
Extending FragOP Domain Reusable
Components to Support Product
Customization in the Context
of Software Product Lines

Daniel Correa1(&), Raúl Mazo2,3, and Gloria Lucia Giraldo1

1 Universidad Nacional de Colombia, Medellín, Colombia
{dcorreab,glgiraldog}@unal.edu.co

2 Université Panthéon Sorbonne - CRI, Paris, France
raul.mazo@univ-paris1.fr

3 Universidad Eafit, GiDITIC, Medellín, Colombia

Abstract. Software product lines (SPL) have become an efficient paradigm for
systematic reuse. SPL engineering is about the planned reuse of common assets
for the rapid production of a software systems family. In SPL, an effective
product derivation process is key to ensure that the effort required to develop the
common assets will be lower than the benefits achieved through their use. While
several approaches and tools are available on SPL engineering activities such as,
variability management, component assembling, and product testing; most of
the existing approaches do not present detailed information on the strategies for
product customization (which affects the product derivation effectiveness). In a
previous work, we introduced fragment-oriented programming (FragOP), which
is a framework used to design, implement, and reuse domain components. In
this paper, we enhanced the FragOP approach through the use of customization
points and customization files to support the product customization activity. In
order to gain preliminary insights into how VariaMos (the tool in which the
approach is implemented) supports the FragOP approach, we designed a
usability test by following the ISO/IEC 25062:2006 Common Industry Format
for usability tests. Eight graduate students from the Universidad Nacional de
Colombia took part and were asked to carry out a series of modifications to an e-
commerce SPL. The usability test reported high subject performance results;
however, we found some usability flaws that should be addressed.

Keywords: Software product lines � Usability tool test �
Fragment-oriented programming � Product customization

1 Introduction

A software product line (SPL) is a collection of software systems that satisfy the
specific needs of a particular market segment, and that are developed from a common
set of core assets in a prescribed way [1]. Many software and systems product line
(SPL) implementation approaches, such as CIDE, DeltaJ, Munge, Antenna, AspectJ,
and AHEAD emerged during recent years [2]. These approaches focus on an effective

© Springer Nature Switzerland AG 2019
X. Peng et al. (Eds.): ICSR 2019, LNCS 11602, pp. 17–33, 2019.
https://doi.org/10.1007/978-3-030-22888-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22888-0_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22888-0_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22888-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-22888-0_2

SPL component assembling (constructing and assembling a software product from the
reusable SPL assets). However, existing approaches do not present detailed information
on the strategies for product customization [3]. For example, de Souza et al., [3]
reported that much of the resources and effort of the product derivation process is spent
on product customization. They analyzed some companies in which between 10% and
30% of each product instantiated from their platforms needs to be customized. Even,
Montavillo et al., [4] which developed a visualization tool to estimate the cus-
tomization effort, deduced that less than 50% of an SPL example product code was
reused as-is from the core-assets. The main difference between a component assem-
bling and a product customization is that the first one reuses and assembles pre-
developed core-assets to generate a new product. The second one is carried-out after the
component assembling and it is commonly done manually, because each product
customization is unique, so there are not pre-developed customized core-assets.

In previous work, we developed an SPL implementation approach called Fragment-
oriented programming (FragOP) [5]. FragOP is a framework used to design, implement
and reuse domain components in the context of an SPL. FragOP is a mix between SPL
compositional and annotative approaches. In the original formulation of FragOP [5], it
consisted on the definition of (i) domain components, (ii) fragmentations points, which
are annotations over the domain components code; and (iii) fragments, a new type of
file which alters the domain components code. In this paper, this approach is enhanced
to support the SPL product customization. This enhancement was included as a new
capability of the VariaMos tool [6], which is a software tool that supports the FragOP
approach. Therefore, to gain insights into how VariaMos supports the enhanced Fra-
gOP approach, we decided to develop a usability test. Usability is defined by the
International Standard Organization [7] as “the extent to which a product can be used
by specified users to achieve specific goals with effectiveness, efficiency, and satis-
faction in a specified context of use”. That means that if a product (a software tool in
our case) does not provide effectiveness, efficiency, and satisfaction to its users, it is not
usable, and therefore will probably not be used. The rest of this paper is structured as
follows. In Sect. 2, we present the FragOP approach including its enhanced metamodel
and process; therefore, we present the enhanced VariaMos tool. In Sect. 3, we discuss
the FragOP main two capabilities (assembling and customization) with a real SPL
example. In Sect. 4, we present a usability test of VariaMos. In Sect. 5, we discuss the
related work and finally Sect. 6 summarizes the contributions and presents future
research directions.

