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Preface

Professor Zdzistaw Pawlak’s fundamental papers connected with rough sets theory

were published in 1982. Roman Stowinski highlighted the crucial importance of the

original rough set theory:
“This theory helps to find answers to many basic questions in mathematics, computer science,
artificial intelligence, decision theory, conflict theory, machine learning, knowledge discovery
and control theory. This theory is founded on an observation that knowledge about objects from
a real or abstract world is granular. Indeed, objects described by the same information are
indiscernible and create elementary sets, which are knowledge granules for that world. When
willing to express a concept, referring to a given set of objects, in terms of knowledge about the
world the objects come from, one encounters a situation in which in general, the concept is not
expressible exactly by the available granules; in other words, the union of elementary sets
having non-empty intersection with our set, does not coincide with the set. This set — a concept
— may, however, be expressed roughly, using sets called lower and upper approximations —
lower approximation containing elementary sets (granules) which are wholly included in our
set, and upper approximation containing also those sets which are partly included in our set. The
difference between those approximations is called a boundary of a set, and contains ambiguous
objects, for which one cannot claim with certainty, whether they do or do not belong to our set.
Differentiating between definite knowledge represented by lower approximation and approxi-
mate knowledge represented by the boundary of a set has a fundamental impact on the
deduction process. Rough set theory complements fuzzy set theory and soft computing, with
which it now delivers the best tools for reasoning about data bearing different types of “im-
perfections”, such as ambiguity, inaccuracy, inconsistency, incompleteness, and uncertainty.”

The International Joint Conference on Rough Sets (IICRS) is a major international
forum that brings researchers and industry practitioners together to discuss and
deliberate on fundamental issues of rough sets and practical solutions relying on dif-
ferent versions of rough set theory. The objective of the conference is to investigate
rough set theory, which has been receiving more and more attention in varied hybrid
approaches in different practical fields, with a special emphasis on fostering interaction
between academia and industry. The IJCRS conferences aim at gathering experts from
academia and industry representing fields of research in which theoretical and practical
aspects of rough set theory already find or may potentially find usage. They also
provide opportunities for researchers to present their ideas before the rough set com-
munity, or for those who would like to learn about rough sets and find out whether the
rough set approach could be useful for their problems.

The proceedings of IJCRS 2019 contain the papers selected for presentation at the
meeting of the International Rough Sets Society, held at the University of Debrecen,
Hungary, during June 17-21, 2019.

! See in Stowinski, R.: Laudatio dedicated to Mr Professor Ph.D. hab. M.Eng. Zdzistaw L. Pawlak. In:
Dlugosz, K. (ed.) Zdzistaw Pawlak. Doctor Honoris Causa of Poznan University of Technology,
pp. 7-11. Poznan University of Technology, Poznan (2002) (in Polish); English translation in
Skowron, A., Suraj, Z. (Eds.): Rough Sets and Intelligent Systems — Professor Zdzistaw Pawlak in
Memoriam, Vol. 1, Springer-Verlag Berlin Heidelberg, 2013, pp. 11.
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Conferences in the IJCRS series are held annually and incorporate four main tracks
(and conferences) relating to the theory of rough sets and its connection with other
paradigms:

Rough sets and data analysis: RSCTC conference series from 1998
Rough sets and granular computing: RSFDGrC from 1999

Rough sets and knowledge technology: RSKT from 2006

Rough sets and intelligent systems: RSEISP from 2007

The main topics of IJCRS 2019 consisted of three groups:

e Core Rough Set Models and Methods (e.g., covering rough set models,
decision-theoretic rough set methods, dominance-based rough set methods, rough
clustering, rough computing, rough mereology, partial rough set models,
game-theoretic rough set methods)

e Related Methods and Hybridization (e.g., artificial intelligence, machine learning,
pattern recognition, decision support systems, fuzzy sets and near sets, uncertain
and approximate reasoning, information granulation, formal concept analysis, Petri
nets, nature-inspired computation models)

e Areas of Application (e.g., medicine and health, bioinformatics, business intelli-
gence, smart cities, Semantic Web, computer vision and image processing, cyber-
netics and robotics, knowledge discovery)

IJCRS 2019 received 71 papers from 17 countries. Following the tradition of the
previous IJCRS conferences, all submissions underwent a very rigorous reviewing
process. Every submission was reviewed by at least two Program Committee
(PC) members; on average, each submission received 2.54 reviews. Finally, the PC
chairs selected 41 regular papers, based on their originality, significance, correctness,
relevance, and clarity of presentation to be included in the proceedings of IJCRS 2019.
We would like to thank all authors for submitting their papers. We also wish to
congratulate those authors whose papers were selected for presentation and publication
in the proceedings.

