
Membrane Systems and Multiset
Approximation: The Cases of Inner
and Boundary Rule Application

Péter Battyányi and György Vaszil(B)

Department of Computer Science, Faculty of Informatics, University of Debrecen,
Kassai út 26, Debrecen 4028, Hungary

{attyanyi.peter,vaszil.gyorgy}@inf.unideb.hu

Abstract. We continue the study of generalized P systems with dynam-
ically changing structure based on an associated multiset approximation
framework. We consider membrane systems where the applicability of
the multiset transformation rules is determined by the approximating
multisets of the membrane regions. We consider two cases: First, we
study systems with inner rules where we allow only rule applications such
that the multisets involved in the rules are part of the lower approxima-
tion of the respective regions, then we consider systems with boundary
rules where rule application is defined on the boundaries, that is, rules
can only manipulate the elements outside of the lower approximation.
We show that the second variant benefits from the underlying approx-
imation framework by demonstrating an increase in its computational
strength. On the other hand, by presenting an appropriate simulating
Petri net, we show that the computational power of systems with inner
rule application remains weaker than that of Turing machines (as long
as the unsynchronized version is considered).

1 Introduction

Membrane systems, introduced in [15], are biologically inspired models of com-
putation: their operation imitates in a sense the functioning of living cells. The
computation proceeds in distinct regions, called membranes or compartments.
The compartments allow computation with multisets: they accomplish transfor-
mations of their contained multisets by various evolution (multiset rewriting)
rules. Several variants of P systems have been introduced and studied, see the
monograph [16] for a thorough introduction, or the handbook [17] for a summary
of notions and results of the area.

In the original symbol object model, the compartments are organized in a
tree like structure. Each membrane except for the outermost one, the skin mem-
brane, have a unique parent membrane, the parent-child relationship depicts
the connection when one membrane (the parent) contains the other membrane
(the child). The rules account for the distributed computational processes in the
compartments. In this basic model, the lefthand side of a rule is a multiset of
c© Springer Nature Switzerland AG 2019
T. Mihálydeák et al. (Eds.): IJCRS 2019, LNAI 11499, pp. 239–252, 2019.
https://doi.org/10.1007/978-3-030-22815-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22815-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-22815-6_19

240 P. Battyányi and G. Vaszil

objects inside one of the regions and the righthand side of a rule is a multiset
of objects labelled with target indications here, out and inj indicating the posi-
tions the elements should be placed before the next computational step begins.
Usually, computation in a region takes place in a maximally parallel manner,
this means that a computational step in a region is understood as the simul-
taneous application of a multiset of rules which is maximal, that is, it cannot
be augmented by any applicable rule. The membrane system waits for each of
its compartments to finish its maximally parallel computational process, then
the objects labelled with the target indications are moved to their correct places
and a new computational step of the P system can begin. Objects with target
indication here remain in the region, objects with out move to the parent region,
objects with inj enter the jth child region of the given compartment. The com-
putation proceeds until no rule can be applied in any of the regions. The result
is usually formed by the objects of a designated region, the output region, after
the computation having come to a halt.

The structure of a membrane system can be represented in various ways,
cell-like membrane systems have a membrane structure which can be described
by a tree. Systems with graph-like membrane structures called tissue-like P sys-
tems were also considered, where the connection between the membranes are
established by edges forming the communication routes. Here we study variants
of tissue-like systems called generalized P systems (see [3]).

The question of how to define dynamically changing membrane struc-
tures using topological spaces, and how the underlying topologies influence the
behaviour of P systems was already examined in [4,5]. Multiset approximation
spaces were defined in [7,8], which made it possible to talk about lower and
upper approximations of the contents of membranes of a P system. This led to
various notions of membrane borders, and notions of closeness of membranes.
Restricting the interaction to membranes that are close to each other, or per-
mitting only rules that manipulate multisets which are on the boundaries of the
membranes can affect the computational strength of the membrane system. The
study of this area was initiated in [9], where also an intention to model chemical
stability played an important role. The results in [9] were formulated for the so-
called symport/antiport P systems, but the investigations were also continued
for so called generalized P systems in [2]. In the present paper we also study
generalized P systems, but we do not rely on any notion of closeness of mem-
branes. Instead, we focus on the notion of clear observability. We consider lower
approximations and boundaries of compartments, and restrict the applicability
of the rules accordingly. It will turn out that the use of boundary rules, that
is, rules which can only manipulate objects on the boundaries of compartments,
results in an increase of the computational power of certain variants of general-
ized P systems to the level of the power of Turing machines. On the other hand,
if we restrict rule applications only to rules that manipulate multisets which lie
in the inner approximations of the membranes (inner rules), this restriction is
not enough to provide Turing completeness.

Membrane Systems and Multiset Approximation 241

The main contributions of the paper are of two kinds: the introduction of
the above described variants of generalized P systems with associated multi-
set approximation spaces, and the presented results about their computational
power.