2 Fragment-Oriented Programming

In this section, we recall the notion of FragOP as described in [5] and present the
FragOP enhancement and its implementation in VariaMos. Fragment-oriented pro-
gramming (FragOP) is a framework used to design, implement and reuse domain
components in the context of an SPL. FragOP is based on the definition of six fun-
damental elements: (i) domain components, (ii) domain files, (iii) fragmentations
points, (iv) fragments, (v) customization points, and (vi) customization files. The
fragments act as composable units (compositional approach) and the fragmentation

18 D. Correa et al.

points act as annotations (annotative approach). This mix of compositional and
annotative approaches allows the FragOP to support multiple assets implemented over
different languages, such as PHP, Java, JSP, CSS, HTML, and JavaScript, among
others. The role of each FragOP element, their relationships, how are made up, and the
information they store, it can be seen in the FragOP metamodel (see Fig. 1). Following,
we present an overview of the FragOP metamodel elements:

SPL represents the software product line and contains an ID that represents the
name of the corresponding SPL. Domain requirements represent SPL domain
requirements (such as features and goals). Domain components represent SPL
reusable domain components and contain an ID that represents a folder in which the
component is stored. A domain file is a basic element of which most software
components are made up; for instance, HTML, CSS, JavaScript, Java, and JSP files.
A fragment is a special type of file which alters the application code. A frag-
mentation point is an annotation (a very simple mark) that specifies a “point” in
which a domain file can be altered. A customization file is a file which specifies the
domain files (for the current domain component) that should be customized. Cus-
tomization points are annotations (very simple marks) that specify the “points” in
which a domain file should be customized. Product represents a folder in which a
new SPL product is derived. Application files are copies of domain files which are
generated when a new product is derived. These files can be also modified by the
fragments.

Fig. 1. FragOP metamodel (UML class diagram)

Extending FragOP Domain Reusable Components 19

The FragOP metamodel presents the elements that must be used and understood in
an SPL that implements a FragOP approach. However, it does not describe how to
implement the SPL. That is the objective of the FragOP process. Following, we
summarize the eight FragOP process activities (cf. Figure 2) including an example of
its implementation within VariaMos (cf. Figure 3).

Domain Engineering
Modeling PL requirements is the activity in which variability models are used to
graphically to represent the domain requirements. VariaMos allows specifying the PL
requirements in the form of a “Feature model” (see Fig. 3a). Modeling domain
components is an activity in which the PL domain components, their domain files and
the relationship between these elements, are defined through a component model (see
Fig. 3b). Implementing domain components is the activity in which the components
and files are developed based on the domain component model. This activity implies:
(i) to develop the domain components with their domain files code, (ii) to include the
fragmentation points, (iii) to codify the fragments, (iv) to include the customization
points, and (v) to codify the customization files. VariaMos does not support the
implementation of domain components, so, the PL developer can use her/his preferred
IDE (see Fig. 3c). The result of this activity is the development of a domain component
pool that includes the reusable assets of the PL. This activity is detailed in Sect. 3.
Binding domain requirements and domain components. The binding is an activity
that links components and requirements; it allows specifying what domain require-
ments are realized by what domain components. VariaMos currently supports linking
domain components with their corresponding domain requirements (see Fig. 3d). Later,
this information is used in the configuration and derivation activities.

