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Abstract. Concepts are important and basic elements in human’s cog-
nition process. The formal concept gives a mathematical format of the
classical view of concepts in which all instances of a concept share com-
mon properties. But in some situation this view is not consistent with
human’s understanding of concepts. The prototype view of concepts is
more appropriate in our daily life. This view characters some analog cate-
gories as internally structured into a prototype (clearest cases, best exam-
ples of the category) and non-prototype members, with non-prototype
members tending toward an order from better to poorer examples. The
objective of this paper is to give a mathematical description of prototype
view of concepts. Firstly, we give a similarity measurement of an object
to another object in a formal context. Then based on this similarity mea-
surement, the mathematical format of prototype view of concepts, named
k-cutting concept, induced by one typical object is obtained. Finally, the
properties of k-cutting concepts are studied. In addition to presenting
theorems to summarize our results, we use some examples to illustrate
the main ideas.
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1 Introduction

Concepts are important and basic constituents in human’s cognition process.
Consequently, they are crucial in many psychological processes, such as catego-
rization, inference, memory, learning, and decision-making. In philosophy, there
are different views or structures of concepts. In classical view, a concept contains
two parts, extension and intension. The extension is a group of objects belong-
ing to the concept and the intension is a family of attributes characterizing the
properties of the concept. The classical view holds that all instances of a con-
cept share common properties, which are necessary and sufficient conditions for
defining the concept. In order to apply the philosophical concept into data pro-
cessing, Wille [22] proposed a new field, formal concept analysis (FCA), giving
a mathematical format of the classical view of concepts.

FCA [22] shows a mathematical format of classical view of concepts, named
formal concepts. A formal concept consists of a pair of an object set (extent) and
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an attribute set (intent). The objects in extent possess all the attributes in intent
and the attributes in intent are possessed by all the objects in extent. Based on
the partial order theory, Wille and Ganter [8] presented a lattice structure of
formal concepts named a concept lattice which reveals hierarchical structure of
concepts with respect to the generalization and the specialization of concepts.
However, the formal concept is an all-or-none phenomenon. That is, if an object
possesses all the attributes in the intent of a formal concept, it is definitely in the
extent of this formal concept, but if an object does not possess all the attributes
in the intent, even though it possesses most attributes in the intent, this object
is definitely not in this formal concept. In other words, if two objects are in the
extent of same concept, they must have same degree of typicality in this formal
concept. That is, the objects in the extent of a concept are equally important
in people’s understanding of the concept. This view of concepts is mostly used
in machine-oriented concept learning [1,10,12,25,27], but not always consistent
with human’s understanding of concepts. Classical formal concepts have been
extended to other types, such as preconcepts [23], semiconcepts [24], protocon-
cepts [21], property oriented concepts [4], object oriented concepts [26], dual
concepts [2,13], monotone concepts [3], RS-definable concepts [28] and three-
way concepts [15–17].

There is increasing evidence that memberships of objects in semantic cate-
gories which are expressed by words of natural languages can be graded rather
than all-or-none. Lakoff [11], Rosch [19] and Zadeh [29] argued that some nat-
ural categories are analog and must be represented logically in a manner which
reflects their analog structure. Rosch [19] has further characterized some natu-
ral analog categories as internally structured into a prototype (clearest cased,
best examples of the category) and non-prototype members, with non-prototype
members tending toward an order from better to poorer examples. For example,
chair is a more reasonable exemplar than radio of the concept furniture, or we
can say that the chair has a larger membership than radio of the concept fur-
niture. When we talk about color, vermilion, fuchsia, pink, cerise, peach, garnet,
cardinal, rose, wine all belong to concept red. However, rose is more typical than
pink. This kind of view of concepts are called prototype view of concepts.

In this paper, we try to give a mathematical representation of the proto-
type view of concepts [6,7]. Considering the cognitive process of recognizing
concepts, we firstly choose an object as the prototype of a concept, which is
the most typical object and can be a representative of this concept. Then the
similarities between other objects and prototype are given according to a simi-
larity measurement. Since the prototype is described by a group of attributes [9],
the similarity measurement is defined based on the description of objects. The
objects with high similarity to the prototype can be put into the concept. In
order to quantitatively define high similarity, we preset a threshold k and the
corresponding prototype view concepts are called k-cutting concepts. Since pro-
totype o is the most typical object of this concept, the description of prototype
o is regarded as the intent of this k-cutting concept and the objects whose sim-
ilarity to prototype o is bigger than k are put into the extent of this k-cutting
concept. Furthermore we study the properties of k-cutting concepts.
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The rest of the paper is organized as follows. Section 2 gives the basic notions
in formal concept analysis. Then Sect. 3 presents the similarity measurement
between two different objects and defines the k-cutting concept. Furthermore
we show the properties of k-cutting concepts. Finally, this paper is concluded in
Sect. 4.

