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Abstract. Design patterns represent a means of communicating
reusable solutions to common problems, provided they are implemented
and maintained correctly. However, many design pattern instances erode
as they age, sacrificing qualities they once provided. Identifying instances
of pattern decay, or pattern grime, is valuable because it allows for proac-
tive attempts to extend the longevity and reuse of pattern components.
Apart from structural decay, design patterns can exhibit symptoms of
behavioral decay. We constructed a taxonomy that characterizes these
negative behaviors and designed a case study wherein we measured struc-
tural and behavioral grime, as well as pattern quality and size, across
pattern evolutions pertaining to four design pattern types. We evaluated
the relationships between structural and behavioral grime and found sta-
tistically significant cases of strong correlations between specific types
of structural and behavioral grime. We identified statistically signifi-
cant relationships between behavioral grime and quality metrics, as well
between behavioral grime and pattern size.

Keywords: Software evolution · Software quality assurance ·
Design patterns · Software reuse

1 Introduction

Software products have evolved rapidly over the last several decades. Increas-
ingly complex software requirements from customers have prompted advances in
software reuse and automation across all disciplines. These circumstances have
helped create an ecosystem where the expectations of software products is signif-
icantly higher, and where once minor upgrades were sufficient, now fully-fledged,
highly specialized, and entirely automated products are expected. To cope with
higher expectations and complex requirements, software reuse is becoming a
mainstream approach to meet those needs.

The deployment of complex products with multiple components does not
come without its drawbacks, however. The expectation that multi-component
complex systems are delivered on time and within budget, require the adop-
tion of robust processes to accommodate all phases of the product’s software
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life-cycle. One such process is software quality assurance (QA); which seeks to
measure and monitor all aspects of software quality over the entire lifetime of
a software solution. Software design represents the vision of a software solution,
considering current and potential future requirements. Designs must be flexible
enough to accommodate change, facilitate extensibility, and promote the ease
of interchangeable and reusable software components, while still maintaining a
high level of quality. A common strategy employed to assist with this balance is
the use of design patterns, which can act as reusable design-level and knowledge-
share software components among developers [14].

Design patterns embody recurring and reusable solutions to common prob-
lems encountered in the software development process [7]. Design patterns cap-
ture experience reuse and represent decisions that are made in the design phase
of a software life-cycle. They have the properties of being reusable, maintainable,
and easy to extend in future versions. The choice to utilize design patterns in a
project comes with the understanding of an important assumption– specifically
that the initial implementation of a pattern instance may take longer than a
non-pattern implementation, but future revisions and maintenance efforts will
be faster and therefore cheaper if a pattern is present. This assumption holds true
in a theoretical sense, yet is controversial in a practical sense. Historically, design
pattern realizations have been found to deviate or drift from their initial and
pure intent, thus eliminating many of the beneficial qualities the pattern offers in
the first place. Such a deviation may occur if a new developer is unfamiliar with
a code-base, or if pressure from management to ship a product requires ‘quick-
and-dirty’ extensions of the pattern. The existence and extent of such deviations
are not fully explored; for example, it is not known whether the presence of such
a deviation within a design pattern provides more harm to a software product
than choosing not to utilize a design pattern in the first place.

1.1 Research Problem

With the understanding that design patterns offer reusable solutions to common
problems in software development [7], the importance of verifying correctness
of design patterns is crucial. A design pattern instance that deviates from its
specification loses many of its reusable qualities, meaning the pattern instance
can no longer be applied as a reuse mechanism. Previous research efforts have
both explored the existence and measured the effects of design pattern devia-
tions only from a structural perspective. The structural perspective of a design
pattern refers to the class members of the pattern, including the operations and
attributes of the pattern’s classes, as well as the relationships between class
members. This research has found that such deviations do exist within a design
pattern’s evolution, and that these deviations have a negative effect on software
quality. However, the structural perspective is one of many perspectives into a
design pattern. Another perspective used to understand design patterns is the
behavioral perspective, or the events that occur as a design pattern instance is
operating at program run-time, which are not visible from a structural perspec-
tive. A behavioral perspective offers additional insights into a design pattern and
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its evolution, thus refining existing scientific models and taxonomies [8,19] that
capture design pattern evolution.