Application Engineering
Configuring products consists in selecting the specific features that a specific product
will contain based on the stakeholder requirements. VariaMos permits configuring a
product by selecting the specific leaf features that the SPL product will contain (see
Fig. 3e). Deriving products consists in generating specific software products based on

Fig. 2. FragOP process (UML activity diagram)

20 D. Correa et al.

the configured variability model (see Fig. 3f), the derivation activity is detailed in
Sect. 3.1. Customizing products consists in modifying the derived products based on
the customer’s needs. For example, to parameterize configuration files or variables, to
modify dummy texts, and to include specific customer requirements, among others (see
Fig. 3g). The customization activity is detailed in Sect. 3.2. Verifying products is the
last activity in the application engineering process. Due to the fact that FragOP allows
injecting and modifying component file codes (through the use of fragments), it
becomes relevant to verify the resulting products. VariaMos implemented ANTLR
4.7.1 and uses a series of parsers and lexers for languages, such as PHP, Java, CSS,
MySQL, among others. Based on the derived application file extension, VariaMos
analyses the grammar of each application file and generates alerts if errors are found
(see Fig. 3h).

3 VariaMos (FragOP) Main Capabilities

In order to show the VariaMos (FragOP) main capabilities, and to describe the new
FragOP elements, we took an existing e-commerce SPL called ClothingStores [5].
ClothingStores was improved to include the new FragOP elements: customization files
and customization points. ClothingStores consists of 25 features and was developed
covering most of the problems that SPL developers face when implementing an SPL;
such as, Crosscutting concerns such as the Login component, that in case of being

Fig. 3. FragOP process implemented with VariaMos

Extending FragOP Domain Reusable Components 21

part of a final product, it must be integrated transversally over multiple other product
files. Fine-grained extensions such as, modify the header menu, modify specific parts
of the product views, and SQL files, among others. Coarse-grained extensions such
as, replace a validation method over the admin classes, and include class methods,
among others. Product customization such as the database configuration variables, the
name of each derived web store, and some default texts inside the product views must
be customized. Managing multiple language files, it was designed as a real e-
commerce web system which included domain files types, such as SQL, images (.jpg
and .png), JavaScript, HTML, JSP, Java, and CSS.

Following, we will describe the two FragOP main capabilities (assembling and
customization) with the use of the ClothingStores example.

3.1 Assembling Capability

To implement SPL efficiently, the domain component code has to be variable. Vari-
ability is defined as the ability to derive different products from a common set of
artifacts [8]. This means the approach, tool, paradigm or methodology used to
implement the SPL domain components should support the variability of code. The
FragOP approach supports the domain component variability through the use of three
FragOP elements (see Fig. 4): domain files that represent, for instance, HTML, CSS,
JavaScript and Java files. Any file that could be reused for the development of multiple
SPL products can be considered as a domain file. Fragmentation points are annota-
tions (very simple marks) that specify “points” in which a domain file can be altered
(they can be seen as variant points). They are contained inside language comments
(similar to the Munge approach, in which the conditional tags are contained in Java
comments, so they do not interfere with the development environments). Different to
most annotative approaches, in FragOP the variable code is not contained inside the
fragmentation points, it is located inside the fragments. And fragments which are a
special type of file in which the SPL developers specify code alterations to the domain
files (they can be seen as variants). Fragments are used to: (i) add, replace, or hide
pieces of code over specific fragmentation points (even a piece of code can be injected
over multiple locations); and (ii) add or replace entire files (which is useful for domain
files that cannot be modified with the inclusion of fragmentation points, such as images
or PDF files). Fragments also permit to specify the alteration order through the
“fragment priority” property, and they work with multiple domain file types. Correa
et al. [5] present the complete structure of fragments and fragmentation points.

The VariaMos (FragOP) assembling capability is carried out at application level
through the Fig. 3f option. The product derivation consists of generating specific
software products based on the configured variability model. The selected features and
the variability model are taken as an input. Then, the binding is resolved to show what
components should be assembled based on the selected features; and the components
are assembled over a product folder (the output). In this activity, VariaMos executes the
fragments which modify the product application file code. For example, in Fig. 4 a
domain file (header.jsp) supports the code variability through the inclusion of a frag-
mentation point (menu-modificator). Additionally, a fragment (alterHeader.frag)
specifies a code alteration (to include a new header menu element) in the previous

22 D. Correa et al.

fragmentation point of the previous domain file. Once the product is derived, a copy of
the header.jsp is included in the product folder (application file), and the alterHeader.
frag injects the new menu element over the derived application file.

3.2 Customization Capability

Even when SPL products are derived based on the customer’s needs, it is very common
that these products require customization. For example, to parameterize configuration
files or variables, to modify dummy texts, and to include specific customer require-
ments, among others. FragOP takes advantage of the customization points and cus-
tomization files and facilitates the customization activity (see Fig. 5).

