gr dt + · · · , (12.12)

where again we consider only the parameter changes of linear order in dt or
dS, neglecting all higher order terms. In the last equation, the change in the
futures price has been replaced by the corresponding expression with respect to
a change in the spot price, facilitating a direct comparison with the coefficients
in Eq. 12.1 for the change in the price of the derivative. Setting the coefficients
of dS in both expressions equal yields

�F (t) = ∂V/∂S(t)

∂S(t, T ′)/∂S(t)
= ∂V

∂S(t, T ′)
.

3Here again the condition T ′ ≥ T is not strictly necessary but convenient since it ensures that the hedge
does not “vanish” before maturity T of the derivative. Again, T ′ < T would require to roll over the hedge
into another futures contract (with a later maturity) at time T ′ or earlier.
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Equation 6.1 for the forward price of an underlying earning a dividend yield
q gives the partial derivative of VS with respect to the spot price.

�F(t) = B(t, T ′)
Bq(t, T ′)

∂V

∂S(t)
= ∂V

∂S(t, T ′)
. (12.13)

In other words, the number of futures required to hedge a derivative is equal
to the sensitivity of the derivative with respect to the spot price compounded at
the rate obtained by using the risk-free rate reduced by the dividend yield. Or
equivalently, the number of futures needed equals the sensitivity with respect
to the forward price.

By definition, the value of the hedging portfolio must be equal to the value
of the derivative. It follows that the amount of money needed for the hedge is
given by

g(t) = V − FS(t, T
′, K)�F(t) . (12.14)

We have thus completely determined the hedging portfolio using solely the
information derived from the value of the derivative instrument and its
sensitivities.

12.3 Hedge-Ratios for Arbitrary Combinations
of Financial Instruments

An analogous approach to those described above can be taken to derive a
formula for the number of an arbitrary hedge instrument required to replicate
an arbitrary derivative. The number of hedging instruments is always equal
to the sensitivity of the derivative with respect to this hedging instrument.
Intuitively, if the value h of a hedge instrument changes by the amount dh,
then the value V of the derivative changes by the amount dV . The quotient
dV/dh is precisely the number of hedging instruments needed to compensate
for the change dV in the derivative. For very small changes, this quotient
approaches the differential quotient. Any instrument can assume the role of
either the derivative or the hedging instrument. Since the value obtained by
differentiating a derivative with respect to an arbitrary hedging instrument
cannot, in general, be calculated directly, a common reference variable, usually
the spot price S(t), is introduced with respect to which both the partial
derivative of the value as well as the partial derivative of the hedging instrument



12 Hedging 237

Table 12.1 Sensitivities for options and forward contracts with respect to the spot price
S(t). x and x′ are defined as in Eqs. 8.7 and 8.8

Underlying (Spot) 1
Futures Bq(t, T )B(t, T )−1

Forward Bq(t, T )

Call Put
Option on spot price Bq(t, T )N(x) −Bq(t, T )N(−x)

Option on futures Bq(t, T ′) B(t,T )
B(t,T ′)N(x′) −Bq(t, T ′) B(t,T )

B(t,T ′)N(−x′)

Option on forward Bq(t, T ′)N(x′) −Bq(t, T ′)N(−x′)

is known. The equation for this general hedge ratio is therefore

� DerivateV with
Hedging Instrumenth

= ∂V

∂h
= ∂V

∂S

[
∂h

∂S

]−1

. (12.15)

Consequently, the sensitivities of all financial instruments with respect to the
spot price must be available if the hedge ratio is to be calculated for an arbitrary
combination of these instruments. In general, though, it is not recommended
to use hedging instruments which introduce additional risk factors the original
trade is not sensitive to (e.g. additional foreign exchange risk). The sensitivities
already dealt with in the last section, i.e., the sensitivities of the option, forward
and spot transactions with respect to the spot price are listed in Table 12.1 (for
the Black-Scholes world). For forward contracts, they follow from Eqs. 6.1,
6.5 and 6.6, which were derived using arbitrage arguments. For options, the
sensitivities follow directly from the Black-Scholes equations 8.7, 8.8 and 8.9.

Readers wishing to reproduce these results themselves are advised to use the
following property4 of N′(x − σ

√
T − t):

N′(x − σ
√

T − t) = Bq(t, T ) S(t)

B(t, T )K
N′(x) . (12.16)

4To prove Eq. 12.16 we first write

N′(x − σ
√

T − t) = 1√
2π

e− 1
2 (x−σ

√
T −t)2 = 1√

2π
e− x2

2

︸ ︷︷ ︸
N′(x)

exσ
√

T −t− 1
2 σ 2(T −t)

The relation is now obtained by substituting the definition of x, Eq. 8.5, into the second exponential
term.
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Here, N′ denotes the derivative of the cumulative standard normal distribution
with respect to its argument:

N′(y) ≡ d

dy
N(y) = 1√

2π
e

−y2

2

The entries in Table 12.1 together with Eq. 12.1 provide all the information
needed to determine the hedge ratio for every conceivable combination of
these financial instruments in the Black-Scholes world. We now present three
examples to illustrate this.

a) Hedging a put on the spot price with futures:

�Put on spot
with futures

= ∂V

∂S

[
∂h

∂S

]−1

= −Bq(t, T )N(−x)

[
Bq(t, T

′)
B(t, T ′)

]−1

= −B(t, T ′)
Bq(t, T )

Bq(t, T ′)
N(−x) .

A long put on the spot can thus be replicated by a short position consisting
of

B(t, T ′)N(−x)/Bq(T , T ′∣∣ t)

futures. Or interpreted as a hedge, a long put can be hedged by a long
position in this number of futures.

b) Hedging a put on a future with forward contracts:

�Put on futures
with forward

= ∂V

∂S

[
∂h

∂ S

]−1

= −Bq(t, T ′) B(t, T )

B(t, T ′)
N(−x ′)

[
Bq(t, T ′)

]−1

= − B(t, T )

B(t, T ′)
N(−x ′) .

A long put on the future can be replicated with a short position of

N(−x ′)/B(T , T ′∣∣ t)

forwards. Or interpreted as a hedge, a long put can be hedged by a long
position in this number of forwards.
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c) Hedging a call on the spot with puts on a future:

�Call on spot with
put on futures

= ∂V

∂S

[
∂h

∂ S

]−1

= Bq(t, T )N(x)

[
−Bq(t, T

′) B(t, T )

B(t, T ′)
N(−x′)

]−1

= −B(t, T ′)
B(t, T )

Bq(t, T )

Bq(T , T ′)
N(x)

N(−x′)
.

A long call on the spot can thus be replicated by a short position in

B(T , T ′∣∣ t)N(x)

Bq(T , T ′| t)N(−x ′)

puts on the future. Or interpreted as a hedge, the long call can be hedged
by a long position in this number of puts on the future.

12.4 “Greek” Risk Management with Sensitivities

12.4.1 Sensitivities and a Portfolio’s Change in Value

The sensitivity of a financial instrument with respect to a parameter is defined
as a variable that, when multiplied by a (small) parameter change, yields the
change in the value of the instrument resulting from this parameter change.

Price change = sensitivity × parameter change

The sensitivity is thus the derivative of the price with respect to the
parameter. Since options depend on several such parameters such as the price
of the underlying, the time to maturity, the volatility, the dividend yield of the
underlying and the risk-free market rate, the sensitivities listed in Table 12.2
are of particular interest.

The first of these sensitivities, namely �, has already been used in Sect. 12.1
to construct a replicating portfolio. In Eq. 12.15 the hedge ratio � was defined
in greater generality as the sensitivity of the derivative with respect to the
price change of the hedging instrument. In the special case where the hedging
instrument is the underlying itself, this general hedging ratio and the delta
listed in Table 12.2 agree.
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Table 12.2 Definitions of the “Greeks”

Symbol Name Definition Interpretation

� Delta
∂V

∂S
Price change resulting from change
of underlying spot price

� Gamma
∂2 V

∂S2 Change of delta resulting from
change of underlying spot price

� Omega
S

V

∂V

∂S
Relative price change (in %) resulting
from relative change (in %) of
underlying spot price

� Vega
∂V

∂σ
Price change resulting from change
of volatility of underlying

� Theta
∂V

∂t
Price change resulting from change
of time to maturity

ρ Rho
∂V

∂r
Price change resulting from change
of the risk-free rate

ρq Rhoq

∂V

∂q
Price change resulting from change
of dividend yield of underlying

Any method used to calculate the price of an option can be used to calculate
the sensitivities, even if the explicit expressions for the sensitivities cannot be
obtained directly. The price model must simply be applied twice: the first
time to calculate the price with the current parameters and a second time
for a valuation with one of the parameters slightly changed. The difference
between these two option values divided by the parameter change yields an
approximation for the sensitivity of the option with respect to that parameter.
Approximating the second derivative (as for gamma, for example) requires
the price to be calculated with respect to three different parameter values. In
summary: as soon as a pricing method is available we can calculate sensitivities
by approximating the differential quotients in Table 12.2 with difference
quotients as follows:

Delta ≈ V (S + δS) − V (S)

δS
,Gamma ≈ V (S + δS) − 2V (S) + V (S − δS)

δS2

Vega ≈ V (σ + δσ ) − V (σ )

δσ
, Theta ≈ V (t + δt) − V (t)

δt

Rhor ≈ V (r + δr) − V (r)

δr
, Rhoq ≈ V (q + δq) − V (q)

δq
(12.17)
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The risk of an instrument (or a portfolio) can be measured by its reaction
to changes in the parameters influencing its price. In other words, the more
sensitive it is to parameter changes, the “riskier” the instrument is. For this
reason, the sensitivities are also known as risk ratios. A commonly used method
of risk management is to control these sensitivities, i.e., to set limits on or
targets for their values, for instance. The possibilities and limitations of this
kind of risk management become clear, when we consider the Taylor series
representation for small parameter changes: The value V depends on all of the
above listed parameters: V = V (t, S, σ, q, r). A change in value is thus

dV = ∂V

∂t
dt + ∂V

∂ S
dS + ∂V

∂σ
dσ + ∂V

∂r
dr + ∂V

∂q
dq + 1

2

∂2 V

∂S2
dS2 + · · ·

= � dt + �dS + � dσ + ρ dr + ρq dq + 1

2
� dS2 + · · ·

The coefficients of all linear parameter changes are given by sensitivities.
A linear approximation holds only for small parameter changes. This is
especially true for highly non-linear instruments. Because of the particularly
strong influence of the underlying price, the effect of its quadratic change
has been included in the above expression resulting in the appearance of the
sensitivity �.

All risk variables in Table 12.2 (with the exception of the variable �) have
the important property that the sensitivity of a portfolio with respect to a risk
factor is equal to the sum of the sensitivities of its component instruments to
this risk factor, i.e., the sensitivities are linear. For a portfolio consisting of n

instruments of type A and m of type B we can therefore write

�(nA + m B) = n �(A) + m�(B) likewise for �,�,�, ρ, ρq

(12.18)

This property makes it possible to make a portfolio delta-neutral, for example:
given n, �(A) and �(B), it is possible to make the portfolio’s delta, �(nA+
mB), equal to zero, by choosing m = −n�(A)/�(B). This is called a
delta hedge. The portfolio is then (in linear approximation) insensitive to
small changes in the price of the underlying S. In the special case that the
instrument B is the underlying itself we have �(B) = 1. This is reflected in
the result given in Sect. 12.1 that the number of underlyings needed to hedge
a particular instrument is obtained by taking the derivative of the value of
the instrument with respect to the underlying. We can now observe that the
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hedge methods introduced in Sect. 12.1 were delta hedges and represent only
in linear approximation a safeguard against the risk resulting from a change
in the underlying. This is no limitation under the (idealized) assumption of
continuous trading with zero transaction cost, though.

Likewise, a portfolio can be constructed which is gamma, theta, vega
or rho neutral. In general, for Plain Vanilla options, Delta and Vega are
hedged at least.5 Even several sensitivities of the portfolio can be neutralized
simultaneously but more than one hedging instrument is then required to do
so. In general, we need at least as many different hedging instruments as the
number of sensitivities to be neutralized. For example, if a portfolio consisting
of n instruments of typeA is to be delta and gamma hedged, we would require
two hedging instruments B1 and B2. The condition that the delta and the
gamma of the portfolio be equal to zero means that

�(nA + m1 B1 + m2 B2) = n �(A) + m1 �(B1) + m2 �(B2) = 0

�(n A + m1 B1 + m2 B2) = n �(A) + m1 �(B1) + m2 �(B2) = 0

Solving this system of equations yields the number of hedging instrumentsm1

and m2 for the delta and gamma hedged portfolio:

m1 = −n
�(B2)�(A) − �(B2)�(A)

�(B2)�(B1) − �(B2)�(B1)
, m2 = −n

�(B1)�(A) − �(B1)�(A)

�(B1)�(B2) − �(B1)�(B2)

From the Black-Scholes differential equation 12.5 we can obtain a relation,
which the different sensitivities of all financial instrumentsmust satisfy. Simply
replace the partial derivatives in Eq. 12.5 by the corresponding sensitivities to
obtain

� + (r − q)S� + 1

2
b2� = r V .

One consequence of this equation is, for example, the following statement:
The change value of a delta and gamma neutral portfolio per time (i.e., �) is
equal to its current value multiplied by the risk-free interest rate.

5This is common practice even in cases in which the option is priced by means of Black-Scholes or some
other model that assumes deterministic volatility. For Hedging, it is assumed in contrast to the model
assumptions that the underlying volatility might indeed change. The practice proofs that this improves
hedge efficiency, leading to the conclusion that the model with deterministic volatility is insufficient. Such
a hedge is also called out of model hedge.
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Table 12.3 Examples of Omega and Delta

strike = 70 EUR strike = 90 EUR

Price 10.18 EUR 0.04 EUR
Delta 0.992 0.024
Omega 7.79 47.41

12.4.2 Omega and Beta

In contrast to the delta which gives the absolute price change of the derivative
(in monetary units) resulting from an absolute change of one monetary unit
in the underlying, omega is the relative price change of the derivative (in %)
resulting from a relative change in the underlying6:

� ≡ [V (S + dS) − V (S)] / |V (S)|
dS/S

= S

|V (S)|�

In situations where a trader is instructed to invest a specific amount of money
rather than in a certain number of instruments, this allows a significantly
better assessment of the risk than the (much more prominent) delta. A simple
example will serve to clarify this point.

Assume that 10,000 euros are to be invested either in a call with a strike
price of 90 euros on an underlying paying no dividend with a spot price of 80
euros or in a call on the same underlying with strike price of 70 euros. Suppose
the annualized volatility of this underlying is 20%. Both options mature in 30
days. At a risk-free rate of 3% per annum, Eq. 8.7 (implemented in the Excel
workbook BlackScholesModel.xls on the accompanying website [50])
gives the prices and risk ratios shown in Table 12.3.

The sensitivity delta is almost 50 times greater for the call with a strike price
of 70 euros than for the call with the strike price of 90 euros. Is the call with
a strike of 70 euros riskier? If we have the choice of buying a certain number
of the strike-70 calls or the same number of strike-90 calls then yes, since we
could lose a lot more with a certain number of the strike-70 calls than with the
same number of strike-90 calls. But this is solely because the price of the strike-
70 call is so much higher than the price of the strike-90 call! The higher risk is
entirely due to the significantly larger investment: if we invest more euros we
can lose more euros.

6The absolute value of V (S) in this definition has the effect that omega always has the same sign as delta,
even for a position with a negative present value.
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But if the same amount of money is to be invested, a portfolio with strike-90
calls (250,250 of these calls can be purchased for 10,000 euros) is significantly
riskier than a portfolio with strike-70 calls (only 982 of these calls can be
purchased for 10,000 euros). This risk is impressively quantified by omega,
also called the elasticity. For the strike-70 call portfolio, a 1.60 euros (=2%)
decline in the underlying’s price results in a loss of value of 7.79 * 2 %, or
1,558 euros. However, the strike-90 call portfolio loses 47.41*2% of its value,
a sum of 9,482 euros. Investing in the strike-90 calls, a relatively small change
in the price of the underlying (2%) almost wipes out the entire investment.
On the other hand, a slight increase in the price of the underlying can just as
easily double the value of the strike-90 call portfolio. Thus, the volatility of
the option equals omega times the volatility of the underlying

σOption = �σUnderlying (12.19)

A similar relation can also be shown to hold for the expected return of an
option (in the real world). The market requires, as a compensation for the risk
of an investment, a higher expected return of the security under consideration
compared to the risk-free rate. Since the risk (as represented by the volatility)
of an option on that security is omega times as high as the risk of the security
itself, the compensation for taking the risk of investing in the option must be
omega times as high as well:

μOption − r = �(μUnderlying − r) (12.20)

We can now establish a connection with the CAPM (capital asset pricing
model). The variable β (beta) in the CAPM relates the risk premium of a
security to the risk premium of a portfolio representing the entire market (with
the corresponding diversification). Indices such as the DAX or the Dow Jones
are constructed to represent such entire markets. To be more specific: the beta
of a security with a price S with respect to an index with a price I is defined as
the covariance of the price with the index divided by the variance of the index
(see Eq. A.20 in Appendix A):

βSI = cov [S, I ]

var [I ]
= σS

σI

ρSI (12.21)

This variable can be interpreted as follows: should the value I of the index
increase by 1%, then the price S of the security will (on average) increase by
beta %. The relative change of S is thus beta times the relative change in I .
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βSI = relative change in S resulting from a change in I

relative change in I
(12.22)

= (dS)/S

(dI)/I
= I

S

dS

dI

This corresponds to the definition of omega if S is interpreted as a financial
instrument having the index I as an underlying. Within the capital asset
pricing model the risk premium for investing in S is shown to be

μS − r = βS,I (μI − r) (12.23)

Substituting this for the risk premium of the underlying S in Eq. 12.20 gives

μOption − r = �βS,I (μI − r)

Thus, the risk premium for investing in the option is omega times beta
multiplied by the risk premium for investing in the entire market. We could
therefore also use Eq. 12.23 to define a beta for the option as well.

βOption = �βUnderlying (12.24)

Volatility, risk premium and the beta of an option are thus obtained by simply
multiplying the corresponding variables for the underlying by the elasticity
omega.

12.4.3 Summation of Sensitivities of Different
Underlyings

The summation of sensitivities presented in Sect. 12.4.1 is only possible if
they are sensitivities of instruments on the same underlying. It is often the
case, however, that a portfolio consists of instruments on several different
underlyings. The net delta of such a portfolio is not simply the sum of the
deltas of the individual instruments. For example, in a chemical portfolio with
options on Bayer and BASF stocks, the delta of the Bayer option with respect
to the Bayer stock price cannot be added to the delta of the BASF option with
respect to the BASF stock price to obtain the portfolio’s delta. We must first
answer the question: Which stock should we chose as the reference underlying



246 H.-P. Deutsch and M. W. Beinker

in calculating the sensitivity of our portfolio in the above example? Bayer or
BASF?

Having chosen a reference underlying Si from among all the instruments Sk

in the portfolio with respect to which the sensitivities of the entire portfolio
are to be calculated, we must then proceed by expressing the sensitivities of
the remaining underlyings in terms of the sensitivity of this chosen reference.
The Betas of the Sk with respect to the Si can be used in the calculation
of such an expression. From the volatilities of the prices and the pair wise
correlation between the underlyings, we can use Eqs. 12.21 or A.20 to calculate
the necessary Betas, even when neither of the prices is an index. From the
sensitivity�k of an instrument with valueVk on the underlying Sk we can then
deduce the sensitivity�i of this instrument with respect to another underlying
Si by using Eq. 12.22:

�i = dVk

dSi

= dSk

dSi

∂Vk

∂Sk

= dSk

dSi

�k = Sk

Si

βki�k = Skσk

Siσi

ρki�k . (12.25)

In the second to last step, Eq. 12.22 in the form “dS/dI = βSIS/I” is
applied while in the last step we make use of Eq. 12.21. Having in this
manner transformed the sensitivities with respect to the underlyings Sk into
sensitivities with respect to the selected reference underlying Si , we can now
simply add them up to calculate the total sensitivity of the portfolio since they
now refer to the same underlying. The sensitivity of the entire portfolio with
respect to the reference underlying is thus given by

�total
i = 1

Si

∑

k

Sk βik �k = 1

Siσi

∑

k

Sk σk ρik �k . (12.26)

This reference underlying can (but need not) be an index on a relevant business
sector, for example. Such a combination of securities on different underlyings
makes sense when the underlyings are highly correlated. The correlation of the
underlyings, or at least the correlation with the selected reference underlying,
must be known for the following two reasons:

• They are necessary for the transformation of the deltas in accordance with
Eq. 12.25.

• Sound decisions as to a reasonable choice of the above mentioned combi-
nation of securities can only be made on the basis of the correlations.
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12.5 Computation of the Greek Risk Variables

Having introduced theGreeks and their applications in the last section, we will
now give a short discussion on their determination using the most important
pricing methods.

12.5.1 Sensitivities in the Binomial Model

In order to obtain the price changes in the binomial model resulting from
a change in the underlying’s spot price, under the assumption that all other
parameters (including the time) remain the same, we require several different
spot prices for the same time. This is the case for all times except at the
beginning of the tree. To obtain more than one spot price at time t , we
start the tree at least one time step earlier for each order of differentiation
desired. The highest order derivative with respect to S which will be needed
is that for gamma, i.e., the second derivative. Thus we let the tree start two
time steps in the past, i.e., at time t − 2dt . In doing so, we generate (in a
recombinant tree) three different price evolutions uuS, udS and ddS. The
tree should be constructed in such a way that the middle price evolution udS

represents the actual existing spot price S(t). This implies that the tree must
start at S(t − 2dt) = e−2μdtS(t) if we wish to apply the procedure given
by Eq. 9.30. If Eq. 9.31 is to be utilized instead, the tree should begin with
S(t −2dt) = S(t). Let V (t) denote the value of any given financial derivative
(or portfolio) on the spot price S. For a binomial tree beginning two time steps
before the present time t, the following sensitivities can be calculated directly
within the same tree:

� ≈ V uu(t) − V dd(t)

(u2 − d2)S(t − 2δt)
≈ V uu(t) − V ud(t)

u(u − d)S(t − 2δt)
≈ V ud(t) − V dd(t)

d(u − d)S(t − 2δt)

� = u d S(t − 2δt)

V ud(t)
� (12.27)

� = 2
d V uu(t) − (u + d)V ud(t) + uV dd(t)

ud(u − d)(u2 − d2)S2(t − 2δt)

� = V uudd(t + 2δt) − V (t − 2δt)

4δt
≈ V uudd(t + 2δt) − V ud(t)

2δt

≈ V ud(t) − V (t − 2δt)

2δt
.
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Other sensitivities such as vega and rho can only be determined via Eq. 12.17:
we have to calculate the price for a slightly modified volatility or risk-free rate,
respectively, with a completely new tree, subsequently dividing the difference
between the old and the new option price by the respective change in the
parameter to obtain the desired sensitivity.

For the first-order partial derivatives of the price, namely delta, omega
and theta, the binomial model provides three different choices: a symmetric
derivative, an asymmetric derivative for which the price change with respect to
an increasing parameter value is used, and an asymmetric derivative for which
the price change with respect to a declining parameter value is used. All these
alternatives are displayed in Eq. 12.27.

We have previously introduced a somewhat different equation for delta (see
Eq. 9.8). The difference is that in the earlier expressions for delta, the time
was not assumed to be strictly constant but changed by dt. The price change
induced by this time change is compensated for by the other form of the delta
so that both methods are correct up to the order of precision obtained by using
the binomial model.

The equation for Theta is, strictly speaking, only correct for the procedure
given by Eq. 9.31 since in this procedure, the derivative prices used all contain
the same underlying price. In the procedure given by Eq. 9.30, however, not
only does the time change but, because of the drift appearing in u and d,

the underlying S changes as well. Consequently, a change in the option price
resulting solely because of a time change is not obtained. This is one (more)
reason why Eq. 9.31 is used almost exclusively in this text.

The expression for gamma can be obtained from the following argument:
gamma is by definition the change of delta per change of the underlying. At
time t we have two deltas at our disposal, these being the two unsymmetrical
derivatives in Eq. 12.27

�u ≈ V uu(t) − V ud(t)

u(u − d)S(t − 2δt)
, �d ≈ V ud(t) − V dd(t)

d(u − d)S(t − 2δt)
.

�u is the delta between the upper and middle node at time t . Similarly �d

is the delta between the middle and lower node. The difference between
these two deltas will serve as the delta change needed to calculate gamma.
In addition we need the values of the underlying belonging to those two deltas
since gamma is the delta change per corresponding underlying change. As the
underlying value belonging to �u we use the average (denoted by Su) of the
underlying values at the upper and middle nodes. Similarly we use the average
(denoted by Sd) of the underlying values at the lower and middle nodes as the
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underlying value belonging to �d .

Su = 1

2
[uu + ud] S(t − 2δt) = 1

2
u(u + d)S(t − 2δt)

Sd = 1

2
[dd + ud] S(t − 2δt) = 1

2
d(u + d)S(t − 2δt)

With respect to these underlying values �u and �d are even symmetric deriva-
tives. Gamma is now simply the delta difference divided by the difference in
underlying values:

� = �u − �d

Su − Sd

= 1

Su − Sd

[
V uu(t) − V ud(t)

]
/u − [

V ud(t) − V dd(t)
]
/d

(u − d)S(t − 2δt)

= 1

Su − Sd

d
[
V uu(t) − V ud(t)

] − u
[
V ud(t) − V dd(t)

]

ud(u − d)S(t − 2δt)

= 2

(u − d)(u + d)S(t − 2δt)

dV uu(t) − (u + d)V ud(t) + uV dd(t)

ud(u − d)S(t − 2δt)
.

This corresponds exactly to the gamma in Eq. 12.27.
A detailed demonstration on how to determine the sensitivities of an

option portfolio using the binomial model is provided in the Excel workbook
BinomialTree.xls.

12.5.2 Sensitivities in the Black-Scholes Model

Since the Black-Scholes model provides analytic solutions for option prices,
the sensitivities can be determined immediately by calculating the required
partial derivatives directly. The sensitivities of a plain vanilla call and put on
an underlying with spot price S earning a yield q will serve as an example and
are given below. The expressions appearing here arise from differentiating7 the

7Only the explicit dependence and not the implicit dependence of the option on the parameters under
consideration play a role when calculating these partial derivatives. In determining theta, for example,
the time dependence of S should not be taken into consideration, since this dependence is implicit for
the option price. This means that in taking the partial derivatives, S, t, r, q and σ are to be viewed as
independent parameters.
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function in Eq. 8.7 and exploiting the relation in Eq. 12.16. The sensitivities of
options on futures and forwards can be calculated similarly by differentiating
the functions given in Eqs. 8.8 and 8.9.

�Call = Bq(t, T )N(x) , �Put = Bq(t, T ) [N(x) − 1]

�Call = Bq(t, T )N′(x)

S(t)σ
√

T − t
= �Put

�Call = −Bq(t, T )S(t)N′(x)σ

2
√

T − t
+ S(t)N(x)

∂Bq(t, T )

∂t
− KN(x − σ

√
T − t)

∂B(t, T )

∂t

�Put = −Bq(t, T )S(t)N′(x)σ

2
√

T − t
− S(t)N(−x)

∂Bq(t, T )

∂t

+ KN(−x + σ
√

T − t)
∂B(t, T )

∂t

�Call = Bq(t, T )S(t)N′(x)
√

T − t = �Put

ρCall = −KN(x − σ
√

T − t)
∂B(t, T )

∂r
, ρPut = KN(−x + σ

√
T − t)

∂B(t, T )

∂t

ρqCall = S(t)N(x)
∂Bq(t, T )

∂q
, ρqPut = −S(t)N(−x)

∂Bq(t, T )

∂q
. (12.28)

Here, x is as defined in Eq. 8.5 and N′ again denotes the derivative of the
cumulative standard normal distribution with respect to its argument:

N′(x) = dN(x)

dx
= e−x2/2

√
2π

The Excel workbooks BlackScholes.xls and Straddle.xls demonstrate
these sensitivities. In BlackScholes.xls, the hedging of a portfolio consisting
of puts, calls and underlyings is demonstrated and in Straddle.xls, the
behavior of the sensitivities of a straddle as a function of the underlying is
described.

12.5.3 Sensitivities by Means of Finite Difference
Methods

In principle, every numerical algorithm used to compute the price of an
option can also be applied for the determination of the sensitivities or Greeks.
All numerical procedures for computing the sensitivities are in essence based
on the same fundamental idea displayed in Eq. 12.17. Two option prices
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are computed. These prices differ since one of the risk factors used in their
determination was slightly different. The sensitivity of the option price with
respect to that particular risk factor is then the difference between the two
option prices divided by the difference in the risk factor.

With finite difference methods—as with binomial trees—some sensitivities
can be calculated (as finite differences) directly on the grid used for pricing
without having to go through the lengthy procedure based on Eq. 12.17. In
fact, a finite difference scheme does nothing other than calculate (approxima-
tions for) the derivatives with respect to S and t at each time step. The relevant
formulas have already been presented in Chap. 10. Explicitly, Eq. 10.8 directly
yields delta, Eq. 10.9 gamma, and Eq. 10.11 Theta. Calculating Greeks directly
on the grid has proved to yield results which are significantly more exact8 than
procedures based on Eq. 12.17. Hence, the Greeks should be calculated on the
grid whenever possible.
Vega and rho, however, cannot be calculated directly from an (S, t)-grid

and so for these sensitivities we have to rely on Eq. 12.17, i.e., the calculation
must be run through twice, in each case with a slight change in the respective
parameter.

The determination of the sensitivities of an options portfolio using
finite difference methods is shown in the Excel workbook FiniteDiffer-
enceMethod.xlsm from the download section [50].

12.5.4 Sensitivities by Means of Monte Carlo Simulations

When using Monte Carlo simulations in determining the sensitivities, the
computations are always performed in accordance with Eq. 12.17. This means
the two simulations are performed with slightly different values for the
parameter under consideration but with exactly the same random numbers.

The difference between the two option prices divided by the difference in
the parameter value gives an approximation of the desired sensitivity. Differ-
entiating twice, as for gamma, for example, is accomplished in accordance
with Eq. 12.17 with three different simulations for three different parameter
values. Each simulation must be performed with the same random numbers.
The computation of the sensitivities by means of Monte Carlo simulations
is demonstrated in full detail for an option portfolio in the Excel workbook
MonteCarloSimulation.xlsm from the download section [50].

8For instance, we might otherwise observe that the sensitivities oscillate as a function of the spot price of
the underlying.



13
Martingales and Numeraires

13.1 The Martingale Property

The most important and profound concept that the reader may have gained
from the material presented in this book so far is that of risk neutrality, which
can be summarized as follows:

Today’s price of a (tradable) financial instrument is equal to the discounted
expectation of its future price if this expectation is calculated with respect to
the risk-neutral probability measure.

At this point, we recommend that the reader reviews Sects. 7.1.3, 7.2.1
and 9.2.3. We will now elaborate on the concept of risk neutrality.

The risk-neutral probability is an example of a martingale measure. Mar-
tingale measures are a specific class of probability measures satisfying the
property—as we are about to see—described in Eq. 13.1. For an intuitive
explanation of the term measure: probability distributions can be interpreted
as measures since the expectation of a function f (X) of a random variable X,
having a distribution with density function p, can be interpreted as an integral
with respect to a certain integral measure:

E [f (X)] =
∫

f (x) p(x)dx︸ ︷︷ ︸
Integral Measure
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By replacing the Riemann integral measure dx with the probability measure
p(x)dx, we obtain the expectation of the random variable f (X) by integrat-
ing the function f with respect to this probability measure.

Martingale theory is an intensively researched field of mathematics, and
recognizing that the price process of a derivative can be interpreted as a mar-
tingale allows the application of martingale theory in the valuation of financial
instruments. Because of its generality, the utilization of martingale theory
requires very few of the assumptions listed in Chap. 4, namely Assumptions 1,
2, 3, 5. For sake of simplification, we assume that Assumption 4 from Chap. 4
is fulfilled, too. The methods presented here will not be discussed in complete
mathematical detail, but will be motivated by our “experience” of the subject
gained in previous sections.

The results in Sect. 9.2.3 are based on the somewhat surprising observation
that the probability p′ of an upward move u in the underlying price in
the real world does not appear in Eqs. 9.8 or 9.13. Only the risk-neutral
probability plays a role. This observation led to Eq. 9.20 and the interpretation
of derivative prices as expectations taken with respect to a certain probability
measure.

At this stage, we wish to generalize this concept. Consider again the
derivation of Eq. 9.8. The specific type of the financial instrument V does not
come into play. The discussion took place in the context of options merely for
simplicity’s sake, making use of none of the properties particular to options.
Hence, Eq. 9.20 holds for all financial instruments whose value is governed
by the price of the underlying S. Furthermore, at no point in the derivation
did the process S have to have a particular form. This means that Eq. 9.20
holds for arbitrary instruments on arbitrary underlyings, in other words, for
all general processes of the form 2.19. Such processes are much more general
than the simple randomwalk given by Eq. 2.23, for example. This is of decisive
importance in the analysis of term structure models. In fact, the generality of
Eq. 9.20 goes still further. Using B(T , T ) = 1, Eq. 9.20 can be written as

V (t)

B(t, T )
= E

[
V (T )

B(T , T )

]
,

where we recall that the expectation at time t has been taken with respect to
the risk-neutral probability p.

Defining the normalized price as

Z(t) := V (t)

B(t, T )
,
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we arrive at the elegant form

Z(t) = E [Z(T )] . (13.1)

In other words:

The normalized price at time t is given by the expectation (with respect to p) of
the future normalized price.

This expresses the martingale property in its “purest” form.We can also say:

The normalized price is a martingale (with respect to p).

Normalizing the price means nothing other than expressing the price of
the instrument in units of zero bonds maturing at T rather than in monetary
units such as euros. Thus, the numerical price does not tell us how much the
instrument costs in euros but how much the instrument costs in terms of zero
bonds.

Having shown that the martingale property holds (within limits1) for
arbitrary financial instruments on arbitrary underlyings, we now show that it
also holds for arbitrary normalizing factors. This indicates the truly general
character of the martingale property.

13.2 The Numeraire

In financial literature, the normalizing instrument is commonly referred to as
numeraire. In our discussions here, we will frequently use the more intuitive
expression normalization. We will now show that not only zero bonds but
arbitrary (tradable) financial instruments may serve as normalizing factors,
i.e., as numeraires. The numeraire used does not even have to refer to the
underlying S (the zero bond does not do so either). Let S be the price of an
underlying,V the price of an arbitrary financial instrument on this underlying,

1The limits are that the underlying has to follow a general Ito process of the form 2.19 and that the financial
instrument as well as the normalizing factor have to be traded instruments, see Sect. 14.4.
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and Y another arbitrary financial instrument (in our previous discussions, the
zero bond was chosen to play the role of Y ). As in the derivation of Eq. 9.8, let
the time evolution of the price of the underlying be described by a binomial
tree such as given in Eq. 9.2, for example.

We intend to construct a portfolio composed of α underlyings whose prices
are given by the process S and β of the financial instruments with a price
process given by Y :

�(t) = αtS(t) + βtY (t) . (13.2)

We require this portfolio to have a value equal to that of the derivative V in all
states of the world one time step later. Note that both the normalizing factor
Y and the underlying S must be tradable since otherwise the “α underlyings
at price S” or the “β instruments at price Y ” could be neither purchased
nor sold on the market and the construction of such a portfolio would be
impossible. Since the normalizing instrument Y can, as will be shown, be
chosen arbitrarily, there is no shortage of candidates for Y ; we simply select
any tradable instrument as the numeraire.

However, it is often the case that while a financial instrument on an
underlying is tradable, the underlying itself is not tradable. This situation
arises quite frequently. For example, the forward price S(t, T ) (see Eq. 6.1)
is generally not tradable even if the associated spot price S(t) is the price of
a tradable instrument (such as a stock). Despite this fact, the forward price
is often used as an underlying; the reader is referred to Eqs. 8.8 or 8.9 for
examples. Also, as we will show in detail in Sect. 14.4, interest rates are not
tradable either, in contrast to bonds which are financial instruments having the
interest rate as an “underlying”. In such cases, a second tradable instrumentUS

having S as its underlying is chosen in addition to the numeraire instrument Y .
The only restriction in the choice of this second instrument is that it must not
be possible to construct US by a portfolio consisting solely of the numeraire
instrument (we need two truly “linearly independent” instruments).

A portfolio can now be constructed similar to Eq. 13.2 by replacing the
non-tradable underlying S with the tradable instrument US . A non-tradable
underlying does not, in principle, complicate the situation as long as a
tradable instrument on the underlying US (which cannot be represented by
the numeraire instrument) can be found.2

2If S itself is tradable, it can, of course, be chosen as the (tradable) instrument US . If this is the case, we
merely need to replace US with S in all pertinent equations derived in the following material.
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�(t) = αtUS(t) + βtY (t) . (13.3)

The portfolio thus constructed is required to have the same value as the
derivative V after proceeding by one time step. Hence

αtUSu
+ βtYu = �u

!= Vu

αtUSd
+ βtYd = �d

!= Vd . (13.4)

We end up with two equations for both cases S(t + δt) = Su and S(t +
δt) = Sd .

The weights α and β satisfying both of these equations can now be uniquely
determined.3

αt = VuYd − VdYu

USu
Yd − USd

Yu

, βt = VdUSu
− VuUSd

USu
Yd − USd

Yu

. (13.5)

If in all events the derivative and the portfolio have the same value at time
t + δt , their values must also be equal at time t . Otherwise an arbitrage
opportunity would exist.

V (t) = �(t) = αtUS(t) + βtY (t)

= VuYd − VdYu

USu
Yd − USd

Yu

US(t) + VdUSu
− VuUSd

USu
Yd − USd

Yu

Y (t) . (13.6)

It is exactly at this point that the assumption of an arbitrage free market
enters into our discussion. As we continue with the derivation, we will
clearly recognize how this assumption, together with the normalizing factor
Y , uniquely determines the martingale probability p. Collecting terms with
respect to the coefficients of Vu and Vd , we obtain

V (t) = Vu

YdUS(t) − USd
Y (t)

USuYd − USd
Yu

+ Vd

USuY (t) − YuUS(t)

USuYd − USd
Yu

.

In view of our goal of finding a representation of the value of the derivative
normalized with respect to the numeraire instrument Y , we rewrite the above

3E.g., α may be determined by multiplying the first equation with Yd and the second equation with
Yu and subtraction of the resulting equations. Similar, β could be determined by multiplying the first
equation with USd

and the second equation with USu
and, again, subtraction of the resulting equations.
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equation in the form

V (t)

Y (t)
= Vu

Yu

YdUS(t)/Y (t) − USd

USuYd/Yu − USd

+ Vd

Yd

USu − YuUS(t)/Y (t)

USu − USd
Yu/Yd

.

This equation can now be written as

Z(t) = Zupu + Zdpd (13.7)

by defining the normalized prices as

ZS(t) := V (t)

Y (t)
, Z

u,d
S (t + δt) := VSu,d

(t + δt)

Yu,d(t + δt)

and the “probabilities” as

pu := Yd
US

Y
− USd

USu

Yd

Yu
− USd

= YuYdUS − YuYUSd

YdYUSu
− YuYUSd

=
US

Y
− USd

Yd

USu

Yu
− USd

Yd

pd := USu
− Yu

US

Y

USu
− USd

Yu

Yd

= YdYUSu
− YdYuUS

YdYUSu
− YuYUSd

=
USu

Yu
− US

Y

USu

Yu
− USd

Yd

. (13.8)

where the last expressions are obtained by dividing both the numerator
and denominator by YuYdY . Note that these p are independent of the
derivative V . They depend explicitly only on the normalizing factor Y and the
instrument US . The form of these functions arose from the assumption of an
arbitrage-free market as expressed in Eq. 13.6. If pu and pd could actually be
interpreted as probabilities, Eq. 13.7 would have the form indicated in Eq. 13.1.
Before showing that this is the case, we make the following remark on the
computation of p in practice: Instead of expressing p in terms of US and Y ,
as just presented, Eq. 13.7 can be used to write p as a function of Z (and thus
of V and Y ). Making use of the equality pd = 1 − pu yields

pu = Z(t) − Zd

Zu − Zd

. (13.9)

This is a method frequently employed in explicitly computing martingale
probabilities in practice. This expression has the disadvantage that the inde-
pendence of p on the derivative V is not immediately recognizable.
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Before we can interpret p as a probability, it remains to show that p does
in fact satisfy all requisite properties. The following conditions, holding for all
probabilities, must be checked4:

pu + pd = 1 , pu ≥ 0 , pd ≥ 0 (13.10)

Using simple algebra, it follows immediately from the explicit representation
in Eq. 13.8 that pu + pd = 1 holds. In order to recognize the implications of
the other two conditions, note that pu and pd have a common denominator
USu

Yu
− USd

Yd
. This factor is greater than zero if and only if the normalized price of

US in the “down state” is smaller than in the “up state”. This is not necessarily
always the case,5 since “up” and “down” are defined by the unnormalized
underlying price S (Su > Sd by definition) and not by the normalized price of
the instrument US . If such should be the case, i.e., if the denominator should
be less than zero, both numerators must be less than zero as well. Just as both
numerators must be greater then zero if the denominator is greater than zero.
In summary,

USu

Yu

>
US

Y
>

USd

Yd

for Su > S > Sd

or (13.11)

USu

Yu

<
US

Y
<

USd

Yd

for Su > S > Sd

must hold. The normalized price of the instrument US must therefore be a
strictly monotone function of the underlying price. If this is not the case, we
are immediately presented with an arbitrage opportunity. Let us assume for
instance, that USu

Yu
< US

Y
>

USd

Yd
. This market inefficiency could be exploited

by selling (short selling) the instrument US at time t and using the proceeds
to purchase a = US/Y of the instrument Y. This is always possible as both Y

and US are tradable instruments. This portfolio has a value at time t of

−US + aY = −US + (
US

Y
)Y = 0

4If all three of these conditions hold, it follows immediately that pu ≤ 1 and pd ≤ 1 as well.
5Even when S is tradable, allowing US to be replaced by the underlying, there are several common
instruments that violate this condition when used as a normalizing instrument. For example, the value C

of a plain vanilla call on S increases faster (in percentage terms) than S itself, implying for the quotient
S

C(S)
that S2

C(S2)
<

S1
C(S1)

for S2 > S1.
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One time step later, the portfolio’s value is, in all events u and d, positive since

−USu
+ aYu = −USu

+ (
US

Y
)Yu = Yu

[
−USu

Yu

+ US

Y

]

︸ ︷︷ ︸
>0

> 0

−USd
+ aYd = −USd

+ (
US

Y
)Yd = Yd

[
−USd

Yd

+ US

Y

]

︸ ︷︷ ︸
>0

> 0

This strategy leads to a certain profit without placing investment capital at
risk. The fact that the value of the portfolio is positive in both possible states
u and d can be directly attributed to the assumption that US

Y
is greater than

both USd

Yd
and USu

Yu
, thereby violating the condition in Eq. 13.11. Conversely, if

USu

Yu
> US

Y
<

USd

Yd
, an analogous arbitrage opportunity arises by following the

strategy of going long in US and short in a = US/Y of the instrument Y .
It follows immediately from these arbitrage considerations that, if the

market is arbitrage free, the condition in Eq. 13.11 is automatically satisfied by
every tradable financial instrument playing the role of the numeraire and every
tradable instrument US on the underlying and, in consequence, need not be
verified in practice. pu and pd in Eq. 13.8 are therefore actually probabilities
(they satisfy all the properties in 13.10), implying that the normalized price
Z = V/Y (and thus the normalized prices of all tradable instruments on S)

is a martingale. Or conversely, if it were possible to find a tradable instrument
US on S whose price, normalized with respect to numeraire instrument Y ,
is not a martingale, a portfolio consisting of instruments US and Y could be
constructed, making arbitrage possible.

13.3 Self-financing Portfolio Strategies

The discussion given above was restricted to one single discrete time step. The
extension to arbitrarily many discrete time steps is completely analogous. As
described in Chap. 9, we obtain at every node of the tree a replicating portfolio
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consisting of the numeraire instrument and a financial instrument on the
underlying (or the underlying itself if it is tradable6) in order to replicate both
possible derivative prices in the next step. Such a replication of the derivative
V through a portfolio composed of US and Y (or S and Y, if S is tradable)
corresponds to a hedge of V (for more on this subject, see Chap. 12). As we
move from one time step to the next, this hedge is constantly adjusted by
adjusting the value of the weights αt and βt of the (financial instrument on
the) underlying and the numeraire.

Two conditions must be fulfilled to make this adjustment. First, it must be
possible to specify the weights at the beginning of a time step and they must
not depend on later realizations of the spot price. That is, the weights αt and
βt required to replicate exactly the derivative one time step later at t + δt in all
cases need to be known at time t . In other words, it is predictable (previsble)
at time t which weights αt and βt will replicate the derivative at time t + δt .
Such a process, which’s value at one time step later is known at any time step
is called previsable process. The second condition demands that the portfolio
is self financing. This implies that the required adjustments of the weights by
selling or buying US must be reflected by similar buying or selling an equal
amount of the numeraireY . In other words, at no timemoneymust be injected
to or withdrawn from the hedge portfolio of underlying and numeraire. Such
a strategy is called self-financing.

To ensure that the first condition is met, we consider again Eq. 13.5:

αt = VuYd − VdYu

USuYd − USd
Yu

, βt = VdUSu − VuUSd

USuYd − USd
Yu

.

The terms Vu,d , Yu,d and USu,Sd
depend on S(t) (since then Su resp. Sd are

determined), but don’t depend on S(t + δt), i.e., the actual realization of S at
time t + δt . Therefore, it is a previsible process and the first condition is met.

Next, we consider the time development of the hedge-portfolio �(t) and
the derivative V (t) to verify the second condition. At the start time t we have
by construction

V (t) = �t(t) = αtUS(t) + βtY (t) .

6InChap. 9, the normalizing instrumentY was taken to be the zero bondB with a face value ofB(T , T ) =
1 and weight βt = g(t). The value of this zero bond changed from t to t + δt from Y = B(t, T ) to
Yu = Yd = B(t, T )B(t)−1 with B(t) = B(t, t + dt). The weight αt of the underlying was denoted by
�.
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The index t of �t(t) indicates here that we consider the hedge portfolio with
parameters αt and βt , as determined at time t . One time step late, we have

�t(t + δt) = αtUS(t + δt) + βtY (t + δt) .

Now we determine new values for α and β belonging to time t + δt and the
hedge portfolio will be re-adjusted. Thus, we get for the new portfolio

V (t + δt) = �t+δt (t + δt) = αt+δtUS(t + δt) + βt+δtY (t + δt) .

Our hedging strategy is self-financing if and only if the portfolio value before
and after the re-adjustment is the same:

�t+δt (t + δt) = �t(t + δt) = αtUS(t + δt) + βtY (t + δt) . (13.12)

Since αt and βt are determined according to Eq. 13.4, it follows immediately
that Eq. 13.12 is also true in all possible scenarios of our binomial world (S(t+
δt) = Su or S(t + δt) = Sd ). Therefore, the strategy is self-financing by
construction.

It is worthwhile to consider this fact from another point of view which
allows us to quickly verify whether or not a portfolio is self financing. The
total difference δ�(t) in the value of a portfolio for a certain trading strategy
over a time span δt equals the difference in the value at time t + δt of the
portfolio set up at time t + δt and the value at time t of the portfolio set up
at time t , thus

δ�(t) = �t+δt (t + δt) − �t(t) = �t(t + δt) − �t(t)︸ ︷︷ ︸
δ�Market

+ �t+δt (t + δt) − �t(t + δt)
︸ ︷︷ ︸

δ�Trading

.

We arrive at the second equation by simply inserting a zero in the form
0 = �t(t + δt) − �t(t + δt). It is now easy to recognize both components
contributing to the total change in �: δ�Market is the change in value of the
portfolio resulting from changes in the market without having adjusted the
positions in the portfolio. δ�Trading is the difference at time t +δt between the
value of the new portfolio and that of the old portfolio, i.e., the value change
resulting solely from trading. For the strategy to be self financing, δ�Trading

must equal zero since the value of the old portfolio must provide exactly the
funds necessary to finance the new portfolio. Consider for example a portfolio
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composed of two instruments having the form �(t) = αtUS(t) + βtY (t) as
above:

δ�Market = �t(t + δt) − �t(t) = αt [US(t + δt) − US(t)]︸ ︷︷ ︸
δUS (t)

+ βt [Y (t + δt) − Y (t)]︸ ︷︷ ︸
δY (t)

δ�Trading = �t+δt (t + δt) − �t(t)

= US(t + δt)[α(t + δt) − αt ]︸ ︷︷ ︸
δαt

+ Y (t + δt)[β(t + δt) − βt ]︸ ︷︷ ︸
δβ(t)

,

that is,

δ�(t) = αtδUS(t) + βtδY (t) + US(t + δt)δαt + Y(t + δt)δβt

= αtδUS(t) + βtδY (t) for a self financing strategy. (13.13)

This implies that the strategy is self financing if and only if the total change in
the portfolio’s value from one adjustment period to the next can be explained
exclusively by market changes. This holds for infinitesimal time steps as well:

�(t) = αtUS(t) + βtY (t) self financing strategy

⇐⇒ d�(t) = αtdUS(t) + βtdY (t) . (13.14)

From this point of view, we again consider the structure of Eq. 13.13. The
change δ� over the next time step is composed of the change δU and the
change δY. At time t , neither the value of δU nor of δY are known (we cannot
even say if these are “upward” or “downward”), but the coefficients αt and βt

controlling the influence of these changes on δ� are known at time t .
Compare this with the general Ito process given in Eq. 2.19. The coefficients

a(S, t) and b(S, t) which control the next step in the process are also already
known at time t . These coefficients a and b are also previsible processes.

13.4 Generalization to Continuous Time

The profound and important concepts presented above can be summarized as
follows:

• For any arbitrary underlying S which follows a stochastic process of the
general form indicated in Eq. 2.19,



264 H.-P. Deutsch and M. W. Beinker

• and any tradable instrument U with S as its underlying (or S itself if it is
tradable)

• and any other arbitrary, tradable, financial instrument Y (numeraire),
• the assumption of an arbitrage-free market implies the existence of a

(numeraire-dependent) unique probability measure p,
• such that the current, normalized price Z = V/Y (also called the relative

price) of an arbitrary, tradable, financial instrument V on S

• equals the expectation of the future normalized price and thus, Z is a
martingale with respect to p.

• This statement holds because a self financing portfolio strategy with pre-
visible weights can be followed which replicates (hedges) the price of the
financial instrument V at all times.

The expectation is taken at time t with respect to the Y -dependent
probability measure p. This dependence is given explicitly by Eq. 13.8 (in the
context of a binomial tree over one time step). To emphasize this dependence,
the expectation is often equipped with the subscript t and the superscript Y :

Z(t) = EY
t [Z(u)] ∀u ≥ t . (13.15)

The intuitive interpretation of Eq. 13.15 is that the expected change in the
normalized price of the tradable instrument is zero with respect to this
probability measure, in other words, the normalized price has no drift. This
implies that in this measure such a normalized price process has the form given
in Eq. 2.19 with no drift term:

dZ(t) = bZ(S, t) dW̃ mit dW̃ ∼ X
√

dt, X ∼ N(0, 1) . (13.16)

Here, dW̃ is a Brownianmotion and bZ a (previsible) process which is different
for each different instrument.

The material presented thus far has been restricted to discrete time steps.
But the above statements hold in continuous time as well. To see this, several
fundamental theorems from stochastic analysis are required. In the following,
the insights gained in the study of discrete processes will be carried over to
the continuous case and the necessary theorems from stochastic analysis will
be used (without proof ) when needed. In addition to extending the results
already obtained to the time continuous case, the object of the following
discussion is to provide a deeper understanding of the general approach to
pricing derivatives, in particular, an understanding of role of the drift of an
underlying.
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We therefore consider a very general (not necessarily tradable) underlying
S, which, in the real world, is governed by an Ito process satisfying Eq. 2.19,
i.e.

dS(t) = a(S, t) dt + b(S, t) dW with dW ∼ X
√

dt, X ∼ N(0, 1) .

(13.17)

Let U(S, t) denote the price of a tradable, financial instrument with an
underlying S. The process for U in the real world, according to Ito’s lemma, is
given by Eq. 2.21 as

dU(S, t) = aU(S, t)dt + ∂U

∂S
b(S, t) dW with

aU(S, t) := ∂U

∂S
a (S, t) + ∂U

∂t
+ 1

2

∂2U

∂S2
b(S, t)2 , (13.18)

Here aU(S, t) denotes the drift of U .
Furthermore, we select an arbitrary, tradable instrument Y as the numeraire

instrument. Note, however, that the choice of the numeraire Y is not com-
pletely arbitrary. It has always been tacitly assumed that our market is driven by
just one single random factor (one-factor model), namely the Brownian motion
dW in Eq. 2.19. The numeraire instrument may indeed be any arbitrary,
deterministic or stochastic instrument, but if it has a stochastic component,
it must be driven by the same random walk as the underlying S. If not, the
resulting model would be a multi-factor model, and in consequence could
not be completely “spanned” by the two instruments U and Y . Analogous
to Eq. 2.19, the most general process describing the numeraire instrument Y

satisfies

dY(t) = m(Y, t) dt + n(Y, t) dW with dW ∼ X
√

dt, X ∼ N(0, 1)

(13.19)

with (previsible) processes m and n and the same random walk dW , which
drives the random component of the underlying S in Eq. 13.17.

Motivated by our experience with Sect. 13.1, we seek a probability measure
with respect to which the prices of all tradable instruments (which depend
on no stochastic factors other than the Brownian motion dW in Eq. 13.17)
normalized with the numeraire instrument Y are martingales. We are as yet
quite far from attaining this goal. We start by aiming at the short-term goal of
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finding a measure for which the normalized price

Z(S, t) := U(S, t)

Y (t)
(13.20)

of a single selected instrument U is a martingale. The product rule establishes
the following equation for the process Z7:

dZ = d
[
Y−1U

] = Ud
[
Y−1] + Y−1dU + dUd

[
Y−1] (13.21)

The differential dU was already specified above. The differential of f (Y ) :=
Y−1 is obtained through an application of Ito’s lemma, Eq. 2.21, under
consideration of ∂f/∂Y = −1/Y 2, ∂2f/∂Y 2 = 2/Y 3 and ∂f/∂t = 0.
Simple substitution gives

d
[
Y−1

]
=

[
− 1

Y 2
m + 1

Y 3
n2

]
dt − 1

Y 2
n dW

The last term in Eq. 13.21 appears since the product of the two differentials
contains not only higher order terms but also a term ∼ dW 2 which is linear
in dt (see Eq. 2.20), explicitly:

dUd
[
Y−1

] =
(

aUdt + ∂U

∂S
b dW

)
1

Y 2

([−m + n2/Y
]
dt − n dW

)

= −∂U

∂S
b

n

Y 2
(dW)2
︸ ︷︷ ︸

∼dt

+ O (dtdW) .

This effect clearly stems from the fact that both dU and dY are no ordinary
but stochastic differentials.8 Altogether dZ becomes

dZ = U

Y

([
n2

Y 2
− m

Y

]
dt − n

Y
dW

)
+ aU

Y
dt + ∂U

∂S

b

Y
dW − ∂U

∂S

bn

Y 2
dt

7We suppress the arguments of U, Y, a, b,m and n in order to keep the notation simple. The arguments
of these variables are always those as given in Eqs. 13.17 and 13.19.
8Equation 13.21 can be proven formally by applying Ito’s lemma (in the version for two stochastic variables)
to the function f (U, Y ) = U Y−1.
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=
(

b

Y

∂U

∂S
− n

Y

U

Y

)
dW +

(
aU

Y
+

[
n2

Y 2
− m

Y

]
U

Y
− bn

Y 2

∂U

∂S

)
dt

=
(

b

Y

∂U

∂S
− n

Y

U

Y

)
⎧
⎨

⎩
dW +

aU +
[

n2

Y 2 − m
Y

]
U − b n

Y
∂U
∂S

b ∂U
∂S

− nU
Y

dt

⎫
⎬

⎭
,

(13.22)

where the coefficient of dW is factored out “by force” in the final step. We
seek a probability measure with respect to which Z is a martingale, or in other
words, a process of the form specified in Eq. 13.16. The process dZ would
have the desired form if a measure existed with respect to which

dW̃ := dW +
aU +

[
n2

Y 2 − m
Y

]
U − b n

Y
∂U
∂S

b ∂U
∂S

− nU
Y

dt (13.23)

were a standard Brownian motion, i.e.,

dW̃ ∼ X
√

dt mitX ∼ N(0, 1) .

Stochastic analysis delivers just such a theorem, namely the famous Girsanov
Theorem:

Theorem 1 (Girsanov) Let W(t) be a Brownian motion with respect to a
probability measure P , and γ (t) a previsible process which (for some future time
T ) satisfies the boundedness condition

EP
[

exp

(
1

2

∫ T

0
γ (t)dt

)]
< ∞

Then there exists a measureQ, equivalent9 to P , with respect to which

W̃ (t) = W(t) +
∫ t

0
γ (s)ds

9Two probability measures are called equivalent if they agree exactly on what is possible and what is
impossible. I.e. an event is impossible (probability zero) in one probability measure if and only if it is
impossible in all equivalent probability measures.
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is a Brownian motion. This implies that

dW(t) + γ (t)dt = dW̃(t) ∼ X
√

dt with X ∼ N(0, 1)

Conversely, in the measureQ the original processW(t) is a Brownian motion with
an additional drift component, −γ (t): dW(t) = dW̃(t) − γ (t)dt

In order to apply the theorem, the coefficient of dt in Eq. 13.23 must
be identified with the process γ (t) in the Girsanov Theorem. We begin
by observing that this coefficient depends only on variables which can be
evaluated at time t and as such can itself be determined at time t . This
implies that it is previsible. Proceeding under the assumption that the technical
boundedness condition in the theorem is satisfied (this will always be the case
in our models), the theorem provides a measure with respect to which dW̃

is in fact a simple Brownian motion. dZ in Eq. 13.22 then has a form as in
Eq. 13.16 with

bZ(S, t) = b

Y

∂U

∂S
− n

Y

U

Y
. (13.24)

Canwe now conclude thatZ is a martingale with respect to this measure?Does
the absence of a drift in Eq. 13.16 directly imply10 the martingale property in
Eq. 13.1? Again, stochastic analysis provides theorems which ensures (if certain
technical conditions are satisfied, see [11, page 79], for example) that this is
the case. The measure for which dZ has the form 13.16 is thus a martingale
measure.

We have thus attained our first goal by finding a measure with respect to
which the normalized price of one selected instrument U (or for S if S should
be tradable) is a martingale. The only requirement made of the instrument U

is that it be tradable. Thus, for every arbitrary, tradable financial instrument
(with S as an underlying) there exists a martingale measure. This measure
could, at this point in the discussion, be different for each instrument U , in
other words, it may be dependent on our choice ofU (just as it depends on the
choice of numeraire instrument Y ). It remains to show that the normalized
price of every tradable instrument (with S as its underlying) is a martingale
with respect to the same probability measure. In the discrete case, the essential
point was that a self financing strategy for a portfolio consisting of U and Y

10We have already shown the reverse implication above.
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exists which replicates V exactly. We will need another important theorem
from stochastic analysis to establish this for the time continuous case:

Theorem 2 (Martingale Representation) If Z is a martingale with respect to
the probability measure P with a volatility which is non-zero almost everywhere
with probability P = 1, i.e., if Z follows a stochastic process satisfying

dZ = bZ(t)dW with P [bZ(t) �= 0] = 1 ∀t

with a previsible process bZ(t), and if there exists in this measure another
martingale X, then there exists a previsible process α(t) such that

dX = α(t)dZ

Or equivalently in integral form

X(t) = X(0) +
∫ t

0
α(s)dZ(s)

The processα(t) is unique. Furthermore,α and bZ together satisfy the boundedness
condition

E
[

exp

(
1

2

∫ T

0
α2(t)b2

Z(t)dt

)]
< ∞ .

This theorem states intuitively that (if the volatility is non-zero), two martin-
gales differ at most by a previsible process. This implies that any martingale
can be represented by any other martingale and a previsible process.

As yet, we only have one martingale in our measure, namely Z, the
normalized price of U. In order to apply the theorem, we need a second
martingale.And since we wish to gather information about the price of another
arbitrary financial instrument V, we must construct a second martingale from
this instrument V . We do this with the help of yet another quite simple
theorem:

Theorem 3 (Tower Law) For any arbitrary function V , depending on events
occurring up to some specified future time T > t, the expectation at time t of
V (T ) with respect to any arbitrary probability measure P ,

E(t) := EPt [V (T )]
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is a martingale with respect to P , explicitly

E(t) = EPt [E(u)] ∀u > t

It is easy to see that this theorem is true: substituting the definition of E

into the claim that E(t) is a martingale reads

EP
t [V (T )] = EP

t

[
EP

u [V (T )]
] ∀u > t (13.25)

This implies that in taking the expectation at time u and subsequently taking
the expectation of this expectation at an earlier time t we arrive at the same result
as if we had directly taken the expectation with respect to the earlier time t in
the first place. The reader should become familiar with this idea by verifying
it using the binomial or trinomial trees presented in Figs. 9.1 or 9.2.

The payoff profile V (T ) of a financial instrument with maturity T is
a function depending only on events (values of the underlying process S)
occurring up to time T .The Tower Law states that the expectation of this payoff
profile is a martingale with respect to every probability measure, in particular
with respect to the martingale measure of Z from Eq. 13.20. Thus, we have
found two processes which are martingales with respect to this measure,
namely Z(t) and EY

t [V (T )].
But we want more. We want the (appropriately normalized) price V (t)

itself to be a martingale, not merely the expectation of the payoff profile
V (T ). In the discrete case (and in the continuous case for U as well),
this was accomplished by considering the normalized prices. We therefore
consider instead of V the payoff profile normalized with Y , V (T )/Y (T ).The
expectation (taken at time t with respect to the martingale measure of Z) of
this function

E(t) := EY
t

[
V (T )

Y (T )

]

is, because of the Tower Law, also a martingale, which we denote by E(t)

in what follows. Furthermore, the payoff of V at maturity t = T is exactly
replicated by the product Y(t)E(t) since

Y(T )E(T ) = Y(T )EY
T

[
V (T )

Y (T )

]
= Y(T )

V (T )

Y (T )
= V (T ) (13.26)



13 Martingales and Numeraires 271

It is now clear how the existence of a replicating portfolio can be established
through an application of the martingale representation theorem: the martin-
gale in question is E(t), the expectation of the normalized derivative price
at maturity, and as our second martingale we take Z(t) from Eq. 13.20,
the normalized price of the initially selected tradable instrument U . The
martingale representation theorem now states that (if the volatility of Z is
always non-zero) the process E(t) differs from the process Z(t) only by a
previsible process αt :

dE = αtdZ (13.27)

We use this previsible process now to construct a portfolio consisting of αt

of the instrument U and βt of the numeraire instrument Y as was done
in Eq. 13.3. This is always possible since αt is previsible by the Martingale
Representation Theorem and both U and Y are tradable.

�(t) = αtU(t) + βtY (t) . (13.28)

This portfolio should equal Y(t)E(t) for all times t ≤ T since, according to
Eq. 13.26, it then replicates the payoff of V upon its maturity exactly, i.e.,
when t = T . From this condition, we can derive the number βt of numeraire
instruments required for the replicating portfolio:

Y(t)E(t) = �(t) = αtU(t) + βtY (t)

⇐⇒ βt = E(t) − αt

U(t)

Y (t)
= E(t) − αtZ(t) . (13.29)

We have thus established the existence of a replicating portfolio. It remains
to show that this portfolio is self financing, because only if no injection or
withdrawal of capital is required throughout the lifetime of the derivative can
we deduce the equality of the portfolio’s value and the value of the instrument
V . To this end, we consider the total change in the value of the portfolio in
light of Eq. 13.14:

d� = d (YE)

= EdY + YdE + dEdY

= EdY + YαdZ + αdZdY

= [β + αZ] dY + αYdZ + αdZdY
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= α [ZdY + YdZ + dZdY ] + βdY

= α d(ZY)︸ ︷︷ ︸
U

+ β dY ,

where in the second equality the (stochastic) product rule for stochastic
integrals has been applied, in the third equality the Martingale Representation
Theorem in form of Eq. 13.27, and in the fourth, Eq. 13.29 in the form
E(t) = βt+αtZ(t)has been used. In the last equation the (stochastic) product
rule has been applied again. The equation now states that the total change in
the portfolio defined in Eq. 13.28 results solely from the change in price of the
instruments U and Y and not from any adjustment of the positions α or β:

d�(t) = αtdU(t) + βtdY (t) .

Thus, via Eq. 13.14 the portfolio is self financing. The value of the portfolio is
by construction �(t) = Y(t)E(t) for all times. According to Eq. 13.26, this
replicates the payoff profile V (T ) exactly at time T . The value of the portfolio
must therefore equal that of the derivative for all previous times as well:

V (t) = �(t) = Y(t)E(t) = Y(t)EY
t

[
V (T )

Y (T )

]
(13.30)

and thus

V (t)

Y (t)
= EY

t

[
V (T )

Y (T )

]
(13.31)

Therefore, the normalized price of the tradable financial instrument V is
a martingale in the same probability measure with respect to which the
normalized price of the instrument U is a martingale. Since V was chosen
arbitrarily, this implies that the normalized price of all tradable instruments
are martingales with respect to the same probability measure.

Furthermore, the process αt can be calculated explicitly. Equation 13.27
states that αt is the change ofE per change inZ or in other words the derivative
of E with respect to Z. Using Eqs. 13.20 and 13.30, both Z and E can be
expressed in terms of the prices of tradable instruments (known at time t )

αt = ∂E(t)

∂Z(t)
= ∂ [V (t)/Y (t)]

∂ [U(t)/Y (t)]
. (13.32)
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The process α(t) corresponds to the sensitivity � introduced in Chap. 12. It
follows that Eq. 13.29 can be applied to calculate β(t) at time t explicitly as
well.

βt = E(t) − αtZ(t) = V (S, t)

Y (t)
− U(S, t)

Y (t)

∂ [V (S, t)/Y (t)]

∂ [U(S, t)/Y (t)]
.

We have thus accomplished our goal, having shown that the normalized
prices V/Y of all tradable instruments are martingales with respect to the
martingalemeasure ofZ = U/Y . The only question remaining is whether this
measure is unique or whether several such measures may exist. To answer this
question we apply yet another theorem from stochastic analysis which states
that for complete markets11 the martingale measure obtained above is unique.
The theorem [89] is stated explicitly here12:

Theorem 4 (Harrison-Pliska) A market consisting of financial instruments
and a numeraire instrument is arbitrage free if and only if there exists a measure,
equivalent to the real world measure, with respect to which the prices of all financial
instruments normalized with the numeraire instrument are martingales. This
measure is unique if and only if the market is complete.

Summary
At this stage, it is helpful to summarize what has been done in this section.
The summary corresponds to the summary at the beginning of the Sect. 13.4
(which was done for discrete time steps).

• We select a tradable instrument Y as the numeraire and another tradable
instrument U which has S as an underlying (if S itself is tradable, S can be
chosen directly).

• We then find the probability measure for which Z = U/Y is a martingale.
The Girsanov-Theorem guarantees that this is always possible via a suitable
drift transformation as long as a technical boundedness condition is satis-
fied.

• The Martingale Representation Theorem and the Tower Law enable the
construction of a self financing portfolio composed of the instrumentsU and
Y which replicates the payoff profile at maturity of any arbitrary, tradable

11A market is called complete if there exists a replicating portfolio for each financial instrument in the
market.
12As always, the term “if and only if” means that one follows from the other and vice versa.
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instrument V having S as an underlying. The value of this replicating
portfolio is given by Eq. 13.30 where the expectation is taken with respect
to the martingale measure of Z = U/Y .

• This portfolio must be equal to the value of the derivative V (t) for all times
before maturity if the market is arbitrage free. This means that, according
to Eq. 13.31, the normalized price V/Y with respect to the martingale
measure ofZ is likewise a martingale. Thus, having obtained (via Girsanov)
a martingale measure for Z, the normalized price V/Y of all other tradable
instruments are martingales with respect to this same measure.

• Finally, the Harrison-Pliska Theorem states that this measure is unique in
complete markets: in complete markets there exists for each numeraire
instrument one singlemeasure with respect to which all tradable instruments
normalized with this numeraire are martingales.

13.5 The Drift

With respect to the martingale measure, the price processes of all instruments
normalized by the numeraire instrument Y are drift-free. The expected changes
in the normalized prices of tradable instruments are thus exactly equal to zero.
What can we say about the process of the underlying with respect to this
measure? The model Eq. 2.19 was set up to describe the underlying in the
real world. As we have seen however, the valuation of financial instruments
is accomplished in a world governed by the probability with respect to which
normalized prices of tradable instruments are martingales, i.e., processes of the
form indicated in Eq. 13.16. Hence, it is important to know how the underlying
process is transformed when the real probability measure is transformed into
the martingale measure.

Not only do we know that a martingale measure exists (and is unique in a
complete market) for Z = U/Y with respect to which Z can be represented
by a process of the form in Eq. 13.16. We also know from Eqs. 13.23 and 13.24
the explicit relationships between the variables in the real world and the
world governed by the martingale measure. We now make use of Eq. 13.23
in particular, to express the underlying S as given by the process 13.17 with
respect to the Brownianmotion dW in the real world in terms of the Brownian
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motion dW̃ with respect to the martingale measure (using the explicit form
for au from Eq. 13.18):

dS = a dt + b dW

= adt + b

⎧
⎨

⎩
dW̃ −

au +
[

n2

Y 2 − m
Y

]
U − b n

Y
∂U
∂S

b ∂U
∂S

− nU
Y

dt

⎫
⎬

⎭

= adt −
∂U
∂S

a + ∂U
∂t

+ 1
2

∂2U
∂S2 b2 +

[
n2

Y 2 − m
Y

]
U − b n

Y
∂U
∂S

∂U
∂S

− n
b

U
Y

dt + bdW̃

=
b n

Y
∂U
∂S

− a n
b

U
Y

− ∂U
∂t

− 1
2

∂2U
∂S2 b2 −

[
n2

Y 2 − m
Y

]
U

∂U
∂S

− n
b

U
Y

dt + bdW̃ .

(13.33)

This equation explicitly specifies the underlying process with respect to the
martingale measure.

Note that in the transition from the real world measure to the martingale
measure, only the drift of the underlying has changed and not the volatility;
the coefficient of the Brownian motion remains b(S, t). This is not merely
coincidence but a natural consequence of the Girsanov Theorem which
intuitively states that a transformation between two equivalent probability
measures effects nothing more than a change in the drift.

We should further note that the Harrison-Pliska Theorem states that the
martingale measure in complete markets (we will from now on always assume
that the market is complete, if nothing else is explicitly stated) is unique. This
implies that the drift of S, used in the valuation of financial instruments on S

is unique as well, up to the choice of the numeraire instrument Y .
In the last equality in 13.33 the drift a(S, t) in the real world has been

written to share a common denominator with the second term ∼ dt . In doing
so, we observe that the terms ∼ ∂U

∂S
a cancel each other and the drift in the real

world enters into the equation corresponding to the martingale measure only
in the form of n

b
U
Y
a. For numeraire instruments Y satisfying Eq. 13.19 with

n(Y, t) = 0 ∀Y, t , i.e., for numeraires with processes of the form

dY(t) = m(Y, t) dt (13.34)



276 H.-P. Deutsch and M. W. Beinker

the drift a of the real world disappears completely for the martingale measure
associated with Y ! Regardless of the drift a(S, t) chosen in the model, a(S, t)

is completely irrelevant for the valuation of financial instruments if the
numeraire chosen is a process of the form specified in Eq. 13.34.

Equation 13.34 by no means implies that Y must be deterministic, since
m(Y, t) is not assumed to be deterministic but only previsible.13 This means
that at time t the evolution of Y is only known for the step immediately
following t , but not for later steps.

As has already been mentioned on more than one occasion, the choice of
instrument to be used as the normalizing factor (the numeraire) is arbitrary
but this choice significantly affects whether a specific problem can be solved
elegantly or awkwardly. This is analogous to the selection of a suitable
system of coordinates when solving problems in physics, for example. We
see from Eq. 13.33 that an appropriate choice of numeraire can simplify
calculations substantially. The numeraire should always be chosen to be of the
form 13.34 for some previsible process m. This is always possible in practice
and all numeraire instruments in this book satisfy this property.14 For such
numeraires,m/Y in Eq. 13.33 is precisely the yield of the numeraire instrument,
since Eq. 13.34 obviously implies:

m = dY

dt
�⇒ m

Y
= 1

Y

dY

dt
= d ln Y

dt
. (13.35)

Using this equation and n = 0, the drift transformation equation 13.23
becomes

dW̃ = dW + aU − d ln Y
dt

U

b ∂U
∂S

dt

= dW + 1

b

[

aU

(
∂U

∂S

)−1

− d ln Y

dt

(
∂ ln U

∂S

)−1
]

dt (13.36)

13A previsible process is a stochastic process whose current value can be determined from information
available at the previous time step. Intuitively, it is a stochastic process “shifted back” one step in time.
14This will be shown below explicitly for all numeraire instruments used.
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and the underlying process in Eq. 13.33 reduces to

dS(t) = ã(S, t) dt + b(S, t)dW̃ mit

ã(S, t) =
(

∂U(S, t)

∂S

)−1 [
U(S, t)

d ln Y (t)

dt
− ∂U(S, t)

∂t
− b2(S, t)

2

∂2U(S, t)

∂S2

]
.

(13.37)

Only the tradable instrument U and the numeraire Y (and their respective
derivatives) and the “volatility“ b(S, t) of the underlying process S appear
in this expression. As already noted, the real underlying drift a(S, t) has
disappeared completely.

Since the prices of financial instruments must obviously be independent of
the method used to compute them, the following theorem holds irrespective
of the choice of numeraire:

Theorem 5 Suppose there exists a numeraire Y in an arbitrage-free market
satisfying Eq. 13.34 with a previsible process m(Y, t). Then the drift of the
underlying in the real world is irrelevant to the prices of financial instruments.
Arbitrage freedom alone determines the prices of financial instruments and not the
expectation of the market with respect to the evolution of the underlying.

In this context, it is interesting to consider the behavior of the non-
normalized process of the tradable instrument U in the martingale measure.
The process 13.18 in the real world is transformed via Eq. 13.36 to

dU = aUdt + ∂U

∂S
b dW

= aUdt + ∂U

∂S
b

{

dW̃ − 1

b

[

aU

(
∂U

∂S

)−1

− d ln Y

dt

(
∂ ln U

∂S

)−1
]

dt

}

= aUdt + ∂U

∂S
b dW̃ −

[
aU − U

d ln Y

dt

]
dt ,

and thus

dU(S, t) = d ln Y(t)

dt
U(S, t)dt + b(S, t)

∂U(S, t)

∂S
dW̃ . (13.38)
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The drift of a tradable instrument in the martingale measure for a numeraire
of the form specified in Eq. 13.34 is thus simply the product of the price of
the instrument and the yield of the numeraire!

Theorem 6 The expected yield (defined as the expected logarithmic price change
per time) of a tradable financial instrument in the martingale measure with
a numeraire of the form 13.34 is always equal to the yield of the numeraire
instrument.

EY
t

[
dU(S, t)

U(S, t)

]
= d ln Y(t)

dt
dt . (13.39)

In Eqs. 13.38 and 13.39, a tradable instrument is denoted by the letter U but
these properties naturally hold for all tradable instrument since, as discussed
in detail in the previous section, all tradable instruments are martingales with
respect to the same probability measure. The instrument U is not essentially
different from other tradable instruments in the market.

13.6 The Market Price of Risk

As emphasized several times previously, all tradable instruments U in a com-
plete, arbitrage-free market (normalized with respect to a selected numeraire)
have the same martingale measure. This implies that dW̃ in Eq. 13.23 is
always the same Brownianmotion for this measure. Since the Brownianmotion
dW of the underlying in the real world is not dependent on the specific
financial instrument either, this must hold for the difference dW̃ − dW as
well. The change in drift from dW to dW̃ in Eq. 13.23 must be the same
for every tradable instrument U . This implies that for two arbitrary tradable
instruments, U1(S, t) and U2(S, t) the following must hold:

aU1 +
[

n2

Y 2 − m
Y

]
U1 − b n

Y

∂U1
∂S

b ∂U1
∂S

− nU1
Y

=
aU2 +

[
n2

Y 2 − m
Y

]
U2 − b n

Y

∂U2
∂S

b ∂U2
∂S

− nU2
Y

,

(13.40)

where aUi
denotes the drift of Ui in the real world in accordance with

Eq. 13.18. The existence of a unique measure with respect to which all
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normalized, tradable instruments are martingales satisfying Eq. 13.16 can be
formulated equivalently as follows: regardless of the appearance of the drift of
the financial instrument in the real world, the combination of this drift with
other characteristics of the financial instrument and the numeraire as specified
in Eq. 13.40 must be the same for all financial instruments. This combination
has its own name; it is known as the market price of risk.15 The market price of
risk γU for an instrument U is defined by

γU(t) :=
aU +

[
n2

Y 2 − m
Y

]
U − b n

Y
∂U
∂S

b ∂U
∂S

− nU
Y

(13.41)

= 1

b

[

aU

(
∂U

∂S

)−1

− d ln Y

dt

(
∂ ln U

∂S

)−1
]

with aU as in Eq. 13.18. This expression simplifies further if the numeraire
fulfills Eq. 13.34:

γU (t) = 1

b

[

aU

(
∂U

∂S

)−1

− d ln Y

dt

(
∂ ln U

∂S

)−1
]

.

From this definition and Eq. 13.40 it is now immediate that the following
theorem holds.

Theorem 7 The market price of risk is identical for all tradable instruments in a
complete, arbitrage-free market.

Comparing the definition in Eq. 13.41 with Eq. 13.23 and Eq. 13.22
immediately gives

Theorem 8 The previsible process γ (t) in the Girsanov Theorem effecting the
drift transformation for the transition from the probability measure in the real
world to the martingale measure is the market price of risk.

Let us consider the process given by Eq. 13.18 representing a tradable
instrument U in the real world from this point of view. The drift aU in the
real world can by Definition 13.41 be expressed in terms of the market price

15The motivation for this name will become clear further below, when we look at certain special cases.
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of risk:

aU = γU b
∂U

∂S
+ U

d ln Y

dt
.

Substituting this expression into Eq. 13.18 yields the process for a tradable
financial instrument in the real world, expressed in terms of the market price
of risk:

dU(S, t) =
[
γU(t) b(s, t)

∂U(S, t)

∂S
+ d ln Y (t)

dt
U(S, t)

]
dt + b(S, t)

∂U(S, t)

∂S
dW .

(13.42)

The valuation of the financial instrument is accomplished not in the real world
but in that governed by the martingale measure. In the martingale measure,
the instrument U is a process satisfying Eq. 13.38. Comparing this process
with Eq. 13.42 directly yields the following “recipe”:

Theorem 9 Setting the market price of risk equal to zero in the expression for the
stochastic process (more explicitly in the differential equation which is satisfied by
this process) which governs the financial instrument in the real world immediately
yields the stochastic process (i.e., the differential equation) which is to be applied
in the valuation of this instrument.

13.7 Tradable Underlyings

The equations in the previous section appear relatively complicated because
we have assumed throughout that the underlying S is not necessarily tradable.
If the underlying is in fact tradable, it can be used in place of the instrument
U directly with the consequence that

U = S �⇒ ∂U

∂S
= 1 ,

∂2U

∂S2
= 0 = ∂U

∂t
= 0 . (13.43)

The general equation 13.33 for this special case reduces to

dS =
b n

Y
− a n

b
S
Y

−
[

n2

Y 2 − m
Y

]
S

1 − n
b

S
Y

dt + bdW̃ .
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The corresponding Eq. 13.37 for a more appropriate choice of numeraire
instrument satisfying Eq. 13.34 further reduces to

dS(t) = S(t)
d ln Y(t)

dt
dt + b(S, t)dW̃ , (13.44)

which, of course, agrees with Eq. 13.38, this equation holding for every
tradable instrument. The expectation of the yield (defined as the expected
relative price change per time) of a tradable underlying in the martingale
measure is thus (as for every tradable instrument) always equal to the yield
of the numeraire instrument.

The market price of risk γS(t) for a tradable underlying is obtained from
Eq. 13.41 with 13.43 as

γS(t) =
a +

[
n2

Y 2 − m
Y

]
S − b n

Y

b − nS
Y

, (13.45)

where a = a(S, t) is the underlying drift in the real world (see Eq. 13.17). For
a well-chosen numeraire of the form 13.34 we get:

γS(t) = a(S, t)

b(S, t)
− S(t)

b(S, t)

d ln Y

dt
.

With this, the process Eq. 13.17 in the real world (in consistence with
Eq. 13.42) becomes

dS(t) =
[
b(S, t)γS(t) + d ln Y(t)

dt
S(t)

]
dt + b(S, t) dW . (13.46)

Comparison with Eq. 13.44 again yields the “recipe” (which holds for all
tradable instruments and hence for S as well) that the market price of risk
must simply be set equal to zero for valuation purposes.

Note that these considerations are valid for a still very general case: In our
treatment, it has only been assumed that the underlying is tradable and that
the numeraire instrument is of the form 13.34.
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13.8 Applications in the Black-Scholes World

Special cases of the general material discussed above have been encountered
in Sects. 7.1.3, 7.2.1 and 9.2.3 in various “disguises”. The irrelevance of the
real world drift became most apparent in Sect. 9.3. There, the requirement
that the expectation of the underlying, computed using its stochastic process,
must equal the expectation of the underlying resulting from the martingale
property16 led to Eq. 9.25, i.e., an explicit specification of the drift to be used
in the valuation. The volatility σ , in contrast, was subject to no such condition
and remained the same.

Equation 9.25 holds for a very special case, namely when (a) the underlying
behaves as in Eq. 2.23 and (b) is tradable, (c) the numeraire is given by Y(t) =
B(t, T ) and (d) interest rates and volatilities are constant; in short, in the
Black-Scholes world. Let us therefore apply the general results of the above
sections to this special situation as an example.

Firstly, a zero bondB(t, T ) is chosen as the numeraire instrument maturing
at some arbitrary future time T . The process for B in the real world is of the
form 13.34. For continuous compounding, we have explicitly

dY ≡ dB(t, T ) = dB(t, T )

dt
dt = rB(t, T )dt �⇒ d ln Y(t)

dt
= r .

(13.47)

The special process, Eq. 2.23 (or Eq. 2.24) corresponds to the general process,
Eq. 13.17 with the parameters

a(S, t) = μ̃S(t) =
(

μ + σ 2

2

)
S(t)

b(S, t) = σS(t) .

Since the underlying is tradable, Eq. 13.44 can be applied directly to obtain
the underlying process in the martingale measure

dS(t) = rS(t) dt + σS(t)dW̃ .

16There, instead of the general formulation “expectation with respect to the martingale measure”, the
expression “risk neutral expectation” was used.
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This process and not 2.23 is to be used in the valuation of the financial
instrument. Comparison of this process with Eq. 2.23 shows that the choice

μ = r − σ 2/2 or equivalently μ̃ = r (13.48)

for the drift transforms the real world process directly to the process to be
used for pricing, in agreement with Eq. 9.25 (dividend yield equal to zero).
The market price of risk of the underlying is simply

γS(t) = a(S, t) − rS(t)

b(S, t)
= μ̃ − r

σ
(13.49)

in this special case and is exactly equal to zero for μ̃ = r . In fact “setting the
market price of risk equal to zero” is equivalent to “choosing the correct drift
for pricing”.

Equation 13.49 provides the motivation for the name “market price of risk”.
In the special case considered here the underlying drift in the real world is
simply a(S, t) = μ̃S(t). The expectation of the underlying-yield is thus
a(S, t)/S(t) = μ̃. This implies that μ̃ − r represents the excess yield above
the risk-free rate, which is expected from the underlying in the real world.
If the volatility σ is viewed as a measure of the risk of the underlying, then
the market price of risk γS (at least in the context of this special case) can be
interpreted as the excess yield above the risk-free rate per risk unit σ which
the market expects from the underlying. This is, so to speak, the price (in the
form of an excess yield above the risk-free rate) which the market demands for
the risk of investing in the underlying. In the real world, the market is by no
means risk neutral, but rather expects higher yields for higher risks; the market
price of risk illustrates this clearly.

Note that the market price of risk in Eq. 13.49 is identical to the so
called Sharpe Ratio [138, 139] heavily used in asset management and portfolio
optimization since more than 50 years. Very generally, the Sharpe Ratio is
defined as the expected excess return (above the risk free rate) of an investment
divided by the investment risk (measured as its volatility).

Sharpe Ratio ≡ R − rf

σ

Our case above corresponds to an investment in a single risky asset, namely
in the risk factor S. As we have shown in Eq. 2.32, the drift μ̃ appearing
in Eq. 13.49 is the expected return for linear compounding. Since in asset
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management returns are usually defined as relative (as opposed to logarithmic)
price changes, linear compounding is indeed applicable (see Eq. 2.31). Thus,
μ̃ in Eq. 13.49 exactly corresponds to the expected return R used in portfolio
management for an investment in S. And therefore the Sharpe Ratio and the
market price of risk are the same thing, see also [49].

To conclude this section we will now show that we can actually use all of
this information aboutmartingales and drifts to really calculate something.We
consider below only payoff profiles of path-independent instruments. These
are payoff profiles which depend solely on the value of the underlying at
maturity T and not on the path taken by the process S between t and T .
For such processes

V (S, T ) = V (S(T ), T ) .

holds. Therefore we only need the distribution of S at time T (and not the
distribution of all paths of S between t and T ). Choosing the zero bond as
the numeraire instrument, Y(t) = B(t, T ), Eq. 13.31 for the price V of a
financial instrument becomes

V (S, t) = Y (t)EY
t

[
V (S, T )

Y (T )

]
= B(t, T )EY

t [V (S(T ), T )] .

sinceB(T , T ) = 1.We againmodel the underlying with the simple process in
Eq. 2.23. The associated underlying process over a finite time interval of length
δt = T − t , i.e., the solution of the stochastic differential equation 2.23 for
S, has already been given in Eq. 2.28 for an arbitrary drift μ, and thus for an
arbitrary probability measure, namely

S(T ) = S(t) exp [μ(T − t ) + σWT −t ] mit WT −t ∼ N(0, T − t )

= S(t) exp [x] with x ∼ N
(
μ(T − t ), σ 2(T − t )

)
. (13.50)

The distribution of S(T ) is therefore S(t) multiplied by the exponential of
the normal distribution with expectation μ(T − t ) and variance σ 2(T − t ).

Using this, the expectation of the function

V (S(T ), T ) = V (S(t)ex, T ) =: g(x)
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can be computed explicitly:

Et [V (S(T ), T )] =: Et [g(x)] =
∫ ∞

−∞
g(x)p(x)dx

with the probability density of the normal distribution (see Eq. A.46)

p(x) = 1
√

2πσ 2(T − t)
exp

[

− (x − μ(T − t))2

2σ 2(T − t)

]

.

Thus

Et [V (S(T ), T )] = 1
√

2πσ 2(T − t)

∫ ∞

−∞
V

(
S(t)ex, T

)
exp

[

− (x − μ(T − t))2

2σ 2(T − t)

]

dx .

This is the expectation of the payoff profile with respect to a probability
measure associated withμ, for instance with respect to the probabilitymeasure
in the real world if μ represents the drift in the real world. To allow the use of
this expectation for the valuation of the instrument V , it must be computed
with respect to the (in a complete market, unique) martingale measure. This
is accomplished through the choice of drift in accordance with Eq. 13.48. The
price of V then becomes

V (S, t) = B(t, T )EY
t [V (S(T ), T )]

= B(t, T )
√

2πσ 2(T − t)

∫ ∞

−∞
V

(
S(t)ex, T

)
exp

⎡

⎢
⎣−

[
x −

(
r − 1

2σ 2
)

(T − t)
]2

2σ 2(T − t)

⎤

⎥
⎦ dx .

(13.51)

This equation holds in complete generality for every financial instrument with
a non-path dependent payoff profile V (S(T ), T ) on an underlying S of the
form specified in Eq. 2.23.

To be more specific, we now use the payoff profile of a plain vanilla call as
an example:

V (S(T ), T ) = max {S(T ) − K, 0} = max
{
exS(t) − K, 0

}
.

with x as defined in Eq. 13.50. This payoff profile is only non-zero when
exS(t) ≥ K , or equivalently when x ≥ ln (K/S(t)). Equation 13.51 for the
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price of the call is then

V (S, t) = B(t, T )
√

2πσ 2(T − t)

∫ ∞

ln(K/S(t))

[
exS(t) − K

]
exp

⎡

⎢
⎣−

(
x −

(
r − σ 2

2

)
(T − t)

)2

2σ 2(T − t)

⎤

⎥
⎦ dx .

This (withμ = r−σ 2/2) is in complete agreement with Eq. 8.4, for example.
In connection with Eq. 8.4 it has been demonstrated how this integral can be
computed explicitly. The result is the famous Black-Scholes equation 8.6.



14
Interest Rates and Term Structure Models

So far, with only few exceptions (e.g. Sect. 8.3.3), we have considered interest
rates as being deterministic or even constant. This directly contradicts to the
simple existence of interest rate options. If interest rates were deterministic
and hence predictable with certainty for all future times, we would know for
certain if a given interest rate option is either worthless (because it is out-of-the-
money) or otherwise would be a simple forward contract (if it is in-the-money)
and could be priced by simple cash flow discounting.

Nevertheless, interest ratesmay assumed to be deterministic, if the derivative
underlying are shares (or some other asset class like FX or commodities) and
if the term to expiry is rather short (e.g. less than 3 years), since in such a
case, the value of an equity derivative is much more sensitive to changes of
the underlying share price than to changes of the interest rate level. Also, the
volatility of share prices is often much higher than interest rate volatilities.1
Empirical studies (e.g. see [109, 145]) also demonstrate that different effects of
“false” assumptions (in particular, the assumed equality of forward and futures
prices) tend to cancel out each other.

Methods for interest rate modeling and valuation of interest rate options
have been for more than 20 years and area of active research in financial
mathematics. Term structure models are used to model the stochastic changes
observed in interest rate curves, similar to the way stock prices and exchange
rates are modeled with an underlying stochastic process S(t).2

1As we will see later, e.g. in Sect. 30.1 ff, there is more beyond Black-Scholes.
2The Black-76 model for simple interest rate options can be derived as a special case of the more complex
Heath-Jarrow-Morton term structure model.
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In contrast to a stock price or exchange rate S(t), an interest rate R(t, T )

depends on two time variables, namely on the time t at which the interest rate
is being considered and on thematurity T of the term over which the interest is
to be paid. Usually, interest is paid at a higher rate for longer terms τ := T − t

(i.e., later maturities) than for shorter ones. For a fixed time t (today), the set
of all interest rates for the various maturity dates T form a curve called the
term structure. Theoretically, each point in this curve is a stochastic variable
associated with a single maturity. The term structure is thus theoretically a
continuum of infinitely many stochastic variables. From a practical point of
view, these processes are naturally very strongly correlated; the interest rate
over a term of 3 years and 1 day is (almost) the same as that over a term of 3
years and 0 days and so on. In practice, market participants therefore consider
only finitely many terms whose lengths lie well distinct from one another (for
example, terms τ = T − t of 1 day, 1 month, 3 months, 6 months, 9 months,
1 year, 2 years, 3 years, 5 years, 10 years and so on), depending on which liquid
market quotes have been used to build up the curve.Motivated by the results of
principle component analysis (see for instance Sect. 34.2) which show that well
over 90% of the dynamics of the yield curve can be explained by just one or two
stochastic factors, most term structure models go a step further and reduce the
number of factors driving the stochastic evolution of the entire term structure
to just a few stochastic variables (e.g. 1 or 2 for simple term structure models).
These models are referred to as 1-factor or 2-factor, for example, depending on
the number of stochastic variables.

14.1 Instantaneous Spot Rates and Instantaneous
Forward Rates

Many simple 1-factor models are based on a stochastic process of the form
specified in Eq. 2.19, where the stochastic factor is usually assumed to be a very
short term rate, called instantaneous interest rate. These rates take the form of
either an instantaneous spot rate (also called the instantaneous short rate) or an
instantaneous forward rate.3 The terms τ = T − t belonging to these rates
are infinitesimally short, i.e., we consider the limit τ → 0, or equivalently
T → t .

3This approach is to be differentiated from market rate models (which are also used to be called Brace-
Gatarek-Musiela models or (BGM models for short). For such models, forward interest rates over longer
periods (e.g. the 3-months LIBOR rate), but distinct start dates, are modeled (see Sect. 14.13 and [19]).
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In the following discussion, we adopt the convention of continuous com-
pounding usually observed in the literature. This allows the instantaneous rates
to be defined quite easily. The instantaneous spot rate r(t) is defined by

e−r(t)dt := lim
dt→0

B(t, t + dt)

r(t) = − lim
dt→0

ln B(t, t + dt)

dt
. (14.1)

The instantaneous forward rate f (t, T ) is defined by

e−f (t,T )dT := lim
dT →0

B(T , T + dT |t ) = lim
dT →0

B(t, T + dT )

B(t, T )

f (t, T ) = − lim
dT →0

1

dT
ln

B(t, T + dT )

B(t, T )
= − lim

dT →0

ln B(t, T + dT ) − ln B(t, T )

dT
,

where Eq. 2.7 has been used. Thus

f (t, T ) = −∂ ln B(t, T )

∂T
. (14.2)

Integrating this equation over dT and making use of the fact that B(t, t) = 1
yields

∫ T

t

f (t, s)ds = −
∫ T

t

∂ ln B(t, s)

∂s
ds = − ln B(t, T )+ln B(t, t)︸ ︷︷ ︸

1

= − ln B(t, T ) ,

and therefore

B(t, T ) = exp

[
−

∫ T

t

f (t, s)ds

]
. (14.3)

This, together with Eq. 2.7, implies that the forward rate over a finite time
interval of length T ′ −T is the average of the instantaneous forward rates over
this interval:

R(T , T ′∣∣ t ) = − 1

T ′ − T
ln

B(t, T ′)
B(t, T )

= 1

T ′ − T

∫ T ′

T

f (t, s)ds .

(14.4)
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The definitions of instantaneous spot and forward rate imply that both are
interest rates with continuous compounding (see also Table 2.5).

The relation between the forward rates and zero bond yields (spot rates over
finite time intervals of length T − t ) can be established as well by inserting the
explicit form of the discount factor for continuous compounding into Eq. 14.2
and taking the derivative with respect to T :

f (t, T ) = −∂ (ln exp [−R(t, T )(T − t)])

∂T
= ∂ [R(t, T )(T − t)]

∂T
,

And after application of the product rule

f (t, T ) = R(t, T ) + (T − t )
∂R(t,T )

∂T
. (14.5)

The forward rates are greater than the spot rates for ∂R(t, T )/∂T > 0, i.e., for
term structures (interest rate term structure = spot rates R(t, T ) as a function
of T ) whose values increase with T .

Finally, we make note of the relationship between the instantaneous forward
rate and the instantaneous spot rate. This is simply

r(t) = lim
T →t

f (t, T ) . (14.6)

In anticipation of the following sections we stress here that all of the above
equations hold in any arbitrary probability measure, i.e., irrespective of any
choice of numeraire, since they have been derived directly from the definitions
of the instantaneous interest rates.

14.2 Important Numeraire Instruments

As was shown in Chap. 13 in great detail, the value V of an arbitrary, tradable
interest rate instrument4 normalized with an arbitrary, tradable financial
instrument Y is a process Z = V/Y which, according to Eq. 13.15, is a
martingale

Z(t) = EY
t [Z(u)] ∀u ≥ t .

4In spot rate models, every interest rate instrument can be interpreted as a derivative V on the underlying
S(t) = r(t) or S(t) = ln r(t).
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The martingale measure at time t with respect to which the expectation EY
t is

calculated depends on the choice of the numeraire instrument Y . In principle,
any arbitrary tradable instrument can be used as the numeraire. An appropriate
choice of numeraire, however, is a deciding factor in enabling an elegant
solution of specific problems to be found. Two numeraire instruments are
particularly popular (not only for term structure models but for other models
as well). These will be introduced in the following sections.

14.2.1 The Risk-Neutral Measure

We define β(t0, t) as the value of a bank account or money market account.
This is the value one monetary unit (for example, 1 euro) has at time t , if it
was invested at a time t0 < t and was subsequently always compounded at
the current spot rate, with the interest earnings being immediately reinvested
in the same account at the current spot rate. Intuitively, we could imagine
reinvesting ever decreasing interest payments earned over ever shorter interest
periods, the number of interest periods finally approaching infinity. The value
of such an account can be written in terms of the instantaneous spot rate as

β(t0, t) = exp

[∫ t

t0

r(s)ds

]
. (14.7)

In the risk-neutral measure this bank account, Eq. 14.7, is used as the
numeraire.

Y (t) = β(t0, t) = exp

[∫ t

t0

r(s)ds

]
for arbitrary t0 ≤ t .

This numeraire has the advantage of satisfying the important property speci-
fied in Eq. 13.34. Since

dY (t)

dt
= r(t)Y (t) .

we have

dY (t) = Y (t + dt) − Y (t) =
(
er(t)dt − 1

)
Y (t) ≈ r(t)Y (t)dt
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Both r(t) and Y(t) are known at time t (even if they are stochastic variables
and as such not yet known for the future time t + dt ). This implies that the
process m(t) = r(t)Y (t) is previsible as required in Eq. 13.34.

With this numeraire the martingale property Eq. 13.15 becomes

V (t)

β(t0, t)
= Eβ

t

[
V (u)

β(t0, u)

]
∀u ≥ t ≥ t0 .

Note that the initial time point t0 in the money account can be chosen at will.
For every t0 we obtain another, different risk-neutral measure. Setting t0 = t

and using β(t, t) = 1 reduces the above expression to

V (t) = Eβ
t

[
V (u)

β(t, u)

]
= Eβ

t

[
e− ∫ u

t
r(s)dsV (u)

]
∀u ≥ t , (14.8)

which directly yields the price of the financial instrument. In words:

With respect to the risk-neutral measure, today’s value of a financial instrument
is equal to the expectation of the discounted future value.

This is not the same as the discounted future expectation. In this measure,
the discounting is performed first and then the expectation is calculated.
Discounting means division by the numeraire.

We take as an example, the value at time t of a zero-coupon bond with
maturity u, i.e., we set V (t) = B(t, u) and consequently V (u) = B(u, u) =
1, in Eq. 14.8 to obtain

B(t, u) = Eβ
t

[
1

β(t, u)

]
= Eβ

t

[
e− ∫ u

t
r(s)ds

]
. (14.9)

The bond price is the expectation with respect to the risk neutral measure
of the reciprocal of the bank account. Comparing this with Eq. 14.3, which
always holds, yields the relationship between the instantaneous forward rates
and the future instantaneous spot rates with respect to the risk-neutralmeasure

e− ∫ u
t f (t,s)ds = Eβ

t

[
e− ∫ u

t r(s)ds
]

.
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The future price of an instrument V is V (u) for u > t and is unknown at
time t . It is well known that this must be distinguished from the forward price
V (t, u), which is known at time t since it follows from arbitrage arguments
(see Eq. 6.1). If the instrument under consideration pays no dividends between
t and u, the forward price is

V (t, u) = V (t)

B(t, u)
with u > t . (14.10)

The forward price, Eq. 14.10, of an instrument with respect to the risk-neutral
measure is given by

V (t)

B(t, u)
= 1

B(t, u)
Eβ

t

[
V (u)

β(t, u)

]
= Eβ

t

[
e− ∫ u

t
(r(s)−f (t,s))dsV (u)

]
∀u ≥ t ,

(14.11)

where Eq. 14.3 was used, exploiting the fact the instantaneous forward rates
are by definition known at time t and thus can be included in or taken out of
the expectation operator as desired.

14.2.2 The Forward-Neutral Measure

For the forward-neutral measure or T -emphterminal measure (to emphasize
the fixed end date T ), a zero bond is used as the numeraire (see Eq. 14.3)

Y (t) = B(t, T ) = exp

[
−

∫ T

t

f (t, s)ds

]
for arbitrary T > t .

This numeraire has the property prescribed in Eq. 13.34 as well:

dY (t)

dt
= f (t, t)Y (t) = r(t)Y (t) .

Both r(t) and Y(t) are known values at time t , implying the previsibility of
m(t) = r(t)Y (t) as required in Eq. 13.34.

With this choice, the martingale property equation 13.15 becomes

V (t)

B(t, T )
= ET

t

[
V (u)

B(u, T )

]
∀T ≥ u ≥ t .
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The index T of E represents here always the maturity of the zero bond
numeraire. Observe that T can be selected arbitrarily. For each choice of T ,
we obtain a different normalizing factor and thus another forward-neutral
measure. Setting T = u and using the fact that B(u, u) = 1 we obtain the
following price for a financial instrument

V (t) = B(t, u)Eu
t [V (u)] = e− ∫ u

t
f (t,s)dsEu

t [V (u)] ∀u ≥ t . (14.12)

Today’s value of a financial instrument is equal to the discounted expectation of
its future value taken with respect to the forward neutral measure.

The expectation is first taken with respect to this measure and then discounted.
Discounting means multiplication by the numeraire.

The forward price, Eq. 14.10, for an interest rate instrument is, with respect
to this measure, exactly equal to the expected future price, hence the name
“forward-neutral”

V (t)

B(t, u)
= Eu

t [V (u)] ∀u ≥ t . (14.13)

14.3 The Special Case of Deterministic Interest
Rates

The reader may be somewhat confused, since in earlier chapters (see in
particular Eq. 9.20), prices of financial instruments were always calculated
by discounting the future expectation using B(t, T ), which, from the above
discussion, would indicate that the forward-neutral measure was used in the
calculations. The measure was, however, always referred to as the risk-neutral
measure. In those chapters however, interest rates were always assumed to be
completely deterministic (or in many cases even constant). We will now show
that for deterministic interest rates, the forward-neutral and the risk-neutral
measures are identical.

Consider a portfolio consisting of a zero bond B(t, T ) and a loan made
at time t to finance the purchase of the zero bond. The interest rate on
this loan is floating and is always equal to the current spot rate for each
interest period δt . After one such period δt, the loan debt will have grown
to B(t, T ) exp(r(t)δt). The portfolio thus constructed has no value at time t
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and the evolution of the entire portfolio over one time step δt is known exactly
at time t , and therefore involves no risk. Because arbitrage is not possible and
no risk is taken, the portfolio must have no value for all later times as well.
Thus, at time t + δt the value of the zero bond must be equal to the value of
the loan

B(t + δt, T ) = B(t, T ) exp(r(t)δt) .

So far, everything is as it was as for stochastic interest rates. On the right-hand
side of the above equation there appear only terms which are known at time t .
The difference comes in the next time step: for deterministic interest rates, the
spot rates at all later times u > t are known at time t as well. After two interest
periods, the credit debt will have grown to B(t, T ) exp(r(t)δt)exp(r(t +
δt)δt) with a known interest rate r(t + δt). Again, no risk is taken since the
rate r(t + δt) is already known at time t . Therefore, because the market is
arbitrage free, the portfolio must still be worthless at time t +2δt and the loan
must therefore still equal the value of the zero bond. Proceeding analogously
over n time steps, we obtain the value of the zero bond as

B(t + nδt, T ) = B(t, T ) exp

[
n−1∑

i=0

(r(t + iδt)δt)

]

.

Taking the limit as δt → 0, the value of the bond at time u := t + nδt is

B(u, T ) = B(t, T ) exp

[∫ u

t

r(s)ds

]
with u ≥ t .

This holds for every u ≥ t, in particular for u = T . Thus, observing that
B(T , T ) = 1, we obtain the price of a zero bond for deterministic interest
rates:

B(t, T ) = exp

[
−

∫ T

t

r(s)ds

]
= 1

β(t, T )
, (14.14)

where in the last step the definition of a bank account, Eq. 14.7, was used.
Hence, for deterministic interest rates, the numeraireB(t, T ) associated to the
forward-neutral measure is equal to the reciprocal 1/β(t, T ) of the numeraire
of the risk-neutral measure. Substituting this into Eq. 14.8, we obtain

V (t) = Eβ
t

[
V (u)

β(t, u)

]
= Eβ

t [B(t, u)V (u)] = B(t, u)Eβ
t [V (u)] ,
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where in the last step we havemade use of the fact thatB(t, u) is known at time
t , is therefore not stochastic and can be factored out of the expectation. The
price of a financial instrument must, however, be independent of the measure
used in its computation. In consequence, comparison of this equation with
Eq. 14.12 immediately yields the equation

B(t, u)Eu
t [V (u)] = V (t) = B(t, u)Eβ

t [V (u)] ,

and thus Eu
t [V (u)] =Eβ

t [V (u)]. This implies that both measures are identical
if interest rates are deterministic.

The fundamental difference between the general case and deterministic
interest rates is that the price of a zero bond in Eq. 14.14 is given by the
future spot rates. Of course, the general equation 14.3 stating that the price of
a zero bond is given by the current forward rates continues to hold. We might
suspect that this is closely related to the fact that the future instantaneous spot
rates must equal the current instantaneous forward rates if interest rates are
deterministic. This is in fact the case since the derivative of Eq. 14.14 with
respect to T gives

r(T ) = − ∂

∂T
ln B(t, T ) .

Comparing this with Eq. 14.2, which holds in general, yields

f (t, T ) = r(T ) ∀t, T with t ≤ T .

Thus, if interest rates are deterministic, the instantaneous forward rates are
indeed equal to the (known) future instantaneous spot rates. Since the right-
hand side of this equation is not dependent on t , this must be true for the left-
hand side as well. Hence, if interest rates are deterministic, the instantaneous
forward rates are independent of the present time t .

14.4 Tradable and Non-tradable Variables

As was emphasized at the end of the Sect. 13.2, both the numeraire Y and the
financial instrument V must be tradable instruments in order for the mar-
tingale property Eq. 13.1 to hold. Otherwise, potential arbitrage opportunities
cannot be exploited by trading and in this way fail to violate the assumption
of an arbitrage-free market. This realization, which may seem trivial from our
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modern perspective, was in the past by no means trivial. In fact, there exist
pricingmethods which assume that non-tradable variables have the martingale
property. The mistake made in doing so is then (approximately) corrected after
the fact by making a so-called convexity adjustment (see Sect. 14.5).

One example of a non-tradable variable is the yield of a tradable instrument
whose price is a non-linear function of its yield. Take, for example, a zero
bond B with lifetime τ . The yield r of the zero bond depends non-linearly
on its price (except if the linear compounding convention has been adopted;
see Table 2.5). For example, for simple compounding the price of the zero
bond is B = (1 + rτ)−1 . The zero bond is obviously a tradable instrument.
Therefore its future expectation taken with respect to the forward-neutral
measure as in Eq. 14.13 must be equal to its forward price.

B(T , T + τ | t ) = ET
t [B(T , T + τ)]

= ET
t

[
1

1 + r(T , T + τ)τ

]
≥ 1

1 + ET
t [r(T , T + τ)] τ

.

The lower-equal sign in the above expression follows from Jensen’s inequality.5
In general, the expectation of the price is not equal to the price calculated
with the expectation of the yield because of the non-linearity in the relation
between the price and the yield. How big the difference is depends on the
applied interest rate term structure model.

On the other hand, the forward rate for the time period between T and
T + τ is by definition equal to the yield of a forward zero bond over this
period; for linear compounding explicitly:

1

1 + rf (T , T + τ | t )τ = B(t, T + τ)

B(t, T )
≡ B(T , T + τ | t ) . (14.15)

Comparing this with the above expression for the forward price of the bond
gives

1

1 + rf (T , T + τ | t )τ ≥ 1

1 + ET
t [r(T , T + τ)] τ

�⇒ rf (T , T + τ | t ) ≤ ET
t [r(T , T + τ)] .

5For convex function f and stochastic variable X, Jensen’s inequality states that f (E[X]) ≤ E[f (X)].
The above equation follows from the convexity (all points f (x) with a < x < b lie below a straight line
through points f (a) and f (b)) of function f (x) = 1/(1 + ax).
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Therefore, the forward rate can not simply (i.e. model independently) be
equalized with the future expectation of the spot rate taken with respect to
the forward-neutral measure. Because of Eq. 14.12, zero bond yields are no
martingales with respect to the forward-neutral measure. Since all tradable
instruments must be martingales with respect to the forward-neutral measure,
zero bond yields can not be tradable.

What about products depending linearly on the forward rate? With
Eq. 14.15 we have

rf (T , T + τ |t ) = 1

τ

(
B(t, T )

B(t, T + τ)
− 1

)
. (14.16)

On the other hand, we could express the zero bond B(t, T ) in terms of the
expectation in the (T + τ)-forward measure

B(t, T )

B(t, T + τ)
= ET +τ

t

[
B(T , T )

B(T , T + τ)

]
. (14.17)

Comparison of Eq. 14.16 with Eq. 14.17 yields directly

rf (T , T + τ |t ) = ET +τ
t

[
rf (T , T + τ |t )] = ET +τ

t [r(T , T + τ)] .

(14.18)

That’s the fundamental reason why, for example, in forward rate agreements
or caplets and floorlets (which, of course, are tradable), the difference between
the future LIBOR and the strike is not paid out at the LIBOR fixing at the
beginning of the relevant interest period but at the end of that period (see
Sects. 15.2 and 18.6.3,6 respectively). This has the effect that we are not really
dealing with a forward contract (or an option) on a future interest rate, but
rather with a forward contract (or an option) on future zero bonds, i.e., on
tradable instruments. The same holds for swaps, caps and floors, which are
nothing other than a series of forward rate agreements, caplets and floorlets,
respectively, strung together.

6In practice, a FRA pays out at maturity (i.e. at the beginning of the interest rate period) the present value
of a virtual future payment at the end of the period. This reduces the credit default risk. If, as we did here,
credit default risk is neglected, or if the trade is sufficiently collateralized, this does not have a significant
impact.
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14.5 Convexity Adjustments

According to Eq. 14.12, today’s priceV (t) of a financial instrument normalized
with respect to the forward-neutral numeraire (or if interest rates are consid-
ered deterministic) is equal to its discounted future expectation. If the future
time for which the expectation is calculated is chosen to be the maturity date T

of the instrument, then the price of the instrument is equal to the discounted
future expectation of its payoff profile V (T ). For instruments whose payoff
profiles are linear functions of the underlying S, i.e., V (S, T ) = a + bS, the
expectation of the payoff profile is equal to the payoff profile of the expectation
of the underlying:

E [V (S, T )] = E [a + bS] =
∫ ∞

−∞
[a + bS] p(S)dS = a

∫ ∞

−∞
p(S)dS + b

∫ ∞

−∞
S p(S)dS

= a + bET
t [S] , (14.19)

where p denotes the probability density of the pertinent martingale measure.
Although the prices of most instruments (for example, the zero bond) are

non-linear functions of their underlyings, there do exist transactions with
linear payoff profiles for which Eq. 14.19 holds, for example forward contracts.
The payoff profile of a forward contract with maturity T and delivery price K

is known to be S(T ) − K . The expectation of this payoff profile is simply the
expectation of the underlying less the delivery price:

E [V (S, T )] = E [S(T ) − K] = E [S(T )] − K .

If the underlying S of the forward contract is itself a tradable instrument
(for example, a stock), we can now go a step further. With respect to the
forward-neutral normalization (or in the case of deterministic interest rates),
the future expectation of any tradable instrument is equal to its current forward
price in accordance with Eq. 14.13, i.e., ET

t [S(T )] = S(t, T ). Furthermore,
Eq. 14.12 states that with respect to this measure, today’s price is equal to
the discounted future expectation. So in summary (and in agreement with
Eq. 6.5):

V (S, t) = B(t, T )ET
t [V (S, T )]

= B(t, T )
(
ET

t [S(T )] − K
)

= B(t, T )(S(t, T ) − K) .
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In the first of the above equations, we used Eq. 14.12. In the second line we
made use of the fact that the payoff profile is a linear function of the underlying
and hence, that Eq. 14.19 holds, while in the third equation, we finally used
of the namesake property of the forward-neutral measure, Eq. 14.13.

The mistake made in some traditional pricing methods corresponds to
precisely this last step, i.e., simply replacing the future expectation of the
underlying as in Eq. 14.13 with the forward price of the underlying even if
the underlying is not a tradable instrument (and as such, is not a martingale
with respect to the forward-neutral measure and does not satisfy Eq. 14.13).
This mistake is then corrected (approximately) after the fact by a convexity
adjustment.

The convexity adjustment is defined as the difference between the future
expectation of the underlying (with respect to the forward-neutral measure)
and the forward price of the underlying

Convexity Adjustment ≡ ET
t [S(T )] − S(t, T ) . (14.20)

For interest rate underlyings, it is often the case that convexity adjustment
need to be taken into account. As shown in Sect. 14.4, zero bond yields are
no tradable instruments, because the relation between those yields and related
prices of the (tradable) instruments are non-linear, according to Table 2.5:

B(t, t + τ) =
⎧
⎨

⎩

exp (−rτ) continuous
(1 + r)−τ discrete
(1 + rτ)−1 simple .

(14.21)

We now want to determine an approximation for the convexity adjustment of
the yield of such a zero bond, i.e., we want to determine

Convexity Adjustment = ET
t [r(T , T + τ)] − rf (T , T + τ | t) .

Here we have written out explicitly the time dependence of the zero bond
yields: r(T , T + τ) is the (unknown future) spot rate at time T for a period of
length τ starting at time T . The forward rate for that same period, as known at
time t , is denoted by rf (T , T + τ | t ). To find the expectation of the unknown
future spot rate we expand the (also unknown) future bond price formally
written as function of r as B(T , T + τ) = B(r, T , T + τ) as a Taylor series
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up to second order around the (known) forward rate rf = r(T , T + τ | t ):

B(r, T , T + τ ) =
∞∑

n=0

1

n!
[
r(T , T + τ ) − rf (T , T + τ | t )]n ∂nB(r, T , T + τ )

∂rn

∣
∣∣
∣
r=rf

≈ Brf + [
r − rf

]
B ′∣∣

r=rf
+

[
r − rf

]2

2
B ′′∣∣

r=rf
,

where in the last line we have dropped all time arguments for ease of notation.
We now calculate the forward-neutral expectation of this bond price:

ET
t [B]

︸ ︷︷ ︸
Br

≈ Brf
+ B ′∣∣

r=rf
ET

t

[
r − rf

] + 1

2
B ′′∣∣

r=rf
ET

t

[
(r − rf )2

]

︸ ︷︷ ︸
≈var[r]

.

(14.22)

Here, we used the fact that B and its derivatives are evaluated at rf which is
known at time t . Therefore, B and its derivative can be factored out of the
expectation.

On the left-hand side appears the expectation of the bond price with respect
to the forward-neutral measure. This is, since bonds are tradable, exactly the
forward bond price and, by the definition of the forward rate rf , is identical
to B(rf , T , T + τ).

The expectation ET
t

[
(r − rf )2

]
is approximately equal to the variance of

r(T , T + τ) (it would be exactly this variance if rf = ET
t [r]). To express this

variance in terms of values known at time t , the variance is approximated by
the variance of the forward rate, i.e.:

ET
t

[
(r − rf )2] ≈ Var [r] ≈ Var

[
rf

] = r2
f σ 2

f (T − t ) . (14.23)

Here the volatility σf of the forward rate rf , called the forward volatility,
appears. This is (at least in principle) known at time t .

Substituting all of the above into Eq. 14.22 yields

0 ≈ B ′∣∣
r=rf

(
ET

t [r] − rf

)
+ 1

2
B ′′∣∣

r=rf
r2
f σ 2

f (T − t) .

This can now be solved for the desired expectation of the future spot rate:

ET
t [r] ≈ rf −1

2
r2
f σ 2

f (T − t )
B ′′∣∣

r=rf

B ′|r=rf︸ ︷︷ ︸
convexity adjustment

. (14.24)
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Within these approximations, i.e., by expanding the bond price up to second
order (see Eq. 14.22) and with the approximations in Eq. 14.23, the future
expectation of the interest rate can thus be approximated by the forward rate
adjusted by the amount:

ET
t [r(T , T + τ)] − rf (T , T + τ | t )

≈ −1

2
rf (T , T + τ | t )2σ 2

f (T − t )
B ′′(r, T , T + τ)

∣∣
r=rf

B ′(r, T , T + τ)|r=rf

(14.25)

=

⎧
⎪⎨

⎪⎩

1
2rf (T , T + τ | t )2σ 2

f (T − t )τ continuous
1
2rf (T , T + τ | t )2σ 2

f (T − t ) τ(τ+1)

1+rf
discrete

rf (T , T + τ | t )2σ 2
f (T − t ) τ

1+τrf
simple.

Here, the convexity adjustments for all compounding conventions listed in
Eq. 14.21 have been explicitly calculated.

14.5.1 In-Arrears Swaps

As an example, we consider a forward contract on an interest rate index (zero
bond yield). As was mentioned at the end of Sect. 14.4, no convexity correction
is required for a standard forward rate agreement, if the payment of the interest
rate (difference), which is fixed at the start of the period, is at the end of the
period (resp. if the present value of the virtual cash flow at the end of the
period is paid at the start of the period). Effectively, such contracts are forward
contracts on (tradable) zero bonds. The same holds for plain vanilla swaps
since such a swap can be interpreted as a portfolio of forward rate agreements.

But there are swaps for which the difference between the future interest
rate index, e.g. LIBOR, and the fixed side is paid at the same time when the
LIBOR rate is fixed. Or, to put it the other way round: the interest payable
is determined only at the time when payment is to be made, i.e., at the end
of the corresponding interest period. Such instruments are called In-Arrears
Swaps. Here indeed the underlying is directly the LIBOR rate which is not a
tradable instrument. If we nevertheless wish to price such an instrument as if
we could replace the future expectation of the underlying (with respect to the
forward-neutral measure) with the forward rate, the resulting error must be
corrected, at least approximately, by the convexity adjustment.
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For the sake of simplicity, we consider only one period of an In-Arrears
Swap, an In-Arrears Forward Rate Agreement (FRA)7 so to speak. This has
a principal N , a fixed interest rate K and extends over a period from T to
T + τ . A potential compensation payment is calculated by means of simple
compounding and flows at the beginning of this period, i.e., directly at time T

when the LIBOR rate r(T , T + τ) is fixed. Such an FRA has a payoff profile
given by

V (r(T , T + τ), T ) = Nτ [r(T , T + τ) − K] . (14.26)

This is a linear function of the underlying r. The expectation of the payoff
profile is thus simply

E [V (r(T , T + τ), T )] = NτE [r(T , T + τ)] − NτK , (14.27)

and its value today is this expectation, takenwith respect to the forward-neutral
measure, discounted back to today

V (r(T , T + τ), t) = B(r, t, T )Nτ
(
ET

t [r(T , T + τ)] − K
)

.

Up to now, all the equations are exact. The calculation of the future expectation
is now performed either using a term structure model or an approximation by
means of the convexity adjustments given in Eq. 14.24:

V (r(T , T + τ ), t)

= B(r, t, T )Nτ
(
ET

t [r(T , T + τ )] − K
)

≈ B(r, t, T )Nτ

(

rf (T , T + τ | t)

−1

2
r2
f (T , T + τ | t)σ 2

f (T − t)
B ′′(r, T , T + τ )

∣
∣
r=rf

B ′(r, T , T + τ )|r=rf

− K

)

= B(r, t, T )Nτ

(
rf (T , T + τ | t) + r2

f (T , T + τ | t)σ 2
f (T − t)

τ

1 + τrf
− K

)
.

(14.28)

7An In-Arrears Swap is simply a portfolio consisting of such FRAs.
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The convexity adjustment for simple compounding has been used in the last
step, since the specified instrument prescribes this compounding convention.
Thus for rf , we must use the forward rate with respect to simple compounding
as well.

Again, we emphasize that above considerations hold only for those instru-
ments whose payoff profiles are linear functions of the underlying. Equa-
tion 14.19 holds only in this case and only than does the expectation of the
underlying come into play. For instruments with non-linear payoff profiles, on
the other hand, the expectation of the payoff profilemust be calculated directly.
For example, for a plain vanilla call the expectation of the payoff profile is, in
contrast to Eq. 14.19

E [max {S(T ) − K, 0}] =
∫ ∞

−∞
max {S − K, 0}p(S)dS

=
∫ ∞

K

(S − K)p(S)dS �= max {E [S(T )] − K, 0} .

14.5.2 Money Market Futures

The above example of a In-Arrears FRA may appear a bit academic to the
reader. In reality though, money market futures are among the most actively
traded interest derivatives and are nothing other than In-Arrears FRAs traded
on an exchange, most commonly based on the 3-month LIBOR or the
EURIBOR.

A money market future with a nominal N , a fixed rate K over a period
from T to T + τ yields (theoretically) at maturity T a compensation payment
calculated using simple compounding as in Eq. 14.26, thus

V (T ) = Nτ [r(T , T + τ) − K] .

Since this instrument has a future-styled payment mode, the changes in the
position’s value do not remain unrealized until maturity T , but are immediately
realized on a margin account. As explained in Sect. 6.1.4, this has the effect
that today’s value of a futures position is equal to the future expectation of the
payoff profile without discounting. This expectation of the future payoff profile
is given by Eq. 14.27. The value of a money market future at time t is then, in
contrast to Eq. 14.28, simply:

V (t) = Nτ
(
ET

t [r(T , T + τ)] − K
)

. (14.29)
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This is obviously equal to zero whenK =E[r(T , T + τ)]. The fixed rateK of
a money market future is in fact always chosen so that the value of the contract
is zero at the time when the contract is entered into. The fixed rate K of a
money market futures contracted at time t thus gives directly the information
on the opinion of the market on the value of E[r(T , T + τ)], in other words,
on the future expectation of the interest rate. Since the interest rate is not a
tradable instrument, this is not equal to the forward rate.

Money market futures are often used in constructing spot rate curves for
maturities ranging from approximately three months to two years (we refer
the reader to Part VI). To construct spot rate curves from such contracts, the
forward rates associated with these transactions are needed, since we can use
these to calculate the spot rates quite easily by utilizing Eq. 2.6, for example. To
determine the forward rate rf (T , T + τ | t ) from the market’s opinion on the
future LIBOR expectation obtained from quotes on money market futures, the
convexity adjustment must be subtracted from the expectation as in Eq. 14.20
to obtain

rf (T , T + τ | t) = ET
t [r(T , T + τ )] − Convexity Adjustment

≈ ET
t [r(T , T + τ )]

+ 1

2
r2
f (T , T + τ | t)σ 2

f (T − t)
B ′′(r, T , T + τ )

∣
∣
r=rf

B ′(r, T , T + τ )|r=rf

= ET
t [r(T , T + τ )] − r2

f (T , T + τ | t)σ 2
f (T − t)

τ

1 + τ rf
,

(14.30)

where in the last step the approximation in Eq. 14.25 for the convexity
adjustment for the linear compounding convention is used. This is a non-
linear equation which can be solved numerically for the unknown rf .

As has been often emphasized, the convexity adjustments presented above
are only approximations since they derive from an approximation of the
theoretical value of ET

t [r(T , T + τ)], see Eq. 14.24). The future expectation
ET

t [r(T , T + τ)] can, however, be calculated by other means, for exam-
ple, using a term structure model. We then obtain another expression for
ET

t [r(T , T + τ)], and not Eq. 14.24. Since the forward rates are determined
solely from arbitrage considerations (independent of any model) as in Eq. 2.6,
this implies that also another expression for the convexity adjustment is
obtained. The convexity adjustment is thus dependent on the method (the
term structure model) being used. To ensure consistency, the convexity
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adjustment for the money market futures used in constructing the spot rate
curves should be consistent with the term structure model applied for pricing.

Quotation for Money Market Futures

In Europe, money market futures are traded primarily on the LIFFE. Futures
on the 3-month LIBOR in pound sterling (short sterling future), in US dollars
(euro dollar future), in euros (euro EUR future) and in Swiss franc (euro Swiss
future) are available for trade on this exchange. Futures in euros on the 3-
month EURIBOR and on the 1-month EURIBOR are available for trade on
the EUREX.

Money market futures are quoted in a way which takes some getting used
to. Not the delivery priceET

t [r(T , T + τ)] is quoted, i.e., the fixed interest
rate for which the future has no value, but rather

QuoteMoney Market Future = 100% − ET
t [r(T , T + τ)] .

A quote of 96.52%, for example, for a money market future means that in
the opinion of the market, the expectation (in the forward neutral measure)
for the future 3-month rate is E[r(T , T + τ)] = 3.48%. The value at time t

of a futures position contracted at time t = 0 with K =EB
0 [r(T , T + τ)] is

given, according to Eq. 14.29, by

V (t) = Nτ
(
ET

t [r(T , T + τ)] − ET
0 [r(T , T + τ)]

)

= Nτ
(
1 − ET

0 [r(T , T + τ)]
)

︸ ︷︷ ︸
Quote at Time t=0

− Nτ
(
1 − ET

t [r(T , T + τ)]
)

︸ ︷︷ ︸
Quote at Time t

.

A money market future on a 3-month LIBOR (i.e., τ = 1/4) with a nominal
amount of N = 1,000,000 euros which was agreed to at a quoted price of
96.52% and which is currently quoted as 95.95% is thus valued at

V (t) = 1.000.000 EUR × 1
4 (96, 52% − 95, 95%)

= 1.425 EUR .

This amount is deposited in a margin amount. A change in the value of this
position is directly reflected by a corresponding daily adjustment in the balance
of the margin account.
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14.6 Arbitrage-Free Interest Rate Trees Grid (Tree)
Models

Construction of arbitrage-free tree models begins with the assumption that
the martingale property Eq. 13.15 holds, justifying the name arbitrage free.8
An appropriate normalizing factor (numeraire) is selected and the integrals
necessary for the computation of the expectations (with respect to the chosen
measure) are discretized in a tree-structure. This procedure will be demon-
strated explicitly in this section for 1-factor short rate models, i.e., for models
which have the instantaneous short rate, defined in Eq. 14.1, as their one and
only stochastic driver.

We will use the risk-neutral measure and the associated numeraire, which is
the bank account. The price of every interest rate instrument is then given by
Eq. 14.8. We discretize first with respect to time by partitioning the time axis
in intervals of length δt taking this length to be so small that the (stochastic)
short rate can be assumed to be constant over this interval. Then Eq. 14.8 for
u = t + δt becomes

V (t) = Eβ
t

[
e− ∫ t+δt

t
r(s)dsV (t + δt)

]
(14.31)

≈ Eβ
t

[
e−r(t)δtV (t + δt)

]

= e−r(t)δtEβ
t [V (t + δt)]

= B(t, t + δt)Eβ
t [V (t + δt)] .

In calculating the integral, we have made use of the assumption that r is
approximately constant on the interval of integration. Variables which are
known at time t can be factored out of the expectation. According to the last
equation, the risk-neutral price and the forward-neutral price (see Eq. 14.12)
cannot be distinguished from one another over the very short time interval
δt. This is in agreement with Sect. 14.3, since r is taken to be constant (in
particular, deterministic) over this short time interval. The equality, however,
does not hold for longer time spans, since r changes randomly from one time
interval δt to the next. Thus, globally, we are still within the framework of
the risk-neutral measure even though the local equations may look “forward
neutral”.

8More traditional models, known as equilibrium models, will not be investigated here. Our discussion will
be restricted to arbitrage-free pricing methods.
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14.6.1 Backward Induction

What we have accomplished up to this point is to factor the numeraire
(the bank account) out of the expectation. It now remains to calculate the
expectation of the instrument’s price. To this end, we discretize the continuous
range of V after a time step of length δt into finitely many values, i.e., starting
from the value of V at time t , the value should be allowed to take on only
finitely many different values after the next time step. Allowing two different
values generates a binomial tree, three a trinomial tree, etc. Since the financial
instrument V under consideration is an interest rate instrument, the different
values potentially taken on by V at time t+δt result directly from the different
possible interest rate term structures which might exist at t + δt. Since one
of the model assumptions was that the evolution of the entire interest rate
curve is driven by the instantaneous short rate, it follows that the different
values attained by V are ultimately determined by the values this short rate
can take on.