1.2 Research Objective

The goal of this research is to expand the body of knowledge surrounding soft-
ware reuse, as it pertains to design pattern evolution, from a behavioral per-
spective. Three specific activities aligned with our overarching goal are iden-
tified. First, the identification of design pattern deviations from a behavioral
perspective. Second, the characterization of behavioral deviations into a struc-
tured organizational scheme, a taxonomy. Third, the evaluation of the effects of
behavioral deviations on existing structural models as well as software quality.
Meeting these objectives will complement existing structural approaches, and
provide software stakeholders with more advanced techniques and tools to mon-
itor software quality, so that important decisions surrounding a software product,
specifically reuse of components, can be made with increased certainty.

1.3 Contributions

The contributions of this work are threefold:

– A taxonomy that captures behavioral grime in design pattern instances.
– Evaluation of the relationships between structural grime and behavioral

grime.
– Evaluation of the relationships between behavioral grime and pattern quality.

2 Background and Related Work

In the following section we discuss relevant background and research, which can
be broadly labeled as software quality assurance. We also provide definitions for
key terms, and follow by detailing the process we employed to identify important
research topics aligned with our goal.

2.1 Design Pattern Formalization

Design patterns can be formally specified using a combination of the Role-Based
Meta-Modeling Language (RBML) [13] and the Object Constraint Language
(OCL) [21]. RBML specializes the Unified Modeling Language (UML) [18] meta-
model and captures key elements of a design pattern, based on specific roles that
participants in that design pattern may take. A design pattern specification con-
sists of two sub-specifications, the Structural Pattern Specification (SPS) and the
Interaction Pattern Specification (IPS) [13]. An SPS characterizes the structural
elements of a pattern, including the class members, attributes, operation sig-
natures, and relationships. An IPS characterizes the behavioral elements of a
pattern, referring to the flow of information that occurs as a design pattern is in
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operation, at program run-time. SPSes are analogous to UML class diagrams,
whereas IPSes are analogous to UML sequence diagrams. Both SPSes and IPSes
exist at a meta-level that describes design specifications, which is referred to as
the M2 level [6]. A given pattern instance, as implemented in a software project,
exists at the design level, which is referred to as the M1 level. The process of
checking conformance for a pattern instance entails mapping the pattern’s mem-
bers that exist at its M1 level implementation to its corresponding pattern roles,
captured with an SPS and IPS, at its respective M2 level pattern definition.

2.2 Design Pattern Decay

Software applications are used everyday, yet they do not ’wear out’ over extended
use periods in the classical sense, as physical objects would. Instead, software is
subject to a different type of wear, related to the maintenance of the underlying
design and code. Over time, many factors such as unforeseen changing require-
ments, developer turnover, legacy code dependencies, and others, will contribute
to the degradation of software quality. This phenomenon is captured by the terms
software decay and code decay. Software and code are deemed decayed if they
are harder to change than they should be [3]. A specific form of software decay
is design pattern decay. Design pattern decay refers to the addition of undesired
elements or loss of desired elements in a design pattern pattern instance, over
the lifetime of the design pattern [9,10]. Design pattern decay is considered a
sub-domain of design decay, which is analogous to code decay with the excep-
tion that the decay occurs in the design level of a software project instead of the
code level. Design pattern decay consists of two categories; design pattern grime
and design pattern rot [9]. Design pattern grime, hereafter referred to as grime,
is defined as the build-up of unintended artifacts over the lifetime of a design
pattern instance. These artifacts do not contribute to the pattern’s intended role
in the overall software project, detracting away many of the beneficial qualities
the pattern would otherwise provide. Previous work has shown that the presence
of grime is associated with decreases in testability and adaptability, as well as
the presence of anti-patterns [11]. Additionally, recent work has shown that the
presence of grime is related to the depreciation of system correctness, system
performance, and system security [4]. Furthermore, Feitosa et al. has found that
grime has a tendency to accumulate linearly, suggesting the quality of a pattern
worsens as the grime of that pattern increases [5]. Design pattern rot, hereafter
referred to as rot, is defined as the removal of key elements of the pattern such
that the pattern no longer retains its core elements. A pattern that has suc-
cumbed to rot no longer identifies as such; instances of rot in software projects
has eluded researchers because of the difficulty in identifying it.