In the following, we first recall the necessary definitions, then take up the
examination of the two variants of generalized P systems with dynamically
changing communication structure based on multiset approximation spaces. As
maximal parallel rule application makes already the basic model of general-
ized P systems computationally complete, we study the weaker, unsynchronized
variants. We first show that generalized P systems with inner rules can be sim-
ulated by simple place-transition Petri nets, thus, their computational power is
less than that of Turing machines. Then we consider systems with boundary
rules and show that they are able to simulate so called register machines, which
demonstrates that their computational power is the same as the power of Turing
machines. Finally, the paper ends with a few concluding remarks.

2 Preliminaries

Let N and N>0 be the set of non-negative integers and the set of positive integers,
respectively, and let O be a finite nonempty set (the set of object). A multiset
M over O is a pair M = (O, f), where f : O → N is a mapping which gives
the multiplicity of each object a ∈ O. The set supp(M) = {a ∈ O | f(a) > 0}
is called the support of M . If supp(M) = ∅, then M is the empty multiset. If
a ∈ supp(M), then a ∈ M , and a ∈n M if f(a) = n.

Let M1 = (O, f1),M2 = (O, f2). Then (M1 � M2) = (O, f) where f(a) =
min{f1(a), f2(a)}; (M1�M2) = (O, f ′), where f ′(a) = max{f1(a), f2(a)}; (M1⊕
M2) = (O, f ′′), where f ′′(a) = f1(a) + f2(a); (M1 � M2) = (O, f ′′′) where
f ′′′(a) = max{f1(a) − f2(a), 0}; and M1 	 M2, if f1(a) ≤ f2(a) for all a ∈ O.

For any n ∈ N, n-times addition of M , denoted by ⊕nM , is given by the
following inductive definition:

– ⊕0M = ∅;
– ⊕1M = M ;
– ⊕n+1M = (⊕nM) ⊕ M .

Let M1 �= ∅,M2 be two multisets. For any n ∈ N, M1 	n M2, if ⊕nM1 	 M2

but ⊕n+1M1 �	 M2.
The number of copies of objects in a finite multiset M = (O, f) is its cardi-

nality: card(M) = Σa∈supp(M)f(a). Such an M can be represented by any string
w over O for which |w| = card(M), and |w|a = f(a) where |w| denotes the length
of the string w, and |w|a denotes the number of occurrences of symbol a in w.

We define the MSn(O), n ∈ N, to be the set of all multisets M = (O, f) over
O such that f(a) ≤ n for all a ∈ O, and we let MS<∞(O) =

⋃
n≥0 MSn(O).

242 P. Battyányi and G. Vaszil

2.1 Generalized P Systems

Now we present the notion of generalized P systems, variants of tissue P systems
introduced in [3].

An n + 3-tuple Π = (O,w1, w2, . . . , wn, R, io) is a generalized P system of
degree n ≥ 1, where

– O is a finite set of objects;
– wi ∈ MS<∞(O), 1 ≤ i ≤ n, is a finite multiset of objects, the initial contents

of the ith region of Π;
– R is a finite set of transformation rules of the form (x1, α1) . . . (xk, αk) →

(y1, β1) . . . (yl, βl), where xi, yj ∈ MS<∞(O), and 1 ≤ αi, βj ≤ n indicate
labels of the regions of the system for all 1 ≤ i, j ≤ n;

– 1 ≤ io ≤ n is the label of output compartment.

The rules of a generalized P system can be considered to model interactions of
objects simultaneously affecting several regions of the membrane system. Thus,
the links between participating compartments are defined dynamically, through
the applicability of the rules by the functioning of the system.

Given a generalized P system Π as above, a configuration of Π is an n-tuple
c = (u1, u2, . . . , un) with ui ∈ MS<∞(O), 1 ≤ i ≤ n, and c0 = (w1, w2, . . . , wn)
is called its initial configuration. The multisets u1, u2, . . . , un are the contents of
the corresponding compartments 1, 2, . . . , n, in configuration c.

A generalized P system changes its configurations by applying its rules. In
the basic setting, a rule r ∈ R, is applicable to a configuration c, if and only if
xi is a submultiset of uαi

for all 1 ≤ i ≤ k. As a result of applying r to c, each
multiset xi is removed from the region uαi

, 1 ≤ i ≤ k, and each multiset yj is
added to the region uβj

, 1 ≤ j ≤ l.
The configuration c′ = (v1, . . . , vn) of Π is obtained directly from the config-

uration c = (u1, . . . , un) by applying the rules in the unsynchronized manner, if
there is a multiset R′ of rules from R, such that all of them are simultaneously
applicable to different copies of objects in configuration c, and the configura-
tion c′ is the result of the application of the rules in R′. The configuration c′

is obtained from c by applying the rules in the maximally parallel manner, if
we add the additional requirement that the set R′ is maximal, that is, for any
r ∈ R, the rules in the rule multiset {r} ⊕ R′ are not simultaneously applicable
to c.

