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Abstract. Rough set theory is an important tool to solve the uncer-
tain problems. How to use the existing knowledge granules to approx-
imately describe an uncertain target concept X has been a key issue.
However, current research on theories and methods is still not compre-
hensive enough. R0.5(X), a kind of approximation sets of an uncertain
concept, was proposed and analyzed in detail in our previous research
work. However, whether R0.5(X) is the optimal approximation set of
an uncertain concept X is still unable to determine. As a result, in this
paper, based on the approximation of an uncertain concept, the existence
of the optimal approximation set is explored. Then an optimal approxi-
mation set RBest(X) is proposed and discussed. At first, the definition of
RBest(X) is defined. Then several comparative analysis between RBest(X)
and other approximation sets is carried out. Next, operation properties
of RBest(X) are presented and proved respectively. Finally, with changing
knowledge granularity spaces, the change rules of the similarity between
an uncertain set X and its RBest(X) are revealed.

Keywords: Rough sets · Uncertain concept · Similarity ·
Knowledge granularity · Granular computing

1 Introduction

Recently, computer technology and automatic control technology have rapidly
developed, and research on the uncertain information system has attracted more
and more researchers’ attention [18,22]. Fuzzy set theory, rough set theory and
quotient space theory are three basic granular computing models which have
been successfully applied to process uncertain information. As a simple comput-
ing model, rough set theory [4,13] is an important method for handling uncertain
problems as well as probability theory, fuzzy set theory and evidence theory. In
the view of Pawlak’s rough sets, people usually research how to acquire deci-
sion rules from the upper approximation set R(X) and the lower approximation
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set R(X). Furthermore, many extended rough set models are proposed to deal
with the real-life uncertain information, such as variable precision rough set
model [26], probability rough set model [11], game-theoretic rough sets [2] and
so on [10,12,25]. Pawlak and Skworn analyzed and summarized these extended
models referred to [11]. Mi analyzed the variable precision rough set model and
discussed how to use this model to obtain attribute reduction [8]. Yao and Ziarko
et al., combining probability and inclusion degree, proposed probability rough
set model and obtained many related results [17,19,20]. However, these meth-
ods mainly focus on constructing the extended approximation operators of tra-
ditional rough set model. There is little research on how to use the existing
knowledge granules in knowledge base to construct an approximation set of X.
Could we construct an approximation set which is more approximate to X than
R(X) or R(X)? And does an optimal approximation set exist? The first prob-
lem is solved in our previous work [21], and the second problem is our main
motivations in this paper.

Based on above assumptions, the related models and results on the approx-
imation set of an uncertain set were proposed in our other paper referred to
[21,23]. In these papers, the basic idea is translating rough sets into fuzzy sets
according to the different membership degree of elements in boundary region and
constructing an approximation set of an uncertain concept by using cut-set of
the fuzzy set with some thresholds. With this construction method, the approx-
imation sets with the existing knowledge granules can be obtained directly. In
the literature [21], a general approximation set was constructed and it had many
good properties. Experimental results show that R0.5(X) is a better model deal-
ing with uncertain information systems. Better classification results could be
obtained with R0.5(X). The amount of correct classification objects increases
and amount of uncertain classification objects reduces.However, that R0.5(X) is
the optimal approximation set of an uncertain set X is still unable to determine,
and the related concepts and results on the optimal approximation were not
presented in [21]. It is difficult to search for the optimal approximation set of an
uncertain set directly. Based on the research referred to [21], through minimizing
similarity between the target concept and its approximation sets, the optimal
approximation set RBest(X) is defined, and an algorithm for constructing the
optimal approximation set RBest(X) is proposed in this paper. And several com-
parative analysis between RBest(X) and other approximation sets is carried out
In addition, the operations properties of RBest(X) is analyzed. Finally we dis-
cuss the change rules of the similarity degree between X and its RBest(X) in
different knowledge granularity levels.

The rest of this paper is organized as follows. In Sect. 2, the related basic con-
cepts and preliminary knowledge are reviewed. The RBest(X) of an uncertain set
X in rough approximation spaces is proposed in Sect. 3. Besides, several compara-
tive analysis between RBest(X) and other approximation sets and many operation
rules related the RBest(X) are given in Sect. 3. The change rules of the similarity
degree between X and its RBest(X) in the different knowledge granularity levels
are discussed in Sect. 4. Finally, the conclusions are drawn in Sect. 5.
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2 Preliminaries

In order to better present the context of this paper, many preliminary concepts,
definitions and results related to rough set and uncertainty measurement are
reviewed as follows.

Definition 1 (Information table of knowledge system [9,14]). A knowl-
edge system can be described as S = 〈U,A, V, f〉. U is the domain. A = C ∪D is
the set of all attributes. Subset C is the set of conditional attributes, and D is the
set of decision attributes. V = ∪r∈AVr is the set of attribute values. Vr describes
the range of attribute values r where r ∈ A. f : U × A → V is a function which
describes attribute values of object x in U .

