
Local Search for Attribute Reduction

Xiaojun Xie1,2, Ryszard Janicki2, Xiaolin Qin1(B), Wei Zhao2,
and Guangmei Huang3

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing 211106, China

{xiexj,qinxcs}@nuaa.edu.cn
2 Department of Computing and Software, McMaster University,

Hamilton L8S 4K1, Canada
{janicki,zhaow9}@mcmaster.ca

3 Faculty of Education, Guangxi Normal University, Guilin 541001, China
guangmeihuang@126.com

Abstract. Two new attribute reduction algorithms based on iterated
local search and rough sets are proposed. Both algorithms start with a
greedy construction of a relative reduct. Then attempts to remove some
attributes to make the reduct smaller. Process of attributes selection is
the main difference between the algorithms. It is random for the first
one, and a sophisticated selection procedure is used for the second algo-
rithm. Moreover a fixed number of iterations is assumed for the first
algorithms whereas the second stops when a local optimum is reached.
Various experiments using eight well-known data sets from UCI have
been made and they show substantial superiority of our algorithms.

Keywords: Rough set · Attribute reduction · Local search ·
Positive region

1 Introduction

Feature selection, or attribute reduction, is a process of finding a minimal subset
of attributes that still provides the same, or similar information as the set of all
original attributes. Rough set theory has been very successful as a theoretical
base used in filter-based feature selection algorithms in many fields, such as data
mining, machine learning, pattern recognition and many others [1–7].

Attribute reduction methods can be divided into four categories: exact
algorithms, approximation algorithms, general heuristic algorithms and meta-
heuristic algorithms.

Exact algorithms can find all reducts and an optimal reduct. The classical
exact algorithm [8], consists in finding the discernibility matrix first, then deriv-
ing the discernibility function in its conjunctive normal form (CNF) from it, and
at the end transforming CNF into DNF i.e. disjunctive normal form. Then, each
prime implicant of the DNF corresponds to a reduct, and each minimal prime
implicant of the DNF corresponds to an optimal reduct. Unfortunately, finding
c© Springer Nature Switzerland AG 2019
T. Mihálydeák et al. (Eds.): IJCRS 2019, LNAI 11499, pp. 102–117, 2019.
https://doi.org/10.1007/978-3-030-22815-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22815-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-22815-6_9


Local Search for Attribute Reduction 103

all reducts or an optimal reduct has been proven to be in general an NP-hard
problem [8,9], which is a problem for big data sets with many attributes and
objects.

Several efficient approximation algorithms have been proposed in recent
years. Yang et al. [12] provided a new efficient method based on related family
for computing all attribute reducts and relative attribute reducts. Tan et al. [10]
proposed very time efficient matrix based approximation algorithm by introduc-
ing the concepts of minimal and maximal descriptions. Hacibeyoglu et al. [11]
analyzed the main shortcoming of this algorithm, namely is its excessively high
space complexity, and proposed a substantial improvement with the worst case
space complexity of

(
N

N/2

)
/2, where N is the number of attributes.

For many big real-world applications, efficiency of approximation algorithms
is still not enough. Frequently it is also not necessary to find all reducts, on
contrary, quite often finding one reduct is enough, which leads to the idea of
looking for heuristic algorithms.

The general heuristic algorithm normally starts with the core attribute set or
an empty attribute set, then gradually adds an attribute with the maximal signif-
icance into the attribute reduct until the attribute reduct satisfies the stopping
criterion. Different models have been used for stopping criteria, namely posi-
tive region [13], information entropy [14], knowledge granularity [15], and other
models [16,17].

General heuristic algorithms usually fail to obtain an optimal reduct, so many
meta-heuristic algorithms have been proposed such as genetic algorithms, tabu
search, ant colony optimization, particle swarm optimization and artificial fish
swarm algorithm, and so on. In [18], Xu et al. illustrated the shortcomings of
the previous genetic algorithm-based methods and designed new fitness function,
which resulted in more efficient genetic algorithm. Chen et al. [19] provided a
novel rough set based method to feature selection using fish swarm algorithm.
Inbarani et al. [20] proposed a supervised feature selection method based on
quick reduct and improved harmony search. Luan et al. [21] developed a novel
attribute reduction algorithm based on rough set and improved artificial fish
swarm algorithm. Aziz and Hassanien [22] proposed an improved social spider
algorithm for the minimal reduction problem. Xie et al. [23] designed a test-
cost-sensitive rough set-based algorithm for the minimum weight vertex cover
problem, which can also be used to solve attribute reduction problem in rough
sets.

Nevertheless, for big data sets with huge number of attributes and objects,
meta-heuristic algorithms are often still not sufficiently efficient. In recent years,
local search has been shown to be an effective and promising approach to solve
many NP-hard problems, such as, for example, the minimum vertex cover prob-
lem [24,25]. In this paper we will design, discuss and test two new algorithms
for attribute reduction that is based on local search paradigm. The main ideas
of these two algorithms can be described as follows (Fig. 1).