IJCRS 2019 would not have been successful without the support of many colleagues
and organizations. We acknowledge the acceptance of our proposal of organizing
IJCRS 2019 at the Faculty of Informatics, University of Debrecen, in Debrecen,
Hungary, by the authorities of the International Rough Set Society, the owner of the
rights to the series. We wish to express our gratitude to the following for their
invaluable suggestions, support, and excellent work throughout the organization
process:

e Andrzej Skowron, Mihir Chakraborty, and Attila Pethd, the honorary chairs of
IJCRS 2019

e Yiyu Yao, Nguyen Hung Son, and Dominik Slezak, the members of the Steering
Committee of IJCRS 2019

e The members of the Program Committee of IJCRS 2019

We are very grateful to Chris Cornelis, Eyke Hiillermeier, Sergei Kuznetsov,
Wojciech Ziarko, and Mihir Chakraborty, the invited and plenary speakers, for
accepting our invitations.
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We are also grateful to Laszld Aszalds, Tamas Kéadek, David Nagy, I1diké Vecsei,
Erndné Kasa, Rita Koroknai, and Nora Bende of the Faculty of Informatics, University
of Debrecen, whose great efforts ensured the success of the conference.

We greatly appreciate the support of the International Rough Set Society, the
Faculty of Informatics, University of Debrecen, and IT Services Hungary Ltd.

This conference was supported by the EFOP-3.6.3—VEKOP-16-2017-00002. The
project was supported by the European Union, co-financed by the European Social
Fund.

Special thanks go to Alfred Hofmann of Springer, for accepting to publish the
proceedings of IJCRS 2019 in the LNCS/LNALI series, and to Anna Kramer and the
excellent LNCS team for their help with the proceedings. We are grateful to Springer
for the grant of 1,000 EUR for the best conference papers.
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Fuzzy Rough Sets: Achievements
and Opportunities

Chris Cornelis

Computational Web Intelligence, Department of Applied Mathematics, Computer
Science and Statistics, Ghent University, Belgium
Chris.Cornelis@UGent.be

Fuzzy logic, introduced by Zadeh [3] in 1965, caters to the idea that for many logical
propositions, it is not possible to determine in a black-or-white fashion whether they
are true or false. Think of a sentence like “today is a sunny day”. For this reason,
graded degrees of truth are drawn from a continuous scale, usually the unit interval
[0,1], with O representing absolute falsehood and 1 representing complete truth, and the
intermediate degrees corresponding to partial truth. Fuzzy logic can, in a sense, be seen
as the culmination of the tradition of many-valued logics initiated in the first half of the
twentieth century by eminent logicians like Lukasiewicz, Godel and Kleene. In a
completely analogous fashion, fuzzy sets embody the notion that membership of
objects to a set, category or class is often a matter of degree. Fuzzy set theory is also
involved with the expression of gradual relationships between objects, and the
well-known concepts of equivalence relation, dominance relation, order relation, etc.
have all been adequately generalized to this setting.

Rough sets, introduced by Pawlak [2] in 1982, provide approximations of concepts
based on incomplete and possibly inconsistent information about objects and their
relationships. Specifically, given a subset A of X, an object x € X belongs to the lower
approximation of A if all objects related to it belong to A, and to the upper
approximation if at least one object related to x belongs to A. In Pawlak’s original
model, object relationships are represented using an equivalence relation over the
universe of discourse X (or equivalently, a partition of X) to express object
indiscernibility. Subsequent research generalized this assumption to consider various
types of binary relations R over X to replace the equivalence relation, including
tolerance and dominance relations, or to work with a covering, i.e., a set of possibly
overlapping subsets of X whose union equals X, to replace the partition. The different
rough set models have found widespread application in data analysis, where they are
used e.g. to infer data dependencies that can be exploited in feature selection and
decision model construction.

Fuzzy sets and rough sets share a long common history. In 1990, Dubois and Prade
[1] proposed the first fuzzy rough set model, in which fuzzy sets are approximated from
below and above using a fuzzy relation. Since then, many researchers have focused on
the refinement of this model using constructive approaches, involving fuzzy logic

Supported by the Odysseus Programme of the Science Foundation—Flanders.
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operations to shape the approximations, and axiomatic ones, proposing a set of
desirable properties that approximation operators are expected to satisfy. During the
past two decades, practical interest in fuzzy rough sets has also been steadily rising by
their application potential in various data analysis tasks, including data reduction,
classification and clustering. These applications also raised new challenges for the
fuzzy-rough hybridization process, which led amongst others to the introduction of
various robust alternatives to the classical fuzzy rough set definitions. In this
presentation, I will discuss some of the most prominent machine learning approaches
using fuzzy rough sets, and identify some current challenges and directions for the
hybrid theory.

