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Abstract. Ambiguity, that is the lack of information to produce a
specific classification, is an important issue in decision–making and
supervised classification. In case of ambiguity, human–decision makers
can resort to abstaining from making precise classifications (especially
when error-related costs are high), but this behaviour has been scarcely
addressed, and applied, in machine learning algorithms. This contribu-
tion grounds on previous works in the areas of three–way decisions,
cautious classification and orthopairs, and proposes a set of techniques
we developed to address this form of ambiguity, by providing both a
general–purpose technique to create three–way algorithms from proba-
bilistic ones, and also more specific techniques which could be applied
to popular machine learning frameworks. We also evaluate the proposed
idea, by performing a set of experiments where we compare classical
classification algorithms with the corresponding three–way generaliza-
tions, in order to study the trade–off between classification accuracy and
abstention: the results are promising.
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1 Introduction

Research in the Machine Learning and Data Mining fields has recently taken
central stage in the Computer Science research community: this interest has
been driven by theoretical advancements [3,11,17,23], technological advance-
ments and, chiefly among all, the promising results in different application areas
(driven by the availability of large amounts of data) [13,24,26].

Despite all the attention and recent achievements, a limitation of current
Machine Learning methods is the inability to properly deal with uncertainty
and biases affecting the training datasets which are fed to learning algorithms
as input [15,18,30]. Indeed, as noted in [4] for the healthcare domain, various
forms of uncertainties and biases can affect the training data (missing data,
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inter–rater disagreement, lack of information, ambiguity, . . . ) thus hampering
the performance and, most relevantly, the reliability of the resulting models.

Several uncertainty theories (e.g. rough–set theory [27], fuzzy–set theory [32],
three–way decisions [31],...) have been proposed in order to cope with these
different forms of uncertainty, also with application to Machine Learning [2,21],
but their adoption in mainstream Machine Learning has been lagging, due to
different reasons (e.g. those evidenced in [22] for the case of fuzzy sets).

In this work, we will consider a particular type of uncertainty, lack of
information, also called ambiguity in the terminology of [19]. In the decision–
making/classification domain, this type of uncertainty occurs when a human
(or computational) agent deems the available information insufficient to cast a
univocal and reasonable decision.

Whenever possible, the usual strategy that human decision–makers adopt, in
order to cope with either ambiguous input or uncertain output, is to reject any
pretense of giving a clear–cut decision and, instead, abstain from expressing a
judgment. This approach has the merit of highlighting, in a simple form, which
instances are more uncertain and, consequently, pointing out which ones would
require the acquisition of further information.

While this approach is still little adopted, different authors have tried to
address the abstention behaviour under a computational perspective: here, we
especially mention the work on cautious classifiers [16,20] and the work on three–
way decisions [31]. In the same direction, in order to develop Machine Learning
models with this abstention ability, the authors proposed in [5,6] an extended
decision tree–learning model, based on orthopairs [9,10] and three–way decisions.

In this article, we extend this line of research:

– We introduce a general framework for classification with abstention (or three–
way classification), based on three–way decisions and orthopartitions, which
can be applied to any classification algorithm;

– We define a set of specific strategies which can be used to directly implement
three–way classification in the context of popular learning algorithms (e.g.
decision trees, random forests, logistic regression);

– We conduct an experimental study, in which we compare different classi-
cal learning algorithms with the corresponding three–way ones on various
datasets.

More specifically, in Sect. 2, we give a basic introduction to orthopairs and
orthopartitions. In Sect. 3 the basic methods are introduced, that is: in Sect. 3.1,
we define our approach to convert any classifier into a three–way classifica-
tion algorithm, both in the binary and multi–class settings, providing also a
theoretical–algorithmic analysis of these frameworks; in Sects. 3.2 and 3.3, we
describe the strategies to directly implement three–way classification for three
popular learning models (i.e., Decision Trees, Random Forests and Convex
Learning via Gradient Descent). In Sect. 4.1, we illustrate the setting of the
empirical analysis we conducted in order to compare traditional learning algo-
rithms with three–way ones. In Sect. 4.2, we present the results of the conducted
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experiments, considering the advantages offered by three–way classification algo-
rithms and evaluating the effect of abstention with respect to their performance,
supporting our analysis with standard statistical validation techniques. Finally,
in Sect. 5 we present our conclusions and outline the set of open problems and
issues that we plan to investigate in our future works.