If a reduct has been obtained, then an upper bound of the target problem has
also been found. Then, we decrease the upper bound by removing an attribute



104 X. Xie et al.

Fig. 1. Basic flowchart of our two algorithms. Procedures for termination and finding
new reducts are different in each algorithm.

from the current reduct. The outcome may or may not be a reduct. If it is not
a reduct, we swap attributes, one attribute from the current candidate reduct
and the other that does not belong to the current candidate reduct. If the result
is a reduct, it has smaller, i.e. better, upper bound. We continue this process as
long as it is possible, the outcome is a relatively small reduct or even an optimal
reduct.

Finding a new relative reduct after swapping two attributes is the key pro-
cess in each iteration and the difference between our two algorithms. To make
this efficient, the second algorithm uses the reverse incremental verification to
check if a swapping results in a reduct. The second algorithm also uses a set of
removed attributes to adjust the iteration process, which additionally improves
the efficiency of our algorithm. Moreover the second algorithm stops when a
local optimum is found while the first one performs given in advance number of
iterations.

The rest of the paper is organized as follow. In Sect. 2, basic concepts about
rough sets are introduced. Section 3 exposes the local search-based algorithms
for attribute reduction. Experimental results on UCI data sets are presented in
Sect. 4. Some conclusions and further researches are drawn in Sect. 5.



Local Search for Attribute Reduction 105

2 Preliminaries

This section recalls some basic concepts, definitions and notation used in this
paper.

For any equivalence relation R ⊆ U × U , where U is a set, [x]R denotes the
equivalence class containing x ∈ U , i.e. [x]R = {y | (x, y) ∈ R}, and U/R denotes
the partition of U defined by R, i.e. U/R = {[x]R | x ∈ U}.

A decision table is the 5-tuple: S = (U,C,D, V, f), where U is a finite
nonempty set of objects, called universe, C is a set of conditional attributes, D is a
set of decision attributes, V is domain of attributes C∪D and f : U×(C∪D) → V
is an information function.

Table 1 is a simple example of a decision table, where U = {x1, x2, x3, x4,
x5, x6, x7}, C = {a1, a2, a3, a4, a5, a6}, and D = {Flu} (or D = {a7}).

Table 1. An example of a decision table.

a1 a2 a3 a4 a5 a6 a7

Patient Headache Temperature Lymphocyte Leukocyte Eosinophil Heartbeat Flu

x1 Yes High High High High Normal Yes

x2 Yes High Normal High High Abnormal Yes

x3 Yes High High High Normal Abnormal Yes

x4 No High Normal Normal Normal Normal No

x5 Yes Normal Normal Low High Abnormal No

x6 Yes Normal Low High Normal Abnormal No

x7 Yes Low Low High Normal Normal Yes

Let S = (U,C,D, V, f) be a decision table. For each nonempty B ⊆ C or
B = D we define a indiscernibility relation induced by B, denoted ind(B),
as:

ind(B) = {(x, y) | x, y ∈ U ∧ ∀a ∈ B, f(x, a) = f(y, a)}.

The relation ind(B) is clearly an equivalence relation on U .
When B = D, ind(B) is called classification relation induced by D and

denoted by D. In this case a partition U/D is called classification defined by the
decision attributes D.

For every nonempty B ⊆ C, and every X ⊆ U , we define B−(X), the B-
lower approximation of X, as B−(X) = {x ∈ U | [x]ind(B) ⊆ X}. For every for
every nonempty B ⊆ C and every U ′ ⊆ U , we define the positive region (or
lower approximation) of D over U ′ with respect to B as:

POSU
′

B (D) =
⋃

X∈U ′/D
B−(X).

When U ′ = U , the most popular case, we will just write POSB(D). Note that
we always have: POSU

′
B (D) ⊆ U ′.



106 X. Xie et al.

Definition 1. Let S = (U,C,D, V, f) be a decision table and let B ⊆ C.

1. A set B is called a relative attribute reduct if and only if POSB(D) =
POSC(D), and

2. a set B is called an attribute reduct if and only if it is a relative reduct and
for each B′ � B, we have POSB′(D) �= POSB(D),

3. a set B is called an optimal attribute reduct if and only if it is a reduct
and for any other reduct B′, we have |B| ≤ |B′|. 

In other words, reducts are minimal relative reducts and optimal reduct is a

reduct with smallest cardinality.

3 Local Search for Attribute Reduction

This section describes in detail our local search method for solving the attribute
reduction problem.

3.1 A Plain Local Search Algorithm for Attribute Reduction

Our method stems from the following simple result.
Suppose S = (U,C,D, V, f) is a decision table, Red ⊆ C is a relative reduct,

we randomly select a ∈ Red. If Red\{a} is also a relative reduct, then we update
Red \ {a} as new Red and jump into the next iteration. If Red \ {a} is not a
relative reduct, we randomly choose u ∈ Red \ {a} and v ∈ C \ Red and verify
if Redauv = (Red \ {a, u}) ∪ {v} is a relative reduct. If it is, we update Redauv
as new Red, and go to the next iteration. Since |Redauv| = |Red| − 1, Redauv
is better relative reduct than Red. If Redauv is not a relative reduct, Red is not
changed and we continue with the next iteration. The algorithm stops when it
iterates T times, where T is a parameter given in advance.