References

1. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17, 91-209
(1990)

2. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341-356 (1982)

3. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338-353 (1965)



Pattern Structures and Pattern Setups
for Mining Complex Data

Sergei O. Kuznetsov

National Research University Higher School of Economics, Moscow, Russia

Abstract. Pattern mining started with mining itemset patterns, however many
applied problems of data mining make researchers face more complex data like
numerical intervals, strings, graphs, geometric figures, etc. Like in itemset
mining closed patterns proved to be very important for concise representations
of association rules and other types of dependencies. An acknowledged
approach to representing closed patterns was formulated in terms of Pattern
Structures [3, 5], which were implemented for various description spaces,
among them tuples of intervals [7], convex polygons [2], partitions [4], graphs
[6], and strings [1]. Pattern structures, however, require that the description
space makes a complete semilattice. Pattern setups is a generalization of pattern
structures that allows for a partially ordered description space. We consider
various examples of pattern structures and pattern setups arising in different
applied domains, together with approximation schemes based on kernel operators
and efficient algorithms for computing closed patterns and dependencies based
on them.

References

. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S., Napoli, A., Rassi, C.: On mining complex
sequential data by means of FCA and pattern structures. Int. J. Gen. Syst. 45(2), 135-159
(2016)

. Belfodil, A., Kuznetsov, S., Robardet, C., Kaytoue, M.: Mining convex polygon patterns with
formal concept analysis. In: IJCAL pp. 1425-1432 (2017)

. Ganter, B., Kuznetsov, S.: Pattern structures and their projections. In: ICCS, pp. 129-142
(2001)

. Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in formal
concept analysis with pattern structures. Ann. Math. Artif. Intell. 72(1-2), 129-149 (2014)
. Kuznetsov, S.: Pattern structures for analyzing complex data. In: RSFDGrC (2009)

. Kuznetsov, S.: Fitting pattern structures to knowledge discovery in big data. In: ICFCA 2013,
pp. 254-266 (2013)

. Kaytoue, M., Kuznetsov, S., Napoli, A.: Revisiting numerical pattern mining with formal
concept analysis. In: [JCAIL pp. 1342-1347 (2011)
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An Application of Bayesian Confirmation
Theory for Three-Way Decision

Mengjun Hu®™, Xiaofei Deng, and Yiyu Yao

Department of Computer Science, University of Regina,
Regina, SK S4S 0A2, Canada
{hu258,deng200x,yyao}@cs.uregina.ca

Abstract. Bayesian confirmation theory studies how a piece of evidence
confirms a hypothesis. In a qualitative approach, a piece of evidence
may confirm, disconfirm, or be neutral with respect to a hypothesis. A
quantitative approach uses Bayesian confirmation measures to evaluate
the degree to which a piece of evidence confirms a hypothesis. In both
approaches, we may perform a three-way classification of a set of pieces
of evidence for a given hypothesis. The set of evidence is divided into
three regions of positive evidence that confirms the hypothesis, nega-
tive evidence that disconfirms the hypothesis, and neutral evidence that
neither confirms nor disconfirms the hypothesis. In this paper, we inves-
tigate three-way classification models in both qualitative and quantita-
tive Bayesian confirmation approaches and explore their relationships to
three-way classification models in rough set theory.

Keywords: Three-way decision - Bayesian confirmation - Rough set -
Attribute reduct

1 Introduction

The integration of Bayesian confirmation theory into rough s et theory [17,18]
has been studied by several researchers [6-8,26,30]. Rough sets may be viewed
as a model that employs three-way decision. This paper focuses on relationships
between three-way decision and Bayesian confirmation.

A theory of three-way decision is originally developed from rough sets and has
been applied and generalized by researchers in a variety of topics beyond rough
sets, such as three-way classifications [13,22,25], three-way clusterings [1,27,28],
three-way recommendations [2,29], and three-way concept analysis [19,21]. In a
recent paper [23], Yao proposes a Trisecting-Acting-Outcome (TAO) model for
modelling three-way decision in a wide sense. The model includes three steps,
that is, a trisecting step of dividing a whole into three parts, an acting step
of devising and applying strategies to process the three parts, and an outcome
evaluation step to evaluate the results of trisecting and acting steps. Yao also

Y.Y. Yao—This work is partially supported by a Discovery Grant from NSERC,
Canada.
© Springer Nature Switzerland AG 2019

T. Mihalydeék et al. (Eds.): IJCRS 2019, LNAI 11499, pp. 3-15, 2019.
https://doi.org/10.1007/978-3-030-22815-6_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22815-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-22815-6_1

4 M. J. Hu et al.

demonstrates that the idea of three-way decision is a common human practice
and is widely practiced in many disciplines. In this paper, we investigate the
ideas of three-way decision in Bayesian confirmation theory.

