
Chapter 3
Waste Biomass Pretreatment Methods

Pretreatment of residual biomass is one of the key elements in integrated conversion
processes such as biorefineries. Biotechnology projects rely heavily on the efficient,
technical, economic, and environmental feasibility of pretreatments. Pretreatment is
a unitary operation that precedes a certain process, and it is not itself the ultimate
goal of the activity. Nevertheless, the inclusion of this step increases the efficiency of
subsequent processes by increasing accessibility to the primordial biomass structure,
facilitating access to enzymes and reagents used in the development of high added-
value products.

The need for cost-effective pretreatment technologies is the highlight of newly
developed biotechnological processes, always seeking treatments that are efficient,
with a high degree of activation of key biomass components, the formation of low by-
product concentrations and low reagent consumption [1]. Among the pretreatment
methods reported in recent literature are physical pretreatments (mechanical, ultra-
sound, microwave, thermal), chemical methods (alkaline, acidic, oxidative), biolog-
ical methods (microorganisms and enzymes), and combined processes that include
two or more pretreatment methods. The mechanisms of action of each method will
be detailed and discussed throughout this section.

3.1 Physical

Physical pretreatment comprises unitary operations designed to modify physical
properties of waste biomass without the addition of chemical reagents or microor-
ganisms. Physical pretreatment techniques include mechanics (grinding, screening,
extruding), ultrasound, microwave, and heat.
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3.1.1 Mechanics

Mechanical pretreatments are widely used to reduce particle size and to increase
porosity and biomass surface area. Grinding and screening are highlighted in the
literature for waste biomass for simplicity and ease of use. The absence of chemical
reagents, as well as the non-generation of inhibitors and toxic products, makes the
mechanical processes attractive, especially when subsequent biological processes
such as bioenergy production or enzyme production are applied. Mechanical meth-
ods are among the most suitable for preliminary treatment of biomass in industrial
expansion, resulting in reduced structure stiffness and crystallinity and increasing
the concentration of available nutrients in biomass cells facilitating the subsequent
processes [2].

Grinding is often used as a preliminary mechanical treatment in combination
with other processes such as heat, ultrasound, chemical treatments, acting on biomass
through physical force, increasing the diffusion of biomass compounds by increasing
surface area and sample uniformity, thereby enhancing system performance [3, 4].
For high lignin structures such as corn husk, when fragmented by particle grinding
of 40–60 mm, the cell wall is destroyed, causing disruption in cell structure such that
cellulose layers become more available, resulting in particles with high reactivity
due to the increase in accessible surface area and due to structural disorder [5].

All processes that occur with biomass are heterogeneous and the reaction rate
and yield to obtain the final product strongly depend on the surface area available
for the reaction. This is the case of lignocellulosic biomass which when applied
in substance extraction processes limits the process of direct diffusion through the
complex lignocellulosic matrix. As such, large-scale processing usually includes
first-stage milling [1].

The most widespread equipment in the milling process is knives and hammers
that differ depending on the size of the milling bodies; however, there remain others
such as disk mills, ball mills, bead mills, and vibration mills.

In the hammermill, the grinding process is performed in two steps. The first occurs
by the impact of biomasswith the grinding bodies, and in the second, the rotor presses
the particles against the screen mesh of the equipment, where the material is crushed.
This equipment is widely used and has high productivity and relatively low power
consumption. The main limiting factor is that reducing the size of the screen mesh
reduces the performance of the equipment, creating the difficulty of developing a
mesh capable of supporting the mechanical load during grinding. Nevertheless, this
is the most commonly used equipment for preliminary biomass treatment, reducing
particle sizes from tens of centimeters to tens of millimeters [1].

Destruction models and force theories for biomass grinding processes are myriad.
In the application of these devices, the mechanism that explains particle reduction
is based on the type of mechanical action, and the same equipment involves several
mechanisms. The main types of action in grinding processes are cleaving, shearing,
crushing, cracking, cutting, sawing, abrasion, limited impact, and free impact [1, 6].
For the process of cleavage, shearing, cracking, and sawing, it is necessary that the
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biomass particles have sizes comparable to the equipment working body. With units
above millimeters, these are generally used for primary biomass preparation. The
crushing action is suitable for fragile biomass. Cutting and sawing reduce particle size
by several centimeters and are usually applied in robust biomass grinding equipment.
Finally, actions such as cutting, abrasion, and impact are used to grind rigid biomass
such as plants [1].

Pretreatment using a knife mill has been described by Lee and Mani [7] as fiber
shear action for nanofibril cellulose production, with relatively lower specific energy
expenditure than other equipment used for this same process. Pirich et al. [8] com-
pared various mechanical pretreatment processes, including the colloid milling pro-
cess, characterized by grinding action, and shown to be essential in the isolation of
cellulose nanofibrils. In this context, it is important to highlight that the economic
costs involved in the grinding processes do not make the process unfeasible and
must be evaluated for each reality and biomass varying for each production; there-
fore, the optimization of processes and characteristics of biomass determine much
of the consumption of this stage.

Another mechanical process is extrusion, used for fractionation of residual
biomass. This is a simple process, with mild temperature conditions, not neces-
sarily needing the addition of chemicals, and operating continuously. This process
is effective and versatile, effectively mixing pretreated biomass. The yield is contin-
uous, and there is the possibility of adaptation to various process configurations [9,
10].

In the extrusion process, the biomass passes through an extrusion barrel, where
it is subjected to high shear. As a result, regions of high pressures and temperatures
develop that cause the defibrillation and shortening of the fibers that compose the
biomass [10–12]. During the process, themoisture of the biomass comes out of steam
as a result of the sudden drop in pressure, causing pore expansion and opening [12,
13]. The high mechanical shear developed inside the extruder barrel breaks down
the biomass structure, and this process facilitates contact between residual biomass
structures and subsequent processing agents [11, 12].

Extrusion stands out among the mechanical methods because it is a viable tech-
nology, without generation of by-products, acting under mild conditions, reducing
the degradation of compounds, and capable of fractionation with high solids loads. It
works with considerably larger biomass sizes than other methods, leading to greater
economic profitability than processes aimed at reducing biomass size [10, 12].