3 Research Approach

In an effort to expand on software reuse, as it pertains to design pattern evolution
from a behavioral perspective, the strategy employed in this research has three-
steps; first, the identification or detection of unintended behavioral items, as they
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appear in the code of design pattern instances. Second, the characterization
of unintended behavioral items into categories that simplify the remediation
effort. Third, the measurement of severity of unintended behavioral items so
that remediation efforts can be prioritized.

3.1 GQM

We use Basili’s Goal-Question-Metric (GQM) approach [1] as a guide for
this research. The GQM approach provides an outline of high-level research
goals (RG) supplemented with questions (RQ) and metrics (M) that guide the
research. The GQM for this research is listed below:

RG1: Investigate design pattern instances for the purpose of identifying and
characterizing behavioral deviations with respect to proper pattern behaviors as
defined by the design pattern’s specification from the perspective of the software
system in the context of design patterns in open source software systems.

RQ1 How does the behavior of a design pattern instance deviate from the
expected behavior of that pattern type?
RQ2 Is there evidence to suggest that behavioral grime is present in pattern
instances of a single pattern type?
RQ3 Is there evidence to suggest that behavioral grime is present in pattern
instances across different pattern types?
RQ4 To what extent can a pattern instance have both structural and behav-
ioral grime?
RQ5 What is the relationship between structural and behavioral grime?

RG2: Quantify the impact of behavioral grime for the purpose of capturing the
effect of behavioral grime on patterns with respect to proper pattern behavior as
defined by the design pattern’s specification from the perspective of the software
system in the context of design patterns in open source software systems.

RQ6 What is the relationship between behavioral grime and design pattern
quality, in terms of pattern integrity and pattern instability?
RQ7 Is the size of a design pattern instance related to the amount of behav-
ioral grime in that pattern instance?

Metrics: Several metrics are outlined that aid in answering the questions, which
are described in Table 1. Formulations for each metric are given, with respect to
a pattern instance P.

3.2 Study Design

The study design for this research is depicted in Fig. 1. To begin, we selected
several software projects to study according to the selection process presented
in the paragraph below. From these software projects, we identified design pat-
tern instances using the design pattern detection tool developed by Tsantalis
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Table 1. Description of the metrics used in this study

Metric name Description

Structural Conformance
(M1)

The percentage of structural roles in P that conform to at
least one structural role from P ’s SPS

Behavioral
Conformance (M2)

The percentage of behavioral roles in P that conform to at
least one behavioral role from P ’s IPS

Structural Grime Count
(M3)

A count of the number of unique instances of structural
pattern grime in P

Behavioral Grime
Count (M4)

A count of the number of unique instances of behavioral
pattern grime in P

Pattern Integrity (M5) M1+M2
2

Pattern Instability
(M6)

Adopted from Martin’s Instability metric (I ) [16], the
efferent coupling of P divided by the sum of the efferent
coupling of P and the afferent coupling of P

Ce(P)
Ce(P)+Ca(P)