We will work below with binomial trees. We assume that the short rate
increases to the value ru or decreases to the value rd with a probability p and
1−p, respectively.We have more than one possibility at our disposal to ensure
that the martingale property is satisfied (and thus eliminating arbitrage). Either
we fix the values ru and rd and selects the probability p accordingly so that the
market is governed by an arbitrage-free measure (this, for example, is done in
finite difference methods where the grid is given at the onset of the analysis),
or we specify the probability p first and subsequently select appropriate values
for ru and rd . We will take the second path in our discussion here. We set

p = 1/2 (14.32)

and determine the value of the short rate (i.e., the discount factors) on all nodes
of the tree so that the short rate process as described by the tree guarantees
arbitrage freedom at time t . The binomial tree with p = 1/2 allows the
expectation in Eq. 14.31 to be written as

V (t) ≈ B(t, t + δt)Eβ
t [V (t + δt)]

≈ B(t, t + δt) [p V (ru, t + δt) + (1 − p)V (rd, t + δt)]

= B(t, t + δt)

[
1

2
V (ru, t + δt) + 1

2V (rd, t + δt)

]

= B(t, t + δt)
[

1
2Vu + 1

2Vd

]
,

(14.33)
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where in the last step, the short form notation Vu := V (ru, t + δt), etc. has
been introduced.

One time step later, the short rate branches again (and in consequence, the
price of the financial instrument does as well): ru → ru u with probability p,
and ru → ru d with probability 1 − p, and similarly for rd . In addition, note
that at time t + δt , two different discount factors B(t + δt, t + 2δt) appear,
according to whether the short rate rose to ru or fell to rd in the previous
step. To emphasize the difference, the discount factors are indexed with the
associated short rate. Vu, for example, is then expressed as

Vu ≈ Bru(t + δt, t + 2δt) Eβ
t [Vu(t + 2δt)]

≈ Bru(t + 1δt, t + 2δt)

[
1

2
V (ruu, t + 2δt) + 1

2
V (rud, t + 2δt)

]

= Bu

[
1

2
Vuu + 1

2
Vud

]
,

where in the last step the short form notation Vuu := V (ruu, t + 2δt),
analogous to that introduced above, has been used, and also the short form
notation Bu := Bru

(t + 1δt, t + 2δt). Analogously,

Vd ≈ Bd

[
1

2
Vdu + 1

2
Vdd

]
.

Substituting this into Eq. 14.33, the price V (t) given by a binomial tree with
two steps can be calculated as

V (t) ≈ B(t, t + δt)

[
1

2
Bu

[
1

2
Vuu + 1

2
Vud

]
+ 1

2
Bd

[
1

2
Vdu + 1

2
Vdd

]]
.

(14.34)

Proceeding analogously, Vdd ≈ Bdd

[
1
2Vddu + 1

2Vddd

]
, etc., the price at time

t calculated from the prices three time steps later is given by

V (t) ≈ B(t, t + δt) [1

2
Bu [1

2
Buu [1

2
Vuuu + 1

2
Vuud] + 1

2
Bud [1

2
Vudu + 1

2
Vudd ]]

+ 1

2
Bd [1

2
Bdu [1

2
Vduu + 1

2
Vdud ] + 1

2
Bdd [1

2
Vddu + 1

2
Vddd ]]] ,

(14.35)
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and so on. Calculating backwards through the tree (backward induction) is
completely analogous to the treatment of options on stocks and exchange rates
with binomial trees as described in Chap. 9.

In order to ensure that any arbitrage opportunity has been eliminated,
the short rates ru, rd, ruud (and in consequence, the discount factors
Bu, Bd, Buud), etc. must be chosen so that the prices calculated using the
tree actually agree with the market prices of traded instruments. In particular,
zero bonds (and thus today’s term structure) must be exactly reproduced.
However, at each time point t + iδt , there are just as many unknowns as a
(non-recombinant) binomial tree has nodes, namely 2i starting with ruu...u

continuing through all permutations of up and down moves until rdd...d . The
number of unknowns increases exponentially with the number of time steps!
So many conditions cannot conceivably be generated by the market prices
of tradable instruments. In particular, no such functional relation between
the number of interest rate instruments on the market and the number of
time steps (depending only on the numerical implementation) in a tree could
possibly exist. Therefore, based on this principle, another condition must first
be established preventing the exponential growth of the number of unknowns
with respect to increasing i.

Requiring that the tree be recombinant for all financial instruments with
path-independent payoff profiles presents itself as a good candidate for the
above mentioned condition, i.e., that Vud = Vdu, Vuud = Vudu = Vdu u,

etc. This can only happen if the tree for the underlying also recombines. A
recombinant binomial tree is known to have only i + 1 nodes after i steps.
This fact will be accounted for in our notation. The nodes of the tree at
which we arrive having traveled upwards i times and downwards j times is
uniquely determined by the ordered pair (i, j ), irrespective of the order in
which these upward and downward steps were taken. This is because the tree
is recombinant. Therefore we denote the value of the financial instrument at
this node with V (i, j) and the nodes themselves with the ordered pairs (i, j )

as presented in Fig. 14.1. For example, V (1, 2) = Vudd = Vdud = Vddu, etc.
We use the same notation for the short rate and for the zero bonds evaluated

at the nodes:

(i, j ) = Node after i up moves and j down moves

r(i, j ) = Instantaneous short rate at the node (i, j )

V (i, j ) = Value of an interest rate instrument at the node (i, j )

B(i, j) = exp {−r(i, j )δt} . (14.36)
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(0,0)

(0,2)

(0,1)

(1,1)

(1,0)
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(3,1)

(4,0)

Fig. 14.1 The binomial tree with the indexing showing the number of up and down
moves required to get to the nodes starting from node (0, 0). For instance it takes two
up moves and one down move to get to the node (2, 1)

In particular, B(t, t + δt) = B(0, 0). In this notation, the prices of (path
independent) financial instruments can be written after one binomial step in
a recombinant tree as

V (t) = V (0, 0)

≈ V (1, 0)
1

2
B(0, 0)

+ V (0, 1)
1

2
B(0, 0) (14.37)

Of course, this equation holds not only for the node (0, 0) but for any arbitrary
node (i, j ) in the tree

V (i, j) ≈ B(i, j)

[
1

2
V (i + 1, j ) + 1

2
V (i, j + 1)

]
(14.38)

This equation applied to V (1, 0) and V (0, 1) yields the price after two
binomial steps

V (t) ≈ V (2, 0)
1

4
B(0, 0) B(1, 0)

+ V (1, 1)
1

4
B(0, 0) [B(1, 0) + B(0, 1)]

+ V (0, 2)
1

4
B(0, 0) B(0, 1) (14.39)
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and after three

V (t) ≈ V (3, 0)
1

8
B(0, 0)B(1, 0)B(2, 0)

+ V (2, 1)
1

8
B(0, 0) [B(1, 0)B(2, 0) + B(1, 1) [B(1, 0) + B(0, 1)]]

+ V (1, 2)
1

8
B(0, 0) [B(0, 1)B(0, 2) + B(1, 1) [B(1, 0) + B(0, 1)]]

+ V (0, 3)
1

8
B(0, 0)B(0, 1)B(0, 2) (14.40)

and so on. The expressions were purposely written in terms of the prices at the
last node in each branch.

14.6.2 Forward Induction and Green’s Functions

Although backward induction was simplified greatly by the requirement
that the tree be recombinant, we are still not yet prepared to calculate an
instrument’s price since the instantaneous discounting factors B(i, j) at the
nodes (i, j ) �= (0, 0) remain unknown. Before we construct a tree for the
instantaneous discount factors (i.e., for the short rate, see Eq. 14.36) via a
procedure, known as forward induction, on the basis of arbitrage considera-
tions, we introduce a class of extremely useful “artificial” instruments. One
such artificial instrument whose value at time t is denoted by G(i, j) pays
by definition one monetary unit if and only if the underlying (the short rate)
attains the tree node (i, j ) at time t + (i + j)δt . This is the node at which
we arrive having traveled upwards i times and downward j times, regardless
of the order in which the upward and downward moves occurred as the tree
is recombinant. G(i, j) then is the value at time t of a single monetary unit
paid out at one single node of the tree, namely at node (i, j ). In this sense,
G is the system’s reaction to a perturbation of magnitude one at a single point
in the system. This is analogous to the Green’s functions in physics. We will
therefore refer to G as a Green’s function. By definition,

G(0, 0) ≡ 1 . (14.41)
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In order to establish further values of the Green’s function, we just have to
set the value V (i, j) in the above Eqs. 14.37, 14.39 and 14.40 equal to one at
exactly one node and zero on all the other nodes. Equation 14.37 then yields

G(1, 0) = 1

2
B(0, 0) = G(0, 1) (14.42)

From Eq. 14.39 we obtain

G(2, 0) = 1

4
B(0, 0) B(1, 0) = 1

2
G(1, 0)B(1, 0)

G(0, 2) = 1

4
B(0, 0) B(0, 1) = 1

2
G(0, 1)B(0, 1)

G(1, 1) = 1

4
B(0, 0) [B(1, 0) + B(0, 1)] = 1

2
G(1, 0)B(1, 0) + 1

2
G(0, 1)B(0, 1)

and finally Eq. 14.40 gives

G(3, 0) = 1

2
G(2, 0)B(2, 0)

G(0, 3) = 1

2
G(0, 2)B(0, 2)

G(2, 1) = 1

2
G(2, 0)B(2.0) + 1

2
G(1, 1)B1, 1)

G(1, 2) = 1

2
G(0, 2)B(0, 2) + 1

2
G(1, 1)B(1, 1) .

The following general recursion relation can be easily verified (this will be
proven for an even more general case later)

G(i, j) = 1

2
G(i, j − 1)B(i, j − 1) + 1

2
G(i − 1, j)B(i − 1, j) for i > 0, j > 0

G(i, 0) = 1

2
G(i − 1, 0)B(i − 1, 0)

G(0, j) = 1

2
G(0, j − 1)B(0, j − 1) (14.43)

The prices of all path-independent interest rate instruments can be represented
as linear combinations of the Green’s function evaluated at diverse nodes on
the tree since each payment profile of the form f (r, T ) can be distributed on
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the nodes (i, j ) as appropriate:

f (r, T ) → fT (i, j) := f (r(i, j), T ) with t + (i + j)δt = T ∀i, j .

The value at time t of each individual payment fT (i, j ) at node (i, j ) is
naturally equal to the Green’s function belonging to this node (which has a
value of exactly one monetary unit) multiplied by the number of monetary
units that are to be paid, i.e., multiplied by fT (i, j ). The total value of the
financial instrument V (t) with this payoff profile is then simply

V (t, T ) =
∑

(i,j)

fT (i, j) G(i, j) with t + (i + j)δt = T ∀i, j ,

where
∑

(i,j) denotes “the sum over the nodes (i, j )”. This can be immediately
generalized to instruments with payoff profiles defined on arbitrary nodes
(which need not all lie in the set of nodes corresponding to a time T )

V (t) =
∑

(i,j)

f (i, j )G(i, j) for arbitrary payoff profiles f (i, j) .

(14.44)

Path independence here is therefore not the restriction that the payoff profile
depend only on a time point T . The payoff profile can depend on (the interest
rate at) all possible nodes at all times, not however, on the path taken to arrive
at these nodes (since this information is not available in the recombinant tree).

As a simple example, we consider the value of a zero bond B(t, T ), an
instrument that pays one monetary unit at time T , regardless of the state of
the underlying

B(t, T ) =
∑

(i,j)

G(i, j) for t + (i + j)δt = T (14.45)

=
n∑

i=0

G(i, n − i) for n = T − t

δt
.

This theoretical price has to exactly match the market price of the zero bond
to prevent arbitrage. If the current term structure is available (for example,
because it has been constructed on the basis of traded benchmark bonds for
some maturities and interpolations in between) this term structure yields the
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market price for all zero bondsB(t, T ). In particular it yields the market prices
for all those zero bonds maturing at times t + iδt corresponding to the time
steps of the binomial tree. Those have to be matched by Eq. 14.45. Hence, we
obtain one single condition for each time step t + iδt. For example, for i = 1

B(t, t + 1δt) =
∑

(i,j)

G(i, j) with i + j = 1

= G(1, 0) + G(0, 1)

= B(0, 0) ,

where in the last step, the Green’s function as in Eq. 14.42 is introduced into
the equation. This simply checks for consistency: the discount factor at the
first node of our tree (the right-hand side) must be equal to the market price
for the zero bond with maturity T = t + δt (left-hand side). It becomes more
interesting at the next maturity date:

B(t, t + 2δt) =
∑

(i,j)

G(i, j) with i + j = 2

= G(2, 0) + G(1, 1) + G(0, 2)

= 1

2
G(1, 0)B(1, 0) + 1

2
G(1, 0)B(1, 0)

+ 1

2
G(0, 1)B(0, 1) + 1

2
G(0, 1)B(0, 1)

= G(1, 0)B(1, 0) + G(0, 1)B(0, 1) .

We have used Eq. 14.43 to calculate backwards from the Green’s function at
the time corresponding to i + j = 2 to the previous time step, i.e., to the
time for which i + j = 1. The Green’s function G(1, 0) at the earlier time
step t + 1δt is already known (see Eq. 14.42). The resulting equation is the
arbitrage condition for the instantaneous discount factorsB(1, 0) andB(0, 1)

at the tree nodes (1, 0) and (0, 1).This procedure can be generalized to n time
steps. In accordance with Eq. 14.45 we write

B(t, t + nδt) =
n∑

i=0

G(i, n − i) .
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At this point we separate the boundary terms from the rest of the sum, since
these obey another recursion in Eq. 14.43. Now applying Eq. 14.43, we see
that

B(t, t + nδt) = G(0, n) +
n−1∑

i=1

G(i, n − i) + G(n, 0)

= 1

2
G(0, n − 1)B(0, n − 1) + 1

2

n−1∑

i=1

G(i, n − i − 1)B(i, n − i − 1)

+ 1

2

n−1∑

i=1

G(i − 1, n − i)B(i − 1, n − i) + 1

2
G(n − 1, 0)B(n − 1, 0) .

The boundary terms combine this expression into a simple sum. To see this,
we use the index k = i − 1 in the second sum

B(t, t + nδt) = 1

2
G(0, n − 1)B(0, n − 1) + 1

2

n−1∑

i=1

G(i, n − i − 1)B(i, n − i − 1)

+ 1

2

n−2∑

k=0

G(k, n − k − 1)B(k, n − k − 1) + 1

2
G(n − 1, 0)B(n − 1, 0) .

Both boundary terms now have exactly the form needed to extend the index
range in both sums to 0 through n − 1. This means that the no arbitrage
requirement can be represented as a simple recursion formula by means of the
Green’s function:

B(t, t + nδt) =
n−1∑

i=0

G(i, n − i − 1)B(i, n − i − 1) . (14.46)

Remember: on the left we have the market price of a zero bond, while on the
right we have the values to be determined for the interest rate tree, i.e., the
instantaneous discount factors at the nodes. The values on the right-hand side
are all in terms of nodes corresponding to the time point

t + [i + (n − i − 1)] δt = t + (n − 1)δt ,

i.e., the time step prior to the maturity t + nδt of the zero bond on the
left. The Green’s function evaluated at this earlier time point has already
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been calculated in the previous iteration step so that Eq. 14.46 represents an
arbitrage condition for the instantaneous discount factors at the nodes at time
point t + (n − 1)δt . Having determined the discount factors, we can use the
recursion for the Green’s function, Eq. 14.43, to determine the values of the
Green’s function at the time point t + nδt. These are subsequently used again
in the arbitrage condition, Eq. 14.46, to calculate the next discount factors
for the time step t + nδt. These are then used to calculate the next Green’s
function values for t + (n + 1)δt utilizing Eq. 14.43 and so on. In this way,
an arbitrage-free interest rate tree is constructed using forward induction from
today into the future. Nevertheless, Eq. 14.46 contains several (to be precise
n) unknown discount factors which cannot be uniquely determined by only
one arbitrage condition (except, of course, for the case n = 1). In other words,
the exact reproduction of the term structure at time t is already attained singly
from the fact the instantaneous discount factors and the Green’s function at
each node satisfy Eqs. 14.46 and 14.43. But this does not fix the numerical
values of all instantaneous discount factors—or short rates r(i, j ). Additional
information (as we will see below, the volatility) extracted from the market as
well as an explicit specification of a stochastic process of the form 2.19 for the
short rate is needed to fix the numerical values of r(i, j ). Before we start on
this point however, we will first introduce a few more concepts which hold in
general, i.e., for every interest rate tree, irrespective of the specification of a
specific stochastic process.

14.7 Market Rates vs. Instantaneous Rates

The valuation of financial instruments using the Green’s function as in
Eq. 14.44 above is only possible for those instruments whose payoff profiles are
functions of the instantaneous short rate.9 This is not usually the case for traded
instruments, however. Typical interest rate underlyings for traded instruments
are 3-month or 6-month LIBOR rates, which belong to longer time periods.
Choosing such a long period as time distant in the tree, the calculation would
no longer be accurate enough formany applications. In contrast to the chapters
on stock or FX options, the stochastic process being simulated (the short rate)
does not describe the evolution of the underlying (the 3-month LIBOR, for
example) of the instrument to be priced! This problem can be overcome in

9Or for financial instruments whose payoff profile is independent of the short rate, such as a zero bond,
for which f (i, j) = 1 for t + (i + j)�t = T and f (i, j) = 0 otherwise.
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some cases, as for floaters and forward rate agreements, since, as will be seen in
Eqs. 15.21 or 15.4, their prices at time t can be interpreted as a combination of
zero bond prices and as such can be priced exactly using Eq. 14.46. However,
the decomposition into zero bonds will not be possible for options such as
caps and floors on the 3-month LIBOR whose general payoff functions are
given by Eq. 18.2 and, adopting the usual market practice of using simple
compounding over the cap period, through Eq. 18.2 (or when interpreted as
bond options by Eq. 18.6). In such cases, before the payoff profile at nodes
(m, n) with t + (m + n)δt = T can be calculated, the value of the underlying
on each of these nodes must first be determined. The question now is: how
do we calculate the underlying of interest (for example, a 3-month rate, a 6-
month rate, a swap rate, etc.) at all nodes corresponding to the exercise date T

from the stochastic process (the tree) of the instantaneous short rate?
As soon as the payoff profile at all nodes is known, the value of all (path

independent) financials instruments at time t , i.e., at the node (0, 0), are
directly given by Eq. 14.44. As with the node (0, 0), the value of all instruments
(in particular, of all zero bonds and thus all interest rates over arbitrary interest
periods) would be known at an arbitrary node (m, n) if the “Green’s functions”
were known for that node.

14.7.1 Arrow-Debreu Prices

Arrow-Debreu prices (ADPs for short) are generalized Green’s functions whose
reference point is a fixed but arbitrary node (m, n) rather than the origin node
(0, 0). The Arrow-Debreu price Gm,n(i, j ) is the value at node (m, n) of an
instrument paying onemonetary unit at node (i, j ). The Arrow-Debreu prices
at the node (m = 0, n = 0) are, of course, simply the values of the Green’s
function introduced above:

G(i, j) = G0,0(i, j) .

It follows immediately from the geometry of the tree that a monetary unit
at node (i, j ) can generate non-zero prices at a node (m, n) only if (i, j ) is
attainablewhen starting from the node (m, n).We know thatm upmoves have
already occurred at node (m, n). These upmoves cannot be undone, even if the
following steps consist only of down moves since the index m merely counts
the number of up moves having been made up to this point. This implies that
for all nodes (i, j ) attainable from the starting node (m, n), the condition
i ≥ m must hold. Likewise, n down moves have already occurred at node
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(m, n) which cannot be reversed. As before, this means that the condition
j ≥ n must hold for all nodes (i, j ) which are attainable from the starting
point (m, n). All other Arrow-Debreu prices must be zero:

Gm,n(i, j ) = 0 ∀m > i

Gm,n(i, j ) = 0 ∀n > j (14.47)

Gi,j (i, j ) = 1 ∀i, j ,

where the last property is included solely for the sake of completeness, being
in itself trivial: one monetary unit at node (i, j ) is, of course, worth exactly
one monetary unit at this node. This corresponds to property Eq. 14.41 of the
Green’s function.

A further fundamental property of Arrow-Debreu prices follows from
Eq. 14.38, which holds for the value of any instrument at any node in the
tree. Setting either V (i + 1, j ) = 1 and V (i, j + 1) = 0 or V (i + 1, j ) = 0
and V (i, j + 1) = 1, yields the instantaneous Arrow-Debreu prices, i.e., the
Arrow-Debreu prices over a time step of length δt

Gi,j (i + 1, j ) = 1

2
B(i, j) = Gi,j (i, j + 1) . (14.48)

The instantaneous Arrow-Debreu prices are thus half the instantaneous dis-
count factors. This accomplishes the first step in the calculation of the
Arrow-Debreu prices. We now merely require a generalization of the recursion
relation given in Eq. 14.43 in order to determine all subsequent Arrow-
Debreu prices. To this end, consider one monetary unit at node (i, j ) at time
t + (i + j)δt . Because of the binomial structure of the tree, non-zero Arrow-
Debreu prices are generated by this monetary unit at two nodes in the previous
time slice, that is at nodes (i, j − 1) and (i − 1, j ). The sum of the ADPs of
both of these prices at a still earlier node (m, n) must then be equal to the
Arrow-Debreu price at node (m, n) of the whole, original monetary unit at
node (i, j ). This is illustrated in Fig. 14.2. This means that the Arrow-Debreu
prices obey the following recursion:

Gm,n(i, j) = Gm,n(i, j − 1)Gi,j−1(i, j) + Gm,n(i − 1, j)Gi−1,j (i, j) .
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Fig. 14.2 Amonetary unit (black dot) at node (2, 2) generates ADPs at nodes (2, 1) and
(1, 2) and also at all the earlier ‘striped’ nodes. The monetary unit must have the same
influence (shown as line A) on a striped node, e.g. on node (0, 1), as both ADPs it has
induced at nodes (2, 1) and (1, 2) together (shown as lines B and C)

Substituting the corresponding discount factors for both of the instantaneous
Arrow-Debreu prices as given in Eq. 14.48, the recursion relation becomes

Gm,n(i, j) = Gm,n(i, j − 1)
1

2
B(i, j − 1) + Gm,n(i − 1, j)

1

2
B(i − 1, j)for i ≥ m, j ≥ n .

(14.49)

Together with the fundamental properties in Eq. 14.47, this recursion deter-
mines uniquely all Arrow-Debreu prices. For example, for m = i or n = j

Eq. 14.47 implies that one of the Arrow-Debreu prices on the right-hand side
is equal to zero.10 This allows the recursion to be carried out explicitly for these
cases:

Gi,n(i, j ) = Gi,n(i, j − 1)
1

2
B(i, j − 1) = 1

2j−n

j−n∏

k=1

B(i, j − k)

Gm,j (i, j ) = Gm,j (i − 1, j )
1

2
B(i − 1, j ) = 1

2i−m

i−m∏

k=1

B(i − k, j) .

(14.50)

10For m = i we have Gi,n(i − 1, j) = 0 and for n = j we have Gm,j (i, j − 1) = 0.



14 Interest Rates and Term Structure Models 321

In particular, both of these equations hold at the boundary of the tree. The
first equation with i = 0 (i.e., no up move) represents the lower boundary, the
second with j = 0 (i.e., no down move) the upper boundary of the tree.

With these Arrow-Debreu prices, the value of any arbitrary financial
instrument with a payoff profile given by f (i, j) at any arbitrary node (m, n)

is, analogous to Eq. 14.44, simply

V (m, n) =
∑

(i, j)

Gm,n(i, j ) f (i, j ) . (14.51)

In particular, the valueBτ(m,n) of a zero bond at the node (m, n), whose time
to maturity at this node is given by τ , is likewise given by Eq. 14.51 where i

and j satisfy the following three conditions

i + j = m + n + τ/δt

i ≥ m

j ≥ n .

The first of the three conditions characterizes all nodes corresponding to the
time m+n+ τ/δt, the maturity of the zero bond. The payoff profile f (i, j)

of the zero bond equals one at precisely these nodes and zero elsewhere. This
condition allows j to be expressed in terms of i. The limits in the sum
appearing in Eq. 14.51 can be specified explicitly by the other two conditions
which, as a result of Eq. 14.47must always be satisfied: the lower limit is i ≥ m,

the upper limit follows fromm+n+τ/δt−i = j ≥ nwhich can be rewritten
as i ≤ m + τ/δt. The value of the zero bond at node (m, n) with a time to
maturity of τ is thus given explicitly by

Bτ(m, n) =
m+τ/δt∑

i=m

Gm,n(i, m + n + τ/δt − i) . (14.52)

Thus, at each node of the tree, a complete (future) term structure (i.e., future
interest rates for arbitrary times to maturity) can be constructed from Arrow-
Debreu prices, since the interest rate at node (m, n) for any arbitrary time to
maturity τ is by definition (for continuous compounding) given by

rτ (m, n) = −1

τ
ln Bτ(m, n) . (14.53)
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With simple compounding, which is the common convention for typical
interest rate indexes like 3-months LIBOR, it follows analogously:

rτ (m, n) = 1

τ

(
B−1

τ (m, n) − 1
)

, (14.54)

so that we are now in a position to price any arbitrary derivative on an
underlying whose value can be derived from the term structure.

14.7.2 Pricing Caplets Using Arrow-Debreu Prices

In anticipation of Part III, where caps and floors will be defined, we will
demonstrate explicitly how the price of a caplet on a 3-month rate with
principal N , strike rate K , exercise time (maturity, to be assumed to be equal
to forward rate fixing time) T and payment date T ′ = T + τ (with τ =
3 months) can be expressed solely in terms of Arrow-Debreu prices. Observe
that the stochastic process for the short rate need not be specified in order to
do so. What will be shown here holds for any arbitrary arbitrage-free short rate
model.

Consistent with Eq. 18.2 for the payoff profile of a caplet, we will adopt the
market convention of using simple compounding over a single caplet period
(in this case 3 months), which can be calculated by using Eq. 14.54. The 3-
month rate at which the payoff profile is to be evaluated at each node (m, n)

with t + (m + n)δt = T , or equivalently, n = (T − t )/δt − m is thus:

rτ (m, a − m) = 1

τ

[
Bτ(m, a − m)−1 − 1

]
(14.55)

=
(

bδt

m+b∑

i=m

Gm,a−m(i, a + b − i)

)−1

− 1

bδt

for all 0 ≤ m ≤ a ,

where we have defined

a := (T − t)/δt , b := τ/δt .

This is the underlying of our caplet at all nodes relevant to the caplet’s payoff
profile. According to the payoff profile in Eq. 18.2, the values of the caplet at
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exercise date T , i.e., at nodes (m, a − m) with 0 ≤ m ≤ a, are given by

f (m, a − m) = τN Bτ (m, a − m) max {rτ (m, a − m) − K, 0} .

Both the discount factor Bτ appearing in the payoff profile as well as the
underlying (the interest rate rτ ) can be expressed in terms of the Arrow-Debreu
prices:

f (m, a − m) = N

m+b∑

i=m

Gm,a−m(i, a + b − i)

× max

⎧
⎨

⎩

(
m+b∑

i=m

Gm,a−m(i, a + b − i)

)−1

− 1 − τK, 0

⎫
⎬

⎭
.

Equation 14.44 now directly yields the value of this payoff profile, i.e., the
caplet value, at time t

ccap(T , T + τ, K |t ) =
a∑

m=0

G(m, a − m)f (m, a − m)

= N

a∑

m=0

G0,0(m, a − m)

m+b∑

i=m

Gm,a−m(i, a + b − i)

× max

⎧
⎨

⎩

(
m+b∑

i=m

Gm,a−m(i, a + b − i)

)−1

− 1 − τK, 0

⎫
⎬

⎭
.

The price of the caplet has now been expressed completely in terms of the
Arrow-Debreu prices. Since these prices can be determined using the recursion
relations 14.49 and 14.50 with initial values given by Eqs. 14.47 and 14.48, this
procedure can be used to price any interest rate instrument.

Practical Implementation of Arrow-Debreu Prices

Arrow-Debreu prices have four indices, two for the position of the cash flow
in the tree and two for the position at which the effect of the cash flow is
felt. The numerical implementation thus requires in principle the construction
of a four-dimensional field, which leads to computer memory problems for
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somewhat finer trees as well as performance problems in the computation of
all the ADPs. It will prove to be unnecessary in most cases to compute all of the
ADPs. In the above case of caplets, for example, it is only necessary to compute
the ADPs of the form Gm,a−m(i, a+b− i) with the fixed parameters a and b.

Thus, only two of the four above mentioned indices are free, namely m and i.

Consequently, it is entirely sufficient to determine the two-dimensional field

G̃m,i := Gm,a−m(i, a + b − i)

thereby reducing the numerical effort involved considerably. The effort is now
only the same as that needed in the determination of the Green’s function.

14.8 Explicit Specification of Short Rate Models

Up to this point, the pricing procedure has remained quite general in that no
specific term structure model has been used. None of the relations introduced
above can as yet be used to calculate an explicit numerical value since,
as mentioned above, the arbitrage condition in Eq. 14.46 is by no means
sufficient to determine all the (unknown) discount factors appearing in this
equation. From now on, we suppose that the term structure model is of the
general form 2.19 where we restrict ourselves to functions b(r, t) of the form
b(r, t) = b(t)rβ, i.e. models of the form

dr(t) = a (r, t) dt + b(t)rβ dW . (14.56)

If the exponent β = 0,

dr(t) = a (r, t) dt + b(t) dW , (14.57)

we end up with a normal model or Gaussian model. In the special case that
parameter a is also independent of r , the model is called Ho-Lee Model. Such
models with normally distributed short rate have the advantage that they are
very easy to implement (for example, as a tree). The Ho-Lee model

dr(t) = a(t)dt + b(t) dW

for constant b is even analytically tractable (for this special case the model
was originally invented [97]). It used to be seen as a disadvantage that normal
models allow for negative interest rates and that the volatility is absolute rather
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than relative with respect to the forward rates. However, with the advent of real
negative interest rates for EUR and CHF, these features turned out to be clear
advantages, at least for the EUR and CHF currency area. Normal models also
tend to be easier calibrated in markets with low, but positive interest rates,
avoiding the tendency to push the interest rate level away from zero.

The second class of short rate models does not specify a stochastic process
for the short rate itself, but for its logarithm:

d ln r(t) = a (r, t) dt + b(r, t) dW (14.58)

These models are thus referred to as lognormal models. In the special case of the
volatility b being independent of r , this process is called the Black–Derman-
Toy model, which has been especially designed for the binomial tree, as well
as the Black Karasinski model. Sections 14.11.2 discusses short rate models
in more detail. Such lognormal models have the disadvantage that they are
much more difficult to implement and cannot be solved analytically. Negative
interest rates cannot occur in these models and the parameter b represents the
relative volatility, simplifying fitting this model to relative volatilities observed
in markets with strictly positive interest rates. Such models can be transformed
into models for r via the Ito formula,11 Eq. 2.21:

dr(t) =
[
r(t)a (r, t) + 1

2
b2(r, t)r(t)

]
dt + r(t) b(r, t) dW . (14.59)

The numerical evaluation of lognormal models is easier to implement when
written in this form.

14.8.1 The Effect of Volatility

According to the Girsanov Theorem (see Sect. 13.4), the drift a(r, t) is
uniquely determined by the probability measure used. We fixed this probabil-
ity measure “by hand” when we required the condition specified in Eq. 14.32
to be satisfied. In doing so, we implicitly fixed the drift as well. The drift

11For this, we need to consider the following: ln r(t) in Eq. 14.58 corresponds to S in Eq. 2.21. For the
function f we take f (S) = eS (since this is exactly r). The partial derivatives appearing in Eq. 2.21 are
then simply ∂f/∂t = 0 and ∂f/∂S = ∂2f/∂S2 = f = r .



326 H.-P. Deutsch and M. W. Beinker

can thus no longer be given as “input” into the specification of the stochastic
process. Since different normal and lognormal models differ only in their drift,
this implies that a special choice for Eq. 14.32 effectively belongs to a special
choice of the normal resp. lognormal model, namely the Ho Lee and Black
Derman Toy model. Only the volatility remains as a parameter through which
market information (in addition to the bond prices) may enter into our model
for the determination of the discount factors in Eq. 14.46. We will now show
that if the volatility is given for the time step n, exactly n − 1 conditions are
generated on the n instantaneous discount factors at time n. Taken together
with the arbitrage condition given by Eq. 14.46, requiring that the observed
market price of the zero bond with maturity T = t + nδt be reproduced by
the model, we have exactly as many conditions as unknowns and the interest
rate tree can be uniquely constructed.

In general, from the viewpoint of the node (i, j ), the variance of a variable x

(we can think of x as representing, for example, the short rate r or its logarithm
ln r) is caused by its possible two different values in the next time step, either
xu or xd . The expectation and variance for random variables of this type are
given by12

E [x] = pxu + (1 − p)xd (14.60)

Var [x] = p(1 − p)(xu − xd)
2 ,

In particular, for the case p = 1/2 the variance is given by Var[x] = (xu −
xd)

2/4.
On the other hand, for models of the form given by Eqs. 14.57 and 14.58,

the variance of the stochastic variable x (with x = r resp. x = ln r) over an
interval of time of length δt is given by b(r, t)2δt .

12Substituting the expectation into the definition of the variance defined as the expectation of the squared
deviation from the expectation gives

Var [x] = E
[
(x − E [x])2

]

= p (xu − E [x])2 + (1 − p) (xd − E [x])2

= p (xu − pxu − (1 − p)xd )2 + (1 − p) (xd − pxu − (1 − p)xd )2 .

Multiplying out and collecting terms yields the desired expression.
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14.8.2 Normal Models

For models of the form in Eq. 14.57 the variance of the short rate at node (i, j )

must satisfy:

b(i, j )
√

δt = √
Var [r(i, j )] = 1

2
[r(i + 1, j ) − r(i, j + 1)]

�⇒ r(i + 1, j ) = r(i, j + 1) + 2b(i, j )
√

δt . (14.61)

This enables us to establish a recursion formula (after performing the sub-
stitution i + 1 → i) for the instantaneous discount factors at all nodes
corresponding to the time slice n = i + j

B(i, j) = exp {− r(i, j )δt}
= exp

{
−

[
r(i − 1, j + 1) + 2b(i − 1, j )

√
δt
]
δt
}

= exp
{
− 2b(i − 1, j )

√
δtδt

}
exp {− r(i − 1, j + 1)δt}

= exp
{
− 2b(i − 1, j )

√
δtδt

}
B(i − 1, j + 1) ,

or

B(i, j) = α(i − 1, j)B(i − 1, j + 1) mit α(i, j) = exp
{
− 2b(i, j)δt3/2

}
.

(14.62)

Recursive substitution into this equation allows each instantaneous discount
factor in the nodes corresponding to this time slice to be expressed in terms of
a single discount factor at the “lowest” node (0, i + j):

B(i, j) = α(i − 1, j )B(i − 1, j + 1)

= α(i − 1, j )α(i − 2, j + 1)B(i − 2, j + 2)

= α(i − 1, j )α(i − 2, j + 1)α(i − 3, j + 2)B(i − 3, j + 3)

= · · ·
= B(0, j + i)

i∏

k=1

α(i − k, j + k − 1) .
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Observe that only α-parameters (volatility information) in the time slice i −
k + j + k − 1 = i + j − 1 are required for the determination of this value,
i.e., information from the previous time step. Volatility information for the
value of the interest rate at the node actually being calculated (i.e., for the
spacing of the nodes at the time slice (i + j)) is not required; these values
are determined with volatility information from the immediately proceeding
time! This (perhaps counter-intuitive) property is of course nothing other than
the previsibility which we always require for the coefficients of dW and dt in
all models of the form 2.19 or 13.17. At this point now, we get an intuitive
picture (see also Fig. 14.3) what it means that a and b in Eq. 2.19 are previsible
processes. This previsibility is the deeper mathematical reason for why we are
able calculate anything at all.

Using this expression for B(i, j) with j = n − i − 1 and substituting it
into the arbitrage condition, Eq. 14.46, we obtain the arbitrage condition for
the discount factor B(0, n − 1) at the lowest node of the time slice (n − 1):

B(t, t + nδt) = B(0, n − 1)

n−1∑

i=0

G(i, n − i − 1)

i∏

k=1

α(i − k, n − i + k − 2) ,

(0,0)

(0,2)

(0,1)

(1,1)

(1,0)

(2,0)

(0,3)

(1,2)

(2,1)

(3,0)

(0,4)

(1,3)

(2,2)

(3,1)

(4,0)

volatility

volatility

volatility

volatility

bond price

discount-
factor

Fig. 14.3 Flow of information when constructing the short rate tree. The discount
factor at the lowest node needs the market price of the zero bond maturing one
time step later and all volatility information from one time step earlier. For the other
discount factors in the time slice it suffices to know the discount factors already
calculated at lower nodes in the same time slice and the volatility at the neighboring
node one time step earlier
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which, after a simple change of index n → (n + 1), yields the arbitrage
condition for the discount factor B(0, n) at the lowest node of time slice n:

B(t, t + (n + 1)δt) = B(0, n)

n∑

i=0

G(i, n − i)

i∏

k=1

α(i − k, n − i + k − 1) .

(14.63)

The left-hand side is the given market price of a zero bond with maturity at
time slice (n+1), which must be reproduced using zero bonds and the Green’s
function on time slice n. The α’s on the right-hand side are all defined on time
slice (n − 1) and are given by the volatility governing the process at this time
point. This condition now actually contains only one unknown and can be
solved easily for B(0, n):

B(0, n) = B(t, t + (n + 1)δt)
∑n

i=0 G(i, n − i)
∏i

k=1 α(i − k, n − i + k − 1)
.

From this single value B(0, n) we obtain all further instantaneous discount
factors in this time slice by repeated application of Eq. 14.62. Note that we find
ourselves at time n at this point of the iteration. The instantaneous discount
factors in the time slice n are determined from the price of the bond maturing
at time (n + 1) and volatility information from the immediately preceding
time step (n − 1). This is illustrated in Fig. 14.3.

Having established the instantaneous discount factors, an expression for the
instantaneous short rates results immediately from Eqs. 14.36 and 14.62

r(i, j ) = − 1

δt
ln B(i, j) = − ln B(i − 1, j + 1)

δt
− ln α(i − 1, j )

δt

= r(i − 1, j + 1) + 2b(i − 1, j )
√

δt

= . . .

= r(0, j + i) + 2
√

δt

i∑

k=1

b(i − k, j + k − 1) . (14.64)

For volatility structures depending only on time (but not on the interest rate),
the volatility values on time slice n are all identical. We can therefore set them
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equal to the volatility at the lowest node (0, n). Thus

b(i, j ) = b(0, i + j) = b(0, n) ≡ σ(t + nδt)

α(i, j ) = α(0, i + j) = α(0, n) ∀i, jmit i + j = n , (14.65)

and Eq. 14.62 reduces to

B(i, j) = α(0, n − 1)B(i − 1, j + 1)

= αi(0, n − 1) B(0, n) mit i + j = n .

Equation 14.61 then implies that the short rate in the tree at time slice n

changes from node to node by a constant term 2σ
√

δt

r(i, j ) = r(i − 1, j + 1) + 2σ(t + (n − 1)δt)
√

δt

= r(0, n) + 2 i σ (t + (n − 1)δt)
√

δt . (14.66)

The arbitrage condition for this discount factor at the lowest node of time slice
n reduces to

B(t, t + (n + 1)δt) = B(0, n)

n∑

i=0

G(i, n − i)αi(0, n − 1) .

14.8.3 Lognormal Models

An analogous procedure for lognormal models can be obtained as follows: in
models of the form specified in Eq. 14.58, b(i, j )2δt is the variance of the
logarithm of the short rate. Therefore, as seen from the node (i, j ), we have

b(i, j )
√

δt = √
Var [ln r(i, j )] = 1

2
[ln r(i + 1, j ) − ln r(i, j + 1)] = 1

2
ln(

r(i + 1, j )

r(i, j + 1)

�⇒ r(i + 1, j ) = r(i, j + 1) exp
{

2b(i, j )
√

δt
}

(14.67)

This enables us to establish a recursion formula13 (after performing the
substitution i + 1 → i) for the instantaneous discount factors at all nodes

13Here we use the property exp {ax} = (exp {x})a of the exponential function with a = e2b(i−1,j)
√

δt .
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in time slice n = i + j

B(i, j) = exp {−r(i, j)δt} = exp
{
−r(i − 1, j + 1)e2b(i−1,j )

√
δtδt

}

= [
exp {−r(i − 1, j + 1)δt}]e2b(i−1,j)

√
δt = B(i − 1, j + 1)e

2b(i−1,j)
√

δt

,

or

B(i, j) = B(i − 1, j + 1)α(i−1,j ) mit α(i, j) = exp
{
+ 2b(i, j)δt1/2

}
.

(14.68)

This is quite similar to the corresponding equation for normal models
(Eq. 14.62), but since the volatility information enters the equation as an
exponent rather than a factor in the recursion, the structure is somewhat
more complicated. Furthermore, a comparison with Eq. 14.62 reveals a sign
change in the expression for α. Nevertheless, a simple trick enables us to find
a structure which is quite similar to that given in Eq. 14.62. Taking logarithms
in Eq. 14.68 yields a recursion relation for the logarithm of the discount factors
having the same structure as Eq. 14.62:

ln B(i, j) = α(i − 1, j) ln B(i − 1, j + 1) .

This recursion can be carried out explicitly giving

ln B(i, j) = α(i − 1, j ) ln B(i − 1, j + 1)

= α(i − 1, j )α(i − 2, j + 1) ln B(i − 2, j + 2)

= α(i − 1, j )α(i − 2, j + 1)α(i − 3, j + 2) ln B(i − 3, j + 3)

= · · ·

= [ln B(0, j + i)]
i∏

k=1

α(i − k, j + k − 1) ,

and allowing the instantaneous discount factors in time slice n to be written
as a function of the “lowest” node (0, i + j):

B(i, j) = exp

{

[ln B(0, j + i)]
i∏

k=1

α(i − k, j + k − 1)

}

= B(0, j + i)
∏i

k=1 α(i−k,j+k−1) .
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Using this B(i, j) for j = n − i − 1 in the arbitrage condition Eq. 14.46 we
obtain, after performing an index transformation n → (n + 1), the arbitrage
condition for the discount factor B(0, n) at the lowest node in time slice n.

B(t, t + (n + 1)δt) =
n∑

i=0

G(i, n − i) exp

{

[ln B(0, n)]
i∏

k=1

α(i − k, n − i + k − 1)

}

(14.69)

=
n∑

i=0

G(i, n − i)B(0, n)
∏i

k=1 α(i−k,n−i+k−1) .

This can only be solved numerically for B(0, n) using, for example, the well-
known Newton-Raphson method.14 From this value B(0, n) we obtain all
further instantaneous discount factors in this time slice by repeated application
of Eq. 14.68. We now have a similar situation as for normal models, see
Fig. 14.3: the discount factors in the time slice n are calculated from the price
of the zero bond maturing in the following time slice (n + 1) and from the
volatility information from the immediately preceding time slice (n − 1).

Having established the instantaneous discount factors, the short rates follow
immediately from Eqs. 14.36 and 14.68.

r(i, j ) = − 1

δt
ln B(i, j) = −α(i − 1, j )

ln B(i − 1, j + 1)

δt

= r(i − 1, j + 1)α(i − 1, j ) = . . .

= r(0, j + i)

i∏

k=1

α(i − k, j + k − 1) . (14.70)

14To solve a non-linear equation of the form f (x) = 0, the Newton-Raphson method uses the following
iteration to find the points were the function f equals zero: having an estimate xi for a zero of f , a better
estimate is obtained from the formula

xi+1 = xi − f (xi )

(
∂f

∂x

∣∣∣
∣
x=xi

)−1

.

We usually start the procedure with a rough estimate x0 and iterate until the difference between xi+1 and
xi is sufficiently small for the required purpose. The iteration sequence converges if

∣∣∣
∣f

∂2f /∂2x

(∂f /∂x)2

∣∣∣
∣ < 1

holds in a neighborhood of the zero of f . This can always assumed to be the case in our applications.
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Exact Reproduction of the Term Structure with the Lognormal
Model

Alternatively, we can proceed from the process for the short rate in the log-
normal model obtained from Ito’s lemma, Eq. 14.59, and derive all equations
exactly in the form obtained for the normal model, in particular Eq. 14.63,
the only difference being that α is then given by

α(i, j) = exp
{− 2b(i, j )r(i, j )δt3/2

}
. (14.71)

The r(i, j ) needed for this equation were calculated in the previous iteration
step, so that all terms in Eq. 14.63 are known. Thus, this equation can be
solved analytically for the lowest bond, even though we are working within
the context of the lognormal model.

Both of these two possible methods, i.e., the standard method of solving
Eq. 14.69 by means of the Newton-Raphson method, as well as the more
elegant method through Eqs. 14.59 and 14.63 with α as in Eq. 14.71, are
demonstrated in detail in the Excel workbook TermStructureModels.xlsx
from the download section [50].

With the interest rate independency of the volatility structure Eq. 14.65
holds again. Thus, Eq. 14.62 reduces to

B(i, j) = B(i − 1, j + 1)α(0,n−1)

= B(0, n)αi(0,n−1) with i + j = n

where α(i, j) = exp
{

2σ(t + nδt)
√

δt
}

. Equation 14.67 implies that the
short rate is simply to be multiplied by a constant factor α(0, n − 1) when
moving from one node to the next in time slice n of the tree, thus

r(i, j ) = r(i − 1, j + 1)α(0, n − 1)

= r(0, n)αi(0, n − 1) , (14.72)

and the arbitrage condition for the discount factor at the lowest node of the
time slice n reduces to

B(t, t + (n + 1)δt) =
n∑

i=0

G(i, n − i)B(0, n)αi(0,n−1) .
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14.9 The Example Program
TermStructureModels.xlsm

14.9.1 Construction of Interest Rate Trees and Option
Pricing

We now demonstrate explicitly how the interest rate tree is constructed for a
given term structure, or equivalently, for given market prices of zero bonds,

B(t, t + iδt) for i = 1 . . . n

and given volatilities

b(r, t + iδt) for i = 0 . . . n − 1 .

The calculation of option prices from this interest rate tree—once it has
been constructed—has already been discussed in Sect. 14.7.2 in detail for
any arbitrary arbitrage-free short rate term structure model using caplets as
an example.

• Time step i = 0
According to Eq. 14.47, or in particular according to Eq. 14.41, the Green’s
function at the node (0, 0) is simply

G(0, 0) = 1 .

From Eq. 14.46, it then follows that the discount factor at node (0, 0) can
be obtained directly from the market price B(t, t + 1δt) of the zero bond:

B(t, t + 1δt) = G(0, 0)B(0, 0) = B(0, 0) .

• Time step i = 1
The discount factors just computed together with the Green’s function
evaluated at the node (0, 0) are substituted into the recursion relation
Eq. 14.43 to determine the values of the Green’s function at the next nodes:

G(1, 0) = 1

2
G(0, 0)B(0, 0)

G(0, 1) = 1

2
G(0, 0)B(0, 0) .
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These values, the volatility information from the previous time slice and the
price of the zero bond maturing at the next time slice are all used to obtain
the discount factor at the lower boundary which here is the node (0, 1).
With Eq. 14.63 for the normal model, the discount factor at this node is
obtained as

B(0, 1) = B(t, t + 2δt)

G(0, 1) + G(1, 0)α(0, 0)
.

Application of the recursion relation in Eq. 14.62 yields the other
discount factor required for this step

B(1, 0) = α(0, 0)B(0, 1) .

Analogously, the arbitrage condition for the discount factor on the lower
boundary in the lognormal model is, according to Eq. 14.69,

B(t, t + 2δt) = G(0, 1)B(0, 1)+ G(1, 0)B(0, 1)α(0,0) ,

which can only be solved numerically (using the Newton Raphson method,
for example) for B(0, 1). Having solved the equation, the next discount
factor for this time slice can be obtained immediately using Eq. 14.68:

B(1, 0) = B(0, 1)α(0,0) .

• Time step i = 2
The discount factors just calculated together with the Green’s function are
substituted into the recursion 14.43 to obtain the values of the Green’s
function evaluated at the nodes corresponding to this time step

G(1, 1) = 1

2
G(1, 0)B(1, 0) + 1

2
G(0, 1)G(0, 1)

G(2, 0) = 1

2
G(1, 0)B(1, 0)

G(0, 2) = 1

2
G(0, 1)B(0, 1) .

Using these values as well as the volatility information from the previous
time slice and the market price of the zero bond maturing at the next time
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slice, Eq. 14.63 for the normal model can be applied to obtain the discount
factor at the lower boundary, i.e., at node (0, 2)

B(t, t + 3δt) = B(0, 2)

2∑

i=0

G(i, 2 − i)

i∏

k=1

α(i − k, 1 − i + k)

= B(0, 2)G(0, 2)

+ B(0, 2)G(1, 1)α(0, 1)

+ B(0, 2)G(2, 0)α(1, 0)α(0,1) ,

which yields for B(0, 2)

B(0, 2) = B(t, t + 3δt)

G(0, 2) + G(1, 1)α(0, 1) + G(2, 0)α(1, 0)α(0, 1)
.

Applying the recursion formula 14.62 yields the next discount factors
belonging to this time step

B(1, 1) = α(0, 1)B(0, 2)

B(2, 0) = α(1, 0)B(1, 1) .

Analogously for the lognormal model, the arbitrage condition Eq. 14.69
for the discount factors on the lower boundary is used to obtain

B(t, t + 3δt) = G(0, 2)B(0, 2) + G(1, 1)B(0, 2)α(0,1) + G(2, 0)B(0, 2)α(1,0)α(0,1) ,

where again we can be solve for B(0, 2) numerically. Once B(0, 2) is
known, the additional discount factors for this time step can be computed
immediately using Eq. 14.68:

B(1, 1) = B(0, 2)α(0,1)

B(2, 0) = B(1, 1)α(1,0) .

This procedure is repeated until the entire tree has been constructed up to
maturity T + τ (maturity of the derivative to be priced plus the lifetime of the
underlying). After this has been done, all required Arrow-Debreu prices can
be determined using Eqs. 14.47, 14.48 and 14.49 and finally, these ADPs are
used in pricing the derivative as demonstrated in Sect. 14.7.2 for caplets.
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This is all demonstrated explicitly for normal models (referred to there
as Ho-Lee models) and lognormal models (referred to as Black-Derman-
Toy models) in the Excel workbook TermStructureModels.xlsm from the
download section [50]. To emphasize that the interest rate tree is independent
of the derivative being priced, the structure of the Visual Basic code is
extremely modular: first, a short rate tree is generated. This remains in the
main memory of the computer until it is used to compute the value of
any desired underlying dependent on the term structure (for example a 3-
month zero bond yield or a swap rate, etc.) using Arrow-Debreu prices
and subsequently pricing any chosen (path-independent) derivative on that
underlying with a European payoff mode. Plain vanilla caplets and floorlets
on the 3-month rate serve as examples, with an explicit demonstration of their
valuation being included in the workbook.

14.9.2 Absolute and Relative Volatilities

As already mentioned, the volatility input for lognormal models has to have
the form of a relative volatility (for example, 14% of the current underlying
value). For normal models, an absolute volatility (for example, 0.75 percentage
points15) is required.

If, for comparison, we would like to transform absolute volatilities into
relative ones and vice versa, an appropriate reference rate is required in
addition.Here, the forward rate of the underlying at the maturity of the derivative
being priced is a natural choice. This is especially true if we intend to compare
the volatilities with the Black-76 volatility, since it is exactly this forward rate
which is used as the underlying in the Black-76 model.16 Therefore the Black-
76 volatility quoted in the market belongs to this forward rate. For these
reasons, this forward rate has been selected as the multiplicative factor in the
Excel workbook TermStructureModels.xlsm.

As can be seen from Eq. 14.59, the factor of the stochastic term differs
by the additional multiplication with the short rate. The product of relative

15At an interest rate of 6% this would correspond to a relative volatility of 14%.
16As emphasized in Eq. 14.55, the forward rate for the caplet period τ within linear compounding serves
as the underlying of a cap in the payoff profile. This has already been accounted for in the term structure
model through Eq. 14.55. To obtain the correct forward rate as input for the Black-76 model in the
Excel workbook TermStructureModels.xlsm from the download section [50] from the current term
structure (which holds for continuous compounding), we first determine the forward discount factors
using Eq. 2.7. From those discount factors the desired forward rates for linear compounding are given by
r = (

B−1 − 1
)
/τ .
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volatility and short rate is equivalent to the absolute volatility in a Gaussian
or normal model. Since the short rate is different at each note for a given
time slice, the absolute volatility is different at each node in a log-normal
model, while it was the same at each node in a normal model. This is the
substantial difference between both models. Indeed, it is enough to change a
single line in the implementation of the Gaussian model to transform it into
the implementation of a log-normal model according to Eq. 14.59.

14.9.3 Calibration of Volatilities

The current term structure and volatility structure are required as input for
the construction of an interest rate tree. In practice, the volatilities b(r, t +
iδt) themselves are generally not known. Only the prices of options traded
on the market (caps, floors, swaptions, etc.) can be observed directly. The tree
must then be constructed, leaving the volatilities unspecified as free parameters
which are then adjusted until the observed market prices of the options are
reproduced by the model. Fitting the parameters b(r, t + iδt) to the market
prices in this manner is referred to as the calibration of the model.

There are many ways of performing such a calibration. For instance
we can—exactly as was done when reproducing the market prices of zero
bonds—reproduce the market prices of the options stepwise through the tree,
beginning with the shortest option lifetimes and proceeding through to the
longest. This procedure is demonstrated explicitly in the Excel workbook
TermStructureModels.xlsm from the download section [50] where the
prices of a strip of caplets at the 3-month rate are available, whose underly-
ings (the respective 3-month rates) cover the time span under consideration
without overlap, i.e.

Tk+1 = Tk + τ .

where Tk is the maturity of the kth caplet and τ is the lifetime of the
underlying. The calibration starts by assuming that the volatility in the tree
between times t and T1 + τ is constant,

b(r, t + iδt) = b(T1) for all r and all i with t ≤ t + iδt ≤ T1 + τ .

This constant volatility is adjusted (using Newton-Raphson) until the price
computed using the tree equals the known market price of the first caplet.
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To reproduce the second known caplet price, we assume that the volatility
remains equal to the (just calibrated) b(T1) for the time between t and T1 +τ,

and is constant (although still unknown) at all nodes for times between T1 +τ

and T2 + τ :

b(r, t + iδt) = b(T2) for all r and all i with T1 + τ < t + iδt ≤ T2 + τ .

This constant volatility is then adjusted (again using Newton-Raphson) so
that the price for the second caplet computed using the tree is equal to the
observed market price of this caplet. To reproduce the third caplet price we
assume, as above, that the (just calibrated) volatilities computed for the time
span from t to T2 + τ continue to be valid, and adjust the volatility at all
nodes associated to the times between T2 + τ and T3 + τ until the price of the
third caplet computed using the tree matches the observed market price of this
caplet, and so on.17 By this method, we obtain a piecewise constant function
for the volatility18 as a function of time, independent of r .

Such a calibration process yields different volatility values b(r, t + iδt)

for each different term structure model. We therefore refer to the respective
volatilities by the name of the model with we are working, for exampleHo-Lee
volatilities, Black-Derman-Toy volatilities, Hull-White volatilities, etc. For this
reason, it is generally not possible to simply take the Black-76 volatilities as
the input values for b(r, t + iδt). The tiresome process of calibrating to the
observed option prices is in most cases unavoidable.

The market quotes option prices often in terms of log-normal volatilities
(or, recently, normal model vols), from which prices could be calculated
by applying the Black-Scholes resp. Black’76 or Bachelier (for normal vols)
formula. Since all other input parameters, e.g. underlying interest rates, are
commonly known, the Black-76 model is simply a translation algorithm for
moving between the two different ways of quoting the option price, i.e. price
vs. volatility.19 An advantage of quoting volatilities rather than prices is that
volatilities change less frequently than other parameters like interest rates. Also,
volatilities offer an illustrative, easy to interpret way of comparing options with
different strikes and terms to expiry. Therefore, the Black-76 model (or the

17Alternatively, the volatilities can be (simultaneously) calibrated using a least squares fit. We then
minimize the sum of the quadratic differences between the calculated and the traded option prices by
varying the volatilities.
18Naturally, this procedure can be extended if a “caplet-price-surface”, i.e. caplet prices with different times
to maturity and different strikes, is available to obtain a calibrated volatility surface as a function of time
and moneyness (the relative or absolute difference between underlying and strike).
19Though, in some cases, market makers quote both, prices and volatilities, at the same time.
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equivalent normal model) is better understood as a quoting vehicle rather than
a pricing model. The procedure behind the quoting is as follows: the market
maker calculates the price of an interest rate option which she wishes to quote
to the market using the term structure model of her choice (maybe calibrated
to other liquid option prices). Before quoting, this price is first translated into
a volatility using the Black-76 model. It is this volatility that is quoted on the
market. The volatility quoted is simply that which, when used as an input
parameter in the Black-76 model, reproduces the price calculated with the
bank’s (perhaps very complicated and proprietary) term structure model.

The calibration to given (Black-76) caplet (or floorlet) prices are
demonstrated in the Excel Workbook TermStructureModels.xlsm from
the download section [50]. The calibration to other instruments such as
swaption prices is considerably more complicated in its implementation, but
is based on the same principles:

1. Calculation of all required Arrow-Debreu prices from the existing tree.
2. Generation of the necessary underlyings, namely the swap rate under

consideration, from the Arrow-Debreu prices.
3. Calculation of the payoff profiles of the swaption at the nodes correspond-

ing to the swaptionmaturity date based on the value of the underlying (swap
rate) and with the help of the Arrow-Debreu prices

4. Calculation of the swaption prices at node (0, 0) by discounting the payoff
profile with the Green’s function

5. Adjusting the volatility in the interest rate tree until the swaption price
computed using the tree agrees with the price quoted on the market.

14.10 Monte Carlo on the Tree

In the discussion above, it was emphasized that only path-independent deriva-
tives in the sense of Eq. 14.44 could be priced using the methods introduced
in this chapter since the trees recombine and as a result information on the
history of the short rate path is lost. However, by combining the presented trees
with Monte-Carlo simulations, it becomes possible to price path-dependent
derivatives with a pay off profile depending on the past realizations of the
interest rate This kind of Monte-Carlo simulation works as follows:

• First observe that the tree needs to be generated (and calibrated!) only once
(as described above) and then stays in the memory of the computer.
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• The short rate paths are then simulated by jumping randomly from node to
node in the tree, always proceeding one time step further with each jump.

• Simulating the jumps from node to node with the appropriate transition
probabilities (in our case p = 1/2 for up as well as for down moves, see
Eq. 14.32) of the chosen martingale measure (in our case the risk-neutral
measure, see Eq. 14.31) ensures that the simulated paths already have the
correct probability weight needed for pricing financial instruments. This
procedure is called importance sampling.20

• For each simulated path of the short rate the corresponding path of the
underlying (for instance 3-month LIBOR) must be calculated using Arrow-
Debreu prices.

• At the end of each simulated path the payoff of the derivative resulting from
the underlying having taken this path is calculated.

• This payoff is then discounted back to the current time t (i.e., to node
(0, 0)) at the short rates along the simulated path, since after all, we still are
within the risk-neutral measure, see Eq. 14.31.

• After many (usually several thousand) paths have been simulated, the
(several thousand) generated discounted payoff values can then simply
be averaged to yield an estimation for the risk-neutral expectation of the
discounted payoff. Here the very simple arithmetic average (with equal
weights) of the discounted payoff values can be used without worrying
about the correct probability weight of each payoff value since the payoff
values (more precisely the paths which generated the payoff values) have
already been simulated with the correct (risk-neutral) probability. This
is (besides the effectiveness in sampling the phase space) another great
advantage of importance sampling.

• According to Eq. 14.8, the risk-neutral expectation calculated in this way is
directly the desired derivative price.

20Doing a move with its associated probability only ensures a very effective sampling of the phase space
(the set of all possible values of the simulated variables): phase space regions (values of the simulated
variables) which have low probabilities (and therefore contribute only little to the desired averages of
whatever needs to be measured by the simulation) are only visited with low probability (i.e. rarely) while
phase space regions with high probabilities (which contribute a lot to the desired averages) are visited with
high probability (i.e. often). Because of this feature importance sampling is heavily used in thousands of
Monte-Carlo applications, especially in physics, meteorology and other sciences which rely on large-scale
simulations.
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14.11 The Drift in Term Structure Models

At this stage, it makes sense to reconcile the practical computations in Chap. 14
with the profound concepts from the related theory presented in Chap. 13. We
first consider the relationship between the underlying instantaneous interest
rates and tradable instruments such as zero bonds. We defer proceeding with
the short rate models introduced above to take a brief excursion to the models
in which the instantaneous forward rate plays the role of the underlying.

14.11.1 Heath-Jarrow-Morton Models

We see from the fundamental Eqs. 14.2 or 14.3 and 14.5 that the instantaneous
forward rates can be used to generate the prices B(t, T ) of all zero bonds as
well as the entire interest rate term structureR(t, T ). The three descriptions of
the term structure, the zero bond prices B(t, T ), the zero bond yieldsR(t, T )

and the instantaneous forward rates f (t, T ) are equivalent. Of these three
variables, only a single one needs to be chosen to be modeled by a general
stochastic process of the form specified in Eq. 2.19. We take, for example, the
forward rates f (t, T ) to be modeled by a process of the form:

df (t, T ) = a(t, T ) dt + b(t, T ) dW with dW = X
√

dt, X ∼ N(0, 1) .

(14.73)

As mentioned previously, all bond prices and thus the entire term structure
can be generated from the solution of this equation. An entire class of term
structure models, the Heath-Jarrow-Morton models (HJM models for short)
take this approach of employing the forward rates as the driving factor of the
term structure.

Like all interest rates, the instantaneous forward rates are not tradable (see
Sect. 14.4). In Chap. 13, and in particular in Sects. 13.4 and 13.5, a detailed
discussion can be found on how to proceed when the underlying is not
tradable; we choose a tradable instrument U whose price U(S, t) is a function
of the underlying. Then all of the results shown in Chap. 13 hold:

• The Harrison-Pliska Theorem establishes the uniqueness (in complete mar-
kets) of the probability measure with respect to which the prices of trad-
able financial instruments normalized with an arbitrarily chosen, tradable
numeraire instrument Y are martingales.

• According to the Girsanov Theorem, this implies that there is only one single
underlying drift which may be used for pricing.
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• In addition, the drift of the underlying in the real world plays absolutely
no role in the world governed by the martingale measure if the numeraire
instrument Y satisfies the property 13.34 (which is always the case).

The existence of a function U(S, t) relating the underlying S to a tradable
instrument U is the deciding factor for the validity of the above results. If
the underlying is the instantaneous forward rate f (t, T ), such a functional
relation to a tradable instrument exists, namely Eq. 14.3 for the zero bond
price B(t, T ), and thus the results found in Chap. 13 hold for the Heath-
Jarrow-Morton models. In particular, for every complete market, there exists
for each numeraire instrument exactly one single underlying drift which may
be used for pricing. Therefore, as far as pricing is concerned, the HJM model
is uniquely determined by the specification of the volatility term b(t, T ) in
Eq. 14.73 (whichmodels the process in the real world). TheGirsanov Theorem
implies that the transition from the real world into the world governed by the
martingale measure only effects a (in this case unique) change in the drift;
the volatility term b(t, T ) is invariant under this transformation. Indeed, the
forward rate process in the risk-neutral measure corresponding to the real
world process in Eq. 14.73 has the following appearance [92]:

df (t, T ) =
[
b(t, T )

∫ T

t

b(t, s)ds

]
dt + b(t, T ) dW̃ ,

Here dW̃ denotes the standard Brownian motion with respect to the martin-
gale measure. The coefficient of dt appearing in square brackets is the drift
with respect to the martingale measure. This formula shows explicitly that
for HJM models, the entire model (including the drift) is uniquely specified
through the volatility b(t, T ). The drift to be used in the valuation is unique,
in complete agreement with the general statements made in Chap. 13.

14.11.2 Short Rate Models

As opposed to the HJM models, the term structure models in Sect. 14.6 make
use of the instantaneous spot rate defined in Eq. 14.1 as the driving factor.
However, a one-to-one mapping between the spot rates and the zero bond
prices does not exist and in consequence, no one-to-one mapping between the
spot rates and the term structure R(t, T ) can exist either. The instantaneous
spot rates are not sufficient to generate the term structure. This is indicated
by the fact that the instantaneous spot rate r(t) is a function of a single time



344 H.-P. Deutsch and M. W. Beinker

variable t in contrast to the processes B(t, T ), R(t, T ) (and f (t, T ) as well!),
which are functions of two time variables. Taking the limit dt → 0 in the
definition of the instantaneous short rate in Eq. 14.1 results in the loss of
the second argument (and thus in the loss of the corresponding information).
This can be seen explicitly in Eq. 14.6. For this reason, there is no analogy to
Eq. 14.3 relating the instantaneous spot rates directly to the zero bond prices.
The best possible alternative available is to determine the bond prices from the
expectations of the short rates (see for example Eq. 14.9), but not directly as a
function of the short rates. This has significant consequences:

The results presented in Chap. 13, in particular those in Sects. 13.4 and 13.5
(regarding the martingale measure, unique drift, etc.), can be shown for non-
tradable underlyings only if there exists a tradable instrument whose price
process is a function of the underlying. This direct functional relationship
between the underlying (the instantaneous spot rate) and a tradable instrument
is missing in short rate models. Or from the view point of the Harrison-Pliska
Theorem: since r(t) contains less information than f (t, T ) or B(t, T ), the
market is not complete for short rate models. For this reason, the martingale
measure in short ratemodels is not uniquely determined by fixing the numeraire
instrument. Thus, the Girsanov theorem asserts that we retain the freedom
of choosing from various drift terms in the model. The information lost in
the transition shown in Eq. 14.6, for example, must be reinserted into the
model “by hand”. This is accomplished by directly specifying a drift in the
world governed by the martingale measure. This is the essential difference in
the models here compared to those encountered in the previous chapters,
where the drift was always specified in the real world. The situation for short
rate models is different; the drift is specifically chosen for the world governed
by the martingale measure rather than for the real world. Only through this
drift specification is the martingale measure uniquely determined in short rate
models.

Frequently, it is seen as a requirement that the has drift shows an effect
called mean reversion which is observed in the evolution of interest rates but
not seen in e.g., stock prices. Interest rates do not rise or fall to arbitrarily high
or low levels but tend to oscillate back and forth about a long-termmean. This
can be modeled with a drift in the functional form μ − vr for some v > 0:
for values of r small enough so that vr < μ holds, the drift is positive and,
consequently, r tends on average toward larger values. Conversely, for values
of r large enough so that vr > μ holds, the drift is negative and r tends to
drift toward smaller values on average. The interest rate thus tends to drift
toward a mean value μ at a rate ν. Naturally, a stochastic component driven
by ∼ dW is superimposed onto this deterministic movement. An example of
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amean reversion model is theHull-White model [104]. This model specifies the
following stochastic process for the short rate with respect to the risk-neutral
martingale measure:

dr(t) = [μ(t) − v(t)r] dt + σ(t) dW (14.74)

This is only one of many examples. Several well-known models, each named
after their respective “inventors” can be distinguished from one another, after
having separated them into categories of normal and lognormal models,
essentially through the form of their drift. The best known representatives
of these models are summarized in the following list:

• Normal models dr(t) = a (r, t)dt + b(r, t) dW

– Stationary models b(r, t) = σ

∗ Arbitrage-free models

· Hull-White a (r, t) = μ(t) − vr (mean reverting)
· Ho-Lee a (r, t) = μ(t)

∗ Equilibrium models (not arbitrage free because of too few degrees of
freedom)

· Vasiceck a (r, t) = μ − vr (mean reverting)
· Rendleman-Barter a (r, t) = μ

– Non-stationary models b(r, t) = σ(t)

• Lognormal models d ln r(t) = a (r, t)dt + b(r, t) dW

– Stationary models b(r, t) = σ

– Non-stationary models b(r, t) = σ(t)

∗ Arbitrage-free models

· Black-Karasinski a (r, t) = μ(t) − v(t) ln r (mean reverting)
· Black-Derman-Toy a (r, t) = μ(t) − ∂σ (t)/∂t

σ (t)
ln r

The models are called either stationary21 or non-stationary depending on
whether or not the volatility is assumed to be a function of time.22 The models

21This is not to be confused with the definition of stationary time series in Chap. 32.
22Ho-Lee and Hull-White are often applied for time-dependent volatilities. Their inventors, however,
originally assumed constant volatilities.
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allowing for neither a time dependence nor an r dependence in the drift or
volatility terms (Vasiceck, Rendleman-Barter) obviously cannot reproduce the
current term structure arbitrage-free. For these models, only a “best fit” can
be obtained (for example by minimizing the root mean square error). These
models are referred to as equilibrium models. Since equilibriummodels are not
arbitrage free, they will receive no further attention in this book. Nowadays
they are no longer very important in practice.

The volatility of dr is independent of r in normal models and proportional
to r in lognormal models (see, Eq. 14.59). An intermediate scheme between
these two possibilities is the Cox-Ingersoll-Ross model [42] for which the
volatility is assumed to be proportional to

√
r.

dr = (μ − vr)dt + σ
√

rdW .

Note that all these processes are modeled in the risk-neutral martingale
measure directly, i.e., should be used directly in the valuation of the financial
instrument under consideration without first performing a drift transforma-
tion through an application of the Girsanov Theorem. The volatility term is
invariant under the Girsanov transformation. This implies that the volatility
taken for the valuation is the same as that observed in the real world. The
form taken on by the drift, however, is a result of the particular choice of the
measure (coordinate system) established for pricing through an application of
the Girsanov Theorem and as such, a rather artificial construct. It is thus not
readily apparent why a specific form of drift (for example mean reversion)
should be modeled in a specific (for example risk-neutral) artificial world
(dependent on the selection of a particular numeraire) when our intuitive
conception of the drift actually pertains to the real world.

Or more precisely: according to the Girsanov Theorem, the process
modeled with respect to the martingale measure differs from the real
world process by a previsible process γ (r, t). This previsible process is
arbitrary (with the restriction that it must satisfy the boundedness condition
E
[
exp

(
1
2

∫ T

0 γ (r, t)dt
)]

< ∞). Therefore the choice of model with respect
to a martingale measure provides as good as no information about the drift of
the short rate in the real world. For example, the model given by Eq. 14.74
has a mean reversion in the world governed by the martingale measure, but
has the form

dr(t) = [μ(t) − v(t)r(t) + γ (r, t)] dt + σ(t) dW
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in the real world with a (practically) arbitrary previsible process γ (r, t). It is
therefore by no means clear that this process shows any mean reversion in the
real world.

After having placed such emphasis on the necessity of specifying a drift,
i.e., a martingale measure, explicitly in short rate models (despite the results
in Chap. 13 the martingale measure is not unique here, even when the
numeraire has been fixed), the attentive reader will surely have asked why
only the volatility but no drift information has entered as input into our
explicit computations in Sect. 14.8. For both the normal and the lognormal
models, the interest rate trees were constructed in their entirety and no drift
information from the specific stochastic processes was needed at any point.

This stems from the condition in Eq. 14.32, which we introduced “by hand”
for the sake of simplicity; the probability of an up move was simply set to
p = 1/2. Through this choice, we have explicitly selected one particular
measure from the family of arbitrage-free martingale measures belonging to
the risk-neutral numeraire instrument (the bank account). This fixed the drift
in accordance with the Girsanov Theorem. We can also see this fact explicitly
since the drift can be quite simply determined from the generated tree. As was
shown in Sect. 14.8 for the variance, it follows from the general equation 14.60
for a binomial tree with p = 1/2 that the expectations of the short rate as seen
from the node (i, j ) are

a(i, j)δt = E [r(i, j)] = 1
2 [r(i + 1, j) + r(i, j + 1)] normal model

a(i, j)δt = E [ln r(i, j)] = 1
2 [ln r(i + 1, j) + ln r(i, j + 1)] log-normal model,

from which the drift at each node in the tree can be immediately determined
since all the short rates have already been established (the tree has already been
built).

For example, Eq. 14.66 can be used to compute the drift in a normal model
with r-independent volatility as

a(i, j)normal = r(0, i + j + 1)

δt
+ (2i + 1)

σ (t + (i + j)δt)√
δt

.
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Analogously, the drift for log-normal models with r-independent volatility
b(0, n) = σ(t + nδt) can be computed explicitly, employing Eq. 14.72 and
α as in Eq. 14.68:

a(i, j )log-normal = 1

2δt
[ln r(i + 1, j ) + ln r(i, j + 1)]

= 1

δt

[
ln r(0, i + j + 1) + (i + 1

2
) ln α(0, i + j)

]

= ln r(0, i + j + 1)

δt
+ (2i + 1)

σ (t + (i + j)δt)√
δt

.

Had the probability of an up move not been fixed at 1/2, a free parameter
p would remain unspecified in Eq. 14.60 which (if dependent on time and
perhaps on r as well) would allow for many different drift functions.

14.12 Short Rate Models with Discrete
Compounding

The discount factor over a single time period used in this chapter was always
of the form B(t, t + δt) = e−r(t)δt (see for example Eq. 14.36). Intuitively,
in view of Eq. 2.3, this means that interest has been paid infinitely often
in the reference period δt , and that these payments were then immediately
reinvested at the same rate. Strictly speaking, this contradicts the concept of a
tree model, for which time has been discretized into intervals of positive length
δt , implying by definition that nothing can happen in between these times. To
be consistent, we should have therefore used discrete compounding, allowing
the payment and immediate reinvestment of interest solely after each δt . Then,
only in the limiting case δt → 0 will the discount factor for continuous
compounding be obtained. If we wish to be consistent, we would therefore
have to write

B(t, t + δt) = 1

1 + r(t)δt
−→
δt→0

e−r(t)δt .

Despite the inconsistency, the discount factor for continuous compounding
is commonly used in the literature. In this section, we will collect and present
the differences caused by using discrete rather than continuous compounding
and, in doing so, show how short rate models with discrete compounding
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can be treated. The discount factor in Eq. 14.36 has the following form when
adopting the convention of discrete compounding

B(i, j) = 1

1 + r(i, j )δt
. (14.75)

Formulating recursion equations as in Eqs. 14.62 or 14.68 for these discount
factors B(i, j) in a time slice or for the lowest zero bond in a time slice
(see Eqs. 14.63 and 14.69) is quite awkward. Such conditions are more easily
formulated for the interest rate r(i, j ). All recursion relations for the short rate
follow from the arbitrage condition for the Green’s function, Eq. 14.46. This
expression for the instantaneous discount factor in the form of Eq. 14.75 is

B(t, t + nδt) =
n−1∑

i=0

G(i, n − i − 1)

1 + r(i, n − i − 1)δt
. (14.76)

14.12.1 Normal Models

If the short rate r(i, j ) in Eq. 14.75 is governed by a stochastic process of the
form given in Eq. 14.57, then Eq. 14.61 holds. The recursion relation for the
short rate in the normal model is given by Eq. 14.64:

r(i, j ) = r(i − 1, j + 1) + 2b(i − 1, j )
√

δt

= r(0, j + i) + 2
√

δt

i∑

k=1

b(i − k, j + k − 1) . (14.77)

Substituting this into Eq. 14.76 with j = n − i − 1 and performing the
transformation n → n + 1, we obtain a condition analogous to Eq. 14.63 for
the interest rate r(0, n) at the lowest node in the time slice n

B(t, t + (n+ 1)δt) =
n∑

i=0

G(i, n − i)

1 + r(0, n)δt + 2δt3/2
∑i

k=1 b(i − k, n − i + k − 1)
.

This equation can only be solved numerically for r(0, n). Once this value
is known, Eq. 14.77 provides all other r(i, j ) on the time slice n. From
the r(i, j ), the discount factors can then be calculated immediately using
Eq. 14.75. Note that in the case of discrete compounding, the arbitrage



350 H.-P. Deutsch and M. W. Beinker

condition, Eq. 14.76, can no longer be solved analytically, not even in the
context of the normal model.

14.12.2 Lognormal Models

If the short rate r(i, j ) in Eq. 14.75 is governed by a stochastic process of the
form 14.58, then Eq. 14.67 holds. The recursion relation for the short rate in
the lognormal model is given by Eq. 14.70:

r(i + 1, j ) = r(i, j + 1) exp
{

2b(i, j )
√

δt
}

= r(0, j + i)

i∏

k=1

α(i − k, j + k − 1) (14.78)

with α(i, j) as defined in Eq. 14.68. Substituting this into Eq. 14.76 with
j = n − i − 1, and performing the transformation n → n + 1, we obtain
the condition on the interest rate r(0, n) at the lowest node in the time slice
n analogous to Eq. 14.69

B(t, t + (n + 1)δt) =
n∑

i=0

G(i, n − i)

1 + r(0, n)δt
∏i

k=1 α(i − k, n − i + k − 1)
.

Again, this can only be solved for r(0, n) numerically. Once this has been
done, the other values r(i, j ) in the time slice n can be calculated immediately
using Eq. 14.78. The discount factors are finally determined from the r(i, j )

using Eq. 14.75.

14.13 Other Interest Rate Models

The world of interest rate models is not limited to the models presented so far.
Instead, there are a couple of other models used in practice. For example, a
further, quite important class of models are market models, which in contrast
to Heath Jarrow Morton models use forward rates for finite periods as driving
factors. The LIBORmarket model plays here an especially dominant role. Such
a model may use, e.g., 6M LIBOR rates as driving factors. For a time horizon
of 30 years, a model with 60 non-overlapping forward rates as stochastic factors
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could be constructed. Each forward rate follows a log-normal (or, alternatively,
normal) process, which are not independent, but correlated with each other. In
general, the number of independent stochastic drivers is reduced by means of
a principal component analysis (see Chap. 34) to a few factors only (typically,
3 or 4). Each forward rate is a martingale in its own T measure, where T is
the end date of the period the interest rate belongs to. By application of a
unique numeraire to all 60 forward rates, a drift term is implied by the change
of numeraire. For an extensive discussion of the LIBOR market model see for
example [4, 21].
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15
Simple Interest Rate Products

In Part II, a whole array of very workable methods for the valuation and
hedging of financial instruments was introduced. We now continue in Part III
with the explicit valuation of the most important and common financial
instruments. We restrict our considerations to simple (for the most part,
plain vanilla) instruments which still represent the largest proportion of all
trades in financial markets today. The methods presented in Part II do in
fact allow much more complicated instruments than those introduced here
to be effectively priced. Seen from this point of view, the application of the
material introduced in Part II is much more extensive than its restriction to
the instruments defined in Part III might suggest. More involved applications
(such as term structure models for Bermudan swaptions or multi-dimensional
finite difference schemes for convertible bonds, etc.) often contain so many
details specific to the individual implementation, that it is easy to become
distracted from the essential ideas. Therefore such complicated examples are
not particularly appropriate for discussion in an introductory text. However,
Part II enables the reader to develop pricing techniques for quite complex
products even if they don’t receive specific treatment in Part III.

In the following sections, the valuation of different plain vanilla instruments
will often be explicitly demonstrated on the basis of tables. All of these
tables have been extracted from the Excel workbook PlainVanilla.xls on
the website [50] accompanying this text. The computations contained in this
workbook are carried out solely using cell calculations. VBA-programs will not
be needed.

© The Author(s) 2019
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15.1 Zero Bonds

Most actively traded zero bonds have terms to maturity of up to one year,
but zero bonds do trade occasionally for longer periods, too. Compared to
instruments with regular interest payments, zero bonds have a significantly
higher exposure against default risk, since the exposure is increasing over time.
This is also reflected in a higher duration (Table 15.1). The invested capital is
bound for a very long time, making long term zero bonds less attractive as an
investment. Traded zero bonds can be separated into compounding papers and
discount papers. In case of a compounding paper, the full notional is paid at
the trade date, while at maturity the buyer receives a payment of notional
plus interest accrued over the full life time. Therefore, it is just identical
to an instrument paying regular interest with only one interest period. A
discount paper pays back at maturity the notional only, but is traded at a
discount to the full notional (the discounted notional) at trade date. From
a valuation perspective, it is only relevant that the buyer receives only a single,
deterministic cash flow at maturity. Typical compounding papers are deposits,
while commercial papers are typical representatives of discount papers.

15.1.1 Cash Flows and Present Value

A zero bond is a security with a single cash flow: the redemption at maturity,
i.e., payment of the nominal N at maturity. The cash flow CT resulting from
this payment is:

CT (T ) = N .

The present value, defined as the sum of all discounted future cash flows, is
accordingly

V (t) = NB(t, T ) . (15.1)

15.1.2 Yield to Maturity and Par Rate

A zero bond does not pay coupons at a fixed rate K . At best we could say the
coupon rate is K = 0 (hence the name). The yield of a zero bond results from
the difference between its present value, Eq. 15.1, and its nominal amount N

and is thus equal to the current spot rate R(t, T ) over the lifetime of the zero



15 Simple Interest Rate Products 357

Table 15.1 Present value and sensitivities of a zero bond in the three most commonly
used compounding methods. For the sake of simplicity, the abbreviation τ = T − t is
used to represent the time from value date t until maturity T

Present value Mod. duration = key rate dur. Convexity

General B(t, T ) −1
B(t,T )

∂ B(t,T )
∂R

1
B(t,T )

∂2 B(t,T )

∂R2

Continuous e−Rτ τ τ 2

Discrete 1
(1+R)τ

τ
1+R

τ(τ+1)

(1+R)2

Simple 1
1+Rτ

τ
1+Rτ

τ2

(1+Rτ)2

bond. As explained is Sect. 5.3, a “par rate” only makes sense in the context of
fixed-rate instruments and thus will not be defined for zero bonds. Since there
is only one cash flow, the yield to maturity (YTM) is equal to the current spot
rate until maturity T , which in turn is the only relevant key rate.

15.1.3 Sensitivities

Zero bonds are the basic elements which can be used to replicate all securities
whose value derives from future cash flows. This is because the present value
of any arbitrary future cash flow is nothing other than the value of a zero
bond with a principal equal to that cash flow and maturity equal to the
payment date of that cash flow. Because of the immense importance of the zero
bond, its present value, modified duration and convexity for all compounding
conventions are listed explicitly in Table 15.1. As can be seen from the table,
modified duration and convexity depend on the choice of the compounding
method.Without explicit specification of the compounding method used, any
mentioning of the duration value is incomplete, though most often (discrete)
annual compounding can be assumed.

Since the YTM of a zero bond is equal to the spot rate for its maturity,
the modified duration and the key rate duration agree. For continuous
compounding, the sensitivities have a particularly simple and intuitive form:
themodified duration is exactly equal to the time tomaturity and the convexity
is the square of the time to maturity.

15.2 Forward Rate Agreements

A forward rate agreement, abbreviated as FRA, is a contract in which both
contract parties agree to a fixed rate K on a principal N to be paid for some
future interest period between T and T ′. At the start T of this period, the
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difference to the then valid interest rate for this period from T to T ′ (e.g., 6M-
EURIBOR for a 6 months period; which interest rate index is relevant has to
be fixed contractually) will be paid, discounted from T ′ to T . Therefore, the
pay off profile of a FRA is

N
(L(T ) − K)τ(T , T ′)

1 + L(T )τ(T , T ′)
,

where L(T ) is the interest rate index starting at T and ending at T ′. Because
of default and liquidity risks,L(T ) differs in general from the risk free forward
rate, which could be calculated by means of Eq. 2.8, by a small spread, which
is called the basis s(T ) (see Sect. 15.6.1):

L(T ) = F(t, tfix, T , T ′) + s(T ) = 1

τ(T , T ′)

(
B−1(T , T ′|tfix) − 1

)
+ s(T ) .

(15.2)

For the EUR-zone, the fixing date tfix lies typically two bank working days
before T . Alternatively, L(t) can be calculated by means of a tenor or forward
curve, which takes the basis spread implicitly into account. This yields the
expression

L(T ) = 1

τ(T , T ′)
(
B−1

6M(T , T ′|tfix) − 1
)

, (15.3)

where B6M(t, T ) represents the 6M forward curve (see Sect. 29.7).
An FRA can be interpreted as an agreement loan to be made in the future

with an interest rate already fixed today. The party receiving the loan makes
the fixed interest payments. In contrast to bonds, we will refer to this party’s
position as a long position in the FRA, whereas the counterparty receiving the
interest payments is short in the FRA. A (long) FRA can thus be interpreted
as an agreement on two future cash flows: a receipt of the principal N at time
T (the loan is made) and a payment at maturity T ′ of the FRA in the amount
of the principal N compounded at the agreed rate K over the period T ′ − T

(the loan plus interest is paid back).
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The present value F(T , T ′,K|t ) of the FRA at time t is given by discount-
ing the cash flow at time T to t < T :

F(T , T ′, K|t ) = B(t, T )N
(L(T ) − K) τ(T , T ′)

1 + L(T )τ(T , T ′)

= B(t, T )N
B−1(T , T ′|tfix) − 1 + (s(T ) − K) τ(T , T ′)

1 + B−1(T , T ′|tfix) − 1 + s(T )τ(T , T ′)

= B(t, T )N

(
1 − 1 + Kτ(T , T ′)

B−1(T , T ′|tfix) + s(T )τ(T , T ′)

)
,

(15.4)

where the definition of the forward rate, Eq. 2.6, was used in the last step.
It is common practice in the market for forward transactions, the interest

rateK is chosen so that the contract is worthless at the time it is concluded. As
can be deduced from Eq. 15.4, this condition is satisfied if the term in brackets
in the last line vanishes:

B−1(T , T ′|tfix) + s(T )τ(T , T ′) = 1 + Kτ(T , T ′)

and therefore

K = 1

τ(T , T ′)

(
B−1(T , T ′|tfix) − 1

)
+ s(T ) .

This is exactly the case if the fixed rate K equals the forward rate at time t

corresponding to the FRA period from T until T ′ plus the basis spread, which
is identical to the expectation of the forward rate index L(t).

Though the FRA’s present value could be represented as the sum of two
discounted cash flows, there is actually only one cash flow at the start of the
interest rate period T equal to the difference of the present values of the two
other cash flows (cash settlement). For this, the virtual cash flow at time T ′
needs to be discounted to time T by means of the reference rate index L(t).

Since L(t) differs by the basis spread s(t) from the risk free interest rate,
we have a slight inconsistency here, because on the other hand the risk free
discount factor B(t, T ) is used for discounting from T to t to calculate the
present value. This has a historical as well as a practical reason. Historically,
before 2007, basis spreads have been so small that basis spread effects haven’t
had a big impact and have often been neglected. The practical reason is that
the risk free interest rate is no directly observable mark rate index and could
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not be determined exactly without any doubt, other than the reference rate
index, which is daily quoted publicly. The impact on the fair strike price K of
the FRA is small, though, and will be dominated by other effects, e.g. counter-
party credit risk and collateral management.

15.3 Coupon Bonds

15.3.1 Cash Flows and Present Value

Coupon bond, often simply referred to as a bond, is a security with a coupon,
which specifies a fixed interest rate K . In general, the coupon is given by an
annualized interest rate (i.e. the interest rate for an annual term, even if the
actual coupon payment frequency is, for example, quarterly). The cash flows
arising from the interest paymentsCZ of a coupon bond equals the interest the
principal N of the bond, compounded at the rate K , earns over the interest
period under consideration (for example, 6 months). In addition, a cash flow
CT for the redemption of the principal occurs at maturity.

CZ(ti) = Kτ(ti−1, ti)N ∀i = 1, . . . , n

CT (tn) = N . (15.5)

Here, τ(t1, t2) is the time difference in years between t1 and t2 calculated with
a day count convention consistent with the fixed interest rate K . The present
value given as the sum of all discounted future cash flows is

V (t) = N

n∑

i=m+1

B(t, ti)Kτ(ti−1, ti) + NB(t, tn)

= NKA(t, t0, tn) + NB(t, tn) (15.6)

with

A(t, t0, tn) =
n∑

i=1

B(t, ti)τ(ti−1, ti)1t<ti . (15.7)

Here, t0 is the start date of the bond, which could be in the past, i.e. t0 < t .
The factor 1t<ti , which equals 1 if t < ti and 0 otherwise, ensures that only
future cash flows will be taken into account of the present value. The term
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A(t, t0, tn) is also called Annuity. Sometimes, the same expression is used for
the bond itself or more generally for all products with regular (often annually)
fixed cash flow payments. Usually, it is clear from the context what is meant
by annuity.

Actually, Eq. 15.6 is only a simplification in the sense that there is no
differentiation between coupon dates and payment dates. According to the
business day rules applied, both types of dates may differ. We neglected this
difference to simplify the notation. Most often, it is clear which dates are
actually coupon dates (e.g., the arguments of τ(·, ·)) and where payment dates
are needed (e.g., as second argument of B(t, ·)).

It is a frequent requirement that all coupon periods (measured in the
specified day count rule) shall have exactly the same length, such that all
coupon amounts are equal. The day count rule ICMA was especially designed
to guarantee this feature for “natural” interest periods. For example, consider
a bond with coupon dates on the 20th of March, June, September and
December, as long as it does not fall on a bank holiday, otherwise on the next
following business day. Using the day count rule ICMA will ensure that the
length of such a coupon period will always be exactly quarter of a year, i.e.
0.25 years, long, independent of the actual number of days or if start and/or
end date is a bank holiday. The ICMA rule is also called EUR-bond-method,
since it is often applied to EUR denominated bonds. Fix a fixed interest rateK

for each period, the Coupon KτN is for all coupons equal to a constant c. In
this case, the present value simplifies to

V (t) = c

n∑

i=m+1

B(t, ti) + NB(t, tn) with c = KτN ∀i . (15.8)

15.3.2 Yield to Maturity

By definition of the yield to maturity, discounting in Eq. 15.6 at the yield to
maturity R (which is constant until maturity) instead of the current zero bond
rates must result in the same present value. Assuming that the coupon periods
are equally long, results in YTM discount factors which are all identical over
entire interest periods (ti, ti+1). We can therefore set BA(R, ti, ti+1) = b ∀i.1

1Here, BA(R, ti , ti+1) is the discount factor based on a discrete, annual compounding interest rate R.



362 H.-P. Deutsch and M. W. Beinker

We then re-write the YTM discount factors in the following way

BA(R, t, ti) = BA(R, t, tm+1)︸ ︷︷ ︸
partial

coupon period

BA(R, tm+1, tm+2)︸ ︷︷ ︸
b

BA(R, tm+2, ti)

= BA(R, t, tm+1)b
2BA(R, tm+3, ti)

= BA(R, t, tm+1)b
i−m−1BA(R, tm+(i−m), ti)︸ ︷︷ ︸

=1

.

Replacing the spot rate discount factors in Eq. 15.8 with these YTM discount
factors gives

BA(R, t, tn) = BA(R, t, tm+1)b
n−(m+1)

n∑

i=m+1

BA(R, t, ti) = BA(R, t, tm+1)︸ ︷︷ ︸
partial

coupon period

n∑

i=m+1

bi−(m+1)

︸ ︷︷ ︸
entire

coupon period

= BA(R, t, tm+1)b
n−(m+1) 1 − bm−n

1 − b−1
, (15.9)

where the formula for the sum of a geometric series has been used in the last
step. Geometric series are introduced in all elementary mathematics texts and
collections of mathematical formulas.2 We will often use such series in what
follows. The quintessential property of geometric series is that their finite sums
are given by the following equation:

n∑

k=1

ck−1 = cn − 1

c − 1
for any constant c . (15.10)

2A sequence xk , having the property that the quotient of two elements, one immediately following the
other, is constant, xk+1/xk = c for all k, is called a geometric sequence. Thus, for each of the elements of a
geometric sequence, xk = x1 ck−1. The sum of the elements of a geometric sequence is called a geometric
series. The following formula holds for series of this type:

n∑

k=1
xk = x1

n∑

k=1
ck−1 = x1

cn−1
c−1 .
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Application of this equation in the above sum over the powers of the constant
b leads3 to Eq. 15.9. The present value of a bond with coupon periods of equal
length expressed in terms of its yield to maturity is thus

V (t) = NBA(R, t, tm+1)b
n−(m+1)

[
1 + c

1 − bm−n

1 − b−1

]

with b = BA(R, tm, tm+1) , c = Kτ . (15.11)

This is a closed form expression for the present value of a bond as a function
of its yield to maturity. It contains the discount factor for the partial interest
period from t (today) until the next coupon payment date tm+1 and two
parameters b and c which are determined through the discount factors with
respect to the coupon and the yield to maturity for the next complete coupon
period (from tm until tm+1).

In Table 15.2, fifteen different bonds with a 6% coupon, annual coupon
payments and remaining lifetimes between 1 and 15 years were priced using
Eq. 15.8 with the spot rates. In addition, the YTM for each bond and the par
rate for each term to maturity is given. The par rates have been calculated in
advance with Eq. 15.12 (see next section). In the case of the bond with time
to maturity of only one year, zero rate, YTM and par rate are identical. For all
other terms to maturity, these three values differ by up to 30 basis points.

15.3.3 Par Rates

Bonds are fixed-rate instruments. Therefore, the at-par condition 5.5 can be
used in calculating the par rate K̄ . Since plain vanilla bonds before maturity
pay only interest (amortization payments being made only upon maturity) the
“residual debt” during the entire lifetime is equal to the principal N plus the
accrued interest since the last coupon payment. Inserting the cash flows in

3Set k = i − m. The geometric series is then:

i=n∑

i=m+1

bi−(m+1) =
k+m=n∑

k+m=m+1

bk+m−(m+1) =
n−m∑

k=1

bk−1

︸ ︷︷ ︸
Geom. Series

= bn−m − 1

b − 1

= bn−m−1 b(1 − bm−n)

b − 1
= bn−m−1 b(1 − bm−n)

b(1 − b−1)
.
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Table 15.2 Par rate, YTM and present value for 15 coupon bonds with a 6% annual
coupon and time to maturity from 1 to 15 years. For comparison, the zero rate is given
in discrete annual compounding

Term [years] Zero rate Zero bond Par rate YTM Present value

1 2.20% 0.97847 2.200% 2.200% 103.72%
2 2.50% 0.9518 2.496% 2.492% 106.76%
3 2.90% 0.91781 2.886% 2.872% 108.87%
4 3.30% 0.87821 2.268% 3.245% 110.18%
5 3.70% 0.83389 3.643% 3.612% 110.75%
6 4.00% 0.79031 3.919% 3.884% 111.13%
7 4.30% 0.74475 3.188% 4.149% 111.05%
8 4.50% 0.70319 4.366% 4.328% 111.11%
9 4.70% 0.66142 4.539% 4.500% 110.90%

10 4.90% 0.61979 4.706% 4.668% 110.46%
11 5.00% 0.58468 4.793% 4.757% 110.45%
12 5.10% 0.55051 4.878% 4.844% 110.34%
13 5.20% 0.51736 4.959% 4.926% 110.13%
14 5.25% 0.48853 5.004% 4.974% 110.18%
15 5.30% 0.46087 5.047% 5.018% 110.18%

Eq. 15.5 into the general at-par condition 5.5, the principals N cancel and the
at-par condition for bonds becomes

1 + K̄τ(tm, t) =
n∑

i=m+1

B(t, ti)K̄τ(ti−1, ti) + B(t, T )

= K̄A(t, t0, tn) + B(t, T ) (15.12)

with tm ≤ t < tm+1 < tm+2 < · · · < tn = T , n ≥ m + 1 .

The interest accrued until time t for the current interest rate period normalized
to one unit of currency appears on the left hand side. On the right, we have the
present value at time t of a bond with coupon K̄ and a principal of 1 monetary
unit. Solving for the par rate yields

K̄ = 1 − B(t, T )

A(t, t0, tn) − τ(tm, t)
. (15.13)
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15.3.4 Sensitivities

The sensitivities with respect to the yield to maturity, namely the modified
duration and the convexity, are calculated using Eq. 15.6:

Dmod = − 1

V

∂V

∂R
= −NK

V

n∑

i=m+1

τ (ti−1, ti )
∂BA(R, t, ti )

∂R
− N

V

∂BA(R, t, tn)

∂R

(15.14)

Convexity = 1

V

∂2V

∂R
2

= NK

V

n∑

i=m+1

τ (ti−1, ti )
∂2BA(R, t, ti )

∂R
2

+ N

V

∂2BA(R, t, tn)

∂R
2

.

If all coupon periods are of equal length, the closed form expression in Eq. 15.11
can be differentiated explicitly with respect to the yield to maturity to obtain
closed form expressions for the modified duration and the convexity of the
bond. These expressions are not listed here as they are quite lengthy and
illustrate no new concepts.

The sensitivities with respect to the spot rate, i.e., the key rate durations are

Dkey(t, ti) = NK

V
τ(ti−1, ti)

∂BR(t, ti)

∂R
∀ i = m + 1, . . . , n − 1

Dkey(t, tn) = NK

V
τ(tn−1, tn)

∂BR(t, tn)

∂R
. (15.15)

The expressions for the sensitivities in Eqs. 15.14 and 15.15 look more complex
than they actually are. The derivatives can be interpreted as the modified
duration, key rate duration, and convexity of zero bonds, each multiplied by
the present value of the respective zero bond (see Eq. 5.15). For each zero
bond, we must use the interest rate R with respect to which the derivative
was taken, explicitly: the YTM must be used for the modified duration and
convexity, the spot rate of the appropriate interest period for the key rate
duration. The present value and sensitivities of the zero bond for all of the
usual compounding conventions can be taken fromTable 15.1. The calculation
of the sensitivities of the fifteen coupon bonds in Table 15.2 is demonstrated
explicitly in Table 15.3.
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Table 15.3 The sensitivities of the coupon bonds from Table 15.2. Annualized com-
pounding was used throughout

Modified Key rate Modified
Term duration duration Convexity duration Convexity
[years] [years] [years] [years] × PV × PV

1 0.978 0.978 1.915 0.957 1.874
2 1.898 1.844 5.503 1.857 5.436
3 2.761 2.605 10.533 2.676 10.405
4 3.572 3.272 16.810 3.402 16.470
5 4.332 3.848 24.142 4.023 23.289
6 5.050 4.349 32.420 4.563 30.737
7 5.721 4.771 41.441 5.004 38.421
8 6.356 5.136 51.183 5.390 46.482
9 6.951 5.434 61.430 5.694 54.471

10 7.504 5.670 72.040 5.919 62.187
11 8.035 5.878 83.185 6.137 70.279
12 8.532 6.038 94.584 6.299 78.077
13 8.996 6.154 106.137 6.408 85.472
14 9.443 6.252 118.032 6.513 93.046
15 9.863 6.316 130.016 6.581 100.234

15.4 Forward Bonds

15.4.1 Present Value

Equation 15.6 for the present value of a bond also holds for a future time T .
For the discount factors with respect to the future time T , the current forward
rates must be used in place of the spot rates to ensure arbitrage freedom. Thus,
the present value of forward bond differs from the present value of a regular
bond only by replacing the start time t0 by the future time T . With maturity
T ′ = tn we have

V (T ) = NKA(t, T , T ′) + B(t, T ′)N . (15.16)

The value of a forward bond with interest rateK differs only by the additional
nominal payments from the fixed leg of a forward swap (Eq. 15.24).

15.4.2 Forward Par Rate and Forward Yield to Maturity

The calculation of forward yield to maturity and forward par rate is analog to
the calculation of these figures for a regular bond with Eqs. 15.9 and 15.13, but
without the terms for the current interest period. Thus, we get the equation
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for the yield to maturity (assuming periods of equal length) by setting m = 0
in Eq. 15.9:

n∑

i=1

BA(R, t, ti) = BA(R, t, t1)

n∑

i=1

bi−(1)

= BA(R, t, t1)b
n−1) 1 − b−n

1 − b−1
.

The forward par rate K̄ follows in a similar way by replacing the zero bond
and annuity by their forward zero bond and forward annuity equivalents in
Eq. 15.13:

K̄ = 1 − B(T , T ′|t)
A(T , T , T ′|t) = B(t, T ) − B(t, T ′)

A(t, T , T ′)
.

In the last expression, both nominator and denominator have been multiplied
by B(t, T ) to emphasize the similarity with the forward par swap rate, which
differs only by an additional basis spread term.

15.5 Interest Rate Futures

15.5.1 Futures on Zero Bonds

The holder of a zero bond receives no interest payments before maturity. This
corresponds to an underlying “without dividends”. The forward price as seen
from today’s date t of a zero bond at time T having a face value of onemonetary
unit and maturing at T ′ > T is given by Eq. 6.1 as

S(t, T ) = B−1(t, T )︸ ︷︷ ︸
compounding until T

B(t, T ′)︸ ︷︷ ︸
present value at time t

= B(t, T )B(T , T ′|t)
B(t, T )

= B(T , T ′|t) .

(15.17)

The forward price as seen from time t of a zero bond at T is thus the price
which the zero bond would have at T if the forward rate as seen at t were the
actual spot rate at time T . With Eq. 6.6 we see that the present value of a
future with delivery price K on such a zero bond is this forward price less the
delivery price.
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F zero bond
S (t, T , T ′, K) = B(T , T ′|t) − K .

15.5.2 Futures on Coupon Bonds

We will determine the forward price of a coupon bond from the cash & carry
arbitrage which led to Eq. 6.1. Regardless of the underlying instrument, only
two questions were of importance for the cash & carry arbitrage:

• What amounts must actually be paid in order to purchase the underlying
today and at an agreed upon future date?

• Which cash flows arise for the holder of the underlying up to maturity
which do not arise for the holder of the future?

For futures on coupon bonds, often just called bond futures for short, we
therefore have to apply the cash & carry arbitrage for forward contracts on
underlyings with dividend payments, where the dividend payments of course
correspond to the coupon payments of the underlying bond. But only those
coupon payments which arise during the lifetime of the forward contract are
to be taken into consideration.4

Denoting the coupon payments at ti by C(ti), the following holds for the
dirty forward price of the bond

S(t, T ) = S(t) − D(t, T )

B(t, T )
with D(t, T ) =

∑

t<ti≤T

C(ti)B(t, ti) .

(15.18)

In this equation

• D(t, T ) is the present value of all coupon payments to be made up to the
maturity of the future;

4Bonds cannot be interpreted as an underlying with a dividend yield q when pricing options and forward
contracts on bonds. The assumption of a dividend yield assumes payments relative to the underlying
price, which is not a useful approximation for bonds. In addition, the accrued interest on the underlying
is exchanged directly between the counterparties through the dirty price. In cash & carry arbitrage, only
the “extra” cash flows which are not exchanged by the counterparties of the forward contract must be
taken into consideration. These are just the coupon payments during the lifetime of the forward contract.
These are received by the holder of the underlying, but not by the holder of the forward contract. Hence,
the only consistent treatment of a bond is to interpret it as an underlying with dividend payments during
the lifetime of the forward contract and to perform each calculation (for the spot price, the forward price
and option strikes) with the dirty price (= clean price plus accrued interest).
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• S(t, T ) is the dirty price (including accrued interest) to be paid for the bond
at time T as seen from time t ;

• S(t) is the dirty price (including accrued interest) at which the bond is
available for purchase at time t .

According to Eq. 6.6, the value of a future with a delivery price K on such
a bond is this dirty forward price less the dirty delivery price. In the market,
however, clean prices are quoted. Therefore the interest accrued up to time T

must be added to the quoted (clean) delivery price. For forward and option
contracts, all calculations must generally be made on the basis of dirty prices,
i.e., the accrued interest should always be taken into consideration.

The bond futures traded on exchanges do not normally refer to real bonds
as their underlying but rather to synthetic bonds which are defined by their
coupon and time to maturity. Usually there are several real bonds which are
quite similar to such a synthetic bond and which are therefore admissible as
an underlying for the future under consideration. A future very popular in
Germany, the Euro Bund Future (previously referred to as Bund Future) has as
its underlying a synthetic German government bond with 10 years to maturity
and a coupon of 6%, the underlying for the Euro Bobl Future (previously
referred to as Bobl Future) is a synthetic bond with a 6% coupon and 5 years to
maturity and the underlying of the Euro Schatz Future (previously referred to
as Schatz Future) is a synthetic bond with a 6% coupon and 2 years to maturity.
The face value of the synthetic underlying, called the contract size, is 100,000
euros for all these futures. The admissible real underlyings that the holder of a
short future position is allowed to deliver at the maturity of such futures are

• for Euro Bund Futures: German federal bonds (Bundesanleihen) with a
remaining term upon delivery of 8 1

2 to 10 1
2 years.

• for Euro Bobl Futures:German federal bonds (Bundesanleihen) and German
federal debt obligations (Bundesobligationen) with a remaining term upon
delivery of 4 1

2 to 5 1
2 years.

• for Euro Schatz Futures: German federal treasury notes (Bundesschatzan-
weisungen), German federal debt obligations (Bundesobligationen) and Ger-
man federal bonds (Bundesanleihen), all with a remaining term upon
delivery of 1 3

4 to 2 1
4 years.

In order to enable the investor to compare the prices of all the different
instruments allowed to be delivered at maturity of a future, the futures
exchange EUREX calculates a conversion factor for each real deliverable bond
which converts the clean price of the synthetic bond into the clean price of
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the deliverable bond. The EUREX calculates this conversion factor P and the
accrued interest Z as follows:

P = 1

(1 + K)m/12

[
KL

K
(1 + K) + 1

(1 + K)n

(
1 − KL

K

)]
− KL(1 − m/12)

Z = i

360
NKL

where

KL = coupon of the deliverable bond
K = coupon of the synthetic bond = 0, 06
n = full years until the maturity of the deliverable bond
m = full months until the next coupon payment of the deliverable bond
i = interest days since the last coupon payment of the deliverable bond

N = contract size = 100,000 euros

The same conversion factor is used for Bund, Bobl and Schatz futures (as well
as for options on these instruments). These futures differ only in the lifetime
of their underlying synthetic bond.

At the maturity of the future, the holder of the long position in this future
must purchase the bond delivered by the holder of the short position at the
future price S(T , T ) = S(T ), multiplied by a conversion factorP , in addition
to the accrued interest Z which is always paid upon purchase of a bond.5 For
a contract sizeN the total amount (denoted by g) payable by the holder of the
long future is

g = N S(T ) P + Z

The holder of the short position delivers a deliverable bond in exchange for
this amount g. This bond costs him or her the face value N multiplied by the
quoted (clean) price SL(T ) of the deliverable bond at time T plus the accrued
interest. Subtracting from these costs the amount received from the holder of

5The actual price S(T ) and not the originally agreed upon delivery price S(t0, T )—where t0 denotes the
date the future contract was entered into—must be paid since the differences between the actual forward
price of the underlying and the delivery price S(t0, T ) have already been settled on a daily basis because
of the variation margin system.
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the long future, the net costs are

N SL(T ) + Z − g = N [SL(T ) − P S(T )]

These costs vary from bond to bond. The holder of the short position will
therefore choose from all the deliverable bonds exactly that bond, which
minimizes the holder’s costs. In other words, the bond which minimizes the
value of SL(T ) − PS(T ) will be chosen. This bond is called the cheapest to
deliver or CTD for short. In fact, futures (and options as well) on synthetic
bonds are priced as if they were written directly on the cheapest to deliver
bond instead of on a synthetic bond. This means that the future’s price is
that given by Eq. 15.18 using the forward price of the CTD bond (quoted
as the clean price, i.e., less the interest accrued up to T and divided by the
conversion factor). Without this procedure, Eq. 15.18 could not be applied
in practice since the coupon dates of the synthetic bond are not defined and
thus the present value of the coupon payments of synthetic bonds cannot be
determined.

The CTD bond is generally known on the market. From this bond, the
forward price of the synthetic underlying (which is the one and only thing
quoted in such futures markets) can be calculated in five steps

• Determine the dirty price at time t of the CTD from its quoted (clean)
price plus the accrued interest.

• Determine the present value of the CTD’s coupon payments due between
times t and T .

• Calculate the dirty price of the CTD for the date T using Eq. 15.18.
• Determine the (clean) price of the CTD for the date T from the dirty price

less the interest accrued up to T .

• Divide this price by the conversion factor for the CTD to obtain the (clean)
forward price of the synthetic bond.

15.6 Floaters

A floater is a security that pays periodically interest based on a variable
interest rate index and the nominal at maturity. The variable interest payments
refer to a reference rate observable on the market (for example, the 6-month
EURIBOR). The reference rate determines the interest rate that is applied to
the nominal N of the floater to calculate the interest compounded over the
interest rate period (e.g. 6 months). The reference rate is determined at the
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fixing date or brief fixing, which is typically at or before the beginning of each
interest rate period. The reference rate fixed at time t relates to an interest rate
period starting at t + v, where v is the number of spot days (for 6-months
EURIBOR, this is 2 business days). Therefore, the fixing date is usually two
business days before the interest period start date. The interest coupon is
generally paid at the end of the interest rate period at the next possible business
day. In the following, we assume that the interest payment day falls together
with the interest period end date, if not explicitly stated otherwise. tm ≤ t

denotes the last interest payment date (i.e. end date of the previous interest
rate period), where t is the current date. Then, tm+1 is the payment date of
the current interest rate period. The maturity T = tn equals the last interest
payment date of the floater. t0 is the start date of the first interest rate period.
Therefore, we have:

t1 < t2 < · · · tm︸ ︷︷ ︸
past

≤ t < tm+1 < tm+2 < · · · tn = T︸ ︷︷ ︸
future

.

The fixing date at which the interest rate for the payment date tm is fixed will
be denoted by F(tm). At time t , only the next cash flow (if F(tm+1) ≤ tm ≤
t < tm+1) and the second next cash flow (if F(tm+2) ≤ t ≤ tm+1 < tm+2)
may be deterministic already. All further cash flows will have to be determined
in the future.

15.6.1 Cash Flows and Present Value

(Uncollateralized) forward rate indexes are traded with an add-on on top of
the (default) risk free interest rate, the so-called basis spread or just basis,6
taking credit and liquidity risks into account. The basis depends on the start
and length of the forward rate reference’s respective interest rate period. For
a regular floater, all interest rate periods have the same length. Therefore, it
is here sufficient to consider only the start date dependency of the basis. The
basis of the forward rate fixed atF(tm) is denoted in the following as sm. Using
arbitrage free arguments, the (default) risk free forward rates can be identified
with those calculated by means of Eq. 2.7. We can now write down the cash

6Small differences between similar, but not identical entities are frequently called basis.
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flows from interest payments CZ and nominal repayment CT at maturity

C fix
Z (tm+1) = Rfixτ(tm, tm+1)N

CZ(ti) = [
B−1(ti−1, ti|t ) − 1 + siτ (ti−1, ti)

]
N

=
[
B(t, ti−1)

B(t, ti)
− 1 + siτ (ti−1, ti)

]
N ∀ i = m + 2, . . . , n

CT (tn) = N . (15.19)

Here,Rfix is the fixed rate for the current interest rate period (for simplicity, we
have assumed that t < F(tm+1), otherwise, the interest rate for the next period
would also be fixed already and we would have two terms with a deterministic
interest cash flow). τ(t1, t2) is the year fraction between start t1 and end t2 of
an interest period, calculated by application of a proper day count convention.
The present value of the sum of all future cash flows is then

V (t) = Cfix
Z (tm+1)B(t, tm+1) (15.20)

+ N

n∑

i=m+2

B(t, ti)

[
B(t, ti−1)

B(t, ti)
− 1 + siτ (ti−1, ti)

]
+ NB(t, tn)

= Cfix
Z (tm+1)B(t, tm+1)

+ N

n∑

i=m+2

[B(t, ti−1) − B(t, ti) + B(t, ti)siτ (ti−1, ti)] + NB(t, tn) .

Since the discount factor B(t, ti) appearing with a negative sign in the above
formula is equal to the discount factor with a positive sign B(t, ti−1, ) in the
next term in the sum, i.e., for i → i + 1, the series is telescoping, with all
terms canceling except the discount factors with the smallest and the largest
index. Thus, the above equation reduces to

V (t) = C fix
Z (tm+1) B(t, tm+1) + N [B(t, tm+1) − B(t, tn)]

+ N

n∑

i=m+2

B(t, ti)siτ (ti−1, ti) + NB(t, tn) .
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Together with Eq. 15.19 for the present value of the fixed cash flow this can be
further reduced to

V (t) = NB(t, tm+1)
[
1 + Rfixτ(tm, tm+1)

] + N

n∑

i=m+2

B(t, ti)siτ (ti−1, ti) .

(15.21)

This is quite a remarkable result! Neglecting for a moment the basis spread
term, the present value of a floater is given by the sum of the principal N

and the (already) fixed interest cash flow C fix
Z (tm+1), discounted from the next

interest payment date tm+1 back to t . This corresponds to a case in which the
fixed interest cash flow together with the entire principal is due on the next
payment date tm + 1, after which no further payments occur. However, since
the financial crisis 2008, basis spreads have widened and can no longer be
neglected. From this point of view, floater bear primarily a basis spread risk,
i.e. the risk that the basis spread may change.

The interest rate risk of a floater is for pricing and risk management equivalent
with a zero bond with maturity at the next interest payment date and a principal
equal to the sum of the floater’s nominal and the already fixed interest payment.
The basis risk, however, could be significant.

The present value of a floater is especially simple, if the basis risk is neglected
and the fixing dates is identical with the period start date F(tm+1) = tm.
Evaluating the floater at the cash flow date tm yields the floater’s nominal as
present value, since the floater equals according to Eq. 15.21 exactly its nominal

Rfix = 1

τ(tm, tm+1)

(
B−1(tm, tm+1) − 1

)
⇒ V (t = tm) = N .

This result is independent on compounding method, length of interest period,
or anything else.

Floaters are typically traded with a spread. This means that the cash flows
are not fixed precisely at a reference rate rather, but a spread K is added to
or subtracted from to the rate (for example, 3-month LIBOR plus 10 basis
points). With such a spread, the risk of an issuer default could be compensated
in such a way, that the floater could be quoted at 100 at issue date. Here, we will
for the moment continue to neglect the default risk effects on the valuation.
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Such a (long) floater generates the same cash flows as a portfolio consisting
of

• a floater without a spread, sometimes called LIBOR flat (long),
• a coupon bond (long) with the basis spread as a coupon and having the

same principal, coupon dates and maturity as the floater,7
• a coupon bond (long) with the spread K as a coupon and having the same

principal, coupon dates and maturity as the floaters,
• and a zero bond (short) whose principal and maturity is the same as that of

the floater.

Including the short zero bond is necessary to compensate for the final
payment at maturity of the coupon bond. A floater with a spread can thus
be priced by means of the stripping procedure described above.

15.6.2 Yield to Maturity, Par Rate and Sensitivities

A floater does not earn at a fixed rate K . As indicated by its name, it is a
floating rate instrument. A “par rate” as described in Sect. 5.3 therefore makes
no sense in this context. The YTM, however, can be defined for floating rate
instruments. Since a floater is equivalent to a zero bond in terms of its interest
rate dependence (present value and risk with neglecting the basis spread), the
YTM and sensitivities, i.e., the modified duration, convexity and the key rate
duration are calculated exactly as for the associated zero bond. Taking the basis
spreads and spreads into account, these figures could be calculated similarly
to coupon bonds. Alternatively, the forward rates could be frozen at levels
calculated at valuation date, making all cash flows effectively deterministic.
This allows to perform the same calculations as for coupon bonds. However,
this would change the meaning of this sensitivities, which could no longer be
interpreted in the usual way.

15.7 Swaps

Swaps are contracts used to exchange interest payments. In their simplest form,
a plain vanilla swap, fixed cash flows are exchanged for floating cash flows.

7Here, the basis spread was assumed to be deterministic and time dependent. Though in reality, the basis
will change over time, which could be simulated in a more complex model.
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Bond Counterparty

Fixed Interest

Floating Interest

Swap

Bank
Coupon

Fig. 15.1 Reducing the interest rate risk of a bond by using a plain vanilla interest rate
swap

A bank, which holds a coupon bond, for example, but which wishes
to reduce the interest rate risk of this fixed rate instrument can initiate a
Swap according to which the counterparty of the bank receives fixed interest
payments from the bank while the bank in return receives floating interest
payments from the counterparty (see Fig. 15.1). If the swap’s negotiated fixed
rate is equal to the coupon of the bond then the fixed payments from the
bond are transferred entirely to the counterparty and the bank’s net return is
the floating interest received from the counterparty.

The meaning of the terms “long” and “short” are a bit ambiguous for swaps.
We will therefore refer to swaps more precisely as payer or receiver swaps. In
this book, the usual market convention will be adopted: “long” means “long
payer”, i.e., one pays the fixed rates. This is the exact opposite as was the case
for bonds: one is long in a bond when one receives its fixed rate (i.e., coupon)
cash flows. The long/short conventions for swaps extend to options on swaps,
called swaptions (see Sect. 18.6.4). All conventions for swaps and swaptions are
summarized in Table 15.4.

15.7.1 Cash Flows and Present Value

The cash flow stream of a plain vanilla interest rate swap (long payer) is
equivalent (except for default risks) to a portfolio consisting of a long floater
and a short bond paying a coupon at the same rate as the fixed side of the swap.
If the floater has a spread over the reference rate, it can be added to the coupon
of the fixed side for the purpose of pricing the swap if the payment dates of
the fixed and floating sides of the swap coincide. Otherwise, the floating side
can, as mentioned in Sect. 15.6, be interpreted as a portfolio consisting of a
floater, a bond and a zero bond. The present value of a swap can be computed
directly from the present values of a floater and a bond. For example, for the
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Table 15.4 Long/short conventions for swaps and swaptions. The parts in brackets are
often left out. Expressions used most often are printed in bold

Short name Full name Corresponds to Meaning

Payer swap Long (payer)
swap

Short receiver
swap

Pay fixed and receive
variable interest

Receiver
swap

Short (payer)
swap

Long receiver
swap

Receive fixed and pay
variable interest

Long call (Long) call on
payer swap

Long put on
receiver swap

Right to pay fixed
and receive variable
interest

Long put (Long) put on
payer swap

(Long) call on
receiver swap

Right to receive fixed
and pay variable
interest

Short call Short call on
payer swap

Short put on
receiver swap

Obligation to receive
fixed and pay vari-
able interest

Short put Short put on
payer swap

Short call on
receiver swap

Obligation to pay
fixed and receive
variable interest

case of a long payer swap

V (t) =V Floater − V Bond

=B(t, tmf +1)
[
N + C fix

Z (tmf +1)
] + N

nf∑

i=mf +2

B(t, ti)siτ (ti−1, ti)

− N

nb∑

i=mb+1

B(t, ti)Kτ(ti−1, ti) − NB(t, tnb
)

=N
[
B(t, tmf +1) − B(t, tn)

] − NKA(t, t0, tn) (15.22)

+ B(t, tmf +1)C
fix
Z (tmf +1) + N

nf∑

i=mf +2

B(t, ti)siτ (ti−1, ti) .

Here, we have introduced the sub-indexes f (for floater) and b (for bond) to
differentiate between coupon period indexes related to the variable and fixed
leg of the swap. This is required, since interest rate periods for both legs are
generally different. Often, the interest periods for the fixed leg are twice as
long as for the variable leg, such that only every second coupon payment date
of the variable leg falls together with one of the fixed rate leg. Start date t0
and maturity tn = tnf

= tnb
are identical for both legs of a regular swap,
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though. The annuity A(t, t0, tn) always relates to the fixed side of the swap,
the additional sub-index b may therefore be dropped. In the case of identical
period lengths for both legs (which is rarely the case), the expression further
simplifies to:

V (t) = N [B(t, tm+1) − B(t, tn)] − N

nf∑

i=m+2

B(t, ti)(K − si)τ(ti−1, ti)

+ B(t, tm+1)
(
C fix

Z (tm+1) − K
)

.

In Table 15.5, we consider a swap with a notional of 250,000 euros in which
the 1-year floating rate is exchanged for a fixed interest rate of 6% over a period
of 15 years. We do so by constructing a cash flow table of the swap, i.e. the list
of all expected cash flows as seen from today are calculated for both, the fixed
and floating sides (called legs) and the resulting net cash flow is determined.
The present value is the sum of all net cash flows discounted at the current
spot rates corresponding to the respective payment dates. The cash flows on
the fixed side have already been established through the fixed interest rate and
the principal agreed upon in the swap contract. The expected cash flows on
the floating side are obtained from the forward rates for 1-year deposits incl.
the basis spread. Calculation of the forward rates is demonstrated in Fig. 2.2.
In addition, both swap legs are calculated according to Eq. 15.22 as bond resp.
floater. The difference also equals the swap present value, since the additional
nominal repayments cancel each other out.

15.7.2 Par Swap Rate and Yield to Maturity

The par swap rate is the analogue to the bond par rate. The definition of par
rates can be transferred to swaps by defining that a swap quotes at par, if its
present value, Eq. 15.22, is equal to zero. Then, the interest rate of the fixed
leg is equal to the par swap rate, if the swap priced with given rate curves for
calculation of forward rates and discount factors is at par. With this definition,
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we get for the par swap rate KS the expression:

KS = 1

A(t, t0, tn)

⎡

⎣B(t, tmf +1) − B(t, tn) + B(t, tmf +1)C
fix
Z (tmf +1)

+
nf∑

i=mf +2

B(t, ti)siτ (ti−1, ti)

⎤

⎦ .

Setting the basis spread to zero, si = 0, the par swap rate is identical to the
par rate (Eq. 15.12) of a bond equivalent to the fixed leg at the beginning of
an interest period, i.e. for t = tm, since the float leg equals the nominal:

At the start of an interest period, the swap rate is equal to the par rate of the
bond on the fixed side of the swap, if basis spreads are neglected.

If a new swap is traded, the fixed rate is set equal to the par swap rate, such that
the swap present value equals zero, if we consider a default risk free swap (e.g.
a swap that is collateralized or traded via a Central Counter Party or CCP).

In principal, the yield to maturity of a swap could be calculated in the
same way as the YTM of a bond via its present value Eq. 15.22. According
to the definition of YTM, that interest rate needs to be determined (e.g. by
numerical iteration), which, entered into Eq. 15.22 for all spot rates, gives
the current swap present value. This would be the YTM of the swap. Note
that we have to deal with the complication that the interest rate curve is also
needed to calculate the forward rate for the variable leg. For a meaningful
definition, these forward rates would have to be calculated with the YTM,
too, interpreting the basis spread si as a spread over YTM. Another possibility
would be to freeze the forward rates in a first step and keep them constant
later on.

Unfortunately, a YTM calculated in this way would not have the same
meaning as the bond YTM. In case of a bond, the YTM is equal to the yield,
the investor who holds the bond until maturity would earn (if the issuer won’t
default). In contrast, the yield of a swap cannot be known in advance because
of its dependency on the stochastic forward rates. The yield could even turn
negative, if the interest rate level changes. Therefore, YTM is of only limited
help for analysis and valuation of swaps and somewhat misleading. Instead,
other sensitivities should be used.
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15.7.3 Sensitivities

Classic fixed income sensitivities like modified duration, convexity and key
rate duration could formally be calculated for swaps, too, but not without
losing most of their significance for risk management. E.g., the duration
of a swap could become negative, which can be seen easily if the swap is
decomposed into a floater and a bond. The duration of the floater equals more
or less (depending on the spread) the end date of the current interest period
and is in general much smaller than the duration of the bond. Therefore,
the duration of a payer swap would become negative. This is not consistent
with the interpretation of the duration as a weighted average lifetime. For the
same reason, it is problematic to calculate the duration for a portfolio with
long and short positions in fixed income securities, since the duration could
also become negative. Often, this problem is circumvented by calculating the
duration of the swap separately for each leg, i.e. the equivalent floater and
bond, and averaging over both values. However, it is preferable to use other
sensitivities described below, which could be calculated and interpreted for any
financial product regardless of their structure. They are more useful do address
the requirement to measure sensitivities with respect to a changing interest rate
curve.

The most important figure or sensitivity for measuring interest rate sensi-
tivities is the PV01 (Present Value of a Basis Point), which is the change of the
present value of a financial instrument, if the interest rate curve is shifted up by
1 basis point. Alternatively the DV01 (decrease of a basis point) could be used,
which is calculated by decreasing the rate curve by 1 basis point.

The PV01 could be calculated for the whole interest rate curve (parallel
shift, i.e. shift of all zero rates at the same time) or for special time nodes only
(time-dependent PV01 or bucketed PV01). In the latter case, the resulting figures
include detailed information on the exposure to certain spot interest rate terms,
which is very important for steering the interest rate risk. Let B̃(t, ti) be the
discount factor analog to B(t, ti), but based on a spot rate shifted by one basis
point. To make this definition precise, we need to define the compounding
method to be used to calculate the 1 basis point add-on. E.g., in continuous
compounding we get the simple result

B̃(t, ti) = e(ti−t)/10000B(t, ti) .
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The expressions for simple compounding

B̃(t, ti) = 1

B−1(t, ti) + (ti − t )/10000

and discrete, annual compounding

B̃(t, ti) =
(

1

[B(t, ti)]
1

ti−t + (ti − t )/10000

)ti−t

are somewhat more complex. To determine time-dependent PV01s, we also
need to define the time points, at which we want to shift the interest rate
curve. In addition, we need to define how to interpolate the discount factors
in between the selected time points.

The discount factor curve can be defined as a set RC of the discount factors
the swap depends upon, i.e.

RC = {
B(t, ti)|i ∈ mf , . . . , n ∨ i ∈ mb, . . . , n

}

and for the parallel shifted curve

R̃C =
{
B̃(t, ti)|i ∈ mf , . . . , n ∨ i ∈ mb, . . . , n

}
.

Then, we get for the PV01

PV 01 = V (t, R̃C) − V (t, RC) .

Here, we have interpreted the present value of the swap V (t) = V (t,RC)

explicitly as a function of the current interest rate curve.

15.8 Forward Swaps

A forward swap, also called a deferred swap is a swap with a lifetime over a
future time span from T to T ′, for example in three years (T = 3) over two
years (T ′ = 5). The cash flow dates are denoted by T0, T1, ..., Tn = T ′ where
T0 = T equals the start of the first interest period. The times T1, ..., Tn are
thus, as seen from T , still future cash flow dates. The relation between these
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times can be summarized by

t < T0 = T < T1 < T2 < · · · < Tn = T ′ (15.23)

15.8.1 Present Value

Equation 15.22 for the present value of a swap holds for the future time T

as well. As far as the first fixing date Tfix of the variable leg lies in the future
(which we will assume in the following, since otherwise, there would be no
remarkable difference to a regular swap), we only have to replace the term for
the already fixed rate by an equivalent term including the forward rate.

V (t, T ) = N
(
B(t, T ) − B(t, T ′)

) − NKA(t, T , T ′) + N

nf∑

i=1

B(t, Ti)siτ (Ti−1, Ti) .

(15.24)

Table 15.6 shows an example for the valuation of a forward swap.

15.8.2 Forward Par Swap Rates

In analogue to the definition of the par swap rate for regular swaps in
Sect. 15.7.2, the forward par swap rate KS(t, T , T ′) is determined as the
interest rate for the fixed leg that sets the present value of the forward swap in
Eq. 15.24 equal to zero:

0 = N
(
B(t, T ) − B(t, T ′)

) − NKS(t, T , T ′)A(t, T , T ′) + N

nf∑

i=1

B(t, Ti )siτ (Ti−1, Ti) ,

i.e.

KS(t, T , T ′) = 1

A(t, T , T ′)

(
(
B(t, T ) − B(t, T ′)

) +
nf∑

i=1

B(t, Ti)siτ (ti−1, Ti)

)

.