Compared to residual wheat and soybean meal biomasses, mechanical milling
processes using hammer mills and extrusion have shown to be promising. The extru-
sion process showed higher yields compared to residual wheat bran biomass. Higher
temperatures for shorter times and lower temperatures for longer times gave rise to
extrusion process with higher yields [11].
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3.1.2 Ultrasound

Ultrasonic energy accomplishes pretreatment process by cavitation, the result of the
propagation of strong waves of frequencies higher than 20 kHz that propagate lon-
gitudinally in liquid with alternating pressure periodically in a continuous cycle of
rarefaction and compression; this generates negative and positive pressures, respec-
tively [14–16]. As acoustic energy propagates in the liquid and generates negative
pressures in the medium, gaseous microbubbles form and fill with vapor; dissolved
gases distribute throughout the liquid [15, 17]. The negative pressure that results in
microbubble formation is called the cavitation threshold [15]. Microbubbles expand
and retract, reaching a maximum diameter of 4–300 mm, varying according to the
frequency of the ultrasonic wave pulse. This phenomenon is called stable cavitation
when microbubbles are generated under conditions where the maximum sound pres-
sure. In the rarefaction cycle, it is not strong enough to force the bubble to expand
its collapse radius [15, 16, 18]. The compression and rarefaction (radial oscillation)
cycles due to the pressure oscillation in the medium caused by the ultrasonic waves
cause themicrobubbles to continue to growover a few cycles until they reach a critical
diameter, high temperature (5000 K), and high pressure (100 mPa), enter an unsta-
ble stage, and collapse violently, generating a microjet with dominant shear stress,
turbulence, increased pressure and temperature at the site. This process is referred
to as “transient cavitation” and is referred to when acoustic pressure exerted on the
microbubble causes it to expand at its resonant radius amid several acoustic cycles,
resulting in collapse. This force is sufficiently strong to destabilize structures, disrupt
cells, and increase mass transfer [15, 16, 19–21]. Collapse occurs within approxi-
mately 400 μs [16, 22].

Cavitation occurs in a liquid system, and when applied to solid biomass emerging
from the liquid, the cavitation bubbles collapse and generate high-velocity microjets
toward the biomass surface, causing flaking, erosion, breakdown of cell walls, so as
to increase the diffusion of biomass matrix compounds, inducing intense macrotur-
bulence, micromixing, and consequent collision [15, 23]. These phenomena increase
particle reactivity. Mass transfer is also increased because of increased surface area
[23].

Ultrasound describes the result of the transformation of electrical energy into
thermal and vibrational energy that is then converted into cavitation and is also
lost by sound reflection. It is through the combination of pressure, temperature, and
turbulence that we obtain a variety of effects in ultrasonic systems in the most diverse
biomass and end products.

The efficiency of ultrasound in residual biomass pretreatment techniques depends
on several factors. Solvent viscosity is a parameter that should be considered when
using ultrasound in pretreatment processes, because cavitation requires negative
pressure that must overcome the natural cohesion forces of the liquid. Cavitation
is diminished in viscous liquids, where the natural cohesive forces are stronger than
the negative pressure of cavitation formation. This factor may reduce the process
yield. To increase the cavitation threshold, simply increase the viscosity of the liquid
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[14, 24–26]. Increasing polysaccharides in the solvent may reduce the cavitation pro-
cess by increasing the viscosity of the medium [25]. The increase of the solid/liquid
ratio in a system pretreated with ultrasound can be achieved to a point where the
increased solids in the medium correlate with decreased system yield because of the
increase of viscosity, resulting in difficulty of cavitation formation [24].

Another factor that affects the process and should be noted with caution is the
temperature of the solvent, which changes viscosity and surface tension, inducing
an increase in vapor pressure. As a result, the rate of chemical reactions changes,
affecting the threshold and intensity of cavitation and resulting in a greater num-
ber of bubbles that will collapse less violently and reduce the effects of cavitation
processes [14, 23]. High temperatures near the boiling point of the solvent used in
the process may negatively affect ultrasound pretreatment [23]. Optimization of the
process temperature is important, considering that, for residual biomass, ultrasonic
pretreatment can be conducted at relatively high temperatures giving higher yields.
Yield decreases would occur only in regions near the boiling point of the solvent.

Two devices apply conventional high-power ultrasound pretreatment techniques:
ultrasonic baths and probes. These systems use a transducer as a power source.
The ultrasonic bath is widely used for its simplicity, low cost, and ability to treat
several samples simultaneously. This equipment usually operates at 40 kHz and has
temperature control. The amount of energy dissipated in the ultrasonic bath is not
easily quantifiable and depends on the size of the equipment, the vessel in which the
reaction occurs, and the position of the samplewithin the tank. These factors influence
the reproducibility and potency of ultrasonic waves in pretreatment samples [23].

The ultrasonic probe is more powerful than the bath because of the intensity
provided by the system that is delivered only by the probe tip that releases energy
directly into the solvent where the biomass is emerging, resulting in less energy loss
from the cavitation waves. The selection of the ultrasonic probe model should be
made by studying the application, biomass, and volume desired [23].

3.1.3 Microwave

Microwave irradiation is a widely used process for biomass pretreatment. Electro-
magnetic irradiation of microwave equipment operates in the range 0.3–300 GHz,
within the electromagnetic spectrum between infrared and radio frequency [27, 28].

Microwaves work via twomechanisms: thermal and non-thermal. Thermal effects
are governed by temperature differences, and non-thermal effects (acceleration,
change in reactivity and selectivity of biomass) refer to the circumstances of a synthe-
sis that are microwave conditions [28]. There are arguments against the non-thermal
effects, particularly that microwave photon energy (0.0016 eV) is not sufficient to
break chemical bonds [29].

The electrical component of the electromagnetic field is responsible for heating
(thermal effect) during the microwave process through three primary mechanisms:
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dipolar polarization, ion conduction, and interfacial polarization. Generally, these
mechanisms occur simultaneously [28–30].

The dipolar polarizationmechanism is the primary principle ofmicrowave heating
that involves the process of dielectric loss heating [30]. When biomass is exposed to
microwave frequency, a dipole sensitive to external electric fields tries to align with
the applied electric field. When this applied field oscillates, an attempt is made to
realign the dipole field to the alternating electric field, though in the presence of a
field. High-frequency electrical power does not have enough time to respond to the
oscillating field, causing a phase delay that results in fields collidingwith one another.
In this process, the energy is dissipated as heat by molecular friction and dielectric
loss [29, 30]. The amount of heat generated during this process is directly related to
the ability to align between the matrix and frequency of the applied field. That is,
there is a quick orientation with the applied field, and if the dipole has sufficient time
to realign itself, warming will occur [29].

The interfacial polarization mechanism, also called Maxwell–Wagner Polar-
ization, should be considered when applying the microwave process to non-
homogeneous biomasses such as biological materials in suspensions or colloids. This
process consists of components with varying conductivities and dielectric constants.
In the interface area of these components, polarization induces the formation of a
charge accumulation region that causes field distortions and dielectric loss, resulting
in heating [28].

The conduction mechanism is the heating principle that involves the creation of
an induced electric current resulting from the movement of mobile charge carriers
(electrons, ions, etc.) under the influence of amicrowave electric field. These induced
currents are responsible for heating as a result of electrical resistance caused by
collisions between charged molecules [30]. The effect of conductivity has a greater
influence on system warming than does the dipolar rotation mechanism [28].

