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Preface

Professor Zdzisław Pawlak’s fundamental papers connected with rough sets theory
were published in 1982. Roman Słowiński highlighted the crucial importance of the
original rough set theory:

“This theory helps to find answers to many basic questions in mathematics, computer science,
artificial intelligence, decision theory, conflict theory, machine learning, knowledge discovery
and control theory. This theory is founded on an observation that knowledge about objects from
a real or abstract world is granular. Indeed, objects described by the same information are
indiscernible and create elementary sets, which are knowledge granules for that world. When
willing to express a concept, referring to a given set of objects, in terms of knowledge about the
world the objects come from, one encounters a situation in which in general, the concept is not
expressible exactly by the available granules; in other words, the union of elementary sets
having non-empty intersection with our set, does not coincide with the set. This set – a concept
– may, however, be expressed roughly, using sets called lower and upper approximations –

lower approximation containing elementary sets (granules) which are wholly included in our
set, and upper approximation containing also those sets which are partly included in our set. The
difference between those approximations is called a boundary of a set, and contains ambiguous
objects, for which one cannot claim with certainty, whether they do or do not belong to our set.
Differentiating between definite knowledge represented by lower approximation and approxi-
mate knowledge represented by the boundary of a set has a fundamental impact on the
deduction process. Rough set theory complements fuzzy set theory and soft computing, with
which it now delivers the best tools for reasoning about data bearing different types of “im-
perfections”, such as ambiguity, inaccuracy, inconsistency, incompleteness, and uncertainty.”1

The International Joint Conference on Rough Sets (IJCRS) is a major international
forum that brings researchers and industry practitioners together to discuss and
deliberate on fundamental issues of rough sets and practical solutions relying on dif-
ferent versions of rough set theory. The objective of the conference is to investigate
rough set theory, which has been receiving more and more attention in varied hybrid
approaches in different practical fields, with a special emphasis on fostering interaction
between academia and industry. The IJCRS conferences aim at gathering experts from
academia and industry representing fields of research in which theoretical and practical
aspects of rough set theory already find or may potentially find usage. They also
provide opportunities for researchers to present their ideas before the rough set com-
munity, or for those who would like to learn about rough sets and find out whether the
rough set approach could be useful for their problems.

The proceedings of IJCRS 2019 contain the papers selected for presentation at the
meeting of the International Rough Sets Society, held at the University of Debrecen,
Hungary, during June 17–21, 2019.

1 See in Słowiński, R.: Laudatio dedicated to Mr Professor Ph.D. hab. M.Eng. Zdzisław I. Pawlak. In:
Długosz, K. (ed.) Zdzisław Pawlak. Doctor Honoris Causa of Poznań University of Technology,
pp. 7–11. Poznań University of Technology, Poznań (2002) (in Polish); English translation in
Skowron, A., Suraj, Z. (Eds.): Rough Sets and Intelligent Systems – Professor Zdzisław Pawlak in
Memoriam, Vol. 1, Springer-Verlag Berlin Heidelberg, 2013, pp. 11.



Conferences in the IJCRS series are held annually and incorporate four main tracks
(and conferences) relating to the theory of rough sets and its connection with other
paradigms:

• Rough sets and data analysis: RSCTC conference series from 1998
• Rough sets and granular computing: RSFDGrC from 1999
• Rough sets and knowledge technology: RSKT from 2006
• Rough sets and intelligent systems: RSEISP from 2007

The main topics of IJCRS 2019 consisted of three groups:

• Core Rough Set Models and Methods (e.g., covering rough set models,
decision-theoretic rough set methods, dominance-based rough set methods, rough
clustering, rough computing, rough mereology, partial rough set models,
game-theoretic rough set methods)

• Related Methods and Hybridization (e.g., artificial intelligence, machine learning,
pattern recognition, decision support systems, fuzzy sets and near sets, uncertain
and approximate reasoning, information granulation, formal concept analysis, Petri
nets, nature-inspired computation models)

• Areas of Application (e.g., medicine and health, bioinformatics, business intelli-
gence, smart cities, Semantic Web, computer vision and image processing, cyber-
netics and robotics, knowledge discovery)

IJCRS 2019 received 71 papers from 17 countries. Following the tradition of the
previous IJCRS conferences, all submissions underwent a very rigorous reviewing
process. Every submission was reviewed by at least two Program Committee
(PC) members; on average, each submission received 2.54 reviews. Finally, the PC
chairs selected 41 regular papers, based on their originality, significance, correctness,
relevance, and clarity of presentation to be included in the proceedings of IJCRS 2019.
We would like to thank all authors for submitting their papers. We also wish to
congratulate those authors whose papers were selected for presentation and publication
in the proceedings.

IJCRS 2019 would not have been successful without the support of many colleagues
and organizations. We acknowledge the acceptance of our proposal of organizing
IJCRS 2019 at the Faculty of Informatics, University of Debrecen, in Debrecen,
Hungary, by the authorities of the International Rough Set Society, the owner of the
rights to the series. We wish to express our gratitude to the following for their
invaluable suggestions, support, and excellent work throughout the organization
process:

• Andrzej Skowron, Mihir Chakraborty, and Attila Pethő, the honorary chairs of
IJCRS 2019

• Yiyu Yao, Nguyen Hung Son, and Dominik Ślęzak, the members of the Steering
Committee of IJCRS 2019

• The members of the Program Committee of IJCRS 2019

We are very grateful to Chris Cornelis, Eyke Hüllermeier, Sergei Kuznetsov,
Wojciech Ziarko, and Mihir Chakraborty, the invited and plenary speakers, for
accepting our invitations.
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We are also grateful to László Aszalós, Tamás Kádek, Dávid Nagy, Ildikó Vecsei,
Ernőné Kása, Rita Koroknai, and Nóra Bende of the Faculty of Informatics, University
of Debrecen, whose great efforts ensured the success of the conference.

We greatly appreciate the support of the International Rough Set Society, the
Faculty of Informatics, University of Debrecen, and IT Services Hungary Ltd.

This conference was supported by the EFOP–3.6.3–VEKOP–16–2017–00002. The
project was supported by the European Union, co-financed by the European Social
Fund.

Special thanks go to Alfred Hofmann of Springer, for accepting to publish the
proceedings of IJCRS 2019 in the LNCS/LNAI series, and to Anna Kramer and the
excellent LNCS team for their help with the proceedings. We are grateful to Springer
for the grant of 1,000 EUR for the best conference papers.

May 2019 Tamás Mihálydeák
Fan Min

Guoyin Wang
Mohua Banerjee

Ivo Düntsch
Zbigniew Suraj
Davide Ciucci
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Fuzzy Rough Sets: Achievements
and Opportunities

Chris Cornelis

Computational Web Intelligence, Department of Applied Mathematics, Computer
Science and Statistics, Ghent University, Belgium

Chris.Cornelis@UGent.be

Fuzzy logic, introduced by Zadeh [3] in 1965, caters to the idea that for many logical
propositions, it is not possible to determine in a black-or-white fashion whether they
are true or false. Think of a sentence like “today is a sunny day”. For this reason,
graded degrees of truth are drawn from a continuous scale, usually the unit interval
[0,1], with 0 representing absolute falsehood and 1 representing complete truth, and the
intermediate degrees corresponding to partial truth. Fuzzy logic can, in a sense, be seen
as the culmination of the tradition of many-valued logics initiated in the first half of the
twentieth century by eminent logicians like Łukasiewicz, Gödel and Kleene. In a
completely analogous fashion, fuzzy sets embody the notion that membership of
objects to a set, category or class is often a matter of degree. Fuzzy set theory is also
involved with the expression of gradual relationships between objects, and the
well-known concepts of equivalence relation, dominance relation, order relation, etc.
have all been adequately generalized to this setting.

Rough sets, introduced by Pawlak [2] in 1982, provide approximations of concepts
based on incomplete and possibly inconsistent information about objects and their
relationships. Specifically, given a subset A of X, an object x 2 X belongs to the lower
approximation of A if all objects related to it belong to A, and to the upper
approximation if at least one object related to x belongs to A. In Pawlak’s original
model, object relationships are represented using an equivalence relation over the
universe of discourse X (or equivalently, a partition of X) to express object
indiscernibility. Subsequent research generalized this assumption to consider various
types of binary relations R over X to replace the equivalence relation, including
tolerance and dominance relations, or to work with a covering, i.e., a set of possibly
overlapping subsets of X whose union equals X, to replace the partition. The different
rough set models have found widespread application in data analysis, where they are
used e.g. to infer data dependencies that can be exploited in feature selection and
decision model construction.

Fuzzy sets and rough sets share a long common history. In 1990, Dubois and Prade
[1] proposed the first fuzzy rough set model, in which fuzzy sets are approximated from
below and above using a fuzzy relation. Since then, many researchers have focused on
the refinement of this model using constructive approaches, involving fuzzy logic

Supported by the Odysseus Programme of the Science Foundation–Flanders.
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operations to shape the approximations, and axiomatic ones, proposing a set of
desirable properties that approximation operators are expected to satisfy. During the
past two decades, practical interest in fuzzy rough sets has also been steadily rising by
their application potential in various data analysis tasks, including data reduction,
classification and clustering. These applications also raised new challenges for the
fuzzy-rough hybridization process, which led amongst others to the introduction of
various robust alternatives to the classical fuzzy rough set definitions. In this
presentation, I will discuss some of the most prominent machine learning approaches
using fuzzy rough sets, and identify some current challenges and directions for the
hybrid theory.

References

1. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17, 91–209
(1990)

2. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)
3. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
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Pattern Structures and Pattern Setups
for Mining Complex Data

Sergei O. Kuznetsov

National Research University Higher School of Economics, Moscow, Russia

Abstract. Pattern mining started with mining itemset patterns, however many
applied problems of data mining make researchers face more complex data like
numerical intervals, strings, graphs, geometric figures, etc. Like in itemset
mining closed patterns proved to be very important for concise representations
of association rules and other types of dependencies. An acknowledged
approach to representing closed patterns was formulated in terms of Pattern
Structures [3, 5], which were implemented for various description spaces,
among them tuples of intervals [7], convex polygons [2], partitions [4], graphs
[6], and strings [1]. Pattern structures, however, require that the description
space makes a complete semilattice. Pattern setups is a generalization of pattern
structures that allows for a partially ordered description space. We consider
various examples of pattern structures and pattern setups arising in different
applied domains, together with approximation schemes based on kernel operators
and efficient algorithms for computing closed patterns and dependencies based
on them.

References

1. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S., Napoli, A., Rassi, C.: On mining complex
sequential data by means of FCA and pattern structures. Int. J. Gen. Syst. 45(2), 135–159
(2016)

2. Belfodil, A., Kuznetsov, S., Robardet, C., Kaytoue, M.: Mining convex polygon patterns with
formal concept analysis. In: IJCAI, pp. 1425–1432 (2017)

3. Ganter, B., Kuznetsov, S.: Pattern structures and their projections. In: ICCS, pp. 129–142
(2001)

4. Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in formal
concept analysis with pattern structures. Ann. Math. Artif. Intell. 72(1–2), 129–149 (2014)

5. Kuznetsov, S.: Pattern structures for analyzing complex data. In: RSFDGrC (2009)
6. Kuznetsov, S.: Fitting pattern structures to knowledge discovery in big data. In: ICFCA 2013,

pp. 254–266 (2013)
7. Kaytoue, M., Kuznetsov, S., Napoli, A.: Revisiting numerical pattern mining with formal

concept analysis. In: IJCAI, pp. 1342–1347 (2011)
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Abstract. Bayesian confirmation theory studies how a piece of evidence
confirms a hypothesis. In a qualitative approach, a piece of evidence
may confirm, disconfirm, or be neutral with respect to a hypothesis. A
quantitative approach uses Bayesian confirmation measures to evaluate
the degree to which a piece of evidence confirms a hypothesis. In both
approaches, we may perform a three-way classification of a set of pieces
of evidence for a given hypothesis. The set of evidence is divided into
three regions of positive evidence that confirms the hypothesis, nega-
tive evidence that disconfirms the hypothesis, and neutral evidence that
neither confirms nor disconfirms the hypothesis. In this paper, we inves-
tigate three-way classification models in both qualitative and quantita-
tive Bayesian confirmation approaches and explore their relationships to
three-way classification models in rough set theory.

Keywords: Three-way decision · Bayesian confirmation · Rough set ·
Attribute reduct

1 Introduction

The integration of Bayesian confirmation theory into rough s et theory [17,18]
has been studied by several researchers [6–8,26,30]. Rough sets may be viewed
as a model that employs three-way decision. This paper focuses on relationships
between three-way decision and Bayesian confirmation.

A theory of three-way decision is originally developed from rough sets and has
been applied and generalized by researchers in a variety of topics beyond rough
sets, such as three-way classifications [13,22,25], three-way clusterings [1,27,28],
three-way recommendations [2,29], and three-way concept analysis [19,21]. In a
recent paper [23], Yao proposes a Trisecting-Acting-Outcome (TAO) model for
modelling three-way decision in a wide sense. The model includes three steps,
that is, a trisecting step of dividing a whole into three parts, an acting step
of devising and applying strategies to process the three parts, and an outcome
evaluation step to evaluate the results of trisecting and acting steps. Yao also
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demonstrates that the idea of three-way decision is a common human practice
and is widely practiced in many disciplines. In this paper, we investigate the
ideas of three-way decision in Bayesian confirmation theory.

Bayesian confirmation theory studies how a piece of evidence e confirms a
hypothesis h. Intuitively, there are three possible relationships between e and h,
that is, e confirms h, e disconfirms h, and e is neutral with respect to h. These
three relationships naturally imply a trisecting of all available evidence with
respect to a given hypothesis h. That is, we can divide the set of all pieces of
evidence into three parts of evidence confirming h, disconfirming h, and neutral
with respect to h. The conditions for these three parts depend on the determina-
tion of the three relationships in a specific Bayesian confirmation approach. We
investigate the formulation of these three parts in both qualitative and quanti-
tative Bayesian confirmation approaches, which results in a three-way classifica-
tion model of evidence. To illustrate the application of this model, we explore
three-way classification of evidence in rough set theory from two views. The
first view takes equivalence classes in rough set theory as evidence, which is a
commonly used view in existing related studies [6–8,26,30]. The second view
takes attributes that are used to describe objects as evidence. This view leads
to a three-way classification of attributes in rough set theory, and enables us to
define the concept of class-specific attribute reducts [12,15,18,20] in rough set
theory based on Bayesian confirmation.

The remaining part of this paper is arranged as follows. Section 2 provides
a brief overview of Bayesian confirmation approaches. In Sect. 3, we propose
a three-way classification model of evidence by using Bayesian confirmation
approaches. The proposed model is examined with respect to rough set theory
in Sect. 4. The examination results in a new definition of class-specific attribute
reducts, which is presented in Sect. 5. Section 6 concludes the paper and discusses
possible directions for future work.

2 An Overview of Bayesian Confirmation

Bayesian confirmation theory [4,5] studies how a piece of evidence e confirms a
hypothesis h. A basic and commonly used idea is to compare the a priori proba-
bility Pr(h) and the a posteriori probability Pr(h|e). By employing qualitative
and quantitative comparisons, Bayesian confirmation can be categorized into
qualitative and quantitative approaches, respectively.

In a qualitative approach, a piece of evidence e confirms a hypothesis h
if the a posteriori probability Pr(h|e) increases from the a priori probability
Pr(h), that is, the observation of e increases the probability of h. Similarly,
e disconfirms h if Pr(h|e) decreases from Pr(h), that is, the observation of e
decreases the probability of h. Otherwise, if Pr(h|e) is unchanged from Pr(h),
then e is considered to be neutral with respect to h, that is, the observation of
e neither increases nor decreases the probability of h. This approach is referred



An Application of Bayesian Confirmation Theory for Three-Way Decision 5

to as P-incremental confirmation [4], which can be formally expressed as:
⎧
⎨

⎩

e confirms h, iff Pr(h|e) > Pr(h),
e is neutral with respect to h, iff Pr(h|e) = Pr(h),
e disconfirms h, iff Pr(h|e) < Pr(h).

The three conditions can be equivalently expressed in several forms [30]. Take
the condition Pr(h|e) > Pr(h) as an example. With an assumption Pr(h) �= 0,
we have:

Pr(h|e) > Pr(h) ⇐⇒ Pr(h|e)
Pr(h)

> 1. (1)

According to the Bayes’ theorem, one can compute the probability Pr(h|e) as:

Pr(h|e) =
Pr(e|h)
Pr(e)

Pr(h), (2)

which implies that:
Pr(h|e)
Pr(h)

=
Pr(e|h)
Pr(e)

. (3)

Thus, we have:

Pr(h|e) > Pr(h) ⇐⇒ Pr(h|e)
Pr(h)

> 1 ⇐⇒ Pr(e|h)
Pr(e)

> 1. (4)

The probability Pr(e) can be computed as:

Pr(e) = Pr(e|h)Pr(h) + Pr(e|¬h)Pr(¬h), (5)

where ¬h denotes the negation of hypothesis h. Accordingly, we have:

Pr(e|h)
Pr(e)

> 1 ⇐⇒ Pr(e|h)
Pr(e|h)Pr(h) + Pr(e|¬h)Pr(¬h)

> 1

⇐⇒ Pr(e|h) > Pr(e|h)Pr(h) + Pr(e|¬h)Pr(¬h)
⇐⇒ (1 − Pr(h))Pr(e|h) > Pr(e|¬h)Pr(¬h)

⇐⇒ Pr(e|h)
Pr(e|¬h)

> 1. (6)

To sum up, we have the following equivalent expressions of the condition for e
confirming h in a qualitative approach:

Pr(h|e) > Pr(h) ⇐⇒ Pr(h|e)
Pr(h)

> 1 ⇐⇒ Pr(e|h)
Pr(e)

> 1 ⇐⇒ Pr(e|h)
Pr(e|¬h)

> 1. (7)

One may similarly get equivalent expressions of the two conditions for e discon-
firming h and e being neutral with respect to h.

Although the four conditions in Eq. (7) are mathematically equivalent, they
provide very different semantics. The two conditions Pr(h|e) > Pr(h) and
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Pr(h|e)
Pr(h) > 1 compare the a posteriori probability Pr(h|e) and the a priori prob-

ability Pr(h). The former considers the difference between the two probabilities
and the latter considers their ratio. The other two conditions focus on the like-
lihood of e regarding the hypothesis h. The condition Pr(e|h)

Pr(e) > 1 compares the
likelihood of e given h (i.e., Pr(e|h)) and the likelihood of e without the given
hypothesis h (i.e., Pr(e)). The condition Pr(e|h)

Pr(e|¬h) > 1 compares the likelihood
of e given h (i.e., Pr(e|h)) and the likelihood of e given the negation of h (i.e.,
Pr(e|¬h)).

The quantitative Bayesian confirmation approach uses quantitative Bayesian
confirmation measures to evaluate the degree to which a piece of evidence e con-
firms a hypothesis h. The equivalent expressions in Eq. (7) inspire the following
quantitative confirmation measures:

cd(e, h) = Pr(h|e) − Pr(h),

cr(e, h) =
Pr(h|e)
Pr(h)

=
Pr(e|h)
Pr(e)

,

c+r (e, h) =
Pr(e|h)

Pr(e|¬h)
, (8)

which are called P-incremental confirmation measures [4]. By requiring addi-
tional properties, many confirmation measures have been proposed and studied
in the literature, such as [4–6,9,10]:

cnr(e, h) =
Pr(h|e)
Pr(h)

− 1 =
Pr(e|h)
Pr(e)

− 1,

c+nr(e, h) =
Pr(e|h)

Pr(e|¬h)
− 1,

clr = log
Pr(h|e)
Pr(h)

= log
Pr(e|h)
Pr(e)

,

c+lr = log
Pr(e|h)

Pr(e|¬h)
. (9)

3 Three-Way Classification of Evidence

The Bayesian confirmation approaches focus on evaluating how a single piece of
evidence confirms a hypothesis. In real-world applications, we often have a set of
pieces of evidence observed from a dataset and are interested in which part can
be used to confirm or disconfirm a given hypothesis. Accordingly, we desire to
divide the set into three parts or regions: a positive region of evidence confirming
the hypothesis; a negative region of evidence disconfirming the hypothesis; and
a boundary region of evidence that is neutral with respect to the hypothesis.
This leads to a three-way classification [23] of evidence.

The formal definition of the three regions is straightforward in the qualitative
Bayesian confirmation approach, which is given in the following definition.
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Definition 1. Given a set of evidence E and a hypothesis h, the qualitative
positive POS, negative NEG, and boundary BND regions of E given h are defined
as:

POS(E, h) = {e ∈ E | Pr(h|e) > Pr(h)},

NEG(E, h) = {e ∈ E | Pr(h|e) < Pr(h)},

BND(E, h) = {e ∈ E | Pr(h|e) = Pr(h)}. (10)

One may also equivalently formulate the three qualitative regions by using
equivalent expressions as given in Eq. (7).

To construct the three regions based on a quantitative Bayesian confirmation
approach, we may apply two thresholds on the quantitative values given by a
confirmation measure.

Definition 2. Given a set of evidence E, a hypothesis h, and a confirmation
measure c, the quantitative positive POS, negative NEG, and boundary BND
regions of E given h are defined as:

POS(t,s)(E, h) = {e ∈ E | c(e, h) > s},

NEG(t,s)(E, h) = {e ∈ E | c(e, h) < t},

BND(t,s)(E, h) = {e ∈ E | t ≤ c(e, h) ≤ s}, (11)

where t and s are two thresholds satisfying t < s.

The construction of three quantitative regions can be illustrated by Fig. 1.
If a piece of evidence e confirms h to a degree greater than s, then e is in the
positive region POS(t,s)(E, h) and we consider that e confirms h. If e confirms h
to a degree less than t, e is in the negative region NEG(t,s)(E, h) and we consider
that e disconfirms h. Otherwise, e is in the boundary region BND(t,s)(E, h)
and we consider that e is neutral with respect to h, that is, e neither confirms
nor disconfirms h. Equation (11) can also be applied to formulate the three
qualitative regions by using the confirmation measure cd(e, h) = Pr(h|e)−Pr(h)
and two thresholds t = s = 0. In this sense, it can be considered as a general
formulation of the three regions in both qualitative and quantitative approaches,
which will be used in our following discussions.

E

POS(t,s)(E, h) BND(t,s)(E, h) NEG(t,s)(E, h)

c(e
, h

) >
s

t ≤ c(e, h) ≤ s

c(e, h) <
t

Fig. 1. Three-way classification of evidence based on quantitative Bayesian confirma-
tion
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It should be noted that a confirmation measure c actually evaluates both
the degree to which e confirms h and the degree to which e disconfirms h.
For example, the measure cd may give both positive and negative values. A
greater positive value indicates that a piece of evidence confirms h to a greater
degree, and a less negative value indicates that a piece of evidence disconfirms
h to a greater degree. Thus, it is meaningful to define the quantitative negative
region by applying a threshold t. For example, if the measure cd is used, one
may choose a negative value as the threshold t. Accordingly, cd(e, h) < t means
that the degree to which e disconfirms h is greater than a certain degree of
disconfirmation represented by t. Thus, it is reasonable to use cd(e, h) < t as the
condition for the negative region.

4 Three-Way Classification of Evidence in Rough Set
Theory

Based on the general formulation of three-way classification of evidence pre-
sented in the last section, this section examines specific three-way classification
of evidence in rough set theory. Specifically, we discuss two views of evidence in
rough sets. The first view takes equivalence classes as evidence, which is adopted
in existing confirmation theoretic rough set models [6–8,31]. We propose a sec-
ond view that takes attributes as evidence. This view leads to a definition of
class-specific attribute reduct based on Bayesian confirmation, which will be
discussed in Sect. 5.

4.1 Equivalence Classes as Evidence

In rough set theory [17,18], a dataset is formally represented by an informa-
tion table. There are two types of information tables studied in the literature,
namely, complete and incomplete information tables. In this paper, we restrict
our discussion to complete information tables. A complete table can be formally
represented as the following tuple:

T = (OB,AT, {Va | a ∈ AT}, {Ia : OB → Va | a ∈ AT}), (12)

where OB is a set of objects as rows, AT is a set of attributes as columns, Va is
the domain of an attribute a ∈ AT , and Ia is an information function that maps
each object to a unique value in Va.

A major application of rough sets is to learn classification rules for a given
class X ⊆ OB based on an information table T . Due to the limited number
of attributes in AT , one may not be able to precisely describe X by a set of
classification rules. To solve this issue, rough set theory constructs definable sets
of objects that can be precisely described by using attributes in AT and use
them to approximate the given class X. A popular approach to constructing the
definable sets is based on equivalence relations. Suppose Q ⊆ OB × OB is an
equivalence relation (e.g., Q is reflexive, symmetric, and transitive) defined as:

Q = {(x, y) ∈ OB × OB | ∀ a ∈ AT, Ia(x) = Ia(y)}. (13)
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That is, (x, y) ∈ Q if and only if x and y have the same values on all attributes in
AT . Given an object x ∈ OB, its equivalence class [x] = {y ∈ OB | (x, y) ∈ Q}
is a definable set since it can be precisely described by a formula

∧
a∈AT a =

Ia(x) where ∧ denotes the logic AND operator. The family of equivalence classes
OB/Q = {[x] | x ∈ OB} is used to approximate a given class X ⊆ OB, that is,
to construct the rough set approximations of X.

From the view of Bayesian confirmation, the fact that an object o ∈ OB is
included in an equivalence class [x] (i.e., o ∈ [x]) can be considered as a piece of
evidence. The statement that an object o is a positive instance of the given class
X (i.e., o ∈ X) is considered as a hypothesis. For simplicity, we denote such a
piece of evidence as [x] and the hypothesis as X. Following Definition 2, one may
divide the set of evidence OB/Q into three regions given the hypothesis X.

Definition 3. The positive, negative, and boundary regions of OB/Q given a
class X ⊆ OB are defined as:

POS(t,s)(OB/Q,X) =
⋃

{[x] ∈ OB/Q | c([x],X) > s},

NEG(t,s)(OB/Q,X) =
⋃

{[x] ∈ OB/Q | c([x],X) < t},

BND(t,s)(OB/Q,X) =
⋃

{[x] ∈ OB/Q | t ≤ c([x],X) ≤ s}, (14)

where c is a confirmation measure and c([x],X) is the degree to which a piece of
evidence o ∈ [x] confirms the hypothesis o ∈ X.

The three regions in Eq. (14) form a three-way rough set approximation [24]
of X. If a piece of evidence [x] confirms X to a degree greater than s, then [x] is a
piece of positive evidence. In other words, for an object o ∈ OB, o ∈ [x] confirms
o ∈ X. Similarly, if [x] confirms X to a degree less than t, then [x] is a piece of
negative evidence, that is, o ∈ [x] disconfirms o ∈ X. Otherwise, [x] is a piece
of neutral evidence and cannot be used to confirm or disconfirm X. It should
be noted that by taking unions in Eq. (14), the three regions are defined as sets
of objects instead of sets of equivalence classes. This formulation is consistent
with the formulations used in the mainstream of research in the literature, which
is referred to as unstructured approximations. A few researchers [3,11,16] have
studied structured approximations that are defined as sets of equivalence classes
or other building blocks derived from various approaches.

Definition 3 provides a general formulation of certain quantitative rough set
models. By taking cd as the confirmation measure, one may immediately get the
following three regions:

POS(t,s)(OB/Q,X) = {[x] ∈ OB/Q | Pr(X|[x]) > s + Pr(X)},

NEG(t,s)(OB/Q,X) = {[x] ∈ OB/Q | Pr(X|[x]) < t + Pr(X)},

BND(t,s)(OB/Q,X) = {[x] ∈ OB/Q | t + Pr(X) ≤ Pr(X|[x]) ≤ s + Pr(X)}.

(15)

where the probabilities can be estimated as:

Pr(X) =
|X|
|OB| , P r(X|[x]) =

|X ∩ [x]|
|[x]| . (16)
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Since Pr(X|[x]) − Pr(X) ∈ [−1, 1], it is reasonable to require the condition
−1 ≤ t ≤ 0 ≤ s ≤ 1 for the two thresholds. By substitutions α = s+Pr(X) and
β = t + Pr(X), one may immediately get the well-known probabilistic rough
set approximations [14,24]. These three regions provide a new interpretation of
the two thresholds (α, β) used in probabilistic rough set approximations from
the view of Bayesian confirmation. That is, the interval [β, α] represents an
interval around the a priori probability Pr(X) determined by a designated level
of confirmation s and a designated level of disconfirmation t.

A few researchers have considered Bayesian confirmation in the context of
rough sets by considering equivalence classes as evidence. For example, Greco,
Matarazzo, and S�lowiński [6–8] propose the parameterized rough set model by
using both the a posteriori probability Pr(X|[x]) and a confirmation measure
c([x],X) in formulating the approximations. Yao and Zhou [26] consider the a
posteriori probability Pr(X|[x]) and a confirmation measure c([x],X) separately
and study two Bayesian approaches to rough sets.

4.2 Attributes as Evidence

The majority of existing studies on rough sets and Bayesian confirmation takes
a row-wise view, that is, they consider an equivalence class of objects as a piece
of evidence. From the column-wise view, an attribute can also be considered as
a piece of evidence. A confirmation measure evaluates the degree to which an
attribute can be used to confirm or disconfirm a hypothesis. Accordingly, one can
perform a three-way classification of attributes based on Bayesian confirmation.

In Eq. (13), we define the equivalence relation Q with respect to all the
attributes in AT . In a similar manner, one may also define an equivalence relation
with respect to an arbitrary subset A ⊆ AT :

QA = {(x, y) ∈ OB × OB | ∀ a ∈ A, Ia(x) = Ia(y)}. (17)

By using the family of equivalence classes OB/QA, one may construct the
three positive, negative, and boundary regions using the formulation given by
Eq. (14) or any other existing three-way rough set models. Let POS(OB/QA,X),
NEG(OB/QA,X), and BND(OB/QA,X) denote the three regions of OB/QA

constructed with respect to a given class X ⊆ OB. One may evaluate the per-
formance of the set of attributes A in classifying instances of X by developing
quantitative measures based on these three regions. From the view of Bayesian
confirmation, we desire a quantitative confirmation measure that reflects both
how A confirms X (i.e., how A classifies the positive instances of X) and how
A disconfirms X (i.e., how A classifies the negative instances of X). These two
sides correspond with the two regions POS(OB/QA,X) and NEG(OB/QA,X),
respectively. Thus, such a quantitative confirmation measure c(A,X) is desired
to be an increasing function of the size of POS(OB/QA,X) and a decreasing
function of the size of NEG(OB/QA,X), which can be formally represented as:

c(A,X) = f(|POS(OB/QA,X)|↑, |NEG(OB/QA,X)|↓), (18)
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where | · | denotes the cardinality of a set, and ↑ and ↓ denote the increasing and
decreasing functions, respectively. For example, following similar ideas of cd and
cr given in Eq. (8), one may define the following two measures that use difference
and ratio, respectively:

cd(A,X) = Pr(POS(OB/QA,X)) − Pr(NEG(OB/QA,X)),

cr(A,X) =
Pr(POS(OB/QA,X))
Pr(NEG(OB/QA,X))

. (19)

The probabilities can be estimated as follows:

Pr(POS(OB/QA,X)) =
|POS(OB/QA,X)|

|OB| ,

P r(NEG(OB/QA,X)) =
|NEG(OB/QA,X)|

|OB| . (20)

Following cnr and clr given in Eq. (9), one may also consider the following two
measures:

cnr(A,X) =
Pr(POS(OB/QA,X))
Pr(NEG(OB/QA,X))

− 1,

clr(A,X) = log
Pr(POS(OB/QA,X))
Pr(NEG(OB/QA,X))

. (21)

By applying a specific measure c(A,X) to Eq. (11), one may immediately
construct the three regions of the set of evidence AT .

Definition 4. The positive, negative, and boundary regions of AT given a class
X ⊆ OB are defined as:

POS(t,s)(AT,X) = {a ∈ AT | c(a,X) > s},

NEG(t,s)(AT,X) = {a ∈ AT | c(a,X) < t},

BND(t,s)(AT,X) = {a ∈ AT | t ≤ c(a,X) ≤ s}, (22)

where, for simplicity, we use c(a,X) to denote c({a},X).

If an attribute a confirms X to a degree greater than s, then a is a positive
attribute with respect to X. In other words, the value of an object on a may help
us confirm the object as a positive instance of X. Similarly, if a confirms X to a
degree less than t, then a is a negative attribute with respect to X. That is, a may
help us confirm an object as a negative instance of X, or equivalently, disconfirm
an object as a positive instance of X. Otherwise, a is a neutral attribute with
respect to X, which means the values on a may not be quite helpful in classifying
instances of X. The selection and determination of thresholds t and s depend
on the specific quantitative measures used.
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5 Class-Specific Attribute Reduct Based on Bayesian
Confirmation

A consideration of attributes as evidence in rough sets relates Bayesian confir-
mation to the topic of attribute reduction [12,15,18,20] in rough sets. Suppose
we have the following sequence of subsets of attributes:

A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ AT. (23)

By Eq. (17), one may easily verify that:

QA1 ⊇ QA2 ⊇ · · · ⊇ QAn
⊇ QAT , (24)

or equivalently, for any x ∈ OB, we have:

[x]A1 ⊇ [x]A2 ⊇ · · · ⊇ [x]An
⊇ [x]AT . (25)

That is, a larger subset of attributes gives smaller equivalence classes as build-
ing blocks of rough set approximations. Consequently, the three regions of the
corresponding families of equivalence classes satisfy the following properties:

POS(OB/QA1 ,X) ⊆ POS(OB/QA2 ,X) ⊆ · · · ⊆ POS(OB/QAT ,X),
NEG(OB/QA1 ,X) ⊆ NEG(OB/QA2 ,X) ⊆ · · · ⊆ NEG(OB/QAT ,X),
BND(OB/QA1 ,X) ⊇ BND(OB/QA2 ,X) ⊇ · · · ⊇ BND(OB/QAT ,X). (26)

In classifications, especially when there are multiple classes considered, con-
firming an object as a negative instance of a class might not be quite infor-
mative and useful. It provides very limited information about which class the
object belongs to, with so many remaining classes as possibilities. In this sense,
we usually focus more on classifying positive instances of a specific class. Thus,
in rough sets, the performance of a subset of attributes A is usually measured
based on the positive region POS(OB/QA,X). In this context, we may consider
a special case of the confirmation measure c(A,X) as:

c(A,X) = f(|POS(OB/QA,X)|↑), (27)

which is an increasing function of the size of POS(OB/QA,X). Consequently,
we have:

c(A1,X) ≤ c(A2,X) ≤ · · · ≤ c(An,X) ≤ c(AT,X). (28)

It can be interpreted as: by considering more attributes, we can obtain more
detailed information and confirm more positive instances of a given class X.

An intuitive question is whether it is sufficient to use a subset of AT instead
of all the attributes in AT in classifying positive instances of a given class. This
leads to the topic of class-specific attribute reduction in rough sets [12,15,20].
Qualitatively, such an attribute reduct is a minimal subset of AT that derives
the same positive region as the set AT with respect to a given class X. Quanti-
tatively, one may define quantitative measures to evaluate the performance of a
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set of attributes. Based on it, an attribute reduct can be defined as a minimal
subset of AT that has the same performance as AT with respect to a given class.
By using Bayesian confirmation measures to evaluate the performance of a set of
attributes, we present the following definition of a class-specific attribute reduct.

Definition 5. Given a class X ⊆ OB, a subset of attributes R ⊆ AT is an
attribute reduct with respect to X if it satisfies the following two conditions:

(1) c(R,X) = c(AT,X),
(2) ∀R′ ⊂ R, c(R′,X) < c(AT,X). (29)

The first condition in Definition 5 states that R confirms X to the same degree
as AT . The second condition states that any proper subset of R confirms X to
a less degree than AT . Thus, R is a minimal set that has the same performance
as AT . In the case that the measure c satisfies the property c(A,X) ≤ c(A′,X)
for A ⊆ A′ ⊆ AT , the second condition can be equivalently expressed as:

(2′) ∀ a ∈ R, c(R − {a},X) < c(AT,X), (30)

which indicates that removing any attribute in R will decrease the degree to
which R confirms X.

6 Conclusions and Future Work

Bayesian confirmation theory is closely related to three-way decision. We propose
a general formulation of three-way classification of evidence by using qualitative
and quantitative Bayesian confirmation approaches. This formulation is exam-
ined and applied with respect to rough set theory from two views. A first view
considers equivalence classes as evidence, which leads to a three-way classification
of objects based on quantitative Bayesian confirmation measures. This three-way
classification model provides a new interpretation of the two thresholds used in
probabilistic rough set models from the view of Bayesian confirmation. A sec-
ond view considers attributes as evidence, which gives a three-way classification
of attributes based on quantitative Bayesian confirmation measures. This view
inspires a new definition of class-specific attribute reducts using Bayesian con-
firmation.

This work considers three-way classification of evidence with respect to only
one given hypothesis. A first direction of future work is to consider a set of
hypotheses and build the three-way classification model of evidence. Since one
hypothesis relates to one given class in rough set theory, such a new model can
be applied in rough set theory with respect to multiple classes, which is a second
direction of future work.

Acknowledgement. The authors thank reviewers for their valuable comments and
constructive suggestions.
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Abstract. We discuss an approach of concept approximation based on
judgment rather than on partial containment of sets only. This approach
seems to be much more general than the traditional one. However, it
requires developing some new logical tools for reasoning based on judg-
ment, which is often expressed in natural language.

Keywords: Rough set · Approximation · Judgment

1 Introduction

In this paper, we discuss an approach of concept approximation based on a kind
of reasoning, called judgment, rather than on partial inclusion of sets. The for-
mer approach seems to be much more general than the latter one. The approach
based on judgment is especially relevant in data analysis, where it is required in
order to have a deeper judgment about the perceived complex situation related
to classification of complex vague concepts. First, we present a short introduction
to the approximation of concepts used in the rough set approach. This presen-
tation is based on the definition from [1]. Other existing approaches to concept
approximation [2,3] are based on partial containment of sets. We claim that this
approach is not satisfactory for dealing with many real-life applications, where
more advanced judgment should be made to identify the perceived situation and
classify it relative to the complex vague concepts. So, we present an introductory
discussion on the need of new logical tools for reasoning toward approximation
of complex vague concepts.

We illustrate this using the case of classification of imbalanced data [4–6]. For
example (see, e.g., [4]), in neighborhoods types of objects from the minority class
c© Springer Nature Switzerland AG 2019
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such as safe and unsafe (among them borderline, rare examples, and outliers) are
considered. In particular, it is important to distinguish the outliers from the noise.
In [4] it is emphasized that the results of the noise identification by filters are often
identified by medical experts as valid outliers. Hence, it is visible that to provide a
decision support system some more advanced reasoning tools, which we call judg-
ment are required. These reasoning tools should help the system to judge properly
about such perceived cases. It should be noted that this judgment should be sup-
ported by the relevant information about perceived cases extracted from knowl-
edge bases representing experience. As the result of perception of the perceived
cases the system should be able to ‘derive’ a text, in a fragment of natural lan-
guage, that can be next used in further judgment about these cases [7]. The sys-
tem should generate relevant model for performing judgment using the derived
text [8].

Here, it is worthwhile mentioning, in more detail, two views from [7] and [8].
The first one is by Zadeh, the founder of fuzzy sets and the computing with words
paradigm (see also http://www.cs.berkeley.edu/∼zadeh/presentations.html):

Manipulation of perceptions plays a key role in human recognition,
decision and execution processes. As a methodology, computing with words
provides a foundation for a computational theory of perceptions - a theory
which may have an important bearing on how humans make- and machines
might make - perception-based rational decisions in an environment of
imprecision, uncertainty and partial truth. [...] computing with words, or
CW for short, is a methodology in which the objects of computation are
words and propositions drawn from a natural language.

Another view is by Pearl (the 2011 winner of the ACM Turing Award, “for
fundamental contributions to artificial intelligence through the development of
a calculus for probabilistic and causal reasoning”) [8]:

Traditional statistics is strong in devising ways of describing data
and inferring distributional parameters from sample. Causal inference
requires two additional ingredients: a science-friendly language for artic-
ulating causal knowledge, and a mathematical machinery for processing
that knowledge, combining it with data and drawing new causal conclu-
sions about a phenomenon.

In the judgment process, the arguments for and against the hypothesis about
membership of the perceived case to a given concept are collected. In this way,
the results of judgment clearly indicating that a given case belongs to one of the
regions viz., lower approximation, boundary region, or complement to the upper
approximation are obtained.

The question arises about the logic, which is relevant for the above men-
tioned tasks [9]. First let us observe that the satisfiability relations in the granu-
lar framework can be treated as tools for constructing new information granules.
In fact, for a given satisfiability relation, the semantics of formulas relative to
this relation is defined. In this way, the candidates for new relevant information

http://www.cs.berkeley.edu/~zadeh/presentations.html
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granules are obtained. We would like to emphasize that the relevant satisfiability
relation for the considered problems is not given but it should be induced (discov-
ered) on the basis of a partial information encoded in the information (decision)
systems. For real-life problems, it is often necessary to discover a hierarchy of
satisfiability relations before the relevant target level is reached. Information
granules, constructed at different levels of this hierarchy, finally lead to the rel-
evant ones for approximating the concerned complex vague concepts expressed
in natural language (see Fig. 1). The reasoning should also concern about how
to derive relevant information granules for solving the target tasks. This kind of
reasoning is called adaptive judgment. Deduction, induction, abduction as well
as analogy based reasoning all are involved in adaptive judgment. Among the
different aspects, the following ones are a few which one needs to address in
order to do reasoning with adaptive judgment.

…

… ……

… …

……

…

…

…

……

structural object 
construc on using 

join with constraints
over objects from the 

lower level and the 
environment

a

a rribute a over structural objects
links transmi ng 
interac ons with 
the environment hierarchical 

levels over 
which 

sa sfiability
rela ons are 

induced

…

Fig. 1. Interactive hierarchical structures (gray arrows show interactions between hier-
archical levels and the environment, arrows at hierarchical levels point from informa-
tion (decision) systems representing partial specifications of satisfiability relations to
theories, induced from them, which consist of rule sets)

– searching for relevant approximation spaces,
– discovery of new features,
– selection of relevant features,
– rule induction,
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– discovery of inclusion measures,
– strategies for conflict resolution,
– adaptation of measures based on the minimum description length principle,
– reasoning about changes,
– perception (action and sensory) attributes selection,
– adaptation of quality measures over computations relative to agents,
– adaptation of object structures,
– discovery of relevant contexts,
– strategies for knowledge representation and interaction with knowledge bases,
– ontology acquisition and approximation,
– learning in dialogue of inclusion measures between information granules from

different languages (e.g., the formal language of the system and the user
natural language),

– strategies for adaptation of existing models,
– strategies for development and evolution of communication language among

agents in distributed environments,
– strategies for risk management in distributed computational systems.

One should note that judgment is not only based on deduction, induction
or abduction. It has roots not only in logic, but also in psychology and phe-
nomenology [10] (see Fig. 2).

Fig. 2. Judgment has its roots in psychology and phenomenology

Our approach is consistent with the opinion of Valiant1:
1 The 2011 winner of the ACM Turing Award, the highest distinction in computer
science, “for his fundamental contributions to the development of computational
learning theory and to the broader theory of computer science” (http://people.seas.
harvard.edu/∼valiant/researchinterests.htm).

http://people.seas.harvard.edu/~valiant/researchinterests.htm
http://people.seas.harvard.edu/~valiant/researchinterests.htm
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A fundamental question for artificial intelligence is to characterize the
computational building blocks that are necessary for cognition. A specific
challenge is to build on the success of machine learning so as to cover
broader issues in intelligence. [...] This requires, in particular a reconcilia-
tion between two contradictory characteristics – the apparent logical nature
of reasoning and the statistical nature of learning.

The paper is structured as follows. In Sect. 2 two illustrative examples related
to judgment in decision making are included. In Subsect. 2.1, we recall the rough
set approach towards concept approximation in the context of tolerance relation.
In Subsect. 2.2, we discuss some aspects of judgment necessary for the deeper
reasoning about imbalanced data. In Sect. 3, we discuss computations based on
judgment.

2 Judgment in Decision Making

In the following two sections, we illustrate two judgment strategies related to
classification. The first one is related to judgment based on partial inclusion of
sets, widely used in rule-based classifiers. The aim of the second one, related to
imbalanced data, is to illustrate the need for more advanced judgment strategies
in decision making.

2.1 Tolerance Relation Based Rough Set Approximation

A generalized approximation space2 can be defined by a tuple AS = (U, I, ν)
where I is the uncertainty function defined on U with values in the powerset
P(U) of U (I(x) is the neighborhood of x) and ν is the inclusion function defined
on the Cartesian product P(U)×P(U) with values in the interval [0, 1] measuring
the degree of inclusion of sets [1]. The lower and upper approximation operations
can be defined in AS by

LOWAS(X) = {x ∈ U : ν(I(x),X) = 1}, (1)

UPPAS(X) = {x ∈ U : ν(I(x),X) > 0}. (2)

In the standard case, I(x) is equal to the equivalence class B(x) of the indis-
cernibility relation INDB relative to the set of attributes B; in case of tolerance
(similarity) relation T ⊆ U ×U we take I(x) = [x]T = {y ∈ U : x T y}, i.e., I(x)
is equal to the tolerance class of x defined by T . For X,Y ⊆ U the standard
rough inclusion relation νSRI is defined by

νSRI(X,Y ) =

⎧
⎨

⎩

card(X ∩ Y )
card(X)

, if X is non − empty,

1, otherwise.
(3)

2 More general cases are considered, e.g., in articles [11,12].
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For applications it is important to have some constructive definitions of I and ν.
The recalled above definition is a formalisation of a simple judgment strategy

based on set containment. This judgment can be described in natural language
as follows. Due to uncertainty, it is not possible to perceive objects exactly.
The objects are perceived using information about them represented by vectors
of attribute values. These vectors define some neighborhoods of objects (indis-
cernibility or tolerance classes). In making decision we use these neighborhoods
of objects to judge membership of a perceived object into a concept. The result
of judgment is based on the degree to which the neighborhoods are included into
the concepts. The above formulas present the result of modeling this judgment
in the mathematical language (see also the above citations from [7,8]).

Example 1. Let d be a decision attribute with {+,−} as the set of values. For
two decision classes Xd=+ = {x ∈ U : d(x) = +}, Xd=− = {x ∈ U : d(x) = −},
we can label objects x ∈ U as in Table 1.

Table 1. The judgment about which label to assign to the object.

Label(x) argument “for” argument “against”

ν(I(x), Xd=+) ν(I(x), Xd=−)

LOWER = 1 �= 1

BOUNDARY ∈ (0, 1) /∈ (0, 1)

NEGATIVE = 0 �= 0

An analogous judgment strategy, enhanced by conflict resolution, is also
widely used in inducing classifiers from decision tables (training samples). In
the next section, we present an illustrative simple example to emphasize the
necessity for developing of more advanced judgment strategies for classifying
objects.

2.2 Judgment in Classification of Imbalanced Data

First let us recall a strategy of labelling of objects from the minority class intro-
duced in [13].

The idea of formation of information granule facilitates splitting the prob-
lem into more feasible subtasks. Then, they can be easily managed by applying
appropriate approaches, dedicated to specific types of entities. After defining
groups of similar instances NNk(x) (namely minority class instances x ∈ Xd=+

and their k nearest neighbors NNk(x)), the inclusion degree of each informa-
tion granule NNk(x) in Xd=+ is examined. Based on this analysis, Label(x), the
labels are assigned to all positive examples x ∈ Xd=+.

We assume that evaluation of information granules is crucial for further
processing. Before applying oversampling mechanism, each information granule,
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defined by NNk(x) having positive instance x as the anchor point, is labelled
with one of the following etiquettes: SAFE, BOUNDARY and NOISE. The
category of the individual entity is determined by the inclusion degree of NNk(x)
in the information granule Xd=+ (the whole minority class). Details of the pro-
posed technique are presented in Definitions 1, 2 and 3.

Definition 1. Etiquette Label(x) = SAFE for x ∈ Xd=+

High inclusion degree indicates that the information granule NNk(x) is placed
in a homogeneous area and therefore x can be considered as SAFE. The inclu-
sion level is obtained by the analysis of granule characteristics, especially car-
dinalities of instances from both classes. The number of positive class repre-
sentatives belonging to the analysed entity (except the anchor example), i.e.,
card(NNk(x) ∩ Xd=+) is compared to the number of negative class instances,
i.e., card(NNk(x)∩Xd=−). More than a half of minority class instances belong-
ing to the positive class implies that x should be labelled as SAFE (see Table 2
for k = 5).

Definition 2. Etiquette Label(x) = BOUNDARY for x ∈ Xd=+

Low inclusion degree is determined by the large representation of majority class
Xd=− in the information granule NNk(x). When half or more than a half of
instances belong to the negative class, the label BOUNDARY is chosen for x.
These kind of entities are placed in the area surrounding class boundaries, where
examples from both classes overlap (see Table 2 for k = 5).

Definition 3. Etiquette Label(x) = NOISE for x ∈ Xd=+

Noninclusion of the information granule NNk(x) in the minority class Xd=+

is identified with the situation when no instances belong to the minority class
(except the anchor instance), i.e., NNk(x) ∩ Xd=+ = ∅. Since only one of the
analysed instances is the positive example (namely the core instance x), it means
that the information granule is created around the rare individual placed in the
area occupied by the representatives of the negative class Xd=−. This case is
considered as NOISE (see Table 2 for k = 5).

Table 2. Identification of the type of the minority class instance x in the case of k = 5
nearest neighbours.

Label(x) card(NN5(x) ∩ Xd=+) card(NN5(x) ∩ Xd=−)

SAFE 5 0

4 1

3 2

BOUNDARY 2 3

1 4

NOISE 0 5
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The example of labelling instances from the minority class is presented in
the Table 2. It shows all possible cases of the type of the minority class instance.
Assuming that the parameter k is equal to 5, the second column presents the
number of nearest neighbours belonging to the same class as the instance under
consideration and the third column shows the number of nearest neighbours
representing the opposite class.

Example 2. Let x ∈ Xd=+ be an instance from the minority class, i.e., the
decision d(x) = +. Let x1, x2, x3, x4, x5 be five nearest neighbors of x. Let
us assume that d(x1) = −, d(x2) = +, d(x3) = +, d(x4) = − and d(x5) =
−. We obtain card(NN5(x) ∩ Xd=+) = card({x1, x2, x3, x4, x5} ∩ Xd=+) =
card({x2, x3}) = 2 and card(NN5(x) ∩ Xd=−) = card({x1, x2, x3, x4, x5} ∩
Xd=−) = card({x1, x4, x5}) = 3. Hence, we conclude that the correct label
Label(x) = BOUNDARY.

After categorizing information granules (instances from minority class
Xd=+), the mode of algorithm for oversampling is obtained. Three methods are
proposed in [13] to deal with various real–life data characteristics. They mainly
depend on the number of information granules labelled as BOUNDARY. Assum-
ing that a certain threshold value is one of the parameters of the algorithm, the
complexity of the problem is defined based on this value and the number of gran-
ules recognized as BOUNDARY. The threshold indicates how many instances
of the entire minority class should be placed in boundary regions to treat the
problem as a complex one.

Having less BOUNDARY entities, i.e.,

card({x ∈ Xd=+ : Label(x) = BOUNDARY })
card(Xd=+)

< complexity threshold

means that the problem is not complex and the following method of creating
new instances can be applied:

Definition 4. [13] LowComplexity mode for obtaining of the decision table
DTbalanced from the table DT : DT �−→LowComplexity DTbalanced

– Label(x) = SAFE: there is no need to significantly increase the number of
instances in these safe areas. Only one new instance per existing minority
SAFE instance is generated. Numeric attributes are handled by the interpo-
lation with one of the k nearest neighbours. For the nominal features, new
sample has the same values of attributes as the instance under consideration.

– Label(x) = BOUNDARY : the most of synthetic samples are generated in
these borderline areas, since numerous majority class representatives may
have greater impact on the classifier learning, when there are not enough
minority examples. Hence, many new examples are created closer to the
instance x under consideration. One of the k nearest neighbours is chosen
for each new sample when determining the value of numeric feature. Values
of nominal attributes are obtained by the majority vote of k nearest neigh-
bours’ features.
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– Label(x) = NOISE: no new samples are created.

On the other hand, prevalence of BOUNDARY information granules, i.e.,

card({x ∈ Xd=+ : Label(x) = BOUNDARY })
card(Xd=+)

≥ complexity threshold

involves more complications during the learning process. Therefore, dedicated
approach (described below) is chosen:

Definition 5. [13] HighComplexity mode for obtaining DTbalanced table from
DT table: DT �−→HighComplexity DTbalanced

– Label(x) = SAFE: assuming that these concentrated instances provide spe-
cific and easy to learn patterns that enable proper recognition of minority
samples, plenty of new data is created by interpolation between SAFE instance
and one of its k nearest neighbours. Nominal attributes are determined by
majority vote of k nearest neighbours’ features.

– Label(x) = BOUNDARY : the number of instances is doubled by creating
one new example along the line segment between half of the distance from
BOUNDARY instance and one of its k nearest neighbours. For nominal
attributes values describing the instance under consideration are replicated.

– Label(x) = NOISE: new examples are not created.

The last option is the special case, when any information granule is recognized
as SAFE, i.e., {x ∈ Xd=+ : Label(x) = SAFE} = ∅. Hence, the following
method is applied:

Definition 6. [13] noSAFE mode: DT �−→noSAFE DTbalanced

– Label(x) = BOUNDARY : all of the synthetic instances are created in the
area surrounding class boundaries. This particular solution is selected in case
of especially complex data distribution, which does not include any SAFE sam-
ples. Missing SAFE elements indicate that most of the examples are labelled
as BOUNDARY (there are no homogeneous regions). Since only BOUND-
ARY and NOISE examples are available, only generating new instances in
the neighbourhood of BOUNDARY instances would provide sufficient number
of minority samples.

– Label(x) = NOISE: no new instances are created.

NOISE granules are completely excluded from the preprocessing phase, since
their anchor instances are erroneous examples or outliers. Therefore, they should
not be removed, but they also should not be taken into consideration when
creating new synthetic instances to avoid more inconsistencies.

Looking on the above formalisation of labelling of objects from the minority
class, one can find possible judgment strategy which can be easily expressed in
a fragment of natural language. However, in real-life applications, the situation
may be much more complex. For example, one can ask about the risk of making
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decision based on such modeling. For example, labels SAFE or NOISE are related
to complex vague concepts. In the real-life medical applications, the judgment
leading to decision about labelling by SAFE and NOISE may require interactions
with domain knowledge, which can be the experience or recent discoveries in
medicine reported in the literature, or can be additional testing of objects or
performing some other actions on them. Some advanced judgments strategies
should be used to obtain relevant information for making proper decision.

3 Computations Based on Judgment

From the above discussion it follows that judgment is performed on the basis
of information (more precisely on complex granules (see, e.g., [14]) representing
the current result of perception of the situation. On the basis of this result, the
judgment resulting in selection of the most relevant action(s) (with respect to the
current goals) in the perceived situation is performed. By performing actions the
complex granule about the current situation is updated and again the judgment
leads to the selection of the next action(s). In this way computations on complex
granules are controlled by actions aiming to preserve the required constraints on
the computation trajectory. For example, the constraints related to classification
tasks may be seen as reaching conclusion about the membership of the perceived
situation in the considered concept(s) with the additional constraints related,
e.g., to time or/and space complexity of the derivation process. It should be
noted that this process of transitions from the current granule to the next one
is based on judgment.

One of the main aim of the judgment performed by complex granules (e.g.,
agents) is to derive conclusions for selection of action(s) which should be cur-
rently initiated (or terminated). The actions are activated on the basis of satis-
fiability of some complex vague concepts labelled by actions. It should be noted
that these concepts are drifting with time. Adaptive learning of such concepts
based on judgment is a great challenge. The whole process towards inducing
approximation of these vague concepts labelled by actions, which are initiated
on the basis of satisfiability of these concepts, may be treated as a process of
discovery of complex game (see Fig. 3). In such a game the concepts (together
with assigned relevant judgment mechanisms to them) can be treated as players
who by using judgment are deriving arguments for and against the satisfiability
of these concepts on the basis of information about the perceived situation. Next,
comes other judgment mechanisms which are used to resolve conflicts among the
collected arguments to select the winning player, (concept) and thus the action
labelling the winning concept is initiated.

For simplicity of reasoning let us now concentrate on the case of classification
with one concept and its complement, and let us consider the issue of concept
approximation based on judgment. Any perceived situation can be classified on
the basis of the complex game between the concept and its complement lead-
ing, by using judgment, to arguments for and against the satisfiability of these
concepts on the basis of information about the perceived situation. The judge
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of the game assigns the perceived situation to (i) the lower approximation of
the concept in case the result of her/his judgment points to the concept, (ii) the
lower approximation of the concept’s complement in case the result of her/his
judgment points to the concept complement, (iii) the boundary region of the
concept in case she/he is not able to discern between the arguments for and
against. The reader can generalize this definition to the case of multiclass clas-
sification. In this way it is possible to generalize the approximation of concepts
in the case of approximation based on judgment.

ac ons ini ated on the basis of judgment about
sa sfiability (to a degree) of their guards

. . .

ac on guards: complex vague concepts on different
levels of hierarchies

Fig. 3. Actions initiated on the basis of judgement

One can consider judgment as a binary relation over perceived information
(or more precisely, complex granules) for deriving conclusions about the current
situation on the basis of existing information. One should note that this rela-
tion is evolving with time, and new relations should be adaptively learned from
the data to guarantee derivation of the relevant conclusions about the perceived
situations influenced often by unpredictable interactions caused by the environ-
ment. Hence, adaptive learning strategies for modeling judgment corresponding
to such relations should be developed. In modeling such relations, usually on
the basis of the perceived situation, one can model the next expected situation
(after performing the selected action). However, this should be compared with
the real perception of the situation after performing the action. The ’difference’
can be used for modifying models of the current complex game and/or the cur-
rent judgment relation.

4 Conclusions

We discussed the approach to concept approximation based on judgment. Two
illustrative examples are included. The approach is pointing out to the necessity
of developing a new approach of reasoning based on judgment (often represented
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in natural language) together with the methods for modeling of judgment in
intelligent systems. The paper realizes the first step toward this goal. In the
future we plan to investigate in more detail the foundations of machine learning
based on judgment.
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Abstract. In this paper, we consider McCarthy’s three-valued logic and
its corresponding algebra, a C-algebra, and introduce a connection of C-
algebras with rough sets. Rough sets, with suitable operations, are shown
to form a C-algebra. Further, we present a representation theorem for the
class of C-algebras, establishing that every C-algebra can be embedded
in a family of rough sets. The results are illustrated with examples.