A sequence of configurations c0, c1, . . . of Π is called a computation if each
configuration in the sequence is obtained directly from the previous one, starting
from the initial configuration. Computations halt if no rule can be applied, the
result of a halting computation is the number of objects that are present in the
output compartment (compartment io) in the halting configuration.

2.2 Multiset Approximation Spaces

There are different ways of set approximations originating in rough set theory
proposed in the early 1980’s, [11,12]. The theory and its different generaliza-
tions uses different kinds of indiscernibility relations to provide lower and upper

Membrane Systems and Multiset Approximation 243

approximations of sets. An indiscernibility relation on a given set of objects is
given by a set of base sets by which lower and upper approximations can be
constructed for any set. This way of set approximation was generalized to par-
tial set approximation in [7], giving the possibility to embed available knowledge
into an approximation space. The lower and upper approximations also rely on
base sets which can be thought of as representants of the available knowledge.
Having the concepts of lower and upper approximations, we can also introduce
the concept of boundary as the difference between these two.

As membrane systems can be represented by multisets, in order to use the
above described concepts in membrane systems theory, we need to generalize
the set approximation framework for multisets. With the membrane structure
as a background, an underlying multiset approximation space can be defined.
The nature of this space is basically determined by its constituents, to a cer-
tain extent, independently of the membrane structure. The notion of multiset
approximation spaces has been introduced in [7] (see also [8] for more details).
Multiset approximations also rely on a set of base multisets given beforehand.
By creating the lower and upper approximations using the usual approximation
technique, the boundaries of multisets (boundaries of membrane regions) can
also be defined, and we will make use of this feature in subsequent parts of the
paper.

A multiset approximation space over a finite alphabet O consists of the fol-
lowing:

– A domain: in our case it is MS<∞(O), the set of finite multisets over some
finite set O. The elements of the domain are approximated using the approx-
imation space.

– A base system: B ⊆ MS<∞(O), a nonempty set of finite base multisets
providing the basis for the approximation process.

– The approximation functions: l, u, b : MS<∞(O) → MS<∞(O) determining
the lower and upper approximations (and the boundaries) of multisets of the
domain.

A multiset approximation space is a quintuple (O,B, l, u, b) where O is a
finite set, B ⊆ MS<∞(O) is a base system (a set of base multisets), and b, u, l :
MS<∞(O) → MS<∞(O) are the approximation functions generated by B.

For any multiset M = (O, f) ∈ MS<∞(O), we define the lower approxima-
tion function:

l(M) =
⊔

{⊕nB | B ∈ B, B 	 M, and B 	n M},

the boundary function:

b(M) =
⊔

{⊕nB | B ∈ B, and B � (M � l(M)) 	n M � l(M)},

and the upper approximation function:

u(M) = l(M) � b(M).

244 P. Battyányi and G. Vaszil

In addition, we also define be(M) = b(M) � M as the external part of the
boundary of M , and bi(M) = b(M) � M , the internal part of the boundary of
M .

Intuitively, we can think of the lower approximation of the multiset M as
the collection of elements that can be covered by the base multisets in such a
way that the covering is inside M completely. If we also cover those elements of
M that are left out of the lower approximation, then the union of the covering
base sets contains M , thus, it can be thought of as the upper approximation of
M , while the difference between the upper and the lower approximations of M
is the boundary.

3 Regulating Rule Application in the Multiset
Approximation Framework

In [2] we considered P systems with dynamical structure where the dynamic
character of the membrane system was encoded in the reformulation of the
region structure regarding a closeness property defined among the membranes
based on the actual configuration of the system. Here we examine questions that
arise when we require that in order for a rule to be applicable, the multisets
on its lefthand side must conform to certain properties defined in the multiset
approximation framework associated to the system. We discuss the following
two approaches: first we require that a rule to be applied should only work with
the lower approximations of the compartments’ contents. The second approach
demands that the multisets on the lefthand sides of the rules should come from
the boundaries of the respective compartments.

Conforming the requirement of clear observability when dealing with rough
sets, first we stipulate in the following definition that a rule should be applicable
in a P system only if the multisets on its lefthand side come from the inner
approximations of the containing regions, this means that we are absolutely
sure that the rule application affects elements of the corresponding regions. The
second requirement, on the other hand, corresponds to a system where rule
application can only alter those elements about which our knowledge is vague,
so the configuration changes of these systems might be thought of as steps in the
direction of reducing vagueness, obtaining more and more determinate knowledge
about the objects distributed in the membranes.

We formalize these notions in the following definition.

Definition 1. Let Π = (O,B, w1, w2, . . . , wn, R, io) where B ⊆ MS<∞(O) is
a base system and (O,w1, w2, . . . , wn, R, io) is a generalized P system.