The process always returns a relative reduct and the bigger value of T ,
the smaller, i.e. better, the solution is. Algorithm 1 represents the procedure
described above. The algorithm starts with a construction some relative reduct
Red (steps 1 and 2). The computation is greedy, the set Red is initially empty and
then, in each iteration we choose an attribute a ∈ C \Red at random and add it
to Red. The computation process stops when POSRed(D) = POSC(D). The pro-
cess always converges, the worst case is when Red = C, so no reduct exists. The

worst case time complexity is O(
|Red|∑

i=1

i|U |) = O(|Red|2|U |) = O(|C|2|U |). Steps

3–14 represent T iterations that result in a derivation of a reduct RedT from a
relative reduct Red. Clearly |RedT | ≤ |Red|. The worst case time complexity of
the ith iteration is O(|Redi||U |), where Redi is Red from ith iteration, so the

worst case time complexity of lines 3–14 is O((
T∑

i=1

|Redi|)|U |) = O(T |Red||U |) =

O(T |C||U |) as clearly |Redi| ≤ |Red| ≤ |C| for all i = 1, . . . , T . For the
entire Algorithm 1 we have O(max(T, |Red|)|Red||U |) = O(max(T, |C|)|C||U |) =
O(T |C||U |) as usually T > |C|.



Local Search for Attribute Reduction 107

Algorithm 1 always finds some reducts but not necessarily an optimal reduct.
The quality of solution clearly depends on the size of T , but also on smart
selection of pairs (u, v). Foundations of such selection process are presented in
the next section. We would also like to get rid of this arbitrary limit T and just
stop when a local minimum is found.

Algorithm 1. (LSAR) Local search algorithm for attribute reduction
Input: A decision table S = (U,C,D, V, f), the maximum number of iterations

T
Output: The attribute reduction Red.

1 t = 0, Red = ∅;
2 construct a relative reduct Red using greedy algorithm;
3 while t < T do
4 remove an attribute a from Red randomly;
5 if POSRed\{a}(D) = POSC(D) then
6 Red = Red \ {a};
7 else
8 select randomly the deleting attribute u ∈ Red \ {a} and the adding

attribute v ∈ C \ Red ;
9 if POS(Red\{a,u})∪{v}(D) = POSC(D) then

10 Red = (Red \ {a, u}) ∪ {v};
11 end

12 end
13 t = t + 1;

14 end
15 return Red;

3.2 Attribute Pair Selection Mechanism

In principle, the basic problem we have to deal with in Algorithm 1 can be formu-
lated as follows. Suppose that POSB(D) �= POSC(D). How to select attributes
u and v such that POS(B\{u})∪{v}(D) = POSC(D)? We will use a reverse incre-
mental verification approach to solve this problem and start with two useful
lemmas.

Lemma 1. Let S = (U,C,D, V, f) be a decision table. For each B ⊆ C, we
have: POSB(D) = POS

POSB(D)
B (D).

Proof. Clearly POS
POSB(D)
B (D) ⊆ POSB(D). Let x ∈ POSB(D) and

POSB(D)/D be the partition of POSB(D) defined by D. Then x ∈ Xx ∈
POSB(D)/D. But by the definition: POS

POSB(D)
B (D) =

⋃

X∈POSB(D)/D
B−(X),

hence x ∈ POS
POSB(D)
B (D). ��



108 X. Xie et al.

Before formulating our next result we need to introduce one more concept.
Let S = (U,C,D, V, f) be a decision table. For each nonempty B ⊆ C we

define the inconsistent objects pairs, denoted iop(B), as:

iop(B) = {(x, y) | x, y ∈ U ∧ (∀a ∈ B.f(x, a) = f(y, a)) ∧ (∃d ∈ D.f(x, d) �= f(y, d))}.

If (x, y) forms an inconsistent object pair, then the value of all conditional
attribute are the same and the values of some decision attributes are different.

Lemma 2. Let S = (U,C,D, V, f) be a decision table and B ⊆ C. Then we
have:

1. For each attribute v ∈ C \ B,

POSB∪{v}(D) = POSB(D) ∪ POSU
′

{v}(D),

where U ′ = POSB∪{v}(D) \ POSB(D).
2. For each attribute u ∈ B,

POSB\{u}(D) = POSB(D) \
⋃

X∈Xu

X,

where Xu = {X | X ∈ POSB(D)/ind(B) ∧ (X × U) ∩ iop(B \ {u}) �= ∅}.

Proof. (sketch) (1) First note that U ′ ∩POSB(D) = ∅ and POSU
′

{v}(D) ⊆ U ′, so

POSB∪{v}(D) = POSB(D) ∪ POSU
′

{v}(D) ⇐⇒ U ′ = POSU
′

{v}(D). Suppose that

x ∈ U ′ \ POSU
′

{v}(D), i.e. x ∈ POSB∪{v}(D), x /∈ POSB(D) and x /∈ POSU
′

{v}(D),
which clearly implies [x]ind(B∪{v}) ⊆ POSB∪{v}(D), [x]ind(B) ∩ POSB(D) = ∅
and [x]ind({v}) ∩ POSU