Keywords: Rough sets · C-algebra · Three-valued logic

1 Introduction

The concept of rough sets was introduced by Pawlak in [12] after which it has
been studied in much detail under various contexts, both in theory and appli-
cations. We are interested in the algebraic study of rough sets. Investigations in
algebras stemming from studies of rough sets have been carried out extensively,
since the first proposal of a ‘rough algebra’ by Iwiński [7]. Different (but equiva-
lent) definitions of rough sets have led to several algebraic structures, some well-
known and some new (cf. e.g. [3]). The former include three-valued �Lukasiewicz
algebras, Stone algebras, Nelson algebras and Kleene algebras, while the latter
include topological quasi-Boolean algebras, pre-rough and rough algebras. These
investigations have assumed special significance in that, the well-known algebras
(such as those in the former list), proposed in different contexts altogether, get
a rough set interpretation. In particular, representation results for these classes
of algebras have been studied till as recently as [8]. Our work is a continua-
tion of studies in this direction, and introduces a connection of rough sets with
C-algebras [5], structures that capture McCarthy’s three-valued logic.

The notion of set membership in the context of rough sets naturally leads to
interpretations through three-valued logics, viz., assigning values true, false
and undefined when an element x certainly belongs to set A, certainly does
not belong to A, and when it is in the boundary of A respectively (cf.
[1,2,6,8,10]). McCarthy in [9] had proposed certain truth-value conditions on
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the set {true, false, undefined}, resulting in what is referred to in the
literature as McCarthy’s three-valued logic. The truth value conditions pro-
posed by McCarthy in [9] are an extension of those in two-valued Boolean
logic, and model the lazy evaluation of expressions in programming languages.
Indeed, McCarthy’s three-valued logic is the non-commutative regular extension
of Boolean logic to three truth values, true, false and undefined denoted by
T,F,U respectively. The evaluation of expressions in this logic occurs sequen-
tially, from left to right; F∧U = F while U∧F = U. Note that a programming
language following lazy evaluation would evaluate the truth value of an expres-
sion P ∧ Q where P is false to be false. If instead P were undefined, since
the control would not reach statement Q, the composite statement P ∧Q would
be labelled undefined. A complete axiomatization of this three-valued logic was
given in [5] by Guzmán and Squier who named its corresponding algebra a C-
algebra, or the algebra of conditional logic.

In this work we consider the definition of rough sets adopted by Pagliani
in [10]. Under the C-algebraic interpretation of operations mentioned above, on
considering whether an element x belongs to the ‘conjunction’ A ∧ B of sets A
and B, this operation ∧ assumes a certain hierarchy, viz., that ‘belongingness’
of x in A takes precedence over that in B. If x belongs to A, only then need we
check the membership of x with respect to B. If x certainly does not belong to
A, then it will not belong to A∧B. However if x is in the boundary of A then its
membership in A∧B is undecided and takes the value undefined. It follows that
the concept of A∧B differs from that of B∧A. With this interpretation we show
that every family of rough sets forms a C-algebra. Using this, we also present
an example of the connection between rough sets and C-algebras. Furthermore,
we establish a representation theorem for the class of C-algebras, proving that
every C-algebra can be embedded in a family of rough sets.

In Sect. 2 we list fundamental notions and results pertaining to rough sets
and C-algebras. In particular, we give several examples of C-algebras to elucidate
the notion. In Sect. 3 we give a C-algebraic interpretation of rough sets along
with an example of the connections between these two concepts in Sect. 3.1. In
Sect. 4 we arrive at the main representation result of this paper, Theorem 5, and
in Sect. 4.1 we give a simple example of an embedding of definable sets within a
C-algebra of rough sets. We conclude in Sect. 5.

2 Preliminaries

Consider an approximation space 〈U,E〉, where U is the universe and E is an
equivalence (indiscernibility) relation on U . For each A ⊆ U , we have an associ-
ated pair of elements in the power set ℘(U) of U , viz., the lower approximation
and upper approximation of A, denoted by A and A respectively:

A :=
⋃{[x] ∈ U/E : [x] ⊆ A}, and A :=

⋃{[x] ∈ U/E : [x] ∩ A �= ∅}.

The set A \ A is called the boundary of A. The lower approximation of A is also
termed its positive region with respect to the approximation space 〈U,E〉, in
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that it consists of all the elements of U that positively belong to A. In contrast,
(A)c is the negative region of A, consisting of elements of U that certainly do
not belong to A. In this work we consider the following definition of rough sets,
adopted by Pagliani in [10]: it is given by the above-mentioned pair of definite
regions in the approximation space 〈U,E〉.
Definition 1. Given an approximation space 〈U,E〉, a rough set is a pair
(A, (A)c) where A ⊆ U .

Thus the family of rough sets for a given approximation space 〈U,E〉 that we
consider henceforth, is given by the following:

RS := {(A, (A)c) : A ⊆ U}.

Definition 2. A set A ⊆ U is said to be definable if A = A = A.

We list the following results which help in establishing the main result of this
paper, viz. Theorem 5. We omit the proofs of the results as they are well-known
in the literature. In the remainder of this section, consider the pair 〈U,E〉 to
be an approximation space, and A,B,C and so on, to be subsets of U , unless
mentioned otherwise.

Proposition 1. Let a ∈ U such that [a] = {a}. Then a ∈ A ⇔ a ∈ A ⇔ a ∈ A.

Proposition 2.

(i) (A)c = (Ac), (A)c = (Ac).

(ii) A ∩ B = A ∩ B, A ∪ B = A ∪ B.
(iii) If A,B are definable sets then A ∪ B, A ∩ B, Ac are all definable.

McCarthy first studied the three-valued non-commutative logic in the context
of programming languages in [9]. The undefined state is denoted by the truth
value U. The following complete axiomatization is due to Guzmán and Squier
(cf. [5]) and they called the corresponding algebraic structure, a C-algebra.

Definition 3. A C-algebra is an algebra 〈M,∨,∧,¬〉 of type (2, 2, 1), which
satisfies the following axioms for all α, β, γ ∈ M :

¬¬α = α (1)
¬(α ∧ β) = ¬α ∨ ¬β (2)

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) (3)
α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) (4)
(α ∨ β) ∧ γ = (α ∧ γ) ∨ (¬α ∧ β ∧ γ) (5)
α ∨ (α ∧ β) = α (6)

(α ∧ β) ∨ (β ∧ α) = (β ∧ α) ∨ (α ∧ β) (7)
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Example 1. Every Boolean algebra is a C-algebra. In particular, the two element
Boolean algebra 2 is a C-algebra.

Example 2. The three element set {T,F,U} with McCarthy’s truth value con-
ditions is denoted by 3. This is a C-algebra with the following operations:

¬
T F
F T
U U

∧ T F U
T T F U
F F F F
U U U U

∨ T F U
T T T T
F T F U
U U U U

Example 3. Consider the four element-structure M with universe {a, b, c, d} and
the following operations:

¬
a b
b a
c d
d c

∧ a b c d
a a b c d
b b b b b
c c d c d
d d d d d

∨ a b c d
a a a a a
b a b c d
c c c c c
d c d c d

This is a C-algebra. M shows that even in the finite case, there may be non-
isomorphic C-algebras of the same cardinality, unlike what is known for Boolean
algebras.

Example 4. Consider the set F of eventually constant binary sequences with the
following operations defined pointwise:

¬xn := (xn + 1) (mod 2)
xn ∧ yn := min{xn, yn}
xn ∨ yn := max{xn, yn}

This forms a Boolean algebra isomorphic to the finite-cofinite Boolean algebra
on N. Consider M := F ∪ {an, bn} where an and bn are defined as follows:

an :=

{
1, if n is odd,
0, if n is even.

bn :=

{
0, if n is odd,
1, if n is even.

Extend the operations of F to the set M by defining ¬an := bn and ¬bn := an.
Also for every xn ∈ F set an ∧ xn := xn and xn ∧ an := xn, while bn ∧ xn := bn
and xn ∧ bn =: xn ∧ ¬xn. Set an ∧ bn = bn = bn ∧ an. Finally, extend the
operation ∨ to M by defining zn ∨wn := ¬(¬zn ∧¬wn) for all zn, wn ∈ M. The
appended set M with the aforementioned operations is a C-algebra which is not
isomorphic to any Boolean algebra.

Remark 1. The C-algebra 3 is the smallest non-trivial C-algebra which is not a
Boolean algebra. Note that the operations of ∧ and ∨ induce a poset structure
on the C-algebra (cf. [11]), but this poset does not form a lattice, in general. For
instance, in the C-algebra 3 defining x ≤ y if x ∨ y = y gives F ≤ T and F ≤ U
while U and T are incomparable and have no least upper bound.
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Remark 2. In [5] Guzmán and Squier showed that given any C-algebra M , one
could append to it two new elements T and F, i.e., say M ′ := M ∪ {T,F}, and
extend the operations of M to M ′ in such a way that M ′ becomes a C-algebra
as well. The operation ¬ is extended to M ′ by defining ¬T := F and ¬F := T.
The operation ∧ of M is extended to M ′ as follows for each a ∈ M ′:

T ∧ a := a

a ∧ T := a

F ∧ a := F

a ∧ F := a ∧ ¬a

By virtue of axioms (1) and (2) in Definition 3, we extend ∨ to M ′ by simply
defining a ∨ b := ¬(¬a ∧ ¬b) for each a, b ∈ M ′. Then M ′ with these newly
defined operations is a C-algebra. Example 4 is a special case of the above. We
also make use of the above feature in Sect. 4.1 to give a simple example of a
C-algebra obtained from rough sets.

Since the class of C-algebras is a variety, for any set X, 3X is a C-algebra
with the operations defined pointwise. Guzmán and Squier in [5] gave a pairs of
sets representation of elements of 3X . This is a pair (A,B) where A,B ⊆ X and
A∩B = ∅. Similar to the correlation between 2X and the power set ℘(X) of X,
for each α ∈ 3X , associate the pair of sets (A,B) where A := {x ∈ X : α(x) = T}
and B := {x ∈ X : α(x) = F}. Conversely, for any pair of sets (A,B) where
A,B ⊆ X and A ∩ B = ∅ consider the function α where α(x) := T if x ∈ A,
α(x) := F if x ∈ B and α(x) := U otherwise. Thus the operations on 3X (or on
the associated family of pairs of sets) can be given as follows:

¬(A1, A2) = (A2, A1)
(A1, A2) ∧ (B1, B2) = (A1 ∩ B1, A2 ∪ (A1 ∩ B2))
(A1, A2) ∨ (B1, B2) = ((A1 ∪ (A2 ∩ B1), A2 ∩ B2)

Further, Guzmán and Squier showed that every C-algebra is a subalgebra of
3X for some X as stated below. For further details on subdirectly irreducible
algebras refer to [4].

Theorem 1 ([5]). 3 and 2 are the only subdirectly irreducible C-algebras.
Hence, every C-algebra is a subalgebra of a product of copies of 3.

Notation 2 A C-algebra with T,F,U is a C-algebra with nullary operations
T,F,U, where T is the (unique) left-identity (and right-identity) for ∧, F is the
(unique) left-identity (and right-identity) for ∨ and U is the (unique) fixed point
for ¬. Note that U is also a left-zero for both ∧ and ∨ while F is a left-zero for
∧ and T is a left-zero for ∨.
Remark 3. The pairs of sets representation in C-algebras also leads us to the
usual three-valued interpretation of rough sets. If we consider the rough set



Rough Sets and the Algebra of Conditional Logic 33

(A, (A)c) for some A ⊆ U , we can associate the function α ∈ 3U given as:
α(x) := T when x ∈ A, the positive region of A, α(x) := F when x ∈ (A)c, the
negative region of A, and α(x) := U otherwise, i.e., when x is in the boundary
region of A. However, under the C-algebra operations, while evaluating ∧ and ∨,
precedence is given to the first rough set occurring on the left. This leads to the
natural question of whether the family of rough sets forms a C-algebra under
the given operations.

In the following sections, we detail the connections between the notions of
C-algebras and rough sets.

3 A C-algebraic Interpretation of RS
In this section we show that for every approximation space, under a specific
interpretation, the associated family RS of rough sets forms a C-algebra. The
following well-known statement is instrumental in achieving the main result. We
omit the proof of this result; see e.g. [3].

Lemma 1. Let A,B ⊆ U such that A and B are definable, A ⊆ B and for each
b ∈ B \ A we have [b] �= {b}. Then there exists C ⊆ U such that

C = A and C = B.

Theorem 3. Given an approximation space 〈U,E〉, the collection of sets RS :=
{(A, (A)c) : A ⊆ U} forms a C-algebra under the following operations:

¬(A, (A)c) := ((A)c, A)

(A, (A)c) ∧ (B, (B)c) := (A ∩ B, (A)c ∪ (A ∩ (B)c))

(A, (A)c) ∨ (B, (B)c) := (A ∪ ((A)c ∩ B), (A)c ∩ (B)c)

Proof. It suffices to show that RS under the given interpretation is a subalgebra
of the functional C-algebra 3U . Note that A ∩ (A)c = ∅ for each A ⊆ U . It follows
that one only need check for closure with respect to operations ¬ and ∧, since
closure for ∨ follows from axioms (1) and (2) of Definition 3.

Closure under ¬: Let (A, (A)c) ∈ RS. We must find B ⊆ U such that B = (A)c

and (B)c = A. We show that B = Ac is the required set. This follows from
Proposition 2(i) since we have B = Ac = (A)c. Along similar lines we have
B = Ac = (A)c from which it follows that (B)c = A. This completes the case
for ¬.

Closure under ∧ : Let (A, (A)c) and (B, (B)c) ∈ RS. In 3U we have

(A, (A)c) ∧ (B, (B)c) = (A ∩ B, (A)c ∪ (A ∩ (B)c)).

We aim to find C ⊆ U such that C = A ∩ B and (C)c = (A)c∪(A∩(B)c). Using
elementary set-theoretic operations we have ((A)c∪(A∩(B)c))c = A∩((A)c∪
B). Clearly A ∩ B ⊆ A ⊆ A. Along similar lines A ∩ B ⊆ B ⊆ B ⊆ (A)c ∪ B
so that A∩B ⊆ A∩ ((A)c ∪B). Further, consider z ∈ A∩ ((A)c ∪B)\ (A∩B)
such that [z] = {z}. Using Proposition 1 we have z ∈ A and z ∈ Ac ∪B so that
z ∈ A ∩ B, a contradiction since z /∈ A ∩ B. Thus, using Proposition 2(iii) and
Lemma 1 we obtain the required result. �
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3.1 An Illustration

We mention a connection between the notions of C-algebra and rough sets by
way of the following hypothetical situation, using a computer equipped with a
program which prompts the observer. Consider a universe of possible real-valued
inputs to the computer from 0 to 10 till 5 decimal places given as follows:

U :=
{
a0.a1a2a3a4a5 : for each 0 ≤ i ≤ 5, ai ∈ {0, 1, 2, . . . 9}}.

Note that the inputs range from 0.00000 to 9.99999. Over this finite universe U
define the relation E as follows. For a = a0.a1a2a3a4a5, b = b0.b1b2b3b4b5 ∈ U ,

(a, b) ∈ E if and only if ai = bi for each 0 ≤ i ≤ 3.

It can easily be seen that E is an equivalence relation on U . E models the
physical limitations of the computer with regards to memory in storing the input,
since the computer must necessarily truncate the real-valued input. Consider the
approximation space 〈U,E〉. Using Theorem 3 we can say that the family RS of
rough sets forms a C-algebra. We assume that in this scenario, along with the
computer there exists an observer. Indeed, the pair (A, (A)c) where A ⊆ U can
be seen to symbolize the following:

(i) The first component, viz., A, signifies the elements that the observer knows
definitely belong to A.

(ii) The second component, viz., (A)c, comprises the elements that the computer
knows definitely do not belong to A.

Note that the observer is aware of subsets of U only via the equivalence E. In
other words, the observer is aware of those elements that definitely belong to A
and those that definitely do not belong to A. The observer is not able to discern
when elements in the boundary of A, i.e., A \ A, belong to A. In the case when
there is any uncertainty in the membership of the element, the observer simply
does not make any commitment and ends the process of finding the membership
of the given element.

On the other hand, the computer is unable to distinguish between the sets
A and A owing to its physical limitations. However it is able to ascertain when
an element certainly does not belong to A. In fact, the computer stores only the
representative elements of A under the relation E. For instance, inputs 2.12345
and 2.12346 would be stored as simply 2.123. Hence the computer is only able to
assert the elements of (A)c with certainty. We make an additional assumption that
the computer prompts the observer for further information, which we detail below.
The computer only proceeds when given a definite answer from the observer, and
therefore in case the observer is unable to do so, the computer gets stuck in a loop.
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Note that the non-commutativity of ∧ and ∨ play an important role. Under this
connotation, the operations ¬, ∧ and ∨ on RS can be interpreted as follows:

(i) ¬(A, (A)c) = ((A)c, A): The first component (A)c contains all elements that
the observer knows definitely belong to Ac while A comprises the elements
that the computer knows definitely do not belong to Ac.

(ii) (A, (A)c)∧(B, (B)c) = (A∩B, (A)c∪(A ∩ (B)c)): Using Proposition 2(ii) we
see that the first component A ∩ B contains all elements that the observer
knows definitely belong to A∩B. We claim that, using the prompting of the
observer, the second component (A)c ∪ (A ∩ (B)c) contains all the elements
that the computer knows definitely do not belong to A ∩ B. If the element
is in (A)c then the computer can decide that this element is not in A ∩ B.
However if the element is in A then the computer prompts the observer
to state whether this element is in A or not. If the observer inputs ‘yes’
then the computer proceeds to check whether this is in (B)c. If true, it can
then decide that this element does not belong to A ∩ B. If, however, the
element is in B, then the computer cannot proceed further. On the other
hand consider the case where the element is in A \ A. Here, the computer,
even with the help of the observer, is unable to come to a decisive conclusion
about the membership of the element in A ∩ B and is stuck in a loop.

(iii) (A, (A)c) ∨ (B, (B)c) = (A ∪ ((A)c ∩ B), (A)c ∩ (B)c): The second compo-
nent, i.e., (A)c ∩ (B)c can easily be seen to contain those elements that the
computer knows definitely do not belong to A ∪ B. Consider the first com-
ponent, A ∪ ((A)c ∩ B): we argue that it contains all those elements which
the observer can ascribe definitely to A ∪ B. Indeed, if the element is in A,
the observer can say that it definitely belongs to A ∪ B. If the element is
in A \ A the observer cannot be certain if the element is within A or not,
and ends the procedure here. On the other hand, if the element is in (A)c

then the observer knows that it definitely does not belong to A. Therefore
she can check if it belongs to B, in which case she knows that it definitely
belongs to A ∪ B. If the element is in (A)c ∩ (B)c then the observer knows
that it definitely does not belong to A ∪ B. Finally, in case the element
belongs to (A)c ∩ (B \ B), the observer cannot say that it definitely belongs
to A ∪ B – so it will not be in the first component of the pair of rough sets
corresponding to A ∪ B.

The combination of the interpretation of the operations ¬, ∧ and ∨ through
the observer and the computer leads to an interesting observation. Under
this interpretation, while computing the ∨ (or ∧) of rough sets (A, (A)c) and
(B, (B)c), both the observer and the computer must necessarily give precedence
to the underlying set A over set B. This follows from the fact that if there is any
uncertainty in the membership of the element in A, the observer simply discards
it from consideration in the ∨ (or ∧), and the computer is unable to leave the
infinite loop.
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4 Embedding C-algebras in RS
We now prove a representation theorem for the class of C-algebras: given any
C-algebra M there exists an approximation space 〈U,E〉 such that M can be
embedded in RS. For this, we show that given any set X, the C-algebra 3X is
isomorphic to the C-algebra formed by the family RS of rough sets for some
approximation space 〈U,E〉. We make use of the pairs of sets representation
of elements of 3X throughout this section. The symbols � and ↪→ will denote
isomorphism and embedding of C-algebras respectively.

Theorem 4. Given any set X, there exists an approximation space 〈U,E〉 such
that 3X � RS.
Proof. If X = ∅ then 3X is the trivial algebra. If we take the trivial approxi-
mation space 〈U,E〉 where U = ∅ = E, RS is a singleton and is isomorphic to
3X .

Let X �= ∅. For each x ∈ X define the element x′ as distinct from each
element of X. Further for a �= b assume that a′ �= b′. Finally for any A ⊆ X
define A′ := {a′ : a ∈ A}. Define the universe of the required approximation
space U := X∪X ′, and the equivalence relation E corresponding to the partition
{{a, a′} : a ∈ X}. We shall show that 3X � RS.

Note that for all A,B,C,D ⊆ X we have the following relations:

Ac = (X \ A) ∪ X ′, (A′)c = (X ′ \ A′) ∪ X (8)
(X \ A)′ = X ′ \ A′ (9)
(A ∩ B)′ = A′ ∩ B′ (10)
(A ∪ B)′ = A′ ∪ B′ (11)

(A ∪ B′) ∩ (C ∪ D′) = (A ∩ C) ∪ (B′ ∩ D′) (12)

Given a pair (A,B) of sets, where A,B ⊆ X such that A ∩ B = ∅, define the
following subset of U :

CA,B := A′ ∪ (X \ B).

Consider the function ϕ : 3X → RS defined as follows:

ϕ((A,B)) := (CA,B , (CA,B)c).

Since A∩B = ∅, we have A ⊆ (X \B) so that A ⊆ Bc. We observe the following:

(i) CA,B = A ∪ A′.

(ii) CA,B = (X \ B) ∪ (X ′ \ B′).

It follows that (CA,B)c = (X \ B)c ∩ (X ′ \ B′)c. Using (8) and (12) we have
(CA,B)c = (B ∪ X ′) ∩ (B′ ∪ X) = B ∪ B′. Consequently we have the following:

ϕ((A,B)) = (A ∪ A′, B ∪ B′).
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Claim: ϕ(¬(A,B)) = ¬ϕ((A,B)).
We see that ϕ(¬(A,B)) = ϕ((B,A)) = (B ∪ B′, A ∪ A′) = ¬ϕ((A,B)).

Claim: ϕ((A1, B1) ∧ (A2, B2)) = ϕ((A1, B1)) ∧ ϕ((A2, B2)).
Note that (A1, B1) ∧ (A2, B2) = (A1 ∩ A2, B1 ∪ (A1 ∩ B2). Thus, using (10)
and (11) we have ϕ((A1, B1) ∧ (A2, B2)) = ϕ((A1 ∩ A2, B1 ∪ (A1 ∩ B2)) =
((A1 ∩ A2) ∪ (A′

1 ∩ A′
2), (B1 ∪ (A1 ∩ B2)) ∪ (B′

1 ∪ (A′
1 ∩ B′

2)). On the other hand,
since ϕ((A1, B1)) = (A1 ∪ A′

1, B1 ∪ B′
1) and ϕ((A2, B2)) = (A2 ∪ A′

2, B2 ∪ B′
2)

we have ϕ((A1, B1)) ∧ ϕ((A2, B2)) = (A1 ∪ A′
1, B1 ∪ B′

1) ∧ (A2 ∪ A′
2, B2 ∪ B′

2) =
((A1 ∪A′

1)∩ (A2 ∪A′
2), (B1 ∪B′

1)∪ ((A1 ∪A′
1)∩ (B2 ∪B′

2))). Using (12) we have
ϕ((A1, B1)) ∧ ϕ((A2, B2)) = ((A1 ∩ A2) ∪ (A′

1 ∩ A′
2), (B1 ∪ (A1 ∩ B2)) ∪ (B′

1 ∪
(A′

1 ∩ B′
2))). Note that for the operation ∨ we simply use axioms (1) and (2)

from Definition 3. Consequently, ϕ is a C-algebra homomorphism.

Claim: ϕ is injective.
Let (A1, B1) and (A2, B2) be two pairs of sets in 3X such that ϕ((A1, B1)) =
ϕ((A2, B2)). Hence (A1 ∪ A′

1, B1 ∪ B′
1) = (A2 ∪ A′

2, B2 ∪ B′
2). Since U is the

disjoint union of X and X ′ it follows that A1 = A2 and B1 = B2.

Claim: ϕ is surjective.
Let (C, (C)c) ∈ RS for some C ⊆ U . Since U is the disjoint union of X and
X ′ we can say that C = Y ∪ Z ′ for some Y,Z ⊆ X. Hence, using (10) we have
(C,C) = ((Y ∩ Z) ∪ (Y ′ ∩ Z ′), (Y ∪ Y ′) ∪ (Z ∪ Z ′)). Using (8) and (12) we have
(C)c = (Y ∪ Z)c ∩ (Y ′ ∪ Z ′)c =

(
(X \ (Y ∪ Z)) ∪ X ′) ∩ (

X ′ \ (Y ′ ∪ Z ′)) ∪ X
)

=
(X \ (Y ∪ Z)) ∪ (X ′ \ (Y ′ ∪ Z ′)).

Define the pair (A,B) as A := Y ∩ Z and B := X \ (Y ∪ Z). Clearly,
since Y ∩ Z ⊆ (Y ∪ Z) we have (Y ∩ Z) ∩ (X \ (Y ∪ Z)) = ∅. Also ϕ((A,B)) =
(A∪A′, B∪B′) =

(
(Y ∩Z)∪(Y ′∩Z ′), (X\(Y ∪Z))∪(X ′\(Y ′∪Z ′))

)
= (C, (C)c).

The result follows. �

Remark 4. Note that as a consequence, ϕ also preserves constants T,F,U and
is therefore an isomorphism of C-algebras with T,F,U.

Theorem 5. (Representation) Given any C-algebra M , there exists an
approximation space 〈U,E〉 such that M ↪→ RS.
Proof. The proof follows in a straighforward manner from Theorems 1 and 4. �

4.1 An Illustration of Theorem 5

It is well-known that given an approximation space 〈U,E〉, the family D of defin-
able sets forms a Boolean algebra. Using Remark 2 we see that by appending
two new elements T,F to D with the requisite operations, we obtain a new
C-algebra, say D′. As a consequence of Theorem 5, there exists an approxi-
mation space 〈W,R〉 such that D′ ↪→ RS. A natural question would be what
this approximation space is, for certain simple examples of families of definable
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sets. Consider U := {a, b} and E as the purely reflexive equivalence on U cor-
responding to the partition {{a}, {b}}. Thus D = {∅, {a}, {b}, U}. We present a
candidate for the approximation space 〈W,R〉 below.

Note that D′ ↪→ 3X where X := {x, y, z}. The map ψ : D′ → 3X given below
is a C-algebra embedding:

ψ(F) := (F,F,F)
ψ(T) := (T,T,T)
ψ(∅) := (F,F,U)

ψ({a}) := (T,F,U)
ψ({b}) := (F,T,U)
ψ(U) := (T,T,U)

On utilizing the pairs of sets representation of elements in 3X , we can rewrite
the embedding ψ : D′ → 3X as follows:

ψ(F) = (∅, {x, y, z})
ψ(T) = ({x, y, z}, ∅)
ψ(∅) = (∅, {x, y})

ψ({a}) = ({x}, {y})
ψ({b}) = ({y}, {x})
ψ(U) = ({x, y}, ∅)

We use the procedure delineated in Theorem 4 to obtain the required universe
W := {x, y, z, x′, y′, z′} and equivalence R := {{x, x′}, {y, y′}, {z, z′}}. Thus
the embedding ϕ : D′ → RS is given by ϕ(A) := (C, (C)c), where A ⊆ U
or A ∈ {T,F} and C ⊆ W . The required subsets C of W along with their
correspondence with elements of D′ are given below:

A �→ C :
F �→ ∅
T �→ W

∅ �→ {z}
{a} �→ {x, x′, z}
{b} �→ {y, y′, z}
U �→ {x, x′, y, y′, z}

Thus, given any approximation space, the collection of its definable sets can
be embedded in a C-algebra of rough sets. This gives a family of examples of
C-algebras that have direct connections to rough sets.

5 Conclusion

The interconnectivity between three-valued logics and rough sets has been delved
into deeply in the literature. Most of the studies thus far have focussed on com-
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mutative operations of ∧ and ∨. In this work, we attempt to give an interpre-
tation of rough sets using the non-commutative ∧ and ∨ of C-algebras or the
algebra of conditional logic. We show that this interpretation is meaningful by
ascertaining that, in fact, every family of rough sets forms a C-algebra. On the
other hand, we are also able to obtain a representation theorem: every C-algebra
is shown to be embedded in a family of rough sets. Further explorations of the
interplay between these two notions appear worthwhile, and could possibly also
throw light on connections between rough sets and programming languages.
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Abstract. We generalize the standard rough set pair induced by an
equivalence E on U in such a way that the upper approximation defined
by E is replaced by the upper approximations determined by tolerances
T1, . . . , Tn on U . Using this kind of multiple upper approximations we
can express “softer” uncertainties of different kinds. We can order the
set RS(E, T1, . . . , Tn) of the multiple approximations of all subsets of the
universe U by the coordinatewise inclusion. We show that whenever the
tolerances T1, . . . , Tn are E-compatible, this ordered set forms a com-
plete lattice. As a special case we show how this complete lattice can be
reduced to the complete lattice of the traditional rough sets defined by
the equivalence E.

Keywords: Lower and upper approximation · Rough set ·
Compatibility condition · Tolerance relation · Multiple borders

1 Compatibility Condition and Multiple Approximations

The aim of this paper is to extend the “traditional” rough set model to be able to
represent different levels of uncertainty. Rough sets were introduced by Pawlak
in [8]. He assumed that our knowledge about the objects of a universe U is given
in the terms of an information relation R reflecting their indiscernibility.

For any relation R ⊆ U × U and x ∈ U , denote R(x) = {y ∈ U | (x, y) ∈ R}.
Then for any subset X ⊆ U its lower approximation is defined as

XR = {x ∈ U | R(x) ⊆ X},

and the upper approximation of X is given by

XR = {x ∈ U | R(x) ∩ X �= ∅}.
If R is a reflexive relation, then XR ⊆ X ⊆ XR and the elements of U may be
divided into three disjoint classes:
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(C1) The elements which are certainly in X. These are the elements in XR,
because if x ∈ XR, then all the elements to which x is R-related are in X.

(C2) The elements which certainly are not in X. These are the elements x such
that all the elements to which x is R-related are outside X.

(C3) The elements which are possibly in X. These are the elements x which are
R-related at least to one element from X and also at least to one element
outside X. In other words, x ∈ XR \ XR.

Initially, Pawlak assumed that R is an equivalence, that is, a reflexive, sym-
metric and transitive relation. There are many generalizations of Pawlak’s con-
struction based on non-equivalence relations, and replacing equivalence classes
by coverings; see [13,14], for instance. A natural variant is to assume that our
information is given by a tolerance relation, that is, a reflexive and symmet-
ric binary relation, being not transitive in general. Authors of this paper have
considered lattice-theoretical properties of rough sets defined by tolerances, for
example, in [3,5,6].

In [4], we used both equivalences and tolerances to form approximations. As
a motivation for this kind of setting consider the case in which U consists of a
set of patients of a hospital and xE y means that all the attributes of x and y
representing some medical information are the same. Let X be a set of patients
with a certain disease. If x ∈ XE , then X contains a patient y such that x
cannot be distinguished from y in terms of any attribute. On the other hand,
sometimes it would be useful to know also those patients who have a risk to
have the disease in the near future or who are at an initial phase of the disease.
These persons may have different symptoms as the patients with illness have.
But they may have, for instance, similar symptoms. Thus, we can use a tolerance
relation T to represent this similarity. The upper approximation XT consists of
persons who are similar to patients with disease, thus they may have some risk to
get the disease. It may be reasonable to introduce several tolerance relations to
represent different types of risks and different types of similarity, and therefore
in this paper we consider also multiple tolerances.

In [4] we considered tolerances compatible with equivalences, which turned to
be closely related to “similarity relations extending equivalences” studied in [11].
In this work, we slightly generalize the notion of compatibility to be used also
between tolerances.

Definition 1. Let R and T be two tolerances on U . If R ◦ T = T , then T is
R-compatible.

If T is R-compatible, then R ⊆ T and R2 ⊆ R ◦ T = T , so R is “transitive”
inside T . Since T−1 = T and (R ◦ T )−1 = T−1 ◦ R−1 = T ◦ R we get

R ◦ T = T ⇐⇒ (R ◦ T )−1 = T−1 ⇐⇒ T ◦ R = T. (1.1)

Hence, R ◦ T = T and T ◦ R = T are equivalent conditions.
For a tolerance T , the kernel of T is defined by

ker T = {(x, y) | T (x) = T (y)}.
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Proposition 2. Let R and T be tolerances on U . The tolerance T is R-
compatible if and only if R ⊆ ker T .

Proof. (⇒) Suppose that T is R-compatible. We show that R ⊆ ker T . Assume
(x, y) ∈ R. Let z ∈ T (x). Then z T x and xR y, that is, (z, y) ∈ T ◦ R = T .
Thus, z ∈ T (y) and T (x) ⊆ T (y). Similarly, we can show that T (y) ⊆ T (x):
if z ∈ T (y), then (x, z) ∈ R ◦ T = T and z ∈ T (x). Thus, T (x) = T (y) and
(x, y) ∈ ker T . Therefore, R ⊆ ker T .

(⇐) Assume that R ⊆ ker T . Let (x, y) ∈ R ◦ T . Then, there is z such that
xR z and z T y. Because (x, z) ∈ ker T , y ∈ T (z) = T (x). Thus, (x, y) ∈ T and
R ◦ T ⊆ T . Because T ⊆ R ◦ T holds always, we have T = R ◦ T and T is
R-compatible. 
�

We can also present the following characterization.

Proposition 3. Suppose R and T are tolerances on U . The tolerance T is R-
compatible if and only if

T (x) =
⋃

{R(y) | y ∈ T (x)} (1.2)

for all x ∈ U .

Proof. (⇒) Assume that T is R-compatible. Let z ∈ T (x). Then z ∈ R(z) gives
z ∈ ⋃{R(y) | y ∈ T (x)}. On the other hand, if z ∈ ⋃{R(y) | y ∈ T (x)}, then
z R y and y T x give (z, x) ∈ R ◦ T = T , that is, z ∈ T (z). So, (1.2) holds.

(⇐) Suppose (1.2) is true for any x ∈ U . If (x, z) ∈ T ◦ R, then there is y
such that y ∈ T (x) and z ∈ R(y). By (1.2), these give z ∈ T (x). Thus, (x, z) ∈ T
and T ◦ R ⊆ T . Since, T ⊆ T ◦ R holds always, T is R-compatible. 
�

Let X ⊆ U be arbitrary and let T be an R-compatible tolerance. The follow-
ing properties can be proved:

(XT )R = XT◦R = XT = XR◦T = (XR)T ; (1.3)

(XT )R = XT◦R = XT = XR◦T = (XR)T . (1.4)

Indeed, XT◦R = XT = XR◦T is clear by (1.1). Let us check (XT )R = XR◦T

as an example:

x ∈ (XT )R ⇐⇒ (∃z)xR z and z ∈ XT

⇐⇒ (∃z)(∃y)xR z and z T y and y ∈ X

⇐⇒ (∃y)x (R ◦ T ) y and y ∈ X

⇐⇒ x ∈ XR◦T

Hence (1.3) is satisfied. Equalities (1.4) are proved analogously.
If our knowledge about the attributes of the elements is incomplete, then

classification (C1)–(C3) of the elements of U into three disjoint subsets

XE ∪ (XE \ XE) ∪ (U \ XE)
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may be insufficient [2]. For instance, beside those elements which are in the
boundary XE \ XE of X, there may exist other elements in U whose attributes
are not enough known to exclude that they are somehow related to X. Hence
a division of the elements of U in four, or even more classes might be more
convenient. In this work, we will consider several tolerances T1, . . . , Tn on U .
This enables us to define multiple borders and consider cases in which there are
several degrees of possibility. Our work is related to a multi-granulation rough
set model (MGRS), where the set approximations are defined by using multi
equivalence relations on the universe [10].

The tolerances T1, . . . , Tn are assumed to be E-compatible. This means that
if x is Ti-similar to y, then any element E-indistinguishable with x must also be
Ti-similar to y. The obtained tuples (XE ,XT1 , . . . , XTn) can be considered as
generalizations of rough sets.

2 Rough Sets of Multiple Approximations

For a binary relation R on U , the “traditional” R-rough set of X is defined as
the pair (XR,XR). We denote by

RS (R) = {(XR,XR) | X ⊆ U}
the set of all R-rough sets. The set RS (R) can be ordered coordinatewise inclu-
sion by

(XR,XR) ≤ (YR, Y R) ⇐⇒ XR ⊆ YR and XR ⊆ Y R,

obtaining a partially ordered set (RS (R),≤), which we denote simply by RS (R).
If E is an equivalence relation, then RS (E) is a complete lattice such that

∨

X∈H
(XE ,XE) =

( ⋃

X∈H
XE ,

⋃

X∈H
XE

)
(2.1)

and
∧

X∈H
(XE ,XE) =

( ⋂

X∈H
XE ,

⋂

X∈H
XE

)
(2.2)

for all H ⊆ ℘(U), where ℘(U) the powerset of U , that is, the set of all subsets of
U . It is also known that a so-called regular double Stone algebra can be defined
on RS (E) [1,9]. If T is a tolerance, then in [3] it is proved that RS (T ) is not
necessarily even a semilattice.

In [4] we considered the following generalization

RS (E, T ) = {(XE ,XT ) | X ⊆ U}
of the traditional rough set system. The idea behind studying such pairs
(XE ,XT ) is that the equivalence E represents “strict” information (indistin-
guishability) and the information represented by T is “soft” (similarity). Hence
XE is defined as it is usual in rough set theory, but XT is now more permissible,
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because E ⊆ T and thus X ⊆ XE ⊆ XT . We proved several results about the
structure of RS (E, T ), particularly that it always forms a complete lattice.

First we generalize our setting to multiple E-compatible tolerances. If E is
an equivalence on U and T1, . . . , Tn are tolerances on U , then

XT1 \ XE , XT2 \ XE , . . . , XTn \ XE

may express uncertainties of different kinds. We denote

RS (E, T1, . . . , Tn) = {(XE ,XT1 , . . . , XTn) | X ⊆ U}.

As earlier, RS (E, T1, . . . , Tn) is ordered coordinatewise.

Proposition 4. Let E be an equivalence on U and T1, . . . , Tn be E-compatible
tolerances. Then RS (E, T1, . . . , Tn) is a complete lattice.

Proof. Because (∅, ∅, . . . , ∅)︸ ︷︷ ︸
n+1

is the least element of RS := RS (E, T1, . . . , Tn), it

suffices to show that for any ∅ �= H ⊆ ℘(U), the set {(XE ,XT1 , . . . , XTn) | X ∈
H} has a supremum in RS. Since

(⋃
X∈H XE ,

⋃
X∈H XE

)
is an E-rough set by

(2.1), there exists a set Y ⊆ U with

YE =
⋃

X∈H
XE and Y E =

⋃

X∈H
XE .

By Property (1.3) we have that for 1 ≤ i ≤ n,

Y Ti = (Y E)Ti =
( ⋃

X∈H
XE

)Ti

=
⋃

X∈H
(XE)Ti =

⋃

X∈H
XTi .

This implies that
( ⋃

X∈H
XE ,

⋃

X∈H
XT1 , . . . ,

⋃

X∈H
XTn

)
= (YE , Y T1 , . . . , Y Tn)

belongs to RS.
Now (YE , Y T1 , . . . , Y Tn) is an upper bound of (XE ,XT1 , . . . , XTn) for all

X ∈ H. It is also clear that if

(ZE , ZT1 , . . . , ZTn)

is an upper bound of {(XE ,XT1 , . . . , XTn) | X ∈ H}, then XE ⊆ ZE and
XTi ⊆ ZTi for all X ∈ H and 1 ≤ i ≤ n. This gives

⋃

X∈H
XE ⊆ ZE and

⋃

X∈H
XTi ⊆ ZTi

for 1 ≤ i ≤ n. Therefore,

(YE , Y T1 , . . . , Y Tn) ≤ (ZE , ZT1 , . . . , ZTn)

and (YE , Y T1 , . . . , Y Tn) is the supremum of {(XE ,XT1 , . . . , XTn) | X ∈ H}. 
�
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Example 5. Let U = {1, 2, 3, 4} and E be an equivalence on U such that U/E =
{{1}, {2, 3}, {4}}. Assume T1 is an equivalence (and thus a tolerance) such that

T1(1) = T1(2) = T1(3) = {1, 2, 3} and T1(4) = {4}.

In addition, let T2 be a tolerance such that

T2(1) = U, T2(2) = T2(3) = {1, 2, 3} and T2(4) = {1, 4}.

Because E ⊆ ker T1 = T1 and E = ker T2, T1 and T2 are E-compatible.
We have also T1 ⊆ T2, but T2 is not T1-compatible, since T1 � ker T2 = E.

The elements of

RS (E, T1, T2) = {(XE ,XT1 ,XT2) | X ⊆ U}
are given in Table 1. Note that here we denote sets just by sequences of their
elements, the set {1, 2, 4} is written 124, for instance. The Hasse diagram of
RS (E, T1, T2) can be found in Fig. 1.

Table 1. The 3-tuple approximations of subsets of U

X (XE , X
T1 , XT2) X (XE , X

T1 , XT2)

∅ (∅, ∅, ∅) 23 (23, 123, 123)

1 (1, 123, U) 24 (4, U, U)

2 (∅, 123, 123) 34 (4, U, U)

3 (∅, 123, 123) 123 (123, 123, U)

4 (4, 4, 14) 124 (14, U, U)

12 (1, 123, U) 134 (14, U, U)

13 (1, 123, U) 234 (234, U, U)

14 (14, U, U) U (U,U, U)

Let us note that if n = 1 and T1 = T , we obtain the complete lattice
RS (E, T ) = {(XE ,XT ) | X ⊆ U} investigated in [4]. Our next theorem shows
that adding T -compatible tolerances S1, . . . , Sn to RS (E, T ) does not change
the lattice-theoretical structure. Notice that if T is an E-compatible tolerance
and a tolerance S is compatible with T , then S is also E-compatible because

E ◦ S ⊆ T ◦ S ⊆ S,

which implies E ◦ S = S, since S ⊆ E ◦ S.

Theorem 6. Let E be an equivalence on U and let T be an E-compatible toler-
ance. If S1, . . . , Sn are tolerances which are T -compatible, then

RS (E, T ) ∼= RS (E, T, S1, . . . , Sn).
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(123, 123, U) (234, U, U)

(23, 123, 123)

(U,U,U)

(14, U, U)

(4, U, U)(1, 123, U)

(∅, 123, 123) (4, 4, 14)

(∅, ∅, ∅)

Fig. 1. The lattice RS(E, T1, T2)

Proof. Note first that each S1, . . . , Sn is E-compatible. This means that

RS (E, T, S1, . . . , Sn)

is a complete lattice by Proposition 4. We define a map

ϕ : RS (E, T ) → RS (E, T, S1, . . . , Sn), (XE ,XT ) �→ (XE ,XT ,XS1 , . . . , XSn).

The map ϕ is well defined, because if (XE ,XT ) = (YE , Y T ), then by (1.3),

XSk = (XT )Sk = (Y T )Sk = Y Sk

for any 1 ≤ k ≤ n, which yields ϕ(XE ,XT ) = ϕ(YE , Y T ). Next we prove that ϕ
is an order-embedding, that is,

(XE ,XT ) ≤ (YE , Y T ) ⇐⇒ ϕ(XE ,XT ) ≤ ϕ(YE , Y T ).

Suppose (XE ,XT ) ≤ (YE , Y T ). Then XT ⊆ Y T and for any 1 ≤ k ≤ n,

XSk = (XT )Sk ≤ (Y T )Sk = Y Sk .

Hence, ϕ(XE ,XT ) ≤ ϕ(YE , Y T ). It is trivial that if ϕ(XE ,XT ) ≤ ϕ(YE , Y T ),
then (XE ,XT ) ≤ (YE , Y T ). The mapping ϕ is obviously surjective, because
if (XE ,XT ,XS1 , . . . , XSn) belongs to RS (E, T, S1, . . . , Sn), then ϕ(XE ,XT ) =
(XE ,XT ,XS1 , . . . , XSn). 
�

The following consequence is immediate. Notice that each equivalence E is
compatible with itself, that is E ◦ E = E.

Corollary 7. Let E be an equivalence relation on U and T1, . . . , Tn be E-
compatible tolerances. If T1 = E, then

RS (E) ∼= RS (E, T1, . . . , Tn).
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Let E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ En be equivalences on U . Note that the ker-
nel of an equivalence is the equivalence itself. Therefore, E1 is E0-compatible
and E2, . . . , En are E1-compatible. By Theorem 6 we can write the following
corollary.

Corollary 8. Let E0 ⊆ E1 ⊆ · · · ⊆ En be equivalences on U . Then

RS (E0, E1, . . . , En) ∼= RS (E0, E1).

We end this section by presenting a couple of examples where multiple rough
sets can be defined in a natural way.

Example 9. Let R be a fuzzy equivalence on U . This means that for all x, y ∈ U ,
R(x, y) ∈ [0, 1] and that R is

– reflexive: R(x, x) = 1 for each x ∈ U ,
– symmetric: R(x, y) = R(y, x) for all x, y ∈ U , and
– transitive: R(x, z) ≥ min{R(x, y), R(y, z)} for any x, y, z ∈ U .

It is known that for any α ∈ [0, 1] the α-cut

Rα = {(x, y) ∈ U × U | R(x, y) ≥ α}
of R is a “crisp” equivalence on U . Let 0 ≤ α0 ≤ α1 ≤ · · · ≤ αn ≤ 1. Then
Rα0 ⊆ Rα1 ⊆ · · · ⊆ Rαn

are equivalences on U . By Corollary 8 we get

RS (Rα0 , Rα1 , . . . , Rαn
) ∼= RS (Rα0 , Rα1).

Example 10. An information system in the sense of Pawlak [7] is a triple

(U,A, {V }a∈A),

where U is a set of objects, A is a set of attributes and Va is the value set of
a ∈ A. Each attribute is a mapping a : U → Va. For any ∅ �= B ⊆ A, the strong
indiscernibility relation of B is defined by

ind(B) = {(x, y) | a(x) = a(y) for all a ∈ B}.

The weak indiscenibility relation of B is given by

wind(B) = {(x, y) | a(x) = a(y) for some a ∈ B}.

Clearly, ind(B) is an equivalence and wind(B) is a tolerance.
Let ∅ �= C ⊆ B ⊆ A. It is easy to see that wind(C) is ind(B)-compatible.

Indeed, the inclusion wind(C) ⊆ ind(B) ◦ wind(C) is clear. In order to prove
the converse inclusion, let (x, y) ∈ ind(B) ◦ wind(C). Then (x, z) ∈ ind(B) and
(z, y) ∈ wind(C) for some z ∈ U . As C ⊆ B, (x, z) ∈ ind(B) yields a(x) = a(z)
for all a ∈ C. Because (z, y) ∈ wind(C), we have b(y) = b(z) = b(x) for some b ∈
C. Thus, (x, y) ∈ wind(C). This means ind(B)◦wind(C) ⊆ wind(C), completing
the proof.

Suppose ∅ �= C1, . . . , Cn ⊆ B. Since wind(Ci) is ind(B)-compatible for any
1 ≤ i ≤ n, we can form the generalized rough set complete lattice

RS (ind(B),wind(C1), . . . ,wind(Cn)).
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3 Comparison with the Fuzzy Set Approach

The relationship between rough set theory and fuzzy set theory is widely dis-
cussed in the literature. One of the key differences between these approaches
is the fact that in fuzzy set theory the membership value does not depend on
other elements. In contrast, the rough approximations and rough membership
functions are defined in terms of a relation on the object set [15]. According to
[12], one may treat rough set in set-oriented view as a special class of fuzzy sets.
In this section, we argue that from the viewpoint of set approximation, rough
sets with multiple borders significantly increase the functionality of the standard
rough set model and it provides a more general model of uncertainty than the
fuzzy model.

In the fuzzy set theory [16], a fuzzy set A on U is defined by a membership
function

fA : U → [0, 1],

where the value fA(x) for any x ∈ U denotes the “grade of membership” of x
in A. For any α ∈ [0, 1], the closed alpha-cut set Aα and the open alpha-cut set
A>α are crisp sets, where

Aα = {x ∈ U | fA(x) ≥ α}
and

A>α = {x ∈ U | fA(x) > α}.

Let X ⊆ U be a (crisp) set. A fuzzy set A can be considered as a “rough
approximation” of X, if

A1 ⊆ X ⊆ A>0.

The set A1 denotes the elements which are certainly in X and the elements which
may belong to X are contained in A>0. In “fuzzy terminology”, A1 is called the
core of A and A>0 is the support of A.

Similarly as in case of multiple tolerances, we may use several cut sets to
approximate X. More precisely, let X ⊆ U and suppose that there exists a fuzzy
set A on U and 1 > α1 > α2 > . . . > αn > 0 such that

A1 ⊆ X ⊆ Aα1 ⊆ Aα2 ⊆ · · · ⊆ Aαn
.

Our next proposition shows that we can always construct the same tuple

(A1, Aα1 , . . . Aαn
)

using multiple rough sets.

Proposition 11. Let A be a fuzzy set U and 1 > α1 > α2 > . . . > αn > 0. Then
there exist a set X ⊆ U , an equivalence E on U , and E-compatible tolerances
T1, . . . , Tn satisfying

(A1, Aα1 , . . . , Aαn
) = (XE ,XT1 , . . . , XTn).
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Proof. Having (A1, Aα1 , . . . , Aαn
), we define the equivalences:

E = A1 × A1 ∪ {(x, x) | x ∈ U},

T1 = Aα1 × Aα1 ∪ (U \ Aα1) × (U \ Aα1),
T2 = Aα2 × Aα2 ∪ (U \ Aα2) × (U \ Aα2),

...
Tn = Aαn

× Aαn
∪ (U \ Aαn

) × (U \ Aαn
).

It is clear that E ⊆ Ti for any 1 ≤ i ≤ n, so each T1, . . . , Tn is E-compatible.
We have that

XE = X = A1,

XT1 = (A1)T1 = Aα1 ,

XT2 = (A1)T2 = Aα2 ,

...

XTn = (A1)Tn = Aαn
.

Thus, (A1, Aα1 , . . . , Aαn
) = (XE ,XT1 , . . . , XTn). 
�

We end this section by showing that the converse is not true.

Proposition 12. Let U be a set with at least 3 elements. There exists an equiv-
alence E on U , E-compatible tolerances T1 and T2, and a set X ⊆ U , such that
(XE ,XT1 ,XT2) cannot be given in terms of α-cut sets of some fuzzy set A on
U .

Proof. If |U | ≥ 3, we may define tolerances T1 and T2 on U such that neither
T1 ⊆ T2 nor T2 ⊆ T1 hold. In addition, let E = {(x, x) | x ∈ U}. Then trivially
T1 and T2 are E-compatible. Let us consider the case T1 � T2 only, because
T2 � T1 can be treated similarly. Now T1 � T2 means that there is (x, y) ∈ T1

such that (x, y) /∈ T2. We get that {x}T1 � {x}T2 .
Next consider the rough set 3-tuple ({x}E , {x}T1 , {x}T2). Suppose that there

exists a fuzzy set A on U and α1 and α2 such that

(A1, Aα1 , Aα2) = ({x}E , {x}T1 , {x}T2).

Because α1, α2 ∈ [0, 1], without loss of generality we may assume that α1 ≥ α2.
Then Aα1 ⊆ Aα2 would imply {x}T1 ⊆ {x}T2 , a contradiction. 
�

These properties mean that every multiple alpha-cuts fuzzy model can be
given using multiple rough set model, but not every multiple rough set model
can be obtained with some alpha-cuts of a fuzzy set. From this point of view,
the multiple rough set model is a more general model of uncertainty than the
fuzzy set model with multiple cuts.
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4 Conclusions

The paper presented an extension of the traditional rough set model introducing
multiple upper approximations using more tolerance relations where the toler-
ance relations are compatible with the inner equivalence relation. Regarding the
main properties of the proposed model, it can be proven that the set of multiple
upper approximations rough sets form a complete lattice. In special cases, this
lattice is isomorphic with the lattice generated from the base rough set pairs. The
proposed model can be used to represent a novel multi-level uncertainty-based
approximation of selected base sets. It is shown in the paper that for presenting
multiple borders, this approximation model is more general than the widely used
fuzzy approximation model.
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Abstract. Studying rough calculus was originated by Pawlak in many
papers. In this paper, fundamental features of roughly continuous–
discontinuous real functions are presented in a systematic manner.

1 Introduction

In the mid 1990s Pawlak relying on the rough set theory (RST) [7,8,14] in many
papers initiated the study of rough calculus, see mainly [9,10,12,13]. He invented
the investigation of its different subfields such as rough continuity–discontinuity,
derivatives–integrals, differential equations, etc. Since then, however, to the best
knowledge of the author, relatively little progress has been made in this area.

This paper, after an adequate preparation, systematically summarizes the
fundamental features of rough continuity–discontinuity concerning rough real
functions. The world of rough real functions is a strange but an interesting one.

In Sect. 2, some important notations are summarized for the sake of fully
clarity. Section 3 presents rough numbers. The main part of the paper is Sects. 5–
8 which basically deal with the most significant issues of rough continuity–
discontinuity.

2 Preliminaries

Let U, V be two classical nonempty sets. A function f with domain U and co-
domain V is denoted by f : U → V , u �→ f(u), where u �→ f(u) is the assignment
or mapping rule of f . Usually, V U denotes the set of all functions with domain
U and co-domain V . In particular, f ∈ V U means that f maps U to V , but its
assignment rule is not specified.

If f, g ∈ V U , the operation f � g, � ∈ {+,−, ·, /} and the relation f � g,
� ∈ {=, �=,≤, <,≥, >} are understood by pointwise.

For any S ⊆ U , f(S) = {f(u) | u ∈ S} ⊆ V is the direct image of S.
Especially, f(U) ⊆ V is the range of f .

If a, b ∈ R (a ≤ b), [a, b] = {x ∈ R | a ≤ x ≤ b} and ]a, b[= {x ∈ R | a <x <b}
denote closed and open intervals, respectively. [a, a] = {a} is identified with the
real number a ∈ R. In addition, it is easy to interpret the open-closed ]a, b] and
closed-open [a, b[ intervals.
c© Springer Nature Switzerland AG 2019
T. Mihálydeák et al. (Eds.): IJCRS 2019, LNAI 11499, pp. 52–65, 2019.
https://doi.org/10.1007/978-3-030-22815-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22815-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-22815-6_5


On the Roughly Continuous Real Functions 53

(a, b) means an ordered pair of real numbers.
Let R

+ be the set of nonnegative real numbers, and [n] = {0, 1, . . . , n} ⊆ N

be a finite set of natural numbers.

3 Rough Numbers

Let I denote a closed interval I = [0, a] (a ∈ R
+, a > 0). A categorization of I is

a sequence SI = {xi}i∈[n] ⊆ R
+ where n ≥ 1 and 0 = x0 < x1 < · · · < xn = a.

Remark 1. (i) SI is often called the discretization of I as well.
(ii) A categorization has two components, an interval and a sequence. In

the literature, many different forms of these two components exist. For instance,
I may be ]a, b[ with a, b ∈ R, a < b, and 0 ∈]a, b[ [13]; [a, b] with a, b ∈ R

+,
0 < a < b; ]−∞,∞[ [13]; [0,∞[ [12]; etc. Accordingly, SI may be finite or infinite,
and may contain negative real numbers. However, for the sake of simplicity, such
more general cases are not considered in this paper. In spite of the simplicity
of the framework, it is general enough to study the fundamental properties of
roughly continuous–discontinuous real functions.

(iii) The notion of categorization referring to as landmark is also used in a
somewhat different manner in qualitative reasoning [4,5].

(iv) The categorization SI can be interpreted as a scale by which the real
numbers can be approximated [12]. With the help of a special scale on R

+, a
measurement system can be constructed to approximate the accuracy of mea-
surement results ([7], Example 1). ��

Let IS denote an equivalence relation which is generated by the categorization
SI and is defined as follows. If x, y ∈ I, xISy if and only if x = y = xi ∈ SI for
some i ∈ [n] or x, y ∈]xi, xi+1[ for some i ∈ [n − 1]. Hence, the partition I/IS
associated with the equivalence relation IS is the following:

I/IS = {{x0}, ]x0, x1[, {x1}, . . . , {xn−1}, ]xn−1, xn[, {xn}}
where [xi, xi] = {xi} (i ∈ [n]).

The block of the partition I/IS containing x ∈ I is denoted by [x]IS . In
particular, if x ∈ SI , [x]IS = {x}. If x ∈ [x]IS =]xi, xi+1[, [x]IS = [xi, xi+1] is the
closure of [x]IS . Of course, when x ∈ SI , [x]IS = [x]IS = {x}. Hence, any x ∈ SI

is called a roughly isolated point in I/IS .
Evidently IS is an indiscernibility relation on the real interval I, thus the

naming of the following notion is consistent with the standard terminology of
rough set theory. The ordered pair (I, IS) is an IS-approximation space.

In the approximation space (I, IS), closed intervals of the form [0, x] (x ∈ I)
will be approximated.

According to the standard process of rough set theory, IS-lower and IS-upper
approximations of [0, x] are defined as

IS([0, x])={y ∈ I | [y]IS ⊆ [0, x]} =
⋃

{[y]IS ∈ I/IS | [y]IS ⊆ [0, x]},

IS([0, x])={y ∈ I |, [y]IS ∩ [0, x] �= ∅} =
⋃

{[y]IS ∈ I/IS | [y]IS ∩ [0, x] �= ∅}.
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With a slight abuse of notation, let us define the following numbers:

IS(x) = sup{y ∈ SI | y ≤ x}, IS(x) = inf{y ∈ SI | y ≥ x}.

The following lemma is straightforward.

Lemma 1. Let x ∈ I. With the above notations,

IS([0, x]) = [0, IS(x)], IS([0, x]) = [0, IS(x)], and IS(x) ≤ x ≤ IS(x).

Thus, [x]IS = [IS(x), IS(x)]={x}, if x∈SI , and [x]IS = ]IS(x), IS(x)[, if x /∈ SI .

It is said that the number x ∈ I is exact with respect to the approximation
space (I, IS), if IS(x) = IS(x), otherwise x is inexact or rough [12]. Of course,
x ∈ I is exact if and only if x ∈ SI . Hence, the members of I/IS are called rough
numbers with respect to the approximation space (I, IS).

In pursuance of Lemma 1, any inexact number x ∈ I can be represented by
the interval [x]IS or, equivalently, by the pair of exact numbers IS(x) and IS(x).

Remark 2. In [6], rough real number is studied on the whole real line. The paper
[1] presents many similar number constructions, e.g., interval, fuzzy, grey, vague,
etc. numbers. ��

4 Roughly Constant and Monotone Real Functions

Let I = [0, aI ] and J = [0, aJ ] be two closed intervals with aI , aJ ∈ R
+, aI , aJ >

0. Let SI and PJ be the categorizations of I and J , where SI ={xi}i∈[n], PJ =
{yj}j∈[m] ⊆ R

+ with m,n ≥ 1, 0 = x0 < x1 < · · · < xn = aI and 0 = y0 < y1 <
· · · < ym = aJ . The corresponding IS and JP -approximation spaces are (I, IS)
and (J, JP ).

To make the blocks of the partition I/IS easier to handle, they are enumer-
ated as follows.

NI : I/IS → [2n], [x]IS �→
{
B2i=2i, if ∃i ∈ [n]([x]IS = {xi} ⊂ SI),
B2i+1=2i + 1, if ∃i ∈ [n − 1](x ∈]xi, xi+1[).