Definition 2 (Indiscernibility Relation [9,14]). For any attribute set R ⊆
A, an indiscernibility relation is defined as

IND(R) = {(x, y)|(x, y) ∈ U2 ∧ ∀b∈R(b(x) = b(y))}.

Definition 3 (Upper Approximation Set and Lower Approximation
Set [9,14]). Let S = 〈U,A, V, f〉 be a knowledge System, for any X ⊆ U and
R ⊆ A, the upper approximation set R(X) and the lower approximation set
R(X) of X are defined as follows,

R(X) = ∪ {Yi|Yi ∈ U/IND(R) ∧ Yi ∩ X �= ∅} ,

R(X) = ∪ {Yi|Yi ∈ U/IND(R) ∧ Yi ⊆ X} ,

where U/IND(R) = {X|X ⊆ U ∧ ∀x∈X,y∈Y,b∈R (b(x) = b(y))} is a partition
of equivalence relation R on U . The upper approximation set and the lower
approximation set of X on R can be defined in another form as follows,

R(X) = {x|x ∈ U ∧ [x]R ∩ X �= ∅} ,

R(X) = {x|x ∈ U ∧ [x]R ⊆ X} ,

where [x]R ∈ U/IND(R), and [x]R is an equivalence class of x on relation R.
R(X) is a set of objects which certainly belong to U according to knowledge R;
R(X) is a set of objects which possibly belong to U according to knowledge R.
BNDR(X) = R(X)−R(X) is called as Boundary region of the target concept
X on attribute set R. POSR(X) = R(X) is called as Positive region of target
concept X on attribute set R. NEGR(X) = U − R(X) is called as Negative
region of target concept X on attribute set R. BNDR(X) is a set of objects
which just possibly belong to target concept X.

Let U be a finite domain. Let X ⊆ U , x ∈ U , and the membership degree of
x belong to set X is defined as

μR
X(x) =

|X ∩ [x]R|
|[x]R| ,

obviously, 0 ≤ μR
X(x) ≤ 1.
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Definition 4 (λ-Approximation Sets of X [21]). Let X be a subset (the
target concept) of U , let

Rλ(X) = {x|x ∈ U ∧ μR
X(x) ≥ λ} (1 ≥ λ > 0),

then Rλ(X) is called as λ-approximation sets of X. Let

R. λ(X) = {x|x ∈ U ∧ μR
X(x) > λ} (1 ≥ λ > 0),

then R. λ(X) is called as λ-strong approximation sets of X.
So when λ = 0.5, R0.5(X) is called as 0.5-approximation sets of X and

R. 0.5(X) is called as 0.5-strong approximation sets of X.

Definition 5 [14]. Let U = {x1, x2, · · · , xn} be a non-empty finite set, P ′ =
{P ′

1, P
′
2, · · · , P ′

l } and P ′′ = {P ′′
1 , P ′′

2 , · · · , P ′′
m} be two partition spaces on U . If

∀P ′
i∈P ′(∃P ′′

j ∈P ′′(P ′
i ⊆ P ′′

j )), then P ′ is finer than P ′′, denoted by P ′ � P ′′.

Definition 6 [14]. Let U = {x1, x2, · · · , xn} be a non-empty finite set, P ′ =
{P ′

1, P
′
2, · · · P ′

l } and P ′′ = {P ′′
1 , P ′′

2 , · · · P ′′
m} be two partition spaces on U . If P ′ �

P ′′, and ∃P ′
i∈P ′(∃P ′′

j ∈P ′′(P ′
i ⊂ P ′′

j ))(P ′
i ⊂ P ′′

j )), then P ′ is strictly finer than
P ′′, denoted by P ′ ≺ P ′′.

Definition 7 (Similarity Degree [21]). Let A and B be two subsets of U , the
mapping: S : U × U → [0, 1]. S(A,B) is called as similarity degree between A
and B, if and only if S(A,B) satisfy the following properties:

(1) For any A,B ⊆ U , 0 ≤ S(A,B) ≤ 1 (Boundedness),
(2) For any A,B ⊆ U , S(A,B) = S(B,A) (Symmetry),
(3) For any A ⊆ U , S(A,A) = 1; S(A,B) = 0 if and only if A ∩ B = ∅.
Any formula that satisfy above (1), (2) and (3) is a similarity degree formula

between two sets. In similarity measurement of rough sets, because of its uni-
versality and effectiveness, most experts and scholars have adopted a similarity
degree formula in reference [7] as

S (A,B) =
|A ∩ B|
|A ∪ B| ,

where |·| represents cardinality of elements in finite subset. Obviously, this for-
mula satisfies above (1), (2) and (3).