We call Π a generalized P system with an associated multiset approximation
space and inner rules, if the applicability of a rule r = (x1, α1) . . . (xk, αk) →
(y1, β1) . . . (yl, βl) ∈ R in a configuration c = (u1, . . . , un) is defined by the
requirement that xi is a submultiset of l(uαi

), the inner approximation of the
respective region, 1 ≤ i ≤ k. If r ∈ R is applicable to c in this sense, then we
call r an inner rule (with respect to c).

Membrane Systems and Multiset Approximation 245

We call Π a generalized P system with an associated multiset approximation
space and boundary rules, if the applicability of a rule r = (x1, α1) . . . (xk, αk) →
(y1, β1) . . . (yl, βl) ∈ R in a configuration c = (u1, . . . , un) is defined by the
requirement that xi is a submultiset of bi(uαi

), the internal part of the boundary
of the respective region, 1 ≤ i ≤ k. If r ∈ R is applicable to c in this sense, then
we call r a boundary rule (with respect to c).

Example 1. Assume that C = (w1, w2) is a configuration of Π, a generalized
P system with an associated multiset approximation space for w1 = a3b3c2

and base sets B1 = a2, B2 = bc. Further, let r1 = (ab2, 1) → (c, 1)(d3, 2) and
r2 = (ab, 1) → (e2, 1) be to rules of Π.

If Π is a system with inner rules, then both rules are applicable in C, as
B1 � ⊕2B2 = a2b2c2 is the lower approximation of w1.

If Π is a system with boundary rules, then only the rule r2 is applicable in
C, as a2bc is the boundary of w1 with inner part ab.

We claim that the use of inner rules do not add much to the computational
strength of the P system in the sense that in the non-synchronized mode a
generalized P system with an associated multiset approximation space and inner
rules is not Turing complete. To show this, we construct a simple place-transition
Petri net that simulates the P system in question. This is sufficient, because
Petri nets in this simple setting are strictly weaker in computational power than
Turing machines, see for example [13,14]. The idea of the proof is similar to that
of Theorem 2 in [2], the construction of the Petri net, however, is different.

A place-transition Petri net [13] is a quintuple U = (P, T, F, V,m0) such that
P , T are finite sets with P ∩T = ∅, P ∪T �= ∅, the sets of places and transitions,
respectively. The set F ⊆ (P ×T)∪ (T ×P), is a set of “arcs” connecting places
and transitions, the flow relation of U . The function V : F → N>0 determines
the multiplicity (the weight) of the arcs, and m0 : P → N is a function called
the initial marking. In general, a marking is a function m : P → N associating
nonnegative integers (the number of tokens) to the places of the net. Moreover,
for every transition t ∈ T , there is a place p ∈ P such that f = (p, t) ∈ F and
V (f) �= 0.

Let x ∈ P ∪T . The pre- and postsets of x, denoted by •x and x•, respectively,
are defined as •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}.

For each transition t ∈ T , we define two markings, t−, t+ : P → N as follows:

t−(p) =
{

V (p, t), if (p, t) ∈ F,
0 otherwise,

t+(p) =
{

V (t, p), if (t, p) ∈ F,
0 otherwise.

A transition t ∈ T is said to be enabled if t−(p) ≤ m(p) for all p ∈ •t. Let
� t(p) = t+(p) − t−(p) for p ∈ P , and let us define the firing of a transition as
follows. A transition t ∈ T can fire in m (notation: m −→t) if t is enabled in m.
After the firing of t, the Petri net obtains a new marking m′ : P → N, where
m′(p) = m(p)+ � t(p) for all p ∈ P (notation: m −→t m′).

246 P. Battyányi and G. Vaszil

Petri nets can be considered as computing devices: Starting with the initial
marking, going through a series of configuration changes by the firing of a series
of transitions, we might obtain a marking where no transitions are enabled. This
final marking is the result of the Petri net computation.

Theorem 1. For any generalized P system with an associated multiset approx-
imation space and inner rules, Π, there is a place-transition Petri net N , such
that N generates the same set of numbers as Π in the unsynchronized manner
of rule application.