Microwave heating differs from conventional heating in that, by means of ion
conduction and dipolar polarization mechanisms, the heat wave is generated from
within the biomass structure evenly and rapidly [31]. The use of microwaves as a
pretreatment technique is based on the heating of biomass by “microwave dielectric
heating,” which depends on the ability of materials to absorb microwave energy
and convert it into heat. The heating characteristics of the biomass subjected to
microwave pretreatment depend on the dielectric properties of the material [27–29].
The dielectric properties of a material are a function of the dielectric constant and
the dielectric loss factor. The first relates to the ability of the material to be polarized
by an electric field and represents the amount of energy that is stored in the material;
the second suggests the efficiency with which electromagnetic energy is converted
to heat [28].

The use of microwaves as lignocellulosic pretreatment has been performed over
the last 30 years. In some cases, transitions from laboratory to pilot scale have already
been seen [31]. Compared to conventional heating, this technology has low sugar
degradation and by-product formation [32].
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3.1.4 Hydrothermal

Thermal pretreatment processes are techniques based on the use of thermal energy
to cause agitation and molecular changes in the structure of biomass that may cause
defibrillation, chemical bond cleavage, increased surface area, and reduced recalci-
trance.

Of all biomass pretreatment technologies, steam explosion has been considered
as a potential process for numerous products, primarily because of the low or non-
existent chemical consumption, low monosaccharide degradation under mild pro-
cess, and neutral conditions. The pH that prevents equipment corrosion as well as
the energy consumption is relatively low compared to those of other physical pretreat-
ment processes. Nevertheless, steam explosion has disadvantages such as inhibitor
generation and weight loss of the initial dry mass of biomass [33].

Steam explosion operates at temperatures of 140–240 °C and high-pressure condi-
tions at incubation times of seconds to 20 min. The mechanism of action is the result
of the mechanical effect of an adiabatic expansion of water absorbed by biomass and
the chemical effect of the action of organic acids released during the process, occur-
ring at the first moment of the solubilization of hemicellulose at high temperatures
and pressures [34, 35]. The mechanical effect results from the rapid decompres-
sion of the equipment where the process occurs, resulting in the internal explosion
of biomass fibrils disrupting the structure of the lignocellulosic complex and caus-
ing structural changes, particle size reduction, and biomass pore enlargement [33,
35–37]. The pressure and temperature conditions cleave the hemicellulose and lignin
bonds, and the secondary explosion caused by the sudden reduction in temperature
and pressure disrupts the biomass structure, increasing the solid surface area and
causing a disturbance in the crystalline region of the structure [35]. At the end of the
steam explosion process, a solid fraction containing partially modified cellulose and
lignin is obtained, with a low pH liquid fraction containing oligomers, monomers,
organic acids, and phenolic compounds [34].

Another promising technique for thermal pretreatment is liquid hot water (LHW),
based on the application of high pressures to maintain liquid water and temperatures
from 160 to 240 °C. This is a process with high removal capacity of the hemicellulose
fraction as well as changes in lignin structure of the lignocellulosic complex without
the addition of chemical reagents, making cellulose more accessible for hydrolysis
processes [34, 38]. It has been suggested that,when temperature andpressure increase
in the water, there is penetration in pores of the biomass, causing destructuring that
leads to acidification of the environment. The latter is caused by the release of organic
acids present in the structure, especially acetic acid that acts on hydrolysis of the
structure during the process, releasing mainly oligosaccharides in the liquid fraction
[34, 39, 40]. The main difference between the LHW and the steam blast technique
is that the former does not use rapid decompression for structure defibrillation.

Steam heat pretreatment is a technique with similar mechanisms to the previous
ones; the primary difference is the arrangement of the biomass in the reactor, because
the material remains at the top, having no direct contact with the water in the liquid
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state. This crucial difference causes steampretreatment to allow higher solids charges
than steam blast and LHW techniques. The hemicellulosic fraction is the main target
of this type of pretreatment and is removed by contact with steam at high pressure
and temperature [34, 41].

Process parameters are crucial for the results obtained in the thermal pretreatment
technique, with temperature, pressure, and incubation time being the main factors to
be studied. These techniques are considered green and cost-effective because of the
process yield and not the chemical application.

3.2 Chemicals

Chemical pretreatment is operations designed tomodify physical and chemical prop-
erties of residual biomass in the presence of a chemical catalyst aiming for confor-
mational changes in the biomass structure such as cleavage of bonds and generation
of specific products. The techniques of chemical pretreatment include alkalis, acids,
organosolv, ionic liquids, and oxidative processes.

3.2.1 Alkaline

Alkaline media are popularly used for pretreatment of biomass because they are
relatively less expensive than other reagents and have less compound degradation.
Among the most widely used bases are sodium hydroxide (NaOH), calcium hydrox-
ide (Ca(OH)2), potassium hydroxide (KOH), and ammonium hydroxide (NH4OH).

The efficiency of alkaline pretreatments is associated with the ability of the base
to perform biomass delignification and reduction of cellulose crystallinity. It is gen-
erally associated with the pretreatment of lignocellulosic biomass for bioenergy pro-
duction. In addition to acting efficiently in delignification, alkaline pretreatment has
advantages such as lower sugar degradation, especially compared to other chemical
treatments such as acids or oxidizing agents, and can be conducted at low tempera-
tures and pressures. Nevertheless, depending on the complexity of biomass, longer
periods may be required for higher yields [42, 43].

Table 3.1 displays the bases applied in pretreatment processes, aiming to demon-
strate recent applications in biomass for various biotechnological purposes. All alka-
line pretreatment techniques in lignocellulosic biomass have the common effect of
increasing biomass digestibility by altering the lignocellulosic complex.

The action of alkaline pretreatments remains much discussed in recent works. It
is believed that the mechanism of alkaline pretreatments in lignocellulosic biomass
is based on two principles: the swelling of the biomass structural complex and the
reduction of crystallinity, resulting in partial cleavage of lignin structure and solubi-
lization of hemicellulose acetyl groups [50, 51]. Removal of hemicellulose is relevant
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Table 3.1 Pretreatment processes applied in biomasses for biotechnological purposes

Reaction Reaction
conditions

Biomass Main effect Reference

Sodium
hydroxide

2–8% (m m−1)
NaOH
35, 55, and
121 °C
24–24 h; 1 h

Pennisetum
hybrid

– Reduction of hemicellulose
and lignin content and
increase of cellulose
content

– Increased surface porosity
– Breakage of intra- and
intermolecular hydrogen
bonds and
methyl/methylene of
cellulose

[44]

Sodium
hydroxide

0.5, 1.0 and
2.0% p v−1

NaOH
121, 50 and
21 °C
0.25–1, 1–48 e
1–96 h

Switchgrass – Reduction in lignin was
closely related to
temperature:
85.8%—121 °C,
77.8%—50 °C,
62.9%—21 °C, at higher
NaOH concentrations and
longer times

[45]