The inverse of NI is:

N−1
I : [2n] → I/IS , Bi �→

{{xi/2}, if i ≡ 0 (mod 2)
]x i−1

2
, x i+1

2
[, if i ≡ 1 (mod 2) .

Evidently, there is a one-to-one correspondence between the equivalent classes
of I/IS and [2n], where the elements of [2n] are referred to as Bi’s. Therefore,
equivalent classes of I/IS and Bi’s can and will be used interchangeably. In
particular, Bi = [x]IS will be written for an appropriate i ∈ [2n], and then [x]IS
and Bi will also be used interchangeably.

The equivalent classes of J/JP can be enumerated in the same way by the
help of enumeration function NJ . They are referred to as Cj ’s (j ∈ [2m]).
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Before studying different features of rough real functions, it is important to
note that all of them occur as the result of the superposition of two scales, SI and
PJ . Altering of SI and/or PJ may change the nature of the considered features.
Nevertheless, it may permit one way or another to “improve” the features of
rough real functions.

Definition 1 ([13]). A function f ∈ JI is (SI , PJ )–constant or roughly constant,
if for all i ∈ [2n], f(Bi) ⊆ Cj for some j ∈ [2m].

Example 1. In the running example, let I = [0, x5], J = [0, y4], and
SI = {x0, x1, x2, x3, x4, x5}, PJ = {y0, y1, y2, y3, y4}. Accordingly,

I/IS = {B0 = {x0}, B1 =]x0, x1[, B2 = {x1}, B3 =]x1, x2[, B4 = {x2},

B5 =]x2, x3[, B6 = {x3}, B7 =]x3, x4[, B8 = {x4}, B9 =]x4, x5[, B10 = {x5}},
J/JP = {C0 = {y0}, C1 =]y0, y1[, C2 = {y1}, C3 =]y1, y2[, C4 = {y2},

C5 =]y2, y3[, C6 = {y3}, C7 =]y3, y4[, C8 = {y4}}.
Figure 1 depicts roughly constant functions. ��

Fig. 1. Roughly constant functions

Definition 2 ([13]). A function f ∈ JI is (SI , PJ )–monotone increasing or
roughly monotone increasing, if

– NJ([f(B0)]JP
) = j0 for some j0 ∈ [2m];
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– ji−1 ≤ NJ ([inf f(Bi)]JP
) ≤ NJ([sup f(Bi)]JP

) = ji, where ji−1, ji ∈ [2m]
(i = 1, . . . , 2n).

Roughly monotone decreasing functions can be defined similarly.

Example 2 In Fig. 2(a), the function is roughly monotone increasing, because

– NJ ([f(B0)]JP
) = 3

– 3 ≤ NJ ([inf f(B1)]JP
) = 3 ≤ NJ ([sup f(B1)]JP

) = 7
– 7 ≤ NJ ([inf f(B2)]JP

) = NJ([sup f(B2)]JP
) = 7

– 7 ≤ NJ ([inf f(B3)]JP
) = NJ([sup f(B3)]JP

) = NJ ([inf f(B4)]JP
)

= NJ ([sup f(B4)]JP
) = . . .=NJ([inf f(B8)]JP

)=NJ ([sup f(B8)]JP
)=7

– 7 ≤ NJ ([inf f(B9)]JP
) = 7 ≤ NJ ([sup f(B9)]JP

) = 8
– 8≤NJ ([inf f(B10)]JP

)=NJ ([sup f(B10)]JP
) = 8

In Fig. 2(b), the function is not roughly monotone increasing, because

– NJ ([f(B0)]JP
) = 3, however, 3 > NJ([inf f(B1)]JP

) = 1 (horizontally shaded
area);

– NJ ([inf f(B5)]JP
) = 5 ≤ NJ([sup f(B5)]JP

) = 7 (vertically shaded area),
however, 7 > NJ ([inf f(B6)]JP

) = NJ ([sup f(B6)]JP
) = 5.

The function f may be made roughly monotone increasing, e.g.,

(1) with the help of two dashed line segments (Fig. 2(c)), or
(2) removing y1 and y3 from the categorization PJ (Fig. 2(d)). ��

5 Roughly Continuous Real Functions at Points

Let I and J two intervals with categorizations SI and PJ be given as above.
Throughout this section, let f ∈ JI . By definition, f is defined at every point

of I, and f(I) ⊆ J .

Definition 3 ([12]). A function f ∈ JI is (SI , PJ )–continuous or roughly con-
tinuous at x, if f([x]IS ) ⊆ [f(x)]Jp

. Otherwise, f is (SI , PJ )–discontinuous or
roughly discontinuous at x ∈ I.

Example 3. In Fig. 3(a), roughly continuous points are depicted.

f([xi]IS ) = f([x1, x2]) ⊆ ]y3, y4[ ⊆ [f(xi)]JP
= ]y3, y4[ = [y3, y4]

f([xii]IS ) = f([x2, x3]) ⊆ ]y3, y4[ ⊆ [f(xii)]JP
= ]y3, y4[ = [y3, y4]

that is, f is roughly continuous at xi and xii by definition.
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Fig. 2. Rough monotonicity

Figure 3(b) shows roughly discontinuous points.

f([xiii]IS ) = f([x0, x1]) ⊆ ]y1, y4[ �⊆ [f(xiii)]JP
= ]y1, y2[ = [y1, y2]

f([xiv]IS ) = f([x2, x3]) ⊆ ]y3, y4[ ∪ {f(xiv)} �⊆ [f(xiv)]JP
= ]y2, y3[ = [y2, y3],

f([xv]IS ) = f([x3, x4]) ⊆ ]y3, y4[ ∪ {f(x4)} �⊆ [f(xv)]JP
= ]y3, y4[ = [y3, y4],

f([xvi]IS ) = f([x4, x5]) ⊆ ]y3, y4] ∪ {f(x4)} �⊆ [f(xvi)]JP
= {y4} = {y4},

that is, f is roughly discontinuous at points xiii, xiv, xv, and xvi by definition.
This example also shows that a function which is continuous at a point in

the classical sense, it is not necessary roughly continuous at the same point (e.g.,
xiii, xv, xvi). On the contrary, if a function is discontinuous at a point in the
classical sense, it may be roughly continuous at the same point (e.g., xii, x4).��

Proposition 1. A function f ∈ JI is (SI , PJ )–continuous at every x ∈ SI

roughly isolated point.

Proof. For any x ∈ SI , [x]IS = {x}. And so, f([x]IS ) = f({x}) = {f(x)} ⊆
[f(x)]Jp

��
Example 4. Figure 4 demonstrates that the function f is roughly continuous at
various roughly isolated points.
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Fig. 3. Rough continuity–discontinuity

– f([x0]IS ) = f({x0}) = {f(x0)} ⊆ [f(x0)]JP
=[y1, y2];

– f([x2]IS ) = f({x2}) = {f(x2)} ⊆ [f(x2)]JP
=[y3, y4];

– f([x4]IS ) = f({x4}) = {f(x4)} ⊆ [f(x4)]JP
=[y2, y3];

– f([x5]IS ) = f({x5}) = {f(x5)} = [f(x5)]JP
= {y4}. ��

Fig. 4. Rough continuity at roughly isolated points

6 Roughly Continuous Real Functions on Sets

Definition 4. A function f ∈ JI , is (SI , PJ)–continuous on I ′ ⊆ I or roughly
continuous on I ′ ⊆ I, if f is (SI , PJ )–continuous at every point of I ′. Otherwise,
f is not roughly continuous on I ′.

Function f is (SI , PJ )–discontinuous on I ′ ⊆ I or roughly discontinuous on
I ′ ⊆ I, if f is (SI , PJ )–discontinuous at every point of I ′.
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Remark 3. Definition 4 differentiates between not rough continuity and rough
discontinuity on sets. f is not roughly continuous, if it has at least one roughly
discontinuous point, but roughly discontinuous, if it is discontinuous at every
point. ��
Definition 5. Let x ∈ I, but x /∈ SI . Let IPC

i and ICP
i denote the following

proper subsets of Bi = [x]IS (i ∈ [2n], i ≡ 1 (mod 2)) which are defined as

IPC
i ={x′ ∈ [x]IS |f(x′)=yj for any j ∈ [m],where f touches y = yj} � Bi

ICP
i ={x′ ∈ [x]IS |f(x′)=yj , for any j ∈ [m],where f intersects y = yj} � Bi.

Let IPC,CP
i = IPC

i ∪ ICP
i .

Remark 4. The acronyms “PC” and “CP” refer to “Point of Contact” and
“Cross Point”, respectively. ��
Lemma 2. With the notations of Definition 5, if IPC,CP

i �=∅, f(Bi) contains at
least one open interval from J/JP whose intersection with f(Bi) is nonempty.

Proof. If ICP
i �= ∅ and f intersects, e.g., the straight line y = yj , f(Bi)∩C2j−1 �=∅

and f(Bi) ∩ C2j+1 �= ∅.
If IPC

i �= ∅ and f touches, e.g., the straight line y = yj′ , f(Bi) ∩ C2j′−1 �= ∅
or f(Bi) ∩ C2j′+1 �= ∅ depending on f . ��

Proposition 2. Let
⋃

i I
PC,CP
i �= ∅. Function f is (SI , PJ )–discontinuous on⋃

i I
PC,CP
i .

Proof. For some IPC,CP
i �= ∅, let x ∈ IPC,CP

i be an arbitrary point in
⋃

i I
PC,CP
i .

Then, x ∈ Bi (i ∈ [2n], i ≡ 1 (mod 2)) and f(x) = yj for some j ∈ [m], i.e., f
touches or intersects the straight line y=yj at x ∈ Bi. Applying Lemma 2, f(Bi)
contains at least one open interval from J/JP whose intersection with f(Bi) is
nonempty. Consequently, f(Bi) = f([x]IS ) �⊆ [f(x)]JP

= {yj}. ��
It is easy to see the following important corollary.

Corollary 1. If f is (SI , PJ )–continuous on I,
⋃

i I
PC,CP
i = ∅.

Proof. On the contrary, let us assume that
⋃

i I
PC,CP
i �= ∅. Then, applying

Proposition 2, there exists at least one point in I at which f is roughly dis-
continuous. However, it contradicts the condition that f is roughly continuous
on I. ��

7 Rough Jump Discontinuity

Corollary 1 means geometrically that a roughly continuous function neither
touches nor intersects any straight line y = yj (j ∈ [m]) on every open interval
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of I/IS . Nevertheless, the converse statement is not true. Namely, if a function
neither touches nor intersects any straight line y = yj (j ∈ [m]) on every open
interval of I/IS , it may be not roughly continuous on I. That is, there must
be a third kind of discontinuity which may damage the rough continuity of a
function.

Definition 6. The rough discontinuity of f is called

– the rough jump discontinuity of the first kind, if it is derived from touching a
straight line y = yj for some j ∈ [m];

– the rough jump discontinuity of the second kind, if it is derived from inter-
secting a straight line y = yj for some j ∈ {1, 2, . . . ,m − 1};

– any other type of discontinuity is called the rough jump discontinuity of the
third kind.

It should be noted that when f touches or intersects a straight line y = yj for
some j ∈ [m] at a roughly isolated point, f is roughly continuous at this point
automatically by Proposition 1.

The following proposition shows that the rough jump discontinuity of the
third kind actually exists.

Proposition 3. With the notations of Definition 5, let IPC,CP
i = ∅. Then, one

can construct a function f which is (SI , PJ )–discontinuous on Bi.

Proof. The first variant of f . Let IPC,CP
i = ∅ and f(Bi) ⊆ Cj for some j ∈ [2m]

(j ≡ 1 (mod 2)) except only one point x′ ∈ Bi in such a way that f(x′) /∈ Cj .
Since f(x′) /∈ Cj , so f(x′) ∈ Cj′ for some j′ ∈ [2m] with j′ �= j − 1, j, j + 1.
Then, f([x′]IS ) = f(Bi) ⊆ Cj ∪ {f(x′)} �⊆ [f(x′)]JP

= Cj′ . In addition, for any
x′′ ∈Bi \ {x′}, f([x′′]IS )=f(Bi) ⊆ Cj ∪ {f(x′)} �⊆ [f(x′′)]JP

=Cj .
The last two statements mean that f is roughly discontinuous on Bi.
The second variant of f . Let f(Bi) ⊆ Cj for some j ∈ [2m] (j ≡ 1 (mod 2)),

and f(x i−1
2

) /∈ Cj and/or f(x i+1
2

) /∈ Cj . Then, similarly to the first variant of
f , it can be proved that f is also roughly discontinuous on Bi. ��
Example 5. Figure 5(a) depicts rough jump discontinuity of the third kind in
order to illustrate Proposition 3.

The first variant. IPC,CP
5 = ∅ and f(B5) = f([x2, x3]) ⊆ C7 = [y3, y4] except

only one point x′ ∈ B5 in such a way that f(x′) ∈ C5 = [y2, y3]. Then,

f([x′]IS ) = f([x2, x3]) ⊆ [y3, y4] ∪ {f(x′)} �⊆ [f(x′)]JP
= [y2, y3].

Let x′′ ∈ B5 \ {x′}. Then,

f([x′′]IS )=f(B5) ⊆ [y3, y4] ∪ {f(x′)} �⊆ [f(x′′)]JP
= [y3, y4].

In conclusion, f is roughly discontinuous on B5. ��
The second variant. IPC,CP

7 = ∅ and f(B7) = f(]x3, x4[) ⊆ C7 =]y3, y4[ and
f(x4) �∈ C7 = [y3, y4]. Although, f is roughly continuous at x4 because it is a
roughly isolated point, x4 makes f roughly discontinuous on B7.
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In order to show it, let x ∈ B7 = ]x3, x4[ . Then,

f([x]IS ) = f([x3, x4]) ⊆ ]y3, y4[∪{f(x4)} �⊆ [f(x)]JP
= [y3, y4]. ��

Rough jump discontinuity of the third kind may also arise, but not neces-
sarily, when IPC

i = Bi. (In this case, the notion of IPC
i is temporarily used in

an extended way.) In Fig. 5(b), IPC
1 = B1, IPC

3 = B3, IPC
9 = B9. Nevertheless,

function f is roughly continuous on B1, but roughly discontinuous on B3 and
B9 owing to the rough jump discontinuity of the third kind. In conclusion, f is

– roughly continuous on B1, because
f([x]IS ) = {y1} = [f(x)]JP

(x ∈ B1);
– roughly discontinuous on B3, because

f([x]IS ) = {y1} ∪ {y2} �⊆ [f(x)]JP
= {y2} (x ∈ B3);

– roughly continuous on B5, because
f([x]IS ) = {y2} ∪ {f(x)} ⊆ [f(x)]JP

= [y2, y3] (x ∈ B5);
– roughly continuous on B7, because

f([x]IS ) = {f(x3)} ∪ {f(x)} ⊆ [f(x)]JP
= [y2, y3] (x ∈ B7);

– roughly discontinuous on B9, because
f([x]IS ) = {f(x4)} ∪ {y4} �⊆ [f(x)]JP

= {y4} (x ∈ B9).

Fig. 5. Rough jump discontinuities

Proposition 4. A function f ∈ JI is (SI , PJ)–continuous on I if and only if f
does not have jump discontinuity of any kind.

Proof. It follows from Definition 6 and Corollary 1, Proposition 3. ��
Proposition 5. With the notations of Definition 5, let IPC

i �=∅ but ICP
i =∅. In

addition, let us assume that f does not have any rough jump discontinuity of
the third kind on Bi. Then, f is (SJ , PJ)–discontinuous on IPC

i , but (SJ , PJ)–
continuous on Bi \ IPC

i .
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Proof. The rough discontinuity of f on IPC
i follows directly from Proposition 2.

Turning to the second statement of the proposition, let ICP
i = ∅ but IPC

i �= ∅
and assume that f does not have any rough jump discontinuity of the third kind
on Bi. Taken together, these conditions mean that f does not intersect any
straight line y = yj , but touches at least one but at most two straight lines,
maybe more times, on Bi.

Let us assume that f touches the straight lines y = yj and/or y = yj+1 for
some j = 0, 1, . . . ,m − 1. Then, f([x]IS ) is the subset of one of the intervals
[yj , yj+1[, ]yj , yj+1], [yj , yj+1] depending on whether f touches either y = yj or
y = yj+1, or both of them.

Let x ∈ Bi \ IPC
i . In this case, f touches neither yj , nor yj+1, i.e., f(x) ∈

]yj , yj+1[ , and so [f(x)]JP
= [yj , yj+1]. Therefore, f([x]IS ) ⊆ [f(x)]JP

. ��
Proposition 6. With the notations of Definition 5, if ICP

i �= ∅, function f is
(SJ , PJ)–discontinuous on Bi.

Proof. If ICP
i �= ∅, f intersects at least one straight line y = yj for some j ∈

{1, . . . , m − 1}. Then, the intersections of f([x]IS ) with at least the following
two intervals C2j−1, C2j+1 are nonempty. However, [f(x)]JP

forms only exactly
one interval from J/JP . Consequently, f([x]IS ) ⊆ [f(x)]JP

cannot hold for any
x ∈ Bi. ��
Example 6. Figure 5(a) depicts rough jump discontinuities of different types.

Rough jump discontinuity points of the first kind There are such points in B1,
B3, and B9: f touches the straight lines y = y2 in B1 and y = y4 in B3. In
B9, a segment of the straight line y = y4 consists of touching points.
Applying Proposition 5, f is not roughly continuous on B3, because it is
roughly discontinuous at the touching point, but it is roughly continuous
everywhere else on B3.

Rough jump discontinuity points of the second kind There are four such points in
B1, namely, f intersects the straight line y = y2 two times, and the straight
line y = y3 two times as well.
f is roughly discontinuous on B1 by Proposition 6.

Rough jump discontinuity of the third kind There is a jump discontinuity of the
third kind on B5 owing to x′.
Although, f is roughly continuous at x4 because it is a roughly isolated point,
it causes rough jump discontinuities of the third kind on B7 and B9. ��

8 Rough Darboux Property

Definition 7 ([11]). A function f ∈ JI has the (SI , PJ )–Darboux property or
rough Darboux property, if for all i ∈ [2n] f(Bi) ⊆ Cj for some j ∈ [2m] in such
a way that for any interval pair (Bi, Bi+1) (i = 0, 1, 2, . . . , 2n − 1),

NJ (f(Bi+1)) = NJ(f(Bi)) + α with α ∈ {−1, 0, 1}.
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Remark 5. In the classical real analysis, the Darboux property means that if
f : [a, b] → R is real value function defined on a closed bounded interval and
k is a number between f(a) and f(b), then there is at least one point c ∈]a, b[
in such a way that f(k) = c. This property is also known as the Intermediate
Value Property (IVP). Both the Darboux property and IVP have many other
formulations and generalizations, in some cases they are not equivalent.

Until the work of Darboux in 1875 some mathematicians believed that this
property actually implied continuity of f(x). Darboux showed that there
are discontinuous functions with the property of Darboux. ([3], p. 111)

According to Darboux’s famous theorem, Intermediate Value Property holds for
every derivative function independently of whether it is continuous or not (see,
e.g., [2], Theorem 6.2.12, p. 178).

Intermediate Value Property expresses an intuitive property of continuous
functions. Pawlak’s notion of Darboux property also captures this intuitive prop-
erty of roughly continuous functions, of course, in the roughly real function con-
text. ��
Proposition 7. If f (SI , PJ)–continuous on I, f has (SI , PJ )–Darboux prop-
erty.

Proof. Applying Proposition 4, f does not have rough jump discontinuity of any
kind. Hence, for all i ∈ [2n], f(Bi) ⊆ Cj holds for some j ∈ [2m]. Moreover,
f(Bi) ⊆ Cj also holds by the definition of rough continuity (Definition 3). (It is
noted, that f(Bi) ⊆ Cj does not imply necessarily the inclusion f(Bi) ⊆ Cj .)

– Let f(Bi) = {yj} = C2j for some i = 0, 1, . . . , 2n − 1, where {yj} ∈ PJ

(j ∈ [m]) is a roughly isolated point. The function f can leave this straight
line segment only through its endpoint

(
x i+1

2
, yj

)
, otherwise f would not be

roughly continuous on Bi. It means that only the following three cases are
possible:

(1) f(Bi+1) ⊆ C2j+1, i.e., α = 1;
(2) f(Bi+1) ⊆ C2j , i.e., α = 0;
(3) f(Bi+1) ⊆ C2j−1, i.e., α = −1.

– Let f(Bi) = Cj for some i = 0, 1, . . . , 2n − 1, where Cj ∈ PJ is an open
interval. In this case j ∈ [2m] with j ≡ 1 (mod 2). The function f can leave
the open interval Cj only through

(1) its endpoint
(
x i+1

2
, y j+1

2

)
, in which case f(Bi+1) ⊆ Cj+1, i.e., α = 1;

(2) the open interval
]
y j−1

2
, y j+1

2

[
, in which case f(Bi+1) ⊆ Cj , i.e., α = 0;

(3) its endpoint
(
x i+1

2
, y j−1

2

)
, in which case f(Bi+1)⊆Cj−1, i.e., α=−1. ��

Example 7. In Fig. 6(a), f is roughly continuous on I and possesses the rough
Darboux property:

– NJ(f(B0)) = 2, NJ(f(B1)) = 2 + 1 = 3, NJ (f(B2)) = 3 + 1 = 4,
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– NJ (f(B3)) = 4 + 1 = 5, NJ(f(B4)) = 5 + 1 = 6, NJ (f(B5)) = 6 + 0 = 6,
– NJ (f(B6)) = 6 + 0 = 6, NJ(f(B7)) = 6 − 1 = 5, NJ (f(B8)) = 5 + 0 = 5,
– NJ (f(B9)) = 5 + 0 = 5, NJ(f(B10)) = 5 − 1 = 4. ��
Proposition 8. If f has the (SI , PJ )–Darboux property, f is not necessarily
roughly continuous.

Proof. This statement is proved by an example in which the function f has the
rough Darboux property, but it is not roughly continuous.

Let f(x) = y2 on I except that f(x3) ∈ C3 (see Fig. 6(b)).
f has the rough Darboux property because

– NJ (f(B0))=4,
– NJ (f(B1))=NJ (f(B2))=NJ (f(B3))=NJ (f(B4))=NJ (f(B5))=4 + 0=4,
– NJ (f(B6))=4 − 1=3,
– NJ (f(B7))=NJ (f(B8))=NJ (f(B9))=NJ (f(B10))=3 + 1 = 4,

but f is not roughly continuous on I because

– for any x′ ∈ B5, f([x′]JP
) = {y2} ∪ {f(x3)} �⊆ [f(x′)]JP

= {y2},
– for any x′′ ∈ B7, f([x′′]JP

) = {y2} ∪ {f(x3)} �⊆ [f(x′′)]JP
= {y2}. ��

Fig. 6. Rough Darboux property

9 Conclusions

In this paper, the most fundamental properties of rough continuity of rough real
functions have been studied systematically. It is a subfield of the rough calculus
which was originated by Pawlak in the mid 1990s. Among other things, such a
notion of rough Darboux property has been proposed which preserves its classical
feature: rough continuous functions have rough Darboux property, but the rough
Darboux property does not imply the rough continuity of rough functions.

Acknowledgement. The authors would like to thank the anonymous referees for
their useful comments and suggestions.
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Abstract. We consider relationship between binary relations in approx-
imation spaces and topologies defined by them. In any approximation
space (X,R), a reflexive closure Rω determines an Alexandrov topology
T(Rω) and, for any Alexandrov topology T on X, there exists a reflexive
relation RT such that T = TR. From the result, we also obtain that
any Alexandrov topology satisfying (clop), A is open if and only if A is
closed, can be characterized by reflexive and symmetric relation.

Moreover, we provide a negative answer to the problem left open in [1].

Keywords: Approximation space · (Alexandrov) Topology ·
Residuated lattice

1 Introduction

Since Pawlak [6] introduced a notion of rough sets in 1982, many papers about
rough sets are published and extended to more general cases. One of the most
important concept in rough sets is an approximation space (X,R), where X is a
finite non-empty set and R is an equivalence relation on X. Now, different kinds
of generalizations of approximation spaces are obtained by replacing X to be
an infinite set and the equivalence relation R to be an arbitrary binary relation
on X. In this paper, we treat an approximation space (X,R) of generalized
rough sets, that is, we do not restrict X to be finite and moreover R is not
always an equivalence relation. We consider fundamental topological properties
of approximation spaces induced by binary relations and prove that

1. For any binary relation R on X, a reflexive closure Rω of R forms an Alexan-
drov topology T(Rω) = {A ⊆ X | (Rω)−(A) = A}.

2. A topology T ∗ = {A ⊆ X |A is R − open} defined by a binary relation R is
identical with the topology T(Rω).

Moreover, we consider another topology (uniform topology) on residuated
lattices which are algebraic semantics of fuzzy logics and solve an open problem
[1] left open by providing a counterexample.
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2 Preliminaries

Let (X,R) be an approximation space of a generalized rough set, that is, X is
a non-empty set and R is a binary relation on X. We define three operators R
(we use the same symbol as the approximation space for the sake of simplicity),
R− and R+ as follows: For every x ∈ X and A ⊆ X,

R(x) = {y ∈ X |xRy}
R(A) = {y ∈ X | ∃y ∈ A s.t. xRy} = ∪x∈AR(x)

R−(A) = {x ∈ X |R(x) ⊆ A} = {x ∈ X | ∀y (xRy → y ∈ A)}
R+(A) = {x ∈ X |R(x) ∩ A 	= ∅} = {x ∈ X | ∃y ∈ A s.t. xRy}

It is clear that

R+(A) = (R−(Ac))c and R−(A) = (R+(Ac))c

Moreover, we have

Proposition 1 For all A,B ⊆ X,

R(A) ⊆ B ⇔ A ⊆ R−(B),

that is, the operator R is a left adjoint operator of R−.

Proof. Suppose R(A) ⊆ B and x ∈ A. For all y ∈ X, if xRy, since x ∈ A, then
we have y ∈ R(A) ⊆ B, that is, x ∈ R−(B). This means that A ⊆ R−(B).

Conversely, we assume that A ⊆ R−(B) and y ∈ R(A). There exists x ∈ A
such that xRy. This implies that x ∈ A ⊆ R−(B) and hence y ∈ B. We get
R(A) ⊆ B. �

We note that R(A) = (R−1)+(A) for all A ⊆ X. Since R− and R+ are dual
operators, we mainly treat R− in this paper. With respect to the operator R−,
we have

Proposition 2 For any relation R on X,

1. A ⊆ B =⇒ R−(A) ⊆ R−(B);
2. R−(

⋂
λ Aλ) =

⋂
λ R−(Aλ);

3.
⋃

λ R−(Aλ) ⊆ R−(
⋃

λ Aλ);
4. xRy ⇔ x ∈ (R−({y}c))c for all x, y ∈ X.

Corollary 1 Let R and S be binary relations on X. If the operators R−, S− are
identical, then so the two relations are, that is,

R− = S− ⇐⇒ R = S.

Proof. Suppose that R 	= S. Since there exists (x, y) ∈ X × X such that xRy
but not xSy. Since xRy, we have

x ∈ (R−({y}c))c = (S−({y}c))c.

This means that xSy. But this is a contradiction. Thus, if R− = S− then we
have R = S. �
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For a binary relation R on X,

R is serial ⇔ ∀x∃y xRy.
R is reflexive ⇔ ∀xxRx.
R is symmetric ⇔ ∀x∀y (xRy → yRx).
R is transitive ⇔ ∀x∀y ∀z (xRy ∧ yRz → xRz).
R is weakly dense ⇔ ∀x∀y (xRy → ∃z (xRz ∧ zRy)).
R is Euclidean ⇔ ∀x∀y ∀z (xRy ∧ xRz → yRz).

We have following results which are reminiscent of correspondence between
R− (R+) operators and modal operators � (♦) in modal logics:

Proposition 3 For any binary relation R on X,

1. R is serial ⇐⇒ R−(A) ⊆ R+(A) for all A ⊆ X.
2. R is reflexive ⇐⇒ R−(A) ⊆ A for all A ⊆ X;
3. R is symmetric ⇐⇒ A ⊆ R−((R−(Ac))c) = R+(A) for all A ⊆ X;
4. R is transitive ⇐⇒ R−(A) ⊆ R−(R−(A)) for all A ⊆ X.
5. R is weakly dense ⇐⇒ R+(A) ⊆ R+(R+(A)) for all A ⊆ X.
6. R is Euclidean ⇐⇒ R+(A) ⊆ R−(R+(A)) for all A ⊆ X.

The results above makes us to introduce topologies on approximation spaces of
generalized rough sets, which is an analogy to do for modal logics.

Now we consider a following family of subsets constructed by the operator R−:

TR = {A ⊆ X |R−(A) = A}

Then, it naturally occurs questions:

Q1: Under what conditions, does a family TR of subsets form a topology
on an approximation space (X,R)?
Q2: If we consider an approximation space (X,R) based on other algebras,
then what properties does have the topology TR on (X,R)?

With respect to the second question Q2, there is a problem left open in [1]:

Let (X, τ) be a topological residuated lattice, that is, X = (X,∧,∨,�,→
, 0, 1) is a residuated lattice, τ is a topology on X and two operations �,
→ are continuous with respect to τ . Then, does the following hold?

� is continuous if and only if → is continuous.

We provide a negative answer to the question by indicating a counterexample.

3 Topologies Induced by Relations

Let X be a non-empty set and R be a relation on X. A subset A ⊆ X is called
R-open if x ∈ A and xRy then y ∈ A. By T ∗, we mean the class of all R-open
subsets of X. We also define a family TR of subsets induced by the relation R:
T ∗ = {A ⊆ X |A is R−open} and TR = {A ⊆ X |R−(A) = A}.
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Proposition 4 A is R-open if and only if A ⊆ R−(A) if and only if R(A) ⊆ A.

Moreover, we have the following result.

Proposition 5 For arbitrary binary relation R on X, the family T ∗ forms an
Alexandrov topology, that is, a topology closed under intersection.

Proof. We only show that ∩λAλ ∈ T ∗ for all Aλ ∈ T ∗. Let x ∈ ∩λAλ and xRy.
Since x ∈ Aλ and Aλ is R-open for all λ, we get y ∈ Aλ and thus y ∈ ∩λAλ.
This means that ∩λAλ is R-open, that is, ∩λAλ ∈ T ∗. �

In [4], it was also proved that if R is reflexive then TR is an Alexandrov
topology on X. Now we have a naive question whether T ∗ is identical with TR

for a reflexive relation R.

Proposition 6 If R is reflexive then T ∗ = TR.

Proof. Taking into account of the fact R−(A) ⊆ A for a reflexive relation R, we
have that A ∈ T ∗ iff A is R-open iff A ⊆ R−(A) and R−(A) ⊆ A iff R−(A) = A
iff A ∈ TR. Therefore, we get T ∗ = TR. �

We have a little bit generalization of the result above. Let R be an arbitrary
binary relation on X. We define Rω = R ∪ ω, where ω = {(x, x) |x ∈ X}. It
is obvious that Rω is the smallest reflexive relation containing R, that is, Rω is
the reflexive closure of R. It follows from the above that T(Rω) is an Alexandrov
topology.

Lemma 1 For any relation R, T(Rω) is an Alexandrov topology.

Theorem 1 Let (X,R) be an approximation space. The topology T ∗ of all R-
open subsets is identical with the topology T(Rω) induced by reflexive closure of
R, that is, T ∗ = T(Rω).

Proof. Let A ∈ T ∗. Since Rω is reflexive, it is sufficient to show A ⊆ (Rω)−(A).
Let x ∈ A. For all y ∈ X, if xRωy then we have x = y or xRy. If x = y then it is
obvious that y = x ∈ A. If xRy, since A is R-open and x ∈ A, then we get y ∈ A.
In any case y ∈ A for all y such that xRωy. This means that x ∈ (Rω)−(A) and
A ⊆ (Rω)−(A). Thus we have T ∗ ⊆ T(Rω).

Conversely, suppose that A ∈ T(Rω). Let x ∈ A and xRy. It follows from
xRωy and x ∈ A ⊆ (Rω)−(A) that y ∈ A and A is R-open. This implies that
A ∈ T ∗ and T(Rω) ⊆ T ∗.

Therefore T ∗ = T(Rω). �

Moreover, as proved in [5], if R is reflexive the TR = T(R∗), where R∗ is a
transitive closure of R, that is, R∗ =

⋃
n≥1 Rn. It follows that

Theorem 2 For any binary relation R on X, the families T ∗, T(Rω) and T(Rω)∗

form a same Alexandrov topology.
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Example 1. Let X = {0, 1, 2} and R be a relation defined by

R = {(0, 0), (2, 2), (0, 1), (1, 2)}.

Then it is clear that

Rω = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2)}

and its transitive closure (Rω)∗ is

(Rω)∗ = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 2), (0, 2)}.

For example, {1} is not R-open, because 1 ∈ {1} and 1R2 but 2 /∈ {1}. On the
other hand, {2} is R-open. All R-open sets are ∅, {2}, {1, 2} and X, that is,

T ∗ = {∅, {2}, {1, 2},X}.

Since, (Rω)−({0}) = (Rω)−({1}) = ∅, (Rω)−({2}) = {2}, (Rω)−({0, 1}) =
{0}, (Rω)−({0, 2}) = {2} and (Rω)−({1, 2}) = {1, 2}, we get

T(Rω) = {∅, {2}, {1, 2},X}

On the other hand, since ((Rω)∗)−({0}) = ((Rω)∗)−({1}) = ∅, ((Rω)∗)−({2}) =
{2}, ((Rω)∗)−({0, 1}) = ((Rω)∗)−({0, 2}) = ∅ and ((Rω)∗)−({1, 2}) = {1, 2}, we
also have

T(Rω)∗ = {∅, {2}, {1, 2},X} = T(Rω).

We note that ((Rω)∗)−({0, 1}) = ∅ ∈ T(Rω)∗ = T(Rω) but (Rω)−({0, 1}) = {0}
is not an open set, because of {0} /∈ T(Rω) = T(Rω)∗ . Therefore, two different
operators (Rω)− 	= (Rω)∗

− construct the same topology.

Conversely we can show that

Lemma 2 For any Alexandrov topology T , there exists a reflexive relation rela-
tion RT on X such that T = T(RT )

Proof. Let T be an Alexandrov topology. We define an operator I as follows:
For every subset A ⊆ X, the operator I is defined by

I(A) =
⋃

{O ∈ T |O ⊆ A}.

We note I(A) ∈ T . Using this operator, we also define a relation R on X as
follows: For all x, y ∈ X,

xRT y ⇐⇒ ∀B ⊆ X (x ∈ I(B) → y ∈ B).

Then, it is obvious that RT is a reflexive relation. We show that (RT )−(A) =
I(A) for all A ⊆ X. If x ∈ I(A), then we have y ∈ A for any y such that
xRT y and thus x ∈ (RT )−(A). This means I(A) ⊆ (RT )−(A). Conversely, let
x /∈ I(A). We take

Γ = {B ⊆ X |x ∈ I(B)} ∪ {Ac}.
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Then we claim ⋂
Γ 	= ∅.

Otherwise, we have
⋂

Γ = ∅, that is,
⋂

{B |x ∈ I(B)} ∩ Ac = ∅.

This means that ⋂
{B |x ∈ I(B)} ⊆ A

and hence that
I(

⋂
{B |x ∈ I(B)}) ⊆ I(A).

Since T satisfies the condition (IP), it follows
⋂

{I(B) |x ∈ I(B)} ⊆ I(A).

This implies x ∈ I(A), but this is a contradiction. Thus we conclude that
⋂

Γ 	=
∅. Since y ∈

⋂
Γ for some y, we have xRT y and y 	∈ A. Hence

x 	∈ (RT )−(A).

That is, (RT )−(A) ⊆ I(A) and

(RT )−(A) = I(A).

Now we prove T = T(RT ). Suppose that O ∈ T . We have O = I(O) =
(RT )−(O) and thus O ∈ T(RT ), that is, T ⊆ T(RT ). Conversely, if O ∈ T(RT )

then O = (RT )−(O) = I(O) ∈ T , that is, T(RT ) ⊆ T . Therefore, T = T(RT ). �

Remark 1. The relation RT defined above by an Alexandrov topology T is not
only reflexive but also transitive. It is easy to prove that xRT y if and only
x ∈ {y}−.

It follows from the above that

Theorem 3 Every Alexandrov topology can be constructed by a reflexive rela-
tion.

Moreover, we have following characterization theorems of Alexandrov topolo-
gies with some properties (cf. [4]). We consider an interesting topological prop-
erty called (clop) here. We say that a topology has the property (clop) if it
satisfies the following property.

For every subset A,A is open if and only if A is closed.

For instance, the discrete topology has the property (clop). Any Alexandrov
topology with (clop) can be characterized as follows.
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Theorem 4 ([4])

1. Every Alexandrov topology satisfying (clop) can be characterized by a reflexive
and symmetric relation.

2. Every Alexandrov topology induced by an interior operator can be character-
ized by a reflexive and transitive relation.

Proof. We only show the second case. It is obvious that if a relation R is reflexive
and transitive then R− is an interior operator and hence the topology TR induced
by the interior operator R− is the Alexandrov topology. Conversely, let T be an
Alexandrov topology induced by an interior operator I, that is,

(1) I(A) ⊆ A for all A ⊆ X;
(2) I(A) = I(I(A)) for all A ⊆ X;
(3) I(A ∩ B) = I(A) ∩ I(B) for all A,B ⊆ X;
(IP) I(

⋂
λ Aλ) =

⋂
λ I(Aλ) for all Aλ ∈ T .

Then the topology T can be represented by

T = {I(A) |A ⊆ X}.

We take the relation Rτ defined by

xRτy ⇔ ∀B ⊆ X (x ∈ I(B) → y ∈ B).

It follows from the proof of Lemma 2 that (Rτ )−(A) = I(A) for all A ⊆ X. Thus,
we obtain T = T(Rτ ). This means that for any Alexandrov topology T induced
by an interior operator, there exists a reflexive and transitive relation R such
that T = T(Rτ ).

Therefore, every Alexandrov topology induced by an interior operator is char-
acterized by a reflexive and transitive relation. �

We also consider topologies of direct products of approximation spaces. Let
(Xλ, Rλ) be an approximation space for all λ ∈ Λ. A binary relation R on the
direct product Πλ∈ΛXλ (simply denoted by ΠλXλ) of Xλ is defined: For all
x, y ∈ ΠλXλ,

xRy ⇔ ∀λ ∈ Λ x(λ)Rλy(λ).

Proposition 7 R−(ΠλAλ) = Πλ(Rλ)−(Aλ)

Proof. Suppose that x ∈ R−(ΠλAλ). For all λ ∈ Λ, it is sufficient to show
x(λ) ∈ (Rλ)−(Aλ). For any yλ ∈ Xλ, if x(λ)Rλyλ, by Axiom Choice (AC), then
there exists y ∈ ΠλXλ such that yλ = y(λ) for all λ ∈ Λ. Since x(λ)Rλy(λ) for
all λ ∈ Λ and thus xRy, we have y ∈ ΠλAλ by x ∈ R−(ΠλAλ). This means
that yλ = y(λ) ∈ Aλ, that is, x(λ) ∈ (Rλ)−(Aλ) for all λ ∈ Λ. Therefore,
x ∈ Πλ(Rλ)−(Aλ) and R−(ΠλAλ) ⊆ Πλ(Rλ)−(Aλ).

Conversely, we assume x ∈ Πλ(Rλ)−(Aλ). For any y ∈ ΠλXλ, if xRy, since
x(λ)Rλy(λ) and x(λ) ∈ (Rλ)−(Aλ) for all λ ∈ Λ, then we have y(λ) ∈ Aλ and
thus y ∈ ΠλAλ. This implies x ∈ R−(ΠλAλ) and Πλ(Rλ)−(Aλ) ⊆ R−(ΠλAλ).

Therefore, we obtain the result R−(ΠλAλ) = Πλ(Rλ)−(Aλ). �



On Topologies Defined by Binary Relations in Rough Sets 73

4 Uniform Topology

In this section, we consider an open problem [1] and solve it by providing a
counterexample. In general, to introduce topologies on algebras is to define open
sets in the algebras, that is, to define a family of subsets satisfying the axiom
of topology. A uniform topology, introduced by A. Weil and so on, is a topology
defined by equivalence relations and is researched by many people. We define
uniform topologies on (commutative) residuated lattices and prove some funda-
mental results, moreover, we solve the problem left open in [1].

At first, we define a residuated lattice. An algebraic structure X =
(X,∧,∨,�,→, 0, 1) is called a residuated lattice if

(1) (X,∧,∨, 0, 1) is a bounded lattice;
(2) (X,�, 1) is a commutative monoid;
(3) For all x, y, z ∈ X,

x � y ≤ z ⇔ x ≤ y → z.

The class of all residuated lattices is an important algebraic semantics for study-
ing properties of fuzzy logics. A binary relation R on X is called a congruence
relation if it is an equivalence relation and satisfies the compatibility property
(CP):

(CP) If (x, y), (u, v) ∈ R then (x ∗ u, y ∗ v) ∈ R, where ∗ ∈ {∧,∨,�,→}.

A non-empty subset F (⊆ X) is called a filter if

(F1) If x, y ∈ F then x � y ∈ F ;
(F2) If x ∈ F and x ≤ y then y ∈ F .

By Fil(X), we mean the set of all filters of X. We denote the set of all congru-
ences on X by Con(X). Then it is well-known that

Proposition 8
Fil(X) ∼= Con(X)

It follows from the above that the quotient structure X/F = {x/F |x ∈ X} is
also a residuated lattice under the following operations: For all x/F, y/F ∈ X/F ,

x/F ◦ y/F = (x ◦ y)/F , where ◦ ∈ {∧,∨,→,�}.

Let F ∈ Fil(X). A binary relation R on X is called compatible with a filter
F if xRy and x ↔ a, y ↔ b ∈ F then aRb, where x ↔ a is an abbreviation of
(x → a) ∧ (a → x).

It is easy to show that if R is compatible with F then a binary relation R/F
is well-defined on the quotient residuated lattice X/F , where R/F is defined by

x/F (R/F )y/F ⇔ xRy.

The following result can be proved directly from the definition of compatibility.
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Proposition 9 Let R be a binary relation compatible with a filter F . Then

1. R is reflexive ⇔ R/F is reflexive;
2. R is symmetric ⇔ R/F is symmetric;
3. R is transitive ⇔ R/F is transitive;

Let R be a relation on a residuated lattice X, which is compatible with F . Since
R/F is the relation on the residuated lattice X/F , we define an operator (R/F )−
on X/F and consider its properties.

Lemma 3 For every subset A ⊆ X,

R−(A)/F ⊆ (R/F )−(A/F ).

Proof. Suppose x/F ∈ R−(A)/F . There exists a ∈ R−(A) such that x/F = a/F ,
that is, x ↔ a ∈ F . For every y/F ∈ X/F , since R is compatible with F , if
x/F (R/F )y/F then xRy and hence aRy. This means y ∈ A from a ∈ R−(A)
and y/F ∈ A/F . Therefore, we get x/F ∈ (R/F )−(A/F ) and R−(A)/F ⊆
(R/F )−(A/F ). �

Conversely,

Lemma 4 If F ⊆ A and A ∈ Fil(X), then we have

(R/F )−(A/F ) ⊆ R−(A)/F.

Proof. Suppose that x/F ∈ (R/F )−(A/F ). If xRy, since x/F (R/F )y/F , then
y/F ∈ A/F and hence there exists an element a ∈ A such that y/F = a/F .
Since y ↔ y ∈ F ⊆ A and A is a filter, we have y ∈ A and thus x ∈ R−(A). This
means x/F ∈ R−(A)/F and (R/F )−(A/F ) ⊆ R−(A)/F . �

It follows from the above that

Theorem 5 Let R be a binary relation compatible with F and F ⊆ A for A ∈
Fil(X). Then we have

R−(A)/F = (R/F )−(A/F ).

We define a topology on a residuated lattice by using congruence relations. Let
K∗ ⊆ Con(X) be closed under intersection, that is, if θ, ϕ ∈ K∗ then θ ∩ ϕ ∈ K∗.

Proposition 10 We have the following results in K∗.

1. ϕ ∈ K∗ ⇒ ω ⊆ ϕ, where ω = {(x, x) |x ∈ X};
2. ϕ ∈ K∗ ⇒ ϕ−1 ∈ K∗;
3. ϕ ∈ K∗ ⇒ ∃ψ ∈ K∗ s.t. ψ ◦ ψ ⊆ ϕ.

We define a class K of binary relations on X by

K = {ϕ ⊆ X × X | ∃θ ∈ K∗ s.t. θ ⊆ ϕ}.

Then it is easy to show that K is a uniformity, that is, it satisfies the following.



On Topologies Defined by Binary Relations in Rough Sets 75

Proposition 11 K is a uniformity, that is, it satisfies

(U1) ϕ ∈ K ⇒ ω ⊆ ϕ;
(U2) ϕ ∈ K ⇒ ϕ−1 ∈ K;
(U3) ϕ ∈ K ⇒ ∃ψ ∈ K s.t. ψ ◦ ψ ⊆ ϕ;
(U4) ϕ,ψ ∈ K ⇒ ϕ ∩ ψ ∈ K;
(U5) ϕ ∈ K, ϕ ⊆ ψ ⇒ ψ ∈ K.

From the general theory of uniformity, a topology TK is introduced on the
residuated lattice X as follows.

TK = {O ⊆ X | ∀x ∈ O ∃ϕ ∈ K s.t. ϕ[x] ⊆ O},

where ϕ[x] = {y ∈ X | (x, y) ∈ ϕ}. Then it is obvious to show that

Proposition 12 TK = {O ⊆ X | ∀x ∈ O ∃θ ∈ K∗ s.t. θ[x] ⊆ O}.
Therefore, on a residuated lattice X, we have

O ⊆ X is an open set ⇔ O is a join of equivalence classes.

We also have the fundamental result with respect to the topology TK.

Theorem 6 For any θ ∈ K∗, x ∈ X, a subset θ[x] is a closed and open set.

Proof. Let θ ∈ K∗. For every y ∈ θ[x], since θ ∈ K∗ and θ[y] = θ[x], θ[x] is an
open set.

If y ∈ (θ[x])c, since y /∈ θ[x] and θ[y] 	= θ[x], then we have θ[x] ∩ θ[y] = ∅ and
thus y ∈ θ[y] ⊆ (θ[x])c. This means that (θ[x])c is an open set, that is, θ[x] is a
closed set. �

Corollary 2 For every filter F of X, F is a closed and open set in (X, TK).

We simply denote TK for K∗ = {θ} by Tθ.

Proposition 13 For θ, ϕ ∈ Con(X), we have

θ ⊆ ϕ ⇔ Tθ ⊆ Tϕ

Proof. Suppose θ ⊆ ϕ. Let O ∈ Tϕ. For every x ∈ O, there exists ψ ⊆ X × X
such that ϕ ⊆ ψ and ψ[x] ⊆ O. Since θ[x] ⊆ ϕ[x] ⊆ ψ[x], we get θ[x] ⊆ O. This
means that O ∈ Tθ and Tϕ ⊆ Tθ.

Conversely, we assume Tϕ ⊆ Tθ. For each (a, b) ∈ θ, since ϕ[a] ∈ Tϕ ⊆ Tθ and
a ∈ ϕ[a], we have θ[a] ⊆ ϕ[a]. It follows from b ∈ θ[a] that b ∈ ϕ[a] and hence
that (a, b) ∈ ϕ. Therefore, θ ⊆ ϕ. �

A topological space (X, TK) is called totally bounded if for each ϕ ∈ K there
exist x1, · · · , xn ∈ X such that

X =
n⋃

i=1

ϕ[xi].

It follows from the above that
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Theorem 7 ([2]) (X, Tθ) is a compact space ⇐⇒ (X, Tθ) is totally bounded.

Proof. Suppose that (X, Tθ) is totally bounded. Let {Oλ} (λ ∈ Λ) be an open
covering of X in (X, Tθ). Since X is totally bounded, for θ ∈ K, there exists
x1, · · · , xn ∈ X such that X =

⋃n
i=1 θ[xi]. The fact xi ∈ X =

⋃
λ Oλ implies

xi ∈ Oλi
∈ Tθ for some λi and thus θ[xi] ⊆ Oλi

. We get X =
⋃n

i=1 θ[xi] ⊆⋃n
i=1 Oλi

and X =
⋃n

i=1 Oλi
. This means that X is compact.

Conversely, for each ϕ ∈ K there exist θ ∈ K∗ such that θ ⊆ ϕ. Since θ
is a congruence, we have x ∈ θ[x] ⊆ ϕ[x] ∈ Tθ for any x ∈ X and hence X =⋃

x∈X θ[x] ⊆
⋃

x∈X ϕ[x]. That is, {ϕ[x]}x∈X is an open covering of X. Since X is
compact, there exist finite number of open sets ϕ[xi] such that X =

⋃n
i=1 ϕ[xi].

Therefore, X is totally bounded. �

5 Topological Residuated Lattices

We consider a topology on a residuated lattice, for which operations of the
residuated lattice are continuous. Let X = (X,∧,∨,�,→, 0, 1) be a residuated
lattice and τ be a topology on X. A structure (X, τ) is called a topological
residuated lattice [1] if the operations � and → are continuous with respect to
τ . Namely, For all A,B ⊆ X, if we set

A � B = {x � y |x ∈ A, y ∈ B}, A → B = {x → y |x ∈ A, y ∈ B},

then the following results hold for all O ∈ τ, a, b ∈ X:

(1) a � b ∈ O ⇒ ∃Oa, Ob ∈ τ s.t. a ∈ Oa, b ∈ Ob and Oa � Ob ⊆ O
(2) a → b ∈ O ⇒ ∃Oa, Ob ∈ τ s.t. a ∈ Oa, b ∈ Ob and Oa → Ob ⊆ O

Theorem 8 Let X be a residuated lattice and K∗ be the set of all congruences
on X. Then (X, TK) is a topological residuated lattice.

There is a problem left open in [1] with respect to topologies on residuated
lattices:

Let X be a residuated lattice and τ be a topology on X. Then,

� is continuous ⇔ → is continuous ?

We give a negative answer to the problem by providing a following coun-
terexample. Let X = {0, a, 1} with 0 < a < 1. We define operations on X: For
all x, y ∈ X

x ∧ y = x � y = min{x, y}
x ∨ y = max{x, y}

x → y =
{

1 if x ≤ y
y otherwise
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It is obvious that
τ = {∅,X, {a, 1}}

is a topology on X and the operator � is continuous with respect to τ . However,
the operator → is not continuous. Because, 0 → 0 = 1 ∈ {a, 1} but

X → X = X 	⊆ {a, 1}.

This means that → is not continuous with respect to the topology τ .
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Abstract. We introduce two covering approximation spaces which
utilise a ranking method to reduce the number of base sets used at
approximation of a set. The ranking method aggregates all the informa-
tion embedded in the tolerance relation and selects the most promising
representatives. We present the method in the context of its process and
describe some interesting features of our approximation pairs.
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1 Introduction

One of the popular tools for data mining and statistics is classification, which
assigns a new object into one of several categories. There are various methods for
classifying data, out of which—if the categories cannot be linearly separated—
perhaps the k-NN method is the most preferred. The basic question here is how
far the new object is from the already tagged objects, and what tags the k closest
objects have. The more objects we have, the more computation, or the more
data storage for objects may be needed.

Big data can cause both of these problems. The solution is not to store all
the similar objects, but only some of them. Then the question arises which of
the many elements should be a representative? On the one hand, our goal would
be to minimise the number of representatives which would reduce the storage
needed and speed up the calculations required by the classification. On the other
hand, we would like to have a representative of all objects in a category, i.e. at
least one object similar to it would be a representative. In most cases, similarity
means that the values describing the objects are close to each other or, in other
words, their distance is small.

The word representative has several related meanings, one of which is a typi-
cal example, sample. So we are interested in the representatives of a set of objects
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in a given category. In relation to sets, the relation element is a fundamental
tool of mathematics. However, since it is a binary relation, by only using this
relation we cannot distinguish between the elements of the set. Therefore, we
would like to extend this relationship by introducing different degrees. We want
to say e.g. that element a is more/better part of the set than element b. This
is achieved by assigning a number to each object, and whichever object has a
larger number, a better/more important component it is of the set.

Fig. 1. The “centres” of a rectangle and the approximation of this rectangle

The origin of our motivation is shown in Fig. 1. Here, the inner points of the
rectangle on the left are coloured according to how far they are from the edges of
the rectangle. If we are looking for the characteristic points of a polygon or other
2D shapes, for some people these are clearly defined as the vertices (or points
of their edges), because they determine the shape of the polygons. On the other
hand, if we think in areas, e.g. regions or countries, then only a few would say that
the border characterises a county or country. After all, the border is not much
more than a place of transition, with the exact positions of the borders shaped
by history; and therefore we consider the interior as the characteristic region
of a country. Therefore, we believe that the darkest grey points in the figure
are the most characteristic of the rectangle, and the increasingly lighter colours
give an increasingly weaker characterisation. (The edges of the rectangle marked
with black is only for the representation of the boundaries of the rectangle.)
Therefore, if a polygon nodes should be characterised by a few points, and if the
similarity of the points ends with the distance r (i.e. two points are similar if
and only if their distance is less than r) then we cover the polygon with circles of
radius r. Here, the first point of approximation is our darkest point. This point
is the centre of the first circle. The next point will be the darkest point that
is not yet covered by a circle. Following this method, you can get the coverage
shown on the right side of the Fig. 1, where the colours of the circles indicate
the colour of their centres. (That is, the darker circle is positioned first, and the
lighter at the end.)

It is easy to provide a coverage of this rectangle that contains fewer circles
than our greedy algorithm outlined above; but we believe that the universality
and complexity of our method makes it suitable for solving large-scale real-life
tasks.
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Our method will use a similarity relationship that can be generated from
arbitrary metrics or can be given independently. Based on this relationship, we
define a rank between our objects to find the central element(s) of any set. As
the central objects are given, we can use some variant of our algorithm presented
in Sect. 3 to choose the representatives.

The structure of the article is as follows: first, we show how a ranking can
be created based on similarity and membership, assigning a real number to each
object. Next we present how we can select our representatives with these rank-
ings. Different selection methods have different characteristics and the fourth
chapter describes these properties. We then show some concrete examples using
the results we get by approximating polygons. Finally, we summarise our results
and present our future plans.

2 Ranking Bases on Tolerance Relation

There is a more or less serious ranking in the mathematical community: the Erdős
number. Here, mathematicians (and often other scholars) correspond to a vertex
of a graph where two vertices are connected if and only if the corresponding
scholars are co-authors. The centre of the graph is Pál Erdős, who was a highly
productive author. The numbers belonging to the mathematicians are given by
the distances from the centre. imilar rankings exist between actors (The oracle
of Bacon) and even chess players. Of course, the smaller number/distance here
constitutes to a higher rank.

Generally however, the larger number usually means a higher rank, and this
will be true in our case too. Here the number of steps needed to reach the centre
of the set is not important. We wish to know how quickly we can reach the
boundary of the set from any arbitrary element. Phrasing it differently: how far
is this element from the complement of the set?

These kind of rankings can be calculated easily, but this simpleness prevents
the development of a sophisticated rankings. In case of the Erdős number, it
does not matter how many articles have been written by the two authors, or the
extent to which the article was accepted by the scientific community. However,
our ranking considers the finer details; whilst the traditional distance only takes
the single shortest path into consideration, in our case all possible paths are
counted. We were influenced by the design of the PageRank algorithm [1], but we
could not directly apply it here, as it is made for directed graphs. The tolerance
relation—giving the similarity of the objects—is symmetric by definition, so the
corresponding graph we use is not directed.

Let’s look at the notations used in this article. Let indicate the set of objects
by V , where for the sake of simplicity V = {1, 2, . . . , n}. Denote the—possibly
partial—tolerance relation by T . Let the set of objects similar to x be given by
Cx = {y|xTy}. Finally, let the set we wish to approximate be Q ⊂ V . As only
the set Q and the relation T are given, these are the only inputs of out methods
which produce the representatives—the objects that characterise the set Q the
most.
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The PageRank algorithm is formulated in the literature in various ways. One
of them uses the synonym of voting: initially each vertex has one vote, which
is distributed equally along the outgoing edges, and is then repeated for each
incoming vote too. For getting a limit on the distribution of votes, we will need
a damping factor.

Let’s use that synonym. Since our graph of similarity is not directed, we
make alternations in a number of places. Each vertex votes for each vertex, not
just the similar ones. A vote can be one of two kinds: to support or to oppose.
That is, the vote supports or opposes the other vertex being representative of its
own set. A vertex supports the similar vertices in its own set, and the different
vertices outside of its own set. Moreover a vertex opposes the dissimilar vertices
in its own set, and the similar vertices outside its own set. In other words to be
similar to mates and to be different from aliens is rang-raising property, while
similarity to aliens and dissimilarity from mates is a rang-losing one. In the cases
when the tolerance relation is partial, incomparable vertices do not vote on each
other (hence are neither similar nor dissimilar). The same voting rules apply to
the next rounds too. However, the votes of every vertex shall be weighted by
the sum of the weights of its received votes. These rounds are repeated until an
equilibrium is reached. To detect the equilibrium in a uniform way, the weights
are normalised in each round.

Based on these voting rules we can construct the support matrix S of size
n × n, where

sij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if iT j holds and (i, j ∈ Q, or i, j /∈ Q)
1, if iT j does not hold and (i ∈ Q, j /∈ Q or i /∈ Q, j ∈ Q)

−1, if iT j holds and (i ∈ Q, j /∈ Q or i /∈ Q, j ∈ Q)
−1, if iT j does not hold and (i, j ∈ Q, or i, j /∈ Q)

0, otherwise

(1)

The column vector Rk contains the ranks of each object in the kth round.
These ranks are updated in an iterative way by multiplication with the support
matrix S. We follow the von Mises’ algorithm [4] by using matrix operations as
shown in (2). If Rk ≈ Rk+1—i.e. we get close to the equilibrium—our algorithm
stops.

R1 = (1, . . . , 1)T

Rk+1 = SRk
||SRk||

(2)

Of course, successive multiplications can be triggered by the successive pow-
ering of the support matrix S, giving us the rank values of thousands of objects
in little time. Table 1 describes the algorithm of this faster variant, where B2
corresponds to matrix B2, Ones to vector (1, . . . , 1)T .

3 Selecting Representatives

Based on the above, we already have a vector Rk which assigns a number ri to
each object i. Higher values mean higher rank. To be aware of our task, consider
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Table 1. Power method implemented in Python+Numpy

the ranks associated with the square grid in the unit square. In Fig. 2, the set
Q forms a triangle where the similarities of the grid points are measured by the
Manhattan distance. Here the limit of similarity r is 0.1. The limit of difference R
is 0.2 on the picture on the left and is 0.3 on the right. (Two objects are different
from each other if and only if their distance is greater than R.) It is easy to see
that the larger incomparability zone (where r ≤ d ≤ R, i.e. at distance d where
the objects neither similar nor dissimilar) blends the original set Q better.