Proof. Let Π = (O,B, w0
1, w

0
2, . . . , w

0
n, R, io) be a generalized P system with an

associated multiset approximation space and inner rules, let the underlying set
of base sets be B = {Bi | 1 ≤ i ≤ m}, and let x ∈ MS<∞(O) be arbitrary.
Then there exists an hx ∈ N such that, for any subset {B1, . . . , Bs} ⊆ B, either
x 	 ⊕hx

B1 � . . . � ⊕hx
Bs or x cannot be covered by the union of sums of

{B1, . . . , Bs} at all. In fact, if x = aj1
1 aj2

2 . . . ajt
t , then it is enough to choose

hx = max{j1, . . . , jt}.
Assume that r = (x1, α1) . . . (xk, αk) → (y1, β1) . . . (yl, βl) ∈ R, and let hr =

max{hx1 , . . . , hxk
} (which is a positive integer number). Let us denote with H(r)

the set of all tuples H = (H1, . . . , Hk), such that Hj = ⊕hj
1
Bj

1 � . . . � ⊕hj
nj

Bj
nj

with hj
t ≤ hr and xj 	 Hj (1 ≤ j ≤ k). Since xi 	 l(uαi

) if and only if there
exists a Hi 	 uαi

such that xi 	 Hi, in order to check the applicability of
r in a configuration (uα1 , . . . , uαn

), it is enough to check whether there exists
an H ∈ H(r), such that Hi 	 uαi

for every element of H, 1 ≤ i ≤ k. We
construct the Petri net which makes sure that xi 	 l(uαi

) and simulates the rule
application at the same time.

Let us define the Petri net N = (P, T, F, V,m0) with P = O × {1, . . . , n} ∪
{pini}. A place (a, j) ∈ P represents the number of objects a ∈ O inside the jth
membrane at every step of the computational sequence, so let us set m0(p) =
w0

j (a) for every place p = (a, j) ∈ O × {1, . . . , n}, and let also m0(pini) = 1.
The net N consists of subnets for each pair (r,H) ∈ RH = {(r,H) | r ∈

R,H ∈ H(r)}. These subnets are responsible for the simulation of the effect of r
together with checking the condition that r is an inner rule. The place pini makes
sure that only one of the subnets can operate at a time, hence the simulation of
the rule executions are mutually exclusive.

Let T = {tδ | δ ∈ RH} with δ = (r,H1, . . . , Hk) ∈ RH, and let r be denoted
as r = (x1, α1) . . . (xk, αk) → (y1, β1) . . . (yl, βl). Then, for 1 ≤ j ≤ k,

p = (a, αj) ∈ •tδ ∩ t•δ if and only if a ∈ Hj .

For p = (a, βq), 1 ≤ q ≤ l, we have

p = (a, βq) ∈ •tδ ∩ t•δ if and only if βq = αj

for some 1 ≤ j ≤ k and a ∈ Hj . Otherwise, p = (a, βq) ∈ t•δ . In addition,
pini ∈ •tδ ∩ t•δ .

Membrane Systems and Multiset Approximation 247

pini (a, 1) (b, 1)

t(r,H)

2

2

(c, 1)

2

(d, 2)

1

pini (a, 1) (b, 1)

t(r,H)

1

(c, 1)

3

(d, 2)

3

1

Fig. 1. Assume that w0
1 = a3b3c2, w0

2 = d, r = (ab2, 1) → (c, 1)(d3, 2) and let B1 = a2,
B2 = bc be base sets. Then, for H = (H1) ∈ H(r), H1 = B1 � ⊕2B2 = a2b2c2 are
appropriate. The figure on the left shows the arcs pointing to transition t(r,H) together
with their weights, the figure on the right shows the arcs going out from transition t(r,H)

together with their weights. (The arcs with zero weight are not indicated explicitly.)

Let p = (a, αj) with 1 ≤ j ≤ k, and let tδ ∈ T , δ ∈ RH, then the weights of
the arcs are computed as V (p, tδ) = Hj(a), that is, we check whether Hj(a) ≤
uαj

(a). Additionally, if αj �= βq (q ∈ {1, . . . , l}), then we have V (tδ, p) = Hj(a)−
xαj

(a), so that the necessary amount of tokens (those which correspond to the
objects in Hj �xj) are returned to p = (a, αj). This way the Petri net transition
decreases the number of tokens in p only by xj(a). When αj = βq for some
q ∈ {1, . . . , l}, then V (tδ, p) = Hj(a) − xj(a) + yq(a), that is, the righthand side
of the rule returns further tokens to uαj

.
For p = (a, βq), 1 ≤ q ≤ l, if βq = αj for some 1 ≤ j ≤ k, then the situation

is as above. Otherwise, if βq �= αj for any 1 ≤ j ≤ k, then V (p, tδ) = 0 and
V (tδ, p) = yβq

(a). Furthermore, V (pini, tδ) = V (tδ, pini) = 1.
To summarize the idea of the construction above, the places of the Petri

net represent the objects in the different compartments of the P system. For
every r, we are able to identify the union of the finite sums of the base sets that
must be examined in order to decide whether the multisets x1, . . . , xk appearing
on the lefthand side of the rule are in the inner approximation of uαi

, that is,
for every xi we confine ourselves to (Bi

1, . . ., Bi
ki

) ∈ H(xi), 1 ≤ i ≤ k, such
that xi 	 ⊕hi

1
Bi

1 � . . . � ⊕hi
ki

Bi
ki

and hj
t ≤ hr, where hr ∈ N is determined

by r. Let H = (H1, . . . , Hk) ∈ H(r) be a tuple of such multiset unions. To
render r applicable and inner, we have to check whether Hi 	 uαi