2 Orthopairs and Orthopartitions

Let us recall some basic notions on orthopairs and orthopartitions [6,10].
Let U be a set of objects, an orthopair is a pair O = 〈P,N〉 of subsets of U

such that P ∩ N = ∅. From these two sets we can also define the boundary as
Bnd = (P ∪ N)c. Note that we could take an orthopair as a partially specified
set which expresses our (incomplete) knowledge about the assignment of objects
in a universe to a certain concept class; in this case, set P represents the positive
examples for the concept while N represents the negative ones. We say that a
set S is consistent with an orthopair O if it holds that:

x ∈ P → x ∈ S ∧ x ∈ N → x /∈ S

That is, if we interpret the orthopair O as a partially specified set expressing
our degree of knowledge about the belonging (or not) of certain objects to a set,
S is coherent with our partial knowledge.

We say that two orthopairs O1, O2 are disjoint if it holds that:

(Ax D1) P1 ∩ P2 = ∅;
(Ax D2) P1 ∩ Bnd2 = ∅ and Bnd1 ∩ P2 = ∅.

Definition 1. An orthopartition is a set O = {O1, ..., On} of orthopairs such
that the following axioms hold:

(Ax O1) ∀Oi, Oj ∈ O Oi, Oj are disjoint;
(Ax O2)

⋃
i(Pi ∪ Bndi) = U ;

(Ax O3) ∀x ∈ U (∃Oi s.t. x ∈ Bndi) → (∃Oj with i �= j s.t. x ∈ Bndj);
(Ax O4) |O| ≤ |U |

It can be observed that an orthopartition represents a partial classification,
or a classification with abstentions (in a multi–class setting): the objects in the
boundaries represent those objects whose class assignment is not precisely known
(given the available evidence and, hence, the presence of ambiguity).

Definition 2. A partition π is consistent with an orthopartition O iff ∀Oi ∈
O, ∃!Si ∈ π such that Si is consistent with Oi. We denote with ΠO the set of
all partitions consistent with O: ΠO = {π|π is consistent with O}.
Viewing an orthopartition as a partial state of knowledge about a multi–class
classification (associated with the set ΠO which represents all possible consis-
tent complete states of knowledge), we can extend many measures defined on
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classical partitions to orthopartitions, in particular we will focus on the entropy
and accuracy (the extension of other metrics based on the confusion matrix is
analogous). The logical entropy [14] of a partition π is defined as:

h(π) = dit(π)
|U |2

where dit(π) = {(u, u′) ∈ U × U |u, u′ belong to two different blocks of π}.
We can define three different generalizations of this concept, when applied to
orthopartitions:

Definition 3. Given an orthopartition O, we define the lower entropy, the
upper entropy and the mean entropy respectively as:

h∗ = min{h(π)|π ∈ ΠO} (1a)
h∗ = max{h(π)|π ∈ ΠO} (1b)

hA =
1

|ΠO|
∑

π∈ΠO

h(π) (1c)

As shown in [6,7], all three values can be computed in polynomial time. Let
π1, π2 be two partitions and f : π1 �→ π2 be a bijection between the blocks of
π1, π2, the accuracy of π2 wrt π1 is defined as:

accπ1(π2) =
1

|U |
∑

Si∈π1

|Si ∩ f(Si)|

Similarly, we can provide three generalizations of the accuracy:

Definition 4. Given a partition π∗, an orthopartition O, and a bijection f
between the respective blocks, we define the lower accuracy, the upper accuracy
and the mean accuracy respectively as:

acc∗ = min{acc(π)|π ∈ ΠO} (2a)
acc∗ = max{acc(π)|π ∈ ΠO} (2b)

accA =
1

|ΠO|
∑

π∈ΠO

acc(π) (2c)