After normalising the ranks obtained by the power method onto the interval
[−1, 1], their values fell to the interval [−0.95, 0.85] ∪ [0.9, 1] for the left image,
while for the other case the same became [−0.97,−0.81] ∪ [0.88, 1], so the ranks
are also getting more and more diverse. The situation is similar when the set Q
forms a square (Fig. 3). By observing the figures, we can see that the boundaries
of both the square and the triangle—that are organised around 0.3 and 0.7—are
blurred, so the similarity or proximity to aliens (to the border of the set) reduces
the ranks.

Fig. 2. Rank on a grid at in a triangular case
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For an efficient and universal implementation we constructed a greedy algo-
rithm. Therefore it is relatively easy—but not necessarily faster—to create an
approximation that contains less representatives, but each object of the set also
has a similar representative.

Fig. 3. Rank on a grid at square case

Table 2 shows the essence of our method. In Line 1 we sort the objects of the
set Q in descending order according to the ranks r in the vector Rk. In Line 3
we process the objects in this order. In Line 4 we initialise two variables, one of
our variants observes the environment Ci of the object i and counts how many
objects are from the set Q and how many are from outside it. These numbers
are stored in variables q and c, respectively. The similarity of two objects (or, in
some cases, their distance) can be stored in a matrix which needs O(V 2) space.
In Line 5 the scanning of environment Ci needs O(n) time because we check each
object whether they are similar (close enough) or not. By using k-dimensional
trees this could be done with O(lnn) complexity. In Line 7 and 8 we note that
the next object is in the set of object i, or in its complementer set. Finally the
algorithm judges whether the object i would be a representative or not.We have
the following variations:

(1) if there is no representative j yet in the environment Ci—i.e. due symmetry
i /∈ Cj , (Line 9)

(2) if there is no representative j yet in the environment Ci (as before) and Ci

does not contain any object not in set Q—V \Q ∩ Ci = ∅ (Line 10)
(3) if there is no representative j yet in the environment Ci (like at first) and

more then half of this environment is member of set Q—||V \Q ∩ Ci|| <
||Q ∩ Ci||, (Line 11)

then object i should be a representative of set Q.
We repeat these steps until all of the objects in Q are reviewed. Finally, the

lists rs1, rs2, rs3 will contain the representatives for the various methods.
As an alternative to these methods, after finding the first representative i, we

reassemble the ranks of objects in V \Ci, then search for the next representative
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Table 2. Three set approximation methods implemented in Python+Numpy

j, and repeat this process with set V \Ci\Cj , etc. We suspect that this deletion
will significantly change the relation of similarity, and therefore the ranks, and
hence not the most typical objects will become representatives. In some cases,
this method produced less representatives, so we plan to compare the resulting
representations with the standard classification benchmarks, examining their
effectiveness.

4 Properties of Different Set Approximations

From the theoretical point of view a Pawlakian approximation space [5–7] can
be characterised by an ordered pair 〈U,R〉 where U is a nonempty set of objects
and R is an equivalence relation on U . In order to approximate an arbitrary
subset S of U the followings have to be introduced:

– the set of base sets: B = {B | B ⊆ U, and x, y ∈ B if xRy}, the partition of
U generated by the equivalence relation R;

– the functions l, u form a Pawlakian approximation pair 〈l, u〉, i.e.
1. Dom(l) = Dom(u) = 2U

2. l(S) =
⋃{B | B ∈ B and B ⊆ S};

3. u(S) =
⋃{B | B ∈ B and B ∩ S �= ∅}.

The base sets represent the background knowledge (or its limit). In a
Pawlakian system two objects are treated as indiscernible if all of their known
attribute values are the same. The indiscernibility relation defines an equivalence
relation.

In this paper, we propose two new possible approximation pairs based on the
representatives. We recall, the concept of Cx—the set of objects covered (similar
to) by x—as introduced in Sect. 2. Let RS denote the set of representatives of
any arbitrary set S, obtained as described in the previous section.
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The two proposed approximation pairs can be given as 〈l, u1〉 and 〈l, u2〉,
where

l(S) =
⋃

x∈RS
Cx⊆S

{Cx}

u1(S) =
⋃

x∈RS

{Cx}

u2(S) =
⋃

x∈RS
‖Cx∩S‖>‖Cx\S‖

{Cx}

The following properties of approximation pairs are examined (full descrip-
tion can be seen in [2]): 〈l, u〉 denotes an arbitrary approximation pair.

Monotonicity
l and u are said to be monotone if S ⊂ S′ then l(S) ⊂ l(S′) and u(S) ⊂ u(S′)

Weak Approximation Property
∀S ∈ 2U : l(S) ⊆ u(S)

Strong Approximation Property
∀S ∈ 2U : l(S) ⊆ S ⊆ u(S)

Normality of l
l(∅) = ∅

Normality of u
u(∅) = ∅

Fig. 4. Monotonicity does not hold for u1.
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Monotonicity
None of the aforementioned approximation pairs are monotone. The first

counterexample is presented in Fig. 4. In our figures the solid/dashed edge
between nodes i and j denotes that the relation iT j holds/does not hold, respec-
tively. If there is no edge between some nodes, then the given relation is partial
[3,8], and the two nodes that aren’t connected are neither similar nor dissimilar,
i.e. they are incomparable or not have been compared yet. The ranks of the
objects are for the two given sets:

S: 〈0.126, 0.626, 0.626, 0.126,−1.000, 0.547, 0.547〉,
S′: 〈0.126, 0.626, 0.626, 0.126, 1.000, 0.547, 0.547〉.

In case of the set S we have r1 = r4 < r2 = r3, henceforth one possible RS

can be {2, 4}, where C2 = {1, 2, 3, 5} and C4 = {3, 4, 5, 7}. Object 4 is similar to
5 and 7, and 2 is similar to 5, hence l(S) = ∅.

In case of the set S′ we have r1 = r4 < r2 = r3 < r5, and object 5 which
covers every member of S′, so object 5 becomes the only representative. Hence
l(S′) = {1, 2, 3, 4, 5}, thus l(S) ⊂ l(S′) holds.

However, although S ⊂ S′ we have u1(S) �⊂ u1(S′), where u1(S) =
{1, 2, 3, 4, 5, 7} and u1(S′) = {1, 2, 3, 4, 5}. This proves that the approximation
pair 〈l, u1〉 is not monotone.

Fig. 5. Monotonicity does not hold for u2.

To disprove the monotonicity of function u2 we need a different counterex-
ample. Figure 5 show this tolerance relation and the sets S and S′. The ranks of
the objects in this case are:
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S: 〈0.585, 0.759, 0.698, 0.668,−1.000,−0.009, 0.318〉,
S′: 〈0.585, 0.759, 0.698, 0.668, 1.000,−0.009, 0.318〉.

For ranks in S we get r2 > r3 > r4 > r1, so at first we need to check the
size of sets C2 ∩ S = {1, 2, 3} and C2 \ S = {5, 6}. The first of the two sets is
bigger, so 2 ∈ RS . The set S \C2 only contains object 4, so we need to check the
sizes of the sets C4 ∩ S = {3, 4} and C4 \ S = {5}. Again, the first is the bigger
set, so 4 ∈ RS . Therefore u2(S) = C2 ∪ C4 = {1, 2, 3, 4, 5, 6}. Summarising this,
we have: S ⊂ S′ but u2(S) �⊂ u2(S′). Hence the approximation pair 〈l, u2〉 is not
monotone, too.

Weak Approximation
The weak approximation property holds for both approximation pairs. In

both cases, the functions use the same representatives based on the same order
of ranks. Therefore the lower approximation cannot be a larger set than the
upper approximation.

Strong Approximation
For 〈l, u1〉 the strong approximation also holds. By definition l(S) ⊆ S is

always true. In case of u1, every member of the set S is covered by at least one
of the representatives. Thus S ⊆ u1(S) is also true.

However, for 〈l, u2〉 the strong approximation does not hold. In Fig. 6 an
example can be seen that contradicts this property. The ranks of the objects are
the following:

r = 〈1.00, 0.85, 0.36, 0.36, 0.65, 0.55,−0.32,−0.80,−0.11,−0.11,−0.40〉.

Hence the possible representatives of the set S are the objects 1 and 7, where
C1 = {1, 2, 3, 4, 5, 6} and C7 = {6, 7, 8, 9, 10, 11}. The upper approximation of
the set S is u2(S) = {1, 2, 3, 4, 5, 6}, because C7 ∩ S = {6, 7, 8} and C7 \ S =
{9, 10, 11}, therefore object 7 cannot be a representative of S. So S �⊆ u2(S),
meaning that the strong approximation is not necessarily true.

Fig. 6. Strong approximation property does not hold for the second approximation
pair
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Normality of l and u
The representatives are selected from the members of the set. If S = ∅ then

we have no representatives, so l(S) = u1(S) = u2(S) = ∅. In both cases, the
normality of the lower approximation holds because an empty set does not have
a representative member. The same holds for the normality of the upper approx-
imation.

5 Experimental Results

The previously tested grids have a very special structure and they provide ideal
results. Let’s also look at some cases where chance has significant role in select-
ing the representatives. We randomly generated 500 points in the unit square.
The idealised concept Q, the set to approximate is the same triangle as before.
The randomly selected points of this triangle are marked with larger squares.
Previously we have seen that the vertices of the triangle are challenging for our
method, their rankings were rather low before. We chose the limit of similarity r
to be 0.1 again. The radius of environments Ci—denoted with circles on Fig. 7—
is the same. The limit of difference R is 0.2. The colours of the circles refer to
the process of approximation,the environments of the first representatives are
darker, and environments of the later representatives are brighter circles.

Fig. 7. Three different set approximations of a triangle

The topmost circle—on the left picture—contains 4 object from the set Q,
but 3 of them are similar to a former representative. The remaining one becomes
a representative. However, this object is very similar to many non-set objects,
so this circle is not included on the right picture, as this object is not a repre-
sentative in this case.

The size of this triangle is almost ideal: with a circle of radius R most of
the triangle can be covered. Therefore the objects near the centre of gravity of
the triangle hardly receive any opposing votes from their own set,so this part is
really the centre of the triangle.

In Fig. 8 only the idealised set Q has changed, it is a square. The middle
image shows that the firstly selected representative is far from the centre of
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Fig. 8. Three different set approximations of a square

gravity of the square. Here we would not be able to cover a large part of the
square with a circle of radius R, so there is no similar, small centre of the square.
For larger central area the exact location of the other objects determines the
place of the initial representative earned by our methods.

6 Conclusion and Further Work

In this article, we have described a method—more specifically 3 variants—which
specifies the representatives of a set of objects Q by using a tolerance relation
on this set. From these representatives we reach the others in one step, i.e. each
object is similar to one of the representatives. Through these representatives
different classification tasks can be solved with much less complexity.

Our method is based on the power method which uses matrix multiplications.
This operation has very effective implementation in various libraries, so our
method can be used widely, even for larger sets.

The ranks assigned to the elements of Q can be used in several ways to make
approximations, three of which have been suggested in the paper. We reviewed
the features of these 3 approximations and presented them in practice.

Although the method has been used to approximate one set only, it can be
used to approximate disjoint sets without significant change. We plan to analyse
the applicability of the method for a system of non-disjoint sets.
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Abstract. In the authors’ previous research, a possible usage of the
correlation clustering in rough set theory was investigated. Correlation
clustering relies on a tolerance relation. Its output is a partition. The
system of base sets can be derived from the partition and a new approxi-
mation space appears. This space focuses on the similarity (the tolerance
relation) itself and it is different from the covering type approximation
space relying on a tolerance relation. In real-world applications, the num-
ber of objects is very high. So it can be effective only if a portion of the
data points is used. In this paper, a possible method is provided to choose
the necessary number of objects that represent the data set. These mem-
bers are called representatives and it can be useful to use them in the
approximation of an arbitrary set.

Keywords: Rough set theory · Correlation clustering ·
Set approximation · Representatives

1 Introduction

In our previous study, we examined whether the clusters, generated by correla-
tion clustering, can be understood as a system of base sets. Correlation clustering
is a clustering method in data mining which creates a partition of the input data
set. The groups, defined by this partition, contain similar objects. In our pre-
vious paper [9,10] we showed that it is worth to generate the system of base
sets from the partition. This way the base sets contain objects that are typically
similar to each other and they are pairwise disjoint. Data sampling is a technique
used to select a representative subset of data points to identify patterns in the
larger data set being examined. Sampling can be particularly important when
data sets are so large that it could be inefficient to analyse them in full. Find-
ing and analysing a sample is more cost-effective than surveying the entirety of
the population. However, it must be representative. This means that the sample
points must be as similar in the sample as they are in the entire set. In this
paper, a possible way is shown to choose objects from a set that can be used as
representatives of the given set. Using the representatives, the execution time of
the set approximations can be notably reduced.

The structure of the paper is the following: we begin with introducing the
theoretical background and discussing rough set theory. In Sect. 4 we present our
c© Springer Nature Switzerland AG 2019
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previous work. In Sect. 3 correlation clustering is defined. In the next section, we
demonstrate our method for selecting representative members of a data set. In
Sect. 6 the aforementioned method is used in the approximation process. Finally
we conclude the results.

2 Theoretical Background

From the theoretical point of view a Pawlakian approximation space [11–13]
can be characterised by an ordered pair 〈U,R〉 where U is a non-empty set
of objects and R is an equivalence relation on U . In order to approximate an
arbitrary subset S of U the following have to be introduced:

– the set of base sets: B = {B | B ⊆ U, and x, y ∈ B if xRy}, the partition of
U generated by the equivalence relation R;

– the set of definable sets: DB is an extension of B, and it is given by the
following inductive definition:
1. B ⊆ DB;
2. ∅ ∈ DB;
3. if D1,D2 ∈ DB, then D1 ∪ D2 ∈ DB.

– the functions l, u form a Pawlakian approximation pair 〈l, u〉, i.e.
1. Dom(l) = Dom(u) = 2U

2. l(S) =
⋃{B | B ∈ B and B ⊆ S};

3. u(S) =
⋃{B | B ∈ B and B ∩ S 	= ∅}.

3 Correlation Clustering

Cluster analysis is an unsupervised learning method in data mining. The goal
is to group the objects so that the objects in the same group are more simi-
lar to each other than to those which are in other groups. In many cases, the
similarity is based on the attribute values of the objects. Although, there are
some cases when these values are not numbers, but we can still say something
about their similarity or dissimilarity. For example, let’s consider humans. We
cannot describe someone’s looks using only a number, but we can make simple
statements on whether two people are similar or dissimilar. These opinions are
dependent on the person making the statements. Someone can say that two peo-
ple are similar while others treat them as dissimilar. If we want to formulate the
similarity and dissimilarity using mathematics, we need a tolerance relation (i.e.
a reflexive and symmetric relation). If this relation holds for two objects, we can
say that they are similar. If this relation does not hold, then they are dissimilar.
This relation is reflexive because every object is similar to itself. It is also sym-
metric because if some object is similar to another one, then the similarity is
equivalent the other way round. However transitivity does not necessarily hold.
If we take a human and a mouse, then due to their inner structure they are
considered similar. This is the reason mice are used in many drug experiments.
A human and a mannequin are also similar, this time according to their shape.
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This is why these dolls are used in display windows. However, a mouse and
a mannequin are dissimilar (except that both are similar to the same object).
Correlation clustering is a clustering technique based on a tolerance relation
[5,6,15].

The task is to find an R ⊆ V ×V equivalence relation which is closest to the
tolerance relation. A (partial) tolerance relation R [7,14] can be represented by
a matrix M . Let matrix M = (mij) be the matrix of the partial relation R of
similarity: mij = 1 if objects i and j are similar, mij = −1 if objects i and j are
dissimilar, and mij = 0 otherwise.

A relation is called partial if there exist two elements (i, j) such that mij = 0.
It means that if we have an arbitrary relation R ⊆ V × V we have two sets of
pairs. Let Rtrue be the set of those pairs of elements for which R holds and
Rfalse be the one for which R does not hold. If R is partial, then Rtrue ∪ Rfalse

is a proper subset of V × V . If R is total, then Rtrue ∪ Rfalse = V × V .
A partition of a set S is a function p : S → N. Objects x, y ∈ S are in the

same cluster at partitioning p, if p(x) = p(y). For a conflict one of the following
two cases holds:

– Two dissimilar objects end up in the same cluster
– Two similar objects end up in different clusters

The cost function is the number of these disagreements. The formal definition
can be seen in [9]. For a relation the partition with the minimal cost function
value is called optimal. Solving a correlation clustering problem is equivalent to
minimising its cost function for the fixed relation. If the cost function’s value
is 0, the partition is called perfect. Given the R and R we call the value f the
distance of the two relations. With this definition, the partition generates an
equivalence relation. This relation can be considered to be the closest to the
tolerance relation.

It is easy to check that we cannot necessarily find a perfect partition for an
arbitrary similarity relation. Consider the simplest such case, given three objects
A, B and C, and A is similar to both B and C, but B and C are dissimilar. In
this situation, the following 5 partitions can be given:

{{A,B,C} , {{A,B} , {C}} , {{A,C} , {B}} , {{B,C} , {A}} , {{A} , {B} , {C}}} .

It is easy to see that in every of one them there is at least 1 conflict. The number
of partitions can be given by the Bell number [1], which grows exponentially. So
the optimal partition cannot be determined in reasonable time. In a practical
case a quasi optimal partition can be sufficient, so a search algorithm can be
used.

The main advantage of the correlation clustering is that the number of clus-
ters does not need to be specified in advance like in many clustering algorithms,
and this number is optimal based on the similarity. However, as the number of
partitions grows exponentially it is an NP hard problem.
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4 Similarity Based Rough Sets

The system of base sets is based on the background knowledge embedded in an
information system. The base sets represent the background knowledge (or its
limit). In a Pawlakian system two objects are treated as indiscernible if all of
their known attribute values are identical. The indiscernibility relation defines an
equivalence relation. In some cases we only have a similarity (tolerance) relation.
If we change the negativity of indiscernible relations to positivity of similarity
(based on background knowledge), then we may rely on a tolerance relation.
Some covering systems are also based on a tolerance relation. However, in our
case the emphasis is on the similarity to a given object and not the similarity
of objects in the general sense. With correlation clustering, a quasi optimal
partition of the universe can be obtained [2–4]. The members of a partition are
called clusters. They contain elements that are typically similar to each other
and not just to a distinguished member. In our previous research, we investigated
if the partition can be understood as a system of base sets [8–10]. According to
our results, it is worth to generate a partition with correlation clustering. The
system of base sets can defined as:

B = {B | B ⊆ U, and x, y ∈ B if p(x) = p(y)},

where p is the partition gained from the correlation clustering. The base sets
have several useful properties:

– the similarity of objects relying on their properties (and not the similarity to
a distinguished object) plays an important role in the definition of base sets;

– the system of base sets consists of disjoint sets, so the lower and upper approxi-
mations are closed in the following sense: Let S be a set and x ∈ U . If x ∈ l(S),
then we can say, that every object y ∈ U which is in the same cluster as x is
in l(S). If x ∈ u(S), then we can say, that every object y ∈ U which is in the
same cluster as x is in u(S).

– the number of clusters is not set by the user because the algorithm finds the
optimal number. This way, only the necessary number of base sets appear (in
applications we have to use an acceptable number of base sets);

– the size of the base sets is not too small, nor too big.

5 Representative Member

In data mining, to reduce the execution time of an algorithm, it is common
to use samples. A sample contains points from the original data set. There are
numerous ways to choose a part of the input data set which can be treated as
a sample. However, in every method it is crucial that the chosen objects must
represent the entire population. In this case, representativeness means that the
specific properties are as similar in the sample as in the entire set. Without this
property, important information might be disregarded.
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Imagine that a product is needed to be sold, for example a toy to a group
of children. In almost every group of youngsters, there is at least one member
whose decision has the most influence on the group’s life. In this case, one child
is enough to be found and convinced to buy the toy. The rest of the group will
follow them.

In [10] the authors of this article provided a method to calculate the repre-
sentative of a given set.

A member is called a representative if it is similar to most, and different from
the least of the members in the group. For any member m two values have been
stored:

– α - the number of elements that are similar to m.
– β - the number of elements that are different from m.

Figure 1 shows a very simple example to the method. For the member A these
two values are:

– α = 4. Because there are four members (B,C,E,F ) that are similar to A.
– β = 2. Because there are two members (H and D) that are different from A.

Here, similarity is denoted by a solid line and dissimilarity by a dashed line.
A member can be considered a possible representative if the following fraction

is maximal:
r =

αw − βv

α + β + 1
v, w ∈ R, v, w > 1, w > v (1)

v and w are weights. By default their values can be set to 1. In this case, both
the similarity and dissimilarity have equal importance. Using default weights in
the example shown in Fig. 1 the object F has the maximal r value. Naturally,
any other types of methods can used to determine the representatives. The afore-
mentioned formula is a simple way to do it.

Fig. 1. α and β values for the member A

In many applications, however, it might not be enough to have only one
representative in each set of objects. Figure 2 shows a very simple example to this
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problem. Clearly object A has the highest r value so it is the most representative
object of the set. However, it is only similar to objects B, C, D, E, F and G
and does not have any kind of connections with the rest of the objects. So the
above mentioned property for samples is not satisfied as object A alone cannot
represent the entire set.

We offer three possible ways to generate more than one representative from
which only the third option proves to be appropriate for real-world applications.
A representative member X is said to cover the member Y if X is similar to Y .

Fig. 2. Multiple representatives are needed

1. The user gives a threshold value k. Then k percent of random objects are
treated as representatives.

2. The user gives an interval for the r values. If the r value of an object is in
this interval, then it is considered as a representative.

3. Use an algorithm based on similarity to generate the necessary number of
representatives.

The main issue with the first option is that the user must have some knowl-
edge about the given set in order to choose an optimal k value. Due to random-
ness, it is possible that critical information gets disregarded. Another problem
is that sometimes one object can be enough to represent the whole set, but the
user forces the system to choose additional representatives.

Similar problems arise with the second option. It can be hard to choose a
proper interval. A more important issue is that the first few points selected will
always be the ones with the highest r values. This way, some of the represen-
tatives may be picked from an already covered set of point. This is redundant,
and some of the points may be left uncovered.

The pseudo-code of the third option can be seen in Algorithm 1. The input of
the function is a set of data points D and the output is the set of representatives
REP . It is an iterative method, in each step the algorithm keeps a record of the
covered objects (i.e. the objects that are similar to one of the representatives)
which is empty in the first iteration (line 6). In every iteration, the object with
the highest r value is selected from the uncovered objects (line 10–15). In line
16–20, the data points, that are covered by the currently selected representative,
are inserted into the set C. At the end of each step, the chosen representative
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is moved into the set REP . The algorithm stops when there are no uncovered
members left.

The strength of the method is that it uses the similarity between objects, and
so it generates the optimal number of representatives. The other two methods
can create too few or too many representatives. Another advantage is that it does
not need any user-defined parameters. The algorithm can be treated as a directed
sampling method which can be a very powerful tool in many applications.

A political party contains members that share a common political ideology.
However, in some parties it can happen that even though the members follow
the same vision, there are some disagreements. So the group can be divided
into smaller groups. In this case, one politician is not enough to represent the
entire party. The above mentioned algorithm could be a solution as it takes into
account the variety of the members.

Algorithm 1. Selecting representatives
1: function Select Representatives(D)
2: REP ← ∅
3: for each p ∈ D do
4: calculate the r value of point p
5: end for
6: C ← ∅
7: while C �= D do
8: max ← − inf
9: maxp ← None

10: for each p ∈ (D \ C) do
11: if r value of point p > max then
12: max ← r value of point p
13: maxp ← p
14: end if
15: end for
16: for each p ∈ (D \ C) do
17: if maxp covers p then
18: C ← C ∪ {p}
19: end if
20: end for
21: REP ← REP ∪ {maxp}
22: end while
23: return REP
24: end function

Figure 3 presents the steps of the algorithm for the data set shown in Fig. 2.
The grey ellipses contain the covered objects by a chosen representative member.
In the first step, object A is chosen. In the second step, objects B, C, D, E,
F and G are not considered as they are covered by A. The second method,
mentioned in the beginning of this section, could have chosen B or G as possible
representatives because they have the second highest r value. Naturally, it is
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pointless to select them because object A makes it redundant (both of them are
similar to A). After four steps, the algorithm finishes and the four representatives
are objects A, K, H, I. It can be easily seen that these 4 members share the
diversity of the original data set.

6 Approximation Based on Representatives

The lower approximation of a set S is the union of those base sets that are
subsets of S. In order to get these base sets, every point in each base set must
be considered. It can be a time consuming task if the number of points is high.
The effectiveness of the representatives lies in situations when the number of
objects is very large. It can be practical to use the power of representatives in the
approximation process. For each base set, let us consider only its representatives.
Let B ∈ B be a base set, and REP (B) be the set of its representatives. The
approximation functions are defined as the following:

– l(S) =
⋃{B | B ∈ B and ∀x ∈ REP (B) : x ∈ S};

– u(S) =
⋃{B | B ∈ B and ∃x ∈ REP (B) : x ∈ S}.

Step 2Step 1

Step 4Step 3

Fig. 3. The execution of the algorithm

This way, the lower approximation of a set S becomes the union of those
base sets for which every representative is a member of S. A base set belongs
to the upper approximation if at least one of its representatives is in the set S.
Naturally, the certainty of the lower approximation might be lost, but as the
number of points are increasing, it can be very useful.
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In Fig. 4 a simple example is provided for the method. The base sets are
denoted by solid-line rectangles, and the set we wish to approximate (S) is
denoted by a grey ellipse. For each base set, the black circles symbolise the
representatives.

The approximation of the set S is the following based on the representatives:

– l(S) = {B2, B6}
– u(S) = {B1, B2, B3, B6}

The approximation of the set S is the following based on the classical approx-
imation pair:

– l(S) = {B2, B6}
– u(S) = {B1, B2, B3, B5, B6}

Fig. 4. Approximation based on representatives

The lower approximation is the same in both cases. The upper approxima-
tion differs in one base set (B5). When there is a huge number of points and
there are several sets to be approximated, we recommend approximation using
representatives. In this case, the method can reduce the run-time of the approxi-
mation significantly. Determining the approximation with the classical functions
32 objects needed to be considered. Using the proposed method, only 13 of them
had to be tested, so almost 60% of the original points were left-out. Of course,
with 32 to 13 points is not a significant change, but in case of millions of objects
it can be very useful.
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7 Conclusion and Future Work

In [9,10] the authors introduced a partial approximation space relying on a sim-
ilarity relation (a tolerance relation). The genuine novelty of this new approxi-
mation spaces is the way in which the systems of base sets is defined: it is the
result of correlation clustering, and so the similarity is taken into consideration
generally. Singleton clusters does not have real information in approximation
process, these clusters cannot be taken as base sets, therefore the approximation
spaces are partial in general cases (the unions of base sets are proper subsets of
universes). In data mining and also in statistics, it is very common to use only
a subset of the original data set instead of the entire collection. The members
of this subset can be called as representatives. A very important criteria is that
these objects must have the same properties as the whole data set. In this paper,
a possible way is provided to choose the necessary number of representatives of
a set. The authors also showed how this method can be applied in set approxi-
mation. As the representatives represent a set of objects, then it can be useful
if for every base set only their representative members are considered. This way
a new approximation pair appears. In the future, it could be interesting to use
this technique on real real-world data sets and check how it affects the approx-
imation. It could be also interesting to compare the new approximation pair to
the existing ones.

Acknowledgement. Supported by the ÚNKP-18-3 New National Excellence Program
of the Ministry of Human Capacities.
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Abstract. Two new attribute reduction algorithms based on iterated
local search and rough sets are proposed. Both algorithms start with a
greedy construction of a relative reduct. Then attempts to remove some
attributes to make the reduct smaller. Process of attributes selection is
the main difference between the algorithms. It is random for the first
one, and a sophisticated selection procedure is used for the second algo-
rithm. Moreover a fixed number of iterations is assumed for the first
algorithms whereas the second stops when a local optimum is reached.
Various experiments using eight well-known data sets from UCI have
been made and they show substantial superiority of our algorithms.

Keywords: Rough set · Attribute reduction · Local search ·
Positive region

1 Introduction

Feature selection, or attribute reduction, is a process of finding a minimal subset
of attributes that still provides the same, or similar information as the set of all
original attributes. Rough set theory has been very successful as a theoretical
base used in filter-based feature selection algorithms in many fields, such as data
mining, machine learning, pattern recognition and many others [1–7].

Attribute reduction methods can be divided into four categories: exact
algorithms, approximation algorithms, general heuristic algorithms and meta-
heuristic algorithms.

Exact algorithms can find all reducts and an optimal reduct. The classical
exact algorithm [8], consists in finding the discernibility matrix first, then deriv-
ing the discernibility function in its conjunctive normal form (CNF) from it, and
at the end transforming CNF into DNF i.e. disjunctive normal form. Then, each
prime implicant of the DNF corresponds to a reduct, and each minimal prime
implicant of the DNF corresponds to an optimal reduct. Unfortunately, finding
c© Springer Nature Switzerland AG 2019
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all reducts or an optimal reduct has been proven to be in general an NP-hard
problem [8,9], which is a problem for big data sets with many attributes and
objects.

Several efficient approximation algorithms have been proposed in recent
years. Yang et al. [12] provided a new efficient method based on related family
for computing all attribute reducts and relative attribute reducts. Tan et al. [10]
proposed very time efficient matrix based approximation algorithm by introduc-
ing the concepts of minimal and maximal descriptions. Hacibeyoglu et al. [11]
analyzed the main shortcoming of this algorithm, namely is its excessively high
space complexity, and proposed a substantial improvement with the worst case
space complexity of

(
N

N/2

)
/2, where N is the number of attributes.

For many big real-world applications, efficiency of approximation algorithms
is still not enough. Frequently it is also not necessary to find all reducts, on
contrary, quite often finding one reduct is enough, which leads to the idea of
looking for heuristic algorithms.

The general heuristic algorithm normally starts with the core attribute set or
an empty attribute set, then gradually adds an attribute with the maximal signif-
icance into the attribute reduct until the attribute reduct satisfies the stopping
criterion. Different models have been used for stopping criteria, namely posi-
tive region [13], information entropy [14], knowledge granularity [15], and other
models [16,17].

General heuristic algorithms usually fail to obtain an optimal reduct, so many
meta-heuristic algorithms have been proposed such as genetic algorithms, tabu
search, ant colony optimization, particle swarm optimization and artificial fish
swarm algorithm, and so on. In [18], Xu et al. illustrated the shortcomings of
the previous genetic algorithm-based methods and designed new fitness function,
which resulted in more efficient genetic algorithm. Chen et al. [19] provided a
novel rough set based method to feature selection using fish swarm algorithm.
Inbarani et al. [20] proposed a supervised feature selection method based on
quick reduct and improved harmony search. Luan et al. [21] developed a novel
attribute reduction algorithm based on rough set and improved artificial fish
swarm algorithm. Aziz and Hassanien [22] proposed an improved social spider
algorithm for the minimal reduction problem. Xie et al. [23] designed a test-
cost-sensitive rough set-based algorithm for the minimum weight vertex cover
problem, which can also be used to solve attribute reduction problem in rough
sets.

Nevertheless, for big data sets with huge number of attributes and objects,
meta-heuristic algorithms are often still not sufficiently efficient. In recent years,
local search has been shown to be an effective and promising approach to solve
many NP-hard problems, such as, for example, the minimum vertex cover prob-
lem [24,25]. In this paper we will design, discuss and test two new algorithms
for attribute reduction that is based on local search paradigm. The main ideas
of these two algorithms can be described as follows (Fig. 1).

If a reduct has been obtained, then an upper bound of the target problem has
also been found. Then, we decrease the upper bound by removing an attribute
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Fig. 1. Basic flowchart of our two algorithms. Procedures for termination and finding
new reducts are different in each algorithm.

from the current reduct. The outcome may or may not be a reduct. If it is not
a reduct, we swap attributes, one attribute from the current candidate reduct
and the other that does not belong to the current candidate reduct. If the result
is a reduct, it has smaller, i.e. better, upper bound. We continue this process as
long as it is possible, the outcome is a relatively small reduct or even an optimal
reduct.

Finding a new relative reduct after swapping two attributes is the key pro-
cess in each iteration and the difference between our two algorithms. To make
this efficient, the second algorithm uses the reverse incremental verification to
check if a swapping results in a reduct. The second algorithm also uses a set of
removed attributes to adjust the iteration process, which additionally improves
the efficiency of our algorithm. Moreover the second algorithm stops when a
local optimum is found while the first one performs given in advance number of
iterations.

The rest of the paper is organized as follow. In Sect. 2, basic concepts about
rough sets are introduced. Section 3 exposes the local search-based algorithms
for attribute reduction. Experimental results on UCI data sets are presented in
Sect. 4. Some conclusions and further researches are drawn in Sect. 5.



Local Search for Attribute Reduction 105

2 Preliminaries

This section recalls some basic concepts, definitions and notation used in this
paper.

For any equivalence relation R ⊆ U × U , where U is a set, [x]R denotes the
equivalence class containing x ∈ U , i.e. [x]R = {y | (x, y) ∈ R}, and U/R denotes
the partition of U defined by R, i.e. U/R = {[x]R | x ∈ U}.

A decision table is the 5-tuple: S = (U,C,D, V, f), where U is a finite
nonempty set of objects, called universe, C is a set of conditional attributes, D is a
set of decision attributes, V is domain of attributes C∪D and f : U×(C∪D) → V
is an information function.

Table 1 is a simple example of a decision table, where U = {x1, x2, x3, x4,
x5, x6, x7}, C = {a1, a2, a3, a4, a5, a6}, and D = {Flu} (or D = {a7}).

Table 1. An example of a decision table.

a1 a2 a3 a4 a5 a6 a7

Patient Headache Temperature Lymphocyte Leukocyte Eosinophil Heartbeat Flu

x1 Yes High High High High Normal Yes

x2 Yes High Normal High High Abnormal Yes

x3 Yes High High High Normal Abnormal Yes

x4 No High Normal Normal Normal Normal No

x5 Yes Normal Normal Low High Abnormal No

x6 Yes Normal Low High Normal Abnormal No

x7 Yes Low Low High Normal Normal Yes

Let S = (U,C,D, V, f) be a decision table. For each nonempty B ⊆ C or
B = D we define a indiscernibility relation induced by B, denoted ind(B),
as:

ind(B) = {(x, y) | x, y ∈ U ∧ ∀a ∈ B, f(x, a) = f(y, a)}.

The relation ind(B) is clearly an equivalence relation on U .
When B = D, ind(B) is called classification relation induced by D and

denoted by D. In this case a partition U/D is called classification defined by the
decision attributes D.

For every nonempty B ⊆ C, and every X ⊆ U , we define B−(X), the B-
lower approximation of X, as B−(X) = {x ∈ U | [x]ind(B) ⊆ X}. For every for
every nonempty B ⊆ C and every U ′ ⊆ U , we define the positive region (or
lower approximation) of D over U ′ with respect to B as:

POSU
′

B (D) =
⋃

X∈U ′/D
B−(X).

When U ′ = U , the most popular case, we will just write POSB(D). Note that
we always have: POSU

′
B (D) ⊆ U ′.
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Definition 1. Let S = (U,C,D, V, f) be a decision table and let B ⊆ C.

1. A set B is called a relative attribute reduct if and only if POSB(D) =
POSC(D), and

2. a set B is called an attribute reduct if and only if it is a relative reduct and
for each B′ � B, we have POSB′(D) �= POSB(D),

3. a set B is called an optimal attribute reduct if and only if it is a reduct
and for any other reduct B′, we have |B| ≤ |B′|. 

In other words, reducts are minimal relative reducts and optimal reduct is a

reduct with smallest cardinality.

3 Local Search for Attribute Reduction

This section describes in detail our local search method for solving the attribute
reduction problem.

3.1 A Plain Local Search Algorithm for Attribute Reduction

Our method stems from the following simple result.
Suppose S = (U,C,D, V, f) is a decision table, Red ⊆ C is a relative reduct,

we randomly select a ∈ Red. If Red\{a} is also a relative reduct, then we update
Red \ {a} as new Red and jump into the next iteration. If Red \ {a} is not a
relative reduct, we randomly choose u ∈ Red \ {a} and v ∈ C \ Red and verify
if Redauv = (Red \ {a, u}) ∪ {v} is a relative reduct. If it is, we update Redauv
as new Red, and go to the next iteration. Since |Redauv| = |Red| − 1, Redauv
is better relative reduct than Red. If Redauv is not a relative reduct, Red is not
changed and we continue with the next iteration. The algorithm stops when it
iterates T times, where T is a parameter given in advance.

The process always returns a relative reduct and the bigger value of T ,
the smaller, i.e. better, the solution is. Algorithm 1 represents the procedure
described above. The algorithm starts with a construction some relative reduct
Red (steps 1 and 2). The computation is greedy, the set Red is initially empty and
then, in each iteration we choose an attribute a ∈ C \Red at random and add it
to Red. The computation process stops when POSRed(D) = POSC(D). The pro-
cess always converges, the worst case is when Red = C, so no reduct exists. The

worst case time complexity is O(
|Red|∑

i=1

i|U |) = O(|Red|2|U |) = O(|C|2|U |). Steps

3–14 represent T iterations that result in a derivation of a reduct RedT from a
relative reduct Red. Clearly |RedT | ≤ |Red|. The worst case time complexity of
the ith iteration is O(|Redi||U |), where Redi is Red from ith iteration, so the

worst case time complexity of lines 3–14 is O((
T∑

i=1

|Redi|)|U |) = O(T |Red||U |) =

O(T |C||U |) as clearly |Redi| ≤ |Red| ≤ |C| for all i = 1, . . . , T . For the
entire Algorithm 1 we have O(max(T, |Red|)|Red||U |) = O(max(T, |C|)|C||U |) =
O(T |C||U |) as usually T > |C|.
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Algorithm 1 always finds some reducts but not necessarily an optimal reduct.
The quality of solution clearly depends on the size of T , but also on smart
selection of pairs (u, v). Foundations of such selection process are presented in
the next section. We would also like to get rid of this arbitrary limit T and just
stop when a local minimum is found.

Algorithm 1. (LSAR) Local search algorithm for attribute reduction
Input: A decision table S = (U,C,D, V, f), the maximum number of iterations

T
Output: The attribute reduction Red.

1 t = 0, Red = ∅;
2 construct a relative reduct Red using greedy algorithm;
3 while t < T do
4 remove an attribute a from Red randomly;
5 if POSRed\{a}(D) = POSC(D) then
6 Red = Red \ {a};
7 else
8 select randomly the deleting attribute u ∈ Red \ {a} and the adding

attribute v ∈ C \ Red ;
9 if POS(Red\{a,u})∪{v}(D) = POSC(D) then

10 Red = (Red \ {a, u}) ∪ {v};
11 end

12 end
13 t = t + 1;

14 end
15 return Red;

3.2 Attribute Pair Selection Mechanism

In principle, the basic problem we have to deal with in Algorithm 1 can be formu-
lated as follows. Suppose that POSB(D) �= POSC(D). How to select attributes
u and v such that POS(B\{u})∪{v}(D) = POSC(D)? We will use a reverse incre-
mental verification approach to solve this problem and start with two useful
lemmas.

Lemma 1. Let S = (U,C,D, V, f) be a decision table. For each B ⊆ C, we
have: POSB(D) = POS

POSB(D)
B (D).

Proof. Clearly POS
POSB(D)
B (D) ⊆ POSB(D). Let x ∈ POSB(D) and

POSB(D)/D be the partition of POSB(D) defined by D. Then x ∈ Xx ∈
POSB(D)/D. But by the definition: POS

POSB(D)
B (D) =

⋃

X∈POSB(D)/D
B−(X),

hence x ∈ POS
POSB(D)
B (D). ��
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Before formulating our next result we need to introduce one more concept.
Let S = (U,C,D, V, f) be a decision table. For each nonempty B ⊆ C we

define the inconsistent objects pairs, denoted iop(B), as:

iop(B) = {(x, y) | x, y ∈ U ∧ (∀a ∈ B.f(x, a) = f(y, a)) ∧ (∃d ∈ D.f(x, d) �= f(y, d))}.

If (x, y) forms an inconsistent object pair, then the value of all conditional
attribute are the same and the values of some decision attributes are different.

Lemma 2. Let S = (U,C,D, V, f) be a decision table and B ⊆ C. Then we
have:

1. For each attribute v ∈ C \ B,

POSB∪{v}(D) = POSB(D) ∪ POSU
′

{v}(D),

where U ′ = POSB∪{v}(D) \ POSB(D).
2. For each attribute u ∈ B,

POSB\{u}(D) = POSB(D) \
⋃

X∈Xu

X,

where Xu = {X | X ∈ POSB(D)/ind(B) ∧ (X × U) ∩ iop(B \ {u}) �= ∅}.

Proof. (sketch) (1) First note that U ′ ∩POSB(D) = ∅ and POSU
′

{v}(D) ⊆ U ′, so

POSB∪{v}(D) = POSB(D) ∪ POSU
′

{v}(D) ⇐⇒ U ′ = POSU
′

{v}(D). Suppose that

x ∈ U ′ \ POSU
′

{v}(D), i.e. x ∈ POSB∪{v}(D), x /∈ POSB(D) and x /∈ POSU
′

{v}(D),
which clearly implies [x]ind(B∪{v}) ⊆ POSB∪{v}(D), [x]ind(B) ∩ POSB(D) = ∅
and [x]ind({v}) ∩ POSU

′
{v}(D) = ∅. However, since v /∈ B, we also have ind(B ∪

{v}) = ind(B) ∩ ind({v}), which means [x]ind(B∪{v}) ⊆ [x]ind(B) ∩ [x]ind({v}), a
contradiction.
(2) Since B\{u} � B then POSB\{u}(D) ⊆ POSB(D). Consider X ∈ Xu. Since
X ∈ POSB(D)/ind(B) then X ⊆ POSB(D) and since (X ×U)∩ iop(B \{u}) �= ∅
then X ∩ POSB\{u}(D) = ∅. Hence POSB\{u}(D) ⊆ POSB(D) \ ⋃

X∈Xu
X. Let

x ∈ POSB(D) \ ⋃
X∈Xu

X. Hence x ∈ POSB(D) and there is y ∈ U such that
(x, y) /∈ iop(B \ {u}), i.e. x ∈ POSB\{u}(D). ��

Lemma 2 shows the results of adding and deleting attributes to and from a
positive region POSB(D). We will use them to provide a pair selection mechanism
described in Algorithm 1. More precise rules are given by the next result.

Proposition 1. Let S = (U,C,D, V, f) be a decision table, B � C, u ∈ B and
v ∈ C \ B such that

– POSB(D) �= POSC(D),
– POS(B\{u})∪{v}(D) = POSC(D) and
– POSC(B)/ind(B ∪ {v}) = {X1, . . . , Xn}.
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Then the following properties hold.

1. POSU
′

{v}(D) = U ′, where U ′ = POSC(D) \ POSB(D).

2. POS
̂U
(B\{u})∪{v}(D) = Û , for every Û = {x1, . . . , xn} ⊆ U such that Û ∩Xi =

{xi} for i = 1, . . . , n.

Proof. (sketch) (1) Since POS(B\{u})∪{v}(D) = POSC(D), then directly
from the definition of positive region we have: POSB∪{v}(D) = POSC(D).
By Lemma 2(1) we have: POSC(D) = POSB∪{v}(D) = POSB(D) ∪
POS

POSC(D)\POSB(D)
{v} (D), i.e. POSPOSC(D)\POSB(D)

{v} (D) = POSC(D) \ POSB(D).

(2) From Lemma 1 it follows POS(B\{u})∪{v}(D) = POS
POS(B\{u})∪{v}(D)

(B\{u})∪{v} (D)

and POSB∪{v}(D) = POS
POSB∪{v}(D)

B∪{v} (D). However POS(B\{u})∪{v}(D) =

POSB∪{v}(D) = POSC(D), so POS
POSC(D)
(B\{u})∪{v}(D) = POS

POSC(D)
B∪{v} (D). On the

other hand, since (B \ {u}) ∪ {v} = (B ∪ {v}) \ {u}, by Lemma 2(2) we
have POS

POSC(D)
(B\{u})∪{v}(D) = POS

POSC(D)
B∪{v} (D) \ ⋃

X∈Xv
u

X, where X v
u = {X | X ∈

POSC(D)/ind(B∪{v})∧(X ×POSC(D))∩ iop((B∪{v})\{u}) �= ∅}. This means
that

⋃

X∈Xv
u

X = ∅, i.e. X v
u = ∅, or, equivalently, X ∈ POSC(D)/ind(B ∪ {v})

implies (X ×POSC(D))∩ iop((B ∪{v})\{u}) = ∅. But this also means that X ∈
POSC(D)/ind(B ∪ {v}) = {X1, . . . , Xn} implies X ⊆ POS

POSC(D)
(B\{u})∪{v}(D). For

each i = 1, . . . , n, let xi be an arbitrary element of Xi and set Û = {x1, . . . , xn}.
If i �= j, then we now have (xi, xj) ∈ ind((B \ {u})∪{v}) and f(xi, d) = f(xj , d)
for each d ∈ D. But this means that we have POS

̂U
(B\{u})∪{v}(D) = Û . ��

Proposition 1 suggests the following useful definition. Let S = (U,C,D, V, f)
be a decision table, B � C and U ′ = POSC(D) \ POSB(D). We define C∗

B ⊆ C,
a set of attributes filtered by B as:

C∗
B = {v | v ∈ C \ B ∧ POSU

′
{v}(D) = U ′}.

We will now show a sample application of the results stated above.

Example 1. Take the decision table Table 1, where U = {x1, x2, . . . , x7},
C = {a1, a2, . . . , a6}, and D = {Flu}. Consider B = {a1, a4}. In this case
POS{a1,a4}(D) = {x4, x5} and POSC(D) = U . We want to find such u ∈
B = {a1, a4} and v ∈ C \ B = {a2, a3, a5, a6} that POS({a1,a4}\{u})∪{v}(D) =
POSC(D). We have to perform the following steps.

1. First we compute U ′ as defined in Proposition 1(1). In this case U ′ =
POSC(D) \ POS{a1,a4}(D) = {x1, x2, x3, x6, x7}.

2. For each v ∈ {a2, a3, a5, a6}, we compute POSU
′

{v}(D) and for this case we have:

POSU
′

{a2}(D) = {x1, x2, x3, x6, x7}, POSU
′

{a3}(D) = {x1, x2, x3}, POSU
′

{a5}(D) =

{x1, x2} and POSU
′

{a6}(D) = {x1, x7}.
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3. We now can calculate C∗
{a1,a4}. Only POSU

′
{a2}(D) = U ′, so C∗

{a1,a4} = {a2},
i.e. we set v = a2.

4. We calculate POSB∪{v}(D) = POS{a1,a4}∪{a2}(D) = POS{a1,a2,a4}(D) = U .
5. We calculate that POS{a1,a2,a4}(D)/ind({a1, a2, a4}) = {{x1, x2, x3},

{x4}, {x5}, {x6}, {x7}}, and construct Û as Û = {x1, x4, x5, x6, x7}.
6. We will now use Proposition 1(2) to find proper u. Since we have

POS
̂U
{a1,a2}(D) = Û and POS

̂U
{a2,a4}(D) = Û , we set either u = a1 or u = a4.

7. Finally we set (u, v) = (a1, a2) or (u, v) = (a4, a2). 


3.3 A Local Search Algorithm with the Attribute Pair Selection
Mechanism for Attribute Reduction

In step 4 of Algorithm 1, some element a is randomly removed from Red. Next
we try to find appropriate u and v, but we may not succeed. In such a case a
should not be used in next iteration. To implement this we use a set of removed
attributes denoted by RemoveSet in Algorithm 2. Moreover at some point we
will reach some local optimum so no more iteration is needed as we have just got
our result. Local optimum means that we cannot remove any attribute a from
the current reduct Red, all elements of Red have been tried but none has worked
so they all have been put into RemoveSet, i.e. a local optimum is reached when
Red = RemoveRed. Therefore we have designed the following four adjustment
rules.

Adjustment rule 1: In each iteration, the randomly deleted attribute a
must not belong to RemoveSet.

Adjustment rule 2: If a pair of attributes (u, v) cannot be found in the cur-
rent iteration, the randomly deleted attribute a is added to the set RemoveSet.

Adjustment rule 3: RemoveSet is initialized to empty set. If a pair of
attributes (u, v) is found, the search of current reduct is stopped, RemoveSet is
reset to empty set again and the new iteration begins.

Adjustment rule 4: If the current attribute reduct Red equals RemoveSet,
the algorithm stops and returns Red. Since RemoveSet ⊆ Red, we can replace
equality Red = RemoveSet with computationally simpler |Red| = |RemoveSet|.

Algorithm 2 applies all the above four rules and techniques described in
Sect. 3.2. As opposed to Algorithm 1, it does not have an arbitrary limit of
iterations T .

The analysis of its time complexity is similar to that for Algorithm 1.
Algorithm 2 also starts with construction of a relative reduct using the same
greedy procedure, so the worst case time complexity of this step (i.e. step 2) is
O(|Red|2|U |) = O(|C|2|U |).
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Algorithm 2. (LSAR-APS) Local search algorithm with the attribute
pair selection mechanism for attribute reduction
Input: A decision table S = (U,C,D, V, f).
Output: The attribute reduction Red.

1 t = 0, Red = ∅ and RemoveSet = ∅;
2 construct a relative reduct Red using greedy algorithm; /* the same as in

Algorithm 1 */

3 while |Red| �= |RemoveSet| /* Adjustment rule 4 */ do
4 remove at random an attribute a from Red \ RemoveSet; /* Adjustment

rule 1 */

5 if POSRed(D) = POSRed\{a}(D) then
6 Red = Red \ {a};
7 else
8 calculate C∗

Red;
9 flag = 0; /* the tag flag is used to mark whether or not the

attribute pair (u, v) can be found */

10 for each v ∈ C∗
Red and each u ∈ Red \ {a} when flag = 0 do

11 compute POSC(D)/ind((Red \ {a}) ∪ {v}) = {X1, . . . , Xn};

12 construct a set ̂U = {x1, . . . , xn}, where xi ∈ Xi;

13 if POS
̂U
(Red\{a,u})∪{v}(D) = ̂U then

14 Red = (Red \ {u}) ∪ {v};
15 flag = 1; /* flag = 1 means finding an attribute pair and

it causes exit from the loop, as by Adjustment rule 3

*/
16 end

17 end
18 if flag = 0 then
19 RemoveSet = RemoveSet ∪ {a}; /* Adjustment rule 2 */

20 else
21 RemoveSet = ∅; /* Adjustment rule 3 */

22 end

23 end

24 end
25 return Red;

For the time essential steps inside the loop while do (step 3) we have the
following worst case time complexities. Let Redi represents the relative reduct
used in the ith iteration. Step 5 is O(|Redi||U |) = O(|C||U |). Time complexity of
step 8, i.e. finding C∗

Redi
, is O(|C \Redi||POSC(D) \POSRedi

(D)|) = O(|C||U |).
Steps 11–12 construct Û and their time complexity is O(|Redi||POSC(D)|) =
O(|C||U |), while steps 13–16 verify if a pair (u, v) fixes Redi, and they are
O(|Redi||POSRedi

(D)) = O(|C||U |) as well. The remaining steps inside while do
have complexity O(1). Hence the entire worst case time complexity of the ith

iteration is O(|C||U |), or more precisely O(|Redi||U |).
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As far as the worst case time complexity is concerned, the ith itera-
tion of Algorithm 1 and the ith iteration of Algorithm 2, have the same
upper approximation O(|Redi||U |) = O(|C||U |). However, because |POSC(D) \
POSRedi\{a}(D)| � |U , |Û ≤ |POSC(D)| ≤ |U | and, usually, |C∗

Redi
| � |Redi|,

an average case time complexity of Algorithm 2 is usually much smaller than
O(|Redi||U |) for the ith iteration.

The loop while do executes O(|Red|) = O(|C|) times, so the overall worst
case time complexity of Algorithm 2 is O(|C|2|U |). In reality, Algorithm 2
(LSAR-APS) is usually much faster than Algorithm 1 (LSAR), however there
might be some exceptions (for example see Table 4, data set CNAE-9).

4 Experiments

In this section, we will present the results of experiments conducted to evaluate
the performance of Algorithms 1 and 2, also named as LSAR and LSAR-APS,
on eight well-known UCI data sets [26]. The characteristics of these data sets
are given in Table 2. We compare our two algorithms with the positive region-
based heuristic algorithm POSR [13], the backward search strategy-based quick
heuristic algorithm GARA-BS [16], and the immune quantum-behaved particle
swarm attribute reduction algorithm IQPOSR [23]. All the experiments have
been ran on a personal computer with Inter(R) Core(TM) i5-7300HQ CPU,
2.50 GHz and 16 GB memory. The programming language is Matlab R2016a.

Table 2. Description of data sets.

Data sets Names No. of objects No. of attributes No. of classes

S1 Soybean (small) 47 35 4

S2 Zoo 101 16 7

S3 Dermatology 366 33 6

S4 Mushroom 8124 22 2

S5 Letter 20000 16 26

S6 CNAE-9 1080 856 9

S7 Musk (Ver.2) 6598 166 2

S8 Connect-4 67557 42 3

4.1 Reduct Size and Computation Time

We evaluate the feasibility and effectiveness of our two algorithms according to
two aspects: the reduct size and the computation time. The algorithms POSR,
GARA-BS and LSAR-APS have no parameters. For IQPOSR, the parameters
use the settings on small-scale problem instances in [23], and the specific settings
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are as follows: the particle size M = 50, the total number of iterations T =
200, the particle protection period K = 10, the accuracy error ε0 = 0.01, and
the test cost of each attribute c(a) = 1. LSAR is a single candidate solution-
based stochastic local search algorithm, and it requires more iterations than
population-based iterated algorithms. Hence the maximum iterations of LSAR
is 10 times that of IQPOSR, i.e., T = 2000. However the time complexity of
LSAR is much less than that of IQPOSR. Each algorithm runs 10 times on each
data set, and we record the best reduct and the average computation time of
the 10 runs. The experiment results shown in Tables 3 and 4.

Table 3. Comparison of reduct size on eight data sets

Data set Reduct size

POSR GARA-BS IQPSOR LSAR LSAR-APS

Soybean (small) 2 2 2 2 2

Zoo 5 5 5 5 5

Dermatology 10 9 9 8 8

Mushroom 4 4 4 4 4

Letter 11 12 11 11 11

CNAE-9 81 75 84 80 71

Musk (Ver.2) 4 4 4 4 4

Connect-4 34 34 35 34 34

Table 3 shows that the reduct sizes obtained by LSAR and LSAR-APS are the
same on all data sets, except for the data set CNAE-9. From all five algorithms,
LSAR-APS is the best one in terms of the reduct size, especially for the data
set CNAE-9. The reduct size of these five algorithms are the same on data sets
Soybean (small), Zoo, Mushroom, and Musk (Ver.2). POSR obtains the worst
reduct size on data sets Dermatology, and the reduct size of GARA-BS is the
worst one on data set Letter. On data sets CNAE-9 and Connect-4, IQPSOR
performs the worst in terms of the reduct size.

From Table 4 we have that GARA-BS is the fastest algorithm on data sets
Soybean (small) and Zoo. On data sets Dermatology, Mushroom, Letter, Musk
(Ver.2), and Connect-4, the algorithm LSAR-APS performs the best in terms of
the computational time. On data set CNAE-9, the computational time of LSAR
is the best one. This is one of these rare cases when LSAR performed better than
LSAR-APS. The algorithm POSR is very complex, so its computational time
grows dramatically as the data set increases. IQPSOR is a population-based
meta-heuristic algorithm, and its computational times are stable. Among three
previous algorithms, GARA-BS obtains the smallest computational time, but its
computational time is still far greater than that of LSAR-APS.

In summary, especially when large data sets are concerned, our algorithm
LSAR-APS can achieve a better reduct in a much shorter time. For example,
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Table 4. Comparison of computational time on eight data sets

Data set Computational time/s

POSR GARA-BS IQPSOR LSAR LSAR-APS

Soybean (small) 0.138 0.011 2.357 1.130 0.017

Zoo 0.184 0.014 3.387 1.339 0.033

Dermatology 3.186 0.132 12.751 2.817 0.105

Mushroom 19.773 1.022 324.006 16.930 0.617

Letter 245.631 3.813 737.317 72.026 2.239

CNAE-9 2064.218 220.204 718.453 23.013 74.643

Musk (Ver.2) 365.983 10.319 449.029 17.112 1.695

Connect-4 12417.113 175.689 2665.508 614.399 56.953

the algorithm LSAR-APS only takes an average of 74.643 s to find a reduct
with a smallest size 71, and this is definitely the best results among these five
algorithms. To the best of our knowledge, the reduct size 71 on data set CNAE-9
is also the best solution obtained so far.

4.2 Classification Accuracy Analysis

The classification accuracy was conducted on the selected attribute reducts found
by all five algorithms with classifier 3NN (k-Nearest Neighbor algorithm and k =
3), which is a popular classifier for testing the attribute reduction algorithms. All
of the classification accuracies are obtained with 10-fold cross validation. In 10-
fold cross validation, a given data set is randomly divided into 10 nearly equally
sized subsets, of these 10 subsets, 9 subsets are used as training set, a single
subset is retained as testing set to assess the classification accuracy. The average
performance results in terms of the classification accuracy are summarized in
Table 5, where the column “Raw” depicts the classification accuracies with the
original data and the boldface highlights the highest accuracy among these five
algorithms.

Table 5. Classification accuracy on different data sets.

Data setClassification accuracy/%

Raw POSR GARA-BS IQPSOR LSAR LSAR-APS

S1 100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00

S2 93.18 ±7.93 90.09±8.17 89.51 ±10.54 89.09±8.77 90.18±10.36 91.00±11.01

S3 96.72±2.50 92.64±3.62 73.75± 8.56 90.16 ±5.51 76.26± 7.66 76.52± 5.24

S4 100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00100.00±0.00

S5 95.63±0.41 94.61±0.31 94.23±0.55 93.68±0.30 93.38±0.51 94.36±0.50

S6 85.83±2.73 85.74±3.30 85.83±2.66 85.93±3.17 85.28±4.37 86.11±2.99

S7 96.79±0.58 90.85±1.29 91.60±0.59 92.83±0.89 91.54±0.99 91.71±1.05

S8 66.60±1.23 67.31±1.53 67.30±0.72 67.03±0.86 67.21±0.98 67.68±0.86
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Table 5 shows that the algorithm LSAR-APS achieves the best classification
performance as its number of the highest classification accuracy is five times
out of eight data sets. For POSR this number is four times among eight data
sets, QIPSOR matched the best classification accuracies for 3 out of 8 cases
while and LSAR and GARA-BS only obtain the best classification performance
on data sets S1 and S4. Hence, LSAR-APS can achieve better or comparable
classification accuracy in comparison with other four algorithms.

5 Conclusion

In this paper, we studied local search approach for attribute reduction problem
in rough set theory that has a wide range of applications. We introduced a local
search framework for this problem and proposed two advanced strategies to
improve the iteration process of the local search-based algorithm, i.e., attribute
pair selection mechanism and adjustment rules. The results of the experiment
on the broadly used data set indicated that our proposed algorithm LSAR-ASP
significantly outperforms other state-of-the-art algorithms.