LanguageCommentBlock<BCP>-<PointID>LanguageCommentBlock
LanguageCommentBlock<ECP>-<PointID>LanguageCommentBlock

Listing. 1. Customization point shape.

Customization points are annotations that specify “points” in which a domain file
should be customized. The customization points shape is similar to the fragmentation
points shape, the main difference is that a customization point should contain a
beginning part (BCP) and an ending part (ECP). Listing 1 shows the customization
point shape. The code to be customized (at the application level) should be placed in
the middle of both BCP and ECP parts. We use annotations because we want to support

Fig. 4. An assembling scenario with the use of VariaMos (FragOP)

Extending FragOP Domain Reusable Components 23

the customization of most kinds of files, and we know that most product customizations
are unique.

A customization file is a file which specifies the domain files (for the current
domain component) that should be customized. Only one customization file is allowed
per domain component, its filename must be customization.json, and it must respect the
shape presented in Listing 2 and explained thereafter.

{
 "IDs": ["FileID1", "FileID2", "..."],
 "CustomizationPoints": ["PointID1", "PointID2", "..."],
 "PointBracketsLans": ["language1", "language2", "..."]
}

Listing. 2. Customization point shape.

IDs: <FileID1, FileID2, …>. It represents the domain files to be customized.
CustomizationPoints (optional): <pointID1, pointID2, …>. PointIDs are unique texts
which serve to identify customization points.
PointBracketsLans (optional): <language1, language2,…>. It specifies the comment
bracket languages in which the customization points are defined. For example, PHP,
HTML and Java.

The customization points and the point brackets languages are optional; this way a
customization file is able to specify entire domain files that must be customized (re-
placed) or specify customization points to be customized. Customizing an entire
domain file is useful when it is not possible to include customization points. For
example, when there is a domain file such as a default logo, that must be customized
with the real client company logo.

The VariaMos (FragOP) customization capability is carried out at application level
through a VariaMos option called “product customization”. Using this option, a popup
shows (i) the customization points of the derived application files, and the SPL
developer manually customizes the application file codes; and (ii) the derived appli-
cation files that should be entirely customized (replaced), and the SPL developer
uploads the customized files. For instance, the ClothingStores SPL contained a domain
file (Config.java) that specified four variables which allow the communication with the
database engine. As a domain file, these variables present sample values; however, for
a final product, the value of each variable must be customized. As a consequence, we
included a customization point (“vars”) inside the Config.java domain file (see Fig. 5).
After the product assembling, the SPL developer customizes the Config.java file with
real variable values, which generates the final application files. The content of these
files is later verified through Fig. 3h VariaMos option.

VariaMos does not automatically customize the application files because this
activity is customer-dependent. However, the activity is streamlined because without
the use of customization points and customization files, the SPL developers should
manually review each derived application file, trying to figure out what pieces of code
and files should be customized. It is important to highlight that customization files and

24 D. Correa et al.

customization points are very useful for simple customizations, such as parametrizing
variables, changing a default text or replacing an image file; nevertheless, complex
customization such as creating new components must be applied manually by
developers.

3.3 Derivation Results

After following the FragOP process (see Fig. 2), we completed the derivation of the
five ClothingStores products. We used the Koscielny et al., [9] DeltaJ 1.5 case study
(which presented a SimpleTextEditor SPL as the subject system) as the base to present
the ClothingStores results. In comparison, the SimpleTextEditor consisted of 11 fea-
tures, while the ClothingStores consists of 25 features. The results show that VariaMos
(FragOP) is expressive enough to implement a real-world, variant-rich multi-language
software system. An inspection of the product code shows that (see Fig. 6): (i) multiple
assets of different types were automatically assembled and deployed in the respective
project folder structure. (ii) Between 21 and 50 lines of code were manually customized
(supported by the VariaMos tool) to complete each product finalization. Even, the
database queries were automatically generated. (iii) Several LOC were derived and
automatically injected. For instance, 27.72% of the P5 LOC were automatically

Fig. 5. A customization scenario with the use of VariaMos (FragOP)