3 Optimal Approximation Set of Rough Set

In our previous works, we find that R0.5(X), as an approximation set of X, has
many excellent properties. However, whether R0.5(X) is the optimal approxi-
mation set of X when 0 ≤ λ < 0.5? Let us analyze according to the following
example.
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Table 1. Decision information table

x1 x2 x3 x4 x5 x6 x7 x8 x9

a 1 1 1 1 1 1 1 1 1

b 1 1 0 1 1 0 1 1 0

c 1 0 0 1 0 0 1 0 0

d 1 1 1 0 0 0 0 0 0

Example 1. In a decision information table (Table 1), let U = {x1, x2, . . . , x9},
the condition attribute set C = {a, b, c} and the decision attribute set D = {d}.

According to rough set theory, the following partitions can be obtained easily,

IND(C) = {{x1, x4, x7}, {x2, x5, x8}, {x3, x6, x9}},

IND(D) = {{x1, x2, x3}, {x4, x5, x6, x7, x8, x9}}.

Let X1 = {x1, x2, x3}, X2 = {x4, x5, x6, x7, x8, x9}. According to the definition
μR

X(x) = |[x]R∩X|
|[x]R| , a fuzzy set can be obtained as

FX1(U) =
{

1/3
x1

,
1/3
x2

,
1/3
x3

,
1/3
x4

,
1/3
x5

,
1/3
x6

,
1/3
x7

,
1/3
x8

,
1/3
x9

}
.

Then
R0.5(X1) = ∅, R0.3(X1) = U.

While

S (X1, R0.5(X1)) =
|X1 ∩ R0.5(X1)|
|X1 ∪ R0.5(X1)| =

0
3

= 0, S (X1, R0.3(X1)) =
1
3
.

So, S (X1, R0.3(X1)) > S (X1, R0.5(X1)).
In the same way, the following fuzzy set can be obtained,

FX2(U) =
{

2/3
x1

,
2/3
x2

,
2/3
x3

,
2/3
x4

,
2/3
x5

,
2/3
x6

,
2/3
x7

,
2/3
x8

,
2/3
x9

}
.

Then we have R0.5(X2) = U, R0.3(X2) = U . Here we have S (X2, R0.3(X2)) =
S (X2, R0.5(X2)).

So, we find that the approximation set R0.5(X1) is not the optimal approxi-
mation set of X1, on the contrary, R0.5 (X2) is the optimal approximation set of
X2. Therefore, the approximation set R0.5(X) may not be the optimal approx-
imation set of X and an optimal approximation set of X in rough approxima-
tion spaces must exist. Thus, based on the membership degree function μR

X (x),
the optimal approximation set of X in rough approximation space is proposed
through minimizing similarity between the target concept and its approximation
sets.
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Definition 8. (Optimal approximation set) Let X be a subset (target concept) of
U , Rλ(X) be a λ− approximation set of X, and SBest = max

0<λ≤1
{S (X,Rλ (X))}.

For any λ(0 < λ ≤ 1), if S (X,Rλ (X)) =SBest, then the Rλ(X) is
called the optimal approximation set of X, denoted by RBest (X). Namely,
S (X,RBest (X)) = SBest.

According to Definition 8, we know if Rλ(X) is the RBest(X), λ must be in
the interval (0, 0.5]. In order to more clearly show the Definition 8, an example
with a decision information table (Table 2) is presented.

Example 2. Let domain U = {x1, x2, . . . , x15}, the condition attribute set C =
{a, b, c} and the decision attribute set D = {d}.

Table 2. Decision information table

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

a 1 1 1 1 2 2 1 1 1 2 1 2 1 2 2

b 2 2 0 0 1 2 2 0 0 1 2 2 0 1 2

c 0 0 2 2 1 1 0 2 2 1 0 1 2 1 1

d 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

According to rough set theory, the following partition is obtained easily,

U/IND(D) = {{x1, x2, x3, x4, x5}, {x6, x7, x8, x9, x10}, {x11, x12, x13, x14, x15}} .

Here, three decision concepts induced by decision attribute set are generated, and
they are X1 = {x1, x2, x3, x4, x5}, X2 = {x6, x7, x8, x9, x10} and X3 = {x11, x12,
x13, x14, x15} respectively. For the decision concept X1, computing U/IND(C),

U/IND(C) = {{x1, x2, x7, x11}, {x3, x4, x8, x9, x13}, {x5, x10, x14}, {x6, x12, x15}}.

Then let Y1 = {x1, x2, x7, x11}, Y2 = {x3, x4, x8, x9, x13}, Y3 = {x5, x10, x14},
Y4 = {x6, x12, x15}. Computing the membership degree μ(x) of x (x ∈ U),
where μ(x) = |Yi∩X|

|Yi| , that is to say, every object in equivalence class Yi has
same membership degree. For X1, the membership degrees are shown as follows,
(1) For equivalence class Y1, the membership degree is1/2;
(2) For equivalence class Y2, the membership degree is 2/5;
(3) For equivalence class Y3, the membership degree is 1/3;
(4) For equivalence class Y4, the membership degree is 0.