We are surprised to find that the reduct found by LSAR-APS on data set
CNAE-9 is actually an optimal reduct (see Appendix A). In this sense, this work
provides a new idea for solving the optimal reduct of large data sets. In the future
work, we will test our proposed algorithm on high-dimensional large data sets
and propose some additional improved strategies to enhance the efficiency of the
local search-based attribute reduction algorithm.
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Appendix A

Here we report the optimal solution found by LSAR-APS on data set CNAE-9.
The optimal reduct is: 7 20 63 68 73 75 77 105 118 119 133 150 151 183 191 194
199 201 202 207 211 246 247 258 272 276 328 333 334 338 345 350 359 360 373
382 390 403 415 417 421 423 424 443 476 483 499 518 519 539 546 555 581 607
608 614 615 618 619 631 648 650 673 684 705 726 731 815 823 824 832.
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tion systems. In: S�lowiński, R. (ed.) Intelligent Decision Support. Handbook of
Applications and Advances of the Rough Sets Theory, Dordrecht, Kluwer (1992)

9. Nguyen, H.S.: Approximate boolean reasoning approach to rough sets and data
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Abstract. This paper presents the concept of lower and upper rough
matroids based on approximation operators for covering-based rough
sets. This concept is a generalization of lower and upper rough matroids
based on coverings. A new definition of lower and upper definable sets
related with an approximation operator is presented and these definable
sets are used for defining rough matroids based on an approximation
operator. Finally, an order relation for a special type of rough matroids
is established from the order relation among approximation operators.

Keywords: Covering rough sets · Rough matroid · Order relation

1 Introduction

Covering-based rough sets are a generalization of rough set theory, which was
developed by many authors and had applications in other contexts [6,9,12,22,
23]. Yao and Yao introduced a general framework for the study of dual pairs of
covering-based approximation operators, distinguishing between element-based,
granule-based and subsystem-based definitions [21]. Other pairs of approximation
operators have been studied in literature; for instance, in [18], Yang and Li
present a summary of seven non-dual pairs of approximation operators used by
Żakowski [22], Pomykala [9], Tsang et al. [12], Zhu [24], Zhu and Wang [26], Xu and
Wang [17]. Restrepo et al. present a general framework of pairs of dual operators
and established a partial order relation among these operators [10,11]. Matroids
were introduced in 1935 by Whitney as a generalization of independence in lin-
ear algebra. Matroids have been used in combinatorial optimization and algorithm
design.

Many works have shown interesting connections between matroids and rough
sets [4–7,12,13,16]. Zhu et al. presented the concept of rough matroid based on
a relation [27,28] and rough matroids based on coverings [19], using a particular
approximation operator. The concepts of rough matroids based on coverings and
binary relations were presented in [19] and [27], respectively. In both cases, the
elements in the matroids are definable sets. In [19] it was stated that the lower
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approximation of a set X is equal to X itself if and only if X is also equal to its
upper approximation, which is false, as this paper will show. Because of this, it
is necessary to separately consider the definable sets for the operators apr and
apr. The integration of matroids with covering-based rough sets can bring new
theories and practical significance in important problems such as the reduction
of attributes as shown in [16]. This article presents new definitions for lower and
upper rough matroids, using a dual pair of approximation operators.

The paper is organized as follows: Sect. 2 presents preliminary concepts
regarding covering-based rough sets, such as lower and upper approximations,
the main neighborhood operators, definable sets and matroids. Section 3 presents
the concept of lower and upper rough matroids based on an approximation oper-
ator. This section also presents a generalization of rough matroid based on cover-
ings. Section 4 presents an order relation among rough matroids. Finally, Sect. 5
presents the main conclusions of the paper and describes future work.

2 Preliminaries

In Pawlak’s rough set model, an approximation space is an ordered pair apr =
(U,E), where E is an equivalence relation defined on a non-empty set U [8]. In
this paper U is considered as a finite set.

According to Yao and Yao [20,21], there are three different, but equivalent
ways to define lower and upper approximation operators: element-based defini-
tion, granule-based definition and subsystem-based definition. For each A ⊆ U ,
the granule-based lower and upper approximations are defined by:

apr(A) =
⋃

{[x]E ∈ U/E : [x]E ⊆ A} (1)

apr(A) =
⋃

{[x]E ∈ U/E : [x]E ∩ A �= ∅} (2)

The set [x]E represents the equivalence class of x and U/E the partition
obtained from the equivalence relation. P(U) represents the set of parts of U .

Other equivalent element-based and sub-system based definitions for approx-
imation in covering-based rough sets can be found in [21].

2.1 Covering-Based Rough Sets

Covering-based rough sets were proposed to extend the range of applications of
rough set theory. In covering-based rough sets an element x ∈ U can belong to
many sets, so we have to consider the sets K in C such that x ∈ K.

Definition 1 [23]. Let C = {Ki} be a family of nonempty subsets of U . C is
called a covering of U if

⋃
Ki = U . The ordered pair (U,C) is called a covering

approximation space.
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Duality

Definition 2 [3]. Let f, g : B → B be two self-maps on a complete Boolean
lattice B. We say that g is the dual of f , if for all x ∈ B,

g(−x) = −f(x),

where −x represents the complement of x ∈ B.

Meet and Join Morphisms

Definition 3 [3]. Let L be a finite lattice. A meet-morphism f is a morphism
that satisfies f(a ∧ b) = f(a) ∧ f(b) for a and b in L. Dually, a join-morphism
f is a morphism that satisfies f(a ∨ b) = f(a) ∨ f(b) for a and b in L.

Minimal and Maximal Description. In a covering approximation space for
each x ∈ U , it is very important to take into account the collection of sets in
K ∈ C such that x ∈ K.

C (C, x) = {K ∈ C : x ∈ K}

Definition 4. Let (U,C) be a covering approximation space and x in U . The
set

md(C, x) = {K ∈ C (C, x) : (∀S ∈ C (C, x), S ⊆ K) ⇒ K = S)} (3)

is called the minimal description of x [1]. On the other hand, the set

MD(C, x) = {K ∈ C (C, x) : (∀S ∈ C (C, x), S ⊇ K) ⇒ K = S} (4)

is called the maximal description of x [25].

Approximation Operators. A first definition of approximation operator can
derive from neighborhood operators.

Definition 5. A neighborhood operator is a function N : U → P(U). In general
we consider functions N such that x ∈ N(x).

The element-based definitions of approximation operators based on a neigh-
borhood operator N are defined as:

apr
N

(A) = {x ∈ U : N(x) ⊆ A} (5)

aprN (A) = {x ∈ U : N(x) ∩ A �= ∅} (6)

From md(C, x) and MD(C, x), Yao and Yao define the following neighbor-
hood operators [21]:

1. N1(x) =
⋂{K : K ∈ md(C, x)}

2. N2(x) =
⋃{K : K ∈ md(C, x)}
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3. N3(x) =
⋂{K : K ∈ MD(C, x)}

4. N4(x) =
⋃{K : K ∈ MD(C, x)}

Therefore, four different pairs of dual approximation operators can be defined
in a covering space: (apr

Ni
, aprNi

).
The granule-based definitions of approximation operators based on a covering

C were considered before, see Table 2 in [21]:

apr′
C
(A) =

⋃
{K ∈ C : K ⊆ A} (7)

apr′′
C(A) =

⋃
{K ∈ C : K ∩ A �= ∅} (8)

The approximation operators shown above do not satisfy the dual relation:

apr′′
C(−A) = −apr′

C
(A) (9)

Therefore, it is possible to define a dual operator for each one and get two
different pairs of dual approximation operators in a covering space.

This paper considers the following two properties for any operator:

1. apr(A) = −apr(−A).
2. apr(A) ⊆ A ⊆ apr(A).

Other coverings obtained from a covering C have been used for new definitions
of approximation operators.

From a covering C of U , the following new coverings have been defined:

1. C1 =
⋃{md(C, x) : x ∈ U}

2. C2 =
⋃{MD(C, x) : x ∈ U}

3. C3 = {⋂
(md(C, x)) : x ∈ U}

4. C4 = {⋃
(MD(C, x)) : x ∈ U}

5. C∩ = C \ {K ∈ C : (∃K ⊆ C \ {K}) (K =
⋂
K)}

Covering C∩ is called the ∩-reduction of C. The main idea is to eliminate the
elements K in C that can be expressed as the intersection of other sets in the
covering.

The dual pairs of approximation operators which satisfy the meet/join prop-
erty, according to the results established in [10] are:

1. (apr
N1

, aprN1
) = (apr′

C3
, apr′

C3
)

2. (apr
N2

, aprN2
)

3. (apr
N3

, aprN3
)

4. (apr
N4

, aprN4
) = (apr′′

C
, apr′′

C
) = (apr′′

C2
, apr′′

C2
) = (apr′′

C∩
, apr′′

C∩)
5. (apr′′

C1
, apr′′

C1
) = (apr′′

C∪
, apr′′

C∪)
6. (apr′′

C3
, apr′′

C3
)

7. (apr′′
C4
, apr′′

C4
)
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2.2 Definable Sets Based on an Approximation Operator

Different notations for approximation operators have been used. For example,
XL for apr

N1
and XH for aprN1

where used in [18].
The duality of the XL and XH operators is not enough to show that

XL(X) = X if and only if XH(X) = X; therefore the Corollary 1 in [19] is
wrong. A counterexample can be seen in Example 1 below, demonstrating that
it is necessary to consider the definable sets separately, and to understand them
as the fixed points of the apr and apr operators respectively.

Definition 6. Let (U,C) be a covering approximation space and apr
C
any lower

approximation operator from the list above. The family of lower definable sets
for the approximation operator is defined as follows:

D
C

apr = {X ⊆ U : apr
C
(X) = X}.

A similar set can be defined from an upper approximation operator. We
denote with D

C
apr the families of upper definable sets for apr, respectively. We

can leave out C when there is no confusion. In general, Dapr �= Dapr.
Dapr = Dapr ∩ Dapr is called the set of definable sets for the pair of approxi-

mation operators.

Example 1. For the covering C = {{1, 2}, {3, 4}, {1, 4}, {2, 3, 4}, {1, 2, 4}} of the
set U = {1, 2, 3, 4} and the approximation operators apr

N1
and aprN1

, we have
that N1(1) = {1}, N1(2) = {2}, N1(3) = {3, 4} and N1(4) = {4}. The result of
the approximations are shown in Table 1:

Table 1. Approximations for operators apr
N1

and aprN1
.

A apr
N1

(A) aprN1
(A) A apr

N1
(A) aprN1

(A)

{1} {1} {1} {2, 3} {2} {2, 3}
{2} {2} {2} {2, 4} {2, 4} {2, 3, 4}
{3} ∅ {3} {3, 4} {3, 4} {3, 4}
{4} {4} {3, 4} {1, 2, 3} {1, 2} {1, 2, 3}
{1, 2} {1, 2} {1, 2} {1, 2, 4} {1, 2, 4} {1, 2, 3, 4}
{1, 3} {1} {1, 3} {1, 3, 4} {1, 3, 4} {1, 3, 4}
{1, 4} {1, 4} {1, 3, 4} {2, 3, 4} {2, 3, 4} {2, 3, 4}

In this case, the lower and upper definable sets are, respectively: Dapr
N1

= {∅,
{1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}
and DaprN1

= {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}, {1, 3, 4},
{2, 3, 4}, {1, 2, 3, 4}}.

Thus, in this case DaprN1
= {∅, {1}, {2}, {1, 2}, {3, 4}, {1, 3, 4}, {2, 3, 4},

{1, 2, 3, 4}}.
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Proposition 1. If (apr
C
, aprC) is a dual pair of approximation operators, apr

C

is a meet-morphism and A,B ∈ Dapr, then A ∩ B ∈ Dapr and A ∪ B ∈ Dapr.

Proof. It follows from the definition of meet-morphism: apr(A ∩ B) = apr(A) ∩
apr(B) = A∩B. Thus, A∩B ∈ Dapr. Using the duality property, it is easy to show
that aprC is a join-morphism, therefore: apr(A∪B) = apr(A)∪apr(B) = A∪B,
and so, A ∪ B ∈ Dapr.

The order relation among approximation operators can be used for establish-
ing an order relation among definable sets.

Proposition 2. If apr
1

≤ apr
2
, then Dapr

1
⊆ Dapr

2
.

Proof. If apr
1
(X) ⊆ apr

2
(X) and X ∈ D(U, apr

1
), then apr

1
(X) = X. We

will show that apr
2
(X) = X. Obviously apr

2
(X) ⊆ X. Now, if x ∈ X, then

x ∈ apr
1
(X) ⊆ apr

2
(X) and X ⊆ apr

2
(X). Therefore, apr

2
(X) = X and

X ∈ D(U, apr
2
). So, Dapr

1
⊆ Dapr

2
.

Corollary 1. If apr1 ≤ apr2, then Dapr1 ⊇ Dapr2 .

Proof. The proof is similar to the one above.

Example 2. According to the order relation established in [11] we have, for exam-
ple, the relations shown in Fig. 1.

N
apr

N
apr

N
apr

N
apr

N

NN

N

apr

aprapr

apr

Fig. 1. Order relation for lower approximation operators and lower definable sets.

2.3 Matroids

Matroids can be introduced from an elementary point of view as a collection of
sets of linearly independent vectors. Let us suppose that {a1, a2, a3, a4} repre-
sents the column vectors of matrix A:

A =

⎛

⎝
1 0 2 1
1 0 2 2
2 −1 0 0

⎞

⎠ � · · · � EA =

⎛

⎝
1 0 2 0
0 1 4 0
0 0 0 1

⎞

⎠ (10)
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Then, according to the reduced row echelon form EA, {a1, a2, a4} is a set of lin-
early independent vectors. Additionally, we know that any subset of linearly inde-
pendent vectors is also linearly independent. In this case, the collection of inde-
pendent sets is: I = {∅, {a1}, {a2}, {a4}, {a1, a2}, {a1, a4} {a2, a4}, {a1, a2, a4}}.

There are different definitions of a matroid. In this case, we consider the
following definition in terms of independence.

Definition 7 [27]. Let U be a finite set. A matroid on U is an ordered pair
M = (U, I), where I is a collection of subsets of U with the following properties:

1. ∅ ∈ I.
2. If I ∈ I, I ′ ⊆ I then I ′ ∈ I.
3. If I1, I2 ∈ I and |I1| < |I2|, then there exists I ∈ I such that I1 ⊂ I ⊆ I1 ∪ I2.

The members of I are called independent sets of U . A base for the matroid
M is any maximal set in I. The sets not contained in I are called dependent. A
minimal dependent subset of U is called a circuit of M .

3 Rough Matroids Based on Approximation Operators

The concept of rough matroid based on a covering C was proposed by Yang
et al. [27], using a particular pair of approximation operators. The following
definitions present the notion of lower and upper rough matroids based on an
approximation operator. Definitions 8 and 9 generalize Definitions 15 and 16
in [27].

Definition 8 (Lower rough matroid based on an approximation operator). Let
apr be a lower approximation operator in a covering space (U,C). A lower rough
matroid on U is an ordered pair M = (U, Iapr), where Iapr ⊆ Dapr is a collection
of subsets of U with the following properties:

1. ∅ ∈ Iapr.
2. If I ∈ Iapr, I ′ ∈ Dapr and apr(I ′) ⊆ apr(I) then I ′ ∈ Iapr.
3. If I1, I2 ∈ Iapr and |apr(I1)| < |apr(I2)|, then there exists I ∈ Iapr such that

apr(I1) ⊂ apr(I) ⊆ apr(I1) ∪ apr(I2).

Similarly, the definition of upper rough matroid based on an upper approxi-
mation operator is presented.
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Definition 9 (Upper rough matroid based on an approximation operator). Let
apr be an upper approximation operator in a covering space (U,C). An upper
rough matroid on U is an ordered pair M = (U, Iapr), where Iapr ⊆ Dapr is a
collection of subsets of U with the following properties:

1. ∅ ∈ Iapr.
2. If I ∈ Iapr, I ′ ∈ Dapr and apr(I ′) ⊆ apr(I) then I ′ ∈ Iapr.
3. If I1, I2 ∈ Iapr and |apr(I1)| < |apr(I2)|, then there exists I ∈ Iapr such that

apr(I1) ⊂ apr(I) ⊆ apr(I1) ∪ apr(I2).

Example 3. For the covering C = {{1, 2}, {3, 4}, {1, 4}, {2, 3, 4}, {1, 2, 4}} and
the approximations apr

N1
and aprN1

, we have that:

1. (U, I) = {∅, {1}} is a lower and an upper rough matroid based on the approx-
imation operator.

2. (U, I) = {∅, {1}, {3}, {1, 3}} is an upper rough matroid, but it is not a lower
rough matroid, because {3} /∈ Dapr.

Definition 10 (Rough matroid based on an approximation operator). Let I be
a family of subsets of U in a covering space (U,C). If there exists a pair of
approximation operators (apr, apr) such that M is a lower and an upper rough
matroid, then M is called a rough matroid based on an approximation operator.

Proposition 3. If M = (U, I) is a matroid, then M is a rough matroid based
on approximation operators.

Proof. Let us consider the approximation operators apr(X) = apr(X) = X,
for all X ⊆ U . Thus, M is a lower and an upper rough matroid based on
approximation operators.

Proposition 4. If M = (U, Iapr) is a lower rough matroid and M ′ = (U, Iapr) is
an upper rough matroid, then M = (U, I) is a rough matroid where I = Iapr∩Iapr.

Proof. 1. ∅ ∈ Iapr, because ∅ ∈ Iapr and ∅ ∈ Iapr.
2. If I ∈ Iapr, I ′ ∈ Dapr and apr(I ′) ⊆ apr(I), (apr(I ′) ⊆ apr(I)) then, I ′ ∈ Iapr

(I ′ ∈ Iapr). So, I ′ ∈ Iapr.
3. If I1, I2 ∈ Iapr and |apr(I1)| < |apr(I2)|, then there exists I ∈ Iapr such that

apr(I1) ⊂ apr(I) ⊆ apr(I1)∪apr(I2). Since I = Iapr ∩ Iapr and Dapr = Dapr ∩
Dapr, we have that I ∈ Iapr such that apr(I1) ⊂ apr(I) ⊆ apr(I1) ∪ apr(I2).
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3.1 Some Types of Rough Matroids Based on Approximation
Operators

In this section we consider a dual pair (apr, apr) of approximation operators,
where apr is a meet-morphism and therefore, apr is a join-morphism and a
special type of rough matroid.

Proposition 5. Let 0 < r ≤ n an integer, where n = |U | for a covering space
(U,C) and (apr, apr) is a dual pair of approximation operators. For

I
r
apr = {I ∈ Dapr : |I| ≤ r}

we have that: if {x} ∈ Dapr for all x ∈ U , then (U, Irapr) is a lower and an upper
rough matroid.

Proof. 1. ∅ ∈ I
r
apr.

2. If I ∈ I
r
apr, I

′ ⊆ I and I ′ ∈ Dapr, then |I ′| ≤ |I| ≤ r, and so I ′ ∈ I
r
apr.

3. If I1, I2 ∈ I
r
apr, with |I1| < |I2| and apr(I1) = I1 and apr(I2) = I2. Let

w ∈ I2 − I1 and I = I1 ∪ {w}. We have that apr(I) = apr(I1 ∪ {w}) =
apr(I1) ∪ apr({w}) = I1 ∪ {w} = I. So, I ∈ I

r
apr.

Similarly, it is possible to see that I
r
apr is a lower rough matroid.

Proposition 6. Let (U,C) be a covering space, X ⊆ U and (apr, apr) a dual
pair of approximation operators. For

Iapr(X) = {apr(Y ) : Y ⊆ U, Y ∈ Dapr, apr(Y ) ⊆ apr(X)}
we have that (U, Iapr(X)) is a lower rough matroid.

Proof. 1. ∅ ∈ Iapr(X), because ∅ = apr(∅) ⊆ apr(X).
2. If I ∈ Iapr(X), I ′ ⊆ I and I ′ ∈ Dapr, then apr(I ′) ⊆ apr(I) ⊆ apr(X), and

so I ′ ∈ Iapr(X).
3. If I1, I2 ∈ Iapr(X), with |I1| < |I2|. Let I = I1 ∪ I2, we have that apr(I) ⊆

apr(I1) ∪ apr(I2) ⊆ apr(X). Therefore, I ∈ Iapr(X).

Proposition 7. If apr is order-preserving and X ⊆ Y , then Iapr(X) ⊆ Iapr(Y ).

Proof. If W ∈ Iapr(X), W = apr(W ) ⊆ apr(X) ⊆ apr(Y ), then W ∈ Iapr(Y ).

4 Order Relation Among Rough Matroids

The order relation among approximation operators can be used for defining an
order relation among rough matroids I

r
apr and Iapr(X) for each X ⊆ U .

Proposition 8. If apr
1

≤ apr
2
, then I

r
apr

1
⊆ I

r
apr

2

Proof. According to Proposition 2, D(U, apr
1
) ⊆ D(U, apr

2
). If I ∈ I

r
apr

1
, then

I ∈ D(U, apr
1
) ⊆ D(U, apr

2
) and |I| ≤ r. So, I ∈ I

r
apr

2
.
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According to the order relation established among approximation operators
in [11] and the list in Sect. 2.1, we have that:

apr

apr
r

r

r

r

r

r

r
apr

apr

apr

apr

apr

Fig. 2. Order relation for lower rough matroids based on approximation operators.

The same order relation can be established for Iapr(X).

Proposition 9. If apr
1

≤ apr
2
, then Iapr1(X) ⊆ Iapr2(X).

Proof. If W ∈ Iapr1(X), W = apr1(W ) ⊆ apr1(X) ⊆ apr2(X), then W ∈
Iapr2(X).

A similar diagram to Fig. 2 can be obtained for this order relation.

5 Conclusions

This paper proposes a generalization of rough matroids based on a covering:
rough matroids based on an approximation operator. We introduce new defini-
tions of definable sets for lower and upper rough matroids. We show that any
matroid is a lower and an upper matroid based on approximation operators.
Finally, we extended the pre-order relation among approximation operators to
these rough matroids.

As future work, we want to study the properties of this class of lower and
upper rough matroids for a particular pair of approximation operators. More
specifically, properties related with lower and upper definable sets and properties
related with duality and adjointness.
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program of the Research Foundation-Flanders.
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covering-based rough sets. Inf. Sci. 336, 21–44 (2016)

3. Järvinen, J.: Lattice theory for rough sets. In: Peters, J.F., Skowron, A., Düntsch,
I., Grzyma�la-Busse, J., Or�lowska, E., Polkowski, L. (eds.) Transactions on Rough
Sets VI, Part I. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-71200-8 22

4. Li, X., Liu, S.: Matroidal approaches to rough sets via closure operators. Int. J.
Approx. Reason. 53, 513–527 (2012)

5. Li, Y., Wang, Z.: The relationships between degree rough sets and matroids. An.
Fuzzy Math. Inform. 12(1), 139–153 (2012)

6. Liu, Y., Zhu, W.: Relation matroid and its relationship with generalized rough set
based on relations. CoRR, abs 1209.5456 (2012)

7. Liu, Y., Zhu, W., Zhang, Y.: Relationship between partition matroids and rough
sets through k-rank matroids. J. Inf. Comput. Sci. 9, 2151–2163 (2012)

8. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)
9. Pomykala, J.A.: Approximation operations in approximation space. Bull. Acad.

Pol. Sci. 35(9–10), 653–662 (1987)
10. Restrepo, M., Cornelis, C., Gómez, J.: Duality, conjugacy and adjointness of

approximation operators in covering-based rough sets. Int. J. Approx. Reason.
55, 469–485 (2014)
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Abstract. STRIM (Statistical Test Rule Induction Method) has been
proposed for an if-then rule induction method from the decision table.
STRIM judges the significance of a trying rule by a statistical test based
on the table. The method judging the trying rule has been executed based
on the standard normal distribution approximating the distribution of
the decision attribute’s values so that the judging method needs the
proper size dataset satisfying the conditions of the approximation. This
paper proposes a new STRIM named minor-STRIM not incorporating
the test by the approximating distribution but by the original distri-
bution, which expands the applicable range to cases not satisfying the
conditions. Specifically, minor-STRIM uses a binomial distribution for
the testing and shows the applicable range expanded and performance
evaluation by use of a simulation experiment compared with those by
the conventional STRIM. The simulation also shows that it gives dis-
cussing and confirming information the validity of the results obtained
from applying minor-STRIM to a real-world dataset.

1 Introduction

Rough Set (RS) theory was introduced by Pawlak [1] and used for inducing if-
then rules from a dataset called the decision table (DT). To date, various methods
and algorithms for inducing rules by the theory have been proposed [2–5] since
the inducing rules are useful to simply and clearly express the structure of rat-
ing and/or knowledge hiding behind the table. The basic idea to induce rules is to
approximate the concept in the DT by use of the lower and/or upper approxima-
tion sets which are respectively derived from the equivalence relations and their
equivalence sets in the given DT. However, those methods and algorithms by RS
paid little attention to the fact that the DT was just a sample set gathered from
the population of interest. If resampling the DT from the population or the DT
by Bootstrap method for example, the new DT will change equivalence relations,
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their equivalence sets, and the lower and/or upper approximation sets, so the
induced rules will change and fluctuate. Those methods and algorithms also had
the problem that those induced rules were not arranged from the statistical views.

Then, we proposed a rule induction method named STRIM (Statistical Test
Rule Induction Method) taking the above mentioned problems into considera-
tion [6–14]. Specifically, STRIM

(1) Proposed a data generation model for generating a DT. This model recog-
nized the DT as an input-output system which transformed a tuple of the
condition attribute’s value occurred by chance (the input) into the decision
attribute value (the output) through pre-specified if-then rules (generally
unknown) under some hypotheses. That is, the input was recognized as
an outcome of the random variables and the output was also the outcome
of a random variable dependent on the input and the pre-specified rules.
Accordingly, the pairs of input and output formed the DT containing rules.

(2) Assumed a trying proper condition part of if-then rules and judged whether
it was a candidate of rules by statistically testing whether the condition
part caused bias in the distribution of the decision attribute’s values.

(3) Arranged the candidates having inclusion relationships by representing
them with one of the highest bias and finally induced if-then rules with
a statistical significance level after systematically exploring the trying con-
dition part of rules.

The validity and capacity of STRIM have been confirmed by the simulation
experiments that STRIM can induce pre-specified if-then rules from the DT
proposed in (1). Accordingly, the validity and capacity also secure a certain
extent of the confidence of rules induced by STRIM from the DT of real-world
datasets. The DT proposed in (1) is also used for confirming the validity and
capacity of other rule induction methods proposed previously [10,13].

However, the conventional STRIM executed the statistical test of the bias in
(2) based on the standard normal distribution approximating the distribution
in order to easily test it so that the testing required a proper data size satisfy-
ing the conditions for the approximation. That is, the condition controlled the
applicable range of the conventional STRIM. Then, this paper proposes a new
STRIM named minor-STRIM which expands the range by incorporating a test
not using the approximate distribution, but the original, specifically, a binomial
distribution and its validity and capacity is also clarified in the same way as the
conventional. Finally, minor-STRIM is applied to the Car Evaluation dataset of
UCI [15] and the validity and capacity of the induced rules are discussed based
on the information obtained from the simulation studies.

2 Conventional Rough Sets and STRIM

Rough Set theory is used for inducing if-then rules from a decision table S. S
is conventionally denoted by S = (U,A = C ∪ {D}, V, ρ). Here, U = {u(i)|i =
1, ..., |U | = N} is a sample set, A is an attribute set, C = {C(j)|j = 1, ..., |C|}
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is a condition attribute set, C(j) is a member of C and a condition attribute,
and D is a decision attribute. Moreover, V is a set of attribute values denoted
by V = ∪a∈AVa and is characterized by the information function ρ: U ×A → V .

The conventional Rough Set theory first focuses on the following equivalence
relation and the equivalence set of indiscernibility within the decision table S
of interest: IB = {(u(i), u(j)) ∈ U2|ρ(u(i), a) = ρ(u(j), a),∀a ∈ B ⊆ C}. IB

is an equivalence relation in U and derives the quotient set U/IB = {[ui]B |i =
1, 2, ..., |U | = N}. Here, [ui]B = {u(i) ∈ U |(u(j), ui) ∈ IB , ui ∈ U}. [ui]B is an
equivalence set with the representative element ui.

Let be ∀X ⊆ U then X can be approximated like B∗(X) ⊆ X ⊆ B∗(X) by
use of the equivalence set. Here, B∗(X) = {ui ∈ U |[ui]B ⊆ X}, and B∗(X) =
{ui ∈ U |[ui]B ∩ X �= φ}, B∗(X) and B∗(X) are referred to as the lower and
upper approximations of X by B respectively. The pair of (B∗(X), B∗(X)) is
usually called a rough set of X by B.

Specifically, let be X = {u(i)|ρ(u(i),D) = d} = U(d) = {u(i)|uD=d(i)} called
the concept of D = d, and define a set of u(i) as U(CP ) = {u(i)|uC=CP (i),
meaning CP satisfies uC(i), where uC(i) is the condition attribute values of
u(i)} = B∗(X), then CP can be used as the condition part of the if-then rule
of D = d, with necessity. That is, the following expression of if-then rules with
necessity is obtained: if CP = ∧j(C(j) = vjk) then D = d. In the same way,
B∗(X) derives the condition part CP of the if-then rule of D = d with possibility.

However, the approximation of X = U(d) by the lower or upper approxima-
tion is respectively too strict or loose so that the rules induced by the approxima-
tions are often no use. Then, Ziarko expanded the original RS by introducing an
admissible error in two ways [4]: Bε(U(d) = {u(i)|accuracy ≥ 1−ε}, Bε(U(d)) =
{u(i)|accuracy > ε}, where ε ∈ [0, 0.5). The pair of (Bε(U(d)), Bε(U(d))) is
called an ε-lower and ε-upper approximation which satisfies the following prop-
erties: B∗(U(d)) ⊆ Bε(U(d)) ⊆ Bε(U(d)) ⊆ B∗(U(d)), Bε=0(U(d)) = B∗(U(d))
and Bε=0(U(d)) = B∗(U(d)). The ε-lower and/or ε-upper approximation induce
if-then rules with admissible errors the same as the lower and/or upper approx-
imation.

As mentioned above, the conventional RS theory basically focuses on the
equivalence relation IB and its equivalence sets U/IB in U given in advance
and induces rules approximating the concept by use of the approximation sets
derived from the U/IB . However, IB is very dependent on the DT provided.
Accordingly, every DT obtained from the same population is different from each
other and, IB , U/IB and the approximation sets are different from each other for
each DT, which leads to inducing different rule sets. That is, the rule induction
methods by the conventional RS theory lack statistical views.

Then, STRIM has proposed a data generation model for the DT and a rule
induction method based on the model. Specifically, STRIM considers the decision
table to be a sample dataset obtained from an input-output system including a
rule box, as shown in Fig. 1, and hypotheses regarding the decision attribute val-
ues, as shown in Table 1. A sample u(i) consists of its condition attributes values
uC(i) and its decision attribute value uD(i). uC(i) is the input for the rule box,
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Rule Box &
Hypothesis

Input:

u (i)

Output:

u (i)C D

Observer
DesioNCesioN

Fig. 1. A data generation mode: Rule box contains if-then rules R(d, k): if CP (d, k)
then D = d, where CP (d, k) = ∧l(C(lk) = vlk) (d = 1, 2, ..., k = 1, 2, ...).

Table 1. Hypotheses with regard to the decision attribute value.

Hypothesis 1 uC(i) coincides with CP (d, k), and uD(i) is uniquely determined as
D = d (uniquely determined case)

Hypothesis 2 uC(i) does not coincide with any CP (d, k), and uD(i) can only be
determined randomly (indifferent case).

Hypothesis 3 uC(i) coincides with several CP (d, k) (d = d1, d2, ...), and their outputs
of uC(i) conflict with each other. Accordingly, the output of uC(i) must
be randomly determined from the conflicted outputs (conflicted case)

and is transformed into the output uD(i) using the rules (generally unknown)
contained in the rule box and the hypotheses. The hypotheses consist of three
cases corresponding to the input. They are uniquely determined, indifferent and
conflicted cases (see Table 1). In contrast, u(i) = (uC(i), uD(i)) is measured by an
observer, as shown in Fig. 1. The existence of NoiseC and NoiseD makes missing
values in uC(i), and changes uD(i) to create another value for uD(i), respectively.
Those noises bring the system closer to a real-world system. The data generation
model suggests that a pair of (uC(i), uD(i)) (i = 1, ..., N), i.e. a decision table is
an outcome of these random variables: (C,D) = ((C(1), ..., C(|C|),D) observing
the population.

Based on the data generation model, STRIM (1) extracted significant pairs of
a condition attribute and its value like C(jk) = vjk for rules of D = d by the local
reduct [9,10,12], (2) constructed a trying condition part of the rules like CP =
∧j(C(jk) = vjk) by use of the reduct results, and (3) investigated whether U(CP )
caused a bias at nd in the frequency distribution of the decision attribute values
f = (n1, n2, ..., nMD

) or not, where nm = |U(CP ) ∩ U(m)| (m = 1, ..., |Va=D| =
MD) and U(m) = {u(i)|uD=m(i)}, since the uC(i) coinciding to CP (d, k) in the
rule box is transformed into uD(i) based on Hypotheses 1 or 3. Accordingly, the CP
coinciding to one of rules in the rule box produces bias in f . Specifically, STRIM
used a statistical test method for the investigation specifying a null hypothesis H0:
f does not have any bias, that is, CP is not a rule and its alternative hypothesis
H1: f has a bias, that is, CP is a rule, and a proper significance level, and tested H0
by use of the sample dataset, that is, the decision table and the proper test statis-
tics, for example, z = (nd+0.5−npd)

(npd(1−pd))0.5
, where nd = maxm f = (n1, ..., nm, ..., nMD

),
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Line Algorithm to induce if-then rules by STRIM with a reduct function
No.
1 int main(void) {
2 int rdct max[|CV|]={0,. . . ,0}; //initialize maximum value of C(j)
3 int rdct[|CV|]={0,. . . ,0}; //initialize reduct results by D=l
4 int rule[|C|]={0,...,0}; //initialize trying rules
5 int tail=-1; //initialize value set
6 input data; // set decision table
7 for (di=1; di<=|D|; di++) {// induce rule candidates every D=l
8 attribute reduct(rdct max)
9 set rdct[ck] ; // if (rdct max[ck]==0) {rdct[ck]=0; }else {rdct[ck]=1; }
10 rule check(rcdct, redct max, tail, rule); // the first stage process
11 }// end di
12 arrange rule candidates // the second stage
13 }// end main
14 int attribute reduct(int rdct max[]) {
15 make contingency table for D=l vs. C(j)
16 Test H0(j,l);
17 if H0(j,l) is rejected then set rdct max[j,l]=jmax else rdct max[j,l]=0; //

jmax:the attribute value of the maximum frequency
18 }// end of attribute reduct
19 int rule check(int rdct[], int rdct max[], int tail,int rule[]) {// the first stage

process
20 for (ci=tail+1; cj<|C|; ci++) {
21 for (cj=1; cj<=rdct[ci]; cj++) {
22 rule[ci]=rdct max[cj]; // a trying rule set for test
23 count frequency of the trying rule; // count n1, n2, ...
24 if (frequency>=N0) {//sufficient frequency ?
25 if (|z|>3.0) {//sufficient evidence ?
26 add the trying rule as a rule candidate
27 }// end of if |z|
28 rule check(ci,rule)
29 }// end if frequency
30 }// end cj
31 rule[ci]=0; // trying rules reset
32 }// end ci
33 }// end rule check

Fig. 2. An algorithm for STRIM including a reduct function.

pd = P (D = d), n =
∑MD

j=1 nj . z obeys the standard normal distribution under
test conditions: npd ≥ 5 and n(1 − pd) ≥ 5 [16] and is considered to be an index
of the bias of f . (4) If H0 is rejected then the assumed CP becomes a candidate
for the rules in the rule box. (5) After repeating the processes from (1) to (4) and
obtaining the set of rule candidates, STRIM arranged their rule candidates and
induced the final results (see literatures [11,12] for details).

Figure 2 shows an algorithm written in C language style for STRIM including
a reduct function. Line No. (LN) 8 and 9 are the reduct portion of the above (1),
and (2) is executed at LN 10 and the dimension rule[] is used for trying rules,
(3) is executed at LN 25 in the function rule check(), (4) is executed at LN 26
and (5) is LN12.

To summarize, STRIM directly induces rules with statistical significance level
assuming the condition part of rules: CP = ∧j(C(jk) = vjk) and statistically
testing it by use of U . STRIM does not require the basic concept of the approxi-
mation which is an essence for the rule induction by the conventional RS theory.
Conversely, the RS theory has nothing directly to do with statistical significance.
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Table 2. An example of pre-specified rules R(d, k) in the rule box: if CP (d, k) then
D = d (d = 1, ..., 4, k = 1, 2).

R(d, k) CP (d, k) D = d

R(1, 1) 110000 D = 1

R(1, 2) 001100 D = 1

R(2, 1) 220000 D = 2

R(2, 2) 002200 D = 2

R(3, 1) 330000 D = 3

R(3, 2) 003300 D = 3

R(4, 1) 440000 D = 4

R(4, 2) 004400 D = 4

3 Studies on the Conventional STRIM by Simulation
Experiment

We implemented the data generation process and verified the capacity of induc-
ing the rules by the conventional STRIM as follows: (1) Specified rules by eight
(d = 1, ..., 4, k = 1, 2, the number of rules (Nrule) = 8) as shown in Table 2 cor-
responding to the rule box in Fig. 1, where |C| = 6, Va = {1, 2, 3, 4} (a = C(j)
(j = 1, ..., |C|), a = D), and CP (1, 1) = 110000 denoted CP (1, 1) = (C(1) =
1) ∧ (C(2) = 1) and was called a rule of the rule length 2 (RL = 2), having
two conditions. (2) Generated vC(j)(i) (j = 1, ..., |C| = 6) with a uniform dis-
tribution and formed uC(i) = (vC(1)(i), ..., vC(6)(i)) (i = 1, ..., N = 10, 000).
(3) Transformed uC(i) into uD(i) using the pre-specified rules in Table 2 and
hypotheses in Table 1, without generating NoiseC and NoiseD for a plain exper-
iment and then generated the decision table.

After randomly selecting samples by NB = 1, 000 from N sam-
ples, newly forming the DT and applying STRIM to the DT, Table 3
was obtained. The table shows us the following: For example, the esti-
mated Rule No. 1 “1100001” denotes if (C(1) = 1) ∧ (C(2) = 1) then
D = 1, has f = (n1, n2, n3, n4) = (57, 1, 1, 1) and the bias at D =
1. The outcome probability to cause such a bias is around 1.59E-36,
which leads to rejecting H0 and adopting H1. As the result, “1100001” was
adopted as a rule. It should be noted that the reason it was adopted as the rule
was not the high accuracy = 57/60 = 0.950. STRIM induced all the pre-specified
rules in Table 2 and the two extra rules.

In order to examine the performance for the rule induction at NB , Fig. 3
shows (a): the number of all the induced rule Nrule and (b): the number of the
induced pre-specified Nrule at NB = 200, 300, 500, 1000, 2000. Those were plotted
by the average of ten times’ experiments in the same way as the one shown in
Table 3. Figure 3 shows us the following: NB = 2, 000 was the sufficient data size
since STRIM induced the same rules of Nrule = 8 in (a) and (b) corresponding to
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Table 3. An example of estimated rules for the dataset with NB = 1, 000 generated
by the data generation model in Fig. 1 with the pre-specified rules in Table 2.

Rule No. Estimated rules
(C(1), ..., C(6), D)

f = (n1, n2, n3, n4) p-value(z) Accuracy Coverage

1 (1100001) (57, 1, 1, 1) 1.59E-36(12.57) 0.95 0.23

2 (0033003) (4, 2, 56, 3) 1.32E-35(12.40) 0.86 0.25

3 (0011001) (56, 1, 1, 2) 6.52E-35(2.27) 0.93 0.22

4 (0022002) (1, 56, 2, 2) 2.83E-33(11.96) 0.92 0.22

5 (0044004) (3, 2, 1, 56) 5.01E-33(11.91) 0.91 0.22

6 (2200004) (5, 56, 1, 1) 1.60E-31(11.62) 0.89 0.22

7 (3300003) (3, 3, 44, 1) 1.23E-28(11.04) 0.86 0.19

8 (4400004) (1, 2, 3, 51) 3.20E-28(10.95) 0.89 0.19

9 (3003003) (4, 7, 40, 8) 1.38E-17(8.46) 0.68 0.18

10 (0404004) (12, 9, 8, 42) 7.98E-11(6.40) 0.59 0.16

Fig. 3. Studies on the number of induced rules at NB : (a) the number of all the induced
rules (�), (b) the number of induced pre-specified rules (�).

the pre-specified rules in spite of different DTs. At NB = 1, 000, STRIM almost
induced all the pre-specified rules although there were some differences between
(a) and (b), the same as Table 3. Less than NB = 1, 000, STRIM could not
abruptly induce rules and the Nrule of (a) and (b) was almost 0 at NB = 200.
That is why the small size dataset could not properly execute local reducts at
LN = 7 − 11 and satisfy the test condition: npd ≥ 5 → n ≥ 5

pd
= 5

1
4

= 20 = N0
at LN = 24 respectively in Fig. 2.

Just for reference, Table 4 shows Nrule by RL of the rules induced by ROSE
II [17] implementing the conventional RS method for the dataset in Table 3.
Table 4 shows us the following: ROSE II could not induce any pre-specified rules
with RL = 2 but a lot of rules with larger RL than that of the pre-specified.
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Table 4. The number of rules by rule length induced by ROSE II for the dataset in
Table 3.

RL 1 2 3 4 5 6

Nrule 0 0 35 168 312 8

Nsubrule 0 0 35 22 5 0

The rules with RL = 4, 5 and 6 seems to be almost meaningless from the statis-
tical views. Nsubrule denotes the number of sub-rules of the pre-specified rules.
Here, for example, the rule “1100021” is called the sub-rule of “1100001” since
U(“1100001”) ⊇ U(“1100021”). Accordingly, ROSE II induced some part of the
sub-rules of the pre-specified although no one knows about such situations for
real-world datasets.

Generally, the statistical test problems are divided into two cases: One is
the case of large data size and the other is that of small data size. The former
is usually studied in the standard normal distribution and the latter is studied
in its individual distribution. This paper experimentally studies the problems
inducing if-then rules from the DT with NB = 200, 300, 500 as the small data size
problem. Specifically, the conventional STRIM is developed into minor-STRIM,
which incorporates a test method for the small data size into the conventional
STRIM, and improves it to be able to be used even for small sized datasets.

4 Studies on Minor-STRIM by Simulation Experiment

As was experimentally shown in Sect. 3, the conventional STRIM for large data
sizes could not induce all of the pre-specified rules around less than NB = 1, 000
since it did not properly execute the local reduct and the statistical test due to
the small data size. This Section improves its procedure without the reduct and
by substituting the test with one based on the original distribution. Specifically,
nd in principle obeys a Binomial distribution Bn(n, pd) and the p-value is given
as follows: p − value =

∑n
l=nd

nClp
l
d(1 − pd)n−l = P (F 2(n−nd+1)

2nd
≥ nd(1−pd)

(n−nd+1) ),

where F
2(n−nd+1)
2nd

is a random variable and obeys F -Distribution with degrees of
freedom (2(n−nd +1), 2nd) [18]. The algorithm in Fig. 2 should also be modified
as follows:

(1) Rearrange LN = 7-11 as follows: rule check(tail, rule); // the first stage
process

(2) Rearrange LN = 24-25 as follows: if (p-value < α) { // p-value is less than
the pre-specified significance level α, and delete LN = 29.

The improved STRIM incorporating (1) and (2) is named minor-STRIM to
distinguish from the conventional version.

Figure 4 shows the results of the simulation experiment by minor-STRIM
corresponding with Fig. 3 for each significance level: α = 1.0E-2, 1.0E-3, 1.0E-4,
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Table 5. An arrangement of Car Evaluation dataset of UCI.

Unified
attribute value

C(1):
buying

C(2):
maint

C(3):
doors

C(4):
person

C(5):
lug boot

C(6):
safety

D: class (freq.)

1 vhigh vhigh 2 2 small low unacc (1210)

2 high high 3 4 med med acc (383)

3 med med 4 more big high good (69)

4 low low 5more – – – vgood (65)

1.0E-5. (a) Nrule of all the induced rules and (b) Nrule of all the induced pre-
specified rules plotted by the average of ten times’ experiments in the same way
as Fig. 3 show us the following:

(1) Around less than NB = 500 minor-STRIM could not induce all the pre-
specified rules regardless of α. However, minor-STRIM greatly improves the
experimental results compared with those in Fig. 3.

(2) The tendency of (1) will be somewhat improved by use of α = 1.0E-2 or
1.0E-3 (see (b)) while the use of them increases extra rules at NB = 200, 300
(see (a)).

(3) Conversely, the use of α = 1.0E-5 is sever to squeeze Nrule.
(4) The information (2) and (3) recommend to use α = 1.0E-4 when inducing

rules from real-world datasets.

The data generation model in Fig. 1 appears useful to gain the information from
(1) to (4).

This experimental study may suggest that minor-STRIM can be applied to
a DT with a large data size. However, the conventional STRIM should be used
in such a situation since the conventional version use the function of reduct and
of stopping exploration for sub-rules in the case once not satisfying the testing
condition at LN = 24-29 in Fig. 2, while minor-STRIM, in principle, explores
all the rule patterns. Just for reference, the run time at NB = 1, 000 by the
conventional STRIM was 1.09 [s], and minor-STRIM needed 49.39 [s] and 3.75
[s] at NB = 300 on a PC with Intel(R) Core(TM) i5-6500 CPU at 3.20 GHz.

5 Application to Car Evaluation Dataset

The literature [15] provides a lot of datasets for machine learning. This paper
applied minor-STRIM to the “Car Evaluation” dataset included in them. Table 5
shows the summaries and specifications of the dataset: |C| = 6, |VC(i)| = 4
(i = 1, 2, 3), |VC(i)| = 3 (i = 4, 5, 6), |VD| = 4, N = |U | =

∏6
i=1 |VC(i)| = 1728

which consists of every combination of condition attributes’ values, and there is
not any conflicted or identical samples. The frequencies of the decision attribute
values extremely incline toward D = 1 as shown in Table 5.

The literature [9] shows some examples of only trying rules for D = 1 and 4.
In order to compare and discuss those with the rule induction results by minor-
STRIM, this paper repeatedly shows them as Table 6. Table 6 shows χ2-values
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Fig. 4. Studies on the number of induced rules at NB by significance levels α = 1.0E-2
(�), 1.0E-3 (�), 1.0E-4 (�), 1.0E-5 (×): (a) the number of all the induced rules, (b)
the number of induced pre-specified rules.

having the same testing condition as z-values, and its corresponding p-values
which were used for the statistical test due to heavy inclination of the outcome
frequencies between the decision attribute’ values and the rest of the surface
caput is the same as Table 3. The literature [9] judged Rule No. = 1 and 2 valid
for D = 1 and Rule No. = 13 for D = 4 since the p-value was the smallest.

The conventional STRIM needed a sufficient data size satisfying the test
condition so that the rule induction was executed neglecting the unbalance of
the frequencies. Then, samples for D = 1, 2 and 3 were randomly selected by 65
which corresponded to the frequency of D = 4, and a new DT was formed for
analyzing it by minor-STRIM. An example of rule induction results is shown in
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Table 6. Examples of estimated rules in literature [9] for original Car Evaluation
dataset by STRIM.

Rule No. Estimated rules
(C(1), ..., C(6), D)

f = (n1, n2, n3, n4) p-value(χ2) Accuracy Coverage

1 (0000011) (576, 0, 0, 0) 3.58E-53(246.59) 1.00 0.476

2 (0001001) (576, 0, 0, 0) 3.58E-53(246.59) 1.00 0.476

3 (0001011) (192, 0, 0, 0) 1.03E-17(82.20) 1.00 0.157

4 (1000001) (360, 72, 0, 0) 6.47E-11(50.43) 0.83 0.296

5 (0100001) (360, 72, 0, 0) 6.47E-11(50.43) 0.83 0.296

6 (1000011) (144, 0, 0, 0) 2.61E-13(61.64) 1.00 0.119

7 (0100011) (144, 0, 0, 0) 2.61E-13(61.64) 1.00 0.119

8 (1001001) (144, 0, 0, 0) 2.61E-13(61.64) 1.00 0.119

9 (0101001) (144, 0, 0, 0) 2.61E-13(61.64) 1.00 0.12

10 (0000034) (277, 204, 30, 65) 2.24E-37(173.49) 0.113 1.00

11 (0000304) (368, 144, 24, 40) 1.24E-04(20.65) 0.069 0.62

12 (0000334) (88, 64, 0, 40) 1.85E-39(183.14) 0.208 0.62

13 (4000034) (52, 33, 20, 39) 1.24E-57(267.21) 0.27 0.60

14 (0400034) (52, 46, 20, 26) 7.32E-31(143.30) 0.18 0.40

15 (4000334) (16, 8, 0, 24) – 0.50 0.37

16 (4403334) (0, 0, 0, 4) – 1.00 0.062

Table 7 although the size of DT: |U | = 65×4 = 260 may not be sufficient for the
induction by minor-STRIM as shown in Fig. 4. Comparing Table 6 with Table 7,
the following is understood:

(1) With regard to D = 1, both results coincide with each other in spite of the
different sample size.

(2) With regard to D = 4, minor-STRIM induced the rule “0000334” in No. 3
corresponding to No. 12 in Table 6 which was not adopted in the litera-
ture [9] and was covered with the unbalance of the frequency distribution
due to the test condition: np4 ≥ 5 → n ≥ 5

p4
= 5

65
1728

∼= 133. minor-STRIM
seems to unveil the cover.

(3) minor-STRIM also discovered No. 4, 5, 6 and 7 which could not have been
induced by the conventional STRIM due to the unbalance of the frequency
distribution.

To arrange Table 7 by the original rating words, the following expressions are
obtained:

If person = 2 ∨ safety = low then class = unac (D = 1)
If maint = med ∧ safety = med then class = acc (D = 2)
If (buying = vhigh ∧ lug boot = big ∨ maint = vhigh) ∧ safety = med then
class = good (D = 3)
If (lug boot = big ∨ buying = high ∧ maint = high) ∧ safety = high then
class = vgood (D = 4)
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Table 7. An example of estimated rules for the newly constructed Car Evaluation
dataset (|U | = 65 × 4 = 260) by minor-STRIM with α = 1.0E-4.

Rule No. Estimated rules
(C(1), ..., C(6), D)

f = (n1, n2, n3, n4) p-value Accuracy Coverage

1 (0001001) (38, 0, 0, 0) 1.32E-23 1.00 0.58

2 (0000011) (26, 0, 0, 0) 2.22E-16 1.00 0.40

3 (0000334) (4, 8, 0, 40) 5.99E-15 0.77 0.62

4 (1000323) (0, 2, 16, 0) 2.08E-08 0.89 0.25

5 (0100023) (4, 8, 26, 0) 2.23E-08 0.68 0.40

6 (2200034) (1, 0, 0, 13) 1.60E-07 0.93 0.2

7 (0300022) (2, 11, 0, 0) 1.11E-05 0.85 0.17

Taking into account that each attribute in the Car dataset can be recognized
on an ordinal scale, there may be some conflicts between Rule No. 5 and No. 7.
That is, there are relationships No. 5 > No. 7 in “Class” and No. 5 < No. 7 in
“maint” although they commonly contain safety = med factor. The reason is
supposed to be the shortage of data size: |U | = 260, as shown in Fig. 4. The same
experiments repeated several times showed that rules of middle rating such as
D = 2 and/or D = 3 slightly and delicately changed.

The dataset is a kind of evidence for rule induction, which is better the more
evidence there is. It should be noted that the preliminary experiment by use of
the data generation model in Fig. 1 gives us various guiding principles such as
certificate and reproducibility of experiment results against NB .

6 Conclusion

The rule induction methods by the conventional RS [2–5] basically approximate
the concept in the DT given as one of samples by the lower and/or upper approxi-
mation. The concept and both approximations are constructed by the equivalence
relation and its equivalence sets in the given DT. Accordingly, the rules induced
from the sample will change and fluctuate every resampling from the population
and/or the given DT. That is, the conventional method has had defects not consid-
ering the rule induction problem from the statistical views. Then, STRIM which
does not use the concept of the approximation and directly and systematically
explores rules by use of a statistical test has been proposed and confirmed its valid-
ity in simulation experiments and real-world datasets [6–14].

However, the conventional STRIM used the test method applicable in the case
of the large data size so that it was constrained based on the data size. Generally,
the test problem is discussed in two cases, a large and a small data size. The
conventional STRIM was applicable with the former case and used the statistic
obeying the standard normal distribution for the test. This paper developed it
into the latter case and proposed minor-STRIM which used the statistic obeying
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a binomial distribution. The validity and capacity of minor-STRIM have been
confirmed in a simulation experiment and by applying it to Car Evaluation
dataset of UCI [15]. Generally, the classification of the large or small data size
depends on the specification of the DT such as |A| = |C ∪{D}| and |V | = |∪a∈A

Va|. Accordingly, the process firmly conducting the simulation experiments, and
obtaining knowledge from the experimental results and their certificates shown
in Sects. 3 and 4 are very important before applying the conventional STRIM
or minor-STRIM to real-world datasets of interest. It should be noted that the
data generation model in Fig. 1 enables this process.
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Abstract. In this paper, the focus is on the relation-based rough sets
on two universes. Two universes are connected with a mapping, by
which a relation on one universe is constructed based on the relation
on the another universe, so two relations on the different universes are
induced. The relationships between the rough approximations based on
the induced relations and the original relations are examined in detail.

Keywords: Rough sets · Rough approximations · Binary relations ·
Mappings

1 Introduction

Rough set theory [1], which was first proposed by Pawlak in 1982, is an impor-
tant mathematic approach, which has been successfully applied in many fields,
such as, artificial intelligence, decision making, knowledge representation, pat-
tern recognition, etc. In the classical rough sets, equivalence relations are used
to construct lower and upper approximation operators. In order to deal with
complex practical problems, Pawlak rough set model is extended, and various
generalized rough set models have been established, for example, generalized
rough set based on relation [2–4], covering rough set model [4–7], rough set
models in multigranulation spaces [8–10], etc.

Relation-based rough sets are natural extensions of the classical Pawlak rough
set model. Skowron and Stepaniuk [11] proposed rough approximation opera-
tors based on tolerance relation, and examined attribute reduction of tolerance
information systems. Slowinski and Vanderpooten [3] defined lower and upper
approximation operators by means of similarity relation. Reflexive and transi-
tive relation based rough sets have rich topological properties [12,13]. Yao [2,14]
investigated rough approximations based on binary relation by constructive and
algebraic methods, and compared some rough set models.
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Rough set models on two universes of discourse have been studied in the
literature [15,16,18]. In generalized rough set models, the approximated sets
and the approximating sets usually locate at two different universes [15], Li and
Zhang [16] proposed one kind of rough set model on two universes, in which they
included in the same universe. Sun and Ma extended multigranulation rough sets
in the framework of two universes [17,18].

In the above rough set models, a relation connects two universes. In another
case, two universes are connected with a mapping. For example, the communi-
cation between two information systems is a very important topic in the field of
artificial intelligence. In mathematics, it can be explained as a mapping between
two universes [19], which can maintain the knowledge structures of two uni-
verses unchanging. On the other hand, one can use a mapping to transform a
big database into a small database, so that target on the big database can be
obtained by dealing with the small database. In this aspect, Wang et al. [20–22]
studied the communication between information systems, in which the notions
of homomorphisms of relation or covering information systems, and attribute
reduction of information systems was investigated. All these motivate us to study
the relationship between two universes under a mapping.

In this paper, we study the relationships of the rough approximations on the
two universes with a mapping. The rest of this paper is organized as follows.
We briefly review in the next section some basic notions. In Sect. 3 we discuss of
induced binary relations, and examine the rough approximations based on the
induced relations. The paper is then concluded with a brief summary.

2 Preliminaries

In this section, a lot of basic knowledge about relation-based rough approxima-
tions and mapping are reviewed briefly.

Let U be a nonempty and finite set, and called the universe of discourse. A
binary relation R on U means a subset of U2, that is, R ⊆ U2, and (x, y) ∈ R
is often denoted as xRy. For any x ∈ U , the set, R(x) = {y ∈ U |xRy}, is called
the successor neighborhood of x, and the predecessor neighborhood of y (y ∈ U)
means the set R−1(y) = {x ∈ U |xRy}.

Some types of binary relations on the universe U are often mentioned in the
literature:

– R is reflexive if x ∈ R(x), ∀x ∈ U ;
– R is symmetric if xRy implies yRx, ∀x, y ∈ U ;
– R is transitive if xRy, yRz implies xRz, ∀x, y, z ∈ U .

Let R be a binary relation on U . The tuple (U,R) is called an approximation
space. For A ⊆ U , the lower and upper rough approximations of A with respect
to (U,R), denoted by R(A) and R(A) respectively, are defined by

R(A) = {x ∈ U |R(x) ⊆ A}, R(A) = {x ∈ U |R(x) ∩ A �= ∅}.
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The basic properties of the rough approximation operators, R and R, are
enumerated as follows [2]: ∀A,B ⊆ U ,

(L1) R(A) =∼ (R(∼ A)), (U1) R(A) =∼ (R(∼ A));
(L2) R(U) = U, (U2) R(∅) = ∅;
(L3) R(A ∩ B) = R(A) ∩ R(B), (U3) R(A ∪ B) = R(A) ∪ R(B);
(L4) A ⊆ B ⇒ R(A) ⊆ R(B), (U4) A ⊆ B ⇒ R(A) ⊆ R(B).

Properties (L1) and (U1) show that R and R are dual to each other. The
rough approximation operators based on a variety of binary relations have dif-
ferent properties, conversely some kinds of binary relations can be characterized
by corresponding rough approximation operators [23,24].

A mapping f from U to W , denoted as f : U → W , assigns each element
x ∈ U an element f(x) ∈ W . Here U is called the domain of f , and the image
set of f is the set {f(x)|x ∈ U} ⊆ W . For x ∈ U the element f(x) is called
the image of x under f . For y ∈ W the preimage of y under f is a subset of U ,
denoted by f−1(y) and defined by f−1(y) = {x ∈ U |f(x) = y}.

It should be pointed out that the family, U/f = {f−1(y) �= ∅|y ∈ W}, forms
a partition of U , that is, f−1(y1) ∩ f−1(y2) �= ∅ implies f−1(y1) = f−1(y2), and⋃

y∈W f−1(y) = U .
Let f be a mapping from U to W . The notions of the image and the preimage

of elements can be extend to the image set and the preimage set of subsets,
respectively. For X ⊆ U , the image set of X under f is a subset f(X) of W , and
defined by f(X) = {f(x) ∈ W |x ∈ X}. For Y ⊆ W , the preimage set of Y is a
subset f−1(Y ) of U , and defined by f−1(Y ) = {x ∈ U |∃y ∈ Y (f(x) = y)}.