Extending FragOP Domain Reusable Components 25

injected. This means that a P5 product derivation carried manually without the use of
VariaMos will require to manually modify 560 LOC. (iv) If we try to derive the P5 with
a compositional approach that is attached to a host language like Java (such as AspectJ,
DeltaJ, AHEAD), 26 files must be manually included in the product folder structure,
and a minimum of 284 LOC (14% of the total product LOC) must be manually
modified to finalize the product derivation. Even, without counting the LOC of Java
that implies fine-grained extensions that are not supported by these approaches. And
(v) if we try to derive the P5 with annotative approaches, the results could vary
depending on the annotative approach language support (for instance, Antenna only
supports Java); however, annotative approaches inject all code variations inside the
domain files, which is not the case in VariaMos (FragOP). It means that a domain file
such as ListOfProducts-OneProduct (oneproduct.jsp) will contain at least 104 LOC in
an annotative approach. Nevertheless, in VariaMos (FragOP) it only contains 31 LOC
and the code variations are located in separated files (fragments). This characteristic
makes domain files of annotative approaches difficult to maintain and evolve.

4 Usability Evaluation

This section presents a usability test of VariaMos (version 1.1.0.1). The main idea is to
test the VariaMos usability to support the FragOP approach, and thus to gain insight
into how easy or difficult it is to follow and understand the FragOP approach. To guide
the usability test, we defined the next research question.

RQ: Is VariaMos a usable tool that supports the FragOP approach?

Fig. 6. LOC reused, automatically injected and customized of each derived ClothingStores
product by file type

26 D. Correa et al.

In this evaluation, we decided to develop and conduct a usability test by using the
ISO/IEC Common Industry Format (CIF) for usability tests [10]. We also applied three
evaluation techniques: (i) one for the definition of the experimental tasks, (ii) another
for evaluating user satisfaction by gathering their opinion through a survey, and finally
(iii) a semi-structured interview to enrich this usability test. The complete usability
format result can be found online [11]. The following subsections present: (i) the
procedure, (ii) the metrics, (iii) the results and (iv) threats to validity.

4.1 Procedure

The usability test was designed as a process with nine activities (see Fig. 7), which is
described next.

Participants’ Selection. Eight graduate students from the Universidad Nacional de
Colombia participated in this testing. Participants attended a postgraduate course in
software modeling. The usability test was designed in two four-hour sessions. These
participants are classified as “software developers who are interested in adopting an
SPL methodology” which is one of the VariaMos user target population.

Pre-questionnaire (15 min). We requested the participants to complete a pre-
questionnaire related to their background and software experience. The pre-
questionnaire was designed using a Likert scale, which had a five-point format:
(1) strongly disagree, (2) somewhat disagree, (3) neither agree nor disagree, (4) some-
what agree, and (5) strongly agree. The intention was to collect information about the
participants’ background and experience, and to confirm the participants’ lack of
knowledge with FragOP and VariaMos. The pre-questionnaire also showed the par-
ticipants presented an average of 4 years of experience in software development.

SPL, FragOP and VariaMos Introduction (3 h). We designed a magistral class
about the main concepts of SPL, FragOP, and VariaMos, and we developed a very
small example of the use of FragOP and VariaMos. This introduction was important
because the participants did not have knowledge of SPL, so, we introduced topics, such
as software product lines, feature modeling, and product derivation.

Fig. 7. Usability test process (UML activity diagram)

Extending FragOP Domain Reusable Components 27

Pre-experiment Setup Part A (30 min). The second session started with the “pre-
experiment setup part A”. Here, the participants were introduced to a document which
presented a series of steps to set up an SPL project with the use of VariaMos.

Experiment Part A (Limit: 90 min). We shared with the participants a Google Drive
folder with the experiment part A. Then, they were requested to complete five tasks.
Therefore, two test administrators were observing and attending the participants’
questions. The experiment part A tasks were about: (i) derivation and customization of
a new SPL product, (ii) questions about the previous derived product, (iii) modification
of a domain file, (iv) modification of the SPL which includes creating a feature,
component, binding element, a fragment, and a fragmentation point. And (v) derivation
of an additional SPL product.

Pre-experiment Setup Part B (15 min). The participants were introduced to a doc-
ument which presented a series of steps to set up another SPL project.