Computing R0.5(X1) and Rμi
(X1) and sorting the μi, then we can get

R1/3(X1) = {x1, x2, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14};
R2/5(X1) = {x1, x2, x3, x4, x7, x8, x9, x11, x13};R0.5(X1) = {x1, x2, x7, x11} .
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Further, we can obtain:

S
(
X1, R1/3 (X1)

)
=

5
12

, S
(
X1, R2/5 (X1)

)
=

2
5
, S (X1, R0.5 (X1)) =

2
7
.

We find that S1/3(X1) is maximum value, that is to say, the approximation set
R1/3(X1), is the optimal approximation set of X1. Then we can obtain RBest(X1)
as follows,

RBest(X1) = R1/3(X1) = {x1, x2, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14}.

Similarly,

RBest(X2) ={x3, x4, x5, x6, x8, x9, x10, x12, x13, x14, x15};
RBest(X3) = {x5, x6, x10, x12, x14, x15} .

The purpose of selecting RBest(X) is to characterize a target concept and
further acquire rules. So compared with R(X), R(X) and R0.5(X), what advan-
tages does the RBest(X) have? Then, relative analysis is shown as follows:
(Continue)Example 3. In Table 2, we can get three decision concepts X1 =
{x1, x2, x3, x4, x5}, X2 = {x6, x7, x8, x9, x10} and X3 = {x11, x12, x13, x14, x15}.
With these decision concepts, we can obtain,

R(X1) = ∅, R(X2) = ∅, R(X3) = ∅;

R(X1) = {x1, x2, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14},

R(X2) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15},

R(X3) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15};
R0.5(X1) = {x1, x2, x7, x11}, R0.5(X2) = ∅, R0.5(X3) = ∅;
RBest(X1) = {x1, x2, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14},

RBest(X2) = {x3, x4, x5, x6, x8, x9, x10, x12, x13, x14, x15},

RBest(X3) = {x5, x6, x10, x12, x14, x15}.

From the decision information Table 2 we can acquire many decision rules
based on R(X) are shown as follows,

(1) For X1, the corresponding approximation set is ∅;
(2) For X2, the corresponding approximation set is ∅;
(3) For X3, the corresponding approximation set is ∅.
We can acquire many decision rules based on R(X) are shown as follows,
(1) For X1, the decision rule is (a = 1 ∧ b = 2 ∧ c = 0) ∨ (a = 1 ∧ b = 0 ∧ c =

2) ∨ (a = 2 ∧ b = 1 ∧ c = 1) → d = 1;
(2) For X2, the decision rule is (a = 2 ∧ b = 2 ∧ c = 1) ∨ (a = 1 ∧ b = 2 ∧ c =

0) ∨ (a = 1 ∧ b = 0 ∧ c = 2) ∨(a = 2 ∧ b = 1 ∧ c = 1) → d = 2;
(3) For X3, the decision rule is (a = 1 ∧ b = 2 ∧ c = 0) ∨ (a = 2 ∧ b = 2 ∧ c =

1) ∨ (a = 1 ∧ b = 0 ∧ c = 2) ∨ (a = 2 ∧ b = 1 ∧ c = 1) → d = 3.
We can acquire many decision rules based on R0.5(X) are shown as follows,
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(1) For X1, the decision rule is (a = 1 ∧ b = 2 ∧ c = 0) → d = 1;
(2) For X2, the corresponding approximate set is ∅;
(3) For X3, the corresponding approximate set is ∅.
We can acquire many decision rules based on RBest(X) are shown as follows,
(1) For X1, the decision rule is (a = 1 ∧ b = 2 ∧ c = 0) ∨ (a = 1 ∧ b = 0 ∧ c =

2) ∨ (a = 2 ∧ b = 2 ∧ c = 1) ∨ (a = 2 ∧ b = 1 ∧ c = 1) → d = 1;
(2) For X2, the decision rule is (a = 2 ∧ b = 1 ∧ c = 1) ∨ (a = 1 ∧ b = 0 ∧ c =

2) ∨ (a = 2 ∧ b = 2 ∧ c = 1) → d = 2;
(3) For X3, the decision rule is (a = 2 ∧ b = 1 ∧ c = 1) ∨ (a = 2 ∧ b = 2 ∧ c =

1) → d = 3.

Table 3. Comparative analysis

Supporting amount Wrong amount Unrecognized amount

R(X) X1 0 0 5

X2 0 0 5

X3 0 0 5

R(X) X1 5 7 0

X2 5 10 0

X3 5 10 0

R0.5(X) X1 2 2 3

X2 0 0 5

X3 0 0 5

RBest(X) X1 5 7 0

X2 4 7 1

X3 3 3 2

A comparative analysis Table 3 is constructed according to the above decision
rules. From these above rules acquired from R(X), R(X), R0.5(X) and RBest(X)
and Table 3, the qualitative and quantitative comparisons could be made. It
obvious that many objects can not determine decision classification if the decision
rules are acquired based on R0.5(X) and R(X), and this is not an expected result
in actual decision problems. Though each object belongs to a certain decision
classification if the decision rules are acquired based on R(X) the objects in the
boundary cannot be assigned to a certain decision classification, and the error
classifications will be produced. Compared with R0.5(X) and R(X), the amount
of correct classification objects increases, and amount of uncertain classification
objects reduces if the decision rules are acquired based on RBest(X). Compared
with R(X), although the amount of correct classification objects weakly declines,
the amount of error classification objects also reduces if the decision rules are
acquired based on RBest(X).