Bayesian confirmation theory studies how a piece of evidence e confirms a
hypothesis h. Intuitively, there are three possible relationships between e and h,
that is, e confirms h, e disconfirms h, and e is neutral with respect to h. These
three relationships naturally imply a trisecting of all available evidence with
respect to a given hypothesis h. That is, we can divide the set of all pieces of
evidence into three parts of evidence confirming h, disconfirming h, and neutral
with respect to h. The conditions for these three parts depend on the determina-
tion of the three relationships in a specific Bayesian confirmation approach. We
investigate the formulation of these three parts in both qualitative and quanti-
tative Bayesian confirmation approaches, which results in a three-way classifica-
tion model of evidence. To illustrate the application of this model, we explore
three-way classification of evidence in rough set theory from two views. The
first view takes equivalence classes in rough set theory as evidence, which is a
commonly used view in existing related studies [6-8,26,30]. The second view
takes attributes that are used to describe objects as evidence. This view leads
to a three-way classification of attributes in rough set theory, and enables us to
define the concept of class-specific attribute reducts [12,15,18,20] in rough set
theory based on Bayesian confirmation.

The remaining part of this paper is arranged as follows. Section 2 provides
a brief overview of Bayesian confirmation approaches. In Sect.3, we propose
a three-way classification model of evidence by using Bayesian confirmation
approaches. The proposed model is examined with respect to rough set theory
in Sect. 4. The examination results in a new definition of class-specific attribute
reducts, which is presented in Sect. 5. Section 6 concludes the paper and discusses
possible directions for future work.

2 An Overview of Bayesian Confirmation

Bayesian confirmation theory [4,5] studies how a piece of evidence e confirms a
hypothesis h. A basic and commonly used idea is to compare the a priori proba-
bility Pr(h) and the a posteriori probability Pr(h|e). By employing qualitative
and quantitative comparisons, Bayesian confirmation can be categorized into
qualitative and quantitative approaches, respectively.

In a qualitative approach, a piece of evidence e confirms a hypothesis h
if the a posteriori probability Pr(hle) increases from the a priori probability
Pr(h), that is, the observation of e increases the probability of h. Similarly,
e disconfirms h if Pr(h|e) decreases from Pr(h), that is, the observation of e
decreases the probability of h. Otherwise, if Pr(hle) is unchanged from Pr(h),
then e is considered to be neutral with respect to h, that is, the observation of
e neither increases nor decreases the probability of h. This approach is referred



An Application of Bayesian Confirmation Theory for Three-Way Decision 5

to as P-incremental confirmation [4], which can be formally expressed as:

e confirms h, iff Pr(hle) > Pr(h),
e is neutral with respect to h, iff Pr(hle) = Pr(h),
e disconfirms h, iff Pr(hle) < Pr(h).

The three conditions can be equivalently expressed in several forms [30]. Take
the condition Pr(hle) > Pr(h) as an example. With an assumption Pr(h) # 0,
we have:

Pr(hle)

Pr(hle) > Pr(h) < Pr(h)

> 1. (1)

According to the Bayes’ theorem, one can compute the probability Pr(hle) as:

Pr(le) = & ;ﬁ?'el;) Pr(h), (2)

which implies that:
Pr(hle)  Pr(elh)

Pr(h)  Pr(e) ’ 3)
Thus, we have:
Pr(hle) > Pr(h) < ]Z:Z'S) >1 PJZ:L})‘) > 1. (4)
The probability Pr(e) can be computed as:
Pr(e) = Pr(e|lh)Pr(h) + Pr(e|-h)Pr(—h), (5)

where —h denotes the negation of hypothesis h. Accordingly, we have:

Pr(elh) PN Pr(elh)

Pr(e) Pr(elh)Pr(h) + Pr(e|—=h)Pr(—h)
<= Pr(e|h) > Pr(elh)Pr(h) + Pr(e|-h)Pr(—h)
<= (1 — Pr(h))Pr(e|h) > Pr(e|=h)Pr(-h)

Pr(e|h)
Pr(e|—h)

>1

> 1. (6)

To sum up, we have the following equivalent expressions of the condition for e
confirming h in a qualitative approach:

Pr(hle) Pr(e|h) Pr(e|h)
Prh) L Pre) T Pr(eln)

Pr(hle) > Pr(h) < >1.(7)
One may similarly get equivalent expressions of the two conditions for e discon-
firming h and e being neutral with respect to h.

