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Abstract. We generalize the standard rough set pair induced by an
equivalence E on U in such a way that the upper approximation defined
by E is replaced by the upper approximations determined by tolerances
T1, . . . , Tn on U . Using this kind of multiple upper approximations we
can express “softer” uncertainties of different kinds. We can order the
set RS(E, T1, . . . , Tn) of the multiple approximations of all subsets of the
universe U by the coordinatewise inclusion. We show that whenever the
tolerances T1, . . . , Tn are E-compatible, this ordered set forms a com-
plete lattice. As a special case we show how this complete lattice can be
reduced to the complete lattice of the traditional rough sets defined by
the equivalence E.

Keywords: Lower and upper approximation · Rough set ·
Compatibility condition · Tolerance relation · Multiple borders

1 Compatibility Condition and Multiple Approximations

The aim of this paper is to extend the “traditional” rough set model to be able to
represent different levels of uncertainty. Rough sets were introduced by Pawlak
in [8]. He assumed that our knowledge about the objects of a universe U is given
in the terms of an information relation R reflecting their indiscernibility.

For any relation R ⊆ U × U and x ∈ U , denote R(x) = {y ∈ U | (x, y) ∈ R}.
Then for any subset X ⊆ U its lower approximation is defined as

XR = {x ∈ U | R(x) ⊆ X},

and the upper approximation of X is given by

XR = {x ∈ U | R(x) ∩ X �= ∅}.
If R is a reflexive relation, then XR ⊆ X ⊆ XR and the elements of U may be
divided into three disjoint classes:
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(C1) The elements which are certainly in X. These are the elements in XR,
because if x ∈ XR, then all the elements to which x is R-related are in X.

(C2) The elements which certainly are not in X. These are the elements x such
that all the elements to which x is R-related are outside X.

(C3) The elements which are possibly in X. These are the elements x which are
R-related at least to one element from X and also at least to one element
outside X. In other words, x ∈ XR \ XR.

Initially, Pawlak assumed that R is an equivalence, that is, a reflexive, sym-
metric and transitive relation. There are many generalizations of Pawlak’s con-
struction based on non-equivalence relations, and replacing equivalence classes
by coverings; see [13,14], for instance. A natural variant is to assume that our
information is given by a tolerance relation, that is, a reflexive and symmet-
ric binary relation, being not transitive in general. Authors of this paper have
considered lattice-theoretical properties of rough sets defined by tolerances, for
example, in [3,5,6].

In [4], we used both equivalences and tolerances to form approximations. As
a motivation for this kind of setting consider the case in which U consists of a
set of patients of a hospital and xE y means that all the attributes of x and y
representing some medical information are the same. Let X be a set of patients
with a certain disease. If x ∈ XE , then X contains a patient y such that x
cannot be distinguished from y in terms of any attribute. On the other hand,
sometimes it would be useful to know also those patients who have a risk to
have the disease in the near future or who are at an initial phase of the disease.
These persons may have different symptoms as the patients with illness have.
But they may have, for instance, similar symptoms. Thus, we can use a tolerance
relation T to represent this similarity. The upper approximation XT consists of
persons who are similar to patients with disease, thus they may have some risk to
get the disease. It may be reasonable to introduce several tolerance relations to
represent different types of risks and different types of similarity, and therefore
in this paper we consider also multiple tolerances.

In [4] we considered tolerances compatible with equivalences, which turned to
be closely related to “similarity relations extending equivalences” studied in [11].
In this work, we slightly generalize the notion of compatibility to be used also
between tolerances.

Definition 1. Let R and T be two tolerances on U . If R ◦ T = T , then T is
R-compatible.

If T is R-compatible, then R ⊆ T and R2 ⊆ R ◦ T = T , so R is “transitive”
inside T . Since T−1 = T and (R ◦ T )−1 = T−1 ◦ R−1 = T ◦ R we get

R ◦ T = T ⇐⇒ (R ◦ T )−1 = T−1 ⇐⇒ T ◦ R = T. (1.1)

Hence, R ◦ T = T and T ◦ R = T are equivalent conditions.
For a tolerance T , the kernel of T is defined by

ker T = {(x, y) | T (x) = T (y)}.
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Proposition 2. Let R and T be tolerances on U . The tolerance T is R-
compatible if and only if R ⊆ ker T .