Another interesting measure of accuracy (that we denote as accO) is obtained by
considering, in the computation of the accuracy value, only the instances which
are not in the boundary regions: that is, if Ur ⊆ U is the restriction of U to the
objects which are not placed in boundaries for orthopartition O then:

accO =
1
Ur

∑

Si∈π1

|Si ∩ f(Si)|

where Si and f(Si) are similarly restricted to Ur.
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3 The Methods

In this section, we propose the main method of three-way classification and apply
it to different learning strategies.

3.1 Three–Way Classification

Let Y = {y1, ..., yk} be a set of class labels, X = {x1, ..., xn} be a set of objects,
C : X → Y be a function which associates with each object xi ∈ X its true
classification yi

j ∈ Y . Let A be a probabilistic classifier, that is, an algorithm
which, given an object xi ∈ X, returns a probability distribution A(xi) over
Y , that is, A : X → P(Y ), where P(Y ) is the space of probability distribu-
tions over Y . For each yj ∈ Y , A(xi)j represents the probability that algo-
rithm A assigns to the event that yj is the correct class labeling for object xi

(i.e., the subjective probability that C(xi) = yj). Typically, in the Machine
Learning domain, this soft probabilistic classification is then converted into an
hard one by selecting the yj ∈ Y with maximum probability: that is, we define
D(xi) = argmaxyj∈Y A(xi)j and we denote with A(xi)∗ the corresponding prob-
ability. Note that this classification rule completely hides away the uncertainty
of the classifier and, consequently, the ambiguity intrinsic in its input. An app-
roach to let the classifier A fully express its uncertainty, which fully reflects the
ambiguity of its input datum, is to let the classifier abstain on those instances
whose assignment to the classification labels is considered ambiguous.

First, we limit ourselves to a binary classification problem, that is, Y = {0, 1}.
Let ε be the cost associated with an erroneous classification, and let τ the cost
associated with an abstention. Let x ∈ X be an object, it is evident and widely
known [8,16,31] that, in this context, algorithm A should choose to abstain on
x if:

τ < ε ∗ minj∈{0,1}A(xi)j

that is, if choosing to abstain would incur (in the expected value) a lower cost
than adopting a clear-cut classification (selected using the standard decision
rule). The same decision rule could be given using a probability threshold; it is
easy to show that the two formulations are equivalent.

Theorem 1. Algorithm A should select to abstain iff maxj∈{0,1}A(xi)j < 1− τ
ε

Proof. Let A(x)∗ = maxj∈{0,1}A(xi)j , the rule expressed above is equivalent to
τ < ε ∗ (1 − A(x)∗) ⇒ τ

ε < 1 − A(x)∗ ⇒ A(x)∗ < 1 − τ
ε .

The generalization to the multi–class setting, in which partial decisions could
also be expressed, is also feasible and clearly more interesting. Indeed, in [6], a
generalization of this classification rule is proposed as follows. Let Z ⊆ Y , then
in this context we allow the algorithm A to express a decision Z, by which we
mean that the algorithm is confident that the true label of x is in Z but it is
unsure about its precise identity. Let A(x)Z =

∑
yj∈Z A(x)j . If, as in the binary
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classification setting, we adopt a constant abstention cost τ , then the algorithm,
with the abstention decision rule, should abstain on instance x if:

τ ∗ A(x)Z∗ + ε ∗ A(x)Y \Z∗ < ε ∗ (1 − A(x)∗) (3)

where Z∗ ⊆ Y is the set of labels which minimizes the left hand of the inequality,
otherwise it should output the yj corresponding to A(x)∗.