Although the four conditions in Eq. (7) are mathematically equivalent, they
provide very different semantics. The two conditions Pr(hle) > Pr(h) and
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Ppri?}‘s) > 1 compare the a posteriori probability Pr(hle) and the a priori prob-

ability Pr(h). The former considers the difference between the two probabilities
and the latter considers their ratio. The other two conditions focus on the like-
lihood of e regarding the hypothesis k. The condition P;f_?‘e})l) > 1 compares the
likelihood of e given h (i.e., Pr(e|h)) and the likelihood of e without the given

hypothesis h (i.e., Pr(e)). The condition ;;’E(STL}L}Z)

of e given h (i.e., Pr(elh)) and the likelihood of e given the negation of h (i.e.,
Pr(e|-h)).

The quantitative Bayesian confirmation approach uses quantitative Bayesian
confirmation measures to evaluate the degree to which a piece of evidence e con-
firms a hypothesis h. The equivalent expressions in Eq. (7) inspire the following
quantitative confirmation measures:

> 1 compares the likelihood

cq(e,h) = Pr(hle) — Pr(h),
(h

_ Pr(hle) _ Pr(e|lh)
erle,h) = Pr(h)  Pr(e)’
e = Lrielh)
Heh) = proctis 0

which are called P-incremental confirmation measures [4]. By requiring addi-
tional properties, many confirmation measures have been proposed and studied
in the literature, such as [4-6,9,10]:

Pr(h| ) 1 Pr(elh)
Py T P
o Prieln)
"’LT'( 7h) ( | h) i
Pr(hle) _ Prieln)
R TR T

ciy = log pr<iTLh;3> ©)

Cnr(€,h) =

3 Three-Way Classification of Evidence

The Bayesian confirmation approaches focus on evaluating how a single piece of
evidence confirms a hypothesis. In real-world applications, we often have a set of
pieces of evidence observed from a dataset and are interested in which part can
be used to confirm or disconfirm a given hypothesis. Accordingly, we desire to
divide the set into three parts or regions: a positive region of evidence confirming
the hypothesis; a negative region of evidence disconfirming the hypothesis; and
a boundary region of evidence that is neutral with respect to the hypothesis.
This leads to a three-way classification [23] of evidence.

The formal definition of the three regions is straightforward in the qualitative
Bayesian confirmation approach, which is given in the following definition.
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Definition 1. Given a set of evidence E and a hypothesis h, the qualitative
positive POS, negative NEG, and boundary BND regions of E given h are defined
as:

POS(E, h) = {e € E | Pr(hle) > Pr(h)},
NEG(E, h) = {e € E | Pr(hle) < Pr(h)},
BND(E,h) ={e € E | Pr(hle) = Pr(h)}. (10)

One may also equivalently formulate the three qualitative regions by using
equivalent expressions as given in Eq. (7).

To construct the three regions based on a quantitative Bayesian confirmation
approach, we may apply two thresholds on the quantitative values given by a
confirmation measure.

Definition 2. Given a set of evidence E, a hypothesis h, and a confirmation
measure ¢, the quantitative positive POS, negative NEG, and boundary BND
regions of E given h are defined as:

POS(;,¢(E,h) = {e € E | c(e,h) > s},
NEG ) (E,h) ={e € E | c(e,h) < t},
BND(;5)(E,h) ={e € E |t <c(e, h) < s}, (11)

where t and s are two thresholds satisfying t < s.

The construction of three quantitative regions can be illustrated by Fig. 1.
If a piece of evidence e confirms h to a degree greater than s, then e is in the
positive region POS(; 4 (E, h) and we consider that e confirms h. If e confirms h
to a degree less than ¢, e is in the negative region NEG 4 ) (£, h) and we consider
that e disconfirms h. Otherwise, e is in the boundary region BND; . (E,h)
and we consider that e is neutral with respect to h, that is, e neither confirms
nor disconfirms h. Equation (11) can also be applied to formulate the three
qualitative regions by using the confirmation measure c4(e, h) = Pr(hle)— Pr(h)
and two thresholds t = s = 0. In this sense, it can be considered as a general
formulation of the three regions in both qualitative and quantitative approaches,
which will be used in our following discussions.

POS,s)(E, h) BND, . (E, h) NEG 4,5 (£, h)

Fig. 1. Three-way classification of evidence based on quantitative Bayesian confirma-
tion
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It should be noted that a confirmation measure ¢ actually evaluates both
the degree to which e confirms h and the degree to which e disconfirms h.
For example, the measure ¢4 may give both positive and negative values. A
greater positive value indicates that a piece of evidence confirms A to a greater
degree, and a less negative value indicates that a piece of evidence disconfirms
h to a greater degree. Thus, it is meaningful to define the quantitative negative
region by applying a threshold ¢. For example, if the measure ¢4 is used, one
may choose a negative value as the threshold ¢. Accordingly, cq4(e, h) < t means
that the degree to which e disconfirms h is greater than a certain degree of
disconfirmation represented by ¢. Thus, it is reasonable to use cq(e, h) < t as the
condition for the negative region.