Pattern Size (M7) Adopted from Li and Henry’s Size2 metric (size2 ) [15], the
sum of attributes and methods across all classes in P

et al. in [20]. We chose this tool because it is based on strong theory and pro-
vides evidence of little to no false positives in practice. Additionally, we used
the tool SrcML [2] to assist in the source code parsing process. We chose this
tool because it offers a translation from language-specific source code to stan-
dard format XML, meaning this process becomes language-agnostic. Following
XML generation, we reverse-engineered the UML class and sequence diagrams of
the entire software project. Once we had reverse-engineered the UML class and
sequence diagrams, we generated a UML representation of the design pattern by
combining the design pattern’s detection with the corresponding UML diagrams.
Next, we subjected each design pattern instance to a process of coalescence. The
process of pattern coalescence involves identifying members of the design pattern
not captured by the design pattern detection tool. Such members may be sub-
classes, super-classes, or pattern-methods within a pattern class that the design
pattern detection tool may have missed. Following coalescence, we extracted
the evolution of each pattern instance by tracking and connecting contribut-
ing roles of patterns across software versions. Once pattern instance evolutions
were generated, we entered the evaluation stage wherein we evaluated pattern
conformance, pattern grime, and pattern quality/size for each version (pattern
instance) in the pattern instance evolution.

The process of selecting experimental units, or software projects, is as fol-
lows. In an effort to increase generalizability of results, we chose to analyze five
projects in total. To ensure relevancy, projects were selected based on their pop-
ularity ranking on the online code repository GitHub1. Specifically, we ranked

1 www.github.com.

www.github.com
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Fig. 1. Summary of study design. Design pattern instances are extracted from software
projects, and the associated UML is reverse-engineered from source code. The evolution
of each pattern instance is generated, and evaluations for conformance, grime, and
metrics are found across each pattern instance evolution.

Table 2. Demographics of the projects under analysis

Project name Domain Releases (total
releases)

Release dates

Selenium Testing framework 3.0–3.141.59 (20) Oct 2016–Nov 2018

RxJava Asynchronous streaming 2.0–2.2.7 (20) Oct 2016–Feb 2019

guava Java libraries 9.0–27.1 (20) Apr 2011–Mar 2019

spring-boot Java packaging framework 1.0–2.1.3 (20) Apr 2014–Feb 2019

Hystrix Fault tolerance library 1.0.2–1.5.18 (20) Nov 2012–Nov 2018

all projects according to their ’number of stars’, which is synonymous with a
favorite or bookmark, and selected the first five projects such that each project
had at least 2,000 commits, 75 releases, and 100 unique contributors. In most
cases, all projects had significantly more than the minimum required filters; for
example the selenium project features 23,550 commits, 116 releases, and 424
contributors. From each project, we selected the 20 most recent minor releases
evenly divided between most recent minor release and most recent major release,
under the assumption that the project follows traditional notation for release
numbers, which is: [major.minor.bug fix]. If a project did not have at least 20
minor releases in major release window, we selected minor releases from the
next-major release. We utilized this process to generate an even spread of data
points between the most recent release and the last major release. The outcome
from this project selection process is presented in Table 2, along with the release
numbers and respective release dates.
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Due to the exploratory nature of our study, we chose to focus our analysis on
four pattern types; the Singleton pattern from the ‘Creational’ category [7], the
Object-Adapter pattern from the ‘Structural’ category [7], and the State and
Template Method patterns from the ’Behavioral’ category [7]. Our initial intu-
ition is that patterns in the behavioral category may be more prone to behavioral
deviations, so we selected two pattern types from that category. Additionally,
these four pattern types provided us the largest sample size of detected pattern
instances; many projects featured zero pattern instances of certain types, such
as the Visitor or Observer pattern. The count of pattern instance evolutions for
each pattern type and across each project under analysis is shown in Table 3.
Note this is a count of pattern instance evolutions, not pattern instances; the dif-
ference being pattern instance evolutions track a single pattern instance across
multiple versions, while pattern instances refer to a single pattern instance at a
single software version.

Table 3. Count of pattern instance evolutions for each of the projects under analysis

Project name Singleton
evolutions

Object-Adapter
evolutions

State
evolutions

Template
method
evolutions

Selenium 9 21 28 9

RxJava 5 27 124 11

guava 44 9 34 103

spring-boot 13 4 10 17

Hystrix 14 0 5 5

Total 85 61 201 145

4 Results

Behavioral evaluations of pattern grime have, to the best our knowledge, not been
explored in the literature. This allows us to make use of exploratory techniques
when reviewing our findings. We thus, utilize correlation analyses and linear
regression approaches to identify potential relationships between variables, and
will reserve causative analysis techniques for future experiments when research
hypotheses are identified.