Note that, directly translating this definition (as done in [6]) to an algorithm,
yields a decision procedure which has complexity exponential w.r.t. |Y |. However,
it is easy to observe that not every Z ⊆ Y should be considered in the above
minimization problem. In fact, the above minimization problem can be solved

correctly in a greedy approach: let
∧

A(x) = 〈y∗
1 , ..., y

∗
k〉 be the result of sorting

A(x) in order of decreasing probability. Then the above decision rule can be
expressed, without loss of generalization, as:

τ ∗
j∑

i=1

∧
A(x)i + ε ∗

k∑

i=j+1

∧
A(x)i < ε ∗ (1 − A(x)∗) (4)

where j is the index which minimizes the left hand of the inequality.

Theorem 2. The greedy version of the optimization algorithm is solvable with
time complexity Θ(n) (if A(x) is already sorted).

Proof. For each j we can pre-compute
∑j

i=1

∧
A(x)i in constant time (by accu-

mulating the values of the sum over previous js), from this value we can obtain
∑k

i=j+1

∧
A(x)i in constant time. The result easily follows.

As observed in [6], a constant value of τ has the result that, when the algo-
rithm abstains, Z∗ (i.e. the set of labels which minimizes the optimization prob-
lem) is always Z∗ = Y . This problem can be solved in a regularization fashion,
by penalizing overly uncertain responses from the algorithm. In this case τ is
defined as a function τ : {1, ..., |Y |} → R+ such that, given A,B ⊆ Y , it holds
|A| ≤ |B| → τ(|A|) ≤ τ(|B|).

An interesting aspect to note is that not every value of τ is meaningful in
this context, namely the following result holds:

Theorem 3. Let us consider a n–class classification problem. Abstention can
be achieved only if τ < ε ∗ n−1

n .

Proof. Consider the case of constant τ and the formulation given by Eq. 3. Then,
we have that the algorithm should decide to abstain iff τ < ε ∗ (1 − A(x)∗). But
A(x)∗ ≥ 1

n , thus τ < ε ∗ (1 − A(x)∗) ≤ ε ∗ (1 − 1
n ), from which we obtain the

result.

Example 1. Let x be an instance and A a probabilistic algorithm, defined over
the label set Y = {1, 2, 3, 4} such that A(x) =

[
0.3 0.3 0.2 0.2

]
, and let ε = 1,

τ = 0.4. Then, the right hand of Eq. (3) is 0.7, while Z∗ can be verified to
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be, as expected, Z∗ = Y with the left hand of inequality (3) assuming value
0.4. If, on the other hand, we do not assume a constant τ but instead adopt
τ(Z) = 0.4 · 1

1− |Z|−2
|Y |

, thus penalizing abstentions over a larger set of alternatives,

we have that Z∗ = {1, 2, 3} (equivalently, Z∗ = {1, 2, 4}) and the left hand of
the inequality has value 0.63.

3.2 Decision Trees and Random Forests

In [6] an extended Decision Tree model, called Three–Way Decision Tree
(TWDT), is proposed. It provides a more tight integration of Decision Trees
and Three–Way Classification than the main approach described in this paper.
Let D = {x1, ..., x|D|} ⊆ X be a given dataset with a set of features {a1, ..., am}.
We denote by Da

i = {x ∈ D|va(x) = va
i } the set of instances that have value

va
i for feature a. We associate with Da

i the classification Ca
i , which is obtained

by the decision rule described in Sect. 3.1 (note that this class assignment is
done locally on the tree nodes, and not only on the final output of the clas-
sifier). Since this classification determines an orthopartition Oa, we can then
compute the accuracy of Oa w.r.t. D as described in Sect. 2 (selecting among
acc∗, acc∗, accA) and choose the feature a∗ which results in the maximum accu-
racy value, and then recur (until a termination criterion is met) on the subsets
of D determined by feature a∗.