(15.25)
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This expression for KS(t, T , T ′) becomes identical to the par swap
rate KS(T , T , T ′) once the first period of the float leg is fixed. As an example,
Table 15.7 demonstrates the calculation of the par swap rate of the forward
swap in Table 15.6.

15.8.3 Annuity as Numeraire

In Eq. 15.24, we calculate the present value of the forward swap by discounting
the individual cash flows. Alternatively, the present value can be determined
by comparing the difference between the forward par swap and the forward
swap with fixed strikeK . The forward par swap is the forward swap with fixed
strike equal to the future par swap rate KS(T , T , T ′). The float leg of both
swaps is identical and vanishes while calculating the difference of both swap
values, with only the difference of the fixed legs remaining.

Today, the future value of the par swap rate is not known yet, therefore we
have to calculate the expected value of this difference. In the terminal measure
with maturity T we have, according to Eq. 14.13, the following result for the
present value V (t) of a forward payer swap:

V (t)

B(t, T )
= ET

t

[
(KS(T , T , T ′) − K)A(T ,T , T ′)

]

= ET
t

[
(KS(T , T , T ′)A(T , T , T ′)

] − KA(T , T , T ′) .

The calculation of the expected value requires to choose a specific interest
model, since it depends on the distribution of the par swap rate at the future
time T in the terminal measure.

On the other hand, we are not bound to use the terminal measure, but
are free to choose a more convenient measure and respective numeraire. An
especially appealing choice of numeraire is the annuity: as a linear combination
of zero bonds, the annuity is a tradable asset and fulfills all requirements
of a numeraire. Also, the term in brackets in Eq. 15.25 is another linear
combination of zero bonds and a tradable asset, too. In fact, it’s just the present
value of the float leg of the forward swap. As a consequence, KS(t, T , T ′) can
be written as the quotient of the present value of the float leg and the numeraire
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(i.e., the annuity). Together with Eq. 13.1 we get:

KS(t, T , T ′) = 1

A(t, T , T ′)

(
(
B(t, T ) − B(t, T ′)

) +
nf∑

i=1

B(t, Ti)siτ (ti−1, Ti)

)

= EA(t,T ,T ′)
t

[
1

A(T , T , T ′)

(
(
B(t, T ) − B(t, T ′)

)

+
nf∑

i=1

B(t, Ti)siτ (ti−1, Ti)

)]

= EA(t,T ,T ′)
t

[
KS(T , T , T ′)

]
.

Here, EA(t,T ,T ′)
t denotes the expected value in the annuity measure, where the

arguments of A are often suppressed. This expression is analog to Eq. 14.18
for the forward rate rf (T , T + τ |t ), with the difference that we have chosen
the annuity instead of the zero bond as numeraire. Thus, the forward par swap
rate is a martingale in the annuity measure.



16
FX Derivatives

16.1 FX Forward Rate and Cross Currency Basis

The underlying of a FX forward contract (FX or Forex are abbreviations for
foreign currency exchange) is a forward FX rate. In the following, we define
one of the two currencies as the domestic currency. All figures are given in
terms of the domestic currency if not stated otherwise. The other involved
currency is denoted as foreign currency. Figures in foreign currency will be
marked with the index f .

For valuation purposes, a FX rate corresponds to an underlying with a
dividend yield q , where q is equal the risk-free interest rate rf in foreign
currency. Then, according to Eq. 6.1 the forward FX rate, i.e., the forward
price of the foreign currency, is

S(t, T ) = Bf(t, T )

B(t, T )
S(t) . (16.1)

Here, the discount factor in foreign currency is Bf (t, T ).
The above relation follows from analyzing the arbitrage free replication of

the forward FX contract: An amount of N€ is used to purchase the amount
of N/S(t) in $ for the spot exchange rate given by S(t) €/$. This amount is
invested in the US money market over the time period (T − t ) until maturity
at a rate rf . Afterwards, the entire sum is transfered to € at the exchange rate
S(T ) €/$ valid at the future time T . The value of this amount in euros at the
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end of these transactions is

S(T )︸ ︷︷ ︸
Exchange into Euros

1/Bf (t, T )︸ ︷︷ ︸
Compounding in USD

N/S(t)︸ ︷︷ ︸
Amount in USD

.

On the other hand, if the capital N is invested directly in the EUR money
market for the time period (T −t ) at the rate r , it will have earnedN/B(t, T ).

If no arbitrage is possible between the spot and forward market with respect
to the foreign currency exchange rate, both strategies must yield the same
amount if the exchange rate at the future date T is already fixed at time t in
a foreign exchange forward contract. The forward exchange rate S(t, T ) for
this transaction is the value for S(T ) established by an arbitrage-free market
as seen from today. Equating both strategies immediately yields Eq. 16.1.

So far the theory. Comparison with reality reveals, that actually traded
foreign FX rate differ slightly from those calculated by Eq. 16.1. The tiny
difference is called cross currency basis or CCY basis. For the major currency
pairs, the CCY basis amounts to a few basis points. The origin of this CCY
basis is not entirely clear. Frequently discussed arguments involve the different
levels of average default probabilities in both currency areas or an unbalance of
bid and offer for both currencies. Fact is that it is not possible to avoid this CCY
basis, since all forward FX contracts, including themost liquid instruments like
FX swaps and cross currency swaps, observe this small correction of implied
forward FX rates. Anybody interested in hedging future exposure to foreign
currency has to take the CCY basis into account, though it is in general not
explicitly quoted (except for CCY basis swaps). For the valuation of forward
FX contracts, one ore both discount factors involved will be modified such that
Eq. 16.1 is exactly true for those modified interest rate curves (see Sect. 29.8).
Therefore, in the following, we still could use Eq. 16.1 for pricing forward FX
contracts without specifying explicitly the CCY basis.

16.2 FX Swaps

FX swaps are the most liquidly traded forward FX contracts at all. Therefore,
FX swap quotes are important benchmark instruments for calibration of
all valuation models which take FX risk into account, as well as for the
construction of foreign interest rate curves, as we will see later. A FX swap
combines a FX spot trade with a reverse forward FX contract at some future
time (see Fig. 16.1) and could be stripped in these two trades. More often,
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0 T

N

N/S(t)
N

N/S(t, T )

t

Fig. 16.1 Sale of N€ at a price of N/S(t)$ at time t (spot day) and buy back of N€ for
N/S(t, T )$ at time T

however, FX forwards (or FX outrights) are synthesized by means of a FX swap
and a FX spot trade.1

The difference between the forward price and the spot price is sometimes
denoted as the basis of the FX swap, but the term swap points or brief pips is
more frequently used, also avoiding confusion with the CCY basis. The swap
points b(t, T ) depend only on the differences in risk free interest rates for both
involved currencies. In simple compounding, b(t, T ) can be given explicitly
by (see Table 2.5):

b(t, T ) ≡ S(t, T ) − S(t)

=
[
Bf (t, T )

B(t, T )
− 1

]
S(t) general

=
[

1 + r(T − t )

1 + rf (T − t )
− 1

]
S(t) simple compounding

≈ (r − rf )(T − t )S(t) linear approximation. (16.2)

In linear approximation (e.g. for short terms), the swap rate is simply the spot
exchange rate multiplied by the interest spread of the two currencies involved
and by the length of the time period under consideration.

1Though in general, single FX outrights are not hedged by micro hedges, but at the portfolio level.
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16.2.1 Short Term Financing of Positions in Foreign
Currency

With only a few exceptions, spot transactions are executed with two spot
or value days, i.e. the settlement of the transaction actually takes place two
business days after trade execution. Therefore, the spot price quoted today is
strictly speaking the price of the asset in two business days.

For the short term financing of positions in foreign currency, it is sometimes
required to trade maturities shorter than that. Here, FX swaps play an
important role. At the end of each trade day, the accumulated cash positions
in foreign currencies could be rolled forward by one business day (i.e. moved
to the next business day) by means of FX swaps. Hereto, overnight (o/n) FX
swaps are traded. o/n FX swaps start today (i.e. t = 0) and end one business
day later t +1bd (here, bd stands for business day) . Equivalently, it is possible
to trade tomorrow next (t/n, or tom-next) FX swaps with start at t = 1bd from
today and end at maturity t = 2bd (i.e. spot day) to roll forward tomorrow’s
currency exposure. Usually, the FX swaps are structured such that the amount
in foreign currency is the same for the start and the end date, accumulating
the interest rate difference (pips) in domestic currency. These roll-over trades
help to avoid foreign currency positions during the night.

Pips for o/n or t/n FX swaps can also be calculated as in Eq. 16.2, i.e. in
relation to the spot rate. Since now t > T , cash flows at time T needs to be
compounded rather than discounted to t , though. E.g., we get for o/n pips
with spot day= 2bd:

b(2bd, 0) =
[

B(0, 2bd)
Bf (0, 2bd)

− 1

]
S(2bd) .

16.3 FX Forwards and FX Futures

FX forwards or FX outrights differ from simple FX spot trades only by the
term to maturity, i.e. the contract is settled after the spot day. A FX swap
could be stripped into a FX spot trade and a FX forward. Since FX swaps
are more liquidly traded than FX forwards, the reverse case is more common,
i.e. that a FX forward is synthesized by a portfolio consisting of a FX spot
and a FX swap, where the FX spot component of the FX swap neutralizes the
FX spot contract. Corporates frequently use FX forwards to hedge themselves
against FX risk of future payments in foreign currency. At some exchanges,
it is possible to trade FX futures, i.e. the exchange traded counterpart of FX
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forwards, which are OTC contracts. They differ from FX forwards by the
requirement to maintain a margin account (similar to other futures contracts)
and standardized conventions defined by the exchange.

16.4 Cross Currency Swaps

16.4.1 Plain Vaniall CCY Swap

FX swaps with more than two years term to maturity are usually not traded
without additional exchange of interest rate payments in both currencies. FX
swaps with interest rate payments are called cross currency swaps or brief CCY
swaps. Interest payments for both legs could be based on a variable rate index
that is related to the currency area of each leg’s currency. Consider, for example,
a CCY swap with semi-annual payments based on the 6MEURIBOR in EUR
against quarterly payments in USD based on the 3M USD LIBOR rates.
Other combinations, i.e. fixed vs. float, float vs. fixed, or even fixed vs. fixed
are also possible. Since the coupon payments are in different currencies, the
latter form fixed-fixed does make sense here, in contrast to an interest rate swap
with both legs in the same currency. Similar to an FX swap, a CCY swap may
include the exchange of notional at start and at maturity in both currencies. At
trade date, nominal and interest rate (if at least one of both legs pays or receives
coupons based on a fixed interest rate) are determined such that the present
value vanishes. In general, for one of the two currencies, the notional is some
constant value over the whole term to maturity. A typical use case for such a
CCY swap is the hedge against the FX risk initiated by a position in a bond or
loan in foreign currency. In this case, the CCY swap would be structured such
that the leg in foreign currency matches exactly all payments of the original
position with opposite sign. If the payments in home currency are variable,
the whole package equals a synthetic floater. The risk profile of such a synthetic
floater differs from a “real” floater in respect of default risk, CCY basis spread
risk (see below), and liquidity risk.

16.4.2 Mark to Market CCY Swaps

At trade date, the present value of a CCY swap is zero and this holds also
for the nominal exchange at maturity in particular. Over the full life time
of the swap the FX rate will vary and the present value of the final nominal
exchange may fluctuate considerably, especially with for the commonly long
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terms to maturity of up to 20 or 30 years. If the CCY swap trade is not subject
to a collateral management agreement, this exposure is fully exposed to credit
default risk and the financial institution is required to reserve a proper amount
of capital for this trade.

To avoid this credit risk effect, it is possible to enter instead into a mark to
market CCY swap or brief MTM CCY swap. Here, the nominal for one leg of
the CCY swap is fixed for the full life time, while the nominal for the other
leg of the swap will be adjusted at the beginning of each interest rate period
by applying the FX spot rate at that future date, such that both nominals will
have the same present value again. The difference between the nominal of the
previous period and the new nominal will compensated by a payment equal
the nominal difference (in nominal currency). Therefore, the present value of
the nominal exchange caused by FX rate changes will be reset to zero after each
period.

16.4.3 Cash Flows and Present Value

For the present value calculation, we will restrict ourselves to fix-float MTM
CCY swaps, since the consideration could easily be extended to other variants.
We assume that the MTM CCY swap pays fixed rate coupons in foreign
currency and receives floating rate coupons in domestic currency, and the
MTM adjustments will be made on the leg in domestic currency. Then, the
nominal in foreign currency Nf is constant over the full lifetime of the swap.
The FX spot rate S(t) is given as price of one unit in foreign currency, expressed
in domestic currency. S(t, T ) is the appropriate forward FX rate. In practice,
the nominal exchange at the start of the swap is often excluded from the trade,
since it could be replaced by a spot trade and is anyway worthless once the swap
has started already. For simplifying the notation, we will therefore neglect this
first notional exchange.

With the above preliminaries, the present value of the fixed legV fix
MTM CCY(t)

equals the present value of a bond in foreign currency (Eq. 15.6):

V fix
MTM CCY(t) = 1

S(t)

(
Nf KAf (t, t0, tn) + Nf Bf (t, tn)

)
,

where

Af (t, t0, tn) =
n∑

i=1

Bf (t, ti)τ(ti−1, ti)1t<ti .
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is in analogy to Eq. 15.7 the annuity in foreign currency and K is the fixed
interest rate. The factor 1/S(t) transfers the result from foreign to domestic
currency.

For valuation of the variable leg, we require to change the expression for
the present value of a floater (Eq. 15.20): The nominal hast to be adjusted
according to the MTM rule and the additional payments for the nominal
differences need to be added. Thus, the present value for the float leg is

V float
MTM CCY(t) =S(tm)Nf

(
1 + Rfixτ(tm, tm+1)

)

+ Nf

n∑

i=m+2

S(t, ti−1)B(t, ti)

[
B(t, ti−1)

B(t, ti)
− 1 + siτ (ti−1, ti )

]

+ Nf S(t, tn−1)B(t, tn)

+ Nf

n−1∑

i=m+1

B(t, ti) (S(t, ti) − S(t, ti−1)) .

Since t > tm, S(tm) lies in the past, and therefore denotes a FX rate which has
already been fixed at tm. In contrast to the floater Eq. 15.20, this expression
could not further be simplified because of the additional factors S(t, ti−1) in
the second line. Instead of giving the basis spreads explicitly, we could again
make use of a forward curve in accordance with Eq. 15.3, which yields

V float
MTM CCY(t) =S(tm)Nf

(
1 + Rfixτ(tm, tm+1)

)

+ Nf

n∑

i=m+2

S(t, ti−1)B(t, ti)
[
B−1

τ (ti−1, ti |t ) − 1
]

+ Nf S(t, tn−1)B(t, tn)

+ Nf

n−1∑

i=m+1

B(t, ti) (S(t, ti) − S(t, ti−1)) .

Here, Bτ(t, T ) denotes the forward curve for the interest rate index of the
float leg. It is worth mentioning that the leg’s present value could become
negative due to the MTM payments related to the nominal, if the FX rate falls
significantly over time.
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Now, we can simply write for the present value of the MTM CCY swap

VMTM CCY(t) = V float
MTM CCY(t) − V fix

MTM CCY(t) .

16.5 CCY Basis

So far, we have just used the discount factor curves in domestic and foreign
currency without consideration how these curves have been constructed. The
first approach would be to use the risk neutral curves in each currency, which
can be constructed as described in detail in Sect. 29.6. For example, one
would use the USD OIS curve for the USD market and the EONIA curve
for the EUR market. However, if one would calculate the PVs of actually
quoted FX and CCY swaps, the resulting PVs would be systematically slightly
different from zero in contradiction to the assumptions. Indeed the previously
described procedure is not fully consistent with market practice. Instead, for
the valuation of forward FX derivatives, for at least one of the two involved
currency a discount factor curve that has been adjusted for the so called cross
currency basis or brief CCY basis needs to be applied.

For collateralized forward FX trades, the currency of the cash collateral
determines, which curve needs to be adjusted. For most currency pairs, USD
is the collateral currency. In this case the unchanged USD OIS curve would
serve as discount curve for cash flows in USD, regardless whether USD is the
domestic or foreign currency. Then, the discount curve for the other, non-
USD currency, needs to be adjusted for the CCY basis spread. In the case of
a CCY swap exchanging payments in GBP vs. EUR with collateral in USD,
this would imply that the cash flows for both legs need to be discounted by a
CCY discount curve (i.e. a discount curve adjusted for the CCY basis). Liquid
quotations of FX and CCY swaps are used to calculate the implied CCY basis
spread curve (see Sect. 29.8). This way, it is guaranteed that all forward FX
derivatives can be valuated consistently.

The existence of the CCY basis causes many problems. An especially nasty
problem is related to Hedge Accounting according to IFRS. The forward FX
rate S(t, T ) is implicitly dependent on the CCY basis, too, i.e. one or both
discount curves included in Eq. 16.1 are CCY discount curves, in order to
calculate the market conform forward FX rate. Although the CCY basis could
just be added to or subtracted from the risk neutral rate curve to form a CCY
discount curve, the CCY basis is no real interest rate, similar to the tenor basis
spread of forward rates. The question arises, which effect causes the CCY basis.
An often heard explanation argues that the CCY basis reflects the difference
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of the average default risk levels of market participants in both currency areas.
A more pragmatic view is this: Since it is not possible to avoid the CCY basis
while trading and financing foreign currency derivatives, market maker could
just factor them in to reflected differences in offer and demand for certain
currency pairs.



17
Variants of Fixed Income Instruments

Interest rate derivatives trade with a very broad variety of different features. In
the following, a selection of these various features is presented. Though each of
the following examples will focus on one particular feature, it should be noted
that different features are frequently combined in a single trade.

17.1 Basis Swaps

Basis swaps have two legs like Plain Vanilla swaps, but none of these are based
on a fixed rate. Instead, the interest coupons on both legs are based on variable
interest rate index (i.e. floating legs), but for different interest rate period
lengths. For example, a typical basis swap exchanges pays quarterly a coupon
based on the 3M EURIBOR reference index and receives semi-annually a
coupon based on the 6M EURIBOR. The tenor basis spread over the risk free
interest rate will be different for both rate indexes. Therefore, a small spread
adjustment is added to the rate index for one leg in order to make the basis
swap worthless at trade day. In general, the spread is added to the leg with
the shorter interest rate period (or tenor), yielding in a positive spread. The
interest rate periods are in general chosen to be consistent with the periods
belonging to the rate reference index.
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17.1.1 Present Value and Cash Flows of Basis Swaps

The present value of a floating swap leg equals the present value of a swap
minus the fixed coupon payments. With Eq. 15.22, we get for both legs 1 and
2 of the basis swap:

V1(t) =N
[
B(t, t1,m1+1) − B(t, t1,n1)

] + B(t, t1,mi+1)C
fix
Z (t1,mi+1)

+ N

n1∑

i=m1+2

B(t, t1,i)τ (t1,i−1, t1,i)s1,i

V2(t) =N
[
B(t, t2,m2+1) − B(t, t2,n2)

] + B(t, t2,m2+1)C
fix
Z (t2,m2+1)

+ N

n2∑

i=m2+2

B(t, t2,i)τ (t2,i−1, t2,i)(s2,i + sb) . (17.1)

Here, index 1 denotes the leg based on the reference index with the longer
period. The present value of the basis swap is simply the difference of both leg’s
present values, i.e. V (t) = V1(t)−V2(t) or V (t) = V2(t)−V1(t), depending
on which leg pays/receives interest coupons. This both legs terminate at the
same maturity date, we have t1,n1 = t2,n2 , though n1 �= n2 because of the
different periods lengths For the same reason the coupon dates t1,i and t2,i

differ. In general, all coupon payment dates of leg 1 (with the longer interest
rate period) are also payment dates for leg 2, but not vice versa. The time-
dependent basis spreads s1,i and s2,i also differ for the different rate reference
indexes. sb is the flat basis spread to be added to the rate index with the shorter
period such that the present value vanishes at trade date.

Alternatively, the present value could be expressed in terms of special tenor
interest rate curves, as has been used in Eq. 15.3. Naming both tenor curves
B1(t, T ) and B2(t, T ) respectively, we get

V1(t) =N
[
B(t, t1,m1+1) − B(t, t1,n1)

] + B(t, t1,mi+1)C
fix
Z (t1,mi+1)

+ N

n1∑

i=m1+2

B(t, t1,i)
(
B−1

1 (t1,i−1, t1,i |t ) − 1
)

V2(t) =N
[
B(t, t2,m2+1) − B(t, t2,n2)

] + B(t, t2,m2+1)C
fix
Z (t2,m2+1)

+ N

n2∑

i=m2+2

B(t, t2,i)
(
B−1

2 (t2,i−1, t2,i |t ) − 1 + τ(t2,i−1, t2,i)sb
)

.
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17.1.2 Par Basis Swap Spread

The par basis swap spread sb is determined at trade date, such that the present
value vanishes, i.e. that both legs in Eq. 17.1 have the same value V1(t) =
V2(t). If the swap starts at value date and the rate references for both first
coupon periods have not been fixed yet, the terms with the fixed coupons can
be dropped. In addition, the term B(t, t0) − B(t, tn) with tn = t1,n1 = t2,n2

is identical for both legs and vanishes, too. It remains

sb = 1
n2∑

i=1
B(t, t2,i)τ (t2,i−1, t2,i)

(
n1∑

i=1

B(t, t1,i)τ (t1,i−1, t1,i)s1,i

−
n2∑

i=1

B(t, t2,i)τ (t2,i−1, t2,i)s2,i

)

.

If we approximate the par basis swap spread sb applying the (false) assumption
the coupon periods have equal lengths and both basis spreads are constant over
time, i.e. s1,i = s1 and s2,i = s2, then sb is just given by the difference of both
spreads, sb ≈ s1 − s2.

17.2 Annuity Loans

In light of the increasing demand for improved credit risk management it is
required to evaluate a bank’s loan portfolio according to standard arbitrage free
pricing methods on a regular basis. This is especially necessary, if the interest
rate and credit risks embedded in the loan portfolio should be hedged means
of interest rate swaps, credit default swaps, and other derivatives.

As an example for the mark-to-market of loans, we consider in the following
the calculations for a typical annuity loan.

17.2.1 Cash Flows and Residual Debt

Like a bond, an annuity loan is determined by its cash flows. These cash flows
are the constant installments C paid during the lifetime of the loan and the
payment of the residual debt at maturity. The fundamental difference between
an annuity loan and a coupon bond is that payments on the principal are made
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during the lifetime of the loan, i.e., before maturity. Thus, the residual debt
N(t) by reference to which the interest payments are determined, decreases
with time. The amount C paid at the end of each interest period covers
the interest accrued in that period. The amount of C exceeding the interest
payment due goes toward repaying the principal on the loan. The contractually
agreed upon interest rate is denoted byK.The paymentC can be decomposed
into an interest cash flow CZ and an amortization cash flow CT as follows:

C = CZ(ti) + CT (ti) ∀ i = 1, . . . , n (17.2)

with

CZ(ti) = N(ti−1)Kτ(ti−1, ti)

CT (ti) = C − N(ti−1)Kτ(ti−1, ti) .

The residual debt N(ti) at time ti is the amount on which interest must still
be paid after the time ti . An expression for this residual debt can be derived
recursively. For simplification of notation, we set Ni = N(ti) and zi = 1 +
Kτ(ti−1, ti). For the first interest period, the nominal equals N0 = N , i.e.
the initial loan amount. For the following interest rate periods, the remaining
debt could be calculated iteratively as follows:

N1 = Nz1 − C

N2 = N1z2 − C = (Nz1 − C) z2 − C = Nz1z2 − C(1 + z2)

N3 = N2z3 − C = (Nz1z2 − C(1 + z2)) z3 − C = Nz1z2z3 + C(1 + z2z3 + z3)

Ni = N

i∏

j=1

zj − C

⎡

⎣1 +
i∑

k=2

i∏

j=k

zj

⎤

⎦ . (17.3)

In the case that all interest periods have exactly the same period lengths, i.e.
zi = z = const., the expressions simplifies to

Ni = Nzi − C

i−1∑

j=0

zj = Nzi − C
1 − zi

1 − z
. (17.4)

In the last step of the last transformation, we have again applied the formula
for the sum of the Geometric series. At some time t between to coupon dates,
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tm < t < tm+1, the residual debt increases by the accrued interest until t . This
yields for the residual debt N(t) at time t

N(t) =
[
Nzm − C

1 − zm

1 − z

]
(1 + Kτ(tm, t)) (17.5)

17.2.2 Present Value

In addition to the installment payments, the final amortization of the residual
debt N(tn) occurs at maturity, T = tn. This is treated as a cash flow for the
purpose of calculating the present value. The amount of this cash flow is given
by Eq. 17.3 with i = n. The present value as the sum of all discounted future
cash flows thus becomes:

V (t, T ) =
n∑

i=m+1

B(t, ti) C︸︷︷︸
installments

+ B(t, tn) N(tn)︸ ︷︷ ︸
residual debt

for tm ≤ t < tm+1

(17.6)

= C

n∑

i=m+1

B(t, ti) + B(t, tn)

⎡

⎣N

i∏

j=1

zj − C

⎛

⎝1 +
i∑

k=2

i∏

j=k

zj

⎞

⎠

⎤

⎦ .

Note that the residual debt and the installment payments are fully determined
by the terms of the loan contract. The only variable parameters in the present
value are the discount factors obtained from the current interest rate curve.
In the corresponding equation for a bond (Eq. 15.6), the spot rate discount
factors also appear as the only parameters not fixed and are thus the only
variables which are influenced by themarket. Thus, by equating the coefficient
of B(t, ti) for i = m+1, . . . n in Eqs. 15.6 and 17.6, we obtain a bond whose
behavior with respect to its present value and market risk is exactly the same
as the loan, if the same spot rate curve is used as was for the loan.

NbondKbondτ(ti−1, ti) = Cloan (17.7)

Nbond = N(tn)loan

=
⎡

⎣N

i∏

j=1

zj − C

⎛

⎝1 +
i∑

k=2

i∏

j=k

zj

⎞

⎠

⎤

⎦

loan .
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An annuity loan with a principal ofN , a fixed rateK and constant installments
C can, in accordance with Eq. 17.7, be interpreted as a coupon bond whose
principal is equal to the residual debt of the loan at maturity and whose coupon
is chosen such that the cash flows resulting from the coupon payments are
exactly the same as the cash flows from the interest and amortization of the
loan. All cash flows of such a bond are thus exactly those of the corresponding
loan. In terms of valuation, cash management, and risk management, there are
therefore no fundamental differences between bonds and annuity loans.

In general, the residual debt of the loan at maturity is not equal to zero,
even when the term of the loan runs until complete amortization. At time tn
of the last installment payment, the residual debt is not exactly equal to the
amortization component of the installmentC, but is usually somewhat larger.
The last payment date tn of such a loan is the date after which the residual
debt is smaller than C. As a rule, this residual debt is paid at tn as well. For this
type of loan, the residual debt and thus the principal of the associated bond is
indeed quite small but Eq. 17.7 can be applied nevertheless. If a loan happens
to be completely amortized upon payment of the final installment, Eq. 17.6
gives the present value as simply

∑
B(t, ti) C, i.e., equal to the present value

of a series of zero bonds, eachwith face valueC andwhose respectivematurities
correspond to the installment payment dates of the loan. An interpretation as
a coupon bond is thus no longer necessary.

An explicit example of these concepts is provided in Tables 17.1 and 17.2
for an 8 1

2 year loan of one million euros at a fixed rate of 8.4%, with semi-
annual installment payments of exactly 50,000 euros (this corresponds to an

Table 17.1 The equivalent coupon bond for an annuity loan with fixed rate 8.40% per
year and semi-annual payments

Bond Loan

Nominal 788,264 1,000,000
Value date 21. Feb. ’01 21. Feb. ’01
Original term 8.5
Time to maturity 7.358 7.358
Coupon period 0.50 0.50
Installment C 50,000 50,000
Initial yearly amortization 1.81%
Fixed rate 13.09% 8.40%
YTM 9.35% 9.35%
Par rate 9.45% 9.39%
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initial annual amortization of 1.81%). The associated bond has a face value of
746,470 euros and a coupon of 13.85%. Observe that for the calculation of
the bond, all relevant information can be obtained from the terms of the loan
contract. The current term structure and even the current present value is not
required.

The YTMs and par rates for the loan and its equivalent bond are included
in Fig. 17.1. A further discussion of the YTM and par rate for the loan can
be found in Sect. 17.2.3. The interest rates for the bond are determined as
follows: in the column “PV Using YTM” the future cash flows are discounted
at the YTM. In accordance with Table 5.2, the value of the YTMwas adjusted
(using the Excel function “Goal Seek”) until the sum of the thus discounted
cash flows equaled the present value obtained by using the current spot rates.
In the column “PV Using Spot Rate” under “Coupon = Par Rate”, the present
value of a bond with the par rate as the coupon was calculated varying the par
rate until the present value thus calculated equaled the residual debt.

Note that both for the bond and the loan, the par rate is not the same as
the YTM. Furthermore, the par rate of the loan and the equivalent bond are
differ significantly although the future cash flows are exactly the same! This is
because the bond and the loan have different current residual debts. The par
rate, an extremely instrument-sensitive parameter, reveals this difference. An
instrument is thus not fully characterized by its future cash flows. The open
claims associated with it are needed as well. The instrument is only completely
specified when both the future cash flows and the current residual debt are
known. The YTM depends only on the future cash flows and is therefore
identical for both, loan and equivalent bond.

In the above example, the accrued interest, defined as the difference between
the residual debt and the face value, is also calculated, as well as the price of
the bond, quoted as the clean price (present value less the accrued interest)
divided by the face value. As expected, the bond price with the par rate as the
coupon is exactly 100%.

In the special case of constant interest rate period lengths, Eq. 17.4 can be
used for the residual debt and the present value Eq. 17.6 of the loan becomes

V (t, T ) =
[
Nzn − C

1 − zn

1 − z

]
B(t, tn) + C

n∑

i=m+1

B(t, ti) . (17.8)
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17.2.3 Yield to Maturity and Par Rates

Substituting the cash flows 17.2 into the at-par condition, Eq. 5.5, this
condition reads for annuity loans

N(t) = C

n∑

i=m+1

B(t, ti) + B(t, tn)N(tn) mit

tm ≤ t < tm+1 < tm+2 < · · · < tn = T , n ≥ m + 1 . (17.9)

Finally, with Eq. 17.3 for the residual debt, we have
⎡

⎣N

m∏

j=1

zj − C

⎛

⎝1 +
m∑

k=2

m∏

j=k

zj

⎞

⎠

⎤

⎦ (1 + Kτ(tm, t))

= C

n∑

i=m+1

B(t, ti) + B(t, tn)

⎡

⎣N

n∏

j=1

zj − C

⎛

⎝1 +
n∑

k=2

n∏

j=k

zj

⎞

⎠

⎤

⎦ .

(17.10)

The fixed rate K , on which the zi depend, satisfying this condition is the par
rate. Comparison with Eq. 15.12 reveals that, because of the amortization, the
par rates of an annuity loan are quite different from those for bonds. This even
holds for the equivalent bond associated with the loan as is quite evident from
Fig. 17.1. Thus, the yield curve (par rates of coupon bonds) cannot be utilized
for the valuation of loans!

To calculate the YTM, the discount factors B(t, ti) on the right hand side
of Eq. 17.6 need to be replaced by discount factors BA(R̄, t, ti) based on a
time independent YTM R̄. Then, R̄ has to be varied until both sides of the
equation are equal, i.e. the right hand side equals the present value V (t, T ).

Here again, it can be shown that in the special case of constant interest rate
period lengths of exactly one year the YTM equals at the start of an interest
rate period exactly the par rate. We abstain here to write down the explicit
calculation, since it does not provide any new enlightenment (see Sect. 5.3).

In Table 17.3, all cash flows of the loan from Fig. 17.2 are listed and priced
with respect to the spot rates belonging to the debtors credit worthiness. The
two columns “interest” and “amortization” show explicitly how the constant
installment (cash flow) can be decomposed into interest (at the fixed rate of
8.40% specified in the contract) and amortization payments. The residual debt
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remaining after each payment is shown in the column “Residual Debt”. All of
the values for the residual debt listed in the example were computed using
Eq. 17.3 or Eq. 17.5. At the valuation date Feb-21-01, the present value of the
loan is 949,581.00 EUR, the current residual debt (i.e., the residual debt as of
the last payment date compounded up to February 21st), however, is equal to
993,227.00 euros. The present value is thus less than the remaining debt! This
means that the interest paid by the debtor on the loan is too low considering
his or her current credit worthiness. This example demonstrates the mark to
market of a loan.

In the column “Residual Debt Using Par Rate as Fixed Rate”, the residual
debt was calculated as if the par rate were the fixed interest rate instead of
the rate agreed to in the contract. Using Eq. 17.9 and Eq. 17.10, the par rate
was adjusted (using the Excel function “Goal Seek”) until the present value
of the loan (calculated as before with the spot rates) was equal to the current
residual debt. The par rate is thus the rate which the debtor should pay if the
transaction is to be “fair”. At 9.49%, it is substantially higher than the agreed
upon 8.40% rate. In the column “Present Value with YTM” the cash flows
and the final residual debt (calculated at the contractually agreed upon rate)
were discounted at the YTM rather than with the spot rates and the YTM
was adjusted until the sum of these discounted cash flows equaled the actual
present value. All of these yields are listed in Fig. 17.1.

17.2.4 Sensitivities

The sensitivities of an annuity loan with respect to the yield to maturity,
i.e., the modified duration and the convexity are given in their full generality
(i.e., without the assumption that the interest periods are of equal length) by
Eq. 17.3 as

Dmod = − 1

V

∂V

∂R
= −C

V

n∑

i=m+1

∂BA(R, t, ti)

∂R
− N(tn)

V

∂BA(R, t, tn)

∂R

(17.11)

Convexity = 1

V

∂2V

∂R
2 = C

V

n∑

i=m+1

∂2BA(R, t, ti)

∂R
2 + N(tn)

V

∂2BA(R, t, tn)

∂R
2 .
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The sensitivities with respect to the spot rates, namely the key rate durations
are

Dkey(t, ti) = −C

V

∂B(t, ti)

∂Ri

∀ i = m + 1, . . . , n − 1

Dkey(t, tn) = −C + N(tn)

V

∂B(t, tn)

∂Rn

. (17.12)

The derivatives can, again using Eq. 5.15, be interpreted as the sensitivities of
zero bonds, each multiplied by the present value of the corresponding zero
bond.

Alternatively, the YTM and sensitivities can be calculated for the equivalent
bond using Eq. 17.7. Since the sensitivities depend exclusively on the future
cash flows and not on the residual debt, the sensitivities for the bond listed in
Fig. 17.1 are equal to those of the associated annuity loan as well. In this way,
mark-to-market and risk management of a credit portfolio can be performed
using the traditional sensitivities.

17.3 Fixing-in-Arrears

A floater or a swap’s floating leg with fixing in arrears is a variant of where the
variable reference rate index is not fixed at the start of the interest rate period,
but at the end. Typically, the fixing day lies as many business days before the
end of the coupon period as is given by the spot day convention, such that
the actual start date the rate index is related to equals the end date T of the
current coupon period. This forward interest rate is no longer a martingale
in the T -measure. Instead, a change of measure from the Tf -measure (Tf

being the actual maturity of the interest rate period the rate index refers to) to
the T -measure is required. This yields a drift correction, also called convexity
adjustment (see Sect. 14.5).

17.4 Float Rate with Cap/Floor

Another variant of a floater or swap is a limitation of the variable rate index by
an upper limit (cap) or lower limit (floor). Such a Cap or Floor is effectively
an option that can be stripped from the original product. This type of option
will be discussed in more detail in Sect. 18.6.2.
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17.5 Call Rights and Break Clause

Bonds and Swaps have often embedded rights to cancel (call) the product that
can be exercised at some fixed date (European call right) or at multiple dates
(Bermudan call right). In a view cases, the call right can be exercised at any
time before maturity (American call right). From a mathematical perspective,
a bond a swap with embedded call rights can always be stripped into a bond
resp. swap without call rights and a separate option to sell the bond or swap, a
so called swaption. Therefore, we refer to Sect. 18.6.4 for a detailed discussion.

A break clause also allows to terminate the contract prior to maturity, but at
the then current market value. Without considering credit default risk, such
a feature does not have an impact on the valuation. Taking credit default risk
into account, the impact on valuation maybe significant, though, since the
exposure is limited.

17.6 Reverse Floater

The reverse floater’s coupon is based on a fixed interest rate, the offset,
subtracted by a variable rate reference index (i.e. 6M-LIBOR), sometimes
multiplicated by some factor. In addition, the coupon is often limited by an
upper (cap) or lower (flow) bound. E.g., the interest rate R for an interest rate
period is calculated as follows:

R = min (max (O − αL(tfix), F ) , C) ,

where

O offset
α multiplicative factor
L LIBOR interest rate
tfix fixing day of LIBOR Rate
F lower bound of coupon rate
C upper bound of coupon rate

For valuation purposes, the reverse floater could be stripped into a fixed rate
bond, a Plain Vanilla floater, a Floor, and a Cap.
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17.7 Constant Maturity Swaps

Constant maturity swaps or CMS are special variants of Plain Vanilla swaps
where the variable rate reference index is itself a par swap rate. For example,
one leg of the swap pays an annually coupon with an amount equal to the
quoted swap rate for a fixed maturity (= “Constant Maturity”) of, e.g., 10 years
multiplied by the nominal and the lengths of the coupon period in years. The
other leg could be based on the 6M-EURIBOR plus a constant spread.1 The
constant spread is chosen at trade date such that the present value of the swap
is zero. Alternatively, the other leg may pay a fixed rate coupon.

Since the present value of a CMS is just the sum of the present values of the
single cash flows (the single cash flows are independent from each other), we
consider for simplicity only the present value of a single CMS cash flow for
the coupon period with start date T1 and end date T2. Then, in the annuity
measure, we get the following expression:

VCMS Kupon = A(t, T ,M)EA
t

[
N

B(T , Tp)KS(T , T ,M)

A(T , T ,M)
τ(T1, T2)

]

= Nτ(T1, T2)A(t, T ,M)EA
t

[
B(T , Tp)KS(T , T ,M)

A(T , T ,M)

]
.

(17.13)

T is the start date of the underlying par swap rate index and M its maturity.
Tp is the coupon payment day and must be greater than or equal to the fixing
date T , since the coupon amount is otherwise unknown, therefore Tp ≥ T

(for simplicity, we assume that T is equal to the fixing date; often, the fixing
date is one ore two banking days prior to the start date).

Further model assumptions are required for the calculation oft the expected
value. In general,T equals T1 (fixing in advance) or T2 (fixing in arrears). In the
special case T = T2 = Tp, the expression for the expectation value simplifies
a bit.

1For CMS and other structured swaps the definition of receiver and payer swaps is ambiguous, since both
legs may pay variable coupons. In such a case, a swap is a receiver or payer, when the CMS-leg payments
are received or payed, i.e., payer and receiver always belong to the more “interesting” leg.
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Approximately, the expectation value could be calculated as a convexity
adjustment. The general procedure follows the approach in Sect. 14.5. For-
mally, the convexity adjustment K

adjustment
S (t, T ,M, Tp) is given by

K
adjustment
S (t, T ,M, Tp) ≡ ET

t [KS(T , T ,M)] − KS(t, T ,M)

= A(t, T ,M)

B(t, Tp)
EA

t

[
B(T , Tp)KS(T , T ,M)

A(T , T ,M)

]
− KS(t, T ,M) .

(17.14)



18
Plain Vanilla Options

18.1 Traditional and General Definition
of an Option

In the traditional sense, an option gives its purchaser the right to buy (call) or
sell (put) a specified underlying at a fixed price (strike) at (European) or up to
(American) a fixed date (maturity).

Nowadays, this definition is no longer sufficient. In order to include the
“exotics”, this definition requires generalization: an option on one or several
underlyings with prices given by S1, S2, . . . Sm is characterized by its payoff
profile. The payoff of the option is a function F(S1, S2, . . . Sm) of the
underlying prices and one or more points in time and indicates the cash
flows arising for the option’s holder upon exercise.1 American options can
be exercised at any time during the lifetime of the option in contrast to the
European option, which can only be exercised at maturity. There are also
options which can be exercised at several specific times during their lifetime.
These are called Bermudan options or Atlantic options since, in a sense, they
are an intermediate form between American (exercise is possible at any time
during the option’s lifetime) and European (exercise is possible at a single time,
namely at maturity) options.

1For example, plain vanilla European calls and puts with maturity T and strike K on an underlying with
a price S are uniquely defined by the payoff

c
plain
S (T , T ,K) = max{0, S(T ) − K}, p

plain
S (T , T ,K) = max{0,K − S(T )}.
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Furthermore, options can be separated in strategy dependent options and
strategy independent options. A strategy independent option does not require an
active decisionwhether the option should be exercised or not, since the optimal
exercise time could be easily determined. At expiry, it is always optimal to
exercise an European Plain Vanilla option if the option is in the money, i.e. its
present value at exercise is positive. E.g., options embedded in exchange traded
certificates will usually be exercised automatically, if it is to the advantage of the
option holder, without any interference of the holder. For some options, it is
less simple to decide whether exercise is optimal, e.g. if the underlying is more
complex. A simple example for a strategy dependent option is a Bermudan
swaption. Here, the option holder needs to decide at which (if any) of the
agreed exercise dates the option should be exercised. In case of exercise, the
option becomes worthless. If the option is not exercised, the option continuous
to exist for the remaining term to maturity, which need to be taken into
account in pricing the contract.

18.2 Conventions

In this chapter, the pricing of options on different underlying types using the
Black-Scholes model and the Black-76 model is presented. The values listed
in Table 18.1 will repeatedly be used in the following examples.

For simplicity’s sake, we adopt the Act/365 day count convention, for which
T − t is equal to the number of calendar days between T and t divided by 365.
Furthermore, the examples are calculated using the continuous compounding
convention and constant interest rate, with the following implication holding
for the discount factor B(t, T ):

B(t, T ) = e−r(T −t)

⇒ ∂B(t, T )

∂t
= rB(t, T ) ,

∂B(t, T )

∂r
= −(T − t )B(t, T ) .

Table 18.1 The input parameters for all of the following examples

Risk neutral refinancing rate r 3.20%
Continuous dividend yield q 4.80%
Volatility σ 12.50%
Spot price S(t) $80.00
Valuation date t 7. Jan. ’01
Maturity of Forward/Futures T ′ 7. Apr. ’01
Expiration date of option T 8. Mrz. ’01
Strike price of option K $79.00
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All of the following examples have been extracted from the Excel workbook
PlainVanilla.xlsx of the download section [50] accompanying this book.

18.3 Options on Spot and Forward Prices

18.3.1 European Options

Liquidly traded European plain vanilla options are usually priced on the
market with the Black-Scholes model or more precise: quoted. In fact, there
is no pricing model required for liquidly traded options: the price is just
the result of offer and demand. However, it turned out to be convenient to
quote options in terms of its Black-Scholes volatility, rather than quoting the
price directly. The volatility, which hast to be input into the Black-Scholes
formula to get back a given price is called the implicit (Black-Scholes) volatility.
Usually, the volatility changes less frequently than other input parameters of
the Black-Scholes formula, e.g. the underlying price or the interest rate curve.
Quoting the volatility instead of the price, the quotes need to be updated
less frequently. In general, in can be observed that quoted implicit volatilities
depend significantly on the strike price of the option (that is the volatility smile
or volatility skew, depending on the shape of the dependence). Since the strike
is a property of the option, but the volatility is a property of the stochastic
process, the existence of a smile contradicts the model assumptions. However,
this strike dependence can be interpreted as a correction to the Black-Scholes
model, which describes the underlying process only approximately correct,
taking into account that the underlying actually does not follow a strict log-
normal process as is assumed by the Black-Scholes model (see also Sect. 30.1).

To use the Black-Scholes model, Eqs. 8.7 for spot options and 8.8 for
options on futures are applied. This is demonstrated in Table 18.2. The
forward prices themselves are determined using the arbitrage Eq. 6.1. They
are also presented in Table 18.2 among the “Interim Results”. The values of
the futures and forward positions, each with a delivery priceK were calculated
from the forward price S(t, T ′) using Eqs. 6.5 and 6.6. The sensitivities
for options on the spots and futures as given in Table 12.2 are included in
Table 18.2 as well.

Sensitivities like vega, rho, and rhoq are commonly given in %, i.e. as
derivative of the price with respect to the risk factors volatility σ , interest
rate r , or dividend yield q divided by hundred. The indicate the price change
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if the according risk factor changes by 1%. Theta as derivative with respect
to the term to expiry is divided by 365 and equals the price change, if the
option is priced one day (not one year) later (if all the other parameters remain
unchanged).

The price of the futures option was calculated using Eq. 8.8. In order
to calculate the sensitivities, an additional procedure was implemented: as
mentioned in the vicinity of Eqs. 8.8 and 12.11, an option on a futures contract
is the same as an option on the spot price of an underlying whose dividend
yield is exactly the risk-free rate (q = r), and whose spot price corresponds
to the forward price S(t, T ′). Therefore, the same procedure as used for the
spot option was applied again for the futures option but with the appropriately
modified input parameters.

Gamma and delta of a spot option refer to the spot price of the underlying.
In the case of the futures option, on the other hand, the forward price is
the reference price. This means, for example, that the delta of the futures
option indicates how many futures are required to (delta) hedge the option,
whereas the delta of the spot option gives the number of underlyings required
for the hedge. The required number of instruments for other combinations
can be calculated using Eq. 12.15 and Table 12.1 with either of these deltas.
For example, to hedge the spot option requires either 0.5831 underlyings or
0.5831Br(t, T

′)/Bq(t, T
′) = 0.5854 futures.

The price of options on the corresponding forward contract can be calcu-
lated with Eq. 8.9. It yields a price of $1.954 for the call and $1.274 for the
put. Options on forward contracts are not traded nearly as liquidly as options
on futures.

Of course, the binomial model can be applied for the valuation as well.
The appropriate payoff profile is to be implemented at the end of the tree but
otherwise the procedure for options on a spot price, a future or a forward is
always the same. For options on the spot price, the price can be determined
directly from Eq. 9.19 using the binomial distributions. The parameters u, d

are calculated using Eq. 9.31. The values for the probabilities p and p̂ follow
directly from Eq. 9.9. The results of the individual steps are displayed in
Table 18.3. The price of the put was determined directly from the price of
the call with the help of the put-call parity, Eq. 6.8.
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Table 18.3 Valuation of European plain vanilla options using the binomial distribution

Interim results Option price

dt = (T − t)/n 0.001644 u 1.005080895 Call $2.02
B 0.999947 d 0.994945 Put $1.24
Bq 0.999921 p 0.496138209
T − t 0.164384 p′ 0.49867215
B(t, T ) 0.994753537 y 49
Bq(t, T ) 0.992140637 Bp(j >= y) 0.587977672

Bp′(j >= y) 0.607630103

18.3.2 American Options

The binomial model is very effective in calculating American options. The
following example will serve to demonstrate the valuation of both options and
futures. The values for the futures and forward positions, each with a delivery
price K listed among the final results, are computed from the forward price
S(t, T ′) making use of Eqs. 6.5 and 6.6.

First, a tree for the underlying price must be constructed. In Fig. 18.1, we
use the method prescribed by Eq. 9.31 for the calculation of the up and down
parameters, in the same way as was already done in Table 18.3. The calculation
is subsequently performed backwards through the entire tree:

• Time t + 3dt = T ′
Once the tree for the underlying has been constructed, the values of the
derivative on the boundary of the tree should be inserted if these are known.
In our example, these are the forward prices at the maturity of the future
T ′. These are just the spot prices effective at time T ′.

• Time t + 2dt = T

This time is a maturity date as well, but for the options. Thus, at this point
the prices of the spot option at maturity are set equal to its payment profile.
The future prices at each node are determined using Eq. 9.13 from the prices
in the next time step. Once the future prices at the maturity of the option
on the future are known, the price of the futures option can be set equal to
its payoff profile.

• Timet t + dt

The futures prices at each node are computed using Eq. 9.13 from the prices
holding for the next time step. The prices of both the spot as well as the
futures option at each node are, in accordance with Eq. 9.8, computed from
the prices in the next time step. The right to early exercise is taken into



18 Plain Vanilla Options 421

dt
B

Bq

T ′ − t
B(t, T ′)

u
p

Δ
Γ
Θ
Ω

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =
C =
C′ =

S =
S′ =

S =
S′ =

S =
S′ =

S =
S′ =

S =
S′ =

S =
S′ =

t − 2dt t − dt t t + dt T T ′

Fig. 18.1 Valuation of an American call c on the spot price S, and of an American call
c′ on the forward price S′ using a binomial tree. The tree for the options comprises two
time steps into the future. The tree for the forward price consists of three time steps
into the future

account by comparing the results just obtained to the intrinsic values S−K

and S ′ − K (S ′ denotes the forward price in this example) taking in each
case the greater of the two values as the corresponding option price.

• Times t, t − dt, t − 2dt

The same procedure is carried out as that described for time t + dt.

Once the entire tree is constructed, prices at three different nodes are
available for use at time t, from which the middle node (the du node) contains
the desired prices for the futures contract, the option on the spot price and the
option on the futures contract.
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Sensitivities are calculated as difference quotients. For example, the tree
could be calculated by constructing a new tree with a slightly changed interest
rate r + h (with h > 0). Then, we get for the interest rate sensitivity rho:

rho = V (r + h, t) − V (r, t)

(r + h) − r
= V (r + h, t) − V (r, t)

h
.

This procedure could be applied for all sensitivities, though it is numerically
inefficient since it is required to construct a new tree. It is also unstable since
the parameter shift could cause jumps in the price ofV (t). Therefore, delta and
gamma are calculated on the existing nodes of the tree according to Eq. 12.27,
using the nodes uu and dd at time t . This requires to let the tree start at time t−
2dt rather then t . This is not required for the calculation of other sensitivities.
The values for delta, gamma and omega given here for both options are related
to the underlying spot price (not the futures price). For Vega, using a constant
volatility, it is also possible to construct a tree which uses the same nodes, but
which as an extra time step (i.e. the tree is compressed, which changes the
volatility slightly.)

18.4 Index Options and Index Futures

Index futures and options on an index or on an index future correspond to
the general case treated in Sect. 8.3, where the spot price S represents the
state of the index and q the average dividend yield of the index’s component
stocks (as long as these are not directly reinvested in the index!). Examples are
the (European) options on the DAX index traded on the EUREX, known
as ODAX and the (American) Options on DAX-futures, known as OFDX.
Table 18.3 and Fig. 18.1 again serve as examples of the valuation of index
futures, index spot options and index futures options, where the dividend yield
q is the average dividend yield of the index and the underlying price S is the
state of the index.

The German DAX is a performance index, which means that the dividends
of the component stocks are immediately reinvested in the DAX, so that in
principle, no decline in price is observed when a dividend payment is made
and consequently, q should be set equal to zero. The reasonwhy q is not exactly
zero in practice relates to the effects of corporate taxation. If the risk-free rate
r is known, the DAX together with the DAX future can be used in Eq. 6.2 to
find the implied dividend yield which can then be used as q when calculating
option prices.
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18.5 Foreign Exchange Options

Trading of Foreign exchange or brief FX Options belongs to the most liquid
option markets at all. Partly, this is due to the omnipresence of FX risks
in an environment of global trades. In addition, the majority of traded FX
options is limited to the most important major currencies, i.e. the number of
different underlyings is quite limited, e.g., compared to the equity market.
Certain kinds of exotic FX options , for example many variants featuring
barrier components (see for example [36, 195]) are also traded quite frequently.

FX options belong also to the general case treated in Sect. 8.3, where the
spot price S is replaced by the FX (spot) rate and q is replaced by the risk-
free interest rate rf in foreign currency. The logic behind this choice is the
following: the holder of the underlying (i.e., the foreign currency) receives, in
contrast to the holder of the option or the future, interest payments at the
interest rate valid for the foreign currency much the same as the holder of a
stock receives a dividend yield q of the stock. Again Table 18.3 and Fig. 18.1
serve as examples for the valuation of foreign exchange futures, spot options
and futures options, where here the dividend yield q is equal to the risk-free
rate of the foreign currency and the underlying price S is merely the foreign
exchange rate expressed in terms of the domestic currency. At an exchange
rate of 1.15 euros to the US$, for example, the underlying price would be
S(t) =1.15.

18.5.1 Put-Call-Equivalence for FX Options

An interesting relation exists between foreign exchange puts and calls, which
follows immediately from the nature of these transactions: The right to buy 1
USD for K EUR is obviously the same as the right to sell K EUR for 1 USD.
The EUR/USD exchange rate indicates how many euros have to be paid per
dollar. The USD/EUR exchange rate, indicating how many dollars are to be
paid per euro, is naturally 1/S(t). A call on the EUR/USD exchange rate with
a strike price K is thus the same as K puts on the USD/EUR exchange rate
with a strike price 1/K . This can also be seen by considering the payoff profile.
The payoff in dollars of K puts on the euro is

K max

{
0,

1

K
− 1

S(T )

}
= max

{
0, 1 − K

S(T )

}
= 1

S(T )
max {0, S(T ) − K} .
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Here, all terms are expressed inUSDunits of currency since dollars are received
for selling euros. The payoff of a call on USD, however, is more naturally
expressed in terms of EUR since euros are paid when buying dollars. Before
the payoffs can be compared, they both need to be expressed in terms of the
same currency. The conversion of the above payoff into EUR can be performed
by simply multiplying with the EUR/USD exchange rate S(T ). This simply
yields the payoff profile of the call max {0, S(T ) − K} on the right-hand side.
If the payoff profiles agree, the options must have the same value for all earlier
times t . We thus obtain the put-call equivalence for foreign currency options

cS(t, T ,K) = K p1/S(t, T , 1/K) . (18.1)

18.6 Interest Rate Options

In Part II the valuation of interest rate options by means of term structure
models was demonstrated. In the presentation of the following examples,
however, plain vanilla interest rate options are priced using the Black-Scholes
and Black-76 models still commonly used in the market for the quotation of
these types of options.2

18.6.1 Options on Bonds

European bond options are usually priced resp. quoted using the Black-76
model, Eq. 8.10. If the Black-76 is used (forward price equals expectation of
future price), the model’s parameter σ can be set equal to the volatility of the
respective underlying’s future price.3

For options on zero bonds, S(t, T ) is the forward price as given by Eq. 15.17,
for options on coupon bonds, it is the (dirty) forward price according to
Eq. 15.18. As presented in Sect. 15.5.2, calculations made in pricing derivatives
on coupon bonds should always be performed with the amounts of money
which must actually be paid, i.e., accrued interest should always be included
in the computations. Thus, for options on coupon bonds, the dirty strike of

2In markets with negative interest rates like EUR or CHF, these models are increasingly replaced by
shifted-lognormal or normal models (i.e. the Bachelier model).
3This volatility is also called price volatility. Alternatively, bond options could be prices similar to
swaptions, such that the interest rate or the interest rate curve is modeled as stochastic underlying rather
than the bond price. Then, the respective volatility is called interest rate volatility.
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the option should be used. This is the amount of money paid by the holder
of a call upon exercise in order to purchase the underlying. In general, bond
options are quoted for a clean strike. The interest accrued up to time T must
then be added to this quoted strike. Often though, exercise dates and coupon
period start resp. end dates fall together, at which dates accrued interest is zero.

American options on bonds—as all options on underlyings with dividend
payments during the lifetime of the option—generate binomial trees which no
longer recombine after the ex-dividend day tD (=coupon payment date):

u dS(t) �= d u S(t) for t > tD .

Therefore, other methods like finite differences (see Chap. 10) are better suited
for pricing American options. In practice, Bermudan bond options are traded
more frequently traded than American options. Bermudan options could be
exercised only on a given set of dates, which typically fall on coupon period
start dates. Pricing Bermudan options is as elaborate as pricing American
options, except for the fact that accrued interest does not matter, if the exercise
dates fall together with coupon start dates.

Bond options are always traded on real rather that synthetic underlyings as is
the case for futures contracts. Therefore, bond options are traded less liquidly
than corresponding options on bond futures contracts.

This is the reason why options on bonds are a good deal rarer in electronic
exchanges than futures options. For example, on the EUREX, options are
available on the Bund Future, the Bobl future and the Schatz future. These
are all American. However, no options directly on 2, 5 or 10 year government
bonds are traded on the EUREX.

18.6.2 Options on Bond Futures

European options on bond futures are priced—as are all plain vanilla European
futures options on the market—using the Black-Scholes formula for options
on futures given by Eq. 8.8.

The following consequence of the Black-Scholes differential equations 12.5
and 12.11 are useful in the valuation of American options on bond futures: an
option on a future is equivalent to an option on an underlying with a dividend
yield equal to the risk-free rate and a spot price equal to the future’s price.

For such an underlying, the (recombinant) binomial tree can be constructed
as described inChap. 9 to price the option. This is demonstrated very explicitly
in Fig. 18.1 (the part of the example for the valuation of the option on the
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underlying itself is relevant to our discussion here). Thus, Fig. 18.1 can serve as
an explicit demonstration of pricing bond futures options if we use the clean
forward bond price in place of the “spot price” of the underlying and the risk-
free rate for the dividend yield. In contrast to derivatives referring directly to
a bond (bond options, bond futures), clean prices have to be used for options
on bond futures since the difference between the clean forward price and the
clean strike is due when the option is exercised.

18.6.3 Caps and Floors

A cap (floor) is a series of caplets (floorlets), arranged in such a way that the
periods of the individual caplets (floorlets) completely cover the time span of
interest without overlap. The period length of the individual caplets (floorlets)
corresponds to the lifetime of the floating interest to be bounded. A cap, for
example, of a 3-month LIBOR for five years consists of a series of 19 (the first
period is already fixed) caplets each having a period length of three months.
To understand caps and floors it is sufficient to understand their component
caplets and floorlets.

A caplet is an “interest rate limiting agreement” over a time span from
the fixing date T until the payment date T ′. The principal N of a caplet is
compounded over the future time span T ′−T at a rate equaling the difference
between the (floating) reference rateR = R(T , T ′) and a fixed strikeK if this
rate difference is positive. The floating reference rate is fixed at the fixing date
T . This construction has the effect that the holder of a caplet pays interest (for
instance for a loan) on a principalN at a floating rate over a time span from T

until T ′ but at most the strike rate K of the caplet.
A caplet is thus an option with the reference rate as the underlying. The

option is exercised at the fixing date T since it is at this time that the difference
between the strike and the underlying is determined. The option payment
occurs later, namely at the payment date T ′. The value of the option upon
exercise is of course essential to its valuation. In order to obtain the value of the
option upon exercise, its payoff profile must be discounted back to the exercise
time T :

ccaplet(T , T ′,K|T ) = B(T , T ′)Nτ(T , T ′) max
[
R(T , T ′) − K, 0

]

(18.2)

pcaplet(T , T ′,K|T ) = B(T , T ′)Nτ(T , T ′) max
[
K − R(T , T ′), 0

]
.
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From the condition that a payment is made if the strike of the caplet is greater
than the underlying, it follows that a caplet is a call option on the reference rate.
It is for this reason that the letter c was chosen to denote the caplet in Eq. 18.2.
The corresponding put on the reference rate is the above mentioned floorlet,
which represents a lower limit (“floor”) on the reference rate. The floorlet is
denoted by the letter p in Eq. 18.2. Caps and floors are also referred to as
interest rate guarantees (IRGs).

Since the discount factors are strictly monotone decreasing functions of the
interest rate, conditions on the interest rates can be equivalently interpreted as
conditions on the discount factors, i.e.

R(T , T ′) > K ⇔ B(T , T ′) <
1

1 + Kτ(T , T ′)
. (18.3)

Valuation as Interest Rate Options (Lognormally Distributed
Interest Rates)

These payoff profiles allow the option to be interpreted as a plain vanilla
option with a nominal Nτ(T , T ′)B(T , T ′), a strike price K and maturity T

on an underlying with a price S(T ) = R(T , T ′). The forward price of this
underlying as seen from today (time t ) is then the forward rate R(T , T ′|t ).
The discount factor B(T , T ′) appearing in the nominal is not known at time
t . Market participant use the discount factor of the forward rate B(T , T ′|t )
instead. It can be shown [145], that this is consistent with a term structure
model. The maximum functions in Eq. 18.2 correspond to payoff profiles of
plain vanilla options and can therefore be priced with the Black-76 model,
Eq. 8.10. The prices of caps and floors are then given by

ccaplet(T , T ′, K|t)
= Nτ(T , T ′)B(T , T ′|t)B(t, T )︸ ︷︷ ︸

B(t,T ′)

[
R(T , T ′|t)N(x) − KN(x − σ

√
τ(t, T ))

]

pcaplet(T , T ′, K|t)
= Nτ(T , T ′)B(T , T ′|t)B(t, T )︸ ︷︷ ︸

B(t,T ′)

[
R(T , T ′|t)N(−x) − KN(−x + σ

√
τ(t, T ))

]

x =
ln

(
R(T ,T ′|t)

K

)

σ
√

τ(t, T )
+ 1

2
σ
√

τ(t, T ) . (18.4)
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According to Eq. 2.7, the product of the discount factor and the forward
discount factor yield precisely the discount factor from time T ′ back to time t .

As mentioned at the beginning of this section, a cap is nothing other than a
strip of caplets. The value of the cap is the sum of the values of the individual
caplets (with the analogous relation holding between floorlets and floors):

ccap(T , T ′, K|t ) =
n∑

i=1

ccaplet(Ti−1, Ti,K|t ) (18.5)

pcap(T , T ′, K|t ) =
n∑

i=1

pcaplet(Ti−1, Ti, K|t )

with T = T0 < T1 < T2 < . . . < Tn = T ′ .

As illustrated in Eq. 8.10, the Black-76 model assumes that the underlying is
lognormally distributed at the option’s exercise time. The volatility at that time
is given by a value σ . This means we have to assume that the reference rate
R(Ti−1, Ti) of each caplet is lognormally distributed.

As described previously, the Black-76 model is functioning for caps and
floors more like a quotation tool rather than a valuation model. Caps and
floors are liquidly traded products, with prices fixed by offer and demand.
Often, implied Black volatilities to be inserted in Eq. 18.5 to get the price are
quoted instead of quoting the prices directly. Since caps serve as hedges against
interest rate risks, this convention is advantageous since the volatility is a better
measure for the current risk of interest rate changes than the cap price itself.
For cap quotes the same volatility is used for all caplets of the caplet strips,
which is referred to as the flat volatility because of the missing term structure.

For ATM (at-the-money) caps, various maturities are quoted as different
volatilities. Quotes for non-ATM caps are traded less liquidly. Because of the
term structure of interest rate curves, the strike of ATM caps will differ for
different maturities. As a consequence, even for ATM caps, the caplets of
the corresponding caplet strip won’t be ATM caplets. Instead, some of the
caplets will be ITM (in-the-money) while others will be OTM (out-of-the-
money). In the special case of a flat interest rate term structure, this yields
to an apparent inconsistency: Because of the different volatility quoted for
caps of different maturity, the same caplet, appearing simultaneously in the
strips of two different caps, can have different volatilities and thus have two
different prices. For example, a caplet that limits the 6-month LIBOR to 2%
in two years occurs in both, a five year and a ten year, 2% cap on the 6-month
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LIBOR. Since the flat volatilities differ for 5 and 10-year caps, this caplet
will have two different prices corresponding to the two different caps. This
inconsistency can be solved by determining the underlying caplet volatilities
by means of a bootstrapping method that reproduces the cap prices (calculated
with flat cap volatilities inserted into Eq. 18.5), but using a single volatility for
each individual caplet, independent of the caplet strip it is a part of. With
these implied caplet volatilities it is also possible to calculate prices for caps
for maturities and strike for which no quotes are available. For each individual
caplet, the volatility to be inserted in Eq. 18.5 is determined by means of inter-
and extrapolation.

The valuation of caps and floors described above, i.e., the interpretation
as options on the interest rate as the underlying, using of the Black-76 model
naturally assumes we are in the Black-Scholes world. In particular that the yield
of the underlying (=relative change in the interest rate) is normally distributed,
which implies that the underlying itself (the interest rate) is lognormally
distributed.

Valuation as Bond Options (Normally Distributed Interest Rates)

It is also possible to price caps and floors by interpreting them as options on
bonds and performing the valuation using Black-Scholes for options on bond
prices. Then the underlying is the bond price which is therefore implicitly
assumed to be lognormally distributed. Thus, its relative changes (the bond
yields which are by definition nothing other than interest rates) are assumed
to be normally distributed.

Since the reference interest rate index (as well as the strike) is usually
given in terms of simple compounding, we have B(T , T ′) = 1/[1 +
R(T , T ′)τ(T , T ′)] or solved for R(T , T ′):

R(T , T ′) = 1

τ(T , T ′)

(
1

B(T , T ′)
− 1

)
.

This allows to write down the pay off profiles of Eq. 18.2 as zero bond option
pay offs. As example, we get for the caplet (call):

B(T , T ′)Nτ(T , T ′) max
[
R(T , T ′) − K, 0

]

=B(T , T ′)Nτ(T , T ′) max

[
1

τ(T , T ′)

(
1

B(T , T ′)
− 1

)
− K, 0

]
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=N max
[
1 − B(T , T ′) − B(T , T ′)τ(T , T ′)K, 0

]

= [
1 + τ(T , T ′)K

]
N max

[
1

1 + τ(T , T ′)K
− B(T , T ′), 0

]

=NB max
[
KB − B(T , T ′), 0

]
.

The derivation for floorlets (put) is analogous. Therefore, it is possible to write
the pay off profiles as

ccaplet(T , T ′, K|T ) = NB max
[
KB − B(T , T ′), 0

]

pcaplet(T , T ′, K|T ) = NB max
[
B(T , T ′) − KB, 0

]
(18.6)

with the following interpretation:

• The caplet is equivalent to a put option with strikeKB and maturity T on a
zero bond with nominal NB = N

[
1 + Kτ(T , T ′ − T )

]
and maturity T ′.

• The floorlet is equivalent to a call option with strikeKB andmaturity T on a
zero bond with nominal NB = N

[
1 + Kτ(T , T ′ − T )

]
and maturity T ′.

It is no surprise that the strike KB = 1/
(
1 + τ(T , T ′)K

)
equals the value

of the zero bond if K = R(T , T ′). With the above, caplets and floorlets could
be priced as options on zero bonds as in Sect. 18.6.1. A Cap or Floor can be
represented as a portfolio of caplets and floorlets, i.e. as a portfolio of puts or
calls on corresponding zero bonds.

Table 18.4 shows the correspondence to bond options valuated according
to Eq. 8.10.

Table 18.4 Caplets and floorlets as options on zero bonds

Parameter of the bond option Corresponding parameter for IRGs

Option Put for caplet, call for floorlet
Underlying Zero bond with maturity at the

payment date T ′ of the IRG
Face value of the underlying N[1 + τ(T , T ′)K]
Forward price S(t, T ) Forward price B(T , T ′) of the zero bond

at the fixing date T of the caplet
Volatility Volatility of the forward price
Strike of the bond option KB = 1/[1 + τ(T , T ′)K]

equals bond price with R = K
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Collars and Put-Call Parity for Caps and Floors

A collar is a combination of a cap and a floor having the effect that the collar’s
holder (if he or she also has a loan, for instance) has to pay the reference rate
(for the loan) only as long as it remains within a range bounded below by the
strike of the floor and above by the strike of the cap. Should the rate exit this
range, the payment that the holder of the collar would receive from the cap
(or pay into the floor) would compensate for the higher (or lower) interest
payment on the loan. A long collar is thus a portfolio consisting of a long cap
and a short floor:

ccollar(T , T ′, K1, K2|t) = ccap(T , T ′, K1|t) − pcap(T , T ′, K2|t) .

Investors often buy collars to provide a safeguard against rising interest rates
and to lower the price of this safeguard through the sale of the floor. Often,
if the strike of the cap is given, the strike of the floor is chosen such that the
floor is worth exactly as much as the cap and that thus the total collar can be
acquired without cost (called zero cost collar).

If we require instead the strikes of the cap and the floor to be the same, i.e.,
K1 = K2 = K, then the holder of the collar effectively pays (for a loan, for
example) exactly the strike K instead of the reference rate. This is the same as
though he had a forward swap from T to T ′. Thus, caps and floors satisfy the
following put-call parity.

If the cap and the floor of a collar have the same strike, the value of the collar is
equal to the value of a forward swap over the lifetime of the collar with a fixed
rate equal to the strike of the collar.

Or in brief

Cap minus floor equals forward swap

By definition, the forward swap rate is the coupon rate for the fixed side
which makes the swap worthless. The put-call parity now states:

If a collar is worthless and if its cap and floor both have the same strike, the strike
of the collar equals the forward swap rate for the collar’s lifetime.
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In Table 18.5, a cap, a floor and a collar with term to maturity of 10
years and start in 3 years is priced according to Eqs. 18.4 und Gl. 18.5. The
interest rate curve and forward vols are also given in the table. The forward
rates have already been calculated in Fig. 18.1. The floor strike (3.24%) was
modified (through numerical iteration) until the collar for a given cap of 7%
was worthless. Setting the floor strike equal to the cap strike and solving for
the strike price again, to make the collar worthless does in fact yield a forward
swap rate of 5.28% for the same period.

18.6.4 Swaptions

A swaption or swap option is the right to enter into a swap upon maturity of
the option, without incurring any further payment. The interest rateK on the
fixed side of this underlying swap is the strike price of the option. Depending
on whether the swap is a payer or receiver swap, the swaption is referred to as
a payer or receiver swaption, respectively. As opposed to caps and floors, which
can be interpreted as options on the floating side of a swap, swaptions are
options on the total swap. The lifetime of the swap begins at the maturity T

of the option. Hence, the swap under consideration is a forward swap. During
the lifetime of a forward swap up to its maturity T ′, a number n of payment
dates occur at times Ti , where T0 is defined as the start of the first coupon
period:

t < T ≤ T0 < Ti < Ti+1 < Tn = T ′ ∀ i = 1, . . . , n − 1 .

Usually T = T0, which we will set equal in the following therefore. The fixing
date F(T ) for the swap rate starting at T and terminating at T ′ lies typically 2
value days before the start date. The exercise date Tex, i.e. the last day until the
option buyer requires to notify the option seller that he likes to exercise the
option, is usually a bit earlier, typical are 5 or 10 business days before option
expiry T .

The payoff profile of a swaption, i.e., its value at maturity T can be
determined by considering the following. If we enter into an underlying swap
at time T as a consequence of exercising a receiver swaption, then—at each
payment date for the entire lifetime of the swap—we receive interest on the
swap’s principal compounded at K in return for making interest payments
on the swap’s principal at the floating reference rate. If at time T we enter
simultaneously into a par payer swap (which by definition of a par swap doesn’t
incur any additional costs) with the same principal and the same floating side
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as the underlying swap, we pay interest at the swap rate KS(T , T ′) valid at
this time on the fixed side and receive the floating side. The cash flows on the
floating sides of both swap positions (the underlying of the option and the par
swap) cancel each other out, and the remaining net cash flows are equal to the
difference of the fixed sides. The present value of this difference at time T can
be conveniently expressed in terms of the annuity (Eq. 15.7):

N
[
K − KS(T , T ′)

]
A(T , T , T ′) .

Exercise of a receiver swaption combined with a par swap obtained at no cost
thus generates with certainty (i.e., without any market risk) the above cash
flows over the entire lifetime of the underlying.Naturally, the receiver swaption
will only be exercised if the cash flows thus generated are positive, i.e., if K >

KS . It follows for the pay-off profiles of the payer swaption (equivalent to a
call on a payer swap) and the receiver swaption (equivalent to a put on a payer
swap):

cswap(T , T ′,K|T ) = NA(T , T , T ′) max
[
KS(T , T ′) − K, 0

]

pswap(T , T ′,K|T ) = NA(T , T , T ′) max
[
K − KS(T , T ′), 0

]
. (18.7)

Valuation as Interest Rate Options (Lognormally Distributed
Interest Rates)

It can be seen from the pay off profiles in Eq. 18.7 that the swap rate KS(T , T ′)
is the underlying of a swaption. The maximum functions on the right-
hand side can be interpreted as pay off profiles of plain vanilla options with
strike price K and expiry date T on an underlying with price S(T ) =
KS(T , T ′). Then, the forward price of this underlying is the forward swap
rate KS(T , T ′|t ).

The fact that the swaptions’ payments do not occur at exercise time T but at
the payment dates Ti is already taken into account by multiplication with the
annuity A(T , T , T ′). Alternatively, the option could be settled immediately
with a compensation payment equal to the present value of the swap at
time T , which is called cash settlement instead of physical settlement. In case
of cash settlement, we need a rule to calculate the compensation payment
amount, since the fair value depends on model assumptions and is therefore
not properly defined in contrast to a fixed payment. This is solved by the
mutual agreement to use the (quoted) swap rate for discounting all future cash
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flows to calculate the fair value. This is not an exactly arbitrage free calculation,
the prices between cash and physically settled swaptions will differ slightly to
compensate for this difference.

The fair values of the plain vanilla options at time t can be valued in the
same way as caplet and floorlets with the Black-76 model Eq. 8.10, if the
distribution of swap rates at time T is assumed to be lognormal.Note that here,
in addition to KS(T , T ′), the multiplication factor, the annuity A(T , T , T ′),
does also depend on the future interest rate curve. If we choose the annuity as
the numeraire as in Sect. 15.8.3, we get with Eq. 13.1 the following expressions
for the option’s fair values at time t :

cswap(T , T ′,K|t )
A(t, T , T ′)

= EA
t

[
NA(T , T , T ′) max

[
KS(T , T ′) − K, 0

]

A(T , T , T ′)

]

= NEA
t

[
max

(
KS(T , T ′) − K, 0

)]

pswap(T , T ′,K|t )
A(t, T , T ′)

= NEA
t

[
max

(
K − KS(T , T ′), 0

)]
.

Here, the par swap rate KS(T , T ′) is the only stochastic term under the
expectation operator. The swaption prices in the Black-76 model can now be
written as:

cswap(T , T ′,K|t) = NA(t, T , T ′)
[
KS(T , T ′|t)N(x) − KN(x − σ

√
T − t)

]

pswap(T , T ′,K|t) = NA(t, T , T ′)
[
−KS(T , T ′|t)N(−x) + KN(−x + σ

√
T − t)

]

with x = ln
(
KS(T , T ′|t)/K)

σ
√

T − t
+ 1

2
σ
√

T − t . (18.8)

In Table 18.6, the valuation of swaptions using Eq. 18.8 is demonstrated
for two different strikes on the forward swap in Table 15.6. The swaptions
each have the same lifetime (and the same interest rate curves were used for
the valuation) as do the caps, floors and collars in Table 18.5. The underlying,
namely the forward swap rate, was calculated in Table 15.7. For this forward
swap rate, we assume a volatility of 12.5%. The sum of the spot rate discount
factors from Table 15.6 with lifetimes from 4 to 13 years yields 6.884114041.
This is the factor NA(t, T , T ′) to be used in Eq. 18.8. The prices of at-the-
money swaptions (i.e., with strike equal to the forward swap rate of 5.82%)
are the same for payer (call) and receiver (put) swaptions. This is a special case
of the put-call parity for swaptions (see Sect. 18.6.4).
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Table 18.6 Pricing swaptions. The underlying is a swap fix vs. 12-months floating over
ten years, beginning in three years

Swaptions
5.82% Forward swap rate
12.50% Forward volatility
$250 000 Nominal

7.00% strike 5.82% strike
Call Put Call Put

Value in % 1.03% 9.18% 3.45% 3.45%
Value in $ $2 582 $22 942 $8 630 $8 630

Similar to caps/floors, liquidly traded swaptions are usually quoted as Black-
76 volatilities instead of as prices.4 The quoted vols depend on the underlying
swap rate maturity, the option expiry and the strike price, forming a three-
dimensional volatility cube. Depending on the market, the quoted vols belong
to the most frequently traded swap type, e.g. in the EUR region, these are
swaps exchanging semi-annual payments based on 6M-Euribor on the variable
leg against annual fixed payments on the fixed leg. In the US-market, swaps
exchange quarterly variable payments against semi-annual fixed payments are
more frequent. Due to slightly different default risks caused by the different
payment frequencies, quoted vols and swap rates for different swap types differ
slightly, too. Depending on the use case of these market data, this observed
difference might be relevant.

Quoted swaption volatilities show a dependency on the strike which is
called smile or skew (which describes better the actual functional form of
the dependency which is different form equity or FX smiles). As mentioned
earlier, this skew can’t be explained within the Black-76 model. There is a
further, more subtle inconsistency. Par swap rates could be represented as
a weighted sum of the forward rates for each single interest rate period of
the swap. Usually, both rates, par swap rates as well as forward rates, are
assumed to be lognormally distributed, if the Black-76 model is used for
caplet/floorlet prices as well as for swaption prices. On the other hand, it is well
known that the sum of lognormally distributed random numbers itself can’t be
lognormally distributed. Therefore, it is inconsistent to assume lognormallity
for forward rates and par swap rates at the same time.5 However, both, the
strike dependency and the inconsistency of the distribution assumptions for

4In markets with negative interest rates, quoting of normal vols (i.e. implied Bachelier model vols), shifted
lognormal vols or prices have become more common.
5In models with normally distributed risk factors, this inconsistency is not present, since the sum of
normally distributed random numbers is itself normally distributed.
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forward and par swap rates, does not cause problems, if the Black-76 model
is not used as a pricing model, but just as a convenient quotation vehicle. For
simple use cases, Black-76 is a reasonable useful approximation for modeling
the dependencies, as long as one is aware of the limits of the model.

Valuation as Bond Options (Normally Distributed Interest Rates)

To enter into a receiver swap is the same as buying a bond whose coupons
and coupon payment dates are given by the fixed side of the swap and in
return selling a floater whose floating rate and payment dates are defined by
the floating side of the swap. A receiver swaption can thus be interpreted as
an option on a bond with a coupon K , whose payment dates and lifetime are
defined by the fixed side of the underlying swap. The strike of this bond option
is the amount payable for the bond at exercise. This is given by the value at
time of exercise T of the floater defined by the floating side of the underlying
swap. In general, the value at time T of a floater is not known at time t and
as a result we are forced to price a bond option whose strike is unknown.
The swaption’s underlying swap, however, is usually defined so that it begins
at the start of a complete period. This means that the floater is to be priced
as if it where just fixed at time T . It’s present value, according to Eq. 15.21
is then identically equal to its face value, if basis spread are neglected. With
this interpretation, swaptions are options on coupon bonds with strike equal
to the principal and therefore can be priced in the same way as was done in
Sect. 18.6.1. The correspondence to bond options is summarized in Table 18.7.

Table 18.7 Swaptions as options on coupon bonds

Parameter of the
Corresponding parameter for swaptionbond option

Option type Call for receiver swaption, put for payer swaption
Underlying Bond with coupon equal to the strike K of

the swaption, principal equal to the principal of
the swap, maturity and coupon payment dates
as on the fixed side of the swap

Forward price S(t, T ) Dirty forward price (including accrued interest)
of the bond at maturity T of the swaption

Volatility σ Volatility of this forward price
Strike K of the option Principal of the swap
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Put-Call Parity for Swaptions

In a portfolio consisting of a short payer swaption and a long receiver swaption
with the same underlying lifetime from T to T ′ and the same strike K , one
of the two swaptions will definitely be exercised at maturity T . If the current
swap rate is greater than the strike K at time T , the receiver swaption expires
worthless but the counterparty exercises the payer swaption and, as a result of
the short position, a receiver swap is obtained with the counterparty paying
the fixed rate ofK . On the other hand, if the current swap rate at time T is less
thanK, the counterparty allows the payer swaption to expire while the receiver
swaption is exercised, and consequently a receiver swap with the counter party
paying the fixed rate K enters the portfolio. Thus, in any case the portfolio
at maturity results in a receiver swap at the fixed rate K . The portfolio must
then have the same value as a forward receiver swap for all earlier times t < T

as well, since otherwise arbitrage would be possible. This is the put-call parity
for swaptions. Exactly the same argument can be used to show that a portfolio
consisting of a long payer swaption and short receiver swaption has the same
value as a forward payer swap.

If a payer and a receiver swaption have the same strikes and the same lifetime
then the following holds:

Short payer swaption and long receiver swaption equals long forward receiver
swap.

Long payer swaption and short receiver swaption equals long forward payer
swap.

If the common strike of payer and receiver swaptions are equal to that of
the forward swap rate holding for the corresponding lifetime, then the value of
the portfolio must be zero since the corresponding forward swap is worthless.
This means that the receiver and payer swaptions with the forward swap rate
as their strike have the same value. This was demonstrated in Table 18.6.

Bermudan Swaptions

Bermudan swaptions can only be exercised at certain dates, similar to Bermu-
dan bond options. In general, these exercise dates are equal to a coupon period
start date. Bermudan swaptions as well need to be valuated by means of an
interest rate term structure model. A lower boundary for the fair value of



18 Plain Vanilla Options 439

a Bermudan swaption can be determined by calculating for each potential
exercise date the fair value of the equivalent European swaption (the co-
terminal swaption) and than take the maximum of all European co-terminal
swaption fair values.



19
Exotic Options

19.1 Payoff Profiles for Selected Exotics

In the world of exotic options payoffs are significantly more complicated
than those of plain vanilla options. Selected examples are indicated below.
Some more examples will be discussed in the next sections. These kinds of
instruments can in principle all be priced using the methods introduced in
Part II (for example, finite difference methods or Monte Carlo simulations).
In the following, K always denotes the strike, T the maturity of the option
and S the price of the underlying.

19.1.1 Power Options

Power options are exotics with payoff profiles similar to those of plain vanilla
options, but which involve powers of the underlying, of the strike, or of their
difference1:

Asymmetric power call: max{0, (S(T ))n − Kn} mit n > 0
Asymmetric power put: max{0,Kn − (S(T ))n} mit n > 0
Symmetric power call: 0 falls S(T ) ≤ K, sonst [S(T ) − K]n mit n > 0
Symmetric power put: 0 falls S(T ) ≥ K, sonst [K − S(T )]n mit n > 0
Self quanto call S(T ) max{0, S(T ) − K}
Self quanto put S(T ) max{0,K − S(T )} .

1Options with (electric) power as underlyings are also called power options
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Self quanto options, for example, are traded on FX rates with foreign
currencies, which could not be traded freely, and, therefore, the pay-off could
not be paid in foreign currency.

19.1.2 Cliquet and Coupe Options

A cliquet option settles periodically and resets the strike at the spot level then
valid. A cliquet can therefore be thought of as a series of “pre-purchased” at-
the-money options, but where the total premium is determined in advance.
The payout on each option can either be paid at the final maturity, or at
the end of each reset period (in the latter case the payoff at the reset times
is compounded until final maturity). For one reset at a previously fixed time t ′
with t < t ′ < T , the payoff at the final maturity T is given as:

Cliquet call: B(t ′, T )−1 max{0, S(t ′) − K} + max{0, S(T ) − S(t ′)}
Cliquet put: B(t ′, T )−1 max{0,K − S(t ′)} + max{0, S(t ′) − S(T )} .

Here the payoff at time t ′ is compounded until the final maturity T . The
number of reset periods is specified in the contract in advance. More resets
make the option more expensive. A cliquet option is always more expensive
than the corresponding plain vanilla at-the-money option with the same final
maturity.

A coupe option settles periodically and resets the strike at the worst (from the
option holder’s perspective) of either the spot level then valid or the original
strike set for the first period. It is a series of options where the total premium
is determined in advance. The payout on each option can be paid at final
maturity, or paid at the end of each reset period. For one reset at a previously
fixed time t ′ with t < t ′ < T , the payoff is given as:

Coupe call: B(t ′, T )−1 max{0, S(t ′) − K} + max{0, S(T ) − max
{
S(t ′),K

}}
Coupe put: B(t ′, T )−1 max{0,K − S(t ′)} + max{0, min

{
S(t ′),K

} − S(T )} .

Here the payoff at time t ′ is compounded until the final maturity T . The
number of reset periods is determined by the buyer in advance. More reset
periods make the option more expensive, but because of the “worst of ” feature
a coupe is always cheaper than the corresponding cliquet.
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19.1.3 Look-Back Options

There are in principle two types of look-back options also known as hindsight
options: Either the strike is set at the start and at maturity, the buyer can “look
back” over the life of the option and choose themost favorable underlying price
achieved during the option’s life time to maximize profit between strike and
exercise. Or the strike is set at maturity. This means at maturity the buyer can
“look back” and choose the most favorable underlying price achieved during
the options life as the option strike to maximize profit between this strike and
the underlying price at maturity. The look-back feature is thus very attractive
to investors as it gives the buyer the best possible payout. However, look-back
options are generally very expensive. The most common payoff profiles are

Minimum-strike call: S(T ) − min{S(t ′)}
Maximum-strike put: max{S(t ′)} − S(T )

Maximum-asset call: max{0, max{S(t ′)} − K}
Minimum-asset put: max{0,K − min{S(t ′)}}
Look-back-spread call: max{0, max{S(t ′)} − min{S(t ′)} − K}
Look-back-spread put: max{0,K − max{(S(t ′)} + min{S(t ′)}}
Look-back-straddle: max{S(t ′)} − min{S(t ′)} ,

where each of the maxima and minima are taken over the entire lifetime of the
option, i.e., for t ′ such that t ≤ t ′ ≤ T .

19.1.4 Asian Options

An average strike Asian option is an option where the strike rate equals the
average of the underlying over the life of the option. The strike rate can
therefore only be calculated at maturity of the option. Instead of using the
average underlying price as the strike, it can also be used as the price which is
to be compared to a fixed strike in the payoff. These kinds of Asian options
are then called average price options. The payoff profiles are explicitly

Average-price call: max{ 0, average[S(t ′)] − K }
Average-price put: max{ 0,K − average[S(t ′)] }
Average-strike call: max{ 0, S(T ) − average[S(t ′)] }
Average-strike put: max{ 0, average[S(t ′)] − S(T ) } .

The function “average[ ]” usually represents either the geometric or arith-
metic mean, depending on the option’s definition. In fact, an Asian option
can use any agreed upon method for averaging (e.g., with different weights,
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etc.). The averaging could be taken over the entire lifetime of the option, i.e.
t ≤ t ′ ≤ T , applying daily, weekly, monthly or quarterly observed underlying
prices from a specific data source (e.g., a specified page from Bloomberg,
Reuters or Telerate). Often, the averaging is applied only for a short period,
for example over daily end-of-day prices for the last week before option expiry
(this is calledAsian tail). This could reduce the exposure to short-term extreme
price fluctuations. All these details need to be specified in the contract.

19.1.5 Rainbow and Exchange Options

The family of rainbow options encompasses options where the payout is based
upon the relationship between two or more underlyings. Also known asmulti-
factor options, rainbow options include spread options, “better-of ” options,
“worst-of ” options etc. A rainbow option referring to two underlyings S1

and S2 is sometimes called a two-color rainbow. The most common payoff
profiles are

Rainbow: max{ S1(T ), S2(T ), K }
Call-on-maximum: max{ 0, max{S1(T ), S2(T )} − K}
Put-On-maximum: max{ 0, K − max{S1(T ), S2(T )}}
Call-On-minimum: max{ 0, min{S1(T ), S2(T )} − K}
Put-On-minimum: max{ 0, K − min{S1(T ), S2(T )}}
Spread call: max{ 0, S2(T ) − S1(T ) − K}
Spread put: max{ 0, K − S2(T ) − S1(T )}
Dual strike: max{ 0, S1(T ) − K1, S2(T ) − K2}
One-for-another: max{ 0, S1(T ) − S2(T ) }
Outperformance: max{ S1(T ), S2(T ) }
Underperformance: min{S1(T ), S2(T ) } .

If the payoff contains only the underlyings S1 and S2 as in the last three
lines of this table, then the option is also called an exchange option.

19.1.6 Basket-Options

The options discussed in the previous section are simple special cases of a more
general class of options, the so-called basket options. All basket options have in
common that they depend on more than one underlying. The pay-off profile
could be an arbitrary function of the underlying prices. For example, a simple
basket option is plain vanilla option on an equity index, since an equity index
can be considered as the weighted average of a basket of share prices.
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Other basket option replicate rule-based trading strategies. As an example,
consider a strategy where the option premium is used to buy a basket of shares.
Periodically, the share with the worst performance (keeping only the stocks
with the best performance) or best performance (to lock-in the price increase
so far) is sold. The cash is either distributed to the option holder or reinvested
in the stocks remaining in the basket. Best-of or worst-of certificates are basket
options, too. Here, the final pay-off depends on either the underlying with the
best or worst performance of all shares in the basket.

19.1.7 Compound and Bermuda Options

Compound options are options whose underlying is also an option (usually a
plain vanilla option). Upon exercise at maturity T of a compound option,
the option holder obtains (or delivers) a plain vanilla option maturing at a
later date T ′ > T and strike K2 on the same underlying in exchange for the
strike K1 of the compound option. The payoff profiles at maturity T are

Call on call: max{0, cS(T , T ′,K2) − K1}
Call on put: max{0, pS(T , T ′,K2) − K1}
Put on call: max{0,K1 − cS(T , T ′,K2)}
Put on put: max{0,K1 − pS(T , T ′,K2)} .

An application of compound options are the extendible options. At matu-
rity T , the holder of an extendible option has the right to extend the lifetime
to a future date T ′ > T . The payoff profile for extendible options are:

Extendible call: max{0, S(T ) − K2, cS(T , T ′,K2) − K1}
Extendible put: max{0,K2 − S(T ), pS(T , T ′,K2) − K1} ,

where the strike K1 is often chosen to be zero. With strike K1 = 0, the
extendible option is an example of a Bermuda option. A Bermuda option,
also called an Atlantic option, is an option which can only be exercised at
specific times during the lifetime of the option. It is, in a sense, an intermediate
form between an American (exercise is possible at any arbitrary time during
the lifetime of the option) and a European option (exercise is possible at a
single time, namely at maturity). The extendible option is a Bermuda option
with exactly one early-exercise date prior to maturity. Bermuda options are
commonly employed as embedded options in structured bonds.

Another example of a compound option is the chooser option. At inception,
the chooser option has a strike, a “chooser” date T , and a final maturity date
T ′ > T . At the chooser date, the buyer can choose whether the option from
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the chooser date onwards to final maturity is a call or put. The payoff profile
at maturity T is thus

Chooser: max{cS(T , T ′,K2), pS(T , T ′,K2)} .

A chooser option is interesting for investors who expect strong volatility
increase in the underlying but who are uncertain about the direction. It is
therefore ideal mechanism to take positions on volatility.

Yet another example from the family of compound options is the caption.
A caption is the right to buy or sell at maturity T an interest rate cap (with
maturity T ′ and strikeK2 on, e.g. 6-months LIBOR) at strike priceK1 (call or
put on cap). If at maturity T of the caption representing the right to buy (sell)
a cap the underlying interest rate cap is cheaper (more expensive) in the market
than the caption strike K1, the caption holder will let the caption expire. If,
however, the underlying cap is more expensive (cheaper) in the market, the
caption holder will buy (sell) the cap for the strike described in the caption
agreement.

The same agreement, but with reference to a floor, is known as a floortion.

19.2 Black-Scholes for Exotics

A closed form Black-Scholes price can be obtained for some exotics by adeptly
decomposing them into a combination of options whose prices are known
analytically or can be determined using known analytical methods. This will
be demonstrated for pay-later and digital options. It is sometimes possible to
find Black-Scholes solutions even for options which are path dependent as
will be shown for the case of barrier options. Though, it should be noted that,
in practice, these Black-Scholes based solutions are used as quotation vehicles
only rather than as valuation models, since they neglect significant risk factors
like the volatility smile.

19.2.1 Pay-Later Options

A pay-later option must be paid for upon exercise of the option and only if
the option is in fact exercised. Intuitively, such an option is like an insurance
premium against an accident which is payable only in event that the accident
actually occurs. This may sound too good to be true but such options can
actually be priced and are traded. The idea is to “hide” the option price in
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the payoff profile so that the holder of the option need pay nothing upon its
acquisition. To accomplish this, the cash flows upon exercise must be reduced
by a certain amount in comparison with the payoff of the corresponding plain
vanilla option. The payoff profiles of the put and the call are

claterS (T , T ,K) =
{

S(T ) − K − c̄ , S(T ) > K

0 , S(T ) ≤ K

plater
S (T , T ,K) =

{
K − p̄ − S(T ) , S(T ) < K

0 , S(T ) ≥ K .

The option is exercised exactly when the corresponding plain vanilla would be
exercised, namely when S(T ) > K , or S(T ) < K . The only difference is that
the holder of the call at exercise has to pay a higher amount, K + c̄, instead
of the strike K , and the holder of the put receives only K − p̄ instead of the
entire strike K . To price such options, we modify the strikes (K + c̄ for calls
and K − p̄ for puts) in the pricing formulas for plain vanilla options Eq. 8.7
to get the Black-Scholes prices:

claterS (t, T ,K) = S̃(t, T )N(x) − (K + c̄) B(t, T )N(x − σ
√

T − t)

plater
S (t, T ,K) = −S̃(t, T )N(−x) + (K − p̄) B(t, T )N(−x + σ

√
T − t) ,

(19.1)

where

x(t) = 1

σ
√

T − t
ln

(
S̃(t, T )

K Br(t, T )

)

+ 1

2
σ
√

T − t (19.2)

and S̃(t, T ) is the dividend corrected spot price as given in Eq. 2.9. The
premium to be paid at exercise, c̄ and p̄ for the call and put respectively,
are established when the option is written, i.e., at t0, in such a way that the
option is worthless at this time. From the condition that the option price in
Eq. 19.1 is zero at t0,we can derive

c̄ = S̃(t0, T )N(x0)

B(t0, T )N(x0 − σ
√

T − t0)
− K

p̄ = −S̃(t0, T )N(−x0)

B(t0, T )N(−x0 + σ
√

T − t0)
+ K ,

where x0 stands for the value of x at t = t0.
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19.2.2 Digital Options

Digital options, also referred to as binary options, are options paying a fixed
amount where the underlying only determines whether a payoff occurs at all.
The option holder receives the same payout irrespective of how far in the
money the option closes. The payoff thus has a binary (digital) character:
either a fixed amount or nothing at all is paid. We will now show how to
price such options using Black-Scholes. Thus we have to assume the options
to be European. There are however also options called one touch digitals in
the market, which also give the buyer a fixed payout profile. Unlike ordinary
digitals, one-touch digitals pay out a fixed amount if the underlying reaches the
strike at any time during the options life time. They can therefore be considered
as American style digital options.

Cash-or-Nothing

The holder of a cash-or-nothing option receives upon exercise a fixed amount
of money (for example, 1 euro) if the underlying price is higher (call) or lower
(put) than the strike of the option. The payoff profiles of the call and put are

cconS (T , T ,K) =
{

1 , S(T ) > K

0 , S(T ) ≤ K

pcon
S (T , T ,K) =

{
1 , S(T ) < K

0 , S(T ) ≥ K .

where “con” stands for “cash or nothing”. Pricing these options is accomplished
by decomposing them into options whose prices can be determined using
conventional methods (option stripping). The payoff profile of the pay-later
option corresponds to that of the plain vanilla option where the holder pays an
additional fixed amount c̄ or p̄ upon exercise. These fixed amounts correspond
to the payoff profiles of digital options. A pay-later call thus has the same
payoff profile as a portfolio consisting of a plain vanilla call (long) and c̄ digital
options (short). An analogous relation holds for put options:

claterS (t, T ,K) = c
plain
S (t, T ,K) − c̄ ccon

S
(t, T ,K)

plater
S (t, T ,K) = p

plain
S (t, T ,K) − p̄ pcon

S (t, T ,K) .
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Solving for cconS (t, T ,K) and pcon
S (t, T ,K) and using Eqs. 8.7 and 19.1 for

the plain vanilla and the pay-later options yields the Black-Scholes prices for
digital options (with x as in Eq. 19.2):

cconS (t, T ,K) = B(t, T )N(x − σ
√

T − t) (19.3)

pcon
S (t, T ,K) = B(t, T )N(−x + σ

√
T − t ) .

These equations can be interpreted as follows: the value of the option is
the discounted payoff upon exercise (1 euro) multiplied by the risk-neutral
probability that the option is exercised.

An alternative approach yields a simple static hedge for a European cash-or-
nothing option. ACall-Spread, consisting of a bought call option with strikeK

and a sold call option with strike K + ε has almost everywhere, i.e. for all
S(T ) > K + ε and for all S(T ) < K the same pay-off as a cash-or-nothing
call paying the amount ε. Both pay-off profiles differ only in the small region
K < S(T ) < K + ε. The smaller ε, the better the approximation of the
cash-or-nothing call. Therefore, the cash-or-nothing call with nominal 1 could
be approximately statically replicated by buying 1/ε call spreads. In the limit
ε → 0 both pay-off profiles are identical:

cconS (T , T ,K) = lim
ε→0

max(S(T ) − K, 0) − max(S(T ) − K − ε, 0)

ε

= − ∂

∂K
max(S(T ) − K, 0) .

Therefore, the pay-off profile is identical to the (negative) partial derivative
of the plain vanilla pay-off function with respect to the strike! For a call-
or-nothing put an analogous consideration holds true. Since the derivative
is taken with respect to the strike, not to the underlying, the derivative can
be calculated outside the expectation function, i.e. the relation is valid for the
present value functions, too:

cconS (t, T ,K) = − ∂

∂K
c
plain
S (t, T ,K)

pcon
S (t, T ,K) = − ∂

∂K
p
plain
S (t, T ,K) .
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Comparison with Eq. 19.3 yields immediately

∂

∂K
c
plain
S (t, T ,K) = −B(t, T )N(x − σ

√
T − t )

∂

∂K
p
plain
S (t, T ,K) = −B(t, T )N(−x + σ

√
T − t) .

In fact, European call-or-nothing options are often hedged and represented by
means of such call spreads.

It can be observed that the implied volatilities traded liquidly in the market
show a strong dependency on the strike (volatility smile). Therefore, it follows
that cash-or-nothing or more generally all digital options which are sensitive
to the smile or especially its slope with respect to K should always be priced
with models taking smile effects into account.

Asset-or-Nothing

The holder of an asset-or-nothing option receives the underlying (or its cash
value S(T )) if the underlying price is greater than (call) or less than (put)
the strike of the option. Seen as such, the amount obtained upon exercise
is certainly dependent on the underlying but remains binary (digital) in the
sense that the option holder either receives the underlying or nothing at all.
The payoff profiles of a call and put are

caonS (T , T ,K) =
{

S(T ) , S(T ) > K

0 , S(T ) ≤ K

paon
S (T , T ,K) =

{
S(T ) , S(T ) < K

0 , S(T ) ≥ K ,

where “aon” stands for, “asset or nothing”. This resembles the payoff profile
of the corresponding plain vanilla options with the exception that the holder
of the call, for example, need not pay the strike price K in order to obtain
the underlying. Were the holder to pay the strike and simultaneously receive
the amount of the strike, the payoff profile would remain the same. Thus, the
asset-or-nothing call can be interpreted as a plain vanilla call and K cash-or-
nothing calls. An analogous decomposition can be produced for the asset-or-
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nothing put. The option stripping of the asset-or-nothing options thus yields
the expressions

caon
S

(t, T ,K) = K ccon
S

(t, T ,K) + cplain
S

(t, T ,K)

paon
S

(t, T ,K) = K pcon
S

(t, T ,K) − pplain
S

(t, T ,K) .

Inserting the Black-Scholes equations for the already known option prices
discussed above gives

caon
S

(t, T ,K) = S̃(t)N(x) (19.4)

paon
S

(t, T ,K) = S̃(t)N(−x) ,

where again, S̃(t, T ) is the spot price adjusted for dividends as given in Eq. 2.9.

Range Floater

An application of digital options is the range floater. A range floater is a
deposit or note that accrues interest on days when the underlying S is
within a predefined range between S1 and S2 and accrues zero on days when
the underlying is outside that range. Range floaters are usually principal
guaranteed so that the investor is assured of at least receiving the principal
back. A range floater is thus a series of daily digital options (plus a zero bond
to ensure the redemption of the principal at maturity). On each day during
the life of the range floater two digital options mature: a long digital call with
strike S1 and a short digital call with strike S2, with S1 < S2. Each day the
underlying is above S1 the long digital call is automatically exercised. If the
underlying is above S2 both the long and the short call will automatically be
exercised, resulting in zero net payout. The range floater will therefore accrue
interest equal to the digital payoff each day the underlying is within the range.
Range floaters can be designed with any underlying including interest rates
and FX rates. Range floaters are also known as fairway bonds or fairway floaters
or daily range accruals.

19.2.3 Barrier Options

Barrier options have become so common (primarily in foreign exchange
markets) that many investors no longer think of them as exotic. Barrier options
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are European options and come in the form of knock-in and knock-out options.
A knock-out option corresponds to a plain vanilla option with the additional
condition that the option becomes worthless (knocks out) if the underlying
price breaks through a specified barrier H . Depending on whether the barrier
is smaller or larger than the current price of the underlying, we speak of down-
and-out and up-and-out options. A knock-in option is completely analogous to
the knock-out option. In this case however, the additional condition is that the
option remains worthless as long as the underlying does not attain the barrier.
As soon as the barrier has been attained, the option becomes plain vanilla
option. The option is thus first “brought to life” (knocks in) when the barrier
is attained. We speak of a down-and-in and up-and-in options, depending on
whether the barrier has to be attained from above or below.

To determine whether the barrier has been hit or not, the underlying is
usually measured once a day at a fixed time (say 12:00 London time) and
with reference to an agreed upon source, for instance a Reuters, Bloomberg or
Telerate page.

Sometimes a knock-out option is defined in such a way that it does not
completely lose its value if the underlying breaks through the barrier, but a
small previously agreed upon amount, called the rebate, is paid.2 Analogously,
a rebate is sometimes paid after the maturity of a knock-in option if the option
has not been activated in its lifetime. For the sake of clarity, however, we will
not enter into a further discussion of these, since such option components
could be easily stripped of. A rebate is nothing else as an extra digital option
with American exercise often called touch option (see Sect. 19.2.2).

The payoff profiles at maturity T of knock-out barrier options with strikeK

and barrier H on an underlying with a spot price S(t) are:

Up-and-out call: max{0, S(t) − K} if S(t ′) < H

Down-and-out call: max{0, S(t) − K} if S(t ′) > H

Up-and-out put: max{0,K − S(t)} if S(t ′) < H

Down-and-out put: max{0,K − S(t)} if S(t ′) > H ,

where the conditions must hold for all t ′ such that t < t ′ ≤ T . The payoff
profiles of the corresponding knock-in barrier options are:

Up-and-In Call: max{0, S(t) − K} if S(t ′) ≥ H

Down-and-In Call: max{0, S(t) − K} if S(t ′) ≤ H

Up-and-In Put: max{0,K − S(t)} if S(t ′) ≥ H

Down-and-In Put: max{0,K − S(t)} if S(t ′) ≤ H ,

2This concept is useful in the valuation of companies using option pricing theory.



19 Exotic Options 453

where the conditions must in each case hold for at least one t ′ with t < t ′ ≤ T .
A portfolio consisting of a knock-out option and the corresponding knock-

in option, for example a down-and-out call and a down-and-in call, yields
the same payoff as the corresponding plain vanilla option. If the barrier is
attained then the knock-out option “dies” and the knock-in becomes a plain
vanilla call. Conversely, if the barrier is never attained in the lifetime of the
options, the knock-out pays the same as a plain vanilla call and the knock-
in is worthless. Thus, a portfolio consisting of a knock-out option and the
corresponding knock-in option is worth exactly the same as the corresponding
plain vanilla option for all times before and at maturity:

cplain
S

(t, T ,K) = cdi
S
(t, T ,K, H) + cdo

S
(t, T ,K, H) (19.5)

= cui
S
(t, T ,K, H) + cuo

S
(t, T ,K, H)

pplain
S

(t, T ,K) = pdi
S
(t, T ,K,H) + pdo

S
(t, T ,K,H)

= pui
S
(t, T ,K,H) + puo

S
(t, T ,K, H) ,

where the superscripts “di”, “do”, etc. stand for “down and in”, “down and
out”, etc. It is therefore sufficient to determine the prices of, for example,
the knock-out options. The knock-in prices then follow immediately from
Eq. 19.5. In addition to the four different barrier option variants, we must
further distinguish whether the strike is above or below the barrier. Hence,
we need to find equations for 8 different cases. With an appropriate choice of
notation, these 8 cases can be summarized in a single Black-Scholes prices for
knock-out options (the derivation of which will not be given here):

V out = δ e−q(T −t)S(t)

{
N

(
β − x+

σ
√

T − t

)
− N

(
α − x+

σ
√

T − t

)
(19.6)
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)]}
.
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Table 19.1 Parameters for the valuation of knock-out options using Eq. 19.6

H ≤ K H > K

Up-and-out call Pointless δ = +1

α = − ln
(

S(t)
K

)

β = −h

Up-and-out put δ = −1
α = −∞
β = −h

δ = −1
α = −∞
β = − ln

(
S(t)
K

)

Down-and-out call δ = +1

α = − ln
(

S(t)
K

)

β = +∞

δ = +1
α = −h

β = +∞
Down-and-out put δ = −1

α = −h

β = − ln
(

S(t)
K

)
Pointless

In this equation, the following parameters are defined to hold for all knock-out
options:

x+ = ln

(
e−q(T −t)

B(t, T )

)
+ σ 2

2
(T − t ) (19.7)

x− = ln

(
e−q(T −t)

B(t, T )

)
− σ 2

2
(T − t )

λ = 1 +
ln

(
e−q(T −t)

B(t,T )

)

σ 2

2 (T − t )
, h = ln

(
S(t)

H

)
.

The parameters α, β and δ, on the other hand, are not identical for all knock-
out options. These three parameters are presented in Table 19.1 for the different
types of knock-out options. Together with the Eqs. 19.6 and 19.7, this table
provides all the necessary information for determining the Black-Scholes price
of all knock-out options.3

The case H ≤ K for an up-and-out call does not make sense since for the
call to pay out anything the underlying must be larger than the strike K . But
for this to happen, it must cross the barrierH since H ≤ K . But then the up-
and-out call “dies”. Therefore an up-and-out call with H ≤ K never pays out

3The following well-known properties of the normal distribution are useful for the valuation: N(∞) = 1,
N(−∞) = 0, 1 − N(x) = N(−x).
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anything. Such an option is always worth zero. Inserting this result in Eq. 19.5
shows that the corresponding up-and-in call is worth exactly as much as the
plain vanilla call. This makes sense since for the call to pay out anything the
underlying must be larger then the strike K and therefore cross the barrier.
Thus, an up-and-in call with H ≤ K will be “alive” in every situation where
the corresponding plain vanilla call pays out anything. Therefore it has the
same value as the plain vanilla call.

The same reasoning leads to the result that a down-and-out put with H >

K never pays out anything (and is therefore worth zero) and the down-and-in
put with H > K is worth exactly as much as the corresponding plain vanilla
put.

As an example, we present the explicit equation for the price of a down-
and-out call for the case that the barrier is less than or equal to the strike.
Referring to Table 19.1 for this case, we find that δ = +1, α = − ln (S(t)/K),
β = +∞. Substituting these parameters into Eq. 19.6 and making use of the
properties of the normal distribution yields

cdoS (t, T , H ≤ K) =

e−q(T −t)S(t)

⎡

⎣N

⎛

⎝
x+ + ln
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)
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√
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⎛

⎝
x+ + ln
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K

)
− 2h
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√
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⎞
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⎛

⎝
x− + ln

(
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⎞

⎠

⎤

⎦ .

Here, the argument x+ + ln (S(t)/K) is precisely equal to the x known from
the plain vanilla options (see for example Eq. 8.5). Substituting this and all
other parameters as defined in Eq. 19.7 (with the exception of λ) finally leads
to the equation for the price of a down-and-out call, in agreement with that
found by Cox and Rubinstein in [43], for example:

cdoS (t, T , H ≤ K) =
plain vanilla

︷ ︸︸ ︷
e−q(T −t)S(t)N(x) − B(t, T )S(t)N(x − σ

√
T − t)

−
(

S(t)

H

)−λ
[

e−q(T −t)S(t)N(y) − B(t, T )K

(
S(t)

H

)2

N(y − σ
√

T − t)

]

(19.8)
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where the following new abbreviations have been introduced

y = x − 2

σ
√

T − t
ln

(
S(t)

H

)
= 1

σ
√

T − t
ln

(
e−q(T −t) H 2

B(t, T )K S(t)

)

+ 1

2
σ
√

T − t .

The price of the down-and-out call is thus equal to the price of the corre-
sponding plain vanilla call less an amount generated by the barrier. It is thus
always cheaper than the plain vanilla call. This makes sense, since its payoff
in the most favorable case (when the barrier is not attained) equals that of the
plain vanilla call. The barrier increases the risk that a payoff will not be made
and thus the barrier option must always be less expensive than its plain vanilla
counterpart. They are therefore the appropriate instruments for investors who
have an exact opinion as to future developments in the price of an underlying
and, based on this opinion, wish to decrease the costs of a hedge, for example.
The speculative element should not be overlooked here: when the barrier is
attained, a hedging portfolio consisting of knock-out options disappears!

The price of the corresponding down-and-in call follows immediately from
Eq. 19.5. The value of this call is just the difference between the price of the
plain vanilla and the down-and-out call:

cdiS (t, T ,H ≤ K) (19.9)

=
(

S(t)

H

)−λ
[

e−q(T −t )S(t)N (y) − B(t, T )K

(
S(t)

H

)2

N
(
y − σ

√
T − t

)]

.

Double Barrier Option

In order to receive the option payout of a double barrier option the underlying
must not breach either of two defined barriers at any time during the life of the
transaction. Generally, the barriers are used to define a range inside which the
underlying must remain for the life of the transaction in order for the option
payout to be made. If the underlying as measured on any day is outside the
defined range, the payout is zero, i.e., the holder has been knocked out. The
payout for the double barrier option is usually a fixed amount and hence this
option type is also known as a binary knockout range.

A double barrier option is not the addition of two knock-out options. If
this were the case, once one barrier had been breached the other option would
still be “alive”. A double barrier option is the addition of two “contingent”
Knockout Options, i.e., the “survival” of each barrier option is contingent
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upon the other barrier not having being breached. Should one barrier be
breached, the other barrier option also dies.

Double barrier options are suitable to take advantage of markets expected
to trade within a range. Most common in foreign exchange, they are available
in most underlying markets, including commodities, interest rate and equity
markets.

19.2.4 Ladder Options

With a ladder option, the strike is periodically reset when the underlying hits
specified trigger levels, at the same time locking in the profit between the
old and the new strike. The trigger strikes appear as rungs on a ladder. This
behavior of the option can be summarized by the following payout function: at
expiry the option will pay out either the difference between the underlying spot
price S(T ) and the original strike K0, or the difference between the highest
rung reached and the original strike, whichever is greater. The payoff profile
in its simplest form is therefore

max

{
S(T ) − K0, max

i
{Ki − K0} , 0

}
with K0 < K1 < K2 < · · · < Kn ,

where K1, K2, . . . , Kn, represent the “rungs on the ladder” established in the
contract and K0 the original strike of the option. The maximum function
for these ladder steps refers only to those rungs Ki attained by the underlying
during the lifetime of the option. Upon exercise of such an option, the holder
receives the same payoff as that of a plain vanilla option if S(T ) is greater
than each of the previously attained steps. However, if the underlying price
has declined toward the end of its lifetime, the holder receives the difference
between the original strike K0 and the highest rung attained during the
lifetime of the option. Ladder options can be structured to reset the strike
in either one or both directions. Also a “Ladder Put” could be constructed
along the same lines (if we consider the above payoff profile as a “call”). Ladder
options are also known as a ratchet options or lock-in options. A ladder option
with the above payoff profile can be constructed from a plain vanilla call and
as a series of long and short knock-in puts (option stripping). Since knock-in
options can be priced using Eqs. 19.5 and 19.6, a Black-Scholes price for a
ladder option can be obtained by pricing the corresponding portfolio of plain
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vanilla and barrier options. Explicitly, the portfolio which has the same payoff
profile as the ladder option consists of

• one long plain vanilla call with strike K0.
• for each rung Ki (with i = 1, . . . , n) one long knock-in put with knock-in

barrier Hi = Ki and strike Ki .
• for each rungKi (with i = 1, . . . , n) one short knock-in put with knock-in

barrier Hi = Ki and strike Ki−1.

All these options have maturity T . To check that this portfolio indeed
replicates a ladder option we consider a ladder option with only one rung K1

and an initial strike K0 < K1. With one rung and one strike, five different
situations can arise at maturity. These are displayed in the following table:

K1 reached K1 not reached
S(T ) > K1 case a) impossible
K0 < S(T ) < K1 case b) case d)
S(T ) < K0 Fall c) case e).

The replicating portfolio consists of the plain vanilla call with strike K0, a
long knock-in put with barrierK1 and strikeK1 and a short knock-in put with
barrierK1 and strike K0. We will now show that in each case the portfolio has
the same payoff as the ladder option:

Case a
– payoff of ladder option: S(T ) − K0

– payoff of options portfolio: payoff from plain vanilla call is S(T ) − K0;
the puts are both knocked in but expire worthless.

Case b
– payoff of ladder option: K1 − K0

– payoff of options portfolio: payoff from plain vanilla call is S(T ) − K0;
the puts are both knocked in; payoff from long put is K1 − S(T ); short
put expires worthless; altogether: S(T ) − K0 + K1 − S(T ) = K1 − K0

Case c
– payoff of ladder option: K1 − K0

– payoff of options portfolio: plain vanilla call expires worthless; the puts
are both knocked in; payoff from long put is K1 − S(T ); payoff from
short put is − [K0 − S(T )] ; altogether: K1 − S(T ) − [K0 − S(T )] =
K1 − K0
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Case d
– payoff of ladder option: S(T ) − K0

– payoff of options portfolio: payoff from plain vanilla call is S(T ) − K0;
the puts are never knocked in.

Case e
– payoff of ladder option: 0
– payoff of options portfolio: plain vanilla call expires worthless; the puts

are never knocked in.

For more than one rung we simply repeat the above idea: each time a
rung Ki is reached for the first time by the underlying, a put is knocked in
which guarantees that the underlying can be sold for at least Ki . That locks in
a profit Ki −K0 with certainty since at maturity the underlying can be bought
forK0 because of the call and then immediately sold for Ki because of the put.
However, when the next rungKi+1 is reached, one more put is knocked in and
we would then have two puts; the “old” one with strike Ki and the “new” one
with strike Ki+1. That is one put too many. Therefore the “old” put (the one
with strikeKi) now has to be “destroyed”. This is achieved by the short knock-
in put with strike Ki which comes into being exactly when Ki+1 is hit. The
payoff of this short put then exactly compensates for the payoff of the “old”
long put. The portfolio is then left with the payoffs of the new put and the
plain vanilla call and thus, a payoff Ki+1 −K0 is locked in with certainty, just
as it should be to replicate the ladder option.

19.3 Numerical Pricing Methods for Exotics

The list of exotics described above is far from complete and an analytic price
determination—even under the assumptions of the Black-Scholes world—is
not possible for the majority of exotics. The multitude of exotic instruments
can be roughly assigned to four different classes as indicated in Table 19.2. The
options are differentiated by whether the payoff profile is dependent solely on
current values of the underlying or on earlier values as well and whether or not
early exercise is allowed. We speak of a path dependent option if the option’s
value is dependent on the history of the underlying, i.e., if the price evolution
(the path) of the underlying during the lifetime of the option affects the
option’s payoff. Assuming the availability of adequate computer capacity and
performance, some common numerical pricing methods leading to reasonable
prices for exotic derivatives are indicated in Table 19.2. The fundamental
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Table 19.2 Classification and “brute force” valuation methods for exotic options

European American

Path-independent Grid Grid
trees trees
Monte-Carlo

Path-dependent (Grid) (Grid)
Monte-Carlo (Non-recombining trees)

American Monte-Carlo

assumption behind these methods is that the underlying is governed by a
randomwalk as given in Eq. 2.17, ormore generally by an Ito process as defined
by Eq. 2.19.

In this table, “grid” means that the price can be determined by solving a
partial differential equation under certain boundary conditions (determined
by the option to be priced) on a grid. These include numerical methods such as
the finite difference methods (see Chap. 10) or finite elements. These methods
approximate the solution on a fixed grid or lattice. Strictly speaking, tree
methods fall also in the class of gridmethods, though we consider tree methods
here as distinct from gridmethods, since they are usually implemented without
relating explicitly to the underlying PDE. For path dependent problems, grid
methods can only be applied in special cases, of which barrier options are
an example. Another special case is a problem, where the path dependency
can be summarized in a single parameter and the method of extension of
dimensions can be applied (here, an additional virtual dimension representing
this additional parameter is introduced, such that many different paths can
be calculated in parallel on the grid). Therefore, we have put the word “grid”
in brackets for this class of problems. Non-recombining (or “bushy”) trees
have such a bad performance that they play a minor role only since they
have no obvious advantage over Monte-Carlo methods when path-dependent
problems need to be solved (see also Sect. 11.5 or Sect. 14.10).

Another important aspect is the number of risk factors. Grid and tree
methods are used mostly for low-dimensional problems, i.e. with one or two,
rarely with three or for dimensions. The number of dimensions is determined
by the number of stochastic factors. A plain vanilla call on a stock is an example
for a one-dimensional problem. If the volatility is also being considered as
stochastic, this becomes a two- (or more) dimensional problem. Long term
options on FX rates require the simulation of both involved interest rate curve
an the FX rate itself, yielding to at least three dimensions, etc.

For high-dimensional problems,Monte-Carlo is the method of choice. E.g.,
implementing a 10-dimensional problem in Monte-Carlo is only marginally
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more complex than implementing a 3-factor model, in stark contrast to grid
methods—every additional dimension increases the complexity significantly.
Still, it is easy to reach the computational limit with Monte-Carlo methods,
too, mainly because of the rapidly increasing computation time for more
complex problems. Also, the difficulties to calibrate a high-dimensional model
are often underestimated. Though it very easy to produce number with a
badly calibrated model, the results are of limited use, since they often don’t
have the required accuracy or stability. Another problem is the computation
of sensitivities resp. the Greeks required for hedging, if Monte-Carlo methods
are used, which is significantly more difficult than computing present values.

The discussed methods so far are very generic in the sense that they could
be implemented as very general procedures. The very same code can than be
applied to a broad variety of products, and, depending on the implementation,
also for differentmodels ormodel variants. In addition to these genericmodels,
there are many valuation models and techniques which can be applied only
to very specific products and could not be generalized to a broader variety
of situations. Examples for these specific methods are replication approaches
(e.g. for CMS-Swaps, see Sect. 17.7) or Fast Fourier Transformations. These
specialized approaches are often more accurate, cover more relevant features
or increase computational performance dramatically compared to generic
methods. If such special methods exists for a special product, it’s often the first
choice. However, for the remainder of the chapter we concentrate on generic
methods.

19.3.1 Monte Carlo for European Exotics

A method which, in principle (neglecting potential problems regarding CPU
time) can be applied to all derivatives with a European payoff mode is the
Monte Carlo method introduced in Chap. 11. Using a “Pseudo-Code”, we
will demonstrate how Asian options can be priced with this method. The
schematic algorithm offered here explicitly shows how the chapters on Monte
Carlo simulation and on random walks can be applied to option pricing. The
algorithm is suitable for the valuation of all European options depending on
a single underlying (with or without dividends). Multiple underlyings can be
simulated using the methods discussed in Sect. 11.3.2 the for the case of two
underlyings. The generalization of this method for more than two underlyings
can be realized using Eqs. 21.41 and 23.1.

I the following concrete example, the algorithm has been explicitly formu-
lated for Asian options to demonstrate the general procedure. The complete
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algorithm can be found in the form of an executable Visual Basic program
contained in the Excel workbook MonteCarloSimulation.xlsm from the
download section [50]. The variable x = ln(S(t ′)/S(t)) is simulated as a
random walk where S(t ′) is the price (denoted by S in the algorithm) at
the current simulation time t ′ = t + i dt and S(t) (denoted by S0 in the
algorithm) is the price at the start of the simulation, i.e., at the value date t .
Since the Monte Carlo simulations are based on random walks and, as such,
on random numbers, this method will generate a somewhat different option
price with each simulation run. To demonstrate the calculation of the error in
accordance with Sect. 31.2, the statistical error (denoted by EPrice) of the
option price generated by the simulation will also be determined.
1 ’* Initialization of the payoff profile:
2 ’* =====================================
3 Payoff1 = 0
4 Payoff2 = 0
5 ’* The loop over i is the loop over the paths :
6 ’* ===========================================
7 For i = 1 to Path
8 ’* Initialization at the start of each path:
9 ’* =========================================
10 SamplePath = 0
11 x = 0
12 ’* The loop over j generates one underlying path:
13 ’* ==============================================
14 For j = 1 to Steps
15 ’* The next step on the path of the underlying ’s random walk:
16 ’* ==========================================================
17 dx = drift * dt + vola * randomnumber () * Squareroot(dt)
18 x = x + dx
19 S = S0 * Exp(x)
20 ’* The evaluation after each step in a path:
21 ’* =========================================
22 SamplePath = SamplePath + S
23 Next j
24 ’* The evaluation after each path:
25 ’* ===============================
26 ’* For Average -Price Call:
27 SamplePath = SamplePath / Steps
28 If SamplePath > Strike then

29 Payoff1 = Payoff1 + (SamplePath - Strike)
30 Payoff2 = Payoff2 + (SamplePath - Strike)^2
31 End If

32 ’*For Average -Price Put:
33 ’* SamplePath = SamplePath / Steps
34 ’* If Strike > SamplePath Then
35 ’* Payoff1 = Payoff1 + ( Strike - SamplePath)
36 ’* Payoff2 = Payoff2 + ( Strike - SamplePath)^2
37 ’* End If
38 ’*For Average -Strike Call:
39 ’* SamplePath = SamplePath / Steps
40 ’* If S > SamplePath Then
41 ’* Payoff1 = Payoff1 + (S - SamplePath)
42 ’* Payoff2 = Payoff2 + (S - SamplePath)^2
43 ’* End If
44 ’*For Average -Strike Put:



19 Exotic Options 463

45 ’* SamplePath = SamplePath / Steps
46 ’* If SamplePath > S Then
47 ’* Payoff1 = Payoff1 + (SamplePath - S)
48 ’* Payoff2 = Payoff2 + (SamplePath - S)^2
49 ’* End If
50 Next i
51 ’* final evaluation of the price and its error after the simulation
52 ’* =================================================================
53 Payoff1 = Payoff1 / Paths
54 Payoff2 = Payoff2 / Paths
55 Price = Payoff1
56 EPrice = Squareroot(( Payoff2 -Payoff1)^2)/ Squareroot(Paths -1)
57 ’* Discounting for Options which are not future -styled:
58 Price = Exp(-InterestRate * Time) * Price
59 EPrice = Exp(-InterestRate * Time) * EPrice

According to Eq. 12.17, the option sensitivities (“Greeks”) can be determined
by running the simulation twice, having modified the parameter according to
the sensitivity under consideration while using the same random numbers as in
the previous simulation run. The difference in the price thus obtained, divided
by the parameter change, yields the corresponding sensitivity. Intuitively, this
is the slope of the line passing through two measured prices. Two effects
contribute to the error of this slope induced by the error of the option prices:

• Statistical Error This error is generated by the measurement error in both
prices. The error associated with the slope of the line passing through two
points, whose positions are known only up to an error term, increases the
closer these points lie to one another. This is illustrated in Fig. 19.1. In order
to minimize this error, the measured points should therefore lie as far from
one another as possible. This means that the parameter change should be
as large as possible.

• Systematic Error The sensitivities are defined as the derivatives of the price
function with respect its different parameters, i.e., they represent the change
of the price with respect to a small change in the parameter, divided by this

Fig. 19.1 The range of possible straight lines through two points where the points are
known only up to a certain error represented by the bars
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change in the parameter. Thus, choosing a large change in the parameter to
reduce the statistical error means moving away from the actual definition
of the sensitivities and thereby committing a systematic error.

Both of these effects compete with one another. The “most favorable” choice
for the size of the parameter change is always a compromise between a large
parameter change minimizing the effect of the statistical error and a small
parameter change minimizing the systematic error. Alternative methods for
the calculation of sensitivities could be found, e.g., in [4].

As the commentary in the algorithm suggests, only minor modifications
need to be made when other option types are priced. The locations in the
code where these modifications are to be made are written in bold print.4 The
lines printed in bold are those which serve to measure the payoff profile and
its error and generate the values of “Payoff1” and “Payoff2”.

If, for example, a barrier option (with the additional input parameter
Barrier) were to be priced instead of an Asian, the lines from 20 to 31
would have to be replaced by:
1 ’* Initialization at the start of each path:
2 ’* =========================================
3 SamplePath = 0
4 ’* The evaluation after each step of the path:
5 ’* ===========================================
6 If S > Barrier
7 SamplePath = 1
8 End If
9 ’* The evaluation at the end of each path:
10 ’* =======================================
11 If SamplePath = 1 And S > Strike Then
12 Payoff1 = Payoff1 + (S - Strike )
13 Payoff2 = Payoff2 + (S - Strike )^2
14 End If

That is all! Bymodifying these few linesmeasuring the payoff profile, barrier
options can be priced instead of Asian options together with all their respective
Greeks an error terms.

This example should serve to illustrate that many European options,
regardless of how complicated, can be priced with the Monte Carlo method if
the payoff profile is known. This means that as soon as the option is defined
(through its payoff ) the valuation via Monte Carlo simulation is as good as
complete!

Some of the options listed in Sect. 19.1 require extensions of the above
given algorithm which will not be presented here. Rainbow and exchange

4In addition there may of course be changes in the input parameters.



19 Exotic Options 465

options, for example, can be priced through a simulation of correlated prices.
An extendible option, for example, an extendible call, is priced by simulating
its underlying’s price S(T ) at the first maturity date T . The payoff of the
extendible call is then the maximum of a ) the payoff of a plain vanilla call with
strike K2 and maturity T and b) the value of a plain vanilla call with strike K2

and maturity T ′ as of the time point T (calculated with Black-Scholes, for
instance) less the strike, K1, of the extendible option.

19.3.2 The Binomial Model for American Exotics

Though it is possible to price American or Bermudan style options with
Monte-Carlo simulations (see Sects. 11.5 and 14.10), it is significantly simpler
and more accurate to implement grid based methods for this kind of options.

All grid methods have in common that option values are only calculated
for special points in the parameter space (where time and underlying price
are the parameters), which is called discretization. The set of these points in
the parameter space actually form the grid. Then, the solution on each grid
point is calculated by either solving the partial differential equation (finite
difference method), integration of the stochastic equation (finite elements) or
by simulating the stochastic process (binomial or trinomial tree) by applying
adequate boundary conditions, and linked to the solutions for neighboring
grid nodes.

This yields many equations which need to be solved either iteratively or
as a system of equations. The binomial tree is as well intuitive and compar-
atively simple to implement. Therefore, we concentrate in the following on
a schematic implementation of a binomial tree as described in Chap. 9. The
complete algorithm can be found as an executable Visual Basic program in the
Excel spreadsheet BinomialTree.xlsm from the download section [50].

Trinomial trees show a slightly better convergence performance than bino-
mial trees, though finite differences method offer significantly more flexibility
(e.g. by choice of various discretization schemes) compared to tree methods
and show a superior convergence behavior. For an efficient implementation of
grid methods, finite difference should be preferred over tree methods.