Experiment Part B (Limit: 30 min). Participants started to complete two additional
tasks. These tasks were about: (i) finding and fixing product derivation errors, and
(ii) finding and fixing product verification errors.

Post-questionnaire (15 min). The participants were submitted to a post-
questionnaire, which included questions about (i) experiment environment, (ii) over-
all satisfaction, (iii) VariaMos and FragOP performance, (iv) general question, and
(v) specific questions about the VariaMos and FragOP theory.

Semi-structured Group Interview (25 min). We asked the participants four open
questions about the tool usability, and we recorded the participants’ answers. The
questions were: (i) What did you like? (ii) What did you dislike/What should be
improved? (iii) What are the opportunities when using this tool in daily business? and
(iv) What are the risks when using this tool in daily business?

4.2 Metrics

We defined three usability metrics that tools must provide: effectiveness, efficiency, and
satisfaction to its users. For the effectiveness, we recorded (i) completion rate (in-
cluding assisted and unassisted completion), (ii) errors (defined as a task completed
wrongly or not completed), and (iii) assists (defined as verbal help given by the test
administrators to guide the participants to the next step in completing the task). For the
efficiency, we recorded (i) task time (the amount of time to complete each task), and
(ii) completion rate efficiency (mean completion task rate/mean task time). For the
satisfaction, we used the post-questionnaire results and measured the participant’s
perception of ease of use, ease of learning, ease of remembering, and subjective sat-
isfaction. Therefore, we take advantage of the semi-structured group interview results.

4.3 Results

Performance Results. All eight participants completed all of the seven tasks (see
Table 1). Three of the participants completed all seven tasks without assistances.

28 D. Correa et al.

A total of seven assistances were given to the participants, five of these assistances
were requested to Task 4 – Part A, which was the most the complex task (participants
spent a mean of 31 min to complete this task; see Fig. 8). Figure 8 also shows that the
participants spend little time in the development of Task 5 – Part A and Task 2 –

Part B. Task 5 – Part A was about a new product derivation, which took on average
approximately 4 min; Task 2 – Part B focused on finding validation errors, we included
a syntax error over a domain file and on average the participants only spent approxi-
mately 4 min in finding and fixing the error. The mean total time to complete all the
seven tasks was approximately 72 min. Therefore, there were not errors because all the
participants completed all the tasks properly.

Finally, it is important to highlight that all participants were novice SPL developers
and FragOP novice developers. So, the results in this test provide preliminary evidence
that VariaMos is a usable tool that properly supports the FragOP approach (RQ). All
of the participants completed all the tasks (effectiveness), and the mean task time was
approximately 10 min (efficiency). The tool also provides errors notifications; which
can help developers to easily find fragment errors or domain component errors.

Satisfaction Results. The satisfaction results were obtained from two sources. First,
we analyzed 21 of the 26 post-questionnaire questions. Scores for the 21 questions
were given for each participant, based on four usability attributes: ease of use, ease of
learning, ease of remembering and subjective satisfaction. It is important to realize that
usability is not a single, one-dimensional property of a user interface. Usability has
multiple components and is traditionally associated with different usability attributes.

Table 1. Participants’ performance result summary

Assisted task
completion
rate

Unassisted task
completion rate

Total
task
time

Errors Assistances Mean
task
time

Efficiency

Mean 100.000 100.000 72.125 0.000 0.875 10.304 9.982
Standard
dev

0.000 0.000 12.654 0.000 0.835 1.808 1.826

Standard
error

0.000 0.000 4.474 0.000 0.295 0.639 0.646

Fig. 8. Participants’ average time (minutes) to complete each task

Extending FragOP Domain Reusable Components 29

Second, we analyzed the semi-structured interview results which will be presented at
the end of this section. Finally, the other five post-questionnaire questions results are
used in Sect. 4.4 as a source of information for the validation threads. The summary for
the 21 questions results can be seen in Fig. 9. The highest satisfaction result was about
the “ease of use” of VariaMos with a mean of 4.153 (see Fig. 9a). Therefore, in average
the participants had 4.6 correct answers of a total of 6 when asked about VariaMos and
FragOP functionalities (see Fig. 9b).