2 Formal Concept Analysis

This section reviews basic notions in FCA. FCA, proposed by Wille in 1982 [22],
gives a mathematical way to represent a concept with a pair of objects set (called
the extent) and attributes set (called the intent). The data source of FCA is
called formal context defined as follows [8,22].

Definition 1. A formal context (OB,AT, I) consists of two sets OB and AT ,
and a relation I between OB and AT . The elements of OB are called the objects
and the elements of AT are called the attributes of the context. In order to express
that an object o is in a relation I with an attribute a, we write oIa or (o, a) ∈ I
and read it as “the object o has the attribute a”.

Based on the formal context, the set of attributes possessed by an object o
and the set of objects possessing an attribute a are given as

oI. = {a ∈ AT | oIa} ⊆ AT,

.Ia = {o ∈ OB | oIa} ⊆ OB. (1)

Actually, oI. can be regarded as the description of object o and .Ia can
be understood as a set of objects which can be described by attribute a or a
set of representatives of description {a}. Given a formal context (OB,AT, I), if
for any o ∈ OB, we have oI. �= ∅, oI. �= AT , and for any a ∈ AT , we have
.Ia �= ∅, .Ia �= OB, then the formal context (OB,AT, I) is called canonical. If
for any objects o1, o2 ∈ OB, from o1I. = o2I., it always follows that o1 = o2
and, consequently, .Ia1 = .Ia2 implies a1 = a2 for all a1, a2 ∈ AT . We call this
context a clarified formal context. In this paper, we suppose all formal contexts
are canonical, clarified and finite. Based on the description of an object and the
representatives of an attribute, a pair of operators called derivation operators are
defined on an objects set O ⊆ OB and an attributes set A ⊆ AT , respectively,
in (OB,AT, I) [8]:

O∗ = {a ∈ AT | ∀o ∈ O(oIa)} = {a ∈ AT | O ⊆ .Ia} =
⋂{oI. | o ∈ O},

A∗ = {o ∈ OB | ∀a ∈ A(oIa)} = {o ∈ OB | A ⊆ oI.} =
⋂{.Ia | a ∈ A}. (2)

It is obvious to see that, for any object o ∈ OB and any attribute a ∈ AT ,
it always follows oI. = {o}∗ and .Ia = {a}∗. Then based on above derivation
operators, a formal concept is obtained [8].
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Definition 2. A formal concept of the context (OB,AT, I) is a pair (O,A) with
O∗ = A and O = A∗ (O ⊆ OB,A ⊆ AT ). We call O the extent and A the intent
of the formal concept (O,A).

The formal concepts of a formal context (OB,AT, I) are ordered by

(O1, A1) ≤ (O2, A2) ⇔ O1 ⊆ O2 (⇔ A1 ⊇ A2). (3)

All formal concepts of (OB,AT, I) can form a complete lattice called the for-
mal concept lattice of (OB,AT, I), denoted by L(OB,AT, I). The infimum and
supremum are given by

(O1, A1) ∧ (O2, A2) = (O1 ∩ O2, (A1 ∪ A2)∗∗),
(O1, A1) ∨ (O2, A2) = ((O1 ∪ O2)∗∗, A1 ∩ A2) (4)

In a formal context, there is a kind of important concept, named object
concept [8].

Definition 3. Let (OB,AT, I) be a formal context, (o∗∗, o∗) is a formal concept
for all o ∈ OB, which is called an object concept. Here, for convenience, we write
o∗ instead of {o}∗ for any o ∈ OB.

The object concept (o∗∗, o∗) can be understood as a concept induced by
object o, which means the object o is a typical object (prototype) of concept
(o∗∗, o∗). Specifically, the description (intent) of concept (o∗∗, o∗) is the descrip-
tion of object o and the extent of this concept is a set of objects which can be
described by the description of object o. In order to show the importance of the
object concept, the notion of join-dense is recalled in next definition [8].