Recombinant Trees for Path-Independent Options

As emphasized in Chap. 9, recombinant trees are only suitable for path-
independent options since the path taken to arrive at a particular node is not
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unique if the branches of the tree recombine. The payoff profile of an (exotic)
option is then defined on the boundary of the tree, in particular at maturity T

of the option. We subsequently calculate backward in time applying Eq. 9.8.
The algorithm is actually a mere reformulation of Fig. 18.1. It will be applied
here to price an American self quanto option. The payoff profile of this option,
as was noted in Sect. 19.1.1, is S(T ) × max{0, S(T ) − K}. Naturally, any
other path-dependent payoff profile could have been inserted instead. The
algorithm can be generalized for options with multiple underlyings but such
a generalization is quite involved as the binomial tree takes on an additional
dimension with the addition of each new underlying [167].

The time to maturity T − t is denoted by “t” in the algorithm, the number
of binomial steps by “n”. The computations are performed with continuous
compounding.
1 dt = t / n
2 discount = Exp(-r * dt)
3 up = Exp(vola * Squareroot(dt))
4 down = 1 / up
5 p = (Exp ((r - q) * dt) - down) / (up - down)
6 ’* Inserting the boundary values for the option:
7 ’* =============================================
8 For j = 0 to n
9 S = S0 * up ^ j * down ^ (n - j)
10 ’* Payoff Profile :
11 exercise = S * ( S - Strike )
12 If Optiontype = Put Then
13 exercise = -exercise
14 End If
15 If exercise > 0 Then
16 f(n; j) = exercise
17 End If
18 Next j
19 ’* Calculate backwards for each node in the tree:
20 ’* ==============================================
21 For i = n - 1 To 0 stepsize -1
22 For j = i To 0 stepsize -1
23 S= S0 * up ^ j * down ^ (n - j)
24 ’* Intrinsic Value:
25 ’* ================
26 exercise = S * ( S - Strike )
27 If Optiontype = Put Then
28 exercise = -exercise
29 End If
30 ’* Option price:
31 ’* ============
32 f(i; j) = discount * (p * f(i + 1; j + 1)
33 + (1 - p) * f(i + 1; j))
34 If exercise > f(i; j) And Optionstyle = American
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35 Then
36 f(i; j) = exercise
37 End If
38 Next j
39 Next i
40 Price(c) = f(0; 0)

As in the above algorithm for the Monte Carlo simulation, only a few lines
need to be changed to price a different type of options. These are the locations
in the code where the payoff profile is defined in the program, i.e., where
both the values at the tree’s boundary (at time T ) are specified and where
the intrinsic value is computed for the purpose of deciding whether to exercise
early. For example, a power option can be priced by simply replacing the lines 11
and 26 by “exercise = (S - Strike)∧P”.

Further boundary conditions, for example for specific underlying values (as
for barrier options, for example) can be quite easily accounted for as well by
setting the option’s values at the nodes lying at the boundary equal to the given
boundary values. For reasons of stability the grid should always be constructed
so that the boundaries lie directly on the nodes (this applies to all grid methods,
also for instance for finite differences schemes).

Binomial Bushy Trees for Path-Dependent Options

The schematic algorithm presented here is suitable for the valuation of
path-dependent American (and European) options. So-called bushy trees will
be constructed in which each path of the underlying (denoted by “u”) is
generated without regard to recombination. Information on the entire history
of the underlying is then accessible. Each individual underlying path is then
evaluated to obtain the variable (denoted by “x” in the algorithm) determining
the price of the option. For Asian options, for example, this is the average price
of the underlying over the lifetime of the option. This will change from path to
path, even if the paths arrive at the same end point. Once the path-dependent
variables are determined, the payoff profile of the option on the boundary
of the tree can be implemented, finally using Eq. 9.8 to calculate backwards
in time along the tree. The procedure is demonstrated here for Asian average
price options, where the lines corresponding to the Average Strike options are
indicated in the commentary. The right to early exercise is accounted for in the
algorithm.
1 dt = t / n
2 discount = Exp(-r * dt)
3 up = Exp(Vola * Squareroot (dt))
4 down = 1 / up
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5 p = (Exp((r - q) * dt) - down) / (up - down)
6 If Dividendpayment Then
7 divstep = Rounddown(Dividendtime * n / t; 0)
8 End If
9 ’* Construction of the Underlying :
10 ’* ===============================
11 u(0; 0) = S0
12 x(0; 0) = S0
13 For i = 0 To n - 1
14 For j = 0 To 2^i - 1
15 u(i + 1; 2 * j + 1) = u(i; j) * up
16 u(i + 1; 2 * j) = u(i; j) * down
17 If Dividendpayment And i = divstep Then
18 u(i + 1; 2 * j + 1) = u(i + 1; 2 * j + 1) - Dividends
19 u(i + 1; 2 * j) = u(i + 1; 2 * j) - Dividends
20 End If
21 ’* Evaluation of the underlying after each step in the path:
22 ’* =========================================================
23 ’* Asian :
24 x(i + 1; 2 * j + 1) = u(i + 1; 2 * j + 1) + x(i; j)
25 x(i + 1; 2 * j) = u(i + 1; 2 * j) + x(i; j)
26 Next j
27 Next i
28 ’* Inserting the boundary values for the option at maturity:
29 ’* =========================================================
30 For j = 0 To 2^n - 1
31 ’* Average Price :
32 exercise = x(n; j) / (n + 1) - Strike
33 ’* Average Strike :
34 ’* exercise = u(n; j) - x(n; j) / (n + 1)
35 If Optiontype = Put Then
36 exercise = -exercise
37 End If
38 If exercise > 0 Then
39 f(n; j) = exercise
40 End If
41 Next j
42 ’* Valuation of the option :
43 ’* ========================
44 For i = n - 1 To 0 Steplength -1
45 For j = 0 To 2^i - 1
46 ’* Intrinsic value :
47 ’* ================
48 ’* Average Price :
49 exercise = x(i; j) / (i + 1) - Strike
50 ’* Average Strike :
51 ’* exercise = u(i; j) - x(i; j) / (i + 1)
52 If Optiontype = Put Then
53 exercise = -exercise
54 End If
55 ’* Option price :
56 ’* ============
57 f(i; j) = discount * (p * f(i + 1; 2 * j + 1)
58 + (1 - p) * f(i + 1; 2 * j))
59 If exercise > f(i; j) And Optionstyle = American
60 f(i; j) = exercise
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61 End If
62 Next j
63 Next i
64 Price (c) = f(0; 0)

Again, only a few lines need to be modified if an option of another type is to
be priced. These are the locations where the payoff profile and the procedure
for calculating the particular path-dependent property of the underlying enter
into the code. If we are interested in pricing, for example, an American look-
back option (minimum-strike call) with a payoff profile S(T ) − min{S(t ′)},
the lines 23 to 25 should be replaced by
1 ’* Determination of the minimal price:
2 If x(i + 1; 2 * j + 1) > u(i + 1; 2 * j + 1) Then
3 x(i + 1; 2 * j + 1) = u(i + 1; 2 * j + 1)

and lines 32 and 49 by:
1 exercise = u(n;j) - x(n; j)

and
1 exercise = u(i;j) - x(i; j)

These slight modifications accomplish the valuation of a look-back option
rather than the original Asian option. The difference between the current price
and the minimum attained up to that point is computed at maturity as well
as when deciding whether to exercise early.

Naturally, the numerical methods just introduced are quite computation
intensive. The computation of bushy trees in particular is extremely time
consuming. Let n denote the number of binomial steps. The computation
time and memory requirements are then proportional to (n + 1)2(n+1).
Each additional step more than doubles the computation time and memory
required! Depending on the hardware, more than 14 steps can hardly be
computed. For example, 14 steps give (14 + 1)2(14+1) = 491, 520, for 15,
we already have 1,048,576. The algorithms introduced here have not been
optimized in any way with respect to reducing the computation time. They
were written to ensure the clarity of the pricing algorithm in each case. Despite
these difficulties, a Visual Basic Excel program based on these algorithms can
price an exotic option on a PC in a few seconds.



20
Credit Risk

Up to now we didn’t take any credit risk into account but have been looking
exclusively at market risk which, in the case of an interest rate instrument,
is simply the risk that the default-risk free discount curve changes. However,
the biggest risk a bond investor faces is in fact the risk that the bond issuer
doesn’t pay his or her obligations—the worst case being the complete loss of
the invested capital due to the default of the obligor. On the other hand, the
largest possible gain is the sum of all interest payments.1 Dependent on its
specific default-risk a bond is traded at a market price lower than its default-
risk-free present value. We will now present the most important techniques to
incorporate such default-risks in the pricing and risk management of financial
instruments. A more detailed introduction to these topics can be found for
instance in the book of Schönbucher [172].

20.1 Expected Positive Exposure, Probability
of Default and Loss Given Default

To take default risk into account the following questions have to be
answered:

• How large is the amount receivable from the issuer at the time of default?

1At least if interest rates are not negative, which is not always the case (e.g., CHF in 2012). However, as
long as interest rates are not too strongly negative, more precisely, as long as the yield to maturity is still
positive, the possible gain is still approximately the sum of all interest payments.
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• What is the probability for the issuer to default within a certain future time
span?

• What will be the realized loss (as a percentage of the amount receivable) at
the time of default?

The answers to these questions are formally denoted as Positive Exposure
PE, Probability of Default PD, and Loss Given Default LGD. LGD is the
percentage of PE which is actually lost by the investor at default. Instead
of LGD one also uses the Recovery Rate R, denoting the percentage of PE

the investor can still secure despite the default, i.e., R = 1 − LGD.
PE is the future present value of all future payments between the investor

and the counterparty if this value is positive (for the investor), i.e. this present
value nets into an amount receivable by the investor. Otherwise, PE is zero.
That’s because an amount payable to the counterparty is still payable even if
the counterparty defaults, it becomes part of the bankruptcy assets. Therefore
PE = V +(t, T ) = max(V (t, T ), 0) where V (t, T ) is the present value at a
future time T as seen from the (current) time t .

In real life, there will be a bankruptcy trustee who decides, how the assets
of the defaulted entity are to be distributed among the creditors and how the
amounts receivable of each creditor are to be calculated. This process is by no
means unambiguous. For instance, the PE of a bond is often simply set to
its residual debt without any discounting or considerations of future interest
payments. It could very well be that the residual debt is larger than the present
value of all open future cash flows. In such a scenario, the investor could even
make an additional profit out of the default, at least if there are still enough
assets available to satisfy the residual debt payment.2 This simple approach
doesn’t work for swaps, however, since there is no sensible way to define a
residual debt for a swap. Thus, the only reasonable way is to calculate PE as
the present value of the swap—which can very well be negative. Since at the
end of the day the only relevant number is the realized loss in case of default
LGD · PE, it is only important that the reference of LGD (present value or
residual debt) is consistent with the definition of PE. In the following we will
always determine the exposure based on the future present value PE(T ) =
V +(t, T ), since we can avoid above mentioned inconsistencies and the present
value is well defined for all financial instruments.

In general, PE, PD and LGD are all time-dependent. The default prob-
ability always refers to a time span as opposed to a single point in time

2Especially for bonds with priority of claim before other debts, such a scenario is quite plausible.
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(for which the default probability is zero). Nonetheless can we define the
default probability over an infinitesimally short time span dt and denote it as
PD(t) dt . This is the probability that the counterparty will default within the
(infinitesimal) time span between t and t +dt . Therefore, PD(t) is the default
probabilitydensity (see Appendix A). Integrating this density over dt from T

to maturity T ′ yields the probability P(T , T ′|T ) that the counterparty will
default during the future time span between T and T ′, given he did survive
until T :

P(T , T ′|T ) =
∫ T ′

T

PD(s)ds = 1 − Q(T , T ′|T ) . (20.1)

Here we have also introduced the survival probability Q(T , T ′|T ), i.e., the
probability that the counterparty survives the time span from T to T ′, given
he survived until T . Those are all conditional probabilities, since they are
dependent on the condition that the counterparty survives until the (future)
time T . We arrive at the unconditional probabilities P(T , T ′) and Q(T , T ′)
by multiplying with the probability to survive from t (i.e. today) until T :

P(T , T ′) = Q(t, T )P (T , T ′|T ) = Q(t, T )(1 − Q(T , T ′|T ))

= Q(t, T ) − Q(t, T ′)

Q(T , T ′) = Q(t, T )Q(T , T ′|T ) = Q(t, T ′) . (20.2)

Thus, the unconditional probability for a default between T and T ′ is the
probability that the counterparty survives until T but not until T ′, while the
unconditional probability for a survival between T and T ′ is simply the same as
the survival probability from t (now) until T ′. Survival probabilities Q(t, T )

are mathematically very similar to discount factors B(t, T ): Both are always
lower3 (or equal) to 1 and both fulfill the ‘product rule’ Eq. 2.6 and Eq. 20.2
for Forward-Zerobonds and Forward-Survival-Probabilities. Therefore, like
we wrote the discount factor as a function of the instantaneous forward rate
f (t) in Eq. 14.3

B(t, T ) = e− ∫ T

t
f (s)ds

3For positive interest rates.
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we can now write the survival probability in the same form, thereby defining
the so-called Hazard-Rate h(t):

Q(t, T ) = e− ∫ T

t
h(s)ds (20.3)

Differentiating Eq. 20.1 w.r.t. T ′ now yields the default probability density as
a function of the hazard rate

PD(s) =∂P (t, s)

∂s
= −∂Q(t, s)

∂s
= h(s)e− ∫ s

t
h(u)du .

This analogy between discount factors and survival probabilities will prove to
be quite useful later on.

After these preparations we can now determine the present value of credit
risk, the so-called Credit-Value-Adjustment:

CVA(t) = E
[
1{TD<T }B(t, TD)LGD(TD)V +(t, tD)

]

= E
[∫ T

t

1{s=TD}B(t, s)LGD(s)V +(t, s) ds

]
, (20.4)

where TD denotes the time of default and 1{·} equals 1 only if the condition
in the brackets is true, and equals 0 otherwise. CVA is the present value of the
expected loss due to a default of the counterparty. For TD = s the present
value of the loss is just B(t, s)LGD(s)V +(t, s). The expectation in Eq. 20.4
has to be calculated w.r.t. all risk factors on which the quantities in the integral
depend on. Those are (besides default and interest rate risks) all other risks
influencing the exposure V +(t, s). If these risks were independent from the
default risk, we could simplify the expression substantially.However, in general
such independence cannot be assumed. For instance, V +(t, s) can very well
be dependent on interest rates and thus on B(t, s). Also, a default might be
more probable with high interest rates (or vice versa). Such dependencies then
also imply a correlation between exposure and default probability. A situation
where the default probability and the exposure both have a positive correlation
with a risk factor is calledWrong-Way-Risk, since the more probable a default
becomes, the higher the exposure gets. The opposite situation, where exposure
and default-probability are anti-correlated, is called Right-Way-Risk.
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For the special case that the default risk is the only risk factor, the expectation
simply becomes an integral over the default probability density PD(t)

CVA(t) =
∫ T

t

PD(s)B(t, s)LGD(s)V +(t, s) ds , (20.5)

The (default-)risky present value of a financial instrument is the default-
risk-free present value minus the CVA. Looking at the transaction from the
other side, one could of course also calculate the CVA of the transaction
as seen by the counterparty. The CVA of the counterparty is called Debt-
Value-Adjustment or DVA and involves ones own default risk. Nowadays, the
consideration of CVA and DVA is a necessity required by the supervisory
authorities for calculating capital requirements. The topic is discussed in many
publications [22, 33, 79].

20.2 Measures To Reduce Default Risk

With every business transaction runs the risk that the counterparty won’t fulfill
her obligations. That risk cannot be eliminated. Even though one might not
be able to influence the probability that a counterparty will default, there
are nonetheless means to reduce the impact of such a default on ones own
situation.

20.2.1 Collateral Management

One such measure is the allocation of collateral, similar to what we have for
futures contracts in Sect. 3.3.2. There, the margin account was the collateral.
In case of a default, the exchange could use themoney inmargin account of the
defaulting counterparty to (almost) completely negate any financial impact of
that default. Also in interbank trading it is by now common practice to sign
bilateralCollateral Service Agreements (CSAs) about the exchange of collateral,
be it as cash collateral or as security papers. To determine which counterparty
has to provide collateral, and to what amount, both counterparties regularly
(daily or weekly) perform portfolio evaluations to determine the present values
of all open transactions between the counterparties. If the counterparties can
not agree on the present value (and thus on the necessary collateral), they have
a so-called Margin Dispute triggering an escalation procedure which might
even become reportable to the authorities.
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20.2.2 Central Counterparties

It is the goal of the regulators to institutionalize this collateral process between
banks for the most important (by volume) derivatives. Central Counterparties
(CCPs) have been set up for this purpose. Interest rate swaps must now be
transferred to a mandatory CCP. If Bank A swaps with Bank B, that swap will
be replaced by two trades, one from Bank A with the CCP and another from
Bank B with the CCP. The CCP thus acts as an intermediary and ensures
strict compliance to the provision of collateral. How much collateral must
be provided is determined by the CCP. This will reduce the uncertainties of
bilateral collateral management.

20.2.3 Netting Agreements

Another important measure to reduce the risk of default is entering into a
Netting Agreement. All trades of a specific portfolio (the netting set) between
two counterparties can then be offset against each other based on their present
values. It often happens that a bank A has both liabilities and receivables from
derivatives transactions with bank B. If B defaults and a netting agreement
between the two banks exist, all receivables and liabilities be offset against
each other. The exposure of A to B is thus reduced by A’s liabilities. Without
the netting agreement, all receivables would be lost, but the liabilities would
remain in full.

20.2.4 Hedging

A third way to reduce default risks is to hedge against the default by entering
into trades with opposite counterparty default risk. In particular, credit default
swaps are commonly used (see Sect. 20.6).

20.3 Bonds with Default Risk

In the following we will use Eq. 20.4 to calculate the present value of a
coupon bond taking default risk into account. We assume interest rates to be
deterministic so we can use Eq.20.5. We also observe that the (default-)risk-
free present value of a bond is always positive from the perspective of the bond
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investor, i.e., V +(t, T ) = V (t, T ). With Eq. 15.6 and Eq. 15.7 we find the
Credit-Value-Adjustment CVABond(t) of the bond:

CVABond(t) =
∫ T

t

B(t, s)PD(s)LGD(s) (NKA(s, t0, T ) + NB(t, T )) ds

= N

∫ T

t

PD(s)LGD(s)

(

K

n∑

i=m+1

B(t, ti )τ (ti−1, ti )1s<ti + B(t, T )

)

ds

= NK

n∑

i=m+1

τ (ti−1, ti )B(t, ti )

∫ ti

t

PD(s)LGD(s)ds

+ NB(t, T )

∫ T

t

PD(s)LGD(s)ds . (20.6)

Here, we used B(t, s)B(s, ti) = B(t, ti) and moved the sum in front of
the integral since 1s<ti is the only factor in the sum which depends on s

and ultimately only amounts to an adjustment of the integral’s upper limit.
Without the sum the bond becomes a zero bond and we obtained from
Eq. 20.6 the credit value adjustment of a zero bond:

CVAZerobond(t) = B(t, T )

∫ T

t

PD(s)LGD(s)ds . (20.7)

This expression still applies if discount factors are not assumed to be deter-
ministic, but still independent of the default probabilities. For the zero bond
with default risk (or risky zerobond) B̄(t, T ) we get:

B̄(t, T ) = B(t, T ) − CVAZerobond(t)

= B(t, T ) − B(t, T )

∫ T

t

PD(s)LGD(s)ds

= B(t, T )

(
1 −

∫ T

t

PD(s)LGD(s)ds

)
. (20.8)

The value of a risky coupon bond can now be very generally expressed in
terms of risky zero bonds:

V̄Bond(t) = VBond(t) − CVABond(t) = NKĀ(t, tm, tn) + NB̄(t, tn) .

(20.9)
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The risky annuity Ā(t, t0, tn) follows from Eq. 15.7 by replacing all risk-free
zero bonds with risky zero bonds. Similarly, replacing all zero bonds in Eq. 15.6
with the corresponding risky zero bonds yields the present value of a coupon
bond with default risk. In other words, default risk is taken into account by
simply using the risky yield curve for discounting instead of the risk-free yield
curve. Strictly speaking, the risky yield curve is not a yield curve in the true
sense of the word since it contains default risk components.

Often, a time-independent LGD(t) = LGD = const. is used. Equa-
tion 20.8 then simplifies with Eq. 20.1 to:

B̄(t, T ) = B(t, T ) (1 − LGD P(t, T )) .

This is a very intuitive result: The value of the risky bond is simply the risk-free
value minus the amount lost in case of default weighted with the probability
of that default. Expressed in terms of the recovery rate R = 1 −LGD and the
survival probability Q(t, T ) = 1 − P(t, T ) the equation reads

B̄(t, T ) = B(t, T ) (R + (1 − R)Q(t, T )) . (20.10)

This is also very intuitive: The value of the risky bond is the risk free present
value of the recovery rate (which you get in any case—even in case of default)
plus the amount 1 − R, which you only get if the counterparty survives,
weighted with the probability of that survival.

For the special case of a vanishing recovery rateR = 0we introduce B̃(t, T )

as

B̃(t, T ) = B(t, T )Q(t, T ) (20.11)

Because of the similar formal structures of zerobonds and survival probabilities
mentioned above, explicitly expressed in Eq. 2.6 and 20.2, a simple forward-
price-rule is also valid for B̃(t, T ):

B̃(T , T ′|T ) = B(T , T ′|T )Q(T , T ′|T ) .

The relationship between B̄(t, T ) and B̃(t, T ) is simply

B̄(t, T ) = B(t, T )R + B̃(t, T )(1 − R) = B̃(t, T ) + R(B(t, T ) − B̃(t, T )) .
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Thus, if the survival rate is greater than zero, the value of a risky zero bond is
increased by R(B(t, T ) − B̃(t, T )).

20.4 Credit Spreads

Because of 0 ≤ R + (1 − R)Q(t, T ) ≤ 1 for the second factor in Eq. 20.10,
B̄(t, T ) ≤ B(t, T ) is always satisfied. Therefore, any value of B̄(t, T ) can
be represented by a Zerobond for which the risk-free interest rate used to
calculate B(t, T ) is increased by the so-called Credit Spread.4 For example,
if r(t, T ) is the risk free continuous compounding interest rate from t to T

with B(t, T ) = e−r(t,T )τ (t,T ), then the present value B̄(t, T ) can always be
represented by a time-dependent credit spread s(t, T ):

B̄(t, T ) = e−(r(t,T )+s(t,T ))τ (t,T ) = B(t, T )e−s(t,T )τ (t,T ) .

Equation 20.10 can be used to determine the relationship between s(t, T ) on
one side and R and Q(t, T ) on the other side.:

e−(r(t,T )+s(t,T ))τ (t,T ) = e−r(t,T )τ (t,T )(R + (1 − R)Q(t, T ))

⇒ s(t, T ) = − 1

τ(t, T )
ln(R + (1 − R)Q(t, T )) .

The credit spread can also be expressed as a spread over interest rates in other
compounding methods. For instance in discrete annual compounding

(1 + r(t, T ) + s(t, T ))−τ (t,T ) = (1 + r(t, T ))−τ (t,T )(R + (1 − R)Q(t, T ))

⇒ 1 + r(t, T ) + s(t, T ) = (1 + r(t, T ))(R + (1 − R)Q(t, T ))
− 1

τ (t,T )

⇒ s(t, T ) = (1 + r(t, T ))
(
(R + (1 − R)Q(t, T ))

− 1
τ (t,T ) − 1

)
.

The credit spread now also depends on the risk-free interest rate, and is
therefore no longer a sole function of recovery rate and survival probability. In
practice, depending on the application, very different quantities are referred
to as credit spreads. One should therefore always insure in each case which

4Strictly speaking, the limit B̄(t, T ) = 0 in the case of Q(t, T ) = 0 and R = 0 is excluded here.
However, this borderline case of a sure default is not of practical relevance.
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definition is meant. Let us stick to the definition of credit spreads in continu-
ous compounding. For the special caseR = 0, the survival probabilityQ(t, T )

depends on the credit spread s(t, T ) in the same way as the zero bond on the
risk-free rate:

Q(t, T ) = e−s(t,T )τ (t,T ) .

The credit spread s(t, T ) in this form can be represented as function of the
hazard rate h(t)

s(t, T ) = 1

τ(t, T )

∫ T

t

h(u)du .

This is analogous to the representation of zero interest rates as a function of
the instant forward rates in Eq. 14.4. This connection is used in particular if
the default risk is modelled as a stochastic process within the framework of a
hazard rate model.

20.5 Credit Spread Risk

If the default risk of a counterparty is expressed by a credit spread instead of
survival probability and recovery rate, information is lost. For example, two
different bonds of the same issuer might have the same default probability,
but the credit spreads are nonetheless different if the recovery rates for both
bonds are different. Trying to deduct credit spreads from bond prices traded
in the market, runs into further difficulties like, e.g., different liquidities for
different emissions. Nevertheless, credit spreads are a useful tool to estimate the
credit risk of bonds and loans. Since a credit spread is simply a premium on the
risk-free interest rate, modified duration and convexity of a bond or loan are
well suited to estimate credit risk (understood as Spread-Risk). Because present
values can be determined by simply replacing risk-free zero bonds with risky
zero bonds, the same sensitivities to estimate interest rate risk can also be used
to estimate spread risk.

The present value of a loan changes only if the risky yield curve used to value
that loan changes. In contrast to a risk-free valuation, there is now additionally
the influence of the credit rating: If the credit rating of the debtor deteriorates,
the spread between the risk-free yield curve (which carries pure interest rate
risk) and the risky yield curve for the bond increases, i.e., the rates used for
discounting increase and the present value decreases according to Eq. 20.9. As
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with the interest rate risk, the spread risk can therefore be attributed solely
to the sensitivity to changes in a yield curve. This change in the yield curve,
however, now has two causes:

• Change in risk-free interest rate
• Change in creditworthiness and thus in the credit spread.

The (credit) risk is therefore regarded here as a spread risk. Note, that for this
credit risk no default (bankruptcy) of the debtor is necessary. A deterioration
in creditworthiness, e.g. downgrade from rating AA to B, can significantly
increase the spread and means a correspondingly large present value loss for
the loan. The counterparty default risk, i.e. the debtor’s actual inability to
pay, may therefore be viewed as an extreme special case of a deterioration
in creditworthiness. Often, however, credit spread risks are attributed to the
market risk (because market prices are directly affected by the credit spreads)
and are clearly distinguished from the actual default risk (which is considered
credit risk).

A private investor following a Buy-And-Hold-Strategy might now argue that
a deterioration in credit rating (e.g., from AA to B) is not relevant to him, as
long as the debtor continues to make all interest and principal payments on
time, and that therefore only the actual default represents a risk. However, if
the investor changes his mind at a later date and wants to close the position
prematurely, he will be affected by the deteriorated creditworthiness, as it will
have a correspondingly negative impact on the market price of the position.

Institutions that are subject to supervisory regulations (e.g. banks, insurance
companies and fund managers), have to reserve capital for the default risk
in their positions. And they have to reserve the more capital, the worse the
credit ratings of their debtors. (see also Sect. 21.1). Spread risks are therefore of
importance even for the classical lending business.

If an increased expectation of losses, expressed by an increased credit spread,
is realised, a bank with a large bond or credit portfolio will on average realise
losses due to defaults which are an average exactly equal to the present value
losses incurred by the deterioration in creditworthiness. The higher credit
spread after a deterioration in creditworthiness is therefore nothing else than
a reflection of the increased probability of default.

Although the credit spread is time-dependent, it is often assumed that the
credit spread is either constant or has a very simple parametric form, such as
a straight line s(t, T ) = a + mτ(t, T ). For example, a constant credit spread
(i.e. m = 0 or s(t, T ) = a) corresponds to an increase of the whole risk-free
yield curve by the constant spread, i.e. a parallel shift of the whole risk-free
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yield curve. These simple approaches are often necessary, because for many
issuers there is not enough liquid, independent market data (e.g. bond prices)
available to construct a reliable term structure of the credit spreads. Often,
however, the dominant effects are already represented well enough by such
simple parameterizations.

20.6 Credit-Default-Swaps

Credit-Default-Swaps represent the most important instrument for trading
and hedging default risks. In spite of its name a credit default swap or CDS
is more of an insurance policy than a standard swap. The buyer of a swap
insures himself against the risk of default of a specific issuer or counterparty,
often simply called reference address, address or name. For this purpose, he
regularly pays a fixed premium (the CDS premium or the CDS spread).
If the reference address defaults, the CDS ends and the buyer receives a
compensation payment, either in the form of a predefined fixed amount
(Digital CDS) or, more frequently, the LGD amount of a reference bond,
which was previously agreed upon in the CDS contract. Such a reference bond
can, for example, be a bond emitted by the reference address. In return, the
buyer pays the pro rata CDS premium for the current premium period up
until the default event. The buyer of a CDS is also referred to as a protection
buyer, the seller correspondingly as protection seller.

Credit-Default-Swaps fulfill two different purposes. On the one hand, for
the purpose of diversification, the guarantor can selectively take credit risks
on counterparties that do not belong to its business partners. The other more
important purpose is the hedging of credit risk arising from other positions,
such as a bond or swap, the issuer or counterparty of which is the reference
address of the CDS. This possibility of hedging default risks makes it possible
to assess credit risks on a risk-neutral basis, as this is the only way to replicate
a position with default risk using a self-financing strategy (see Sect. 13.3).

What is considered a default for a CDS, must be contractually agreed.
Typically, these are the following credit events:

• Initiation of bankruptcy proceedings
• Payment default (of the reference bond or another public bond)
• Restructuring of the company (provided that the reference address is a

company)
• Takeover of the reference address by another company
• Rating change.
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Bankruptcy and payment default are always relevant in practice, the other
credit events listed are rather optional. Often, it takes a while until the actual
damage, i.e. the LGD, can be determined. Therefore, a Grace Period is usually
provided for the payment of the compensation after a credit event. This period
might, for example, end 90 days after the credit event becomes known.

When closing a CDS, the buyer pays an upfront fee. This is one of the most
important conventional changes introduced with the big bang in April 2009
in order to facilitate premature closing of a CDS position. Unlike a standard
swap, for example, or before the big bang, the CDS premium is not set so
that the CDS has a present value of 0 when entering the contract. Instead,
only certain premiums are traded. As a result, the CDS has a present value
not equal to 0 upon conclusion, which is compensated by the upfront fee.
In fact, this fee may also become negative, in which case it will be paid by
the seller of the CDS. Typical premium levels are 100 and 500 basis points
for the North American market and 25, 100, 500 or 1000 basis points for
the European market. Since a credit event does not necessarily become public
immediately, the period for a filed bankruptcy proceeding to be relevant for
the CDS has been brought forward to 60 days before the date of closing. For
takeovers there is even a deadline of 90 days prior to the CDS conclusion.
Otherwise, the insurance cover applies from the first day after the conclusion
of the transaction.

In connection with a CDS, the default risk generally refers to the default
risk of the reference address. In fact, however, a CDS involves three different
default risks because the reference address and either of the two CDS coun-
terparties may fail. For the buyer of the CDS, in particular the scenario that
first the seller of the CDS and then (or simultaneously) the reference address
defaults (Double Default) is associated with considerable losses. However, it is
immediately plausible that a buyer of a CDS will only enter into a CDS with
counterparties whose default risks (at least upon entry into the contract) are
significantly lower than that of the reference address. In a first approximation,
therefore, the default risk of the CDS counterparties can be neglected. The
counterparty risk of the CDS seller is limited in any case to the replacement
risk, as the seller is only liable in case of a default of the reference address
and only when the premium has been paid in full. In interbank trading, it
has become standard practice for CDS transactions to always be secured by
collateral and in the near future they will even have to be processed via Central
Counterparties (CCP) (see also Sect. 20.2). That is why in the following we
will neglect the default risk of the two CDS counterparties.
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20.6.1 Cashflows and Present Value

Even before the big bang, the CDS market was much more standardized than,
for example, the interest rate swap market. Since 2003, coupon and premium
periods have always started and ended on the 20th of the months March, June,
September and December, with a fixed period length of 3 months (3M). The
term of a CDS always counts from the next period end. If you enter a 6M-CDS
on 19 September, it shall end on 20March of the following year (20 September
plus 6 months). If that deal is done one day later, i.e. on 20 September, the
CDS ends only on 20 June of the following year (20 December + 6 months).
Thus, the first period is normally shorter than 3 months and called short stub.5

As for coupon bonds (see Sect. 15.3.1), we denote the dates for the premium
payment with ti with i = 0, 1, 2, . . . , n, where t0 is the start date of the CDS.
The latest premium date before t is denoted by tm with tm < t < tm+1. Thus,
m = 0 applies for a CDS just entered into. For a nominalN and a CDS spread
(or premium rate) K we can then calculate a single premium CP (ti) as

CP (ti) = NKτ(ti−1, ti)

For the last premium CP (tn) the following special feature applies

CP (tn) = NKτ(tn−1, tn + 1D) ,

since a default on day tn is still insured and therefore the premium for this day
still has to be paid. For interest calculations, on the other hand, the first day
of the period is counted, but the last day is not. Accordingly, the various day
count conventions are defined. In the following, we will write τcds(ti, ti+1) for
this special calculation of the day count conventions.

The present value of a single premium payment of a CDS is dependent
on the time of default TD of the reference address. If TD is before the
start of the period ti−1 then the present value is zero. If the default occurs
within the coupon period, ti−1 ≤ TD ≤ ti , then the present value equals
NKB(t, TD)τcds(ti−1, TD). If the reference address does not default before
the end of the period, TD > ti , the present value corresponds to the full

5Before the big bang things were a little more complicated. If the next coupon date was less than 30 days
in the future, no premium was paid on that date. Instead, the premium for the first (short) period and
the first full period was paid at the end of the first full period (long stub).
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premium NKB(t, ti)τcds(ti−1, ti). In summary, the present value Vi of the i-
th premium payment can be written as

Vi = E
[
NKB(t, min(ti , TD))τcds(ti−1, min(ti, TD))1{TD≥ti−1}

]
.

With the simplified assumption that interest rates and default probabilities are
independent of each other, the expected value can be calculated as an integral
over the default probability density.:

Vi =NK

∫ ∞

ti−1

B(t, s)τcds(ti−1, s)PD(s) ds

= NK

∫ ti

ti−i

B(t, s)τcds(ti−1, s)PD(s) ds

︸ ︷︷ ︸
accrued premium

+ NKB(t, ti )τcds(ti−1, ti )

∫ ∞

ti

PD(s) ds

︸ ︷︷ ︸
full premium

Because of Eq. 20.11 and
∫ ∞
t

PD(s) ds = 1 and

Q(t, ti) = 1 − P(t, ti) =
∫ ∞

t

PD(s) ds −
∫ ti

t

PD(s) ds =
∫ ∞

ti

PD(s) ds ,

the term for the full coupon simplifies to:

Vi =NK

∫ ti

ti−i

B(t, s)τcds(ti−1, s)PD(s) ds + NKB̃(t, ti)τcds(ti−1, ti) .

The present value of all premiums of the CDS is then the sum:

Vpremium =NK

n∑

i=1

B̃(t, ti)τcds(ti−1, ti)1{t<ti}

+ NK

n∑

i=1

∫ ti

ti−i

B(t, s)τcds(ti−1, s)PD(s) ds .

With the risky CDS annuity Ãcds(t, t0, tn) given as

Ãcds(t, t0, tn) =
n∑

i=1

τ(ti−1, ti)B̃(t, ti)1{t<ti}
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the first term can also be represented in terms of this annuity:

Vpremium =NKÃcds(t, t0, tn) + NK

n∑

i=1

∫ ti

ti−i

B(t, s)τcds(ti−1, s)PD(s) ds .

The payment of the CDS seller in the event of a default of the reference address
is a one-time payment in the amount of LGDs as a percentage of the nominal
N . But then the present value of this payment just corresponds to the CV A

of a constant PE of N . With Eq. 20.4 it now follows that:

Vdefault =E
[
B(t, TD)LGD(TD)N1{TD≤T }

]
.

If the LGD is independent of default probability and interest rates, the
expected value of the LGD can be split off and expressed by the expected
value R of the recovery rate R(t):

Vdefault =NE [LGD(TD)]E
[
B(t, TD)1{TD≤T }

]

=N(1 − R)

∫ T

t

B(t, s)PD(s) ds .

In the second step, we again used the assumption of independence from
interest rates and default probabilities.

Overall, from the perspective of the protection buyer, the CDS has the
following value:

VCDS =N(1 − R)

∫ T

t

B(t, s)PD(s) ds − NKÃcds(t, t0, tn)

− NK

n∑

i=1

∫ ti

ti−i

B(t, s)τcds(ti−1, s)PD(s) ds . (20.12)

20.6.2 Approximations

The integrals in 20.12 cannot be solved analytically without additional approx-
imations or assumptions. A frequently used approximation is, for example,
that a default always occurs in the middle of an interest period and the
settlement payment is made at the end of the period in which the default
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occurs. With these additional assumptions, an approximation for the present
value of the CDS can be determined analytically:

VCDS ≈N(1 − R)

n∑

i=1

B(t, ti)(Q(t, ti−1) − Q(t, ti))1{t<ti} − NKÃcds(t, t0, tn)

− NK

2

n∑

i=1

B(t, ti)τcds(ti−1, ti)(Q(t, ti−1) − Q(t, ti))1{t<ti} .

(20.13)

The ISDA CDS Standard Model, which is also used by some market data
providers to quote CDS spreads, works with fixed conventions for the presen-
tation of discount factors and survival probabilities. Specifically, the model
is based on the assumption that yield curves are represented as piecewise
constant forward curves. Analogous to this, survival probabilities are modeled
as piecewise constant Hazard rates (see also Sect. 29.9.1). Then the integrals
can be calculated analytically. For this model there is a freely accessible program
source code available in the programming language C [99, 189].

20.6.3 Par CDS Rate

Before the big bang, CDSs were always quoted by specifying the par CDS rate,
i.e. the premium for which the present value is zero. Nowadays, only certain
fixed premiums are traded, so that the CDS already has a non-zero present
value at the time of conclusion, which is offset by an up-front fee (see above).
However, the Par CDS rate is often still provided as additional information.
Setting the present value in Gl. 20.12 to zero and solving for K yields the par
CDS rate Kpar as:

Kpar = (1 − R)
∫ T

t
B(t, s)PD(s) ds

Ãcds(t, t0, tn) + ∑n
i=1

∫ ti
ti−i

B(t, s)τcds(ti−1, s)PD(s) ds
,

(20.14)

or with the approximations of Eq. 20.13:

Kpar ≈ (1 − R)
∑n

i=1 B(t, ti)(Q(t, ti−1) − Q(t, ti))1{t<ti}
Ãcds(t, t0, tn) + 1

2

∑n
i=1 B(t, ti)τcds(ti−1, ti)(Q(t, ti−1) − Q(t, ti))1{t<ti}

.

(20.15)
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Risk



21
Fundamentals

In general, the term risk signifies the possibility that some future event might
have some negative consequences. Since the future is uncertain, the term
risk is tightly connected with the probability or likelihood that an uncertain
future event actually becomes real. The magnitude of risk depends besides the
probability of this event also on the magnitude of the damage done if the event
actually becomes real. Risk management, i.e. controlling and minimizing risk,
is an important task in any corporation. This is true especially for financial
institutions, not only because they face very significant and large risks, but
also because it is indeed a substantial part of their business model. This is, for
example, apparent for an insurance company, but it is also the core business
of a bank to take over risks, especially market price risk (brief market risk) and
credit risk, which we will consider in the following in more detail. As potential
damage caused by a “negative event” we will consider only the potential
financial loss. Such risks caused by risk factors connected to specific single
trades may be reduced or eliminated by entering into hedge trades sensitive to
the same risk factors, but with opposite sign. The total risk of a portfolio, and
therefore also the potential financial loss, could be largely reduced.

Market price risk is caused by the uncertainty of the future development
of market risk factors. These include prices of shares, bonds or commodities,
but also other parameters with a direct impact on the fair value of financial
products, like FX or interest rates, inflation, volatilities or correlations between
other market risk factors. Depending on one’s portfolio, the risk could be that
a certain risk factor (e.g. a share price) rises, falls, or stays constant. A long
position in a risk factors indicates that the value of the portfolio increases, if the
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risk factor increases. Vice versa, with a short position the value of the portfolio
decreases if the risk factor increases, e.g. a short sell, where the seller didn’t own
the shares and needs to repurchase them at some point in the future.1 A risk
factor that stays constant could also be risky, e.g. if the portfolio consists of a
put option with strike KP and a call option with strike KC where KP < KC

on the same underlying asset. Only if the asset price at option maturity is
greater than KC or lower than KP , a total loss of the previously paid option
premiums could be avoided.

Therefore, it is not correct to identify risk with the possibility of market risk
factor fluctuations or the volatility of these factors as is done occasionally. Risk
depends always on the concrete positions within a given portfolio of assets.
Even, the strategy of buying a put and a call with the same strike and same
maturity is important enough to have a special name: it’s called a straddle.

Credit risk denotes the potential loss caused by the failure to pay or
bankruptcy of a trading partner (counter party risk) or issuer of securities (issuer
credit risk). Both types of risk are summarized as credit risk or default risk.
On the other hand, risk caused by a mere diminishing of some party’s credit
worthiness, i.e. credit spread risk is usually considered as just another type of
market risk.

Credit spread risk, that is the risk associated with a changing credit spread,
i.e. the add-on a party has to pay over risk free interest rate for a loan or
bond with correspondence level of creditworthiness, is most often considered
as market price risk rather than credit risk. In this view, the credit spread is just
an additional market risk factor. On the other hand, the risk associated with
a change in the credit rating determined by some credit rating agency (credit
migration risk) is seen as credit risk, though it could also be reflected in a jump
of credit spreads, especially if it wasn’t expected. More often, credit spreads
change long before a down- or upgrade of the credit rating is pronounced.
Here, the border between market and credit risk is blurred. Sometimes, the
credit spreads are even modeled based on credit ratings.

Though market risk and credit risk used to be largely independent concepts
(on one hand trading of financial instruments with market risk, on the
other the classic loan business with credit risk), it is increasingly difficult to
differentiate both areas clearly. On reason is that derivatives bear substantial
credit risks (i.e. counter party default risk), too. But loans are also not free
of market risk (e.g. caused by fixed interest rates and embedded options,

1Naked short selling, i.e. selling of shares without owning or borrowing (or at least ensuring that they can
be borrowed) has been largely restricted in many countries, though it is still possible to sell shares that
have been borrowed beforehand, e.g. by a security lending trade.
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either explicitly agreed upon or enforced by law). In addition, by means of
instruments like credit default swaps it has become possible to directly trade
credit risk, either to hedge against credit risk from loans or other financial
instruments or to actively invest in credit risk on names to which the bank
would have no exposure as part of a diversification strategy. As a consequence,
in risk management, it is more and more common to consider market and
credit risk together.

Besides market and credit risk, there are other risk classes like liquidity
risk, operational risk, or legal risk. Liquidity risk2 are caused by insufficient
liquidity of traded assets (i.e. the impossibility to trade large volumes of assets
at any time). Liquidity is essential since it is a required assumption for risk
neutral valuation (see item 3 in Chap. 4). In practice, it is often difficult to
differentiate between liquidity risk and spread risk, since both risk classes have
similar impacts (e.g., modeled as spread over the risk-free interest rate).

Operational risk deals with disruptions of required business processes, e.g.,
failure of IT systems, insufficient or malfunctioning processes. Legal risk
denotes the risk, that contracts closed between two parties (e.g. to close a
derivative trade)may not hold in court if either of the parties takes legal action.
Here, in addition to financial losses, legal risk may induce loss of reputation,
too. In the following we will consider market risk and credit risk only.

The actual financial loss of an asset at risk varies depending on the definition
of the reference value the loss is referred to. A loss could be defined in
terms of a loss in net present value (i.e. the total present value of all shares,
securities, derivatives, cash account in given portfolio), a reduction of the
capital (i.e. if the close-out value is lower than the capital invested originally), as
relative loss in comparison with some benchmark (commonly used to measure
performance of equity or fixed income funds), or as a reduction in book
value (after an adjustment of balance sheet items, e.g. because of required
depreciations). Though present values of financial assets have an increasingly
direct impact on balance sheets, it is in general not possible, depending on
the accounting rules, to identify changes in balance sheet items with respective
changes of theoretical present values of assets. It is also common to differentiate
between realized and unrealized.

A realized gain or loss could be illustrated as an “irreversible” gain or
loss, because, for example, the loss position has been sold out already, where
in contrast an unrealized loss could diminish, if the value of the position
“recovers” over time. In practice, different accounting regulations and there

2Here, the term liquidity risk means market liquidity risk rather than the risk not to be able to pay.
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interpretation could yield to very different split of a gain or loss into its
realized and unrealized part. Also, it is possible to sell and buy back a position
immediately at the same price to realize a gain or loss. Therefore, risk should
always be related to potential total loss, regardless if its realized or unrealized
(gains are not considered to be a risk at all).

Parameters, which have a significant impact on the reference value, are
denoted as risk factors. Which risk factors are considered as consistent depends
on the context. In the following, we will use the total current present value
of a portfolio (in a specified currency) as our reference value. The portfolio
may contain securities (shares, bonds, certificates, etc.), loans, derivatives,
commodity and cash positions in various currencies. In this context, all risk
factors are relevant which have an influence on the present values of the
positions within the portfolio. For example, risk factors could be the 3 months
LIBOR rate, the US$/Euro FX rate or the Dow Jones index.

The risk of a portfolio could be expressed by means of various key figures.
Commonly used risk figures are value at risk (VaR), credit value at risk (CVaR),
expected shortfall and potential future exposure. A portfolio’s value at risk, is
defined as the upper boundary of a potential loss over a (finite) time period
δt , such that this limit is not violated with a probability of c. This probability is
called confidence level. Stress testing is another important tool for risk analysis.
Here, the change of the portfolio’s present value under a couple of extreme
scenarios is analyzed, where a certain scenario is specified by providing a value
for each selected risk factor.

21.1 Regulatory Requirements

Financial services is a strictly regulated economic sector. Because of the
complexity of this topic with all their regional specialties, and the constant
reformation of the regulations, we can provide here only a rough sketch.
Due to the global interconnections of the financial markets, regulations are
essentially driven by a supra-national organization, the Basel Committee on
Banking Supervision of the Bank for International Settlements or brief BIS. In
reaction to the financial crises that began 2007, a new package of reformed
regulations as been pushed forward in 2013 under the name “Basel III” that
modified and extended the earlier Basel II standard. It was implemented in EU
law in terms of the Capital Requirement Regulation (CRR) and the Capital
RequirementsDirective (CRD IV), both have been settled as of July 17th, 2013
in their current form. The CRR has become legally binding as of January
1st, 2014, while CRD IV needs to be implemented into national law. The
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European regulatory authority, i.e. the European Banking Authority or EBA, is
responsible for the concretisation of CRD IV and CRR requirements.

In Germany, CRD IV was, among other regulations, implemented by
the Solvabilitätsverordnung (SolvV), supplementing the Kreditwesengesetzt
(KWG), and by the Mindestanforderungen an die Risikomessung (MaRisk).
While the SolvV regulates the amount of regulatory capital financial institu-
tions are obliged to deposit as reserve for the risks they face (Basel III, pillar
I), the MaRisk regulates the methodical, technical and procedural implemen-
tation of the internal risk controls (Basel III, pillar II). Besides the regulatory
authorities’ requirements, financial institutions must also obey accounting
standards, either according to national accounting rules (in Germany, these
are defined in the Handelsgesetztbuch or HGB) or international accounting
rules (as specified by the International Accounting Standards Board or IASB
and known as the International Financial Reporting Standards or IFRS).

The regulations for risk management and control are constantly modified
adjusted, modified and extended. Therefore, we will abstain here from a
detailed discussions of the regulations. Up-to-date information can be found
on the homepages of the regulatory authorities, e.g. the Bundesamt für das
Finanzwesen (BaFin) (Germany), the Finanzmarkaufsicht (FMA) (Austria),
the Eidgenössische Finanzmarktaufsicht (FINMA), or the Financial Services
Authority (FSA) (UK).

21.2 Confidence, Percentile and Risk

The value of a portfolio is a function of stochastic processes (the risk factors)
and is thus itself a stochastic process. A confidence interval of an arbitrary
stochastic variableX with densityp(X) is defined as the subset of the variable’s
range (the interval) attained with a previously specified probability c, called the
confidence, or level of confidence. A level of confidence of 95% (c = 0.95) for
example, implies that the probability that the value realized by the random
variable lies outside the confidence interval is only 5%. Or equivalently, we
can be 95% certain that a realization of the random variable will lie within
the interval. Should the fluctuations about a mean value μ be of interest, the
upper and lower bounds, a and −a, of a symmetric confidence interval can be
determined as the values satisfying the condition

c
!= P(μ − a < x < μ + a) =

μ+a∫

μ−a

p(x)dx .
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If, on the other hand, we want to know with a previously specified probability
that the random variable will not fall below a certain value (the portfolio will
not lose more than a certain amount of its value), we consider the one-sided
confidence interval and determine the boundary a as that value satisfying the
condition

c
!= P(x > a) = 1 − P(x ≤ a) = 1 −

a∫

−∞
p(x)dx . (21.1)

The percentile or quantile associated with a previously specified probability c

is defined as the value Qc such that the probability is c, that a random value x

is less than or equal to Qc:

P(x ≤ Qc) = c ⇐⇒
Qc∫

−∞
p(x)dx = c .

This definition defines the percentile implicitly. The percentile can be deter-
mined by “inverting” the cumulative distribution function P :

Qc = P −1(c)

The boundary a of a one-sided confidence interval is thus precisely the (1−c)

percentile

c
!= P(x > a) = 1 − P(x ≤ a)

P (x ≤ a) = 1 − c

�⇒ a = Q1−c = P −1(1 − c) .

Using these definitions of confidence, confidence interval and percentile, the
value at risk (VaR) of a financial instrument or a portfolio with value V can be
precisely defined for a specified c. As mentioned above, the value at risk of a
portfolio in a time span δt is intuitively the upper bound for the depreciation
of the portfolio’s value in this time period which will not be exceeded with a
specified confidence c. Here, the random variable is the change in the value δV

(not the change in the underlying risk factors!) and VaR is the (value of the)
loss which will not be exceeded with confidence c.

c
!= P(δV > −VaR(c)) . (21.2)
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The definition of the VaR can be expressed more explicitly if we use the
cumulative probability function cpfδV of the random variable δV instead of P .

c
!= 1 − cpfδV (−VaR(c)) = 1 −

∫ −VaR(c)

−∞
pdfδV (x)dx , (21.3)

where pdfδV (x) denotes the probability density function of the random variable
δV . Now, we see that the negative VaR is precisely the (1 − c) percentile of
the distribution of δV :

−VaR(c) = Q
cpfδV
1−c

or, equivalently,

VaR(c) = −Q
cpfδV
1−c = − cpf−1

δV (1 − c) . (21.4)

In the discussion up to now, we have emphasized that the probability of the
change in the portfolio’s value δV (and not the risk factors and their probability
distributions) defines the value at risk. However, changes in the portfolio’s
value are induced by the risk factors. In addition, it is not the usual practice to
model the stochastic process δV or its distribution directly. Instead, the risk
factors (as in pricing) are modeled as stochastic processes and the methods
derived for pricing (see, for example Part II) are then used to calculate the
value change δV and its distribution (and percentiles) induced by the changes
in the risk factors.

Using the probability distribution of the risk factor instead of the probability
distribution of the portfolio for the determination of the value at risk is only
possible when V is a monotonous function of the risk factor process S. If, for
example, V is a monotonously increasing function of S, we have

V (S) ≤ V (a) ⇐⇒ S ≤ a ,

and V lies below the confidence interval bound for the portfolio if and only
if S lies below the confidence interval bound for the risk factor. The value at
risk of the portfolio is then the difference between the current portfolio value
and the value of the portfolio when the risk factor lies at the lower bound
of the confidence interval for the risk factor. Likewise, for the case where the
portfolio’s value is a monotonously decreasing function, the value at risk of
the portfolio is the difference between the current value of the portfolio and
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the portfolio’s value when the upper boundary of the confidence interval of the
risk factor is attained. The upper bound ã of a one-sided confidence interval
is defined analogously to Eq. 21.1 through

c
!= P(x < ã) =

ã∫

−∞
p(x)dx . (21.5)

Thus, if V is a monotonous function of the risk factor, the value at risk of the
portfolio is

VaRV (c) = V (S) − min {V (S = a), V (S = ã)} (21.6)

= max {V (S) − V (S = a), V (S) − V (S = ã)} .

The minimum function guarantees that precisely that boundary of the con-
fidence interval is chosen which results in the greatest loss for the portfolio.
Hence, the one-sided confidence interval for the risk factor which is bounded
from above determines the value at risk for instruments (or portfolios) whose
value declines with increasing underlying prices. Analogously, the one-sided
confidence interval with a lower bound determines the value at risk for
those instruments (or portfolios) whose prices rise with the rising price of
the underlying. The values of many instruments like bonds, futures, and
most options are monotonous functions of their risk factors. Instruments (or
portfolios) which are not monotonous functions of their underlyings must
be either stripped into their component elements which are monotonous
functions of their underlyings or the distribution of V itself and its confidence
intervalmust be determined directly. The confidence intervals of the risk factors
are no longer of assistance in this case.

21.2.1 Other Risk Measures

Besides the Value at Risk there are other concepts used in the market to
quantify risk. Two riskmeasuresmainly used in the assetmanagement industry
are shortfall probability and expected shortfall. Expected Shortfall is also relevant
for credit risk measurement and becomes increasingly important due to recent
changes of regulatory capital requirements for managing market risk.
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Value at Risk has the disadvantageous property that no statement about
the potential loss outside the confidence level is made. In contrast, Expected
Shortfall is directly linked to the potential loss.

The expected shortfall for a given confidence level c is defined as the
expected loss, given the loss is larger or equal to the Value at Risk. It is therefore
a conditional expectation:

Expected Shortfall(c) = −
∫ −VaR(c)

−∞
pdfδV (x) x dx .

The shortfall probability is the probability, that the change in portfolio value
is below a pre-specified amount. In a way, this is complementary to the Value
at Risk: for VaR we are given the probability and calculate the loss, which will
not be exceeded with this given probability; for Shortfall Probability we are
given the loss and calculate the probability for this (or a larger) loss to occur.
In other words: the Shortfall Probability belonging to a given loss equal to the
VaR is simply 1 minus the confidence level belonging to that VaR, or with
Eq. 21.3

Shortfall Probability(VaR) =
∫ −VaR

−∞
pdfδV (x)dx .

21.3 The Value at Risk of a Single Risk Factor

In order to illustrate the practical application of the concepts just introduced,
we now consider a single risk factor S whose (infinitesimal) changes are
governed by a geometric Brownian motion (GBM ) as given in Eqs. 2.17
and 2.25. In other words, the risk factor satisfies the stochastic differential
equation

d ln S(t) = μdt + σdWmit dW ∼ N(0, dt) . (21.7)

The evolution of S in a finite time interval of length δt is the solution to
the stochastic differential equation 21.7. This solution has already been given
in Eq. 2.28. It is a stochastic process which describes the distribution of the
market parameter S(t + δt) a finite time step δt later:

S(t + δt) = S(t) exp (μδt + σδW)mit δW ∼ N(0, δt) . (21.8)
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The volatility σ of the risk factor appearing here is theoretically the same
volatility as appears in the differential equation, Eq. 21.7. In practice, it is
usually calculated as the standard deviation of the relative price changes over a
finite time span δt (for example, through the analysis of historical time series),

S(t + δt) − S(t)

S(t)
≈ δ ln(S(t))

or obtained from the volatility values made available by commercial data
providers or in internet sites. In contrast to e.g. the drift, the volatilities in
the risk neutral world are in theory identical to those in the real world. In
practice, this is not the case since theoretical models only approximate the real
world. As mentioned before (e.g., see Sect. 14.9.3), quoted volatilities are often
just convenient terms to talk about prices calculated from these volatilities by
means of the Black ’76 formula.Within this context, (implicit) volatilities used
for the arbitrage free valuation of derivatives can be considered as mere market
parameters, resulting just like equity share prices from offer and demand in
markets with active trading. Therefore, implicit volatilities differ from realized
real volatilities of, e.g., observed real equity share prices. As a consequence,
portfolios with a significant portion of volatility dependent derivatives are
exposed to volatility risk, i.e. the risk caused by changing implicit volatilities.
Based on historical time series of implicit volatilities, in analogy to share prices,
the (real) volatilities of (implicit) volatilities are calculated.

There is another reason why risk calculations are based on real volatili-
ties and therefore on real probability distributions of the parameters. The
arbitrage-free valuation of derivatives is accurately applied in cases, in which
every risk position is hedged and therefore neutralized, i.e. the risk vanishes.
Without any risk, calculating the risk does not make much sense. Instead, it is
the purpose of the risk measurement to estimate the risk from those positions
and risk factors that could not (or just aren’t) be fully hedged. Therefore, risk
calculation is performed in the real world rather then in the arbitrage-free
world. A (currently) statically hedged position or risk factor would not show
any risk in the risk calculation. For the valuation of derivatives within the
risk calculation, arbitrage-free methods are still required in order to estimate
the real change in valuation of the derivative after a real change of market
parameters required for the valuation (e.g. share prices, implicit volatilities,
etc.).

As opposed to Eq. 21.7 which only holds for infinitesimal time steps dt , the
finite time span δt in Eq. 21.8 can be taken to be arbitrarily long. Obviously,
since the variance of the normally distributed stochastic component δW of
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the risk factor equals δt , the risk can be kept small by keeping the length of
this time interval small. δt should, however, be chosen large enough so that the
position concerned can be liquidatedwithin this time span. For this reason δt is
sometimes referred to as the liquidation period. To comply with regulations, a
liquidation period of δt = 10 days is required for internal models. Sometimes,
liquidation periods of δt = 1 day or δt = 25 days are used for other purposes,
too.

We now consider the value at risk with respect to a specified confidence c

of a portfolio consisting of a single position in N of one risk factor S. The
value of this portfolio at time t is V = NS(t). The change in the value δV (t)

caused by the change in the risk factor is

δV (t) = NδS(t) with δS(t) = S(t + δt) − S(t) .

This case is by no means as special as it may seem. The change in S induces a
change in V amplified by the constant factor N. The factor N is, so to speak,
the sensitivity of V with respect to S and δV is a linear function of δS. The
interpretation of N as the “number of instruments” in the portfolio is not
essential in our deliberations. The same results hold for any portfolio whose
change in value is a linear function of the change in the risk factor (or at least
approximately so), as is the case for the delta-normal approximation in the
variance-covariance method introduced below.

The value change δV can be explicitly derived from Eq. 21.8 as

δV = NS(t + δt) − NS(t)

= NS(t)
[
exp (μδt + σδW) − 1

]
. (21.9)

This allows us to express the probability required in Eq. 21.3, i.e., the
probability that δV > −VaR(c), as

P(δV > −VaR) = P
(
NS(t)

[
eμδt+σδW − 1

]
> −VaR

)
.

Next, we need to determine this unknown probability. The only stochastic
variable involved is the Brownian motion whose distribution is given by

δW ∼ N(0, δt) ⇒ δW ∼ X
√

δt with X ∼ N(0, 1) . (21.10)
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We begin by rewriting the condition that δV > −VaR with the purpose of
isolating the stochastic component δW to see what this condition means in
terms of δW .

P(δV > −VaR)

= P

(
eμδt+σδW − 1 > − VaR

NS(t)

)

= P

(
eμδt+σδW > 1 − VaR

NS(t)

)

= P

(
μδt + σδW > ln

(
1 − VaR

NS(t)

))

= P

(
δW >

1

σ
ln

(
1 − VaR

NS(t)

)
− μ

σ
δt

)

= P

(√
δtX <

1

σ
ln

(
1 − VaR

NS(t)

)
− μ

σ
δt

)

= P (X > a) ,

where we have used Eq. 21.10 and the abbreviation

a = 1

σ
√

δt
ln

(
1 − VaR

NS(t)

)
− μ

σ

√
δt . (21.11)

Since the probability distribution ofX is just the standard normal distribution
N(0, 1), which has the well-known density pdfX(x) (e.g., see Sect. A.4.3,
Gl. A.52) with

pdfX(x) = 1√
2π

e− x2
2 .

Then, the required probability can be calculated as

P(δV > −VaR) = P (X > a)

=
∫ ∞

a

pdfX(x)dx

= 1√
2π

∫ ∞

a

exp(−x2/2)dx .
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The value at risk with respect to the confidence c is the value satisfying
Eq. 21.3. Inserting the above result into this requirement now yields

c
!= P(δV > −VaR) = 1√

2π

∫ ∞

a

exp(−x2/2)dx .

The parameter a introduced in Eq. 21.11 is thus the (1 − c) percentile of the
standard normal distribution

a = Q
N(0,1)

1−c . (21.12)

This value can be determined for any arbitrary confidence level. Examples
of the boundary of a one-sided confidence interval of the standard normal
distribution are

c = 95% = 0.95 ⇒ a = Q
N(0,1)

1−c ≈ −1.645

c = 99% = 0.99 ⇒ a = Q
N(0,1)

1−c ≈ −2.326 (21.13)

Both of these confidences are frequently used in practice. Regulators require
c = 99% for the calculation of the capital requirement, whereas for other
purposes like internal risk management c = 95% is also used.

Having computed the percentile a we are now in a position to apply
Eq. 21.11 to isolate the value at risk for a previously specified confidence level c:

a =
[

ln

(
1 − VaR

NS(t)

)
− μδt

]
/(σ

√
δt)

aσ
√

δt + μδt = ln

(
1 − VaR

NS(t)

)

exp
(
aσ

√
δt + μδt

)
= 1 − VaR

NS(t)

VaR
NS(t)

= 1 − exp
(
aσ

√
δt + μδt

)

VaR = NS(t)
[
1 − exp

(
aσ

√
δt + μδt

)]
.
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Now using our main result Eq. 21.12 we finally obtain the value at risk with
respect to the confidence level c of a position consisting of N of the same
instruments depending solely on a single underlying risk factor S:

VaR(c) = NS(t)
[
1 − exp

(
μδt + Q

N(0,1)

1−c σ
√

δt
)]

. (21.14)

Thus, under the assumption that S behaves as the random walk in Eq. 21.7,
the probability is c that any loss due to this investment over the time span δt

is smaller than this value at risk.
Now consider the risk of a short position consisting of N of the risk factor.

The change in the portfolio’s value is given by an equation analogous to
Eq. 21.9, namely

δV = −NS(t)
[
exp (μδt + σδW) − 1

]

and the cumulative distribution function needed in Eq. 21.3 is now

P(δV > −VaR) = P
(−NS(t)

[
eμδt+σδW − 1

]
> −VaR

)

= P
(
NS(t)

[
eμδt+σδW − 1

]
< VaR

)
,

where in the last step, multiplication by (−1) has reversed the inequality to a
“lower-than” in the above condition. It follows that

P(δV > −VaR) = P

(
δW <

1

σ
ln

(
1 + VaR

NS(t)

)
− μ

σ
δt

)

= P

(
X <

1

σ
√

δt
ln

(
1 + VaR

NS(t)

)
− μ

σ

√
δt

)
.

Analogous to Eq. 21.11, we introduce the following definition3:

ã = 1

σ
√

δt
ln

(
1 + VaR

NS(t)

)
− μ

σ

√
δt . (21.15)

It then follows that the definition given in 21.2 for the value at risk becomes

c
!= cpfδV (δV > −VaR) = cpfX (X < ã) = 1√

2π

∫ ã

−∞
exp(−x2/2)dx

3The difference to a in Eq. 21.11 lies in the sign of the VaR.
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The parameter ã is thus the c percentile of the standard normal distribution

ã = Q
N(0,1)
c .

The symmetry A.54 of the standard normal distribution

N(−x) = 1 − N(x)

implies that the percentile obeys the relation4

Q
N(0,1)
c = −Q

N(0,1)

1−c .

It follows that we can use the same percentiles as given for instance in Eq. 21.13
for two commonly used confidence levels. Inserting ã = −Q

N(0,1)

1−c and solving
Eq. 21.15 for the value at risk of a short position yields

VaR(c) = −NS(t)
[
1 − exp

(
ãσ

√
δt + μδt

)]

= −NS(t)
[
1 − exp

(
μδt − Q

N(0,1)

1−c σ
√

δt
)]

.

We can now write down the two formulas for the risks involved in both a long
and a short position in one and the same risk factor:

VaRlong(c) = NS(t)
[
1 − exp

(
μδt + Q

N(0,1)

1−c σ
√

δt
)]

VaRshort(c) = −NS(t)
[
1 − exp

(
μδt − Q

N(0,1)

1−c σ
√

δt
)]

. (21.16)

These two key figures, because the underlying is assumed to belong to
a lognormal distribution, which is other than a normal distribution not
symmetric (see Fig. 2.5). The effect of the drift term μδt differs also: for a
long position the VaR is reduced, while it increases the VaR of a short position,

4This can be seen quite easily: Let c = N(x). By definition, x is the percentile associated with c.
Or equivalently, the inverse of the cumulative distribution function gives the percentile Qc = x =
N−1 [N(x)] = N−1(c). Applying N−1 to the symmetry equation N(−x) = 1−N(x) gives

N−1 [N(−x)] = N−1 [1 − N(x)]

⇔ −x = Q1−N(x) .

Substituting c for N(x) and Qc for x immediately yields −Qc = Q1−c.
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since N is negative. The approximations required to make the risks of a long
and short position look equal will be discussed in greater detail in the next
section.

21.4 Approximations in the Distribution of Risk
Factors

For short liquidation periods (for example, δt = 10 days = 0.0274
years), the exponential function in Eq. 21.8 is frequently approximated by its
Taylor series5 expanded up to and including its linear term. In addition, the
contribution of the drift is often assumed to be negligible in comparison to the
volatility in such short periods and is frequently excluded from consideration.
A third possibility, also frequently observed in practice is to combine the above
two approximations, neglecting the drift and approximating the exponential
function with its linear Taylor series expansion as well. These three approxi-
mations correspond to a change in the risk factor, δS(t) = S(t + δt) − S(t),

in the following three ways:

δS(t) ≈

⎧
⎪⎨

⎪⎩

S(t)
[
eσδW − 1

]
μ neglected

S(t) [μδt + σδW ] linear approximation for exp
S(t)σδW μ neglected and linear approximation .

(21.17)

We now show what effect these different approximations have on the value at
risk of the portfolios treated above consisting of a long or a short position in a
risk factor, respectively. The change in portfolio value δV induced by the risk
factor changes are

δVlong = NδS(t), δVshort = −NδS(t) ,

for the long and short position, respectively. The approximations for
δS(t) thus induce an analogous approximation in δV . Consequently, the

5exp(x) ≈ 1 + x + · · ·
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approximate value at risk of, for example, the long position can be derived as
was done above yielding6

VaRlong(c) ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

NS(t)
[
1 − exp

(
Q

N(0,1)

1−c σ
√

δt
)]

μ ≈ 0

NS(t)
[
−μδt − Q

N(0,1)

1−c σ
√

δt
]

exp linear

−NS(t)Q
N(0,1)

1−c σ
√

δt μ ≈ 0 , exp linear .

(21.18)

This follows also—and more directly—by approximating the exponential
function in Eq. 21.16. The value at risk for the short position can be approx-
imated in much the same way, the only difference being that the signs of N

and Q
N(0,1)

1−c are now negative. This implies that, even in linear approximation,
the VaRs of a long and short position are not exactly equal:

VaRlong(c) ≈ −NS(t)Q
N(0,1)

1−c σ
√

δt − NS(t)μδt

VaRshort(c) ≈ −NS(t)Q
N(0,1)

1−c σ
√

δt + NS(t)μδt . (21.19)

From these two linear approximations for the value at risk it is clear that the
two VaRs can only then be equal when the drift is neglected in the linear
approximation!

And only in this case is the well-known square root of time law valid. This
law states that the value at risk with respect to one liquidation period δt can
be calculated from the value at risk with respect to another liquidation period
δt ′ by multiplying by the square root of the ratio of the liquidation periods.
Correspondingly, only in this approximation can the value at risk at a given
confidence level a be converted into a VaR with respect to another confidence
a′ by simply multiplying by the ratio of the boundaries of the respective
confidence intervals. Both conversions find their expression in the following
equation:

VaR(c′, δt ′) ≈ Q1−c′

Q1−c

√
δt ′

δt
VaR(c, δt) . (21.20)

6Note that Q
N(0,1)

1−c
< 0 for all reasonable confidence levels c, see for instance Eq. 21.13. Since for all time

spans δt usually considered and for all reasonable values of μ the drift term is smaller than the volatility
term, the value at risk is a positive number.
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On the basis of this equation, the value at risk computed for given data
obtained from some commercial data providers, with, for example, 95%
confidence and a liquidation period of 1 day, can be converted to the value
at risk corresponding to a different confidence level and/or liquidation period
(for instance, 99% and 10 days for capital requirements). Equation 21.20 can
be easily derived from the third approximation of the value at risk listed in 21.18
(for this approximation, the risk for a long and short position are equal).

VaR(c′, δt ′) ≈ −NS(t)Q1−c′σ
√

δt ′

= −NS(t)
Q1−c′

Q1−c

Q1−cσ

√
δt ′
δt

δt = −NS(t)Q1−cσ
√

δt
︸ ︷︷ ︸

VaR(c,δt)

Q1−c′

Q1−c

√
δt ′
δt

.

Equation 21.20 is valid only in linear approximation and when the drift
is neglected. Furthermore, Eq. 21.20 holds only for portfolios whose value
changes are linear functions of the change in the underlying risk factor or when
the linearity holds at least in good approximation. Examples are (as in the case
currently under discussion) portfolios consisting of a single risk factor (the
constant of proportionality is N ) or the value at risk obtained by means of the
delta-normal approximation of the variance-covariancemethod (see Chap. 22)
where the constant of proportionality is given by the portfolio delta.

21.5 The Covariance Matrix

In general, the value of the portfolio V depends on not only one but on several
(often hundreds of ) risk factors. We assume that these risk factors Si(t), i =
1, . . . , n can be modeled by random walks as in Eqs. 21.7, 2.17 or Eq. 2.25
and obey the coupled stochastic differential equation

d ln Si(t) = μidt + dZi , (21.21)

where the dZi denote Brownian motions which are correlated with each
other. If the random walks governing the risk factors were uncorrelated, their
behavior could be completely determined through the specification of two
parameters per risk factor, namely the drift and the volatility. The fluctuation
(the variance) of a risk factor, which is of particular importance in risk
management, could be described by the volatility alone. Since underlying
prices, however, are in general correlated and the variance of the entire
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portfolio (a linear combination of the risk factors) is of interest, it is insufficient
to specify a single variance for each risk factor. It is evident from Eq. A.17,
for example, that the covariance is needed to incorporate both the variance of
each risk factor as well as the correlation between each pair of risk factors into
a model which completely describes the value changes of the portfolio. These
variances and correlations of the logarithmic changes of each of the risk factors
can be quite clearly represented by a matrix whose ij th element is composed
of the product of the correlation between the ith and j th risk factor with the
standard deviations of both these risk factors:

δ� =

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

δ�11 δ�12 · · · · · · δ�1n

δ�21
. . .

. . . δ�2n

... δ�ij

...
...

. . .
. . .

...

δ�n1 δ�n2 · · · · · · δ�nn

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

where δ�ij = ρij︸︷︷︸
Correlation

of ln Si with ln Sj

σi

√
δt︸ ︷︷ ︸

Std. Dev.
of ln Si

σj

√
δt

︸ ︷︷ ︸
Std. Dev.
ln of Sj

for i, j = 1, 2, . . . , n .

(21.22)

Here, δt is the reference time interval for the change in the risk factors, i.e.,
δt = 1 day for a daily change in the risk factors, δt = 25 days for a monthly
change, etc.Matrices of this sort are called covariance matrices.With this matrix
we can write

dZ =

⎛

⎜⎜
⎜⎜
⎝

dZ1

dZ2
...

dZn

⎞

⎟⎟
⎟⎟
⎠

∼ N(0, d�) ,

where the following general (vector) notation has been introduced

X ∼ N(R,V)

⇐⇒ Xiare normally distributed with

cov[Xi,Xj ] = Vij , E [Xi] = Ri .
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The notation dZ ∼N(0,�dt) denotes that the vector dZ consists of the
stochastic differentialsdZi and that these aremultivariate normally distributed
with expectation 0 and covariance matrix d�:

dZ ∼ N(0, d�) �⇒ cov[dZi, dZj ] = d�ij , E [dZi] = 0

with d�ij = σiρijσjdt . (21.23)

As was the case for a single risk factor, the Si are solutions to the associ-
ated stochastic differential equations 21.21. Analogously to Eq. 2.28, theses
solutions are given by the following stochastic processes

Si(t + δt) = Si(t) exp (μiδt + δZi)with δZ ∼ N(0, δ�) (21.24)

This equation specifies the distribution of the market parameter Si(t + δt)

after a finite time interval δt has passed. The value Si(t) is known at time t as
is the distribution of the random vector δZ. The δZi are multivariate normally
distributed with the covariance matrix

δ�ij = σiρi,j σj δt

as given in Eq. 21.22.
As opposed to Eq. 21.21, which holds for infinitesimal time steps dt, the

finite time interval of length δt is arbitrary and can be taken to be the
liquidation period used for the computation of the VaR, for example. For short
time intervals δt, the changes in the risk factors δSi(t) = Si(t + δt) − Si(t)

can be approximated analogously as was done in Eq. 21.17:

δSi(t) ≈

⎧
⎪⎨

⎪⎩

Si(t)
[
eδZi − 1

]
drift neglected

S(t) [μiδt + δZi] linear approximation for exp
S(t)δZi drift neglected and linear approximation .

(21.25)

It is common practice to work with the latter and simplest of the three
approximations above

δSi(t) ≈ Si(t) δZi mit δZ ∼ N(0, δ�) . (21.26)
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21.5.1 Logarithmic Changes Versus Returns

It is important (for instance when determining the covariance matrix from
historical time series) to understand, that the covariance matrix δ�ij is defined
as the covariance of the logarithmic changes, and not as the covariance of the
returns. The risk factor returns ri(t) over a time period δt are defined via

Si(t)e
ri(t)δt := Si(t + δt)

⇐⇒ ri(t)δt = ln

(
Si(t + δt)

Si(t)

)
= ln Si(t + δt) − ln Si(t) = δ ln Si(t) .

Thus, the difference between returns and logarithmic changes is a factor δt :

δ ln Si(t) = ri(t)δt . (21.27)

Therefore the covariance matrix δ�ij differs from the covariance of the returns
by a factor of δt2:

δ�ij ≡ cov
[
δ ln Si, δ ln Sj

] = cov
[
riδt, rj δt

] = δt2 cov
[
ri, rj

]
.

(21.28)

In particular

σ 2
i δt ≡ δ�ii ≡ var [δ ln Si] = δt2 var [ri] . (21.29)

Thus, the risk factor volatility can be expressed in terms of the variance of the
logarithmic changes or in terms of the variance of the returns in the following
way

σi = 1√
δt

√
var [ln Si] = √

δt
√

var [ri] . (21.30)

This relation is of utmost importance at any annualization of volatilities
obtained from historical analysis!

From Eq. 21.28 it follows, that the Betas (which measures to what extend
the variance of a risk factor could be explained by correlation with another one)
as defined in Eq. A.20 are the same for returns and for logarithmic changes:

β
[
δ ln Si, δ ln Sj

] = cov
[
δ ln Si, δ ln Sj

]

var
[
δ ln Sj

] = δt2 cov
[
ri, rj

]

δt2 var
[
rj

]

= β
[
ri, rj

] ≡ βij .
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Similarly, the correlations as defined in Eq. A.14 are the same for returns and
for logarithmic changes:

corr
[
δ ln Si, δ ln Sj

] ≡ cov
[
δ ln Si, δ ln Sj

]

√
var [δ ln Si] var

[
δ ln Sj

] = δt2 cov
[
ri, rj

]

√
δt2 var [ri] δt2 var

[
rj
]

= corr
[
ri , rj

] ≡ ρij .

Expressing the covariances in terms of correlation and volatilities we find

cov
[
δ ln Si, δ ln Sj

] = ρij

√
var [δ ln Si]

√
var

[
δ ln Sj

] = ρijσi

√
δt σj

√
δt

cov
[
ri, rj

] = ρij

√
var [ri]

√
var

[
rj

] = ρij

σi√
δt

σj√
δt

.

In summary, the relations involving volatilities, correlations and Betas with the
correct factors δt are

βij ≡ β
[
δ ln Si, δ ln Sj

] = β
[
ri, rj

]

ρij ≡ corr
[
δ ln Si, δ ln Sj

] = corr
[
ri, rj

]
(21.31)

ρijσiσj = 1

δt
cov

[
δ ln Si, δ ln Sj

] = δt cov
[
ri, rj

]
.

21.5.2 Covariance Matrices of Data Providers

A price of the ith risk factor is, of course, 100% correlated with itself. Observe
that the correlation of two risk factors, say the ith and j th risk factors, is
symmetric in the sense of Eq. A.15. This symmetry makes almost half the
information appearing in Eq. 21.22 redundant. Only the “triangle” below the
diagonal is needed. The matrix elements in the diagonal, i.e., those whose
row index equals their column index, are composed of the volatilities since,
as was mentioned above, the correlation of a risk factor with itself is always 1.
Some commercial data providers only make the data in the “triangle” below
the main diagonal of the correlation matrix (without the volatilities) available
rather than the entire covariance matrix. Volatilities are not placed directly at
the user’s disposal. Instead, the standard deviations of the logarithmic change
in the risk factors over δt = 1 day or δt = 25 days multiplied by 1.645 are
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given. Also, the current risk factor levels (called the current levels ) are available.
In summary, the following data can be obtained for both 1 day and 25 days:

K =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

1 0 · · · 0 · · · 0

ρ2,1
. . .

. . .
. . .

...
...

. . . 1 0 0

ρi,1 ρi,i−1 1
. . .

...
...

. . .
. . .

. . . 0
ρn,1 · · · ρn,i−1 · · · ρn,n−1 1

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

(21.32)

Y =

⎛

⎜
⎜⎜⎜
⎜⎜⎜⎜
⎝

Y1

Y2
...
...

Yn−1

Yn

⎞

⎟
⎟⎟⎟
⎟⎟⎟⎟
⎠

, S =

⎛

⎜
⎜⎜⎜
⎜⎜⎜⎜
⎝

S1

S2
...
...

Sn−1

Sn

⎞

⎟
⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Y is a vector whose components are not the volatilities but the standard
deviations of either daily (δt = 1 day) or monthly (δt = 25 days) logarithmic
risk factor fluctuations multiplied by 1.645 given explicitly by

Yi = −Q1−c

√
var [xi] = −Q1−c

√
δt σi (21.33)

with Q1−c = −1, 645 ⇒ c = 95% .

In order to obtain the actual volatilities, these Yi need to be divided by 1.645
and

√
δt . The variables Yi are referred to by some commercial data providers

as the “value at risk“ of the underlying (risk factor) Si. In fact, neglecting the
drift as in Eq. 21.18, Yi can be used to directly calculate the value at risk of a
risk factor at a confidence level of c = 95% (see Eq. 21.13):

VaRi(95%, δt) ≈ Si(t) − e−YiSi(t) ≈ Si(t)Yi . (21.34)

Thus interpreted, Yi is a linear approximation (also neglecting the effect of the
drift) of the relative value at risk of the ith risk factor:

Yi = VaRi (95%, δt)

Si(t)
.
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A linear approximation of the value at risk with respect to another confidence
level and/or another liquidation period can be obtained (neglecting the drift)
via 21.20.

Instead of relying on the volatilities and correlations of an external provider,
these parameters can be determined by analyzing historical time series. In
general, volatilities implied by traded options will not be used, even in the
presence of liquidly traded standard options. Instead, “real world” volatilities
should be preferred. since implicit volatilities are mere quotation vehicles. On
the other side, implicit volatilities are themselves treated as pricing relevant
risk factors in the risk management of portfolios with options. The volatility
of these implicit volatilities can be calculated from historical time series of
implicit volatility quotes.

21.5.3 Cholesky Decomposition of the Covariance Matrix

As we will soon see, it is often quite convenient to work with a matrix which,
when multiplied by itself, yields the covariance matrix 21.22. The need for
such a matrix arises when applying several of the most important methods
used in computing risk, such as Monte Carlo or the delta-gamma methods.
This “square root” of the covariance matrix will be denoted by A and satisfies
the condition

AAT =δ� . (21.35)

Here the notation AT denotes the transpose of the matrix A. We obtain the
transpose by writing the row vectors of A as column vectors, i.e.

(
AT

)

ij
= Aji .

Transformation of Uncorrelated Random Variables into Correlated
Random Variables

A useful property of A (particularly for Monte Carlo simulations, see
Sect. 23.1) is that it transforms uncorrelated random variables into correlated
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ones (with covariance δ�). Let Xi, i = 1, . . . , n be uncorrelated standard
normally distributed random variables

X =
⎛

⎜
⎝

X1
...

Xn

⎞

⎟
⎠with X ∼ N(0, 1) . (21.36)

The symbol 1 is used to denote the identity matrix

1 =

⎛

⎜
⎜⎜⎜
⎝

1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

⎞

⎟
⎟⎟⎟
⎠

, (21.37)

or equivalently,7 (1)ij = δij . The notation in Eq. 21.36 means explicitly:

cov[Xi, Xj ] = δij , E [Xi] = 0 ∀i, j = 1, . . . n .

Applying the matrix A to X generates new random variables Y defined by

Y = AX ⇐⇒Yi =
∑

k

AikXk .

The covariances of these new random variables are

cov
[
Yi, Yj

] = cov

[
∑

k

AikXk,
∑

m

AjmXm

]

=
∑

k

Aik

∑

m

Ajmcov[Xk,Xm]︸ ︷︷ ︸
δkm

=
∑

k

AikAjk

7Here, we make use of the so called Kronecker delta often appearing in the science. It is defined as

δij =
{

1 for i = j

0 for i �= j
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= (
AAT

)
ij

= δ�ij ,

where the defining property of the matrix A, Eq. 21.35, was used in the last
step. The expectations of these random variables are

E[Yi] = E

[
∑

k

AikXk

]

=
∑

k

AikE[Xk]︸ ︷︷ ︸
0

= 0 .

This means that the random vector with components Yi is multivariate
normally distributed with covariance matrix δ� and zero expectation:

AX = Y ∼ N(0, δ�) . (21.38)

Transformation of Correlated Random Variables into Uncorrelated
Random Variables

Conversely, it is often convenient (for example, when using the delta-gamma
method, see Sect. 22.3) to transform correlated random variables into uncor-
related ones. As we might suspect, this is accomplished through the mapping
given by the inverseA−1 of the matrixA. The proof is somewhatmore involved
than that given in the previous section: Let Yi, i = 1, . . . , n be correlated
multivariate normally distributed random variables with covariance δ�,

Y =
⎛

⎜
⎝

Y1
...

Yn

⎞

⎟
⎠ with Y ∼ N(0, δ�)

or more explicitly

cov[Yi, Yj ] = δ�ij , E [Yi] = 0 ∀i, j = 1, . . . n

The random variables Xi obtained by applying the inverse matrix A−1 to the
random vector Y are given by

X = A−1Y ⇐⇒Xi =
∑

k

(A−1)ikYk
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The covariance of these Xi can be calculated as follows

cov[Xi,Xj ] = cov[
∑

k

(A−1)ikYk,
∑

m

(A−1)jmYm]

=
∑

k

(A−1)ik

∑

m

(A−1)jmcov[Yk, Ym]︸ ︷︷ ︸
δ�km

=
∑

k

∑

m

(A−1)ikδ�km(A−1)T
mj

This, however, is precisely the matrix product8 of the matrices A−1, δ� and
(A−1)T . Decomposing the matrix δ� as in Eq. 21.35 yields

cov[Xi,Xj ] =
(
A−1δ�(A−1)

T
)

ij

= (
A−1AAT (A−1)T

)
ij

.

The product A−1A of first two matrices appearing on the right hand side is by
definition of inverse matrices, of course, the identity matrix given in Eq. 21.37.
Furthermore, the following property holds for every invertible matrix9

(A−1)T = (AT )−1 . (21.39)

allowing the covariances to be calculated as

cov[Xi, Xj ] = (
AT (A−1)T

)
ij

= (
AT (AT )−1)

ij

= (1)ij

= δij .

8A short and simple overview of matrix algebra can be found in [78], for example.
9Since A is invertible we have: (AA−1)T = 1 ⇒ (A−1)T AT = 1 ⇒ (A−1)T AT (AT )−1

︸ ︷︷ ︸
1

= 1(AT )−1.
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The expectations of the new random variables remain zero since, by the
linearity of the expectation,

E[Xi] = E

[
∑

k

(A−1)ikYk

]

=
∑

k

(A−1)ikE[Yk]︸ ︷︷ ︸
0

= 0 .

Since matrix multiplication is a linear transformation, the form of the distri-
bution remains the same as well. In summary, the new random variables Xi

are uncorrelated and all have the same standard normal distribution:

X = A−1Y ∼ N(0, 1) . (21.40)

However, uncorrelated random variables are in general not independent. For
independence, the joint distribution of the variables has to be equal to
the product of the distributions of each individual variable, see Eq. A.63.
Fortunately for uncorrelated standard normally distributed random variables
this is indeed the case, see Eq. A.62. Therefore, the Xi are independent. They
are also all governed by the same distribution (in this case the standard normal
distribution). Therefore the Xi are called independent, identically distributed
random variables or iid, for short.

The Cholesky Decomposition

Having shown the usefulness of a matrixA satisfying the property in Eq. 21.35,
we proceed with the explicit construction of this matrix. In Eq. 11.4 for n = 2,
it has already been shown how the square root of a matrix can be calculated by
means of theCholesky decomposition. For arbitrarily largematrices ( n > 2 ), the
components Aij , i, j = 1, . . . , n of the matrix A are obtained by iteratively
solving the following system of equations:

Aji =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for j < i√

δ�ii −
i−1∑

k=1
A2

ik for j = i

1
Aii

(
δ�ji −

i−1∑

k=1
Aik Ajk

)
for j > i

(21.41)
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with δ�ji as given in Eq. 21.22:

δ�ji =
{

σ 2
i δt for j = i

ρij σiσjδt for j �= i
.

In solving the above system, we begin with i = 1, j = 1. Within a given Index
i we first solve for all possible indices j before increasing i. This procedure is
illustrated here for n = 3:

A11 = √
δ�11 , A21 = δ�21

A11
= δ�21√

δ�11
, A31 = δ�31

A11
= δ�31√

δ�11

A22 =
√

δ�22 − A2
21 =

√
δ�22 − δ�2

21/δ�11

A32 = δ�32 − A21A31

A22
= δ�32 − δ�21δ�31/δ�11√

δ�22 − δ�2
21/δ�11

A33 =
√

δ�33 − A2
31 − A2

32 =
√

δ�33 − δ�2
31

δ�11
− (δ�32 − δ�21δ�31/δ�11)2

δ�22 − δ�2
21/δ�11

.

Thus, all elements of the matrixA have been expressed in terms of the elements
of the covariance matrix. Finally, substituting for δ�ij as defined in Eq. 21.22
yields

A11 = σ1

√
δt

A21 = σ2

√
δt ρ21 , A22 = σ2

√
δt

√
1 − ρ2

21

A31 = σ3

√
δt ρ31 , A32 = σ3

√
δt

ρ32 − ρ31ρ21√
1 − ρ2

12

A33 = σ3

√
δt

√

1 − ρ2
31 − (ρ32 − ρ31ρ21)2

1 − ρ2
12

.

The first equation above holds when only a single risk factor is involved. The
first two equations correspond to Eq. 11.4 for two correlated random walks.
The third and fourth rows complete the decomposition for an additional third
correlated random walk.



22
The Variance-Covariance Method

The variance-covariance method makes use of covariances (volatilities and
correlations) of the risk factors and the sensitivities of the portfolio values
with respect to these risk factors with the goal of approximating the value
at risk. This method leads directly to the final result, i.e., the portfolio’s value
at risk, based on the properties of the assumed portfolio value’s probability
distribution; no simulation of market data scenarios is involved. The variance-
covariance method utilizes linear approximations of the risk factors themselves
throughout the entire calculation, often neglecting the drift as well. In view of
Eq. 21.25, we have

δSi(t) ≈ Si(t) [μiδt + δZi] ≈ Si(t)δZi . (22.1)

The main idea characterizing this method, however, is that the portfolio
value V is expanded in its Taylor series as a function of its risk factors
Si, i = 1, . . . n, and approximated by breaking off after the first or second
order term. Let

S(t) =
⎛

⎜
⎝

S1(t)
...

Sn(t)

⎞

⎟
⎠
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denote the vector of risk factors. The Taylor expansion for the change in
portfolio value δV (S) up to second order is

δV (S(t)) = V (S(t) + δS(t)) − V (S(t))

≈
n∑

i

∂V

∂Si

δSi(t) + 1

2

n∑

i,j

δSi(t)
∂2V

∂Si∂Sj

δSj (t) (22.2)

=
n∑

i

�iδSi(t) + 1

2

n∑

i,j

δSi(t)�ijδSj (t)

≈
n∑

i

�̃i [μiδt + δZi] + 1

2

n∑

i,j

[μiδt + δZi] �̃ij

[
μjδt + δZj

]

(22.3)

≈
n∑

i

�̃i δZi + 1

2

n∑

i,j

δZi�̃ij δZj . (22.4)

In Eq. 22.2, the portfolio value has been approximated by its Taylor expansion.
In Eq. 22.3, the risk factor changes were linear approximate according to
Eq. 22.1, and finally, in Eq. 22.4, the average returns have been neglected.
The last line in 22.4 is referred to as the delta-gamma approximation. Taking
the Taylor expansion up to linear order only is called delta approximation
correspondingly, resulting in an approximation solely consisting of the first
of the two sums appearing in the last equation in 22.4.

The abbreviations �i and �ij , as usual, denote the sensitivities (at time t )
of V with respect to the risk factors

�i := ∂V

∂Si

, �ij := ∂2V

∂Si∂Sj

, i, j = 1, . . . n .

Note here that the mixed partial derivatives arise in the expression for �ij . In
the literature, the matrix �ij is sometimes called the Hessian matrix.
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We will see below that the sensitivities usually appear in connection with
the current levels Si(t) and Sj(t). The notation �̃i and �̃ij will be used to
denote these sensitivities multiplied by the current levels:

�̃i := Si(t)
∂V

∂Si

, �̃ij := Si(t)Sj(t)
∂2V

∂Si∂Sj

. (22.5)

Using �̃i and �̃ij will prove to substantially simplify the notation. Interpreting
the �̃i as components of a vector �̃, and �̃ij as the elements of a matrix �̃,
Eq. 22.4 can be written in vector form as

δV (S(t)) = (
�̃1 · · · �̃n

)
⎛

⎜
⎝

δZ1
...

δZn

⎞

⎟
⎠

+ 1

2

(
δZ1 · · · δZn

)
⎛

⎜
⎝

�̃1,1 · · · �̃1,n

...
. . .

...

�̃n,1 · · · �̃n,n

⎞

⎟
⎠

⎛

⎜
⎝

δZ1
...

δZn

⎞

⎟
⎠

= �̃
T
δZ+1

2
δZT �̃δZ .

The approximation of V (S) through its Taylor series expansion up to second
order is presented in Fig. 22.1 for a straddle (a portfolio made up of a call
and a put option) on a risk factor S. The figure has been extracted from
the Excel workbook Straddle.xlsm available in the download section [50].
We can recognize that the delta-gamma approximation for a simple payoff
profile is quite a good approximation. For somewhat more complicated
portfolios, however, the delta-gamma approximation fails to be a reasonable
representation of the payoff profile. In such cases, we recommend using one of
the simulation methods presented in Chap. 23 instead of the Delta-Gamma
method. However, the drawback of the simulation approach is of course the
significant increase of numerical computations required.
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Fig. 22.1 Black-Scholes price of a straddle (strike = 100, time to maturity = 1 year) on
an underlying S (volatility 25%, dividend yield 6%, repo rate 3%). The dashed line is the
delta-gamma proxy, the dotted line is the simple delta proxy. The Taylor expansion was
done about S = 95

22.1 Portfolios vs. Financial Instruments

Although we continually refer to portfolio sensitivities, the same results hold
for individual financial instruments as well. In fact, sensitivity of a portfolio
composed of financial instruments on the same underlying as described in
Sect. 12.4.1 can be obtained by simply adding together the sensitivities of
the individual instruments. This is the approach most commonly taken when
calculating portfolio sensitivities. For the sake of clarity, we once again present
this method explicitly here.

Consider a portfolio with a value V consisting of M different financial
instruments with values Vk ,k = 1, . . .M . Nk denotes the number of each
instrument with value Vk held in the portfolio. The total value of the portfolio
is naturally the sum of the values of each individual position

V (t) =
M∑

k=1

NkVk(S(t)) . (22.6)
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The change in value δV (t) of this portfolio is (approximated up to second
order)

δV (S(t)) =
M∑

k=1

NkδVk(S(t))

≈
M∑

k=1

Nk

⎡

⎣
n∑

i

∂Vk

∂Si

δSi(t) + 1

2

n∑

i,j

δSi(t)
∂2Vk

∂Si∂Sj

δSj (t)

⎤

⎦

=
M∑

k=1

Nk

n∑

i

�k
i δSi(t) + 1

2

M∑

k=1

Nk

n∑

i,j

δSi(t)�
k
ijδSj (t) ,

(22.7)

where the sensitivities of the financial instruments have been introduced in
the last step. For example, �k

i is the linear sensitivity of the kth financial
instrument in the portfolio with respect to the ith risk factor, etc.:

�k
i := ∂Vk

∂Si

, �k
ij := ∂2Vk

∂Si∂Sj

, i, j = 1, . . . n; k = 1, . . .M .

Simply rearranging the terms makes it clear that the summing over the index
k (which denotes the different financial instruments) yields the portfolio
sensitivities:

δV (S(t)) =
n∑

i

δSi(t)

M∑

k=1

Nk�
k
i + 1

2

n∑

i,j

δSi(t)δSj(t)

M∑

k=1

Nk�
k
ij

=
n∑

i

δSi(t)�i + 1

2

n∑

i,j

δSi(t)δSj(t)�ij ,

Thus, a portfolio sensitivity like �i , for example, contains the sensitivities
of all instruments in the portfolio (including all the position sizes Nk) with
respect to the considered risk factor. This then yields (as is intuitively clear)
the sensitivities of the entire portfolio as sums over the sensitivities of all
instruments in the portfolio:

�i =
M∑

k=1

Nk�
k
i , �ij =

M∑

k=1

Nk�
k
ij .
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In practice, this procedure is usually referred to as position mapping. Using the
approximation in Eq. 22.1 for the change in risk factor, we finally obtain an
expression for the portfolio’s change in value as

δV (S(t)) ≈
n∑

i

�̃i [μiδt + δZi] + 1

2

n∑

i,j

[μiδt + δZi] �̃ij

[
μjδt + δZj

]

≈
n∑

i

�̃i δZi + 1

2

n∑

i,j

δZi�̃ij δZj ,

using the modified portfolio sensitivities defined as in Eq. 22.5:

�̃i := Si(t)�i = Si(t)

M∑

k=1

Nk�
k
i (22.8)

�̃ij := Si(t)Sj(t)�ij = Si(t)Sj(t)

M∑

k=1

Nk�
k
ij .

Adding the sensitivities of the financial instruments and multiplying by the
current levels of the risk factors to obtain these modified portfolio sensitivities
is sometimes referred to as VaR mapping.

22.2 The Delta-Normal Method

In the delta-normal method, the Taylor series 22.4 of the portfolio value is
broken off after the linear term.

δV (S(t)) ≈
n∑

i

∂V

∂Si

δSi(t) (22.9)

≈
n∑

i

�̃i [μiδt + δZi]

≈
n∑

i

�̃i δZi = �̃
T
δZ .
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22.2.1 The Value at Risk with Respect to a Single Risk
Factor

For a single risk factor this means

δV (S(t)) ≈ �δS(t) (22.10)

with the sensitivity � := ∂V/∂S. The change in the portfolio’s value is thus
approximated to be a linear function of the change in the underlying risk
factor. This corresponds to the situation described in Sect. 21.3. There, the
constant of proportionality (the sensitivity) was not � butN or−N for a long
or short position, respectively. The linear approximation implies intuitively
that a portfolio with a linear sensitivity � with respect to a risk factor can
be interpreted as a portfolio consisting of � risk factors. The only subtlety
in this argumentation is that in Sect. 21.3, we distinguished between a long
and a short position, treating the two cases differently on the basis of whether
the proportionality constant N was positive or negative (which leads to the
two different VaRs in Eq. 21.16). However, we cannot know a priori whether
� is greater or less than 0. We do know, however, that V is linear and in
consequence, a monotone function of S. Therefore, in the sense of Eq. 21.6,
the results following from Eq. 21.16 hold with the correspondence �=̂N for
� > 0, and �=̂ − N for � < 0. Using this fact allows us to write

VaRV (c) ≈ max
{
�̃

[
1 − exp

(
μδt + Q1−cσ

√
δt
)]

,

�̃
[
1 − exp

(
μδt − Q1−cσ

√
δt
)]}

(22.11)

using the notation �̃ := S(t)� = S(t)∂V/∂S. As usual, Q1−c is the (1 − c)

percentile of the standard normal distribution.1 The maximum function in
Eq. 21.6 effects the correct choice for the VaR. If � > 0, the lower bound of
the confidence interval of the risk factor2 is relevant and consequently the VaR
function as defined above takes on the value corresponding to a long position
in Eq. 21.16. Likewise for � < 0, the upper bound of the confidence interval
of the risk factor3 is relevant and the above defined maximum function takes
on the value corresponding to the VaR of the short position in Eq. 21.16.

1For all relevant confidence levels, this percentile is a negative number, see Eq. 21.13.
2This corresponds to the percentile Q1−c of the standard normal distribution.
3This corresponds to the percentile −Q1−c = Qc of the standard normal distribution.
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In all our deliberations up to this point, only the portfolio value has been
approximated with Eq. 22.10. The change in the risk factor in Eq. 22.11 is still
exact. Approximating this risk factor change with Eq. 22.1, the VaR becomes

VaRV (c) ≈ max{�̃
[
−μδt − Q1−cσ

√
δt
]
,

�̃
[
−μδt + Q1−cσ

√
δt
]
}

This corresponds exactly to Eq. 21.19, since �̃=̂N for �̃ > 0 and �̃=̂ − N

for �̃ < 0.
The common summand −�̃μδt can now be taken out of the maximum

function

VaRV (c) ≈ max
{
−�̃Q1−cσ

√
δt, +�̃Q1−cσ

√
δt
}

− �̃μδt

=
∣
∣∣�̃Q1−cσ

√
δt

∣
∣∣ − �̃μδt (22.12)

In this approximation, the maximum function produces precisely the absolute
value of the risk which is caused by the volatility of the risk factor. A positive
driftμ of the risk factor reduces the portfolio risk when �̃ > 0 (intuitively, the
portfolio then represents a long position). If, on the other hand, the portfolio
sensitivity is negative, i.e., �̃ < 0, a positive drift increases the portfolio risk
(intuitively, the portfolio represents a short position). The drift’s influence is
of course lost if the drift is neglected in the approximation. The value at risk
then reduces to

VaRV (c) ≈
∣
∣∣�̃Q1−cσ

√
δt

∣
∣∣ (22.13)

where the absolute value makes it immediately clear that the sign of the
portfolio sensitivity no longer plays a role.

22.2.2 The Value at Risk with Respect to Several Risk
Factors

In the previous section, linear approximations enabled us to reduce the VaR
with respect to a single risk factor to that of a position consisting of �

instruments representing the risk factor. We were then able, as was done in
Sect. 21.3, to deduce information about the unknown distribution of the
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portfolio’s value V from the known distribution of the risk factor S. The
extension of these results to the case of several risk factors is not trivial even for
the delta-normal approximation. Only by using the roughest approximation
in Eq. 22.1 for the change in the risk factors, namely δSi(t) ≈ Si(t)δZi, can
we manage to avoid involving the distribution of V in the discussion.

The approximation Eq. 21.26, i.e. δS(t) ≈ S(t)δZ, led to the value at
risk Eq. 22.13 with respect to a single risk factor. Squaring both sides of this
equation yields

VaR2
V (c) ≈ �̃2 (Q1−c′)2 σ 2δt

= �2 (Q1−c′)2 S(t)2σ 2δt

= �2 (Q1−c′)2 S(t)2 var [δZ]

= �2 (Q1−c′)2 var [δS(t)] ,

since the approximation in Eq. 21.26 allows the approximation of the variance
of δS(t) with S(t)2 var [δZ]. On the other hand, the variance of V can be
calculated from Eq. 22.10 simply as

var [δV ] ≈ var [�δS(t)] = �2 var [δS(t)] .

This means that this approximation can be used to express the square of the
value at risk in terms of a multiple of the variance of the portfolio:

VaR2
V (c) ≈ (Q1−c′)2 �2 var [δS(t)]

= (Q1−c′)2 var [δV ] .

Now, only the variance of the portfolio’s value needs to be determined for the
computation of the VaR and not its distribution or its percentiles.

If several risk factors are involved, Eq. 22.9 can be used to write the
portfolio’s change in value, δV , in the approximation given by Eq. 21.26,
as a linear combination of normally distributed random variables δZi (with
deterministic coefficients �̃i)

δV ≈
n∑

i=1

�̃iδZi .

The variance of a sum of random variables is equal to the sum of the
covariances of these random variable as can be seen from Eq. A.17. The
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variance of the portfolio value is thus

var [δV ] ≈
n∑

i,j=1

�̃i�̃j cov
[
δZi, δZj

]

=
n∑

i,j=1

�̃iδ�ij �̃j (22.14)

= δt

n∑

i,j=1

�̃iσiρijσj �̃j ,

where the definition of the covariance matrix in Eq. 21.22 was used in the last
step. This means that the value at risk can be approximated as

VaRV (c) ≈ |Q1−c|
√

var [δV ]

= |Q1−c|
√

�̃δ��̃

= |Q1−c|
√

δt

√√√√
n∑

i,j=1

�̃iσiρijσj �̃j . (22.15)

This is the central equation for the delta-normal method. It summarizes all
assumptions, approximations, and computation methods of the delta-normal
method.4

4If all portfolio sensitivities are non-negative (which is often the case for instance for a private investor’s
portfolio containing only long positions), then this equation can be rewritten in an alternative and quite
intuitive form. Let VaRi (c) denote the value at risk of the portfolio with respect to a particular risk
factor Si . Using Eq. 22.13, we can approximate this by

VaRi (c) ≈
∣∣
∣�̃iQ1−cσi

√
δt

∣∣
∣ .

Thus, for the special case that none of the portfolio deltas is negative, the VaR with respect to all risk
factors can be obtained by computing the square root of the weighted sum of the products of all the VaRs
with respect to the individual risk factors. The weights under consideration are the respective correlations
between the risk factors:

VaRV (c) ≈
√√
√√

n∑

i,j=1

VaRi (c)ρijVaRj (c) falls�̃i ≥ 0∀i ∈ {1, . . . , n} . (22.16)
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In the linear approximation, the effect of the drifts can be subsequently
introduced into the approximation. The expected change in portfolio value is
calculated using the deltas and the drifts of the risk factors. Analogously to
Eq. 22.12 for a single risk factor, this expected change is then subtracted from
the value at risk of the portfolio given in Eq. 22.15:

VaRV (c) ≈ |Q1−c|
√

δt

√√√√
n∑

i,j=1

�̃iσiρijσj �̃j − δt
∑

i

�̃i μi . (22.17)

The delta-normal approach to the calculation of the value at risk can be
summarized as follows:

• Calculate the sensitivities of the portfolio with respect to all risk factors.
• Multiply the covariance matrix with the sensitivities of the portfolio and

the current values of the risk factors as in Eq. 22.14 to obtain the variance
of the portfolio. The covariance matrix’s elements consist of the product of
volatilities and correlations of the risk factors as defined in Eq. 21.22.

• Multiply the portfolio variance as in Eq. 22.15 by the liquidation period
and the square of the percentile corresponding to the desired confidence
interval (for example, −2.326 for 99% confidence).

• The square root of the thus obtained number is the value at risk of the entire
portfolio, neglecting the effect of the drifts of the risk factors.

• The effect of the drifts can be taken into account using Eq. 22.17.

For future reference we re-write the final Value at Risk in Eq. 22.17 in terms
of the covariances for the logarithmic changes and in terms of the covariances
of the returns. According to Eqs. 21.27 and 21.28 the difference is an overall
factor δt :

VaRV (c) ≈ |Q1−c|
√√√√

n∑

i,j=1

�̃i�̃j cov
[
δ ln Si, δ ln Sj

] −
∑

i

�̃iE [δ ln Si]

= δt |Q1−c|
√√√√

n∑

i,j=1

�̃i�̃j cov
[
ri, rj

] − δt
∑

i

�̃iE [ri] .

(22.18)

Here, the ri are the historic portfolio returns over holding periods of length
δt , each return annualized.
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These two forms of the VaR are very important in practice, when one is
given historical time series of risk factor prices Si or annualized risk factor
returns ri rather then the volatilities and correlations needed in Eq. 22.17,
which otherwise would have to be calculated or bought from some market
data vendor.

22.3 The Delta-Gamma Method

The delta-gamma method for calculating the portfolio’s VaR makes use of
the Taylor series expansion of the value of the portfolio up to and including
the second order terms along with the approximation in Eq. 22.1 for the risk
factors. The starting point for the delta-gamma method is thus the last line in
Eq. 22.4, which when written in vector notation is given by

δV (S(t)) = �̃
T
δZ+1

2
δZT �̃δZ (22.19)

where

δZ ∼ N(0, δ�) �⇒ cov[δZi , δZj ] = σiρij σjδt , E [δZi ] = 0 .

The right-hand side of Eq. 22.19 can not be written as the sum of the
contributions of each risk factor as was the case for the delta-normal method:

n∑

i

�̃i δZi + 1

2

n∑

i,j

δZi �̃ij δZj �=
n∑

i

(contribution of the i-th risk factor) .

The contributions of the individual risk factors can not be considered sep-
arately since they are coupled in the above equation by the matrix �̃. Fur-
thermore the random variables δZj are not independent. They are correlated
through the covariance matrix δ�. Two essential elements of the method
presented here are5:

• Using the Cholesky decomposition of the covariance matrix δ� to trans-
form the δZj into independent random variables.

5This goes back to a paper by Rouvinez, see [166].
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• Diagonalizing the gamma matrix �̃ thereby decoupling the contributions
of the individual risk factors.

Also after the Cholesky decompositions, and in contrast to the delta-normal
case, it is still not possible in the situation of Eq. 22.19 to reduce the VaR with
respect to a risk factor to the VaR of a position consisting of � of these risk
factors. Thus the (unknown) distribution of the portfolio value can no longer be
substituted by the (known) distribution of the individual risk factors, as could
still be done in Sect. 21.3. Instead, the distribution of δV must be determined
directly in order to calculate the value at risk defined in Eqs. 21.2 or 21.3. A
third essential step of the delta-gamma method presented here involves the
determination of the distribution of δV .

22.3.1 Decoupling of the Risk Factors

Motivated by Eq. 21.40, we first introduce a matrix A satisfying the prop-
erty 21.35. This matrix can be constructed through the Cholesky decomposi-
tion of the covariance matrix as described in detail in Sect. 21.5.3. This matrix
transforms the correlated δZi into uncorrelated random variables. With this
goal in mind, we rewrite Eq. 22.19, first introducing identity matrices into the
equation and then replacing them with AA−1 or (AT )−1AT as follows:

δV (S(t)) = �̃
T
1 δZ+1

2
δZT 1 �̃ 1 δZ

= �̃
T
AA−1 δZ+1

2
δZT (AT )−1AT �̃ AA−1 δZ

= �̃
T
AA−1 δZ+1

2
δZT (A−1)TAT �̃ AA−1 δZ

= �̃
T
A (A−1 δZ)+1

2
(A−1δZ)TAT �̃A (A−1δZ) .

In the penultimate step, the property 21.39 has been used; recall that this
holds for every invertible matrix. In the last step, the parentheses are intended
to emphasize the fact that δZ only appears in combination with A−1. We
have shown before that the components of the vector A−1δZ are iid random
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variables, see Eq. 21.40. We can therefore write

δV (S(t)) = �̃
T
A δY+1

2
δYTM δY

mit δY:= A−1δZ ∼ N(0, 1), iid (22.20)

und M := AT �̃A .

Thus, the first goal has been accomplished. The δZi have been transformed
into iid random variables δYi .

Because �̃ is by definition a symmetric matrix, i.e., �̃ij = �̃ji , we can show
that the newly defined matrix M is symmetric as well:

Mij = (
AT �̃A

)
ij

=
∑

k

∑

m

(AT )ik�̃kmAmj

=
∑

k

∑

m

(AT )ik�̃mkAmj =
∑

k

∑

m

Amj �̃mk(A
T )ik

=
∑

k

∑

m

(AT )jm�̃mkAki = (
AT �̃A

)
ji

= Mji .

22.3.2 Diagonalization of the Gamma Matrix

The next step is to decouple the contributions to δV of the individual random
variables in Eq. 22.20. This is accomplished by diagonalizing the gamma
matrix, or more precisely, the transformed gamma matrix M introduced in
Eq. 22.20. Diagonalizing a matrix is a standard procedure in linear algebra. We
refer the reader to the relevant literature.6 We nevertheless take the opportunity
to demonstrate the fundamental operations for diagonalizing a matrix here
since they contain essential elements of the practical value at risk computations
to be performed in the delta-gamma method.

The eigenvectors ei of a matrixM are the non-zero vectors which are mapped
by M to the same vector multiplied by a number (called a scalar in algebra):

Mei = λiei ⇔
(M − λi1) ei = 0 . (22.21)

6The most important results required for the analysis here receive a clear and concise treatment in [78],
for example.
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These scalars λi are called eigenvalues of the matrix. As known from linear
algebra, an equation of this kind has a non-trivial solution ei �= 0 if and only
if the matrix (M − λi1) is singular. For this to be the case, the determinant of
this matrix must be zero:

det (M−λi1) = 0 . (22.22)

The solutions of Eq. 22.22 are the eigenvalues λi . Having determined these
values, they can be substituted into Eq. 22.21 to determine the eigenvectors
ei of the matrix. The eigenvectors have as yet only been defined up to a
multiplicative scalar since if ei solves Eq. 22.21 then cei does as well, for any
arbitrary scalar c. The uniqueness of the eigenvalues can be guaranteed by
demanding that the eigenvectors have norm 1:

(ei)T ei = 1 (22.23)

As is known from linear algebra, a symmetric, non-singular n × n matrix
has n linearly independent eigenvectors which are orthogonal. This means
that the inner product of each pair of different eigenvectors equals zero
(graphically: the angle formed by the two vectors is 90 degrees). Together with
the normalization the eigenvectors thus have the following property

(ei)T ej =
∑

k

ei
ke

j

k = δij (22.24)

where δij denotes the well-known Kronecker delta. A collection of vectors
satisfying this property is called orthonormal. Since we have shown that the
n × n matrix M in Eq. 22.20 is symmetric, we can be sure that it indeed has
n orthonormal eigenvectors satisfying Eq. 22.24.

To clarify the notation for these eigenvectors: The subscript k and the
superscript i of ei

k identify this value as the k-th component of the i-th
eigenvector ei .

ej =

⎛

⎜⎜⎜⎜
⎝

e
j

1

e
j

2
...

e
j
n

⎞

⎟⎟⎟⎟
⎠

, (ej )T =
(

e
j

1 e
j

2 · · · e
j
n

)
, j = 1, . . . , n .
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A matrix O can now be constructed whose column vectors are composed of
the eigenvectors of M:

O = (
e1 e2 . . . en

) =

⎛

⎜⎜
⎜⎜
⎝

e1
1 e2

1 · · · en
1

e1
2 e2

2

...
...

. . .
...

e1
n · · · · · · en

n

⎞

⎟⎟
⎟⎟
⎠

⇒ Oij = e
j

i . (22.25)

The j th eigenvector ej is in the j th column of the matrix. In the ith row, we
find the ith components of all eigenvectors. As we will soon see, this matrix
is an indispensable tool for the purpose of the diagonalization. As can be
immediately verified7

OTO = 1 (22.26)

and therefore also

OT = O−1 ⇒ OOT = 1 . (22.27)

Equation 22.26 characterizes a group of matrices known as orthonormal
transformations. Applying such a matrix to a vector effects a rotation of the
vector.

The eigenvalues of the matrix M can be used to construct a matrix as well,
namely the diagonal matrix

λ =

⎛

⎜⎜⎜
⎜
⎝

λ1 0 · · · 0

0 λ2
...

...
. . .

...

0 · · · · · · λn

⎞

⎟⎟⎟
⎟
⎠

. (22.28)

From Eq. 22.21, it follows immediately that the relation

MO = Oλ (22.29)

7(OT O
)
ij

= ∑
k(O

T )ikOkj = ∑
k ei

ke
j
k = δij .
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holds for the matricesM,O and λ. Suchmatrix equations can often be verified
quite easily by comparing the matrix elements individually:

(MO)ij =
∑

k

MikOkj =
∑

k

Mike
j

k = (
Mej

)
i

= (
λj ej

)
i
= λje

j

i = Oijλj = (Oλ)ij .

The decisive step in the above proof is the first equality in the second line
where the eigenvector equation 22.21 was used. Multiplying both sides of this
equation from the left by the matrixOT and using Eq. 22.26 directly yields the
desired diagonalization of M, since λ is a diagonal matrix:

OTMO = OT Oλ = λ . (22.30)

Multiplying both sides of Eq. 22.29 from the right by the matrixOT and using
Eq. 22.27, also yields a very useful representation of M, namely the spectral
representation (also referred to as eigenvector decomposition)

M = OλOT =
∑

k

λk

(
ek(ek)T

)
.

We are now in a position to introduce the diagonalized matrix OTMO
into Eq. 22.20 by inserting identity matrices in Eq. 22.20 and subsequently
replacing them by OOT . Equation 22.27 ensures that equality is maintained.

δV (S(t)) = �̃
T
A 1 δY+1

2
δYT 1M1 δY

= �̃
T
AOOT δY + 1

2
δYTOOT MO︸ ︷︷ ︸

λ

OT δY

= �̃
T
AO

(
OT δY

)+1

2

(
OT δY

)T
λ
(
OT δY

)
.

In the last equality, the parentheses are meant to emphasize that δY appears
only in combination with OT . In consequence, we can write

δV (S(t)) = �̃
T
AO δX+1

2
δXT λδX

mit δX := OT δY = OTA−1δZ (22.31)

und λ:= OTMO = OTAT �̃AO .
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The δYi were iid, standard normally distributed random variables. This was
accomplished in the previous section by the mapping A−1. Now to achieve
the diagonalization of the gamma matrix, the random variables must undergo
a further transformation under the mapping OT . The question remains as to
whether the accomplishments of the previous section was undone by this new
transformation, in other words, whether the transformed random variables
have remained independent. We therefore consider the covariance of the new
random variables

cov[δXi, δXj ] = cov

[
∑

k

OT
ikδYk,

∑

m

OT
jmYm

]

=
∑

k

∑

m

OT
ikO

T
jmcov[δYk, δYm]︸ ︷︷ ︸

δkm

=
∑

k

OT
ikO

T
jk

=
∑

k

OT
ikOkj = (

OTO
)
ij

= 1ij = δij .

The covariances have remained invariant under the transformationOT . Thus,
the new random variables are also uncorrelated and all have variance 1. Also,
the zero expectation does not change under the transformation OT :

E[δXi ] = E

[
∑

k

OT
ikδYk

]

=
∑

k

OT
ikE[δYk]︸ ︷︷ ︸

0

.

Since matrix multiplication is a linear transformation (we are operating in
the realm of linear algebra), the form of the distribution remains the same
as well. In summary, the new random variables are uncorrelated and all
have the same standard-normal distribution. We have argued after Eq. 21.40
that such variables are indeed iid random variables. Summarizing the above
deliberations, we can write for the δXi :

δX ∼ N(0, 1), iid .

We have only used property 22.26, i.e., the iid property of random variables
remains invariant under every orthonormal transformation.
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If we define a “transformed sensitivity vector” as

L : = OT AT �̃

(which implies for its transposed LT = �̃
T
AO), the portfolio-change

Eq. 22.31 can be brought into the following simple form

δV (S(t)) = LT δX+1

2
δXT λδX with δX ∼ N(0, 1) (22.32)

or, expressed component-wise

δV (S(t)) =
∑

i

[
Li δXi+1

2
λiδX

2
i

]
=

∑

i

δVi

mit δVi = Li δXi+1

2
λiδX

2
i , i = 1, . . . , n . (22.33)

The change in the portfolio’s value is now the decoupled sum of the individual
contributions of iid random variables as was our original intention.

At this stage, we collect all transformations involved inmapping the original
random variables in Eq. 22.19 into the iid random variables in the above
expression Eq. 22.32:

δX := OTA−1δZ, λ := OTAT �̃ AO, L := OTAT �̃ .

From Eq. 22.27 we know that OTA−1 = O−1A−1 = (AO)−1. We now
recognize that all of these transformations can be represented with a single
matrix defined as

D := AO (22.34)

With this matrix, the transformations become simply

δX := D−1δZ, λ := DT �̃ D, L := DT �̃ . (22.35)

The matrix D directly diagonalizes the gamma matrix �̃ (as opposed to O,
which diagonalizes the matrix M ). In addition, D is by definition, an
orthonormal transformation (a “rotation”) of A, the Cholesky decomposition
of the covariance matrix. D is likewise a “square root” of the covariance
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matrix, since the square of a matrix remains invariant under orthonormal
transformations of the matrix. Explicitly:

DDT = AO(AO)T = AOOTAT = A1AT = AAT = δ� . (22.36)

Therefore, the matrix D satisfies both tasks, namely the decoupling of the
gamma matrix and the transformation of the correlated random variables into
uncorrelated ones.

As a little consistence check, using the matrix D we immediately recognize
the equivalence of Eqs. 22.32 and 22.19:

δV (S(t)) = (
DT �̃

)T
D−1δZ+1

2

(
D−1δZ

)T
DT �̃ DD−1δZ

= �̃
T
DD−1
︸ ︷︷ ︸

1

δZ+1

2
δZT

(
DT

)−1
DT

︸ ︷︷ ︸
1

˜� DD−1
︸ ︷︷ ︸

1

δZ ,

where Eq. 21.39 was again used in verifying this equivalence.

22.3.3 The Distribution of the Portfolio Value Changes

Having decoupled the individual contributions to δV in Eq. 22.33 into
standard normally distributed iid random variables, we can now determine the
distribution of the sum. δV is nevertheless not simply the sum of normally dis-
tributed random variables alone, since the expression also includes the square
of normally distributed random variables. These additional random variables
represent the difference in complexity compared to the delta-normal method.
According to Sect. A.4.6, the square of a standard normally distributed random
variable is χ2-distributed with one degree of freedom. We can thus write
Eq. 22.33 as

δV (S(t)) =
n∑

i=1

Li δXi + 1

2

n∑

i=1

λiX̃i with δXi ∼ N(0, 1), X̃i ∼ χ2(1) .

However, the X̃i are not independent random variables since we obviously
have

X̃i = (δXi)
2 ∀i .
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We need to re-write δV in such a way that every term appearing is statistically
independent of every other term. First note that a δXi is independent of every
other term in δV if and only if the corresponding eigenvalue λi is zero, since in
this case the corresponding X̃i does not appear in the sum. We will emphasize
this by introducing the index set J which contains only the indices of non-zero
eigenvalues:

J = {
1, . . . , n

∣
∣λj �= 0

}
. (22.37)

With this index set we can write8

δV (S(t)) =
∑

i /∈J

Li δXi +
∑

j∈J

Lj δXj + 1

2

∑

j∈J

λj δX
2
j (22.38)

=
∑

i /∈J

Li δXi +
∑

j∈J

[
Lj δXj + 1

2
λj δX

2
j

]
.

The first sum in Eq. 22.38 is actually a sum of normally distributed random
variables and as such is again a normally distributed random variable which
we denote by u0. The expectation of this random variable can be calculated as

E [u0] = E

[
∑

i /∈J

Li δXi

]

=
n∑

i=1

LiE [ δXi ]︸ ︷︷ ︸
0

= 0 .

and the variance is

var [u0] = var

[
∑

i /∈J

Li δXi

]

=
∑

i,j /∈J

cov
[
Li δXi, Lj δXj

]

=
∑

i,j /∈J

LiLjcov
[
δXi, δXj

]

︸ ︷︷ ︸
δij

=
∑

i /∈J

L2
i .

8The notation i /∈ J denotes all indices i with eigenvalue λi = 0, i.e., the set {1, . . . , n |λi = 0 }.
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with the components Li of the transformed sensitivity vector L defined in
Eq. 22.35. Thus

u0 :=
∑

i /∈J

Li δX ∼ N

(

0,
∑

i /∈J

L2
i

)

.

Consider now the sums over j ∈ J in Eq. 22.38. To combine the dependent
random numbers δXj and δX2

j in the square brackets of Eq. 22.38 into one
single random number, we complete the square for each j ∈ J :

1

2
λjδX

2
j + Lj δXj = 1

2
λj

(
δX2

j + 2
Lj

λj

δXj

)
= 1

2
λj

(
δXj + Lj

λj

)2

− L2
j

2λj

.

Since δXj is a standard normal random variable, we have

δXj ∼ N(0, 1) �⇒ δXj + Lj

λj

∼ N
(

Lj

λj

, 1

)
.

Therefore, according to Eq. A.94 in Sect. A.4.6 uj := (
δXj + Lj/λj

)2 has
a non-central χ2-distribution with one degree of freedom and non-central
parameter L2

j /λ
2
j :

(
δXj + Lj

λj

)2

=: uj ∼ χ2

(

1,
L2

j

λ2
j

)

∀j ∈ J .

In summary, δV has now become a sum of non-central χ2-distributed
random variables uj plus a normally distributed random variable u0 (plus a
constant), where all the random variables appearing are independent of each
other:

δV (S(t)) = u0 + 1

2

∑

j∈J

λjuj − 1

2

∑

j∈J

L2
j /λj

︸ ︷︷ ︸
constant

(22.39)

mit u0 ∼ N(0,
∑

i /∈J

L2
i ) , uj ∼ χ2

(
1, (Lj/λj )

2
)
, j ∈ J .
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The problem now consists in determining the distribution of the sum of inde-
pendent but differently distributed random variables (or at least its percentiles).
According to Eq. 21.4, the value at risk at a specified confidence level is then
computed with precisely these percentiles or, equivalently, by inverting the
cumulative distribution function of δV .

22.3.4 Moments of the Portfolio Value Distribution

We begin by calculating the moments of the random variable δV . The first
moments, the expectation, the variance, etc. (see Eqs. A.22 and A.23) have
intuitive interpretations and their explicit forms provide an intuitive con-
ception of the distribution. In addition, approximations for the distribution
(the Johnson approximation) and for the percentiles (the Cornish-Fisher
approximation) will later be presented which can be computed with the
moments.

The Moment Generating Function is a very useful tool for calculating the
moments. The moment generating function (abbreviated as MGF ) Gx of a
random variable x with density function pdf(x) is defined in Sect. A.3.1 by

Gx(s) ≡ E[esx] =
∫ ∞

−∞
esx pdf(x)dx =

∞∑

n=0

sn

n! E[xn] , (22.40)

where in the last step the exponential function esx has been expanded in its
Taylor series. The namemoment generating function stems from the fact, stated
mathematically in Eq. A.27, that the derivatives of the function Gx(s) with
respect to s evaluated at s = 0 generate the moments of the random variable x

E[xn] = ∂nGx(s)

∂sn

∣∣
∣∣
s=0

. (22.41)

As demonstrated in Sect. A.3.1, the MGF can be explicitly computed for
many distributions from their integral representation, Eq. A.25. In particular,
according to Eq. A.57, the MGF of u0, i.e., the MGF of a N(0,

∑
i /∈J L2

i )

distributed random variable is given by

Gu0(s) = exp

(
1

2
s2

∑

i /∈J

L2
i

)

(22.42)
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while Eq. A.95 gives the MGF of uj , i.e., of a non-central χ2-distribution
with one degree of freedom χ2(1, (Lj/λj )

2)

Guj
(s) = 1√

1 − 2s
exp

{
s

1 − 2s

L2
j

λ2
j

}

, j ∈ J . (22.43)

This function is well-defined for s < 1/2, which is sufficient for our needs
since as is clear from Eq. 22.41 that we are particularly interested in values of s
in a neighborhood of zero.

The usefulness of the MGF in the calculation of the distribution of δV in
Eq. 22.39 stems from the fact that according to Eq. A.30 the MGF of the sum
of independent random variables x, y is simply the product of the MGFs of
each of the random variables:

Gx+y(s) = Gx(s)Gy(s) (22.44)

and that furthermore, from Eq. A.31

Gax+b(s) = ebsGx(as) . (22.45)

for all non-stochastic values a, b and random variables x. The MGF of δV

can thus be written as the product of the each of the MGFs appearing in the
sum:

GδV (s) = exp

⎧
⎨

⎩
−s

∑

j∈J

L2
j

2λj

⎫
⎬

⎭
Gu0(s)

∏

j∈J

Guj

(
1

2
λjs

)
.

The MGFs of each of the individual random variables are given explicitly in
Eqs. 22.42 and 22.43. Substituting s by λjs/2 in Eq. 22.43 yields the required
MGF for the argument λjs/2:

Guj

(
1

2
λjs

)
= 1

√
1 − λj s

exp

{
L2

j

2λj

s

1 − λj s

}

.
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We thus obtain an explicit expression for the moment generating function of
the distribution of the portfolio’s value changes:

GδV (s) = exp

⎧
⎨

⎩
−s

∑

j∈J

L2
j

2λj

⎫
⎬

⎭
exp

(
1

2
s2

∑

i /∈J

L2
i

)
∏

j∈J

1
√

1 − λj s
exp

{
L2

j

2λj

s

1 − λj s

}

= exp

(
1

2
s2

∑

i /∈J

L2
i

)
∏

j∈J

[
1

√
1 − λj s

exp

{
L2

j

2λj

s

1 − λjs

}

exp

{

−s
L2

j

2λj

}]

= exp

(
1

2
s2

∑

i /∈J

L2
i

)
∏

j∈J

[
1

√
1 − λj s

exp

{
L2

j

2λj

s

(
1

1 − λjs
− 1

)}]

.

Using the same denominator in the second exp-function finally yields

GδV (s) = exp

(
1

2
s2

∑

i /∈J

L2
i

)
∏

j∈J

1
√

1 − λjs
exp

{
1

2
L2

j

s2

1 − λjs

}
.

(22.46)

This can be simplified even further by the following trick: Since λi = 0 for all
i /∈ J , we can re-write the first exp-function in the following way:

exp

(
1

2
s2

∑

i /∈J

L2
i

)

=
∏

i /∈J

exp

(
1

2
s2L2

i

)
=

∏

i /∈J

1√
1 − λis

exp

{
1

2
L2

i

s2

1 − λis

}
.

Using this form in Eq. 22.46 allows us to write δV very compactly as a product
over all indexes j = 1, . . . , n

GδV (s) =
n∏

j=1

1
√

1 − λj s
exp

{
1

2
L2

j

s2

1 − λj s

}
. (22.47)

This function is well-defined for all s < minj∈J

(
1

2|λi |
)
, which is sufficient

for our needs since because of Eq. 22.41, we are only interested in values of s

which are close to zero.
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Now, using Eq. 22.41, arbitrary moments of δV can be computed. We start
the calculation of the first moment by introducing the abbreviation

aj := 1

2
L2

j

s2

1 − λj s
.

Application of the well-known product rule yields

E[δV ] = ∂GδV (s)

∂s

∣
∣∣∣
s=0

= ∂

∂s

n∏

j=1

eaj

√
1 − λjs

∣∣∣
∣∣∣
s=0

=
n∑

j=1

(
∂

∂s

eaj

√
1 − λjs

)
n∏

k=1,k �=j

eak

√
1 − λks

∣∣
∣∣∣
∣
s=0

.