4 Three-Way Classification of Evidence in Rough Set
Theory

Based on the general formulation of three-way classification of evidence pre-
sented in the last section, this section examines specific three-way classification
of evidence in rough set theory. Specifically, we discuss two views of evidence in
rough sets. The first view takes equivalence classes as evidence, which is adopted
in existing confirmation theoretic rough set models [6-8,31]. We propose a sec-
ond view that takes attributes as evidence. This view leads to a definition of
class-specific attribute reduct based on Bayesian confirmation, which will be
discussed in Sect. 5.

4.1 Equivalence Classes as Evidence

In rough set theory [17,18], a dataset is formally represented by an informa-
tion table. There are two types of information tables studied in the literature,
namely, complete and incomplete information tables. In this paper, we restrict
our discussion to complete information tables. A complete table can be formally
represented as the following tuple:

T = (OB, AT, {V, | a € AT}, {I, : OB — V, | a € AT}), (12)

where OB is a set of objects as rows, AT is a set of attributes as columns, V, is
the domain of an attribute a € AT, and I, is an information function that maps
each object to a unique value in V.

A major application of rough sets is to learn classification rules for a given
class X C OB based on an information table T. Due to the limited number
of attributes in AT, one may not be able to precisely describe X by a set of
classification rules. To solve this issue, rough set theory constructs definable sets
of objects that can be precisely described by using attributes in AT and use
them to approximate the given class X. A popular approach to constructing the
definable sets is based on equivalence relations. Suppose @ C OB x OB is an
equivalence relation (e.g., @ is reflexive, symmetric, and transitive) defined as:

Q={(x,y) €eOBx OB |Vaec AT, I,(z) = I.(y)}. (13)
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That is, (x,y) € Q if and only if z and y have the same values on all attributes in
AT. Given an object x € OB, its equivalence class [z] = {y € OB | (z,y) € Q}
is a definable set since it can be precisely described by a formula A . ,,a =
I,(z) where A denotes the logic AND operator. The family of equivalence classes
OB/Q = {[x] | = € OB} is used to approximate a given class X C OB, that is,
to construct the rough set approximations of X.

From the view of Bayesian confirmation, the fact that an object o € OB is
included in an equivalence class [z] (i.e., 0 € [x]) can be considered as a piece of
evidence. The statement that an object o is a positive instance of the given class
X (ie., 0 € X) is considered as a hypothesis. For simplicity, we denote such a
piece of evidence as [z] and the hypothesis as X. Following Definition 2, one may
divide the set of evidence OB/Q into three regions given the hypothesis X.

Definition 3. The positive, negative, and boundary regions of OB/Q given a
class X C OB are defined as:

POS(;,,)(0B/Q, X) = | J{[z] € OB/Q | ¢([z], X) > s},
NEG(;,(0B/Q, X) = [{lz] € OB/Q | c(lx], X) < t},
BND, ) (0B/Q, X) = | J{lz] € OB/Q | t < ¢([z], X) < s}, (14)

where ¢ is a confirmation measure and c([x], X) is the degree to which a piece of
evidence o € [x] confirms the hypothesis o € X.

The three regions in Eq. (14) form a three-way rough set approximation [24]
of X. If a piece of evidence [z] confirms X to a degree greater than s, then [z] is a
piece of positive evidence. In other words, for an object o € OB, o € [z] confirms
o € X. Similarly, if [z] confirms X to a degree less than ¢, then [z] is a piece of
negative evidence, that is, o € [z] disconfirms o € X. Otherwise, [z] is a piece
of neutral evidence and cannot be used to confirm or disconfirm X. It should
be noted that by taking unions in Eq. (14), the three regions are defined as sets
of objects instead of sets of equivalence classes. This formulation is consistent
with the formulations used in the mainstream of research in the literature, which
is referred to as unstructured approximations. A few researchers [3,11,16] have
studied structured approximations that are defined as sets of equivalence classes
or other building blocks derived from various approaches.

Definition 3 provides a general formulation of certain quantitative rough set
models. By taking ¢4 as the confirmation measure, one may immediately get the
following three regions:

POS;,5)(0B/Q, X) = {[z] € OB/Q | Pr(X|[z]) > s + Pr(X)},
NEG,(0B/Q, X) = {[z] € OB/Q | Pr(X|[z]) <t + Pr(X)},
BND(; (OB/Q,X) = {[z] € OB/Q | t + Pr(X) < Pr(X|[z]) < s+ Pr(X)}.