Proof. (⇒) Suppose that T is R-compatible. We show that R ⊆ ker T . Assume
(x, y) ∈ R. Let z ∈ T (x). Then z T x and xR y, that is, (z, y) ∈ T ◦ R = T .
Thus, z ∈ T (y) and T (x) ⊆ T (y). Similarly, we can show that T (y) ⊆ T (x):
if z ∈ T (y), then (x, z) ∈ R ◦ T = T and z ∈ T (x). Thus, T (x) = T (y) and
(x, y) ∈ ker T . Therefore, R ⊆ ker T .

(⇐) Assume that R ⊆ ker T . Let (x, y) ∈ R ◦ T . Then, there is z such that
xR z and z T y. Because (x, z) ∈ ker T , y ∈ T (z) = T (x). Thus, (x, y) ∈ T and
R ◦ T ⊆ T . Because T ⊆ R ◦ T holds always, we have T = R ◦ T and T is
R-compatible. 
�

We can also present the following characterization.

Proposition 3. Suppose R and T are tolerances on U . The tolerance T is R-
compatible if and only if

T (x) =
⋃

{R(y) | y ∈ T (x)} (1.2)

for all x ∈ U .

Proof. (⇒) Assume that T is R-compatible. Let z ∈ T (x). Then z ∈ R(z) gives
z ∈ ⋃{R(y) | y ∈ T (x)}. On the other hand, if z ∈ ⋃{R(y) | y ∈ T (x)}, then
z R y and y T x give (z, x) ∈ R ◦ T = T , that is, z ∈ T (z). So, (1.2) holds.

(⇐) Suppose (1.2) is true for any x ∈ U . If (x, z) ∈ T ◦ R, then there is y
such that y ∈ T (x) and z ∈ R(y). By (1.2), these give z ∈ T (x). Thus, (x, z) ∈ T
and T ◦ R ⊆ T . Since, T ⊆ T ◦ R holds always, T is R-compatible. 
�

Let X ⊆ U be arbitrary and let T be an R-compatible tolerance. The follow-
ing properties can be proved:

(XT )R = XT◦R = XT = XR◦T = (XR)T ; (1.3)

(XT )R = XT◦R = XT = XR◦T = (XR)T . (1.4)

Indeed, XT◦R = XT = XR◦T is clear by (1.1). Let us check (XT )R = XR◦T

as an example:

x ∈ (XT )R ⇐⇒ (∃z)xR z and z ∈ XT

⇐⇒ (∃z)(∃y)xR z and z T y and y ∈ X

⇐⇒ (∃y)x (R ◦ T ) y and y ∈ X

⇐⇒ x ∈ XR◦T

Hence (1.3) is satisfied. Equalities (1.4) are proved analogously.
If our knowledge about the attributes of the elements is incomplete, then

classification (C1)–(C3) of the elements of U into three disjoint subsets

XE ∪ (XE \ XE) ∪ (U \ XE)
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may be insufficient [2]. For instance, beside those elements which are in the
boundary XE \ XE of X, there may exist other elements in U whose attributes
are not enough known to exclude that they are somehow related to X. Hence
a division of the elements of U in four, or even more classes might be more
convenient. In this work, we will consider several tolerances T1, . . . , Tn on U .
This enables us to define multiple borders and consider cases in which there are
several degrees of possibility. Our work is related to a multi-granulation rough
set model (MGRS), where the set approximations are defined by using multi
equivalence relations on the universe [10].

The tolerances T1, . . . , Tn are assumed to be E-compatible. This means that
if x is Ti-similar to y, then any element E-indistinguishable with x must also be
Ti-similar to y. The obtained tuples (XE ,XT1 , . . . , XTn) can be considered as
generalizations of rough sets.