Definition 4. Let P be an ordered set and let Q ⊆ P . Then Q is called join-
dense in P if for every element a ∈ P there is a subset A of Q such that
a = ∨PA.

Following theorem shows that any formal concept can be constructed based
on a set of object concepts, so the object concepts can be regarded as the fun-
damental elements in concept construction [8].

Theorem 1. Let (OB,AT, I) be a formal context and L(OB,AT, I) the asso-
ciated complete lattice of concepts. Then the set of all the object concepts is
join-dense in L(OB,AT, I). Specifically, for a formal concept (O,A),

∨
{(o∗∗, o∗) | o ∈ O} = (O,A) (5)

holds.

Finally, we give an example to illustrate the definitions and theorems pre-
sented in this section.
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Table 1. A formal context (OB,AT, I)

OB a b c d

o1 1 0 0 1

o2 0 1 0 1

o3 1 1 1 0

o4 0 1 1 0

Example 1. Table 1 is a formal context (OB,AT, I) with four objects OB =
{o1, o2, o3, o4} and four attributes AT = {a, b, c, d}. The description of every
object and the representatives of every attribute are as follows:

o1I. = {a, d}, o2I. = {b, d}, o3I. = {a, b, c}, o4I. = {b, c}.
.Ia = {o1, o3}, .Ib = {o2, o3, o4}, .Ic = {o3, o4}, .Id = {o1, o2}.

We can see that for any object oi ∈ OB, its description is neither whole attribute
set AT nor the empty set. Also, for any attribute in AT , its representatives set
is neither whole object set OB nor the empty set. Thus the formal context
(OB,AT, I) is canonical. Moreover, for any two different objects, their descrip-
tions are different, and for any two different attributes, their representatives sets
are different. Thus the formal context (OB,AT, I) is clarified.

The formal concept lattice of context (OB,AT, I) is shown in Fig. 1.
The object concepts are: (o∗∗

1 , o∗
1) = (o1, ad), (o∗∗

2 , o∗
2) = (o2, bd), (o∗∗

3 , o∗
3) =

(o3, abc), (o∗∗
4 , o∗

4) = (o3o4, bc). After calculation, we have

(o2o3o4, b) = (o2, bd) ∨ (o3, abc) ∨ (o3o4, bc),
(o1o3, a) = (o1, ad) ∨ (o3, abc),
(o1o2, d) = (o1, ad) ∨ (o2, bd),
(OB, ∅) = (o1, ad) ∨ (o2, bd) ∨ (o3, abc) ∨ (o3o4, bc).

That is, any formal concept can be constructed by joining a set of object con-
cepts. Thus, the set of all object concepts is join-dense in formal concept lattice.

(OB,Ø)

(o2o3o4,b) (o1o2,d)

(o3o4,bc) (o2,bd)

(Ø,AT)

(o1o3,a)

(o1,ad)

(o3,abc)

Fig. 1. The formal concept lattice L(OB,AT, I)
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3 The Prototype View of Concept

Section 2 shows the importance of object concepts in concept construction. How-
ever, the definition of object concepts is too strict. According to Definition 3,
the extent of an object concept (o∗∗, o∗) is a set of objects which can be fully
described by the description of object o. Actually, the semantic concept in our
daily life is based on a typical object (prototype), but the extent of semantic
concept is not required to be fully described by the description of the typical
object. Based on the similarity [5,18,20] to the typical object, the typicality of
objects in extent can be defined. In this section, we give a mathematical way to
represent the semantic concept and discuss its properties. Firstly, the similarity
measurement of one object to another is shown in Sect. 3.1.

3.1 Similarity Measurement Between Two Objects

In a formal context (OB,AT, I), an object o can be described by a set of
attributes oI. (called description of object o). And if two objects have same
description, they can be regarded as same one [8]. Thus, in order to measure
the similarity of object oi to object o, we only need to measure the similarity
between the descriptions of these two objects. The more similar the descriptions
of two objects are, the more similar the two objects are.

Definition 5. Let (OB,AT, I) be a formal context and o be a reference object.
For any object oi ∈ OB, the similarity measurement of oi to o is defined as

Sim(oi, o) =
|oiI. ∩ oI.|

|oI.| . (6)

The range of the value of this similarity measurement is 0 ≤ Sim(oi, o) ≤ 1.
The closer the similarity is to 1, the more similar object oi is to object o; the
closer the similarity is to 0, the less similar object oi is to object o. In other
words, the more attributes in description of object o can be used to describe
object oi, the more similar object oi is to object o. Now let us consider the
similarity of objects in the extent of an object concept (o∗∗, o∗) to the object o.