Calcium
hydroxide

0.02–0.12 g g−1

Ca(OH)2
25–55 °C
7–28 days

Spartina
alterniflora

– The pH has been
neutralized in some
samples by acids formed in
the process due to the
breakdown of ester bonds
and neutralizing structural
carboxylic acids formed by
deacetylation of
hemicellulose

– Selective removal of
hemicellulose and lignin,
with cellulose recovery
yield between 91 and
98.7%

[46]

Ammonium
hydroxide

0.5–50% mass
NH3
30 °C
4–12 weeks

Corn straw – Preservation of
carbohydrates

– 55% delignification with
the highest NH3 load

– Increased digestibility of
biomass in the enzymatic
process

[47]

Potassium
hydroxide

0.5–12.5 g KOH
20 °C
24 h

Wheat straw – Lignin and hemicellulose
content decreased with
increasing KOH load

– Sugar concentration after
enzymatic hydrolysis of
pretreated biomass

[48]

(continued)
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Table 3.1 (continued)

Reaction Reaction
conditions

Biomass Main effect Reference

Sodium
hydroxide

0.07 g NaOH/g
of biomass
140 °C
30 min

Corn straw – High efficiency in lignin
removal from biomass

– Low structural alteration of
lignin in
lower-molecular-weight
compounds

– High concentration of
lignin in the pretreatment
liquid fraction

[49]

to the effect of pretreatment on cellulose structure. Hemicellulose losses occur for
degradation products that may have an inhibitory effect on the subsequent process
[50].

Cellulose structure is disturbed by the action of alkaline pretreatment because
of the action of solvation process forces, which, in the presence of swelling of the
lignocellulosic structure and increase of the internal surface area, causes intermolec-
ular forces of the cellulose to be smaller than forces due to solvation, disrupting
the hydrogen bonds of adjacent chains of the cellulosic structure [43]. This process
may favor the penetration and propagation of reagents and enzymes in subsequent
processes. It is common for the cellulose crystallinity index to increase [42, 44] as
a result of the removal of amorphous cellulose that is more susceptible to alkaline
hydrolysis.

The intermolecular saponification process is a possible action of alkaline pretreat-
ment, and this is the process that results in the removal of lignin. The increase in the
internal biomass surface allows the alkaline agent to access the xylan-linked ester
bonds present in hemicellulose with other components. These breakdowns produce
charged carboxyl groups that cleave bonds with lignin and other lignocellulosic com-
plex compounds. It is these structural cleavages that allow the breakdown of cellulose
adjacent hydrogen bonds reported in the solvation process [42, 43, 50].

In particular, calcium hydroxide promotes lignin reduction through the formation
of a calcium–lignin complex, where calcium ions (two positive charges) tend to
attract negative lignin charges under alkaline conditions because of ionization of
functional groups, and this mechanism avoids intensive lignin solubilization [45,
52]. However, increased calcium loading may reduce lignin dissolution and may
attenuate carbohydrate loss, possibly due to the binding of calcium ions with these
compounds under alkaline conditions. [45].

Sodium hydroxide is the most often used catalyst, with high delignification effi-
ciency, increased biomass digestibility, relatively fast reaction rate, less formation
of biological process inhibitors, and increased surface area of biomass [53]. Never-
theless, between sodium hydroxide and calcium hydroxide, the latter is preferable;
because of its safety profile, relatively lower cost, ease of recovery, compatibilitywith
oxidizing agents, and selectivity for the structure of lignocellulosic biomass [46, 51,
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54], the residence time of calcium hydroxide pretreatment needs to be longer, as
noted in the studies reported in the table below. This factor has to do with the low
solubility of the reagent that requires longer residence time to achieve the same yield
as the other alkali reagents discussed in this section.

Ammonia-based pretreatments have been highlighted for easy reagent recovery,
non-corrosive and non-toxic nature, economically viability, and wide use in fertil-
izers. In addition, their use and industrial recovery are well-established procedures,
with viable processing options for recovery. The effects of ammonia on biomass
include delignification, increased surface area, and structural modification of cellu-
lose and hemicellulose [55, 56].

Alkaline pretreatments are interesting for high lignin and hemicellulose residual
biomass, as well as in processes where the preservation of carbohydrate structure is
desired. These methods are easy to apply, with low generation of inhibitors, and can
be applied to various biotechnological processes.

Recent studies have evaluated the use of alkaline pretreatment (NaOH) in maize
straw for chemical production. The authors used SEM and found that cell walls of the
structure were swollen and that the rupture caused by the pretreatment of biomass
exposed the internal areas of the structure, triggering an increase in the porosity
of the material. The authors were able to remove between 63.90 and 81.91% of
lignin at temperatures at 60 °C, with 1-h pretreatment, and lowNaOH concentrations
(0.25–0.75 mol dm−3, respectively) [57].

Hashemi et al. [58] studied the effects of ethanolic ammonia pretreatment on sug-
arcane bagasse for biogas production. The authors observed that lignin–carbohydrate
and lignin bonds were hydrolyzed and lignin was removed from the biomass. They
also found that glucan and xylan recovery were higher with pretreatment supple-
mented with ethanol than with ammonia alone. The effect of ethanol on this system
is believed to cause soluble xylan to precipitate into solid structures that facilitates
the recovery of this sugar for anaerobic digestion processes [58, 59]. Another similar
work defined pretreatment for ethanol and aqueous ammonia immersion, now focus-
ing on corn straw biomass, and found that the effect of ethanol contributed to the
preservation of cellulose in solid form. The addition of ethanol at 20% (by weight)
resulted in an optimal concentration for glucan and xylan digestibility [59].

Alkaline pretreatment (NaOH) in wheat straw reduced the lignin fraction by 36%
and significantly reached hemicellulose (35% reduction) after pretreatment [60]. The
predicted effects for the reduction of lignin and hemicellulose were associated with
saponification and cross-linking cleavage processes between xylan and lignin that
also caused increases in internal surface area, as previously reported [61, 62].

3.2.2 Acids

Pretreatment techniques that use acids as catalysts are commonly used for various
biomasses at high or diluted concentrations, with inorganic acids such as sulfuric
acid (H2SO4), hydrochloric acid (HCl), and phosphoric acid (H2PO4) being most
common.



30 3 Waste Biomass Pretreatment Methods

Pretreatment with an inorganic acid in lignocellulosic biomass is widespread on
the industrial scale, because it is a chemical reaction facilitated in complex structures
and because the process is efficient in fractionating the hemicellulose of the biomass
structure by increasing the surface area and accessibility of the biomass structure
in downstream processes [32, 63]. Furthermore, this pretreatment may be useful in
dissolving lignin in lignocellulosic biomass, even though it generally acts less effi-
cientlywith respect to removal of this compound compared to hemicellulose cleavage
[64]. Nevertheless, biological process inhibitors such as alcoholic fermentation for
ethanol production form during hemicellulose and lignin cleavage, solubilization,
and degradation, including furans because of dehydration of monomers and pheno-
lic compounds [65].