′
{v}(D) = ∅. However, since v /∈ B, we also have ind(B ∪

{v}) = ind(B) ∩ ind({v}), which means [x]ind(B∪{v}) ⊆ [x]ind(B) ∩ [x]ind({v}), a
contradiction.
(2) Since B\{u} � B then POSB\{u}(D) ⊆ POSB(D). Consider X ∈ Xu. Since
X ∈ POSB(D)/ind(B) then X ⊆ POSB(D) and since (X ×U)∩ iop(B \{u}) �= ∅
then X ∩ POSB\{u}(D) = ∅. Hence POSB\{u}(D) ⊆ POSB(D) \ ⋃

X∈Xu
X. Let

x ∈ POSB(D) \ ⋃
X∈Xu

X. Hence x ∈ POSB(D) and there is y ∈ U such that
(x, y) /∈ iop(B \ {u}), i.e. x ∈ POSB\{u}(D). ��

Lemma 2 shows the results of adding and deleting attributes to and from a
positive region POSB(D). We will use them to provide a pair selection mechanism
described in Algorithm 1. More precise rules are given by the next result.

Proposition 1. Let S = (U,C,D, V, f) be a decision table, B � C, u ∈ B and
v ∈ C \ B such that

– POSB(D) �= POSC(D),
– POS(B\{u})∪{v}(D) = POSC(D) and
– POSC(B)/ind(B ∪ {v}) = {X1, . . . , Xn}.



Local Search for Attribute Reduction 109

Then the following properties hold.

1. POSU
′

{v}(D) = U ′, where U ′ = POSC(D) \ POSB(D).

2. POS
̂U
(B\{u})∪{v}(D) = Û , for every Û = {x1, . . . , xn} ⊆ U such that Û ∩Xi =

{xi} for i = 1, . . . , n.

Proof. (sketch) (1) Since POS(B\{u})∪{v}(D) = POSC(D), then directly
from the definition of positive region we have: POSB∪{v}(D) = POSC(D).
By Lemma 2(1) we have: POSC(D) = POSB∪{v}(D) = POSB(D) ∪
POS

POSC(D)\POSB(D)
{v} (D), i.e. POSPOSC(D)\POSB(D)

{v} (D) = POSC(D) \ POSB(D).

(2) From Lemma 1 it follows POS(B\{u})∪{v}(D) = POS
POS(B\{u})∪{v}(D)

(B\{u})∪{v} (D)

and POSB∪{v}(D) = POS
POSB∪{v}(D)

B∪{v} (D). However POS(B\{u})∪{v}(D) =

POSB∪{v}(D) = POSC(D), so POS
POSC(D)
(B\{u})∪{v}(D) = POS

POSC(D)
B∪{v} (D). On the

other hand, since (B \ {u}) ∪ {v} = (B ∪ {v}) \ {u}, by Lemma 2(2) we
have POS

POSC(D)
(B\{u})∪{v}(D) = POS

POSC(D)
B∪{v} (D) \ ⋃

X∈Xv
u

X, where X v
u = {X | X ∈

POSC(D)/ind(B∪{v})∧(X ×POSC(D))∩ iop((B∪{v})\{u}) �= ∅}. This means
that

⋃

X∈Xv
u

X = ∅, i.e. X v
u = ∅, or, equivalently, X ∈ POSC(D)/ind(B ∪ {v})

implies (X ×POSC(D))∩ iop((B ∪{v})\{u}) = ∅. But this also means that X ∈
POSC(D)/ind(B ∪ {v}) = {X1, . . . , Xn} implies X ⊆ POS

POSC(D)
(B\{u})∪{v}(D). For

each i = 1, . . . , n, let xi be an arbitrary element of Xi and set Û = {x1, . . . , xn}.
If i �= j, then we now have (xi, xj) ∈ ind((B \ {u})∪{v}) and f(xi, d) = f(xj , d)
for each d ∈ D. But this means that we have POS

̂U
(B\{u})∪{v}(D) = Û . ��

Proposition 1 suggests the following useful definition. Let S = (U,C,D, V, f)
be a decision table, B � C and U ′ = POSC(D) \ POSB(D). We define C∗

B ⊆ C,
a set of attributes filtered by B as:

C∗
B = {v | v ∈ C \ B ∧ POSU

′
{v}(D) = U ′}.

We will now show a sample application of the results stated above.

Example 1. Take the decision table Table 1, where U = {x1, x2, . . . , x7},
C = {a1, a2, . . . , a6}, and D = {Flu}. Consider B = {a1, a4}. In this case
POS{a1,a4}(D) = {x4, x5} and POSC(D) = U . We want to find such u ∈
B = {a1, a4} and v ∈ C \ B = {a2, a3, a5, a6} that POS({a1,a4}\{u})∪{v}(D) =
POSC(D). We have to perform the following steps.

1. First we compute U ′ as defined in Proposition 1(1). In this case U ′ =
POSC(D) \ POS{a1,a4}(D) = {x1, x2, x3, x6, x7}.

2. For each v ∈ {a2, a3, a5, a6}, we compute POSU
′

{v}(D) and for this case we have:

POSU
′

{a2}(D) = {x1, x2, x3, x6, x7}, POSU
′

{a3}(D) = {x1, x2, x3}, POSU
′

{a5}(D) =

{x1, x2} and POSU
′

{a6}(D) = {x1, x7}.