This approach can be easily extended to Random Forests (or other ensemble
learning algorithms). Basically, the learning process, as in standard Random
Forest learning, first induces a set of n TWDT estimators, which we denote as
T1, ..., Tn. Each of these TWDT estimators can be viewed as an orthopartition
Oi = {〈Py1 , Ny1〉, ...〈Pyk

, Nyk
〉} on the set of instances X, which assigns a set of

labels Ti(x) ⊆ Y to each instance x ∈ X.
Let x ∈ X be a new instance to classify, then the ensemble of trees T1, ..., Tn

determines a basic belief assignment (BBA) (in the sense of evidence theory [28])
mx(S) = |{Ti|Ti(x)=S}|

n . This BBA could then be transformed to a probability
distribution using the pignistic transformation [29] p(yj) =

∑
S�yj

m(S)
|S| , obtain-

ing a probabilistic classifier to which the decision procedure described in Sect. 3.1
could be applied.

3.3 Convex Learning Approximation

Several ML approaches (e.g. logistic regression, SVMs, multi–layer neural net-
works, ...) are based on the Gradient Descent algorithm, which is used to itera-
tively update the parameters of the models by taking in consideration the gra-
dient of a loss function w.r.t. the parameters. A caveat, in order to ensure that
the algorithm converges to a global minimum, is that the loss function should be
a convex function. It is easy to note that the decision rule described in Sect. 3.1
(which could be seen as a generalized version of the standard 0–1 loss) does not
result in a convex loss function:
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Theorem 4. The loss function determined by the decision procedure described
in Sect. 3.1 is not convex.

Proof. Let D(xi) =

⎧
⎨

⎩

Z∗ ∃Z∗which solves Eq. 3,
∧
yi otherwise

Then the loss of algorithm A w.r.t to instance x is L(x) =

⎧
⎪⎨

⎪⎩

0 D(x) = C(x)
τ C(x) ∈ D(x)
ε otherwise

Clearly, L(x) is not convex.

Fig. 1. The depiction of the loss function (in red), and its convex piece–wise linear
approximation (in blue), for positive examples. (Color figure online)

We can, however, define a convex approximation of the above described
loss function [1]. Consider first a binary classification problem, the loss func-
tion described above is depicted in Fig. 1. As shown in Fig. 1 we can, however,
define a convex piece–wise linear approximation to the real loss. Consider first
a binary classification problem assuming, without loss of generality, that ε = 1.
For the positive examples (i.e., those x ∈ X s.t. C(x) = 1) we can express an
approximation from above (so that we never underestimate the error) as:

L(w) = max{0, 1 − w,
(2 ∗ τ − 1) ∗ w + 3 ∗ τ − 1 − τ2

2 ∗ τ − 1
, 2 − w

τ
} (5)

where w = A(x)1 (i.e. the probability that algorithm A assigns object x to the
positive class).

Theorem 5. The loss function described in Eq. 5 is convex.

Proof. Each of the arguments of the max function is linear in w, thus it is convex
(every linear function is both convex and concave). Furthermore the point–wise
max of convex function is convex, from which the statement follows.
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The expression for negative examples is equivalent and symmetric. This loss
function could be then used to directly train convex learning algorithms and,
given a new instance x ∈ X to classify, we compute A(x)1 and then, we classify
x using the decision rule defined in Sect. 3.1.

In order to extend this approach to multi–class classification, we simply adopt
a one–vs–one learning scheme, in which, for each pair of labels yi, yj ∈ Y we
train a classifier Ai,j using the convex loss function described above. Then, given
a new instance x ∈ X to classify, we compute for each classifier Ai,j its output
Di,j(x) and we implement a voting schema:

votey(x,Ai,j) =

⎧
⎪⎨

⎪⎩

1 Di,j(x) = y
1

|Di,j(x)| y ∈ Di,j(x)

0 otherwise

and the final votes are computed as votey(x) =
∑

Ai,j votey(x,Ai,j) which,
again, determines a probabilistic classifier to which the decision rule described
in Sect. 3.1 can be applied.