Finally, the semi-structured interview showed that in general the participants liked
the software application and saw the potential of this tool and the FragOP approach.
They mentioned that it is a good strategy to reuse the domain components and
assembled them. Some participants think this tool could improve their work at their
companies and appreciated the way the FragOP approach worked. There were also
some recommendations to improve the tool: (i) the graphical interface could be
improved. A participant mentioned that future work could be to move the graphical
interface into a web project. Allowing the use cell phones or tablets to open the
application or to avoid the installation of software programs. (ii) Another participant
suggested to automatically generate the component model based on the component
pool folder information, which will save time.

4.4 Threats to Validity

Participants sample. The number of subjects may seem relatively small. However, the
ISO/IEC CIF for usability tests states “eight or more subjects are recommended” [10].
Conclusion validity. There is a threat that many of the results are not based on
statistical relationships but on qualitative data. However, given that main aim of the
study was to study the behavior and opinions of users of a tool, qualitative research
methods are well suited. The analysis of the collected data still depends on our
interpretation. The work was performed by a single researcher, but the result was
carefully checked by two other researchers. Project size. We selected a basic SPL
project due to target users that participated in this usability test; however, we have
shown in previous sections that the tool also works with complex SPL projects.
Insufficient skills to execute the tasks. This threat was discarded by the participants’

Fig. 9. Participants’ satisfaction question average results - Participants’ correct answers about
VariaMos and FragOP

30 D. Correa et al.

pre-questionnaire results. External factors and lack of documentation. They were
discarded by the results of five post-questionnaire questions. Finally, rigorous experi-
ments with complex SPL projects and SPL industry users should be developed in future
work.

5 Related Work

There are many SPL implementation approaches that support the SPL component
assembling, such as CIDE, DeltaJ, Munge, Antenna, AspectJ, and AHEAD, among
others [2]. However, most of these approaches do not provide a product customization
capability. Literature presents some customization strategies. Kim et al., [12] propose
three strategies: selection, plug-in, and external profile technique. However, these
strategies only work with interface classes and are not applied in SPL scenarios.
Rabiser et al., [13] propose a decision-oriented software product line approach to
support the end user personalization of a system based on its needs. However, the
personalization is limited to what the decision model supports. Pleuss et al., [14]
propose the use of abstract UI models to bridge the gap between automated, traceable
product derivation and customized, high-quality user interfaces. However, it requires to
create abstract UI models with all possible scenarios, and this is only applied to user
interfaces. Other strategies include inheritance, overloading, dynamic class loading, but
not all assets are object-oriented. Finally, Montalvillo et al., [4] developed CUSTOMS,
a visualization utility for FeatureHouse that helps to estimate the product customization
effort, broken down by product and core-asset.

In the usability testing field, Rabiser et al., [15] presented an implementation of the
capabilities in a configuration tool called DOPLER CW. They performed a qualitative
investigation on the usefulness of the tool’s capabilities for user guidance in product
configuration by involving nine business-oriented experts of two industry partners from
the domain of industrial automation. They also presented general implications for tool
developers. Therefore, Teruel et al., [16], presented a usability evaluation of the
CSRML tool 2012; which is a Requirements Engineering CASE tool for the goal-
oriented Collaborative Systems Requirements Modeling Language (CSRML). They
involved 28 fourth-year Computer Science students in the evaluation, which was
reported by following the ISO/IEC 25062:2006 Common Industry Format for usability
tests. They obtained high usability levels, but they also revealed some usability flaws.
We took as a base these reports to elaborate the VariaMos usability test.

6 Conclusions

This paper presents an enhanced version of FragOP, a framework used to design,
implement and reuse domain components in the context of an SPL; which is a mix
between a compositional and an annotative approach. The enhanced version supports
the SPL product customization. Therefore, we improved an SPL tool called VariaMos
to support the FragOP approach. We also included a usability test of VariaMos to gain
insights into how VariaMos supports this approach. The key contributions of this paper