. For each
pair δ = (r,H), where r = (x1, α1) . . . (xk, αk) → (y1, β1) . . . (yl, βl) ∈ R and
H = (H1, . . . , Hk) ∈ H(r) is a tuple of elements of B with xi 	 Hi, we define
a subnet consisting of all the places of N and a transition tδ together with
the corresponding arcs. This subnet simulates an application of r while the
conditions on H ensure that r is an inner rule. The whole process is controlled

248 P. Battyányi and G. Vaszil

by the place pini. Each of the subnets is connected with pini in such a manner
that only one subnet is able to operate at a time. Figure 1 illustrates the structure
of one such a subnet that constitutes the whole Petri net N .

The Petri net halts if and only if the membrane system halts, and the number
of objects in the output membrane are indicated by the number of tokens in the
corresponding places.

As we have already mentioned, the expressive power of place-transition Petri
nets are less than that of Turing machines, so we obtain the following corollary.

Corollary 1. Generalized membrane systems with multiset approximation
spaces and inner rules using the unsynchronized manner of rule application are
strictly weaker in computational power than Turing machines, that is, they are
not computationally complete.

Now we continue with the investigation of the case of boundary rules. We
show that generalized P systems with boundary rules generate any recursively
enumerable set of numbers. We do this by demonstrating how these systems sim-
ulate the computations of register machines, a computational model equivalent
in power to Turing machines.

A register machine is a construct W = (m,H, l0, lh, Inst), where m is the
number of registers, H is the set of instruction labels, l0 is the start label, lh is
the halting label, and Inst is the set of instructions. Each label from H labels
only one instruction from Inst. There are several types of instructions which can
be used. For li, lj , lk ∈ H and r ∈ {1, . . . , m} we have:

– li : (nADD(r), lj , lk) - nondeterministic add: Add 1 to register r and then go
to one of the instructions with labels lj or lk, nondeterministically chosen.

– li : (ADD(r), lj) - deterministic add: Add 1 to register r and then go to the
instruction with label lj .

– li : (CHECKSUB(r), lj , lk) - zero check and subtract: If register r is empty, then
go to the instruction with label lj , if r is non-empty, then subtract one from
it and go to the instruction with label lk.

– lh : HALT - halt: Stop the machine.

Register machines compute sets of numbers by starting their computation
with empty registers and proceeding by applying instructions in the order indi-
cated by the labels, beginning with the instruction l0. If the machine reaches the
halt instruction lh : HALT, then its work is finished, and the number stored in the
first register is said to be the result of the computation. Note that the computed
sets of numbers can be infinite, due to the nondeterminism in choosing the con-
tinuation of the computation in the case of nondeterministic add instructions,
li : (nADD(r), lj , lk).

We would like to add here, that register machines can also be defined as deter-
ministic computing devices (without the nondeterministic add instructions). In
this case they compute functions of input values placed initially in (some of) the
registers. They are able to compute all functions which are Turing computable

Membrane Systems and Multiset Approximation 249

(see, for example [10]), if they have at least two registers. By providing the
machine with the nondeterministic add instruction, as above, we obtain a device
which generates sets of numbers starting from a unique initial configuration.
Since any recursively enumerable set can be obtained as the range of a Tur-
ing computable function on the set of non-negative integers, register machines
defined this way are able to generate any recursively enumerable set of numbers.

Theorem 2. Generalized P systems with associated multiset approximation
spaces and boundary rules generate any recursively enumerable set of numbers,
even in the unsynchronized manner of rule application.

Proof. Let L be a recursively enumerable set of numbers, and consider the reg-
ister machine W = (m,H, l0, lh, Inst) generating L. We construct a generalized
P system with an associated multiset approximation space and boundary rules,
such that it also generates L in the sense that the generated numbers correspond
to the multiplicity of a certain object in the output region when the computation
halts. Let Π = (O,B, w1, w2, w3, R, 2) with

O = {l, l′ | l ∈ H} ∪ {ar, a
′
r | 1 ≤ r ≤ m} ∪ {b1, b2, c},

B = {ara
′
r | 1 ≤ r ≤ m} ∪ {lhb1 | lh : HALT} ∪ {b2c, lc | l ∈ H},

w1 = l0b1, w2 = ∅, w3 = ∅,

R = RAdd ∪ RCheckSub ∪ REx,

where

RAdd = {(li, 1) → (lj , 1)(ar, 2), (li, 1) → (lk, 1)(ar, 2) | for all
li : (nADD(r), lj , lk) ∈ Inst} ∪

{(li, 1) → (lj , 1)(ar, 2) | for all li : (ADD(r), lj) ∈ Inst},

RCheckSub = {(li, 1) → (l′j , 1)(a′
r, 2), (l′j , 1)(a′

r, 2) → (lj , 1),
(li, 1)(ar, 2) → (lk, 1) | for all li : (CHECKSUB(r), lj , lk) ∈ Inst},

REx = {(b1, 1) → (b2, 3), (b2, 3) → (b1, 1)}.