For any x ∈ U , in the following we denote f−1(f(x)) as [x]fR.
Then the following properties of f : U → W can be checked directly: for any

X,X1,X2 ⊆ U , and Y, Y1, Y2 ⊆ W , we have

(1) X1 ⊆ X2 ⇒ f(X1) ⊆ f(X2);
(2) f(X1 ∩ X2) ⊆ f(X1) ∩ f(X2);
(3) f(X1 ∪ X2) = f(X1) ∪ f(X2);
(4) ∼ f(X) ⊆ f(∼ X);
(5) Y1 ⊆ Y2 ⇒ f−1(Y1) ⊆ f−1(Y2);
(6) f−1(Y1 ∩ Y2) = f−1(Y1) ∩ f−1(Y2);
(7) f−1(Y1 ∪ Y2) = f−1(Y1) ∪ f−1(Y2);
(8) ∼ f−1(Y ) = f−1(∼ Y );
(9) X ⊆ f−1(f(X)), denoted f−1(f(X)) as X;

(10) f(f−1(Y )) = Y .

3 Rough Approximations Based on Induced Relations

In the following, we assume that U and W are two finite and nonempty sets, f
is a mapping from U to W , and f is surjective, that is, f(U) = W .
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In this section, we examine rough approximation operators based on two
relations. One relation is defined on U , which is induced by a relation on W via
the mapping f , and another relation is defined on W , which is constructed by
using of a relation on U and the mapping f .

3.1 Two Relations Induced by the Mapping

Given a relation R on U , by which and based on f , a relation on W can be
induced as follows.

Definition 1. Let R be a relation on U . Then a relation Rf on W can be defined
as follows:

Rf = {(y1, y2) ∈ W 2|∃x1, x2 ∈ U(y1 = f(x1), y2 = f(x2), x1Rx2)}.
From Definition 1 we can see that y1Rfy2 if and only if

[f−1(y1) × f−1(y2)] ∩ R �= ∅.
Example 1. Let U = {1, 2, 3, 4, 5}, W = {a, b, c}, and f : U → W . The map-
ping f satisfies

f(1) = f(2) = a, f(3) = f(4) = b, f(5) = c.

Taking

R = {(1, 3), (2, 2), (2, 5), (3, 1), (3, 4), (3, 5), (4, 3), (5, 2), (5, 3)},
in terms of Definition 1, we can figure out the relation Rf on W , i.e.,

Rf = {(a, b), (a, a), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b)}.
Proposition 1. Let R be a relation on U . For any x ∈ U , y ∈ W , if y = f(x),
then f(R(x)) ⊆ Rf (y).

Proof. According to Definition 1, for any x′ ∈ R(x), we have yRff(x′), that is,
f(x′) ∈ Rf (y). Therefore f(R(x)) ⊆ Rf (y).

It is easy to check that for any y = f(x), f(R(x)) ⊆ Rf (y) if and only if
R(x) ⊆ f−1(Rf (y)). It should be noted that the reversed inequality of f(R(x)) ⊆
Rf (y) may not be satisfied.

Example 2. Let R and Rf be the two relations of Example 1. Noticing a =
f(1), from Example 1 we can check that R(1) = {3}, f(R(1)) = f(3) = {b}, and
Rf (a) = {a, b, c}. Thus f(R(1)) ⊆ Rf (a), but f(R(1)) �= Rf (a).

Definition 2. Let R be a relation on U . Then R is said to be compatible with
f if [x]fR × [x′]fR ⊆ R for xRx′.

The below proposition shows that the inequality in Proposition 1 becomes
an equality under the compatibility of R.
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Proposition 2. Let R be a relation on U . If R is compatible with f , then for
any x ∈ U and y ∈ W with y = f(x), we have f(R(x)) = Rf (y).

Proof. According to Proposition 1, it is only needed to prove that if y = f(x),
then f(R(x)) ⊇ Rf (y).

For x ∈ U , y ∈ W , if y = f(x), then for any y′ ∈ Rf (y), there exists
x∗, x′ ∈ U such that y = f(x∗), y′ = f(x′), and x∗Rx′, where x∗ and x may not
be the same one, but x ∈ [x∗]fR. Since R is compatible with f , it follows from
x∗Rx′ that [x∗]fR × [x′]fR ⊆ R, thus xRx′, that is, x′ ∈ R(x), so y′ ∈ f(R(x)).
Therefore Rf (y) ⊆ f(R(x)).

Similarly we can prove that if y = f(x), then R(x) = f−1(Rf (y)).
On the other hand, if a relation R on W is known, then by the mapping f ,

a relation on U can be got.

Definition 3. Let R be a relation on W . Then a relation Rf−1 on U can be
defined as follows:

Rf−1 = {(x1, x2) ∈ U2|f(x1)Rf(x2)}.
Example 3. Let U , W , and f be the same as those of Example 1. If we put

R = {(a, a), (a, c), (c, b), (b, c), (c, c)},
then R is a relation on W . According to Definition 3, we can calculate the relation
Rf−1 as

Rf−1 = {(1, 2), (2, 1), (1, 5), (2, 5), (5, 3), (5, 4), (3, 5), (4, 5), (5, 5)}.
Proposition 3. Let R be a relation on W . Then

(1) for any y1, y2 ∈ W , if y1Ry2 then f−1(y1) × f−1(y2) ⊆ Rf−1 ;
(2) for any x ∈ U , y ∈ W , if y = f(x), then

R(y) = f(Rf−1(x)), Rf−1(x) = f−1(R(y)).

Proof. (1) It follows from Definition 3 directly.
(2) For any x ∈ U , y ∈ W , if y = f(x) and y′ ∈ R(y), by Definition 3 we have

f−1(y′) ⊆ Rf−1(x), so y′ ∈ f(Rf−1(x)). Thus R(y) ⊆ f(Rf−1(x)). Conversely,
if y′ ∈ f(Rf−1(x)), then there is an x′ ∈ Rf−1(x) such that f(x′) = y′, so
(y, y′) ∈ R, that is, y′ ∈ R(y). Thus f(Rf−1(x)) ⊆ R(y), so we can conclude
that R(y) = f(Rf−1(x)).

It follow from R(y) = f(Rf−1(x)) that f−1(R(y)) = f−1(f(Rf−1(x))), by
Rf−1(x) ⊆ f−1(f(Rf−1(x))) we get Rf−1(x) ⊆ f−1(R(y)). On the other hand,
if x′ ∈ f−1(R(y)), then f(x′) ∈ R(y), so (x, x′) ∈ Rf−1 , that is, x′ ∈ Rf−1(x).
Thus f−1(R(y)) ⊆ Rf−1(x). It is proved that Rf−1(x) = f−1(R(y)).

Applying Definitions 2 and 3, Proposition 2, we know that the relation Rf−1

is compatible with f−1.
About the transformation between the relations on U and W , we have the

following results.
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Proposition 4. Let R be a relation on U . Then R ⊆ (Rf )f−1 . Specially, if R
is compatible with f , then R = (Rf )f−1 .

Proof. By Definitions 1 and 3, the inequality R ⊆ (Rf )f−1 can be proved directly.
If R be compatible with f , then for any (x1, x2) ∈ (Rf )f−1 , by the definition

of (Rf )f−1 we have (y1, y2) = (f(x1), f(x2)) ∈ Rf , subsequently by the definition
of Rf , there are x∗

1 ∈ f−1(y1), x∗
2 ∈ f−1(y2) such that (x∗

1, x
∗
2) ∈ R. Since R is

compatible with f , we have [x∗
1]

f
R × [x∗

2]
f
R ⊆ R. It follows from x1 ∈ [x∗

1]
f
R and

x2 ∈ [x∗
2]

f
R that (x1, x2) ∈ R. Thus (Rf )f−1 ⊆ R, combining R ⊆ (Rf )f−1 we

have R = (Rf )f−1 .

For the relation R on W we have the below conclusion.

Proposition 5. Let R be a relation on W . Then R = (Rf−1)f .

Proof. It directly follows from Definitions 1 and 3.

3.2 Rough Approximations Based on the Induced Relation Rf

Let R be a relation on U . For any X ⊆ U , by the mapping f , it turns into
f(X). The rough approximations of X on (U,R) and the rough approximations
of f(X) of (W,Rf ) have the following relationships under f .

Theorem 1. Let R be a relation on U . Then for any X ⊆ U ,

Rf (f(X)) ⊆ f(R(X)), f−1(Rf (f(X))) ⊆ R(X).

Specially, if R is compatible with f , then

f(R(X)) ⊆ Rf (f(X)) ⊆ f(R(X)), R(X) ⊆ f−1(Rf (f(X))) ⊆ R(X).

Proof. For any X ⊆ U , if y ∈ Rf (f(X)), then Rf (y) ⊆ f(X), so we have
f−1(Rf (y)) ⊆ f−1(f(X)) = X. Since R(x) ⊆ f−1(Rf (y)), where f(x) = y, we
have R(x) ⊆ X, so x ∈ R(X), thus y ∈ f(R(X)). It can be concluded that
Rf (f(X)) ⊆ f(R(X)).

For any x ∈ f−1(Rf (f(X))), we have y = f(x) ∈ Rf (f(X)), from which it
follows that Rf (y) ⊆ f(X). Then f−1(Rf (y)) ⊆ f−1(f(X)) = X, according to
R(x) ⊆ f−1(Rf (y)) we have x ∈ R(X). Therefore f−1(Rf (f(X))) ⊆ R(X).

If R be compatible with f , then for any y ∈ f(R(X)), there is an x ∈ R(X)
such that y = f(x). By x ∈ R(X) we have R(x) ⊆ X, so f(R(x)) ⊆ f(X). By
Proposition 2 we get f(R(x)) = Rf (y), thus Rf (y) ⊆ f(X), i.e., y ∈ Rf (f(X)).
It is proved that f(R(X)) ⊆ Rf (f(X)) ⊆ f(R(X)).

From f(R(X)) ⊆ Rf (f(X)), it follows that f−1(f(R(X))) ⊆
f−1(Rf (f(X))), by R(X) ⊆ f−1(f(R(X))) we have R(X) ⊆ f−1(Rf (f(X))). It
can be concluded that R(X) ⊆ f−1(Rf (f(X))) ⊆ R(X).



150 T.-J. Li et al.

Theorem 1 shows that, when the relation R on U is compatible with f , for
any X ⊆ U , if X = X, then f(R(X)) = Rf (f(X)), R(X) = f−1(Rf (f(X))).

Theorem 2. Let R be a relation on U . Then for any X ⊆ U ,

f(R(X)) ⊆ Rf (f(X)), R(X) ⊆ f−1(Rf (f(X))).

Specially, if R is compatible with f , then

f(R(X)) ⊆ Rf (f(X)) ⊆ f(R(X)), R(X) ⊆ f−1(Rf (f(X))) ⊆ R(X).

Proof. For any y ∈ f(R(X)), there is an x ∈ R(X)) such that y = f(x), so
R(x) ∩ X �= ∅. There exists an x′ ∈ U such that x′ ∈ R(x), and x′ ∈ X,
that is, y′ = f(x′) ∈ f(X). By the definition of Rf we have y′ ∈ Rf (y), so
Rf (y) ∩ f(X) �= ∅, that is, y ∈ Rf (f(X)). Thus f(R(X)) ⊆ Rf (f(X)).

From f(R(X)) ⊆ Rf (f(X)), it follows that f−1(f(R(X))) ⊆ f−1(Rf (f(X))).
Noticing R(X) ⊆ f−1(f(R(X))) we have R(X) ⊆ f−1(Rf (f(X))).

Assume that R is compatible with f . If y ∈ Rf (f(X)), then Rf (y)∩f(X) �= ∅,
so f−1(Rf (y))∩f−1(f(X)) = f−1(Rf (y)∩f(X)) �= ∅. If we take x ∈ f−1(y), by
Proposition 2 we have R(x) = f−1(Rf (y)). Thus R(x) ∩ X �= ∅, i.e., x ∈ R(X),
so y = f(x) ∈ f(R(X)). We get f(R(X)) ⊆ Rf (f(X)) ⊆ f(R(X)).

If x ∈ f−1(Rf (f(X))), we have y = f(x) ∈ Rf (f(X)), so Rf (y) ∩ f(X) �= ∅.
Similarly, we have x ∈ R(X). Thus R(X) ⊆ f−1(Rf (f(X))) ⊆ R(X).

From Theorem 2 we can see that, when R is compatible with f , for any
X ⊆ U , if X = X, then f(R(X)) = Rf (f(X)), R(X) = f−1(Rf (f(X))).

On the other hand, for any Y ⊆ W , we have f−1(Y ) ⊆ U , about the rough
approximations of Y and f−1(Y ) we have the following conclusions.

Theorem 3. Let R be a relation on U . Then for any Y ⊆ W ,

R(f−1(Y )) ⊆ f−1(Rf (Y )), f(R(f−1(Y ))) ⊆ Rf (Y ).

Specially, if R is compatible with f , then

R(f−1(Y )) = f−1(Rf (Y )), f(R(f−1(Y ))) = Rf (Y ).

Proof. The inequalities R(f−1(Y )) ⊆ f−1(Rf (Y )) and f(R(f−1(Y ))) ⊆ Rf (Y )
and the equation f(R(f−1(Y ))) = Rf (Y ) can be deduced from Theorem 2
directly. As an example, in the following we prove R(f−1(Y )) ⊆ f−1(Rf (Y )).

For any Y ⊆ W , putting X = f−1(Y ), we obtain f(X) = Y and X = X.
By Theorem 2 we have f(R(X)) ⊆ Rf (f(X)), i.e. f(R(f−1(Y ))) ⊆ Rf (Y ), so
f−1(f(R(f−1(Y )))) ⊆ f−1(Rf (Y )), and R(f−1(Y )) ⊆ f−1(Rf (Y )) follows from
R(f−1(Y )) ⊆ f−1(f(R(f−1(Y )))).

As for R(f−1(Y )) = f−1(Rf (Y )), by R(f−1(Y )) ⊆ f−1(Rf (Y )) we know
that it is needed only to prove f−1(Rf (Y )) ⊆ R(f−1(Y )). If x ∈ f−1(Rf (Y )),
we have y = f(x) ∈ Rf (Y ), that is, Rf (y)∩Y �= ∅, so f−1(Rf (y))∩f−1(Y ) �= ∅.
Since R is compatible with f , we have R(x) = f−1(Rf (y)), so x ∈ R(f−1(Y )).
Thus f−1(Rf (Y )) ⊆ R(f−1(Y )).
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Theorem 4. Let R be a relation on U . Then for any Y ⊆ W ,

f−1(Rf (Y )) ⊆ R(f−1(Y )), Rf (Y ) ⊆ f(R(f−1(Y ))).

Specially, if R is compatible with f , then

f−1(Rf (Y )) = R(f−1(Y )), Rf (Y ) = f(R(f−1(Y ))).

Proof. From Theorem 1 it can be proved similarly that Rf (Y ) ⊆ f(R(f−1(Y ))),
f(R(f−1(Y ))) = Rf (Y ). And from Theorem 3 we can directly prove that

f−1(Rf (Y )) ⊆ R(f−1(Y )), f−1(Rf (Y )) = R(f−1(Y )).

As an example, in the following we prove R(f−1(Y )) ⊇ f−1(Rf (Y )): for any
Y ⊆ W ,

f−1(Rf (Y )) ⊆ R(f−1(Y )) ⇐⇒∼ f−1(Rf (Y )) ⊇∼ R(f−1(Y ))
⇐⇒ f−1(∼ Rf (Y )) ⊇ R(∼ f−1(Y ))
⇐⇒ f−1(Rf (∼ Y )) ⊇ R(f−1(∼ Y ))
⇐⇒ f−1(Rf (Y )) ⊇ R(f−1(Y )).

3.3 Rough Approximations Based on the Induced Relation Rf−1

Let R be a relation on W . Analogously, in the following we investigate the
relationships between the rough approximations on (U,Rf−1) and (W,R).

Firstly, by X ⊆ U and f(X) we obtain the following results.

Theorem 5. Let R be a relation on W . Then for any X ⊆ U ,

f(Rf−1(X)) ⊆ R(f(X)) ⊆ f(Rf−1(X)),
Rf−1(X) ⊆ f−1(R(f(X)) ⊆ Rf−1(X).

Proof. For any y ∈ f(Rf−1(X)), there exists an x ∈ Rf−1(X) such that y = f(x),
thus Rf−1(x) ⊆ X. Then f(Rf−1(x)) ⊆ f(X), by Proposition 3 we have R(y) =
f(Rf−1(x)), so y ∈ R(f(X)). We get f(Rf−1(X)) ⊆ R(f(X)). From R(y) ⊆
f(X) we have f−1(R(y)) ⊆ f−1(f(X)) = X, by Rf−1(x) = f−1(R(y)) we get
Rf−1(x) ⊆ X, i.e., x ∈ Rf−1(X), so y = f(x) ∈ f(Rf−1(X)). Consequently, we
conclude that f(Rf−1(X)) ⊆ R(f(X)) ⊆ f(Rf−1(X)).

By f(Rf−1(X)) ⊆ R(f(X)) we have f−1(f(Rf−1(X))) ⊆ f−1(R(f(X))),
from Rf−1(X) ⊆ f−1(f(Rf−1(X))) it follows that Rf−1(X) ⊆ f−1(R(f(X))).
If x ∈ f−1(R(f(X))), then y = f(x) ∈ R(f(X)), that is, R(y) ⊆ f(X), so
f−1(R(y)) ⊆ f−1(f(X)) = X is deduced, by Rf−1(x) = f−1(R(y)) we get
x ∈ Rf−1(X). It can be concluded that Rf−1(X) ⊆ f−1(R(f(X))) ⊆ Rf−1(X).

Theorem 5 shows that when X = X, we have f(Rf−1(X)) = R(f(X)) and
Rf−1(X) = f−1(R(f(X))).
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Theorem 6. Let R be a relation on W . Then for any X ⊆ U ,

f(Rf−1(X)) ⊆ R(f(X)) ⊆ f(Rf−1(X)),
Rf−1(X) ⊆ f−1(R(f(X))) ⊆ Rf−1(X).

Proof. For any y ∈ f(Rf−1(X)), there exists an x ∈ Rf−1(X) such that y = f(x),
so Rf−1(x) ∩ X �= ∅. Thus f(Rf−1(x)) ∩ f(X) ⊇ f(Rf−1(x) ∩ X) �= ∅, by
f(Rf−1(x)) = R(y), we have y ∈ R(f(X)). It follows from R(y)∩ f(X) �= ∅ that
f−1(R(y)) ∩ f−1(f(X)) �= ∅, by f−1(R(y)) = Rf−1(x), we get Rf−1(x) ∩X �= ∅,
i.e., x ∈ Rf−1(X), which means y ∈ f(Rf−1(X)). Consequently, we conclude
f(Rf−1(X)) ⊆ R(f(X)) ⊆ f(Rf−1(X)).

From f(Rf−1(X)) ⊆ R(f(X)) we get f−1(f(Rf−1(X))) ⊆ f−1(R(f(X))),
again by Rf−1(X) ⊆ f−1(f(Rf−1(X))), we have Rf−1(X) ⊆ f−1(R(f(X))). For
x ∈ f−1(R(f(X))), we have y = f(x) ∈ R(f(X)), that is, R(y)∩f(X) �= ∅. Thus
f−1(R(y)) ∩ f−1(f(X)) = f−1(R(y) ∩ f(X)) �= ∅, by f−1(R(y)) = Rf−1(x), we
get Rf−1(x) ∩ X �= ∅, that is, x ∈ Rf−1(X). Therefore it can be concluded that
Rf−1(X) ⊆ f−1(R(f(X))) ⊆ Rf−1(X).

From Theorem 6 we can see that for X ⊆ U , if X = X, then f(Rf−1(X)) =
R(f(X)), Rf−1(X) = f−1(R(f(X))).

Similarly, by Y ⊆ W and f−1(Y ) ⊆ U , the below conclusions are gained.

Theorem 7. Let R be a relation on W . Then for any Y ⊆ W ,

f−1(R(Y )) = Rf−1(f−1(Y )).

Proof. For any x ∈ U , we have

x ∈ f−1(R(Y )) ⇐⇒ f(x) ∈ R(Y )
⇐⇒ R(f(x)) ⊆ Y
⇐⇒ f−1(R(f(x))) ⊆ f−1(Y )
⇐⇒ Rf−1(x) ⊆ f−1(Y )
⇐⇒ x ∈ Rf−1(f−1(Y )).

The proof is completed.

It follows from Theorem 7 that for any Y ⊆ W , R(Y ) = f(Rf−1(f−1(Y ))).

Theorem 8. Let R be a relation on W . Then for any Y ⊆ W ,

f−1(R(Y )) = Rf−1(f−1(Y )).

Proof. For any Y ⊆ W , we have

f−1(R(Y )) = Rf−1(f−1(Y )) ⇐⇒ ∼ f−1(R(Y )) =∼ Rf−1(f−1(Y ))
⇐⇒ f−1(∼ R(Y )) = Rf−1(∼ f−1(Y ))
⇐⇒ f−1(R(∼ Y )) = Rf−1(f−1(∼ Y )).

According to Theorem 7, we conclude that f−1(R(Y )) = Rf−1(f−1(Y )).

From Theorem 8 we know that for any Y ⊆ W , R(Y ) = f(Rf−1(f−1(Y ))).
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4 Summaries

Much attention has been paid on the rough sets on two universes, in many
cases two universes are connected by a relation between them. In this paper,
two universes are linked with a mapping, a binary relation on one universe can
be induced according to the given relation on the other universe, the properties
of induced relations are investigated. The rough approximations based on the
original relation and induced relation are compared, as a result, it can found
that under some conditions, the rough approximations on the two universes can
be transformed to each other.

Based on the obtained results, the knowledge discovery on the relation infor-
mation systems linked with a mapping can be studied further in the framework
of rough set theory.

Acknowledgements. This work was supported by grants from the National Natural
Science Foundation of China (Nos. 61773349, 61573321, 61773208).
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1 Introduction

Big data consists of various types of data. When we focus on string data, data
is broadly classified into discrete and continuous data.

Rough sets, constructed by Pawlak [18], are used as an effective method for
data mining. The framework is usually applied to complete information tables
with nominal attributes and creates fruitful results in various fields. However,
attributes taking continuous values frequently appear, when we describe prop-
erties of an object in our daily life. Furthermore, incomplete information ubiq-
uitously exists in daily life. We cannot sufficiently utilize information obtained
from our daily life unless we deal with continuous and incomplete information.
Therefore, extended versions of rough sets are proposed to deal with incomplete
information in continuous domains.

An approach, which is most frequently used [7,20–22], is to use the way
applied to nominal attributes by Kryszkiewicz [8]. The approach fixes the indis-
cernibility of an object with incomplete information with another object. How-
ever, it is natural that an object characterized by incomplete information has
two possibilities; namely, the object is indiscernible with another object and not
so. To fix the indiscernibility corresponds to taking into consideration only one
of the two possibilities. Therefore, the approach creates poor results and infor-
mation loss occurs [12,19]. Furthermore, the fixing is not compatible with the
approach by Lipski in the field of incomplete databases [9,10], because Lipski
handles all possibilities of objects with incomplete information.

Another is to directly use indiscernibility relations that are extended to deal
with incomplete information [15]. Yet another is to use possible classes obtained
from the indiscernibility relation on a set of attributes [16]. These approaches
have the same order of computational complexity as the one in complete infor-
mation. However, no justification is shown, although it is known in discrete
data that these give the same results as the approach based on possible world
semantics [13]. To give these approaches a correctness criterion, it is required to
develop an approach based on possible world semantics. The approaches so far
under possible world semantics use possible tables derived from an incomplete
information table. Unfortunately, infinite possible tables can be derived from an
incomplete information table with continuous values. Possible world semantics
is unavailable as long as to use possible tables.

Rough sets are based on the indiscernibility relation on a set of attributes.
The number of possible indiscernibility relations is finite, even if the number
of possible tables is infinite. We focus on possible indiscernibility relations, not
possible tables. In this work, we develop an approach based on possible world
semantics by using possible indiscernibility relations in an incomplete informa-
tion table with continuous values.

The paper is organized as follows. In Sect. 2, an approach directly using
indiscernibility relations is described in a complete information table. In Sect. 3,
we develop an approach in an incomplete information table under possible world
semantics. In Sect. 4, conclusions are addressed.
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2 Rough Sets by Using Indiscernibility Relations in
Complete Information Systems with Continuous Values

A data set is represented as a two-dimensional table, called an information table.
In the information table, each row and each column represent an object and
an attribute, respectively. A mathematical model of an information table with
complete information is called a complete information system. The complete
information system is a triplet expressed by (U,AT, {D(ai) | ai ∈ AT}). U is a
non-empty finite set of objects, which is called the universe. AT is a non-empty
finite set of attributes such that ai : U → D(ai) for every ai ∈ AT where D(ai)
is the continuous domain of attribute ai.

We have two approaches for dealing with attributes taking continuous values.
One approach is to discretize a continuous domain into disjunctive intervals in
which objects are regarded as indiscernible [4]. The discretization has a heavy
influence over results. The other approach is to use neighborhood [11]. The indis-
cernibility of two objects is derived from the distance of them. When the distance
of the two objects is less than or equal to a given threshold, they are regarded
as indiscernible. Results gradually change as the threshold changes. Thus, we
adopt the latter approach.

Binary relation Rai
expressing indiscernibility of objects on attribute ai ∈ AT

is called the indiscernibility relation for ai:

Rai
= {(o, o′) ∈ U × U | |ai(o) − ai(o′)| ≤ δ}, (1)

where ai(o) is the value for attribute ai of object o and δ is a threshold that
denotes a range in which ai(o) is indiscernible with ai(o′).

Proposition 1
If δ1 ≤ δ2, then Rδ1

ai
⊆ Rδ2

ai
, where Rδ1

ai
and Rδ2

ai
are the indiscernibility relations

on attribute ai with thresholds δ1 and δ2, respectively.

From the indiscernibility relation, indiscernible class [o]ai
for object o is

obtained:

[o]ai
= {o′ | (o, o′) ∈ Rai

}. (2)

Directly using indiscernibility relation Rai
, lower approximation apr

ai
(O) and

upper approximation aprai
(O) for ai of set O of objects are:

apr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ Rai
∨ o′ ∈ O}, (3)

aprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ Rai

∧ o′ ∈ O}. (4)

Proposition 2 [15]
If δ1 ≤ δ2, then aprδ1

ai
(O) ⊇ aprδ2

ai
(O) and aprδ1

ai
(O) ⊆ aprδ2

ai
(O), where

aprδ1
ai

(O) and aprδ1
ai

(O) are lower and upper approximations under threshold δ1
and aprδ2

ai
(O) and aprδ2

ai
(O) are lower and upper approximations under threshold

δ2.
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For object o in the lower approximation of O, all objects with which o is indis-
cernible are included in O; namely, [o]ai

⊆ O. On the other hand, for an object
in the upper approximation of O, some objects with which o is indiscernible are
in O; namely, [o]ai

∩ O �= ∅. Thus, apr
ai

(O) ⊆ aprai
(O).

3 Rough Sets by Possible Indiscernibility Relations in
Incomplete Information Systems with Continuous
Domains

An information table with incomplete information is called an incomplete infor-
mation system. In incomplete information systems, ai : U → sai

for every
ai ∈ AT where sai

is the set of values over domain D(ai) of attribute ai or
the set of intervals on D(ai). Single value v with v ∈ ai(o) or v ⊆ ai(o) is a
possible value that may be the actual one as the value of attribute ai in object
o. The possible value is the actual one if ai(o) is a single value.

We have two kinds of indiscernibility relations from an incomplete informa-
tion table1. One is the certain indiscernibility relation. The others are possible
indiscernibility relations. Certain indiscernibility relation CRai

is:

CRai
= {(o, o′) ∈ U × U | (o = o′) ∨ (∀u ∈ ai(o)∀v ∈ ai(o′)|u − v| ≤ δ)}. (5)

In this binary relation that is unique, two objects o and o′ of (o, o′) ∈ CRai
are

certainly indiscernible with each other on ai. Such a pair is called a certain pair.
On the other hand, we have lots of possible indiscernibility relations. The number
of possible indiscernibility relations grows exponentially as the number of values
with incomplete information increases. Family F(Rai

) of possible indiscernibility
relations is:

F(Rai
) = {e | e = CRai

∪ e′ ∧ e′ ∈ P(MPPRai
)}, (6)

where each element is a possible indiscernibility relation and P(MPPRai
) is the

power set of MPPRai
and MPPRai

is:

MPPRai
= {{(o′, o), (o, o′)}|(o′, o) ∈ MPRai

},

MPRai
= {(o, o′) ∈ U × U | ∃u ∈ ai(o)∃v ∈ ai(o′)|u − v| ≤ δ)}\CRai

. (7)

A pair of objects that is included in MPRai
is called a possible pair. F(Rai

) is
a lattice for set inclusion. CRai

is the minimum possible indiscernibility relation
in F(Rai

), which is the minimal element, whereas CRai
∪ MPRai

is the max-
imum possible indiscernibility relation, which is the maximal element. One of
possible indiscernibility relations is the actual indiscernibility relation, although
we cannot know it without additional information.

1 For the sake of simplicity and space limitation, We describe the case of an attribute,
although our approach can be easily extended to the case of more than one attribute.
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Example 1

T
U a1 a2

o1 1.74 {6.21,6.27}
o2 [1.77,1.81] [6.43,6.49]
o3 1.84 6.47
o4 [1.87,1.97] 6.52
o5 {1.69,1.71} {6.28,6.35}

In incomplete information table T , let threshold δ be 0.05 on attribute a1. The
set of certain pairs of indiscernible objects on a1 is:

{(o1, o1), (o1, o5), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o5, o1)}.

The set of possible pairs of indiscernible objects is:

{(o1, o2), (o2, o1), (o2, o3), (o3, o2), (o3, o4), (o4, o3)}.

Using formulae (5)–(7), the family of possible indiscernibility relations and each
possible indiscernibility relation pri with i = 1, . . . , 8 are:

F(Ra1) = {pr1, · · · , pr8},

pr1 = {(o1, o1), (o1, o5), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o5, o1)},

pr2 = {(o1, o1), (o1, o5), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o5, o1),
(o1, o2), (o2, o1)},

pr3 = {(o1, o1), (o1, o5), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o5, o1),
(o2, o3), (o3, o2)},

pr4 = {(o1, o1), (o1, o5), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o5, o1),
(o3, o4), (o4, o3)},

pr5 = {(o1, o1), (o1, o5), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o5, o1),
(o1, o2), (o2, o1), (o2, o3), (o3, o2)},

pr6 = {(o1, o1), (o1, o5), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o5, o1),
(o1, o2), (o2, o1), (o3, o4), (o4, o3)},

pr7 = {(o1, o1), (o1, o5), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o5, o1),
(o2, o3), (o3, o2), (o3, o4), (o4, o3)},

pr8 = {(o1, o1), (o1, o5), (o2, o2), (o3, o3), (o4, o4), (o5, o5), (o5, o1),
(o1, o2), (o2, o1), (o2, o3), (o3, o2), (o3, o4), (o4, o3)}.

These possible indiscernibility relations have the following lattice structure for
inclusion:
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pr8

pr2 pr3 pr4

pr5 pr6 pr7

pr1

������
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������

pr1 is the minimal element, whereas pr8 is the maximal element.

We develop an approach based on possible indiscernibility relations in an
incomplete information table with continuous domains. We apply the formulae
(3) and (4) of lower and upper approximations to every possible indiscernibility
relations.

Proposition 3
If prk ⊆ prl for possible indiscernibility relations prk, prl ∈ F(Rai

),
then apr

ai
(O)prk ⊇ apr

ai
(O)prl and aprai

(O)prk ⊆ aprai
(O)prl .

This proposition shows that the sets of lower and upper approximations under
possible indiscernibility relations are also lattices for set inclusion.

We aggregate the lower and upper approximations under possible indis-
cernibility relations. Let O be a set of objects. Certain lower approximation
Capr

ai
(O) is:

Capr
ai

(O) = {o | ∀pr ∈ F(Rai
)o ∈ apr

ai
(O)pr}, (8)

where apr
ai

(O)pr is the lower approximation derived from possible indiscerni-
bility relation pr. Certain upper approximation Capr

ai
(O) is:

Caprai
(O) = {o | ∀pr ∈ F(Rai

)o ∈ aprai
(O)pr}, (9)

where aprai
(O)pr is the upper approximation derived from possible indiscerni-

bility relation pr. Possible lower approximation Papr
ai

(O) is:

Papr
ai

(O) = {o | ∃pr ∈ F(Rai
)o ∈ apr

ai
(O)pr}. (10)

Possible upper approximation Paprai
(O) is:

Paprai
(O) = {o | ∃pr ∈ F(Rai

)o ∈ aprai
(O)pr}. (11)

From Proposition 3, these approximations are transformed into the following
formulae:

Capr
ai

(O) = apr
ai

(O)prmax , (12)
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Caprai
(O) = aprai

(O)prmin , (13)
Papr

ai
(O) = apr

ai
(O)prmin , (14)

Paprai
(O) = aprai

(O)prmax , (15)

where prmin and prmax are the minimal and maximal possible indiscernibil-
ity relations. These formulae show that we can obtain the four approximations
without the computational complexity in the number of possible indiscernibility
relations.

Example 2
We go back to Example 1. Let set O of objects be {o2, o3, o4}. Using formulae
(3) and (4), lower and upper approximations from each possible indiscernibility
relation are:

apr
a1

(O)pr1 = {o2, o3, o4}, apra1
(O)pr1 = {o2, o3, o4},

apr
a1

(O)pr2 = {o3, o4}, apra1
(O)pr2 = {o1, o2, o3, o4},

apr
a1

(O)pr3 = {o2, o3, o4}, apra1
(O)pr3 = {o2, o3, o4},

apr
a1

(O)pr4 = {o2, o3, o4}, apra1
(O)pr4 = {o2, o3, o4},

apr
a1

(O)pr5 = {o3, o4}, apra1
(O)pr5 = {o1, o2, o3, o4},

apr
a1

(O)pr6 = {o3, o4}, apra1
(O)pr6 = {o1, o2, o3, o4},

apr
a1

(O)pr7 = {o2, o3, o4}, apra1
(O)pr7 = {o2, o3, o4},

apr
a1

(O)pr8 = {o3, o4}, apra1
(O)pr8 = {o1, o2, o3, o4}.

By using formulae (12)–(15),

Capr
a1

(O) = {o3, o4},

Capra1
(O) = {o2, o3, o4},

Papr
a1

(O) = {o2, o3, o4},

Papra1
(O) = {o1, o2, o3, o4}.

As with the case of nominal attributes [13], the following proposition holds.

Proposition 4
Capr

ai
(O) ⊆ Papr

ai
(O) ⊆ O ⊆ Caprai

(O) ⊆ Paprai
(O).

Using the four approximations denoted by formulae (12)–(15), lower and
upper approximations are expressed in interval sets, as is described in [14]2:

apr•
ai

(O) = [Capr
ai

(O), Papr
ai

(O)], (16)

apr•
ai

(O) = [Caprai
(O), Paprai

(O)]. (17)
2 Hu and Yao also say that approximations are described by using an interval set in

information tables with incomplete information [5].
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Certain and possible approximations are the lower and upper bounds of the
actual approximation. The two approximations apr•

ai
(O) and apr•

ai
(O) depend

on each other; namely, the complementarity property apr•
ai

(O) = U −apr•
ai

(U −
O) linked with them holds, as is so in complete information systems.

Example 3
Using four approximations in Example 2, from formulae (16) and (17),

apr•
a1

(O) = [{o3, o4}, {o2, o3, o4}],

apr•
a1

(O) = [{o2, o3, o4}, {o1, o2, o3, o4}].

Furthermore, the following proposition is valid from formulae (12)–(15).

Proposition 5

Capr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ (CRai
∪ MPRai

) ∨ o′ ∈ O},

Caprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ CRai

∧ o′ ∈ O},

Papr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ CRai
∨ o′ ∈ O},

Paprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ (CRai

∪ MPRai
) ∧ o′ ∈ O}.

This proposition shows that our extended approach directly using indiscernibility
relations [15] is justified. Namely, results from the extended approach directly
using indiscernibility relations are the same as the ones from possible world
semantics. A criterion for justification is formally represented as

q(Rai
) =

⊙
q′(F(Rai

)),

where q′ is the approach for complete information, which is described in Sect. 2,
and q is an extended approach of q′, which directly deals with incomplete infor-
mation,

⊙
is an aggregate operator, and F(Rai

) is the set of possible indis-
cernibility relations from the original indiscernibility relation Rai

under possible
world semantics. This is also schematized in Fig. 1.

Fig. 1. Correctness criterion of extended method q
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This type of correctness criterion is usually used in the field of databases
dealing with incomplete information [1–3,6,17,23].

When objects in O are specified by nominal attribute aj with incomplete
information, O is specified by using an element in domain D(aj). In the case
where O is specified by restriction aj = x with x ∈ D(aj), four approximations:
certain lower, certain upper, possible lower, and possible upper ones, are:

Capr
ai

(O) = apr
ai

(COaj=x)prmax , (18)

Caprai
(O) = aprai

(COaj=x)prmin , (19)
Papr

ai
(O) = apr

ai
(POaj=x)prmin , (20)

Paprai
(O) = aprai

(POaj=x)prmax . (21)

where

COaj=x = {o ∈ O | aj(o) = x}, (22)
POaj=x = {o ∈ O | aj(o) ⊇ x}. (23)

When we describe the case where o ∈ O is specified by numerical attribute
aj with incomplete information. Set O is specified by an interval where precise
values of aj are used.

Capr
ai

(O) = apr
ai

(CO[aj(om),aj(on)])
prmax , (24)

Caprai
(O) = aprai

(CO[aj(om),aj(on)])
prmin , (25)

Papr
ai

(O) = apr
ai

(PO[aj(om),aj(on)])
prmin , (26)

Paprai
(O) = aprai

(PO[aj(om),aj(on)])
prmax , (27)

where

CO[aj(om),aj(on)] = {o ∈ O | aj(o) ⊆ [aj(om), aj(on)]}, (28)
PO[aj(om),aj(on)] = {o ∈ O | aj(o) ∩ [aj(om), aj(on)] �= ∅}, (29)

where aj(om) and aj(on) are precise and aj(om) ≤ aj(on).

Example 4
In incomplete information table T of Example 1, let O be specified by values
a2(o3) and a2(o4). Using formulae (28) and (29),

CO[a2(o3),a2(o4)] = {o3, o4},

PO[a2(o3),a2(o4)] = {o2, o3, o4}.

Possible indiscernibility relations prmin and prmax on a1 is pr1 and pr8 in Exam-
ple 1. Using formulae (24)–(27),

Capr
ai

(O) = {o4},

Caprai
(O) = {o3, o4},

Papr
ai

(O) = {o2, o3, o4},

Paprai
(O) = {o1, o2, o3, o4}.
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4 Conclusions

We have described rough sets based on possible world semantics in information
tables with continuous domains. First, we have dealt with complete information
tables. Rough sets are obtained from directly using the indiscernibility relation
on an attribute. Second, we have dealt with incomplete information tables under
possible world semantics.

In incomplete information tables, we focus on that the number of possi-
ble indiscernibility relations is finite, although the number of possible tables
is infinite. The family of possible indiscernibility relations is expressed by a
lattice having the minimal and maximal elements. The families of lower and
upper approximations that are derived from each possible indiscernibility rela-
tion are also a lattice for inclusion. The number of possible indiscernibility rela-
tions increases exponentially as the number of attribute values with incomplete
information grows. However, approximations are obtained by using the mini-
mal and the maximal possible indiscernibility relations. Therefore, we have no
difficulty of computational complexity. By using the minimal and the maximal
possible indiscernibility relations, four types approximations: certain lower, cer-
tain upper, possible lower, and possible upper approximations are obtained, as
is so in incomplete information tables with nominal attributes. These approx-
imations are the same as those obtained from an extended approach directly
using indiscernibility relations. Therefore, the approach based on possible world
semantics gives justification of the extended approach.

Acknowledgment. The authors wish to thank the anonymous reviewers for their
valuable comments.
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Abstract. Concepts are important and basic elements in human’s cog-
nition process. The formal concept gives a mathematical format of the
classical view of concepts in which all instances of a concept share com-
mon properties. But in some situation this view is not consistent with
human’s understanding of concepts. The prototype view of concepts is
more appropriate in our daily life. This view characters some analog cate-
gories as internally structured into a prototype (clearest cases, best exam-
ples of the category) and non-prototype members, with non-prototype
members tending toward an order from better to poorer examples. The
objective of this paper is to give a mathematical description of prototype
view of concepts. Firstly, we give a similarity measurement of an object
to another object in a formal context. Then based on this similarity mea-
surement, the mathematical format of prototype view of concepts, named
k-cutting concept, induced by one typical object is obtained. Finally, the
properties of k-cutting concepts are studied. In addition to presenting
theorems to summarize our results, we use some examples to illustrate
the main ideas.

Keywords: Prototype view of concepts · Similarity measurement ·
k-cutting concepts · Object concepts

1 Introduction

Concepts are important and basic constituents in human’s cognition process.
Consequently, they are crucial in many psychological processes, such as catego-
rization, inference, memory, learning, and decision-making. In philosophy, there
are different views or structures of concepts. In classical view, a concept contains
two parts, extension and intension. The extension is a group of objects belong-
ing to the concept and the intension is a family of attributes characterizing the
properties of the concept. The classical view holds that all instances of a con-
cept share common properties, which are necessary and sufficient conditions for
defining the concept. In order to apply the philosophical concept into data pro-
cessing, Wille [22] proposed a new field, formal concept analysis (FCA), giving
a mathematical format of the classical view of concepts.

FCA [22] shows a mathematical format of classical view of concepts, named
formal concepts. A formal concept consists of a pair of an object set (extent) and
c© Springer Nature Switzerland AG 2019
T. Mihálydeák et al. (Eds.): IJCRS 2019, LNAI 11499, pp. 166–178, 2019.
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an attribute set (intent). The objects in extent possess all the attributes in intent
and the attributes in intent are possessed by all the objects in extent. Based on
the partial order theory, Wille and Ganter [8] presented a lattice structure of
formal concepts named a concept lattice which reveals hierarchical structure of
concepts with respect to the generalization and the specialization of concepts.
However, the formal concept is an all-or-none phenomenon. That is, if an object
possesses all the attributes in the intent of a formal concept, it is definitely in the
extent of this formal concept, but if an object does not possess all the attributes
in the intent, even though it possesses most attributes in the intent, this object
is definitely not in this formal concept. In other words, if two objects are in the
extent of same concept, they must have same degree of typicality in this formal
concept. That is, the objects in the extent of a concept are equally important
in people’s understanding of the concept. This view of concepts is mostly used
in machine-oriented concept learning [1,10,12,25,27], but not always consistent
with human’s understanding of concepts. Classical formal concepts have been
extended to other types, such as preconcepts [23], semiconcepts [24], protocon-
cepts [21], property oriented concepts [4], object oriented concepts [26], dual
concepts [2,13], monotone concepts [3], RS-definable concepts [28] and three-
way concepts [15–17].

There is increasing evidence that memberships of objects in semantic cate-
gories which are expressed by words of natural languages can be graded rather
than all-or-none. Lakoff [11], Rosch [19] and Zadeh [29] argued that some nat-
ural categories are analog and must be represented logically in a manner which
reflects their analog structure. Rosch [19] has further characterized some natu-
ral analog categories as internally structured into a prototype (clearest cased,
best examples of the category) and non-prototype members, with non-prototype
members tending toward an order from better to poorer examples. For example,
chair is a more reasonable exemplar than radio of the concept furniture, or we
can say that the chair has a larger membership than radio of the concept fur-
niture. When we talk about color, vermilion, fuchsia, pink, cerise, peach, garnet,
cardinal, rose, wine all belong to concept red. However, rose is more typical than
pink. This kind of view of concepts are called prototype view of concepts.

In this paper, we try to give a mathematical representation of the proto-
type view of concepts [6,7]. Considering the cognitive process of recognizing
concepts, we firstly choose an object as the prototype of a concept, which is
the most typical object and can be a representative of this concept. Then the
similarities between other objects and prototype are given according to a simi-
larity measurement. Since the prototype is described by a group of attributes [9],
the similarity measurement is defined based on the description of objects. The
objects with high similarity to the prototype can be put into the concept. In
order to quantitatively define high similarity, we preset a threshold k and the
corresponding prototype view concepts are called k-cutting concepts. Since pro-
totype o is the most typical object of this concept, the description of prototype
o is regarded as the intent of this k-cutting concept and the objects whose sim-
ilarity to prototype o is bigger than k are put into the extent of this k-cutting
concept. Furthermore we study the properties of k-cutting concepts.
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The rest of the paper is organized as follows. Section 2 gives the basic notions
in formal concept analysis. Then Sect. 3 presents the similarity measurement
between two different objects and defines the k-cutting concept. Furthermore
we show the properties of k-cutting concepts. Finally, this paper is concluded in
Sect. 4.

2 Formal Concept Analysis

This section reviews basic notions in FCA. FCA, proposed by Wille in 1982 [22],
gives a mathematical way to represent a concept with a pair of objects set (called
the extent) and attributes set (called the intent). The data source of FCA is
called formal context defined as follows [8,22].

Definition 1. A formal context (OB,AT, I) consists of two sets OB and AT ,
and a relation I between OB and AT . The elements of OB are called the objects
and the elements of AT are called the attributes of the context. In order to express
that an object o is in a relation I with an attribute a, we write oIa or (o, a) ∈ I
and read it as “the object o has the attribute a”.

Based on the formal context, the set of attributes possessed by an object o
and the set of objects possessing an attribute a are given as

oI. = {a ∈ AT | oIa} ⊆ AT,

.Ia = {o ∈ OB | oIa} ⊆ OB. (1)

Actually, oI. can be regarded as the description of object o and .Ia can
be understood as a set of objects which can be described by attribute a or a
set of representatives of description {a}. Given a formal context (OB,AT, I), if
for any o ∈ OB, we have oI. �= ∅, oI. �= AT , and for any a ∈ AT , we have
.Ia �= ∅, .Ia �= OB, then the formal context (OB,AT, I) is called canonical. If
for any objects o1, o2 ∈ OB, from o1I. = o2I., it always follows that o1 = o2
and, consequently, .Ia1 = .Ia2 implies a1 = a2 for all a1, a2 ∈ AT . We call this
context a clarified formal context. In this paper, we suppose all formal contexts
are canonical, clarified and finite. Based on the description of an object and the
representatives of an attribute, a pair of operators called derivation operators are
defined on an objects set O ⊆ OB and an attributes set A ⊆ AT , respectively,
in (OB,AT, I) [8]:

O∗ = {a ∈ AT | ∀o ∈ O(oIa)} = {a ∈ AT | O ⊆ .Ia} =
⋂{oI. | o ∈ O},

A∗ = {o ∈ OB | ∀a ∈ A(oIa)} = {o ∈ OB | A ⊆ oI.} =
⋂{.Ia | a ∈ A}. (2)

It is obvious to see that, for any object o ∈ OB and any attribute a ∈ AT ,
it always follows oI. = {o}∗ and .Ia = {a}∗. Then based on above derivation
operators, a formal concept is obtained [8].
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Definition 2. A formal concept of the context (OB,AT, I) is a pair (O,A) with
O∗ = A and O = A∗ (O ⊆ OB,A ⊆ AT ). We call O the extent and A the intent
of the formal concept (O,A).

The formal concepts of a formal context (OB,AT, I) are ordered by

(O1, A1) ≤ (O2, A2) ⇔ O1 ⊆ O2 (⇔ A1 ⊇ A2). (3)

All formal concepts of (OB,AT, I) can form a complete lattice called the for-
mal concept lattice of (OB,AT, I), denoted by L(OB,AT, I). The infimum and
supremum are given by

(O1, A1) ∧ (O2, A2) = (O1 ∩ O2, (A1 ∪ A2)∗∗),
(O1, A1) ∨ (O2, A2) = ((O1 ∪ O2)∗∗, A1 ∩ A2) (4)

In a formal context, there is a kind of important concept, named object
concept [8].

Definition 3. Let (OB,AT, I) be a formal context, (o∗∗, o∗) is a formal concept
for all o ∈ OB, which is called an object concept. Here, for convenience, we write
o∗ instead of {o}∗ for any o ∈ OB.

The object concept (o∗∗, o∗) can be understood as a concept induced by
object o, which means the object o is a typical object (prototype) of concept
(o∗∗, o∗). Specifically, the description (intent) of concept (o∗∗, o∗) is the descrip-
tion of object o and the extent of this concept is a set of objects which can be
described by the description of object o. In order to show the importance of the
object concept, the notion of join-dense is recalled in next definition [8].

Definition 4. Let P be an ordered set and let Q ⊆ P . Then Q is called join-
dense in P if for every element a ∈ P there is a subset A of Q such that
a = ∨PA.

Following theorem shows that any formal concept can be constructed based
on a set of object concepts, so the object concepts can be regarded as the fun-
damental elements in concept construction [8].

Theorem 1. Let (OB,AT, I) be a formal context and L(OB,AT, I) the asso-
ciated complete lattice of concepts. Then the set of all the object concepts is
join-dense in L(OB,AT, I). Specifically, for a formal concept (O,A),

∨
{(o∗∗, o∗) | o ∈ O} = (O,A) (5)

holds.

Finally, we give an example to illustrate the definitions and theorems pre-
sented in this section.
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Table 1. A formal context (OB,AT, I)

OB a b c d

o1 1 0 0 1

o2 0 1 0 1

o3 1 1 1 0

o4 0 1 1 0

Example 1. Table 1 is a formal context (OB,AT, I) with four objects OB =
{o1, o2, o3, o4} and four attributes AT = {a, b, c, d}. The description of every
object and the representatives of every attribute are as follows:

o1I. = {a, d}, o2I. = {b, d}, o3I. = {a, b, c}, o4I. = {b, c}.
.Ia = {o1, o3}, .Ib = {o2, o3, o4}, .Ic = {o3, o4}, .Id = {o1, o2}.

We can see that for any object oi ∈ OB, its description is neither whole attribute
set AT nor the empty set. Also, for any attribute in AT , its representatives set
is neither whole object set OB nor the empty set. Thus the formal context
(OB,AT, I) is canonical. Moreover, for any two different objects, their descrip-
tions are different, and for any two different attributes, their representatives sets
are different. Thus the formal context (OB,AT, I) is clarified.

The formal concept lattice of context (OB,AT, I) is shown in Fig. 1.
The object concepts are: (o∗∗

1 , o∗
1) = (o1, ad), (o∗∗

2 , o∗
2) = (o2, bd), (o∗∗

3 , o∗
3) =

(o3, abc), (o∗∗
4 , o∗

4) = (o3o4, bc). After calculation, we have

(o2o3o4, b) = (o2, bd) ∨ (o3, abc) ∨ (o3o4, bc),
(o1o3, a) = (o1, ad) ∨ (o3, abc),
(o1o2, d) = (o1, ad) ∨ (o2, bd),
(OB, ∅) = (o1, ad) ∨ (o2, bd) ∨ (o3, abc) ∨ (o3o4, bc).

That is, any formal concept can be constructed by joining a set of object con-
cepts. Thus, the set of all object concepts is join-dense in formal concept lattice.

(OB,Ø)

(o2o3o4,b) (o1o2,d)

(o3o4,bc) (o2,bd)

(Ø,AT)

(o1o3,a)

(o1,ad)

(o3,abc)

Fig. 1. The formal concept lattice L(OB,AT, I)
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3 The Prototype View of Concept

Section 2 shows the importance of object concepts in concept construction. How-
ever, the definition of object concepts is too strict. According to Definition 3,
the extent of an object concept (o∗∗, o∗) is a set of objects which can be fully
described by the description of object o. Actually, the semantic concept in our
daily life is based on a typical object (prototype), but the extent of semantic
concept is not required to be fully described by the description of the typical
object. Based on the similarity [5,18,20] to the typical object, the typicality of
objects in extent can be defined. In this section, we give a mathematical way to
represent the semantic concept and discuss its properties. Firstly, the similarity
measurement of one object to another is shown in Sect. 3.1.

3.1 Similarity Measurement Between Two Objects

In a formal context (OB,AT, I), an object o can be described by a set of
attributes oI. (called description of object o). And if two objects have same
description, they can be regarded as same one [8]. Thus, in order to measure
the similarity of object oi to object o, we only need to measure the similarity
between the descriptions of these two objects. The more similar the descriptions
of two objects are, the more similar the two objects are.

Definition 5. Let (OB,AT, I) be a formal context and o be a reference object.
For any object oi ∈ OB, the similarity measurement of oi to o is defined as

Sim(oi, o) =
|oiI. ∩ oI.|

|oI.| . (6)

The range of the value of this similarity measurement is 0 ≤ Sim(oi, o) ≤ 1.
The closer the similarity is to 1, the more similar object oi is to object o; the
closer the similarity is to 0, the less similar object oi is to object o. In other
words, the more attributes in description of object o can be used to describe
object oi, the more similar object oi is to object o. Now let us consider the
similarity of objects in the extent of an object concept (o∗∗, o∗) to the object o.

Proposition 1. Let (OB,AT, I) be a formal context and (o∗∗, o∗) be an object
concept induced by object o. Then the value of similarity measurement of any
object in o∗∗ to object o is 1.

Proof. Suppose (o∗∗, o∗) is an object concept of formal context (OB,AT, I) and
oi ∈ o∗∗ is an object from the extent of this concept. Since oi ∈ o∗∗, according to
the properties of operator ∗, we have o∗∗∗ ⊆ o∗

i and o∗ = o∗∗∗. Thus, we obtain
o∗ ⊆ o∗

i . That is, oI. ⊆ oiI. Hence we have oiI. ∩ oI. = oI. Thus, Sim(oi, o) =
|oiI.∩ oI.|

|oI.| = |oI.|
|oI.| = 1.
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By Proposition 1, the extent o∗∗ of object concept (o∗∗, o∗) consists of objects
whose value of similarity measurement to object o is 1. If we regard object o as a
typical object (prototype) of an semantic concept, in order to get all the objects
in this prototype view of concepts, we should not only consider objects with
similarity value of 1, but also objects with similarity value less than 1.

We use a simple example to illustrate the basic notions and ideas introduced
so far.

Example 2. (Continued with Example 1) We set object o3 as a reference object.
In the following, we will compute the similarity of each object in OB to reference
object o3.

Sim(o1, o3) =
|o1I. ∩ o3I.|

|o3I.| =
|{a, d} ∩ {a, b, c}|

|{a, b, c}| =
1
3
,

Sim(o2, o3) =
|o2I. ∩ o3I.|

|o3I.| =
|{b, d} ∩ {a, b, c}|

|{a, b, c}| =
1
3
,

Sim(o3, o3) =
|o3I. ∩ o3I.|

|o3I.| =
|{a, b, c} ∩ {a, b, c}|

|{a, b, c}| = 1,

Sim(o4, o3) =
|o4I. ∩ o3I.|

|o3I.| =
|{b, c} ∩ {a, b, c}|

|{a, b, c}| =
2
3
.

Then, we check the correctness of Proposition 1. In Example 1, we get four object
concepts (o1, ad), (o2, bd), (o3, abc) and (o3o4, bc) inducing by objects o1, o2, o3
and o4, respectively. The similarities of objects in extent of object concepts to
the objects inducing these concepts are computed as follows:

Sim(o1, o1) =
|o1I. ∩ o1I.|

|o1I.| =
|{a, d} ∩ {a, d}|

|{a, d}| = 1,

Sim(o2, o2) =
|o2I. ∩ o2I.|

|o2I.| =
|{b, d} ∩ {b, d}|

|{b, d}| = 1,

Sim(o3, o3) =
|o3I. ∩ o3I.|

|o3I.| =
|{a, b, c} ∩ {a, b, c}|

|{a, b, c}| = 1,
{
Sim(o3, o4) = |o3I.∩ o4I.|

|o4I.| = |{a,b,c} ∩ {b,c}|
|{b,c}| = |{b,c}|

|{b,c}| = 1,

Sim(o4, o4) = |o4I.∩ o4I.|
|o4I.| = |{b,c} ∩ {b,c}|

|{b,c}| = 1.

The computation results are consistent to Proposition 1. That is, the value of
similarity of objects in extent of object concept to the object inducing this
concept is 1.

3.2 The k-cutting Concept Induced by One Typical Object

The classical view of concepts holds that all instances of a concept share com-
mon properties that are necessary and sufficient conditions for defining the con-
cept [14]. However, in our daily life, semantic category in our nature language
is not an all-or-none phenomenon. For example, we know that a chair is a more
reasonable exemplar of the category furniture than a radio. In other words, the
chair is more typical than radio in the category furniture. This is contrary to the
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assumption that categories are necessarily logical, bounded entities, Rosch [19]
has characterized some natural analog categories as internally structured into
a prototype (clearest cases, best example of the category) and nonprototype
members, with nonprototype members tending toward an order from better to
poorer example. Based on the results of Rosch’s study, we summarize the process
of human to recognize a semantic concept as follows:

step 1: Pick up the typical object (prototype) of the concept ;

step 2: Calculate the characterized attributes (description) of the typical object ;

step 3: Calculate the similarity of each object to the typical object ;

step 4: Put the objects with high similarity into the extent of concept .

The above steps are just a qualitative description of process to obtain seman-
tic concepts. If we want to express this process in a mathematical way, some
quantitative index is needed. For example, in step 4, high is a qualitative descrip-
tion. In order to determine which object has high similarity to the typical object,
we give a preset threshold k. If the similarity measurement of an object to typ-
ical object is bigger than k, this object can be regarded as being highly similar
to typical object. Thus, this object can be put into the extent and the corre-
sponding concept is called the k-cutting concept. Since the objects in one extent
belong to the same concept, they should possess some common attributes with
each other. Thus we strict that k should satisfy k > 1

2 . The following use of k
satisfies these settings.

The above process is easy for us to understand, but it is hard to give a
mathematical definition of k-cutting concept directly. In the following, we show
the mathematical definition of the k-cutting concept. Firstly, a pair of k-cutting
derivation operators are given as follows.

Definition 6. Let (OB,AT, I) be a formal context. A pair of k-cutting derivation
operators (k > 1

2) for objects set O ⊆ OB and attributes set A ⊆ AT are
defined as:

O∗k = {a ∈ AT | |a∗ ∩ O| ≥ k · |O|},
A∗k = {o ∈ OB | |o∗ ∩ A| ≥ k · |A|} (7)

In Definition 6, the attribute shared by more than k · |O| objects in O belongs
to attributes set O∗k; the object possessing more than k · |A| attributes in A
belongs to objects set A∗k. In the following, we present the properties of k-
cutting derivation operators.
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Property 1. Let (OB,AT, I) be a formal context. The following properties hold
for any objects sets O,O1, O2 ⊆ OB and attributes sets A,A1, A2 ⊆ AT :

G1. ∅∗k = AT, when ∅ ⊆ OB,

∅∗k = OB, when ∅ ⊆ AT ;
G2. O∗1 = O∗, A∗1 = A∗;
G3. O∗k = O∗ when O is a singleton set,

A∗k = A∗ when A is a singleton set;
G4. k ≤ h ⇒ O∗h ⊆ O∗k,

k ≤ h ⇒ A∗h ⊆ A∗k;
G5. O∗k = ∪k≤ki

O∗ki = ∩kj≤kO
∗kj ,

A∗k = ∪k≤ki
A∗ki = ∩kj≤kA

∗kj ;

G6. O ⊆ O∗∗k, A ⊆ A∗∗k.