The derivative we need to calculate is

∂

∂s

eaj

√
1 − λjs

= eaj
∂

∂s

1
√

1 − λj s
+ 1

√
1 − λj s

∂

∂s
eaj

=
1
2λje

aj

(
1 − λjs

)3/2 +
1
2L

2
j e

aj

√
1 − λj s

(
2s

1 − λj s
+ λj s2

(
1 − λjs

)2

)

= 1

2

eaj

(
1 − λj s

)3/2

(
λj + 2L2

j s + λjL
2
j

s2

1 − λjs

)
.

For s = 0 almost all terms vanish and we are left with λj/2. Thus E[δV ]
becomes simply

E[δV ] =
n∑

j=1

1

2
λj

∏

k∈J,k �=j

eak

√
1 − λks

∣
∣∣∣
∣∣
s=0

= 1

2

n∑

j=1

λj .

The expectation of the portfolio’s value changes in the delta-gamma approxi-
mation Eq. 22.4 is thus just half the sum of the eigenvalues of the transformed
gammamatrixM. This is by definitionhalf the trace of the eigenvaluematrixλ.
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With Eqs. 22.35 and 22.36 we arrive at the conclusion that the expectation of
δV equals half the trace of the product of the gammamatrix and the covariance
matrix9:

E[δV ] = 1

2
tr (λ) = 1

2
tr
(
DT �̃ D

) = 1

2
tr
(
�̃ DDT

) = 1

2
tr
(
�̃ δ�

)
.

(22.48)

Note that the drifts of all risk factors have been neglected (see Eqs. 22.19
and 22.1). The risk factors are thus all approximated to be drift-free. But then,
for a portfolio depending only linearly on the risk factors (or in the linear
approximation of the delta-normal method) the expectation (the drift) of
the portfolio value changes also equals zero. In Eq. 22.48, the expectation
(the drift) of the portfolio changes is not zero because non-linear effects were
taken into consideration. It is readily seen that the gamma matrix gives rise to
the drift of δV in contrast to the linear sensitivities �̃ which do not appear
in 22.48.

To find out more about the distribution of δV , we proceed by computing
its variance. According to Eq. A.5 the variance is the second central moment
which can be calculated via Eq. A.29:

var[δV ] = E[(δV − E[δV ])2]

= ∂2

∂s2
exp (−sE[δV ]) GδV (s)

∣∣
∣∣
s=0

= ∂2

∂s2
exp

(

−s
1

2

n∑

i=1

λi

)
n∏

j=1

exp
(

1
2L

2
j

s2

1−λj s

)

√
1 − λj s

∣∣
∣∣∣
∣
s=0

= ∂2

∂s2

n∏

j=1

1
√

1 − λj s
exp

(
1

2
L2

j

s2

1 − λjs
− 1

2
λjs

)
∣
∣∣∣∣
∣
s=0

= ∂2

∂s2

n∏

j=1

aj

∣
∣∣∣
∣∣
s=0

(22.49)

9Here the well-known cyclic property of the trace has been used: tr (ABC ) = tr (BCA ) for arbitrary
matrices A,B,C.
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with the abbreviation

aj := 1
√

1 − λjs
exp

(
1

2
L2

j

s2

1 − λjs
− 1

2
λjs

)
.

The second derivative of this product is quite involved.We nonetheless present
it explicitly here to demonstrate how moments of δV can be determined in
practice. Such moments are needed quite often, for instance for the Cornish-
Fisher expansion. We start by repeatedly applying the product rule to arrive at

∂2

∂s2

n∏

j=1

aj = ∂

∂s

⎛

⎝
n∑

j=1

∂aj

∂s

n∏

k=1,k �=j

ak

⎞

⎠

=
n∑

j=1

(
∂

∂s

∂aj

∂s

) n∏

k=1,k �=j

ak +
n∑

j=1

∂aj

∂s

∂

∂s

n∏

k=1,k �=j

ak

=
n∑

j=1

∂2aj

∂s2

n∏

k=1,k �=j

ak +
n∑

j=1

∂aj

∂s

n∑

k=1,k �=j

∂ak

∂s

n∏

m=1,
m�=k, m�=j

am .

(22.50)

Thus, we mainly have to differentiate aj . For ease of notation, we introduce
yet another abbreviation, namely

bj := 1

2
L2

j

s2

1 − λjs
− 1

2
λjs �⇒ aj = ebj

√
1 − λj s

.

The first derivative with respect to aj is now calculated as

∂aj

∂s
= 1

√
1 − λj s

∂ebj

∂s
+ ebj

∂

∂s

1
√

1 − λj s

= ebj

√
1 − λj s

(
s L2

j

1 − λj s
+

1
2s

2L2
j λj

(
1 − λjs

)2 − λj

2

)

+
1
2ebj λj

(
1 − λj s

)3/2

= sL2
j e

bj

(
1 − λjs

)3/2 +
1
2s2L2

j e
bj λj

(
1 − λjs

)5/2 −
1
2e

bj λj

(
1 − λj s

)1/2 +
1
2e

bj λj

(
1 − λj s

)3/2 .

(22.51)
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For s = 0 the first two terms in the last line vanish and the last two terms just
compensate each other so that ∂aj/∂s vanishes completely at s = 0:

∂aj

∂s

∣
∣∣∣
s=0

= −1

2
ebj λj + 1

2
ebj λj = 0 . (22.52)

Therefore only the term involving the second derivative in Eq. 22.50 con-
tributes to Eq. 22.49. Using the result 22.51, this second derivative is explicitly:

∂2aj

∂s2
= ∂

∂s

[
sL2

j e
bj

(
1 − λj s

)3/2
+

1
2s2L2

j e
bj λj

(
1 − λj s

)5/2
−

1
2ebj λj

(
1 − λj s

)1/2
+

1
2ebj λj

(
1 − λjs

)3/2

]

= L2
j

∂ebj

∂s

s
(
1 − λj s

)3/2
+ L2

j e
bj

3

2

λj s
(
1 − λjs

)5/2
+ L2

j e
bj

1
(
1 − λj s

)3/2

+ 1

2
L2

j

∂ebj

∂s

λj s
2

(
1 − λjs

)5/2
+ 5

4
L2

j e
bj

λ2
j s

2

(
1 − λjs

)7/2
+ L2

j e
bj

λj s
(
1 − λjs

)5/2

− 1

2

∂ebj

∂s

λj
(
1 − λjs

)1/2
− 1

4
ebj

λ2
j

(
1 − λjs

)3/2

+ 1

2

∂ebj

∂s

λj
(
1 − λjs

)3/2
+ 3

4
ebj

λ2
j

(
1 − λjs

)3/2
.

Most terms above have s as a factor. They all vanish for s = 0. The only terms
remaining are:

∂2aj

∂s2

∣∣
∣∣
s=0

= L2
j e

bj − 1

2

∂ebj

∂s
λj − 1

4
ebj λ2

j + 1

2

∂ebj

∂s
λj + 3

4
ebj λ2

j

= ebj

︸︷︷︸
1 for s=0

(
L2

j + 1

2
λ2

j

)
. (22.53)

Inserting all these results into Eq. 22.49 finally yields

var[δV ] =
n∑

j=1

∂2aj

∂s2
+

n∑

j=1

∂aj

∂s

n∑

k=1,k �=j

∂ak

∂s

∣∣
∣∣∣
∣
s=0
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=
n∑

j=1

∂2aj

∂s2

∣∣
∣∣∣
∣
s=0

=
n∑

j=1

(
L2

j + 1

2
λ2

j

)
,

In the first step we used Eq. 22.50 and ak|s=0 = 1. In the second step the
result 22.52 was inserted and in the third step the result 22.53. The sum

∑
L2

j

is just the square of the transformed sensitivity vector and
∑

λ2
j is the trace of

the square of the matrix of eigenvalues, i.e.,

var[δV ] = LT L + 1

2
tr
(
λ2

)
.

Finally, making use of the transformations in Eq. 22.35 and applying
Eq. 22.36, the variance of the portfolio’s value change in the framework
of the delta-gamma method becomes

var[δV ] = �̃
T
DDT �̃ + 1

2
tr
(
DT �̃ DDT �̃ D

)

= �̃
T
δ��̃ + 1

2
tr

(
�̃ δ��̃ δ�

)
. (22.54)

Note that the first term resulting from the linear portfolio sensitivities �̃ is
identical to the portfolio variance in the delta-normal method (see Eq. 22.14).
The non-linear sensitivities �̃ effect a correction of the linear portfolio variance
which has a form similar to the drift correction from the non-linear term in
Eq. 22.48. While in Eq. 22.48, the trace of the product of the gamma matrix
and the covariance matrix was relevant, now the trace of the square of this
product is required for computing the variance.

The variance is the second central moment of the random variable. The
central moments μi of a random variable are defined in general terms in
Eq. A.23 as the “expectation of powers of the deviation from the expectation”:

μi := E[(δV − E[δV ])i], i > 1 .

Analogously to the approach for the first two moments demonstrated above,
we can continue to calculate the further moments of δV . The first (central)
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moments are compiled here:

μ : = E[δV ] = 1

2
tr

(
�̃ δ�

)

μ2 = E[(δV − E[δV ])2] = �̃
T
δ��̃ + 1

2
tr

(
(�̃ δ�)2)

μ3 = E[(δV − E[δV ])3] = 3�̃
T
δ� �̃ δ� �̃ + tr

(
(�̃ δ�)3) (22.55)

μ4 = E[(δV − E[δV ])4] = 12�̃
T
δ� (�̃ δ�)2 �̃ + 3 tr

(
(�̃ δ�)4) + 3μ2

2 .

In this way, a great deal of additional information about the distribution of
δV can be generated. For instance skewness and kurtosis of the distribution of
δV are10

Schiefe ≡ μ3

μ
3/2
2

= 3�̃
T
δ� �̃ δ� �̃ + tr (�̃ δ�)3

(
�̃

T
δ��̃ + 1

2 tr (�̃ δ�)2
)3/2

Kurtosis ≡ μ4

μ2
2

= 12�̃
T
δ� (�̃ δ�)2 �̃ + 3 tr

(
(�̃ δ�)4

) + 3μ2
2

(
�̃

T
δ��̃ + 1

2 tr (�̃ δ�)2
)2 .

A percentile, however, is needed for the computation of the value at risk as
given in Eq. 21.4.

Johnson Transformation

Computation of a percentile necessitates knowledge of the distribution of
the random variable directly and not of its moments. In order to be able to
proceed, we could assume a particular functional form of the distribution
and then establish a relation between the parameters of this functional form
and the moments of the random variable via moment matching. Since the
moments, as shown above, can be explicitly computed, the parameters of
the assumed distribution can thus be determined. For example, if we assume
that a random variable is normally or lognormally distributed, we would take
Eqs. 22.48 and 22.54 as parameter values. Additional functional forms for

10Recall that a normal distribution has skewness 0 and kurtosis 3, see Eq. A.59.
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approximating the distribution of δV were suggested by Johnson [114]. These
Johnson transformations have four parameters which can be determined from
the first four moments in Eq. 22.55. They represent a substantially better
approximation than, for example a lognormal distribution.

Cornish-Fisher Expansion

One possibility of approximating the percentiles of a distribution from its
central moments and the percentiles QN(0,1) of the standard normal distribu-
tion is the Cornish-Fisher expansion. Since this expansion makes use of the
standard normal distribution, we must first transform δV into a centered and
normalized random variable δ̃V with expectation 0 and variance 1. This is
accomplished by defining

δ̃V := δV − E[δV ]√
var[δV ] = δV − μ√

μ2
.

The percentile of the distribution of δ̃V can now be approximated with the
Cornish-Fisher expansion [41, 196] as follows

Qcpf
δ̃V ≈ QN(0,1) + 1

6

[
(QN(0,1))2 − 1

] μ3

μ
3/2
2

+ 1

24

[
(QN(0,1))3 − 3QN(0,1)

] (μ4

μ2
2

− 3

)
(22.56)

− 1

36

[
2 (QN(0,1))3 − 5QN(0,1)

]
(

μ3

μ
3/2
2

)2

,

where the expansion is taken up to the order, which uses only the first four
moments from Eq. 22.55. The probability that δ̃V is less than a number a is,
naturally, the same as the probability that δV is less than μ + √

μ2 a. Thus

QcpfδV = μ + √
μ2 Qcpf

δ̃V .

holds for the percentiles. From Eq. 21.4, the value at risk is thus

VaR(c) = −Q
cpfδV
1−c = −μ − √

μ2 Q
cpfδ̃V
1−c ,
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where we now can use the approximation 22.56 for Qδ̃V

1−c since the percentiles
of the standard normal distribution for the confidence level (1 − c) are well
known (see for instance Eq. 21.13).

22.3.5 Fourier-Transformation of the Portfolio Value
Distribution

While a great deal of information about the distribution function can be
gleaned from the computation of the moments with the moment generating
function, we are still not able to calculate the distribution itself directly.
Characteristic functions (CFs), however, generate the distribution directly (this
can at least be accomplished numerically). As defined in Sect. A.3.2, the
characteristic function �x of a random variable x with density function pdf(x)

is11

�x(s) ≡ E[eisx] =
∫ ∞

−∞
eisx pdf(x)dx . (22.57)

This is precisely the definition of the Fourier transformation of the density
function. As demonstrated in Sect. A.3.2, the CFs of many random variables
with density functions can be computed explicitly. In particular, the CF of u0,
i.e., the CF of a normally distributed random variable N(0,

∑
i /∈J L2

i ) is given
by

�u0(s) = exp

(

−1

2
s2

∑

i /∈J

L2
i

)

(22.58)

And according to Eq. A.97, the CF of the uj , i.e., of a non-central χ2-
distributed random variable with one degree of freedom χ2(1, (Lj/λj )

2) is
given by

�uj
(s) = 1√

1 − 2is
exp

{
is

1 − 2is

L2
j

λ2
j

}

, j ∈ J , i ≡ √−1 . (22.59)

11Here, i denotes the imaginary number satisfying the property i2 = −1, thus intuitively i = √−1.



554 H.-P. Deutsch and M. W. Beinker

Similarly to the moment generating function, the usefulness of the CF in
computing the distribution of δV in Eq. 22.39 stems from the property A.34.
The CF of a sum of independent random variables x, y is simply the product
of the CFs of each of these variables:

�x+y(s) = �x(s)�y(s) (22.60)

Furthermore, according to Eq. A.35,

�ax+b(s) = eibs�x(as) . (22.61)

holds for all non-stochastic values a, b and random variables x. Thus the CF
of δV can be expressed as the product of the CFs of the random variables
appearing in the definition of δV :

�δV (s) = exp

⎧
⎨

⎩
−is

∑

j∈J

L2
j

2λj

⎫
⎬

⎭
�u0(s)

∏

j∈J

�uj

(
1

2
λjs

)
. (22.62)

The CFs of the individual random variables are given explicitly in Eqs. 22.58
and 22.59. We now have all information at our disposal to calculate an explicit
expression for the characteristic function of the distribution of δV . The result
is of course the same as Eq. 22.46 for the MGF with the obvious substitution
s → is:

�δV (s) = exp

(

−1

2
s2

∑

i /∈J

L2
i

)
∏

j∈J

1
√

1 − iλj s
exp

{
−1

2
L2

j

s2

1 − iλj s

}
.

(22.63)

Since λi = 0 for i /∈ J ,we can—as we did with the MGF—write the first
exp-function as

exp

(

−1

2
s2

∑

i /∈J

L2
i

)

=
∏

i /∈J

1√
1 − iλis

exp

{
−1

2
L2

i

s2

1 − iλis

}
.
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Thus, the characteristic function can be written as a product over all indexes j :

�δV (s) =
n∏

j=1

1
√

1 − iλj s
exp

{
−1

2
L2

j

s2

1 − iλj s

}
mit i ≡ √−1 .

(22.64)

In contrast to the moment generating function, there exists an inverse trans-
formation for the characteristic function, namely the inverse Fourier Transfor-
mation (see Sect. A.3.2). From Eq. 22.64 the density function pdf(δV ) can
thus be computed (at least numerically).

pdfδV (x) = 1

2π

∫ ∞

−∞
e−isx�δV (s)ds

= 1

2π

∫ ∞

−∞
e−isx

n∏

j=1

exp
{
−1

2L2
j

s2

1−iλj s

}

√
1 − iλj s

ds . (22.65)

The cumulative probability function of δV can now be obtained through the
(numerical) integration of this probability density

cpfδV (c) ≡
∫ c

−∞
pdfδV (x)dx

= 1

2π

∫ c

−∞

∫ ∞

−∞
e−isx

n∏

j=1

exp
{
−1

2L2
j

s2

1−iλj s

}

√
1 − iλj s

ds dx .

Amethod which can likewise be applied in practice does not use the Fourier
transformation of the density, but the Fourier transformation of the cumulative
distribution directly:

Fx(s) ≡
∫ ∞

−∞
eisx cpf(x)dx .

This Fourier transformation has the analogous properties to those indicated
in Eqs. 22.61 and 22.60. Hence, the Fourier transformation of the cumulative
distribution function of the portfolio’s change is (up to a constant)

FδV (s) ∼ Fu0(s)
∏

j∈J

Fuj

(
1

2
λj s

)
. (22.66)
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analogous to Eq. 22.62. Here, the individual Fourier transformations of the
cumulative distribution function of a normally distributed random variable
(for u0) and the cumulative distribution of the non-central χ2 random
variables with one degree of freedom (for the uj ) appear. These can only
be computed numerically. Then, the results as shown in Eq. 22.66 are
multiplied in Fourier space. Finally, the function FδV (s) thus obtained must
be transformed back with the inverse Fourier transformation to obtain the
cumulative probability function of δV as

cpfδV (x) = 1

2π

∫ ∞

−∞
e−isxFδV (s)ds . (22.67)

The Wiener-Chintchine theorem states that the approach just described is
equivalent to taking the convolution of the cumulative distribution func-
tions. The twice computed Fourier transformation is numerically preferable
to computing the convolution. The recommended method for numerically
performing Fourier transformations (or inverse Fourier transformations like
Eq. 22.67) is the fast Fourier transformation (FFT). This method requires
significantly fewer computations as compared to other common procedures
for numerical integration.12

22.3.6 Monte Carlo Simulation of the Portfolio Value
Distribution

Calculating the cumulative distribution of δV with characteristic functions
involves complicated numerical procedures. Using moment-generating func-
tions to calculate the moments we need additional assumptions and approxi-
mations to establish a relation between those moments and the distribution or
the percentiles.13 All methods introduced here therefore offer sufficient scope
for error to creep into the calculations. Additionally, significant difficulties are
often involved in calculating the gamma and covariance matrices. Hence, it is
by all means legitimate to apply a simple Monte Carlo simulation, instead of
the often complicated methods described above, to generate the distribution
of δV . The statistical error in doing so is often no larger than the errors of the

12In contrast to other common numerical procedures, the FFT reduces the number of necessary
multiplications from order O(N2) to O(N ln(N)). See, for example [20] or [156].
13It should not be forgotten that the Delta-Gamma method itself is only an approximation of the
portfolio’s value obtained from the second-order Taylor series approximation.
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above methods assuming of course that a sufficient number of simulation runs
have been carried out.

For a Monte Carlo Simulation we proceed directly from Eq. 22.33. n nor-
mally distributed random numbers are generated with which the simulated
change in the portfolio’s value can be immediately computed with the expres-
sion

δV =
n∑

i=1

[
Li δXi+1

2
λiδX

2
i

]
.

This procedure is repeated N times (as a rule, several thousand times) thus
obtaining N simulated changes in the portfolio’s value from which the distri-
bution of δV can be approximated. The percentiles of this distribution can be
approximated by simply sorting the simulated values of δV in increasing order
as described in Sect. 23.1 (a detailed discussion of value at risk computations
using the Monte Carlo Method can be found in this section).

Here, in contrast to the method described in Sect. 23.1, we do not simulate
each single risk factor separately. Instead, the portfolio change is directly
calculated based on Eq. 22.33. Therefore, no time consuming revaluation
of the portfolio for the each generated scenarios is required. However, before
the simulation can be performed, the eigenvalues of the transformed gamma
matrix must be calculated by solving Eq. 22.22, and the transformed sensi-
tivities Li need to be determined as well. Because of Eqs. 22.35 and 22.34,
both the Cholesky decomposition of the covariance matrix as well as the
eigenvectors of the gamma matrix must be computed. The eigenvectors are
determined by solving Eq. 22.21.



23
Simulation Methods

23.1 Monte Carlo Simulation

In the calculation of the value at risk by means of Monte Carlo simulations,
all of the risk factors influencing a portfolio are simulated over the liquidation
period δt as stochastic processes satisfying, for example, Eq. 2.17 or even more
general processes of the form 2.19. The value at risk as a function of the
risk factors themselves are taken into complete consideration using Eq. 21.16
sometimes neglecting the drift in the simulation if the liquidation period is
short:

VaRlong(c) ≈ NS(t)
[
1 − exp

(
+Q

N(0,1)

1−c σ
√

δt
)]

VaRshort(c) ≈ −NS(t)
[
1 − exp

(
−Q

N(0,1)

1−c σ
√

δt
)]

.

As explained in Sect. 21.2, the value at risk of a long position in an underlying
is only then equal to that of a short position if the drift is neglected and the
linear approximation has been used. Since the linear approximation is usually
not assumed in the Monte Carlo method, the VaR value of a long position
will not equal that of a short position on the same underlying.

In carrying out the simulation, it will be taken into consideration that
the risk factors are not independent of one another, but are correlated. This
has already been demonstrated in Sect. 11.3.2 for the case of two correlated
underlying prices. Processes of the form 2.17 involve Wiener processes whose
stochastic components are coupled as given by the covariance matrix 21.22.
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In other words, the logarithmic changes in the risk factors are multivariate
normally distributed with the covariance matrix 21.22. In this way, market
scenarios (combinations of all risk factors) possibly occurring up to the end
of the liquidation period (up to time T ) are simulated. The portfolio values at
the conclusion of the liquidation period are then computed on the basis of all
these simulated market scenarios. With this information, the distribution of
the potential portfolio values at the conclusion of the liquidation period can be
approximated. The value at risk can then be obtained through the statistical
evaluation of this portfolio value distribution.

The advantage of the Monte Carlo simulation compared to other methods
(such as the variance-covariance method) is that for the portfolio valuation for
each market scenario we can in principle use the same valuation methods as
for determining the portfolio’s current value. No additional approximations
for the valuation of the financial instruments in the portfolio need to be made
(called full valuation). In principal, the same valuation methods used for the
daily valuation could also be used for the value at risk calculation Nevertheless,
it is in practice often not possible to use the same (computationally intensive)
routines for both the valuation of a portfolio with respect to, for example,
10,000 scenarios as for (one single) determination of the portfolio’s current
value, themark-to-market. It is therefore often necessary to use simpler and less
precise methods for the revaluation of financial instruments with respect to the
Monte Carlo scenarios. The statistical error arising in connection with such
simulation methods is also unavoidable since only a finite number of scenarios
can be simulated and thus only mean values rather than expectations can be
computed (see Sect. 31.2 for more on this subject).

23.1.1 The Risk Factors as Correlated Random Walks

A random number generator usually produces single, uncorrelated random
numbers. However, with the methods described in Sect. 21.5.3, via the
Cholesky decomposition A of the covariance matrix, uncorrelated random
numbers can be transformed into correlated ones. This can be exploited when
carrying out Monte Carlo simulations:

With the help of the Cholesky decomposition A of the covariance matrix
standard normally distributed random variables Xj are transformed into
components of a multivariate normally distributed random vector Yj , for
j = 1, 2, . . . , n whose covariances are given in Eq. 21.22:

Yi =
n∑

j=1

AijXj .



23 Simulation Methods 561

The random walks of the risk factors expressed in terms of the random
variables Yj are

d ln Sj(t + δt) = μj δt + Yj .

Similar to Eq. 11.2, the values of the risk factors for a scenario simulated to
occur at the end of the time interval δt are

ln Sj(t + δt) = ln Sj (t) + μj δt + Yj

Sj (t + δt) = eYj eμj δtSj (t) j = 1, . . . , n , (23.1)

where here, as has received mention on numerous occasions, the drifts μj are
often neglected in the analysis.

To generate a complete market scenario for the time t + δt a random
number Yj for each risk factor is required. The portfolio is then revaluated
at the value date t + δt on the basis of this scenario. We thus obtain a
simulated portfolio value at the end of the liquidation period. The approach
in a Monte Carlo simulation in risk management is summarized below. This
type of simulation is sometimes called structured Monte Carlo.

23.1.2 Structured Monte Carlo

Simulation

• Generate n standard normally distributed, uncorrelated random num-
bers Xj , one for each risk factor.

• Generate correlated random numbers Yj , j = 1, 2, . . . , n using the
equation

Yi =
n∑

j=1

AijXj .

The elements of the matrix A are given through the Cholesky decomposi-
tion of the covariance matrix in accordance with Eq. 21.41.

• Using these Yj , the risk factors for the simulated scenario at the end of a
time interval δt are calculated via Eq. 23.1. If the portfolio contains path-
dependent derivatives, it is not possibly to simply jump to the end of the
liquidation period in a single step if the liquidation period is longer than
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one day. Smaller steps are necessary to simulate the paths of the risk factors
up to the conclusion of the liquidation period similar to Eq. 11.1, instead of
simulating directly with Eq. 11.2.

• Perform a new valuation of the portfolio with respect to these simulated risk
factors. If computationally possible a full valuation is preferable.1

Thus, one single market scenario is simulated and the portfolio is re-valued
with respect to this single scenario. This simulation is now repeated (for
example, 10,000 times) in order to generate numerous scenarios and a portfolio
value for each of these scenarios. Finally, the statistical evaluation is performed.

Evaluation

The change in the value of the portfolio observed in the i-th simulated scenario
will be denoted by δVi , the vector containing all risk factor values in the i-th
simulated scenario by Si . We let m denote the number of simulations and n

the number of relevant risk factors. For every simulated scenario, the induced
simulated value change of the portfolio is the difference between the portfolio’s
value with respect to the simulated scenario and its current value:

δVi = V (Si(t + δt)) − V (S(t)) with i = 1, . . . , m . (23.2)

We thus obtain m simulated value changes. The value at risk of the Monte
Carlo simulation is the minimum of these δVi , where a certain number of the
least favorable value changes are ignored dependent on the desired confidence
level. For 95% confidence, for example, these are 5% of the least favorable
value changes. For 10,000 simulated scenarios, for example, the 500 worst
scenarios are ignored. We denote by δV1−c the most favorable of the value
changes which are ignored at a level of confidence c. The value at risk of the
portfolio is now the least favorable result among the set of results remaining
after those (1 − c)% least favorable simulations have been removed from
consideration or equivalently, the least favorable value greater than V1−c:

VaRV (c) = − min
i

{δVi | δVi > δV1−c } with i = 1, . . . , m .

(23.3)

1If the portfolio valuation requires for example Monte Carlo pricing methods for some (exotic) financial
instruments, these additionalMonte Carlo simulations (for pricing) have to run inside the simulation loop
for the VaR calculation. Clearly this may lead to unacceptably large computation times.
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With a confidence c, the portfolio will depreciate in value by no more than
this value at risk by the end of the liquidation period.

23.2 Historical Simulation

Historical simulations are performed by investigating historical time series with
the objective of identifying market changes which have actually occurred in
the past and using these changes to compute the value at risk. The covariance
matrix in Eq. 21.22 is not necessary for a historical simulation nor is it
necessary to assume that the risk factors behave as random walks with constant
yields and volatilities or even that they behave as random walks at all! This
freedom from model assumptions is the primary advantage of this method.

The independence from model assumptions is at the expense of involved
data management. While only three values provide sufficient statistical infor-
mation about the past behavior of two risk factors (both volatilities and
the correlation between the two) for variance-covariance and Monte Carlo
methods, entire time series of prices for all risk factors relevant to the portfolio
must be kept for a historical simulation to be performed. For example,
the closing prices of every underlying for the previous 250 days. For two
underlyings, this amounts to 500 values in comparison to just the 3 required
for the methods mentioned above. Often, these 3 parameter are estimated
based on historical data (if the data is not delivered by an external vendor). In
this case, the Variance-Covariance and the Monte Carlo methods require the
storage and maintenance of historical data as well. From the historical time
series, the value changes δSj (δti) of all risk factors Sj over time intervals δti
with the same length as the liquidation period are determined over the entire
available history of the risk factors2:

δSj (δti ) = Sj (t − i δt + δt) − Sj (t − i δt) with i = 1, . . . ,m ; j = 1, . . . , n .

(23.4)

For example, the time series over 250 days yields 249 daily changes or 240
changes for a liquidation period of 10 days.3

The historical risk factor changes applied to the price of the risk factors
at time t (today) provide m different scenarios. For reasons of consistency,

2The number of available liquidation periods obtained from the historical time span for which data is
available is denoted by m, the number of relevant risk factors again by n.
3In the second case, the liquidation periods overlap resulting in auto-correlations.
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the relative changes are often be applied to today’s price rather than the
absolute changes.4 For each scenario i the thus induced value change δVi of
the portfolio V is computed. This can be accomplished with a full valuation
of the portfolio. However, in practice it is often the case that a simple linear
(delta valuation) or quadratic (delta-gamma valuation) approximation as in
Eq. 22.4 is performed.

In this way,m “historical” value changes δV (ti) are generated from the past
time series data. The value at risk of a historical simulation is now the mini-
mum of all δVi , where—similar to the Monte Carlo simulation—unfavorable
changes in the portfolio’s value falling outside a previously specified confidence
interval are ignored. For a confidence level of 95%, for example, and a history
consisting of 250 days, the 12 worst out of the 249 portfolio value changes are
not considered when finding the minimum over daily changes.

If δV1−c denotes the most favorable change among the ignored value
changes at a confidence level of c, then the value at risk of the portfolio is
the least favorable portfolio change greater than V1−c:

VaRV (c) = − min
i

{δVi | δVi > δV1−c } with i = 1, . . . , m .

With a confidence c, the portfolio at the end of the liquidation period
depreciates by an amount no larger than this value at risk.

At this point we can clearly see the greatest disadvantage of this method: the
weak statistical information on the basis of which the probabilistic conclusions
such as confidence levels are drawn. Despite the effort in data management of
all relevant historical time series, usually only a dozen (in the above example)
or so values remain for the final analysis, namely those falling below the lower
boundary of the confidence interval. The probabilistic conclusion is drawn on
the basis of these few values. In contrast, the statistical basis deriving from
10,000 Monte Carlo simulation runs is approximately 50 times larger (of
course, this statistical advantage of the Monte Carlo method is at the expense
of assuming that the risk factors are random walks). In addition, the results
could be biased because of autocorrelation effects due to the overlapping time
intervals.

A further disadvantage of historical simulations is the following effect:
For each change of position in a portfolio (after each transaction), the new

4A historical change for example, a 12 point change in the DAX index which stood at 1200 at the outset of
a liquidation period is quite different from a 12 point change when the DAX is at 7000. A relative change
of 1% (i.e., 70 points) is therefore more suitable. This is not necessarily the best choice for all possible risk
factors, though. For interest rates, absolute shifts are also applied frequently.
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portfolio (and its value changes) must be recalculated for all 250 days. In doing
so, it may happen that another historical risk factor change affects the make-up
of the set falling outside the confidence interval for the new portfolio so that
suddenly the value at risk based on another scenario is relevant. Thus, a trader,
after entering into a transaction intended to optimize the VaR according to the
original scenario, is then informed of a value at risk computed on the basis of
another scenario. This greatly increases the difficulty of evaluating the success
of the transaction.

In general, the historical simulation is carried out by simulating the same
risk factors, which are required for the risk-neutral valuation of the portfolio,
i.e. volatilities implied from quoted option prices (if the volatilities are not
quoted directly anyway) instead of historical volatilities based on historical
time series of, e.g. quoted share prices. Therefore, the value at risk is based
on the portfolio’s simulated risk-neutral present values, based on real-world
historical changes of the underlying risk factors.

23.3 Crash and Stress Testing: Worst Case
Scenarios

Each value at risk concept introduced up to this point yields the potential
loss in the course of a liquidation period and the probability with which no
bigger loss occurs. The confidence levels most commonly used are 95% or
99%. This means that losses amounting to the value at risk or higher actually
occur between 2 and 12 times per year, as they actually should. Otherwise the
model on the basis of which these probabilities are derived is incorrect. The
value at risk can thus not be considered a worst case scenario, but rather as
part of daily business: losses of this magnitude must occur on average once
a month at a confidence level of 95%! Accordingly, the value of these losses
must be kept below an acceptably small limit.

In order to obtain a measure of a portfolio’s risk should a catastrophe occur,
a worst case or crash scenario is constructed by hand through the explicit
specification of all risk factors influencing the portfolio. The portfolio is
then revaluated on the basis of this market scenario. Such a scenario could,
for example, be the financial crisis 2008/2009. The difference between the
calculated value and the current portfolio value is the “value at risk” of the
portfolio with respect to the crash-scenario. Obviously, this value expresses
the potential loss as a result of the crash but no information is available about
the probability of such an event.
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A further method used to get a feeling for the risk of a portfolio in the case
of rare and very unfavorable market developments is to use 6 or 8 standard
deviations from the expectation as the boundary of the confidence interval
rather than the usual 1.65 or 2.36, i.e. to consider selected, extreme scenarios.
This approach is sometimes referred to as a stress test. In this way, a potential
loss is obtained as well as a theoretical probability that a loss of this magnitude
is incurred. For example, for a standard normal distribution, the probability of
a loss of more than six standard deviations in a one-sided confidence interval
is approximately one to one billion:

1 − 1√
2π

∞∫

−6

e−x2/2dx ≈ 9, 86610−10 ≈ 10−9 .

No great importance should be attached to such probability statements
since the random walk assumptions, constant volatilities and correlations, for
instance, are in all probability no longer satisfied when such events occur. As
a rule, market scenarios of this type change the correlations drastically and
the volatilities explode. Thus, de facto, stress tests, like crash tests, provide
information on the potential loss involved without specifying the probability
of such an event.

23.4 Advantages and Disadvantages of the
Commonly Used Value at Risk Methods

In Table 23.1 the advantages and disadvantages of the VaRmethods introduced
above are summarized. A “+” in the method column indicates that this particu-
larmethod has the advantage of the property associatedwith the corresponding
row. A “−” means that it has the disadvantage of the corresponding row. No
entry indicates that the method does not have the property of the row under
consideration. A symbol in parentheses means that the indicated property is
usually assumed in the application of the method but that the advantage or
disadvantage is not, in principle, characteristic of the method.
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Table 23.1 The pros and cons of the most common value at risk methods

Variance- Monte Historical
covariance Carlo simulation

Models risk factors as random walks − −
Assumes constant vol & correlation − (−)

Requires historical time series −
Requires vol & correlations (−) (−)

Neglects the mean yield −
Linear proxy for risk factors − (−)

Linear proxy for prices (delta valuation) − − −
Full valuation + +
Specified scenarios + +
Specified probabilities + +
Based on large data sets +
Valid for long liquidation periods +
Takes vega risk into account (+) +
Takes theta risk into account + +



24
Example of a VaR Computation

In the Excel workbook ValueAtRisk.xlsx available in the download sec-
tion [50], several of the value at risk concepts already introduced are applied
to explicitly compute the VaR of a concrete portfolio within the delta-normal
method. The example is quite dense in the sense that many of the concepts
introduced above (as well as several concepts to be presented in later chapters,
in particular in Sects. 30.3.3 and 30.3.4) are collected in one calculation.
However, it is by all means reasonable to present such a summary at this
point as it will provide the reader with a complete reference containing all the
essential steps for computing a value at risk (at least, the “simple” delta-normal
version). We will proceed step by step through the example.

24.1 The Portfolio

The portfolio is presented in Table 24.1. It is composed of:

• A British zero bond (denoted by GBP.R180) with a lifetime of 6 months
and a face value of 100,000 British pounds.

• A Japanese zero bond (denoted by JPY.Z06) with a lifetime of 6 years and
a face value of 2,000,000 Japanese yen.

• Put options on Japanese 7-year zero bonds (denoted by JPY.Z07) with a face
value of 6,000,000 Japanese yen. These puts have a lifetime of 6 months
and a strike of 94% (the price of the bonds are also given in percentage
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Table 24.1 The portfolio

Financial Cross rate Principal in Market value
instrument Currency Market prices to EUR currency in EUR

GBP.R180 GBP 97.700% €1.61720 £10,000 €15,800.68
JPY.Z06 JPY 96.010% €0.00926 ¥2,000,000 €17,777.28
Put on JPY.Z07 JPY 0.389% €0.00926 ¥6,000,000 €216.30
Delta of put −0.2803 Sum €33,794.27

points; a value of 100% means that the present value of the bond is equal
to its face value). The Black-Scholes price (at a risk-free rate of 3%) of these
puts is 0.389% (of the face value), i.e., 23,364 JPY. The delta is −0.2803.

24.2 Market Data

Prices, daily volatilities (both the price as well as the yield volatilities; see
Sect. 30.3.3) and correlations are available for GPG.R180, JPY.Z07 and
JPY.Z05 and are presented in Table 24.2. These three variables are the
portfolio’s risk factors.

Data for a 6-year zero bond in Japanese yen (JPY.Z06) is not available
initially. Its yield and its price volatility were computed from the vertex data
for 5 and 7 years linear interpolated. The price of this zero bond was then
calculated from its yield in accordance with Table 2.5 for discrete annual
compounding and the yield volatility was determined using Eq. 30.18 together
with the price volatility. This data is written in italics in Table 24.2 to

Table 24.2 Market data of the portfolio’s risk factors given in their original currency

Price Yield
Daily Annual Daily

Risk factor Currency Market price price vol yield yield vol

USD/EUR EUR $0.9083 0.680%
USD/GBP USD $1.4689 0.404%
USD/JPY USD $0.0084 0.731%
GBP.R180 GBP 97.70% 0.026% 4.70% 1.10%
JPY.Z05 JPY 97.74% 0.093% 0.46% 4.01%
JPY.Z07 JPY 93.89% 0.177% 0.90% 2.99%
JPY.Z06 JPY 96.01% 0.135% 0.68% 3,33%
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Table 24.3 Volatilities and correlations of the risk factors

In original currency In EUR

JPY.Z05 JPY.Z07 GBP.R180 JPY.Z05 JPY.Z07 GBP.R180

JPY.Z05 0.093% 0.89410 0.17171 0.705% 0.99006 0.48739
JPY.Z07 0.89410 0.177% 0.00987 0.99006 0.725% 0.49386
GBP.R180 0.17171 0.00987 0.026% 0.48739 0.49386 0.450%

emphasize the fact that the data for this 6-year bond are not original market
values, but have been obtained through interpolation and other calculations.1

Naturally, the FX rate of the British pound and the Japanese yen with respect
to the reference currency in which the value at risk is to be expressed, are also
risk factors for the portfolio (these are also listed in Table 24.2). The reference
currency here is the euro (EUR). As will be shown extensively in Sect. 30.3.4,
the FX risk is already taken into account by the fact that the given volatilities
and correlations with respect to their respective original currencies (here the
GBP and JPY) must be transformed in terms of the reference currency. These
transformations are determined from the volatilities and correlations of the FX
rates concerned. In this way, the FX risk is incorporated into the calculation.
If these FX rates are not available in the reference currency, but in yet another
currency (in our example, US dollar), this new currency (with its volatilities
and correlations) also comes into play. Therefore, the USD/EUR exchange
rate appears in Table 24.2 as well, though there is no explicit risk against USD
present here. The transformations of the volatilities and correlations into the
reference currency are quite complicated and will receive detailed treatment in
Sect. 30.3.4. The result of all these transformations is presented in Table 24.3.

The volatilities (in the diagonal) and the correlations of the three portfolio
risk factors with respect to the original currency (as provided by the data
provider, for instance) are listed on the left side in Table 24.3.On the right side,
the transformed parameters (in accordance with Sect. 30.3.4) are displayed in
the form needed for the value at risk computation with respect to the reference
currency.

1The lack of liquidly traded bond options that could be used to imply price volatilities is one reason for
using the nodes of the interest rate curve used for discounting the bond cash flows as risk factors.
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Table 24.4 Three ways for calculating the value at risk

10 days 99% confidence

VaR of each Portfolio delta in EUR Portfolio VaR in EUR
Risk factor position in EUR w.r.t. each risk factor w.r.t. each risk factor
GBP.R180 €523.45 €16,171.97 €523.45
JPY.Z05 €426.28 €8,404.73 €426.28
JPY.Z07 €509.86 €−5,383.26 €269.51
Put €779.37 Sum €1,219.25
Sum €2,238.96 Total VaR €615.66

24.3 Calculation of Risk

The risk of this portfolio in EUR is now calculated with the transformed
volatilities and correlations found inTable 24.3. In order to separately illustrate
the hedging effects (the position in the 7-year bond partially hedges the put
on the 7-year bond), the correlation effects and the diversification effects, we
calculate three different risk values in Table 24.4.

Firstly, the value at risk is calculated for each separate positionwith Eq. 22.13.
If we were to be extremely conservative and not consider either hedging nor
correlation nor diversification effects, we could simply add the four values
at risk of the separate positions and arrive at a total (very conservative) risk
number.

Alternatively, we could calculate the value at risk taking into account the
hedge effects. The value at risk of the entire portfolio with respect to each
separate risk factor is determined, likewisewith Eq. 22.13 as above. To do so, we
first need to calculate the portfolio deltas with respect to the three risk factors.
For the bond positions, this is equal to the face value (because the discount
factors are treated directly as risk factors) and for the bond option, it is the
option delta multiplied by the face value of the option. If different positions
depend on the same risk factor, their deltas with respect to that risk factor can
simply be added to yield the total delta with respect to that risk factor. The
hedge effect of the put is in this way taken into consideration. The delta of
the put on the 7-year bond is negative and substantially reduces the portfolio
sensitivity with respect to the 7-year bond.2 If we wish to include this hedge
effect of the put in the risk computation while still neglecting the correlation

2In fact it more than compensates the positive delta of the 7-year bond position since the resulting portfolio
delta with respect to the risk factor JPY.Z07 is negative. This is called over hedging. However, this is not
as bad as the name suggests. Since JPY.Z07 is strongly correlated to JPY.Z05, this negative portfolio delta
significantly reduces the total risk of the portfolio, when correlation effects are taken into account.
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(respectively, the diversification) effects, we would now add the portfolio VaRs
with respect to each risk factor to arrive at a total (and still conservative) risk
number. The hedge effect of the put position is considerable. The put reduces
the value at risk of the portfolio to almost half of the very conservative figure
calculated when neglecting the hedge effect.

Finally, the value at risk is computed taking both hedge and correlation
effects into account, in accordance with Eqs. 22.15 using the correlations with
respect to the reference currency EUR listed in Table 24.3. The correlation
(respectively diversification) effects reduce the value at risk again by roughly
one half.3 Assuming that all model assumptions and approximations made are
justified, we can now be 99% confident that the portfolio will lose no more
than this VaR over the next ten days.

3This of course is largely due to the fact that the put “hedges” not only the JPY.Z07 but also the JPY.Z05-
risk (i.e. the whole original 6-year bond). This effect can of course only be seen if correlations are taken
into account.



25
Backtesting: Checking the Applied Methods

A comparison of the value at risk figures delivered by a risk management
system with the actual value changes of a portfolio allows an estimation of
the qualitative and quantitative “goodness” of the risk model. Comparisons
of realized values with previously calculated values are called backtesting
procedures.

25.1 Profit and Loss Computations

There are several different profit & loss (or P&L) methods which can be used
for comparison with the value at risk. The differences in these methods reflect
the differences in the fundamental “philosophy” behind them.

• The Dirty Profit & Loss: The actual P&L of the portfolio, including all
changes in position, fees paid and received, commission, etc. over the value
at risk period are compiled and compared with the value at risk previously
calculated. Position changes arise from continued trading during the value
at risk period, the maturing of positions in the portfolio (for example,
futures and options), the knock-in or knock-out of barrier options, coupon
payments of bonds, etc. The effect of continued trading is not, in general,
contained in the value at risk model. The dirty P&L is therefore only
suitable for evaluating trading performance and not for the evaluation of
model performance.
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• The Cleaned Profit & Loss: The cleaned P&L is calculated in the same way
as the dirty P&L but without taking position changes into account which
result from continued trading during the value at risk period. Furthermore,
the payment and receipt of fees and commissions are also omitted from the
calculation. However, the cleaned P&L still contains the position changes
resulting from the maturity of instruments occurring during the value at
risk period (such as options and futures) or other position effects caused
by the market (as opposed to the trader) such as the knock-out or knock-
in of barrier options, coupon payments of bonds, etc. The cleaned P&L is
therefore suitable to evaluate the model performance of risk models which
take account of such maturity effects. The Monte Carlo simulation, for
example, allows for such effects, the Variance-Covariance method, on the
other hand, does not.

• The Clean Profit & Loss: Finally, the clean P&L is calculated in the same
ways as the cleaned P&L but with reversing the effects of the maturing of
positions during the value at risk period. In calculating the clean P&L, the
value of the exact same portfolio as that existing upon initial calculation
of the value at risk is re-calculated with the new market data observed
at the conclusion of the value at risk period. Of course, a record of the
initial portfolio positions at the time of the value at risk computation must
have been kept. The clean P&L is thus suitable for evaluating the model
performance of risk models such as the Variance-Covariance method which
do not account for aging effects of the positions.

Independent of the chosen profit & loss method, the profit & loss per
backtesting period is recorded for the evaluation of the goodness of the value
at risk. Additionally, a record is kept for the calculated value at risk of the
portfolio per backtesting-period. The data required for backtesting is thus not
very large: neither historical time series nor a history of the portfolio positions
must be maintained. Only two values per portfolio must be recorded in order
to save the history of the portfolio, namely the value at risk and the associated
P&L of the portfolio to be compared with the value at risk. In most cases, the
P&L will be more favorable than the value at risk, and in others less favorable.
Counting the number of times that the P&L is less favorable than the value at
risk enables statistical conclusions about the goodness of the utilized model to
be drawn. This is the fundamental idea behind backtesting. The superversing
authorities require banks to perform such a backtesting procedure to validate
the value at risk calculation (see Sect. 21.1). In the following, we present a
standard method for implementing a backtesting procedure.
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25.2 The Traffic Light Approach of the
Supervising Authorities

25.2.1 Adjusting the Value at Risk (Yellow Zone)

The value at risk is a statistical statement. In general, some of the changes in the
portfolio’s values will be less favorable than the calculated value at risk. Such
changes are referred to as outliers in the following discussion. At a confidence
level c the probability of such an outlier is 1 − c. The expected number of
outliers in n backtesting periods with respect to this level of confidence is thus

E [k] = n(1 − c) , (25.1)

where k denotes the number of outliers observed in the n backtesting periods.
The value k is not always equal to its expectation; it is a random variable. A
deviation of the observed k from the expected number of outliers does not
necessarily imply that a model is incorrect. Such an observation may be the
result of pure chance. This is particularly true for small deviations from the
expected value. In such cases, one speaks of the yellow zone, in which the
supervising authorities will accept the model, but require that the value at
risk is increased in the following manner.

The realization of k outliers actually observed in backtesting allows the
definition of a new confidence level c′ with respect to which the observed
number is equal to the expectation:

k = n(1 − c′) ⇒ c′ = 1 − k/n . (25.2)

From the observed outliers, it can be concluded that the value at risk from the
model does not correspond to the confidence level c, but to a confidence level
c′; or at least that the experimental basis for a confidence c′ is greater than for
c. The given VaR is then interpreted with respect to a confidence level of c′.
A VaR which better corresponds to the claimed confidence c is then obtained
from the given value of the VaR through multiplication by the ratio of the
percentiles (confidence interval bounds) Q1−c and Q1−c′ in accordance with
Eq. 21.20, respectively Eq. 22.15:

VaR(c, t, T ) ≈ Q1−c

Q1−c′
VaR(1 − k

n︸ ︷︷ ︸
c′

, t, T ) . (25.3)
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In order to use this equation, all assumptions and approximations of the delta-
normal method must be made. These are:

• The risk factors are random walks, i.e., they are lognormally distributed
implying that Q1−c = Q

N(0,1)
1−c .

• The drifts of the risk factors are neglected in the calculation.
• The exponential time evolutions of the risk factors are linearly approxi-

mated.
• The dependence of the portfolio value on the risk factors is linearly approx-

imated. In particular, the portfolio value is also assumed to be lognormally
distributed.

Since, for logarithmic changes, all of the variables under consideration are
assumed to be normally distributed, the Q1−c′ percentile can be calculated as

c′ = 1 − k

n
= 1 − 1√

2π

Q1−c′∫

−∞
e−x2/2dx .

For example, if backtesting over 250 periods is performed resulting in the
observation of 6 logarithmic portfolio value changes outside of the claimed
confidence interval at a confidence level of 99%, the percentiles Q1−c and
Q1−c′ are given by

0, 99 = 1√
2π

Q1−c∫

−∞
e−x2/2dx ⇒ Q1−c ≈ 2, 326

1 − 6

250
= 0, 976 = 1√

2π

Q1−c′∫

−∞
e−x2/2dx ⇒ Q1−c′ ≈ 1, 972 .

The confidence level of the value at risk calculated by the model is now
assumed to be not 99% as claimed but rather 97.6% as calculated on the
basis of the actual events. The value at risk must thus be adjusted by a factor of
Q1−c/Q1−c′ = 2.326/1.972 = 1.18. This now larger value at risk is the value
which can, based on actual observations, be relied upon with a confidence of
99%.
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25.2.2 Criteria for Rejecting a Model (Red Zone)

Adjusting the value at risk as described above may not be applied for arbitrary
values of k. It is allowed only if the difference between the observed value of k
and its expectation with respect to the claimed confidence c can be reasonably
explained by fluctuations due to the randomness involved. If the number of
outliers is too far removed from the expected value, chance is no longer a
plausible explanation and the reasons for the deviation lie in all probability
on fundamental errors in the model itself. Here, the notion is used that the
deviation of the measured results from the expected results are significant. The
supervising authorities say that the model is in the red zone.

The field of statistics provides hypothesis tests which serve to check whether
or not the observed deviation from a claimed value can be plausibly explained
by random fluctuations. If not, such a deviation is considered significant and
the tested hypothesis is in all probability not true. But again, absolute statements
cannot be made on the basis of statistics. From such a hypothesis test we
can only conclude with a certain probability that it was correct to reject (or
accept) the hypothesis. The possibility remains that the hypothesis is rejected
(accepted) although it is true (false). In statistics, these kind of errors are
referred to as type-I error (rejection of a correct hypothesis) and type-II error
(acceptance of a wrong hypothesis).

The hypothesis made when backtesting an internal model is that the
observed value changes of a portfolio lie within the confidence interval
specified by the calculated value at risk with a probability of c, in other words,
that with a probability c the observed value changes are more favorable than
the computed value at risk. To check this claim, we test whether the observed
portfolio’s value changes actually lie within the respective confidence interval.
This is done for every VaR period over the entire backtesting time span.

The observed results can be categorized into two possible outcomes: the
change in the portfolio’s value is either more favorable than the respective VaR
or not. This corresponds to the Bernoulli experiment described in Sect. A.4.2 in
full detail. We could associate the event that an actual portfolio change ismore
favorable (or equally favorable) than the VaR with the outcome “tails” when
tossing a coin and likewise the event that the portfolio change is less favorable
than the VaR to the outcome “heads”. The probability of observing k “heads”
in n trials (less favorable than the VaR) is binomially distributed (see Eq. A.41)
where the binomial probability p is the probability of the outcome “heads”.
In our case here p is then equal to the claimed probability that the portfolio
change lies outside of the confidence interval, i.e., p = 1 − c. The number of
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outliers should therefore be binomially distributed with a density

Bn,p(k) =
(

n

k

)
pk(1 − p)n−k with p = 1 − c = 1 − N(Q1−c) ,

(25.4)

where N(Q1−c) denotes the probability that a standard normally distributed
variable is ≤ 1 − c, see Eq. A.53. Assuming that the model is correct, Bn,p(k)

is the probability that precisely k outliers are observed. The probability that at
most k outliers are observed is then

k∑

i=0

Bn,p(i) =
k∑

i=0

(
n

i

)
pi(1 − p)n−i . (25.5)

Again, assuming that the model is correct, the probability of observing more
than k outliers is then

1 −
k∑

i=0

Bn,p(i) =
n∑

i=k+1

(
n

i

)
pi(1 − p)n−i . (25.6)

This is equal to the probability that the model is correct assuming that k or
more outliers are observed. Therefore, this is the probability of making a type-
I error (the rejection of a correct model) when the hypothesis is rejected if k

or more outliers are observed.
The determination of a Type-II error (acceptance of a false hypothesis)

requires that the true probabilities for outcomes of the false model have to
be known—a luxurious situation which almost never happens in practice. To
be more specific: If a hypothesis test accepts a model for up to k outliers, then
the probability that a false model is accepted equals the true probability for
the event that this false model produces k or fewer outliers. Let’s consider a
simple example: Assume that a false model claims a is 99% confidence for its
calculated VaR-numbers while the true confidence for these VaR-number is
only 95%. If one accepts that model’s VaR-numbers as a 99% VaR as long as
only up to 9 out of 250 backtesting periods produce an outlier, one makes a
Type-II error (see Eq. 25.5 with n = 250, p = 5%) with a probability of

9∑

i=0

Bn,p(i) =
9∑

i=0

(
250

i

)
0, 05i ∗ (0, 95)250−i ≈ 19, 46% .
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It should be clear from these considerations that type-II errors only play a
minor role in practice since it is very rarely the case that they can be determined
in a sensible way.

The supervising authorities make their decision on establishing the limits
for the red zone based on the probability of a type-I error (rejection of a
correct model). The model is said to be in the red zone for a number of
outliers k if the rejection of the model formore than k outliers has a probability
for a type-I error of less than 0.01%. Using Eqs. 25.6 and 25.5, we find
this to be the case when the probability (calculated with the model under
consideration) of at most k outliers is ≥ 99.99% under the assumption that
the model under consideration is correct. For n = 250 backtesting periods,
the probability of at most 9 outliers equals 99.975% (see the Excel Workbook
BinomialBacktest.xls from the download section [50]). The probability of
at most 10 outliers is equal to 99.995% and is thus larger than 99.99%. The
red zone established by the supervising authorities for 250 backtesting periods
therefore begins at 10 outliers although the probability of making a type-I
error (which is the probability for more than 9 outliers) is 0.025%, i.e., greater
than 0.01%. The probability of a type-I error when deciding to reject the
model if more than k = 10 (in other words, 11 or more) outliers are observed
is 0.005%, smaller than the required 0.01%. Nonetheless, 10 outliers within
250 backtesting periods is already deemed to belong to the red zone.1

25.2.3 The Green Zone

The boundary of the red zone is the upper boundary of the yellow zone.
Analogously, a lower boundary of the yellow zone has been defined. No add-
on is required if the observed number of outliers lies below this boundary.
This zone is called the green zone. The model is said to be in the yellow
zone for a number of outliers k if the rejection of the model for more than k

outliers has a probability for a type-I error of less than 5.00%. Using Eqs. 25.6
and 25.5, we find this to be the case when the probability of at most k outliers
is ≥ 95% under the assumption that the model is correct. For n = 250
backtesting periods for example, the probability of at most 4 outliers is equal to
89.22% (see the Excel workbook BinomialBacktest.xls from the download
section [50]). The probability of at most 5 outliers on the other hand is
95.88%. Thus, the supervising authorities establish the boundary for the

1It may seem inconsistent that the supervising authorities establish k as the boundary for the red zone
although this k corresponds to a type-I error of greater than 0.01%. This is the rule, however.
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yellow zone as k = 5 for 250 backtesting periods, although the probability
of a type-I error in this case is 10.78%, i.e., greater than 5%. For the rejection
of the model with more than 5 outliers, the probability of a type-I error is
4.12%.

These three zones established by the supervising authorities, motivate the
name traffic light approach.

25.2.4 Multiplication Factor and Add-On

As a rule, the value at risk calculated with the model must be multiplied by
a factor of three even when it is found to be in the green zone for the simple
reason that it has not been computed in accordance with the standardmethods
but by means of an internal model (this is just a rule of thumb, though). In
the yellow zone, the VaR must additionally be multiplied by the ratio of the
two percentiles Q1−c and Q1−c′ as prescribed in Eq. 25.3 where Q1−c′ is the
value established from Eq. 25.2. The multiplication factor for the yellow zone
is thus 3Q1−c/Q1−c′ . The amount by which the multiplication factor exceeds
the factor 3 is referred to as the add-on

Add-on = 3
Q1−c

Q1−c′
− 3 ≈ 6, 978

Q1−c′
− 3 ,

where in the last step the confidence level c = 99% (required in SolvV
(Germany) resp. CRR) for the standard normal distribution, N(Q1−c) = 1%,
and consequently Q1−c ≈ 2.326 was used.

The concepts described above are illustrated in detail in the Excel work-
book BinomialBacktest.xls. All of the probabilities mentioned above, the
boundaries between the different zones and the add-ons in the yellow zone
are computed. The number of backtesting periods as well as the required
confidences and the probability thresholds for the boundaries between the
zones can be modified and the subsequent effects of these modifications
immediately computed. In Fig. 25.1, these values are presented for n = 250
backtesting periods and a confidence of c = 99%.

In Table 25.1, the add-ons are again explicitly displayed for the situation
in Fig. 25.1 (rounded in increments of 0.05). This table can be found in the
SolvV resp. the (CRR). For the red zone, an add-on of one is set and the model
is later subjected to a new test.

Despite the multiplication factor, the value at risk computed with internal
models is often lower than that calculated in accordance with the standard
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Fig. 25.1 Value at risk backtesting by means of a binomial test for 250 backtesting
periods and 99% VaR confidence

Table 25.1 The table of add-ons for 250 backtesting periods as shown in the text of
the German law

k Add-on Zone

4 0,00 Green
5 0.40 Yellow
6 0.50 Yellow
7 0.65 Yellow
8 0.75 Yellow
9 0.85 Yellow
≥ 10 1.00 Red

methods, since the correlation and compensation effects are more accurately
taken into account. In many cases, the VaR of a portfolio computed according
to an internal model is, despite the multiplication factor, is significantly lower
than that computed with the standard methods.



Part V
Portfolios



26
Classical Portfolio Management

Portfolio management is about maximizing the return of an asset portfolio
by minimizing (or keeping control of ) risk at the same time. The return
considered here is the expected return of the portfolio over the next holding
period. As discussed in great detail in Part IV of this book, risk is also an
estimator covering the next holding (or “liquidation”) period, i.e., a period
lying in the future. Such estimators covering future time spans are sometimes
called ex ante estimators.

These have to be distinguished from ex post estimators, which show how
the quantities under consideration (e.g., return, risk, etc.) behaved in the
past. The historical properties of a portfolio arise not only as results of
market movements but also of trading, i.e., position changes made by the
portfolio manager. Therefore, ex post estimations are useful for determining
past performance (and bonus payments) of portfolio managers. But what
one is really interested in are the properties (in particular risk and return) of
the current portfolio with its current holdings over the next holding period.
Therefore one needs ex ante estimates for the current portfolio. For instance, in
Chap. 22 we took the historical information of the risk factors and the current
sensitivities of the portfolio to produce an ex ante estimate of the portfolio
risk. We will also show in Chap. 33 below ex ante estimation of risk factor
volatilities. Such ex ante estimations for the risk factors together with the
current portfolio sensitivities also yield ex ante estimates of portfolio risk.
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Similarly, one needs ex ante estimates of the expected portfolio return.Meth-
ods for ex ante return estimations are presented for instance in Chap. 31. Other
frequently used method for estimating expected returns include fundamental
analysis or, at the other end of the spectrum, chart techniques, to name only
a few possibilities. In the following, we shall denote expected returns by R

to distinguish them from the (realized) returns, r , appearing for instance in
Eq. 26.1, below.

26.1 From Risk Management to Portfolio
Management

26.1.1 Assets and Risk Factors

Consider a portfolio consisting of holdings Nk, k = 1, . . .M in M financial
instruments (also called assets in the world of asset management) with values Vk

dependent on n risk factors Si, i = 1, . . . , n. The value of this portfolio is as
in Eq. 22.6

V (t) =
M∑

k=1

NkVk(S(t)) ,

with NkVk being the value of each single position. We need to get estimates
for the risk and expected return of this portfolio with its current holdings Nk

(i.e., without trading). The change in the portfolio value is

δV (S(t)) =
M∑

k=1

NkδVk(S(t)) .

The return of the portfolio over a time period δt , defined as the relative price
change over that period, is

rV (S(t))δt ≡ δV (S(t))
V (S(t))

=
M∑

k=1

NkVk(S(t))
V (S(t))

δVk(S(t))
Vk(S(t))

=
M∑

k=1

wk(S(t))rk(S(t))δt .

(26.1)

As stressed for instance in connection with Eq. 2.31, these returns, defined as
relative price changes, are returns in the linear compoundingmethod.Here, we
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have introduced the portfolio return rV , the asset returns rk, and the position
weights wk:

rV δt := δV

V
, rkδt := δVk

Vk

, wk := NkVk

V
with k = 1, . . .M .

(26.2)

The weight wk ist that portion of the total portfolio value, which is invested
in asset Vk.1 Using vector notation, Eq. 26.1 can be written very compactly as2

rV = wT r .

The same holds for the expected portfolio return RV

RV = E [r] = wTR , (26.3)

where R denotes the vector of expected instrument (or asset) returns Rk for
k = 1, . . . ,M .

R = E [r] ⇐⇒ Rk = E [rk] with k = 1, . . . , M .

As explained in the context of Eq. 2.32, expected asset returns in linear
compounding are equal to the assets’ drifts. For instance, if an asset were per se
a risk factor S modeled by Eq. 2.24 (or equivalently by Eq. 2.17), its expected
return would equal its drift μ̃ = μ + σ 2/2.

We will begin by considering fully invested portfolios, meaning, that all of
the capital is invested in the M financial instruments (or “assets”). No money
is left over and neither is money borrowed to invest more than the capital
at hand (no leveraged investments). For fully invested portfolios, the position

1From now on, we will suppress the argument S(t) to simplify the notation. It is understood that all
quantities involving instrument values (and their derivatives) are all functions of S(t) and all quantities
are also functions of t .
2In the following, we make frequent use of vector notation, i.e.,

w =
⎛

⎜
⎝

w1
.
.
.

wM

⎞

⎟
⎠ , R =

⎛

⎜
⎝

R1
.
.
.

RM

⎞

⎟
⎠ , 1 =

⎛

⎜
⎝

1
.
.
.

1

⎞

⎟
⎠ , etc.
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weights fulfill the condition

M∑

k=1

wk (S(t)) = 1 (26.4)

wT 1 = 1Tw = 1

Note that, throughout this book, we distinguish between the financial instru-
ments (or assets) Vk and the risk factors (or market parameters) Si those
instruments (and thus the portfolio value) depend on. Though this is not very
common in the standard literature on modern portfolio theory, this notation
has the advantage not to rely on the (unrealistic) assumption that a portfolio
contains direct positions of all its risk factors.

As we will see shortly, the covariances of the instruments in the portfolio are
needed for modern portfolio theory. Usually, however, only the covariances of
the risk factors are available. Thus, the major problem (and the reason why
usually only risk factors instead of instruments are considered) is that the
covariance matrix refers to the risk factors Si while the portfolio positions
(and their weights) refer to the financial instruments Vk. There are several
ways to overcome this difficulty. If, for instance the historical time series (and
not only moments like covariances and mean returns) of the risk factors are
available, then historical time series of the instruments can be constructed by
re-pricing the instruments according to all the historical risk factor data. From
the historical time series of instrument prices thus constructed covariances
between these instrument prices can be determined. Then, one proceeds as
if each instrument was a risk factor of its own using the covariances between
the instruments.

In the following we will take an alternative route which does not require
historical time series and which fits directly to the considerations presented in
Sect. 22.2. We will work within the delta normal Value at Risk framework
using Approximation 22.9 for the portfolio value change, i.e., we will use
Eq. 22.7 without the 2nd order term:

δV ≈
M∑

k=1

Nk

n∑

i

∂Vk

∂Si

δSi =
M∑

k=1

Nk

n∑

i

�k
i δSi .
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In this approximation the portfolio return over a time period δt can be
expressed as a function of the risk factor returns3 riδt := δSi/Si as opposed
to the instrument returns in the general Eq. 26.1:

rV δt = δV

V

≈
M∑

k=1

Nk

Vk

V

n∑

i

1

Vk

�k
i δSi

=
M∑

k=1

wk

n∑

i

Si

Vk

�k
i

δSi

Si

=
M∑

k=1

wk

n∑

i

�k
i r(Si)δt .

Here, the instrument Omegas �k
i as defined in Table 12.2 of Sect. 12.4 appear

�k
i := Si

Vk

�k
i = Si

Vk

∂Vk

∂Si

with k = 1, . . . ,M . (26.5)

Comparing this with Eq. 26.2 we find that the asset returns rk are approxi-
mately given by the risk factor r(Si) returns via

rk ≈
n∑

i

�k
i r(Si) with r(Si)δt ≡ δ ln Si ≈ δSi

Si

. (26.6)

26.1.2 Portfolio Risk and Volatility

The goal of modern portfolio theory is to maximize the expected portfolio
return (by finding optimal position weights wk) while keeping the portfolio
risk under control. A measure for the risk is of course the Value at Risk which
to linear order is given by Eq. 22.15. As was emphasized in Sect. 22.2.2, in the
delta normal approximation the Value at Risk is simply proportional to the
square root of the portfolio variance. Using Eq. 22.8 for �̃i , we can write the

3Recall that all returns are in linear compounding (c.f. comment after Eq. 26.1).



592 H.-P. Deutsch and M. W. Beinker

portfolio variance as in Eq. 22.14

Var [δV ] =
n∑

i,j=1

�̃iδ�ij �̃j

=
n∑

i,j=1

M∑

k=1

Nk�
k
i Siδ�ij

M∑

l=1

Nl�
l
jSj

=
n∑

i,j=1

M∑

k=1

NkVk�
k
i

Si

Vk

δ�ij

M∑

l=1

NlVl�
l
j

Sj

Vl

=
M∑

k,l=1

NkVk︸ ︷︷ ︸
=:Ñk

n∑

i,j=1

�k
i δ�ij�

l
jNlVl︸︷︷︸

=:Ñl

=
M∑

k,l=1

ÑkδCklÑl , (26.7)

where in the last line we have defined an M × M matrix δC with matrix
elements4

δCkl :=
n∑

i,j=1

�k
i δ�ij�

l
j ≈ cov [δ ln Vk, δ ln Vl] , k, l = 1, . . .M .

(26.8)

4The last step follows directly from Eq. 26.6 which in terms of logarithmic (or relative) changes reads

δ ln Vk = rkδt ≈
n∑

i

�k
i r(Si)δt =

n∑

i

�k
i δ ln Si ,

thus

cov [δ ln Vk, δ ln Vl ] = cov

⎡

⎣
n∑

i

�k
i δ ln Si,

n∑

j

�l
j δ ln Sj

⎤

⎦

=
n∑

i,j

�k
i �

l
j cov

[
δ ln Si, δ ln Sj

]

︸ ︷︷ ︸
δ�ij

= δCkl .
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In our first-order approximation these matrix elements are just the covariances
of the relative instrument price changes in much the same way as the δ�ij

are the covariances of the relative risk factor price changes. Likewise, the
holdings Nk are the portfolio sensitivities with respect to the instrument Vk.
And the Ñk are the “instrument sensitivities times current values” in the same
sense as �̃i are the “risk factor sensitivities times the current risk factor value”.
The last line in Eq. 26.7 therefore has exactly the same structure as the first
line, with the instruments Vk assuming the role of the risk factors Si . We now
replace the holdings with the corresponding weights as in Eq. 26.2 to arrive at

Var [δV ] = V 2
M∑

k,l=1

wkδCklwl = V 2wT δCw . (26.9)

This is where the literature on portfolio theory usually starts. As mentioned
earlier, most authors only consider the case of investments in the risk factors
themselves (e.g., in stocks) and not in instruments (e.g., derivatives) whose
prices are derived from the risk factor prices. The only difference between
this standard case and the delta normal approximation of the more general
case presented here is that instead of δ� one has to use the matrix δC as the
covariance matrix. Apart from that, all equations look exactly the same. Of
course, for the special case of the portfolio containing only positions in the risk
factors themselves, we have Vk = Sk and5 �k

i = δki and therefore �k
i = δki .

Thus, in this special case the matrix δC is identical to δ�.
With Eq. 26.9, the Value at Risk as defined in Eq. 22.15 can now be

expressed in terms of the position weights and the matrixC as

VaRV (c) ≈ |Q1−c|
√

var [δV ] (26.10)

= |Q1−c|V
√
wT δCw

= |Q1−c|V
√√√
√

M∑

k,l=1

wkδCklwl

= |Q1−c|V
√

δt

√√√
√

M∑

k,l=1

wkwl

n∑

i,j=1

�k
i σiσjρij�

l
j .

5Here δki again denotes the Kronecker delta.
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The last line is written down in a way to be as similar to Eq. 22.15 as possible.
It explicitly shows that the Value at Risk is proportional to the portfolio
value, which is intuitively obvious: if we invest double the money we have
double the risk if the composition of the portfolio (i.e., the position weights)
is the same. Therefore, this VaR is not suitable for optimization purposes. For
instance, searching for the portfolio with minimum VaR would trivially yield
the solution with V = 0 (the least risky thing is of course to not invest at
all). A risk measure which is much better suited for optimization is the relative
Value at Risk VaRV (c)/V which is proportional to the standard deviation of
the portfolio’s relative price changes and thus to the portfolio volatility:

VaRV (c)

V
= |Q1−c|

√
1

V 2
var [δV ] = |Q1−c|

√

var

[
δV

V

]

≈ |Q1−c|
√

var [δ ln V ] = |Q1−c|
√

σ 2
V δt .

In the second line we have used the fact that, for small changes, relative
changes are approximately equal to logarithmic changes.6 We have also used
the relation between the variance of logarithmic changes and the volatility,
which in fact is nothing other than the definition of volatility, see the first
part of Eq. 21.29. Using the second part of Eq. 21.29, one could also write the
VaR in terms of the variances of the portfolio returns. In summary, the relative
VaR is

VaRV (c)

V
= |Q1−c| δt

√
var [rV ] = |Q1−c|

√
δtσV , (26.11)

where σV is the annualized portfolio volatility and the rV are the historic
portfolio returns over holding periods of length δt , each return annualized.

The goal of portfolio management is to optimize risk adjusted performance
measures (abbreviated “RAPM” ), i.e., ratios of the kind

(expected) portfolio return
portfolio risk

. (26.12)

As we will see later on, it is advantageous when doing portfolio optimization
to have such ratios dimensionless. Equation 26.11 shows that the relative Value

6This approximation is derived in Eq. 30.9, for instance.
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at Risk VaRV (c)/V is dimensionless: the returns rV have dimension “percent
per year” which cancels the dimension “year” of δt . However, the portfolio
return—as any return—in Eq. 26.12 also has the dimension “percent per year”.
We would therefore be left with a RAPM having dimension “1 over year”,
would we choose the relative Value at Risk as our risk measure in a RAPM like
Eq. 26.12. This motivates the definition of a risk measure per unit of time. This
is achieved by dividing the relative VaR by δt , in much the same way as we
just have achieved a risk measure per monetary unit by a division with V . We
thus arrive at a risk measure suitable for portfolio optimization, i.e. leading to
dimensionless RAPMs:

ηV ≡ VaRV (c)

V δt
≈ |Q1−c|

√
var [rV ] = qσV with q := |Q1−c|√

δt
,

(26.13)

where we have introduce the abbreviation q to streamline the notation. This
risk measure has the advantage of being independent of portfolio size and
holding period. To calculate the Value at Risk (corresponding to confidence
c) in EUR of a portfolio (with identical weights in identical assets) having any
size over any holding period, simply multiply this ηV by the holding period
and the portfolio size.

Using the explicit form of the Value at Risk given in Eq. 26.10 our risk
measure can also be written as

ηV ≈ q
1√
δt

√
wT δCw = q

√√√√
M∑

k,l=1

wkwl

n∑

i,j=1

�k
i σiσjρij�

l
j .

Comparing this with Eq. 26.13, we read of the portfolio volatility

σV = 1√
δt

√
wT δCw =:

√
wTCw (26.14)

with the new matrix C defined as

C:= 1

δt
δC (26.15)

Ckl =
n∑

i,j=1

�k
i σiρijσj�

l
j , k, l = 1, . . .M .



596 H.-P. Deutsch and M. W. Beinker

Note thatC is symmetric, i.e.,CT = C. From Eqs. 26.8 and 21.28, the relation
between C and the covariances of the asset prices Vk respectively asset returns
rk is

Ckl ≈ 1

δt
cov [δ ln Vk, δ ln Vl] = δt cov [rk, rl] , k, l = 1, . . .M .

(26.16)

Classical Markowitz theory, also called modern portfolio theory uses directly
the portfolio volatility σV as a risk measure. Although this leads to RAPMs
(like the Sharpe Ratio, see below) which are not dimensionless (a fact usually
ignored by market participants) it is possible to do that, since q in Eq. 26.13
would only play the role of an overall (and therefore irrelevant) constant in
classical Markowitz theory. In fact, one even goes a step further and uses—
since the square root is a strictly monotonous function—the portfolio variance

σ 2
V = wTCw (26.17)

as the risk measure, since with this measure optimization problems are a lot
easier to solve.

To get the factors δt right in the following, we again remind the reader that
because of Eq. 21.29, the portfolio volatility σV is related to the variance of
the portfolio return via

σ 2
V ≡ 1

δt
var [δ ln V ] = δt var [rV ] . (26.18)

26.1.3 Risk Contribution and Attribution

The contribution of each position to the total portfolio risk σV can be
quantified by asking for each position i separately: “How much will the
portfolio risk change when the weight wi of that position is changed?” This
marginal impact of position i can be measured by the sensitivity ∂σV /∂wi of
the portfolio risk with respect to the position weight wi :

∂σV

∂wi

= ∂

∂wi

√√
√√

M∑

k,l=1

wkCklwl = 1

2σV

(
M∑

l=1

Cilwl +
M∑

k=1

wkCki

)

=
∑M

l=1 Cilwl

σV

.



26 Classical Portfolio Management 597

where the last step follows since C is symmetric. In vector notation this reads

∂σV

∂w
= Cw

σV

= Cw√
wTCw

. (26.19)

This sensitivity is called Marginal Risk Contribution, i.e., ∂σV /∂wi is the
marginal risk contribution of the i-th asset.

Using the marginal risks ∂σV /∂wi we can accomplish a decomposition of
the portfolio risk Eq. 26.14 into a single sum

σV = wTCw√
wTCw

= wT ∂σV

∂w
=

M∑

i=1

wi

∂σV

∂wi

. (26.20)

In this way we can attribute an amountwi∂σV /∂wi of risk to each asset i. This
interpretation makes sense because the sensitivity ∂σV /∂wi tells us (to linear
order) how much the portfolio risk changes if wi changes by 1. Therefore wi

times this sensitivity tells us (to linear order) how much the portfolio risk
changes if the weight of the i-th position is changed from zero to wi . In
other words, wi∂σV /∂wi is indeed the amount of risk stemming from the
i-th position.

This risk attribution is often done in terms of risk percentages. Dividing
Eq. 26.20 by σV gives a percentage breakdown of the portfolio risk into the
various assets

1 =
M∑

i=1

wi

σV

∂σV

∂wi

=:
M∑

i=1

Ai . (26.21)

Here Ai denotes the percentage of risk attributed to the ith asset:

Ai = wi

σV

∂σV

∂wi

= wi

∂ ln σV

∂wi

for i = 1, . . . ,M . (26.22)

This risk attribution is widely used in portfolio management.
Another important concept ofmodern portfolio theory is the beta as defined

in Eq. 12.21. There we defined the beta of a single asset with respect to an index.
What is also of interest is the beta of a single asset with respect to the portfolio
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it belongs to. This is given by

βi,V ≡ cov [δ ln Vi, δ ln V ]

var(δ ln V )
(26.23)

= 1

σ 2
V δt

M∑

k=1

wk cov [δ ln Vi, δ ln Vk]

≈ 1

σ 2
V

M∑

k=1

wkCik ,

where we have used Eqs. 26.18 and 26.16. In vector notation this simplifies
with Eq. 26.17 to

βV = Cw
σ 2

V

= Cw
wTCw

. (26.24)

Comparing this beta with Eq. 26.19we find that themarginal risk contribution
of each asset is given simply by its beta with respect to the portfolio times the
portfolio risk:

∂σV

∂w
= σV βV ⇐⇒ ∂σV

∂wi

= σV βi,V for i = 1, . . . , M . (26.25)

Likewise, the percentage Ai of risk attributed to the ith asset given by
Eq. 26.22 can expressed in terms of the asset beta as

Ai = wi βi,V for i = 1, . . . ,M . (26.26)

26.2 Portfolio Optimization

26.2.1 The Minimum Risk Portfolio

As a first optimization we minimize the portfolio risk, or equivalently
the (square of the) portfolio volatility, Eq. 26.17, by varying the position
weights wk. The wk can well be negative if short selling is allowed. The only
constraint for the weights is Eq. 26.4 which must always hold.
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In an optimization problem constraints can be taken into account by the
method of Lagrange multipliers.7 This method requires the construction of
the Lagrange function L which is given by the function to be optimized
(i.e., maximized or minimized, depending on the problem) minus a “zero”
multiplied by a Lagrange multiplier λ. This zero is written in the form of the
constraint to be satisfied, (here,

∑M
k=1 wk − 1 = 0). The Lagrange function

is thus given by

L =
M∑

k,l=1

wkCklwl

︸ ︷︷ ︸
to be minimized

− λ

[
M∑

k=1

wk − 1

]

︸ ︷︷ ︸
constraint

.

In order to find the optimal values for wk subject to this constraint, we
differentiate L with respect to the variation parameters and set the resulting
expression equal to zero. In other words, we locate the extremum of the
Lagrange function.8 Since we will be using this method time and again in
the following, we demonstrate it here in detail:

0 = ∂L
∂wi

, for i = 1, . . . , M

=
M∑

k,l=1

∂

∂wi

(wkCklwl) − λ

M∑

k=1

∂wk

∂wi︸︷︷︸
δki

− ∂λ

∂wi︸︷︷︸
0

= −λ +
M∑

k,l=1

[∂wk

∂wi︸︷︷︸
δki

Cklwl + wkCkl

∂wl

∂wi︸︷︷︸
δli

]

= −λ +
M∑

l=1

Cilwl +
M∑

k=1

wkCki .

7A introduction to the method of Lagrange multipliers for solving optimization problems subject to
constraints can be found in [34], for instance.
8Since the Lagrange function differs from the function which we actually wish to optimize by only a zero,
the extremum of the Lagrange function coincides with the desired extremum. However, this is only the
case if the difference between the two functions is indeed zero, i.e., only if the constraint is satisfied. This
is the essential idea of the method of Lagrange multipliers.



600 H.-P. Deutsch and M. W. Beinker

Since C is symmetric, we can write wkCki = Cikwk and therefore the two
sums appearing here are identical.

0 = ∂L
∂wi

= 2
M∑

l=1

Cklwl − λ , for i = 1, . . . , M .

This can also be written in vector form as

0 != ∂L
∂wT

= 2Cw − λ1 . (26.27)

The second derivative with respect to the variation parameters is

∂2L
∂w∂wT

= 2C .

Thus, a necessary condition for the existence of a minimum risk portfolio is
that the matrix C is positive definite.9 If C is positive definite then, as is well
known from linear algebra,10 the inverse C−1 exists and one can easily isolate
the weights of the minimum risk portfolio from Eq. 26.27:

w = λ

2
C−11 .

This is not yet useful since it still contains the unknown Lagrangemultiplier λ.
To determine λ we multiply by 1T from the left and use constraint 26.4

1 = λ

2
1T C−11 �⇒λ = 2

1TC−11
.

Thus the weights are explicitly

w = C−11
1TC−11

⇐⇒ wk =
∑M

l=1

(
C−1

)
kl∑M

r,s=1

(
C−1

)
rs

, k = 1, . . . M . (26.28)

9If C were negative definite the extremum of the Lagrange Function would correspond to a maximum
risk portfolio.
10A short and simple overview of linear algebra can be found in [78], for example.
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Note that these weights depend only on the covariances of the assets in the
portfolio but not on their returns.

The volatility of this minimum risk portfolio, i.e., the minimum volatility
accessible by investing in the assets V1, . . . Vk is

σ 2
min = wTCw =

(
C−11

)T CC−11
(
1TC−11

)2 = 1

1TC−11
= 1

∑M
r,s=1

(
C−1

)
.rs

(26.29)

Here we have frequently made use of the fact that C−1 is symmetric, i.e.,

C−1T = C−1 , (26.30)

since the inverse of any symmetric matrix is again a symmetric matrix.
The expected portfolio return of the minimum risk portfolio is

Rmin = wTR =1TC−1R
1TC−11

= σ 2
min1

TC−1R = σ 2
min

M∑

k,l=1

(
C−1)

kl
Rl ,

(26.31)

where R denotes the vector of expected asset returns Rk for k = 1, . . . , M .

26.2.2 The Efficient Frontier

Maximizing the Expected Return

While in the section above we minimized the portfolio risk, we now maximize
the expected portfolio returnRV for a given, fixed risk (i.e., for a given portfolio
volatility σ ) by varying the position weights wk. Thus we now have the
constraint

σ 2
V

!= σ 2 ⇐⇒ wTCw =
M∑

k,l=1

wkCklwl
!= σ 2 . (26.32)
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in addition to constraint 26.4. Again, we incorporate these two constraints into
the optimization by using Lagrange multipliers. The Lagrange Function is

L =
M∑

k=1

wkRk

︸ ︷︷ ︸
to be maximized

− λ1

⎡

⎣
M∑

k,l=1

wkCklwl − σ 2

⎤

⎦

︸ ︷︷ ︸
constraint

− λ2

[
M∑

k1

wk − 1

]

︸ ︷︷ ︸
constraint

with two Lagrange multipliers λ1 and λ2. At the maximum of this function
the first derivative must vanish:

0
!= ∂L

∂wk

= Rk − 2λ1

M∑

l=1

Cklwl − λ2, for k = 1, . . . , M .

This can also be written in vector form as

0
!= ∂L

∂wT
= R − 2λ1Cw − λ21 . (26.33)

The second derivative with respect to the variation parameters is

∂2L
∂w∂wT

= −2λ1C .

A necessary condition for the existence of amaximum of the Lagrange function
is that this second derivative is negative definite. Since the matrix C must be
positive definite, we must require the Lagrange multiplier λ1 to be positive.

An investor is of course most interested in the weights which produce this
maximal return for a given risk. If C−1 exists11 one can easily isolate these
weights from Eq. 26.33:

2λ1w = C−1R − λ2C−11 ⇐⇒ (26.34)

wk =
M∑

r=1

(
C−1)

kr

Rr − λ2

2λ1
, for k = 1, . . . ,M .

11Which it does, if C is positive definite.
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The Lagrangemultipliers can be determined by exploiting the two constraints.
First, inserting Eq. 26.34 into the constraint Eq. 26.32 yields

4λ2
1σ

2 = 2λ1wTCw2λ1

= (
C−1R − λ2C−11

)T
C
(
C−1R − λ2C−11

)

= (
C−1R − λ2C−11

)T
(R − λ21)

= (
RTC−1 − λ21TC−1

)
(R − λ21)

= RTC−1R + λ2
21

TC−11 − λ21TC−1R − λ2RT C−11

= RTC−1R + λ2
2 − 2λ2Rmin

σ 2
min

= RTC−1R + (λ2 − Rmin)
2

σ 2
min

−R2
min

σ 2
min

, (26.35)

where we have frequently used the fact that C−1 is symmetric12 and we have
also used Eqs. 26.29 and 26.31.

The second relation between λ1 and λ2 follows by left-multiplying
Eq. 26.34 with 1T and using constraint 26.4:

2λ1 = 1TC−1R − λ21TC−11 = Rmin − λ2

σ 2
min

,

where in the last step Eqs. 26.29 and 26.31 have been used again. Thus,

λ2 = Rmin − 2λ1σ
2
min . (26.36)

12Therefore, we also have

1T C−1R =
M∑

r,s=1

Rs

(
C−1

)

rs
=

M∑

r,s=1

Rs

(
C−1

)
sr

= RT C−11 .
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Inserting this into Eq. 26.35 yields

4λ2
1σ

2 = RT C−1R−R2
min

σ 2
min

+
(
Rmin − 2λ1σ

2
min − Rmin

)2

σ 2
min

= RT C−1R−R2
min

σ 2
min

+ 4λ2
1σ

2
min .

We now have to solve the quadratic equation

4λ2
1 = RTC−1R − R2

min/σ
2
min

σ 2 − σ 2
min

, wobei σ 2 > σ 2
min .

Since σmin is the minimum volatility, the condition σ 2 > σ 2
min is obvious. In

the case σ = σmin, all volatilities are equal and the minimum is independent of
the weights. Therefore, we do not need to consider this case. However, for λ1

to be a real number we must also have

RTC−1R ≥R2
min/σ

2
min .

To show this, we need the Cauchy-Schwarz inequality for a scalar product of
two arbitrary vectors x and y:

(
xT y

)2 ≤
(
xT x

) (
yT y

)
.

Equality holds if and only if the two vectors are linearly dependent, i.e., if there
is a scalar λ such that y = λx. If C is positive definite then C−1 is also positive
definite. Therefore, the Cauchy-Schwarz inequality is preserved if “multiplied”
by C−1 twice:

(
xTC−1y

)2 ≤ (
xTC−1x

) (
yTC−1y

)
(26.37)

(
xTC−1y

)2 = (
xTC−1x

) (
yTC−1y

) ⇐⇒ y = λx .

To apply this to our problem we choose x = 1 and y = R:

(
1TC−1R

)2 ≤ (
1TC−11

) (
RTC−1R

)

(
1TC−1R

)2

1TC−11
≤ RT C−1R .



26 Classical Portfolio Management 605

Inserting now Eqs. 26.29 and 26.31 on the left hand side yields the desired
result. Thus, λ1 is indeed a real number.

λ1 = ±1

2

√
RTC−1R−R2

min/σ
2
min

σ 2 − σ 2
min

. (26.38)

We have already argued above (just below Eq. 26.33) that λ1 must be positive
for the portfolio return to be amaximum. The negative root yields the portfolio
with the minimum return for a given σ .

With this result the other Lagrange multiplier 26.36 becomes

λ2 = Rmin ∓ σ 2
min

√
RTC−1R−R2

min/σ
2
min

σ 2 − σ 2
min

. (26.39)

Now we are in a position to explicitly formulate the maximum (and also the
minimum) portfolio return as a function of the portfolio risk as measured by
the portfolio volatility σ . Multiplying Eq. 26.33 by wT from the left yields

wTR = 2λ1wTCw + λ2wT 1 ⇐⇒
RV = 2λ1σ

2 + λ2 .

In the second line we made use of both constraints, Eqs. 26.4 and 26.32, and
of the Definition of RV , Eq. 26.3. Inserting now Eqs. 26.38 and 26.39 for the
Lagrange multipliers we finally arrive at

RV = Rmin + 2λ1
(
σ 2 − σ 2

min
)

(26.40)

= Rmin ±
√

σ 2 − σ 2
min

√
RT C−1R−R2

min/σ
2
min .

This function with the plus sign in front of the square root yields the maximal
portfolio return as a function of the portfolio risk and is called efficient
frontier. The minus sign yields the minimal portfolio return as a function of
the portfolio risk and is sometimes called the lower branch of the efficient
frontier. Figure 26.1 taken from the Excel-Workbook PortfolioManage-
ment1996.xlsx from the download section [50] shows an example of an
efficient frontier. The portfolios and concepts shown there will be discussed
in detail in the sections below.
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Fig. 26.1 A risk return diagram showing the efficient frontier, the capital market line
and some important characteristic portfolios. The “assets” of the investment universe
are in fact already indices, namely the DJ STOXX 600 sector indices. The benchmark is
the DJ STOXX 600 itself

Most interesting for an investor are of course the position weights associated
with the maximal return. These follow directly by inserting Eqs. 26.38
and 26.39 into Eq. 26.34:

w = C−1R
2λ1

− C−11
2λ1

λ2

= C−1R
2λ1

− C−11
2λ1

(
Rmin − 2σ 2

minλ1
)

= C−1R − C−11Rmin

2λ1
+ σ 2

minC
−11

= σ 2
minC

−11 ±
√

σ 2 − σ 2
min

RTC−1R−R2
min/σ

2
min

C−1 (R − 1Rmin) , (26.41)
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or, written out in components,

wk = σ 2
min

M∑

l=1

(
C−1

)

kl
±

√
σ 2 − σ 2

min
RT C−1R−R2

min/σ
2
min

M∑

l=1

(
C−1

)

kl
(Rl − Rmin)

for k = 1, . . . , M .

Again, the plus sign hold for the weights in the upper branch whereas the
minus sign holds for the weights in the lower branch of the efficient frontier.

Minimizing the Risk

Instead ofmaximizing the portfolio returnRV for a given fixed volatility σ , one
can just as well minimize the portfolio risk (i.e., the variance σ 2) for a given
fixed returnR by varying the position weightswk. This also yields the efficient
frontier. This approach has the advantage that the risk along the efficient
frontier is a unique function of the return, while the return as a function of
the risk is not unique, see Fig. 26.1. Therefore it is worthwhile to demonstrate
this approach here (from now on we will use vector notation only). We now
have the constraint

RV
!= R ⇐⇒ wTR != R . (26.42)

in addition to constraint 26.4. Again, we incorporate these two constraints into
the optimization by using Lagrange multipliers. The Lagrange Function is

L = wTCw︸ ︷︷ ︸
to be minimized

− λ1

[
wTR − R

]

︸ ︷︷ ︸
constraint

− λ2

[
wT 1 − 1

]

︸ ︷︷ ︸
constraint

with two Lagrange multipliers λ1 and λ2. At the maximum of this function
the first derivative must vanish

0
!= ∂L

∂wT
= 2Cw − λ1R − λ21 . (26.43)

The second derivative with respect to the variation parameters is

∂2L
∂w∂wT

= 2C .
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A necessary condition for the existence of aminimum of the Lagrange function
is that this second derivative is positive, i.e., the matrixCmust again be positive
definite. Then, C−1 exists and it is possible to isolate the weights:

2w = λ1C−1R + λ2C−11} . (26.44)

The Lagrangemultipliers can be determined by exploiting the two constraints.
Left-multiplying Eq. 26.44 by 1T and using constraint 26.4 yields

2 = 2
(
1Tw

) = λ11TC−1R + λ21TC−11

λ2 = 2

1TC−11
− λ1

1TC−1R
1TC−11

= 2σ 2
min − Rminλ1 , (26.45)

where in the last step Eqs. 26.29 and 26.31 have been used. Inserting λ2 into
Eq. 26.44 yields

w=λ1

2
C−1R +

(
σ 2

min − Rmin
λ1

2

)
C−11 (26.46)

= λ1

2

[
C−1R − RminC−11

] + σ 2
minC

−11 .

Inserting this into constraint 26.42 and using Eq. 26.31 we get

wTR = R

λ1

2

[
C−1R − RminC−11

]T
R + σ 2

min

(
C−11

)T
R = R

λ1

2

[
RTC

−1
R − Rmin1TC

−1
R
]

+ σ 2
min1

TC
−1
R = R

λ1

2

[
RTC

−1
R − R2

min

σ 2
min

]
+ Rmin = R . (26.47)

Thus with Eq. 26.45

λ1

2
= R − Rmin

RTC−1R − R2
min/σ

2
min

�⇒

λ2

2
= σ 2

min − Rmin(R − Rmin)

RTC−1R − R2
min/σ

2
min

. (26.48)
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Having the two Lagrange multipliers we are now able to calculate the mini-
mum portfolio risk (as measured by the portfolio variance σ 2

V ) as a function
of the required portfolio return R. Multiplying Eq. 26.43 by wT from the left
and using Eq. 26.45 we obtain

wTCw = λ1

2
wTR + λ2

2
wT 1 ⇐⇒

σ 2
V = λ1

2
R + λ2

2
= λ1

2
(R − Rmin) + σ 2

min .

Thus

σ 2
V = σ 2

min + (R − Rmin)
2

RTC−1R − R2
min/σ

2
min

. (26.49)

This function, i.e., the minimum portfolio risk as a function of the portfolio
return, coincides with the efficient frontier introduced above. A quick consis-
tency check: Solving this for R yields

R = Rmin ±
√
(
σ 2

V − σ 2
min

) (
RTC−1R − R2

min/σ
2
min

)
(26.50)

in complete agreement with Eq. 26.40. Asymptotically for σV −→ ∞ this
approaches two straight lines:

R ∼ ±σV

√
RTC−1R − R2

min/σ
2
min . (26.51)

Inserting the Lagrange multipliers 26.48 into Eq. 26.44 we now find the
weights to be

w = R − Rmin

RTC−1R − R2
min/σ

2
min

C−1R +
(

σ 2
min − Rmin(R − Rmin)

RTC−1R − R2
min/σ

2
min

)

C−11

= σ 2
minC

−11+ (R − Rmin)

RTC−1R − R2
min/σ

2
min

C−1 (R − 1Rmin)

= σ 2
minC

−11+σ 2
V − σ 2

min

R − Rmin
C−1 (R − 1Rmin) , (26.52)
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where in the last step we have used Eq. 26.49 to simplify things. In contrast
to Eq. 26.41, we now do not have a “plus/minus sign” since for each given
return R there is one unique portfolio which minimizes the risk. Nonetheless,
Eq. 26.52 is in full agreement with Eq. 26.41 which can be verified by inserting
the portfolio return R from Eq. 26.50 into the second line of Eq. 26.52:

w=σ 2
minC

−11 ±

√
(
σ 2

V − σ 2
min

) (
RTC−1R − R2

min/σ
2
min

)

RTC−1R − R2
min/σ

2
min

C−1 (R − 1Rmin)

= σ 2
minC

−11 ±
√

σ 2
V − σ 2

min

RTC−1R − R2
min/σ

2
min

C−1 (R − 1Rmin) .

Now the weights are again a function of the portfolio risk σ 2
V (the portfolio

return R has disappeared) and therefore not unique.

26.2.3 The Sharpe Ratio and the Optimal Portfolio

We have seen above that, given our set of M assets,13 for each given risk
level there is a unique portfolio build with these M assets, which yields the
maximal possible return. Or vice versa: for each required return there is a
unique portfolio which minimizes the risk required to achieve this return. All
these portfolios are the efficient portfolios making up the efficient frontier in
the risk/return diagram. Since there are infinitely many returns (or risk levels),
there are infinitely many portfolios along the efficient frontier. However,
among all these portfolios there are two very special ones. One of them,
the one with the absolute minimum risk attainable, was already presented
in Sect. 26.2.1. The other one, the so called optimal portfolio is the most
interesting portfolio and in fact the only portfolio among all the portfolios
along the efficient frontier one should really invest in. It follows from the
following considerations.

Let rf denote the risk free rate. As a reward for taking risk compared to
investing without any risk, an investor requires an expected return R with a
premium above this risk free rate. Obviously, a rational investor will maximize
this expected excess return (above the risk free rate) in relation to the risk taken,
i.e., he will maximize the so-called Sharpe Ratio of the investment. The Sharpe

13The set of available (risky) assets is sometimes called investment universe.
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Ratio of any investment with risk σ and expected return R is defined as

γ := R − rf

σ
. (26.53)

With Eq. 26.40, the Sharpe Ratio for any portfolio on the efficient frontier is

γ = Rmin − rf

σ
±

√
1 − σ 2

min/σ
2
√
RTC−1R−R2

min/σ
2
min .

We now have to decide which sign to use. The Cauchy-Schwarz Inequal-
ity 26.37 guarantees RTC−1R − R2

min/σ
2
min ≥ 0 and σ ≥ σmin by

construction. Thus, all terms after the ± sign above are non-negative. Since
we are interested in finding the maximal Sharpe Ratio we use the plus sign
here, meaning we use the plus sign in Eq. 26.40.

Moving along the efficient frontier by varying the portfolio risk σ we now
want to find the portfolio with maximum γ :

0 = ∂γ

∂σ
= −Rmin − rf

σ 2
+

√
RT C−1R−R2

min/σ
2
min

2
√

1 − σ 2
min/σ

2

2σ 2
min

σ 3

0 = rf − Rmin + σ 2
min

√
RTC−1R−R2

min/σ
2
min

√
σ 2 − σ 2

min

. (26.54)

Solving this for σ 2 yields the variance of the optimal portfolio14

σ 2
m = σ 2

min + σ 4
min

RTC−1R−R2
min/σ

2
min(

Rmin − rf

)2 . (26.55)

Inserting σ 2
m − σ 2

min into Eq. 26.40 yields15 the return Rm of the optimal
portfolio

Rm = Rmin + σ 2
min

RTC−1R − R2
min/σ

2
min

Rmin − rf

. (26.56)

14Quantities belonging to the optimal portfolio carry a subscript m in the following.
15Remember that we already have committed ourselves to the plus sign in Eq. 26.40, i.e. to the upper
branch of the efficient frontier.
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We now insert the portfolio return, Eq. 26.56, and the portfolio volatility
Eq. 26.55 into Eq. 26.52 to obtain (after some algebra16) explicitly the weights
of the optimal portfolio:

wm = σ 2
minC

−1

(
1 + R − 1Rmin

Rmin − rf

)
= wmin + σ 2

minC
−1R − 1Rmin

Rmin − rf

,

(26.57)

where wmin denotes the weights of the minimum risk portfolio as given by
Eq. 26.28.

This can be simplified even further:

wm = σ 2
minC

−1

(
1Rmin − 1rf + (R − 1Rmin)

Rmin − rf

)

= σ 2
minC

−1
(
R − 1rf

)

Rmin − rf

= σ 2
minC

−1
(
R − 1rf

)

σ 2
min1TC−1R − rf

= C−1
(
R − 1rf

)

1TC−1R − rf /σ 2
min

= C−1
(
R − 1rf

)

1TC−1R − 1TC−11rf

,

where in the third step we have used Eq. 26.31 in the form Rmin =
σ 2
min1

TC−1R and in the last step we have used Eq. 26.29. Thus the weights of
the optimal portfolio are given explicitly by

wm = C−1
(
R − 1rf

)

1TC−1
(
R − 1rf

) . (26.58)

16The algebra is:

w = σ 2
minC

−11+σ 2
V − σ 2

min

R − Rmin
C−1 (R − 1Rmin)

= σ 2
minC

−11 + σ 2
V − σ 2

min

σ 2
min

RT C−1R−R2
min/σ

2
min

Rmin−rf

C−1 (R − 1Rmin)

= σ 2
minC

−11 +
σ 4
min

RT C−1R−R2
min/σ

2
min

(Rmin−rf )
2

σ 2
min

RT C−1R−R2
min/σ

2
min

Rmin−rf

C−1 (R − 1Rmin)

= σ 2
minC

−11 + σ 2
min

Rmin − rf
C−1 (R − 1Rmin) .
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AWord of Caution

Since σ 2
m ≥ σ 2

min we must also have Rm ≥ Rmin since otherwise the Sharpe
Ratio of the minimal risk portfolio would be larger than the Sharpe Ratio of
the optimal portfolio, which is a contradiction to the requirement that the
optimal portfolio has maximal Sharpe Ratio. Thus, from Eq. 26.56 we must
have

σ 2
min

RTC−1R − R2
min/σ

2
min

Rmin − rf

!≥ 0 .

Since σ 2
min ≥ 0 (as for any squared number) and since the Cauchy-Schwarz

Inequality 26.37 guarantees that RTC−1R − R2
min/σ

2
min ≥ 0, this condition

is only fulfilled for

Rmin > rf . (26.59)

Usually, Rmin > rf holds since, after all, the minimum risk portfolio is a
portfolio of risky assets and therefore the market should require an expected
return above the risk free rate as a compensation for the risk incurred by
that portfolio. In reality, this is not always the case in the real world, which
is demonstrated in the Excel workbook PortfolioManagement2002.xlsx
from the download section [50].

If Eq. 26.59 does not hold, then the expected return of the “optimal”
portfolio, Eq. 26.56, is lower than Rmin. Thus, the “optimal” portfolio
cannot have maximum Sharpe Ratio. But Eq. 26.54 still holds. Therefore, the
“optimal” portfolio still has extreme Sharpe Ratio. However, the extremum is
now the minimum and the “optimal” portfolio is in fact the worst investment
one could possibly make. Or in other words:

If the return of the fully invested minimum risk portfolio is less than the risk free
rate, then there is no fully invested portfolio with maximum Sharpe Ratio.

This is can also be understood intuitively: if markets are turning down (as
was the case in the years 2000, 2001 and 2002) then any portfolio which is
net long cannot possibly be the best choice. Portfolios which are net short
can perform much better. By definition, a fully invested portfolio is 100%
net long. All portfolios on the efficient frontier are fully invested. Therefore
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the whole efficient frontier does not contain any good portfolio! There are
many portfolios above the efficient frontier (namely the ones which are not
forced to be 100% net long). This is demonstrated in the Excel workbook
PortfolioManagement2002.xls. In Sect. 27.3 below, we will show how to
find a portfolio with maximum Sharpe Ratio even in such a situation.

26.2.4 The Capital Market Line

Let’s for now assume that Rmin > rf holds for our given investment universe
(i.e., for the given set of M risky assets). Then the optimal portfolio is truly
optimal, i.e., has indeed maximal Sharpe Ratio. The expected return as well
as the risk of the optimal portfolio are uniquely determined by Eqs. 26.56
and 26.55. This is in stark contrast to the efficient portfolios discussed
in Sect. 26.2.2 where one could find an efficient portfolio for any return
requirement or (almost) any risk preference. In particular, the risk of the
optimal portfolio cannot be chosen by the investor. However, even if the
risk σm of the optimal portfolio doesn’t coincide with the risk preference
σrequired of the investor, the investor should still invest in the optimal portfolio,
although not all of his money. If σrequired < σm the investor should only invest
a percentage w of the total capital in the optimal portfolio and the rest of
the capital should be invested risk free (in a money market account). On the
other hand, if σrequired > σm the investor should borrow money (from the
money market) and invest the total sum of his own capital and the loan in
the optimal portfolio. This is called a leveraged investment . Since the optimal
portfolio has the maximum return the investor can expect for the risk taken
and since investing or borrowing in the money market doesn’t produce any
new risk, this strategy gives the best possible Sharpe Ratio for any required
risk level.

As long as Rmin > rf , one should therefore always invest in a mixture of
the money market account and the optimal portfolio. The return RV of such
an investment is

RV = wRm + (1 − w) rf , (26.60)

where Rm denotes the return of the (fully invested) optimal portfolio and

w := wT 1 (26.61)
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denotes the part of the money invested in the optimal portfolio. For σrequired <

σm we will have w < 1 and for σrequired > σm we will have w > 1. The risk
of such an investment is simply

σV = wσm (26.62)

since the money market account carries no risk. We can write the return as

RV = rf + (Rm − rf )w

= rf + (Rm − rf )
σV

σm

= rf + γmσV mit γm = Rm − rf

σm

. (26.63)

Thus, the best possible investment return R one can expect as a function of
the investment risk σV is a straight line with a slope γm given by the Sharpe
Ratio of the optimal portfolio! This straight line is called the capital market
line. Every investor should invest in the optimal portfolio, even if he does not
prefer the risk of the optimal portfolio. In this case he should distribute his
investment between the risk free account and the optimal portfolio such that
the mixture as a whole has the desired risk level. The total investment risk
in Eq. 26.62 can very easily be controlled by the part w the investor assigns
to the optimal portfolio (i.e., to the M risky assets). This is the best possible
investment strategy whenever Rmin > rf .

It follows directly from Eq. 26.63 that the Sharpe Ratio of this investment
equals the Sharpe Ratio of the optimal portfolio, i.e., is maximal:

γV ≡ RV − rf

σV

=
(
rf + γmσV

) − rf

σV

= γm .

Equation 26.63 can be read in the following way: For each unit of additional
riskσV an investor is willing to take, the expected return of the total investment
increases by an amount γm, i.e., by the Sharpe Ratio of the optimal portfolio.
This SharpeRatio is therefore themarket price of risk of the investment universe
consisting of the M risky assets (and of course the money market account).
This is in complete agreement with the market price of risk in Eq. 13.49,
where the investment universe consisted of only one risky asset, namely the risk
factor S. As we have shown in Eq. 2.32, the drift μ̃ appearing in Eq. 13.49 is the
expected return for linear compounding. Since in asset management returns
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are usually defined as relative (as opposed to logarithmic) price changes, linear
compounding is indeed applicable (see Eq. 2.31). Thus, μ̃ in Eq. 13.49 andRm

in Eq. 26.63 exactly correspond to each other and therefore the Sharpe Ratio
and the market price of risk are the same thing. We can summarize the above
insights in the following theorem which is at the heart of classical portfolio
theory:

The Sharpe Ratio γm of the optimal portfolio for an investment universe consist-
ing ofM risky assets is the slope of the capital market line describing the expected
return of the optimal investment strategy as a function of investment risk. The
Sharpe Ratio is therefore the market price of risk for this investment universe.

Remember that all of the above only holds if Rmin > rf . We will defer the
treatment of the opposite situation until Sect. 27.3.

Being Not Fully Invested

As we have just seen, it is usually not wise to have all of the investor’s capital
invested in the portfolio of the risky assets. Therefore, from now on, we
will drop the constraint Eq. 26.4 of being fully invested and replace it with
Eq. 26.61 which is no constraint at all, since w could be any number. Part of
an investor’s capital could thus be invested risk free or the portfolio could be
leveraged, i.e., it could be worth more than the investor’s capital, being partly
financed by a loan. However, we always assume that all investments in risky
assets are accounted for in the weights wk for k = 1, . . .M . Thus, if wT 1 �= 1
then the rest of the investor’s capital can only be invested in or borrowed from
the (risk free) money market or bank account. The weight of this risk free
investment (or loan if < 0) is simply

wf := 1 − wT 1 . (26.64)

The weights wk for k = 1, . . .M (and also wf in Eq. 26.64) are all expressed
as percentages of the total investment consisting of the risky part and themoney
market account. Likewise, if wT 1 �= 1 the return as defined in Eq. 26.3 is not
the return of the whole investment but only the return of the risky part of
the investment, expressed as a percentage of the whole investment. The reader
should make sure to fully understand this subtlety which does not arise for
fully invested portfolios where the investment value equals the value of the
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risky assets.17 The extension of Eq. 26.3 to the general case of not fully invested
portfolios, i.e., the expected total returnRV of the investment V including the
risk free part is

RV = wTR+ [
1 − wT 1

]
rf , (26.65)

which of course reduces to Eq. 26.3 for fully invested portfolios, i.e. for
wT 1 = 1.

The expected excess return (i.e., the expected return above the risk free rate)
of the investment is

RV − rf = wTR + [
1 − wT 1

]
rf − rf

= wT
(
R − 1rf

)

=
M∑

k=1

wk

(
Rk − rf

)
. (26.66)

This is simply the sum of the expected excess returns of the risky assets, which
makes sense since the money market position obviously does not have any
excess return above the risk free rate.

It is common practice in portfolio theory and asset management to always
consider the excess return above the risk free rate instead of the “normal” return,
since then all equations look less complicated. In the following we denote
excess returns by “hats”. In this notation Eq. 26.66 simplifies to

R̂V = wT R̂ mit R̂ := R − 1rf . (26.67)

Equations 26.65 and 26.67 hold for every situation, no matter whether
constraint 26.4 holds or not. For instance it holds for the excess return of the
minimum risk fully invested portfolio: by definition we have Rmin = wTR
with weights given in Eq. 26.28. Therefore Eq. 26.31 is also true “with hats”
above all returns:

R̂min = wT R̂=1TC−1R̂
1TC−11

= σ 2
min1

TC−1R̂ (26.68)

with σ 2
min as defined in Eq. 26.29.

17We will continue to use also the expression “portfolio” and mean by it the total investment consisting
of the risky part and the money market account.
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26.3 Alternative Portfolio Management
Approaches

Before we dive into the details of classical portfolio management methods
in the following chapters, we present here a few alternative approaches for
portfolio management and asset allocation.

26.3.1 Value Investing

The value investor tries to estimate the inner value of an investment by
fundamental analysis [77]. The fundamental analysis is based on an intensive
analysis of the assets’ issuer’s balance sheet and other accounting figures. Other
factors, like management quality, prospect of the business model, continuity
of success over the past five or ten years, and further available information
of the company are taken into account. Macro economic factors may also
be included in the investigations. By nature, such an analysis is quite time
intensive and requires a lot of experience. Only those assets which are traded
at prices well below there estimated inner value will be bought. The difference
between inner value and current market price (the margin of safety) serves as a
reserve against the estimation error, since this type of analysis is based on many
uncertain factors. Simpler versions of this investment approach are based on
just a few, publicly available key figures (see, for example, [152]). Under the
basic assumption that inner value and market price converge in the long run,
value investing can be very profitable.

26.3.2 Behavioral Finance

Behavioral finance studies the psychology and behaviour of investors and anal-
yses specifically the investment decision process of investors [144]. Here, it is
especially interesting what causes irrational investment decisions. Behavioural
scientists also perform experiments designed to shed light on the causes of
investment decisions. The behavioural finance research indicates that invest-
ment decisions of portfolio managers, how professional they might be, are far
too often not based on rational reasoning. A commonly well known effect is
herd mentally: If some market participants start to buy some stock, causing
its market prices to go up a bit, this may attract other investors, which start to
invest in the same stock, pushing its price further up, until “everybody” starts
to buy the same stock in order not to be the only one who misses the potential
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profit. Investing strategies based on behavioural finance seek to profit from
other investors’ irrational decisions.

26.3.3 Chart Analysis

Chart analysis searches for recurring patterns in the graphical representation
(i.e. chart) of historical market price series. If a pattern has been identified, it is
used to estimate the future market price evolution. If the market price process
is strictly Markovian, such patterns could not exist (i.e. could not be used
to predict future prices). Therefore, chart analysis assumes that the stochastic
process is superimposed by some deterministic process. There are indeed some
well known recurring patterns, for example the weekly cycle. Another effect is
reflected in the commonly known rule “sell in May, go away, but remember
to return in September”, based on the observation that market price returns
are higher during the winter months. Unfortunately, these simple rules are not
stable enough to base investment decisions on them. Chart analysis goes far
beyond these simple rules. Though chart analysis is neither empirically nor
theoretically well founded, its still favoured by many market participants.



27
Attributes and Their Characteristic Portfolios

The financial instruments, or in general the assets, of a portfolio have many
characteristics or attributes such as expected return, market capitalization, beta
with respect to an index, membership in a certain economic sector, etc. If we
denote a certain attribute by ai for asset i (with value Vi) then the exposure of
a portfolio V (with weights wk for k = 1, . . .M) to this particular attribute
is defined as

aV ≡
M∑

k=1

wkak = wT a , (27.1)

where we have used the obvious notation aT = (a1, . . . aM). If, for instance
the characteristics ai are measures of how strongly the assets i = 1, . . .M

belong to the automotive industry then aV is the exposure of the portfolio
to the automotive industry. Another example: If the characteristics ai are the
asset returns Ri then the exposure aV is simply the portfolio returnRV . From
these examples one can already guess that characteristics (or attributes) are a
very general and rather abstract concept with broad applications.1

1We will give specific examples in the sections below.
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The characteristic portfolio2 for an attribute a is defined as the portfolio with
minimum risk and unit exposure, i.e., with

wT
a a = 1 . (27.2)

Other than this, there are no constraints. In particular, there is no constraint
like Eq. 26.4 to be fully invested.Depending on the attribute, the characteristic
portfolio can contain significant leverage.

To find the characteristic portfolio we now simply have to minimize its risk
observing the one single constraint 27.2. The Lagrange function is thus given
by

L = wT
a Cwa︸ ︷︷ ︸

to be minimized

− λ
[
wT

a a − 1
]

︸ ︷︷ ︸
constraint

.

In order to find the optimal values wk subject to this constraint, we differenti-
ate L with respect to the variation parameters and set the resulting expression
equal to zero.

0
!= ∂L

∂wT
a

= 2Cwa − λa . (27.3)

The second derivative of L with respect to w is C. Thus, for positive definite
covariance matrices Eq. 27.3 is indeed a minimum. Solving for w yields

wa=λ

2
C−1a .

Inserting the transpose of this into Eq. 27.2 (observing that C is symmetric)
yields for the Lagrange multiplier

λ

2
= 1

aTC−1a
.

Thus we find the weights of the characteristic portfolio to be

wa= C−1a
aT C−1a

. (27.4)

2We will use an index a with quantities belonging to the characteristic portfolio of an attribute a. For
instance its value is denoted by Va , its weights by wa , its return by Ra , its volatility by σa , etc.
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In the remainder of this section we will assemble a few general properties of
characteristic portfolios which will be used time and again in the examples
below.

27.1 General Properties of Characteristic
Portfolios

The extent of investment (the leverage) as defined in Eq. 26.61 of the
characteristic portfolio is

w ≡ 1Twa= 1TC−1a
aT C−1a

. (27.5)

The variance of the characteristic portfolio also follows directly using the
weights from Eq. 27.4

σ 2
a ≡ wT

a Cwa =
(
aTC−1

)
C
(
C−1a

)

(
aTC−1a .

)2
,

Thus the variance of the characteristic portfolio is

σ 2
a = 1

aT C−1a
(27.6)

and the excess return of the characteristic portfolio is

R̂a ≡ wT
a R̂ = aTC−1R̂

aTC−1a
= σ 2

a a
TC−1R̂ . (27.7)

These two results yield the Sharpe Ratio, Eq. 26.53, of the characteristic
portfolio.

γa ≡ R̂a

σa

= σaaT C−1R̂ = aTC−1R̂√
aTC−1a

. (27.8)

The beta as defined in Eq. 26.24 of a single asset with respect to the
characteristic portfolio becomes

βa = Cwa

σ 2
a

=
(
aTC−1a

)
C

C−1a
aTC−1a

.
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Thus the asset betas with respect to the characteristic portfolio are simply the
asset attributes:

βa = Cwa

σ 2
a

= a . (27.9)

With these asset betas, the marginal risk contribution of each asset, Eq. 26.25,
becomes

∂σa

∂wa

= σaa = a√
aT C−1a

(27.10)

and the percentageAi in Eq. 26.26 of risk attributed to the i-th asset is simply

Ai = wiai for i = 1, . . . ,M . (27.11)

27.1.1 Relations Involving Several Characteristic
Portfolios

Let’s now look at relations involving several characteristic portfolios. The
covariance between the characteristic portfolio Va of an attribute a and the
characteristic portfolio Vb of another attribute b is by definition

cov [δ ln Va, δ ln Vb] =
M∑

i=1

M∑

k=1

wa,iwb,k cov [δ ln Vi, δ ln Vk]

= δt

M∑

i=1

M∑

k=1

wa,iCikwb,k = δt wT
a Cwb .

Inserting the weights of the characteristic portfolio Vb in accordance with
Eq. 27.4 yields

cov [δ ln Va, δ ln Vb] = δt wT
a

b
bT C−1b

= δt baσ
2
b ,

where Eq. 27.6 was used for the variance σ 2
b of portfolio Vb, and ba denotes

the exposure of portfolio Va to attribute b:

ba := wT
a b .
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Similarly, one can also write

cov [δ ln Va, δ ln Vb] = δt
(
wT

a C
)
wb = aT

aTC−1a
wb = δt abσ

2
a ,

where ab := wT
b a = aTwb denotes the exposure of portfolio Vb to attribute a.

Comparing the two results yields

baσ
2
b = abσ

2
a . (27.12)

For any positive number x and any attribute a the characteristic portfolio of
the attribute xa has the weights

wxa= C−1xa
xaTC−1xa

= 1

x
wa , (27.13)

as follows directly from Eq. 27.4.
If an attribute a is a linear combination of two attributes b and c, i.e., if

a = xb + yc ,

then the characteristic portfolio for attribute a is a linear combination of the
characteristic portfolios for attributes b and c with the following weights

wa = x
σ 2

a

σ 2
b

wb + y
σ 2

a

σ 2
c

wc . (27.14)

This can be shown by starting from Eq. 27.9

a = βa = Cwa

σ 2
a

xb + yc = Cwa

σ 2
a

σ 2
a

(
xC−1b + yC−1c

) = wa .

Using now Eqs. 27.4 and 27.6 we can write C−1b = wb/σ
2
b and analogously

C−1c = wc/σ
2
c to arrive at Eq. 27.14. The variance σ 2

a can be expressed in
terms of the variances of the characteristic portfolios for attributes b and c by
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simply left-multiplying Eq. 27.14 by aT and using the defining Eq. 27.2 for
the characteristic portfolio Va :

aTwa = x
σ 2

a

σ 2
b

aTwb + y
σ 2

a

σ 2
c

aTwc

1 = x
σ 2

a

σ 2
b

ab + y
σ 2

a

σ 2
c

ac ,

Thus

1

σ 2
a

= x
ab

σ 2
b

+ y
ac

σ 2
c

, (27.15)

where again ab = wT
b a = aTwb denotes the exposure of portfolio Vb to

attribute a and similarly for ac. Using now Eq. 27.12 one finds that the
exposures of portfolio Va with respect to the attributes b and c fulfill the
Equation

1 = xba + yca .

27.2 The Leverage

Let’s choose the attribute vector L to be

L = 1 ⇐⇒ Lk = 1 , k = 1, . . .M . (27.16)

The exposure of any portfolio V to this particular attribute is according to
Eq. 27.1 simply the extent of investment in risky assets which is also called
leverage

LV = wTL = wT 1 =
M∑

k=1

wk . (27.17)

A fully invested portfolio has LV = 1. From the constraint defining the
characteristic portfolio, Eq. 27.2, we find that the characteristic portfolioVL for
this particular attribute is just the fully invested portfolio with minimum risk.
According to Eqs. 27.4, 27.6, 27.7 and 27.9, this portfolio has the following
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weights, variance, excess return and betas

wL= C−11
1TC−11

, σ 2
L = 1

1TC−11
, βL = 1 (27.18)

R̂L = 1TC−1R̂
1TC−11

= σ 2
L1

TC−1R̂ ,

in full accordance with Eqs. 26.28, 26.29 and 26.68 for the fully invested
minimum risk portfolio derived in Sect. 26.2.1.

The fact that every asset in the portfolio has a beta of one means that the
marginal risk contribution, Eq. 26.25, of each asset is the portfolio risk itself,
and that the percentage of risk attributed to each asset, Eq. 26.26, is simply
the asset’s weight:

∂σL

∂wL,i

= σL , AL,i = wL,i for i = 1, . . . , M .

27.3 The Excess Return

Let’s now choose the attribute vector to be the assets’ expected excess returns
(i.e., returns above the risk free rate)

A =R̂= R − rf 1 ⇐⇒ Ak = Rk − rf , k = 1, . . .M . (27.19)

According to Eq. 27.1, the exposure of any portfolio V to this particular
attribute is

AV = wT R̂=
M∑

k=1

wk

(
Rk − rf

)
. (27.20)

Comparing this with Eq. 26.66 we find the excess return of the total investment
(including the money market position) to be equal to AV

RV − rf = AV .

By definition, the characteristic portfolio VA for this attribute is the mini-
mum risk portfolio with unit exposure, i.e., with excess return equal to 1.

R̂A ≡ RA − rf
!= 1 . (27.21)
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Thus, for a given excess return of 1 we minimize the risk or equivalently: we
maximize the ratio 1/σA = R̂A/σA. But this ratio is just the investment’s
Sharpe Ratio: The Sharpe Ratio of any investment is defined as

γV ≡ R̂V

σV

= wT R̂√
wTCw

(27.22)

with R̂V and σV as in the general equations 26.14 and 26.67. For the Sharpe
Ratio of the characteristic portfolio R̂V = AV = 1 and σ is as small as
possible. Thus the characteristic portfolio for attribute A has maximal Sharpe
Ratio.

γmax = γA = 1

σA

. (27.23)

This holds for any situation, even if Inequality 26.59 does not hold.
For any positive number λ, an investment with weights λ · wk for k =

1, . . .M , will have the same Sharpe Ratio, as can immediately be seen from
Eq. 27.22. All portfolios with maximal Sharpe Ratio (but different leverage
via different λ) lie on a straight line with slope γmax called the Capital Market
Line. If Inequality 26.59 holds, this is the same Capital Market Line as
introduced in Sect. 26.2.4. Therefore, when maximizing the Sharpe Ratio
there is one degree of freedom left, which could for instance be used to satisfy
the constraint Eq. 27.21 for the characteristic portfolio.When Inequality 26.59
holds, the degree of freedom could also be used to satisfy the “fully invested”
constraint Eq. 26.4 instead of satisfying Eq. 27.21. In this situation the optimal
portfolio introduced in Sect. 26.2.4 has the same (maximal) Sharpe Ratio
as the characteristic portfolio to attribute A, i.e., both portfolios lie on the
same capital market line. However, when Inequality 26.59 doesn’t hold, the
“optimal” portfolio introduced in Sect. 26.2.3 is in fact the worst possible
choice, i.e., hasminimum Sharpe Ratio. Therefore, to be on the safe side in all
situations, one should always use the characteristic portfolio for the attribute
A to construct the Capital Market Line.

Figure 27.1 taken from the Excel Workbook PortfolioManage-
ment2002.xlsx from the download section [50] shows an example of such
a situation. It shows the same investment universe as in Fig. 26.1 but for the
year 2002. In this year, markets were going down consistently. Fully invested
portfolios (which are by definition forced to be 100% net long) could not
perform well in this year. The optimal portfolio and in fact all portfolios on
the efficient frontier are all bad choices. The capital market line constructed
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Fig. 27.1 The risk return diagram for the same investment universe as in Fig. 26.1, but
for a different time period. In this period, the expected excess return of the minimum
risk portfolio is negative. The best portfolios are not fully invested, and therefore, the
efficient frontier does not reach the capital market line

with the characteristic portfolio for the excess return lies way above the efficient
frontier.

According to Eqs. 27.4, 27.6 and 27.9, the characteristic portfolio VA for
the attribute A has the following weights, variance and betas

wA= C−1R̂
R̂TC−1R̂

=σ 2
A C−1R̂

σ 2
A = 1

R̂TC−1R̂
CwA

σ 2
A

= βA = R̂ . (27.24)

With these betas, the marginal risk contribution, Eq. 26.25, of each asset and
the percentage of risk attributed to each asset, Eq. 26.26, are:

∂σA

∂wA,i

= σAR̂i , AA,i = wA,iR̂i f or i = 1, . . . , M .
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The percentage of risk attributed to an asset is thus simply the contribution of
that asset to the expected excess return of the characteristic portfolio VA.

To get an expression for the excess return of any portfolio V , left-multiply
the last line in Eq. 27.24 by the weights of portfolio V

wT R̂ = wTCwA

σ 2
A

.

By definition, an investment’s excess return divided by the investment’s
volatility is the Sharpe Ratio of that investment:

γV = wT R̂
σV

= wT CwA

σV σA

γA ,

where in the last step we used Eq. 27.23. It is easy to show3 that the factor in
front of the characteristic portfolio’s Sharpe Ratio is the correlation between
the two portfolios. Therefore, the Sharpe Ratio of the investment in any
portfolio V is given by the Sharpe Ratio of the characteristic portfolio VA

times the correlation between those two portfolios:

γV = ρV,AγA for all portfolios V . (27.25)

As enforced by constraint 27.21, the characteristic portfolio for attributeA has
an excess return of 1, i.e., of 100%. Therefore it usually contains significant
leverage. Let’s now determine this leverage LA (i.e., the degree of investment
in risky assets) of the excess return’s characteristic portfolio VA. According to
Eq. 27.17 this leverage is simply the exposure of portfolio VA to the attribute L

3From the definitions of correlation and covariance and from Eq. 26.16 we get

wT CwA =
M∑

k,i=1

wkwA,i δt cov(rk, ri )︸ ︷︷ ︸
Cki

= δt cov(rV , rA)

= δt corr(rV , rA)
√

var(rV )
√

var(rA)

= δt corr(rV , rA)
√

σV /δt
√

σA/δt

= corr(rV , rA)σV σA ,

where we have used Eq. 26.18 in the penultimate step.
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defined in Eq. 27.16:

M∑

k=1

wA,k= wT
A1 = wT

AL ≡LA .

This can be determined in a very elegant way using Eq. 27.12 which relates the
exposure of one characteristic portfolio to the attribute of another characteristic
portfolio and vice versa. Using the attributes L as in Eq. 27.16 and A as in
Eq. 27.19 with the corresponding two characteristic portfolios VL and VA,
Eq. 27.12 reads ALσ 2

A = LAσ 2
L which directly yields

LA = σ 2
A

σ 2
L

AL = σ 2
A

σ 2
L

wT
LR̂︸︷︷︸
R̂L

= 1TC−1R̂
R̂T C−1R̂

, (27.26)

where we have used Eq. 27.20 for the exposure AL of portfolio VL to attribute
A = R̂ and Eqs. 27.18 and 27.24 for the variances.

27.4 The Optimal Portfolio

Now, that we have calculated the leverage of portfolio VA, it is very easy to
construct a portfolio with leverage equal to one (i.e., a fully invested portfolio),
by simply dividing all the weights wA by LA. Because of Eq. 27.13, the
resulting portfolio is a characteristic portfolio for the attribute vector m :=
LAA:

m = LAA = σ 2
A

σ 2
L

R̂L
̂R = 1TC−1R̂

R̂T C−1R̂
R̂ (27.27)

⇐⇒ mk = σ 2
A

σ 2
L

(
Rk − rf

) M∑

i=1

wL,i

(
Ri − rf

)
, k = 1, . . . M .

According to Eq. 27.1, the exposure of any portfolio to this particular
attribute is

mV = σ 2
A

σ 2
L

R̂LwT R̂ = 1TC−1R̂
R̂TC−1R̂

wT R̂ . (27.28)
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Let’s now investigate the characteristic portfolio Vm for this attribute. Applying
Eq. 27.13 directly yields the weights

wm= 1

LA

wA= σ 2
L

σ 2
AR̂L

wA . (27.29)

Observe now that R̂L = wT
L R̂ is the excess return of the fully invested

minimum risk portfolio (with weights given by Eq. 27.18). If we assume
this excess return to be positive, i.e., if we assume Inequality 26.59 to
hold,4 then the holdings wm in portfolio Vm are just the holdings wA, all
multiplied by the same positive5 constant ALσ 2

L/σ 2
A. This positive constant is

an example of the “positive number λ” mentioned below Eq. 27.23. Therefore,
if Inequality 26.59 holds, this portfolio Vm lies on the capital market line and
has the same Sharpe Ratio as portfolio VA, i.e., maximum Sharpe Ratio.

We constructed the portfolio to be fully invested and indeed the leverage of
this portfolio, i.e., its exposure to the attribute L as defined in Eq. 27.16 is:

Lm = wT
mL = 1

LA

wT
AL = 1

LA

LA = 1 .

Therefore portfolio Vm with weights given by Eq. 27.29 is the fully invested
portfolio with maximum Sharpe Ratio, i.e., the optimal portfolio. Indeed,
inserting Eqs. 27.24 and 27.29 for wA and wL and observing Eq. 26.30, we
immediately get

wm=σ 2
L

σ 2
A

wA

wT
L R̂

= σ 2
L

σ 2
A

σ 2
AC

−1R̂
σ 2

L1TC−1R̂
= C−1R̂

1TC−1R̂
(27.30)

in full accordance with Eq. 26.58. We have recovered the optimal portfolio
using a cunning combination (given by Eq. 27.29) of two minimum risk
portfolios: the minimum risk portfolio with leverage one and the minimum
risk portfolio with excess return one!