4 Experimental Comparison

In order to test the flexibility offered by allowing an abstention decision (or a set
of abstention decisions, in the multi–class setting) we performed an experimental
comparison, analyzing a variety of traditional ML algorithms and their respective
Three–Way generalization, on a set of datasets. More specifically, we considered
the following algorithms: k–nearest neighbors (KNN), logistic regression (LR),
linear discriminant analysis (LDA), Naive Bayes (NB), SVM s, random forest
(RF). For each of these algorithms we also considered the three-way general-
ization obtained as described in Sect. 3.1 (these algorithms are denoted as TW
followed by the acronym of the algorithm as defined previously); in addition, we
also considered the three–way decision tree model (in the following denoted as
TWDT), described in Sect. 3.2.

4.1 Settings

We compared the algorithms on the following datasets:

– Iris: 150 instances, 4 features, 3 classes;
– Wine: 178 instance, 13 features, 3 classes;
– Breast cancer : 569 instance, 30 features, 2 classes;
– Digits: 1797 instances, 64 features, 10 classes;
– Yeast : 1484 instances, 8 features, 10 classes;
– Olivetti faces: 400 instances, 4096 features, 40 classes;
– SF12 Mental score (described in [5]): 462 instances, 10 features, 2 classes;
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In order to set the values of τ and ε (i.e. the abstention and error costs), we simply
selected ε = 1 and determined the optimal value of τ using cross-validation.
Indeed, for each of the above datasets, we trained the classification algorithms
using a 5–fold cross-validation, in order to select the optimal hyper–parameters
(which includes τ) of the algorithms (e.g., the tree depth for decision trees).
Then, we retrained the algorithms with the best selected hyper–parameters and
reported the means and standard deviations of the accO accuracy measure (we
considered this measure, as motivated in [16], in order to better analyze the
trade–off between classification accuracy and abstention). For the three–way
classification algorithms, in order to evaluate the trade-off among classification
accuracy and coverage (defined as the fraction of objects which are assigned a
clear–cut classification), we also measured the abstention rate, simply defined as:

Abst(A, T ) =
∑

x∈T

|D(x)|
|Y |

where A is a three–way classification algorithm, T is a testing set and D(x) ⊆ Y ,
as in Sect. 3.1, is the output labeling of algorithm A on instance x.

In order to more systematically study the trade-off among abstention and
classification, for the dataset Breast cancer and for algorithms TWRF and
TWSV M , we also reported the variation with respect to the abstention cost
τ of three different metric: accuracy, true positive rate (TPR), and true negative
rate (TNR).

4.2 Results

The results of the experimental comparison are illustrated in Table 1 and, for
one specific dataset (Yeast), in Fig. 2.

Table 1. Measured 95% confidence intervals, centered around the mean accuracy, for
the considered datasets and algorithms.