2 Rough Sets of Multiple Approximations

For a binary relation R on U , the “traditional” R-rough set of X is defined as
the pair (XR,XR). We denote by

RS (R) = {(XR,XR) | X ⊆ U}
the set of all R-rough sets. The set RS (R) can be ordered coordinatewise inclu-
sion by

(XR,XR) ≤ (YR, Y R) ⇐⇒ XR ⊆ YR and XR ⊆ Y R,

obtaining a partially ordered set (RS (R),≤), which we denote simply by RS (R).
If E is an equivalence relation, then RS (E) is a complete lattice such that

∨

X∈H
(XE ,XE) =

( ⋃

X∈H
XE ,

⋃

X∈H
XE

)
(2.1)

and
∧

X∈H
(XE ,XE) =

( ⋂

X∈H
XE ,

⋂

X∈H
XE

)
(2.2)

for all H ⊆ ℘(U), where ℘(U) the powerset of U , that is, the set of all subsets of
U . It is also known that a so-called regular double Stone algebra can be defined
on RS (E) [1,9]. If T is a tolerance, then in [3] it is proved that RS (T ) is not
necessarily even a semilattice.

In [4] we considered the following generalization

RS (E, T ) = {(XE ,XT ) | X ⊆ U}
of the traditional rough set system. The idea behind studying such pairs
(XE ,XT ) is that the equivalence E represents “strict” information (indistin-
guishability) and the information represented by T is “soft” (similarity). Hence
XE is defined as it is usual in rough set theory, but XT is now more permissible,
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because E ⊆ T and thus X ⊆ XE ⊆ XT . We proved several results about the
structure of RS (E, T ), particularly that it always forms a complete lattice.

First we generalize our setting to multiple E-compatible tolerances. If E is
an equivalence on U and T1, . . . , Tn are tolerances on U , then

XT1 \ XE , XT2 \ XE , . . . , XTn \ XE

may express uncertainties of different kinds. We denote

RS (E, T1, . . . , Tn) = {(XE ,XT1 , . . . , XTn) | X ⊆ U}.

As earlier, RS (E, T1, . . . , Tn) is ordered coordinatewise.

Proposition 4. Let E be an equivalence on U and T1, . . . , Tn be E-compatible
tolerances. Then RS (E, T1, . . . , Tn) is a complete lattice.

Proof. Because (∅, ∅, . . . , ∅)︸ ︷︷ ︸
n+1

is the least element of RS := RS (E, T1, . . . , Tn), it

suffices to show that for any ∅ �= H ⊆ ℘(U), the set {(XE ,XT1 , . . . , XTn) | X ∈
H} has a supremum in RS. Since

(⋃
X∈H XE ,

⋃
X∈H XE

)
is an E-rough set by

(2.1), there exists a set Y ⊆ U with

YE =
⋃

X∈H
XE and Y E =

⋃

X∈H
XE .

By Property (1.3) we have that for 1 ≤ i ≤ n,

Y Ti = (Y E)Ti =
( ⋃

X∈H
XE

)Ti

=
⋃

X∈H
(XE)Ti =

⋃

X∈H
XTi .

This implies that
( ⋃

X∈H
XE ,

⋃

X∈H
XT1 , . . . ,

⋃

X∈H
XTn

)
= (YE , Y T1 , . . . , Y Tn)

belongs to RS.
Now (YE , Y T1 , . . . , Y Tn) is an upper bound of (XE ,XT1 , . . . , XTn) for all

X ∈ H. It is also clear that if

(ZE , ZT1 , . . . , ZTn)

is an upper bound of {(XE ,XT1 , . . . , XTn) | X ∈ H}, then XE ⊆ ZE and
XTi ⊆ ZTi for all X ∈ H and 1 ≤ i ≤ n. This gives

⋃

X∈H
XE ⊆ ZE and

⋃

X∈H
XTi ⊆ ZTi

for 1 ≤ i ≤ n. Therefore,

(YE , Y T1 , . . . , Y Tn) ≤ (ZE , ZT1 , . . . , ZTn)

and (YE , Y T1 , . . . , Y Tn) is the supremum of {(XE ,XT1 , . . . , XTn) | X ∈ H}. 
�
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Example 5. Let U = {1, 2, 3, 4} and E be an equivalence on U such that U/E =
{{1}, {2, 3}, {4}}. Assume T1 is an equivalence (and thus a tolerance) such that

T1(1) = T1(2) = T1(3) = {1, 2, 3} and T1(4) = {4}.