Proposition 1. Let (OB,AT, I) be a formal context and (o∗∗, o∗) be an object
concept induced by object o. Then the value of similarity measurement of any
object in o∗∗ to object o is 1.

Proof. Suppose (o∗∗, o∗) is an object concept of formal context (OB,AT, I) and
oi ∈ o∗∗ is an object from the extent of this concept. Since oi ∈ o∗∗, according to
the properties of operator ∗, we have o∗∗∗ ⊆ o∗

i and o∗ = o∗∗∗. Thus, we obtain
o∗ ⊆ o∗

i . That is, oI. ⊆ oiI. Hence we have oiI. ∩ oI. = oI. Thus, Sim(oi, o) =
|oiI.∩ oI.|

|oI.| = |oI.|
|oI.| = 1.
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By Proposition 1, the extent o∗∗ of object concept (o∗∗, o∗) consists of objects
whose value of similarity measurement to object o is 1. If we regard object o as a
typical object (prototype) of an semantic concept, in order to get all the objects
in this prototype view of concepts, we should not only consider objects with
similarity value of 1, but also objects with similarity value less than 1.

We use a simple example to illustrate the basic notions and ideas introduced
so far.

Example 2. (Continued with Example 1) We set object o3 as a reference object.
In the following, we will compute the similarity of each object in OB to reference
object o3.

Sim(o1, o3) =
|o1I. ∩ o3I.|

|o3I.| =
|{a, d} ∩ {a, b, c}|

|{a, b, c}| =
1
3
,

Sim(o2, o3) =
|o2I. ∩ o3I.|

|o3I.| =
|{b, d} ∩ {a, b, c}|

|{a, b, c}| =
1
3
,

Sim(o3, o3) =
|o3I. ∩ o3I.|

|o3I.| =
|{a, b, c} ∩ {a, b, c}|

|{a, b, c}| = 1,

Sim(o4, o3) =
|o4I. ∩ o3I.|

|o3I.| =
|{b, c} ∩ {a, b, c}|

|{a, b, c}| =
2
3
.

Then, we check the correctness of Proposition 1. In Example 1, we get four object
concepts (o1, ad), (o2, bd), (o3, abc) and (o3o4, bc) inducing by objects o1, o2, o3
and o4, respectively. The similarities of objects in extent of object concepts to
the objects inducing these concepts are computed as follows:

Sim(o1, o1) =
|o1I. ∩ o1I.|

|o1I.| =
|{a, d} ∩ {a, d}|

|{a, d}| = 1,

Sim(o2, o2) =
|o2I. ∩ o2I.|

|o2I.| =
|{b, d} ∩ {b, d}|

|{b, d}| = 1,

Sim(o3, o3) =
|o3I. ∩ o3I.|

|o3I.| =
|{a, b, c} ∩ {a, b, c}|

|{a, b, c}| = 1,
{
Sim(o3, o4) = |o3I.∩ o4I.|

|o4I.| = |{a,b,c} ∩ {b,c}|
|{b,c}| = |{b,c}|

|{b,c}| = 1,

Sim(o4, o4) = |o4I.∩ o4I.|
|o4I.| = |{b,c} ∩ {b,c}|

|{b,c}| = 1.

The computation results are consistent to Proposition 1. That is, the value of
similarity of objects in extent of object concept to the object inducing this
concept is 1.

3.2 The k-cutting Concept Induced by One Typical Object

The classical view of concepts holds that all instances of a concept share com-
mon properties that are necessary and sufficient conditions for defining the con-
cept [14]. However, in our daily life, semantic category in our nature language
is not an all-or-none phenomenon. For example, we know that a chair is a more
reasonable exemplar of the category furniture than a radio. In other words, the
chair is more typical than radio in the category furniture. This is contrary to the
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assumption that categories are necessarily logical, bounded entities, Rosch [19]
has characterized some natural analog categories as internally structured into
a prototype (clearest cases, best example of the category) and nonprototype
members, with nonprototype members tending toward an order from better to
poorer example. Based on the results of Rosch’s study, we summarize the process
of human to recognize a semantic concept as follows:

step 1: Pick up the typical object (prototype) of the concept ;

step 2: Calculate the characterized attributes (description) of the typical object ;

step 3: Calculate the similarity of each object to the typical object ;

step 4: Put the objects with high similarity into the extent of concept .