(15)
where the probabilities can be estimated as:
RS | X N [=]]
Pr(X) = —, PrX|z]) = ———. (16)
|OB|’ |[]|
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Since Pr(X]|[z]) — Pr(X) € [—1,1], it is reasonable to require the condition
—1 <t <0< s <1 for the two thresholds. By substitutions a = s+ Pr(X) and
0 = t+ Pr(X), one may immediately get the well-known probabilistic rough
set approximations [14,24]. These three regions provide a new interpretation of
the two thresholds («, 3) used in probabilistic rough set approximations from
the view of Bayesian confirmation. That is, the interval [§,a] represents an
interval around the a priori probability Pr(X) determined by a designated level
of confirmation s and a designated level of disconfirmation t¢.

A few researchers have considered Bayesian confirmation in the context of
rough sets by considering equivalence classes as evidence. For example, Greco,
Matarazzo, and Slowiriski [6-8] propose the parameterized rough set model by
using both the a posteriori probability Pr(X|[z]) and a confirmation measure
¢([z], X) in formulating the approximations. Yao and Zhou [26] consider the a
posteriori probability Pr(X|[z]) and a confirmation measure ¢([x], X ) separately
and study two Bayesian approaches to rough sets.

4.2 Attributes as Evidence

The majority of existing studies on rough sets and Bayesian confirmation takes
a row-wise view, that is, they consider an equivalence class of objects as a piece
of evidence. From the column-wise view, an attribute can also be considered as
a piece of evidence. A confirmation measure evaluates the degree to which an
attribute can be used to confirm or disconfirm a hypothesis. Accordingly, one can
perform a three-way classification of attributes based on Bayesian confirmation.

In Eq.(13), we define the equivalence relation ) with respect to all the
attributes in AT'. In a similar manner, one may also define an equivalence relation
with respect to an arbitrary subset A C AT

Qa={(z,y) €OB x OB |Va € A, I,(z) = I.(y)}. (17)

By using the family of equivalence classes OB/Q 4, one may construct the
three positive, negative, and boundary regions using the formulation given by
Eq. (14) or any other existing three-way rough set models. Let POS(OB/Q 4, X),
NEG(OB/Qa4,X), and BND(OB/Q4,X) denote the three regions of OB/Qa
constructed with respect to a given class X C OB. One may evaluate the per-
formance of the set of attributes A in classifying instances of X by developing
quantitative measures based on these three regions. From the view of Bayesian
confirmation, we desire a quantitative confirmation measure that reflects both
how A confirms X (i.e., how A classifies the positive instances of X) and how
A disconfirms X (i.e., how A classifies the negative instances of X). These two
sides correspond with the two regions POS(OB/Q4, X) and NEG(OB/Q 4, X),
respectively. Thus, such a quantitative confirmation measure ¢(A, X) is desired
to be an increasing function of the size of POS(OB/Q4, X) and a decreasing
function of the size of NEG(OB/Q 4, X ), which can be formally represented as:

(A, X) = f([POS(0B/Qa, X)1,INEG(OB/Qa, X)|1), (18)
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where | - | denotes the cardinality of a set, and 7 and | denote the increasing and
decreasing functions, respectively. For example, following similar ideas of ¢4 and
¢ given in Eq. (8), one may define the following two measures that use difference
and ratio, respectively:

ca(A, X) = Pr(POS(OB/Qa, X)) — Pr(NEG(OB/Q 4, X)),

_ Pr(POS(OB/Q., X))
cr(4, X) = pr(NEG(OB/Qi,X))' "

The probabilities can be estimated as follows:

_ [POS(0B/Qa, X)|
- OB ’
_ INEG(OB/Q4, X))
- OB

Pr(POS(OB/Q 4, X))

Pr(NEG(OB/Qa, X))

(20)

Following ¢, and ¢, given in Eq. (9), one may also consider the following two
measures:

_ Pr(POS(0OB/Qa, X))
enr (A4, X) = Pr(NEG(OB/Qa, X)) .
Pr(POS(OB/Q 4, X))

Pr(NEG(OB/Qa, X))’

clT'(A7 X) = log

(21)

By applying a specific measure ¢(A, X) to Eq.(11), one may immediately
construct the three regions of the set of evidence AT.

Definition 4. The positive, negative, and boundary regions of AT given a class
X C OB are defined as:

POS(; (AT, X) = {a € AT | c(a, X) > s},
NEG(t’S)(AT, X) = {CL e AT | C(CL, X) < t},
BND (AT, X) = {a € AT |t < c(a, X) < s}, (22)

where, for simplicity, we use c(a, X) to denote c({a}, X).