Algorithm Iris Wine Breast Digits Yeast Faces SF12

KNN 0.98 ± 0.03 0.75 ± 0.13 0.93 ± 0.04 0.98 ± 0.03 0.57 ± 0.03 0.90 ± 0.16 0.82 ± 0.02

TWKNN 1.00 ± 0.00 0.99 ± 0.02 0.99 ± 0.01 0.90 ± 0.00 0.67 ± 0.02 0.89 ± 0.01 0.82 ± 0.01

LR 0.95 ± 0.06 0.95 ± 0.05 0.95 ± 0.02 0.93 ± 0.04 0.53 ± 0.03 0.96 ± 0.03 0.73 ± 0.13

TWLR 0.96 ± 0.01 0.98 ± 0.02 0.98 ± 0.01 0.96 ± 0.02 0.78 ± 0.01 0.98 ± 0.01 0.77 ± 0.01

LDA 0.98 ± 0.04 0.98 ± 0.03 0.96 ± 0.03 0.92 ± 0.03 0.59 ± 0.01 0.98 ± 0.01 0.83 ± 0.12

TWLDA 0.98 ± 0.04 0.99 ± 0.00 0.97 ± 0.01 0.94 ± 0.02 0.72 ± 0.07 0.99 ± 0.01 0.83 ± 0.12

NB 0.95 ± 0.04 0.96 ± 0.03 0.94 ± 0.03 0.81 ± 0.06 0.15 ± 0.02 0.82 ± 0.03 0.82 ± 0.07

TWNB 0.97 ± 0.03 0.98 ± 0.03 0.95 ± 0.03 0.83 ± 0.05 0.16 ± 0.02 0.84 ± 0.02 0.86 ± 0.05

SVM 0.98 ± 0.03 0.73 ± 0.09 0.94 ± 0.02 0.97 ± 0.02 0.52 ± 0.03 0.79 ± 0.05 0.74 ± 0.04

TWSVM 0.98 ± 0.01 0.90 ± 0.01 0.96 ± 0.01 1.00 ± 0.00 0.81 ± 0.02 0.87 ± 0.04 0.83 ± 0.06

RF 0.97 ± 0.03 0.98 ± 0.03 0.96 ± 0.02 0.94 ± 0.02 0.58 ± 0.03 0.93 ± 0.02 0.83 ± 0.05

TWRF 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.80 ± 0.02 0.98 ± 0.01 0.85 ± 0.03

TWDT 0.97 ± 0.03 0.89 ± 0.07 0.94 ± 0.03 0.83 ± 0.04 0.63 ± 0.02 0.61 ± 0.15 0.84 ± 0.06
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Fig. 2. Measured values of accuracy (and their 95%CIs) for the algorithms under test
(regular version, R, on the left) and their three–way version (TW, on the right), on the
dataset Yeast. Comparing the confidence intervals visually, it is clear that significant
differences are observed for 5 model families (namely, KNN, LR, LDA, SVM and RF).

In Table 2, we reported the average ranks of the algorithms (i.e. for each dataset
we sorted the algorithms in order of decreasing average accuracy, then we com-
puted the average rank across the datasets).

Table 2. Average ranks of the top 10 performing algorithms.

Alg. TWRF TWLDA TWLR TWSVM LDA RF TWKNN KNN LR TWNB

Rank 1.75 2.96 3.18 3.57 4.32 4.64 4.64 5.86 6.14 6.78

As can be easily observed from Table 2, in every case the adoption of the pos-
sibility of abstention decreases the average rank of the respective algorithm (thus,
the algorithm increases its performance). This effect can be explained by noting
that the possibility of abstention gives the algorithm the ability to not express a
clear–cut decision in those instances which are placed near the decision boundary
(i.e. the instances whose class assignment is most uncertain) but, instead, report
a list of possible classifications (which, with high confidence, includes the real
label). In order to assess if the improvements given by the possibility of absten-
tion were statistically significant, we performed a pair–wise Friedman test [12]
for each pair of three–way/classical algorithm, with Li’s correction for multiple
hypothesis testing [25]: one of the three–way algorithms (TWSVM) was found to
be significantly better than the respective classical with a p-value = 0.02, for two
others (TWRF, TWLR) there was weak evidence of improvement, albeit with a
lower p-value = 0.08 (all other algorithm pairs reported a p–value > 0.1), when
considering the standard confidence level of CL = 95% only the first difference
is statistically significant.

In order to investigate the trade–off between classification accuracy and
abstention, as mentioned in Sect. 4.1, we measured the abstention rate of the
three–way algorithms, as shown in Table 3. It could be easily observed that,
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Table 3. Measured abstention rates for the considered datasets and three–way algo-
rithms.