To see how Π simulates the computations of W , consider its initial config-
uration (l0b1, ∅, ∅): it corresponds to the initial configuration of W , as the first
region contains l0, the label of the instruction that has to be executed next,
and the number of occurrences of ar, 1 ≤ r ≤ m, in the second region are 0,
corresponding to the fact that all registers are initially empty.

Notice that as long as lh is not present, it is possible to exchange b1 in the first
region with b2 in the third (and back), since both symbols are in the boundary of
the respective regions, so one of the rules of REx is always applicable. When lh

250 P. Battyányi and G. Vaszil

appears in the first region, then after b1 also appears there, they are “removed”
from the boundary of the region (as lhb1 ∈ B is a base multiset of the multiset
approximation space), and after this happens, no rule of R is applicable. From
these considerations we can see that Π reaches a halting configuration only if
the label of the halting instruction, lh appears.

Let us consider the case when the generalized P system Π is in the config-
uration (liδ1w1,in, ww2,in, δ2) with w(ar) = kr, 1 ≤ r ≤ m, corresponding to a
situation when W is going to execute instruction li, and the contents of register r
is kr ≥ 0, 1 ≤ r ≤ m. The symbols δ1, δ2 are used to denote either b1 or b2, their
exact meaning is not important, as they do not interfere with the simulation pro-
cess until lh appears. The submultisets w1,in and w2,in denote those elements of
the first two regions that are not on the region boundary. By looking at the rules
of Π, we might notice that as long as the object lh is not present, all elements of
the first region are on the boundary, thus, we might omit the submultiset w1,in

from the above notation, having the configuration (liδ1, ww2,in, δ2). Note also,
that w2,in = (ara

′
r)

i for some i ≥ 0.
If li is the label of an add, or nondeterministic add instruction, then the rule

simulating the instruction li : (nADD(r), lj , lk) is applicable, yielding the config-
uration (l′δ1, warw2,in, δ2) with l′ ∈ {lj , lk} (or the configuration (ljδ1, war, δ2)
if li : (ADD(r), lj) is simulated). In any of these cases, we get a configuration
(lδ1, war, δ2) where l corresponds to the instruction that has to be executed
next, while the second region contains one more object ar, that is, the number
stored in register r was incremented, as required by the simulated add instruc-
tions.

Suppose now, that Π is in a configuration (liδ1, ww2,in, δ2) and the instruc-
tion to be executed is li : (CHECKSUB(r), lj , lk). By applying the rules in RCheckSub

we might obtain (l′jδ1, wa′
rw2,in, δ2). If w(ar) = 0, we get (ljδ1, ww2,in, δ2) after

the next step, or if w(ar) > 0, then as ara
′
r ∈ B is a base multiset, one copy

of ar and a′
r is removed from the boundary, so we have (l′jδ1, w

′w′
2,in, δ2) where

arw
′ = w and w′

2,in = ara
′
rw2,in. In this case l′j cannot be changed any more, and

due to the rules in REx, the computation can never reach a halting configuration.
On the other hand, if w(ar) > 0, then applying the rule (li, 1)(ar, 2) → (lk, 1), we
get (lkδ1, w

′w2,in, δ2) with w′ar = w, thus the checking and subtracting instruc-
tion of W is correctly simulated by the system Π.

The simulation is finished when the object lh appears in the first region. The
only rules that are applicable are the rules of REx, but when b1 also appears
in the first region, the computation halts, because lhb1 is a base multiset, so all
these objects disappear from the region boundary.

After halting, the result of the computation is the number of a1 objects in
the second region, as they correspond to the contents of the first register (the
output register) of the register machine W .

Membrane Systems and Multiset Approximation 251

4 Concluding Remarks

We have used multiset approximation spaces to restrict the applicability of mul-
tiset evolution rules of generalized P systems. This way we incorporated some
additional “dynamics” into the system, as not only the presence or absence of
elements, but also the underlying approximation spaces have a role in determin-
ing the applicability of the rules.

It turned out that restricting the operation of the rules to the boundaries of
compartments increases the computational power of generalized P systems, as
they are able to generate any recursively enumerable sets of numbers even in the
unsynchronized manner of rule application. We have shown this by demonstrat-
ing that they are able to simulate register machines, a computational model
equivalent in power to the model of Turing machines. On the other hand, a
similar restriction allowing the rules to manipulate only elements of the lower
approximation of the compartments of the system does not result in a similar
increase of the computational power, as the resulting systems can be simulated
by simple place-transition Petri nets, a model which is known to be weaker in
computational power than the model of Turing machines.