According to above comparison results, we find that the decision rules based
on RBest(X) have more powerful classification ability than the decision rules
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based on R(X), R(X) and R0.5(X). The RBest(X) provide a novel perspective
for approximate characterization of a target concept in multi-granularity spaces.
Furthermore, it would be an effective method that could be suitable to real-life
knowledge discovery from the uncertain information systems.

4 Operation Properties of RBest(X)

It is well known that R(X) and R(X) have many important operation proper-
ties as literature [8,24]. Now, we will prove that the optimal approximation set
RBest(X) has many similar operation properties with the upper approximation
set and lower approximation set also. For convenience, let RBest(X) = Rk(X),
(0 < k ≤ 0.5), U be a finite domain, and X, Y be two subsets on U , we have

(1) Rk(∼ X) =∼ R. 1−k(X), R. k(∼ X) =∼ R1−k(X);
(2) if X ⊆ Y , then Rk(X) ⊆ Rk(Y ), R. k(X) ⊆ R. k(Y );
(3) Rk(X ∩ Y ) ⊆ Rk(X) ∩ Rk(Y ), R. k(X ∩ Y ) ⊆ R. k(X) ∩ R. k(Y );
(4) Rk(X ∪ Y ) ⊇ Rk(X) ∪ Rk(Y ), R. k(X ∪ Y ) ⊇ R. k(X) ∪ R. k(Y ).

Proof. (1) Because

Rk(∼ X) =
{
x|µR

X̃(x) ≥ k
}

=

{
x| |[x]R ∩ (∼ X)|

|[x]R| ≥ k

}
=

{
x| |[x]R ∩ (U − X)|

|[x]R| ≥ k

}

=

{
x|1 − |[x]R ∩ X|

|[x]R| ≥ k

}
=

{
x| |[x]R ∩ X|

|[x]R| ≤ 1 − k

}
=∼ R. 1−k(X),

Similarly, R. k(∼ X) =∼ R1−k(X) holds. Hence, the proposition (1) is proved.
(2) ∀x ∈ Rk(X), we have [x]R satisfying |[x]R∩X|

|[x]R| ≥ k; because X ⊆ Y , we

have |[x]R ∩ X| ≤ |[x]R ∩ Y |, then |[x]R∩X|
|[x]R| ≤ |[x]R∩Y |

|[x]R| , then |[x]R∩Y |
|[x]R| ≥ k. So we

can get x ∈ Rk(Y ), and then Rk(X) ⊆ Rk(Y ). Similarly, ∀x ∈ R. k(X), we have
[x]R satisfying |[x]R∩X|

|[x]R| > k; because X ⊆ Y , we have |[x]R ∩ X| ≤ |[x]R ∩ Y |,
then |[x]R∩X|

|[x]R| ≤ |[x]R∩Y |
|[x]R| , and we can get |[x]R∩Y |

|[x]R| > k. Therefore, we have x ∈
R. k(Y ), and then R. k(X) ⊆ R. k(Y ). So, the proposition (2) is proved successfully.

(3) Because X ∩ Y ⊆ X and X ∩ Y ⊆ Y , according to proposition (2) we
have Rk(X ∩ Y ) ⊆ Rk(X) and Rk(X ∩ Y ) ⊆ Rk(Y ), and we have Rk(X ∩ Y ) ⊆
Rk(X) ∩ Rk(Y ). Similarly, we can get R. k(X ∩ Y ) ⊆ R. k(X) ∩ Rk. (Y ). So the
proposition (3) holds.

(4) Because X ⊆ X ∪ Y and Y ⊆ X ∪ Y , according to proposition (2),
Rk(X) ⊆ Rk(X ∪ Y ) and Rk(Y ) ⊆ Rk(X ∪ Y ), so Rk(X ∪ Y ) ⊇ Rk(X)∪Rk(Y )
is held. Similarly because X ⊆ X∪Y and Y ⊆ X∪Y , both R. k(X) ⊆ R. k(X ∪ Y )
and R. k(Y ) ⊆ R. k(X ∪ Y ) are held, so we have R. k(X ∪ Y ) ⊇ R. k(X) ∪ R. k(Y ).
Then the proposition (4) is proved successfully.

5 Change Rules of RBest(X) with Changing Knowledge
Granularity

Currently, in different knowledge granularity levels, change rules of rough set
uncertainty is one of important issues to measure the uncertainty of knowledge



350 Q. Zhang et al.

[1,3,5,6,15,16]. Therefore, in different knowledge granularity levels, change rules
of S(X,RBest(X)) are also focus on our attention. Next, we will discuss the
change rules in detail. Firstly, suppose a, b, c, d, e and f be all real number,
and some basic results and lemmas are reviewed in order to discuss the relevant
theorems easily.