In addition, let T2 be a tolerance such that

T2(1) = U, T2(2) = T2(3) = {1, 2, 3} and T2(4) = {1, 4}.

Because E ⊆ ker T1 = T1 and E = ker T2, T1 and T2 are E-compatible.
We have also T1 ⊆ T2, but T2 is not T1-compatible, since T1 � ker T2 = E.

The elements of

RS (E, T1, T2) = {(XE ,XT1 ,XT2) | X ⊆ U}
are given in Table 1. Note that here we denote sets just by sequences of their
elements, the set {1, 2, 4} is written 124, for instance. The Hasse diagram of
RS (E, T1, T2) can be found in Fig. 1.

Table 1. The 3-tuple approximations of subsets of U

X (XE , X
T1 , XT2) X (XE , X

T1 , XT2)

∅ (∅, ∅, ∅) 23 (23, 123, 123)

1 (1, 123, U) 24 (4, U, U)

2 (∅, 123, 123) 34 (4, U, U)

3 (∅, 123, 123) 123 (123, 123, U)

4 (4, 4, 14) 124 (14, U, U)

12 (1, 123, U) 134 (14, U, U)

13 (1, 123, U) 234 (234, U, U)

14 (14, U, U) U (U,U, U)

Let us note that if n = 1 and T1 = T , we obtain the complete lattice
RS (E, T ) = {(XE ,XT ) | X ⊆ U} investigated in [4]. Our next theorem shows
that adding T -compatible tolerances S1, . . . , Sn to RS (E, T ) does not change
the lattice-theoretical structure. Notice that if T is an E-compatible tolerance
and a tolerance S is compatible with T , then S is also E-compatible because

E ◦ S ⊆ T ◦ S ⊆ S,

which implies E ◦ S = S, since S ⊆ E ◦ S.

Theorem 6. Let E be an equivalence on U and let T be an E-compatible toler-
ance. If S1, . . . , Sn are tolerances which are T -compatible, then

RS (E, T ) ∼= RS (E, T, S1, . . . , Sn).
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(123, 123, U) (234, U, U)

(23, 123, 123)

(U,U,U)

(14, U, U)

(4, U, U)(1, 123, U)

(∅, 123, 123) (4, 4, 14)

(∅, ∅, ∅)

Fig. 1. The lattice RS(E, T1, T2)

Proof. Note first that each S1, . . . , Sn is E-compatible. This means that

RS (E, T, S1, . . . , Sn)

is a complete lattice by Proposition 4. We define a map

ϕ : RS (E, T ) → RS (E, T, S1, . . . , Sn), (XE ,XT ) �→ (XE ,XT ,XS1 , . . . , XSn).

The map ϕ is well defined, because if (XE ,XT ) = (YE , Y T ), then by (1.3),

XSk = (XT )Sk = (Y T )Sk = Y Sk

for any 1 ≤ k ≤ n, which yields ϕ(XE ,XT ) = ϕ(YE , Y T ). Next we prove that ϕ
is an order-embedding, that is,

(XE ,XT ) ≤ (YE , Y T ) ⇐⇒ ϕ(XE ,XT ) ≤ ϕ(YE , Y T ).

Suppose (XE ,XT ) ≤ (YE , Y T ). Then XT ⊆ Y T and for any 1 ≤ k ≤ n,

XSk = (XT )Sk ≤ (Y T )Sk = Y Sk .

Hence, ϕ(XE ,XT ) ≤ ϕ(YE , Y T ). It is trivial that if ϕ(XE ,XT ) ≤ ϕ(YE , Y T ),
then (XE ,XT ) ≤ (YE , Y T ). The mapping ϕ is obviously surjective, because
if (XE ,XT ,XS1 , . . . , XSn) belongs to RS (E, T, S1, . . . , Sn), then ϕ(XE ,XT ) =
(XE ,XT ,XS1 , . . . , XSn). 
�

The following consequence is immediate. Notice that each equivalence E is
compatible with itself, that is E ◦ E = E.