When the technique is performed by applying concentrated acid, the temperature
is generally low and results in high yield of monosaccharides in lignocellulosic struc-
tures derived from the cellulose structure. However, the hydrolysis rate of amorphous
cellulose is slow compared to that of hemicellulose that has an amorphous structure;
therefore, the concentrated acid technique generates high concentrations of furan
inhibitors due to dehydration of monomers of the chemical structure of hemicel-
lulose. Another disadvantage is equipment corrosion, high chemical consumption,
high toxicity for the environment, and high energy demand for acid recovery [43].

Another application of the chemical pretreatment is the hydrolysis using dilute
acid, where high-temperature and high-pressure applications are required to increase
the yield from crystalline cellulose, consuming fewer chemicals than the prior tech-
nique. However, this usually results in the degradation of sugars because of more
severe temperature and pressure conditions, causing solubilization of hemicellulose
chains and dehydration of pentoses and hexoses in inhibitors [43, 66–68].

With the search of continuous advances in biomass pretreatment processes,
organic acids have become alternatives to inorganic acids for some biotechnological
processes, including dicarboxylic (malic, oxalic, fumaric) andmonocarboxylic acids
(acetic acid). Compared to inorganic acids, organics have advantages such as lower
equipment corrosive capacity and less environmental damage, lower energy demand
for compost recovery, longer long-chain cellulose insulation capacity, lower inhibitor
generation, and higher pH in relation to inorganic acids [43, 69, 70]. Organic acids
are an efficient alternative to the pretreatment of high cellulose and hemicellulose
biomasses such as aquatic plants and rice straw [71, 72].

The interaction mechanisms between biomass and acid in pretreatment processes
strongly depend on the factors involved in the process, especially the temperature
and composition of the material subjected to pretreatment. The main purpose of acid
application in biomass pretreatment reactions is to weaken or disrupt the chemical
structure, being generally based on hemicellulose hydrolysis and reduction of crys-
tallinity of other compounds [73, 74]. It is suggested that this action occurs through
the cleavageof aryl ether bonds, a set of abundant bonds in ligninmacromolecules that
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have low binding energy that facilitates direct cleavage in this branch. Through cova-
lent bonds, lignin remains in the lignocellulosic complex associatedwith polysaccha-
rides, especially hemicellulose. Lignin cleavage intomacromolecules causes depoly-
merization of biomass and exposes the structural chain of hemicellulose and cellu-
lose, facilitating access to hydrolysis of these polysaccharides [75–78]. Under opti-
mized process conditions, it is possible to remove lignin without causing severe
disruption of the monosaccharides of interest from cellulose and hemicellulose. In
processes with dilute acid applied at high temperatures, the system is influenced by
the thermal process that results in pore opening in the biomass structure; cleavage of
the structure is performed by acid as the chemical catalyst of the process [50].

Application of acids in the pretreatment process is a widely explored technique,
with established industrial processes; there nevertheless remains a need for improve-
ments aimed at cost reductions, lower generation of process inhibitors, higher yields,
less degradation of essential compounds in the production system, lower reagent con-
sumption, and reduction of environmental impacts.

3.2.3 Oxidizers

Oxidative pretreatment techniques are performed using agents such as hydrogen per-
oxide (H2O2), ozone, and oxygen, involving processes with high yield in biomass
delignification. These techniques are associated with electrophilic substitution pro-
cesses, chemical bond displacement, alkyl-aryl ether bond cleavage, and/or aromatic
ring cleavage [4, 50, 79].

Oxidative processes occur because of the high reactivity of these oxidizing agents
to aromatic rings. They have a direct effect on lignin structure, and they consequently
access the hemicellulose structure of the lignocellulosic complex. Because there is
no selectivity, for the chemical structure of lignin, these oxidizing compounds can
aggressively attack hemicellulose and cellulose, causing loss of valuable compounds
to the downstreamprocess; therefore, strict control in use of this technique is essential
[4, 50].

Hydrogen peroxide is a widely applied oxidizing agent for this technique and has
great potential for pretreatment of biomass, mainly because it leaves no residue in the
material as it degrades in oxygen and water [79, 80]. Even so, its lack of selectivity
can lead to high concentrations of inhibitors from lignin and hemicellulose [50].

The H2O2 delignification potential is related to the release of hydroxyl ions and
superoxides released by reagent degradation at pH 11.5–11.6, a range determined by
Gould [81], who demonstrated that at pH less than 10 and greater than 12.5, there is
no efficiency in the pretreatment process of lignocellulosic biomass by H2O2.

The mechanism of action of H2O2 in lignocellulosic biomass is the result of the
presence of hydroxyl ions and superoxides released in the degradation of H2O2 that
have high reactivity, resulting in the immediate cleavage of bonds with low energy
activation in the lignocellulosic complex, resulting inmass loss of the structure [4, 35,
79]. The H2O2 concentration should be greater than 1%, and the reagent-to-biomass
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ratio should be 0.25 for good yields [81]. In addition to the loss of lignin by cleavage
resulting from the release of reagent ions, cleavage of the hemicellulosic structure
was reported for pretreatment of lignocellulosic biomass by H2O2 and solid with
high cellulose percentage [80].

Wet oxidation is an oxidative pretreatment technique where oxygen is injected
into the liquid phase under high temperatures (120–325 °C) and high pressures
(0.5–20 MPa) to increase oxygen solubility and velocity of reaction, leading to con-
tact biomass oxidation, resulting in the formation of organic salts, simple biodegrad-
able compounds, or complete oxidation forming carbon dioxide andwater [4, 82–86].
The reaction mechanism of the wet oxidation process in relation to biomass is gen-
erally explained by free radical chain reactions in the system and/or by reaction
pathways based on self-catalysis by the release of intermediate products of structure
degradation of biomass such as acetic acid and formic acid [84, 87, 88].

Ozonolysis is a promising oxidative pretreatment technique based on the use of
ozone to reduce biomass recalcitrance. It is widely studied for bleaching processes
in the pulp industry and for wastewater treatment, and it is currently gaining promi-
nence as an alternative for pretreatment of lignocellulosic biomass [89]. The ozonol-
ysis technique is considered green because ozone is a powerful oxidant with high
oxidation potential in contact with biomass and when decomposed forms oxygen
and can be safely released into the environment; the system is run at environmental
temperatures and pressures [90, 91].

Ozone is highly reactive to lignin; however, like other oxidative reagents, it has low
selectivity and can react with carbohydrates and other compounds, causing degra-
dation of products of interest to the downstream reaction system [89]. The reaction
between ozone and lignocellulosic biomass is thought to bemediated bymechanisms
involving C–C bonds and cleavage of aromatic centers and glycosidic bonds [89, 92].
High ozone reactivity is a result of electron deficiency in a terminal molecule during
resonance, directly affecting compounds with high electron density (C–C bonds and
aromatic rings), resulting in attack on lignin and carbohydrate structures [89, 91, 93].
Travaini et al. [94] studied sugarcane biomass pretreated with ozone and reported
partial attack of insoluble lignin, transforming it into soluble lignin, with loss of total
lignin, and demonstrating the efficiency of delignification in ozonolysis process.