Lemma 1. [21] If 0 < a < b and 0 < c < d, then a/b < (a + d)/(b + c).

Lemma 2. [21] If f/e = (b + d)/(a + c) and b/a < f/e, then d/c > f/e.

Lemma 3. [19] Let 0 < c < a, 0 < d < b. If a/b ≥ c/d, then a/b ≤
(a − c)/(b − d). On the contrary, if a/b ≤ c/d, then a/b ≥ (a − c)/(b − d).

Next, we would discuss the relationship between S(X, RBest(X)) and
S(X,R′

Best(X)) in different knowledge granularity levels. Let RBest(X) = Rλ(X)
then (0 < λ ≤ 0.5). And let [xi1 ]R, [xi2 ]R, . . . ,[xik ]R be the equivalence classes
induced by an equivalence relation R on U , and [xi1 ]R′ , [xi2 ]R′ ,. . . , [xik ]R′ be
the equivalence classes induced by another equivalence relation R′ on U . If the
partition U/R′ is finer than U/R namely U/R′ � U/R, for any x ∈ U , there is
[x]R′ ⊆ [x]R. For convenience, let Rλ(X) = R(X) ∪ [xi1 ]R ∪ [xi2 ]R ∪ . . . ∪ [xik ]R,
and BNDR(X) = [xi1 ]R ∪ [xi2 ]R ∪ . . . ∪ [xim ]R. The equivalence classes divided
into finer equivalence classes (sub-granules) may be in NEGR(X), POSR(X) or
BNDR(X). When the equivalence classes divided into finer equivalence classes
are in NEGR(X) or POSR(X), S(X,Rλ(X)) = S(X,R′

λ(X)) is held. Next we
will focus on S(X,R′

λ(X)) when the equivalence classes divided into finer equiv-
alence classes are in BNDR(X). For simplicity, suppose there is only one granule
subdivided to two disjoint granules and others remain unchanged. That is to say,
suppose [xit ]R = [x1

it
]R′ ∪ [x2

it
]R′ . This situation will be discussed as follows.

Theorem 1. If λ = 0.5, 1 ≤ t ≤ k, that is [xit ]R ⊂ Rλ(X):
(1) If [x1

it
]R′ ⊂ R′

λ(X), [x2
it

]R′ ⊂ R′
λ(X), then S (X,Rλ(X)) = S (X,R′

λ(X));
(2) If [x1

it
]R′ ⊂ R′

λ(X), [x2
it

]R′ �⊂ R′
λ(X), then S (X,Rλ(X)) ≤ S (X,R′

λ(X)).

Proof. ∀x ∈ R0.5(X), we have μR
X(x) = |[x]R∩X|

[x]R
≥ 0.5. Then we can obtain,

R0.5(X) =
{
x|μR

X(x) ≥ 0.5
}

=
{
x|μR

X(x) = 1
} ∪ {

x|0.5 ≤ μR
X(x) < 1

}
.

Obviously,
{
x|μR

X(x) = 1
}

= R(X), and then Let
{
x|0.5 ≤ μR

X(x) < 1
}

=
[xi1 ]R ∪ [xi2 ]R ∪ . . . ∪ [xik ]R, we have

X ∩ R0.5(X) = X ∩ (R(X) ∪ [xi1 ]R ∪ [xi2 ]R ∪ . . . ∪ [xik ]R) .

Since the intersection sets between any two elements in R(X), [xi1 ]R, [xi2 ]R, . . . ,
[xik ]R is empty set, we have

|X ∩ R0.5(X)| =|X ∩ R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xin ]R|
=|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + | . . . | + |X ∩ [xin ]R|.
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Since X ∪ Rλ(X) = X ∪ ([xi1 ]R − X) ∪ ([xi2 ]R − X) ∪ . . . ∪ ([xik ]R − X) and
the intersection between any two elements in X, ([xi1 ]R − X), ([xi2 ]R − X), . . . ,
([xik ]R − X) is empty set, we have

|X ∪ R0.5(X)| = |X| + |([xi1 ]R − X)| + |([xi2 ]R − X)| + | . . . | + |([xik ]R − X)|.
Therefore,

S(X,R0.5(X)) =
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| .

While [x1
it

]R′ ⊂ R′
λ(X) and [x2

it
]R′ ⊂ R′

λ(X), we can get

S(X,R′
0.5(X))

=
|R′(X)| + |X ∩ [xi1 ]R′ | + . . . + |X ∩ [x1

it ]R′ | + |X ∩ [x2
it ]R′ | + . . . + |X ∩ [xik ]R′ |

|X| + |[xi1 ]R′ − X| + . . . + |[x1
it ]R′ − X| + |[x2

it ]R′ − X| + . . . + |[xik ]R′ − X|

=
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X|

=S(X,Rλ(X)).