RQ1: To answer this research question, which is concerned with identifying
how the behavior of a design pattern instance can deviate from the expected
behavior of that pattern type, we performed an in-vitro experiment [12]. Specif-
ically, we created an instance of the Observer pattern that perfectly aligns to
its SPS and IPS. Such an instance might be impractical in the real-world, yet
would mark a starting/calibration point for experiments. We injected code into
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this Observer pattern instance that constitutes modular structural grime, as
presented by Schanz and Izurieta [19]. Modular structural grime is concerned
with the relationships that pattern members may have with either other pat-
tern members, or non-pattern members. Therefore, modular structural grime
provides a constraint on all possible pattern behaviors. In other words, a given
behavior, whether between pattern members or non-pattern members, cannot
exist unless the two members share a structural relationship. To each injected
modular grime instance, we applied the behavioral deviations as presented by
Reimanis and Izurieta [17]. Specifically, these deviations are ‘Improper Order of
Sequences’, in which expected behaviors occur in an incorrect order, and ‘Exces-
sive Actions’ in which excessive actions hamper the run-time expectations of
a pattern. For this work, we chose to focus on a subset of Excessive Actions,
which we refer to as ‘Repetitive Actions’, or cases where the same behavior is
performed within the same scope, or function call, of a pattern instance at run-
time. After applying said behavioral deviations to the modular grime taxonomy,
we generated a taxonomy of behavioral grime, which is shown in Fig. 2.

Fig. 2. Behavioral grime taxonomy. Dimensions of behavioral grime are listed on the
left, and corresponding characterizations are shown in the taxonomy tree.

The dimensions for this taxonomy are mirrored from the modular grime tax-
onomy [19], which are explained as follows. Strength refers to the strength of a
relationship between two UML members; Persistent Strength refers to a UML
association while Temporary Strength refers to a UML use-dependency. Scope
refers to the context of the relationship between two UML members; Internal
Scope refers to a relationship between two pattern members, and External Scope
refers to a relationship between one pattern member and one non-pattern mem-
ber. Direction refers to the direction of the relationships. Afferent Direction refers
to an incoming relationship while Efferent Direction referring to an outgoing
relationship. In the taxonomy, the Classification row refers to the acronym that
captures that type of behavioral grime; for example, the PIO classification is an
acronym for ‘Persistent-Internal-Order’ grime. This behavioral grime taxonomy
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closely mirrors the modular grime taxonomy presented in [19], with two excep-
tions. First, we have incorporated the ‘Behavioral Deviations’ dimension, which
corresponds to the type of behavioral grime (Order or Repetition). Second, one
will notice that the taxonomy is not symmetrical across Order and Repetition
sub-trees; specifically, the sub-tree pertaining to External Efferent Order (-EEO)
type grime is non-existent. This is because this sub-tree represents an outgoing
relationship from a pattern member to a non-pattern member can not be in an
incorrect order; such relationships are not captured by the design pattern, and
thus cannot be in an incorrect order.

RQ2, RQ3: RQ2 and RQ3 are concerned with identifying behavioral grime
within and across multiple pattern instances. To answer these questions, consider
Table 4, which summarizes the grime counts found from our analysis. Each cell
in the table refers to a count of behavioral grime across all patterns instances
of the corresponding pattern type. Note that no instances of Order grime were
found across the entire analysis, and thus we will refrain from showing Order
grime results. This does not imply that Order grime does not exist, but rather
it means we failed to detect any in this study.