4As already mentioned, this is not an unrealistic assumption: the expected return of the fully invested
portfolio should by above the risk free rate as a compensation for the risk taken with that portfolio.
5The variances appearing in this term are positive numbers anyway.
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With these weights, the characteristic portfolio for the attribute m has the
following excess return, variance and betas

R̂m = R̂T wm = R̂TC−1R̂
1TC−1R̂

σ 2
m = wT

mCwm = R̂T C−1R̂
(
1TC−1R̂

)2 = R̂m

1TC−1R̂

βm = Cwm

σ 2
m

= 1TC−1R̂
R̂TC−1R̂

R̂ = 1

R̂m

R̂ . (27.31)

With these betas, the marginal risk contribution, Eq. 26.25, of each asset and
the percentage of risk attributed to each asset, Eq. 26.26, are:

∂σm

∂wm,i

= σm

R̂i

R̂m

, Am,i = wm,i

R̂i

R̂m

for i = 1, . . . ,M . (27.32)

Finally, using the results in Eq. 27.31, the Sharpe Ratio of the optimal portfolio
can be written as

γm ≡ R̂m

σm

= R̂TC−1R̂
1T C−1R̂

√(
1T C−1R̂

)2

√
R̂TC−1R̂

=
∣∣1TC−1R̂

∣∣

1TC−1R̂

√
R̂T C−1R̂

or

γm ≡ R̂m

σm

=
∣∣R̂L

∣∣

R̂L

√
R̂TC−1R̂ =

∣∣R̂L

∣∣

R̂L

√
R̂LR̂m

σL

, (27.33)

where we have used R̂L as in Eq. 27.18. The last step follows from

R̂T C−1R̂ = 1TC−1R̂ R̂m = R̂LR̂m

σ 2
L

. (27.34)

We explicitly see here, that the sign of this Sharpe Ratio is the same as the sign
of R̂L.

We conclude this section by showing that Eq. 27.31 is in perfect agreement
with the results of Sect. 26.2.3. It takes some algebra to see this, because in
Sect. 26.2.3 we worked with “normal” returns instead of excess returns. First
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note that

R̂T C−1R̂ = (
RT − 1T rf

)
C−1

(
R − 1rf

)

= RTC−1R − RT C−11︸ ︷︷ ︸
Rmin/σ

2
min

rf − 1TC−1R︸ ︷︷ ︸
Rmin/σ

2
min

rf + 1TC−11︸ ︷︷ ︸
1/σ 2

min

r2
f ,

where Eqs. 26.31 and 26.29 have been used. Thus

R̂TC−1R̂ = RTC−1R − 2
Rmin

σ 2
min

rf + 1

σ 2
min

r2
f . (27.35)

With this “translation” between returns and excess returns we can now write
the variance in Eq. 26.55 as

σ 2 = σ 2
min

(

1 + σ 2
min

RTC−1R−R2
min/σ

2
min(

Rmin − rf

)2

)

= σ 2
min(

Rmin − rf

)2

((
Rmin − rf

)2 + σ 2
minR

TC−1R−R2
min

)

= σ 2
min

R̂2
min

(
r2
f − 2Rminrf + σ 2

minR
T C−1R

)

= σ 2
min

R̂2
min

(
r2
f − 2Rminrf + σ 2

min

(
R̂TC−1R̂ + 2

Rmin

σ 2
min

rf − 1

σ 2
min

r2
f

))

= σ 4
min

R̂2
min

R̂T C−1R̂ .

Observing now Eq. 26.68, we immediately see that this is indeed the same
as σ 2

m in Eq. 27.31.

27.5 The Efficient Frontier Revisited

It is worthwhile to re-do the optimization problem leading to the efficient
frontier in the light of the above deliberations. Firstly, let’s define efficient
portfolios using excess return instead of normal returns. The efficient portfolio
for any given excess return is defined as the fully invested minimum risk
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portfolio with that excess return, i.e., the minimum risk portfolio satisfying
constraint 26.4 and6

wT
e R̂ = R̂ ⇐⇒ wT

e

(
R − 1rf

) = R − rf (27.36)

This constraint is of course exactly the same as Eq. 26.42 since we only
added the constant rf = wT

e 1rf on both sides. Thus it makes no difference
whatsoever to define the efficient frontier using excess returns.

All portfolios on the efficient frontier are fully invested minimum risk
portfolios. They only differ by different additional Constraints 27.36 (i.e.,
by different required R). We now want to construct those efficient portfolios
using the two fully invested characteristic portfolios (which are of course also
minimum risk portfolios) we introduced above.

Let’s start by again solving the optimization problem equivalent to
Eq. 26.43:

0
!= ∂L

∂wT
e

= Cwe − λ1R̂ − λ21 .

The weights can easily be isolated:

we = λ1C−1R̂ + λ2C−11 , (27.37)

which is just Eq. 26.44 with “hats” above the returns.
Left-multiplying this by 1T and using constraint 26.4 yields

λ2 = 1

1TC−11
− λ1

1TC−1R̂
1T C−11

= σ 2
min − λ1R̂min .

Of course, R̂min as in Eq. 26.68 and σ 2
min as in Eq. 26.29 are just the excess

return and the variance of the fully invested minimum risk portfolio, i.e., of
the characteristic portfolio VL to the attribute L, see Eq. 27.18:

R̂min = R̂L , σ 2
min = σ 2

L . (27.38)

6To avoid confusion, from now on we will denote portfolios on the efficient frontier by an index e.
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Inserting all this into constraint 27.36 yields

wT R̂ = R̂

λ1R̂TC−1R̂+ [
σ 2

L − λ1R̂L

]
1TC−1R̂ = R̂

λ1R̂TC−1R̂+R̂L − λ1
R̂2

L

σ 2
L

= R̂ ,

where in the last step we have used twice Eq. 26.68 in the form R̂L =
σ 2

L1
TC−1R̂. This is of course no surprise and we have gained nothing

compared to Eq. 26.47 yet.
The decisive step now is to use the other fully invested characteristic

portfolio at our disposal, namely Vm as defined in Sect. 27.4, to transform
the term R̂T C−1R̂ via Eq. 27.34. Then we solve for λ1 to find

λ1 = σ 2
L

R̂L

· R̂ − R̂L

R̂m − R̂L

�⇒ λ2 = σ 2
L

[
1 − R̂ − R̂L

R̂m − R̂L

]
.

We have now succeeded in expressing the Lagrange multipliers solely in
terms of the required excess return R̂ and properties of the two characteristic
portfolios VL and Vm. Let’s now also express the rest of Eq. 27.37 in terms
of those two characteristic portfolios. The weights of VL and Vm as given by
Eqs. 27.30 and 27.18 can be written as

wL=σ 2
LC

−11 �⇒ C−11 = 1

σ 2
L

wL

wm = σ 2
L

R̂L

C−1R̂ �⇒ C−1R̂ = R̂L

σ 2
L

wm ,

where again Eq. 26.68 has been used. Inserting these expressions along with
the above Lagrange multipliers into Eq. 27.37 we obtain

we = R̂ − R̂L

R̂m − R̂L

wm + R̂m − R̂

R̂ .m − R̂L

wL. (27.39)
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The asset weights w of any efficient frontier portfolio, regarded as functions
of the required excess return R̂, are linear interpolations between the weights
of the fully invested minimum risk portfolio and the optimal portfolio!

The exposure of an efficient portfolio to the characteristicm of the optimal
portfolio is given by the ratio of the expected excess returns of the efficient and
the optimal portfolio. This follows directly from Eqs. 27.27 and 27.31:

me = wT
e m = 1T C−11

R̂T C−1R̂
wT

e R̂︸︷︷︸
R̂

= R̂

R̂m

.

The variance of an efficient portfolio is by definition

σ 2
e = wT

e Cwe

= (
uwT

m + vwT
L

)
C (uwm + vwL)

= u2σ 2
m + v2σ 2

L + 2uvwT
mCwL

where we have used the abbreviations

u := R̂ − R̂L

R̂m − R̂L

, v := R̂m − R̂

R̂m − R̂L

(27.40)

to simplify the notation. With Eqs. 27.30 and 27.18 for the weights wm and
wL we arrive at

σ 2
e = u2σ 2

m + v2σ 2
L + 2uv

σ 4
L

R̂L

R̂TC−11

= u2σ 2
m + v2σ 2

L + 2uvσ 2
L

= u2σ 2
m + (

v2 + 2uv + u2) σ 2
L − u2σ 2

L

= u2 (σ 2
m − σ 2

L

) + (u + v)︸ ︷︷ ︸
1

2σ 2
L ,

where in the second step Eq. 27.18 has been used for R̂L. Thus, we arrive at
the well known fact that the variance σ 2

e of an efficient portfolio is a quadratic
function of the portfolio return R̂e, i.e., a parabola:

σ 2
e = σ 2

L +
(
σ 2

m − σ 2
L

)

(
R̂m − R̂L

)2

(
R̂ − R̂L

)2
. (27.41)
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Eq. 27.41 is exactly the same7 as Eq. 26.49.
The corresponding expected return of an efficient portfolio in Eq. 26.50

can be written very intuitively. First note that exploiting Eq. 27.35 yields

RTC
−1
R − R2

L/σ 2
L = R̂TC−1R̂ + 2

RL

σ 2
L

rf − 1

σ 2
min

r2
f − R2

L/σ 2
L

= R̂TC−1R̂ −
(
RL − rf

)2

σ 2
L

= γ 2
m − γ 2

L ,

where Eq. 27.33 has been used. Thus, the expected return can be written as

Re = RL ±
√(

σ 2
e − σ 2

L

) (
γ 2
m − γ 2

L

)
.

Asymptotically for σe −→ ∞ this approaches two straight lines.

Re ∼ ±σe

√
γ 2
m − γ 2

L .

7To see this, we have to show that the inverse prefactor of (R̂ − R̂L)2 is the same as the denominator in
Eq. 26.49. Using Eqs. 27.30 and 27.18 we find

(
R̂m − R̂L

)2

σ 2
m − σ 2

L

=
(
R̂m − σ 2

L1
T C−1R̂

)2

R̂m

1T C−1R̂
− σ 2

L

=
(
R̂m − σ 2

L1
T C−1R̂

)2

(
R̂m − σ 2

L1
T C−1R̂

)
/
(
1T C−1R̂

)

= R̂m − σ 2
L1

T C−1R̂
1

1T C−1R̂

= R̂m

(
1T C−1R̂

)
− σ 2

L

(
1T C−1R̂

)2

= R̂T C−1R̂ − R̂2
L

σ 2
L

.

Now we switch back to “normal” returns instead of excess returns with the help of Eq. 27.35
(
R̂m − R̂L

)2

σ 2
m − σ 2

L

= RT C−1R − 2
RL

σ 2
L

rf + 1

σ 2
L

r2
f − R̂2

L

σ 2
L

= RT C−1R + 1

σ 2
L

(
−2RLrf + r2

f − (
RL − rf

)2
)

= RT C−1R − R2
L

σ 2
L

.

This is just the denominator in Eq. 26.49 (the index “L” here is the same as the Index “min” in
Sect. 26.2.2).
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The (absolute value of the) slope of these lines is less then the slope of the
capital market line as long as the minimal risk portfolio has an expected return
not equal to the risk free rate.

Each efficient frontier portfolio is itself a characteristic portfolio. According
to Eq. 27.14 the corresponding attribute e is a linear combination of the
attributes L and m.

e = xL + ym . (27.42)

Comparing Eq. 27.14 with Eq. 27.39 yields

x = σ 2
L

σ 2
e

R̂m − R̂

R̂m − R̂L

= σ 2
L

σ 2
e

v

y = σ 2
m

σ 2
e

R̂ − R̂L

R̂m − R̂L

= σ 2
m

σ 2
e

u .

Inserting these we can write for the attribute e:

σ 2
e e = vσ 2

LL + uσ 2
mm

= vσ 2
LL + uσ 2

m

σ 2
A

σ 2
L

R̂L
̂R

= v
1

1TC−11
L + u

1

1TC−1R̂
̂R .

And finally, using Eq. 27.18, the attribute for which an efficient portfolio is
the characteristic portfolio becomes

e = σ 2
L

σ 2
e

(
R̂m − R̂

R̂m − R̂L

1 + R̂ − R̂L

R̂m − R̂L

̂R

R̂L

)

. (27.43)

Because of Eq. 27.9 the asset betas with respect to the efficient frontier
portfolio are given by these attributes. The marginal risk contributions,
Eq. 26.25, of the assets to the efficient frontier portfolio are

∂σe

∂w
= σ 2

L

(
R̂m − R̂

R̂m − R̂L

1 + R̂ − R̂L

R̂m − R̂L

̂R

R̂L

)

and the percentage of risk attributed to each asset, Eq. 26.26, is Ae,i = we,i ei

for i = 1, . . . ,M .
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28.1 The Capital Asset Pricing Model

One of the most important results of the previous chapter is the last line in
Eq. 27.31. It can be written in the form

R̂ = βmR̂m . (28.1)

Based on this equation, the expected excess returns of all assets are explained
solely by their betas with respect to the optimal portfolio and the return of
the optimal portfolio itself. This is very remarkable. Within the framework
of classical Mean-Variance portfolio theory there is not much freedom for the
individual assets. The optimal portfolio drives everything. The question now
remains, what this optimal portfolio exactly is. The following argument leads
to an identification1:

If all investors have the same information on all assets (in particular
concerning expected returns, variances and covariances) and if all investors
behave optimally (in the sense that they invest in such a way that their
mean/variance-ratio is maximal), then every investment will lie on the capital
market line. If Inequality 26.59 holds, than each investor will invest in a
mixture of the optimal portfolio Vm and the risk free money market account.
Investments with a variance lower than σm are long in the risk free investment
while investments with a variance higher than σm are leveraged, i.e., they

1Under the assumption that there are no transaction costs, taxes or other “friction”.
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borrow from the money market. Adding up all investments of all market
participants, the total amount borrowed must of course equal the total
amount of lending, i.e., the grand total money market position of all market
participants must equal zero. Therefore, the grand total of all investments of
all market participants is the optimal portfolio. On the other hand, the grand
total of all investments of all market participants is “the market” itself. Thus,
the optimal portfolio is the market itself, which is why it is also called the
market portfolio.

One can also look at this from a different angle: you can always do a linear
regression for the (historical) asset excess returns r̂i on (historical)market excess
returns, i.e.

r̂i = αi,m + βi,mr̂m + εi for i = 1, . . . ,M , (28.2)

where the εi are the error terms which by definition have zero expectation and
are uncorrelated with r̂m. Calculating expected values and comparing this with
Eq. 28.1, we immediately see that the CAPM requires the alpha of each asset
to be zero. In the CAPM, no additional return is expected for any asset above
that produced by the asset’s beta and the market!

The same holds for any portfolio of assets, since in the regression everything
is linear.

∑

i

wi r̂i

︸ ︷︷ ︸
r̂V

=
∑

i

wiαi,m

︸ ︷︷ ︸
αV,m

+
∑

i

wiβi,m

︸ ︷︷ ︸
βV,m

r̂m +
∑

i

wiεi

︸ ︷︷ ︸
εV

,

r̂V = αV,m + βV,mr̂m + εV . (28.3)

Since the αi,m should all be zero, somust αV,m. Thus, in the CAPM, the alpha
of any portfolio is zero. No portfolio can beat the market in the long run.
This is not a new insight really, but in fact trivial: We constructed the optimal
portfolio to have the best possible mean/variance ratio. Then we argued that
the optimal portfolio should have the same position weights as the market.
Thus, the market has the best possible mean/variance-ratio. Therefore, no
other portfolio has a better mean/variance ratio because if it did we would
have taken this portfolio as the optimal portfolio.

The “market” contains everything one could possibly invest in: equity,
debt, commodities, real estate, etc., even art. Most often, this is not a feasible
concept for practical situations, so instead, “the market” is divided into several
(sub-)markets like the German Bond Market, the US Mid Cap Market or
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the Japanese Real Estate Market, to name a few of many hundreds or even
thousands. But even these smaller markets are usually too large to handle,
so Indices are defined as representatives of those markets. Examples of such
Indices are the S&P 500, the German DAX, the Japanese Nikkei, etc. They
contain a limited number of assets (with weights defined and calculated by the
respective index provider) and serve as a proxy of the market they are supposed
to represent. Indices are often used as benchmarks to measure the performance
of a portfolio. In the following we will use the subscript B for the benchmark.
The benchmark portfolio VB is supposed to be a proxy for the market
portfolio Vm (of whatever market we are interested in), but it is usually not
identical to the market portfolio. In the following, we will carefully distinguish
between benchmark andmarket portfolio properties using subscriptsB andm,
respectively.

28.2 Theory of Efficient Markets

At the heart of active portfolio management lies the hope of a portfolio manager
that he can outperform the market, despite the fact that the CAPM says this
is impossible. That does not necessarily mean, however, that the portfolio
manager does not believe in the CAPM. He rather doubts the assumptions
of the CAPM, in particular the one that everybody has the same information.
The information edge the manager may believe to have on some assets causes
him to cast asset return expectations that differ from the “consensus returns”
of Eq. 28.1. This then results in different position weights, even if the manager
uses the same mean/variance optimization as in the CAPM. If his return
estimates turn out right he will indeed outperform the market. However,
efficient market theory (at least in its strong form) states that this is still not
possible in the long run. Efficient market theory comes in three varieties:

• The weak efficient market theory states: Investors cannot outperform the
market using historical price and volume data, only.

• The semi strong efficient market theory states: Investors cannot outperform
the market using publicly available information, only (i.e., historical price
and volume data, fundamental data, recommendations published by ana-
lysts, etc.)

• The strong efficient market theory states: Investors can never outperform
the market. Market prices contain all relevant information.
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A couple of observations support the view that at most the weak efficient
market theory is in fact valid in the real world. For example, the long-
term success of some value investors apparently excludes the semi-strong
and strong theory. Also, not all market participants have equal access to all
available informations, otherwise insider trading and manipulation of market
indices (like in the Libor scandal) wouldn’t be possible. In addition, we
know from behavioural finance that even professional asset managers oft act
quite irrational. Finally, institutional investors are bound to obey regulatory
requirements, which sometimes stands in the way of rational decisions.

28.3 Benchmarking Against an Index

Nonetheless the main goal of so-called active asset management is “to beat the
market”, i.e., to gain a positive alpha against a benchmark (in most cases an
index) which represents the market to be beaten. To assess how well an asset
has been doing compared to the benchmark one can do a regression of the
historical asset returns against the historical benchmark returns as in Eq. 28.2.

r̂i = αi,B + βi,B r̂B + εi for i = 1, . . . , M .

Taking the expectation (e.g., as a historical average) we get the relation between
asset and benchmark returns that serves as the definition of αB , the vector of
the assets alphas with respect to the benchmark:

R̂ = αB + βBR̂B . (28.4)

If the benchmark perfectly represented the market and if the CAPM were
perfectly true, this would collapse to Eq. 28.1, i.e., the assets alphas would all
vanish.

The asset betas with respect to the Benchmark are given by the matrix C
and the position weights wB of the benchmark portfolio as in Eq. 26.23.

βB = 1

σ 2
B

CwB = CwB

wT
BCwB

. (28.5)
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Equations 28.4 and 28.5 directly imply2 that the following combination of
αB , βB and C is be zero:

αT
BC

−1βB = 0 . (28.6)

The same considerations that lead us to Eq. 28.4 also work for the portfolio’s
expected excess return

R̂V = wT R̂ = wT αB︸ ︷︷ ︸
αV,B

+ wT βB︸ ︷︷ ︸
βV,B

R̂B . (28.7)

Here, the portfolio beta3 βV,B with respect to the benchmark follows from the
regression analysis in the usual way4 given by Eq. A.20:

βV,B ≡ cov(rV , rB)

Var(rB)
= cov(̂rV , r̂B)

Var(̂rB)
. (28.8)

The portfolio alpha αV,B can also be determined by such an regression of the
historical portfolio excess returns r̂V against the historical benchmark excess
returns r̂B . In this way one gets an ex post estimation of how the portfolio
did in the past. The historical portfolio returns are of course not only a result
of market movements but also of trading, i.e., position changes done by the
portfolio manager. Therefore, for the estimation of the impact of portfolio

2Right-multiplying the transpose of Eq. 28.4 by C−1 yields

R̂T C−1 = αT
BC

−1 + R̂BβT
BC

−1 .

Right-multiplying this byβB and then inserting Eq. 28.5 results in

αT
BC

−1βB = R̂T C−1βB − R̂BβT
BC

−1βB

= 1

σ 2
B

R̂T C−1CwB − R̂B

1

σ 2
B

wT
BCC

−1 1

σ 2
B

CwB

= 1

σ 2
B

wT
B R̂︸︷︷︸
R̂B

− 1

σ 4
B

R̂BwT
BCwB︸ ︷︷ ︸

σ 2
B

= 0 .

3The Beta appearing here is in terms of returns, not in terms of relative price changes as for instance in
Eq. 26.23. For Beta this does not make any difference, since the factors δt appearing due to Eq. 21.27 are
the same in numerator and denominator and therefore cancel out.
4Covariances and variances do not change upon adding a constant rf . Therefore, working with returns
or with excess returns doesn’t make any difference.
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changes, it is important to get ex ante estimates for alpha and beta over the
next holding period of the current portfolio with its current holdings. To get
these, we take the historical information of the assets and the current position
weights in the portfolio to produce ex ante estimates of portfolio properties,
like for instance alpha and beta. This can be done by using the historical alphas
and betas of the assets with respect to the benchmark together with the current
weights of those assets in the portfolio:

αV,B =
M∑

i=1

wiαi,B = wT αB , βV,B =
M∑

i=1

wiβi,B = wT βB . (28.9)

The historical alphas and betas of the assets are determined via the regressions
given in Eq. 28.2. One might also use other estimates for the asset alphas and
betas in this ex ante estimation of the portfolio alpha and beta (e.g., an asset
manager’s personal opinion).

In the context of active portfolio management, not only alpha and beta but
usually all quantities (return, risk, etc.) are defined relative to the benchmark:
if the portfolio loses money but the benchmark performs even worse, the
portfolio manager is still happy in this relative framework (this is not nec-
essarily true for the investor). This is in stark contrast to the previous sections,
where we considered the excess return and the risk of the portfolio itself, an
approach sometimes called Total Return Management. Still, all of the above
considerations in the Total Return framework can easily be recovered within
the benchmark-relative framework by simply defining the benchmark to be
the money market account.

There are two different ways commonly used by market participants to
define everything relative to the benchmark: using active quantities and
residual quantities. Let’s start with the active quantities.

28.3.1 Active Portfolio Properties

The active position is defined as the deviation of the portfolio weights from the
benchmark weights

w= w − wB . (28.10)
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Similarly, the difference between the cash positions of the portfolio and the
benchmark is called the active cash. From Eq. 26.64, the active cash is simply

Active Cash =
(

1 − wT 1
)

−
(

1 − wT
B1

)
= −wT 1

The active return is defined as the difference between the portfolio return,
Eq. 28.3, and the benchmark return.

rV := wT r̂ = r̂V − r̂B = αV,B + (βV,B − 1)̂rB + εV .

The expected active return is defined as the expected return of the portfolio
with weights given by the active position

RV = E [rV ] = wT R̂

= wT αB + (wT βB − 1)R̂B

= αV,B + (βV,B − 1)R̂B (28.11)

and the active risk is defined in terms of the variance of active returns:

σ 2
V := δt var [rV ] = δt var [εV ] + (βV,B − 1)2σ 2

B . (28.12)

The last equation holds since the errors εV are by construction uncorrelated
all other parameters. The term (βV,B − 1) appearing here is called active beta.
The active risk is also called Tracking Error since it is a measure of how well
the portfolio tracks the benchmark. We can of course also write the tracking
error in the form of Eq. 26.17 as the risk of a portfolio with position weights
w:

σ 2
V = δt var [rV ] = δt var

[
wT r̂

]
= wTCw .

The same holds for the expected active return in Eq. 28.11 when compared to
the expected portfolio return in Eq. 26.3. Indeed, many concepts introduced
in the previous sections carry over to the benchmark-relative framework by
simply replacing the weights w by the active weights w. For instance, in
analogy to Eq. 26.19 we can define the marginal active risk as

∂σV

∂w
= Cw√

wT Cw
= Cw

√
δt var [εV ] + (βV,B − 1)2σ 2

B
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and attribute the active risk to the individual positions as in Eqs. 26.20
or 26.21.

σV = wT ∂σV

∂w
=

M∑

i=1

wi

∂σV

∂wi

.

The amount of active risk attributed to the ith asset is thus

wi

∂σV

∂wi

= w2
i

∑M
k=1 Cki√

δt2 var [εV ] + (βV,B − 1)2σ 2
B

for i = 1, . . . , M .

The percentage of active risk attributed to the ith asset is this number divided
by σV .

28.3.2 Residual Portfolio Properties

While the above active quantities focus on the differences between the portfolio
and the benchmark itself, the residual quantities focus on difference between
portfolio properties and the properties implied by the CAPM. To be specific,
the residual (excess) return is defined as the difference between the portfolio
excess return and its excess return implied by the CAPM via Eq. 28.1.

r̃V := r̂V − βV,Br̂B = αV,B + εV . (28.13)

Correspondingly, the residual risk, is defined as the volatility of the residual
return:

σ̃ 2
V := δt var [̃rV ] = δt var [εV ] . (28.14)

According to Eq. 28.4, the expectation of the residual return is equal to the
portfolio’s alpha.

R̃V = E [̃rV ] = wT αB = αV,B . (28.15)

The Information Ratio is defined as the expected residual (excess) return per
residual risk and is therefore the benchmark-relative analogue to the Sharpe
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Ratio, Eq. 27.22.

γ̃V ≡ R̃V

σ̃V

= αV,B√
δt var [εV ]

. (28.16)

The residual position weights producing the above residual return and residual
risk are

w̃= w − βV,BwB . (28.17)

With these weights, we can write

R̃V = w̃T R̂ and σ̃ 2
V = w̃TCw̃ . (28.18)

and define the marginal residual risk in analogy to Eq. 26.19 as

∂σ̃V

∂w̃
= Cw̃√

w̃TCw̃
= Cw̃√

δt var [εV ]
. (28.19)

In analogy to Eq. 26.20, the residual risk attributed to the ith position is

w̃i

∂σ̃V

∂w̃i

= w̃2
i

∑M
k=1 Cki√

δt var [εV ]
for i = 1, . . . , M . (28.20)

The percentage Ãi of residual risk attributed to the ith asset is this number
divided by σ̃V .

28.4 Benchmark and Characteristic Portfolios

We have shown that attributes and characteristic portfolios prove to be very
useful tools in the “total return” framework. Motivated by this we will now
define some attributes and their characteristic portfolios in the benchmark-
relative framework. In Chap. 27 we analyzed the properties (i.e., leverage,
return, variance, etc.) of the characteristic portfolio for any arbitrary vector a
of asset attributes. We will now add to this list the characteristic portfolio’s
residual properties as well as its alpha and beta with respect to the benchmark.
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The ex ante estimators for alpha and beta are given by Eq. 28.9 with the
vectors of asset alphas and betas as in Eq. 28.4. With the weights of the
characteristic portfolio given by Eq. 27.4, the characteristic portfolio’s alpha
and beta with respect to the benchmark are

αa,B ≡ wT
a αB=aT C−1αB

aTC−1a

βa,B ≡ wT
a βB=aTC−1βB

aTC−1a
. (28.21)

Let’s look now at the residual properties of the characteristic portfolio. With
Eq. 27.4, the residual weights defined in Eq. 28.17 are

w̃a=wa − βa,BwB

= C−1a
aTC−1a

− aT C−1βB

aT C−1a
wB

= C−1a
aTC−1a

− aT C−1βB

aT C−1a
C−1βB

βT
BC−1βB

, (28.22)

where in the last step we have used the implied benchmark weights which will
be introduced below in Eq. 28.28. According to Eq. 28.18, residual return and
residual risk are then

R̃a ≡ w̃T R̂ = R̂a − σ 2
a

aTC−1βB

βT
BC−1βB

βT
BC

−1R̂,

σ̃ 2
a ≡ w̃TCw̃ = σ 2

a

[

1 −
(
aT C−1βB

)2

(
βT

BC−1βB

) (
aTC−1a

)

]

, (28.23)

where we have used Eqs. 27.6 and 27.7. Note that the Cauchy-Schwarz
inequality, Eq. 26.37, implies that σ̃ 2

a is always larger than zero except for
those attributes which are multiples5 of βB .

With the above results, Information Ratio and marginal residual risk
contributions can easily be calculated from their respective Definitions 28.16

5For such attributes we have σ̃ 2
a = 0. Thus, the characteristic portfolios of such attributes have no residual

risk.
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and 28.19 for any characteristic portfolio.

γ̃a = R̃a

σ̃a

= σ 2
a

σ̃a

aTC−1R̂ − σ 2
a

σ̃a

aTC−1βB

βT
BC−1βB

βBC
−1R̂

∂σ̃a

∂w̃
= Cw̃

σ̃a

= σ 2
a

σ̃a

a−σ 2
a

σ̃a

aTC−1βB

βT
BC−1βB

βB . (28.24)

The residual risk attributions follow directly from definition 28.20.

28.4.1 The Fully Invested Minimal Risk Portfolio

As a first example, we will apply the above results to the characteristic portfolio
for the attribute L = 1 introduced in Sect. 27.2, i.e., for the fully invested
minimal risk portfolio. Its alpha and beta with respect to the benchmark are

αL,B=1TC−1αB

1TC−11
, βL,B

1TC−1βB

1T C−11
.

Its residual weights are

w̃L = C−11
1T C−11

− 1TC−1βB

1TC−11
C−1βB

βT
BC−1βB

.

and the portfolio’s residual properties are

R̃a = R̂L − σ 2
L

aTC−1βB

βT
BC−1βB

βT
BC

−1R̂

σ̃ 2
L = σ 2

L

[

1 −
(
1TC−1βB

)2

(
βT

BC−1βB

) (
1TC−11

)

]

.

Information Ratio and marginal residual risk contributions are

γ̃L = σ 2
L

σ̃L

1TC−1R̂ − σ 2
L

σ̃L

1TC−1βB

βT
BC−1βB

βBC
−1R̂

∂σ̃a

∂w̃
= σ 2

L

σ̃L

1−σ 2
L

σ̃L

1TC−1βB

βT
BC−1βB

βB .
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As usual, the residual risk attributions now follow directly from defini-
tion 28.20.

We will postpone the discussion of the other two important characteristic
portfolios already introduced above, namely the portfolio for the attributeA =
R̂ of Sect. 27.3 and the market portfolio of Sect. 27.4 until we have introduced
two new portfolios, namely the characteristic portfolios for alpha and beta.

28.4.2 The Characteristic Portfolio for Beta

Let the attribute vector b be the beta of the assets with respect to the
benchmark as in Eq. 28.4

bi := βi,B ≡ cov(̂ri, r̂B)

var(̂rB)
= δt

σ 2
B

M∑

k=1

wB,kcov(̂ri, r̂k)︸ ︷︷ ︸
Cik/δt

or in vector notation

b = βB = CwB

wT
BCwB

(28.25)

According to Eq. 27.1, the exposure of any portfolio V to this particular
attribute is

bV = wT b = wT CwB

wT
BCwB

.

Comparing this with the portfolio beta βV,B with respect to the benchmark,
i.e., with

βV,B ≡ cov(̂rV , r̂B)

var(̂rB)
= δt

σ 2
B

M∑

k=1

wB,k cov(̂rV , r̂k)

= δt

σ 2
B

M∑

k=1

wB,k

M∑

i=1

wicov(̂ri, r̂k)︸ ︷︷ ︸
Cik/δt

= wTCwB

wT
BCwB

(28.26)
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we find that the exposure of any portfolio V to the attribute b is equal to the
portfolio beta with respect to the benchmark:

bV = wT b = βV,B .

Let’s investigate now the characteristic portfolio Vb for this particular
attribute, i.e., the minimum risk portfolio with unit exposure bV = 1.
According to Eqs. 27.4 and 28.25, this portfolio has the following weights

wb = C−1b
bT C−1b

=
(
wT

BCwB

) C−1 (CwB)
(
wT

BC
)
C−1 (CwB)

= wB .

Thus, the characteristic portfolio for the attribute “beta to a benchmark” is the
benchmark itself:

wb= wB . (28.27)

Therefore, among all portfolios with βV,B = 1, the benchmark itself has
minimum risk.

Equation 28.27 shows a way how to imply the weights of the individual
assets in the benchmark, if those weights are not known to the investors: From
historical time series determine the asset betas with respect to the benchmark
and the asset’s covariances. Then the implied benchmark weights are given by

wB = C−1βB

βT
BC−1βB

(28.28)

The portfolio risk and return and the asset betas follow from Eqs. 27.6, 27.7
and 27.9 as usual:

σ 2
b = 1

βT
BC−1βB

, R̂b = βT
BC

−1R̂
βT

BC−1βB

, βb = βB . (28.29)

Finally, the marginal risk contribution, Eq. 27.10, of each asset and the
percentage of risk attributed to each asset, Eq. 27.11, are:

∂σb

∂wb,i

= σbβi,B , Ab,i = wb,iβi,B for i = 1, . . . , M .
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According to Eqs. 28.21 and 28.6, the portfolio’s alpha and beta with respect
to the benchmark are simply zero and one

αb,B = 0 , βb,B = 1 . (28.30a)

Since the portfolio is the benchmark itself, all above properties also describe the
benchmark portfolio VB . Moreover, the residual weights all vanish. This can
also be verified explicitly by setting a = βB in Eq. 28.22. Therefore residual
risk and return are both zero, and the Information Ratio is undefined.

28.4.3 The Characteristic Portfolio for Alpha

Let’s now choose an attribute vector a to be the alpha of the assets with respect
to the benchmark, i.e., according to Eq. 28.4

a := αB = R̂ − βBR̂B . (28.31)

According to Eqs. 27.1 and 28.9, the exposure of any portfolio V to this
particular attribute is the (ex ante estimate for the) portfolio alpha:

aV = wT a =
M∑

i=1

wiαi,B = αV,B .

The characteristic portfolio Va for this particular attribute is the minimum risk
portfolio with unit exposure aV = 1, i.e., with a portfolio alpha of 1. According
to Eqs. 27.4, 27.6 and 27.9, the characteristic portfolio for the attribute a has
the following weights, variance, return and betas:

wa= C−1αB

αT
BC−1αB

=σ 2
aC

−1αB

σ 2
a = 1

αT
BC−1αB

R̂a = σ 2
a αT

BC
−1R̂ = αT

BC
−1R̂

αT
BC−1αB

Cwa

σ 2
a

= βa = αB . (28.32)
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Thus, the asset betas with respect to this characteristic portfolio Va are equal to
the asset alphas with respect to the benchmark portfolio VB . By contrast, the
portfolio alpha and beta of Va with respect to the benchmark are simply one
and zero6 as follows directly7 from Eqs. 28.21 and 28.6

αa,B=1 , βa,B = 0 . (28.33)

Since βa,B = ρa,Bσa/σB this implies that portfolio Va is totally uncorrelated
with the benchmark:

ρa,B = 0 .

With the asset betas as in Eq. 28.32, the marginal risk contribution,
Eq. 26.25, of each asset and the percentage of risk attributed to each asset,
Eq. 26.26, are:

∂σa

∂wa,i

= σaαi,B , Aa,i = wa,iαi,B for i = 1, . . . , M . (28.34)

Let’s look now at the residual quantities of this portfolio. Since βa,B = 0 we
have

w̃a= wa − βa,BwB = wa

and therefore

R̃a=R̂a und σ̃ 2
a = σ 2

a . (28.35)

6Va usually contains long and short positions.
7The fact that the portfolio beta is zero can also be derived very elegantly by applying Eq. 27.12 to the
characteristic portfolios Va and Vb:

baσ 2
b = abσ

2
a .

Here ab := wT
b a = wT

b αB = αb,B is the portfolio alpha of portfolio Vb with respect to the benchmark.
However, as shown in Eq. 28.27, portfolio Vb is the benchmark itself and has of course zero alpha w.r.t. to
itself, since a regression like Eq. 28.3 of any variable onto itself always yields α = 0 and β = 1. Thus ba

must vanish as well, since both variances σ 2
a and σ 2

b are positive. But ba , being the exposure of Va to
attribute b, is the portfolio Beta of Va with respect to the benchmark, ba := wT

a b = wT
a βB = βa,B .
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Moreover, the marginal residual risk contribution of each asset and the
percentage of residual risk attributed to each asset are the same as in Eq. 28.34.

∂σ̃a

∂w̃a,i

= σaαi,B , Ãa,i = wa,iαi,B for i = 1, . . . , M .

Note that because of Eq. 28.15 we have

R̃a = αa,B = wT
a αB = 1 (28.36)

where the last step follows because Va is the characteristic portfolio for αB .
Thus, portfolio Va not only has αa,B = 1 but it also has expected excess return
R̂a = 1. It therefore has the same expected excess return as the characteristic
portfolio VA for attribute R̂ discussed in Sect. 27.3. However, both portfolios
are not necessarily the same: among all portfolios with wT R̂ = 1 there are
some which also fulfill wT αB = 1. However, among the other portfolios with
wT R̂ = 1 there could well be some with less risk than portfolio Va . Thus,
portfolio Va is not necessarily the minimum risk portfolio with excess return
equal one, i.e., not necessarily equal to VA.

Because of Eqs. 28.36, 28.35, and 28.32, the information ratio of the
characteristic portfolio VA is

γ̃a = R̃a

σ̃a

= 1

σ̃a

= 1

σa

=
√

αT
BC−1αB . (28.37)

This can also be read in the following way: the total risk as well as the residual
risk of this portfolio are both equal to the reciprocal of the Information Ratio.

Portfolio Va has minimum risk, and because of Eq. 28.35, it also has mini-
mum residual risk among all portfolios V with αV,B = 1. Thus, portfolio Va

maximizes the Information ratio Eq. 28.37 among those portfolios. To show
that portfolioVa hasmaximal InformationRatio among all portfolios (and not
only among those with αV,B = 1), we will now show that for any arbitrary
portfolio V with weightsw, there is a portfolio with the same information ratio
and a portfolio alpha equal to one. We find this portfolio by constructing its
weights: the residual position weights of portfolio V are given by Eq. 28.17.
Because of Eq. 28.18, the Information Ratio (defined in Eq. 28.16) for any
portfolio Vλ with residual weights λw̃ is the same for any λ > 0. The weights



28 Active Management and Benchmarking 657

wλ of this portfolio follow directly from the requirement w̃λ=λw̃:

w̃λ=λw̃

wλ − βλ,BwB = λ
(
w − βV,BwB

)

wλ = λw + (βλ,B − λβV,B)wB . (28.38)

We can adjust λ such that the alpha of portfolio Vλ becomes one:

1
!= αλ,B = R̃λ = λR̃ = λαV,B �⇒ λ = 1

αV,B

.

Thus, for any given portfolio V with weights w there is indeed a portfolio Vλ

with the same information ratio and a portfolio alpha equal to one. The weights
of this portfolio can be obtained by solving the equation8

wλ = 1

αV,B

w + (βλ,B − βV,B

αV,B

)wB .

This proves that portfolio Va , having maximal Information Ratio among all
portfolios V with αV,B = 1, has indeed maximal Information Ratio among
all portfolio.

γ̃max = γ̃a = 1

σ̃a

= 1

σa

. (28.39)

This Equation is the benchmark-relative analogue to Eq. 27.23.
Choosing the arbitrary portfolio V in Eq. 28.38 to be the characteristic

portfolio Va itself (and observing Eq. 28.33) we get the most general form a
portfolio with the same (i.e., maximal) Information Ratio as Va may have:

wλ = λwa + βλ,BwB mit λ > 0 (28.40)

�⇒ γ̃λ = γ̃a .

8According to Eq. 28.26, βλ,B also contains the weights wλ:

βλ,B = wT
λ CwB

wT
BCwB

.

Therefore solving for wλ can only be done numerically.
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Equation 28.40 provides a handy method for constructing portfolios with
maximum Information ratio using the characteristic portfolios Va and Vb =
VB . Furthermore, it provides a powerful tool to check whether a given portfolio
has maximum IR. We will come back to this point later.

To complete this section, we will now show that a relation similar to
Eq. 27.25 for Sharpe Ratios also holds in the benchmark-relative framework
for Information Ratios. With Eq. 28.32 and the general Eq. 28.9, the alpha
of any portfolio with weights w can be expressed in terms of covariances with
the characteristic portfolio Va as

αV,B = wT αB = wT Cwa

σ 2
a

= δt cov(rV , ra)

σ 2
a

= δt cov(̂rV , r̂a)

σ 2
a

= δt cov(̃rV , r̃a)

σ 2
a

,

where the second-to-last step is trivial, since subtracting a constant rf doesn’t
change the covariances. The last step, however, is not trivial and only holds
because portfolio Va has zero beta with respect to the benchmark.9 With this
alpha, the IR of portfolio V can be written as10

γ̃V = R̃V

σ̃V

= αV,B

σ̃V

= δt cov(̃rV , r̃a)

σ̃V σ 2
a

= 1

σ̃a︸︷︷︸
γ̃a

δt cov(̃rV , r̃a)

σ̃V σ̃a︸ ︷︷ ︸
corr(̃rV ,̃ra)

,

where in the second step we have used Eq. 28.15 and in the last step we have
used Eqs. 28.35 and 28.37. Therefore, the IR of any portfolio V is given by the
(maximum) IR of the characteristic portfolio Va and the correlation between
the residual returns of those two portfolios:

γ̃V = γ̃a corr(̃rV , r̃a) for all portfolios V . (28.41)

This equation is the benchmark-relative analogue to Eq. 27.25.

9This can be derived from first principles with the help of Eq. 28.33:

cov(̃rV , r̃a) = cov(̂rV − βV,Br̂B , r̂a − βa,B︸︷︷︸
0

r̂B )

= cov(̂rV − βV,Br̂B , r̂a)

= cov(̂rV , r̂a) − βV,B cov(̂rB , r̂a)

= cov(̂rV , r̂a) − βV,B σ 2
b βa,B︸︷︷︸

0

.

10To get the factors δt right, observe Eqs. 26.16, 26.18 and 21.31.
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28.5 Relations Between Sharpe Ratio
and Information Ratio

To find out how the Sharpe Ratio used in Total Return Management is related
to the Information Ratio used in the benchmark-relative framework, we will
analyze the two characteristic portfolios with maximum Sharpe Ratio, i.e.,
portfolios VA of Sect. 27.3 and portfolio Vm of Sect. 27.4, in the benchmark
framework.

28.5.1 The Market Portfolio

We will begin by applying Eq. 28.40 to check if the market portfolio of
Sect. 27.4 has maximum IR. To bring its weights wm into a form similar
to Eq. 28.40, we write the asset returns in Eq. 28.4 with Eqs. 28.32 for αB

and 28.29 for βB :

R̂ = αB + βBR̂B = Cwa

σ 2
a

+ CwB

σ 2
B

R̂B . (28.42)

Expressing now the asset returns on the left hand side in terms of the market
portfolio as in Eq. 27.31, we get

Cwm

σ 2
m

R̂m = Cwa

σ 2
a

+ CwB

σ 2
B

R̂B .

Solving forwm shows that themarket portfolio can be written as a combination
of the benchmark portfolio VB and the characteristic portfolio Va .

wm = σ 2
m

σ 2
a

1

R̂m

wa + σ 2
m

σ 2
B

R̂B

R̂m

wB

= αT
BC

−1αB

1TC−1R̂
wa + βT

BC
−1R̂

1TC−1R̂
wB

= αT
BC

−1αB

1TC−1R̂︸ ︷︷ ︸
λ

wa + (
βT

Bwm

)

︸ ︷︷ ︸
βm,B

wB , (28.43)
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Here we have used Eqs. 27.31, 28.29 and 28.32 in the second step and
Eq. 27.30 in the last step. Although it looks very similar, λ is not the portfolio
alpha of the market portfolio.11 Nonetheless, Eq. 28.43 has indeed the form of
Eq. 28.40 with λ > 0 as long as R̂m > 0. Therefore, as is always the case when
the market portfolio is involved, everything only works if Inequality 26.59
holds.12

If Inequality 26.59 holds, then the market portfolio has maximal
Information Ratio (in addition to having maximal Sharpe Ratio).

γ̃m = γ̃a = γ̃max . (28.44)

Because of Eq. 28.41, this means that the residual returns of the market
portfolio are fully correlated with the residual returns of portfolio Va .

corr(̃rm, r̃a) = 1 .

From the above expression for wm, we find that the residual weights of the
market portfolio can be expressed in terms of the weights of portfolio Va as

w̃m ≡ wm − βm,BwB = αT
BC

−1αB

1TC−1R̂
wa = σ 2

m

σ 2
a

1

R̂m

wa . (28.45)

With these weights, the residual risk of the market portfolio becomes

σ̃m =
√
w̃T

mCw̃m = σ 2
m

σ 2
a

1

R̂m

√
wT

a Cwa = σ 2
m

σaR̂m

. (28.46)

Similarly, the residual return of the market portfolio is

R̃m = w̃T
mR̂ ≡ σ 2

m

σ 2
a

1

R̂m

wT
a R̂ = σ 2

m

σ 2
a

R̂a

R̂m

. (28.47)

11The Alpha of the market portfolio is given by

αm,B = αT
Bwm = αT

B C−1R̂

1T C−1R̂
.

12This is usually (but unfortunately not always) the case, since the expected return of the market portfolio
should be above the risk free rate as a compensation for the risk of the market portfolio.
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Inserting these results into Eq. 28.16 we find the Information Ratio of the
market portfolio to be the same as the Sharpe Ratio of portfolio Va .

γ̃m = R̃m

σ̃m

= R̂a

σa

= γa

or, written with γ̃max from Eq. 28.44:

γ̃max = γ̃m = γa . (28.48)

where in the last step we have used Eq. 28.44. Therefore, the (maximum)
Information Ratio of portfolio Va is equal to its Sharpe Ratio. However, this is
not the maximum Sharpe Ratio. The relation between the maximum Sharpe
Ratio γm (see Eq. 27.33) and the maximum Information Ratio γ̃m = γ̃a (see
Eq. 28.37) is

γmax

γ̃max
= γm

γ̃a

= σaR̂m

σm

= σm

σ̃m

,

where we have used Eq. 28.46 in the last step. The maximum Sharpe Ratio
is as much larger than the maximum Information Ratio as the total risk of
the market portfolio is larger than its residual risk.

γmax = σm

σ̃m

γ̃max . (28.49)

With γmax = γm = R̂m/σm and γ̃max = γ̃m = R̃m/σ̃m, this means that the
ratio of excess and residual return of the market portfolio equals the ratio of
the squares of its risk and residual risk:

R̂m

R̃m

= σ 2
m

σ̃ 2
m

= var [rm]
var [εm]

, (28.50)

where in the last step we have used the original definition 28.14 of the residual
risk.

The marginal contributions of the assets to the residual risk of the market
portfolio are by definition

∂σ̃m

w̃m

= Cw̃√
w̃T Cw̃

= Cw̃
σ̃m

.
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With the above results 28.45 and 28.46, this can be written as

∂σ̃m

w̃m

= σ 2
m

σ 2
a

1

R̂m

Cwa

σ̃m

= Cwa

σa

.

We can now apply Eqs. 28.32 to write the marginal residual risk contributions
to the market portfolio in several useful forms.

∂σ̃m

w̃m

= σaβa = σaαB . (28.51)

With Eq. 28.37 for σa we get a particularly insightful result:

αB = γ̃max
∂σ̃m

w̃m

. (28.52)

The asset alphas are proportional to the assets’ marginal residual risk
contributions to the market portfolio, with the maximum Information
Ratio being the constant of proportionality.

28.5.2 The Characteristic Portfolio of the Excess Return

Let’s now analyze the excess return’s characteristic portfolio VA with its
properties given by Eq. 27.24. Since VA is closely related to the market
portfolio via Eq. 27.29, we can directly use Eq. 28.43 to express VA in terms
of the characteristic portfolios for alpha and beta as

wA = σ 2
A

σ 2
L

R̂Lwm = σ 2
m

σ 2
L

R̂L

R̂m

[
σ 2

A

σ 2
a

wa + σ 2
A

σ 2
B

R̂BwB

]

= σ 2
A

σ 2
a

wa + σ 2
A

σ 2
B

R̂BwB = αT
BC

−1αB

R̂TC−1R̂
wa + (

βT
BwA

)

︸ ︷︷ ︸
βA,B

wB ,

where Eqs. 27.18, 27.24, 28.29 and 28.32 have been used. This again has the
form of Eq. 28.40 with λ > 0 for any positive definite Matrix C. Thus, the
excess return’s characteristic portfolio has maximal Information Ratio (in
addition to having maximal Sharpe Ratio).

γ̃A = γ̃a = γ̃max .
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This holds in every situation, even if Inequality 26.59 does not hold. The
residual weights of portfolio VA can now be expressed in terms of the weights
of portfolio Va as

w̃A ≡ wa − βA,BwB = σ 2
A

σ 2
a

wa .

With these weights, the residual variance of the portfolio becomes

σ̃m =
√
w̃T

ACw̃A = σ 2
A

σ 2
a

√
wT

a Cwa = σ 2
A

σ 2
a

σa .

Similarly, the residual return of the portfolio is

R̃A = w̃T
AR̂ = σ 2

A

σ 2
a

wT
a R = σ 2

A

σ 2
a

R̂a .

Inserting these results into Eq. 28.16, we find the Information Ratio of the
portfolio to be the same as the Sharpe Ratio of portfolio Va .

γ̃A = R̃A

σ̃A

= R̂a

σa

= γa .

This is no surprise since we already established γ̃A = γ̃a and we know from
Eq. 28.48 that γa = γ̃A.

The relation between the maximum Sharpe Ratio γA (see Eq. 27.23) and
the maximum Information Ratio γ̃A = γ̃a (see Eq. 28.37) is

γA

γ̃a

=
√

R̂TC−1R̂
αT

BC
−1αB

= σa

σA

.

Thus the relation between the maximum Sharpe Ratio and the maximum
Information Ratio can also be expressed in terms of the two volatilities σa

and σA. Together Eq. 28.49, the relationships between maximum Sharp Ratio
and maximum Information Ratio are in summary:

σm

σ̃m

= γmax

γ̃max
= σa

σA

. (28.53)

The first equality, involving the market portfolio, is only true if Inequal-
ity 26.59 holds, while the second equality holds in every situation.
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Market Data



29
Construction of the Yield Curve Universe

In the previous chapters we made intensive use of yield curves. With the help of
yield curves discount factors, i.e., zero-bond prices, are determined and thus
the (risk-neutral) present value of future cash flows. Yield curves are therefore
of fundamental importance for the valuation of all financial products. The
interest rates, also called zero interest rates, underlying the discount factors or
zero bond prices depend on the maturities of the respective zero-bonds. Strictly
speaking, a yield curve describes an entire continuum of different market or
risk factors, where each risk factor corresponds to a zero rate with a certain
maturity (as seen from today). To emphasize this time-dependency, this is often
called the interest rate term structure or term structure for short.

Since these different zero rates are not independent of each other, but
on the contrary very strongly correlated (see Chap. 34), and since only
certain maturities of interest rate instruments are traded anyway, it is perfectly
sufficient to describe a yield curve by a few constant parameters. For example,
these can be the zero rates or discount factors for a few maturities (the grid
points of the yield curve). Alternatively, a yield curve can also be modelled as a
parametric function using a finite set of constant parameters. In both cases, the
parameters are determined in such a way that the prices of a specified basket
of benchmark instruments (or benchmark quotes) are replicated as exactly as
possible. If the number of parameters is equal to the number of benchmark
instruments and no two benchmark instruments have the same maturity, it
is in principle possible to hit the benchmark prices exactly. The construction
of a yield curve can therefore also be understood as a methodology for the
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interpolation and extrapolation of zero rates or discount factors for such
maturities that are not present among the benchmark instruments.

The discount curve or yield curve described above is the risk-free yield curve.
It is independent of any risk other than pure interest rate risk. However, even
the most liquidly traded instruments contain other risks in addition to interest
rate risk, such as basis risk, liquidity risk and default risk. Therefore, numerous
other risky yield curves are needed in addition to the risk-free curve. This set
of curves is also called the yield curve universe. For the calculation of forward-
rates, for instance, basis spread yield curves (also called forward yield curves)
are needed, which take into account that forward interest rates are different
from risk-free rates by a basis depending on the maturity as well as the start
time. For the valuation of bonds, yield curves are required that incorporate
the specific default risk of the issuer. Occasionally, liquidity risk is considered
as separate from default risk. The valuation of instruments denominated in
foreign currencies, transformed into the home currency via a cross currency
swap, requires yield curves that reflect the cross currency basis (see Sect. 16.4).

29.1 Required Features of Discount Curves

We initially limit our considerations to (risk-free) discount curves. At any given
time t , the yield curve is a function f (T ) of the maturity T . This function
specifies the discount factor for discounting from T to t for each T and is
simply the present value at time t of a zero bond which pays one currency unit
at the later time T :

f (T ) = B(t, T ) .

Thus, we simply write B(t, T ) with t fixed. Alternatively, we could also view
the yield curve as a function of the zero rates R, i.e., f (T ) = R(T ). Then the
specification of an interest rate convention would also be necessary to interpret
the yield curve unambiguously. However, nothing is gained this way because
discount factors can be transformed into zero rates within any interest rate
convention, see Table 2.5.1 In the following, we therefore always view the yield
curve as discount factors as a function of the their maturity.

1Strictly speaking, this only holds true for interest rates greater than−m, wherem is the number of discrete
compoundings per year, since otherwise the formula for discrete compounding would fail. The authors
firmly believe that this case can be ruled out safely in the real world.
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For t = today this is today’s yield curve. Just as well, however, we can also
specify a future yield curve with t > today, which might be simulated in
the context of a term structure model; or, for t < today, a historical yield
curve, which is calculated using historical benchmark prices. Instead of time
points/dates, the time can also be expressed as a duration relative to t . This,
however, necessitates the additional specification of a day count method (see
Sect. 2.1.1). For numerical calculations e.g. act/365 is a suitable choice since
this method provides a simple and fast conversion of a date into a time period.
Today (or now) is then simply t = 0.

In the market, there exists no established standard method for determining
B(t, T ) if T does not coincide with the remainingmaturity Ti of a benchmark
instrument. Nevertheless, we can impose some requirements on the charac-
teristics of the yield curve that limit the choice of possible interpolation and
extrapolation procedures:

1. The prices of benchmark instruments should be replicated as accurately as
possible. This in particular ensures that the various procedures all yielding
(almost) the same values for the grid points.

2. The function f (T ) should be continuous. It’s not realistic for a discount
factor or interest rate to jump strongly from one day to the next.

3. The extrapolation, especially at the long end of the yield curve, i.e. for
large T , should not become arbitrarily large.

4. Oscillations of the yield curve should be avoided. Such oscillations can
occur with some interpolation methods such as Cubic Spline, for example,
when the rates between closely spaced sampling points differ greatly.

5. Depending on how the yield curve is used, the function f (T ) should be
differentiable once or twice. This is important, for example, for some short
rate models whose drift terms depend on the first and possibly also the
second derivative of the yield curve with respect to time.

These requirements are not strict boundary conditions, whichmust be fulfilled
in any case. Note, for example, that in a past version this list contained
the requirement to avoid negative interest rates. Reality has proven that this
requirement was unfounded. Nevertheless, these requirements provide us with
a kind of guideline to qualitatively assess different inter- and extrapolation
methods.
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29.2 Modeling the Yield Curve

Since only a finite number n of benchmark instruments is available to generate
a yield curve, that curve is actually only available at certain points in time,
the so-called grid points or Vertices T1, T2, . . . , Tn. A benchmark instrument
implicitly contains information up to and including the maturity of the last
interest rate on which the benchmark instrument depends. For a deposit or
a swap, this is the maturity of the instrument, for a future or FRA it is the
maturity of the underlying forward rate, even if the last payment was actually
made earlier. In this way one can associate exactly one vertex Ti to the i-th
benchmark instrument. Then, a discount factor Bi = B(t, Ti) is assigned
to each vertex Ti . The Sect. 29.6 deals with the question how these Bi are
determined. Here and for the time being, however, we take the n pairs (Ti, Bi)

with i = 1, 2, . . . , n as given and only investigate the question how to use
these data to interpolate discount factors for arbitrary T with T1 < T < Tn

and extrapolate for T < T1 or T > Tn.
The interpolation does not necessarily have to take place for the discount

factors. Instead, you can, for example, interpolate and extrapolate the corre-
sponding interest rates. These can be calculated from the Bi using both the
correct compounding method (annual, semi-annual, continuous, simple, etc.)
and the correct day count method applicable to the market/instrument in
question. Another alternative is to interpolate the logarithms of the discount
factors, i.e. ln(Bi) instead of Bi . This is called log interpolation. Therefore, it
is essential for any interpolation procedure to specify exactly which variables
(discount factors, zero rates, forward rates, etc.) are interpolated.

Ultimately, there is always freedom of choice with regard to the interpo-
lation method. One method or another may seem more appropriate for a
particular purpose, but there is no “right” or “wrong”, as the market data does
not provide information on the “right” discount factor between two vertices
Negatively formulated, this can also be considered as a systematic model risk:
Valuation differences resulting from different (but plausible) interpolation
methods cannot be resolved.

29.2.1 Interpolation Methods

An interpolation method is generally a function f (t), that for a given set of
value pairs {(t1, F1), (t2, F2), . . . , (tn, Fn)}, has the following properties:

f (ti) = Fi for all i = 1, 2, . . . , n ,
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i.e. at the grid points the function matches exactly with the Fi and otherwise
there are no further conditions. Depending on the intended use, however,
further requirements may be added, such as e.g. differentiability (also at the
grid points).

Linear Interpolation

For linear interpolation, the function f (t) is defined piecewise for adjacent ti .
To do this, the smaller and larger vertex tm and tm+1 closest to t must first be
determined with tm ≤ t < tm+1. On the interval [tm, tm+1] the interpolated
f (t) is then defined as

f (t) = Fm + Fm+1 − Fm

tm+1 − tm
(t − tm) (29.1)

= Fm(tm+1 − t ) + Fm+1(t − tm)

tm+1 − ti
.

This function is continuous everywhere. The function has kinks at the grid
points, so that it cannot be differentiated there. The second derivative is always
zero (except at the grid points where it is not defined). Linear interpolation is
a fast, simple method which is commonly used, if e.g. differentiability is not a
necessity. Often, the interpolation is done for the logarithms of the discount
factors. This is called log linear interpolation.

Constant Interpolation

The constant interpolation sets a constant value F for f (t) on each interval
[tm, tm+1]:

f (t) = F t ∈ [tm, tm+1] .

Since the constant value F can be different in each interval, the method
is also called piecewise constant interpolation. For example, you can choose
F = Fm, F = Fm+1 or F = (Fm+1 + Fm)/2, where F is different for each
interval. It follows directly that the function has jumps at the vertices and is
therefore neither differentiable nor continuous there. A constant interpolation
of discount factors or zero rates is therefore out of the question. However, as
an interpolation method for forward rates, piecewise constant interpolation
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is a sensible alternative. In particular, constant interpolation of the forward
rates in continuous compounding is identical to a log linear interpolation of
the discount factors. To show this, we consider the interpolation of a discount
factor in log-linear interpolation:

ln B(t, T ) = ln B(t, Tm) + ln B(t, Tm+1) − ln B(t, Tm)

Tm+1 − Tm

(T − Tm)

= ln B(t, Tm) +
ln

(
B(t,Tm+1)

B(t,Tm)

)

Tm+1 − Tm

(T − Tm)

= ln B(t, Tm) + ln B(Tm, Tm+1|t )
Tm+1 − Tm

(T − Tm) . (29.2)

The last line follows from 2.7. If B(Tm, Tm+1|t ) is expressed by a constant
forward rate Fm,m+1 for the period from Tm to Tm+1, B(Tm, Tm+1|t ) =
exp[−Fm,m+1(Tm+1 − Tm)] (see Table 2.5), then it follows:

ln B(t, T ) = ln B(t, Tm) − Fm,m+1(Tm+1 − Tm)

Tm+1 − Tm

(T − Tm)

= ln B(t, Tm) − Fm,m+1(T − Tm)

= ln B(t, Tm) + ln B(Tm, T |t ) ,

where the last line again is valid because of Eq. 2.7 if the natural logarithm
is calculated for both sides. Then Fm,m+1 is the forward rate interpolated for
the period Tm to Tm+1, which corresponds to constant interpolation on the
interval [Tm, Tm+1] with F = Fm,m+1.

Other Interpolation Methods

In addition to the interpolation methods presented here, many others are also
used in practice. Cubic splines approximate the sections between the grid
points by 3rd degree polynomials and have the property of being differentiable
twice with respect to time (compare this to linear interpolation which has
kinks at the grid points and therefore cannot even be differentiated once).
However, unwanted oscillations may occur within cubic spline interpolations,
i.e. the interpolated curve exhibits significantly greater fluctuations than the
values at the vertices suggest. Constraint splines are differentiable only once,
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but avoid the problem of oscillations, since it is ensured that any interpolated
value always lies between the values of its adjacent vertices [126]. Another
smooth interpolation method, which, however, also leads to oscillations (albeit
a bit less severe than cubic splines) is the Hermite interpolation. The Excel
workbook Interpolation.xlsx from the download area [50] demonstrates
the differences between different interpolation methods.

29.2.2 Extrapolation Methods

Sometimes discount factors are also needed beyond the range covered by the
available benchmark instruments. The calculation of values outside the range
of known quantities is called extrapolation. An extrapolation is inherently
more uncertain than an interpolation (at least if one assumes that the “true”
function underlying the observed data is “good”, i.e. smooth and without
strong deflections in one direction or another). At the long end of the yield
curve, i.e. for long maturities, it is not clear from the outset whether interest
rates should rise, fall or remain constant. It is often assumed that interest
rates for very long maturities fluctuate around a certain mean (without
being able, however, to accurately determine said mean). Therefore, the first
ground rule for extrapolations is to avoid them whenever possible, for example
by selecting suitable benchmark instruments that cover the whole range of
required maturities.

Such problems don’t exist at the short end of the yield curve, i.e. for short
maturities of just a few days, since, at least in the major currencies, liquid
benchmark quotes are available for short-running o/n- and t/n-Deposits
(overnight and tomorrow-next, with start date today or the next trading day
and maturity and redemption one trading day later). Besides, it is certain that
the discount factor for a maturity in 0 days is exactly 1, since, of course,
no interest accumulates over zero time. If the yield curve is constructed
with discount factors, one can therefore always insert a vertex at T = t

with B(t, t) = 1. With log-linear interpolation for the discount factors
this procedure corresponds to a constant extrapolation of the continuously
compounded zero rate of the first vertex:

ln B(t, T ) = ln B(t, t) + ln B(t, T1) − ln B(t, t)

T1 − t
(T − t )

= −R1(T1 − t )

T1 − t
(T − t )

= −R1(T − t ) ,
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where ln B(t, t) = ln 1 = 0 was used. R1 denotes the continuously
compounded zero rate at the first vertex T1 with B(t, T1) = exp(−R1

(T1 − t )).
The extrapolation at the long end is more problematic. Life insurance

policies require very long time horizons of up to 70 years tomodel their interest
rate risks and even beyond that. However, no liquidly traded benchmark
instruments are available for such long maturities and thus, extrapolations
can’t be avoided. Since no reliable data are available anyway, very simple
extrapolation approaches are commonly used. Very often, the interest rates
for all maturities later than the last vertex are assumed to be constant and
equal to the interest rateRn associated with that last vertex (the discount factor
cannot be kept constant as this implies forward interest rates equal to zero).
An alternative method is to simply add an additional vertex for the maximum
requiredmaturity and assume the interest rateR∞ for such very long periods to
be the long-time historical mean or an expert’s estimate. An explicit asymptotic
behavior towards a limiting value R∞ can be obtained using an ansatz of the
form

R∞ + b exp(−γ (T − t))

where the parameters b and γ are determined by requiring that the price
B(t, Tn) and its first derivative are hit exactly at the last vertex Tn.

29.3 Parametric Yield Curves

An alternative to the value pairs of grid point and discount factor described
above are parametric approaches which describe the yield curve by a math-
ematical function depending on only a few parameters (usually far fewer in
number than the benchmark instruments). The parameters are determined
via optimization procedures in such a way that the prices of the benchmark
instruments are hit as closely as possible. Advantages of this method are that the
yield curves can be modeled so that they meet very strict smoothness require-
ments (e.g. multiple or infinitely often differentiable), and can be calculated
very quickly, with no further data needed except three or four parameters. The
optimization procedures are not significantly different from those described in
Sect. 29.6. A disadvantage, however, is that not all benchmark prices can be
reproduced exactly, as the number of parameters is significantly lower than the
number of benchmark prices. The best known of these parametric approaches
was developed by Nelson and Siegel and is presented in the following section.
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Nelson-Siegel-Procedure

Nelson and Siegel have proposed a parameterization of the yield curve with
the interest rate R(t, T ) being a function of the maturity T as follows [148]:

R(t, T ) = β0 + β1
1 − e−γ (T −t)

γ (T − t)
+ β2

(
1 − e−γ (T −t)

γ (T − t)
− e−γ (T −t)

)

.

The parameters β0, β1, β2 and γ of this model are selected or optimized in
such a way that the prices of all benchmark instruments are hit as accurately
as possible. β0 is a measure for the interest rate for very long maturities, since
the other two terms become arbitrarily small for large T − t . The parameter γ

can be used to control how quickly the second and third term approach 0. The
second term is dominant at the short end of the yield curve and the third term
at medium maturities. Svensson proposed an extension of the Nelson-Siegel
model [177], in which an additional term with two additional parameters is
added (also called Nelson-Siegel-Svensson or NSS model).

R(t, T ) =β0 + β1
1 − e−γ (T −t)

γ (T − t )
+ β2

(
1 − e−γ (T −t)

γ (T − t )
− e−γ (T −t)

)

+ β3

(
1 − e−γ1(T −t)

γ1(T − t )
− e−γ1(T −t)

)
.

At first sight, these two parameterization approaches look like they are not
defined for T = t because of the term T − t in the denominator. However, it
can easily be shown that R(t, t) = β0 at this boundary, i.e. the function can
be continuously continued at this point. Although most typical yield curves,
such as rising, falling and those with a small hump or local maximum at the
short end (occasionally a local minimum) can be modeled by these parametric
forms, it is not possible to hit all liquid benchmark quotes of a typical yield
curve. That’s partly simply because 15 or 20 available prices of benchmark
instruments contain much more information than can be expressed by just
four or six parameters. Also, it is not easy to find the optimal set of parameters
that best meets the quoted prices of a given set of benchmark instruments [76].
An example for an optimization result is shown in Fig. 29.1. These parametric
approaches are therefore rarely used today for modeling discount curves, where
an accurate valuation of interest rate derivatives such as swaps is important.
However, they are still used today in cases where very little market data is
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available and simple interpolation and extrapolation would lead to implausible
results. This applies, for example, to zero bond spread curves (depending
on the market segment and rating class, very few liquid bond prices might
be available for calibration). The same applies to spread curves that cannot
be observed directly, such as liquidity spread curves. Bond sector curves
are another application. The problem here is that bond prices are not only
dependent on the current interest rates, but also on other effects, such as
liquidity, default risk, etc., some of which are specific to individual bonds.
This is called specific interest rate risk. In such cases it is not expedient to try
to replicate all prices with a single yield curve. Instead, the yield curve should
only contain the general interest rate risk, meaning the average interest rate for
a class or sector of bond issuers.

29.4 Construction of the Curve Hierarchy

In former times there were only a few yield curves per currency, today one has
to deal with a whole zoo of yield curves, which is why one speaks of a yield
curve universe. Unless otherwise stated, in this book we mean by a yield curve
or, more precisely, a discount factor curve, the risk neutral or risk free yield
curve, free from all effects of risk factors other than pure interest rate risks. In
particular, this means that the curve does not contain any default, liquidity,
basis or other spread risk components. This already explains how the risk-free
discount factor curve differs from the other curves: it contains none of these
other risk components. Since the present value of a future cash flow decreases
as the interest rate increases, almost any additional risk factor that reduces the
present value of the cash flow can be taken into account by adding a premium
(or spread) to the risk-free interest rate.

In order to organize this yield curve universe, a hierarchical structure is
suitable in which the risk-free curve represents the base curve and is referred to
in the following as R(t, T ), for a fixed date t . The effect of an additional risk
factor on the present value of future cash flows can then generally be modeled
as a spread curve (for example, SL(t, T ) for liquidity risk or SD(t, T ) for
default risk) over the risk-free yield curve. A risky yield curve RR+L+D(t, T )

with liquidity and default risk components is then obtained simply by adding
spreads to the risk-free interest rate:

RR+L+D(t, T ) = R(t, T ) + SL(t, T ) + SD(t, T ) .
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Using continuous compounding for risk-free interest rates and the spreads, the
corresponding discount factors have the following simple relationship (where
we omitted the time arguments of interest rates and spreads for the sake of
clarity)

BR+L+D(t, T ) = e−RR+L+D(T −t) = e−(R+SL+SD)(T −t)

= B(t, T )e−SL(T −t)e−SD(T −t) = B(t, T )BSL
(t, T )BSD

(t, T ) .

The spreads can thus also be represented as multiplicative factors BSL
(t, T )

and BSD
(t, T ) which, multiplied by the risk free discount factor, result in the

risky discount factor. For other interest rate conventions, the conversion is not
as simple. In particular, the spread factors are then no longer independent of
the risk-free interest rate. For example, within discrete annual compounding,
the risky discount factor becomes

BR+D(t, T ) = (1 + R + SD)−(T −t) = (1 + R)−(T −t)

(
1 + R + SD

1 + R

)−(T −t)

= B(t, T )

(
1 + R + SD

1 + R

)−(T −t)

.

This can lead to surprising effects. If, for example, the present value of
the default risk of a zero bond is expressed as a premium over the interest
rate in discrete annual compounding, this spread will change if the risk-free
interest rates changes—even if the survival probability remains the same. The
construction of a suitable yield curve hierarchy also facilitates the calculation
of risk sensitivities, because only then a sharp separation of effects from the
various risk factors such as default risk or liquidity risk is possible.

The hierarchy of yield curves proposed here also implies a sequence that
should be observed when generating the yield curves:

1. Generation of the risk-free discount factor curve, which forms the basis for
all other yield curves.

2. Generation of the forward curves or base spread curves used to calculate
forward interest rates for different maturities; for example, one curve each
for forward rates with maturities of one, three, six and twelve months. Care
should be taken to start with the curves for which the most liquidly traded
quotes are available. In the Euro zone, for example, it makes sense to first
generate the 6M forward curve, since swaps with coupon periods of 1Y on
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the fixed side against 6M on the variable side are most liquidly traded. To
generate the 3M curve one can then use basis swaps with 3Mvariable against
6M variable. But this requires that the 6M curve is already available. In
USD, on the other hand, it makes more sense to start with the 3M curve,
since swaps with 6M fixed against 3M variable in USD are traded more
frequently than 1Y fixed against 6M variable.

3. Generating cross-currency basis curves for all required foreign currencies
to ensure that all products with foreign currency components can also be
valuated.

4. Finally, all other required yield curves can be generated.

29.5 Selection of Benchmark Instruments

Two key aspects are of particular importance when selecting appropriate
benchmark instruments. On the one hand, the most liquidly traded instru-
ments available should be selected. Illiquid instruments contain little to no
information about the interest rates actually traded. Since the yield curves play
such a central role in all valuation issues, one cannot afford gross inaccuracies.
This is especially true for the risk-free discount factor curve. On the other
hand, it is necessary that all benchmark instruments belong to the same risk
class. For the generation of the risk-free yield curve, only instruments can
be considered which depend solely on risk-free interest rates and no other
risk factor, particularly no basis or default risks. To generate a 3M forward
curve, only instruments that are dependent on 3M forward rates (e.g. 3M-
EURIBOR) and on interest rates that are already known can be considered.
If these instruments depend, for example, on 6M forward rates, or on risk-
free interest rates for discounting cash flows, then these curves must have been
generated beforehand, see Sect. 29.4. If the benchmark instruments differ in
their risk profile, then jumps in the yield curve can occur, which should be
avoided at all costs. For the generation of a 3M yield curve, for example, 3M
deposits, 3MFRAs or 3M against 6MBasis Swaps could be used. For the latter,
in addition to the risk-free yield curve, the 6M curve must have been generated
already(assuming liquidity of the instruments). However, the simultaneous use
of 3M futures quotes is prohibited, since 3M futures contracts are secured by
variation margins and therefore belong to a different risk class. It is therefore
indispensable to precisely analyze the products behind the benchmark quotes
in order to determine exactly all costs and dependencies on risk factors.

A third aspect, also not to be neglected, is the synchronicity of the market
prices used. All prices and quotes should be determined within as short a
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time period as possible. Due to the hierarchical structure, this applies to all
benchmark instruments of all curves of the yield curve universe, as otherwise
the spreads between the various yield curves would be incorrect due to interim
market movements. This applies in particular to the cross-currency basis
spread curves, which is problematic in practice because liquid market quotes
are not available at the same time for all currency areas.

29.5.1 Risk Free Interest Rates

One question remained unanswered as yet: Which benchmark instruments
should be used for the risk-free yield curve which is the basis for all other
curves. First of all, it should be noted that no financial instrument is completely
free of all but pure interest rate risks. At best, you can find liquidly traded
products that come as close as possible to the ideal. Due to their liquidity,
the first and foremost candidates are Overnight Index Swaps (OIS) and Repo
Rates. OIS, like ordinary swaps, have a variable side and a side with a fixed
coupon. However, the variable side is based on the overnight (o/n) interest rate
and will be either compounded over the entire interest period (e.g. EONIA in
the euro zone) or it will be averaged over the interest period (e.g. in USD
area). The underlying o/n interest rate is unsecured and, like e.g. EURIBOR,
is determined on a daily basis by a committee consisting of a group of banks
with good credit ratings. Since a default of one of the participating banks
within the short period of just one day is extremely unlikely (especially since
a participating bank must resign from the committee as soon as its rating
deteriorates), these swaps do not carry any significant default risk.

Repo rates are interest rates for securities lending transactions (repurchase
agreements). As they are collateralized transactions, repo transactions are
considered to be free of default risk. However, the securities, such as equities
or bonds, used as underlying instruments for repo transactions are subject to
strong price fluctuations, so that phases of underprotection are possible. A
further disadvantage is that supply and demand of repo transactions on certain
underlyings (e.g. to enter into short positions) can lead to a distortion of prices
or repo rates. These arguments suggest that OIS rates are preferable as the best
proxy for risk-free interest rates.

In fact, OIS rates have established themselves on the market as a quasi-
standard for building risk-free yield curves. Repo curves can then be defined as
spread curves over the OIS curve (where these spreads could also be negative).
However, the differences between repo curves andOIS curves are usuallymuch
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smaller than, for example, the difference between an OIS curve and the 6M
forward curve.

The situation is different if the transactions are collateralized with cash
(see Sect. 20.2.1). Nowadays, unsecured transactions tend to be the excep-
tion. They have disappeared completely from interbank trading. Only in
trades between banks and non-banks, states or municipalities are unsecured
transactions still common. For a collateralized transaction, the interest rate
on the collateral account is decisive. In fact, the collateral account then
assumes the role of the risk-free bank account, i.e. the numeraire used in
the derivation of the Black-Scholes equation [136, 155]. The whole derivation
remains consistent and generalizable if the risk free bank account is replaced
by the collateral account. As a consequence, the risk-neutral interest rate hast
to be replaced by the interest rate applicable to the collateral account.

29.6 Determination of the Discount Factor Curve

In the following, we will now explicitly generate an OIS yield curve. There
are two fundamentally different approaches. The classic Bootstrapping and the
optimization procedure. Using these two methods, we will generate an OIS
curve for the EUR market.

29.6.1 Bootstrapping

The classic bootstrapping begins with the benchmark instrument with the
shortest maturity and successively adds another grid point to the yield curve
with each additional benchmark instrument. The discount factors or zero rates
are calculated in such a way that the prices of the benchmark instruments
are precisely met. Benchmark instruments with more than one cash flow use
the known portion of the yield curve to discount earlier cash flows. This
ensures that all benchmark prices can be replicated exactly with the finished
yield curve once the calculation has been completed. This, however, requires
that the interpolation method used does not depend on discount factors at
later grid points. This condition can be fulfilled for linear interpolation, for
example, but not for splinemethods, which is why spline interpolations are not
consistent with bootstrapping procedures. Likewise, parametric approaches
are excluded. In addition, the bootstrapping algorithm has to be adapted if
a different instrument type is to be used.
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Table 29.1 Benchmark instruments and resultingOIS yield curve in the formof discount
factors for Bootstrapping and Nelson-Siegel-Svensson as of 28 November 2013 (the
quotes are fictitious and incomplete)

Grid Point Boot- Nelson-
Benchmark Maturity [Days] Quote strapping Siegel

0 1.000,000,00 1.000,000,00
Deposit o/n 1 0.131% 0.999,996,36 0.999,995,95
Deposit t/n 4 0.134% 0.999,985,19 0.999,983,95
Swap 1W 11 0.146% 0.999,956,81 0.999,956,78
Swap 1M 35 0.130% 0.999,873,26 0.999,871,97
Swap 3M 95 0.118% 0.999,687,01 0.999,707,08
Swap 6M 186 0.102% 0.999,469,80 0.999,539,38
Swap 9M 278 0.095% 0.999,262,67 0.999,400,55
Swap 1Y 369 0.089% 0.999,083,66 0.999,225,72
Swap 18M 551 0.097% 0.998,513,06 0.998,544,21
Swap 2Y 734 0.134% 0.997,272,92 0.997,129,64
Swap 3Y 1100 0.250% 0.992,402,63 0.991,242,46
Swap 5Y 1831 0.701% 0.964,891,99 0.965,522,88
Swap 7Y 2561 1.098% 0.924,215,91 0.924,038,80
Swap 10Y 3658 1.604% 0.846,676,48 0.846,414,05
Swap 15Y 5485 2.103% 0.717,100,43 0.717,476,99
Swap 20Y 7309 2.290% 0.615,928,89 0.613,790,10
Swap 30Y 10961 2.376% 0.472,776,72 0.474,268,82

For the yield curve we choose log-linear interpolated discount factors. As
suggested in Sect. 29.2.2, we work around the problem of extrapolation at the
short end by inserting the point T = t with B(t, t) = 1. The benchmark
instruments are listed in Table 29.1. The reference date for the calculation
is Thursday, November 28, 2013. The selected benchmark instruments are
not a comprehensive list of all available instruments, rather they represent
a sufficiently realistic selection to demonstrate the process of yield curve
generation. In particular, the “negative hump” with a minimum at one year
term is not untypical. Although the Nelson-Siegel-Svensson method used can
principally not hit the vertices exactly, the agreement with the bootstrapping
result is very good.

The o/n deposit starts at the time t and ends on the following bank working
day, in this case Friday, November 29th, one calendar day later. The quoted
interest rate is Qo/n = 0.131% in simple compounding with day count
convention actual/360 and refers to a present value of Vo/n = 1. That is how
this quote is to be interpreted. Since the deposit has only one future cash flow,
this can be used directly to determine the discount factor. Thus, we get for our
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first grid point T1 = t + 1 day:

Vo/n(t) = 1 = B(t, T1) (1 + Qo/n(T1 − t ))

⇔ B(t, T1) = 1

1 + Qo/n(T1 − t )
= 1

1 + Qo/n
360

≈ 0,99999636 .

The next benchmark instrument is the tomorrow-next (t/n) deposit, which
starts at the time T1 and ends at the following bank business day T2. Because
of the weekend onNovember 30 andDecember 1st that’s December 2nd, 2013,
three calendar days later. The value of the t/n deposit Vt/n(T1) at time T1 is 1,2
analogous to the o/n deposit. Otherwise, the quotation is to be interpreted
analogously to the o/n deposit. We can thus establish the following equation:

Vt/n(t) = B(t, T1)Vt/n(T1) = B(t, T1) = B(t, T1)B(T1, T2|t) (1 + Qt/n(T2 − T1)
)

= B(t, T2)
(
1 + Qt/n(T2 − T1)

)

⇔ B(t, T2) = B(t, T1)

1 + Qt/n(T2 − T1)
= B(t, T1)

1 + 3Qo/n
360

≈ 0,99998519 .

Since the t/n deposit starts in the future, we need Gl. 2.7 to calculate the
desired zero bond B(t, T2).

All other benchmark instruments are EONIA swaps and start at the time T2,
which corresponds to the typical two valuta days. Swaps with terms of up
to one year have only one coupon period, otherwise the coupons are paid
annually both on the variable (EONIA) side and on the fixed side. EONIA
swaps with maturities between 12 and 24 months (like the 18-month swap in
Table 29.1) have a shortened first period. The coupon CEONIA of the EONIA
cash flow from Ti to Tj is calculated using compounded o/n rates of the
individual interest rate periods over that time, i.e.:

CEONIA(Ti, Tj ) =
M−1∏

m=1

(
1 + Rm(bm+1 − bm)

360

)
− 1 . (29.3)

Here, bm with m = 1, 2, 3, . . . , M , b1 = Ti , and bM = Tj denote the
banking days between Ti and Tj . Rm is the forward o/n rate that starts on the
day bm and ends on the following bank working day bm+1. Since we have
defined the EONIA swaps as our benchmark for risk-free interest, we can

2For simplicity’s sake, all present values refer to a Nominal of € 1.
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express Rm directly by a forward discount factor without having to add an
additional base spread. According to Table 2.5, the parenthesis expression in
Eq. 29.3 is just equal to the inverse forward discount factor, so that:

CEONIA(Ti, Tj ) =
M−1∏

m=1

B−1(bm,Bm+1|t ) − 1 (29.4)

= B−1(Ti, Tj |t ) − 1 . (29.5)

The quoted interest rate Q1W, on the other hand, corresponds to the interest
rate of the fixed side. Since the swap is usually quoted in such a way that it has
zero value, the coupon on the fixed side must be equal to the coupon on the
variable side. Therefore, it follows further

Q1W(Tj − Ti) =B−1(Ti, Tj |t ) − 1

⇔ B(Ti, Tj |t ) = 1

1 + Q1W(Tj − Ti)

⇔ B(t, Tj ) =B(t, Ti)

(
1

1 + Q1W(Tj − Ti)

)
.

In the last line, the equation was multiplied by the already known zerobond
B(t, Ti) to obtain the sought after zerobond price B(t, Tj ). In the same way,
the discount factors for all maturities up to and including one year can be
calculated.

For maturities of more than one year, several cash flows happen on both
sides. Generally, we’ll look at an EONIA swap with L cash flows at times Tl

with l = 1, 2, 3, . . . , L and T0 as the beginning of the first coupon period.
With the exception of B(t, TL), all discount factors B(t, Tl) with l =
0, 1, 2, . . . , L − 1 are already known. The quotation for the L-EONIA swap
is denoted as QL. Since both sides of the swap have the same present value, it
follows that

L∑

l=1

B(t, Tl)QL(Tl − Tl−1) =
L∑

l=1

B(t, Tl)CEONIA(Tl−1, Tl)

=
L∑

l=1

B(t, Tl)
(
B−1(Tl−1, Tl |t) − 1

)

=
L∑

l=1

(B(t, Tl−1) − B(t, Tl)) = B(t, T0) − B(t, TL) ,
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where Gl. 29.5 and again Gl. 2.7 were used. If we now put all terms with
B(t, TL) on the same page, we continue with

B(t, TL) (1 + QL(TL − TL−1)) =B(t, T0) +
L−1∑

l=1

B(t, Tl)QL(Tl − Tl−1)

⇔ B(t, TL) =
B(t, T0) +

L−1∑

l=1

B(t, Tl)QL(Tl − Tl−1)

1 + QL(TL − TL−1)
.

(29.6)

Since all quantities on the right side are already assumed to be known,B(t, TL)

can be calculated.
However, in our derivation we had assumed that all B(t, Tl) with l =

0, 1, 2, . . . , L − 1 were already known. If you look at Table 29.1, however,
you will notice that quotes are not available for every year, especially for long-
dated swaps. For example, a quote with a term of 6 years is missing. For
maturities longer than 10 years there are often only quotes at 5-year intervals.
We must therefore calculate the needed intermediate steps at the same time as
we calculate the discount factor for the grid point B(t, TL). For the finished
curve to accurately meet the benchmark prices, this must be done in a way that
is consistent with the chosen interpolation method. It is therefore generally not
possible to commit to an interpolation method only after bootstrapping has
been completed, since the interpolation method influences the bootstrapping
algorithm. This is now exemplified by an example. We calculate again the
vertex B(t, TL) using a swap with Maturity TL. To price that swap we need
the discount factors B(t, Tl) with l = 0, 1, 2, . . . , L, where the discount
factors up to and including l = L − 2 are already known. So, we still
need B(t, TL−1) to calculateB(t, TL). To determineB(t, TL−1) we apply our
selected interpolation procedures. With linear interpolation, for instance, we
get

B(t, TL−1) = B(t, TL−2) + B(t, TL) − B(t, TL−2)

TL − TL−2
(TL−1 − TL−2) .
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This inserted into Eq. 29.6 yields:

B(t, TL) =
B(t, T0) +

L−2∑

l=1

B(t, Tl )QL(Tl − Tl−1)

1 + QL(TL − TL−1)

+

(
B(t, TL−2) + B(t, TL) − B(t, TL−2)

TL − TL−2
(TL−1 − TL−2)

)
QL(TL−1 − TL−2)

1 + QL(TL − TL−1)

= 1

1 + QL(TL − TL−1)

⎛

⎝B(t, T0) +
L−2∑

l=1

B(t, Tl)QL(Tl − Tl−1)

+ B(t, TL−2)QL

(
1 − TL−1 − TL−2

TL − TL−2

)
(TL−1 − TL2)

+B(t, TL)
(TL−1 − TL−2)2

TL − TL−2

⎞

⎠ .

Solving for B(t, TL) we get

B(t, TL) =
(

1 − (TL−1 − TL−2)
2

(TL − TL−2)(1 + QL(TL − TL−1)

)−1

(

B(t, T0) +
L−2∑

l=1

B(t, Tl)QL(Tl − Tl−1)

+ B(t, TL−2)QL

(
1 − TL−1 − TL−2

TL − TL−2

)
(TL−1 − TL2)

)

.

Now all unknown quantities on the right side are eliminated and B(t, TL) can
be calculated.

Finally, we will look at an example with log-linear interpolation of discount
factors. The interpolated discount factor B(t, TL−1) is according to Eq. 29.2

ln B(t, TL−1) = ln B(t, TL−2) +
ln

(
B(t,TL)

B(t,TL−2)

)

TL − TL−2
(TL−1 − TL−2)
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or after exponentiation

B(t, TL−1) = B(t, TL−2)

(
B(t, TL)

B(t, TL−2)

) TL−1−TL−2
TL−TL−2

.

With this expression inserted into Eq. 29.6, the equation can no longer be
solved for B(t, TL). Thus, depending on the chosen interpolation method,
calculating B(t, TL) can become quite difficult or even impossible, so that
B(t, TL) can only be determined numerically, for example using a numerical
root search. For classic bootstrapping this effort is only worthwhile if a
multidimensional optimization of the yield curve (as described in the following
Sect. 29.6.2) is ruled out for performance reasons. However, this should
usually not be the case for most applications in practice. Figure 29.1 shows
that the optimization error for the method presented here is minimal. This
does not apply to parametric procedures, though.
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Fig. 29.1 Deviation (in basis points) of the theoretically calculated prices from the
actual quoted prices. While the deviation is less than 10−10 base points for bootstrap-
ping (i.e. optimization of log-linearly interpolated discount factors at fixed vertices),
the Nelson-Siegel-Svensson-procedure deviates by 1 or 2 and in one case even by more
than 3 basis points
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29.6.2 Optimisation

A more general procedure, which works without the limitations of classical
bootstrapping mentioned at the beginning of the previous section, is mul-
tidimensional optimization. This additional flexibility is achieved through
higher computing costs. For many applications, however, this additional effort
is hardly significant. With this optimization procedure, a yield curve is first
generated, either as a parametric form or by defining individual grid points,
where each benchmark instrument is assigned to exactly one grid point.
In the latter case, the interest rates at the individual grid points can be
regarded as parameters of the model, and the parametric form is then given by
specifying the interpolation and extrapolation. Here it is also possible without
any problems to create splines or apply other procedures that depend on all
parameters (the interest rates at the grid points) at the same time. Plausible
start values are then assigned to the parameters of the model, so that for
each future time T a discount factor or a zero rate can be calculated. Finally,
a function is defined that calculates the differences between the theoretical
benchmark prices calculated using the modeled yield curve and the actual
market prices of the benchmark instruments. Those differences are arranged
in an array.With the help of a multidimensional optimizer, the parameters are
varied until the square sum of all differences in that array becomes minimal.
Of course, the benchmark prices will usually not be hit exactly. However, the
remaining differences are in general too small to have any practical relevance,
since other sources of error (such as synchronicity of the data) have a much
greater influence. Also, the accuracy of the input market data is often limited
to four figures only.

The procedure therefore comprises the following steps:

1. Parameterization of the yield curve to be generated, either as a parametric
form or as grid points with (plausible) initial values.

2. Theoretical calculation of benchmark prices using the modeled yield curve.
3. Calculation of the sum of squares of the differences between theoretical

prices and the respective market prices or quotes.
4. If the deviation is less than the allowed tolerance, then the calculation is

finished because a suitable set of parameters was found. Otherwise, the
calculation continues with the next step.

5. Creation of a new set of parameters.
6. The procedure continues at step 2 above.
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The tricky point of this procedure is step 5. The goal is to minimize
the number of recalculations of all benchmark instruments, as this step is
computationally most expensive. A good optimization process will estimate
a new parameter set leading to a significantly smaller square sum of the
differences. The process can be visualized as searching for the lowest point
or valley (the minimum) on a surface. The height of the surface corresponds
to the square sum of the differences, while the model parameters determine
the location on this surface. The way in which the optimization procedure
determines the new parameter set for the next cycle is the essential difference
between different optimization methods.

The gradient method calculates (numerically) the multidimensional slope
(gradient) of the surface to determine the direction in which one should move
through the space spanned by the model parameters in order to move “down”
on the surface towards a lower square sum of differences. One problem of the
gradient method is its strong dependence on the starting values. If the surface
has many small troughs, there is a great danger that you will not be able to
find the absolute minimum: The process gets stuck in one of these troughs,
because at the bottom of the trough all gradients always point “up”, because
in every direction you look, the sum of squares is larger than at the bottom of
the trough. Another method, called (Simulated Annealing), simulates with the
help of Monte Carlo methods a slowly cooling gas that settles in the various
troughs. This method does not have the problem of finding only one local
minimum, but usually requires significantly more calculation steps. The same
applies to genetic algorithms that simulate “mutations” in the parameters with
the hope of breaking out of the localminima described above. Finding the ideal
optimization method often borders on art rather than science. In any case, it is
advisable to use one of the freely or commercially available optimization rou-
tines. For simple problems, the optimizer available in Excel is often sufficient.
In Table 29.1, the result of such an optimization is shown for the representation
of the yield curve using grid points as well as using the parametric Nelson-
Siegel-Svenssonmethod. The Excel-Workbook Bootstrapping.xlsx from the
download area [50] shows an exemplary optimization result.

29.7 Forward Curves

As already mentioned several times (e.g. in Sect. 15.6.1), interest rates that are
used, for example, as an underlying for the variable side of a swap, are quoted at
a premium, the so-called basis spread, above the risk-free yield curve. In general,
basis spreads are time-dependent, so they are modeled as a basis spread curve.
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In addition, the amount of the basis depends on the terms of the forward rates
that are to be calculated with it. Consequently, each possible term of forward
rates needs their own forward, tenor or basis spread curve, like, e.g. for terms
of one, three, six or twelve months.

Generating a forward curve is done analogously to the yield curve bootstrap-
ping or optimization procedures described above (see Sects. 29.6.1 and 29.6.2).
The first step is to select appropriate benchmarking instruments. The present
values of these benchmark instruments may depend only on the to-be-
determined forward curve and other, already known yield curves. One of
these other curves is, for example, the risk-free discount factor curve. Further
forward curves may also be required if, for example, basis swaps are used as
benchmark instruments.

As an example, we consider the creation of EUR forward curves, assuming
the EUR discount factor curve is given, i.e. all risk-free discount factors
B(t, T ) are known or can be calculated. Since swaps with a period of six
months on the variable side and one year on the fixed side are more liquid
in the euro zone than other maturities on the variable side, we generate the
6M forward curve first. We designate the corresponding discount factors with
B6M(t, T ), so that the 6M forward rate F(t, Ti, Tj), which starts at time Ti

and ends at time Tj = Ti + 6 Months reads:

F(t, Ti, Tj ) = 1

Tj − Ti

(
B−1

6M(Ti, Tj |t ) − 1
)

= 1

Tj − Ti

(
B−1(Ti, Tj |t ) − 1

) + s(t, Ti, Tj ) . (29.7)

Where s(t, Ti, Tj ) is the basis spread for the forward rate from Ti to Tj as seen
at time t . The spread is given here in simple compounding, as this corresponds
to the usual quotation. Equating the two right sides yields

1

Tj − Ti

(
B−1

6M(Ti, Tj |t ) − 1
) = 1

Tj − Ti

(
B−1(Ti, Tj |t ) − 1

) + s(t, Ti, Tj )

⇔ B6M(Ti, Tj |t ) = 1

B−1(Ti, Tj |t ) + s(t, Ti, Tj )(Tj − Ti)

= B(Ti, Tj |t )
1 + B(Ti, Tj |t )s(t, Ti, Tj )(Tj − Ti)

=Bs(Ti, Tj |t )B(Ti, Tj |t ) ,
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where we have introduce the “spread discount factor” Bs(Ti, Tj |t ) = 1/(1 +
B(Ti, Tj |t )s(t, Ti, Tj )(Tj − Ti)). With the basis spread ss(t, Ti, Tj ) quoted
in continuous instead of simple compounding we have the simple relation

Bs(Ti, Tj |t) = e−ss(t,Ti ,Tj )(Tj−Ti)

with

B6M(Ti, Tj |t) = Bs(Ti, Tj |t)B(Ti, Tj |t) = e−ss(t,Ti ,Tj )+Rs(t,Ti ,Tj )(Tj−Ti) ,

where Rs(t, Ti, Tj ) is the continuously compounded risk-free forward rate
for 6 months. Thus, in continuous compounding, adding a basis spread to
the interest rate is equivalent to multiplying the risk-free discount factor with
the “base spread discount factor”. For other conventions, this relationship is
more complicated. Unfortunately, there are indeed a confusingly large number
of conventions in use for quoting spreads—depending on which spread it
is, a different one. Whether the basis spread curve is represented as basis
spreads s(Ti, Tj |t ) in simple compounding, or as ss(Ti, Tj |t ) in continuous
compounding, or as pseudo discount factors Bs(Ti, Tj |t ), or if one even
chooses a completely different convention, is ultimately irrelevant as long as
all prices or quotes of the selected benchmark instruments are met. It is also
possible tomodel the forward curve directly in form of the tenor discount curve
B6M(t, T ). But that has the disadvantage that it is no longer immediately clear
which contributions to the forward rate come from the risk-free interest rate
or the basis spread. If one is also interested in risk sensitivities with regard
to the basis spreads, or even wants to model the basis spread as a separate,
independent risk factor, the representation by B6M(t, T ) is rather unsuitable.

Using Eq. 29.7 the present value for all benchmark instruments can now be
specified. For fixed against variable swaps the equation is 15.22. For deposits or
FRAs on 6-month periods, the fair interest rate can be directly calculated using
the Eq. 29.7. Now the bootstrapping can start step by step, beginning with the
short maturities and solving the respective equations for the unknown basis
spread. If there are gaps in the benchmark instruments, so that more than one
spread is unknown, the missing values for the spreads must be interpolated
analogously to the procedure described in Sect. 29.6.1, in consistency with
the interpolation method used for the curve. Alternatively, one can start an
optimization procedure with a set of initial values and then vary the basis
spreads or the parameters of a parametric approach until the differences
between the calculated and quoted benchmark prices become minimal.
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After the 6M curve has been generated in this way, the next forward curves
can be calculated. Now, it is also possible to use quotes for basis swaps, e.g. 3M
variable versus 6M variable, since the 6M curve has already been generated
and therefore only the 3M curve is missing in the valuation of the underlying
swaps. Of course, assuming sufficient liquidity, 3M deposits and 3M FRAs
as well as swaps with 3M variable against 6M fixed can be used to generate
the 3M curves. In this case, the existence of the 6M curves would not be a
prerequisite.

29.8 Cross Currency Curves

For each currency with investment positions in that currency a hierarchy of
yield curves as described in the previous sections is required. Each position can
then be calculated with the yield curves of its respective currency. It becomes
more complicated, however, when a single security involves cash flows in
different currencies. As already mentioned in Sect. 16.5, such transactions are
priced usingmodified discount curves which take the cross-currency basis into
account. Here, the USD is usually regarded as the reference currency, i.e. the
risk-free USD discount curve (e.g. the OIS-USD curve) is used unchanged,
whereas all other discount curves are adjusted. To distinguish those adjusted
curves from the original discount curves, they are preceded by the designation
CCY. ThemodifiedEUR discount curve is then called the CCY-EURdiscount
curve, for example.

To calculate a CCY discount curve, we need liquid instruments that depend
on the currencies concerned. For the main currencies, those are FX swaps
and cross currency interest rate swaps (see Sect. 16.2), which are traded with
sufficient liquidity and together cover both the short-term and long-term
range. Since the USD discount curve is the only discount curve that is not
adjusted, it is assumed to be known and used as the base curve. If one or both
sides of the selected benchmark cross-currency swaps has coupons based on
variable interest rates, the corresponding forward yield curves must already be
known.

As a first step and completely analogous to Sect. 29.7, the CCY discount
curves are determined via optimization methods so that all the selected
benchmark instruments can be valuated. In a further Step, additional CCY
discount curves, for which no forward FX transactions against USD exist, can
be determined, provided that for one of the two involved currencies a CCY
discount curve has already been calculated.
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As we’ve seen in Sect. 29.5.1, for transactions with cash collateral the interest
rate applicable to that collateral should be used as the risk-free interest rate.
As a rule, this is the OIS rate in the collateral currency. Generalizing this to
foreign currency transactions means that the collateral currency is also the
base currency for the determination of the CCY curves. In fact, it may also
happen that a trade in currency A is collateralized with a cash collateral in
currency B. A consistent valuation would then require that the B discount
curve be used as the base discount curve and all cash flows of the instrument are
discounted using the CCY-B discount curve. Thus, cash collateral in foreign
currency implicitly brings CCY basis risk into play. A single cross currency
swap that exchanges variable cash flows in currency A against variable cash
flows in currency B and is collateralized in currency C, would then have to be
calculated using five yield curves!

It is not uncommon that one or both counterparties have the right to choose
the currency in which cash collateral is to be provided. Depending on the
situation, it might be more advantageous to use one or the other currency for
collateral purposes. This right represents an option which certainly can have
significant value. However, the valuation of such collateral currency options
can be quite difficult [155].

29.9 Survival Probabilities

The probability that a counterparty or issuer will still be able to meet its
payment obligation over a specified period of time is referred to as the survival
probability.3 As already shown in Sect. 20.1, survival probabilities are formally
similar to discount factors. This can be exploited by expressing the time
dependence of survival probabilities as a curve formally resembling a discount
curve. This survival probability curve can then be generated from liquid
instruments with an explicit default risk in the same way as a discount factor
curve. For this, we will use the notation introduced in Sect. 20.3 for survival
probabilities Q(t, T ), recovery rates R, risky zero bonds or discount factors
B̄(t, T ) and the abbreviation B̃(t, T ) = B(t, T )Q(t, T ).

3There are also other events used to define “survival”, such as filing for bankruptcy, restructuring or similar.
For the determination of the present value, however, it is only important whether the contractually agreed
upon cash flows actually happen or whether they are completely or partially lost.
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29.9.1 CDS Spread Curves

The present value of a credit default swap (CDS) depends directly on the
survival probability of the reference address, which can be seen directly from
Eq. 20.12 or even better from the approximation Eq. 20.13. This is why liquid
CDS quotes are ideally suited for building a curve of survival probabilities. The
risk-free yield curve for calculating the discount factorsmust alreadybe known.
Then the recovery rate R remains as the only unknown quantity, which is
however usually also quoted and thus given exogenously. Since changing the
quotation to up-front payments during the “Big Bang” in the CDS market, a
complete CDS quote contains the following information:

• Reference address/obligation,
• Duration,
• Up-Front-Payment (equal to the cash value of the CDS),
• Premium rate (from a list of few fixed values),
• Recovery rate.

The generation of the survival probability curve is then carried out in the same
way as the generation of an interest rate curve, in which the values of an initial
curve are varied until the theoretical present values of the CDS benchmarks
match the up-front payments of the corresponding CDS quotes. As with the
yield curves, a grid point is created for each benchmark quote at the maturity
of the CDS.

In contrast to the interest rate market, in the CDS market a uniform
standard has emerged for the internal presentation of survival probability
curves. This standard is based on piecewise constant hazard rates, analogous
to the representation of discount factor curves by means of piecewise constant
forward rates. The hazard rates defined byGl. 20.3 are completely analogues to
instantaneous forward rates. The method of piecewise constant interpolation
of instantaneous forward rates (or in this case hazard rates) was already
described above in the section on constant interpolation.

29.9.2 Synthetic CDS Spreads

Unfortunately, CDS spreads are not available in sufficient liquidity for all
reference addresses. This is due to the increasing regulation of the markets
and the decline in trading in credit and credit portfolio derivatives such as
Credit Debt Obligations (CDOs).
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If the CDS market for certain reference addresses can no longer be regarded
as active and liquid, the question arises how the CDS spread information
can be generated “synthetically” by other means. An obvious approach is to
use real-world default probabilities (PDs), such as those provided by rating
agencies as long-term averages of actual defaults per rating class in a particular
country, currency and industrial sector. A comparison of real PDs with those
implied from CDS quotes shows, however, that even for liquid data, those
implicit PDs are systematically higher than real PDs. In the following, we
present a procedure how real PDs can nevertheless be used to determine
synthetic CDS spreads.

For this approach we disassemble the “fair” or synthetic CDS spread ssynth
into three components

ssynth = sEL + sUL + sL ,

where sEL denotes the portion of the CDS spread resulting from the expected
loss due to default risk (expected loss spread), sUL denotes the portion due
to the unexpected loss (Unexpected Loss Spread) and sL denotes an additional
liquidity premium. So the assumption is that, in addition to the expected loss
due to default risk expressed by sEL, further surcharges, taking into account
unexpected default risks and liquidity, are required to explain the traded CDS
spreads. This structure will now be made more plausible.

CDS Spread Component Due to Expected Losses

The default probabilities required for the calculation of sEL are calculated on
the basis of historically observed actual defaults. Typically, rating agencies such
as Moody’s, S&P or Fitch determine and provide such default probabilities
based on different criteria such as industry sector, country, currency and rating
class (or rating for short). A rating class is a rough classification of default risk,
where “AAA” is the best rating with the lowest default probability and “CCC”
means that default is imminent (see Table 29.2).

Table 29.3 shows examples of default probabilities for maturities of up to
6 years, as provided by rating agencies. The specified PDs already include
Migration Risk. Migration risk is the risk that the rating of a company improves
or deteriorates. The table shows, for example, that a company with a BB
rating has a default probability of 4.58% over a term of 3 years, or to put
it another way: Of 10,000 companies with a BB rating, on average 458 will
default within three years. To calculate this default probability, all companies
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Table 29.2 Comparison of the rating scales of Moody’s, S&P and Fitch. As each rating
agency uses its ownmethodology, themapping presented here is by nomeans accurate.
A company with a Moody’s rating of Aa2 therefore does not necessarily have an AA
rating from S&P and Fitch

Moody’s S&P Fitch

Aaa AAA AAA
Aa1 AA+ AA+
Aa2 AA AA
Aa3 AA− AA−
A1 A+ A+
A2 A A
A3 A− A−
Baa1 BBB+ BBB+
Baa2 BBB BBB
Baa3 BBB− BBB−
Ba1 BB+ BB+
Ba2 BB BB
Ba3 BB− BB−
B1 B+ B+
B2 B B
B3 B− B−
Caa-C CCC+ CCC+

Table 29.3 Example of expected average default probabilities in % for different rating
classes. The probability indicates the percentage of companies in a respective rating
class, that are in default after one, two, etc. years

1Y 2Y 3Y 4Y 5Y 6Y

AAA 0 0.015 0.051,667 0.098,333 0.150,333 0.307,5
AA+ 0 0.02 0.02 0.068,667 0.107 0.198,5
AA 0.006,667 0.018,667 0.114,667 0.284,667 0.412 0.555
AA− 0.046 0.106,333 0.166 0.232,333 0.285,667 0.541,5
A+ 0.046,667 0.158,333 0.337,333 0.500,333 0.676 0.936,5
A 0.068,667 0.230,667 0.406 0.623,333 0.802,667 0.990,5
A− 0.110,667 0.261,667 0.450,667 0.595,667 0.816 1.13
BBB+ 0.147 0.369,333 0.645 0.939,667 1.277 1.63
BBB 0.172,667 0.597,333 1.069,333 1.671,667 2.185,333 2.406,5
BBB− 0.377,333 1.065 1.876,333 2.722,333 3.617,333 4.346
BB+ 0.771,333 2.129 3.639 5.174,333 6.237,333 7.399,5
BB 0.823,667 2.606 4.587,333 6.440,333 8.091 9.448
BB− 1.482 3.889,333 6.671 9.046,667 11.004,67 16.278,5
B+ 2.033,333 5.890,333 9.687,333 12.899 15.066,67 21.458
B 4.050,333 9.258 13.812,33 17.045,67 19.637 26.967,5
B− 5.964,333 11.857,67 16.975,67 20.702,33 23.66 35.082,5
CCC+ 22.772 32.105 38.503 41.605,67 44.595,67 52.134,5
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are counted, which had a BB rating to start with and then were defaulted
after three years, regardless of which rating they had in the meantime (e.g.,
after a year or two). Typically, most defaulting companies will see one or more
deteriorations of their rating in the years and months prior to the default. The
curve for survival probabilitiesQ(t) can now be calculated from the grid points
Q(1Y) = 1 − PD(1Y), Q(2Y) = 1 − PD(2Y) etc., using the log-linear
interpolation method. Thus, the logarithms of the survival probabilities are
interpolated linearly (analogous to the discount factors in 29.2). The expected
loss spread sEL can then be calculated as a Par CDS spread according to
Eq. 20.14, or using Approximation 20.15.

CDS Spread Component Due to Unexpected Losses

The calculation of the unexpected loss spread is based on the idea that economic
capital (or EC for short) must be assigned to each asset to cover the risks
associated with that asset. The amount EC of additional capital required
corresponds to the amount of the unexpected loss. The provision of this EC
induces costs (cost of capital or COC), which are generally higher than the
risk-free interest rate. The assumption is now, that these additional costs are
passed on to the protection buyer, which increases the credit spread. This is
then the unexpected loss component sUL of the synthetic spread ssynth:

sUL = EC · COC .

EC is expressed as a percentage of the nominal insured by the CDS. The
regulatory capital RE can be used as the lower limit for the required capital.
This limit is estimated as

RE = RWA · T1Q

Here, T1Q denotes the Tier 1 quota andRWA the (RiskWeighted Assets) accord-
ing to the regulatory formula from the Basel II regulations [8]. According to
this framework, RWA is a function of the expected loss, the maturity of the
asset and the counterparty class to which the reference address belongs. This
formula can also be used in our context. The cost of capital COC should be the
long-term average return on equity of companies belonging to the same region
and industrial sector as the reference address. The capital is thus assumed to
cost as much as it could generate return if used otherwise. In reality however,
the cost of capital varies considerably from company to company, even within
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the same industry sector and the same region. For the fair value analysis carried
out here, it nevertheless appears appropriate to use an average COC to arrive
at something like a “generally accepted” cost of capital.

Liquidity Premium on Top of the CDS Spread

The third component of the synthetic CDS spread is the liquidity spread sL.
This spread can be interpreted as an additional fee that counterparties charge
each other, even in liquid markets, as compensation for the comparatively
lower liquidity of derivatives markets. The liquidity spread is usually rather
small (about 0–30 basis points), depending on the complexity of the deriva-
tives. The assumption of a flat, constant spread is often sufficient here.

Calibrating the Parameters

A way to determine the COC parameter is based on macroeconomic consider-
ations, such as the average expected return on capital of companies in a sector.
Another option would be to calibrate to a basket of liquid CDS quotes and
extrapolate to other reference addresses. The liquidity spread can either also
be calibrated or simply be fixed. As a rule, the effect of the COC dominates
the liquidity spread by far.

The procedure presented here certainly has clear weaknesses. The uncer-
tainty in determining COC is not negligible, as the result of the COC
calibration often depends very much on the market situation and the selection
of the benchmark portfolio. An even greater inaccuracy lies in the use of
rating data. Ratings change much less frequently than credit spreads and only
represent a comparatively rough grid. This is reflected, for example, in the fact
that quite often companies with identical ratings and in the same industry
sector and currency region are traded at very different par CDS spreads.
However, if liquidly traded CDS spreads are not available, the approach shown
here provides a practicable method for the determination of synthetic CDS
spreads.

29.10 The Old Yield Curve World

Prior to 2007, it was common practice to use exactly one discount curve per
currency. Basis and default risks have often only been considered for such
products whose explicit purpose was the trading of such risks; like for example



698 H.-P. Deutsch and M. W. Beinker

basis swaps (Sect. 17.1) or credit default swaps (Sect. 20.6). That was possible,
since basis and credit spreads were very small (at least in trading between
banks) and often could be neglected compared to other risks. Since about 2007
however, this has not been the case anymore and it doesn’t seem likely that the
spreads will ever go back to the low levels of before.

The methods for generating a yield curve today and before 2007 are
fundamentally not very different. The essential difference is the selection of
the benchmark instruments used to construct the yield curve. For example,
prior to 2007 it was common to use deposits of different maturities up to
one year at the short end of the yield curve—occasionally supplemented by
money market futures. For maturities longer than two years, plain vanilla par
swap rates were used. Therefore, the curve was often been named swap curve.
For some markets, swap rates are quoted with different period lengths for the
coupons on the fixed and variable side. In that case, the more liquid quotes
were chosen for the curve construction. For the euro area for example, these
are swap rates with one year on the fixed side and six months on the variable
side.

However, this approach is problematic if the base spreads are significant
compared to the interest rates. Between short-running o/n- and t/n-deposits
(overnight and tomorrow-next, with start time today or the next trading day
and maturity and repayment one trading day later) and the 6M forward
rates (e.g. 6M-EURIBOR) underlying the swap rates, the basis spread cannot
be neglected. In the middle segment of the curve, deposits with maturities
between one week and one year exist. Money market futures usually refer to
a three-month rate (e.g. 3M-EURIBOR). But the reference rate, e.g. the 3M-
EURIBOR, refers to an unsecured transaction, while the futures themselves
are always collateralized. These multiple changes in the interest period of the
forward rates lead to jumps in the yield curve due to the different basis spreads,
which are unacceptable for many applications. In addition, even the valuation
of simple products such as swaps based on a swap curve, which is being used
both for the discounting of the cash flows as well as for the calculation of the
forward rates, is no longer in line with the market practice. Therefore, OIS
discounting should be used as much as possible.

29.11 The Future of Yield Curves

The currently still predominant term rates used as underlying for the floating
swap’s leg were originally based on rates like EURIBOR,USDLIBOR or other
“*IBOR” rates. Here, IBOR stands for interbank offer rate, the rate at which
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one bank could borrowmoney from another bank. However, these rate indices
are not based on real transaction. Instead, they are calculated as the average
of estimates submitted by a pool of leading banks in the respective currency
market.

As an estimate, these rate indices can not be easily verified by an indepen-
dent party. In the aftermath of the financial crises of 2008, traded and quoted
rates significantly diverged. As later turned out, this was, at least partially, due
to manipulation of the rate estimates. Small changes of the quoted IBOR rates
could have significant effects on some bank’s swap portfolio, because the swap
pay-offs depend directly on this fixed quotes of IBOR rates. This has been
abused by some of the involved traders to manipulate the IBOR rates.

The method for the calculation of IBOR rates have since than been modi-
fied in order to prevent these manipulations. Still, regulators seek to replace all
IBOR rates by transaction and OIS based rates. OIS or overnight index swap
rates are those rates, at which banks lend each other money overnight. Though
these overnight rates are based on uncollateralized transactions, the credit risk
is very small because of the short lending period. In addition, they are based
on averaged real transactions rather than estimates.

Switching from IBOR rates to OIS based term rates (called ATR or
alternative term rates) will have a significant impact on how term rates have
to be calculated and fixed. Various methods of calculating term rates based
on overnight rates are under discussion, involving compounding, average, and
different fixings methods. Most of these methods will require the application
of convexity adjustments (see Sect. 14.5), and the calculation of ATRs will
be more complex. On the other hand, if all term rates would be based on
overnight rates, the world would become simpler with respect the fact that we
would be back in a world with only one interest rate curve per currency.



30
Volatility

30.1 Implied Volatilities

30.1.1 Smiles and Volatility Indices

Risk neutral or implied volatilities are required for the valuation of derivatives
with optionalities, while real world volatilities are used for market risk calcula-
tions. A volatility is called “implied” if it is calculated implicitly from quoted
prices of liquidly traded options. The reader may wonder, why implied and
real world volatilities differ at all, since a major result of the considerations in
Chap. 7 was that in the Black Scholes PDE (Eq. 7.8) the real drift has been
replaced by the risk free interest rate, but not so the volatility, which remains
unchanged. Therefore, the difference between real world and implied volatility
is no consequence of the theory. Nevertheless, this difference is observed in
practice. One reason for the difference is the fact that real world volatilities are
determined in hindsight based on the historic time series of observed actual
prices, while implied volatilities are forward looking, since they are implied
from options with expiry dates in the future. Another possible explanation is
that actually traded option prices include add ons or discounts to incorporate
other risks like liquidity or cluster risks (caused by one-sided demand) that
are difficult to measure. With all other parameters fixed, these add ons and
discounts will impact the calculated implied volatility. Whatever the reasons
for the difference are, for risk neutral pricing implicit volatilities have to be
used, since liquidly traded plain vanilla options are used to hedge Vega risk
(i.e. the risk of changing volatility) caused by structured financial products.

© The Author(s) 2019
H.-P. Deutsch, M. W. Beinker, Derivatives and Internal Models, Finance and Capital
Markets Series, https://doi.org/10.1007/978-3-030-22899-6_30

701

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22899-6_30&domain=pdf
https://doi.org/10.1007/978-3-030-22899-6_30


702 H.-P. Deutsch and M. W. Beinker

Implied volatilities are extracted from liquidly traded plain vanilla option
prices which, because of their liquidity, have usually small bid-ask spreads
which improves accuracy of the calculated volatility. Given these prices, it is
possible to calculate the implied volatilities, if all other parameters like interest
rates, underlying price, etc., which enter the standard market option price
function, are well known. The price function depends on the market but is
often of Black-Scholes type or some of its variants.1 The procedure is to vary
the volatility, keeping all other parameters constant, untile the price function
yields the same price as the traded market price. This is the implied volatility.
If all market makers in a certain market segment agree on what price function
to use and if all other parameters besides the volatility are easily observable,
we have a 1:1 relationship between option price and implied volatility: If
either one entity is known, the other can easily be calculated by means of
the market price function. Therefore, in some markets, it is common to quote
the implied volatilities instead of the option prices. For example, this is the
case for swaptions, caps/floors or FX options and also for options on stocks or
stock indices. For these liquidly traded, simple options, the Black-Scholes or
Black-76 formula should be considered as a mere quotation vehicle that allows
to transform implied volatilities into prices and vice versa rather than a pricing
model, since the traded prices are just the result of offer and demand anyway.

Often, the assumptions on which the pricingmodels are based (for example,
the assumption of continuous trading) are satisfied reasonably well for options
at the money, but not for options which are far in or out of the money. This has
the effect that the pricingmodel yields different implied volatilities for options
that are not at the money. As a consequence, if the implied volatilities are
plotted as a function of the strike price, the curve obtained is not the graph of a
constant function as assumed by the Black-Scholesmodel. Formost options we
observe the effect that the implied volatilities increase with increasing distance
from the at-the-money strike (in other words, when the option is increasingly
in or out of the money); the resulting volatility curve tends to look like a smile.
This expression has come to be the accepted term for describing the implied
volatility as a function of the strike and is independent of the form of the curve.
In general, the strike dependence is not symmetric around at the money, which
is expressed by the term skew.

1For interest rates, the Bachelier model is nowadays also used, since it assumes a normally distributed
underlying and therefore allows for negative interest rates.
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Options with different expiries also show different implied volatilities even
if the strike is the same. In analogy to interest rates, the dependency of the
volatilities on the time to option expiry is known as the volatility term structure.

The variables expiry date and strike price are absolute variables and as such
are not very suitable for the comparison of the implied volatilities of different
options on the same underlying; the variables time to expiry and relative strike
price are preferable. The relative strike is the strike expressed as a percentage of
the current underlying price. A call with a strike of 84 euros on an underlying
with a spot price of 80 euros is 5% out of the money and therefore has a relative
strike of −5%. A corresponding put would have a relative strike of +5%. This
relative strike is calledmoneyness. The moneyness is thus defined as the relative
distance between the strike K and the at-the-money point

moneyness = K − S(t)

S(t)
,

where S(t) is the current spot price2 of the underlying. The implied volatility
of options on the same underlying (for example, the DAX) as a function of
time to expiry and relative strike is called the volatility surface. The volatility
surfaces obtained from liquid option prices can be used to price illiquid options
or OTC contracts on the same underlying.

For options on interest rates or interest rate instruments such as a cap or an
option on Bund futures, the implied volatility depends on a third parameter.
This is the time to expiry of the underlying. For such options, a complete
volatility surface is determined by the volatility as a function of the options’
expiries and the maturities of the underlying as well as the options’ relative
strikes.3 A typical example are two caps on distinct variable interest rate indices,
but otherwise identical parameters. One cap my refer to a quarterly rate, e.g.
3M-EURIBOR, the other on a semi-annual rate like 6M-EURIBOR. These
two caps have to be considered as different products and will have indeed
different prices resp. implied volatilities.

Building such structure requires many liquid options. Therefore, these
structures usually contain a large number of gaps. The gaps on the volatility
structure of an underlying, i.e., the implied volatilities for the parameter

2Sometimes the at-the-money-point is defined to be at the current forward price S(t, T ) of the underlying,
where T is the expiry of the option (at-the-money forward). Correspondingly, the moneyness is then
defined as the relative distance between the strike and this forward price.
3It is also possible to consider underlyings with different expiries at distinct underlyings. Then, there is per
underlying one volatility structure depending on the option parameters strike and option expiry only.
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combination for which no liquid options are available, are usually closed with
clever (or courageous!) interpolation schemes.

An example of an implied volatility published by an exchange, a volatility
index, is the VDAX published since December 5, 1994 by the DTB (later
renamed Eurex). This index refers to one single point of the volatility structure
of the DAX, namely the volatility of the DAX for a (fictitious) at the money
option with a time to expiry of 45 days. Not the current DAX value is
considered at the money but rather the forward price of the DAX in 45 days.
This forward price is available since the prices of DAX futures contracts are
known (or can be determined from the prices of DAX options using the
put-call parity Eq. 6.8). The volatility of the fictitious ATM option is then
determined as follows:

• For each expiry date, only those option series are considered whose strikes
are at most 100 points away from the ATM point. For a series of options
with strikes increasing in 25 point increments, this allows a maximum of 16
options (eight calls and eight puts) per expiry date.

• The theoretical option price is calculated using the Black-Scholes Eq. 8.7
with the same volatility for all options with the same expiry date. This
volatility is then varied as an input parameter until the sum of the squared
difference between the theoretical option prices per expiry date attain a
minimum value (least squares fit). In this way, a fitted implied volatility
for each expiry date is obtained.

• The actual VDAX at time t is then obtained by interpolating the implied
volatilities for the two surrounding expiries T ′ and T ′′ of the expiry given
by T = t + 45 as follows

VDAX(t) =
√

T ′′ − T

T ′ − T
σ 2(T ′) + T − T ′

T ′′ − T ′ σ
2(T ′′)

with T ′ ≤ T < T ′′ and T = t + 45 days.

30.2 Local Volatility Surfaces

The volatility dependency on the strike is not consistent with the Black-
Scholes model, since the underlying process should not depend on the strikes
at which options on this underlying are traded. One approach to deal with this
inconsistency is to make volatilities local, i.e. depending on the underlying
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price as well as on the time to expiry. Then, the underlying would follow
a log-normal process only approximately. This idea was first published by
Dupire [58]. Therefore, local implied volatilities are sometimes called Dupire-
Volatilities.

For general underlyings modeled as Ito processes of the form 2.19 in
Sect. 2.4, the transition probabilities and the Dupire volatilities, also referred
to as local volatilities, can be derived by differentiating the option price. The
reader is advised to become familiar with Sects. 2.4 and 7.2 as the material in
these sections are essential for a sound comprehension of what follows.

30.2.1 Implicit Transition Probabilities

The central relation holding for all Ito processes of the form 2.19 between the
transition probability p defined in Eq. 2.33a and the price V of a financial
instrument (an option, for example) has already been indicated in Eq. 7.16 of
Sect. 7.2:

V (S, t, T ) = B(t, T )

∫ ∞

−∞
f (S ′, T )p(S ′, T |S, t )dS ′ , (30.1)

where the function f (S ′, T ) corresponds to the payoff of the financial
instrument at expiry T . This equation can be inverted to determine the
transition probabilities p from the prices of liquid options observed in the
market; in doing so we determine the implied transition probabilities. We
assume here that the market prices of a series of liquid plain vanilla options
(both calls and puts) with different strikes K and expiries T are available.

For a call with a payoff profile f (S ′, t ′ = T ) = max(S ′ − K, 0), Eq. 30.1
becomes

Vcall = B(t, T )

∫ ∞

K

(S′ − K)p(S′, T |t, S )dS′ .

The price of the call is now differentiated with respect to the limit of
integrationK for the purpose of extracting p from the integral. This yields the
integrand evaluated at the (lower) limit of integration S ′ = K and, since K

itself appears in the integrand, a second term arises, involving the integral of
the derivative of the integrand with respect to the strike:

∂Vcall

∂K
= −B(t, T )(K − K)︸ ︷︷ ︸

0

p(K, T |S, t ) − B(t, T )

∫ ∞

K

p(S′, T |t, S )dS′ .
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Thus

∂Vcall

∂K
= −B(t, T )

∫ ∞

K

p(S ′, T |t, S )dS ′ . (30.2)

For a plain vanilla put with a payoff profile f (S ′) = max(K − S ′, 0) we
proceed analogously to obtain

∂Vput

∂K
= +B(t, T )

∫ K

−∞
p(S′, T |t, S )dS′ .

A further derivative with respect to K yields the same result for both puts and
calls:

∂2V

∂K2
= B(t, T )p(K,T |t, S ) . (30.3)

This can now be easily solved for the transition probability p4

p(K, T |t, S ) = B−1(t, T )
∂2V

∂K2
. (30.4)

In this way, the implicit transition probabilities can (at least theoretically) be
obtained from the observed option prices (with fixed t and S, the strike and
maturity date being variable). Through Eq. 30.4 we can determine (at time t

and known S) the transition probability p associated with the points (K, T )

for which call or put prices exist and thus (after an appropriate interpolation
between these points) an implied transition probability surface. Noted that not
only the price but also the second derivative of the price function with respect
to the strike must be known. Since the numerical determination of derivatives
on the basis of measured data is quite prone to error, this method can only be
implemented in practice if an analytic formula for the observed option prices
as a function of the strike price is available; the derivative with respect to the
strike can then be performed analytically. For example, the derivative with
respect to the strike price can be calculated from the Black-Scholes equation

4Observe that in the derivation of this equation we assumed certain (plain vanilla) payoff profiles for the
options but we did not assume any specific underlying process. Thus, everything is valid for plain vanilla
calls and puts on arbitrary underlyings of the form 2.19.
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for the price of a call5

∂Vcall

∂K
= −B(t, T )N(x − σ

√
T − t)

with x as in Eq. 8.5. The second derivative is then

∂2V

∂K2
= B(t, T )

K σ
√

T − t
N′(x − σ

√
T − t) .

Because of the put-call parity, the second derivative of the put price can
immediately be calculated by taking the derivative with respect to K on both
sides of the equation ∂Vput

∂K
= ∂Vcall

∂K
+ B(t, T ) this shows again that the second

derivative with respect to K of the put and call are identical. Hence, for the
Black-Scholes case, the implicit transition probabilities are given by

p(K, T |t, S ) =
exp

{
−1

2

(
x − σ

√
T − t

)2
}

K
√

2πσ 2(T − t )
. (30.5)

The observed option prices no longer appear explicitly in this expression but
the volatilities do. These are the implied Black-Scholes volatilities which yield
the observed option price when substituted into the Black Scholes pricing
formula. The implied Black-Scholes volatilities are nothing other than the
observed option prices quoted in another form; the Black-Scholes formula
is the mapping between the two ways of quoting (on the one hand the option
price, on the other the implied volatility). In the Excel workbook Implied-
VolAndTransProb.xlsm from the download section [50], the computation
of the implied Black-Scholes volatilities from quoted ODAX options (from
February 2000) are explicitly performed by means of the Newton-Raphson
method along with the subsequent calculation of the transition probabilities.

In this way, we have constructed the implicit transition probabilities
enabling, theoretically, the determination of the price of other (OTC) options
via Eq. 30.1. However, we need a range of S ′ (the first argument of p in
Eq. 30.1) from −∞ to ∞. The first argument of p corresponds to the strike,
when determiningp via Eq. 30.4. Therefore we need traded options for strikes

5Similar derivatives have already been calculated in Sect. 12.5.2.
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ranging from −∞ to ∞ and thus cannot proceed without extrapolation
arguments.

Observe that Eq. 30.5 agrees exactly with the transition probability 2.38
for the process 2.24 given earlier. Thus, everything is consistent. This can be
seen by making the obvious associations t ′ = T and S ′ = K in 2.38 and
substituting the risk-neutral drift μ̃ (see Eq. 9.25 in connection with Eq. 2.26):

μ̃ = 1

T − t
ln

(
Bq(t, T )

B(t, T )

)
. (30.6)

30.2.2 Implicit Local Volatility Surfaces

The local volatilities can be determined in a similar manner as illustrated above
for finding the implicit transition probabilities from observed market prices of
derivatives. These are to be distinguished from the Black-Scholes volatilities
(which are nothing other than a way of quoting option prices where the
mapping from one quotation to the other is defined by the Black-Scholes
formula). The method introduced here goes back to a procedure developed
by Dupire. Local volatilities are therefore also referred to as Dupire volatilities.

We again assume that market pricesV (S, t,K, T ) of a series of plain vanilla
options (calls and puts) on an underlying with price S(t) are known at time t

for various strikes K and expiries t ′ = T . Starting from the central, general
equation 30.1, we now take the derivative with respect to T and then use the
forward equation 2.34 to substitute for ∂p/∂T . For example, for a call with a
payoff profile given by f (S ′, T ) = max(S ′ − K, 0):

∂Vcall

∂T
= ∂B(t, T )

∂T

Vcall

B(t, T )
+ B(t, T )

∫ ∞

K

(S′ − K)
∂p(S′, T |S, t )

∂T
dS′

= ∂ ln B(t, T )

∂T
Vcall

+ B(t, T )

∫ ∞

K

(S′ − K)

[
1

2

∂2

∂S′2
[
b2(S′, T )p

]
− ∂

∂S′
[
a(S′, T )p

]
]

dS′

= ∂ ln B(t, T )

∂T
Vcall + B(t, T )(

1

2
I1 − I2) .
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The derivative with respect to the variable of integration in the integrand
suggests to solve the integrals I1 and I2 by integrating by parts:

I1 ≡
∫ ∞

K

(S ′ − K)
∂2(b2p)

∂S ′2 dS ′

= (S ′ − K)
∂(b2p)

∂S ′

∣∣
∣∣

∞

K

−
∫ ∞

K

∂(S ′ − K)

∂S ′
∂(b2p)

∂S ′ dS ′ .