110 X. Xie et al.

3. We now can calculate C∗
{a1,a4}. Only POSU

′
{a2}(D) = U ′, so C∗

{a1,a4} = {a2},
i.e. we set v = a2.

4. We calculate POSB∪{v}(D) = POS{a1,a4}∪{a2}(D) = POS{a1,a2,a4}(D) = U .
5. We calculate that POS{a1,a2,a4}(D)/ind({a1, a2, a4}) = {{x1, x2, x3},

{x4}, {x5}, {x6}, {x7}}, and construct Û as Û = {x1, x4, x5, x6, x7}.
6. We will now use Proposition 1(2) to find proper u. Since we have

POS
̂U
{a1,a2}(D) = Û and POS

̂U
{a2,a4}(D) = Û , we set either u = a1 or u = a4.

7. Finally we set (u, v) = (a1, a2) or (u, v) = (a4, a2). 


3.3 A Local Search Algorithm with the Attribute Pair Selection
Mechanism for Attribute Reduction

In step 4 of Algorithm 1, some element a is randomly removed from Red. Next
we try to find appropriate u and v, but we may not succeed. In such a case a
should not be used in next iteration. To implement this we use a set of removed
attributes denoted by RemoveSet in Algorithm 2. Moreover at some point we
will reach some local optimum so no more iteration is needed as we have just got
our result. Local optimum means that we cannot remove any attribute a from
the current reduct Red, all elements of Red have been tried but none has worked
so they all have been put into RemoveSet, i.e. a local optimum is reached when
Red = RemoveRed. Therefore we have designed the following four adjustment
rules.

Adjustment rule 1: In each iteration, the randomly deleted attribute a
must not belong to RemoveSet.

Adjustment rule 2: If a pair of attributes (u, v) cannot be found in the cur-
rent iteration, the randomly deleted attribute a is added to the set RemoveSet.

Adjustment rule 3: RemoveSet is initialized to empty set. If a pair of
attributes (u, v) is found, the search of current reduct is stopped, RemoveSet is
reset to empty set again and the new iteration begins.

Adjustment rule 4: If the current attribute reduct Red equals RemoveSet,
the algorithm stops and returns Red. Since RemoveSet ⊆ Red, we can replace
equality Red = RemoveSet with computationally simpler |Red| = |RemoveSet|.

Algorithm 2 applies all the above four rules and techniques described in
Sect. 3.2. As opposed to Algorithm 1, it does not have an arbitrary limit of
iterations T .

The analysis of its time complexity is similar to that for Algorithm 1.
Algorithm 2 also starts with construction of a relative reduct using the same
greedy procedure, so the worst case time complexity of this step (i.e. step 2) is
O(|Red|2|U |) = O(|C|2|U |).



Local Search for Attribute Reduction 111

Algorithm 2. (LSAR-APS) Local search algorithm with the attribute
pair selection mechanism for attribute reduction
Input: A decision table S = (U,C,D, V, f).
Output: The attribute reduction Red.

1 t = 0, Red = ∅ and RemoveSet = ∅;
2 construct a relative reduct Red using greedy algorithm; /* the same as in

Algorithm 1 */

3 while |Red| �= |RemoveSet| /* Adjustment rule 4 */ do
4 remove at random an attribute a from Red \ RemoveSet; /* Adjustment

rule 1 */

5 if POSRed(D) = POSRed\{a}(D) then
6 Red = Red \ {a};
7 else
8 calculate C∗

Red;
9 flag = 0; /* the tag flag is used to mark whether or not the

attribute pair (u, v) can be found */

10 for each v ∈ C∗
Red and each u ∈ Red \ {a} when flag = 0 do

11 compute POSC(D)/ind((Red \ {a}) ∪ {v}) = {X1, . . . , Xn};

12 construct a set ̂U = {x1, . . . , xn}, where xi ∈ Xi;

13 if POS
̂U
(Red\{a,u})∪{v}(D) = ̂U then

14 Red = (Red \ {u}) ∪ {v};
15 flag = 1; /* flag = 1 means finding an attribute pair and

it causes exit from the loop, as by Adjustment rule 3

*/
16 end

17 end
18 if flag = 0 then
19 RemoveSet = RemoveSet ∪ {a}; /* Adjustment rule 2 */

20 else
21 RemoveSet = ∅; /* Adjustment rule 3 */

22 end

23 end

24 end
25 return Red;

For the time essential steps inside the loop while do (step 3) we have the
following worst case time complexities. Let Redi represents the relative reduct
used in the ith iteration. Step 5 is O(|Redi||U |) = O(|C||U |). Time complexity of
step 8, i.e. finding C∗

Redi
, is O(|C \Redi||POSC(D) \POSRedi

(D)|) = O(|C||U |).
Steps 11–12 construct Û and their time complexity is O(|Redi||POSC(D)|) =
O(|C||U |), while steps 13–16 verify if a pair (u, v) fixes Redi, and they are
O(|Redi||POSRedi

(D)) = O(|C||U |) as well. The remaining steps inside while do
have complexity O(1). Hence the entire worst case time complexity of the ith

iteration is O(|C||U |), or more precisely O(|Redi||U |).