Table 4. Count of behavioral grime across each pattern instance

Behavioral
grime type

Singleton Object-Adapter State Template
method

PIR 0 296 645 15

PEAR 0 2028 377 60

PEER 390 583 896 392

TIR 24 229 842 266

TEAR 0 4289 921 153

TEER 2088 6822 10320 3053

RQ4, RQ5: These research questions are concerned with identifying the poten-
tial relationship between structural and behavioral grime. To answer these ques-
tions, we began by generating a pairwise scatter-plot for each type of structural
and behavioral grime, which is shown in Fig. 3. Structural grime is shown on
the x-axis, and Repetition behavioral grime is shown on the y-axis. Points in
the scatter-plot represent the count of modular grime and repetition grime for
a single pattern instance.

RQ6: This research question is concerned with the relationship between behav-
ioral grime and pattern quality, as measured by our surrogate quality-metrics,
Pattern Instability (M5) and Pattern Integrity (M6). Similarly to RQ4 and
RQ5, we began by generating pairwise scatter-plots for these metrics for each
behavioral grime type to visually assess trends. This scatter-plot is shown in
Fig. 4.
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Fig. 3. Pairwise scatter-plots illustrating the relationships between structural grime,
shown on the x-axis, and behavioral grime, shown on the y-axis.

Fig. 4. Pairwise scatter-plots of pattern quality, measured via surrogate metrics Pat-
tern Instability and Pattern Integrity, pattern size, and behavioral grime.
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RQ7: This research question is concerned with identifying if the size of a design
pattern instance is related to the amount of behavioral grime in that pattern
instance. Similarly to the previous research questions, we began by generating a
scatter-plot to visually assess the data. This scatter-plot is shown in Fig. 4.

Table 5. Correlation coefficients (r-values) and corresponding p-values for each pair-
wise metric (pattern quality, pattern size, and grime type). In each cell, coefficients are
presented first and p-values are presented second. Bold values represent strong rela-
tionships, r > 0.60 or r < −0.60 and statistically significant p-values at the α < 0.05
level. Separations within the table refer to separate research questions.

PEAR PEER PIR TEAR TEER TIR

PEA 0.2021/0.00 0.0002/0.99 0.0153/0.19 0.2132/0.00 0.0324/0.01 0.0694/0.00

PEE 0.0358/0.00 0.3339/0.00 0.2095/0.00 0.0704/0.00 0.5814/0.00 0.1285/0.00

PI −0.0084/0.48 0.0352/0.00 0.0264/0.03 −0.0006/0.96 0.4053/0.00 0.0764/0.00

TEA 0.6086/0.00 0.1430/0.00 0.1355/0.00 0.5781/0.00 0.2050/0.00 0.3026/0.00

TEE 0.0006/0.96 0.2227/0.00 0.2018/0.00 0.0225/0.06 0.6763/0.00 0.0549/0.00

TI 0.0762/0.00 0.3547/0.00 0.3702/0.00 0.0612/0.00 0.5374/0.00 0.2633/0.00

Pattern

Instability

−0.1888/0.00 0.0255/0.03 −0.0100/0.40 −0.1659/0.00 −0.0445/0.00 −0.0300/0.01

Pattern

Integrity

0.1555/0.00 0.1470/0.00 0.2206/0.00 0.1179/0.00 0.2204/0.00 0.2119/0.00

Size2 −0.0118/0.32 0.0810/0.00 0.0951/0.00 −0.0117/0.32 0.0932/0.00 0.2341/0.00

To assess the strength of each relationship in RQ4-7, we calculated pairwise
correlation coefficients and corresponding p-values. The nature of our data is a
count, which falls under the ratio numeric scale, and a visual assessment of the
scatter-plots suggests a linear relationship; therefore we chose to use Pearson’s
method to calculate correlation coefficients and generate p-values. The appli-
cation of Pearson’s requires addressing two primary assumptions; the normality
assumption and the independence assumption. We may say we have satisfied the
normality assumption because an advantage of using Person’s is that the nor-
mality assumption is not applicable for larger sample sizes, of which our data is.
However, we cannot say we have satisfied the independence assumption. Specif-
ically, each data point comes from a single pattern instance in a single software
version, and pattern instances may appear in more than one software version,
meaning grime in a future version might be, and likely is, dependent on grime
in previous versions. We alleviate this concern because of the number of pattern
instance evolutions we have detected, which is captured in Table 3, but we cannot
say we have satisfied the independence assumption. Regardless, the correlation
coefficients and corresponding p-value for each pairwise metric across RQ4-7
is listed in Table 5, with strong relationships (r > 0.60 or r < −0.60) and sta-
tistically significant p-values at the α < 0.05 level shown in bold. Each p-value
corresponds to the probability that the correlation coefficient we received was
not due to chance, under the assumption that the true correlation coefficient is
zero, which implies a very weak relationship.
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5 Discussion