Extending FragOP Domain Reusable Components 31

are (i) the FragOP and VariaMos enhancements, including an improved FragOP
metamodel, FragOP process, and a new customization capability through the use of
customization points and customization files. (ii) An SPL implementation through the
use of the ClothingStores example; which included the derivation of five different
products and an analysis of the derivation results. And (iii) the development of analysis
of a usability test for the VariaMos tool. The test results provided preliminary evidence
that VariaMos is a usable tool that properly supports the FragOP approach. All par-
ticipants completed all of the tasks, and the mean task time was approximately 10 min.
However, we found the VariaMos UI presented some minor issues (related to
responsive design). In the short term, we plan to improve VariaMos to support complex
binding relationships, support other variability models such as Orthogonal Variability
Model (OVM), and improve the VariaMos UI. Finally, as a future work, we plan to
develop more rigorous experiments: (i) to validate the approach benefits, (ii) to com-
pare the different approaches to design and implement the domain components, and
(ii) to develop an industrial case to provide valuable evidence about the benefits and
limitations of VariaMos (FragOP).

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston (2001)

2. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: FeatureIDE: an
extensible framework for feature-oriented software development. Sci. Comput. Program. 79,
70–85 (2014)

3. de Souza, L.O., O’Leary, P., de Almeida, E.S., de Lemos Meira, S.R.: Product derivation in
practice. Inf. Softw. Technol. 58, 319–337 (2015)

4. Montalvillo, L., Díaz, O., Azanza, M.: Visualizing product customization efforts for spotting
SPL reuse opportunities. In: SPLC, pp. 73–80. ACM (2017)

5. Correa, D., Mazo, R., Goméz-Giraldo, G.L.: Fragment-oriented programming: a framework
to design and implement software product line domain components. Dyna 85(207), 74–83
(2018)

6. Mazo, R., Muñoz-Fernández, J.C., Rincón, L., Salinesi, C., Tamura, G.: VariaMos: an
extensible tool for engineering (dynamic) product lines. In: SPLC, pp. 374–379. ACM
(2015)

7. ISO 9241-11:1998: Ergonomic Requirements for Office Work with Visual Display Terminal
(VDTs) – Part 11: Guidance on Usability (1998)

8. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product Lines.
Springer, Berlin (2013)

9. Koscielny, J., Holthusen, S., Schaefer, I., Schulze, S., Bettini, L., Damiani, F.: DeltaJ 1.5:
delta-oriented programming for Java 1.5. In: PPPJ, pp. 63–74. ACM (2014)

10. ISO/IEC 25062, Software engineering—Software product Quality Requirements and
Evaluation (SQuaRE) - Common Industry Format (CIF) for usability test reports (2006)

11. FragOP-Thesis GitHub repository. https://github.com/danielgara/FragOP-thesis. Accessed
21 Jan 2019

12. Kim, S.D., Min, H.G., Rhew, S.Y.: Variability design and customization mechanisms for
COTS components. In: Gervasi, O., et al. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 57–66.
Springer, Heidelberg (2005). https://doi.org/10.1007/11424758_7

32 D. Correa et al.

https://github.com/danielgara/FragOP-thesis
http://dx.doi.org/10.1007/11424758_7

13. Rabiser, R., Wolfinger, R., Grunbacher, P.: Three-level customization of software products
using a product line approach. In: HICSS, pp. 1–10. IEEE (2009)

14. Pleuss, A., Hauptmann, B., Dhungana, D., Botterweck, G.: User interface engineering for
software product lines: the dilemma between automation and usability. In: symposium on
Engineering Interactive Computing Systems, pp. 25–34. ACM (2012)

15. Rabiser, R., Grünbacher, P., Lehofer, M.: A qualitative study on user guidance capabilities in
product configuration tools. In: ASE, pp. 110–119. ACM (2012)

16. Teruel, M.A., Navarro, E., López-Jaquero, V., Montero, F., González, P.: A CSCW
requirements engineering CASE tool: development and usability evaluation. Inf. Softw.
Technol. 56(8), 922–949 (2014)

Extending FragOP Domain Reusable Components 33

	Extending FragOP Domain Reusable Components to Support Product Customization in the Context of Software Product Lines
	Abstract
	1 Introduction
	2 Fragment-Oriented Programming
	3 VariaMos (FragOP) Main Capabilities
	3.1 Assembling Capability
	3.2 Customization Capability
	3.3 Derivation Results

	4 Usability Evaluation
	4.1 Procedure
	4.2 Metrics
	4.3 Results
	4.4 Threats to Validity

	5 Related Work
	6 Conclusions
	References