As a final remark, we would like to add some thoughts on a related model
called P systems with anti-matter [1,6]. In P systems with anti-matter, objects
have complementary “anti objects”, and when they are both present, they anni-
hilate (disappear). In this paper we considered boundary rules which cannot be
applied to objects that are not on the boundary: when all the elements of a
base multiset are present in a region, they “disappear” from the scope of bound-
ary rules. This effect is similar to the effect of annihilation rules, although not
exactly the same. The difference can be seen from a simple example: let two base
multisets be ab, ac ∈ B. The fact that they form base multisets is not directly
modeled by the annihilation rules ab → ε, bc → ε (as used in the case of P sys-
tems with anti-matter), because of the following. If a region contains ab, then
these are “invisible” for the boundary rules, but they are not annihilated, as
can be seen when an object c enters the region. As bc is also a base multiset, c
immediately “disappears” by becoming part of the inner, lower approximation
part of the region contents. As we see, the relationship of boundary rules and
anti-matter is not as simple as it might look, but it definitely seems to be an
interesting topic for further investigations.

Acknowledgments. G. Vaszil was supported by grant K 120558 of the National
Research, Development and Innovation Office of Hungary (NKFIH), financed under
the K 16 funding scheme. The work is also supported by the EFOP-3.6.1-16-2016-
00022 project, co-financed by the European Union and the European Social Fund.

References

1. Alhazov, A., Aman, B., Freund, R.: P systems with anti-matter. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) CMC 2014. LNCS,
vol. 8961, pp. 66–85. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
14370-5 5

https://doi.org/10.1007/978-3-319-14370-5_5
https://doi.org/10.1007/978-3-319-14370-5_5

252 P. Battyányi and G. Vaszil

2. Battyányi, P., Mihálydeák, T., Vaszil, G.: Generalized membrane systems with
dynamical structure, Petri nets, and multiset approximation spaces. In: 18th Inter-
national Conference on Unconventional Computation and Natural Computation.
UCNC (2019, Accepted)

3. Bernardini, F., Gheorgue, M., Margenstern, M., Verlan, S.: Networks of cells and
Petri nets. In: Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Păun, G.,
Pérez-Hurtado, I., Riscos-Núñez, A. (eds.) Proceedings of the Fifth Brainstorming
Week on Membrane Computing, pp. 33–62. Fénix Editora, Sevilla (2007)

4. Csuhaj-Varjú, E., Gheorghe, M., Stannett, M.: P systems controlled by general
topologies. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445,
pp. 70–81. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32894-
7 8

5. Csuhaj-Varjú, E., Gheorghe, M., Stannett, M., Vaszil, G.: Spatially localised mem-
brane systems. Fundamenta Informaticae 138(1–2), 193–205 (2015)

6. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: The counting
power of P systems with antimatter. Theoret. Comput. Sci. 701, 161–173 (2017)

7. Mihálydeák, T., Csajbók, Z.E.: Membranes with boundaries. In: Csuhaj-Varjú, E.,
Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS,
vol. 7762, pp. 277–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36751-9 19

8. Mihálydeák, T., Csajbók, Z.E.: On the membrane computations in the presence of
membrane boundaries. J. Automata Lang. Comb. 19(1), 227–238 (2014)

9. Mihálydeák, T., Vaszil, G.: Regulating rule application with membrane boundaries
in P systems. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.)
CMC 2015. LNCS, vol. 9504, pp. 304–320. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-28475-0 21

10. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc.,
Upper Saddle River (1967)

11. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)
12. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer

Academic Publishers, Dordrecht (1991)
13. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR,

Upper Saddle River (1981)
14. Popova-Zeugmann, L.: Time and Petri Nets. Springer, Heidelberg (2013). https://

doi.org/10.1007/978-3-642-41115-1
15. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
16. Păun, G.: Membrane Computing: An Introduction. Natural Computing Series, 1st

edn. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-56196-2
17. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press Inc., New York (2010)

https://doi.org/10.1007/978-3-642-32894-7_8
https://doi.org/10.1007/978-3-642-32894-7_8
https://doi.org/10.1007/978-3-642-36751-9_19
https://doi.org/10.1007/978-3-642-36751-9_19
https://doi.org/10.1007/978-3-319-28475-0_21
https://doi.org/10.1007/978-3-319-28475-0_21
https://doi.org/10.1007/978-3-642-41115-1
https://doi.org/10.1007/978-3-642-41115-1
https://doi.org/10.1007/978-3-642-56196-2

	Membrane Systems and Multiset Approximation: The Cases of Inner and Boundary Rule Application
	1 Introduction
	2 Preliminaries
	2.1 Generalized P Systems
	2.2 Multiset Approximation Spaces

	3 Regulating Rule Application in the Multiset Approximation Framework
	4 Concluding Remarks
	References