The above steps are just a qualitative description of process to obtain seman-
tic concepts. If we want to express this process in a mathematical way, some
quantitative index is needed. For example, in step 4, high is a qualitative descrip-
tion. In order to determine which object has high similarity to the typical object,
we give a preset threshold k. If the similarity measurement of an object to typ-
ical object is bigger than k, this object can be regarded as being highly similar
to typical object. Thus, this object can be put into the extent and the corre-
sponding concept is called the k-cutting concept. Since the objects in one extent
belong to the same concept, they should possess some common attributes with
each other. Thus we strict that k should satisfy k > 1

2 . The following use of k
satisfies these settings.

The above process is easy for us to understand, but it is hard to give a
mathematical definition of k-cutting concept directly. In the following, we show
the mathematical definition of the k-cutting concept. Firstly, a pair of k-cutting
derivation operators are given as follows.

Definition 6. Let (OB,AT, I) be a formal context. A pair of k-cutting derivation
operators (k > 1

2) for objects set O ⊆ OB and attributes set A ⊆ AT are
defined as:

O∗k = {a ∈ AT | |a∗ ∩ O| ≥ k · |O|},
A∗k = {o ∈ OB | |o∗ ∩ A| ≥ k · |A|} (7)

In Definition 6, the attribute shared by more than k · |O| objects in O belongs
to attributes set O∗k; the object possessing more than k · |A| attributes in A
belongs to objects set A∗k. In the following, we present the properties of k-
cutting derivation operators.
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Property 1. Let (OB,AT, I) be a formal context. The following properties hold
for any objects sets O,O1, O2 ⊆ OB and attributes sets A,A1, A2 ⊆ AT :

G1. ∅∗k = AT, when ∅ ⊆ OB,

∅∗k = OB, when ∅ ⊆ AT ;
G2. O∗1 = O∗, A∗1 = A∗;
G3. O∗k = O∗ when O is a singleton set,

A∗k = A∗ when A is a singleton set;
G4. k ≤ h ⇒ O∗h ⊆ O∗k,

k ≤ h ⇒ A∗h ⊆ A∗k;
G5. O∗k = ∪k≤ki

O∗ki = ∩kj≤kO
∗kj ,

A∗k = ∪k≤ki
A∗ki = ∩kj≤kA

∗kj ;

G6. O ⊆ O∗∗k, A ⊆ A∗∗k.

Proof. The results in G1 and G2 are obvious.

G3. If object set O is a singleton set, then there exists an object oi ∈ OB
satisfying O = {oi}. Since {oi} is a singleton set, the result of |a∗ ∩ {oi}|, for
any a ∈ AT , is either 0 or 1. According to Definition 6, for any k > 1

2 , we have
O∗k = {a ∈ AT | |a∗ ∩ O| ≥ k · |O|} = {a ∈ AT | |a∗ ∩ {oi}| ≥ k|{oi}|} = {a ∈
AT | |a∗ ∩ {oi}| ≥ k}. That is, if attribute a ∈ O∗k, then |a∗ ∩ {oi}| ≥ k. That
means |a∗ ∩ {oi}| = 1. Thus O∗k = {a ∈ AT | |a∗ ∩ {oi}| = 1} = {a ∈ AT |
{oi} ⊆ a∗} = {oi}∗ = O∗. The rest part can be proved similarly.
G4. For any a ∈ O∗h, according to Definition 6, we have |a∗ ∩O| ≥ h · |O|. Since
k ≤ h, we have h · |O| ≥ k · |O|. Thus, |a∗ ∩O| ≥ h · |O| ≥ k · |O|. That is, a ∈ O∗k.
Because of the arbitrariness of attribute a, we obtain O∗h ⊆ O∗k. The formula
k ≤ h ⇒ A∗h ⊆ A∗k can be proved similarly.
G5. From property G4, for any ki ≥ k, we have O∗ki ⊆ O∗k. Hence, we obtain
∪k≤ki

O∗ki ⊆ O∗k. Also, since k ≤ k, we can get O∗k ⊆ ∪k≤ki
O∗ki . Thus, we

obtain O∗k = ∪k≤ki
O∗ki . Analogously, from property G4, for any kj ≤ k, we

have O∗k ⊆ O∗kj . Hence, we obtain O∗k ⊆ ∩kj≤kO
∗kj . Also, since k ≤ k, we

can get ∩kj≤kO
∗kj ⊆ O∗k. Thus, we obtain O∗k = ∩kj≤kO

∗kj . The rest part
A∗k = ∪k≤ki

A∗ki = ∩kj≤kA
∗kj can be proved similarly.