112 X. Xie et al.

As far as the worst case time complexity is concerned, the ith itera-
tion of Algorithm 1 and the ith iteration of Algorithm 2, have the same
upper approximation O(|Redi||U |) = O(|C||U |). However, because |POSC(D) \
POSRedi\{a}(D)| � |U , |Û ≤ |POSC(D)| ≤ |U | and, usually, |C∗

Redi
| � |Redi|,

an average case time complexity of Algorithm 2 is usually much smaller than
O(|Redi||U |) for the ith iteration.

The loop while do executes O(|Red|) = O(|C|) times, so the overall worst
case time complexity of Algorithm 2 is O(|C|2|U |). In reality, Algorithm 2
(LSAR-APS) is usually much faster than Algorithm 1 (LSAR), however there
might be some exceptions (for example see Table 4, data set CNAE-9).

4 Experiments

In this section, we will present the results of experiments conducted to evaluate
the performance of Algorithms 1 and 2, also named as LSAR and LSAR-APS,
on eight well-known UCI data sets [26]. The characteristics of these data sets
are given in Table 2. We compare our two algorithms with the positive region-
based heuristic algorithm POSR [13], the backward search strategy-based quick
heuristic algorithm GARA-BS [16], and the immune quantum-behaved particle
swarm attribute reduction algorithm IQPOSR [23]. All the experiments have
been ran on a personal computer with Inter(R) Core(TM) i5-7300HQ CPU,
2.50 GHz and 16 GB memory. The programming language is Matlab R2016a.

Table 2. Description of data sets.

Data sets Names No. of objects No. of attributes No. of classes

S1 Soybean (small) 47 35 4

S2 Zoo 101 16 7

S3 Dermatology 366 33 6

S4 Mushroom 8124 22 2

S5 Letter 20000 16 26

S6 CNAE-9 1080 856 9

S7 Musk (Ver.2) 6598 166 2

S8 Connect-4 67557 42 3

4.1 Reduct Size and Computation Time

We evaluate the feasibility and effectiveness of our two algorithms according to
two aspects: the reduct size and the computation time. The algorithms POSR,
GARA-BS and LSAR-APS have no parameters. For IQPOSR, the parameters
use the settings on small-scale problem instances in [23], and the specific settings



Local Search for Attribute Reduction 113

are as follows: the particle size M = 50, the total number of iterations T =
200, the particle protection period K = 10, the accuracy error ε0 = 0.01, and
the test cost of each attribute c(a) = 1. LSAR is a single candidate solution-
based stochastic local search algorithm, and it requires more iterations than
population-based iterated algorithms. Hence the maximum iterations of LSAR
is 10 times that of IQPOSR, i.e., T = 2000. However the time complexity of
LSAR is much less than that of IQPOSR. Each algorithm runs 10 times on each
data set, and we record the best reduct and the average computation time of
the 10 runs. The experiment results shown in Tables 3 and 4.

Table 3. Comparison of reduct size on eight data sets

Data set Reduct size

POSR GARA-BS IQPSOR LSAR LSAR-APS

Soybean (small) 2 2 2 2 2

Zoo 5 5 5 5 5

Dermatology 10 9 9 8 8

Mushroom 4 4 4 4 4

Letter 11 12 11 11 11

CNAE-9 81 75 84 80 71

Musk (Ver.2) 4 4 4 4 4

Connect-4 34 34 35 34 34

Table 3 shows that the reduct sizes obtained by LSAR and LSAR-APS are the
same on all data sets, except for the data set CNAE-9. From all five algorithms,
LSAR-APS is the best one in terms of the reduct size, especially for the data
set CNAE-9. The reduct size of these five algorithms are the same on data sets
Soybean (small), Zoo, Mushroom, and Musk (Ver.2). POSR obtains the worst
reduct size on data sets Dermatology, and the reduct size of GARA-BS is the
worst one on data set Letter. On data sets CNAE-9 and Connect-4, IQPSOR
performs the worst in terms of the reduct size.

From Table 4 we have that GARA-BS is the fastest algorithm on data sets
Soybean (small) and Zoo. On data sets Dermatology, Mushroom, Letter, Musk
(Ver.2), and Connect-4, the algorithm LSAR-APS performs the best in terms of
the computational time. On data set CNAE-9, the computational time of LSAR
is the best one. This is one of these rare cases when LSAR performed better than
LSAR-APS. The algorithm POSR is very complex, so its computational time
grows dramatically as the data set increases. IQPSOR is a population-based
meta-heuristic algorithm, and its computational times are stable. Among three
previous algorithms, GARA-BS obtains the smallest computational time, but its
computational time is still far greater than that of LSAR-APS.