The following discussion points highlight the significance of design pattern
research as knowledge communication artifacts in software reuse. We extend
the body of knowledge by categorizing and evaluating behavioral grime through
the exploration of selected pattern evolutions.

The first series of statistical tests focused on understanding the relation-
ships between structural and behavioral grime. For nearly all pairwise compar-
isons between structural and behavioral grime, very low p-values were found,
suggesting that the results we received were not due to chance, and that no
relationship exists between structural and behavioral grime types. This is an
interesting result, because comparing the correlation coefficients from Table 5 to
the respective p-values in Table 5, many correlation coefficients are quite small,
which would normally suggest a higher p-value. However, because our sample
sizes were large, we found a correlation coefficient that, while being non-zero
in many cases, was based upon enough data to supply a confident statistical
estimate. This means that the correlation coefficient estimates we found may be
close to the true value of the correlation coefficients, but more experiments need
to be performed to confirm this position.

With respect to relationships between structural and behavioral grime, specif-
ically of interest is the behavioral grime type TEER (Temporary External Effer-
ent Repetition). Grime of this type manifests itself as non-pattern members that
are used by a pattern, but only as a use-dependency (not an association). Such
items constitute a deviation from a pattern’s specification, which imply the pat-
tern implementation is more difficult to reuse in the future. TEER grime was
moderately correlated with two structural grime types (PI and TI), yet was also
strongly correlated with two structural grime types (PEE and TEE). The corre-
lations with PEE and TEE do not come as a surprise, considering the structural
forms of that grime type dictate behavioral allowances. In other words, the pres-
ence of TEER grime cannot exist without the presence of one of either PEE or
TEE. However, recall that TEER grime is specifically a repetition of behaviors.
This means that while a pattern instance may have PEE and TEE structural
grime, manifested as a relationship between pattern members and non-pattern
members, the relationship is called upon more than once within the scope of
a pattern’s operation. Conceivably, these usages could originate from poorly
constructed logical flows within code, in which the same logical call, or opera-
tion, might be performed at different points in a single operation. To assert this
thought, we manually reviewed the code of one state pattern instance and dis-
covered that the instance was setting the same state at multiple different places,
all within the same operation. This practice is not strictly discussed in the State
pattern’s best practices, but certainly a cleaner and more reusable version of
the pattern instance would be one in which the state would be set once per
operation. While future research is required to reveal the true effects of such a
practice, such revelations illustrate why behavioral deviations are an important
topic to study.
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The second series of statistical tests focused on capturing the relationships
between behavioral grime and pattern quality, with respect to our surrogate
metrics, Pattern Instability and Pattern Integrity. Nearly all pairwise p-values
reported as very low, suggesting we reject the possibility that no relationship
exists between behavioral grime types and pattern quality. Interestingly, the
correlation coefficients for Pattern Instability are low and negative, hinting that
a weak but present inverse relationship exists between Pattern Instability and
behavioral grime. In other words, an increase in behavioral grime is associ-
ated with one, or both, of the following: A pattern instance’s efferent coupling
decreases while its afferent coupling does not decrease, or a pattern instance’s
afferent coupling increases faster than its efferent coupling. In most cases, the
size of a pattern instance always increased over its evolution, suggesting that the
second option holds true; that afferent coupling increases faster than efferent cou-
pling. Put another way, as pattern instances aged and evolved, they tended to
be used more by non-pattern members, not that they made use of more non-
pattern members. In these cases, results suggest that behavioral grime increases
as well; regardless, the increased coupling between non-pattern members and
pattern members inhibits future pattern reuse.