G6. For any oi ∈ O, from property of operator ∗, we have O∗ ⊆ o∗
i . Consequently,

we obtain o∗
i ∩ O∗ = O∗. Thus, |o∗

i ∩ O∗| = |O∗| ≥ k|O∗| holds no matter what
value k has. According to Definition 6, we can get oi ∈ O∗∗k. The rest part
A ⊆ A∗∗k can be proved similarly.

Then based on the k-cutting derivation operators, the definition of k-cutting
concept induced by one prototype (we will simply call it k-cutting concept if
there is no confusion) is given as follows.

Definition 7. Let (OB,AT, I) be a formal context. The k-cutting concept
induced by one typical object o is defined as (ô∗∗k, o∗). ô∗∗k and o∗ are called
extent and intent of k-cutting concept (ô∗∗k, o∗). Here, ô∗∗k = (oi,m(oi)), oi ∈
o∗∗k is a set of objects in o∗∗k accompanied with a membership value.
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Specifically, the element of ô∗∗k is an object-membership pair (oi,m(oi)), in
which oi ∈ o∗∗k and m(oi) is the membership of object oi belonging to the k-
cutting concept (ô∗∗k, o∗). The membership can be measured in different ways,
and the most common way is using the similarity measurement value of object
oi to typical object o. In following analysis, for convenience, we can regard o∗∗k

instead of ô∗∗k as an extent of k-cutting concept (ô∗∗k, o∗). That is, we can
rewrite k-cutting concept (ô∗∗k, o∗) as (o∗∗k, o∗).

From Definition 7, the intent of the k-cutting concept (o∗∗k, o∗) is a set of
attributes which is the description of typical object o and the extent of the
concept is a set of object-membership pairs in which the description of object
contains more than k · |o∗| attributes in description of o. The set of all k-cutting
concepts induced by one typical object in formal context (OB,AT, I) is denoted
by OCCk(OB,AT, I). Now we check the similarity of any object in k-cutting
concept given in Definition 7 to verify its rationality.

Theorem 2. Let (OB,AT, I) be a formal context and (o∗∗k, o∗) is a k-cutting
concept. An object oi ∈ OB belongs to o∗∗k if and only if the similarity of oi to
o is bigger than k. That is, Sim(oi, o) ≥ k.

Proof. According to Definition 6, we have oi ∈ o∗∗k is equivalent to |o∗
i ∩ o∗| ≥

k · |o∗|. Since we assumed that the formal context in this paper is canonical, we
have o∗ �= ∅, that is, |o∗| �= 0. Thus, both sides of the inequality |o∗

i ∩o∗| ≥ k · |o∗|
can be divided by |o∗|. The result is |o∗

i ∩o∗|
|o∗| ≥ k. That is, Sim(oi, o) ≥ k. Thus,

oi ∈ o∗∗k holds if and only if Sim(oi, o) ≥ k holds.

Remark 1. The higher the value of similarity the object has, the closer it is to
the typical object. However, the similarity measure can not be used to decide
whether or not the object is a prototype or typical object. That is, for some
object, the value of similarity measurement is 1, but it is not a prototype of this
concept, since it has more attributes than the attributes in intent.

At the beginning of Sect. 3.2, we discussed that since all the objects in one
extent belong to a same concept, they should possess some common attributes
with each other. Hence, we restrict the value of k > 1

2 . The following proposition
shows that the restriction of k guarantees the existence of common attributes of
a concept.