The application of this technique has advantages such as low generation of
inhibitory compounds and lowdegradation of hemicellulose and cellulose undermild
and mild operating conditions. Usually, ozone is produced and used on site, reduc-
ing the need for reagent transport. Furthermore, there is no need for the addition of
chemical catalysts; this reduces pollution by depleting residual ozone as oxygen. By
contrast, ozone has exothermic characteristics that may require a cooling system; it
is highly reactive, flammable, and corrosive, requiring resistant materials for reactor
construction [89].
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3.2.4 Ionic Liquids

Ionic liquids (ILs) are pure salts with low melting points (<100 °C), composed
of organic cations and organic or inorganic anions. ILs with melting points below
room temperature are known as ionic liquids. Most ILs are non-flammable and have
low or negligible vapor pressure, chemical, and thermal stability, and their physical
properties can be adjusted for a specific task by varying the cation and anion amounts
[95].

There are several types of ILs, including acidic ionic liquids (AILs) that turn can
be subdivided into Lewis acidic ionic liquids (LAILs) and Bronsted acidic ionic
liquids (BAILs) [96]; protic ionic liquids [97], and dicationic ionic liquids [95].

The mechanism of action of ILs in biomass usually involves lignin attack, dis-
solving it by the deconstruction of the lignocellulosic matrix by breaking the bonds
between the basic units. Lignin consists of seven different types of linkage bonds,
including β-O-4, α-O-4, β-5, 5-5, 4-O-5, β-1, and β-β. However, the β-O-4 bond
accounts for between 50 and 60% of total bonds. During cleavage of the β-O-4 bond,
an intermediate β-1 interlock is formed prior to further degradation, while the β-5
bond is converted to stilbene. Stilbene is a comparatively non-reactive and colorless
compound initially present in lignin that is insoluble in water and has mainly two
isomers [95].

According to molecular dynamics simulations, the interaction between ILs and
biomass depends to a large extent on IL solubility [98]. Lignin degradation perfor-
mance through ILs depends on solvation parameters, as predicted by theKamlet–Taft
solubility model. The model is widely used to predict three empirical parameters of
IL polarity in biomass pretreatment: hydrogen-bond acidity, hydrogen-bond basicity,
and dipolarity/polarity [99].

Because of their low vapor pressure, ILs are thought to be green alternatives to
volatile organic solvents. ILs that contain anions with high hydrogen-bond basicity
such as chloride, phosphates, phosphonates, and carboxylates are excellent solvents
for cellulose dissolution [100]. They also have high potential for energy-efficient
biomass pretreatment, recyclability, and various properties that can be adjusted to
the product that needs to be obtained. Some liquids can be prepared from renewable
biomass raw materials [95]. One of their disadvantages is that liquids can become
more viscous in pretreatment processing, making them difficult to use and opening
up their operational processes [101]. Anther difficultly with pretreatment with ionic
liquids is that the largest of these is toxic to cellulase and should be removed prior
to subjecting the biomass to enzymatic hydrolysis [102].

Pretreatment of lignocellulosic biomass generally involves heating the dry and
milling biomass to moderate temperatures, containing the excess ionic liquid in
question, such that the LI can be recycled later. These pretreatment processes must
be further refined, modified, optimized, and expanded. This process has been studied
for many years [100].
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Studies have reported successes in biomass pretreatment experiments using
IL. Da Costa Lopes et al. [101] reported that lignin content and cellulose crys-
tallinity decreased significantly when wheat straw was treated with 1-ethyl-3-
methylimidazole acetate. Monosaccharide yield increased to 81–97%, and the liquid
has been reusedmore than 20 times. The fractionation of completely dissolved wheat
straw materials led to cellulose-rich and hemicellulose-rich components. Pretreat-
ment also produced high-purity lignin [103].

Semerci and Güler [97] investigated IL 1-butylimidazolium hydrogen sulfate
(HBIMHSO4) as pretreatment of cotton stalks. They used 20% (mm−1) of water and
15% (m m−1) of biomass at 120 °C for four hours. Pretreatment resulted in signifi-
cant structural changes in biomass. The lignin content of cotton stalks was reduced
by 35%, and the cellulose content increased from 36 to 55%. Enzymatic hydrolysis
of biomass increased almost fivefold despite an increase in biomass crystallinity.
Morphological changes in cotton stalks observed using SEM analysis revealed dif-
ferences in composition and enzymatic accessibility of biomass samples subjected
to pretreatment.

3.2.5 Organosolv

The pretreatment technique using organosolv has applications for many compounds
including methanol, ethanol, acetic acid, peracetic acid, and acetone, being mixed in
water and exposed to biomass. This technique is notable for high yields in the removal
of lignin and hemicellulose from lignocellulosic complexes, generating substances
of high purity as well as keeping the cellulose solid and relatively intact [104].

The action of organosolv in lignocellulosic biomass pretreatment processes occurs
through the separation of the lignocellulosic complex in the cleavage of internal lignin
and hemicellulose bonds that are isolated in low-molecular-weight fragments and
generally dissolved in the supernatant. Cellulosemaintains solid structure susceptible
to hydrolysis processes [77, 105]. The process of removing lignin and hemicellulose
structure increases pore volume in biomass and surface area and reduces recalcitrance
[105].

Biomass pretreatment with organosolv is a promising technique for the genera-
tion of high-purity, low-molecular-weight lignin and xylose polymers. This structural
fractionation is directly related to the effects of solvent property on delignification
and precipitation. The use of organosolv in process integration concepts is compelling
because it generates purity by-products that can be used for various purposes [104,
105]. Organosolv has high economic value; therefore, the use of the pretreatment
technique depends on the reagent recovery processes, usually performed by distilla-
tion and recycling to the system, considerably increasing energy consumption and
requiring high throughput at this stage to make the technique viable [104]. Another
obstacle to the application of the technique is the need for extreme rigor to avoid
solvent volatilization owing to the high flammability potential of these substances
[77, 104].
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To reduce the energy consumption of the operation of this technique, some inves-
tigators addressed the addition of a catalyst, usually an inorganic acid, to improve
the delignification process and to increase the efficiency of the technique [77, 104,
106]. The technique was applied at high temperatures (>185 °C), where the release
of organic acids from the structures is believed to act as a catalyst in the process
of rupture and stabilization of lignin macromolecules [107]. In this context, it is
understood that the pretreatment process with organosolv can be evaluated in three
fractions, the lignin fraction, the solubilized hemicellulose fraction, and the solid
medium cellulose fraction.