In summary, especially when large data sets are concerned, our algorithm
LSAR-APS can achieve a better reduct in a much shorter time. For example,



114 X. Xie et al.

Table 4. Comparison of computational time on eight data sets

Data set Computational time/s

POSR GARA-BS IQPSOR LSAR LSAR-APS

Soybean (small) 0.138 0.011 2.357 1.130 0.017

Zoo 0.184 0.014 3.387 1.339 0.033

Dermatology 3.186 0.132 12.751 2.817 0.105

Mushroom 19.773 1.022 324.006 16.930 0.617

Letter 245.631 3.813 737.317 72.026 2.239

CNAE-9 2064.218 220.204 718.453 23.013 74.643

Musk (Ver.2) 365.983 10.319 449.029 17.112 1.695

Connect-4 12417.113 175.689 2665.508 614.399 56.953

the algorithm LSAR-APS only takes an average of 74.643 s to find a reduct
with a smallest size 71, and this is definitely the best results among these five
algorithms. To the best of our knowledge, the reduct size 71 on data set CNAE-9
is also the best solution obtained so far.

4.2 Classification Accuracy Analysis

The classification accuracy was conducted on the selected attribute reducts found
by all five algorithms with classifier 3NN (k-Nearest Neighbor algorithm and k =
3), which is a popular classifier for testing the attribute reduction algorithms. All
of the classification accuracies are obtained with 10-fold cross validation. In 10-
fold cross validation, a given data set is randomly divided into 10 nearly equally
sized subsets, of these 10 subsets, 9 subsets are used as training set, a single
subset is retained as testing set to assess the classification accuracy. The average
performance results in terms of the classification accuracy are summarized in
Table 5, where the column “Raw” depicts the classification accuracies with the
original data and the boldface highlights the highest accuracy among these five
algorithms.

Table 5. Classification accuracy on different data sets.

Data setClassification accuracy/%

Raw POSR GARA-BS IQPSOR LSAR LSAR-APS

S1 100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00

S2 93.18 ±7.93 90.09±8.17 89.51 ±10.54 89.09±8.77 90.18±10.36 91.00±11.01

S3 96.72±2.50 92.64±3.62 73.75± 8.56 90.16 ±5.51 76.26± 7.66 76.52± 5.24

S4 100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00

S5 95.63±0.41 94.61±0.31 94.23±0.55 93.68±0.30 93.38±0.51 94.36±0.50

S6 85.83±2.73 85.74±3.30 85.83±2.66 85.93±3.17 85.28±4.37 86.11±2.99

S7 96.79±0.58 90.85±1.29 91.60±0.59 92.83±0.89 91.54±0.99 91.71±1.05

S8 66.60±1.23 67.31±1.53 67.30±0.72 67.03±0.86 67.21±0.98 67.68±0.86



Local Search for Attribute Reduction 115

Table 5 shows that the algorithm LSAR-APS achieves the best classification
performance as its number of the highest classification accuracy is five times
out of eight data sets. For POSR this number is four times among eight data
sets, QIPSOR matched the best classification accuracies for 3 out of 8 cases
while and LSAR and GARA-BS only obtain the best classification performance
on data sets S1 and S4. Hence, LSAR-APS can achieve better or comparable
classification accuracy in comparison with other four algorithms.

5 Conclusion

In this paper, we studied local search approach for attribute reduction problem
in rough set theory that has a wide range of applications. We introduced a local
search framework for this problem and proposed two advanced strategies to
improve the iteration process of the local search-based algorithm, i.e., attribute
pair selection mechanism and adjustment rules. The results of the experiment
on the broadly used data set indicated that our proposed algorithm LSAR-ASP
significantly outperforms other state-of-the-art algorithms.

We are surprised to find that the reduct found by LSAR-APS on data set
CNAE-9 is actually an optimal reduct (see Appendix A). In this sense, this work
provides a new idea for solving the optimal reduct of large data sets. In the future
work, we will test our proposed algorithm on high-dimensional large data sets
and propose some additional improved strategies to enhance the efficiency of the
local search-based attribute reduction algorithm.

Acknowledgment. The authors gratefully acknowledge three anonymous referees for
their helpful comments. The research was supported by The National Natural Sci-
ence Foundation of China (grant nos. 61373015, 61728204), China Scholarship Council
(grant no. 201806830058), State Key Laboratory for smart grid protection and oper-
ation control Foundation, Science and Technology Funds from National State Grid
Ltd(The Research on Key Technologies of Distributed Parallel Database Storage and
Processing based on Big Data), and NSERC of Canada (Discovery grant no. 6466-15).

Appendix A

Here we report the optimal solution found by LSAR-APS on data set CNAE-9.
The optimal reduct is: 7 20 63 68 73 75 77 105 118 119 133 150 151 183 191 194
199 201 202 207 211 246 247 258 272 276 328 333 334 338 345 350 359 360 373
382 390 403 415 417 421 423 424 443 476 483 499 518 519 539 546 555 581 607
608 614 615 618 619 631 648 650 673 684 705 726 731 815 823 824 832.



116 X. Xie et al.

References

1. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)
2. Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recog-

nition. Pattern Recogn. Lett. 24(6), 833–849 (2003)
3. Lingras, P.J., Yao, Y.Y.: Data mining using extensions of the rough set model. J.