If an attribute a confirms X to a degree greater than s, then a is a positive
attribute with respect to X. In other words, the value of an object on a may help
us confirm the object as a positive instance of X. Similarly, if a confirms X to a
degree less than ¢, then a is a negative attribute with respect to X. That is, a may
help us confirm an object as a negative instance of X, or equivalently, disconfirm
an object as a positive instance of X. Otherwise, a is a neutral attribute with
respect to X, which means the values on a may not be quite helpful in classifying
instances of X. The selection and determination of thresholds ¢ and s depend
on the specific quantitative measures used.
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5 Class-Specific Attribute Reduct Based on Bayesian
Confirmation

A consideration of attributes as evidence in rough sets relates Bayesian confir-
mation to the topic of attribute reduction [12,15,18,20] in rough sets. Suppose
we have the following sequence of subsets of attributes:

Ay CAyC---C A, CAT. (23)
By Eq. (17), one may easily verify that:
Qa, 2Qa, 2 2Qa, 2 Qar, (24)
or equivalently, for any x € OB, we have:
[z]a, 2 [a]a, 2 -+ 2 [2]a, 2 [2]ar (25)

That is, a larger subset of attributes gives smaller equivalence classes as build-
ing blocks of rough set approximations. Consequently, the three regions of the
corresponding families of equivalence classes satisfy the following properties:

NEG(OB/Qa,, X) € NEG(OB/Qa,, X) C -
BND(OB/Qu,, X) 2 BND(OB/Qa,, X) 2

. C POS(OB/Qar, X),
.- C NEG(OB/Qar, X),
.- D BND(OB/Qar, X). (26)

In classifications, especially when there are multiple classes considered, con-
firming an object as a negative instance of a class might not be quite infor-
mative and useful. It provides very limited information about which class the
object belongs to, with so many remaining classes as possibilities. In this sense,
we usually focus more on classifying positive instances of a specific class. Thus,
in rough sets, the performance of a subset of attributes A is usually measured
based on the positive region POS(OB/Q 4, X). In this context, we may consider
a special case of the confirmation measure c¢(4, X) as:

(4, X) = f(IPOS(OB/Qa, X)), (27)

which is an increasing function of the size of POS(OB/Q 4, X ). Consequently,
we have:

(A1, X) <c(Ag,X) <+ <c(4n, X) < (AT, X). (28)

It can be interpreted as: by considering more attributes, we can obtain more
detailed information and confirm more positive instances of a given class X.
An intuitive question is whether it is sufficient to use a subset of AT instead
of all the attributes in AT in classifying positive instances of a given class. This
leads to the topic of class-specific attribute reduction in rough sets [12,15,20].
Qualitatively, such an attribute reduct is a minimal subset of AT that derives
the same positive region as the set AT with respect to a given class X. Quanti-
tatively, one may define quantitative measures to evaluate the performance of a
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set of attributes. Based on it, an attribute reduct can be defined as a minimal
subset of AT that has the same performance as AT with respect to a given class.
By using Bayesian confirmation measures to evaluate the performance of a set of
attributes, we present the following definition of a class-specific attribute reduct.

Definition 5. Given a class X C OB, a subset of attributes R C AT is an
attribute reduct with respect to X if it satisfies the following two conditions:

(1) ¢(R,X) =c(AT, X),
(2) VR' C R,c¢(R', X) < ¢(AT, X). (29)

The first condition in Definition 5 states that R confirms X to the same degree
as AT. The second condition states that any proper subset of R confirms X to
a less degree than AT. Thus, R is a minimal set that has the same performance
as AT. In the case that the measure ¢ satisfies the property ¢(4, X) < ¢(4’, X)
for A C A’ C AT, the second condition can be equivalently expressed as:

(2") Ya e R,e(R—{a},X) < ¢(AT, X), (30)

which indicates that removing any attribute in R will decrease the degree to
which R confirms X.

6 Conclusions and Future Work

Bayesian confirmation theory is closely related to three-way decision. We propose
a general formulation of three-way classification of evidence by using qualitative
and quantitative Bayesian confirmation approaches. This formulation is exam-
ined and applied with respect to rough set theory from two views. A first view
considers equivalence classes as evidence, which leads to a three-way classification
of objects based on quantitative Bayesian confirmation measures. This three-way
classification model provides a new interpretation of the two thresholds used in
probabilistic rough set models from the view of Bayesian confirmation. A sec-
ond view considers attributes as evidence, which gives a three-way classification
of attributes based on quantitative Bayesian confirmation measures. This view
inspires a new definition of class-specific attribute reducts using Bayesian con-
firmation.

This work considers three-way classification of evidence with respect to only
one given hypothesis. A first direction of future work is to consider a set of
hypotheses and build the three-way classification model of evidence. Since one
hypothesis relates to one given class in rough set theory, such a new model can
be applied in rough set theory with respect to multiple classes, which is a second
direction of future work.

Acknowledgement. The authors thank reviewers for their valuable comments and
constructive suggestions.
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