The most commonly used organosolv in pretreatment techniques are alcohols,
mainly methanol and ethanol, because of their low boiling point, facilitating the
recovery process and generating low acquisition costs. High-boiling alcohols were
also studied, although they require high energy consumption for recovery. Other
compounds such as organosolv (e.g., formic acid and acetic acid), organic peracids
(e.g., peracetic acid and pericetic acid), cetone (e.g., acetone), and others such as
dioxane, phenol, and ethylenediamine have also been applied in the technique [104,
106, 107].

The mechanism of pretreatment with organosolv is the result of three chemical
reactions: (1) degradation of lignin and hemicellulose by cleavage of internal bonds
of ether, ester, and 4-O-methylglucuronic acid ester bonds; (2) disruption of the gly-
cosidic bonds of hemicellulose and the amorphous regions of cellulose, this process
being dependent on the solvent and the conditions applied to the pretreatment; (3)
under severe conditions, mono- and oligosaccharides are dehydrated in HMF and
furfural, or in acids such as levulinic and formic, followed by condensation between
lignin and reactive aldehydes [104, 108–110]. In pretreatments using organosolv, the
swelling of the crystalline cellulose region has been reported, increasing the surface
area of this structure and facilitating hydrolysis [106, 111].

Pretreatment with organosolv is a process of removal of lignin and hemicellulose
by solvation and solubilization of compounds. Selective cleavages of the structures of
the lignocellulosic complex are the most efficient mechanisms within this technique,
as well as the generation of compounds with high purity. However, because the
biomass to which pretreatment is applied varies in terms of source and composition,
and because solvents that can be used for pretreatment are also diverse, further
investigation is required as to the behavior of the mechanism of action, the technique,
and the delignification process [104].

Organosolv pretreatment is still considered a technique with high economic costs.
Nevertheless, within current concepts of the circular economy and biorefineries, this
technique can provide high added-value by-products and may be considered for
integration and optimization of processes, making the use of organosolv a promising
technique for pretreatment of various biomasses.
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3.2.6 Thermochemicals

Thermochemical pretreatment is a technique used tomodify biomass properties in the
presence of catalysts. Thermochemical pretreatment techniques include supercritical
CO2 and ammonia fiber explosion (AFEX).

Among pretreatment processes using supercritical fluids, carbon dioxide (CO2)
stands out for its high performance in chemical structure compound extraction pro-
cesses, because it is non-flammable and toxic, recoverable, low cost, and inert, in
addition to presenting safer critical pressure and temperature conditions than other
solvents [112, 113].

The supercritical point is reached when the temperature and pressure applied to
the system are higher than the critical values, such that the fluid can be considered an
expanded liquid or a compressed gas [114]. CO2 has a critical point in temperature
of 304.2 K and a critical pressure of 7.38 MPa, and at this point, it has near liquid
density and near gas viscosity [112]. The biomass moisture has a positive influence
on the supercritical CO2 process, being responsible for good yields in hemicellulose
partial hydrolysis reactions. This is because wet biomass in contact with supercriti-
cal CO2 dissociates hydrogen bonds of microfibrils of hemicellulose and cellulose,
resulting in increased accessibility and contact surface. Water present in biomass
under supercritical conditions causes biomass swelling, facilitating deeper access of
CO2 molecules to the biomass structure and increasing reaction yield. Subsequently,
an explosive release of pressure occurs and supercritical CO2 breaks the biomass
fibers, reducing structure recalcitrance [113, 115–117].

AFEX is a technology that utilizes high pressure (e.g., 250–300 psi) and moder-
ate temperature (e.g., 90–100 °C) associated with chemical catalyst (ammonia) to
increase accessibility to the biomass structure [118]. The action mechanism of this
technique is based on the cleavage of lignocellulosic complex bonds through struc-
tural modifications in the biomass cell wall, gradually increasing the internal pores
of the biomass and solubilizing the structures of the lignocellulosic complex. Two
reactions occur simultaneously, ammonolysis and hydrolysis, converting acetyl and
ester bonds into amines and organic acids [119, 120]. A major advantage of AFEX
is that nitrogenous residues serve as an important source of nitrogen in biological
processes that may be of interest to the system [121]. AFEX reduces lignin recalci-
trance and promotes partial depolymerization of hemicellulose and decrystallization
of cellulose [118].

3.3 Biological

Biological pretreatments offer a potential alternative to ensure the unlocking of com-
plex lignin structures and thereby enabling access to sugars and products of interest
[122]. Accessmay be possible through lignolytic enzymes that are capable of disrupt-
ing complex lignin structures and making energy-bearing organic carbons accessible
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[122]. The by-products produced during the biological pretreatment stage generally
do not affect subsequent hydrolytic processes, because the pretreatment conditions
are generally mild. Furthermore, in this process, the use of chemicals is not involved,
and there is no need for recycling of chemicals in the final phase of the process [123].
However, some of the greatest challenges to be overcome in this type of model are
the high cost (application of special enzyme) and the time. Other disadvantages such
as substantial loss of holocellulose (cellulose and hemicellulose) and scale-up (reac-
tor design and decontamination) also need to be addressed to make an industrial
application viable [124].

Chen et al. [122] found that white-rot fungi were the most effective microorgan-
ism model of lignin degradation. For biofuel production, these microorganisms are
preferred for fungal pretreatment because they ensure highly delignified cellulose-
rich biomass. The mechanism of degradation is mainly associated with the action
of enzymes through oxidative processes such as laccases (benzenediol oxygen oxi-
doreductase, EC1.10.3.2) and various types of peroxidases (lignin peroxidases (LiPs;
EC 1.11.1.14), manganese peroxidases (MnPs; EC 1.11.1.13), versatile peroxidases
(VPs; E.C.1.11.1.16), andmanganese-independent peroxidases (MiPs; EC 1.11.1.7))
[122, 125, 126]. In addition to these enzymes, some low-molecular-weight metabo-
litesmay also be associatedwith lignin biodegradation, including chemical oxidizing
agents and natural mediators of ligninolytic enzymes [127, 128].

Lignin peroxidases are known for the oxidative capacity of high potential redox
aromatic rings, including compounds such as veratryl (3,4-dimethoxybenzyl) alco-
hol, methoxybenzenes, and non-phenolic lignin model dimers. For this enzyme,
non-phenolic aromatic substrates are preferred [126]. It has also been seen that oxi-
dation of phenolic compounds may be possible with the presence of veratryl alcohol
that provides a cation radical to act as a redox mediator [129, 130].

Manganese peroxidases act on both phenolic and non-phenolic lignin units
through lipid peroxidation reactions [131]. The mechanism of action is associated
with the oxidation of Mn2+ to Mn3+ that oxidizes phenol rings to phenoxy radicals,
thereby leading to decomposition of compounds [123].