Our results pertaining to Pattern Integrity are seemingly counter-intuitive;
the results suggest that as Pattern Integrity increases, i.e., as a pattern instance
more closely follows its specification, the amount of behavioral grime within that
pattern instance increases as well. One would envision that behavioral grime
would decreases as Pattern Integrity increases, because that would suggest a
refactoring of said pattern instance, aligning it more closely with pattern stan-
dards. However, two likely explanations are plausible. First, the case could be
that the pattern instance is evolving and new pattern members are being added
that conform to the respective SPS and IPS, yet these new pattern members
contain behavioral grime. Second, the case could be that refactorings are being
performed that better align existing pattern members to their SPS and IPS, yet
the refactorings introduce more behavioral grime. In either case, a more robust
and extensive study is required to solve this conundrum.

The third series of statistical tests focused on finding the relationship between
behavioral grime and pattern size. Our expectations were that as a pattern
instance evolved and grew, it would also gain more behavioral grime. Behavioral
grime types PEAR and TEAR reported relatively large p-values, suggesting
that we are unable to assume that no relationship exists between PEAR/TEAR
and pattern size. However, the other types of behavioral grime reported very
small p-values, suggesting we can reject the null, and that evidence exists to
support a relationship between behavioral grime and pattern size. Looking at the
correlation coefficients, we see small positive coefficient values, strengthening our
initial expectations. While these values are not as large as expected, we can claim
that the evidence from this study suggests pattern instances gain behavioral
grime as they get larger. While the increasing size of a pattern instance over its
evolution is indicative that the pattern is being reused, the presence of behavioral
grime may imply that the pattern’s growth rates are slowing down. Future work
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will address this question, looking at the growth rates of behavioral grime as
they pertain to pattern size.

6 Threats to Validity

There are several design and implementation considerations in this study that
threaten the validity of the results. External validity is concerned with the gen-
eralization of results. In this study, we limited ourselves to 20 minor-release
versions of five Java projects, chosen based on popularity from the online repos-
itory GitHub. While we attempted to systematically select projects so that our
results would be generalizable, we can only claim that our results hold true for
the projects under analysis. More case studies following this same process are
necessary before more general claims can be made. Internal validity refers to
the ability to reach causal conclusions based on the study design. Internal valid-
ity is minimal in this study because we make no causal claims, just correlations.
Future studies will be directed at increasing this body of knowledge, thus we will
explore causal links, yet for this study only correlations were used. Construct
validity refers to the choice of independent and dependent variables, with respect
to conclusion. Construct validity is threatened in our study because of our use
of the Pattern Integrity and Pattern Instability metrics as surrogate metrics for
pattern quality. Our rationale for choosing these two surrogate metrics comes
from theory that suggests a very small value for Instability increases system sta-
bility, positively affecting quality, and that high values for Integrity correspond
to more standard and robust implementations, also positively affecting quality.

7 Conclusion

Our research goals focused on the exploration and initial understandings of
behavioral deviations, as they pertain to design pattern evolution and software
reuse. To this end we have constructed a taxonomy that classifies behavioral
grime types. Furthermore, we designed and implemented a case study wherein
we measured counts of structural and behavioral grime, as well as quality and
size, across pattern instance evolutions pertaining to four design pattern types,
originating from 20 versions of five open source software projects. We evaluated
the relationships between structural and behavioral grime and found statisti-
cally significant cases of strong correlations between specific types of structural
and behavioral grime. We identified statistically significant relationships between
behavioral grime and both choice quality metrics, as well as pattern size. Pat-
terns are a means of knowledge communication through the reuse of common
solutions, and these findings provide important directions that can help prac-
titioners in reducing problems encountered through the evolution of software
components.
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