A reasonable assumption would be that, starting from S, the probability p

(and its derivatives) for reaching S ′ in a finite time (T − t ) should converge
towards zero very fast for S ′ → ∞. The upper limit S ′ = ∞ of the first
term on the right-hand side then makes no contribution to the evaluation of
the integral. The expression evaluated at the lower limit S ′ = K is obviously
equal to zero as well. Since ∂(S ′ − K)/∂S ′ = 1, the above expression for I1

reduces to

I1 = −
∫ ∞

K

∂(b2p)

∂S′ dS′ = − b2p

∣∣∣
∞
K

= b2(K, T )p(K, T |S, t ) ,

where we have againmade use of the fact that p(S ′, T |S, t) converges towards
zero very fast as S ′ → ∞ and that therefore the upper limit contributes
nothing to the integral. Proceeding analogously with the second integral I2

yields after integration by parts

I2 ≡
∫ ∞

K

(S ′ − K)
∂(ap)

∂S ′ dS ′ = (S ′ − K)ap
∣∣∞
K︸ ︷︷ ︸

0

−
∫ ∞

K

∂(S ′ − K)

∂S ′
︸ ︷︷ ︸

1

a p dS ′

= −
∫ ∞

K

a(S ′, T )p(K, T |S, t )dS ′ .

In total, ∂V/∂T becomes

∂Vcall

∂T
= ∂ ln B(t, T )

∂T
Vcall

+ B(t, T )

[
1

2
b2(K, T )p(K, T |S, t ) +

∫ ∞

K

a(S′, T )p(K, T |S, t )dS′
]

.
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Analogously for puts

∂Vput

∂T
= ∂ ln B(t, T )

∂T
Vput

+ B(t, T )

[
1

2
b2(K, T )p(K, T |S, t ) −

∫ K

−∞
a(S′, T )p(K, T |S, t )dS′

]
,

where an analogous assumption has been made that p(S ′, T |S, t ) for S ′ →
−∞ converges towards zero fast enough and that, consequently, the lower
limit makes no contribution to the integral.

As yet, our deliberations hold for every general Ito process of the form 2.19.
From now on, however, an explicit stochastic process must be assumed in order
to continue with the computation. For the special case of a risk-neutral random
walk, i.e., if the parameters are chosen as in Eq. 7.1 with a volatility σ =
σ (S, t) and a risk-neutral drift, Eq. 30.6, we obtain for the call

∂Vcall

∂T
= ∂ ln B(t, T )

∂T
Vcall + B(t, T )

1

2
σ 2(K, T ) K2p(K, T |S, t )

+ B(t, T )

T − t
ln

(
Bq(t, T )

B(t, T )

)∫ ∞

K

p(S ′, T |S, t )S ′dS ′

and for the put

∂Vput

∂T
= ∂ ln B(t, T )

∂T
Vput + B(t, T )

1

2
σ 2(K, T ) K2p(K, T |S, t )

− B(t, T )

T − t
ln

(
Bq(t, T )

B(t, T )

)∫ K

−∞
p(S ′, T |S, t )S ′dS ′ .

Using Eqs. 30.1 and 30.2, the remaining integral for the call can be written as

∫ ∞

K

p(S ′, t ′ |S, t )S ′dS ′ =
∫ ∞

K

p(S ′, t ′ |S, t )(S ′ − K)dS ′

+ K

∫ ∞

K

p(S ′, t ′ |S, t )dS ′

= B−1(t, T )Vcall − KB−1(t, T )
∂Vcall

∂K
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and analogously for the corresponding integral for the put

∫ K

−∞
p(S ′, t ′ |S, t )S ′dS ′ = −

∫ K

−∞
p(S ′, t ′ |S, t )(K − S ′)dS ′

+ K

∫ K

−∞
p(S ′, t ′ |S, t )dS ′

= −B−1(t, T )Vput + KB−1(t, T )
∂Vput

∂K
.

The remaining p is replaced by the expression in Eq. 30.4, which holds for
both puts and calls, to obtain the same differential equation for call and put
prices with respect to the variables K and T

∂V

∂T
= ∂ ln B(t, T )

∂T
V + 1

2
σ 2(K, T ) K2 ∂2V

∂K2

+ 1

T − t
ln

(
Bq(t, T )

B(t, T )

)(
V − K

∂V

∂K

)
. (30.7)

For continuous compounding this simplifies further to

∂V

∂T
= 1

2
σ 2(K, T ) K2 ∂2V

∂K2
− (r − q)K

∂V

∂K
− qV .

This equation can be easily solved for σ 2(K, T ) thereby allowing implicit local
volatilities to be calculated from the option prices observed in the market. As
for the implicit transition probabilities described above, Eq. 30.7 can be used
(at time t for known values of S) to determine the value of σ (K, T ) for all
points (K, T ) for which the price of a call or put is observable in the market;
an appropriate interpolation yields a local volatility surface. Of course, we need
more than just the option price to complete this construction; the derivatives
with respect to the strike price and the expiry must be known as well. Here
we always must rely on the numerical determination of these derivatives. This
is because σ (as opposed to p) itself appears in any analytical pricing formula
(as for example in the Black-Scholes formula) and substitution of such price
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formulas into the above equation thus ultimately just yields the trivial6 identity
“σ = σ ”. As mentioned before, such numerical computations of (second!)
derivatives are prone to error.

The volatilities obtained through numerical differentiation of the option
prices appearing in Eq. 30.7 are particularly unstable for options that are
either well in or well out of the money since the (especially error prone!)
second derivative ∂2V/∂K2 is quite close to zero for these values of K . Since
isolating σ 2(K, T ) involves dividing by this very small (and error prone)
second derivative, extremely large errors can be expected for the resulting local
volatility. We can avoid at least this problem (i.e., the problem of dividing
by a very small variable) by expressing the option prices in terms of their
implied Black-Scholes volatilities σ̂ (which are just a different quotation of
option prices). We then obtain an expression for the local volatility with a
denominator of the form 1 + ε with ε > 0. For example, for continuous
compounding and with x as given in Eq. 8.5

σ 2(K, T ) = σ̂ 2 + 2(T − t)σ̂ ∂σ̂
∂T

+ 2rK(T − t)σ̂ ∂σ̂
∂K

[
1 + Kx

√
T − t ∂σ̂

∂K

]2 + K2(T − t)σ̂
[

∂2σ̂

∂K2 − x( ∂σ̂
∂K

)2
√

T − t
] .

But even in this form the local volatility remains very instable as long as
the derivatives are approximated numerically from market data.7 Practitioners
usually attempt to smooth the Black-Scholes volatility surface by using one of
several approaches. One example is to fit an analytic function (for example,
a polynomial) u(K, T ) to the observed Black-Scholes volatilities. The deriva-
tives of this function can then be calculated analytically when constructing the
Dupire local volatility surface.

Having constructed the local volatility surface, the valuation of fur-
ther options (OTCs) can be accomplished with a finite difference
scheme, for example, as described in Chap. 10. The Excel workbook

6This can be shown quite easily for continuous compounding with the help of Eqs. 8.6, 30.2 and 30.3.
The one additional differentiation needed is

∂Vcall

∂T
= −qe−q(T −t)SN(x) + re−r(T −t)KN(x − σ

√
T − t)

+ e−r(T −t) σ (K, T )

2
√

T − t
K N ′(x − σ

√
T − t) .

7Such a numerical approximation is done by approximating the differential quotient with a difference
quotient, i.e. by ∂V

∂K
≈ V1(K1)−V2(K2)

K1−K2
, for instance, where V1 and V2 are two observed market prices, etc.

An analogous procedure is performed for the Black-Scholes volatilities.
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FiniteDifferenceMethod.xlsm from the download section [50] is
structured such that it is immediately obvious at what stage a volatility surface
enters into the computation.

As an alternative to the Dupire approach, Andersen and Brotherton-
Radcliffe have published a method which calibrates the local volatility surface
directly on the grid [3].

30.3 Volatility Transformations

30.3.1 Transformation Between Relative and Absolute
Volatility

The volatility of a risk factor with a price S(t) at time t is usually measured
as the standard deviation (per year) of the logarithmic price changes δ ln S(t)

(e. g., implicitly extracted from the option prices as discussed in Sects. 30.1
and 30.2 or else through the analysis of historical time series as in Chap. 31)
or obtained from data providers. For the absolute risk, in other words, for the
actual monetary amount of a potential loss, the change of the price itself is
needed and not its logarithm. Furthermore, the functional relationships (the
sensitivities, for instance) between the price of a financial instrument and the
risk factor S are usually given as functions of S and not in terms of ln S.
Therefore, there aremany reasons for transforming the volatility of logarithmic
changes into one of absolute changes δS(t). In linear approximation, this is
quite simply accomplished through8

δ ln S(t) ≡ ln S(t + δt) − ln S(t) = ln

(
S(t + δt)

S(t)

)

= ln

⎛

⎜⎜
⎝

S(t) + [
δS(t)

︷ ︸︸ ︷
S(t + δt) − S(t)]

S(t)

⎞

⎟⎟
⎠

= ln

(
1 + δS(t)

S(t)

)
= δS(t)

S(t)
− 1

2

(
δS(t)

S(t)

)2

± · · ·

≈ δS(t)

S(t)

8The following expansion of the logarithm function is used: ln(1 + x) = x − x2

2 + x3

3 − x4

4 ± · · ·
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and hence,

δS(t) ≈ S(t) δ ln S(t) . (30.8)

Thus, in linear approximation, relative (i.e., percentage) price changes are
equal to logarithmic price changes

S(t + δt) − S(t)

S(t)
≡ δS(t)

S(t)
≈ δ ln S(t) (30.9)

where the approximation becomes exact for δt → 0. This, incidentally, is
exactly the point which provides an intuitive picture of the logarithm: The
logarithmic change over a time span is nothing other than the corresponding
relative change if this time span is infinitesimally short (see also Sect. 2.3.2).

According to Eq. 30.8, the absolute price change follows from the loga-
rithmic change multiplied by the current market price S(t), called the current
level. This is obviously consistent with the change in a risk factor over a finite
time interval as given by Ito’s lemma (see Eqs. 2.28 and 2.29) as can be seen
by Taylor-expanding the exponential function appearing there for small δt .
We have seen this approximation several times already in this book, see for
example Eq. 21.17.

Note that S(t) is known at time t and as such is not a random variable.
On the right-hand side of Eq. 30.8, only δ ln(S(t)) is a random variable.
Therefore, the variance of the absolute price change is simply

var [δS(t)] ≈ var

⎡

⎣S(t)︸︷︷︸
known

δ ln S(t)︸ ︷︷ ︸
random variable

⎤

⎦ (30.10)

= S(t)2 var [δ ln S(t)]

= S(t)2σ 2
i (t )δt ,

where in the last step the variance of the logarithmic price changes over a time
span δt in accordance with the definition in Eq. 2.15 was expressed in terms
of the volatility σ (in %) over this time span.
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30.3.2 Summation of Volatilities

A sum (a portfolio) of multiple risk factors Si , containing Ni of each of the
risk factors Si has a value given by

V (t) ≡
∑

i=1

NiSi(t)

The volatility σV of the value V of this portfolio is defined exactly as was done
for individual risk factors as the standard deviation9 of the logarithmic value
changes of the portfolio. Equation 30.8 can be applied to approximate the
logarithmic changes of V as well as of the individual risk factors, yielding

V (t) δ ln(V (t)) ≈ δV (t) = δ

(
n∑

i=1

NiSi(t)

)

=
n∑

i=1

NiδSi(t)

≈
n∑

i=1

NiSi(t) δ ln(Si(t)) ,

and hence

δ ln (V (t)) ≈
n∑

i=1

(
NiSi(t)

V (t)

)

︸ ︷︷ ︸
weight

δ ln (Si(t))︸ ︷︷ ︸
random variable

. (30.11)

The logarithmic change of the sum of risk factors is thus the weighted sum
over the logarithmic changes of each of the individual risk factors. The weight
of each individual risk factor is equal to the contribution (in %) of the current
value of the pertinent risk factor to the total current value of the portfolio. It
is thus a present value weighting, similar to that appearing in the duration in
Eq. 5.8.

Each of the current prices Si(t) are known at time t and as such are not
random variables. The logarithmic changes of the individual risk factors, on
the other hand, are random variables. From Eq. A.17, we know that the

9More precisely: the standard deviation per square root of the time over which the change occurs.
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variance of a sum of random variables is equal to the sum of the covariances of
these random variables:

var [δ ln (V )] ≈ 1

V 2
var

[
n∑

i=1

NiSi δ ln (Si)

]

(30.12)

= 1

V 2

n∑

i,j=1

NiNj Si Sj cov
[
δ ln (Si) , δ ln

(
Sj

)]
.

We now express the variances of the logarithmic price changes over a time span
of length δt again as in Eq. 2.15 in terms of the corresponding volatilities and
use Eq. A.14 for the covariance:

var [δ ln (V )] = σ 2
V δt, var [δ ln (Si)] = σ 2

i δt

cov
[
δ ln (Si) , δ ln

(
Sj

)] = ρi,j σi

√
δt σj

√
δt .

Thus, we finally obtain the desired relation between the volatility σV of the
sum of risk factors and the volatilities σi of the individual risk factors:

σ 2
V ≈

n∑

i,j=1

(
NiSi(t)

V (t)

)

︸ ︷︷ ︸
weight i

σi ρi,j σj

(
NjSj(t)

V (t)

)

︸ ︷︷ ︸
weight j

. (30.13)

30.3.3 Transformation Between Yield and Price Volatility

As was discussed in detail in Sect. 22.2, the same holds (in linear approxima-
tion) for a portfolio with sensitivities �i = ∂V/∂Si with respect to the risk
factor Si with the obvious association �i = Ni. This substitution leads from
Eq. 30.13 immediately to Eq. 22.14.

Specifically, a change in the price V of a financial instrument with a
sensitivity �i with respect to a single risk factor Si is in linear approximation
given by

δV (t) ≈ �i(t) δSi(t) ≈ �i(t) Si(t) δ ln (Si(t)) . (30.14)

The first approximation is the delta-normal approximation for the price of the
financial instrument as a function of the risk factor. The second approximation
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is a result of the linear approximation 30.8 for the logarithm of the risk
factor change. The linear approximation of the logarithmic change in V is
likewise equal to the relative change δV/V . Dividing Eq. 30.14 by V yields
the relationship between the logarithmic change of V and that of S:

δ ln (V (t)) ≈ δV (t)

V (t)
≈ �i(t)

V (t)
Si(t) δ ln (Si(t)) . (30.15)

At time t , all of the variables appearing in the equation are known except for
the changes δ ln(V ) and δ ln(S). The variance of this equation is thus

var [δ ln (V (t))] ≈ �(t)2

V (t)2
Si(t)

2var [δ ln (Si(t))] .

Expressing the variances through the volatilities as in Eq. 2.15, we obtain the
relationship between the volatility σV of the price of a financial instrument
induced by the volatility σi of a risk factor and the volatility of the risk factor
itself:

σV (t) =
∣∣
∣∣
�i(t)

V (t)
Si(t)

∣∣
∣∣ σi(t) . (30.16)

The absolute value sign indicates explicitly that the volatility, being the square
root of the variance, is always positive.

The correlation of another risk factor Sj with this financial instrument (also
dependent on Si) is the same as its correlation with the risk factor Si itself since

σV σj ρV j δt

= cov
[
δ ln (V ) , δ ln

(
Sj

)] = cov

[
�i

V
Si δ ln (Si) , δ ln

(
Sj

)]

= �i

V
Si cov

[
δ ln (Si) , δ ln

(
Sj

)] = �i

V
Si σi

︸ ︷︷ ︸
σV

σj ρij δt

= σV σj ρij δt ,

and hence

ρVj = ρij . (30.17)
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The transformation between the yield and price volatility is a special case
of Eq. 30.16. Both the volatilities σR for interest rates R(t, T ), called yield
volatilities, as well as volatilities σB for the prices (price volatilities) of the
corresponding zero bondsBR(t, T ) for the various terms T − t are available in
the market. The transformation between these two volatilities is accomplished
with Eq. 30.16, where the relative sensitivity �/V for bonds is, as is well
known, the (negative)modified duration, Eq. 5.10. The transformation for zero
bonds specifically is thus

σB(t, T ) = DmodR(t, T ) σ(t, T ) (30.18)

=

⎧
⎪⎪⎨

⎪⎪⎩

R(t, T )(T − t )

1 + R(t, T )
σR(t, T ) discrete compounding

R(t, T )(T − t )

1 + R(t, T )(T − t )
σR(t, T ) simple compounding ,

where Table 15.1 in Sect. 15.1 provides the explicit form for the two most
frequently used compounding methods.

30.3.4 Currency Transformation of Volatilities
and Correlations

The General Transformations for All Risk Factors

Transformation of the Volatility Many risk factors are prices referring to a
currency (and just one), even if quoted in%. E.g., a German government bond
quoted at, say, 98% has a value of 98% of its face value in EUR. Interest rates
refer to interest payments in a specific currency, too. The volatility of a quoted
price does not have a currency itself, but still depends heavily on the currency
in which the price or risk factor is quoted. The same holds for correlations,
with the difference that a correlation refers to two risk factors and therefore
two currencies may be involved. In the following, we use the notion reference
currency to denote the currency used in which the present values, prices and risk
factors shall be calculated. If the reference currency differs from the currency
of the risk factor (foreign currency), then the risk factor, expressed in terms of
the reference currency, is also exposed to variations of the FX rate between
the reference and foreign currency. This impacts volatilities and correlations
related to this risk factor as well. The risk factor’s volatility differs if the risk
factor is quoted in foreign currency rather than in in reference currency. The
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reference currency could be, e.g., equal to the accounting currency (sometimes
also denoted as base currency or domestic currency) or to the currency of the
cash flows of a specific derivative, even if the derivative’s underlying is quoted
in another currency. Please note, that for quotation of FX rates a different
notation is used, see Sect. 30.3.4 for details.

It will be shown that the volatility transformation to another currency is
similar (but not identical!) to the estimation of the volatility of portfolio with
two risk factors. Here, the first risk factor is the price in foreign currency and
the second risk factor is the exchange rate (FX rate) of the foreign currency in
terms of the reference currency. First, we analyse the volatility transformation
for lognormally distributed risk factors. Afterwards, we consider the transfor-
mation of correlations.

Let S be the price of a risk factor in foreign currency other than the reference
currency andD the exchange rate with respect to the reference currency (i.e.,D
units of the reference currency are exchanged for one unit of the foreign
currency). The value of the risk factor expressed in terms of the reference
currency is simply the product DS of the exchange rate and S. We now
calculate the variance of the logarithmic change of this value in the reference
currency. We make use of the logarithm’s property to turn products into sums.
Then, the variance of the resulting sum of random variables can be expressed
as the sum of the covariances as in Eq. A.17:

Var [δ ln (D(t)S(t))]

= Var

⎡

⎣ δ ln(D(t))︸ ︷︷ ︸
random variable X1

+ δ ln (S(t))︸ ︷︷ ︸
random variable X2

⎤

⎦ =
2∑

a,b=1

cov [Xa,Xb]

= Var [δ ln (D(t))] + var [δ ln (S(t))] + 2cov [δ ln (D(t)) , δ ln (S(t))] .

With these variances, it follows immediately from Eq. 2.15 that the volatility
of the product DS is given by

σDS =
√

σ 2
D + σ 2

S + 2ρS,D σD σS . (30.19)

This is the volatility transformation: on the left-hand side, we have the desired
volatility in the reference currency, on the right, the volatility with respect to
the foreign currency, the volatility of the exchange rate and the correlation
between them.
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While Eq. 30.13 gives the volatility of a sum of risk factors, Eq. 30.19 is
the volatility of the product of risk factors where the exchange rate D and the
price S each represent a risk factor.

Although the results are quite similar, there are two fundamental differences:

• In contrast to Eq. 30.13, no approximation of the logarithm was made in
the derivation of Eq. 30.19. It is therefore an exact equality.

• In Eq. 30.19, only the volatilities and correlations appear and not the current
levels of the risk factors D and S.

Let us consider the following example: a portfolio composed of a British
bond with a face value of N =GBP 100, 000 whose price and volatility is
quoted in British Pounds (GBP). The risk of the portfolio expressed in GBP
is simply the product of the given daily volatility σ = 0.026% and the
current level 99.704% of the face value N (multiplied by the square root of
the liquidation period and the percentile for the confidence level c):

VaR(c, t, T ) = Q1−c

√
T − t S N σS

= Q1−c

√
T − t × 97, 704% × N × 0, 00026

= Q1−c

√
T − t × 25, 38GBP .

The risk is now to be converted into USD. The transformation in Eq. 30.19
intuitively means that a further risk factor must be taken into consideration,
the USD/GBP exchange rate D. This value and its daily volatility are: D =
1.469 USD/GBP and σD = 0.404%. The correlation between the two risk
factors is ρS,D = −0.11574. The value at risk in USD (with respect to a
confidence level of c and a liquidation period T − t ) is essentially the product
of the current portfolio value in USD and the portfolio volatility (with respect
to USD). The portfolio’s value is just the product (and not the sum; herein
lies the reason for the difference between this and Eq. 30.13) of the two risk
factors S and D. The portfolio volatility with respect to USD is given by the
transformation in Eq. 30.19. Thus, the value at risk in USD becomes

VaR(c, t, T ) = Q1−c

√
T − tD(t)S(t)NσSD

= Q1−c

√
T − tD(t)S(t)N

√
σ 2

D + σ 2
S + 2ρS,D σD σS
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= Q1−c

√
T − t × 97, 704,GBP× 1.469

USD
GBP

×
√

0, 004042 + 0, 000262 − 2 × 0, 11574 × 0, 00404 × 0, 00026

= Q1−c

√
T − t × 577, 39USD .

This is very different from the (wrong) result obtained had we (incorrectly)
converted the GBP-based value at risk into the value at risk in USD by simply
multiplying it by the current GBP/USD exchange rate. This would have
resulted in a completely incorrect VaR of “25.38 GBP ×1.469 USD/GBP
= 37.28 USD”, which differs significantly from the correct result. Thus, the
risk of the position mainly stems from the fact that it is a position in a foreign
currency (as seen from USD). The specific price risk of the bond with respect
to its home currency only plays a minor role.

Transformation of the Correlation Having presented the transformation of
the volatility in detail, we now consider the correlations. The transformation
for the correlations are somewhat more complex since two risk factors are
involved, these being the two factors to which the correlation refers. We
must differentiate between two cases: a risk factor is given in the reference
currency and the other in the foreign currency, or both risk factors are quoted
in (different) foreign currencies.

Case 1 The risk factor with price S1 is given in the foreign currency, the second
risk factor S2 in the reference currency. The foreign currency has the exchange
rateD with respect to the reference currency (D units of the reference currency
are exchanged for one unit in the foreign currency). The price of the first risk
factor in the reference currency is therefore equal to DS1. We now consider
the covariance of the logarithmic value changes of these prices with those of
the second risk factor. Exploiting the linearity of the covariance (Eq. A.13), it
is easy to see that

cov [δ ln (D S1) , δ ln (S2)]

= cov [δ ln (D) + δ ln (S1) , δ ln (S2)]

= cov [δ ln (D) , δ ln (S2)] + cov [δ ln (S1) , δ ln (S2)] .

With Eq. A.14, the covariances can be expressed in terms of the volatilities and
the correlations:

ρDS1, S2σDS1 σS2 = ρD,S2 σD σS2 + ρS1, S2 σS1 σS2 .



722 H.-P. Deutsch and M. W. Beinker

Applying Eq. 30.19 for the volatility of the product DS1 finally yields the
desired transformation

ρDS1, S2 = ρD,S2 σD + ρS1, S2 σS1√
σ 2

D + σ 2
S1

+ 2 ρD, S1 σD σS1

. (30.20)

The correlation transformation of a price S given in the foreign currency and
the exchange rate D itself is a special case of Eq. 30.20 with S1 := S and S2

set equal to D:

ρDS, D = σD + ρD,S σS√
σ 2

D + σ 2
S + 2 ρD, S σD σS

= σD + ρD,S σS

σDS

, (30.21)

where Eq. 30.19 was used in the last step.

Case 2 The risk factor with a price S1 is quoted in a foreign currency, the
second risk factor S2 is likewise given in a foreign currency. These two foreign
currencies may be different. The foreign currency associated with S1 has
exchange rate D1 with respect to the reference currency, the second foreign
currency has exchange rate D2. Then the price of the first risk factor in the
reference currency equals D1S1. Correspondingly the price of the second risk
factor is D2S2. As before, we consider the covariance of the logarithmic value
changes of the prices

cov [δ ln (D1S1) , δ ln (D2S2)]

= cov [δ ln(D1) + δ ln (S1) , δ ln(D2) + δ ln (S2)]

= cov [δ ln(D1), δ ln(D2)] + cov[δ ln (S1) ,+δ ln (S2)]

+ cov [δ ln(D1), δ ln (S2)] + cov[δ ln (S1) , δ ln(D2)] .

Applying Eq. A.14, the covariances again can be expressed in terms of the
volatilities and the correlations:

ρD1S1, D2S2σD1S1 σD2S2 = ρD1,D2 σD1 σD2 + ρD1, S2 σD1 σS2

+ ρD2, S1 σD2 σS1 + ρS1, S2 σS1 σS2 .
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Using Eq. 30.19 for the volatilities of the products D1S1 and D2S2 finally
yields the desired transformation

ρD1S1,D2S2 (30.22)

= ρD1,D2σD1 σD2 + ρD1, S2σD1 σS2 + ρD2, S1σD2 σS1 + ρS1, S2σS1 σS2√
σ 2

D1
+ σ 2

S1
+ 2 ρD1, S1 σD1 σS1

√
σ 2

D2
+ σ 2

S2
+ 2 ρD2, S2 σD2 σS2

.

This is the correlation with respect to the reference currency between both of
the risk factors S1 and S2 quoted in their respective (different) currencies.

We are frequently confronted with the special case of this equation in which
the two foreign currencies are identical, implying D1 = D2 = D. In this case
the transformation reduces to

ρDS1, DS2 = σ 2
D + (

ρD,S2σS2 + ρD,S1σS1

)
σD + ρS1, S2σS1 σS2√

σ 2
D + σ 2

S1
+ 2 ρD, S1 σD σS1

√
σ 2

D + σ 2
S2

+ 2 ρD, S2 σD σS2

.

(30.23)

Transformations for the Exchange Rates and Cross Rates

The transformations described above are frequently used in practice. Curren-
cies are quoted most often against USD, though some are also quoted against
EUR or other currencies. For a given pair of currencies, e.g. EUR/USD, the
first currency (i.e. EUR) is called base currency, while the second currency is
called quote currency (i.e. USD). The quoted price is given as the price of one
unit of base currency in terms of the quote currency. If the quote currency
differs from the reference currency, the FX quotes need to be converted to a
convention where the base currency equals the foreign currency and the quote
currency equals the reference currency, before they can be used for valuation
or risk management. Here, cross rates come into play. For example, for an
USD-based investor, the exchange rate from EUR into Yen (i.e. EUR/JPY),
is a cross rate. Cross rates are obtained by dividing the desired rate (in this
case USD/JPY) by the exchange rate of the new base currency (for example
USD/EUR). To illustrate this concept further, consider the following examples
of exchange rates with respect to the USD

Di(t) = USD

EUR
, Dj (t) = USD

GBP

Dn(t) = USD

JPY
, Dm(t) = USD

CHF
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From these, cross rates for arbitrary combinations can be established as follows:

Dji(t) = Dj(t)

Di(t)
= EUR

GBP

Dni(t) = Dn(t)

Di(t)
= EUR

JPY

Dmn(t) = Dj(t)

Dn(t)
= JPY

CHF
, etc.

Thus, the subtlety in transforming volatilities and correlations of cross rates
lies in the fact that, as opposed to the previous section, not the products but
the quotients of risk factors (exchange rates) must be considered. The quotient
of two values a and b can, of course, be seen as the product of a and 1/b. The
arguments of the previous section can then be applied. Consider the volatilities
and correlations of an “inverse risk factor” (exchange rate) 1/D:

var

[
δln

(
1

D(t)

)]
= var [−δln(D(t))] = (−1)2var [δln(D(t))]

cov

[
δln

(
1

D(t)

)
, δln(S(t))

]
= cov [−δln(D(t)), δln(S(t))]

= −cov [δln(D(t)), δln(S(t))] .

This implies that 1/D has the same volatility asD, and that the correlations of
1/D with an arbitrary risk factor S is just the negative correlation of D with S

(the correlation between two inverse prices is then the same as the correlation
between the prices themselves):

σ 1
D

= σD , ρ 1
D

,S = −ρD,S , ρ 1
D

, 1
S

= ρD,S . (30.24)

Now, the transformations of the previous section can directly be applied.
Let Db denote the quoted exchange rate of the investor’s reference currency
quoted in terms of some other quote currency. For example, if the data are
quoted with respect to USD and the investor’s reference currency is EUR then
Db = USD/EUR. Let Dj be the quoted exchange rate of another currency.
The corresponding volatilities and correlation quoted by the data provider are
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denoted by σb, σj and ρb,j . The volatility of Dj with respect to the investors
reference currency is the volatility σjb of the cross rate

Djb := Dj/Db . (30.25)

When applying the equations of the previous sections we generally have to
associate Dj with a risk factor S quoted in the foreign currency and 1/Db

with the exchange rate D from that foreign currency to our domestic or home
currency.

• From Eq. 30.19 (with the substitution S = Dj and D = 1/Db), the
volatility of a cross rate is:

σjb =
√

σ 2
j + σ 2

b − 2ρj,b σj σb (30.26)

• From Eq. 30.22 (with the substitution S1 = Dj , D1 = 1/Di , S2 = Dn

and D2 = 1/Dm), the correlation between two cross rates Dji = Dj/Di

and Dnm = Dn/Dm is:

ρji, nm = ρi,mσi σm − ρn,iσn σi − ρj,mσj σm + ρj, nσj σn√
σ 2

j + σ 2
i − 2 ρj,i σj σi

√
σ 2

n + σ 2
m − 2 ρn,m σn σm

(30.27)

= ρi,mσi σm − ρn,iσn σi − ρj,mσj σm + ρj,nσi σm

σji σnm

,

where in the last step Eq. 30.26 was used. The correlation of two cross rates
with respect to the same quote currency can now be obtained by setting
m = i = b:

ρjb, nb = σ 2
b − (ρn,bσn + ρj,bσj ) σb + ρj, nσj σn

√
σ 2

j + σ 2
b − 2 ρj,b σj σb

√
σ 2

n + σ 2
b − 2 ρn, b σn σb

(30.28)

= σ 2
b − (

ρn,bσn + ρj,bσj

)
σb + ρj, nσj σn

σjb σnb

.
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• From Eq. 30.20 (with the substitution D = 1/Db, S1 = Dj and S2 = S),
the correlation of a cross rate Djb with a risk factor S still quoted in its
original foreign currency is:

ρjb, S = ρj,S σj − ρb, S σb√
σ 2

b + σ 2
j − 2 ρb, S σb σS

= ρj,S σj − ρb, S σb

σjb

. (30.29)

We emphasize that in this equation the risk factor S is still quoted in its
original foreign currency.

• From Eq. 30.19 (with the substitution D = Djb), the volatility of a
transformed risk factor S (i.e., of a risk factor quoted in the investor’s home
currency by applying the corresponding (cross) exchange rate Djb) is

σDjbS =
√

σ 2
jb + σ 2

S + 2ρjb,S σjb σS (30.30)

=
√

σ 2
jb + σ 2

S + 2
(
σjρj, S σS − σbρb, SσS

)

with σjb from Eq. 30.26 and ρjb, S from Eq. 30.29.
• The correlation of a risk factor S quoted in the investor’s reference currency

(by applying the corresponding (cross) exchange rate Djb) with a cross
rate Dnb = Dn/Db results from Eq. 30.20 with the substitutions D =
Djb, S1 = S and S2 = Dnb:

ρDjbS, Dnb
= ρjb, nb σjb + ρnb, S σS√

σ 2
jb + σ 2

S + 2 ρjb, S σjb σS

(30.31)

with ρjb, nb as in Eq. 30.28, ρjb, S as in Eq. 30.29 and σjb as in Eq. 30.26.
This can of course also be derived from first principles:

cov
[
δ ln

(
DjbS

)
, δ ln (Dnb)

] = cov
[
δ ln

(
Djb

) + δ ln (S) , delta ln (Dnb)
]

= cov
[
δ ln

(
Djb

)
, δ ln (Dnb)

]

+ cov [δ ln (S) , δ ln (Dnb)]

ρDjbS, Dnb
σDjbS σnb = ρjb, nbσjbσnb + ρnb, S σSσnb .
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A factor σnb cancels in the last equation and for σDjbS we use Eq. 30.30 to
arrive at Eq. 30.31. In the special case that both cross rates are the same,
Dnb = Djb, we have:

ρDjbS,Djb
= σjb + ρjb,S σS√

σ 2
jb + σ 2

S + 2 ρjb, S σjb σS

. (30.32)

• The correlation of a risk factor S1 (quoted in the investor’s home currency
by applying the corresponding (cross) exchange rate Djb) with another
risk factor S2 (quoted in the investor’s home currency by applying the
corresponding (cross) exchange rate Dib) results from Eq. 30.22 with the
substitutions D1 = Djb and D2 = Dib:

ρDjbS1, DibS2 = ρjb, ibσjb σib + ρjb, S2σjb σS2 + ρib, S1σib σS1 + ρS1, S2σS1 σS2√
σ 2

jb + σ 2
S1

+ 2 ρjb, S1 σjb σS1

√
σ 2

ib + σ 2
S2

+ 2 ρib, S2 σib σS2

(30.33)

with ρjb, ib as in Eq. 30.28, the correlations between cross rates and risk
factors (like for instance ρjb, S2 , ρib, S1 , etc.) as in Eq. 30.29 and the cross
rate volatilities σjb and σib as in Eq. 30.26. The correlation ρS1, S2 and
volatilities σS1 and σS2 are the risk factor data quoted in their respective
original currencies, as quoted externally. This can of course also be derived
from first principles:

cov
[
δ ln

(
DjbS1

)
, δ ln (DibS2)

] = cov
[
δ ln

(
Djb

) + δ ln (S1) ,

δ ln (Dib) + δ ln (S2)]

= cov
[
δ ln

(
Djb

)
, δ ln (Dib)

]

+ cov [δ ln (Dib) , δ ln (S1)]

+ cov
[
δ ln

(
Djb

)
, δ ln (S2)

]

+ cov [δ ln (S1) , δ ln (S2)]

ρDjbS1, DibS2σDjbS1 σDibS2 = ρjb, ibσjbσib + ρib, S1σibσS1

+ ρjb, S2σjbσS2 .
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Dividing by σDjbS1 and σDibS2 and using Eq. 30.30 for those two volatilities
we arrive at Eq. 30.33. In the special case that both cross rates are the same,
Dib = Djb, we have:

ρDjbS1, DjbS2 = σ 2
jb + (

ρjb, S2σS2 + ρjb, S1σS1

)
σjb + ρS1, S2σS1 σS2

√
σ 2

jb + σ 2
S1

+ 2 ρjb, S1 σjb σS1

√
σ 2

jb + σ 2
S2

+ 2 ρjb, S2 σib σS2

.

(30.34)

The Excel workbook ValueAtRisk.xlsx from the download section [50],
demonstrates the application of the transformations introduced above explic-
itly. Table 30.1 shows the original quotes. The transformations of these data
into EUR-based data proceeds in four steps:

1. The volatilities and correlations of the cross rates with each other with
respect to EUR are determined in accordance with Eqs. 30.26 and 30.28.

2. Now the correlations ρjb, S between these cross rates and the risk factors are
determined in an intermediate step using Eq. 30.29. Observe that here the
risk factors are not yet converted by any exchange rate but are still quoted
in there original currencies, i.e., the Japanese 5-year zero bond is quoted in
JPY, the Japanese 7-year zero bond is quoted in JPY and the British 6-month
zero bond is quoted in GBP.

3. Only after these two steps can we apply Eqs. 30.31 and 30.32 to determine
the correlations between the risk factors (now quoted in the reference
currency) and the cross rates (also quoted in the reference currency).

4. Finally the EUR-based volatilities of the transformed risk factors (i.e., of
the risk factors quoted in the investor’s home currency) are calculated via
Eq. 30.30 and the correlations of the transformed risk factors with one
another are determined via Eq. 30.33 (or Eq. 30.34 for the correlation
between the two Japanese bonds).

Table 30.1 The original price volatilities and correlations. The data are for relative daily
changes

USD/EUR USD/JPY USD/GBP JPY.Z05 JPY.Z07 GBP.R180

USD/EUR 0.680% 0.49105 0.76692 0.13130 0.03701 −0.01863
USD/JPY 0.49105 0.731% 0.51365 −0.02040 −0.02092 −0.07130
USD/GBP 0.76692 0.51365 0.404% 0.12458 0.10580 −0.11574
JPY.Z05 0.13130 −0.02040 0.12458 0.093% 0.89410 0.17171
JPY.Z07 0.03701 −0.02092 0.10580 0.89410 0.177% 0.00987
GBP.R180 −0.01863 −0.07130 −0.11574 0.17171 0.00987 0.026%

The bold values are in themain-diagonal of thematrix and are thus volatilities (quoted
as percentages) while off-diagonal elements are correlations (quoted as numbers)
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Table 30.2 The price volatilities and correlations with respect to EUR

EUR/JPY EUR/GBP JPY.Z05 JPY.Z07 GBP.R180

EUR/JPY 0.713% 0.49406 0.99141 0.96976 0.49221
EUR/GBP 0.49406 0.452% 0.48798 0.49552 0.99834
JPY.Z05 0.99141 0.48798 0.705% 0.99006 0.48739
JPY.Z07 0.96976 0.49552 0.99006 0.725% 0.49386
GBP.R180 0.49221 0.99834 0.48739 0.49386 0.450%

The bold values are in the main-diagonal of the matrix and are thus
volatilities (quoted as percentages) while off-diagonal elements are
correlations (quoted as numbers)

Table 30.3 The price volatilities and correlations with respect to USD

USD/EUR USD/JPY USD/GBP JPY.Z05 JPY.Z07 GBP.R180

USD/EUR 0.680% 0.49105 0.76692 0.50501 0.48829 0.76987
USD/JPY 0.49105 0.731% 0.51365 0.99192 0.97158 0.51183
USD/GBP 0.76692 0.51365 0.404% 0.52664 0.52665 0.99794
JPY.Z05 0.50501 0.99192 0.52664 0.735% 0.99058 0.52632
JPY.Z07 0.48829 0.97158 0.52665 0.99058 0.748% 0.52515
GBP.R180 0.76987 0.51183 0.99794 0.52632 0.52515 0.402%

The bold values are in the main-diagonal of the matrix and are thus volatilities
(quoted as percentages) while off-diagonal elements are correlations (quoted as
numbers)

Observe that for Steps 3 and 4 we need the EUR-based correlations and
volatilities of the cross rates from Step 1 and the correlations between the risk
factors (still in their original currencies) and the cross rates obtained in Step
2. The results of these transformations are presented in Table 30.2 and were
already used in Table 24.3 of Chap. 24 for calculating the value at risk.

As expected, from the perspective of an EURO-based investor there is a very
high correlation between the Japanese bonds and the EUR/JPY exchange rate.
In fact, the price movements (in EURO) of these bonds are almost exclusively
determined by the exchange rate. This is in stark contrast to the original
correlations of those bonds with the exchange rates in Table 30.1 which are
very low. But the currency transformations correctly capture the fact, that
those bond prices, if seen from outside Japan, are very much dependent on
the JPY exchange rate.

The original data refer to different currencies: the exchange rates all refer
to the USD, the Japanese bonds to JPY and the British bond to GBP. Thus,
even if the reference currency was USD, the volatilities and correlations of the
Japanese and British bonds must be converted. This is accomplished using
Eq. 30.19 for the volatilities, Eqs. 30.20 (with S2 being an exchange rate)
and 30.21 for the correlations between the bonds and the exchange rates and
Eqs. 30.22 and Eq. 30.23 for correlations of the bonds with one another. The
corresponding results are presented in Table 30.3.



31
Market Parameter from Historical Time Series

Having shown in the previous sections how statistical parameters such as the
volatility can be obtained implicitly from the prices of derivatives traded in
the market (if they are not quoted directly anyway), we now proceed with
presenting in the following section, how such statistical figures, one of which is
the volatility, could be determined by analyzing the historical time series. These
volatilities are called real world or historic volatilities in contrast to implicit or
risk-neutral volatilities.

Depending on the usage, either risk-neutral or real-world volatilities are
applied. The risk-neutral or arbitrage-free valuation of derivatives requires risk-
neural volatilities (as one might have guessed), since otherwise it would be
impossible to match the price quotes of (simple) options, which are used for
dynamic hedging that is essential for the risk-neutral valuation approach. On
the other hand, the purpose of risk management is to calculate the risk of
a potential real-world loss especially of those risks, which are not explicitly
(statically) hedged. Here, real-world volatilities are needed.
Time series analysis is a broad topic in the field of statistics whose application

here will be limited to those areas which serve the purposes of this book. A
much more general and wide-reaching presentation can be found in [86], for
example.
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31.1 Historical Averages as Estimates
for Expected Values

Based on a time series of some risk factor (e.g. a stock price), we start with
calculating for every price change the logarithm of the ratio of new and
old price, which equals in linear approximation the relative price change,
see Eq. 30.9. The statistical measures we estimate are then related to the
logarithm of risk factor, e.g. the stock price. This is always handy, if we consider
lognormally distributed risk factors. For stock prices, this is the case, at least in
first order approximation. Interest rates used to be considered as lognormally
distributed, too, as long as the interest rates does not become to low or even
negative. For normally distributed risk factors (e.g. interest rates in domains
with low or negative interest rates), the absolute difference of price for risk
factor changes would be used. The statistical methods described below work
in both cases, and for a historical as well as for a simulated time series.

From the expectation and the variance of this variable the historical volatility
σ and the historical mean returnμ can be determined by recording the relative
changes over a period of length δt along a historical (or simulated) path:

μ = 1

δt
E [X] , σ 2 = 1

δt
Var [X]

with X = ln

(
S(t + δt)

S(t)

)
≈ S(t + δt) − S(t)

S(t)
. (31.1)

The historical correlation between two price processes is likewise determined
from the relative changes. With Y denoting the change of the second price
(analogous to X as defined above), the correlation, as defined in Eq. A.14, is

ρ = cov [XY ]√
Var [X] Var [Y ]

.

These equations make it apparent that a procedure is required enabling the
determination of the expectation and variance from time series data. It is well
known from statistics that from n measurements Xi , which are realizations of
a random variable X, the mean 〈X〉 (and more generally the mean 〈f (X)〉 of
a function of X) can be computed in the following way

〈X〉 = 1

n

n∑

i=1

Xi , 〈f (X)〉 = 1

n

n∑

i=1

f (Xi) .
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The law of large numbers states that these means approximate the desired
expectations and variances as follows1:

〈f (X)〉 n→∞−→ E [f (X)]

〈
f (X)2〉 − 〈f (X)〉2 n→∞−→ n − 1

n
var [f (X)] . (31.2)

This result may seem trivial or the difference between the actual parameters
(the right-hand side) and the measured approximation (left-hand side) may be
unclear to the reader. This difference, however, is fundamental: the theoretical
value (the right-hand side) can never be precisely known; it can only be
estimated more or less exactly through the computation of means of measured
data. Such “means of measured data” are called estimators in statistics to distin-
guish them from the true values. Examples of estimators are the expectations
on the left-hand sides in Eq. 31.2. More estimators will be introduces in the
following sections.

The expectation and variance of X are needed for the description of the
risk factor X. For this, the means of the realizations of the random variablesX
and X2 are needed. The determination of the error made in making these
estimates requires X4 as well (see Sect. 31.2). Therefore, for any time series
analysis the computation of the following measures are especially helpful:

〈X〉 = 1

n

n∑

i=1

Xi ,
〈
X2

〉 = 1

n

n∑

i=1

X2
i ,

〈
X4

〉 = 1

n

n∑

i=1

X4
i . (31.3)

These measures are called the 1., 2. and 4. moment of the distribution. In
general, the n-th moment mk of a distribution is defined as

mk = 1

n

n∑

i=1

Xk
i .

If multiple correlated prices are involved, the following means for each pair of
prices are also necessary:

〈XY 〉 = 1

n

n∑

i=1

XiYi ,
〈
(XY)2〉 = 1

n

n∑

i=1

X2
i Y

2
i . (31.4)

1The factor (n − 1) /n of the variance is necessary if the estimator for the variance is to be unbiased. See
any introductory statistics textbook for more on this subject.
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These are the composite moments m1,1 and m2,2 of the time series X and Y .
From these values, historical estimates for the mean return, volatility and
correlation can be obtained:

μ = 1

δt
E [X] ≈ 1

δt
〈X〉 (31.5)

σ = 1√
δt

√
var [X] ≈ 1√

δt

√
n

n − 1

√〈
X2

〉 − 〈X〉2

ρ = cov [XY ]√
var [X]

√
var [Y ]

≈ 〈XY 〉 − 〈X〉 〈Y 〉
√〈

X2
〉 − 〈X〉2

√〈
Y 2

〉 − 〈Y 〉2
.

31.2 Error Estimates

Estimating the error in the measured values is essential for evaluating their
meaningfulness. It is therefore insufficient to provide a value as the result of
making observations since the actual theoretical value is not obtained (and
will never be obtained) from measured data. It is more appropriate to find an
interval on the basis of observed data within which the theoretical value lies.

A claim such as “the historical price volatility is 20% per year” is not very
meaningful if nothing is said about the error associated with such a claim, for
example 0.5% or 50%. A valid statement on the other hand might be “the
historical price volatility is 20% ± 3% per year”. This means that the actual
volatility lies with high probability somewhere between 17% and 23% per
year. The safer you need to be, i.e. the higher the probability should be that
the value lies indeed in this interval, the greater the interval will be, if the range
of parameter values is not restricted for other reasons (e.g., in case of a dice the
result of a valid throw is with 100% probability between 1 and 6).

In this section, several simple methods for determining the statistical error
are introduced and its calculation will be demonstrated explicitly for the
volatility and correlation. We begin by assuming that data in a time series
(referred to as observed values or measurements) are pair wise independent
and in consequence uncorrelated. Finally, we will briefly show how to test
whether measurements are independent and how to proceed in the case that
they are not, i.e., how to account for autocorrelations. Naturally, the subject
is quite technical. Error estimation is theoretically quite simple but lengthy.
Nonetheless, anyone who wishes to conduct a serious analysis of historical or
simulated data should understand and apply this material.
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There are two different types of error. The first is the statistical error, which is
a consequence of the fact that only a finite number of measurements are taken.
The second is the systematic error. These are errors arising from a fundamental
mistake (for example, a programming error in aMonte Carlo simulation). The
failure to decrease with an increasing number of measurements is characteristic
of a systematic error (as opposed to the statistical error). Only the statistical
error will be dealt with in this section.

31.2.1 Uncorrelated Measurements

The determination of expectations is accomplished through calculating the
mean of the observed values as in Eq. 31.5. For a sufficiently large number n

of measurements

E [X] ≈ 〈X〉 , var [X] ≈ n

n − 1

(〈
X2

〉 − 〈X〉2
)

(31.6)

holds. The central question is: what is the (statistical) error involved in
estimating these parameters as above? The n observations are realizations of the
random variables Xi , i = 1, . . . n. The mean is the weighted sum over these
random variables Xi and as such is again a random variable. The statistical
error will be defined as the standard deviation of this new random variable,
or equivalently, the error is the square root of the variance of the mean. A
fundamental result from the field of statistics is

〈X〉 = 1

n

n∑

i=1

Xi ⇒ (31.7)

var [〈X〉] = 1

n
var [X] if E

[
XiXj

] = 0 for i �= j .

The variance of the mean of uncorrelated, identically distributed random
variables is equal to the variance of the random variable itself divided by
the number of observations. This result combined with the approximation
in Eq. 31.6 for the variance yields the statistical error (denoted below by the
symbol δ) defined as the standard deviation of the mean

δ 〈X〉 ≡ √
var [〈X〉] =

√
1

n
var [X] ≈

√〈
X2

〉 − 〈X〉2

n − 1
. (31.8)
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This holds in general for the mean of a function of the random variable X:

δ 〈f (X)〉 =
√

1

n
var [f (X)] ≈

√〈
f (X)2

〉 − 〈f (X)〉2

n − 1
. (31.9)

The statistical error in the estimation of the mean return as defined in Eq. 31.5
is thus2

δμ ≈ 1

δt
√

n − 1

√〈
X2

〉 − 〈X〉2 . (31.10)

The mean of a function is to be distinguished from the function of the mean
if the function is not linear: 〈f (X)〉 �= f (〈X〉). Thus, the error of a function
of an uncertain value z (in the case under discussion, z = 〈X〉) cannot be
computed directly in general. A Taylor series expansion of the function can
provide assistance in such cases. The propagation of error can be obtained from
this Taylor series:

f = f (z) mit z = z ± δ z ⇒ δ f =
∣∣
∣∣δ z

∂ f

∂ z

∣∣
∣∣ + 1

2

∣∣
∣∣(δ z)2 ∂2f

∂ z2

∣∣
∣∣ + · · ·

The vertical lines in the above equation indicate the absolute value. This can
be generalized for functions of multiple variables with associated errors. Such
expressions quickly become very lengthy. Restricting our consideration to the
first (linear) terms, we obtain what is known as the quadratic error propagation.

f = f (z1, z2, . . . , zk) with zi = zi ± δ zi

⇒ δ f ≈
∣∣
∣∣∣

k∑

i=1

δ zi

∂ f

∂ zi

∣∣
∣∣∣
=

√√√√
k∑

i=1

(
δ zi

∂ f

∂ zi

)2

. (31.11)

2Here, the δ in δt denotes the length of a time interval between two data points in the time series and not
the “error in t”.
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This law will be required in order to determine the error involved in measuring
the variance since

var [X] ≈ n

n − 1

(〈
X2〉 − 〈X〉2) = f (z1, z2) with

z1 = 〈X〉 , z2 = 〈
X2〉 , f (z1, z2) = n

n − 1

(
z2 − z2

1

)

⇒ ∂ f

∂ z1
= − 2n

n − 1
z1 ,

∂ f

∂ z2
= n

n − 1
.

The error of f , calculated with quadratic error propagation, is then

δ f ≈
√(

δ z1
∂ f

∂ z1

)2

+
(

δ z2
∂ f

∂ z2

)2

=
√(

δ z1
2n

n − 1
z1

)2

+
(

δ z2
n

n − 1

)2

= n

n − 1

√
4z2

1 (δ z1)
2 + (δ z2)

2 .

Since z1 and z2 are means of X and f (X) = X2 respectively, their errors are
respectively,

z1 = 〈X〉 ⇒ δ z1 = δ 〈X〉 ≈ 1√
n − 1

√〈
X2

〉 − 〈X〉2

z2 = 〈
X2

〉 ⇒ δ z2 = δ
〈
X2

〉 ≈ 1√
n − 1

√〈
X4

〉 − 〈
X2

〉2
.

Substituting these into the expression for δf yields

δ f ≈ 1√
n − 1

n

n − 1

√

4 〈X〉2
(〈
X2

〉 − 〈X〉2
) +

(〈
X4

〉 − 〈
X2

〉2)

= 1√
n − 1

n

n − 1

√〈
X4

〉 − 〈
X2

〉2 + 4
〈
X2

〉 〈X〉2 − 4 〈X〉4 .
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This is the statistical error made in measuring the variance var[X]. In order
to determine this error when analyzing historical time series, the means of X,
X2 and X4 must be measured.

Likewise, the error of the volatility σ can be determined through the
following deliberations

σ [X] ≡ 1√
δt

√
var [X] ≈ 1√

δt

√
n

n − 1

√〈
X2

〉 − 〈X〉2 = 1√
δt

g(z1, z2)

with z1 = 〈X〉 , z2 = 〈
X2〉 , g(z1, z2) =

√
n

n − 1

√
z2 − z2

1 ⇒

∂ g

∂ z1
= −

√
n

n − 1

z1√
z2 − z2

1

,
∂ g

∂ z2
= 1

2

√
n

n − 1

1
√

z2 − z2
1

.

An analogous calculation as above yields

δ σ ≈ 1√
δt

1√
n − 1

√
n

n − 1

√〈
X4

〉 − 〈
X2

〉2 + 4
〈
X2

〉 〈X〉2 − 4 〈X〉4

2
√〈

X2
〉 − 〈X〉2

(31.12)

for the error in the measured volatility. The expression for the error of the
correlation between two prices X and Y is even longer as it is represented by
a function of five means:

ρ[X,Y ] ≡ cov[XY ]√
var[X]var[Y ] ≈ 〈XY 〉 − 〈x〉〈Y 〉

√〈X2〉 − 〈X〉2
√〈Y 2〉 − 〈Y 〉2

= ρ(z1, z2, z3, z4, z5)

where z1 = 〈X〉, z2 = 〈Y 〉, z3 = 〈X2〉, z4 = 〈Y 2〉, z5 = 〈XY 〉

ρ = z5 − z1z2√
z3 − z2

1

√
z4 − z2

2

The derivatives of the correlation with respect to the zi are

∂ρ

∂z1
= −ρ

(
z1 + z2

z5 − z1z2

)

∂ρ

∂z2
= −ρ

(
z2 + z1

z5 − z1z2

)
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∂ρ

∂z3
= ∂ρ

∂z4
= ρ

2

∂ρ

∂z5
= ρ

z5 − z1z2

The errors of the zi are as in Eq. 31.9

δz2
1 = 〈X2〉 − 〈X〉2

n − 1
, δz2

2 = 〈Y 2〉 − 〈Y 〉2

n − 1

δz2
3 = 〈X4〉 − 〈X2〉2

n − 1
, δz2

4 = 〈Y 4〉 − 〈Y 2〉2

n − 1

δz2
5 = 〈X2Y 2〉 − 〈XY 〉2

n − 1
.

All these results inserted into Eq. 31.11 yields the statistical error of the
correlation

∂ρ ≈
√√√
√

5∑

i=1

(
δzi

∂ ρ

∂ zi

)2

.

Table 31.1 illustrates the application of Eq. 31.5 for the measurement of the
mean return and the volatility from a data set with n = 250 observations and
the estimation of their statistical errors in accordance with Eqs. 31.10 and 31.12.
In addition to the relative price changes X, the second and fourth powers are
measured. Using these means, the above equations are used to compute the
mean return and the volatility as well as the errors involved in estimating these
two parameters.

The data set was generated by a simulated random walk with a yield
of 6.00% and a volatility of 20.00%. The measured values could thus be
compared with the “true values” (a luxury naturally not at our disposal when
using historical data). The true values lie within the error of the measurement.

The error is naturally large since the number of measurements taken is
so small. As the number of measurements gets bigger, we see that the error
decreases as the inverse of square root of the number of measurements; a
tenfold decrease in the statistical error can thus only be accomplished if a
sample size 100 times as large is placed at our disposal.
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Table 31.1 Measuring the yield, the volatility and their errors from a (simulated) data
series of 250 “measurements”. The parameters used to simulate the data set are shown
for comparison

Yield per δt Vol per δt

Simulated 6.00% 20.00%
Measured 5.99% 19.70%
Error 1.25% 1.00%
x x2 x4

Averages
0.05986719 0.04223756 0.00502627

Data n

−0.070,8944,77 0.005,026,027 2.526,09 ×10−05 1
−0.014,768,650 0.000,218,113 4.757,33 ×10−08 2
0.011,417,976 0.000,130,37 1.699,64 ×10−08 3

−0.066,321,993 0.004,398,607 1.934,77 ×10−05 4
−0.113,237,822 0.012,822,804 0.000,164,424 5
0.089,718,194 0.008,049,354 6.479,21 ×10−05 6
0.200,262,728 0.040,105,16 0.001,608,424 7
0.329,164,502 0.108,349,270 0.011,739,564 8

−0.003,557,309 1.265,44 ×10−05 1.601,35 ×10−10 9
−0.066,032,319 0.004,360,267 1.901,19 ×10−05 10
0.266,072,855 0.070,794,764 0.005,011,899 11

−0.173,980,700 0.030,269,284 0.000,916,23 12
0.193,003,141 3.725,02 ×10−02 0.001387578 13

−0.044,716,037 0.001,999,524 3.998,1 ×10−06 14
−0.038,558,758 0.001,486,778 2.2105,1 ×10−06 15
−0.033,664,767 0.001,133,317 1.284,41 ×10−06 16
. . . . . . . . . . . .

It is essential to be aware that errors are also only statistical quantities.
Therefore we can not be sure that the interval defined by the error actually
contains the true value of the estimated parameter; there is only a certain
probability that this is the case. If we have reason to believe that the measured
estimator, such as the mean return, is normally distributed, then there is
approximately 68% probability that the true parameter will lie within the
error interval, since the error is defined as one standard deviation. Thus,
the probability for the true value to lie outside the range obtained from the
statistical error is approximately 32% in this case. If this uncertainty is too
large, we could of course define the statistical error to correspond to two or
three standard deviations or more. We only need to multiply the error in the
derivations above by the desiredmultiplicative factor. For example, if we define
the error as two standard deviations and the measured estimator is normally
distributed, then the probability that the true value will lie within the new
error interval is 95.4%.
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As is clear from the above, we need the probability distribution of the
measured estimator if we want to assign confidence levels to error intervals.
It can by no means be taken for granted that the measured estimator has the
same distribution as the random variables in the time series. If, for instance,
the random variables X in the time series are uniformly distributed on a finite
interval [a, b] then the estimator for μ as defined in Eq. 31.5 is (for large n)
approximately normally distributed (because of the central limit theorem, see
Sect. A.4.3). If, however, the random variablesX in the time series are normally
distributed, then the estimator for μ is also normally distributed. However, the
estimator for the variance is in this case a χ2-distributed variable. This can be
seen as follows: according to Eqs. 31.6 and 31.3, the estimator for the variance
is

var [X] ≈ n

n − 1

(〈
X2

〉
− 〈X〉2

)
= n

n − 1

(
1

n

n∑

i=1

X2
i − 〈X〉2

)

.

The Xi are all normally distributed and the mean 〈X〉 is also normally
distributed in this case. Therefore the estimator for the variance is a sum of
squared normally distributed random variables and as such χ2-distributed (see
Sect. A.4.6).

31.2.2 Error of Autocorrelated Measurements

Themethods described above for the determination of the statistical error hold
only for uncorrelated measurements. That means, it has been tacitly assumed
that the n measurements in a time series come from independent observations.
However, independence is an assumption which often cannot be made, in
particular in time series analysis (for example, in the case of moving average
methods, see Sect. 33.4). Daily changes in a moving 30-day price average, for
example (the mean of prices observed over the previous 30 days is computed)
will remain small from one day to the next since in each daily adjustment, only
the oldest price is replaced by the most recently observed value, the other 29
prices in the average remain the same. The measurement of such a variable is
highly correlated with the measurement made on the previous day. In such a
situation, error considerations must be modified significantly.
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Autocorrelation and Autocovariance

A correlation of one and the same variable with itself is called autocorrelation.3
Just as correlation measures the (linear) dependency between two different
random processes, autocorrelation measures the (linear) dependency between
a process has on itself. The autocorrelation is defined by

�(t, h) = cov(Xt+h, Xt)

cov(Xt,Xt)
= cov(Xt+h,Xt)

var(Xt)
, (31.13)

where the definition of the autocovariance is completely analogous to the
definition of the covariance between two different random variables (see
Eq. A.10)

cov(Xt+h, Xt) = E [(Xt+h − E [Xt+h]) (Xt − E [Xt ])] (31.14)

= E [Xt+hXt] − E [Xt+h] E [Xt] .

We arrive at the final equality by merely taking the product in the previous
expression and using the linearity of the expectation. The resulting equation
corresponds to A.11. Definition 31.14 immediately establishes the relation
between the autocovariance and the variance

cov(Xt, Xt) = E[(Xt − E [Xt])(Xt − E [Xt])] = var(Xt) .

which has already been used in establishing the last equality in Eq. 31.13.
The autocorrelation in Eq. 31.13 also corresponds to the ordinary correla-

tion known from statistics. If the time series is stationary4 (in particular, if the
variance of the process remains constant), var(Xt) = var(Xt+h) holds and ρ

can be written in a form corresponding to Eq. A.14:

�(h) = cov(Xt+h, Xt)√
var(Xt+h)

√
var(Xt)

.

3Autocorrelations do not appear merely in certain measurement methods but are in general inherent to
non-Markov processes, i.e. for processes whose current value is influenced by past values. See Sect. 32.1
for more on this topic. It should be noted that correlation measures only linear dependencies, though.
4This means intuitively that the parameters describing the time series are time independent, see Chap. 32.
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This is just the definition of the correlation of the random variable Xt+h with
the random variableXt , irrespective of whether these random variables belong
to the same time series.

Autocorrelation Time and Error Estimates

With the autocorrelations above we can estimate an autocorrelation timewhich
specifies the number of time steps needed between two measurements in
order to guarantee that the two measurements are (at least approximately)
uncorrelated. The autocorrelation time τ is defined through the autocorrelation
Eq. 31.13 in the following manner

τ(t) ≡ 1

2

∞∑

h=−∞
�(t, h) = 1

2

∞∑

h=−∞

cov(Xt+h, Xt)

cov(Xt,Xt)
. (31.15)

Usually, only stationary time series are investigated (see Chap. 32). Then � is
only dependent on the time difference h between the observations and not on
the time point t . The autocorrelation time is then likewise independent of t ,
i.e., a constant. For uncorrelated observations we have �(t, h) = δh,0 (where
δh,0 again denotes the Kronecker delta) and therefore simply τ = 1/2.

If the number n of observations is much larger than the autocorrelation
time τ it can be shown that

δ 〈X〉 ≈
√

2 τ

n
var [X] ≈

√
2 τ

n − 1

[〈
X2

〉 − 〈X〉2
]

for n >> τ

(31.16)

holds for the mean error of X. This reduces to Eq. 31.8 if the measurements
are uncorrelated since then we have τ = 1/2.

The autocorrelation time (and thus the autocorrelations) must be measured
if the error in Eq. 31.16 is to be determined. An estimator for the autocovariance
is given by

cov(Xt+h, Xt) ≈ 1

n − |h|
∑

i,j
i−j=|h|

XiXj −
(

1

n

n∑

i=1

Xi

)2

. (31.17)
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For h = 0 this estimator is similar to Eq. 31.6 but the factor n/(n − 1) is not
reproduced (for large n however, this factor is very close to 1):

var [Xt ] = cov(Xt , Xt) ≈ 1

n

∑

i,j
i=j

XiXj −
(

1

n

n∑

i=1

Xi

)2

=
〈
X2

t

〉
− 〈Xt 〉2 .

As can be seen from Eq. 31.15, the autocorrelations between h = −∞ and
h = −∞must in theory bemeasured for the calculation of the autocorrelation
time. In practice, a suitable cutoff (n − ñ) can be chosen to limit the sum in
Eq. 31.15 to a finite one, neglecting the autocorrelations that are so small that
they contribute almost nothing to the sum. Substituting the estimator for the
autocovariance, Eq. 31.17, then yields the estimator for the autocorrelation
time.

τ ≈ 1

2

(n−ñ)∑

h=−(n−ñ)

cov(Xt+h, Xt)

cov(Xt,Xt)
with τ << ñ << n

≈ 1

2

1
〈
X2

〉 − 〈X〉2

n−ñ∑

h=ñ−n

⎡

⎢⎢
⎣

1

n − |h|
∑

i,j
i−j=|h|

XiXj − 〈X〉2

⎤

⎥⎥
⎦ .

All this substituted into Eq. 31.16 finally provides a possibility of estimating
the error of a mean taking autocorrelations into account:

δ 〈X〉 ≈

√√√√
√√√

1

n − 1

n−ñ∑

h=ñ−n

⎡

⎢⎢
⎣

1

n − |h|
∑

i,j
i−j=|h|

XiXj − 〈X〉2

⎤

⎥⎥
⎦ .

There are thus two possibilities of taking the autocorrelations into consid-
eration:

• Wewait for at least as long as the autocorrelation time before taking a second
measurement; the measurements would then be uncorrelated.

• We do not wait for the autocorrelation time to pass (e.g., because it is
to short, for instance) and use the above expression for the error of the
correlated observations.
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31.3 Return and Covariance Estimates

We will now present some commonly used estimators for returns and covari-
ances. The importance of return estimates is unquestionable for any invest-
ment decision. Just as important are covariance estimates for quantifying the
risk, as shown for instance in Sect. 21.5. In addition, estimates for other
quantities like volatilities, correlations and Betas can be derived from the
covariance estimates. For all estimates we will use historical risk factor market
prices Si, i = 0, 1, . . . K at times

tn = t0 + n dt with n = 0, . . . , N .

The estimates will be done at time

t = tN > t0

and the window used for the estimates ranges from t0 until tN . Regular sizes
of such time windows range from ca. 30 day to ca. 2 years. We will denote by
δt the time span over which the estimations will be made. This time span is
also called investment horizon, holding period or liquidation period . The time
span between to adjacent data in the time series will be denoted by dt . We will
present a situation often occurring in practice, namely that the holding period
does not have the same length as dt . To still have a clear presentation of the
issues we will, however, assume that the holding period is a multiple of dt :

δt = m dt .

Using time series of daily settlement prices, for instance, one can calculate
estimators for holding periods of m days (e.g., weekly or monthly estimators).

31.3.1 Return Estimates

The risk factor returns over the holding period δt , i.e., the logarithmic price
changes will be denoted by ri .

ri(t) = 1

δt
ln

[
Si(t + δt)

Si(t)

]
for i = 0, . . . ,K . (31.18)
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The historical prices Si(tn) in a time series with N + 1 prices at times tn with

tn − tn−1 = dt for all n = 1, . . . , N

can be translated into historical returns for all past holding periods (all with
length δt ):

ri(tn−m) = 1

δt
ln

[
Si(tn)

Si(tn−m)

]
for i = 0, . . . , K and n = m, . . . , N .

(31.19)

The return at the current time t = tN over the next holding period δt (which
still lies in the future) is only known for the risk free investment (this is the
risk free rate). For all risky investments, however, the future prices Si(tN + δt)

are not yet known. Thus, the returns cannot be calculated but can only be
estimated. We will use μi (tN) to denote the estimator for ri(tN).

The Moving Average (MA) Estimator

The common moving average estimator is simply the (equally weighted) mean
of all historical returns over past time spans of length δt within the time
window used for the estimation.5

μi (tN) = 1

N − m + 1

N∑

n=m

ri(tn−m)

= 1

(N − m + 1) δt

N∑

n=m

ln

[
Si(tn)

Si(tn−m)

]
.

The logarithm appearing above can be written as a sum over historical dt -
returns since everything except the first and the last term cancels in the

5Of course, this estimator is strongly autocorrelated since one time step later N −m out of the N −m+1
values in the sum are still the same.
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following sum:

m∑

k=1

ln

[
Si(tn−k+1)

Si(tn−k)

]
= ln [Si(tn)] − ln [Si(tn−1)] +

ln [Si(tn−1)] − ln [Si(tn−2)] +
. . .+
ln [Si(tn−m+1)] − ln [Si(tn−m)]

= ln [Si(tn)] − ln [Si(tn−m)] = ln

[
Si(tn)

Si(tn−m)

]
.

Inserting this into the expression forμi (tN) andmaking the index substitution
x = n − k yields:

μi (tN) = 1

(N − m + 1) δt

N∑

n=m

m∑

k=1

ln

[
Si(tn−k+1)

Si(tn−k)

]

= 1

(N − m + 1) δt

m∑

k=1

N−k∑

x=m−k

ln

[
Si(tx+1)

Si(tx)

]
. (31.20)

Now we have expressed μi (tN) as a sum over dt -returns (in contrast to δt -
returns). Again, almost everything cancels in the sum over x

N−k∑

x=m−k

ln

[
Si(tx+1)

Si(tx)

]
= ln

[
Si(tN−k+1)

Si(tm−k)

]
,

leaving us with

μi (tN) = 1

(N − m + 1) δt

m∑

k=1

ln

[
Si(tN−k+1)

Si(tm−k)

]
. (31.21)

The remaining sum contains only m terms now, instead of N . This clearly
shows the fundamental problem with return estimates: only historical prices
in the earliest and latest time period δt contribute. All prices in between are
simply not used! This becomes especially severe for dt = δt , i.e., for m = 1.
In this case only the very first and the very last price of the time window
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contribute:

μi (tN ) = 1

N δt
ln

[
Si(tN )

Si(t0)

]
.

Two Alternatives for the Moving Average

One way to circumvent this problem is to use historical returns over time spans
with different lengths (N − n) dt , all ending today. Based onDefinition 31.18,
we can construct an estimator using these historical returns in the following
way:

μi (tN) = 1

N

N−1∑

n=0

1

(N − n) dt
ln

[
Si(tN)

Si(tn)

]

︸ ︷︷ ︸
return from tn to tN

= 1

N dt

N−1∑

n=0

1

N − n
ln

[
Si(tN)

Si(tn)

]
. (31.22)

Observe that in this estimator we have dt (and not δt ) appearing in the
denominator. All historical prices (even the ones way back in the past) enter
with their influence still relevant today, namely with the return over the
corresponding time span ending today. The historical returns over long time
periods enter with the sameweight as returns of shorter time periods. Thus, old
prices are effectively under-weighted since the corresponding returns, although
belonging to long time spans, have nomore influence then returns over shorter
time spans (resulting from more recent prices).

If older prices are to be as important as more recent ones, we can give the
historical returns weights proportional to the length of the time spans they
belong to: the longer the time span, the more weight the corresponding returns
gets. An estimator with this feature is

μi (tN) = 1
∑N−1

k=0 (N − k)
︸ ︷︷ ︸

numeraire

N−1∑

n=0

(N − n)︸ ︷︷ ︸
time weight

· ln [Si(tN)/Si(tn)]

(N − n) dt︸ ︷︷ ︸
yield from tn to tN

= 2

N(N + 1)dt

N−1∑

n=0

ln

[
Si(tN)

Si(tn)

]
, (31.23)
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where we have used
∑N−1

k=0 (N − k) = N(N + 1)/2, which can be shown
easily.6

The Exponentially Weighted Moving Average (EWMA)

A very well known method is the exponentially weighted moving average esti-
mator, or EWMA for short. In this estimator, the historical data are weighted
less and less the further in the past they lie. This is accomplished by a damping
factor λ in the following way:

μi (tN) = 1

M

N∑

n=m

λN−nri(tn−m) with 0 < λ ≤ 1 and M :=
N∑

k=m

λN−k .

(31.24)

With Eq. 31.19 for the historical returns this can be written as

μi (tN) = 1

M δt

N∑

n=m

λN−n ln

[
Si(tn)

Si(tn−m)

]
(31.25)

In contrast to the simple moving average, Eq. 31.21, the price logarithms of
adjacent time periods dt do not cancels each other since they are differently
weighted. Thus all prices influence the estimator.

By adjusting the parameter λ, the EWMA estimator can be made similar to
the estimator in Eq. 31.22 as well as to the estimator in Eq. 31.23. For λ = 1
the EWMA estimator equals the simple moving average in Eq. 31.21.

6On one hand we get with the index transformation i := N − k

N−1∑

k=0

(N − k) =
i=1∑

i=N

i =
N∑

i=1

i; .

On the other hand we have
N−1∑

k=0

(N − k) = N2 −
N−1∑

k=0

k = N2 −
N∑

i=1

(i − 1) = N2 + N −
N∑

i=1

i .

Equating both results yields

N∑

i=1

i = N2 + N −
N∑

i=1

i �⇒
N∑

i=1

i = N(N + 1)/2 .
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All the above return estimates are demonstrated in the Excel-Workbook
ReturnEstimates.xls. Although neither the root mean square errors nor the
Correlations with the ex post realized returns point out any clear favorite, one
can see from the graphical presentation of the return time series that Eq. 31.23
looks like the best compromise between quite stable historical evolvement and
still fast reaction to market movements; even when large time windows are
used for the estimation.

31.3.2 Covariance Estimates

The entries δ�ij in the covariance matrix, Eq. 21.22, i.e., the risk factor
covariances can be determined via Eq. 21.28 using the return covariances

δ�ij ≡ cov
[
δ ln Si, δ ln Sj

] = δt2 cov
[
ri, rj

]

Similarly to the moving average estimators of the mean returns, the moving
average estimators for the covariances of the returns over the holding period
with length δt = mdt at time tN are

cov
[
ri , rj

]
(tN ) = 1

N − m

n=N∑

n=m

[ri(tn−m) − μi (tN)]
[
rj (tn−m) − μj (tN )

]
,

with r as in Eq. 31.19 and μ as in Eq. 31.21. Explicitly:

cov
[
ri, rj

]
(tN ) (31.26)

= 1

N − m

n=N∑

n=m

(
1

δt
ln

[
Si(tn)

Si(tn−m)

]
− μi (tN )

)(
1

δt
ln

[
Sj (tn)

Sj (tn−m)

]
− μj (tN )

)
.

The EWMA estimator is analogously

cov
[
ri, rj

]
(tN ) (31.27)

= 1

M − 1

n=N∑

n=m

λN−n

[
1

δt
ln

[
Si(tn)

Si(tn−m)

]
− μi (tN )

] [
1

δt
ln

[
Sj (tn)

Sj (tn−m)

]
− μj (tN )

]

with μ from Eq. 31.25 and M from Eq. 31.24.
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From these covariance estimates the volatility can be determined according
to Eq. 21.30

σi (tN) = √
δt cov [ri, ri] (tN) for i = 0, . . . , K . (31.28)

With the moving average estimate, Eq. 31.26, this yields the simply moving
average volatility estimate. With Eq. 31.27, this yields the EWMA volatility
estimate. The difference between these estimates and the ones presented in
Sect. 33.4 is that in Sect. 33.4 we assume μi ≡ 0.

The correlations resulting from the above covariances are according to their
definition (see for example Eq. 31.5)

ρi,j (tN) = cov
[
ri, rj

]
(tN)

√
cov [ri, ri] (tN)

√
cov

[
rj , rj

]
(tN)

for i, j = 0, . . . ,K

(31.29)

Again, this yields the moving average or the EWMA estimate depending on
which estimate is used for the covariance.

In the Capital Asset Pricing Model (CAPM) there is a ratio Beta , which
relates the evolvement of risk factors Si(t) to the evolvement of a benchmark
S0(t). As a rule, this benchmark represents a whole market and is usually an
index. Beta is calculated from a regression of the risk factors time series with
the benchmark time series, see Sect. 28.1. Estimates for Beta directly follow
from the covariance estimates: the Beta of the i-th risk factor at time tN is

βi (tN) = cov [ri, r0] (tN)

cov [r0, r0] (tN)
= ρi,0 (tN)

σi (tN)

σ0 (tN)
for i = 1, . . . , K .

(31.30)

Again, this yields the moving average or the EWMA estimate for β, depending
on which estimate is used for the covariance.



32
Time Series Modeling

Time series analysis aims to develop a model, which describes the time series
in all its measurable features. This goes far beyond than merely determining
statistical parameters from observed time series data (such as the variance,
correlation, etc.) as described in Chap. 31. Estimators such as those appearing
in Eq. 31.5 are examples of how parameters can be estimated which are
subsequently used to model the stochastic process governing the time series
(for example, a random walk with drift μ and volatility σ ). To develop a
model that is capable of simulation a time series with similar features is the
principle goal of time series analysis. The object is thus to interpret a series of
observed data points {Xt}, for example a historical price or volatility evolution
(in this way acquiring a fundamental understanding of the process) and to
model the processes underlying the observed historical evolution. In this sense,
the historical sequence of data points is interpreted as just one realization of the
time series process. The parameters of the process are then estimated from the
available data and can subsequently be used in making forecasts, for example.

As much structure as possible should be extracted from a given data
sequence and then transferred to the model. Let {X̂t} be the time series
generated by the model process (called the estimated time series). The dif-
ference between this and the actually observed data points {Xt} are called
residues {Xt − X̂t}. These should consist of only “noise”, i.e., they should be
unpredictable random numbers.

In order to be able to fit a time series model, the “raw data”, i.e., the sequence
of historical data points, must sometimes undergo a pre-treatment. In this
procedure, trends and seasonal components are first eliminated and a changemay
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be made to the scale of the data, so that the resulting sequence is a stationary
time series.1 A stationary time series is characterized by the time invariance
of its expectation, variance and covariance. In particular, the expectation
and variance are constant. Without loss of generality, the expectation can be
assumed to be zero since it can be eliminated during the pre-treatment through
a centering of the time series. This is accomplished by subtracting the mean
X = 1

T

∑T
t=1 Xt from every data point in the time series {Xt}.

As just discussed, the stationarity of a time series implies E [Xt] = E [X] ∀t

and the autocovariance Eq. 31.14 becomes

cov(Xt+h, Xt) = E[Xt+h Xt ] − E [X]E[X] = E[Xt+h Xt ] . (32.1)

The final equality in the above equation holds if the time series has been
centered in the pre-treatment. We will always assume this to be the case.
Furthermore, the autocovariance and autocorrelation (just as the variance) are
independent of t if the time series is stationary, and therefore depend only on
the time lag h. We frequently write

γ (h) := cov(Xt+h, Xt)

Likewise, if the time series is stationary we have �(t, h) = �(h) in the
autocorrelation Eq. 31.13. The following useful symmetry relations can be
derived directly from the stationarity of the time series (this can be shown
by substituting t with t ′ = t − h):

γ (−h) = γ (h) , �(−h) = �(h) . (32.2)

From definition 31.14, we can immediately obtain an estimate2 for the
autocorrelation and the autocovariance of a stationary data sequence

γ̂ (h) = ĉov(Xt+h, Xt ) = 1

T

T −h∑

t=1

(Xt+h − 〈X〉)(Xt − 〈X〉) , �̂(h) = γ̂ (h)

γ̂ (0)

(32.3)

1More precisely, we are dealing with a weakly stationary time series in what follows.
2In the following material, we will distinguish the estimator of a parameter from the parameter itself with
a “hat” notation.
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Fig. 32.1 Daily returns of the FTSE index as an example of a stationary data series. The
crash in October 1987 is clearly visible

for h ∈ N0. The autocovariances (and autocorrelations) are usually computed
for at most h ≤ 40. Note that h has to be substantially smaller than T in all
cases; the estimation is otherwise too inexact.3

Of course, we can fit different time series models to a stationary time series
(after having undergone a pre-treatment if necessary) and then compare their
goodness of fit and forecasting performance. Thus the following three general
steps must be taken when modeling a given sequence of data points

1. Pre-treatment of the data sequence to generate a stationary series (elimina-
tion of trend and seasonal components, transformation of scale, etc.).

2. Estimation and/or fitting of the time series model and its parameters.
3. Evaluation of the goodness of fit and forecasting performance on the basis of

which a decision is made as to whether the tested model should be accepted
or a new model selected (step 2).

Figure 32.1 shows the daily relative change (returns) of the FTSE Index
taken from the daily data from Jan-01-1987 through Apr-01-1998 (2,935 days).

3The fact that only T appears in the denominator in Eq. 32.3 instead of T − h, as one might expect,
guarantees that the estimator for the covariance matrix [γ̂ (i − j)]Ti,j=1 is automatically positive definite.
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This sequence of data points is defined as

Xt = Yt − Yt−1

Yt−1
, (32.4)

where {Yt} represents the original data sequence of FTSE values. The data set
{Xt} consists of 2,934 values. According to Eq. 30.9, the relative changes in
Eq. 32.4 are approximately equal to the difference of the logarithms if the daily
changes are sufficiently small:

Xt ≈ ln(Yt ) − ln(Yt−1) . (32.5)

This is the first difference of the logarithm of the original sequence of FTSE
index values. The above example represents a typical pre-treatment procedure
performed on the data. Instead of the original data {Yt}, which is by no means
stationary (drift�= 0 and variance increase with time as ∼ σ t ), we generate a
stationary data sequence as in Eq. 32.5 through standard transformations in
time series analysis. Specifically in our case, what is known as Box-Cox scaling
(taking the logarithm of the original data) was performed and subsequently
the first differences were calculated for the purpose of trend elimination.
Stationary time series data like these are then used in the further analysis, in
particular, when fitting a model to the data.

The above example should provide sufficient motivation for the pre-
treatment of a time series. The interested reader is referred to Chap. 35 for
further discussion of pre-treating time series data to generate stationary time
series. We will assume from now on that the given time series have already
been pre-treated, i.e., potential trends and seasonal components have already
been eliminated and scaling transformations have already been performed
appropriately, so that the resulting data sequences are stationary. Such a
stationary time series is given by a sequence of random variables {Xt}, t ∈ N.

32.1 Stationary Time Series and Autoregressive
Models

This chapter introduces a basic approach in time series analysis employing
a specific time series model, called autoregressive model. We then continue
by extending the results to the case of a time-dependent variance (GARCH
model) which finds application in modeling volatility clustering in financial
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time series. This technique is widely used in modeling the time evolution of
volatilities.

Rather than working under the idealized assumption of time-continuous
processes, the processes modeled in this chapter are truly discrete in time.
The discussion is geared to the needs of the user. We will forgo mathematical
rigor and in most cases the proofs of results will not be given. Not taking
these “shortcuts” would increase the expanse of this chapter considerably.
However, the attempt will be made to provide thorough reasoning for all
results presented.

A process for modeling a time series of stock prices, for example, has already
been encountered in this text: the random walk. An important property of
the random walk is the Markov property. Recall that the Markov property
states that the next step in a random walk depends solely on its current value,
but not on the values taken on at any previous times. If such a Markov
process is unsatisfactory for modeling the properties of the time series under
consideration, an obvious generalization would be to allow for the influence
of past values of the process. Processes whose current values can be affected by
values attained in the past are called autoregressive. In order to characterize these
processes, we must first distinguish between the unconditional and conditional
variance denoted by var[Xt] and var[Xt |Xt−1, . . . , X1], respectively. The
unconditional variance is the variance we are familiar with from previous
chapters, whereas the conditional variance is the variance of Xt under the
condition thatXt−1, . . . , X1 have occurred. Analogously, wemust differentiate
between the conditional and unconditional expectation denoted by E[Xt] and
E[Xt |Xt−1, . . . , X1], respectively, where the last is the expectation ofXt under
the condition thatXt−1, . . . , X1 have occurred. There is no difference between
the two when the process under consideration is independent of its history.

32.1.1 AR(p) Processes

Having made these preparatory remarks and definitions, we now want to
consider processes whose current values are influenced by one or more of their
predecessors. If, for example, the effect of the p previous values of a time series
on the current value is linear, the process is referred to as an autoregressive process
of order p, and denoted by AR(p). The general autoregressive process of pth
order makes use of p process values in the past to generate a representation of
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today’s value, or explicitly

Xt = φ1Xt−1 + φ2Xt−2 + · · ·φpXt−p + εt (32.6)

=
p∑

i=1

φiXt−i + εt , εt ∼ N(0, σ 2) .

The changes εt here are independent of all previous time series valuesXs , s <

t , and thus represent an injection of truly new information into the process4. In
particular, this means that cov[Xi, εj ] is always zero. The conditional variance
and conditional expectation of the process are

E[Xt |Xt−1, . . . , X1] =
p∑

i=1

φiXt−i (32.7)

var[Xt |Xt−1, . . . , X1] = var[εt] = σ 2 .

It can be shown that stationarity is guaranteed if the zeros zk of the characteristic
polynomial5

1 − φ1z − φ2z
2 − · · · − φpzp = 0 (32.8)

lie outside of the closed unit disk, i.e., when the norm |zk| is larger than 1 for
all zeros zk. In particular, if the process is stationary then the unconditional
expectation and variance have the following properties: E[Xt] = E[Xt−i]
and var[Xt] = var[Xt−i]. Exploiting this, we can easily calculate explicit
expressions for the unconditional expectation and variance. The unconditional
expectation E[Xt] is

E[Xt ] = E[
p∑

i=1

φiXt−i + εt ] =
p∑

i=1

φi E [Xt−i]︸ ︷︷ ︸
E[Xt ]

+ E [εt ]︸ ︷︷ ︸
0

= E [Xt ]
p∑

i=1

φi .

In the first step we have simply used definition 32.6 for Xt . The second step
is merely the linearity of the expectation operator. In the third step we have
finally used the decisive properties of the process, namely stationarity of the

4The notation εt will always indicate independent, identically N(0, σ 2)-distributed random variables.
Another common definition is εt ∼ W(0, σ 2), where W stands for white noise. This is a somewhat more
general statement and is used in reference to random variables which are not normally distributed as well.
5This polynomial plays a central role in the theory of time series.
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expectation and randomness of the residues. The result is therefore

E[Xt ]
(

1 −
p∑

i=1

φi

)

= 0

This implies that the unconditional expectation must be zero since stationarity
guarantees that the sum of the φi is not equal to one.6

The unconditional variance can be computed using similar arguments

var[Xt ] = var[
p∑

i=1

φiXt−i + εt ]

=
p∑

i,j=1

φiφj cov[Xt−i, Xt−j ] +
p∑

i=1

φicov[Xt−i, εt ] + var[εt ]

=
p∑

i,j=1

φiφj cov[Xt−i, Xt−j ] + 0 + σ 2

= var[Xt ]
p∑

i,j=1

φiφj�(i − j) + σ 2 ,

where we used Eq. A.17 and—in the last step—definition 31.13 for stationary
processes. Solving for var[Xt] yields immediately

var[Xt] = σ 2

1 − ∑p

i,j=1 φiφj�(i − j)
. (32.9)

An expression for the autocorrelation function � of the process can be obtained
bymultiplying both sides of Eq. 32.6 byXt−h and taking the expectation. Here
stationarity is used in form of Eqs. 32.2 and 32.1:

�(h) = �(−h) = cov(Xt−h,Xt)

cov(Xt, Xt)
= E(Xt−h,Xt)

E(X2
t )

= 1

E(X2
t )
E(Xt−h,

p∑

i=1

φiXt−i + εt )

6This can be shown using the characteristic polynomial.
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= 1

E(X2
t )

p∑

i=1

φiE(Xt−h,Xt−i) + 1

E(X2
t )
E(Xt−h, εt )︸ ︷︷ ︸

0

=
p∑

i=1

φi

E(Xt−h+i, Xt)

E(X2
t )

=
p∑

i=1

φi

E(Xt−(h−i), Xt)

E(X2
t )

,

and thus

�(h) =
p∑

i=1

φi�(h − i) . (32.10)

These are the Yule-Walker equations for the autocorrelations �. The autocor-
relations can thus be computed recursively by setting the initial condition
�(0) = 1. Consider the following example of an AR(2) process:

�(1) = φ1�(1 − 1) + φ2�(1 − 2) = φ11 + φ2�(1) ⇒ �(1) = φ1

1 − φ2

�(2) = φ1�(1) + φ2�(0) = φ2
1

1 − φ2
+ φ2 , and so on.

Here, the symmetry indicated in Eq. 32.2 was used together with Eq. 32.10.
Substituting these autocorrelations into Eq. 32.9 finally yields the uncondi-
tional variance of an AR(2) process:

var[Xt ] = σ 2

1 − φ2
1�(1 − 1) − φ1φ2�(1 − 2) − φ2φ1�(2 − 1) − φ2

2�(2 − 2)

= σ 2

1 − φ2
1 − φ2

2 − 2φ1φ2�(1)
= σ 2

1 − φ2
1 − φ2

2 − 2φ2
1φ2/(1 − φ2)

In practice, however, the autocorrelations should be computed from the
original data series itself with the aid of Eq. 32.3, instead of from the
coefficients φi, i = 1, 2, . . . , p which themselves are only estimated values.
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The Autoregressive Process of First Order

We now consider the most simple case, namely p = 1. Explicitly, the
autoregressive process of first order AR(1) is defined as

Xt = φXt−1 + εt , εt ∼ N(0, σ 2) . (32.11)

The stationarity condition for this process implies that |φ| < 1 since Eq. 32.8
states simply that

1 − φz = 0 for some z where |z| > 1 .

The conditional variance and conditional expectation of the process are

E[Xt |Xt−1, . . . , X1] = φXt−1

var[Xt |Xt−1, . . . , X1] = var[εt ] = σ 2 .

The unconditional expectation is equal to zero as was shown above to hold for
general AR(p) processes. The unconditional variance can be calculated as

var[Xt] = var[φXt−1 + εt ]
= φ2var[Xt−1] + φcov[Xt−1, εt ] + var[εt]
= φ2var[Xt] + 0 + σ 2 �⇒

var[Xt] = σ 2

1 − φ2
. . (32.12)

Recursively constructing future values via Eq. 32.11 starting from Xt yields

Xt+h = φXt+h−1 + εt+h

= φ2Xt+h−2 + φεt+h−1 + εt+h

· · ·

= φhXt +
h−1∑

i=0

φiεt+h−i
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The autocovariance of the AR(1) thus becomes explicitly

cov(Xt+h,Xt) = cov(φhXt +
h−1∑

i=0

φiεt+h−i , Xt)

= φhcov(Xt, Xt) +
h−1∑

i=0

φicov(εt+h−i, Xt)︸ ︷︷ ︸
0

= φhvar[Xt]

= φh σ 2

1 − φ2
.

The autocorrelation is therefore simply φh, and as such is an exponentially
decreasing function of h. The same result can of course be obtained from the
Yule-Walker equations

�(h) =
1∑

i=1

φi�(h − i) = φ�(h − 1) = φ2�(h − 2) = · · · = φh�(h − h)︸ ︷︷ ︸
1

.

It is worthwhile to consider a random walk from this point of view. A
(one-dimensional) random walk is by definition constructed by adding an
independent, identically distributed random variable (iid, for short) with
variance σ 2 to the last value of attained in the walk. The random walk can
thus be written as

Xt = Xt−1 + εt , εt ∼ N(0, σ 2) .

It follows from this definition that the conditional variance of the random
walk is σ 2 and the expectation equals zero. The random walk corresponds to
an AR(1) process with φ = 1. This contradicts the stationarity criterion |φ| <

1! The random walk is therefore a non-stationary AR(1) process. The non-
stationarity can be seen explicitly by considering the unconditional variance:

var[Xt] = var[Xt−1 + εt ]
= var[Xt−1] + cov[Xt−1, εt ] + var[εt]
= var[Xt−1] + 0 + σ 2 .
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Thus, for all σ �= 0 we have var[Xt−1] �= var[Xt], i.e., the process cannot
be stationary. Therefore we cannot obtain a closed from expression similar to
Eq. 32.12 for the unconditional variance (this can also be seen from the fact
that if φ = 1, Eq. 32.12 would imply a division by zero). The unconditional
variance can, however, be determined recursively

var[Xt ] = kσ 2 + var[Xt−k] .

Assuming from the outset that a valueXt=0 is known (and because it is known,
has zero variance) we obtain the well-known property of the random walk

var[Xt ] = tσ 2 .

The variance is thus time dependent; this is a further indication that the
random walk is not stationary. Since the variance is linear in the time variable,
the standard deviation is proportional to the square root of time. This is the
well-known square root law for scaling the volatility with time.

Another special case of an AR(1) process is white noise which has an
expectation equal to zero and constant variance. It is defined by

Xt = εt .

The random variables{εt} are iid random variables with variance σ 2. This
corresponds to the AR(1) process with φ = 0. The stationarity criterion
|φ| < 1 is satisfied and the above results for the stationary AR(1) process can
be applied with φ = 0, for example, cov(Xt+h, Xt) = 0 and var(Xt) = σ 2.

32.1.2 Univariate GARCH(p, q) Processes

The conditional variance of the AR(p) processes introduced above was always
a constant function of time; in each case it was equal to the variance of εt . This,
however, is not usually the case for financial time series. Take, for example, the
returns of the FTSE data set in Fig. 32.1. It is clear to see that the variance of
the data sequence is not constant as a function of time. On the contrary, the
process goes through both calm and quite volatile periods. It is much more
probable that large price swings will occur close to other large price swings
than to small swings. This behavior is typical of financial time series and
is referred to as volatility clustering or simply clustering. A process which is
capable of modeling such behavior is the GARCH(p, q) process, which will
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be introduced below. The decisive difference between GARCH and AR(p)
processes is that not only past values of Xt are used in the construction of a
GARCH process, but past values of the variance enter into the construction
as well. The GARCH(p, q) process is defined as

Xt = √
Htεt with Ht = α0 +

p∑

i=1

βiHt−i +
q∑

j=1

αjX
2
t−j , εt ∼ N(0, 1) ,

(32.13)

where the {εt} are iid standard normally distributed. The {εt} are independent
of Xt . Therefore, the time series{Xt} is nothing else than white noise {εt} with
a time-dependent variance which is determined by the coefficients {Ht }. These
Ht take into consideration the past values of the time series and the variance.
If the {Xt} are large (distant from the equilibrium value which is in this case
zero as E[εt ] = 0), then so is {Ht}. For small values {Xt} the opposite holds.
In this way, clustering can be modeled. The order q indicates how many past
values of the time series {Xt} influence the current valueHt . Correspondingly,
p is the number of past values of the variance itself which affects the current
value of Ht . In order to ensure that the variance is positive, the parameters
must satisfy the following conditions:

α0 ≥ 0 (32.14)

β1 ≥ 0

k∑

j=0

αj+1β
k−j

1 ≥ 0, k = 0, . . . , q − 1 .

This implies that α1 ≥ 0 always holds, the other αi however, may be negative.
Furthermore, the time series {Xt} should be (weakly) stationary to prevent it
from “drifting away”. The following condition is sufficient to guarantee this
stationarity:

p∑

i=1

βi +
q∑

j=1

αj < 1 . (32.15)
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The two most important properties of this process pertain to the conditional
expectation and the conditional variance

E[Xt |Xt−1, . . . , X1] = 0 and (32.16)

var[Xt |Xt−1, . . . , X1] = Ht = α0 +
p∑

i=1

βiHt−i +
q∑

j=1

αjX
2
t−j

The first equation holds because E[εt] = 0, the second because var[εt ] =
1. The Ht are thus the conditional variances of the process. The conditional
expectation (under the condition that all X up to time t − 1 are known) of
Ht is simply Ht itself since no stochastic variable ε appears in Eq. 32.13 where
Ht is defined, and thus

E[Ht |Xt−1, . . . , X1] = Ht = α0 +
p∑

i=1

βiHt−i +
q∑

j=1

αjX
2
t−j . (32.17)

H is thus always known one time step in advance of X. This may seem trivial
but will be quite useful in Sect. 33.2 when making volatility forecasts.

The unconditional variance is by definition

var[Xt] = E[X2
t ] − E[Xt]2

= E[Htε
2
t ] − E[√Htεt ]2

= E[Ht ]E[ε2
t ] − (E[√Ht ]E[εt ])2 ,

where in the last step we have made use of the fact that {εt} are uncorrelated
with {Ht }. Furthermore, since the {εt} are iid N(0, 1) distributed

E[εt ] = 0 and E[ε2
t ] = E[ε2

t ] − 0 = E[ε2
t ] − (E[εt ])2 = var[εt ] = 1

and therefore

var[Xt] = E[Ht ] = α0 +
p∑

i=1

βiE[Ht−i] +
q∑

j=1

αjE[X2
t−j ] .

Just as the εt , the Xt have zero expectation, which also implies that E[X2
t ] =

var[Xt]. Under consideration of this relation and the stationarity (constant
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variance), all of the expectations involving squared terms in the above equation
can be written as the variance of Xt :

E[X2
t−j ] = var[Xt−j ] = var[Xt]

E[Ht−i] = var[Xt−j ] = var[Xt] .

This leads to the following equation for the unconditional variance:

var[Xt] = α0 +
p∑

i=1

βivar[Xt] +
q∑

j=1

αjvar[Xt] ⇐⇒

var[Xt] = α0

1 − ∑q

i=1 αi − ∑p

j=1 βj

=: α̃0 . (32.18)

This unconditional variance can of course also be estimated from the observed
data, i.e., as usual through the computation of the empirical variance estimator
over a large number of realizations of {Xt}.

The GARCH(p, q) process can be expressed in terms of the unconditional
variance α̃0 as follows:

Ht = α0 +
p∑

i=1

βiHt−i +
q∑

j=1

αjX
2
t−j

= α0

1 − ∑q

i=1 αi − ∑p

j=1 βj

1 − ∑q

i=1 αi − ∑p

j=1 βj

+
p∑

i=1

βiHt−i +
q∑

j=1

αjX
2
t−j

= α̃0 − α̃0

q∑

i=1

αi − α̃0

p∑

j=1

βj +
p∑

i=1

βiHt−i +
q∑

j=1

αjX
2
t−j

= α̃0 +
p∑

i=1

βi(Ht−i − α̃0) +
q∑

j=1

αj(X
2
t−j − α̃0) . (32.19)

The conditional variance Ht can thus be interpreted as the unconditional
variance α̃0 plus the sum of the distances from this unconditional variance. If
all αj and βi are greater than zero (which is always the case for a GARCH(1,1)
process), this form of the conditional variance has another interpretation:
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The βi terms cause a kind of persistence of the variance which serves to model
the volatility clustering phenomenon: the greaterHt−i becomes in comparison
to the long-term expectation α̃0 (the unconditional variance), the greater the
positive contribution of these terms to Ht ; the Ht tend to get even larger.
Conversely, for values of Ht−i which are smaller than α̃0 the contribution of
these terms become negative and thus Ht will tend to get even smaller.

The terms involving αi describe the reaction of the volatility to the process
itself. Values X2

t−j larger than α̃0 favor a growth in the variance; values X2
t−j

smaller than α̃0 result in a negative contribution and thus favor a decline in
the variance. If the process itself describes a price change, as is common in the
financial world, this is precisely the effect that strong price changes tend to
induce growth in volatility.

Overall, these properties lead us to expect that GARCH models are indeed
an appropriate choice for modeling certain phenomena observed in the
financial markets (in particular, volatility clustering and the reaction of the
volatility to price changes). In practice, we often set p = 1 and even q = 1.
It has been shown that significantly better results are not achieved with larger
values of p and q and thus the number of parameters to be estimated would
be unnecessarily increased.

32.1.3 Simulation of GARCH Processes

One of the examples to be found in the Excel workbook Garch.xlsx from
the download section [50] is the simulation of a GARCH(1,1) process. The first
simulated value X1 of the time series is obtained, according to Eq. 32.13, from
a realization of a standard normal random variable followed by multiplication
of this number by

√
H1. Subsequently, H2 is computed from the values now

known at time t = 1. Then, a realization X2 is generated from a standard
normal random variable and multiplied by

√
H2. This procedure is repeated

until the end of the time series is reached.
In order to generate a GARCH(p, q) process, q values of the X process

X−q+1, X−q+2, . . ., X0

and p values of the conditional variance

H−p+1, H−p+2, . . . , H0
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Fig. 32.2 Simulated GARCH(1,1) process. The first 100 values have not been used.
Clustering can clearly be observed

must be given in order to be able to compute the first conditional variance H1

as indicated in Eq. 32.13. The choice of these initial values is not unique but
the orders of magnitude of the time series values and the variances should at
least be correct. The unconditional expectation E[Xt] and the unconditional
variance var[Xt] are therefore good candidates for this choice. The first values
of the generated time series should then be rejected (often, 50 values are
sufficient), since they still include the above “initial conditions”. After taking
several steps, realizations of the desired GARCH process can be generated.
Figure 32.2 illustrates a simulated GARCH process.

Such simulated time series can be implemented to test optimization meth-
ods which have the objective of “finding” parameters from the simulated data
series which have been previously used for the simulation. After all, if a data set
is given (real or simulated), the parameters of a model have to be determined.
Methods for doing this are the subject of the next section.

32.2 Calibration of Time Series Models

All of the time series models introduced above include parameters which may
be varied for the purpose of fitting the model “optimally” to the time series
data. We represent these parameters as a parameter vector θ. For an AR(p)
process, the free parameters are the φi and σ 2 while the GARCH(p, q) has



32 Time Series Modeling 769

the free parameters αi and βi . Thus

θ = (φ1, φ2, . . . , φp, σ 2) for AR(p)
θ = (α0, α1, . . . , αq, β1, β2, . . . βp) for GARCH(p, q) .

Awidely used estimation procedure for the determination of unknown param-
eters in statistics is themaximum likelihood estimator.This procedure selects the
parameter values which maximize the likelihood of the model being correct.
These are just the parameter values which maximize the probability (called
the likelihood) that the values observed will be realized by the assumed model.
Using the model, the probability is expressed as a function of the parameters θ .
Then this probability function is maximized by varying the parameter values.
The parameter values for which the probability function attains a maximum
corresponds to a “best fit” of the model to the given data sequence. They are
the most probable parameter values given the information available (i.e., given
the available time series). This procedure will now be performed explicitly for
both an AR(p) and a GARCH(p,q) process.

32.2.1 Parameter Estimation for AR(p) Processes

The likelihood for the AR(p) process is obtained as follows: from Eqs. 32.6
and 32.7 we can see that if we assume an AR(p) process with a parameter
vector

θ = (φ1, φ2, . . . , φp, σ 2)

then Xt has the normal distribution

N(

p∑

i=1

φiXt−i , σ 2)

The conditional probability for one single observed value of Xt (also called
the conditional likelihood of Xt ) is thus

Lθ(Xt |Xt−1, Xt−2, . . . , Xt−p)

= 1√
2πσ 2

exp

⎧
⎨

⎩
− 1

2σ 2

[

Xt −
p∑

i=1

φiXt−i

]2
⎫
⎬

⎭
.
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The total likelihood for all T measured data points is in consequence of the
independence of εt simply a product of all conditional likelihoods:

Lθ(X1, X2, . . . , XT ) =
T∏

t=1

Lθ(Xt | Xt−1, Xt−2, . . . , Xt−p)

= 1

(2π)T/2 σT

T∏

t=1

exp

⎧
⎨

⎩
− 1

2σ 2

[

Xt −
p∑

i=1

φiXt−i

]2
⎫
⎬

⎭
.

Observe that for the likelihoods of the first data points Xt where t < p + 1,a
further p data points {X0, X−1, . . . , X−p+1} are required in advance. The
extent of the data sequence needed is thus a data set encompassing T +p data
points.

Maximizing this likelihood through the variation of the parameters
φ1, φ2, . . . , φp and σ 2, we obtain the parameters {φ1, φ2, . . . , φp, σ 2}
which, under the given model assumptions,7 actually maximizes the (model)
probability that the observed realization {Xt} will actually appear. It is,
however, simpler to maximize the logarithm of the likelihood (because of
the size of the terms involved and the fact that sums are more easily dealt with
than products). Since the logarithm function is strictly monotone increasing,
the maximum of the likelihood function is attained for the same parameter
values as the maximum of the logarithm of the likelihood function. The
log-likelihood function for the AR(p) process is given by

Lθ = −T

2
ln(2πσ 2) − 1

2σ 2

T∑

t=1

[

Xt −
p∑

i=1

φiXt−i

]2

.

φ1, φ2, . . . , φp appear only in the last expression (the sum), which
appears with a negative sign in the log-likelihood function. The values
of φ1, φ2, . . . , φp which maximize the log-likelihood function therefore
minimize the expression

T∑

t=1

[

Xt −
p∑

i=1

φiXt−i

]2

(32.20)

7The model assumption is that the time series was generated by an AR(p) process.
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This, however, is just a sum of the quadratic deviations. The desired parameter
estimates {φ̂1, φ̂2, . . . , φ̂p} are thus the solution to a least squares problem.
The φ̂t can thus be determined independently from the variance σ 2. The
estimation of the variance is obtained from simple calculus by taking the
derivative of the log-likelihood function with respect to σ 2 and setting the
resulting value equal to zero (after substituting the optimal φi , namely the φ̂i):

∂Lθ

∂σ 2
= −T

2

∂ ln(2πσ 2)

∂σ 2
− ∂

∂σ 2

⎛

⎝ 1

2σ 2

T∑

t=1

[

Xt −
p∑

i=1

φ̂iXt−i

]2
⎞

⎠

= − T

2σ 2
+ 1

2σ 4

T∑

t=1

[

Xt −
p∑

i=1

φ̂iXt−i

]2
!= 0 .

The optimal estimate for σ 2 becomes

σ̂ 2 = 1

T

T∑

t=1

[

Xt −
p∑

i=1

φ̂iXt−i

]2

. (32.21)

For example, the maximum likelihood estimator for φ1 in the AR(1) process in
Eq. 32.11, obtained by minimizing the expression in 32.20, can be determined
through the following computation:

0 = ∂

∂φ1

T∑

t=1

[Xt − φ1Xt−1]2 = 2
T∑

t=1

(Xt − φ1Xt−1)(−Xt−1)

= 2φ1

T∑

j=1

X2
j−1 − 2

T∑

t=1

Xt−1 Xt �⇒

φ̂1 =
∑T

t=1 Xt−1 Xt
∑T

j=1 X2
j−1

.
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Substituting this into Eq. 32.21 yields the maximum likelihood estimator for
σ 2

σ̂ 2 = 1

T

T∑

t=1

[
Xt − φ̂1Xt−1

]2

= 1

T

T∑

t=1

[

Xt − Xt−1

∑T
i=1 Xi−1 Xi

∑T
j=1 X2

j−1

]2

.

32.2.2 Parameter Estimation for GARCH(p, q) Processes

The likelihood for the GARCH(p, q) process is obtained as follows: from
Eqs. 32.13 and 32.16 we see that

Xt |{Xt−1, . . . , Xt−q, Ht−1, . . . , Ht−p} ∼ N(0, Ht) .

This implies that, given the information {Xt−1, . . . , Xt−q,Ht−1, . . . , Ht−p},
Xt is normally distributed according to N(0,Ht). The conditional likelihood
for one single observation Xt is then

Lθ(Xt |{Xt−1, . . . , Xt−q, Ht−1, . . . , Ht−p}) = 1√
2πHt

e−X2
t /2Ht

where

Ht = α0 +
p∑

i=1

βiHt−i +
q∑

j=1

αjX
2
t−j

and with a parameter vector

θ = (α0, α1, . . . , αq, β1, . . . , βp) .

The overall likelihood of all observations together is, in consequence of the
independence of {εt}, merely the product

Lθ =
T∏

t=1

Lθ(Xt |{Xt−q , . . . , Xt−1, Ht−p, . . . , Ht−1}) =
T∏

t=1

1√
2πHt

e−X2
t /2Ht .
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Observe that for the likelihood of the first data point X1 further data points
{X0, X−1, . . . , X−q+1, H0, H−1, . . . ,H−p+1} are required in advance. The
total required data sequence {Xt} thus encompasses T + q data points. If
T + q observations of Xt are available, the first are required as information
in advance, the remaining T are included in the likelihood function as
observed data. In addition the values {H0,H−1, . . . , H−p+1} are required as
information in advance. In choosing the size of T it is necessary to make a
compromise between the exactness of the estimator (T is chosen to be as large
as possible) and the time scale with which the market mechanisms change (T is
chosen to be as small as possible).

Maximizing this likelihood function by allowing the parameter values in θ

to vary, we obtain the parameters which, under the model assumption (a
GARCH(p, q) process), maximize the probability of a realization of the
market values {Xt} observed. It is again easier to work with the log-likelihood
function in determining this maximum. Since the log function is strictly
monotone increasing, the maximum of the likelihood and the log-likelihood
function is attained at the same parameter point. The log-likelihood for the
GARCH(p, q) process is given by

Lθ =
T∑

t=1

ln Lθ(Xt |{Xt−q, . . . , Xt−1,Ht−p, . . . , Ht−1})

=
T∑

t=1

ln

(
1√

2πHt

e−X2
t /2Ht

)

= −T

2
ln(2π) − 1

2

T∑

t=1

ln(Ht) − 1

2

T∑

t=1

X2
t

Ht

(32.22)

where

Ht = Ht(θ) = α0 +
p∑

j=1

βjHt−j +
q∑

k=1

αkX
2
t−k .

This is the function which must now be maximized through the variation
of the parameter vector θ . The space of valid parameters θ is limited by
the constraints stated in Eqs. 32.14 and 32.15. This represents an additional
difficulty for the optimization. The optimization is quite difficult because (as
opposed to the AR(1) process) maximizing the likelihood function cannot be
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computed analytically but must be accomplished by means of a numerical
optimization procedure. As the function to be maximized has multiple local
maxima, a complex “likelihood surface” further complicates the optimization
process since local optimization methods, such as gradient methods, are
unsuitable if the initial value is not well chosen, i.e., if it does not lie close
to the global maximum. A suitable algorithm for finding a global maximum
in such a situation is simulated annealing.

32.2.3 Simulated Annealing

Simulated annealing is a numerical algorithm used to find a global minimum
or maximum of a given function. Its construction is motivated by an effect
observed in physics, namely cooling. The cooling of a physical body results in
its moving through decreasing energy states traveling a path ending in a state
of minimum energy. The simulated annealing algorithm attempts to imitate
this process. The function whose minimum is to be found thus corresponds
to the energy of the physical body.

As a physical body cools, the temperature T declines resulting in a steady
loss of energy. The body is composed of billions of atoms which all make
a contribution to its total energy. This being the case, there are a multitude
of possible energy states with a multitude of local energy minima. If the
temperature declines very slowly, the body surprisingly finds its global min-
imum (for example, the atoms in the body may assume a characteristic lattice
configuration). A simple approach to this can be taken from thermodynamics:
the probability of a body being in a state with energy E when the temperature
of the body is T is proportional to the Boltzmann factor, exp(−E/kT ):

P(E) ∼ exp

(
− E

kT

)
,

where k is a thermodynamic constant, the Boltzmann constant. It follows that
a higher energy state can be attained at a certain temperature though the
probability of such an event declines with a decline in temperature. In this
way, “unfavorable” energy states can be attained and thus the system can escape
from local energy minima. However, if the temperature drops too quickly, the
body remains in a so-calledmeta-stable state and cannot reach its global energy
minimum.8 It is therefore of utmost importance to cool the body slowly.

8Physicist speak in such cases of “frustrated” systems. An example of such a frustrated system is glass.
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This strategy observed in nature is now to be simulated on a computer. In
order to replicate the natural scenario, a configuration space (the domain of
possible values of the pertinent parameters θ ) must be defined. This might
be a connected set but could also consist of discrete values ( combinatorial
optimization). In addition, a mechanism is required governing the transition
from one configuration to another. And finally, we need a scheme for the
cooling process controlling the decline in “temperature” T (T0 → T1 →
· · · → Tn → · · · ). The last two points mentioned are of particular
importance; the change-of-configuration mechanism determine how efficient
the configuration space is sampled while the second of the above requirements
serves to realize the “slow cooling”.

For each temperature the parameter sequence forms a Markov chain. Each
new test point θ is accepted with the probability9

P = min
{
e−[f (θp)−f (θp−1)]/T , 1

}

where θp−1 represents the previously accepted parameter configuration. The
function f is the function to beminimized for each specific problem and is, for
example, the (negative) log-likelihood function from Eq. 32.22. This function
corresponds to the energy function in physics.

After having traveled a certain number of steps in the Markov chain, the
temperature declines according to some mechanism which could for instance
be as simple as

Tn = αTn−1 (0 < α < 1) .

A newMarkov chain is then started. The starting point for the new chain is the
end point of the previous chain. In a concrete optimization, the temperature
is naturally not to be understood in the physical sense; it is merely an
abstract parameter directing the course of the optimization by controlling the
transition probability in the Markov chain. However, we choose to retain the
designations temperature or cooling scheme as a reminder of the procedure’s
origin. Figure 32.3 shows a schematic representation of the algorithm.

Simulated annealing is demonstrated in the Excel workbook Garch.xlsx
by means of a VBA program. The algorithm in the workbook is used to fit the

9The minimum function is only required since a probability can be at most equal to one.
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Fig. 32.3 Simulated annealing using m Markov chains with n steps in each chain. If the
cooling is slow enough and m and n are large enough, then θmn is a good approximation
of the parameter vector necessary to achieve the global minimum of the function f

parameters of a GARCH(1,1) process making use of the first 400 points of a
given (simulated) data set. No emphasis is placed on the speed of computation
since our object is to demonstrate the fundamental principles as clearly as
possible.



33
Forecasting with Time Series Models

Having selected a model and fitted its parameters to a given times series, the
model can then be used to estimate new data of the time series. If such data
are estimated for a time period following the final data value XT of the given
time series, we speak of a prediction or forecast. The estimation of data lying
between given data points is called interpolation. The question now arises as to
how a model such as those given in Eqs. 32.6 or 32.13 could be used to obtain
an “optimal” estimate. To answer this question the forecasting error

XT +k − X̂T +k , k ∈ N

between the estimated values X̂T +k and the actual observed time series values
XT +k can be used if the last value used in the calibration of the model was XT .
The best forecast is that which minimizes the mean square error (MSE for
short). The MSE is defined as the expectation of the squared forecasting error

MQF := E[(XT +k − X̂T +k)
2] . (33.1)

This expression is the mathematical formulation of the intuitive concept of
the “distance” between the estimated and the actual values which is to be
minimized on average (more cannot be expected when dealing with random
variables). Minimizing this mean square error yields the result that the best
forecasting estimate (called the optimal forecast) is given by the conditional
expectation

X̂T +k = E[XT +k|XT , . . . , X2,X1] . (33.2)
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This is the expectation ofXT +k, conditional on all available information about
the time series up to and including T .

In practice, however, the concrete computation of this conditional expec-
tation is generally very difficult since the joint distribution of the random
variables must be known. Therefore, we often limit our consideration to the
linear forecast

X̂T +k = u1X1 + u2X2 + · · · + uT XT (33.3)

with appropriate coefficients ui. This linear forecast is, in contrast to the
optimal forecast, often more easily interpreted. For the special case that the
{Xt} are normally distributed, the linear forecast and the optimal forecast
agree. The best linear forecast can be characterized by the fact that the
forecasting error XT +k − X̂T +k and the X1,X2, . . . , XT are uncorrelated.
The intuitive interpretation is that the X1, X2, . . . , XT cannot provide any
additional information for the forecast and the error is thus purely random.

33.1 Forecasting with Autoregressive Models

This forecasting procedure will now be applied to an AR(p) process, Eq. 32.6.
The optimal one-step forecast is, according to Eq. 33.2, given directly by the
conditional expectation in Eq. 32.7

X̂
optimal
T +1 = E[XT +1|XT , . . . , X1] =

p∑

i=1

φiXT +1−i . (33.4)

This has the form indicated in Eq. 33.3. The optimal one-step forecast is thus
the best linear one-step forecast. Equation 32.6 shows that the forecasting error
XT +1 − X̂T +1 is precisely εT +1 and independent of X1, X2, . . . , XT . The
MSE for the one-step forecast is given by Eq. 33.1 with k = 1. Thus,

MSE = E[(XT +1 − X̂T +1)
2] = E[ε2

T +1] = σ 2 .

The optimal two-step forecast is the conditional expectation of XT +2 on the
basis of knowledge of XT , . . . , X1, as can be seen from Eq. 33.2:

X̂
optimal
T +2 = E[XT +2|XT , . . . , X1] .
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This is not the equivalent to the conditional expectation of XT +2 on the
basis of knowledge of XT +1, . . . , X1. Hence, Eq. 32.7 cannot be applied
directly. An additional difficulty arises due to the fact that XT +1 is unknown.
The optimal two-step forecast cannot be calculated. We therefore proceed by
computing the linear two-step forecast. The best linear two-step forecast is
obtained by actually calculating the conditional expectation of XT +2 as if all
the XT +1, . . . , X1 were known and replacing the (unknown) value XT +1 by
its best estimate X̂T +1 (which was calculated in the previous step):

X̂linear
T +2 = E[XT +2|X̂T +1,XT , . . . , X1] .

Now Eq. 32.7 can be applied to this conditional expectation and utilizing
Eq. 33.4 we obtain

X̂linear
T +2 = φ1X̂T +1 +

p∑

j=2

φjXT +2−j = φ1

p∑

i=1

φiXT +1−i +
p∑

j=2

φjXT +1−(j−1)

= φ1

p∑

i=1

φiXT +1−i +
p−1∑

i=1

φi+1XT +1−i

= φ1φpXT +1−p +
p−1∑

i=1

[φ1φi + φi+1] XT +1−i .

The linear two-step forecast then has the form indicated in Eq. 33.3. The
forecasting error is found to be

XT +2 − X̂T +2 =
p∑

i=1

φiXT +2−i + εT +2

︸ ︷︷ ︸
XT +2, see Eqn. 32.6

− φ1X̂T +1 −
p∑

j=2

φjXT +2−j

= εT +2 + φ1(XT +1 − X̂T +1)

= εT +2 + φ1εT +1 .

Thus, the forecasting error is a sum of two normally distributed random
variables and therefore itself normally distributed. The MSE can now be
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computed as follows:

MSE = E[(XT +2 − X̂T +2)
2] = E[(εT +2 + φ1εT +1)

2]
= E[ε2

T +2] + φ2
1E[ε2

T +1] + 2φ1E[εT +2 εT +1]
= var[ε2

T +2] + φ2
1 var[ε2

T +1] + 2φ10

= σ 2(1 + φ2
1) .

This implies that the forecasting error XT +2 − X̂T +2 of the two-step forecast
is normally distributed with variance σ 2(1 + φ2

1), i.e., N(0, σ 2(1 + φ2
1)).

Proceeding analogously, the best linear h-step forecast is obtained by taking
the conditional expectation of XT +h as if all Xt were known up to XT +h−1

and then replacing the yet unknown values of Xt for T < t < h with their
best estimators calculated inductively in previous steps as described above:

X̂linear
T +h = E[XT +h|X̂T +h−1, X̂T +h−2, . . . , X̂T +1,XT , . . . , X1] .

Equation 32.7 is then applied to these conditional expectations resulting in

X̂T +h =
min(h−1, p)∑

i=1

φiX̂T +h−i +
p∑

j=h

φjXT +h−j .

The forecasting error of the h-step forecast is

XT +h − X̂T +h =
p∑

i=1

φiXT +h−i + εT +h

︸ ︷︷ ︸
XT +h, see Eqn. 32.6

−
min(h−1,p)∑

i=1

φiX̂T +h−i −
p∑

j=h

φjXT +h−j

= εT +h +
min(h−1,p)∑

i=1

φiXT +h−i +
p∑

i=h

φiXT +h−i

−
min(h−1,p)∑

i=1

φiX̂T +h−i −
p∑

j=h

φjXT +h−j

= εT +h +
min(h−1,p)∑

i=1

φi

(
XT +h−i − X̂T +h−i

)
.
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This is a recursion expressing the h-step forecasting error in terms of the
forecasting errors for fewer than h steps. From this it can be shown that the h-
step forecasting error is distributed as N(0, σ 2(1 + φ2

1 + · · · + φ2
h−1)).

The unknown coefficientsφ1, φ2, . . . , φp are estimated from the time series
as shown in Sect. 32.2.1. The φi in the forecast equation are simply replaced
with φ̂i .

33.2 Volatility Forecasts with GARCH(p, q)
Processes

GARCH models of the form indicated in Eq. 32.13 are not suitable for the
prediction of the actual values Xi of a time series since the random variable
in Eq. 32.13 appears as a product (rather than a sum as in Eq. 32.6). In conse-
quence, the conditional expectations of the Xi are identically zero. However,
GARCH models are well adapted for forecasting the (conditional) variance
of time series values. According to Eq. 33.2, the conditional expectation is
in general the optimal forecast. We are therefore looking for the conditional
expectation of the conditional variance.

33.2.1 Forecast Over Several Time Steps

The One-Step Forecast

Equation 32.16 shows that the conditional variance of XT is equal to HT

if all Xt for t ≤ T − 1 are known. Its conditional expectation is then
the conditional expectation of HT . Based on Eq. 32.17, the conditional
expectation of HT is simply HT itself if the X values are known up to the
time T − 1. Hence, the optimal one-step forecast for the conditional variance
is1

v̂aroptimal
T +1 = E[varT +1 |XT , . . . , X1]

= E[HT +1|XT , . . . , X1]

1In order to keep the notation as simple as possible, we will adopt the convention of denoting the
conditional variance by varT +h := var[XT +h|XT , . . . , X1], likewise for its estimators v̂arT +h :=
v̂ar[XT +h|XT , . . . , X1] for any h > 0. When these abbreviations for the conditional variances are used,
it is always to be understood that the values XT , . . . , X1 are known.
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= HT +1

= α0 +
q∑

j=1

αjX
2
T +1−j +

p∑

i=1

βiHT +1−i . (33.5)

To clarify the argument used in the derivation of this result, each of the
equalities in Eq. 33.5 will receive somewhat more scrutiny. The first equation
is obtained from the general forecast equation, Eq. 33.2. The second follows
from Eq. 32.16. The third holds as a result of Eq. 32.17 while the fourth
equation is derived from Eq. 32.13 used in the construction of the GARCH
process.

The Two-Step Forecast

The two-step forecast is somewhat more complicated. The optimal two-step
forecast is, according to Eq. 33.2, the conditional expectation of varT +2 under
the condition that XT , . . . , X1 are known:

v̂aroptimal
T +2 = E[varT +2 |XT , . . . , X1] .

Again, this is not equal to the conditional expectation of varT +2 under the
condition that XT +1, . . . , X1 are known. Equation 32.16 cannot be applied
directly. Indeed, the optimal two-step forecast cannot be computed. We
calculate instead, analogously to the linear forecast of the AR(p) process
illustrated in Sect. 33.1, the best possible two-step forecast by replacing the
expectation of varT +2 conditional upon XT , . . . , X1 with the conditional
expectation of varT +2 as if the XT +1, . . . , X1 were all known:

v̂arT +2 = E[varT +2 |XT +1, . . . , X1] .

Now Eq. 32.16 can be applied to obtain

v̂arT +2 = E[varT +2 |XT +1, . . . , X1] = HT +2 .

Remember however, that XT +1 is not known and therefore HT +2 appearing
here is not known at time T . The best we can do is to replace HT +2 by its
optimal estimator which, according to Eq. 33.2, is given by its conditional
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expectation

v̂arT +2 = E[HT +2|XT , . . . , X1] . (33.6)

Inside this expectation, we now replaceHT +2 in accordance with the construc-
tion in 32.13:

v̂arT +2 = E[HT +2|XT , . . . , X1]

= α0 +
q∑

j=1

αjE[X2
T +2−j |XT , . . . , X1] +

p∑

i=1

βiE[HT +2−i |XT , . . . , X1]

= α0 + α1E[X2
T +1|XT , . . . , X1] +

q∑

j=2

αjX
2
T +2−j +

p∑

i=1

βiHT +2−i .

(33.7)

In the last step, we have exploited the fact that all Xt are known for all times
t ≤ T and, according to Eq. 32.17, all of the Ht for the times t ≤ T + 1.
The expectation of the known quantities can be replaced by the quantities
themselves. Only one unknown quantity remains, namely X2

T +1. Because of
Eq. 32.16, the conditional expectation of all of the XT +h for all h > 0 is
always equal to zero. The expectation of X2

T +h can therefore be replaced by
the variance of XT +h:

E[X2
T +h|XT , . . . , X1] = E[X2

T +h|XT , . . . , X1] − (E[XT +h|XT , . . . , X1]︸ ︷︷ ︸
0

)2

= var[XT +h|XT , . . . , X1] for every h > 0 .

(33.8)

For h = 1 this implies

E[X2
T +1|XT , . . . , X1] = var[XT +1|XT , . . . , X1] = HT +1 ,

where Eq. 32.16 has again been used in the last step. The two-step forecast
then becomes

v̂arT +2 = α0 + α1HT +1 +
q∑

j=2

αjX
2
T +2−j +

p∑

i=1

βiHT +2−i . (33.9)
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The Three-Step Forecast

For the two-step forecast, only the value of XT +1 in Eq. 33.7 was unknown,
the necessary H values were known up to time T + 1. This it no longer
the case in the three-step forecast. In this case, some of the H values are also
unknown. Because of this additional difficulty, it is advisable to demonstrate
the computation of a three-step forecast before generalizing to arbitrarilymany
steps.

The three-step forecast now proceeds analogous to the two-step forecast:
the optimal forecast is, as indicated in Eq. 33.2, the conditional expectation
of XT +3 under the condition that XT , . . . , X1 are known.

v̂aroptimal
T +3 = E[varT +3 |XT , . . . , X1] .

Again, Eq. 32.16 cannot be directly applied since the X are only known up
to XT and not up to XT +2. The best possible three-step forecast is thus,
analogous to Eq. 33.6

v̂arT +3 = E[HT +3|XT , . . . , X1] . (33.10)

In this expectation we now replace HT +3 with its expression constructed in
Eq. 32.13 to obtain

v̂arT +3 = E[HT +3|XT , . . . , X1]

= α0 +
p∑

i=1

βiE[HT +3−i |XT , . . . , X1] +
q∑

j=1

αjE[X2
T +3−j |XT , . . . , X1]

= α0 +
p∑

i=2

βiHT +3−i + β1E[HT +2|XT , . . . , X1]

+ α1E[X2
T +2|XT , . . . , X1] + α2E[X2

T +1|XT , . . . , X1] +
q∑

j=3

αjX
2
T +3−j .

(33.11)

In the last step, the expectations of the known values were again replaced by
the values themselves (all Xt for times t ≤ T and all Ht for times t ≤ T + 1).
Only three unknown values remain, namely X2

T +1, X
2
T +2 and HT +2. For the
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conditional expectation of X2
T +1 and X2

T +2 we can use Eq. 33.8 to write

E[X2
T +1|XT , . . . , X1] = var[XT +1|XT , . . . , X1] = HT +1

E[X2
T +2|XT , . . . , X1] = var[XT +2|XT , . . . , X1] = v̂arT +2 .

Equation 32.16 has been used in the first of the above two equations. In the
second equation, this is not possible since taking the conditional variance at
time T +2 under the condition that XT , . . . , X1 are known is not the same as
taking it conditional upon knowing the values of XT +1, . . . , X1. We have no
other choice than to replace the unknown var[XT +2|XT , . . . , X1] with the
(previously calculated) estimator v̂arT +2.

For the expectation E[HT +2|XT , . . . , X1] we make use of the fact that,
according to Eq. 33.6, it is equal to the two-step forecast for the variance

E[HT +2|XT , . . . , X1] = v̂arT +2 .

Substituting all this into Eq. 33.11 finally yields

v̂arT +3 = α0+(α1 + β1) v̂arT +2+α2HT +1+
q∑

j=3

αjX
2
T +3−j+

p∑

i=2

βiHT +3−i .

(33.12)

The Forecast for h Steps

The generalization to the forecast for an arbitrary number of steps h is now
quite simple. Analogous to Eqs. 33.6 and 33.10 the best possible estimate is

v̂arT +h = E[HT +h|XT , . . . , X1] for every h > 0 . (33.13)

Within this expectation, we now replaceHT +h as in the construction Eq. 32.13
and obtain an equation analogous to Eq. 33.11

v̂arT +h = E[HT +h|XT , . . . , X1]

= α0 +
q∑

j=1

αjE[X2
T +h−j |XT , . . . , X1] +

p∑

i=1

βiE[HT +h−i |XT , . . . , X1]
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=
min(h−1, q)∑

j=1

αjE[X2
T +h−j |XT , . . . , X1] +

q∑

j=h

αjX
2
T +h−j + α0

+
min(h−2, p)∑

i=1

βiE[HT +h−i |XT , . . . , X1] +
p∑

i=h−1

βiHT +h−i .