Lignin peroxidase and manganese peroxidase are the two main supporting
enzymes acting on the lignolytic system. Both are heme-containing glycoproteins
that require hydrogen peroxide as an oxidizing agent. Some of the fungi that produce
them arePhanerochaete chrysosporium, Pycnoporus cinnabarinus, Ceriporiala cer-
ata, Ceriporiopsis subvermispora, Cyathus stercoreus, andPleurotus ostreatus [123,
132].

Laccases are another class of enzymes that have effects on lignin. Catalysis is
associated with the oxidation of phenolic units of lignin and phenolic compounds
and aromatic amines to radical. The action of laccases on this material, together
with lignin peroxidase and manganese peroxidase, may lead to complete degrada-
tion of lignin. However, they also require a redox mediator for potential effects
on lignocellulosic materials such as 3-hydroxyanthranilic acid, 2,2-β-azino-bis (3-
ethylthiazoline-6-sulfonate) [123].

Studies reported promising effects with an 82% increase in hydrolysis rate with
the use of white-rot fungus Irpex lacteus after 28 days of pretreatment on corn stalks.
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The effect of this significant increase was associated with the variety of extracellular,
hydrolytic, and oxidative enzymes produced by the fungus during pretreatment. Such
enzymes and other metabolites left in pretreated corn stalks could also continue to
play important roles during material hydrolysis at later stages [133].

In general, the use of fungi during biological pretreatment is a suitable option
for the delignification processes. Nevertheless, their slow growth, lasting for several
weeks or months, is the principle disadvantages of fungal pretreatment: the issue of
time and loss of holocellulose previously reported. The use of enzymes for direct
treatment of biomass is an encouraging alternative to overcome such challenges. The
action of enzymes during the process is closely associated with the mechanism for
each of them as described above; however, in this case, they are not produced by
microorganisms in the same system.

Factors such as temperature, pH and enzyme concentration are important during
enzyme pretreatment. Ramos et al. [134] tested the effect of crude enzymatic extract
of P. chrysosporium on sugarcane bagasse for mechanical pulp production. They
found that crude enzyme extracts (containing lignin peroxidase, manganese perox-
idase, and laccase) were more advantageous than pretreatments using fungi. In this
system, 36 h of enzymatic pretreatment with H2O2 addition resulted in a higher pulp
yield than fungal pretreatment for two weeks.

In some cases, it has been shown that pretreatment with crude extracts resulted
in a synergistic action of various enzymes on the substrate [135, 136]. For example,
enzymatic pretreatment of wheat straw with lignolytics (laccase and peroxidase) and
cellulolytics (carboxymethylcellulase (CMCase) and avicelase) contributed to an
in vitro degradation of wheat straw cell walls [136]. Nevertheless, further studies are
needed to examine the influence and characteristics of various types of enzymes, as
well as their interactionswith the substrate,whenmixed in the biological pretreatment
of biomasses.

3.4 Combined Pretreatments

In general, pretreatment methods aim to intensify the results of subsequent steps,
including hydrolysis of biomass to produce fermentable sugars, among others.

Combined pretreatments, such as grinding, screening, use of dilute aqueous
ammonia and ultrasound have been employed on lignocellulosic biomass, includ-
ing corn cob, sorghum stalk, and corn husk. The biomass was ground and sieved
in 20–40 mesh, ammonia was added at 1.0–4.0% and the samples were inserted in
a 90 W and 59 kHz ultrasonic processor where the temperature was maintained at
40–70 °C for 1–4 h. The crystallinity of the sampleswasmonitored in their crude form
and pretreated using an X-ray diffractometer, and surface analyses were observed
using scanning electron microscopy (see Session 2.2). In corn husks, alkaline pre-
treatment was positive and the concentration of 2.0%, 60 °C and intermediate time
of 2 h obtained the highest sugar yields; however, the removal of lignin and hemicel-
lulose was very low. For the corn cob and sorghum stalk, the trend was the same as
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those of pretreatments, because lignin and hemicellulose contents decreased when
the combination of ultrasound and alkaline treatment was used, improving the sugar
yield, that is, coupled with increased contact surface between biomass and hydrolyz-
ing enzymes, an effect linked to ultrasound. Electron micrographs demonstrated the
effect of pretreatment, because the raw biomass appears compactly, and after treat-
ment, it has a rough and looser surface, suggesting that parts of the hemicellulose
and lignin were removed during the process [137].

In term of industrial-scale processes, the application of wood chips for power gen-
eration presents a promising logic, especially when it comes to constant charge flows.
The benefits and limitations of this technology were evaluated using ultrasonic pre-
treatment, and its effectiveness was tested as the physical characteristics of biomass
(SEM, see Sect. 2.2.4.1) and bio-oil yield. Waste from a pulp and paper mill was
milled on a 5-mm grid and subjected to an ultrasonic bath (250W L−1) with a capac-
ity of 34 L, and the wood chip biomass treatment was carried out under the following
conditions: 0.5 h and 170 kHz followed by 1.5 h to 40 kHzwith power of 1000W and
maximum temperature of 76 °C [138]. From the analysis of biomass morphology
by scanning electron microscopy, it was observed that the treated wood presented
openings in its surface and no chemical or inhibitor formation was observed during
the process. More specifically, ultrasound treatment improved the accessibility and
caused small erosions on the surface of the particles, improving heat and mass trans-
fer rates, favoring the subsequent processes of use of this biomass, and enhancing
the yield. Nevertheless, in this type and treatment, attention must be paid to factors
such as exposure time and energy invested, as they can degrade the material to the
point of making it non-usable for the process.

The use of combined pretreatment technologies presents the essence of the pos-
sibility of positively developing the expected result. Generally, there is a synergistic
effect aiming to pretreat substrates with high efficiency; for example, the combina-
tion of ultrasound and alkaline and acidic treatment techniques is compelling for the
disintegration of organic particles and improving their solubilization [139].

Studies aimed at improving the efficiency of anaerobic digestion for biogas pro-
duction have focused on the combination of chemical and microwave pretreatments.
The addition of a chemical compound (sodiumcitrate) initially disintegrates the struc-
ture of biomass and the input of energy provided by the microwaves facilitates the
solubilization of organicmatter; consequently, the synergy between the pretreatments
helps permeabilize the biomass. The yield was considerably higher when combining
treatment techniques, proving the beneficial effect of these processes acting together
[140].

In similar fashion, studies have combined NaOH with ultrasonic treatment
to accelerate biomass biodegradability [141]. To study effective waste manage-
ment in the cosmetic industry, investigators combined thermo-alkaline, thermo-
sonication, and thermo-alkaline-sonication treatments. Combined treatment with
thermo-alkaline-sonication showed higher degradation value (66.1%) of biomass
and favored methane production by 50%, increasing energy consumption by only
1.1% [142].
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The choice of the appropriate pretreatment methodology considers several factors
such as biomass characteristics and their potential application in biotechnological
processes, especially with respect to cost reduction and development of environ-
mentally viable processes, as well as the generation of products with added value,
according to the principles of circular economy.
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