Proof. The results in G1 and G2 are obvious.

G3. If object set O is a singleton set, then there exists an object oi ∈ OB
satisfying O = {oi}. Since {oi} is a singleton set, the result of |a∗ ∩ {oi}|, for
any a ∈ AT , is either 0 or 1. According to Definition 6, for any k > 1

2 , we have
O∗k = {a ∈ AT | |a∗ ∩ O| ≥ k · |O|} = {a ∈ AT | |a∗ ∩ {oi}| ≥ k|{oi}|} = {a ∈
AT | |a∗ ∩ {oi}| ≥ k}. That is, if attribute a ∈ O∗k, then |a∗ ∩ {oi}| ≥ k. That
means |a∗ ∩ {oi}| = 1. Thus O∗k = {a ∈ AT | |a∗ ∩ {oi}| = 1} = {a ∈ AT |
{oi} ⊆ a∗} = {oi}∗ = O∗. The rest part can be proved similarly.
G4. For any a ∈ O∗h, according to Definition 6, we have |a∗ ∩O| ≥ h · |O|. Since
k ≤ h, we have h · |O| ≥ k · |O|. Thus, |a∗ ∩O| ≥ h · |O| ≥ k · |O|. That is, a ∈ O∗k.
Because of the arbitrariness of attribute a, we obtain O∗h ⊆ O∗k. The formula
k ≤ h ⇒ A∗h ⊆ A∗k can be proved similarly.
G5. From property G4, for any ki ≥ k, we have O∗ki ⊆ O∗k. Hence, we obtain
∪k≤ki

O∗ki ⊆ O∗k. Also, since k ≤ k, we can get O∗k ⊆ ∪k≤ki
O∗ki . Thus, we

obtain O∗k = ∪k≤ki
O∗ki . Analogously, from property G4, for any kj ≤ k, we

have O∗k ⊆ O∗kj . Hence, we obtain O∗k ⊆ ∩kj≤kO
∗kj . Also, since k ≤ k, we

can get ∩kj≤kO
∗kj ⊆ O∗k. Thus, we obtain O∗k = ∩kj≤kO

∗kj . The rest part
A∗k = ∪k≤ki

A∗ki = ∩kj≤kA
∗kj can be proved similarly.

G6. For any oi ∈ O, from property of operator ∗, we have O∗ ⊆ o∗
i . Consequently,

we obtain o∗
i ∩ O∗ = O∗. Thus, |o∗

i ∩ O∗| = |O∗| ≥ k|O∗| holds no matter what
value k has. According to Definition 6, we can get oi ∈ O∗∗k. The rest part
A ⊆ A∗∗k can be proved similarly.

Then based on the k-cutting derivation operators, the definition of k-cutting
concept induced by one prototype (we will simply call it k-cutting concept if
there is no confusion) is given as follows.

Definition 7. Let (OB,AT, I) be a formal context. The k-cutting concept
induced by one typical object o is defined as (ô∗∗k, o∗). ô∗∗k and o∗ are called
extent and intent of k-cutting concept (ô∗∗k, o∗). Here, ô∗∗k = (oi,m(oi)), oi ∈
o∗∗k is a set of objects in o∗∗k accompanied with a membership value.
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Specifically, the element of ô∗∗k is an object-membership pair (oi,m(oi)), in
which oi ∈ o∗∗k and m(oi) is the membership of object oi belonging to the k-
cutting concept (ô∗∗k, o∗). The membership can be measured in different ways,
and the most common way is using the similarity measurement value of object
oi to typical object o. In following analysis, for convenience, we can regard o∗∗k

instead of ô∗∗k as an extent of k-cutting concept (ô∗∗k, o∗). That is, we can
rewrite k-cutting concept (ô∗∗k, o∗) as (o∗∗k, o∗).

From Definition 7, the intent of the k-cutting concept (o∗∗k, o∗) is a set of
attributes which is the description of typical object o and the extent of the
concept is a set of object-membership pairs in which the description of object
contains more than k · |o∗| attributes in description of o. The set of all k-cutting
concepts induced by one typical object in formal context (OB,AT, I) is denoted
by OCCk(OB,AT, I). Now we check the similarity of any object in k-cutting
concept given in Definition 7 to verify its rationality.

Theorem 2. Let (OB,AT, I) be a formal context and (o∗∗k, o∗) is a k-cutting
concept. An object oi ∈ OB belongs to o∗∗k if and only if the similarity of oi to
o is bigger than k. That is, Sim(oi, o) ≥ k.

Proof. According to Definition 6, we have oi ∈ o∗∗k is equivalent to |o∗
i ∩ o∗| ≥

k · |o∗|. Since we assumed that the formal context in this paper is canonical, we
have o∗ �= ∅, that is, |o∗| �= 0. Thus, both sides of the inequality |o∗

i ∩o∗| ≥ k · |o∗|
can be divided by |o∗|. The result is |o∗

i ∩o∗|
|o∗| ≥ k. That is, Sim(oi, o) ≥ k. Thus,

oi ∈ o∗∗k holds if and only if Sim(oi, o) ≥ k holds.

Remark 1. The higher the value of similarity the object has, the closer it is to
the typical object. However, the similarity measure can not be used to decide
whether or not the object is a prototype or typical object. That is, for some
object, the value of similarity measurement is 1, but it is not a prototype of this
concept, since it has more attributes than the attributes in intent.

At the beginning of Sect. 3.2, we discussed that since all the objects in one
extent belong to a same concept, they should possess some common attributes
with each other. Hence, we restrict the value of k > 1

2 . The following proposition
shows that the restriction of k guarantees the existence of common attributes of
a concept.

Proposition 2. Let (o∗∗k, o∗) be a k-cutting concept. If k > 1
2 , then, for any

o1, o2 ∈ o∗∗k, we have o∗
1 ∩ o∗

2 ∩ o∗ �= ∅.
Proof. Because of o1, o2 ∈ o∗∗k, based on Definition 6, we have |o∗

1∩o∗| ≥ k ·|o∗|
and |o∗

2 ∩ o∗| ≥ k · |o∗|. Since we suppose k > 1
2 , the formulas |o∗

1 ∩ o∗| > |o∗|
2 and

|o∗
2 ∩ o∗| > |o∗|

2 can be obtained. Thus, |o∗
1 ∩ (o∗

2 ∩ o∗)| = |(o∗
1 ∩ o∗) ∩ (o∗

2 ∩ o∗)| =
|(o∗

1∩o∗)|+ |(o∗
2 ∩o∗)|−|(o∗

1 ∩o∗)∪(o∗
2∩o∗)| > |o∗|

2 + |o∗|
2 −|(o∗

1∩o∗)∪(o∗
2∩o∗)| >

|o∗| − |o∗| = 0. That is, o∗
1 ∩ o∗

2 ∩ o∗ �= ∅.
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The result o∗
1 ∩ o∗

2 ∩ o∗ �= ∅ in Proposition 2 can be rewritten as (o∗
1 ∩ o∗) ∩

(o∗
2 ∩ o∗) �= ∅. This proposition shows that in order to let objects in the same

concept have common attributes, the value of k should satisfy k > 1
2 . These

common attributes are the most important characters of the concept, since they
can reflect the commonness of objects in extent.

We continue with Example 2 to demonstrate the ideas of k-cutting concept
induced by one typical object and to verify the correctness of Theorem2 and
Proposition 2.

Example 3. According to Definition 7, the 2
3 -cutting concepts induced by typical

object o1, o2, o3, and o4 are ({(o1, 1)}, ad), ({(o2, 1)}, bd), ({(o3, 1), (o4, 2
3 )}, abc),

and ({(o3, 1), (o4, 1)}, bc). Compared with the classical object concept induced by
object o3 whose extent only contains object o3, the 2

3 -cutting concepts induced
by object o3 contains objects o3 and o4. And these two objects have different
memberships. Since object o3 is the prototype of this concept, its membership is
1. The membership of object o4 is 2

3 . The 2
3 -cutting concept can be regarded as a

more general concept than the classical concept. The object in k-cutting concept
induced by object o does not need to possess all the attributes in description of
object o. We only restrict that the description of any object in extent of k-cutting
concept contains more than k · |o| attributes in the description of prototype o.

We use ({(o3, 1), (o4, 2
3 )}, abc), the 2

3 -cutting concept induced by typical
object o3, as an example to show the correctness of Theorem 2. According to the
similarity measurement calculated in Example 2, we have Sim(o1, o3) = 1

3 < 2
3 ,

Sim(o2, o3) = 1
3 < 2

3 , Sim(o3, o3) = 1 ≥ 2
3 and Sim(o4, o3) = 2

3 ≥ 2
3 . Based

on Theorem 2, only objects o3 and o4 belong to the extent of 2
3 -cutting concept

({(o3, 1), (o4, 2
3 )}, abc), which is consistent with our calculation by Definition 7.

Also, from ({(o3, 1), (o4, 1)}, bc), the 2
3 -cutting concept induced by typical object

o4, we can see that the similarity of object o3 to typical object o4 is 1, but object
o3 is not the typical object of this concept, since its description is {a, b, c} which
is bigger than {b, c}, description of typical object o4.

We will check the correctness of Proposition 2 in the following. Since k =
2
3 > 1

2 , every two objects in o
∗∗ 2

3
3 should have common attributes. Based on

Table 1, we have o
∗∗ 2

3
3 = {o3, o4}, and we can calculate (o∗

3 ∩ o∗
3) ∩ (o∗

4 ∩ o∗
3) =

{a, b, c} ∩ {b, c} = {b, c} �= ∅. The results are consistent to Proposition 2.

4 Conclusion

In formal concept analysis, the formal concept is a mathematical formation of the
classical view of concept and reflects a semantic meaning “commonly possessing”.
However, in our daily life, the prototype view of concepts is more common and
just reflects the meaning of “mostly possessing”. In this paper, we discussed the
similarity between two objects and defined the mathematical formation of the
prototype of concepts, named k-cutting concepts. Moreover, the properties of
this newly proposed concept are studied and its rationality is discussed.
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The results of this paper suggest several future research topics. It is inter-
esting to investigate the structure of k-cutting concepts and the k-cutting con-
cepts can be generalized as the k-cutting concepts induced by a group of typical
objects.
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Abstract. The multiple views of data can provide complementary infor-
mation to each other, a large number of studies have demonstrated that
one can achieve the better clustering performance by integrating infor-
mation from multiple views than using only a single view. However, iden-
tifying the explicit cluster structure in the multi-view data with noise and
reflecting uncertain relationships between objects and clusters is still a
problem that has not been satisfactorily solved. To address the prob-
lem, this paper propose a three-way clustering algorithm for multi-view
data with noise. The algorithm is mainly divided into two stages. In the
first stage, we decompose the similarity matrix of each view into the
good data and the corruptions to eliminate the noise contained in the
multi-view data. In the second stage, only the clean data of each view is
used to obtain the consistency information, and the final three-way clus-
tering results are generated based on the theory of three-way decisions.
The experimental results show that the proposed algorithm has better
clustering performance in dealing with multi-view data with noise.

Keywords: Noisy data · Multi-view clustering · Three-way decision ·
Similarity matrix decomposition · Co-regularization

1 Introduction

Multi-view data are captured from heterogeneous sources or views, where the
different view represents distinct information of the same objects [1,4,34]. Many
real-world data sets can be represented by multiple views. Although each view
can be used separately for learning, the views can provide complementary infor-
mation to each other and improve learning performance, which makes the analy-
sis and learning of multi-view data attract more and more attention [23,27]. The
clustering problem is to use a certain similarity measure for the given data set, so
that the similarity of objects of the same class is as large as possible, and the sim-
ilarity of objects in different classes is as small as possible [6,10,29]. Multi-view
clustering approaches attempt to mine valuable information underlying different
views of data and integrate them to improve clustering performance [23,26].
c© Springer Nature Switzerland AG 2019
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In the past few years, many multi-view clustering have been proposed, includ-
ing subspace learning [7], multiple kernel learning [9], and co-training [1,13].
Many of these methods are based on spectral clustering, since spectral clus-
tering uses graphical structures to represent multi-view data, reveals complex
structures between objects, handles the distribution of data in arbitrary shapes
including non-convex structures, and it has clear mathematical principles [17,28].
The main difference among these multi-view spectral clustering methods is that
the processing of the similarity matrixes between views. Generally speaking,
there are three categories methods for multi-view clustering. One reconstructs
a similarity matrix containing the consensus information as an input of the cor-
responding spectral clustering algorithm by a certain projection transformation
method [12]. For example, the multi-view subspace learning methods [18] usually
assume that the existence of a shared latent representation for reconstructing
all views. A common subspace representation of the data shared across multi-
ple views is first learned. Then standard spectral clustering is applied on the
learned subspace representation matrix to generate the clustering result [26].
The second category merges the similarity matrices to obtain a common similar-
ity matrix that minimizes the differences between the input similarity matrices,
such as co-training [13], co-regularization [14], feature selection [24] or graph
fusion [16]. The third one is to independently cluster each view and then obtain
the consistent clustering result through the designed weighting strategies [3,8].

In this paper, we focus on the second category multi-view clustering method,
especially on the co-training multi-view spectral clustering methods. Co-training
multi-view spectral clustering is a method that can effectively deal with multi-
view clustering. The idea is to minimize the inconsistency between views. The co-
regularization framework can be regarded as a regularized version of co-training
algorithm. Kumar et al. [14] proposed co-regularized multi-view spectral clus-
tering method (CMSC), in which two methods were proposed. The pairwise
disagreement term and centroid based disagreement term for different views are
added into the objective function of spectral clustering. The clustering results
which are consistent across the views are achieved after the optimization process.

In the real world applications, the input data may be noisy, which results in
the corresponding similarity matrices being corrupted by noise data. However,
in the conventional multi-view clustering method of co-regularization, in addi-
tion to considering the fusion of view information, more attention is paid to the
problem of weight setting between views [11,26,34]. It often combines multiple
representations of data with possibly noise data, which may often degrade the
clustering performance. In multi-view noise processing, Xia et al. [28] used the
Markov chain method to handle the possible noise in the transition probability
matrices associated with different views. Ren et al. [21] learned a graph con-
taining K connected components containing consistency information, where K
is the number of clusters, and the l1 norm is used to constrain the interference
of noise on the cluster.

On the other hand, the real world data sets may not be well separated for
uncertainty. The above multi-view clustering approaches are all based on two-way
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clustering, in which there exist two relationships between an object and a clus-
ter. However, there might be three relationships between an object and a cluster,
namely, belong-to definitely, not belong-to definitely and uncertain. To address
the problem, Yu et al. [32,33] proposed a three-way clustering method to solve
the problem of uncertainty clustering, inspired by the theory three-way deci-
sions [30,31]. That is, we use a pair of sets to represent a cluster instead of using
a single set, so there are three regions such as the core region, fringe region and
trivial region. Objects in the core region are typical elements of the cluster and
objects in the fringe regionmight belong to the cluster, and the objects in the trivial
region certainly does not belong to the cluster definitely. The three-way representa-
tion intuitively shows which objects are fringe to the cluster. Thus, this paper uses
three-way clustering method to obtain the final clustering results, which adapts to
the hard clustering as well as to the soft clustering.

In this paper, a novel method is proposed for multi-view clustering problem
with noisy data. We assumed that the similarity matrix to be decomposed into
two latent factors: the clean (good) data and the corruptions. Only the clean
data is used for subsequent multi-view information fusion (Fig. 1). The similarity
matrix of each view based on the corresponding good data is used as the input
of the co-regularized multi-view spectral clustering framework, and finally the
clustering result is obtained.

The remainder of this paper is organized as follows. Section 2 briefly reviews
the relevant preliminary concepts. Section 3 describes the proposed method in
detail. Section 4 reports the results of comparative experiments and conclusions
are provided in Sect. 5.

2 Preliminaries

2.1 Representation of Three-Way Clustering

The purpose of clustering is to divide the objects in the data set X into cor-
responding clusters. If there are K clusters, the cluster set is represented as
C = {C1, · · · , Ck, · · · , CK}. In the existing works, a cluster is usually repre-
sented by a single set, namely, Ck = {x1, · · · ,xi, · · · ,x|Ck|}. In contrast to the
general crisp representation of a cluster, we represent a three-way cluster C as
a pair of sets [32]:

C = (Co(C), F r(C)). (1)

Here, Co(C) ⊆ X and Fr(C) ⊆ X. Let Tr(C) = X−Co(C)−Fr(C). Then,
Co(C), Fr(C) and Tr(C) naturally form the three regions of a cluster as Core
Region, Fringe Region and Trivial Region respectively. That is:

CoreRegion(C) = Co(C),
F ringeRegion(C) = Fr(C),
T rivialRegion(C) = X − Co(C) − Fr(C).

(2)

If x ∈ CoreRegion(C), the object x belongs to the cluster C definitely; if x ∈
FringeRegion(C), the object x might belong to C; if x ∈ TrivialRegion(C),
the object x does not belong to C definitely.
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These subsets have the following properties.

X = Co(C) ∪ Fr(C) ∪ Tr(C),
Co(C) ∩ Fr(C) = ∅,
F r(C) ∩ Tr(C) = ∅,
T r(C) ∩ Co(C) = ∅.

(3)

If Fr(C) = ∅, the representation of C in Eq. (1) turns into C = Co(C); it
is a single set and Tr(C) = X − Co(C). This is a representation of two-way
decisions. In other words, the representation of a single set is a special case of
the representation of three-way cluster.

Furthermore, according to Formula (3), we know that it is enough to represent
a cluster expediently by the core region and the fringe region.

In another way, we can define a cluster by the following properties:

(i) Co(Ck) �= ∅, 1 ≤ k ≤ K;
(ii)

⋃
Co(Ck)

⋃
Fr(Ck) = X, 1 ≤ k ≤ K.

(4)

Property (i) implies that a cluster cannot be empty. This makes sure that a
cluster is physically meaningful. Property (ii) states that any object of X must
definitely belong to or might belong to a cluster, which ensures that every object
is properly clustered.

With respect to the family of clusters C, we have the following family of
clusters formulated by three-way decisions as:

C = {(Co(C1), F r(C1)), · · · , (Co(Ck), F r(Ck)), · · · , (Co(CK), F r(CK))}. (5)

Obviously, we have the following family of clusters formulated by two-way
decisions as:

C = {Co(C1), · · · , Co(Ck), · · · , Co(CK)}. (6)

In the approaches based on the theory of three-way decisions, an evaluation
function v (x, Ck) is usually designed and where two thresholds α and β are set
in advance; then, the three-way decision rules can be constructed as Eq. (7).

if v (x, Ck) ≥ α, decide x to Co (Ck) ;
if β ≤ v (x, Ck) < α, decide x to Fr (Ck) ;
if v (x, Ck) < β, decide x to Tr (Ck) .

(7)

In fact, the evaluation function v(x, Ck) can be a risk decision function, a
similarity function, a distance function and so on.

2.2 Review of Spectral Clustering

Spectral clustering is a technique that exploits the properties of the Laplacian of
the graph, whose vertices denote the data points, edges denote the similarities
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between the data points. The basic idea is to divide the weighted undirected
graph into K optimal subgraphs, so that the interior of the subgraphs are as
similar as possible, and the distance between subgraphs is as far as possible
to achieve the purpose of clustering [6,20]. Here we briefly outline the spectral
clustering algorithm.

First, the similarity matrix A ∈ R
n×n is constructed by using a similarity

measure for objects. The common similarity function generally has a Gaussian
kernel function. In this work, we focus on the symmetric KNN method [19], the
matrix A is given by ai,j = 1 if i is the NN nearest neighbor of j or vice versa,
and ai,j = 0 else.

Then, the graph Laplacian L = D−A is computed and the Laplacian matrix
is normalized as needed, where D is a diagonal matrix with Dii =

∑
j Ai,j . Let

H denote a matrix with columns as the smallest K eigenvectors of L.

min
H∈Rn×K

tr(HTLH), s.t. HTH = I. (8)

Finally, the object i is assigned to the cluster C if the i-th row of H is assigned
to cluster C by the k-means algorithm.

2.3 Co-regularized Multi-view Spectral Clustering

Let χ = {X(1), · · · ,X(v), · · · ,X(m)} denote a set of data consisting of m views,
X(v) = {x(v)

1 ,x(v)
2 , · · · ,x(v)

n } ∈ R
n×d(v)

denotes the examples in the view v,
x(v)
i denotes the i-th data object of the v-th view, d(v) is the feature dimension

of the v-th view, and n represents the number of objects in a view. We use
A(v) to represent the similarity matrix of the v-th view, and the symmetrically
normalized L(v)

sym = I −D(v)−1/2
A(v)D(v)−1/2

to represent the Laplacian matrix
of the view.

The objective function of the spectral clustering in a single view is as
described in Eq. (8). The core idea of co-regularized multi-view spectral clus-
tering (CMSC) [14] is to minimize the differences between the input similarity
matrices. The disagreement term for different views are added into the objective
function of spectral clustering. D(H(v),H(w)) = −tr(H(v)H(v)TH(w)H(w)T ) is
a measure of disagreement between clusterings of two views [14]. The CMSC
objective function based on pairwise constraints is as follows:

min
H(1),··· ,Hm∈Rn×K

tr(H(v)TL(v)
symH(v)) + λ

∑

1�v,w�m,v �=m

D(H(v),H(w)),

s.t.H(v)TH(v) = I,∀1 ≤ v ≤ m.

(9)

The hyperparameter λ trades-off the spectral clustering objectives and the
spectral embedding disagreement term. Let L(v) = D(v)−1/2

A(v)D(v)−1/2
be

used to represent the Laplacian matrix, then, H(v) denote a matrix with columns
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as the maximal K eigenvectors of L(v), the objective function can be written in
the following form of the maximum value:

max
H(1),··· ,Hm∈Rn×K

tr(H(v)TL(v)H(v)) + λ
∑

1�v,w�m,v �=m
tr(H(v)H(v)TH(w)H(w)T ),

s.t.H(v)TH(v) = I, ∀1 ≤ v ≤ m.

(10)

The Eq. (10) can be solved using alternating maximization. For a given H(v),
we get the following optimization problem in H(v):

max
H(v)

tr(H(v)T (L(v) + λ
∑

1�v,w�m,v �=m

H(w)H(w)T )H(v)),

s.t.H(v)TH(v) = I.

(11)

3 The Proposed Method

In this section, we present the robust multi-view three-way clustering algorithm
which effectively handles noisy data and obtains three-way representation of
clusters.

3.1 The Framework

Figure 1 shows the main framework of the proposed method, which consists of
two stages. The first stage is to decompose the similarity matrix of each view into
two parts, namely the clean (good) data Ag(v) and the corruptions E(v). In the
second part, we use the co-regularized multi-view spectral clustering framework
and three-way k-means method to obtain the final three-way clustering results.

...

X(1)

X(2)

X(v)

A(1)

A(2)

A(v)

...

Ag(1)

Ag(2)

E(1)

E(2)

E(v) Ag(v)

...

Co-regularized
Multi-view 
Three-way 
Clustering

+

+

+

=

...

=

=

Fig. 1. The framework of the proposed method

First, we construct the similarity matrix of each view by the KNN
method [19]. The matrix A(v) is given by a(v)i,j = 1 if i is the NN nearest neigh-

bor of j or vice versa, and a(v)i,j = 0 else. Due to the existence of noise data,
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the corresponding similarity matrices may be corrupted. So we assume the sim-
ilarity matrix A(v) to be decomposed into two latent factors: the clean(good)
data Ag(v) and the corruptions E(v). Namely,

A(v) = E(v) + Ag(v) E(v),Ag(v) ∈ R
n×n
≥0 , both are symmetric. (12)

Then, the similarity matrix based on clean(good) data of each view is used
as the input of the co-regularized multi-view spectral clustering framework and
the clustering result is obtained. Subsect. 3.2 introduces how to find the matrices
E(v) and Ag(v), and Subsect. 3.3 presents the co-regularized multi-view three-
way clustering process.

3.2 Similarity Matrix Decomposition

Generally speaking, corruptions are relatively rare, if they were not rare, i.e. the
majority of the data is corrupted, a reasonable clustering structure can not be
expected [2]. Thus, it is reasonable that we assume that E(v) is sparse, use θ(v)

to limit the degree to which each view is contaminated by noise, and use the l0
norm to constrain the sparsity, i.e.

∥
∥E(v)

∥
∥
0

≤ 2θ(v), ‖·‖0 represents the number
of non-zero elements in the matrix, 2θ(v) indicates the symmetry of E(v). To
prevent extreme situations, such as θv = 1

2

∥
∥A(v)

∥
∥
0
, we use

∥
∥
∥a

g(v)
i,:

∥
∥
∥
0

≥ m to

constrain each object x(v)
i in the matrix to be connected to at least m objects.

Usually, we set m =
⌈
1
2

∥
∥
∥a

g(v)
i,:

∥
∥
∥
0

⌉
.

We jointly perform spectral clustering and decomposition of matrix A(v),
and add constraints on E(v) in the objective function of the spectral clustering
Eq. (8). The problem is transformed as follows:

(H(v),Ag(v)) = arg min
H(v),Ag(v)

tr(H(v)TL(Ag(v))H(v)),

s.t.HTH = I,Ag(v) = Ag(v)T ,
∥
∥A(v) − Ag(v)

∥
∥
0

≤ 2θv,
∥
∥
∥a

g(v)
i,:

∥
∥
∥
0

≥ m,

∀i ∈ {1, · · · , n},∀1 ≤ v ≤ m.

(13)

where L(Ag(v)) represents the Laplacian of the clean data Ag(v), H(v) represents
the indicator matrix of the v-th view, and H(v) ∈ R

n×K , K represents the
number of clusters.

Equation (13) is hard to optimize (in particular due to the ‖·‖0 constraints
the problem becomes NP-hard in general). The ‖·‖0 norm is simply handled by
relaxation to the ‖·‖1 norm. In this work, we aim to preserve the interpretabil-
ity of the ‖·‖0 norm. Aleksandar et al. [2] proposes a block coordinate-descent
(alternating) optimization scheme to approximate it. That is, given H(v), update
Ag(v) or vice versa. Since Ag(v) determines E(v) and vice versa, we just focus on
the update of one, e.g., E(v).

Update of H(v) when E(v) fixed: since Ag(v) = A(v) − E(v), L(Ag(v)) are
now constant, the problem is transformed into a traditional spectral clustering
problem. That is, the solution of H(v) are the K first eigenvectors of L(Ag(v)).
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Update of E(v) when H(v) fixed: since L(v) = D(v)−A(v) and
Ag(v) = A(v)−E(v), we have L(Ag(v)) = L(A(v)) − L(E(v)), and
tr(H(v)TL(Ag(v))H(v)) = tr(H(v)TL(A(v))H(v)) − tr(H(v)TL(E(v))H(v)). The
term tr(H(v)TL(A(v))H(v)) is constant, so the problem of minimizing the previ-
ous term is equivalent to maximizing tr(H(v)TL(E(v))H(v)). Let e

(v)
i,j denotes the

element in E(v) and h(v)
i denotes the i-th row in H(v), tr(H(v)TL(E(v))H(v)) =

∑
i,j

1
2e

(v)
i,j

∥
∥
∥h(v)

i − h(v)
j

∥
∥
∥
2

2
[25]. The Eq. (13) can be transformed into solving the

following objective function:

f([e(v)i,j ]) :=
∑

i,j
e
(v)
i,j

∥
∥
∥h(v)

i − h(v)
j

∥
∥
∥
2

2
. (14)

Algorithm 1. Similarity Matrix Decomposition
Input: Similarity matrix of each view A(1), · · · ,A(v), · · · ,A(m).
Output: Good similarity matrix of each view Ag(1), · · · ,Ag(v), · · · ,Ag(m).
\\Initialize Ag(v);
for v=1 to m do

Ag(v) ← A(v);

for v=1 to m do
while true do

\\Updata of H(v);
Compute Laplacian L(Ag(v)) = Dg(v) − Ag(v), matrix H(v) ∈ R

n×K ,
and trace;
if trace could not be lowered then

break;

\\Updata of Ag(v);
Calculate the maximum number of edges that each object can delete

and count
(v)
i ←

∣
∣
∣a

(v)
i,:

∣
∣
∣ − m;

Calculate the value p
a
(v)
i,j

of each edge of Ag(v) lower triangle according

to Eq.(15) and sort;

if count
(v)
i > 0 and count

(v)
j > 0 then

let let e
(v)
i,j = a

(v)
i,j ;

count
(v)
i − −, count

(v)
j − −;

if
∣
∣
∣e

(v)
i,j

∣
∣
∣ > θ(v) then

break;

construct E(v) according to e
(v)
i,j ; Ag(v) = Ag(v)−E(v);

return Ag(1), · · · ,Ag(v), · · · ,Ag(m).

Our problem is to find a set [e(v)i,j ] containing the edge e
(v)
i,j affected by the

noise data, where A(v) contains the elements of E(v), so the problem of Eq. (14)
is equivalent to solving the maximum of the following problem:
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p
e
(v)
i,j

= p
a
(v)
i,j

= a
(v)
i,j

∥
∥
∥h(v)

i − h(v)
j

∥
∥
∥
2

2
. (15)

This function result matches the intuition of corrupted edges: the higher the
p
e
(v)
i,j

value means that object i and object j do not belong to the same cluster,
but there is still an edge connection between them. So we only need to find
the largest θ(v) of p

a
(v)
i,j

and remove it to eliminate the effect of noise. Since the

matrix is symmetrical, we only need to sort each edge of A(v)’s upper or lower
triangle according to Eq. (15), and find the θ(v) largest edges, let e

(v)
i,j = a

(v)
i,j , if

the edge to which the object is connected is less than m, skip this next substitute.
The rest of the elements in E(v) are set to 0. Algorithm 1 gives the process of
decomposing the similarity matrix.

3.3 Co-regularized Multi-view Three-Way Clustering Process

According to Algorithm 1, we get Ag(1), · · · ,Ag(v), · · · ,Ag(m). According to
Eq. (10), the indicator matrix H(v) containing the view consistency information

Algorithm 2. Co-regularized Multi-View Three-Way Clustering
Input: The good similarity matrix of each view Ag(1), · · · ,Ag(v), · · · ,Ag(m).
Output: Three-way clustering results C =

{(Co(C1), F r(C1)), · · · , (Co(Ck), F r(Ck)), · · · , (Co(CK), F r(CK))}.

Compute Laplacian of each view L(v) = D(v)−1/2
Ag(v)D(v)−1/2

, indicator
matrix of each view H(v) ∈ R

n×K and the sum of Trace sum;
while true do

for v=1 to m do
if w �= v then

Calculate the updated indicator matrix H(v) and trace for each
view according to Eq.( 10);

if trace could not be higher then
break;

Choose the indicator matrix H(v) of the richest information and apply k-means
on it, get the hard clustering results {C1, Ck, · · · , CK} and the cluster center
points {cen1, cenk, · · · , cenK};
Calculate the average distance distkaver and the farthest distance distkfar from
each cluster Ck to the cluster center cenk.
Let αk = distkaver and βk = distkaver + distkfar;
for k=1 to K do

for i=1 to n do
if dist(hi, cenk) ≤ αk, decide to Co(Ck);
if αk ≤ dist(hi, cenk) ≤ βk, decide to Fr(Ck).

return
C = {(Co(C1), F r(C1)), · · · , (Co(Ck), F r(Ck)), · · · , (Co(CK), F r(CK))}.
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can be obtained. Then we use three-way k-means clusters to obtain the final clus-
tering results, which is described in Algorithm2.

4 Experiments

In this section, in order to verify the effectiveness of the proposed method, we
use several representative multi-view clustering algorithms as compared methods
to test on the four real data sets. The general clustering accuracy (ACC) [33],
normalized mutual information (NMI) [5] and adjusted rand index (ARI) [22] are
used to evaluate the clustering performance. The experimental setup is described
in detail in Sect. 4.1, and the experimental results are analyzed in Sect. 4.2.

4.1 Experiments Setup

4.1.1 Datasets
We conduct experiments on five real-world datasets: Wine, SensIT, 3sources,
Digits. A detailed summarization of these datasets is in Table 1. Since we want
to verify the robustness to the noise data, after the data is normalized by column,
5% of the data is randomly extracted, and the attribute values of these objects
are set to random values.

Table 1. Information about the datasets

Datasets Objects Dimensions View Cluster

Wine 178 {6,7} 2 3

3sources 169 {3068,3631,3560} 3 6

SensIT 300 {50,50} 2 3

Digits 2000 {240,76} 2 10

– Wine1: Wine is the standard data set in UCI. We split the feature vectors
into 2 subsets, each subset is considered as one data view as the reference [15].

– 3sources2: It is collected from three online news sources: BBC, Reuters and
Guardian. In total it consists of 416 distinct news manually categorized into
six classes. Among them, 169 are reported in all three sources and each story
was manually annotated with one of the six topical labels.

– SensIT dataset3: It uses two sensors to classify three types of vehicle. We
randomly sample 100 data for each class, and then conduct experiments on
2 views and three classes.

1 http://archive.ics.uci.edu/ml/.
2 http://mlg.ucd.ie/datasets/3sources.html.
3 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html.

http://archive.ics.uci.edu/ml/
http://mlg.ucd.ie/datasets/3sources.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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– Digits4: It consists of features of hand-written digits (0–9). The dataset is
represented by 6 feature sets and contains 2000 samples with 200 in each
category. We choose 76 Fourier coefficients of the character shapes and the
240 pixel averages in 2 × 3 windows as two views.

4.1.2 Compared Methods
We compare the proposed method with some representative multi-view cluster-
ing algorithms.

– Best Single View (BSV): running the proposed methods on each input view,
and then reporting the results of the view that achieves the best performance.

– Feature Concatenation (FeatCon): concatenating the features of all views to
form a single representation, and then applying the proposed method on the
concatenated view.

– Co-regularized Multi-view Spectral Clustering (CMSC) [14]: adopting the co-
regularization framework in spectral clustering, and we use KNN method to
construct similarity matrix on each view.

– Multi-view Spectral Clustering by Common Eigenvectors (MVSC-CEV) [12]
The strategy of this method is different from our method. In this method,
each view is projected to obtain a matrix containing consistency information,
and then standard spectral clustering is performed.

4.2 Experiments Results

In the proposed method, the similarity matrix of the view needs to be calculated,
and all of them are calculated by the KNN. For the co-regularized multi-view
clustering, the parameter λ used in the literature has been set to 0.09 after many
experiments. Each data set is tested after randomly adding 5% of the noise. Our
method needs to set the amount of noise θ(v) of the view according to experience,
where the value of θ(v) should not be set too large to prevent excessive loss of
information. In this experiment, we set θ(v) = 10, and the experimental results
are shown in Table 2.

From the above experimental results, it is obvious that the proposed method
performs better in most cases than the compared algorithms in all indices, which
shows that the proposed method is effective and feasible. The best NMI value
and ARI value of the Wine data set are in the FeatCon method. Because the
wine data set is not a multi-view data, the result on the FeatCon method is
better than our method is explicable.

Figure 2 intuitively shows the comparison of NMI values of CMSC (no noise),
CMSC (5% noise), MVSC-CEV (5% noise) and the proposed method(5% noise).
It can be seen that the effectiveness of the CMSC method is reduced when it
processes noise-containing data. In contrast, the performance of the proposed
method is better when dealing with noise-containing data. The results shows
that the proposed method has a certain effect to deal with noisy data.
4 https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html
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Table 2. Comparison of experimental results

Datasets Methods NMI ACC ARI

Wine BSV 0.6663 0.3438 0.6596

FeatCon 0.8120 0.5299 0.8305

CMSC [14] 0.7114 0.6273 0.7391

MVSC-CEV [12] 0.6363 0.38764 0.6216

Proposed 0.8055 0.6488 0.8299

SensIT BSV 0.225 0.3591 0.2682

FeatCon 0.2806 0.3596 0.2306

CMSC [14] 0.2727 0.4857 0.1995

MVSC-CEV [12] 0.2336 0.3166 0.2117

Proposed 0.3001 0.5454 0.2848

3sources BSV 0.3823 0.5147 0.1575

FeatCon 0.3087 0.5029 0.1205

CMSC [14] 0.3186 0.5384 0.1488

MVSC-CEV [12] 0.3052 0.4201 0.2008

Proposed 0.4002 0.5976 0.1834

Digits BSV 0.7751 0.854 0.6796

FeatCon 0.7731 0.855 0.681

CMSC [14] 0.8057 0.8815 0.8903

MVSC-CEV [12] 0.8463 0.9185 0.7791

Proposed 0.9051 0.928 0.9089
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Fig. 2. Comparison of NMI values
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5 Conclusions

In this paper, we have addressed the problem of clustering on the multi-view
data with noise. Based on the idea of matrix decomposition, we decompose the
similarity matrix of each view into two latent factors, namely, the good data
and the corruptions. Then, the good similarity matrix of each view is used as
the input of the co-regularized multi-view spectral clustering framework. At the
same time, the idea of three-way clustering is also applied in this paper, which
makes the clustering result reflects all the three relationships between an object
and a cluster. Experimental results have demonstrated the effectiveness of the
proposed method.

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundation of China under grant No. 61876027, 61672120 and 61533020.
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Abstract. Fuzzy rough sets have been successfully applied in classifica-
tion tasks, in particular in combination with OWA operators. There has
been a lot of research into adapting algorithms for use with Big Data
through parallelisation, but no concrete strategy exists to design a Big
Data fuzzy rough sets based classifier. Existing Big Data approaches use
fuzzy rough sets for feature and prototype selection, and have often not
involved very large datasets. We fill this gap by presenting the first Big
Data extension of an algorithm that uses fuzzy rough sets directly to
classify test instances, a distributed implementation of FRNN-OWA in
Apache Spark. Through a series of systematic tests involving generated
datasets, we demonstrate that it can achieve a speedup effectively equal
to the number of computing cores used, meaning that it can scale to
arbitrarily large datasets.

Keywords: Fuzzy rough sets · OWA operators · Big Data ·
Apache Spark

1 Introduction

Fuzzy rough sets [7] encode two complementary types of uncertainty: degrees of
membership, and the approximation of concepts. This expressiveness has led to
their adoption in a variety of machine learning contexts. Fuzzy Rough Nearest
Neighbours (FRNN), introduced in [9] (as FRNN-FRS), was an attempt to use
fuzzy rough sets directly for classification and obtain better results than existing
lazy learners like Fuzzy Nearest Neighbours (FNN) and k Nearest Neighbours
(kNN). FRNN considers the lower and upper approximation of each class and
classifies a test instance based on its membership in these.

Like other lazy learners, FRNN does not require training and so can be
applied directly to classify test instances with a training set. FRNN is also
c© Springer Nature Switzerland AG 2019
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conceptually attractive because its predictions are directly interpretable. Upper
approximation membership encodes to what extent a test instance is similar to
the training instances of a class, and so possibly belongs to this class. Lower
approximation membership encodes to what extent a test instance is not similar
to the training instances of other classes and so necessarily belongs to this class.

However, it was pointed out by [17] that, as originally defined, FRNN makes
predictions that are necessarily identical to those of traditional 1NN. This fact,
and the more general observation already made in [9] that FRNN is sensitive
to noise, motivated a number of revised proposals. In this paper we focus on
FRNN-OWA, introduced in [15], which incorporates Ordered Weighted Aver-
aging (OWA) operators into the definition of lower and upper approximation.
This involves the application of weight vectors, and the choice of these weight
vectors offers a great degree of flexibility. For example, because lower and upper
approximations are calculated for each class, it is possible to use different types
of weights for different classes. This idea has been applied successfully by [15]
and subsequent studies [19] and [20] to imbalanced datasets, where a judicious
choice of weights increases the signal of the minority class.

Over the course of the past two decades, ever larger quantities of data have
become available as potential inputs for machine learning algorithms, to the
point where the performance of machine learning algorithms is often no longer
constrained by the availability of training data, but by the capability of the algo-
rithms to handle training data. One popular tactic to increase data processing
capacity is to break down the work of an algorithm into a series of parallel tasks,
and to execute these tasks on a cluster of computing cores. A number of frame-
works exist that automate many of the aspects of parallel cluster computing,
including Apache Spark [11], which we use in this paper.

Handling large amounts of data is a particular challenge for lazy learners like
FRNN-OWA, which have to process the entire training set when they receive
a test instance. Since the application of fuzzy rough sets in machine learning
problems is a relatively recent, ongoing endeavour, it is not surprising that while
there exist distributed implementations of kNN [13] and Fuzzy kNN [12] classi-
fication, no Big Data implementation exists of a fuzzy rough set classifier. The
few implementations that do try to extend the use of fuzzy rough sets to a Big
Data context focus on preprocessing algorithms like Fuzzy Rough Feature and
Prototype Selection, and only one has been applied to a real dataset with more
than 1 million instances [8].

This paper seeks to address this absence by presenting the first Big Data
implementation of an algorithm that uses fuzzy rough sets directly to classify
test instances (FRNN-OWA). By effectively parallelising the FRNN-OWA algo-
rithm, our implementation can be scaled to arbitrarily large datasets by adding
additional computing cores. We demonstrate this through a series of system-
atic tests on generated datasets of up to 224 instances. In addition, we show
that our implementation can be used to classify test instances with real datasets
containing over 10 million instances.
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In Sect. 2 of this paper, we first define and explain the motivation for FRNN-
OWA and give an overview of existing attempts at Big Data implementations of
algorithms involving fuzzy rough sets. We then formulate our proposal in Sect. 3,
describe our experimental setup in Sect. 4 and present the results in Sect. 5. We
conclude in Sect. 6 that our implementation demonstrates the viability of using
large quantities of available data to classify unseen instances with fuzzy rough
sets.

2 Background

2.1 Fuzzy Rough Nearest Neighbour Classification with OWA
Operators

Recall the following concepts from fuzzy rough set theory. An information system
(X,A) consists of a set of instances X and a set A of attributes a : X −→ Va.
A t-norm T : [0, 1] × [0, 1] −→ [0, 1] is an associative, commutative and mono-
tonically increasing binary operation for which 1 is an identity element. An
implication I : [0, 1] × [0, 1] −→ [0, 1] is a binary operation that is monotoni-
cally decreasing in its first argument and monotonically increasing in its second
argument, and for which I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0. An
indiscernibility relation R : X × X −→ [0, 1] is a fuzzy tolerance relation (i.e.
reflexive and symmetric) such that (∀a ∈ A : a(x) = a(y)) =⇒ R(x, y) = 1.

Given an information system (X,A) and a choice of indiscernibility relation
R on X, t-norm T and implication I, the upper and lower approximations of a
fuzzy set C in X are defined as in (1).

C(y) = max
x∈X

(T (R(y, x), C(x))

C(y) = min
x∈X

(I(R(y, x), C(x))
(1)

In FRNN, C can be any of the crisp decision classes, and a test instance y
is classified to the class C for which the average of C(y) and C(y) is highest.
For crisp C and the minimum t-norm min( · , · ) and Kleene-Dienes implication
max(1 − · , · ), which [9] uses, (1) simplifies to (2).

C(y) = max
x∈C

(R(y, x))

C(y) = min
x/∈C

(1 − R(y, x))
(2)

It can be seen from (2) that a test instance necessarily has the highest mem-
bership degree in the lower and upper approximations of the class of the most
indiscernible training instance. Since the indiscernibility relation R corresponds
inversely to a generalised metric, the most indiscernible training instance is the
nearest neighbour under this metric, meaning that FRNN is indistinguishable
from 1NN classification.
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To solve this, FRNN-OWA replaces max and min in (2) with Ordered Weigh-
ted Averaging (OWA) operators, which were first defined in [21]. For a given
k-dimensional weight vector w with values in [0, 1] that sum to 1, the OWA
operator Fw corresponding to w acts on any k-dimensional vector v by rearrang-
ing its coefficients such that they descend, and taking the inner product with w.
With abuse of notation, we will also apply Fw to sets of size k.

For the special cases of the basis vectors e1 = 〈1, 0, . . . , 0〉 and ek =
〈0, . . . , 0, 1〉, we get Fe1 = max and Fek = min. While the choice of weights
is in principle open, the idea of FRNN-OWA is to use weights that approximate
max and min, such that the contribution of training instances to the membership
of a test instance to the lower and upper approximations of a class gradually
vanishes as the training distances are ranked further away from the test instance.

Thus, FRNN-OWA changes (2) into (3).

C(y) = Fw1({R(y, x)|x ∈ C})
C(y) = Fw2({1 − R(y, x)|x ∈ X \ C})

(3)

Note that the use of OWA operators becomes computationally costly as the
number of instances in the training set increases, since we need to sort all training
instances for each test instance. The computational complexity of FRNN-OWA
is O(dn + n log(n)) per test instance, for n = |X| and d = |A|.

2.2 Big Data Implementations of Fuzzy Rough Sets

The existing literature on using fuzzy rough sets in a Big Data context is limited,
and has focused on preprocessing algorithms, which reduce the size of training
data, improve its quality, or both, by acting on its instances, its attributes, or
both.

The first publication to explicitly adapt a fuzzy rough set algorithm for Big
Data was by Asfoor et al. [1]. The authors point out that for a given informa-
tion system (X,A) and fuzzy set C in X, the time complexity of calculating
the membership of each instance of X in the lower and upper approximations of
C is O(dn2). In addition, the resulting indiscernibility matrix has size O(dn2),
and storing it in memory becomes highly problematic as n grows. They solve
these challenges with a distributed implementation in Message Passing Inter-
face (MPI) that avoids calculating and storing the whole matrix. This work was
continued by Vluymans et al. [18], who present a distributed implementation
in Apache Spark of Fuzzy Rough Prototype Selection (FRPS), a preprocessing
algorithm for kNN classification developed in [16] and adapted in [18] for kNN
regression. Asfoor [2] also adapts OWA-FRPS, a more robust version of FRPS
with OWA operators, into a distributed implementation (POWA-FPRS) that
approximates the ordered weighted average by partitioning the data and cal-
culating the ordered weighted average of the ordered weighted averages within
these partitions.



A Scalable Approach to FRNN-OWA 201

Jensen and Mac Parthaláin [10] point out that the calculation of fuzzy rough
sets scales badly to large numbers of instances, and that this is further com-
pounded if the feature space is also large. They propose three variants of Fuzzy
Rough Feature Selection (FRFS). In nnFRFS and nnFDM (based on FRFS
with Fuzzy Discernability Matrices), the indiscernibility relation is modified to
only consider the k nearest neighbours of each instance. Fuzzy Rough Feature
Grouping (FRFG) introduces a preliminary step in which overlapping groups
of correlated features are defined. For each pass, only the most decisive feature
from each group is considered, and other features in the same group are then
skipped, thus reducing the number of candidates that have to be evaluated.

A number of other authors have presented Big Data implementations of
FRFS. Qian et al. [14] propose to reduce the computational cost of FRFS by
relaxing the calculations of the lower and upper approximations, potentially
reducing the specificity of the resulting feature selection. Zeng et al. [22,23]
present a mechanism to incrementally update fuzzy rough approximations in a
hybrid information system (HIS) (in which a hybrid metric combines different
types of attributes) and apply this to feature selection. Finally, Hu et al. [8]
present a distributed implementation of multi-kernel attribute reduction using
kernelised fuzzy rough sets, and evaluate the results for Support Vector Machines
(SVM) and Classification and Regression Trees (CART).

As can be seen in Table 1, half of these works only use datasets with up to a
few thousand instances. The connected studies of [1,2,18] work with generated
datasets of up to 10,000,000 instances and only [8] tests on real datasets with
more than one million instances.

Table 1. Articles with Big Data implementations of fuzzy rough algorithms—largest
numbers of training instances in generated and real datasets

Article Generated Real

[1] Asfoor et al. 2014 10,000,000 —

[18] Vluymans et al. 2015 10,000,000 320,395

[2] Asfoor 2015 10,000,000 320,395

[10] Jensen and Mac Parthaláin 2015 — 832

[14] Qian et al. 2015 — 2310

[23] Zeng et al. 2015 — 2800

[22] Zeng et al. 2017 — 2800

[8] Hu et al. 2018 — 4,898,431

Present study 16,777,216 11,000,000

The studies mentioned above have demonstrated the usefulness of scalable
implementations of fuzzy rough prototype and feature selection. However, the
potential to apply fuzzy rough classification algorithms in a big data context
remains untapped, which is what we wish to address.
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3 A Scalable Version of FRNN-OWA

We propose a parallel implementation of FRNN-OWA that can classify test
instances with arbitrary large datasets in a fixed amount of time if we add
sufficient parallel computing power.

FRNN-OWA is a ‘nearest neighbour’ classifier in the sense that if we use suit-
able weights, the influence of training instances vanishes as the training distances
are ranked further away from a given test instance. So while, as mentioned in
Sect. 2.1, sorting the entire set of training instances for each test instances is com-
putationally costly, the precise order among the more distant training instances
is actually of little consequence. For this reason, we adapt an idea from [10]
(discussed in Sect. 2.2) and restrict the application of OWA weights to the k
nearest training instances of a test instance y, within a class C for the upper
approximation and without for the lower approximation, for some value k. We
denote these by NN(y, C) and NN(y,X \ C) respectively.

The definitions for the upper and lower approximation which we use are given
in (4), and we classify a test instance y to the class C for which the average of
C(y) and C(y) is highest.

C(y) = Fw1({R(y, x)|x ∈ NN(y, C)})
C(y) = Fw2({1 − R(y, x)|x ∈ NN(y,X \ C)})

(4)

We have chosen to use additive weights in this paper, defined as w1 =
(2(k+1− i)

k(k+1) )1≤i≤k and w2 = ( 2i
k(k+1) )1≤i≤k, and to set k = 20, after initial testing

with different types of weights and a range of values for k on datasets of various
sizes convinced us that these generally produce good results.

The time complexity of sorting all distances for every class is O(n log(n)),
whereas the time complexity of identifying the k closest distances per class is just
O(n). Since we do need to sort the k smallest distances per class, our proposal
reduces the overall time complexity per test instance from O(dn + n log(n)) to
O(dn+ n+ 2ck log(k)), where c is the number of classes. Since k and c are kept
constant, for large n this further reduces to O((d + 1)n). Thus, this variant of
FRNN-OWA scales linearly with training set size.

There exist several different frameworks for parallel computing that provide
different trade-offs between ease of use, automated performance optimisation
and user control. Since our main objective is to demonstrate the conceptual via-
bility of our approach, rather than to obtain the absolutely fastest run times
possible, we have chosen to implement our algorithm in Spark, which offers a
relatively straightforward path to parallelisation. We implement FRNN-OWA
through the Python API of Spark, using high-level dataframe operations that
allow us to express operations as SQL instructions which are automatically dis-
tributed across the nodes in the cluster.

Our implementation is structured as follows:

0. Initialise Spark.
1. Read the training set, combine all attributes into a feature vector. If the

attributes are numerical, scale the features to [0, 1].
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2. Read the test set, combine all attributes into a feature vector. If the attributes
are numerical, apply the same scaling as in step 1.

3. Optional: divide the training set from step 1 into a large number of small
partitions.

4. Fill a dataframe of length k with additive weights.
5. Broadcast the test set from step 2 to all partitions, cross join with the training

set from step 1, calculate the distance between each pair of test and training
instances and select the k closest distances per class per test instance.

6. Cache the dataframe from step 5.
7. Join the weights from 4 with the distances from 5, multiply, and sum per

class and test instance to get the upper approximations.
8. For every test instance and class, join the weights from step 5 with the k clos-

est training instances from step 5 that do not belong to that class, multiply,
and sum to get the lower approximations.

9. Join the upper and lower approximations from steps 7 and 8 and for every test
instance, select the class for which the sum of the approximations is highest.

10. Divide the number of test instances from step 9 for which the predicted class
matches the actual class by the total number of test instances and report the
accuracy.

Step 3 was used only to prevent out-of-memory errors with the largest
datasets when using multiple executors per node. Anecdotally, it seemed to
increase run times, and so we did not include step 3 with our baseline mea-
surements with only one core, so as not to obtain unduly positive speedups.

Step 5 is the costliest step, because it involves a cross join between training
and test instances. Broadcasting the test set makes it available on all partitions,
which means that the training set does not have to be replicated across partitions.
Ordinarily, Spark would not preserve the resulting dataframe after its use in step
7, and would have to recalculate step 5 for step 8. To prevent this, we cache the
dataframe in step 6.

4 Experimental Setup

All experiments were performed on the Golett cluster of the Ghent University
Tier-2 of the Flemish Supercomputer Centre (VCS). The computing nodes of
the Golett cluster are equipped with 2 × 12-core Intel E5-2680v3 (Haswell-EP
@ 2.5 GHz) processors, 64 GB memory and 500 GB hard drives, and connected
by FDR-10 InfiniBand. The experiments were run in Spark clusters of up to 64
executors, 4 cores per executor and 16 GB memory per executor. These Spark
clusters occupied up to 32 nodes of the Golett cluster, with 8 cores per node.
The algorithm was implemented in Spark 2.4.0 and run with the Hadoop Yarn
resource manager.

The shared nature of the Golett cluster and the general inavailability of fully
free nodes necessitated the choice of using only 8 cores per node, while limiting
the number of cores per executor to 4 meant that two executors fit precisely onto
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one node. During initial testing, increasing the number of nodes per executor far
above 4 led to diminishing returns. Of the 64 GB of memory per node, 8 GB was
reserved for the operating system. Our cluster was limited to using one third of
the remaining 56 GB on the basis of using one third of the number of cores. Thus,
we chose 16 GB of memory per executor to maximise this resource, whereas in
practice this amount was limited to 9.33 GB per executor.

The scaling of our implementation was tested on a series of generated datasets
with varying training set sizes. Each training set had 20 real-valued attributes
and 10 classes. Training set size varied from 210 to 224.

The algorithm was also tested on four real datasets from the UCI Machine
Learning Repository [6], summarised in Table 2. SUSY [4], HEPMASS [3] and
HIGGS [4] are three large datasets of Monte Carlo simulations of particle physics
collisions. The attributes are all real and indiscernibility was defined as the
complement of the Manhattan distance, with both attributes and distance scaled
to [0, 1]. Poker hand [5] is a slightly smaller dataset of possible hands of cards
in the game of poker. It was included here because its attributes are categorical,
necessitating a different indiscernibility relation. We chose the complement of
the Hamming distance scaled to [0, 1].

Table 2. Real datasets used in the present study, properties

Name Number of Attribute type Number of Number of

instances attributes classes

Poker hand 1,025,010 Categorical 10 10

SUSY 5,000,000 Real 18 2

HEPMASS 10,500,000 Real 28 2

HIGGS 11,000,000 Real 28 2

Our primary performance measure is Tp,n, the time it takes using p cores to
classify one test instance with n training instances. Time measurement starts
with the initialisation of Spark and ends with the calculation of the accuracy.
We report the average run time per test instance, derived from running the
algorithm with a test set of 100 instances. These were, respectively, generated in
addition to the generated training sets, and drawn and subtracted from the real
training sets. For the generated training sets, we also report a speedup figure
Sp,n which is defined as T1,n/Tp,n.

5 Results

Table 3 summarises the run times of our distributed implementation of FRNN-
OWA for various generated training set sizes and various numbers of cores, and
Table 4 the resultant speedups with respect to the baseline of using only one
core. The speedups are also plotted in Fig. 1.
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Table 3. Run times in seconds per test instance of FRNN-OWA applied to generated
training sets of different sizes, for different numbers of cores

Cores Training set size

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 0.83 0.83 1.3 1.3 1.9 3.1 6.1 11 21 50 104 201 428 858 1627

2 0.37 0.44 0.63 0.86 1.3 1.8 3.1 5.8 11 27 68 78 202 424 876

4 0.33 0.39 0.55 0.81 1.2 1.0 1.6 3.0 5.4 12 29 39 82 273 356

8 0.54 0.41 0.74 1.0 1.0 1.0 1.3 1.6 3.1 5.9 18 20 39 95 189

16 0.44 0.54 0.59 0.86 1.1 1.1 1.8 1.0 1.5 3.1 6.0 13 27 55 110

32 0.38 0.50 0.65 0.94 1.2 1.1 1.1 1.3 1.1 1.8 3.8 5.9 15 21 42

64 0.55 0.75 0.86 1.4 1.3 1.2 1.2 1.4 1.1 2.2 3.2 6.0 12 11 23

128 0.51 0.63 0.71 1.0 1.2 1.2 1.3 1.2 1.2 1.4 2.0 4.1 6.7 7.2 14

256 0.75 0.77 1.0 1.2 1.5 1.5 1.5 1.4 1.3 1.5 1.5 2.1 7.2 6.4 14

Values rounded for readability to two significant digits (<100) or whole integers (≥100

Table 4. Speedups of FRNN-OWA applied to generated training sets of different sizes,
for different numbers of cores

Cores Training set size

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2.2 1.9 2.1 1.5 1.4 1.7 2.0 2.0 1.9 1.9 1.5 2.6 2.1 2.0 1.9

4 2.5 2.1 2.4 1.6 1.6 3.0 3.8 3.7 4.0 4.3 3.6 5.2 5.2 3.1 4.6

8 1.5 2.0 1.8 1.3 1.8 2.9 4.8 6.9 7.0 8.5 5.9 10 11 9.1 8.6

16 1.9 1.5 2.2 1.5 1.7 2.9 3.5 11 14 16 17 15 16 16 15

32 2.2 1.6 2.0 1.3 1.6 2.8 5.6 9.1 20 28 27 34 28 41 38

64 1.5 1.1 1.5 0.89 1.5 2.5 5.1 8.3 19 23 32 33 35 79 72

128 1.6 1.3 1.9 1.3 1.5 2.5 4.8 9.2 18 35 52 49 65 120 118

256 1.1 1.1 1.3 1.0 1.3 2.1 4.2 8.1 16 34 68 95 59 133 115

Values rounded for readability to two significant digits (<100) or whole integers (≥100)

The results show first of all that there is a certain amount of random fluc-
tuation, which is to be expected on shared infrastructure. For training sets with
fewer than 211 instances, the overhead of the implementation is the dominating
factor, and run time is effectively constant. For training sets with fewer than
213 instances, overhead is still large enough that it negates the effect of adding
more cores: speedup is constant. As training set size grows beyond 213 instances,
the speedup with p cores starts to climb more or less linearly until it reaches its
theoretical maximum, p. This is reflected in the distinct diagonal cluster of lines
in Fig. 1. Only the maximal configuration with 256 cores does not reach its full
potential speedup within the space of these dataset sizes.
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Fig. 1. Speedups for different numbers of cores, with FRNN-OWA applied to generated
training sets of different sizes

Table 5. Run times per test instance of FRNN-OWA applied to real datasets, with
256 cores

Name Time (s)

Poker hand 1.2

SUSY 4.3

HEPMASS 27

HIGGS 30

Table 5 shows the run times of our implementation of FRNN-OWA applied
to the real datasets, which demonstrate that our implementation can be used to
classify instances using FRNN-OWA with very large training sets.