So the part (1) is proved successfully.
For the part (2) when [x2

it
]R′ �⊂ R′

λ(X), we can have the equality as follows,

S(X,R′
0.5(X)) =

|R′(X)| + |X ∩ [xi1 ]R′ | + . . . + |X ∩ [x1
it ]R′ | + . . . + |X ∩ [xik ]R′ |

|X| + |[xi1 ]R′ − X| + . . . + |[x1
it ]R′ − X| + . . . + |[xik ]R′ − X| .

With Lemma 2, we have the inequality
|X∩[x1

it
]R′ |

|[x1
it
]R′−X| >

|X∩[xit ]R′ |
|[xit ]R′ −X| , let

|X∩[x1
it
]R′ |

|[x1
it
]R′ −X| =

|X∩[xit ]R′ |+p

|[xit ]R′−X|+q , then p
q >

|X∩[xit ]R′ |
|[xit ]R′ −X| , then we can get

S(X,R′
λ(X))

=
|R′(X)| + |X ∩ [xi1 ]R′ | + |X ∩ [xi2 ]R′ | + . . . + |X ∩ [x1

it ]R′ | + . . . + |X ∩ [xik ]R′ |
|X| + |[xi1 ]R′ − X| + |[xi2 ]R′ − X| + . . . + |[x1

it ]R′ − X| + . . . + |[xik ]R′ − X|

=
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R| + p

|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| + q
.

We know

S(X,R0.5(X)) =
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| ,

according to Definition 6 we have 0 ≤ S(X,R0.5(X)) ≤ 1, then we can easily get
the inequality as follow,

|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
≤ |X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X|.
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Since p
q >

|X∩[xit ]R′ |
|[xit ]R′−X| we have p > q. With Lemma 1,

|R(X)| + |X ∩ [xi1 ]R| + . . .+ |X ∩ [xik ]R| + p

|X| + |[xi1 ]R − X| + . . .+ |[xik ]R − X| + q
≥ |R(X)| + |X ∩ [xi1 ]R| + . . .+ |X ∩ [xik ]R|

|X| + |[xi1 ]R − X| + . . .+ |[xik ]R − X| ,

namely S(X,R0.5(X)) ≤ S(X,R′
0.5(X)). Hence the part (2) is proved success-

fully.

Theorem 1 show that when λ = 0.5, no matter the equivalence classes divided
into many sub-granules are in NEGR(X), POSR(X) or BNDR(X), similarity
degree S(X,R′

λ(X)) is not smaller than S(X,Rλ(X)).

Theorem 2. If 0 < λ < 0.5, k < t ≤ m, that is [xit ]R �⊂ Rλ(X):
(1) If [x1

it
]R′ ⊂ R′

λ(X), [x2
it

]R′ �⊂ R′
λ(X) and S(X, Rλ(X)) ≤

|X ∩ [x1
it

]R′ |/|[x1
it

]R′ − X|, then S(X, Rλ(X)) ≤ S(X,R′
λ(X));

(2) If [x1
it

]R′ �⊂ R′
λ(X), [x2

it
]R′ �⊂ R′

λ(X), then S(X,Rλ(X)) = S(X,R′
λ(X)).

Proof. According to the Theorem 1 we can get the equality as follow,

S(X,Rλ(X)) =
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| .

Since [x1
it

]R′ ⊂ R′
λ(X) and [x2

it
]R′ �⊂ R′

λ(X) we can obtain the following
equality,

S(X,R′
λ(X)) =

|X ∩ R′
λ(X)|

|X ∪ R′
λ(X)|

=
|R′(X)| + |X ∩ [xi1 ]R′ | + |X ∩ [xi2 ]R′ | + . . . + |X ∩ [xik ]R′ | + |X ∩ [x1

it
]R′ |

|X| + |[xi1 ]R′ − X| + |[xi2 ]R′ − X| + . . . + |[xik ]R′ − X| + |[x1
it

]R′ − X|

=
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R| + |X ∩ [x1

it
]R′ |

|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| + |[x1
it

]R′ − X| .

Let S(X,Rλ(X)) = k, |R(X)| + |X ∩ [xi1 ]R| + . . . + |X ∩ [xik ]R| = k1 and |X| +
|[xi1 ]R − X| + . . . + |[xik ]R − X| = k2, we can get the equality as follow,

S(X,R′
λ(X)) =

k1 + |X ∩ [x1
it

]R′ |
k2 + |[x1

it
]R′ − X| .

For S(X,Rλ(X)) = k = k1
k2

≤ |X∩[x1
it
]R′ |

|[x1
it
]R′−X| , and according to Lemma2 we can

easily obtain the following inequality,

S(X,R′
λ(X)) =

k1 + |X ∩ [x1
it

]R′ |
k2 + |[x1

it
]R′ − X| ≥ k1 + k1

k2 + k2
= S(X,Rλ(X)).