Corollary 7. Let E be an equivalence relation on U and T1, . . . , Tn be E-
compatible tolerances. If T1 = E, then

RS (E) ∼= RS (E, T1, . . . , Tn).
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Let E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ En be equivalences on U . Note that the ker-
nel of an equivalence is the equivalence itself. Therefore, E1 is E0-compatible
and E2, . . . , En are E1-compatible. By Theorem 6 we can write the following
corollary.

Corollary 8. Let E0 ⊆ E1 ⊆ · · · ⊆ En be equivalences on U . Then

RS (E0, E1, . . . , En) ∼= RS (E0, E1).

We end this section by presenting a couple of examples where multiple rough
sets can be defined in a natural way.

Example 9. Let R be a fuzzy equivalence on U . This means that for all x, y ∈ U ,
R(x, y) ∈ [0, 1] and that R is

– reflexive: R(x, x) = 1 for each x ∈ U ,
– symmetric: R(x, y) = R(y, x) for all x, y ∈ U , and
– transitive: R(x, z) ≥ min{R(x, y), R(y, z)} for any x, y, z ∈ U .

It is known that for any α ∈ [0, 1] the α-cut

Rα = {(x, y) ∈ U × U | R(x, y) ≥ α}
of R is a “crisp” equivalence on U . Let 0 ≤ α0 ≤ α1 ≤ · · · ≤ αn ≤ 1. Then
Rα0 ⊆ Rα1 ⊆ · · · ⊆ Rαn

are equivalences on U . By Corollary 8 we get

RS (Rα0 , Rα1 , . . . , Rαn
) ∼= RS (Rα0 , Rα1).

Example 10. An information system in the sense of Pawlak [7] is a triple

(U,A, {V }a∈A),

where U is a set of objects, A is a set of attributes and Va is the value set of
a ∈ A. Each attribute is a mapping a : U → Va. For any ∅ �= B ⊆ A, the strong
indiscernibility relation of B is defined by

ind(B) = {(x, y) | a(x) = a(y) for all a ∈ B}.

The weak indiscenibility relation of B is given by

wind(B) = {(x, y) | a(x) = a(y) for some a ∈ B}.

Clearly, ind(B) is an equivalence and wind(B) is a tolerance.
Let ∅ �= C ⊆ B ⊆ A. It is easy to see that wind(C) is ind(B)-compatible.

Indeed, the inclusion wind(C) ⊆ ind(B) ◦ wind(C) is clear. In order to prove
the converse inclusion, let (x, y) ∈ ind(B) ◦ wind(C). Then (x, z) ∈ ind(B) and
(z, y) ∈ wind(C) for some z ∈ U . As C ⊆ B, (x, z) ∈ ind(B) yields a(x) = a(z)
for all a ∈ C. Because (z, y) ∈ wind(C), we have b(y) = b(z) = b(x) for some b ∈
C. Thus, (x, y) ∈ wind(C). This means ind(B)◦wind(C) ⊆ wind(C), completing
the proof.

Suppose ∅ �= C1, . . . , Cn ⊆ B. Since wind(Ci) is ind(B)-compatible for any
1 ≤ i ≤ n, we can form the generalized rough set complete lattice

RS (ind(B),wind(C1), . . . ,wind(Cn)).
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3 Comparison with the Fuzzy Set Approach

The relationship between rough set theory and fuzzy set theory is widely dis-
cussed in the literature. One of the key differences between these approaches
is the fact that in fuzzy set theory the membership value does not depend on
other elements. In contrast, the rough approximations and rough membership
functions are defined in terms of a relation on the object set [15]. According to
[12], one may treat rough set in set-oriented view as a special class of fuzzy sets.
In this section, we argue that from the viewpoint of set approximation, rough
sets with multiple borders significantly increase the functionality of the standard
rough set model and it provides a more general model of uncertainty than the
fuzzy model.

In the fuzzy set theory [16], a fuzzy set A on U is defined by a membership
function

fA : U → [0, 1],

where the value fA(x) for any x ∈ U denotes the “grade of membership” of x
in A. For any α ∈ [0, 1], the closed alpha-cut set Aα and the open alpha-cut set
A>α are crisp sets, where

Aα = {x ∈ U | fA(x) ≥ α}
and

A>α = {x ∈ U | fA(x) > α}.