Algorithm Iris Wine Breast Digits Yeast Faces SF12

TWDT 0.05 0.00 0.08 0.00 0.24 0.08 0.49

TWKNN 0.13 0.58 0.20 0.95 0.11 0.04 0.00

TWLR 0.01 0.19 0.14 0.19 0.27 0.02 0.60

TWLDA 0.00 0.05 0.08 0.30 0.16 0.03 0.00

TWNB 0.07 0.03 0.02 0.05 0.02 0.02 0.34

TWSVM 0.16 0.42 0.05 0.04 0.17 0.11 0.29

TWRF 0.05 0.15 0.13 0.08 0.17 0.05 0.31

in general, the abstention rate is greater than the corresponding increase of
accuracy. This effect likely emerges because some of the instances that were
classified correctly by a classical algorithm, were so only by chance (i.e., they
were assigned to the correct class label, but with a low confidence level) and,
thus, the corresponding three–way algorithm makes this phenomenon appar-
ent (this is particularly evident for the TWKNN, which registered the highest
value of abstention rate). An interesting observation is that in the Yeast dataset,
the three–way algorithms performed significantly better than the classical ones,
with only a moderate increase in abstention rates. It could also be observed that
the best performing algorithm (TWRF) was consistently better than the other
algorithms in every dataset, although no statistically significant difference (at
CL = 95%) could be found with the second ranking algorithm (i.e., TWLDA,
p − value = 0.28).

Finally, as mentioned in Sect. 4.1, we analyzed the variation of different met-
rics, that is accuracy, true positive rate (TPR), true negative rate (TNR) and
abstention rate, with respect to varying τ on two algorithms: the results are
shown in Figs. 3 and 4.

Fig. 3. Variation, w.r.t. abstention cost τ , of different metric for the TWRF algorithm:
accuracy, tpr, tnr (left); abstention rate (right).
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Fig. 4. Variation, w.r.t. abstention cost τ , of different metric for the TWSVM algo-
rithm: accuracy, tpr, tnr (left); abstention rate (right).

As can be easily observed, both the accuracy and the abstention rate increase
monotonically with decreasing τ (for both algorithms); furthermore there is a
variation in the observed measures only for values τ ≤ 0.2 and, even at τ = 1,
the observed abstention rates were small; this can be explained, as noted by
Theorem 1, as the algorithms assigned great confidence to their predictions.

A final point to note is that the TNR for algorithm TWSVM, shown in Fig. 4,
decreases with decreasing abstention cost: this could be related to a deficit in the
training dataset, which highlights a possible difficulty in detecting true negative
instances.

5 Conclusion

In this work we presented a comprehensive framework to address three–way
classification, both in the binary and the multi–class case, by providing a gen-
eral approach to convert probabilistic classifiers into three–way algorithms. To
this aim, we also focused on two techniques to directly embed the possibility of
abstention given by this classification approach into three popular learning mod-
els. Consequently, in order to evaluate the proposed classification framework, we
performed an empirical evaluation comparing a set of traditional learning algo-
rithms with the respective three–way generalizations, on a variety of datasets.

The obtained results showed that, in every case, the possibility to abstain on
difficult instances, given by three–way classification yields an increase, sometimes
significant, in performance and, perhaps more importantly, the possibility to iden-
tify the instances that are considered ambiguous by the classification algorithms.

This last aspect, in our view, is especially important because it could be used
in a human in the loop setting, to point out to the human decision–maker which
instances might require the acquisition of further or more precise information
and require special attention: that is, despite the uncertainty intrinsic to these
three–way predictions, these could nevertheless be useful to the human decision
maker as a way to raise awareness of the weak points and ambiguities affecting
the available data.
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Given the promising results that we obtained, we plan to continue this line
of research considering the following issues and open problems:

– in this paper, we introduced both a general approach to build three–way clas-
sifiers and also two more techniques that may be applied to specific learning
algorithms. Although we analyzed one such technique (learning of three–way
decision trees), we plan to study if directly implementing three–way classi-
fication in ensemble tree–based algorithms (e.g. random forests) and convex
learning algorithms could be more advantageous than the general post–hoc
strategy evaluated in this work;

– in this work, we primarily focused on ambiguity in the output, that is, how
ambiguity could be managed by allowing three–way, instead of crisp, classifi-
cations. However, ambiguity is a multi–faceted problem that could arise also
in the input: both in the target attributes (e.g. abstentions are already present
in the given gold standard) and the predictor ones (which could present miss-
ing or partial values). While we performed some initial works relating to these
issues [5,6], we plan to expand this line of research, especially in regard to
ambiguity in predictor attributes, in order to build a comprehensive frame-
work for managing ambiguity in machine learning.
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