Am. Soc. Inf. Sci. 49(5), 415–422 (1998)
4. Herawan, T., Deris, M.M., Abawajy, J.H.: A rough set approach for selecting clus-

tering attribute. Knowl. Based Syst. 23(3), 220–231 (2010)
5. Janicki, R., Lenarčič, A.: Optimal approximations with rough sets and similarities

in measure spaces. Int. J. Approximate Reasoning 71, 1–14 (2016)
6. Janicki, R.: Approximations of arbitrary relations by partial orders. Int. J. Approx-

imate Reasoning 98, 177–195 (2018)
7. Xie, X., Qin, X.: Dynamic feature selection algorithm based on minimum vertex

cover of hypergraph. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M.,
Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10939, pp. 40–51. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93040-4 4

8. Skowron, A., Rauszer, C.: The discernibility matrices and functions in informa-
tion systems. In: S�lowiński, R. (ed.) Intelligent Decision Support. Handbook of
Applications and Advances of the Rough Sets Theory, Dordrecht, Kluwer (1992)

9. Nguyen, H.S.: Approximate boolean reasoning approach to rough sets and data
mining. In: Ślȩzak, D., Yao, J.T., Peters, J.F., Ziarko, W., Hu, X. (eds.) RSFDGrC
2005. LNCS (LNAI), vol. 3642, pp. 12–22. Springer, Heidelberg (2005). https://
doi.org/10.1007/11548706 2

10. Tan, A., Li, J., Lin, Y., Lin, G.: Matrix-based set approximations and reductions
in covering decision information systems. Int. J. Approximate Reasoning 59, 68–80
(2015)

11. Hacibeyoglu, M., Salman, M.S., Selek, M., Kahramanli, S.: The logic transfor-
mations for reducing the complexity of the discernibility function-based attribute
reduction problem. Knowl. Inf. Syst. 46(3), 599–628 (2016)

12. Yang, T., Li, Q., Zhou, B.: Related family: a new method for attribute reduction
of covering information systems. Inf. Sci. 228, 175–191 (2013)

13. Xu, Z., Liu, Z., Yang, B.: A quick attribute reduction algorithm with complexity
of max(O(|C||U |), O(|C|2|U/C|)). Chin. J. Comput. 29(3), 391–399 (2006)

14. Jiang, F., Sha-sha, W., Du, J.W., Yue-Fei, S.: Attribute reduction based on approx-
imation decision entropy. Control Decis. 30(1), 65–70 (2015)

15. Deng, T., Yang, C., Hu, Q.: Feature selection in decision systems based on condi-
tional knowledge granularity. Int. J. Comput. Intell. Syst. 4(4), 655–671 (2011)

16. Ge, H., Li, L., Xu, Y., Yang, C.: Quick general reduction algorithms for inconsistent
decision tables. Int. J. Approximate Reasoning 82, 56–80 (2017)

17. Xie, X., Qin, X.: A novel incremental attribute reduction approach for dynamic
incomplete decision systems. Int. J. Approximate Reasoning 93, 443–462 (2018)

18. Xu, Z., Gu, D., Yang, B.: Attribute reduction algorithm based on genetic algorithm.
In: Proceedings of International Conference on Intelligent Computation Technology
and Automation, Zhangjiajie, China, pp. 169–172 (2009)

19. Chen, Y., Zhu, Q., Xu, H.: Finding rough set reducts with fish swarm algorithm.
Knowl. Based Syst. 81, 22–29 (2015)

20. Inbarani, H.H., Bagyamathi, M., Azar, A.T.: A novel hybrid feature selection
method based on rough set and improved harmony search. Neural Comput. Appl.
26(8), 1859–1880 (2015)

https://doi.org/10.1007/978-3-319-93040-4_4
https://doi.org/10.1007/11548706_2
https://doi.org/10.1007/11548706_2


Local Search for Attribute Reduction 117

21. Luan, X.Y., Li, Z.P., Liu, T.Z.: A novel attribute reduction algorithm based on
rough set and improved artificial fish swarm algorithm. Neurocomputing 174, 522–
529 (2016)

22. Abd El Aziz, M., Hassanien, A.E.: An improved social spider optimization algo-
rithm based on rough sets for solving minimum number attribute reduction prob-
lem. Neural Comput. Appl. 30(8), 2441–2452 (2018)

23. Xie, X., Qin, X., Yu, C., Xu, X.: Test-cost-sensitive rough set based approach for
minimum weight vertex cover problem. Appl. Soft Comput. 64, 423–435 (2018)

24. Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artif. Intell. 175(9), 1672–1696
(2011)

25. Cai, S., Hou, W., Lin, J., Li, Y.: Improving local search for minimum weight vertex
cover by dynamic strategies. In: Proceedings of International Joint Conferences on
Artificial Intelligence, Stockholm, Sweden, pp. 1412–1418 (2018)

26. UCI machine learning repository. http://www.ics.uci.edu/mlearn/MLRepository.
html

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

	Local Search for Attribute Reduction
	1 Introduction
	2 Preliminaries
	3 Local Search for Attribute Reduction
	3.1 A Plain Local Search Algorithm for Attribute Reduction
	3.2 Attribute Pair Selection Mechanism
	3.3 A Local Search Algorithm with the Attribute Pair Selection Mechanism for Attribute Reduction

	4 Experiments
	4.1 Reduct Size and Computation Time
	4.2 Classification Accuracy Analysis

	5 Conclusion
	References