Therefore the part (1) is proved.
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For the part (2), since [x1
it

]R′ �⊂ R′
λ(X) and [x2

it
]R′ �⊂ R′

λ(X), we can easily
get the equality,

S(X,R′
λ(X)) =

|X ∩ R′
λ(X)|

|X ∪ R′
λ(X)|

=
|R′(X)| + |X ∩ [xi1 ]R′ | + |X ∩ [xi2 ]R′ | + . . . + |X ∩ [xik ]R′ |

|X| + |[xi1 ]R′ − X| + |[xi2 ]R′ − X| + . . . + |[xik ]R′ − X|

=
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X|

=S(X,Rλ(X)).

Therefore the part (2) is proved completely.

Note: since [xit ]R �⊂ Rλ(X), according to the Lemma 2, the inclusion relations
[x1

it
]R′ ⊂ R′

λ(X) and [x2
it

]R′ ⊂ R′
λ(X) are not existed.

Theorem 3. If 0 < λ < 0.5, k < t ≤ m, that is [xit ]R ⊂ Rλ(X):
(1) If [x1

it
]R′ ⊂ R′

λ(X), [x2
it

]R′ ⊂ R′
λ(X), then S (X,Rλ(X)) =

S (X,Rλ(X)).
(2) If [x1

it
]R′ ⊂ R′

λ(X), [x2
it

]R′ �⊂ R′
λ(X), as well as S (X,Rλ(X)) ≥∣∣X ∩ [x2

it
]R′

∣∣/∣∣[x2
it

]R′ − X
∣∣, then S (X,Rλ(X)) ≤ S (X,R′

λ(X)).

Proof. For the part (1), since [x1
it

]R′ ⊂ R′
λ(X), and [x2

it
]R′ ⊂ R′

λ(X), we can
easily get the equality as follow,

S(X,R′
λ(X)) =

|X ∩ R′
λ(X)|

|X ∪ R′
λ(X)|

=
|R′(X)| + |X ∩ [xi1 ]R′ | + |X ∩ [xi2 ]R′ | + . . . + |X ∩ [xik ]R′ |

|X| + |[xi1 ]R′ − X| + |[xi2 ]R′ − X| + . . . + |[xik ]R′ − X|

=
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| = S(X,Rλ(X)).

Hence the part (1) is proved.
For the part (2), since [x2

it
]R′ �⊂ R′

λ(X), we can easily get the equality as
follow,

S(X,R′
λ(X)) =

|X ∩ R′
λ(X)|

|X ∪ R′
λ(X)|

=
|R′(X)| + |X ∩ [xi1 ]R′ | + |X ∩ [xi2 ]R′ | + . . . + |X ∩ [x1

it ]R′ | + . . . + |X ∩ [xik ]R′ |
|X| + |[xi1 ]R′ − X| + |[xi2 ]R′ − X| + . . . + |[x1

it ]R′ − X| + . . . + |[xik ]R′ − X|

=
|R′(X)| + |X ∩ [xi1 ]R′ | + . . . + |X ∩ [xit ]R′ | + . . . + |X ∩ [xik ]R′ | − |X ∩ [x2

it ]R′ |
|X| + |[xi1 ]R′ − X| + . . . + |[xit ]R′ − X| + . . . + |[xik ]R′ − X| − |[x2

it ]R′ − X|

=
|X ∩ Rλ(X)| − |X ∩ [x2

it ]R′ |
|X ∪ Rλ(X)| − |[x2

it
]R′ − X| .

Since S(X,Rλ(X)) ≥ |X ∩ [x2
it

]R′ |/|[x2
it

]R′ − X|, then according to Lemma3, we
can get S(X,Rλ(X)) ≤ S(X,R′

λ(X)). So the part (2) is proved perfectly.
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Note: Since [xit ]R ⊂ Rλ(X), according to the Lemma 2, the inclusion rela-
tions [x1

it
]R′ �⊂ R′

λ(X) and [x2
it

]R′ �⊂ R′
λ(X) are not held either.

Theorems 2 and 3 show that when 0 < λ < 0.5 and the equivalence classes
are subdivided into many finer equivalence classes (sub-granules) by R′, the
similarity degree between R′

λ(X) and X is not generally lower than the similarity
degree between Rλ(X) and X.

6 Conclusions

Since rough set theory was proposed in 1982, it has developed more than 30
years. Many scholars have made some improvements for the traditional models
and obtained many extended rough set models which overcome some shortcom-
ings of the traditional models. Combining with the fuzzy set theory, we have
constructed an approximation set of an uncertain set X with the cut-set and
proposed a general approximation model R0.5(X), but the optimal approxima-
tion set of X still is not established. In order to solve this problem, in this paper
the optimal approximation set through minimizing similarity between the uncer-
tain concept and its approximation sets is defined. Then comparative analysis
between RBest(X) and other approximation sets is given. Next, the operation
properties of RBest(X) are presented and proved successfully. Finally, change
rules of the similarity degree between X and RBest(X) in different knowledge
granularity levels are discussed in detail. These research presents a computa-
tional method for establishing or searching an optimal approximation set of X
from the perspective of similarity. We hope these works can expand the range
of rough set theory model to deal with uncertain problems in the real world and
promote the development of uncertainty artificial intelligence.
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