Proposition 2. Let (o∗∗k, o∗) be a k-cutting concept. If k > 1
2 , then, for any

o1, o2 ∈ o∗∗k, we have o∗
1 ∩ o∗

2 ∩ o∗ �= ∅.
Proof. Because of o1, o2 ∈ o∗∗k, based on Definition 6, we have |o∗

1∩o∗| ≥ k ·|o∗|
and |o∗

2 ∩ o∗| ≥ k · |o∗|. Since we suppose k > 1
2 , the formulas |o∗

1 ∩ o∗| > |o∗|
2 and

|o∗
2 ∩ o∗| > |o∗|

2 can be obtained. Thus, |o∗
1 ∩ (o∗

2 ∩ o∗)| = |(o∗
1 ∩ o∗) ∩ (o∗

2 ∩ o∗)| =
|(o∗

1∩o∗)|+ |(o∗
2 ∩o∗)|−|(o∗

1 ∩o∗)∪(o∗
2∩o∗)| > |o∗|

2 + |o∗|
2 −|(o∗

1∩o∗)∪(o∗
2∩o∗)| >

|o∗| − |o∗| = 0. That is, o∗
1 ∩ o∗

2 ∩ o∗ �= ∅.
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The result o∗
1 ∩ o∗

2 ∩ o∗ �= ∅ in Proposition 2 can be rewritten as (o∗
1 ∩ o∗) ∩

(o∗
2 ∩ o∗) �= ∅. This proposition shows that in order to let objects in the same

concept have common attributes, the value of k should satisfy k > 1
2 . These

common attributes are the most important characters of the concept, since they
can reflect the commonness of objects in extent.

We continue with Example 2 to demonstrate the ideas of k-cutting concept
induced by one typical object and to verify the correctness of Theorem2 and
Proposition 2.

Example 3. According to Definition 7, the 2
3 -cutting concepts induced by typical

object o1, o2, o3, and o4 are ({(o1, 1)}, ad), ({(o2, 1)}, bd), ({(o3, 1), (o4, 2
3 )}, abc),

and ({(o3, 1), (o4, 1)}, bc). Compared with the classical object concept induced by
object o3 whose extent only contains object o3, the 2

3 -cutting concepts induced
by object o3 contains objects o3 and o4. And these two objects have different
memberships. Since object o3 is the prototype of this concept, its membership is
1. The membership of object o4 is 2

3 . The 2
3 -cutting concept can be regarded as a

more general concept than the classical concept. The object in k-cutting concept
induced by object o does not need to possess all the attributes in description of
object o. We only restrict that the description of any object in extent of k-cutting
concept contains more than k · |o| attributes in the description of prototype o.

We use ({(o3, 1), (o4, 2
3 )}, abc), the 2

3 -cutting concept induced by typical
object o3, as an example to show the correctness of Theorem 2. According to the
similarity measurement calculated in Example 2, we have Sim(o1, o3) = 1

3 < 2
3 ,

Sim(o2, o3) = 1
3 < 2

3 , Sim(o3, o3) = 1 ≥ 2
3 and Sim(o4, o3) = 2

3 ≥ 2
3 . Based

on Theorem 2, only objects o3 and o4 belong to the extent of 2
3 -cutting concept

({(o3, 1), (o4, 2
3 )}, abc), which is consistent with our calculation by Definition 7.

Also, from ({(o3, 1), (o4, 1)}, bc), the 2
3 -cutting concept induced by typical object

o4, we can see that the similarity of object o3 to typical object o4 is 1, but object
o3 is not the typical object of this concept, since its description is {a, b, c} which
is bigger than {b, c}, description of typical object o4.

We will check the correctness of Proposition 2 in the following. Since k =
2
3 > 1

2 , every two objects in o
∗∗ 2

3
3 should have common attributes. Based on

Table 1, we have o
∗∗ 2

3
3 = {o3, o4}, and we can calculate (o∗

3 ∩ o∗
3) ∩ (o∗

4 ∩ o∗
3) =

{a, b, c} ∩ {b, c} = {b, c} �= ∅. The results are consistent to Proposition 2.

4 Conclusion

In formal concept analysis, the formal concept is a mathematical formation of the
classical view of concept and reflects a semantic meaning “commonly possessing”.
However, in our daily life, the prototype view of concepts is more common and
just reflects the meaning of “mostly possessing”. In this paper, we discussed the
similarity between two objects and defined the mathematical formation of the
prototype of concepts, named k-cutting concepts. Moreover, the properties of
this newly proposed concept are studied and its rationality is discussed.
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The results of this paper suggest several future research topics. It is inter-
esting to investigate the structure of k-cutting concepts and the k-cutting con-
cepts can be generalized as the k-cutting concepts induced by a group of typical
objects.
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Science Foundation of China (No.61772021 and No.11371014).
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