In the last step, the expectation of the known values have again been replaced
by the values themselves (allXt for times t ≤ T and allHt for times t ≤ T +1).
The remaining expectations of the H s are replaced according to Eq. 33.13
through the respective variance estimators. We again use Eq. 33.8 for the
conditional expectation of X2 and write

E[X2
T +1|XT , . . . , X1] = var[XT +1|XT , . . . , X1] = HT +1

E[X2
T +k|XT , . . . , X1] = var[XT +k|XT , . . . , X1] = v̂arT +k for k > 1 .

Substituting all of these relations for the conditional expectations finally yields
the general h-step forecast of the conditional volatility in the GARCH(p, q)

model:

v̂arT +h =
min(h−2, q)∑

j=1

αj v̂arT +h−j +
q∑

j=h

αjX
2
T +h−j + αh−1HT +1 + α0

(33.14)

+
min(h−2, p)∑

i=1

βi v̂arT +h−i +
p∑

i=h−1

βiHT +h−i .

Together with the start value, Eq. 33.5, in the form of v̂arT +1 = HT +1 the
h-step forecast can be computed recursively for all h.

From Eqs. 33.13 and 33.2, the estimator for the variance is simultaneously
the estimator for H, and thus

ĤT +h = v̂arT +h for allh > 0 .

33.2.2 Forecast for the Total Variance

In the financial world, the time series {XT } is usually taken to represent a
relative price change (yield), see for example Fig. 32.1 of the FTSE data. We
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are therefore also interested in the variance of the return over an entire time
period of length h, i.e., in the variance of the sum

∑h
j=1 XT +j . In forecasts

such as in Eq. 33.14, we are only dealing with a prediction of the conditional
variance after h steps and not with a prediction of the variance over the entire
term of h steps (fromXT toXT +h). In other words, Eq. 33.14 is forecasting the
conditional variance ofXT +h alone, and not predicting the variance of the sum∑h

j=1 XT +j . The variance of the total return
∑h

j=1 XT +j for independent (in
particular uncorrelated) returns is simply the sum of the variances as can be
seen in Eq. A.17. Since the Xt of the process in Eq. 32.13 are uncorrelated
(because the εt are iid), the estimator for the total variance of the GARCH
process over h steps is simply

v̂ar[
h∑

j=1

XT +j |XT , . . . , X1] =
h∑

j=1

v̂ar[XT +j |XT , . . . , X1] =
h∑

j=1

v̂arT +j .

(33.15)

Even in the case of weak autocorrelations between the returns in a given time
series, this result holds in good approximation.

33.2.3 Volatility Term Structure

The variance of the total return over a term from T until T + h is a function
of this term. The square root of the (annualized) variance of the total return
as a function of the term is called the volatility term structure. This plays an
important role in pricing options since for an option with a lifetime of h, the
volatility associated with this term is the relevant parameter value. From the
estimator for the variance of the total return over the pertinent term, we obtain
the estimator of the volatility structure as

σ(T , T + h) =
√√√√1

h
v̂ar

[
h∑

i=1

XT +i

∣∣
∣XT , . . . , X1

]

=
√√√√1

h

h∑

j=1

v̂arT +j .

(33.16)
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33.3 Volatility Forecasts with GARCH (1,1)
Processes

For the GARCH(1, 1) process (q = 1, p = 1), all of the above estimators can
be computed explicitly and the recursion equation 33.14 can be carried out.
The start value of the recursion is simply

v̂arT +1 = HT +1 = α0 + α1X
2
T + β1HT . (33.17)

as can be seen from Eq. 33.5. The two-step forecast as given by Eq. 33.9
simplifies to

v̂arT +2 = α0 + κHT +1

where we defined the abbreviation

κ := α1 + β1 .

For h > 2 and p = q = 1, the upper limits in the sums over the variance
estimators in the general recursion equation 33.14 are simply

min(h − 2, q) = min(h − 2, p) = 1 for h > 2 .

Neither of the other sumsmakes any contribution since the lower limit in these
sums is greater than the upper limit. The term αh−1HT +1 likewise does not
exist since q = 1 implies that only α0 and α1 exist. However, h − 1 is greater
than 1 for h > 2.All things considered, the h-step forecast in Eq. 33.14 reduces
to

v̂arT +h = α0 + κ v̂arT +h−1

where κ = α1 + β1. This recursion relation has a closed form expression in
the form of a geometric series:

v̂arT +h = α0 + κ v̂arT +h−1

= α0 + κ(α0 + κ v̂arT +h−2) = α0(1 + κ) + κ2v̂arT +h−2

= α0(1 + κ) + κ2(α0 + κ v̂arT +h−3) = (α0(1 + κ + κ2) + κ3v̂arT +h−3)

· · ·
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= α0

h−1∑

i=1

κi−1

︸ ︷︷ ︸
geometric series

+ κh−1v̂arT +1︸ ︷︷ ︸
HT +1

= α0

(
1 − κh−1

1 − κ

)
+ κh−1HT +1

= α̃0 + κh−1 (HT +1 − α̃0)

= α̃0 + κh−1
(
α0 + β1HT + α1X

2
T − α̃0

)
, h > 1 , (33.18)

where for v̂arT +1 the start-value of the recursion HT +1 was used and the
geometric series was calculated according to Eq. 15.10. Here

α̃0 := α0

1 − α1 − β1

again denotes the unconditional variance from Eq. 32.18. The GARCH(1,1)
prediction for the conditional variance after h steps is therefore equal to the
unconditional variance plus the difference between the one-step forecast and
the unconditional variance dampened by the factor κh−1. The stationarity con-
dition requiring that α1 + β1 < 1 implies that for h → ∞ (a long prediction
period) the GARCH prediction converges towards the unconditional variance.

The variance of the total return
∑h

i=1 XT +i over a term of length h as
the sum of the conditional forecasts is obtained for the textGARCH(1, 1)

process as indicated in Eq. 33.15:

v̂ar[
h∑

i=1

XT +i |XT , . . . , X1] =
h∑

i=1

v̂arT +i

=
h∑

i=1

[
α̃0 + κi−1

(
α0 + β1HT + α1X

2
T − α̃0

)]

=hα̃0+
(

1 − κh

1 − κ

)(
α0 + β1HT + α1X

2
T −α̃0

)
,

(33.19)
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where Eq. 15.10 for the geometric series is used again in the last step. The
volatility term structure resulting from the 33.16 GARCH(1, 1) process is thus

σ(T , T + h) =
√√√√1

h
v̂ar[

h∑

i=1

XT +i |XT , . . . , X1]

=
√

α̃0 + 1

h

(
1 − κh

1 − κ

) (
α0 + β1HT + α1X

2
T − α̃0

)
.

which approaches the unconditional variance α̃0 like 1/
√

h for large h.

33.4 Volatility Forecasts with Moving Averages

In addition to the relatively modern GARCH models, older methods such as
moving averages exist in the market, which, despite their obvious shortcomings,
are still widely used, thanks to their simplicity. Before entering into a discussion
of volatility forecasts via moving averages and comparing them with those of
the GARCH models, we will first introduce the two most important varieties,
the simple moving average, abbreviated here as MA and the exponentially
weighted moving average, abbreviated as EWMA.

The (simple) moving average measures the conditional variance (of a time
series with zero mean) simply as the sum of evenly weighted squared time series
values over a time window of width b. The form for the MA corresponding to
Eq. 32.16 is simply

Var[Xt |Xt−1, . . . , X1] = 1

b

b∑

k=1

X2
t−k .

The well-known phantom structures arise from this equation because every
swing in the X2

t is felt fully for b periods and then suddenly disappears
completely when the term causing the perturbation no longer contributes
to the average. An improvement would be to consider weighted sums where
time series values further in the past are weighted less than values closer to
the present. This can be realized, for example, by the exponentially weighted



33 Forecasting with Time Series Models 791

moving average EWMA. The conditional variance in the EWMA is

Var[Xt |Xt−1, . . . , X1] = 1
∑b

j=1 λj−1

b∑

k=1

λk−1 X2
t−k

= X2
t−1 + λ1X2

t−2 + · · · + λb−1X2
t−b

1 + λ1 + λ2 + · · · + λb−1
.

For λ < 1 the values lying further back contribute less. The values commonly
assigned to the parameterλ lie between 0.8 and 0.98. Naturally, the simpleMA
can be interpreted as a special case of the EWMAwith λ = 1. The conditional
variance of the EWMA is very similar to that of a GARCH(1,1) process since
the recursion for HT in Eq. 32.16 can be performed explicitly for p = q = 1
and the conditional variance of the GARCH(1,1) process becomes

Var[Xt |Xt−1,. . ., X1] = Ht

= α0 + α1X
2
t−1 + β1Ht−1

= α0 + α1X
2
t−1 + β1

[
α0 + β1Ht−2 + α1X

2
t−2

]

= α0(1 + β1)+α1(X
2
t−1+ β1X

2
t−2)+ β2

1

[
α0 + β1Ht−3 + α1X

2
t−3

]

= α0(1 + β1 + β2
1) + α1(X

2
T −1 + β1X

2
T −2 + β2

1X2
T −3) + β3

1Ht−3

· · ·

= α0

b∑

k=1

βk−1
1 + α1

b∑

k

βk−1
1 X2

T −k + βb
1 HT −b .

If we now choose the parameters α0 = 0, β1 = λ and α1 = λ(
∑b

j=1 λj )−1

then this conditional variance after b steps (apart from remainder term
βb

1HT −b which contains the influence of factors lying still further in the past)
is exactly the same expression as for the EWMA. The difference between the
GARCH(1, 1) and EWMA models first appears clearly in variance forecasts
over more than one time step.

The conditional variances presented above can be interpreted as a one-step
forecast for the conditional variance. The forecast over h steps delivers nothing
new for the moving averages since both the MA and EWMA are static and
fail to take the time structure into consideration. They start with the basic
assumption that prices are lognormally distributed with a constant volatility.
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This implies that

v̂ar[XT +h|XT , . . . , X1] = v̂ar[XT +1|XT , . . . , X1] = var[XT +1|XT , . . . , X1] .

holds for the h-step forecast of theMA as well as for the EWMA. Asmentioned
after Eq. 33.14, the conditional variance after h steps is being forecasted and
not the variance of the total return over a term of h steps. The prediction for the
variance of the total return as the sum over the conditional one-step forecasts
is for moving averages (MA and EWMA) simply

v̂ar[
h∑

i=1

XT +i |XT , . . . , X1] =
h∑

i=1

v̂ar[XT +i |XT , . . . , X1]︸ ︷︷ ︸
v̂ar[XT +1|XT ,...,X1]

= h var[XT +1|XT , . . . , X1] .

This is again the famous square root law for the growth of the standard
deviation over time. The variance simply increases linearly over time and the
standard deviation is therefore proportional to the square root of time. This
leads to a static prediction of the volatility, and extrapolating, for example,
daily to yearly volatilities in this way can easily result in an overestimation of
the volatilities. The volatility term structure for the moving average is then, as
expected, a constant:

σ(T , T + h) =
√√
√√1

h
v̂ar[

h∑

i=1

XT +i |XT , . . . , X1] = √
var[XT +1|XT , . . . , X1] .

In the Excel workbook Garch.xlsx , the one-step forecast of a GARCH(1, 1)

process, an MA with b = 80 and an EWMA with b = 80 and λ = 0, 95 are
presented. Furthermore, the ten-step forecast of the GARCH(1, 1) process
is shown. Since the time series we are dealing with is a simulated GARCH
process, the “true” volatility is known (it is the Ht from the simulated series)
and direct comparison can be made with each of the various estimates. As
is clearly illustrated in Garch.xlsx, the one-step GARCH(1, 1) forecast (Ht

with the parameters α̂0, α̂1 and β̂1 fitted by simulated annealing) produces
estimates which are quite close to the true volatility. The computation of the
GARCH volatility term structure is presented in Garch.xlsx as well.



34
Principal Component Analysis

34.1 The General Procedure

In addition to the autoregressive models described above, which are used
for instance in the form of GARCH models when modeling volatility, a
further technique of time series analysis, called principal component analysis
(abbreviated as PCA), is widely applied in the financial world. This technique
is employed in the analysis of term structure evolutions, for instance. A first
approach to describe the stochastic dynamic of an interest rate term structure
could be to define a risk factor for each vertex of the curve, i.e. the zero rate
or the forward rate at that vertex. However, because of the large number
of vertices, this approach would be quite calculation intensive. Instead, it
is possible to reduce the number of stochastic variables to just a few (1 or
2, sometimes more) driving factors without loss of too much information.
This approach has its justification in principal component analysis. Principal
component analysis is a statistical technique which extracts the statistical
components from the time series which are most relevant for the dynamics
of the process in order of their importance. Applying this method to interest
rates (i.e. the vertices of the interest rate curve) shows that often more than
90% of the term structure’s dynamics can be ascribed to the one or two most
important components.

Two other well-known statistical methods used in time series analysis
are factor analysis [32] and cointegration [86]. Principal component analysis
sets itself apart from these other methods by the ease with which the results
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can be interpreted. An extensive description of principal component analysis
can be found in [116], for example.

Since the time dependence of the data is not analyzed in PCA, the remarks
made in Chap. 32 hold for this type of time series analysis as well: principal
component analysis is a suitable approach for stationary time series only. Time
series exhibiting non-stationary behavior like trends, etc. should be first freed
of their non-stationary components by, for example, estimating trends and
subsequently subtracting them from the time series or by taking differences of
the data with respect to time, in other words, by performing a pre-treatment
as described in Chap. 35. A reasonable principal component analysis of non-
stationary time series is not to be achieved without first removing these
potential non-stationary components.

In principal component analysis, the time series of not just one but several
stochastic process are considered which may be strongly correlated. Principal
component analysis is therefore an example ofmultivariate time series analysis.
In financial applications, each process represents a risk factor. The situation
is thus similar to that in Eq. 21.21 in Sect. 21.5 where n risk factors were
considered as well. In the case of PCA, it is not a matter of the stochastic
differential equations of the risk factors, but of their historic evolution. For
each risk factor, there exists an associated time series of data for times tk,
k = 1, . . . T . For example, the data of the relative changes (as in Eq. 31.1)

Xi(tk) = ln

(
Si(tk + δt)

Si(tk)

)
≈ Si(tk + δt) − S(tk)

Si(tk)

i = 1, . . . n, k = 1, . . . T .

These time series are assumed to be stationary, i.e., pre-treatment of the data
has been performed already and the non-stationary components have been
removed, if this has proved to be necessary. As a typical example of such a group
of n risk factors, we can consider the relative changes of the interest rates at the
vertices of an interest rate curve. The variances and pair wise correlations of
these n risk factors can be arranged in a covariance matrix δ� as in Eq. 21.22.
The entries of the covariance matrix can be determined from historical data as
described in Sect. 31.1.

The dimension of this matrix is obviously equal to the number of risk factors
(equivalently, the number of time series) and is thus equal to n. The central
idea of principal component analysis is now to reduce the dimension of the
problem on the basis of its statistical structure. The reduction is achieved by
transforming the variables Xi into new uncorrelated variables Yi appearing in
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order of the size of their variance. This results, circumstances permitting, in a
significant simplification of the subsequent analysis. It is inmany cases possible
to neglect statistical dependences of higher order in these new coordinates and
to consider the time series of the new (transformed) variables as independent.
As will be shown in the construction of the transformations, the new variables
generally have different variances. In this case, it is possible to neglect those
variables with relatively small variance.

This transformation of the random variables X1, . . . , Xn into the new
variables Y1, . . . , Yn is linear and thus we can write Yk = ∑n

i=1 αkiXi , or
equivalently, in the vector notation used in Sect. 21.5

Y = αX mit X =
⎛

⎜
⎝

X1
...

Xn

⎞

⎟
⎠ ,Y =

⎛

⎜
⎝

Y1
...

Yn

⎞

⎟
⎠ (34.1)

α =
⎛

⎜
⎝

α11 · · · α1n

...
. . .

...

αn1 · · · αnn

⎞

⎟
⎠ =

⎛

⎜
⎝

(
α1

)T

...

(αn)T

⎞

⎟
⎠ .

In the last step, the rows of the transformation matrix have been written in
terms of the vectors α defined as follows:

(
αk

)T :=
(

αk1 · · · αkn

)
�⇒ αk =

⎛

⎜
⎝

αk1
...

αkn

⎞

⎟
⎠ .

This implies that the components αk
i of these vectors and the components αki

of the matrix are related as follows:

αk
i = αki =

(
αk

)T

i
∀ k, i = 1, . . . n .

The transformation Eq. 34.1 is thus given by

Yk = (
αk

)T
X =

n∑

i=1

αkiXi , k = 1, . . . n . (34.2)
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The coefficients of the matrix α are now chosen such that the transformed
variables Yk possess the following properties:

We require every “transformation vector” αk (each row of the matrix α) to
have a norm of 1, i.e.,

(
αk

)T
αk =

n∑

i=1

αk
i α

k
i =

n∑

i=1

(αki)
2 != 1 ∀ k = 1, . . . n . (34.3)

We now select the components α1
i of α

1 in such a way that the variance of the
first transformed variable Y1 = (

α1
)T X is as large as possible (maximal) while

satisfying Eq. 34.3. This is an optimization problem subject to the constraint(
α1

)T
α1 = 1. It will be shown explicitly in the material below how problems

of this type are treated.
Having determined α1 (and consequently Y1), we proceed by determining

the components α2
i of α2 such that the variance of the second transformed

variable Y2 = (
α2

)T X is as large as possible (maximal), again subject to the
condition that Eq. 34.3 holds. In addition, Y2 must be uncorrelated with the
vector Y1 already determined. This additional condition can be expressed as

cov(Y2, Y1)
!= 0 .

Using Eq. 34.2, we can write this covariance as

cov(Y2, Y1) = cov
((

α2)T
X,

(
α1)T

X
)

= cov

⎛

⎝
n∑

i=1

α2
i Xi,

n∑

j=1

α1
jXj

⎞

⎠

=
n∑

i=1

n∑

j=1

α2iα1jcov(Xi,Xj)︸ ︷︷ ︸
δ�ij

=
n∑

i=1

n∑

j=1

(
α2)T

i
δ�ij α1

j

= (
α2

)T
δ� α1 .

This implies that, in addition to the constraint expressed in Eq. 34.3, α2 must
satisfy the condition

(
α2)T

δ� α1 != 0 (34.4)
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Thus, the determination of α2 (and thus of Y2) involves an optimization
problem with two constraints.

The remaining variables Y3, . . . , Yn are determined successively subject to
analogous conditions: in the kth step, αk is chosen such that the variance of
the kth transformed variable Yk = (

αk
)T X is as large as possible (maximal)

subject to the condition that Eq. 34.3 as well as the additional k−1 conditions
hold, namely that Yk be uncorrelated with all of the previously determined Yi ,
i = 1, . . . k − 1, i.e.,

cov(Yk, Yi)
!= 0 for all i < k .

The formulation of these k − 1 conditions on αi is analogous to Eq. 34.4

(
αk

)T
δ� αi != 0 for all i = 1, . . . k − 1 . (34.5)

Overall, k conditions must be satisfied in the kth step. This decreases the
maximal possible variance of Yk from step to step, since with each step, the
maximum is taken over a smaller class of vectors. It is thus not surprising
that Y1 has the greatest variance among the Yk and that the variances of the Yk

decrease rapidly with increasing k. Therefore, the first Yk contribute most
to the total variance of all Yk. These transformed variables Yk are therefore
referred to as the principal components and the vectors αk defined in the above
construction as the principal axes of the system.

To provide the reader with a concrete example, we compute the first
principal component Y1 here. In order to do so, the variance of Y1 conditional
upon the satisfaction of Eq. 34.3 is maximized. According to Eq. A.12, the
variance of Y1 is

var(Y1) = cov
((

α1
)T

X,
(
α1

)T
X
)

= cov

⎛

⎝
n∑

i=1

α1
i Xi,

n∑

j=1

α1
jXj

⎞

⎠

=
n∑

i=1

n∑

j=1

α1iα1jcov(Xi, Xj)︸ ︷︷ ︸
δ�ij

=
n∑

i=1

n∑

j=1

(
α1)T

i
δ�ij α1

j

= (
α1

)T
δ� α1 . (34.6)
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This is now maximized subject to the constraint
(
α1

)T
α1 = 1. We can take

constraints into account in an optimization problem using the method of
Lagrange multipliers.1 The method has already been discussed in Sect. 26.2.1. It
requires the construction of the Lagrange function L. This function is equal to
the function to be maximized less a “zero” multiplied by a Lagrange multiplier
λ. This zero is written in the form of the constraint to be satisfied, which in
our case here is 0 = (

α1
)T

α1 − 1. The Lagrange function is thus given by

L(λ1) = (
α1)T δ� α1

︸ ︷︷ ︸
zu maximieren

− λ1

[(
α1)T

α1 − 1
]

︸ ︷︷ ︸
Nebenbedingung

(34.7)

=
n∑

i,j=1

α1iδ�ijα1j − λ1

n∑

i=1

(α1i)
2 + λ1 .

In order to find the optimal values α1i subject to this constraint, we differenti-
ate L with respect to the parameter α1i and set the resulting expression equal
to zero; in other words, we locate the maximum of the Lagrange function.2

0
!= ∂L

∂α1i

= 2
n∑

j

δ�ij α1j − 2λ1α1i ∀ i = 1, . . . n

from which it follows

n∑

j

δ�ij α1j − λ1α1i = 0 ∀ i = 1, . . . n

or in the compact matrix notation:

(δ� − λ11)α1 = 0 , (34.8)

where, as in Eq. 21.37, 1 denotes the n-dimensional identity matrix. This
condition implies, however, that the covariance matrix applied to the vector α1

1An introduction in the technique of Lagrange multipliers for solving extreme value problems with
boundary conditions can be found, for example, in [34].
2Since the Lagrange function differs only by zero from the value to be maximized (the variance), this
equals the maximal value we are looking for. Of course, this is only true, if the difference is indeed equal
to zero, i.e., if the boundary condition is fulfilled. This is the short form explanation of this method.
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has no other effect than to multiply α1 by a number: δ�α1 = λ1α
1.

Equation 34.8 is therefore the eigenvalue equation of the covariance matrix
(compare this to Eq. 22.22 in Sect. 22.3.2). The Lagrange multiplier λ1

must in consequence be an eigenvalue of the covariance matrix and α1 is the
associated eigenvector. As discussed in detail in Sect. 22.3.2, the eigenvalue
equation in 34.8 has a non-trivial solution α1 �= 0 if and only if the matrix
(δ� − λ11) is singular. For this to be the case, its determinant must be equal
to zero

det (δ� − λ11) = 0 .

The eigenvalue λ1 is the solution to this determinant equation. Having deter-
mined λ1, it can be substituted into Eq. 34.8 to calculate the eigenvector α1.

The eigenvalue λ1 has another important intuitive interpretation which can
be seen immediately if we multiply both sides of Eq. 34.8 on the left by

(
α1

)T :

λ1α
1 = δ�α1

(
α1

)T
λ1α

1 = (
α1

)T
δ�α1

λ1
(
α1)T

α1

︸ ︷︷ ︸
1

= (
α1)T

δ�α1

︸ ︷︷ ︸
Var(Y1)

.

Therefore, λ1 is the variance of the principal component Y1.
Analogously (i.e., maximization of the variances of the new variables Yk),

we proceed with the remaining principal components. As already mentioned
above, one more constraint (see Eq. 34.5) must be taken into account with
each further step. Analogous to Eq. 34.7, for each constraint a zero (in
the form of the constraint multiplied by a Lagrange multipliers λi, i =
1, . . . k) is subtracted from the variance of Yk and the resulting Lagrange
functionL is maximized. In the computation of the kth principal component,
k Lagrangemultipliers appear in the expression for the Lagrange function. The
complexity of the corresponding computation increases substantiallywith each
new constraint. We thus refrain from explicitly performing the computation
here. We wish to remark, however, on the following properties holding for all
principal components as was shown for Y1:

The Lagrange multipliers λk can be shown to be the eigenvalues of the
covariance matrix δ� = cov(X,X) appearing in decreasing order. The
row vectors of the transformation matrix α, i.e., the αk, are the associated
eigenvectors.
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This result paves the way for the implementation of the principal com-
ponent analysis: we do not take the optimization problem as the starting
point for our analysis, but rather we compute the eigenvalues and eigenvectors
of the covariance matrix directly. In a second step, the eigenvalues λk and
their associated eigenvectors αk are ordered according to the size of the
eigenvalues, thereby constructing the transformation matrix from the ordered
row vectors αk as defined in Eq. 34.1:

α =

⎛

⎜
⎜
⎝

(
α1

)T

...

(αn)

⎞

⎟
⎟
⎠ .

Now, the original dataXi in the time series of the n risk factors are transformed
into the new variables Yi by applying the matrix α; this is done for each
observation in the time series

Yj (tk) =
n∑

i=1

αjiXi(tk) for all j = 1, . . . n and all k = 1, . . . T .

Finally, those components Yk of the transformed data are neglected if the
associated eigenvalues (and thus the variances3 of the new random variablesYk)
are small. It is often the case that the number of time series in the new
variables Yk necessary for further investigation can in this way be reduced to
just two or three.

In many software packages, for example SAS, Matlab, or IDL, principal
component analysis is provided as one of the few multivariate time series
analysis procedures or at least modules exist allowing for its construction. The
steps listed above are automated in these packages; only the original time series
are needed as input. The covariance matrix is estimated from this data. The
output is then obtained in the form of the eigenvalues of the covariance matrix,
the associated eigenvectors, i.e., the transformation matrix, and the time series
of the principal components. The reduction in dimension is achieved in that
the data is reduced by n − l − 1 variables Yl+1, . . . , Yn. Here, l is chosen
conditional upon the relative size of the eigenvalues.

3The kth eigenvalue is in fact equal to the variance of the new random variable Yk .
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34.2 Principal Component Analysis
of the German Term Structure

In this section, we conduct a principal component analysis on real interest
rate data. The aim of our investigation is to determine the typical drivers of
the interest rate term structure and the relative contribution of each individual
driver to the total dynamics of the interest rate curve. The results of this section
are relevant in several different respects. Firstly, the investigation introduced
here will provide a plausible explanation for why it is for many problems
sufficient to model the entire interest rate curve in very low dimensional
spaces as is done in modern one, two, and three-factor term structure models
although the term structure is clearly constructed with a larger number of
vertices. Secondly, stress scenarios for typical and statistically independent
movements in the interest rate curve can be identified.

The time series investigated are the yields for ten vertices with terms between
one and ten years for the German term structure in monthly time steps
spanning over a period of ten years. The data were subjected to a principal
component analysis as described in the above section without having first been
pre-treated by taking time-differences.4 We find that the variances λi of the
principal components Yi , arranged in decreasing order, decrease very quickly.
The proportion of the variances λ1 and λ2 of the first and second principal
components with respect to the total variance

∑10
i=1 λi is

λ1
∑10

i=1 λi

≈ 96% ,
λ2

∑10
i=1 λi

≈ 3% ,

respectively. The proportion of the third and the fourth principal components
is only

λ3
∑10

i=1 λi

≈ 1% ,
λ4

∑10
i=1 λi

� 1% ,

4It has already been pointed out that principle component analysis assumes that the data in the time series
are stationary. For the following investigation, this assumption is made keeping in mind that the results of
the investigation should convey only a qualitative impression of term structure dynamics. Using the data
directly (i.e. without a pre-treatment such as taking time differences, etc.) will simplify the interpretation
of the results substantially.
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Fig. 34.1 The components of the first four eigenvectors α1, . . . ,α4. For each of these
eigenvectors the components αi

1, . . . , α
i
10 are shown. The simple structure facilitates an

intuitive interpretation of the associated principal components Y1, . . . , Y4

respectively. The variances of the further principal components disappear
almost completely, lying well below one tenth of one percent. Obviously, the
dynamics of the term structure can be described by just a very few variables.
Indeed, this result provides an excellent motivation for modeling the term
structure in spaces of small dimension (or even in one-dimensional spaces as
in Chap. 14). In Fig. 34.1, the first four of ten eigenvectors are presented. These
eigenvectors can be interpreted quite easily.

The first eigenvector α1 weights the interest rates of all terms approximately
equally. The eigenvector normalization allows the first principal component Y1

to be interpreted as the mean interest rate level. The fluctuations of this
principal component Y1 thus represent parallel shifts of the entire term structure.

The second eigenvector α2 weights the short term interest rates negatively
and the long term rates positively. Considering the inverse transformation of
the principal components to the original interest rate vectors, we can draw
conclusions as to the interpretation of the second principal component Y2:
adding the second component to the first has the effect of adjusting the mean
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interest rate level by a mean slope. A change in this principal component Y2

thus changes the mean slope of the term structure, or in other words, effects a
rotation of the term structure.

The third eigenvector α3 can be interpreted analogously. This vector
weights the short and long-term rates positively, interest rates for the terms
of intermediate length negatively. The addition of the associated principal
component Y3 to the first two thus effects a change in the mean curvature
of the term structure. The fourth principal axis α4 shows a periodic change in
sign.With the associated principal component, periodic structures in the term
structure can be represented such as those described in [159], for example.

Several practical conclusions for the analysis of scenarios commonly used in
risk management can be drawn from the principal component analysis. Many
of the common scenarios used to model a change in the term structure can
be described in terms of the above decomposition. The most frequently used
scenario is the parallel shift, which involves an increase or decrease in the entire
term structure by a constant number of basis points. A further scenario, called
the twist, involves a change in the slope of the term structure. This scenario is
commonly realized through the addition (or subtraction) of, for example, m

basis points to the interest rate corresponding to a term of m years; this is
done for all terms in the term structure. Yet another scenario found in risk
management is called hump. This scenario describes an increase in the short
and long term rates and decrease in those for terms of intermediate length or
vice versa. These three scenarios, the parallel shift, the twist and the hump, very
often deduced on the basis of subjective experience, in fact correspond exactly
to the first three principal components of the term structure. The scenarios
mentioned here thus represent, from the statistical point of view, the most
significant movements in the term structure. From the construction of the
principal components, we can assume that these movements are approximately
independent of one another and thus a simple representation of the dynamics
of the term structure exists.

Finally, the analysis leads to the following results: first, practically all typical
fluctuations in the term structure can be described by a combination of the
above three scenarios. Second, making use of the eigenvalues, i.e., the variances
of the principal components, confidence levels can be determined for the
associated random variables. For example, information on the probability
of the actual occurrence of one of these scenarios could be computed. We
could proceed one step further: since the covariance matrix for the principal
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components is diagonal, the value at risk can be differentiated with respect to
movements in the individual principal components. The threat of VaR losses
can be traced back to different types of movements in the term structure and
interpreted accordingly. In addition, the values at risk from the three named
stress scenarios can be taken to be uncorrelated and the value at risk can be
computed by simply taking the sum of their squares.



35
Pre-Treatment of Time Series
and Assessment of Models

35.1 Pre-Treatment of Time Series

The pre-treatment for the transformation of a given data set into a stationary
time series has been mentioned several times in the preceding sections and
will receive detailed treatment in this section. The basis for pre-treating a time
series is its decomposition into a trend component gt , a seasonal component
st , and a random component1 Zt :

Xt = gt + st + Zt . (35.1)

Zt then represents the stationary time series with E[Zt ] = 0. The trend gt

is a deterministic function of the time variable t , which represents a long-
term development, for example a polynomial or an exponential function.2 A
weaker trend can sometimes be more readily recognized after a compression of
the time axis. The season st represents a periodic component with a period p:

st = st+p . (35.2)

Examples for such a component are the yearly cycle which overlays the
inflation index or the weekly cycle overlaying stock price quotes. It follows

1Notation: capital letters here denote random variables, small letters denote deterministic functions.
2Or, for example, a so-called logistic curve c0/(1 + c1 exp(−c2t)). Such curves address the possibility of
saturation.
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that the sum
∑p

i=1 st+i of p successive values is a constant. This constant can
be incorporated into the trend gt so that, without loss of generality, the sum
can be assumed to be equal to zero:

p∑

i=1

st+i = 0 .

35.1.1 Differencing

If the trend and the seasonal component are not of interest, they can be elim-
inated by taking differences of certain values in the time series. Equation 35.2
implies that a seasonal component with period p can be eliminated by taking
the pth difference �p:

X̃t := �pXt = Xt − Xt−p

= gt − gt−p + Zt − Zt−p

=: g̃t + Z̃t

with the new trend g̃t = gt − gt−p and a new stationary time series Z̃t =
Zt −Zt−p. Under the assumption that the remaining trend can be represented
by a polynomial of degree k, this trend can be eliminated by taking first order
differences in the above function k times. If, for example, the trend is a second
degree polynomial, i.e., if

g̃t = a + bt + ct2

then differencing twice eliminates this trend: taking a first order difference
once yields

�X̃t := X̃t − X̃t−1 = b − c + 2ct + Z̃t − Z̃t−1

Differencing a second time results in

�2X̃t = �X̃t − �X̃t−1 = X̃t − 2X̃t−1 + X̃t−2 = 2c + �2Z̃t

This time series now has neither a trend nor a seasonal component. After
a subsequent elimination of the expectation 2c, the new time series ˜̃Zt :=
�2X̃t − 2c is stationary and a time series model can be fitted.
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In this way, the seasonal and trend components can be eliminated. The
original data can, of course, be reconstructed through the inverse transforma-
tion. If we are interested in estimating the trend or the seasonal component
themselves, we should begin by estimating the trend. This occurs either
through one of the above mentioned parametric functions, (the parameters are
then determined using a least squares estimator) or through moving averages
as described in the next subsection. This estimated trend ĝt is then subtracted
from the time series and the resulting series Xt − ĝt is used to obtain an
estimator ŝt for the seasonal component. Because of the periodicity, the sum∑p

i=1 ŝt+i is constant in time. This constant is then ascribed to the expectation
of the time series so that

∑p

i=1 ŝt+i = 0 holds. The differenceZt = Xt − ĝt−
ŝt can then be viewed as a stationary time series and a time series model can
be fitted.

35.1.2 Filters

One possibility of estimating the trend and eliminating the season is the
application of moving averages. Starting from the time series {Xt} a new
process Yt is constructed as

Yt =
m2∑

i=−m1

qiXt+i

Frequently m1 = m2 (symmetric average) is chosen. Moving averages are an
example of filters. Filters admit some information from the old time series
into the new one while removing other information; the data sequence {Xt}
is filtered. Moving averages are an example of linear filters.

The weights qi employed in the averaging are selected so that the trend is
conserved, the seasonal component eliminated and the variance of the rest of
the data sequence is minimized. An example taken from empirical economic
research is the moving average

Yt = 1

8
Xt−2 + 1

4
Xt−1 + 1

4
Xt + 1

4
Xt+1 + 1

8
Xt+2

which allows a linear trend to “flow through”, filters out a period-four seasonal
component, (quarterly data) and reduces the variance; this can be seen in the
following computation: let Xt be of the form in Eq. 35.1 which includes a
linear trend with slope a (i.e., gt+i = gt + a i ) and a seasonal component of
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period four, i.e.,
∑4

i=1 st+i = 0. Then

Yt =
2∑

i=−2

qiXt+i =
2∑

i=−2

qigt+i +
2∑

i=−2

qist+i +
2∑

i=−2

qiZt+i .

The trend of Yt remains the same as that of Xt :

2∑

i=−2

qigt+i =
2∑

i=−2

qi(gt + ai)

= 1

8
(gt − 2i) + 1

4
(gt − i) + 1

4
gt + 1

4
(gt + i) + 1

8
(gt + 2i)

= gt − i

4
− i

4
+ i

4
+ i

4
= gt .

The seasonal component is eliminated:

2∑

i=−2

qist+i = 1

8
st−2 + 1

4
st−1 + 1

4
st + 1

4
st+1 + 1

8
st+2︸︷︷︸
=st−2

since st+4 = st

= 1

4
(st−2 + st−1 + st + st+1)︸ ︷︷ ︸

=0

since
p∑

i=1

st+i = 0

= 0

and the variance is (under the assumption that the stationary time series Zt is
weakly or not at all autocorrelated) substantially reduced:

Var

⎡

⎣
2∑

i=−2

qiZt+i

⎤

⎦ =
2∑

i,j=−2

qiqj cov
[
Zt+i, Zt+j

]

=
(

1

64
+ 3

1

16
+ 1

64

)
Var[Zt ] +

∑

i �=j

qiqj cov
[
Zt+i, Zt+j

]

︸ ︷︷ ︸
≈0

≈ 7

32
var[Zt ] .
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A further example of a filter is the Spencer 15-point moving average with
coefficients

1

320
[−3, −6, −5, 3, 21, 46, 67, 74, 67, 46, 21, 3, −5, −6, −3] .

This filter even allows all polynomials up to and including polynomials of
order three to flow through.

A complete filter can only be accomplished “within” the time series, namely
for those data for which t = m1+1, . . . , T −m2, where the length of the data
sequence, i.e., the number of data points, is denoted by T . One possibility of
applying the boundary points of the data sequence is to simply extend the
moving average past the end of the known values, replacing the unknown
values with the last value XT (at the end of the sequence) and with the first
valueX1 (at the beginning of the sequence). Alternatively, we could use smaller
supports for the filters at the ends than in the middle.

35.1.3 Scaling

If the variance of the data sequence shows an increasing or decreasing behavior
as a function of time, a variance stabilizing transformation, such as the Box-Cox
scaling defined by

Tλ(Xt) = Xλ
t − 1

λ
, for Xt ≥ 0, λ > 0

T0(Xt) = ln(Xt), for Xt > 0, λ = 0

can be implemented. The second expression applies to the limiting case λ →
0. If the data sequence contains negative values, wemay add a positive constant
to each of the data points. The parameter values λ = 0 or λ = 1/2 are most
commonly used. Intuitively, the transformation implies that, depending on
the choice of λ, small values can be magnified (or reduced) or vice versa.

As an example, we consider the transformation T (X) = ln(X). This
transformation yields an approximately constant variance, when the standard
deviation of the time series changes linearly with the expectation, i.e., when
std(Xt) = aμt . This can be shown as follows: the Taylor series expansion up
to first order of the transformed time series about the expectation μt yields for
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the standard deviation

std(T (Xt)) = √
var(T (Xt)) ≈ √

var(T (μt) + T ′(μt)(Xt − μt))

= T ′(μt) std(Xt) = T ′(μt) aμt .

This expression is in fact constant when the transformation T (X) = ln(X) is
chosen since T ′(X) = X−1.

35.2 Measuring the Goodness of Time Series
Models

Having found a model for a stationary time series and fitted its parameters to
the time series data, we immediately ask “how well does the model describe the
time series?”, in other words, how good is the fit? This question is answered
by considering the deviations (also called the residues) of the values in the time
series actually observed in comparison with those produced by the model. If
the model is good, all of the information contained in the time series should
also be contained in the fittedmodel; the residues should be of a purely random
nature. For an AR(p) process as in Eq. 32.6, the residues are

ε̂t = Xt −
p∑

i=1

φ̂iXt−i . (35.3)

If the fit is good, the residues should be according to N(0, σ 2) normally
distributed iid random variables with variance σ 2.

For a GARCH(p, q) process of the form 32.13, the situation is somewhat
different since the random variables are multiplicative and not additive. We
can, however, define the residues as the quotient of the observed data and the
values obtained from the fitted time series model.

ε̂t = Xt/

√
Ĥt . (35.4)

Here, if the fit is good, the residues should be iid standard normal random
variables.

In order to test whether the residues form a sequence of iid random variables
εt ∼ N(0, σ 2), all statistical procedures for testing whether a sample of
observations are the realizations of normally distributed iid random variables
may be applied. Some of these tests will be introduced below. These tests are



35 Pre-Treatment of Time Series and Assessment of Models 811

applied to theGARCH(1, 1) process in the Excel workbook Garch.xlsx from
the download section [50].

35.2.1 Hypothesis Tests

Sign Test

We begin with a very simple test. For a sample of size T of iid random
variables, the number V of points for which ε̂t > ε̂t−1 holds, has the following
expectation and variance

E[V ] = 1

2
(T − 1) and var[V ] = 1

12
(T + 1) .

For large values of T , this number V is approximately N(E[V ], var[V ])
distributed. The quotient V −E[V ]√

var[V ] is thus N(0, 1) distributed. The hypothesis
of a normal distribution is rejected with a confidence of 1−α (with α typically
5% or 10%) if

|V − E[V ]|√
var[V ] = |V − (T − 1)/2|√

(T + 1)/12
> N−1(1 − α/2)

holds, where here N−1(1 − α/2) denotes the percentile for the probability
1 − α/2 of the N(0, 1) distribution.3 Conversely, from the measurements
of V , the confidence with which this test will reject the hypothesis can be
computed. From the above equation, we obtain for α

N
( |V − (T − 1)/2|√

(T + 1)/12

)
= 1 − α/2 ,

where N stands for the cumulative standard normal distribution. The confi-
dence with which the hypothesis will be rejected thus becomes

Confidence = 1 − α = 2N
( |V − (T − 1)/2|√

(T + 1)/12

)
− 1 .

3The percentile associated with 1 − α/2 is sought since the test under consideration is two-sided (we
consider the absolute value of the normalized random variable). In total, however, the confidence level of
the test is 1 − α since P

( |V −E[V ]|√
var[V ] ≤ N−1(1 − α/2)

)
= 1 − α.



812 H.-P. Deutsch and M. W. Beinker

However, this test does not reject the hypothesis of an independent and
identically distributed random sample in the case of cyclical data because
approximately half of the residues are then increasing. In practice, this does not
present a problem since the periodicity can be easily spotted by considering a
plot of the residues.

Inflection Points Test

This test has a similar structure as in the sign test. For iid random variables,
the number of inflection points U for which ε̂t−1 < ε̂t and ε̂t > ε̂t+1 or
else ε̂t−1 > ε̂t and ε̂t < ε̂t+1 holds, must have the following expectation and
variance

E[U ] = 2

3
(T − 2) and var[U ] = 16T − 29

90
.

For large T , this number U is approximately N(E[U ], var[U ]) distributed.
Thus, analogous to the sign test, the hypothesis of iid random variables will
be rejected with a confidence 1 − α if

|U − E[U ]|√
var[U ] = |U − 2(T − 2)/3|√

var[(16T − 29)/90] > N−1(1 − α/2) .

Analogous to the sign test, the confidence with which the hypothesis will be
rejected can be calculated from U as

Confidence = 1 − α = 2N

(
|U − 2(T − 2)/3|

√
var[(16T − 29)/90]

)

− 1 .

Percentile Test and Kuiper Statistic

We start by selecting a two-sided confidence levelα. Two-sidedmeans that α/2
(percent) of the residues may fall below the lower boundary of the confidence
interval and α/2 above the upper boundary. The confidence interval itself
is determined from the conditional variance σ 2 of the residues ε̂t (from
Eq. 35.4 σ 2 = 1 for GARCH processes, for example) under the assumption
that residues are normally distributed, i.e., ε̂t /σ are assumed to have a
standard normal distribution. We now count the residues ε̂t lying outside this
confidence interval. For these residues we either have N(ε̂t /σ ) > 1 − α/2 or
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N(ε̂t /σ ) < α/2. If the goodness of the fit is high, then the residues should
indeed be N(0, σ 2) distributed and therefore the proportion (relative to the
total number of residues) of the residues lying outside the confidence interval
should be approximately equal to the confidence α. This should hold for every
arbitrary α between 0 and 1.

We therefore consider the quotients

F(α) = number of residues where N(ε̂t /σ ) > 1 − α/2 or N(ε̂t /σ ) < α/2

number of all residues for 0 ≤ α ≤ 1 .

(35.5)

For a good fit, this should be close to α, i.e., the variable F(α) − α should be
close to zero for all 0 ≤ α ≤ 1. The deviations F(α)−α should be uniformly
distributed over the entire spectrum of α (this implies that the assumption of
a normal distribution is correct) and they should be independent (this implies
in particular no autocorrelations). In riskmanagement, the performance at the
“tails” of the distribution, i.e., for 0 ≤ α ≤ 0.05 and 0.95 ≤ α ≤ 1.0, is of
particular importance.

The Kuiper statistic defined as

K(F(α), α) = max
0≤α≤1

{F(α) − α} + max
0≤α≤1

{α − F(α)} (35.6)

adds the largest deviation of F(α) from α from above and from below. The
Kuiper statistic selects the “worst” deviations over the entire range of α and
aggregates them into a single number which can then be compared with
the corresponding number of other models for the purpose of evaluating the
goodness of each of the models.

Estimation of the Autocorrelation Function

The estimators �̂(h) for the autocorrelations defined in Eq. 31.13 are
approximately normally distributed for an independent identically distributed
sequence of T random variables with finite variance. For large values of T ,
this distribution is approximately N(0, 1/T ). Thus, for approximately 1 − α

percent of the autocorrelations between the residues,

−N−1(1 − α/2)√
T

< �̂(h) <
N−1(1 − α/2)√

T
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should hold if the fit is good. Here again, N denotes the cumulative standard
normal distribution. More “outliers” would indicate that the assumption
of independent, identically distributed random variables is violated by the
residues.

QQ Plot

In aQQ plot, also referred to as a percentile plot or a quantile plot, the percentiles
of two distributions are plotted against one another. We will denote the two
cumulative distribution in question by �1 and �2. For the QQ plot, we
consider the question: given the probability P = �1(X), which argument Y

must be substituted into the distribution �2 in order to generate the same
probability P . In other words: which Y has to be chosen so that �2(Y ) =
�1(X). Both of the arguments are then the percentiles of the two distributions
�1 and�2 for the same probability value P . These two percentiles are plotted
against one another. We plot Y against X explicitly by defining the function
Y = f (X) as

f (X) = �−1
2 (�1(X)) .

If, for example, �1 and �2 are two normal distributions, the QQ plot is
also referred to as a normal plot. For two normal distribution, i.e., for �1 =
N(μ1, σ

2
1 ) and �2 = N(μ2, σ 2

2 ), the condition for the percentiles X and Y

is

1
√

2πσ 2
1

∫ X

−∞
e
− (u−μ1)2

2σ2
1 du = �1(X) = �2(Y ) = 1

√
2πσ 2

2

∫ Y

−∞
e
− (u−μ2)2

2σ2
2 du .

With the substitution w = u−μi

σi
�⇒ du = σidw on both sides, i.e., for

i = 1, 2, this equation becomes

∫ X−μ1
σ1

−∞
e−w2/2 dw =

∫ Y−μ2
σ2

−∞
e−w2/2 dw

These two integrals differ only in their upper limit. If they are to be equal,
it suffices for their upper limits to be equal, yielding the function for the
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percentile plot

X − μ1

σ1
= Y − μ2

σ2
⇒

f (X) = Y = σ2

σ1
(X − μ1) + μ2 . (35.7)

Thus, if both random variables have a normal distribution, the QQ plot
is simply a straight line whose slope is given by the ratio of the standard
deviations, σ2

σ1
, and whose offset, μ2 − σ2

σ1
μ1, is determined by the expectation

of the distributions as well as the ratio of the standard deviations. Usually, one
of the distributions,�2 say, is obtained from empirical sample values (empirical
probability distribution ) and it is tested whether this distribution agrees with
another, theoretical distribution �1. To do this, the T sample values ε̂i are
arranged in increasing order resulting in the sequence ε̂(1), ε̂(2), . . . , ε̂(T ) with
ε̂(1) < ε̂(2) < . . . < ε̂(T ). To distinguish the ordered from the original
sample sequence, the indices of the ordered sequence appear in parentheses.
The empirical distribution is obtained from the following deliberations: the
proportion of all sample values which are less than or equal to ε̂(i) is i/T .
For large T , this ratio is a good approximation of the cumulative empirical
distribution, i.e., i/T approximates the empirical probability that a random
number is less than or equal to ε̂(i)

�2(ε̂(i)) = Pi ≈ i/T ,

This implies that the percentile of the empirical distribution associated with
the probability Pi ≈ i/T is

Yi = �−1
2 (Pi) = ε̂(i) .

The associated percentile of the theoretical distribution �1 is then4

Xi = �−1
1 (Pi) ≈ �−1

1 (i/T ) for all i < T . (35.8)

4Note that as long as we have only finitely many observations, i.e. for T < ∞, the empirical probability�2
for any ε̂i being ≤ ε̂(T ) is of course 1 since ε̂(T ) is by definition the largest value ever observed. The
theoretical cumulative probability �1(x), on the other hand, approaches 1 only for x approaching the
upper limit of the range of the possible arguments of �1, usually for x → ∞. Or in the language of
Eq. 35.8:

“XT ≈ �−1
1 (T /T ) = �−1

1 (1) = ∞”

Therefore we have to exclude the largest value ε̂(T ) from the QQ plot when testing an empirical
distribution.



816 H.-P. Deutsch and M. W. Beinker

The QQ plot is now obtained by plotting the ordered pairs (Xi, Yi), i.e., by
graphing ε̂(i) against�−1

1 (i/T ) for all i < T . In this way it can be checked, for
example, whether the sample values are normally distributed by testing how
well a QQ plot of the sample values against those obtained from a normal
distribution delivers a straight line.5 It is convenient to chose the standard
normal distribution, �1 =N(0, 1), as the theoretical distribution in this case.
Equation 35.7 then reduces to Yi = μ2 + σ2Xi for i = 1, . . . , T − 1 and
the standard deviation and the expectation of the empirical distribution can
be read off directly as the slope and offset of the QQ plot.

A normal plot such as this reveals much more than a common two-sample
test since the entire distribution can be tested and deviations from the nor-
mal distribution such as non-linearities, skewness, or dissimilar distribution
boundaries can be identified. In addition to this visual examination, the
correlation coefficient between Yi = ε̂(i) and Xi = �−1

1 (Pi)

R2 =
(∑T

i=1(Yi − Y) Xi

)2

∑T
i=1(Yi − Y)2

∑T
i=1 X2

i

with Y =
T∑

i=1

Yi/T

serves as an analytic variable for testing the linearity.6 For a straight line, R2 =
1 must hold.7

35.2.2 Goodness of Fit vs. Goodness of Forecast

All of the above criteria can be applied to not only test the goodness of a
fit but also the goodness of a forecast. The forecast must occur out of sample,
i.e., a portion of the given data set is used to obtain an estimator (i.e., for
fitting the model), while the remaining data is predicted using the fitted
model. The goodness is then evaluated on the basis of the “accuracy” of the
prediction. This “accuracy” must be quantified for each respective problem.

5It can be shown that using Pi = i−3/8
T −3/4+1 for the probabilities in a normal plot is slightly better than

using Pi = i/T . This, however, is only a marginal improvement over the much more intuitive value
Pi = i/T .
6Here, the correlation coefficient for the special case that the Xi have mean zero, X = 0, is presented,
which is the case for a QQ plot against the standard normal distribution. In general, the correlation
coefficient also has the form given in the equation, but with Xi replaced by (Xi − X).
7For a formal test, we need confidence intervals under the hypothesis of normally distributed residues.
For example, for T = 200, P (R2 < 0.987) = 0.05 (5% interval) and P (R2 < 0.989) = 0.1 (10%
interval).
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Testing the goodness of a forecast by using the entire sample to fit the model
and then “predicting” values in the sample is obviously optimistically biased
and does not yield a realistic assessment of the actual forecasting ability of the
model. Time series models are often constructed for the primary purpose of
making forecasts. Thus, the goodness of a model should be judged according
to its performance inmaking predictions. In the Excel workbook Garch.xlsx,
the GARCH(1, 1) model was fitted to the first 400 time series values via
maximum likelihood estimation using simulated annealing. The goodness
tests presented in Garch.xls refer to the data points 401 to 1001 and are
therefore out of sample forecasting tests.

However, there are by all means tests available which only make sensewithin
that part of the sample which was used for fitting the model (in sample tests).
In such cases, we are only interested in the goodness of fit achieved by the
model, not in its forecasting power. If, for example, the best model is to be
identified from among a whole class of different models it is of course natural
to ask which model we prefer. The goodness of fit, measured in terms of the
smallest possible residues or maximum possible likelihood, can not be the only
deciding factor because a model with many parameters might be well fitted
but can also be easily overfitted. Moreover, models with few parameters are
generally preferable as they are easier to interpret.

The Akaike information criterion is a compromise between larger likelihood
and fewer parameters. It is given by

AIC = −2L + 2(Q + 1)T

T − Q − 2
, (35.9)

whereQ denotes the number of parameters of the model to be evaluated andL
the log-likelihood of the fitted process. For the GARCH(p, q) process the
order isQ = p+q+1, for an AR(p)-process we haveQ = p. Themodel with
the smallest AIC is preferable. The Akaike Criterion represents a compromise
between a large likelihood and a small number of parameters; models with
many parameters are penalized.

35.2.3 Examples: Goodness of GARCH Models

The comparison of a GARCH(1, 1) process with moving averages by means
of measures of goodness is also explicitly demonstrated in the Excel workbook
Garch.xlsx. In addition, we will demonstrate these methods using the above
mentioned FTSE data set presented in Fig. 32.1. The first 2,000 values of the
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Fig. 35.1 Conditional standard deviation of the GARCH(1, 1) process fitted to the FTSE
time series. The crash in October 1987 is clear to see

data set are used in the parameter estimation. Simulated annealing algorithms
were employed to obtain the optimized parameter values α0 = 0.000,
α1 = 0.089 and β1 = 0.849. Figure 35.1 shows the conditional standard
deviations ht = α0 + β1ht−1 + α1X

2
t−1 of the GARCH process, where

the corresponding values for Xt−1 were taken from the FTSE data set. The
Akaike criterion for the goodness-of-fit of the GARCH process is computed
as −6519.87. The last 934 values serve to test the one-step forecast for the
variance performed by employing Eq. 33.17. Here, we use a procedure (which
has not been yet been discussed in previous sections) to directly test the
estimated conditional variance. We proceed as follows: beginning with a value
Xt−1 of the FTSE time series (for example with t − 1 = 2500), we calculate
ht = α0 +β1ht−1 + α1X

2
t−1 for the next day (t = 2501) with the parameters

estimated using the first 2,000 values. This ht is then used to compute the
confidence intervals of the normal distribution N(0, h2

t ) corresponding to a
confidence level of 99% and 95%, respectively, to establish whether the next
value Xt = X2501 of the FTSE time series lies within this confidence interval.
Subsequently, the next h2502 is computed from h2501 and the value X2501

from the FTSE time series data. The corresponding confidence interval is then
calculated and it is established whether the actual value X2502 lies within this
confidence interval, and so on for all 934 out-of-sample values. The number
of outliers is counted and compared with the expected number of outliers.
For a test of the ten day forecast, Eq. 33.18 is used to predict the conditional
variance for the daily yield of the FTSE ten days into the future. For example,
the conditional variance h2510 is estimated using the value X2500 from the
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Table 35.1 Confidence level α = 99%

1-day forecast 10-day forecast

GARCH: 8 (9) GARCH: 77 (67)
MA: 21 (9) MA: 145 (67)

EWMA: 18 (9) EWMA: 117 (67)

Table 35.2 Confidence level α = 95%

1-day forecast 10-day forecast

GARCH: 21 (46) GARCH: 158 (337)
MA: 69 (46) MA: 517 (337)

EWMA: 45 (46) EWMA: 391 (337)

FTSE time series and the associated value h2500. Using h2510, the confidence
interval for the 99% and 95% confidence levels of the normal distribution
N(0, h2

2510) are computed and it is subsequently establishedwhether the FTSE
time series value X2510 lies within this confidence interval, and so on for all
out-of-sample values. Again, the number of outliers is counted and compared
with the expected number of outliers.8 The results of these tests are presented
in Tables 35.1 and 35.2.

The same tests were also performed for moving averages. The time window
consists of 250 days (one year). The number of time series values lying outside
of the confidence interval (outliers) is given for the uniformlyweightedmoving
average (MA) and for the exponentially weighted moving average (EWMA).
The weighting parameter for the EWMA is λ = 0.94. The values in
parentheses indicate the theoretically expected number of outliers. For the
1-day predictions, the GARCH forecast is always superior. For the 10-day
forecast, we observe mixed results: at 5% confidence, the GARCH process
underestimates the theoretical number of outliers by almost one half, at 1%
confidence, the number of outliers is very close to the theoretical value. The
converse holds for the EWMA. TheMA shows the worst performance. Fitting
a GARCH(1, 2) process leads to almost identical results.

8The forecast of the variance of the total return (for example, the 10-day total return) can be tested
analogously. The estimator var[∑10

i=1 X2500+i |X2500, . . . , X1] is computed according to 33.19. The
result is used to determine the confidence interval and then it is checked whether

∑10
i=1 X2500+i lies

within this confidence interval. The X2500+i are taken from the FTSE time series. Again, the number of
outliers is compared with the expected number of outliers.
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λ

Fig. 35.2 Number of outliers outside a 99% confidence interval as a function of λ for
a 10 day EWMA volatility forecast. The theoretical value is 67 outliers

Of all the investigated time series, the GARCH process is superior to all
others in making a 1-day forecast. For the 10-day forecasts, the evaluation is
not as uniform. For a similar fit to the S&P500 index over the same time
span as for the FTSE, the 10 day prediction is better at 5% confidence than
at 1%; the opposite to what we observed for the FTSE. For longer prediction
periods, it is therefore important to conduct a separate analysis for each time
series and repeat this regularly at certain times in order to asses the goodness
of the methods and identify changes as early as possible.

Figure 35.2 shows the number of outliers for the EWMA as a function of λ.
In this way, it can be established which λ is the best, based on the goodness
criterion of interest.

A further variant of analysis is the Kuiper statistic K . This statistic will
be illustrated using data taken from the S&P500 index over the same time
window as for the FTSE index in the above example (see Figs. 35.3 and 35.4).
Again, a GARCH(1, 1) process was fitted to the first 2,000 time series values
of the S&P500 returns, the last 934 were reserved for out-of-sample testing
of the forecasting. For MA and EWMA, the time window is again 250 days.
The Kuiper statistic K is least favorable for the GARCH process. However, in
the areas so important in risk management, namely to the far left and far right
of the distribution corresponding to small and large percentiles, respectively,
the GARCH process shows the best performance. The best results for the 1-
day forecasts are those from the GARCH model. The deviation in the middle
of the distribution indicates that the assumed conditional normal distribution
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F
(α

)

α

Fig. 35.3 F(α) as defined in Eq. 35.5 for GARCH (solid line), MA (dotted line)
and EWMA (dash-dotted line). The Kuiper statistics, Eq. 35.6, are K(GARCH)=0.093,
K(MA)=0.058, K(EWMA)=0.055 for λ = 0.8

F
(α

)

α

Fig. 35.4 F(α) as in Fig. 35.3. The only thing changed is that λ is now 0.94 for the
EWMA. The Kuiper statistic for this new EWMA is K(EWMA)=0.064 for λ = 0.94

does not properly reflect the skewness in the actual distribution of the returns.
For λ = 0.8, the value of K for the EWMA is the smallest but we observe
a “reverse” in the performance of the EWMA at the tails of the distribution:
here its performance is poorest. For λ = 0.94, the value of K is higher but the
fit at the tails is better, for example between 0 and 0.05, it is better than MA.

Finally, Fig. 35.5 shows daily standard deviations for the S&P500 data set
after the 400th day in the out-of-sample region (i.e., the region not used for
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Fig. 35.5 Daily standard deviations of the S&P500 returns fromGARCH (solid line), MA
(dotted line) and EWMA (dash-dotted line). The window for themoving averages spans
250 time series values. The EWMA damping factor is λ = 0.975

fitting the parameters of the GARCH model). The increasing smoothness in
the sequence GARCH, EWMA and MA is clear to see. In addition, we can
observe the “phantom patterns” for the EWMA and more pronouncedly for
the MA after the peak shortly before the 600th day.
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A
Probability and Statistics

The basics of probability and statistics are presented in this appendix, provid-
ing the reader with a reference source for the main body of this book without
interrupting the flow of argumentation there with unnecessary excursions.
Only the basic definitions and results have been included in this appendix.
More complicated concepts (such as stochastic processes, Ito Calculus, Gir-
sanov Theorem, etc.) are discussed directly in the main body of the book as
the need arises.

A.1 Probability, Expectation and Variance

A variable whose values is dependent on random events, is referred to as a
random variable or a random number. An example of a random variable is
the number observed when throwing a dice. The distribution of this random
number is an example of a discrete distribution. A random number is discretely
distributed if it can take on only discrete values such as whole numbers, for
instance. A random variable has a continuous distribution if it can assume
arbitrary values in some interval (which can by all means be the infinite interval
from −∞ to ∞). Intuitively, the values which can be assumed by the random
variable lie together densely, i.e., arbitrarily close to one another.

An example of a discrete distribution on the interval from 0 to ∞ (“infin-
ity”) might be a random variable which could take on the values 0.00, 0.01,
0.02, 0.03, …, 99.98, 99.99, 100.00, 100.01, 100.02, …, etc., like a Bund
future with a tick-size of 0.01% corresponding to a value change of 10 euros

© The Author(s) 2019
H.-P. Deutsch, M. W. Beinker, Derivatives and Internal Models, Finance and Capital
Markets Series, https://doi.org/10.1007/978-3-030-22899-6
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per tick on a nominal of 100,000 euros. In contrast, a continuously distributed
random variable can take on arbitrary values in the pertinent interval, for
example,

√
5, π or 7/3.

The probability P(x < a) that a random variable x will be less than some
arbitrary number a is the sum of the probabilities of all events in which x takes
on values less than a. For continuous distributions, for which the possible
values of x lie “infinitely dense” in some interval, the sum takes on the form
of an integral:

P(x < a) =
∑

i where xi<a

p(xi) −→
∫ a

−∞
p(x)dx . (A.1)

The function p is called the probability density of the random variable x. It is
often referred to as the probability distribution, distribution density or simply the
distribution. In this text, the abbreviation pdf for probability density function
will frequently be used in reference to the function p.

The function P is called the cumulative probability. It is often referred to as
the cumulative probability distribution or simply cumulative distribution as well.
We will frequently use the abbreviation cpf for cumulative probability function
in reference to P .

It is certain that a random number will take on some value. The probability
of something at all happening is thus equal to one. This property is called the
normalization to one and holds for all probability distributions:

1 =
∑

i

p(xi) −→
∫ ∞

−∞
p(x)dx = 1 . (A.2)

The expectation of x is computed by taking the weighted sum of all possible
values taken on by the random variable where the weights are the correspond-
ing probabilities belonging to those values

E [x] =
∑

i

xip(xi) −→
∫ ∞

−∞
xp(x)dx . (A.3)

A function f of a random variable x is again a random variable. The
expectation of this function is calculated analogously by taking the weighted
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sum of the values of the function f (x) evaluated at all possible values of x.
The weights are again the probabilities belonging to the values of x:

E [f (x)] =
∑

i

f (xi)p(xi) −→
∫ ∞

−∞
f (x)p(x)dx . (A.4)

A special case is particularly interesting: setting f (x) equal to the square of
the deviation of x from its expected value, i.e., f (x) = (x −E[x])2, measures
how strongly x fluctuates around its expected value. This measure is called the
variance.

var [x] = E
[
(x − E [x])2

]
=

∑

i

(xi − E [x])2 p(xi) −→
∫ ∞

−∞
(x − E [x])2 p(x)dx .

(A.5)

The square root of the variance is called the standard deviation, abbreviated as
std.

std [x] := √
var [x] =

√
E
[
(x − E [x])2

]
. (A.6)

For both discrete and continuous distributions, there exists a simple connec-
tion between the variance and the expectation: the variance is equal to the
difference between the expectation of the square of the random variable and the
square of the expectation of the same random variable:

var [x] = E
[
x2] − E [x]2 . (A.7)

The derivation is presented here for discrete distributions; the proof for the
continuous case is completely analogous:

E
[
(x − E [x])2

] =
∑

i

(xi − E [x])2 p(xi)

=
∑

i

x2
i p(xi)

︸ ︷︷ ︸
E[x2]

− 2E [x]
∑

i

xip(xi)

︸ ︷︷ ︸
E[x]

+ E [x]2
∑

i

p(xi)

︸ ︷︷ ︸
1

= E
[
x2] − 2E [x]2 + E [x]2 = E

[
x2] − E [x]2 .
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A.2 Multivariate Distributions, Covariance,
Correlation and Beta

Two random variables x and y which are not statistically independent (for
example, the price of a Siemens share and the DAX) are said to be correlated.
The probability P(x < a, y < b) that a random variable x will be less than
some value a and simultaneously that the second random variable y will be less
than a value b equals the sum of the probabilities of all events in which x < a

and y < b. For continuous distributions, i.e., for “infinitely dense” values of
the random variables, the sums converge to integrals:

P(x < a, y < b) =
∑

xi<a

∑

yj <b

p(xi, yj ) −→
∫ a

−∞
dx

∫ b

−∞
dyp(x, y) .

(A.8)

The function p is in this case the joint probability density for a pair of random
variables x and y. Since such density functions refer to more than one (in this
case two) random variables, they are referred to asmultivariate probability den-
sities or multivariate probability distributions, multivariate distribution densities
or simply multivariate distributions.

Just as for a single random variable, the expectation of an arbitrary function
f (x, y) is calculated by taking the weighted sum of the values of the function
f (x, y) evaluated at all possible values of x and y. The weights are the joint
probabilities belonging to the value pairs of (x, y):

E [f (x, y)] =
∑

i

∑

j

p(xi, yj )f (xi, yj ) −→
∫ ∞

−∞
dx

∫ ∞

−∞
dy p(x, y)f (x, y) .

(A.9)

A special case is particularly interesting: setting the arbitrary function f (x, y)

equal to the product of the deviation of the random variables from their
respective expectations, i.e., f (x, y) = (x−E[x])(y−E[y]), yields a measure
for the fluctuation of each random variable from its expectation as well as the
degree of statistical dependence between the two random variables; or in other
words, ameasure for the variance as well as for the correlation. This expectation
is called the covariance between x and y.
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cov [x, y] = E [(x − E [x]) (y − E [y])] (A.10)

=
∑

i,j

(xi − E [x])
(
yj − E [y]

)
p(xi, yj )

−→
∫ ∫

dxdyp(x, y) (x − E [x]) (x − E [x]) .

For both discrete and continuous distributions, there exists a natural extension
(which is just as easily shown) of the relation in Eq. A.7 between the variance
and the expectations: the covariance is the difference between the expectation
of the product and the product of the expectations of the random variables
under consideration:

cov [x, y] = E [xy] − E [x]E [y] . (A.11)

The symmetry property of the covariance can be seen immediately from this
equation; the covariance of x with y is the same as the covariance of y with x.
The covariance of a random variable with itself is its variance.

cov [x, y] = cov [y, x] , cov[x, x] = var [x] . (A.12)

The covariance has an additional useful property, it is bilinear: let a, b, c, d

be constants and x, y, u, z random variables. Then

cov[ax + by, cu + dz] = ac cov[x, u] + ad cov[x, z] (A.13)

+ bc cov[y, u] + bd cov[y, z] .

As often mention in the main body of this book, the covariances between n

random variables can be represented in the form of an n by n matrix, called
the covariance matrix. Because of the symmetry in Eq. A.12, the information
in the matrix entries appearing above the diagonal is the same as that below
the diagonal; the entries in the diagonal itself are the variances of each of the n

respective variables.
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Dividing the covariance by the standard deviations of the two respective
random variables yields the correlation coefficient ρ, also called the correlation
between x and y. This value always lies between −1 and +1:

ρ(x, y) := cov [x, y]√
Var[x] Var[y] = E [xy] − E [x]E [y]

√
(E

[
x2

] − E [x]2)(E
[
y2

] − E [y]2)

.

(A.14)

The symmetry property of the correlation can be seen immediately from this
equation: The correlation of x with y is the same as the correlation of y with x.
The correlation of a random variable with itself equals one.

ρ(x, y) = ρ(y, x) , ρ(x, x) = 1 . (A.15)

Two random numbers x1 and x2 are called uncorrelated if the correlation
between the two is zero, i.e., if

ρ(xi, xj ) = δij =
{

1 for i = j

0 for i �= j
mit i, j ∈ {1, 2} , (A.16)

where δij denotes the well known Kronecker delta.
The variance of a sum of random variables is just the sum of the covariances

of these random variables (in a similar ways as the expectation of a sum equals
the sum of the expectations):

E

[
∑

i

xi

]

=
∑

i

E [x]

Var

[
∑

i

xi

]

=
∑

i,j

cov[xi, xj ] =
∑

i,j

ρ
(
xi, xj

)√
var[xi] Var[xj ] .

(A.17)

The first of these equations, i.e., the linearity of the expectation, follows
directly from the definition, Eq. A.3. This linearity of the expectation is the
only thing needed to show the second equation, i.e., the equation for the
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variance of a sum:

var

[
∑

i

xi

]

= E

⎡

⎢
⎣

⎛

⎝
∑

i

xi − E

⎡

⎣
∑

j

xj

⎤

⎦

⎞

⎠

2
⎤

⎥
⎦ = E

⎡

⎢
⎣

⎛

⎝
∑

i

xi −
∑

j

E
[
xj

]
⎞

⎠

2
⎤

⎥
⎦

= E

⎡

⎣

(
∑

i

(xi − E [xi])

)2
⎤

⎦ = E

⎡

⎣
∑

i,j

(xi − E [xi])
(
xj − E

[
xj

])
⎤

⎦

=
∑

i,j

E
[
(xi − E [xi])

(
xj − E

[
xj

])] =
∑

i,j

cov[xi, xj ] .

The first step is just the definition of the variance, Eq. A.5. The linearity of
the expectation is used in the second step for the inner expectation and in the
fifth step for the outer expectation.

A direct application of Eq. A.17 is the fact that the variance of a sum of
uncorrelated random numbers (see Eq. A.16) is just the sum of the individual
variances:

var

[
∑

i

xi

]

=
∑

i,j

ρ
(
xi, xj

)

︸ ︷︷ ︸
δij

√
var[xi] var[xj ] =

∑

i

var[xi] . (A.18)

Thus, the standard deviation, Eq. A.6, of such a sum of uncorrelated random
numbers is obtained by adding the squares of each individual standard
deviation and then taking the square root of this sum:

std

[
∑

i

xi

]

=
√∑

i

var[xi] =
√∑

i

std[xi]2 . (A.19)
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Besides the above two symmetric quantities (covariance and correlation), a
further asymmetric quantity is quite useful as well. This is the beta of y with
respect to x defined as the covariance of x and y divided by the variance of x:

β(x, y) = cov[x, y]
var[y] =

√
var[x]
var[y]ρ (x, y) = E [xy] − E [x]E [y]

E
[
y2

] − E [y]2 .

(A.20)

A symmetry property can be seen immediately in this definition: the beta of a
random variable with itself is indeed equal to one, the beta of x with respect to
y is however not the same as the beta of y with respect to x. The conversion
can be accomplished as follows:

β(y, x) = var[y]
var[x]β(x, y) , β(x, x) = 1 . (A.21)

Note that all of the above equations (in particular the very useful Eq. A.17
and the properties A.18 and A.19 of uncorrelated variables) have been derived
directly from first principles and are therefore valid no matter what probability
distribution the random variables may have.

A.3 Moments and Characteristic Functions

The expectation and the variance are examples of themoments of a distribution.
In general, the n-th moment of the distribution of the random variable x is
defined as the expectation of the nth power of the random variable:

E
[
xn

] =
∑

i

xn
i p(xi) −→

∫ ∞

−∞
xnp(x)dx . (A.22)

The central moments μi of a distribution are defined as the “expectation of the
powers of the difference between a random variable and its expectation”:

μj := E[(x − E[x])j ] . (A.23)

The first central moment (j = 1) is thus by definition equal to zero. The
expectation of x is the first moment, the variance the second central moment
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of the distribution. With the third central moment E[(x − E[x])3] we can
calculate the skewness, a measure for the asymmetry of the density. With the
fourth central moment E[(x − E[x])4]we can calculate the curtosis, a measure
for the weight of the distribution at the tail ends of its range. The exact
definitions of the skewness and curtosis are

Skewness := μ3√
μ3

2

= E[(x − E[x])3]
E[(x − E[x])2]3/2

Curtosis := μ4

μ2
2

= E[(x − E[x])4]
E[(x − E[x])2]2

. (A.24)

A.3.1 Moment Generating Functions

The moment generating function is a very useful tool for the explicit com-
putation of moments. The moment generating function (in short MGF ) of a
random variable x with density function pdf(x) is defined as the expectation
of esx for an arbitrary real value s

Gx(s) = E[esx] =
∫ ∞

−∞
esx pdf(x)dx , (A.25)

if this integral exists. This corresponds to the Laplace transformation of the
pdf. Expanding the exponential function esx in its Taylor series, we see that
the coefficient of sn is determined by the nth moment of the distribution:

Gx(s) =
∫ ∞

−∞

∞∑

n=0

1

n! snxn

︸ ︷︷ ︸
esx

pdf(x)dx

=
∞∑

n=0

sn

n!
∫ ∞

−∞
xn pdf(x)dx

=
∞∑

n=0

sn

n!E[xn] . (A.26)
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Differentiating the moment generating function with respect to s at the point
s = 0 yields all moments of the distribution (and thus the name):

∂nGx(s)

∂sn

∣
∣∣∣
s=0

= E[xn] . (A.27)

This extraordinarily useful fact can be shown as follows:

∂nGx(s)

∂sn

∣∣∣
∣
s=0

= ∂n

∂sn

∞∑

i=0

1

i!s
iE[xi]

∣∣
∣∣∣
s=0

= 1

i!
∂n−1

∂sn−1

∞∑

i=0

E[xi]∂si

∂s

∣∣
∣∣∣
s=0

= 1

i!
∂n−1

∂sn−1

∞∑

i=1

E[xi]i si−1

∣∣∣
∣∣
s=0

= 1

i!
∂n−2

∂sn−2

∞∑

i=2

E[xi]i(i − 1) si−2

∣
∣∣∣
∣
s=0

= · · ·

= 1

i!
∞∑

i=n

E[xi]i(i − 1) · · · (i − n + 1)si−n

∣
∣∣∣
∣
s=0

.

Notice that the lower limit in the sum increases by one each time a derivative
is taken. The first term of the sum is always independent of the differentiating
variable. For i = 0, for example, ∂si/∂s = ∂s0/∂s = ∂1/∂s = 0, and so on.
In the last step, all derivatives have been performed. The expression can now
be evaluated at s = 0. Naturally, si−n = 0 for s = 0 and i > n. Thus, only
the first summand where i = n makes a contribution to the sum since in this
term we have si−n = s0 = 1. Setting i = n in this term immediately yields
Eq. A.27.

The central moments defined in Eq. A.23 can likewise be calculated using
the moment generating function: If a random number x has a distribution
pdf(x) with expectation μ = E[x], then the moments of the random number
x̃ := x−μ are exactly equal to the central moments of x. But for the moments
of x̃ we can use the MGF of the distribution of x̃.
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Gx̃(s) =
∫ ∞

−∞
esx̃ pdf(x̃)dx̃ =

∫ ∞

−∞
esx̃ pdf(x)dx̃

=
∫ ∞

−∞
es(x−μ) pdf(x)dx = e−sμ

∫ ∞

−∞
esx pdf(x)dx .

The first step is just definition A.25. For the second step we made use of the
fact that if the difference between two random numbers is just a constant they
must have the same distribution.1 In the third step we used that x̃ = x − μ

means for the differentials dx̃ = dx. Thus the MGF for the central moments
is simply e−sμ times the MGF for the (ordinary) moments where μ denotes
the first (ordinary) moment:

Gx−μ(s) = e−sμGx(s) . (A.28)

With this MGF the central moments defined in Eq. A.23 can be calculated
completely analogously to Eq. A.27:

E[(x − E[x])n] = ∂n

∂sn
exp (−sE[x])Gx(s)

∣∣
∣∣
s=0

. (A.29)

The general procedure for calculating central moments is thus: first calculate
the expectation using Eq. A.27. Then insert the result into Eq. A.29 for the
central moments.

For many distributions an explicit analytical expression for the MGF
can be obtained using the integral representation in Eq. A.25. This will be
demonstrated below for several important distributions.Having obtained such
an expression, the moments can be calculated by simply differentiating this
function as indicated in Eq. A.27.

TheMGF has another very useful property: If two random variables x and y

are independent then

Gx+y(s) = Gx(s)Gy(s) . (A.30)

The distribution of a sum of independent random variables is generally very
difficult to determine, even when the distributions of the individual random

1This is trivial: if x̃ = x − μ then the probability for x̃ < a − μ is of course the same as the probability
for x < a.
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variables in the sum are known.2 The MGF of such a sum, in contrast, can
be calculated quite easily by taking the product of the MGFs of each of the
distributions! This is the most useful property of the moment generating
function. In Eq. A.30, each of the random variables in the sum can by all
means be governed by completely different distributions. The only condition
which needs to be satisfied for Eq. A.30 to hold is the statistical independence
of the random variables under consideration. Equation A.30 is quite simple to
prove:

Gx+y(s) ≡ E[es(x+s)] = E[esxesy] = E[esx]E[esy] = Gx(s) GY (s) .

This is a consequence of the fact that E[f (x)g(y)] = E[f (x)]E[g(y)] holds
for arbitrary functions f , g of independent random variables x, y.

A further property of the MGF in connection with Eq. A.30 is that for all
non-stochastic values a, b and random variables x we have

Gax+b(s) = esbGx(as) . (A.31)

The proof of this result is also quite simple:

Gax+b(s) = E[es(ax+b)] = ebsE[e(as)x] = esbGx(as) .

We have already encountered a special case of this in Eq. A.28.

A.3.2 Characteristic Functions

Similar to the moment generating function, the characteristic function of a
random variable x with probability density function pdf(x) is defined as the
expectation of eisx for an arbitrary real value s

�x(s) := E[eisx] =
∫ ∞

−∞
eisx pdf(x)dx . (A.32)

Here, i denotes the imaginary number i = √−1. This is just the Fourier
transformation of the pdf.

2Only in a few special cases, for example when each of the random variables is normally distributed, can
the distribution of the sum be easily specified.
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The Fourier transformation of the cpf, the cumulative distribution function,
is sometimes used as well. The results derived below hold for these functions
as well. Thus, we will formulate the characteristic function more generally by
writing

�x(s) =
∫ ∞

−∞
eisxf (x)dx ,

where the function f can be taken to be either f (x) = pdf(x) or f (x) =
cpf(x).

The advantage of the characteristic function is that its inverse function, the
inverse Fourier transformation always exists:

f (x) = 1

2π

∫ ∞

−∞
e−isx�x(s)ds . (A.33)

Thus, if �x is known, then the distribution (pdf or cpf) can be computed
directly (and not only its moments as was the case with the moment generating
function). The validity of Eq. A.33 can be shown quite easily:

1

2π

∫ ∞

−∞
e−isx�x(s)ds = 1

2π

∫ ∞

−∞
e−isx

∫ ∞

−∞
eisx′

f (x ′)dx ′ds

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
e−is(x−x′)f (x ′)dx ′ds

=
∫ ∞

−∞
δ(x − x ′)f (x ′)dx ′

= f (x) ,

where the Dirac delta function was used in the above derivation:

δ(x − x
′
) = 1

2π

∫ ∞

−∞
e−is(x−x

′
)ds .

This is not a function in the strict sense but a so-called distribution with the
defining property

∫ ∞

−∞
δ(x − x ′)f (x ′)dx ′ := f (x) .
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It is precisely this property of the delta function that yields the invertibility of
the Fourier transformation.

Analogously to the moment generating function, Eq. A.30 holds for the
characteristic function as well, i.e.,

�x+y(s) = �x(s)�Y (s) (A.34)

for independent random variables x and y. Likewise, for non-stochastic
values a, b and a random variable x

�ax+b(s) = eibs�x(as) (A.35)

holds. The proof is completely analogous to that of Eq. A.31

A.4 A Collection of Important Distributions

A.4.1 The Uniform Distribution

The simplest of all distributions is the uniform distribution. This distribution
has both a continuous and a discrete version. A random variable is said to be
uniformly distributed if its distribution density is constant. The normalizing
equation A.2 implies immediately that the distribution density for a discrete
random variable with n possible outcomes (or for a continuously distributed
random variable taking on values in an interval [a, b]) is given by:

1 =
n∑

i=1

p(xi)︸ ︷︷ ︸
constant

= np �⇒ p = 1

n

1 =
∫ ∞

−∞
p(x)︸︷︷︸
constant

dx = p

∫ b

a

dx = p(b − a) �⇒ p = 1

b − a
.

(A.36)
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The expectation and the variance of the continuous form of the uniform
distribution are

E[x] =
∫ ∞

−∞
xp(x)dx = 1

b − a

∫ b

a

xdx = 1

b − a

b2 − a2

2
= a + b

2

var[x] =
∫ ∞

−∞
(x − E [x])2 p(x)dx = 1

b − a

∫ b

a

(
x − a + b

2

)2

dx = (b − a)2

12
.

(A.37)

Most random number generators generate uniformly distributed random
numbers between 0 and 1. For a = 0 and b = 1, the expectation and the
variance of the uniform distribution is given by 1/2 and 1/12, respectively.

The moment generating function of the uniform distribution is by defini-
tion A.25

Gx(s) ≡
∫ ∞

−∞
esxp(x)dx = 1

b − a

∫ b

a

esxdx = 1

b − a

[
1

s
esx

]x=b

x=a

,

Thus

Gx(s) = ebs − eas

s(b − a)
. (A.38)

Naive differentiation of Gx with respect to s does not lead us directly to the
desired result since the factor s appears in the denominator forbidding us
from setting s = 0. The function can, however, be written in such a way
that it is well defined for this value since as s approaches zero the numerator
converges towards zero faster than the denominator (since the exponential
function converges towards 1 faster than s converges to zero). This can be
seen by expanding the exponential function in its Taylor series as in Eq. A.38:

1

s
ebs = 1

s

∞∑

n=0

1

n! bnsn =
∞∑

n=0

1

n! bnsn−1 = 1

s
+

∞∑

i=0

bi+1

(i + 1)

si

i!
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and analogously for eas/s. Taking the difference of these two expressions, the
1/s term disappears and we are left with an equivalent form of the MGF in
Eq. A.38. This is given by

Gx(s) =
∞∑

n=0

sn

n!
bn+1 − an+1

(n + 1)(b − a)
.

Comparison of the coefficients of sn with Eq. A.26 yields all of the moments
immediately

E[xn] = bn+1 − an+1

(n + 1)(b − a)
.

For example, the first moment (n = 1) is simply

E[x] = b2 − a2

2(b − a)
= (b − a)(b + a)

2(b − a)
= b + a

2

which agrees with the result in Eq. A.37.
The characteristic function, A.32, of the continuous uniform distribution

function is given by

�x(s) ≡
∫ ∞

−∞
eisx 1

b − a
dx = eibs − eias

is(b − a)
. (A.39)

This equation can be found in every table of Fourier-transformed functions
since it is just the Fourier transform of a constant. Note that the characteristic
function can also be found by replacing s with is in the moment generating
function Eq. A.38.

A.4.2 The Binomial Distribution and the Bernoulli
Experiment

Suppose that an experiment has only two possible outcomes (for example,
heads or tails when tossing a coin or up or down in one time step of a binomial
model) and the probability of one of the two outcomes (for example, “heads”
or “up”) of the experiment is p. Then the normalizing equation A.2 implies
that the probability of the alternate outcome (“tails” or “down”) is 1 − p. In
mathematics, such an experiment is referred to as a Bernoulli experiment.
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Ifp is independent of the number of experimental trials then the probability
of the observing exactly j outcomes associated with the probabilityp in n trials
is given by the binomial distribution.

pn(j) =
(

n

j

)
pj(1 − p)n−j . (A.40)

Obviously, this is a discrete distribution taking on n + 1 possible values. The
termpj(1−p)n−j is the probability that the result of the nBernoulli trials will
occur in a certain order, for instance, up, up, down, up, down, down, etc., with
precisely j “ups”. However, since the number of “up” terms does not depend
on the order in which they appear, this probability must be multiplied by the
number of all permutations having j “ups”. The number of these permutations
is given by the binomial coefficient3:

(
n

j

)
:= n!

j !(n − j)! = 1 × 2 × · · · × n

(1 × 2 × · · · × j)(1 × 2 × · · · × n − j)
.

(A.41)

This is a result from the theory of combinations which has long been known.
The probability that “up” will be observed at least k times is naturally the

sum from k to n of the density defined in Eq. A.40. This yields precisely the
binomial probability arising in the recombinant binomial trees for European
options:

Bn,p(j ≥ k) =
n∑

j=k

(
n

j

)
pj(1 − p)n−j . (A.42)

The moment generating function of the binomial distribution is, by the
definition in Eq. A.25,

GBn,p
(s) ≡ E

[
esx

] =
n∑

j=0

esjpn(j) =
n∑

j=0

esj

(
n

j

)
pj(1 − p)n−j

=
n∑

j=0

(
n

j

)
[
pes

]j
[1 − p]n−j .

3This reads “n choose j” or “n over j”.
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Note that this is precisely the function appearing in the binomial formula for
the nth power of a sum (a + b)n where a = pes and b = 1 − p. Thus the
moment generating function of the binomial distribution is simply

GBn,p
(s) = (

pes + 1 − p
)n

. (A.43)

According to Eq. A.27 all of the moments can now be calculated directly by
differentiating the MGF with respect to s. Doing so yields, for example, the
expectation as

E[j ] = ∂GBn,p (s)

∂s

∣∣∣∣
s=0

= n
(
pes + 1 − p

)n−1
pes

∣∣∣
s=0

= np .

The second moment can be computed analogously:

E[j2] = ∂2GBn,p (s)

∂s2

∣
∣∣∣
∣
s=0

= np
∂

∂s

(
pes + 1 − p

)n−1
es

∣∣∣∣
s=0

= np (n − 1)
(
pes + 1 − p

)n−2
peses

∣
∣∣
s=0

+ np
(
pes + 1 − p

)n−1
es
∣
∣∣
s=0

= n(n − 1)p2 + np .

Thus, according to Eq. A.7, the second central moment, the variance of the
binomial distribution, becomes

Var [j ] = E[j2] − (E[j ])2 = np(1 − p) .

Summarizing, the expectation and variance of the binomial distribution are
given by

E [j ] ≡
n∑

j=0

(
n

j

)
pj(1 − p)n−j j = np

Var [j ] ≡
n∑

j=0

(
n

j

)
pj(1 − p)n−j (j − np)2 = np(1 − p) . (A.44)
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Analogously to Eq. A.43, the characteristic function of the binomial distribu-
tion, can be found from Eq. A.32 to be

�Bn,p
(s) = (

peis + 1 − p
)n

. (A.45)

A.4.3 The Normal Distribution and the Central Limit
Theorem

It is well known that the sum of random variables is itself a random variable.
One of the most important theorems of mathematical statistics, the central
limit theorem, makes a broad statement on the sum of random variables. The
intuitive content of this theorem can be expressed as follow:

Central Limit

The sum of a large number of independent random variables is approximately
normally distributed, regardless of how the individual random variables are
distributed, if the contribution of each random variable to the sum is almost
negligible.

This theorem is the reason for the extraordinary importance of the normal
distribution above all others. For instances, themean of some random variables
is defined as the sum of these random variables divided by the number of
variables. Thus, such means are always approximately normally distributed
according to the central limit theorem, regardless of the distribution of the
random variables. The fact that such sums are often not normally distributed
can only mean that the assumptions in the statement of the theorem are
not satisfied. Either the measured variables are not (purely) random vari-
ables and/or they are not completely independent (uncorrelated). The most
common reason, however, is an insufficient number of available trial results.
Because only in the limit, i.e., for an infinite number of random variables, does
the central limit theorem hold exactly and not merely as an approximation
(hence the name central limit theorem).

The normal distribution, also called Gaussian distribution, is a continuous
distributionwhich is completely determined by two parameters (denoted byμ

and σ ). The density has the explicit form

p(x) = 1√
2πσ 2

e
− (x−μ)2

2σ2 . (A.46)
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The expectation and the variance of the normal distribution according to the
definition in Eq. A.4 and Eq. A.5 are given by

E[x] = 1√
2πσ 2

∫ ∞

−∞
xe

− (x−μ)2

2σ2 dx = μ

var[x] = 1√
2πσ 2

∫ ∞

−∞
(x − μ)2e

− (x−μ)2

2σ2 dx = σ 2 . (A.47)

Hence, the two parameters μ and σ are equal to the expectation and the
standard deviation of the distribution, respectively. This is quite practical,
since through observing the results of random trials x, the expectation and
the variance can be approximated by measuring the mean of x and x2 and
applying Eq. A.7, thus obtaining an approximation of the entire distribution.
The density of the distribution can be written as

p(x) = 1
√

2πE
[
(x − E [x])2

] exp

{

−1

2

(x − E [x])2

E
[
(x − E [x])2]

}

. (A.48)

The ratio of the square of the deviation of the random variable from its
expectation to the expectation of this same factor appears in the argument of
the exponential function.

The probability P(x ≤ a) of the event that a random variable+x,
distributed according to Eq. A.46 with parameter values μ and+σ , will be less
than or equal to a given value a is the cumulative probability cpf of the normal
distribution evaluated at a, frequently denoted by Nμ,σ (a). Thus, according
to Eq. A.1 we have

Nμ,σ (a) = cpf(a) = 1√
2πσ 2

∫ a

−∞
e
− (x−μ)2

2σ2 dx . (A.49)

The following notation is also often used to express the fact that a random
variable x is normally distributed with expectation μ and variance σ 2

x ∼ N(μ, σ 2) . (A.50)
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The reader should be careful not to confuse this expression with that for the
cumulative distribution function Nμ,σ (a) in Eq. A.49.

The integral in the definition of the cumulative normal distribution cannot
be calculated as a closed form expression. But through a simple change of
variable

y = x − μ

σ
�⇒ dx = σdy (A.51)

y(x = −∞) = −∞ , y(x = a) = a − μ

σ

the normal distribution can be transformed into the standard normal distri-
bution. This is the normal distribution with expectation 0 and variance 1, i.e.,
with the density function

p(y) = 1√
2π

e− y2

2 . (A.52)

In the notation introduced in Eq. A.50 we write

y ∼ N(0, 1) .

Random variables which are standard normally distributed with density
function A.52 form the basis of many random walk models applied in this
book. The probability P(x ≤ a) that a standard normally distributed random
variable x will be less than or equal to a given number a is called the cumulative
standard normal distribution N(a):

N(a) = 1√
2π

∫ a

−∞
e− x2

2 dx . (A.53)

This distribution appears for instance in the Black-Scholes formula. The
density Eq. A.52 of the standard normal distribution is symmetric about zero
and thus p(x) = p(−x). From this we derive a very useful symmetry relation
holding for the standard normal distribution, namely

N(−a) = 1 − N(a) . (A.54)
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This symmetry is so important in practical applications that we will provide
the proof here. We first write

N(a) = 1√
2π

∫ a

−∞
e− x2

2 dx = 1√
2π

∫ ∞

−∞
e− x2

2 dx

︸ ︷︷ ︸
1

− 1√
2π

∫ ∞

a

e− x2
2 dx .

The first integral equals 1 because of Eq. A.2. In the second integral, we make
the substitution

u := −x ⇒ du = −dx

u(x = a) = −a , u(x = ∞) = −∞ ,

thus obtaining

N(a) = 1 + 1√
2π

∫ −∞

−a

e− x2
2 du = 1 − 1√

2π

∫ −a

−∞
e− x2

2 du

︸ ︷︷ ︸
N(−a)

,

which proves the symmetry relation in Eq. A.54.
The integral in Eq. A.53 cannot be computed explicitly. However, there

exist tables and numerical routines for the computation of the cumulative
standard normal distribution. A simple polynomial approximation, exact up
to six decimal places,4 is (see for example [1])

N(x) = 1 − 1√
2π

e− x2

2

5∑

i=1

aiy
i for x ≥ 0 (A.55)

4Depending on the circumstances, a more precise approximation might be necessary. E.g., the Black-
Scholes formula depends on the difference of two cumulative normal distributions. If both values differ
only slightly, the result may have an accuracy much less than these 6 digits. In such a case, a numerical
simulation can occasionally deliver more accurate results than the allegedly “analytical” Black Scholes
formula.
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where

y = 1

1 + 0.2316419 x

a1 = 0.319381530 , a2 = −0.356563782

a3 = 1.781477937 , a4 = −1.821255978

a5 = 1.330274429 .

This approximation holds only for non-negative values x ≥ 0. But the values
for x < 0 can simply be obtained by applying the symmetry relation A.54.

Calculations with the standard normal distribution are thus quite simple.
A frequently used method is therefore to transform normally distributed
random variables into standard normal random variables via a transformation
as in Eq. A.51. Then all necessary calculations are performed using tools like
Eqs. A.55 and A.54. Having completed the calculation, an inverse transfor-
mation can be performed to determine the original variables. For example, a
99% confidence interval for a standard normal distribution is

0, 99 = P(y ≤ a) = 1√
2π

∫ a

−∞
e− y2

2 dy ⇒ a ≈ 2, 326 .

This is the upper bound for the standard normally distributed random
variable y. Performing the inverse transformation back to the variable x

according to Eq. A.51 yields the boundary of the confidence interval for the
original random variable: the expectation plus 2.326 standard deviations.

The moment generating function of the standard normal distribution is, by
definition A.25

GN(0,1)(s) = E[esx] = 1√
2π

∫ ∞

−∞
esxe− x2

2 dx = 1√
2π

∫ ∞

−∞
exp

{
−x2 − 2sx

2

}
dx

= exp
(

1

2
s2
)

1√
2π

∫ ∞

−∞
exp

{
− (x − s)2

2

}
dx

︸ ︷︷ ︸
1

,

where we have used the method of completing the squares in the last step.5
The remaining integral is precisely the probability that a normally distributed

5x2 − 2sx = (x − s)2 − s2.
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random variable x ∼ N(s, 1) will take on any arbitrary value. Equation A.2
implies that this probability is 1. The moment generating function of the
standard normal distribution is thus simply

GN(0,1)(s) = exp

(
1

2
s2

)
. (A.56)

The moment generating function of the normal distribution with expecta-
tion μ and variance σ now follows immediately from the transformation A.51
with Eq. A.31

GN(μ,σ 2)(s) = eμsGN(0,1)(σ s) = exp

(
μs + 1

2
σ 2s2

)
. (A.57)

From this equation, all moments of a normal distribution can be calculated by
means of Eq. A.27. The central moments are given by Eq. A.29:

E[(x − E[x])n] = ∂n

∂sn
exp (−sμ) exp

(
μs + 1

2
σ 2s2

)∣∣∣∣
s=0

= ∂n

∂sn
exp

(
1

2
σ 2s2

)∣∣∣
∣
s=0

.

The second central moment, i.e., the variance is

E[(x − E[x])2] = ∂2

∂s2
eσ 2s2/2

∣
∣∣∣
s=0

= ∂

∂s
σ 2seσ 2s2/2

∣∣∣
∣
s=0

= σ 2eσ 2s2/2 + (
σ 2s

)2
eσ 2s2/2

∣∣∣
s=0

= (
1 + σ 2s2) σ 2eσ 2s2/2

∣∣∣
s=0

= σ 2 .
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Differentiating the result in the penultimate step yields the third central
moment

E[(x − E[x])3] = ∂3

∂s3
eσ 2s2/2

∣
∣∣∣
s=0

= ∂

∂s

(
1 + σ 2s2) σ 2eσ 2s2/2

∣∣
∣∣
s=0

= 2sσ 4eσ 2s2/2 + (
1 + σ 2s2) sσ 4eσ 2s2/2

∣∣∣
s=0

= (
3s + σ 2s3) σ 4eσ 2s2/2

∣∣
∣
s=0

= 0 .

Again, differentiating the result in the penultimate step yields the next (i.e.,
fourth) central moment

E[(x − E[x])4] = ∂4

∂s4
eσ 2s2/2

∣∣∣
∣
s=0

= ∂

∂s

(
3s + σ 2s3) σ 4eσ 2s2/2

∣
∣∣∣
s=0

= (
3 + 3σ 2s2) σ 4eσ 2s2/2 + (

3s + σ 2s3) σ 6seσ 2s2/2
∣∣
∣
s=0

= (
3 + 3σ 2s2 + 3σ 2s + σ 4s3

)
σ 4eσ 2s2/2

∣
∣∣
s=0

= 3σ 4 .

We summarize these results for reference:

E[x] = μ

E[(x − E[x])2] = σ 2 (A.58)

E[(x − E[x])4] = 3σ 4

E[(x − E[x])n] = 0 for all odd n .
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From these moments the skewness and the curtosis of the normal distribution
follow directly from their respective definitions, Eq. A.24:

kewness ≡ E[(x − E[x])3]
E[(x − E[x])2]3/2

= 0

urtosis ≡ E[(x − E[x])4]
E[(x − E[x])2]2

= 3 . (A.59)

The characteristic function A.32 of the standard normal density function can
be found by replacing s with is in Eq. A.56

�N(0,1) = exp

(
−1

2
s2

)
. (A.60)

The characteristic function of a normal distribution with expectation μ and
variance σ follows immediately from Eq. A.35

�N(μ,σ 2)(s) = eiμs�N(0,1)(σ s) = exp

(
iμs − 1

2
σ 2s2

)
. (A.61)

The Multivariate Normal Distribution

If two random variables xi, i = 1, 2 are both normally distributed with
expectation μi and covariance6

cov
[
xi, xj

] = σiρij σj ,

then their joint probability distribution, i.e., the probability that both random
numbers simultaneously will have certain values, is given by the bivariate
normal distribution with the density

p(x1, x2) =
exp

{
− 1

1−ρ2
12

1
2

∑
i,j=1,2

xi−μi

σi
ρij

xj −μj

σj

}

√
1 − ρ2

12

∏
i=1,2

√
2πσ 2

i

.

6This means that they have variances σ 2
1 and σ 2

2 and the correlation between the two is ρ12 (see Eq. A.14).
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With this density, the joint (cumulative) probability, as defined in Eq. A.8, for
x1 < a and x2 < b is

P(x1 < a, x2 < b) =
∫ a

−∞ dx1
∫ b

−∞ dx2 exp

{
− 1

1−ρ2
1,2

1
2

∑2
i,j=1

xi−μi

σi
ρij

xj −μj

σj

}

√
1 − ρ2

12

∏2
i=1

√
2πσ 2

i

.

If the two random variables are uncorrelated, i.e., if

ρij = δij =
{

1 for i = j

0 for i �= j
,

where δij denotes the Kronecker delta, then the joint distribution of the
variables is equal to the product of the distributions of each individual variable:

p(x1, x2) =
exp

{
− 1

1−0
1
2

∑
i,j=1,2

xi−μi

σi
δij

xj−μj

σj

}

√
1 − 0

∏
i=1,2

√
2πσ 2

i

=
exp

{
−1

2

∑
i=1,2

(
xi−μi

σi

)2
}

∏
i=1,2

√
2πσ 2

i

=
∏

i=1,2

1
√

2πσ 2
i

exp

{

−1

2

(
xi − μi

σi

)2
}

=
∏

i=1,2

p(xi) . (A.62)

If the joint probability density of two random variables x1 and x2 fulfills

p(x1, x2) = p(x1)p(x2) , (A.63)

then the two random variables are said to be independent. As we have just seen,
a necessary condition for independence is that the two variables are uncorre-
lated. However, this is generally not a sufficient condition, i.e., uncorrelated
random variables are not always independent. But—as we have just seen—in
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the special case of normally distributed random variables independence and
uncorrelation are equivalent.

A.4.4 The Lognormal Distribution

A random variable is lognormally distributed if its logarithm is normally
distributed. Since the lognormal distribution is defined through the normal
distribution, it is also continuous and completely determined by the two
parameters μ and σ . The precise definition of the lognormal distribution can
be stated as follows: let x be a lognormally distributed random variable with
parameters μ and σ . Then the probability Hμ,σ (a) that x will be less than a
given value a is equal to the cumulative distribution function of the normal
distribution, Eq. A.49, with the same parameters, evaluated at ln(a):

Hμ,σ (a) := Nμ,σ (ln(a)) = 1√
2πσ 2

∫ ln(a)

−∞
e
− (x−μ)2

2σ2 dx . (A.64)

The density function of the lognormal distribution can be derived from the
above definition. It has the explicit form

p(x) = 1√
2πσ 2

1

x
exp

{
−1

2

(ln(x) − μ)2

σ 2

}
. (A.65)

Note the factor 1/x. The density is thus not merely obtained by substituting
x with ln(x) in Eq. A.46. With this density function we can express Hμ,σ

explicitly as

Hμ,σ (a) = 1√
2πσ 2

∫ a

0
exp

{
−1

2

(ln(x) − μ)2

σ 2

}
1

x
dx . (A.66)

Note that the lower limit in the integral is zero. The range of such a
lognormally distributed random number lies only between zero and infinity.
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With the simple change in variable given by u = ln(x) we can immediately
verify that the cumulative distribution function Hμ,σ actually satisfies the
definition in Eq. A.64:

Hμ,σ (a) = 1√
2πσ 2

∫ a

0
exp

{
−1

2

(ln(x) − μ)2

σ 2

}
1

x
dx

= 1√
2πσ 2

∫ ln(a)

ln(0)=−∞
exp

{
−1

2

(u − μ)2

σ 2

}
du = Nμ,σ (ln(a)) ,

where u := ln(x) �⇒ du = 1

x
dx, x = eu .

The expectation and variance of the lognormal distribution can be calculated
using Eqs. A.4 and A.5 as

E[x] =
∫ ∞

0
xp(x)dx = 1√

2πσ 2

∫ ∞

0
e
− (ln(x)−μ)2

2σ2 dx = eμ+σ 2/2

var[x] =
∫ ∞

0
(x − E [x])2 p(x)dx = 1√

2πσ 2

∫ ∞

0
(x − eμ+σ 2/2)2 1

x
e
− (ln(x)−μ)2

2σ2 dx

= e2μ(e2σ 2 − eσ 2
) . (A.67)

In general, the moments of the lognormal distribution are given by

E[xn] = exp
(
nμ + n2σ 2/2

)
for n = 1, 2, . . . (A.68)

A.4.5 The Gamma Distribution

The gamma distribution is an important distribution because it encompasses a
whole class of different distributions (which includes the exponential distribu-
tion and the χ2-distribution, for example). Like the lognormal distribution,
the range of the gamma distribution consists solely of the non-negative real
numbers. A random variable x has a gamma distribution with parameters λ
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and t if it is governed by the following distribution density

pdf(x) = 1

�(t)
λtxt−1e−λx with λ > 0, t > 0 and x ∈ [0,∞[ ,

(A.69)

where �(t) denotes the gamma function. This function is defined by

�(t) =
∫ ∞

0
xt−1e−xdx (A.70)

A description of its properties can be found in any mathematical collection of
special mathematical functions (see for instance [1]). An important property
of the gamma function is the recursion

�(t + 1) = t �(t) . (A.71)

This allows the gamma function to be interpreted as a generalization of the
factorial operation. Two special function values which often serve as the initial
values in the above recursion relation are given by

�(1) = 1 , �(
1

2
) = √

π . (A.72)

It follows that the gamma function for whole numbers t is in fact nothing
other than the factorial:

�(n) = (n − 1)! for n = 1, 2, . . .

Furthermore, this function has a symmetry property which allows it to be
evaluated for negative values if the function evaluated at the corresponding
positive value is known:

�(−x) = − π

x sin(πx)

1

�(x)
.

From this symmetry relation, we see immediately that the gamma function
has a simple pole at each negative integer value of x. It is well defined for all
positive values. Fortunately, in our consideration of the gamma distribution,
Eq. A.69, our needs are restricted to the positive arguments of the gamma
function only.
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The explicit form of the moment generating function of the gamma
distribution can be calculated quite easily. Consider the definition A.25. Then
for the gamma distribution, we have

G�(t,λ)(s) = E[esx] = λt

�(t)

∫ ∞

0
xt−1e−(λ−s)xdx .

The integral appearing in this expression is quite similar to that in the
definition of the gamma function, Eq. A.70. We make the substitution

u := (λ − s)x �⇒ du = (λ − s)dx,

u(x = 0) = 0 , u(x = ∞) = ∞ for s < λ .

The condition s < λ is required in order for the upper limit of the integral to
remain equal to +∞. From Eq. A.27 we see that the s of interest are in a small
neighborhood of zero. Since λ in the distribution Eq. A.69 is strictly greater
than zero, the condition s < λ is no obstacle for our purposes here. A simple
substitution yields

G�(t,λ)(s) = λt

�(t)

∫ ∞

0

1

(λ − s)t−1
ut−1e−u 1

λ − s
du

= λt

�(t)

1

(λ − s)t

∫ ∞

0
ut−1e−udu

︸ ︷︷ ︸
�(t)

.

The moment generating function of the gamma distribution thus has the
following simple form:

G�(t,λ)(s) =
(

λ

λ − s

)t

mit λ > 0, t > 0, s < λ . (A.73)

Replacing s with is in Eq. A.73 yields the characteristic function given in
Eq. A.32 for the gamma distribution

��(t,λ)(s) =
(

λ

λ − is

)t

. (A.74)
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Allmoments can be obtained as indicated in Eq. A.27 directly by differentiating
the expression in Eq. A.73 with respect to s. For example, the expectation
becomes

E[x] = ∂G�(t,λ)(s)

∂s

∣
∣∣∣
s=0

= λt t
1

(λ − s)t+1

∣
∣∣∣
s=0

= t

λ
. (A.75)

The second moment is

E[x2] = ∂2G�(t,λ)(s)

∂s2

∣
∣∣∣
s=0

= λt t (t + 1)
1

(λ − s)t+2

∣
∣∣∣
s=0

= t (t + 1)

λ2
.

Proceeding analogously, all moments can be explicitly calculated for the
gamma distribution:

E[xn] = t (t + 1) · · · (t + n − 1)

λn
for n = 1, 2, . . . (A.76)

The variance is then

Var [x] = E[x2] − E[x]2 = t

λ2
. (A.77)

A.4.6 The χ2-Distribution

As was shown in Sect. A.4.3, a sum of normally distributed random variables
is itself normally distributed. A situation frequently encountered (for example,
in a value at risk computation or the determination of variances from historical
data) involves taking sums of the squares of random variables. If the random
variables whose squares are added have a standard normal distribution, the
distribution of the resulting random variable is easily determined: the sum of n
squared, independent, standard normally distributed random variables, xi, (i =
1, . . . , n) has a distribution known as the χ2-distribution with n degrees of
freedom

xi ∼ N(0, 1) , i = 1, . . . , n , xi iid �⇒
n∑

i=1

x2
i =: y ∼ χ2(n) .

(A.78)
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It is essential that the random variables xi in the above definition be indepen-
dent. The degree of freedom, n, of the χ2-distribution χ2(n) can be intuitively
thought of as the number of independent (standard normal) random variables
which “make up” the random variable with the χ2(n)-distribution; thus the
name “degree of freedom”.

It is often the case that the above sum is taken over only one single element.
If a random variable x has a standard normal distribution, then this random
variable squared is governed by the χ2-distribution with one degree of freedom.
We write

x ∼ N(0, 1) �⇒ x2 =: y ∼ χ2(1) . (A.79)

In fact, χ2(1) (or its non-central counterpart, see below) is sufficient for almost
all our needs if we are working with moment generating functions since via
Eqs. A.30 and A.31, the MGFs of sums of independent random variables can
be written as products of MGFs of χ2(1).

TheMGF also proves to be a helpful tool in calculating the density function
of the χ2-distribution. We first generalize the statement of the problem
somewhat, keeping in mind that our goal is to arrive at the MGF of χ2(1).

Suppose a random variable x is distributed according to some known
distribution whose distribution density we denote by pdfx . Then, for any
arbitrary function f , the random variable y = f (x) is distributed according
to another distribution function pdfy . This distribution is in general unknown
but from the construction it is immediately obvious that the probability for the
function f to assume a value y is just the probability of the original stochastic
variable to assume the value x = f −1(y) (for simplicity, we assume here that
f (·) is invertible):

pdfy(y) = pdfx(x = f −1(y)) . (A.80)

Let’s now look at the MGF. The MGF of the unknown distribution pdfy is
the expectation of a function g of y (specifically, g(y) = esy). According to
Eq. A.4, the expectation of a function g of y is given by

E [g(y)]pdfy
=

∫
g(y) pdfy(y)dy .
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Here, the expectation is computed with respect to the (unknown) distribution
pdfy (this fact is emphasized by the subscript in the expectation). Since y =
f (x), the function

g(y) = g(f (x)) = h(x) (A.81)

is also a function of x and therefore the expectation of h is according to Eq. A.4

E [h(x)]pdfx =
∫

h(x) pdfx(x)dx .

Here, the expectation is computed by means of the known distribution pdfx .
Computing the expectation of h(x) means integrating over all possible

values of x where each x is weighted with pdfx(x). Since by definition
y = f (x) this operation can also be viewed as integrating over all possible
values of y where each random number y = f (x) is weighted with the weight
pdfx(x = f −1(y)):

E [h(x)]pdfx =
∫

h(x) pdfx(x)dx

=
∫

h(x) pdfx(f
−1(y))dy .

But this weight is just the density pdfy(y), see Eq. A.80. We can therefore
write

E [h(x)]pdfx =
∫

h(x) pdfy(y)dy

=
∫

g(y) pdfy(y)dy ,

where we have used Eq. A.81 in the last step. The expression we have now
arrived at is simply the expectation of the function g with respect to the
distribution pdfy . In summary we thus have the quite general result

E [g(y)]pdfy
= E [g(f (x))]pdfx

for y = f (x) . (A.82)
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Choosing the function g(y) = esy , the left hand side becomes the MGF of
the unknown distribution pdfy

Gpdfy (s) = E[esy]pdfy =
∫

esy pdfy(y)dy

=
∫

esf (x) pdfx(x)dx = E[esf (x)]pdfx .

Thus, for every function f of a random variable x, the moment generating
function of the distribution of f (x) can be expressed through the expectation
with respect to the distribution of x:

Gpdff (x)
(s) = E[esf (x)]pdfx . (A.83)

For the χ2-distribution with one degree of freedom, we have f (x) = x2 and
obtain7 the moment generating function of χ2(1) as

Gχ2(1)(s) = E[esx2]N(0,1) = 1√
2π

∫ ∞

−∞
esx2

e−x2/2dx . (A.84)

This integral can be solved explicitly using the substitution

u = x
√

1 − 2s ⇒ dx = du√
1 − 2s

(A.85)

u(x = −∞) = −∞ for s < 1/2

u(x = +∞) = +∞ for s < 1/2 .

Note that the integration limits remain the same only for s < 1/2.

E[esx2]N(0,1) = 1√
2π

∫ ∞

−∞
e−(1−2s)x2/2dx

= 1√
1 − 2s

1√
2π

∫ ∞

−∞
e−u2/2du

︸ ︷︷ ︸
1

.

7With the notation: pdff (x) = pdfx2 = χ2(1), pdfx = N(0, 1).
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The remaining integral is the probability that a standard normal random
variable will assume any arbitrary value and, according to Eq. A.2, equals one.
Thus, the MGF is simply

Gχ2(1)(s) = 1√
1 − 2s

. (A.86)

Since the random variables in the sum appearing in definition A.78 are all
independent we can use Eq. A.30 to immediately obtain the MGF for a χ2-
distribution with n degrees of freedom

Gχ2(n)(s) = 1

(1 − 2s)n/2 for n = 1, 2, . . . (A.87)

The moments can be derived directly from Eq. A.27 by differentiating the
function in Eq. A.87 with respect to s or simply from Eq. A.76 with λ = 1/2
and t = n/2:

E[xk]χ2(n) = t (t + 1) · · · (t + k − 1)

λk

=
n
2(n

2 + 1) · · · (n
2 + k − 1)

(
1
2

)k

= 2k n

2
(
n

2
+ 1) · · · (n

2
+ k − 1)

= n(n + 2) · · · (n + 2(k − 1)) .

Therefore

E[xk]χ2(n) =
k−1∏

i=0

(n + 2i) . (A.88)

For example, the expectation and variance are given by

E[x]χ2(n) = n , var [x]χ2(n) = 2n .

From the definition in Eq. A.32, the characteristic function of the χ2-
distribution can be obtained by replacing s with is in Eq. A.87 or from
Eq. A.74 with λ = 1/2 and t = n/2.
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�χ2(n)(s) = 1

(1 − 2is)n/2 for n = 1, 2, . . . (A.89)

The Density of the χ2-Distribution with One Degree of Freedom

The MGF Eq. A.84 has been derived based on the general Transforma-
tion A.82. It is also possible to calculate the MGF without using Transforma-
tion A.82. This has the advantage that an explicit expression for the density of
the χ2-Distribution emerges.

So let y := x2 with x ∼ N(0, 1) as in Eq. A.79. Denote the desired density
of the χ2-Distribution with p and the Standard normal density with q .

p(y) := pdfχ2(1)(y)

q(x) := pdfN(0,1)(x) = 1√
2π

e−x/2 .

Then, the cumulative probability is
∫ a

−∞
p(y)dy = P(y < a)

= P(x2 < a)

= P(−√
a < x <

√
a)

= 2P(0 < x <
√

a)

= 2
∫ √

a

0
q(x)dx .

We now differentiate with respect to the upper integration limit a. The left
side becomes

∂

∂a

∫ a

−∞
p(y)dy = p(a)

And with the chain rule the right side reads

∂

∂a
2
∫ √

a

0
q(x)dx = 1

2
√

a
2q(

√
a) = q(

√
a)√
a

.
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Comparing both sides yields the relation between the normal and the χ2-
distribution

pdfχ2(1)(a) = 1√
a

pdfN(0,1)(
√

a) . (A.90)

Finally, inserting the standard normal density we arrive at the explicit form of
the χ2-distribution

pdfχ2(1)(a) = 1√
2πa

e−a/2 = 1
√

2πa exp(a)
. (A.91)

With Eq. A.90, the MGF Gl. A.84 can now be derived directly without
referring to the general Transformation A.82:

E[esy]χ2(1) =
∫ ∞

−∞
esy p(y)︸︷︷︸

=0 für y<0

dy

=
∫ ∞

0
esyp(y)dy

=
∫ ∞

0
esx2 pdfN(0,1)(

√
y)√

y
dy︸︷︷︸

=2xdx

=
∫ ∞

0
esx2 pdfN(0,1)(x)

x
2xdx

= 2
∫ ∞

0
esx2

pdfN(0,1)(x)dx

=
∫ ∞

−∞
esx2

pdfN(0,1)(x)dx

= E[esx2]N(0,1) .

Here we used Eq. A.90 for p(y) in the 3rd row and made the substitution
x = √

y in the 4th row.
An explicit expression for the density function of the χ2-distribution can

also be obtained by taking the following approach: if we succeed in trans-
forming Eq. A.84 into the form

∫
esxp(x)dx, this integral can be interpreted

as the expectation of esx taken with respect to the probability density p(x).
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This expectation is then by definition the MGF of p(x). On the other hand,
Eq. A.84 is the MGF of χ2(1)-distribution. Since two distribution are exactly
equal if they have the sameMGF8 we could then conclude thatp is the density
function of χ2(1). In this way, knowledge of p would give us an explicit
expression for the density function of χ2(1). We wish to take this approach
now.

First, we observe that in the integrand in Eq. A.84, x appears only in the
form x2, i.e., the integral is symmetric about zero; thus we can write

Gχ2(1)(s) = 2√
2π

∫ ∞

0
esx2

e−x2/2dx .

We then perform the following substitution in the integral

y := x2 �⇒ x = +√
y since x ≥ 0

y(x = 0) = 0 , y(x = ∞) = ∞
dy

dx
= 2x �⇒ dx = 1

2
√

y
dy

and obtain

Gχ2(1)(s) = 1√
2π

∫ ∞

0
esye−y/2 1√

y
dy

=
∫ ∞

0
esyp(y)dy = E[esy]p .

We have thus attained our goal. The MGF of χ2(1) is expressed as the
expectation of esy with respect to a density function p. This density is the
explicit expression for the density function of χ2(1)

pdfχ2(1)(x) = 1√
2π

e−x/2x−1/2 = 1√
2πxex

with x ∈ [0,∞[ ,

(A.92)

8The distribution is completely determined by the MGF. This implies that if two MGFs are equal then
they are the MGF of the same distribution.
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in complete agreement to Eq. A.91. The range of an χ2-distributed random
variable is thus restricted to the positive real numbers which makes sense since
it is the square of a standard normally distributed random variable. Comparing
this density to the density of the gamma distribution in Eq. A.69 shows that
χ2(1) is equal to the gamma distribution for the parameters λ = 1/2 and t =
1/2. This can also be seen immediately by comparing their moment generating
function in Eqs. A.86 and A.73; they are equal for λ = 1/2 and t = 1/2 and
thus the associated density functions must be the same for these parameter
values as well. Likewise, a comparison of the moment generating functions in
Eqs. A.87 and A.73 shows that the χ2-distribution with n degrees of freedom
equals the gamma distribution with parameters λ = 1/2 and t = n/2:

pdfχ2(n)(x) = 1

�(n/2)

(
1

2

)n/2

x
n
2 −1e−x/2 with x ∈ [0,∞[ , n = 1, 2, . . . .

(A.93)

Due to the recursion relation in Eq. A.71 with the initial values A.72, the
gamma functions appearing here can be given explicitly as:

�(n/2) =
{

(n/2 − 1)! for even values of n

(n/2 − 1)(n/2 − 2)(n/2 − 3) · · · (1/2)
√

π for odd values of n
.

The Non-central χ2-Distribution

The χ2-distribution described above is the distribution of a sum of n squared
independent standard normal random numbers xi, (i = 1, . . . , n). A slight
but often needed generalization of this is the situation in which the random
numbers xi have expectations μi �= 0. The distribution of a sum of n squared
random numbers of this type is called the non-central χ2-distribution with n

degrees of freedom and with non-central parameter θ , where θ denotes the sum
of the squared expectations μi :

xi ∼ N(μi, 1) , i = 1, . . . , n , xi iid

�⇒
n∑

i=1

x2
i =: y ∼ χ2(n, θ) with θ =

n∑

i=1

μ2
i . (A.94)
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The square of a single random number x ∼N(0, μ) thus has the non-central
χ2-distribution with one degree of freedom:

x ∼ N(μ, 1) �⇒ x2 =: y ∼ χ2(1, μ2) .

To determine the moment generating function of the non-central χ2-
distribution we again start from the general Eq. A.83:

Gχ2(1,μ2)(s) = E[esx2]N(μ,1)

= 1√
2π

∫ ∞

−∞
esx2

e−(x−μ)2/2dx = 1√
2π

∫ ∞

−∞
exp

{
sx2 − 1

2
(x − μ)2

}
dx .

The decisive step to calculate this integral is to complete the square in the
argument of the exp-function:

sx2 − 1

2
(x − μ)2 = −1

2

[
(1 − 2s)x2 − 2μx + μ2

]

= −1

2

[(√
1 − 2s x − 1√

1 − 2s
μ

)2

− 1

1 − 2s
μ2 + μ2

]

= −1

2

(√
1 − 2s x − 1√

1 − 2s
μ

)2

+ sμ2

1 − 2s
.

Thus, the expectation becomes

E[esx2]N(μ,1)

= exp

{
sμ2

1 − 2s

}
1√
2π

∫ ∞

−∞
exp

{

−1

2

(√
1 − 2s x − 1√

1 − 2s
μ

)2
}

dx

= 1√
1 − 2s

exp

{
sμ2

1 − 2s

}
1√
2π

∫ ∞

−∞
exp

{

−1

2

(
u − μ√

1 − 2s

)2
}

du

︸ ︷︷ ︸
1

,

where in the last step we have used the substitution A.85 (again with the
condition s < 1/2). The remaining integral is the probability that a normally
distributed random number with expectation μ/

√
1 − 2s will assume any

arbitrary value and, according to Eq. A.2, equals one. Thus, the MGF of the
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non-central χ2-distribution with one degree of freedom is

Gχ2(1,μ2)(s) = 1√
1 − 2s

exp

{
sμ2

1 − 2s

}
. (A.95)

Since the random variables in the sum appearing in the definition A.94 are
all independent we can use Eq. A.30 to immediately obtain the MGF for a
non-central χ2-distribution with n degrees of freedom:

Gχ2(n,θ)(s) = 1

(1 − 2s)n/2 exp

{
s θ

1 − 2s

}
with θ =

n∑

j=1

μ2
j .

(A.96)

The characteristic function, Eq. A.32, of the non-central χ2-distribution
follows again by replacing s by is in Eq. A.96.

�χ2(n,θ)(s) = 1

(1 − 2is)n/2 exp

{
is θ

1 − 2is

}
with θ =

n∑

j=1

μ2
j .

(A.97)

A.5 Transformations Between Distributions

It is possible to transform random variables with a certain distribution into
random variables which have another distribution. This is particularly useful,
for instance, when simulating random walks with the Monte Carlo method.
Most random number generators generate uniformly distributed random num-
bers. These can be transformed into random numbers distributed according
to a more suitable (for example, normal) distribution function. Two examples
of transformations into normally distributed random variables and one trans-
formation into random variables governed by any desired distribution will be
introduced below.

A.5.1 Summations

By directly applying the central limit theorem, a sufficient number of inde-
pendent, identically distributed, random variables are added to obtain an
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(approximately) normally distributed random variable:

zi iid, uniformly distributed between 0 and 1 ⇒
√

12

n

n∑

i=1

(zi − 1

2
) =: x ∼ N(0, 1) .

(A.98)

According to Eq. A.37, uniformly distributed random variables zi on [0, 1]
have an expectation of 1/2 and a variance of 1/12. The randomnumbers (Zi−
1/2) are uniformly distributed between −1/2 and +1/2, thus having zero
expectation. However, the variance of these variables remains 1/12. According
to Eq. A.18 the variance of the sum of these variables is

var

[
n∑

i=1

(zi − 1

2
)

]

=
n∑

i=1

var[(zi − 1

2
)] =

n∑

i=1

1

12
= n

12
.

Thus, this sum has zero expectation and a variance of n/12, or equivalently
a standard deviation of

√
n/12. Dividing the sum by the factor

√
12/n

compensates for this standard deviation. The resulting random variable x in
Eq. A.98 has a variance of 1 and is thus in consequence of the central limit
theorem (approximately) a standard normally distributed random variable.

n uniformly distributed iid random numbers are required in order to
generate a single, approximately normally distributed random variable. For
most applications, it is sufficient to take n = 12. Figures A.1 and A.2 show
the effect of the transformation for n = 12.

Note that the transformed random variables can only take on values between
−√

3n and+√
3n. Events lying more than

√
3n standard deviations from the

expectation will never occur when using this transformation. The probability
of such an event is so small, however, that it does not play a role in most
practical applications in finance. For example, for n = 12, the probability is
approximately 1 to half a billion:

1 − 1√
2π

∫ 6

−6
e−x2/2dx ≈ 1, 973210−9
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Fig. A.1 2000 iid random numbers uniformly distributed between −1/2 and +1/2

Fig. A.2 2000 approximately normally distributed random numbers, which have been
generation according to the transformation in Eq. A.98 with n = 12, based on 24, 000
random numbers equally distributed between −1/2 and 1/2 as in Fig. A.1
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A.5.2 Box-Muller Transformations

The transformation in Eq. A.98 requires a significant amount of effort,
since n random numbers must be generated in order to obtain one single
normally distributed random number. The transformation found by Box
and Muller [18] is much more effective. From two independent uniformly
distributed random numbers, two independent, normally distributed random
variables are generated as follows:

x1 = √−2 ln(z1) cos(2π z2) , x2 = √−2 ln(z1) sin(2π z2)

(A.99)

with uniformly distributed z1, z2 between 0 and 1 ⇒
x1 ∼ N(0, 1) , x2 ∼ N(0, 1) , cov [x1, x2] = 0 .

A.5.3 Inversion of Cumulative Distribution Functions

A very simple method for generating random numbers obeying any desired
distribution from a set of random numbers uniformly distributed on the
interval between 0 and 1 is to evaluate the inverse cumulative probability
function of the desired distribution with the uniformly distributed random
numbers as its arguments. Or more precisely: let z be a uniformly distributed
random variables taking on values in the interval between 0 and 1. Let f (z)

be an arbitrary distribution density function with f (z) > 0 ∀z. Then

x := F−1(z) with F(z) =
∫ z

−∞
f (u) du (A.100)

is distributed according to the distribution associated with the density f .
Intuitively, since the uniformly distributed random number z lies between 0
and 1, it can be interpreted as a “probability”. The inverse of the cumulative
distribution function is then nothing other than the percentile of this “prob-
ability” z with respect to the desired distribution. The random, uniformly
distributed numbers are thus interpreted as probabilities. The percentiles
associated with these “probabilities” with respect to the desired distribution
are then random variables distributed according to the desired distribution.

This surprisingly simple method for generating random numbers dis-
tributed according to an arbitrary distribution is so important in practice that
we will provide the reader with a proof. We begin by proving the existence
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of an inverse of the cumulative distribution by showing that the cumulative
distribution is strictly increasing if the associated density function is strictly
positive:

F(x + dx) ≡
∫ x+dx

−∞
f (u) du =

∫ x

−∞
f (u) du +

∫ x+dx

x

f (u) du

= F(x) + f (x)dx > F(x) since f (x) > 0 .

Generally f (x)dx is the probability that a random number governed by a
distribution density f will take on a value between x and x + dx. This is just
the definition of the distribution density, i.e.,

f (x)dx = F(x + dx) − F(x)

= z + dz − z = dz ,

where in the second step, we have made use of the fact that Eq. A.100 implies
F(x) = z and, because F is monotone, F(x + dx) = z + dz holds as well.
In summary, we may write

z = F(x) ⇐⇒ dz = f (x)dx . (A.101)

A random variable, uniformly distributed on the interval [a, b], has a constant
density function p(z) = 1/(b−a) for all z in the interval [a, b] as was shown
in Eq. A.36. In the interval [0, 1] the density of the uniform distribution is
thus p(z) = 1. The probability that such a uniformly distributed random
variable will lie between z and z + dz is therefore simply p(z)dz = dz. It
follows that Eq. A.101 can be interpreted as follows: if the random variable x

is governed by a distribution with density function f (x) then z = F(x) is
uniformly distributed with density function 1, i.e., uniformly distributed on an
interval of length 1. Since equality holds in each step of the above derivation,
the conclusion holds in both directions: if z is uniformly distributed on an
interval of length 1 (and thus has a distribution density of 1) then x = F−1(z)

is distributed according to the density f (x). qed.
One application of Eq. A.100 is the generation of standard normally

distributed random numbers:

z uniformly distributed between 0 and 1 ⇒ N−1(z) =: x ∼ N(0, 1) .

(A.102)
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The cumulative distribution function of the normal distribution has the
disadvantage that it and its inverse function cannot be computed analytically,
although they can be computed with applications commonly offered in many
widely available software packages. For demonstration purposes, however, it
is instructive to apply this method to a distribution which can be treated
analytically. Consider therefore what is known as the Cauchy distribution. The
Cauchy distribution has a parameter λ > 0 and the density function

fλ(x) = λ

π
(
λ2 + x2

) . (A.103)

The cumulative distribution function of a Cauchy distributed random variable
can be computed analytically with little difficulty. The necessary integral can
be found in any collection of mathematical formulas (see for instance [27]):

Fλ(x) ≡
∫ x

−∞
fλ(u) du = λ

π

∫ x

−∞
1

(
λ2 + u2

) du

= λ

π

[
1

λ
arctan

(u

λ

)]u=x

u=−∞
= 1

π
arctan

(x

λ

)
+ 1

2
,

where several well-known properties of the arctangent function have been
employed. We thus have an analytic expression of the cumulative Cauchy dis-
tribution. The inverse function can now be obtained by solving the equation
z = Fλ(x) for x:

Fλ(x) = z

1

π
arctan(

x

λ
) + 1

2
= z

arctan(
x

λ
) = π(z − 1

2
)

x

λ
= tan

[
π(z − 1

2
)

]

x = λ tan
[
πz − π

2

]

= −λ cot(πZ)
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Thus, the inverse of the cumulative distribution function of the Cauchy
distribution is

F−1
λ (z) = x = −λ cot(πz)

This implies that if z is a uniformly distributed random variable on [0, 1], then
x = −λ cot(πz) is a Cauchy distributed random variable taking on values
between −∞ and ∞ and having a distribution density function as given in
Eq. A.103.
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