Let X ⊆ U be a (crisp) set. A fuzzy set A can be considered as a “rough
approximation” of X, if

A1 ⊆ X ⊆ A>0.

The set A1 denotes the elements which are certainly in X and the elements which
may belong to X are contained in A>0. In “fuzzy terminology”, A1 is called the
core of A and A>0 is the support of A.

Similarly as in case of multiple tolerances, we may use several cut sets to
approximate X. More precisely, let X ⊆ U and suppose that there exists a fuzzy
set A on U and 1 > α1 > α2 > . . . > αn > 0 such that

A1 ⊆ X ⊆ Aα1 ⊆ Aα2 ⊆ · · · ⊆ Aαn
.

Our next proposition shows that we can always construct the same tuple

(A1, Aα1 , . . . Aαn
)

using multiple rough sets.

Proposition 11. Let A be a fuzzy set U and 1 > α1 > α2 > . . . > αn > 0. Then
there exist a set X ⊆ U , an equivalence E on U , and E-compatible tolerances
T1, . . . , Tn satisfying

(A1, Aα1 , . . . , Aαn
) = (XE ,XT1 , . . . , XTn).
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Proof. Having (A1, Aα1 , . . . , Aαn
), we define the equivalences:

E = A1 × A1 ∪ {(x, x) | x ∈ U},

T1 = Aα1 × Aα1 ∪ (U \ Aα1) × (U \ Aα1),
T2 = Aα2 × Aα2 ∪ (U \ Aα2) × (U \ Aα2),

...
Tn = Aαn

× Aαn
∪ (U \ Aαn

) × (U \ Aαn
).

It is clear that E ⊆ Ti for any 1 ≤ i ≤ n, so each T1, . . . , Tn is E-compatible.
We have that

XE = X = A1,

XT1 = (A1)T1 = Aα1 ,

XT2 = (A1)T2 = Aα2 ,

...

XTn = (A1)Tn = Aαn
.

Thus, (A1, Aα1 , . . . , Aαn
) = (XE ,XT1 , . . . , XTn). 
�

We end this section by showing that the converse is not true.

Proposition 12. Let U be a set with at least 3 elements. There exists an equiv-
alence E on U , E-compatible tolerances T1 and T2, and a set X ⊆ U , such that
(XE ,XT1 ,XT2) cannot be given in terms of α-cut sets of some fuzzy set A on
U .

Proof. If |U | ≥ 3, we may define tolerances T1 and T2 on U such that neither
T1 ⊆ T2 nor T2 ⊆ T1 hold. In addition, let E = {(x, x) | x ∈ U}. Then trivially
T1 and T2 are E-compatible. Let us consider the case T1 � T2 only, because
T2 � T1 can be treated similarly. Now T1 � T2 means that there is (x, y) ∈ T1

such that (x, y) /∈ T2. We get that {x}T1 � {x}T2 .
Next consider the rough set 3-tuple ({x}E , {x}T1 , {x}T2). Suppose that there

exists a fuzzy set A on U and α1 and α2 such that

(A1, Aα1 , Aα2) = ({x}E , {x}T1 , {x}T2).

Because α1, α2 ∈ [0, 1], without loss of generality we may assume that α1 ≥ α2.
Then Aα1 ⊆ Aα2 would imply {x}T1 ⊆ {x}T2 , a contradiction. 
�

These properties mean that every multiple alpha-cuts fuzzy model can be
given using multiple rough set model, but not every multiple rough set model
can be obtained with some alpha-cuts of a fuzzy set. From this point of view,
the multiple rough set model is a more general model of uncertainty than the
fuzzy set model with multiple cuts.
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4 Conclusions

The paper presented an extension of the traditional rough set model introducing
multiple upper approximations using more tolerance relations where the toler-
ance relations are compatible with the inner equivalence relation. Regarding the
main properties of the proposed model, it can be proven that the set of multiple
upper approximations rough sets form a complete lattice. In special cases, this
lattice is isomorphic with the lattice generated from the base rough set pairs. The
proposed model can be used to represent a novel multi-level uncertainty-based
approximation of selected base sets. It is shown in the paper that for presenting
multiple borders, this approximation model is more general than the widely used
fuzzy approximation model.
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