6 Conclusion and Further Work

In this paper we have argued that until now, classifiers based on fuzzy rough sets
have not been fit to handle Big Data, and that other attempts to adapt fuzzy
rough sets for use with Big Data have mostly involved demonstrations on not
very large datasets. To address this, we have presented the first implementation
of a classifier based on fuzzy rough sets that can be scaled to handle arbitrarily
large datasets. We have proposed a parallelised version of FRNN-OWA that can
divide execution time over as many computing cores as is required.
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To evaluate the performance of our implementation, we devised a series of
systematic experiments, measuring run time on generated datasets varying in
size from 210 to 224 instances, and calculating the speedup obtained by using
between 1 and 256 computing cores. The results of these experiments showed
that with sufficiently large datasets, the execution time of our implementation is
effectively reduced by a factor equal to the number of computing cores. We then
demonstrated that our implementation can be used for classifying test instances
with a number of large real datasets of up to 11,000,000 instances.

We believe that the work presented in this paper constitutes a necessary first
step towards adapting fuzzy rough sets for Big Data, and that it enables both
the application of fuzzy rough sets to concrete classification problems, as well as
several types of further research.

Having restricted the application of OWA operators to the k nearest neigh-
bours of a test instance, a natural question to ask is what value for k is sufficiently
large. In the future we wish to determine whether it is necessary to tune k for
each dataset or whether a certain value is always good enough. This question
also has to take into account the choice of weights. In fact, restricting the appli-
cation of OWA operators to the k nearest neighbours opens up for consideration
new types of weights whose accuracy reaches a global maximum for value of k
and decreases as k approaches the full training set size.

We also want to investigate whether we can further reduce the computational
complexity of FRNN-OWA by approximating some of the calculations. It is easy
to think of Big Data merely in terms of large datasets that pose computational
challenges. However, as data becomes available ever more easily in ever greater
quantities, the types of questions that we want to answer change. Traditionally,
researchers have asked which machine learning model can produce the best clas-
sification results for a given training set. But in a context where the amount
of training data is essentially unlimited, it may be more relevant to ask which
machine learning model can produce the best classification results in a given
amount of time. If the accuracy loss from approximating parts of FRNN-OWA
is less than the accuracy gain from the additional training data that can be
processed in the same amount of time, this may be a worthwile trade-off.
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Abstract. Extracting entities and their relations expressed in free text
is essential to correct and populate knowledge graphs. Traditional meth-
ods assume that only the information of entities benefits the extraction
of relations. They view this task as a two-step task, named entity recog-
nition (NER) and relation classification (RC). However, the inadequate
use of information and the error propagation problem constrain meth-
ods following this pipeline fashion. Joint extraction methods are pro-
posed to incorporate useful interaction information between the two tasks
for improvement, which solve NER and RC simultaneously. Although
they have been proved to be superior to pipeline models, their perfor-
mance is still far from satisfaction. In this paper, we try to combine the
idea of data-driven granular cognitive computing and deep learning in
joint extraction task. Accordingly, a neural-based joint extraction model
named Joint extraction with Multi-granularity Context (JMC) is pro-
posed. It explores the multi-granularity context of natural language sen-
tences and uses neural networks to learn representations of these context
automatically. Experiments results on NYT, a large data set produced by
the distant supervision technique, show that JMC achieves comparative
results to state-of-the-art methods.

Keywords: Knowledge extraction · Joint extraction ·
Data-driven granular cognitive computing · Deep learning

1 Introduction

There is massive free text containing considerable fragmented knowledge on the
Web, which computers can only process with many constraints. With effective
extracting methods, knowledge expressed in free text can be organized into struc-
tural knowledge bases, such asKnowledgeVault [6], Freebase [2] andWikidata [28].
Then, the knowledge can be used to build question answering, semantic search and
recommendation systems. However, existing knowledge graphs are mostly incom-
plete and noisy [7], as may lead to wrong decisions in knowledge-based systems.
Coping with these problems still counts on knowledge expressed in free text, which
is helpful to correct and populate the facts in knowledge graphs.
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An effort of handling knowledge in free text is open information extraction
(OpenIE). However, its relation words are picked from the raw text, but it is
common that relations are not expressed explicitly in natural language. Relation
extraction, aiming to predict semantic relations between named entity pairs,
has no such constrains. As a result, semantic relations conveyed implicitly in
natural language can be uncovered effectively. Traditional relation extraction
methods are often conducted on a pipeline fashion of two separated tasks: named
entity recognition (NER) and relation classification (RC) [4,13,14,23]. The main
drawback is that the error of entity recognition task may be propagated to
relation classification task, limiting the final performance. Moreover, only the
result of NER is applied to help RC task in a pipeline fashion.

Actually, entity recognition and relation classification are highly interrelated.
Not only the results of NER can help determine the relations among entities, but
the results of RC can also help improve the performance of NER. For example,
the sentence “Mrs. Tsuruyama is from Kumamoto Prefecture in Japan.” denotes
that the person named Mrs. Tsuruyama lives in Kumamoto Prefecture. With
such prior information that Mrs. Tsuruyama is a person and Kumamoto Prefec-
ture is a location, the possibility of there is Live In relation between these two
entities is high. Besides, given that relation Live In exists in Mrs. Tsuruyama
and Kumamoto Prefecture, one can easily determine that Mrs. Tsuruyama is
a person and Kumamoto Prefecture is a location. Under similar observation,
joint extraction methods were designed to make NER and RC benefit from each
other by incorporating the interaction information between them. Although joint
extraction methods have been proved to be superior to pipeline methods, most
of them still rely on millions of lexicalized features and higher-order term fea-
tures like other natural language processing tasks [10,15,22]. These features are
incomplete, sparse and costly in computing [3].

Fig. 1. Illustration of the joint extraction task.

Motivated by data-driven granular cognitive computing model [29], this paper
explores multi-granular features for joint extraction task, including word-level
features, local context features, segment context features and sentential context
features. Moreover, we introduce these multi-granular prior knowledges to neural
network architecture and propose a neural-based joint extraction method named
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Joint Extraction with Multi-granular Context (JMC). Unlike traditional meth-
ods, JMC counts on neural network to learn representations of multi-granular
context automatically instead of using hand-crafted features.

The main contributions of this paper are three-fold: (1) A neural model
named JMC which extracts entities and relations jointly from unstructured text
is proposed. (2) The idea of granular computing is introduced to joint extrac-
tion task to find multi-granular context features and design the corresponding
neural network. (3) Experiments are conducted to evaluate the effectiveness of
the proposed methods. Results imply that multi-granular context features can
bring improvement to joint extraction task.

The rest of this paper is organized as follows. Section 2 briefly introduces
related works of knowledge extraction. Section 3 states the joint extraction
task and gives the multi-task objective. Section 4 depicts the proposed model.
Section 5 gives the experiment results on a distant supervision corpus. Conclu-
sions are shown in Sect. 6.

2 Related Works

2.1 Pipeline

Most existing works view relation extraction as a two-step task, where named
entity recognition [13] is first conducted to determine the type of entities.
Then, the information of entities are taken as input to identify the relations for
entity pair [14,23]. Collobert et al. [5] propose a convolutional neural network
based model for part-of-speech tagging, chunking, named entity recognition, and
semantic role labeling. However, it eliminates the interactions among the pred-
ications. Lample et al. [13] modify it by replacing CNNs with bi-directional
LSTMs to extract features. A conditional random layer is also adopted to solve
the structural predication problem. Chiu and Nichols [4] add richer features for
words as the input of neural based NER model, including word embeddings,
capitalization information and character embeddings extracted by CNNs.

For relation classification, neural based models have achieved state-of-the-
art performances. Given a sentence and an entity pair it contains, Nguyen and
Grishman [23] adopt convolutional neural networks to extract representation
automatically and determine semantic relations between entities that a sentence
expresses. Distant supervised technique has been used widely to generate massive
training data automatically for the relation classification task. For an entity pair,
there is more than one sentence in distant supervised data set. Only part of
them express the considered relation in extract operation, other sentences are
noisy samples. To cope with the noise in distant supervised data sets, Lin et al.
[17] take a batch of sentences as input and weight them using attention [31] to
reduce the influence of noisy sentences. Considering information consistency and
complementarity among texts in different languages, Lin et al. [16] generalizes
the model to multi-lingual scenario.
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2.2 Joint Extraction

Recent studies focus on designing more integrated models to capture the inter-
dependencies between named entity recognition and relation classification tasks.
Roth and Yih [27] adopt linear programming formulation to infer entities and
relations simultaneously. Kate and Mooney [10] introduce a card-pyramid struc-
ture which encodes the entities and relations in a sentence. It adopts dynamic
programming to solve the joint extraction task by labeling nodes in a card-
pyramid structure jointly. Li and Ji [15] use a segment-based decoder based on
the idea of semi-Markov chain to simultaneously extract entity mentions and
relations with beam search. Miwa and Sasaki [22] propose the table representa-
tion that encodes entities and relations in a sentence. Besides, a history-based
structured learning approach is proposed. Miwa and Bansal [21] present a joint
model stacking bidirectional tree-structured LSTMs on bidirectional LSTMs to
capture word sequence and dependency tree substructure.

Gupta et al. [9] view the entity recognition and relation classification as a
table filling problem and design neural models based on multi-task recurrent neu-
ral networks to solve it. Zheng et al. [32] transform the joint extraction to a single
tagging problem by fusing the relation types with the tags of NER. Ren et al.
[26] first embed entity mentions, relation mentions, text features and type labels
into two low-dimensional spaces where objects whose types are close also have
similar representations. Then, the types of test mentions are estimated based
on the learned embeddings. Katiyar and Cardie [11] propose an attention-based
recurrent neural network for joint extraction of entity mentions and relations
without using dependency trees. Adel and Schütze [1] utilize convolutional neu-
ral networks and linear-chain conditional random fields for joint extraction.

In this paper, we design an architecture for the joint extraction task. Different
from existing joint extraction methods, it benefits from multi-granular context
feature extracted automatically. Experiments results show that the proposed
model achieves comparative or better results to state-of-the-art methods.

3 Problem Statement

This paper focuses on extracting facts from single sentence, leaving the inte-
grating of information in multiple sentences for future study. Given a sentence
S = (w1, w2, ..., wn), where wi is the i-th word in the sentence and n is the
sentence length. Let R be the set of the predefined semantic relations or the
relations in knowledge graph. Set T contains the abstracted types of entities
such as PERSON and LOCATION. Joint extraction is aimed at finding the mentions
as well as types of entities and the relations between entities in S. The types
of entities and relations are picked from T and R respectively. Challenges are
three-fold. First, the extraction of entities and relations are highly related. Sec-
ond, the assignment for entities are not independent. Third, the results could
turn to be a multi-relational graph with the entities and relations in the sentence
increasing, as Fig. 1 shows.
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Actually, this task can be well represented as a table filling task [22]. As
Table 1 shows, the table representation encodes the whole entity and relation
structure in a sentence. The diagonal cells are tagged according to the relative
position to its corresponding entity and the type of the entity. Other cells are
filled with relation types and directions between words (→ denotes the direction
of relations and ⊥ denotes the non-relation pair). Its relations are defined on word
pairs, instead of entities, as enables it extracting relations from raw sentences
directly. Besides, that the table structure captures multiple relations in a single
sentence comes for free.

Table 1. The table representation of a sentence in joint extraction task.

Mrs. Tsuruyama is from Kumamoto Prefecture in Japan .
Mrs. B-PER,⊥

Tsuruyama ⊥ L-PER,⊥
is ⊥ ⊥ O,⊥

from ⊥ ⊥ ⊥ O,⊥
Kumamoto Live in→ ⊥ ⊥ ⊥ B-LOC,⊥
Prefecture ⊥ ⊥ ⊥ ⊥ ⊥ L-LOC,⊥

in ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ O,⊥
Japan Live in→ ⊥ ⊥ ⊥ ⊥ Located in→ ⊥ U-LOC,⊥

. ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ O,⊥

4 Model

We consider the joint extraction task from granular computing perspective
and propose to introduce multi-granular context features. Section 4.1 gives the
details of multi-granular context. Section 4.2 introduce the details of the pro-
posed model.

4.1 Multi-granular Features

For table filling tasks, relations are assigned on words. Only taking word itself
as features would be very deficient. As a result, capturing rich contextual infor-
mation is essential for determining the non-diagonal cells. This paper explores
information from multi-granular context for the table filling task. For the con-
venience of statement, word on position i is marked as wi, its tag, which corre-
sponds with the diagonal cell in the table representation, is marked as ti. The
representation of i-th word is hi.
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Word Feature. Word feature is the representation of tokens. For filling the
diagonal cells, only the very basic feature hi is used. The word feature can be
formulated as

featwi = hi (1)

When determining other cells, feature hi as well as its tag ti is used. The word
feature turns to be

featwi = [hi, ti] (2)

where [·] is the concatenation operation.

Local Context Feature. In natural language processing tasks, the surrounding
words contribute to the understanding of current word. The local context feature
is constituted by the information of surrounding words within the predefined
window size. Taking the window size as c, the local context feature is

featlci = g(hi−c/2, ..., hi+c/2) (3)

where g(·) is the feature extraction function. i is the index of the corresponding
word.

Segment Context Feature. Previous works have shown the effectiveness of
segment features in dependency parsing task. Table filling and dependency pars-
ing share the characteristic that relations are defined on word pairs. Inspired by
the graph-based dependency parsing model [30], we also divide a sentence into
three parts (prefix, infix and suffix). The segment context of the dependency
word pair is composed of these segments (parts). In this paper, the segment
feature is used to produce the relation on word pair. For cell cij in the table
representation, three types of segment feature are considered

featps
ij = k(h0, ..., hi)

featisij = k(hi+1, ..., hj)

featss
ij = k(hj+1, ..., hn)

(4)

where k(·) is the feature extraction function. featps
ij , featisij and featss

ij represent
the segments which split by the indexes i and j. The final segment feature is the
concatenation of the representations of three segments, formulated as

featseg
ij = [featps

ij , featisij , featss
ij ] (5)

Sentential Context Feature. The global information can also help the deter-
mination of relations. For example, given the prior knowledge that only the
Live In relation exists in the given sentence, one could avoid illegal assignments
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to cells. Sentential context feature captures the global information over the entire
sentence, which can be formulated as

feats = o(h1, h2, ..., hn) (6)

where o(·) is the feature extraction function and n is the sentence length.

Fig. 2. The JMC architecture. Bidirectional LSTM layer, CNNs&Pooling layer and
segment LSTM layer produce multi-granular features, including word feature, local
context feature, segment context feature and sentential context feature.

4.2 The Proposed Joint Extraction Model

Different from traditional methods, we propose to learn these features automati-
cally with neural model instead of designing extraction functions by hand. Word
feature is generated by feeding the embedding of words into a bi-directional long-
short term memory network. Local and sentential context feature are given by
convolutions and polling. For segment context feature, a forward LSTM layer is
adopted following [30].

Figure 2 depicts the architecture of the proposed joint extraction model. JMC
takes only word unigram as input and then leaves the feature combinations
learned by the model automatically. First, it embeds words into dense vectors
using pre-trained word2vec. Second, following the structure of BiLSTM-CRF
(bidirectional long-short term memory network and conditional random field)
for NER, dense vectors of words are feed into bi-directional LSTM layer, dense
hidden layer and CRF layer sequentially. Then, the NER tags are produced
by CRF layer. Third, the outputs of BiLSTM are concatenated with the one-
hot vectors of NER tags as word features. They are feed into a forward LSTM
and CNNs to generate segment context feature, local context feature and global
context feature. The concatenation of these features is taken as the basic repre-
sentation of cells in feature map.
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Word Embedding. Words are discrete and sparse in nature. We adopt a word
embedding layer to represent the word. It maps a word to a dense vector of
pre-defined dimensionality. The word embedding layer is initialized with the
pre-trained 300 dimensional GloVe1 word vectors trained on Wikipedia corpus.

BiLSTM Layer. Bi-directional LSTM (BiLSTM), presenting each sequence
forwards and backwards to two separate hidden states to capture past and future
information, has been proved to be effective in sequence labeling tasks. The
representation of a word produced by Bi-LSTM is obtained by concatenating its
left and right context.

ht = [
−→
ht ,

←−
ht ] (7)

where ht is the output of the Bi-LSTM layer.
−→
ht and

←−
ht are the output vector

of forward and backward LSTM respectively.
Suppose xt and

−→
ht are the word embedding and the hidden state at time t.

The states of forward LSTM unit at time t can be formulated as

it = σ(Wi
−−→
ht−1 + Uixt + bi)

ft = σ(Wf
−−→
ht−1 + Ufxt + bf )

c̃t = tanh(Wc
−−→
ht−1 + Ucxt + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(Wo
−−→
ht−1 + Uoxt + bo)

−→
ht = ot � tanh ct

(8)

where σ(·) is element-wise sigmoid function and � is the element-wise product.
Ui, Uf , Uc, Uo and Wi, Wf , Wc, Wo denote the weight matrices of different gates.
bi, bf , bc and bo are the weight matrices and bias vectors. The formulation of
the backward LSTM is similar to Eq. 8.

CRF Layer. Conditional Random Field(CRF) layer has been successively used
in tagging models. We also use it to model the interdependencies among NER
tags. Given an input sentence X = (x1, x2, ..., xn), P = (p1, p2, ..., pn) is consid-
ered as the score vectors delivered by the BiLSTM. pi is a score vector of word
xi whose size is 1 × k, where k is the number of distinct tags for NER task.

Given the prediction tags Y = (y1, y2, ..., yn), where yi is chosen from the tag
set T = {t1, t2, ..., tk}. The score is defined as

s(X,Y ) = Σn
i=0Ayi,yi+1 + Σn

i=1p
yi

i (9)

1 https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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where A is the transition matrix and Ai,j denotes the transition score from tag
i to tag j. We predict the output sequence by maximizing the score

Y ∗ = argmaxyεȲ s(X, y) (10)

where Ȳ contains all possible output sequences of the input sentence X.

Segment LSTM Layer. We consider three segments described and adopt a
forward LSTM layer to learn their representations in Eq. 4. The representation
of infix segment is considered as the hidden state of the head word. The repre-
sentation of inner segment is obtained by subtraction between the hidden vector
of the tail word and the head word. For the suffix segment, its representation is
the subtraction of the last hidden vector and the hidden state of the tail word.
When there has no prefix or suffix, the corresponding embedding is set to zero
vector.

Softmax Layer. A Softmax classifier is adopted to determine the relation that
the word pair hold. The relation between word i and word j is produced by

rij = softmax(WT ′
ij + b) (11)

where the W and b are weight matrix and bias vector. Besides, instead of feed-
ing the feature table generated by the table convolution layer into the Softmax
classifier directly, we add a hidden layer ahead of it, which transforms the repre-
sentation of each cell into a new feature space with much lower dimensionality.

Objective Function. This paper follows the multi-task framework to avoid
the error propagation problem in the pipeline framework. Basic features learned
automatically are shared by these two tasks and their objectives are optimized
jointly. Let the given sentence be S = (w1, w2, ..., wn). For named entity recog-
nition, the objective function is

Lner =
|D|∑

i=1

ni∑

t=1

(log(p(i)t = y
(i)
t |x(i), Θ)) (12)

where |D| is the size of training set, ni is the length of sentence x(i). y
(i)
t is the

correct tag2 of word t in sentence x(i) and p
(i)
t is the normalized probabilities of

tags produced by the model. Besides, Θ is the parameter of the joint model. For
relation classification, the objective function is

Lrc =
|D|∑

i=1

n2
i∑

m,n=1

(log(c(i)mn = y(i)
mn|x(i), Θ)) (13)

2 Entity type encoded in BILOU (Begin, Inside, Last, Outside, Unit) scheme.
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where c
(i)
mn is the ground truth relation between m-th word and n-th word in the

sentence x(i). The multi-task objective function is

L = αLner + (1 − α)Lrc (14)

where α is the trade-off weight between named entity recognition and relation
classification tasks.

5 Experiments

5.1 Implement Details

We use Tensorflow3 framework to implement our joint extraction model. All
hyper-parameters are tuned on the development set. The weights of word embed-
ding are pre-trained by [24] and the dimensionality of embedding vectors is 300.
The numbers of hidden units of forward and backward LSTM are both 64. The
weights and biases are updated using gradient based optimizer Adam [12] by
minimizing crossentropy of the output of CRF layer and softmax layer. The
learning rate is initialed to 0.01 and reduced half when there has no decrements
of loss. To avoid overfitting, we add dropout operations after the BiLSTM with
the dropout rate of 0.2. Early stop technique is also adopted. More detailed
setting of parameters can be found in the source code4.

5.2 Data Set

Distant supervision methods can produce a large amount of training data auto-
matically. With manually labeled test set, its quality can be ensured despite
containing noise. Distant supervision has been used in many natural language
processing tasks [19,26]. To evaluate the effectiveness of our methods detailedly,
we test the proposed method on the public dataset NYT [26], produced by dis-
tant supervision technique. There are 353k triplets in the training data and 3,880
triplets in the test set. Besides, the number of valid relations is 24 and None is
viewed as the undefined relation UND.

5.3 Compared Methods

We choose joint extraction methods producing state-of-the-art results on NYT as
comparatives. DS+Logistic [20] trains a multi-class logistic classifier to predict
relations. DeepWalk [25] embeds mention-feature co-occurrences and mention-
type associations as a homogeneous network. FCM [8] adopts neural language
model to perform compositional embedding. Cotype [26] first runs text seg-
mentation algorithm to extract entity mentions. Then, entity mentions, relation
mentions, text features and type labels are embedded into two low-dimensional

3 www.tensorflow.org.
4 https://github.com/MingYates/JMC.

www.tensorflow.org
https://github.com/MingYates/JMC
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spaces. In each space, mentions with close types also have similar representa-
tions. LSTM-LSTM [32] converts the joint extraction task to a tagging prob-
lem and solves it using LSTMs. REHESSION [19] benefits from heterogeneous
information source, for example, knowledge base and domain heuristics. Besides,
state-of-the-art tagging model BiLSTM+CRF is also selected as a comparative
on the named entity recognition task.

5.4 Results of Named Entity Recognition

We take Strict-F1, Macro-F1 and Micro-F1 proposed in [18] as evaluations for
NER. Results are shown in Table 2. BiLSTM+CRF and JMC outperform other
methods with more than 0.30 on Strict-F1. The reason might be that DeepWalk
and Cotype have a preprocess step of entity mention detection and the error of
entity mention detection will propagate to entity typing. Moreover, the results
denote that tagging based NER can also achieve comparative results on distant
supervision data set.

Table 2. Performance of named entity recognition on NYT

Methods Strict-F1 Macro-F1 Micro-F1

DS+Logistic [20] - - -

DeepWalk [25] 0.49 0.54 0.53

FCM [8] - - -

LSTM-LSTM [32] - - -

Cotype [26] 0.60 0.65 0.66

REHESSION [19] - - -

BiLSTM+CRF 0.89 0.91 0.90

JMC (proposed) 0.94 0.93 0.91

5.5 Results of Relation Classification

For a sentence, it is considered correct if the predicted relations are correct
without considering the results of entities. Besides, we ignore BLANK and UND
relations and only report the accuracy for valid relations as [26] does. As Fig. 3
shows, JMC produces the best results on relation classification task. It is worth
to mention that the proposed method only takes words as input, while Cotype
and REHESSION introduce external knowledge bases.

5.6 Results of Joint Extraction

Performances on the setting of end-to-end relation extraction are also reported
in Table 3. A sentence is considered correct if the entities and relations are cor-
rect. The results of comparative methods are reported in their original papers
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Fig. 3. Accuracy of relation classification on NYT

adopting the same criteria [19,26]. As Table 3 says, JMC produces the highest
recall and F1 score compared to other methods. Besides, it gives comparative
results evaluated by precision.

Table 3. Performance of joint extraction on NYT

Methods Precision Recall F1

DS+Logistic [20] 0.258 0.393 0.311

DeepWalk [25] 0.176 0.224 0.197

FCM [8] 0.553 0.154 0.240

LSTM-LSTM [32] 0.615 0.414 0.495

Cotype [26] 0.423 0.511 0.463

REHESSION [19] 0.412 0.573 0.479

JMC (proposed) 0.524 0.657 0.583

6 Conclusions

This paper studies joint extraction of entities and relations from free text. Con-
sidering that the ground truth of part-of-speech tags and dependency trees are
not available in real applications, we design a neural model extracting entities
and relations jointly which only takes words as input. Different from existing
joint extraction methods, the proposed model needs no hand-designed features
and learns representations of multi-granular context among outputs on feature
automatically. Results on distant supervision data set show that the proposed
method produces comparative performance compared to state-of-the-art meth-
ods in the setting of named entity recognition, relation classification and end-to-
end joint extraction. For the future works, incorporating heterogeneous source
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such as knowledge bases, rules and prior knowledge may bring improvement for
extraction entities and relations from free text.
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Abstract. The paper describes some of the issues concerning the devel-
opment of automated formal framework for the reasoning about rough
inclusion functions, starting with the classical one, and generalizations
thereof. We work with the Mizar system; the viewpoint of the rough
set theory, and especially mereology by Leśniewski, can allow for the
creation of new foundations for the Mizar Mathematical Library, or at
least for fresh branch of this formal database, originally based on Tarski-
Grothendieck axioms.

Keywords: Rough inclusion function · Rough approximation space ·
Mizar Mathematical Library · Automated theorem proving

1 Introduction

Rough sets discovered by Pawlak [19] are a tool for knowledge discovery and mod-
elling under imperfect information; this is especially the case nowadays, where we
often face large databases of information gathered from various sources. In such
situations the use of computer methods in contemporary mathematics seems to
be unquestionable. On the other hand, we can also use specialized software to
test the correctness of our reasoning and, in the same time, to formulate and
prove new hypotheses automatically, or at least with an extensive support from
machines.

Rough Inclusion Functions (RIFs for short) seem to be a kind of a bridge
between classical set theory and theory of rough sets. They reflect probabilistic
nature of rough sets, and focus rather on quantitative than their qualitative
nature. At the very first sight, the foundational issues are very important as
(rough) inclusions are very fundamental – based on this single predicate one can
build the whole theory, as it was done in the case of Leśniewski mereology.

As the proof assistant we have chosen the Mizar system [1], relatively
well-known system based on classical logic, together with its repository of
texts formally verified by computer [23,26] – the Mizar Mathematical Library
(MML). This year MML celebrates thirty years; the first Mizar article, “Tarski-
Grothendieck set theory” by Andrzej Trybulec, accepted January 1, 1989, made
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axiomatic foundations for the repository; its logical framework was established
much earlier. The research on �Lukasiewicz inclusion function could be also an
interesting addition to this database on its own, regardless of the rough set the-
ory context. Our leading idea however, was to follow the parts of Gomolińska’s
work [4].

The paper is organized as follows. The next section contains an outline of the
notion of rough inclusion functions, starting with the classical κ£, and two other
ones, considered by Gomolińska. Section 3 describes briefly the formalization of
rough sets with the use of Mizar proof assistant, and in two following sections we
focus on the formal translation of classical rough inclusions and RIFs in general.
Section 6 show how this newly created object can really extend the hierarchy of
types assuring possibly high level of generalization of theorems and to bridge
the gap in already existing formal developments (Sect. 7). Eighth section shows
that not all proofs were as simple as we could wish, even based on informally
elementary example of concrete subsets of an approximation space, while the
last section draws some conclusions and plans for future research.

2 Rough Inclusion Functions

Mereology was authored by S. Leśniewski; it is worth mentioning at this point
that for some fifteen years there was a Leśniewski Award (established by the
Association of Mizar Users in 1989) granted to authors of Mizar articles with
the greatest number of references in the MML – to appreciate the impact of the
chosen formalization for the whole computer-checked repository.

The primitive notion, or rather a predicate, “being a part of”, with the mix-
ture of axioms and definitions, proposed by Leśniewski in 1916, gained another
new life from the works of rough set researchers, with Polkowski and Skowron
[22] as the pioneers, focusing rather on “being a part of to degree” concept, at
the same time opening the route of granular computing and rough mereology
[21]. Potentially then, instead of reusing set theory available in the repository
of Mizar texts, one can define a ternary relation μ(X,Y, r) which could be read
as “the object X is a part of Y to a degree at least r” and use this predicate
instead of

κ(X,Y ) ≤ r.

This is still tempting as many theorem provers work with higher-order logic
completely abstracting from set theory. However, our aim was to reuse as much
set theory as we can, with the future possibility of mereological background for
MML.

More generally, for a given universe U , rough inclusion functions (RIFs for
short) are the mappings κ from ℘U × ℘U into unit interval which satisfy two
properties:

rif1(κ) ⇔ ∀X,Y ⊆U (κ(X,Y ) = 1 ⇔ X ⊆ Y )

rif2(κ) ⇔ ∀X,Y,Z⊆U (Y ⊆ Z ⇒ κ(X,Y ) ≤ κ(X,Z))
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The formulas mean that they are monotone with respect to the second coor-
dinate and reflect the idea of fuzzy implication (see a footnote in Sect. 6). Essen-
tially, the correspondence with the fuzzy set theory [28], as well as another pos-
tulates satisfied by RIFs [2] can be easily seen. Let us recall three basic examples
of rough inclusion functions:

κ£(X,Y ) =

{
|X∩Y |

|X| if X �= ∅
1 otherwise

κ1(X,Y ) =

{
|Y |

|X∪Y | if X ∪ Y �= ∅
1 otherwise

κ2(X,Y ) =
|(U − X) ∪ Y |

|U | ,

where |X| denotes cardinality of set X, the universe U is non-empty finite set of
objects.

The first one is the most popular – standard RIF, κ£. A similar idea, closely
related to the conditional probability, was explored by J. �Lukasiewicz around
1913. The next one, κ1, was introduced by Gomolińska [4]. The operator κ2 was
considered by G. Drwal and A. Mrózek in 1998. All three RIFs are different but
interdefinable:

κ1(X,Y ) = κ£(X ∪ Y, Y )

κ2(X,Y ) = κ£(U, (U − X) ∪ Y )

κ£(X,Y ) = κ1(X,X ∩ Y ).

Furthermore, we know that they can be ordered as

κ£(X,Y ) ≤ κ1(X,Y ) ≤ κ2(X,Y ).

We can construct relatively simple example of subsets of an approximation space
where all three are really distinct – the relations are sharp; the discussion will
be given in Sect. 8.

3 Rough Sets and Automated Reasoning

Pawlak’s early works were devoted to automated reasoning, making it more
understandable for ordinary people outside of academia, which is quite unusual
nowadays. As far as I know, rough sets are absent in any other popular repos-
itories offered by computer proof assistants: Isabelle/HOL Archive of For-
mal Proofs, Metamath or Coq. The core idea of the approach available in
the Mizar Mathematical Library reflects faithfully original idea by Pawlak:
first of all, approximation spaces are defined generally as relational structures,
i.e. sets equipped by the indiscernibility binary relation InternalRel. Under
specific assumptions, we can prove standard properties of lower and upper
approximations [14,15].
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definition

let A be non empty RelStr;

let X be Subset of A;

func LAp X -> Subset of A equals :: ROUGHS_1:def 4

{ x where x is Element of A : Class (the InternalRel of A, x) c= X };

correctness;

end;

Apart from approximations, the connection of rough sets with conditional
probability was already expressed in the following formal definition of a mem-
bership function:

definition

let A be finite Tolerance_Space;

let X be Subset of A;

func MemberFunc (X, A) -> Function of the carrier of A, REAL means

:: ROUGHS_1:def 9

for x being Element of A holds

it.x = card (X /\ Class (the InternalRel of A, x)) /

(card Class (the InternalRel of A, x));

end;

Classical inclusion is practically the core of set-theoretic part of the MML
and, of course, it was used already in the aforementioned definition of the lower
approximation. As a counterpart, it was used also in the following definition of
rough inclusion:

definition

let A be Tolerance_Space, X, Y be Subset of A;

pred X _c= Y means :: ROUGHS_1:def 11

LAp X c= LAp Y;

reflexivity;

end;

Similarly, c=^ stands for the rough inclusion from the viewpoint of upper
approximations while ordinary rough inclusion is just the conjunction of these
two conditions.

There is also a lot of code showing algebraic context of rough sets: connection
with ordinary set theory [7,10], lattice theory [6], and general topology. Table 1
summarizes main contributions (all five authored by the present author) with
some statistical data. Some results, of more general interest, are dispersed over
the whole library. To be more explicit, we translated [13] significant parts of J.
Järvinen’s Lattice theory for rough sets [16], studied various generalizations of
rough approximations [24] up to pure binary relations [27,29]. By the way, years
before, the solution of Robbins conjecture – well-known problem in the world of
automated theorem proving – was also translated from Otter proof object into
more human-accessible language [6].

Observe that in two last lines the numbers cannot be simply added; it is
something like the set-theoretic union of all used files showing overall use of
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Table 1. Statistical data about five main submissions

MML Id ROUGHS 1 ROUGHS 2 ROUGHS 3 ROUGHS 4 ROUGHS 5 Total

lines of code 1686 1791 2392 1605 1386 8860

pages (approx.) 28 30 40 27 23 148

definitions 19 18 12 28 7 84

theorems 61 44 54 23 53 235

TPTP problems 591 557 858 566 860 3432

notations attached 29 19 22 42 21 53

used articles 61 39 55 75 54 83

various theories. TPTP stands for Thousands of Problems for Theorem Provers
– these problems are automatically generated from the given Mizar source code
and can be a testbed for automated theorem provers [18].

4 Rough Inclusion Formalized

As we worked in Tarski-Grothendieck set theory (TG) in the Mizar Mathemat-
ical Library (non-conservative extension of ordinary Zermelo-Frænkel with the
Axiom of Choice), the only primitive is ∈, which in the Mizar representation
is just in. The Tarski’s axiom A postulating for each set the existence of a
Grothendieck universe it belongs to provides additional features like the exis-
tence of arbitrarily large, inaccessible cardinals. This axiom implies the axioms
of infinity, choice, and power set and the axiomatics provides a richer ontology
than ZFC (in the same time still having many conventional axioms of ZFC at
hand), for example supporting work in category theory.

If we recall the definition of κ£ from the third section, this definition really
reminds us about the probability theory1:

definition let Omega be set, Sigma be SigmaField of Omega;

mode Probability of Sigma -> Function of Sigma,REAL means

:: PROB_1:def 8

(for A being Event of Sigma holds 0 <= it.A) & it.Omega = 1 &

(for A,B being Event of Sigma st A misses B holds

it.(A \/ B) = it.A + it.B) &

for ASeq being SetSequence of Sigma st ASeq is non-ascending holds

it * ASeq is convergent &

lim (it * ASeq) = it.Intersection ASeq;

end;

1 All items from the Mizar Mathematical Library which are automatically hyperlinked
can be browsed online from the page http://mizar.org/version/current/html/.

http://mizar.org/version/current/html/
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The above definition is used in the following notion of conditional probability:

definition

let Omega be set, Sigma be SigmaField of Omega,

P be Probability of Sigma, B be Event of Sigma;

assume 0 < P.B;

func P.|.B -> Probability of Sigma means

:: PROB_2:def 6

for A being Event of Sigma holds it.A = P.(A /\ B) / P.B;

end;

The type of Probability reflects its informal counterpart, but it is definitely
too complex for our considerations, however it is still possible to revise this
approach and reuse the existing formal apparatus.

definition let R be finite Approximation_Space;

let X,Y be Subset of R;

func kappa (X,Y) -> Element of [.0,1.] equals

card (X /\ Y) / card X if X <> {}

otherwise 1;

correctness;

end;

where κ function is defined pointwise as

definition let R be finite Approximation_Space;

func kappa R -> Function of

[:bool the carrier of R, bool the carrier of R:], [.0,1.] means

for x,y being Subset of R holds it.(x,y) = kappa (x,y);

end;

In the definition above, brackets [: and :] denote Cartesian binary product
of the carrier of an approximation space R. What is the real difference between
these two definitions? The first one is a Mizar functor, just the appropriate object
(in fact, the real number), which is an element of the unit interval. Another
one is set-theoretic function returning for any pair of subsets of R just the
earlier one. In the use, as dot . stands for the application of a function, it is a
difference between kappa(X,Y) vs. (kappa R).(X,Y) (in the first case, R is a
hidden argument reconstructed from the types of subsets X and Y ).

theorem Prop1a: :: Proposition 1 a)

kappa (X,Y) = 1 iff X c= Y;

We cannot however formulate the theorem that the earlier satisfies rif1, but
in the latter case we can prove the functorial registration (essentially expressing
that κ£ is RIF):

registration let R be finite Approximation_Space;

cluster kappa R -> satisfying_RIF1 satisfying_RIF2;

coherence;

end;

and the first part of this proof depends heavily on Prop1a.
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As we can be interested in much more properties of mappings from ℘U ×℘U
into [0, 1] (as [4] lists actually seven of them), we found it useful to introduce a
new type – which is a kind of a shortcut for quite complicated radix type.2 Taking
into account MML standards, the name preRoughInclusionFunction of R was
proposed instead:

definition let R be 1-sorted;

mode preRoughInclusionFunction of R is

Function of [:bool the carrier of R, bool the carrier of R:], [.0,1.];

end;

In order to have even shorter lines, additional type was introduced:

definition let R be 1-sorted;

mode preRIF of R is preRoughInclusionFunction of R;

end;

so all three names can be used simultaneously and with these new types, we can
proceed further. All properties defining rough inclusion functions were stated in
[4] in the form of predicates, but we decided to use adjectives as they enable
the proofs to be more straightforward by the more extensive use of the typing
hierarchy.

definition let R be non empty RelStr;

let f be preRIF of R;

attr f is satisfying_RIF1 means

for X,Y being Subset of R holds f.(X,Y) = 1 iff X c= Y;

end;

Many proof assistants are not tightly linked with fixed set theory axioms, as
they use rather logic quite extensively; there are however two of them which use
just Tarski-Grothendieck as a base: Mizar and Metamath.

5 An Outline of Formalization

In a sense, proving properties of κ£ was like building the bridge over the gap
between classical set theory and mereology. It is definitely of a more general
interest, also for the repository of the Mizar system. We can now focus on more
rough set-specific definitions.

κ1(X,Y ) =

{
|Y |

|X∪Y | if X ∪ Y �= ∅
1 otherwise

Here, |X| means the cardinality of X, regardless if X is finite or not, but
due to Mizar typing hierarchy, for finite X, |X| is a natural number, and the
division is well-defined. A short note about undefinedness will be crucial: among
many of proof assistants it is quite unfeasible to handle an additional category
2 Radix type together with the cluster of attributes makes a new type of an object.



232 A. Grabowski

of objects: “indefinite”. Hence, the result of division by zero is fixed as equal to
zero (x/0 = 0 for all real numbers; identity x/x = 1 can be proved only under
the assumption x �= 0 as usual).

It simplifies the typing apparatus, but, on the other hand, it can lead to quite
unexpected results, for example, the value of function f(x) is well defined if x
is an element of the domain of f , otherwise it returns the empty set. Obviously
however, it does not state that ∅ is always an element of the range of a function f.
It is clear that these subtleties are not visible if we work only under standard
assumptions.

Similarly to the theorems on κ£, we have proven the theorems about κ1 and
κ2, essentially covering most of [4] up to Proposition 4 where all basic properties
of rough inclusion functions under consideration are summarized.

To give an impression how the proofs in Mizar look like, we quote here the
full proof of Proposition 4e) (stating that κ1(X,Y ) = κ£(X ∪ Y, Y )):

theorem :: Proposition 4 e)

kappa_1 (X,Y) = kappa (X \/ Y,Y)

proof

per cases;

suppose

A1: X \/ Y <> {}; then

kappa (X \/ Y,Y) = card ((X \/ Y) /\ Y) / card (X \/ Y) by KappaDef

.= card Y / card (X \/ Y) by XBOOLE_1:21;

hence thesis by A1,Kappa1;

end;

suppose

A1: X = {}; then

AA: X c= Y;

A2: kappa (X \/ Y, Y) = 1 by Prop1a,A1;

kappa_1 (X,Y) = 1 by Prop11a,AA;

hence thesis by A2;

end;

end;

We saved our submission under the name ROUGHIF1. The files (full Mizar
script, corresponding vocabulary file and an abstract where the proofs are
removed to show what is really developed) are available online.3 The plans are to
submit this for inclusion into the Mizar Mathematical Library; after the accep-
tance our development will be available under the MML identifier ROUGHIF1 –
also in the form of HTML hyperlinked document which could be freely browsed
with no need of installing Mizar verification software [25]. Some statistical data
about this new submission are as follows: it took 1205 lines of Mizar code, which
counts as about 20 pages of ordinary text in LATEX (which will be also automat-
ically generated). This nearly 40 kBytes contains 15 definitions and 32 proven
theorems. Additional 20 registrations of clusters can be also treated as theorems
automatically used by the Mizar verifier to enhance the reasoning.

3 http://mizar.uwb.edu.pl/library/roughif1/.

http://mizar.uwb.edu.pl/library/roughif1/
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6 Refining the Hierarchy of Rough Inclusion Functions

As rif1 is of the form of an equivalence, splitting it into two implications seems
quite natural. We can consider the following relaxation of the postulates for
RIFs: rif1(κ) is equivalent to the conjunction of rif0(κ), rif−1

0 (κ) below:

rif0(κ) ⇔ ∀X,Y (X ⊆ Y ⇒ κ(X,Y ) = 1)

rif−1
0 (κ) ⇔ ∀X,Y (κ(X,Y ) = 1 ⇒ X ⊆ Y )

In this manner, a mapping κ from ℘U × ℘U into [0, 1] is called

– a quasi-rough inclusion function (q-RIF) over U if it satisfies rif0(κ) and
rif∗

2(κ);
– a weak q-RIF over U if it satisfies rif0(κ) and rif2(κ).

Obviously then, every RIF is a q-RIF and every q-RIF is a weak q-RIF [5].

definition let R be non empty RelStr;

let f be preRIF of R;

attr f is satisfying_RIF0 means

for X,Y being Subset of R st X c= Y holds f.(X,Y) = 1;

end;

To ensure automatic recognizing that RIF0 and RIF01 occurred as a result of
equivalence splitting, the following registration should be formulated and proved
(it can be read as “every function from ℘U × ℘U into the unit interval (that is,
every preRIF of R) which satisfies rif1 satisfies also rif0 and rif−1

0 ”):

registration let R be non empty RelStr;

cluster satisfying_RIF1 -> satisfying_RIF0 satisfying_RIF01

for preRIF of R;

coherence;

end;

The so-called conditional registrations of clusters improve the work on the
generalization of theorems: dedicated software distributed with the Mizar system
can automatically discover redundant, unnecessary assumptions. Of course, such
registrations should be proven (in the above case – the proof of coherence, but as
a rule we do not quote the proofs in this paper, as they are available on the web).
Similar situation allowed for stating selected properties of rough approximations
in terms of tolerance approximation spaces or more general relational structures,
as we noticed in Sect. 3.

Furthermore, such automatization offers also some flexibility in this fully
formal approach: RIFs can be defined as preRIFs satisfying, as usual, rif1 and
rif∗2 or, equivalently, those satisfying rif1 and rif2, as assuming the condition rif1
holds, both rif∗2 and rif2 are equivalent.4

4 The author wishes to thank one of the referees for this valuable remark. Of course,
we are interested in the development of quasi RIFs and weak quasi RIFs, so this
distinction is important even if it is meaningless in the theory of RIFs.
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definition let R be non empty RelStr;

let f be preRIF of R;

attr f is satisfying_RIF2* means

for X,Y,Z being Subset of R st f.(Y,Z) = 1 holds f.(X,Y) <= f.(X,Z);

end;

registration let R;

cluster satisfying_RIF2 -> satisfying_RIF2*

for satisfying_RIF1 preRIF of R;

cluster satisfying_RIF2* -> satisfying_RIF2

for satisfying_RIF1 preRIF of R;

end;

Relatively short (but needed!) proof of this equivalence is available in our
complete Mizar formalization. Then the core idea of this development, can be
defined as follows:

definition let R;

mode RIF of R is satisfying_RIF1 satisfying_RIF2 preRIF of R;

end;

(with this naming space chosen similarly to preRIFs, a bit longer but also more
meaningful synonym RoughInclusionFunction of R was additionally intro-
duced).

7 Comparative Study of Some Generalized Rough
Approximations Revisited

At the Concurrency Specification & Programming’18 Workshop in Berlin we
presented how generalized rough approximations can be automatically studied
to support ordinary mathematician in his/her work [11]; as the testbed for the
usefulness of the approach we have chosen theorems from another Gomolińska’s
paper [2], and the proof of one of them failed, namely Theorem 4. All but two
items from there were proven: points (d) and (e) involved κ and even defining κ
was not very difficult, we tried to avoid mixing approaches. Luckily, this was not
the author’s fault: until this time, in any of five main Mizar articles about rough
sets, rough inclusion κ was not used at all and it was just not defined formally
before. Our motivation however for dealing with RIFs, besides the main work,
was of course to complete the formalization of the earlier paper.

We will recall briefly two lacking formalization gaps – items of Theorem 4
from earlier Gomolińska paper [2]. She started with general approximation space
〈U, ρ, κ〉, and we tried to avoid the κ ingredient as long as we could. This excerpt
reads as follows:

For any set x ⊆ U , object u ∈ U it holds that:
(d) ∀u∈f1(x)κ(I(u), x) > 0.
(e) ∀u∈fd

1 (x)
κ(I(u), x) = 1.
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One of the mappings considered in this paper was defined as

f1(x) = {u ∈ U : I(u) ∩ x �= ∅},
where

I(u) = ρ←({u}) and fd(x) = (f(xc))c.

But in view of rif1 property, (e) means that I(u) ⊆ x, and (d) means that
I(u) is not a negative region w.r.t. rough approximation. After the application
of implemented automatization and the unfolding of new definition of κ, we can
claim the formalization of the first part of [2] is now really completed.

8 A Formalized Example

Originally, rough approximation spaces proposed by Pawlak were defined as a
tuple

〈U, ρ〉
and we were fixed with a relational structure equipped by an underlying indis-
cernibility relation.

Until now, even if we faced some hard decisions how to deal with things
formally, the informal proofs from [4] were either not very hard to discover (and
left by the authors to the readers), or quite nicely sketched in the paper (which
is crucial for our formalization work), the formalization was fluent, and we were
not forced to abandon Gomolińska’s ideas. The prominent exceptions were the
proof of Proposition 4(c) before (a) and (b), and, of course, the urgent need for
communication between κ(X,Y ) treated as a Mizar functor and κ’s treated as
functions between corresponding domains.

In [4], p. 149 Gomolińska constructs a (relatively) simple example of an
approximation space (or, to be honest, just the universe with subsets because
as it is clear from the definitions of κ’s, the indiscernibility relation does not
influence RIFs), which shows that all three considered RIFs (κ£, κ1, κ2) are dis-
tinct. She claims that U = {0, 1, 2, . . . , 9}, X = {0, . . . , 4}, Y = {2, . . . , 6}. Then
κ£(X,Y ) = 3/5, κ1(X,Y ) = 5/7, and κ2(X,Y ) = 4/5. The informal proof was
4 lines long, but in our first attempt after some 50 lines of formulas, we dropped
this proving path.

There is quite recent implementation of ellipsis in Mizar [17] and potentially
we could use such enumerative set, but we soon realized that this would be
the most tedious part of our work (some calculations we still left at the end
of the file, under pragma ::$EOF – the end of the file verified by the Mizar
checker). It is quite ordinary that while proofs are obviously important, con-
structing counterexamples is still underestimated activity in the proof-checking
world and definitely an automated tool like MACE (Models and CounterExam-
ples implemented with Prover9 theorem prover) could be really useful. Calcula-
tions on real numbers are implemented in the checker via appropriate directive
requirements, but still the author should put references by appropriate car-
dinality theorems (and as the number of mutually distinct elements originally
approached ten, the combinatorial explosion of 210 appeared on the horizon).
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definition let X be set;

func DiscreteApproxSpace X -> strict RelStr equals

RelStr (# X, id X #);

coherence;

end;

Probably not the simplest one, but our construction depend on the discrete
approximation space, where discrete means that the indiscernibility relation is
just the identity – essentially all elements of this space are indiscernible.

theorem

for X,Y being Subset of DiscreteApproxSpace {1,2,3,4,5}

st X = {1,2} & Y = {2,3,4} holds

kappa (X,Y), kappa_1 (X,Y), kappa_2 (X,Y) are_mutually_distinct;

In our Mizar script, we claimed that U = {1, 2, 3, 4, 5},X = {1, 2}, Y =
{2, 3, 4} with κ£ (X,Y ) = 1/2, κ1(X,Y ) = 3/4, and κ2(X,Y ) = 4/5. After 30
lines, which will compress to ca. 20 lines, we finished the proof. In this pessimistic
case, the de Bruijn factor (the ratio between full formal proof and its informal
counterpart) was approx. 7, which is twice as big as it is claimed as a rule in
the field of computerized proof assistants, but there are quite detailed proofs
without significant omissions, where it equals 2 (before compression), which is
close to the Holy Grail of 1.

9 Conclusions and Further Work

One of the very important aims of the current research was to reflect the con-
cept of rough inclusion functions within the Mizar Mathematical Library. Even
though much work on formalization of the building blocks of rough sets in Mizar
has been done before [8], no attention has been devoted to rough inclusion
functions (including the �Lukasiewicz function κ£) by the Mizar developers till
recently. The shortcoming is addressed in this research.

Weak quasi-RIFs could be an interesting source of inspiration; it is quite
normal activity to revise the formal approach granted in the MML to drop
some assumptions, generalize theorems or lemmas, or make the net of notions
more granular [12,20]. Such refinement allows to develop new areas not nec-
essarily by writing new submission from scratch (or, frequently, by copy-and-
paste-then-refine technique), but rather improving the originals. By the way,
this process of removing of redundant parts of an article is automatized. Fur-
thermore, Gomolińska published later a significant extension of her paper [3],
where she focuses on mappings “complementary” to RIFs, semantically close to
the fuzzy negation of κ’s. Such mappings are also interesting as theory of fuzzy
sets is also well represented in the Mizar library and some propositions could be
straightforward.

We hope that some researchers will join us formalizing even small parts of
their research; in [9] we described how some connections between chosen facts



Building a Framework of Rough Inclusion Functions 237

in rough set theory and another areas of mathematics were discovered auto-
matically by means of MML Query search engine: we mean, among others,
Isomichi classification of domains and, partially, variants of Kuratowski closure-
complement problem. Furthermore, obtaining proper semantic markup of math-
ematical documents is the core idea of OMDoc (Open Mathematical Documents)
community – not primarily presentation-oriented, as, for example, LATEX source,
but allowing also to catch the meaning of represented formulas. Some prelimi-
nary works on building a version of the Mizar Mathematical Library partially
designed for the mereological reasoning were already done and the results are
quite convincing.
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Abstract. We continue the study of generalized P systems with dynam-
ically changing structure based on an associated multiset approximation
framework. We consider membrane systems where the applicability of
the multiset transformation rules is determined by the approximating
multisets of the membrane regions. We consider two cases: First, we
study systems with inner rules where we allow only rule applications such
that the multisets involved in the rules are part of the lower approxima-
tion of the respective regions, then we consider systems with boundary
rules where rule application is defined on the boundaries, that is, rules
can only manipulate the elements outside of the lower approximation.
We show that the second variant benefits from the underlying approx-
imation framework by demonstrating an increase in its computational
strength. On the other hand, by presenting an appropriate simulating
Petri net, we show that the computational power of systems with inner
rule application remains weaker than that of Turing machines (as long
as the unsynchronized version is considered).

1 Introduction

Membrane systems, introduced in [15], are biologically inspired models of com-
putation: their operation imitates in a sense the functioning of living cells. The
computation proceeds in distinct regions, called membranes or compartments.
The compartments allow computation with multisets: they accomplish transfor-
mations of their contained multisets by various evolution (multiset rewriting)
rules. Several variants of P systems have been introduced and studied, see the
monograph [16] for a thorough introduction, or the handbook [17] for a summary
of notions and results of the area.

In the original symbol object model, the compartments are organized in a
tree like structure. Each membrane except for the outermost one, the skin mem-
brane, have a unique parent membrane, the parent-child relationship depicts
the connection when one membrane (the parent) contains the other membrane
(the child). The rules account for the distributed computational processes in the
compartments. In this basic model, the lefthand side of a rule is a multiset of
c© Springer Nature Switzerland AG 2019
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objects inside one of the regions and the righthand side of a rule is a multiset
of objects labelled with target indications here, out and inj indicating the posi-
tions the elements should be placed before the next computational step begins.
Usually, computation in a region takes place in a maximally parallel manner,
this means that a computational step in a region is understood as the simul-
taneous application of a multiset of rules which is maximal, that is, it cannot
be augmented by any applicable rule. The membrane system waits for each of
its compartments to finish its maximally parallel computational process, then
the objects labelled with the target indications are moved to their correct places
and a new computational step of the P system can begin. Objects with target
indication here remain in the region, objects with out move to the parent region,
objects with inj enter the jth child region of the given compartment. The com-
putation proceeds until no rule can be applied in any of the regions. The result
is usually formed by the objects of a designated region, the output region, after
the computation having come to a halt.

The structure of a membrane system can be represented in various ways,
cell-like membrane systems have a membrane structure which can be described
by a tree. Systems with graph-like membrane structures called tissue-like P sys-
tems were also considered, where the connection between the membranes are
established by edges forming the communication routes. Here we study variants
of tissue-like systems called generalized P systems (see [3]).

The question of how to define dynamically changing membrane struc-
tures using topological spaces, and how the underlying topologies influence the
behaviour of P systems was already examined in [4,5]. Multiset approximation
spaces were defined in [7,8], which made it possible to talk about lower and
upper approximations of the contents of membranes of a P system. This led to
various notions of membrane borders, and notions of closeness of membranes.
Restricting the interaction to membranes that are close to each other, or per-
mitting only rules that manipulate multisets which are on the boundaries of the
membranes can affect the computational strength of the membrane system. The
study of this area was initiated in [9], where also an intention to model chemical
stability played an important role. The results in [9] were formulated for the so-
called symport/antiport P systems, but the investigations were also continued
for so called generalized P systems in [2]. In the present paper we also study
generalized P systems, but we do not rely on any notion of closeness of mem-
branes. Instead, we focus on the notion of clear observability. We consider lower
approximations and boundaries of compartments, and restrict the applicability
of the rules accordingly. It will turn out that the use of boundary rules, that
is, rules which can only manipulate objects on the boundaries of compartments,
results in an increase of the computational power of certain variants of general-
ized P systems to the level of the power of Turing machines. On the other hand,
if we restrict rule applications only to rules that manipulate multisets which lie
in the inner approximations of the membranes (inner rules), this restriction is
not enough to provide Turing completeness.
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The main contributions of the paper are of two kinds: the introduction of
the above described variants of generalized P systems with associated multi-
set approximation spaces, and the presented results about their computational
power.

In the following, we first recall the necessary definitions, then take up the
examination of the two variants of generalized P systems with dynamically
changing communication structure based on multiset approximation spaces. As
maximal parallel rule application makes already the basic model of general-
ized P systems computationally complete, we study the weaker, unsynchronized
variants. We first show that generalized P systems with inner rules can be sim-
ulated by simple place-transition Petri nets, thus, their computational power is
less than that of Turing machines. Then we consider systems with boundary
rules and show that they are able to simulate so called register machines, which
demonstrates that their computational power is the same as the power of Turing
machines. Finally, the paper ends with a few concluding remarks.

2 Preliminaries

Let N and N>0 be the set of non-negative integers and the set of positive integers,
respectively, and let O be a finite nonempty set (the set of object). A multiset
M over O is a pair M = (O, f), where f : O → N is a mapping which gives
the multiplicity of each object a ∈ O. The set supp(M) = {a ∈ O | f(a) > 0}
is called the support of M . If supp(M) = ∅, then M is the empty multiset. If
a ∈ supp(M), then a ∈ M , and a ∈n M if f(a) = n.

Let M1 = (O, f1),M2 = (O, f2). Then (M1 � M2) = (O, f) where f(a) =
min{f1(a), f2(a)}; (M1�M2) = (O, f ′), where f ′(a) = max{f1(a), f2(a)}; (M1⊕
M2) = (O, f ′′), where f ′′(a) = f1(a) + f2(a); (M1 � M2) = (O, f ′′′) where
f ′′′(a) = max{f1(a) − f2(a), 0}; and M1 	 M2, if f1(a) ≤ f2(a) for all a ∈ O.

For any n ∈ N, n-times addition of M , denoted by ⊕nM , is given by the
following inductive definition:

– ⊕0M = ∅;
– ⊕1M = M ;
– ⊕n+1M = (⊕nM) ⊕ M .

Let M1 �= ∅,M2 be two multisets. For any n ∈ N, M1 	n M2, if ⊕nM1 	 M2

but ⊕n+1M1 �	 M2.
The number of copies of objects in a finite multiset M = (O, f) is its cardi-

nality: card(M) = Σa∈supp(M)f(a). Such an M can be represented by any string
w over O for which |w| = card(M), and |w|a = f(a) where |w| denotes the length
of the string w, and |w|a denotes the number of occurrences of symbol a in w.

We define the MSn(O), n ∈ N, to be the set of all multisets M = (O, f) over
O such that f(a) ≤ n for all a ∈ O, and we let MS<∞(O) =

⋃
n≥0 MSn(O).
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2.1 Generalized P Systems

Now we present the notion of generalized P systems, variants of tissue P systems
introduced in [3].

An n + 3-tuple Π = (O,w1, w2, . . . , wn, R, io) is a generalized P system of
degree n ≥ 1, where

– O is a finite set of objects;
– wi ∈ MS<∞(O), 1 ≤ i ≤ n, is a finite multiset of objects, the initial contents

of the ith region of Π;
– R is a finite set of transformation rules of the form (x1, α1) . . . (xk, αk) →

(y1, β1) . . . (yl, βl), where xi, yj ∈ MS<∞(O), and 1 ≤ αi, βj ≤ n indicate
labels of the regions of the system for all 1 ≤ i, j ≤ n;

– 1 ≤ io ≤ n is the label of output compartment.

The rules of a generalized P system can be considered to model interactions of
objects simultaneously affecting several regions of the membrane system. Thus,
the links between participating compartments are defined dynamically, through
the applicability of the rules by the functioning of the system.

Given a generalized P system Π as above, a configuration of Π is an n-tuple
c = (u1, u2, . . . , un) with ui ∈ MS<∞(O), 1 ≤ i ≤ n, and c0 = (w1, w2, . . . , wn)
is called its initial configuration. The multisets u1, u2, . . . , un are the contents of
the corresponding compartments 1, 2, . . . , n, in configuration c.

A generalized P system changes its configurations by applying its rules. In
the basic setting, a rule r ∈ R, is applicable to a configuration c, if and only if
xi is a submultiset of uαi

for all 1 ≤ i ≤ k. As a result of applying r to c, each
multiset xi is removed from the region uαi

, 1 ≤ i ≤ k, and each multiset yj is
added to the region uβj

, 1 ≤ j ≤ l.
The configuration c′ = (v1, . . . , vn) of Π is obtained directly from the config-

uration c = (u1, . . . , un) by applying the rules in the unsynchronized manner, if
there is a multiset R′ of rules from R, such that all of them are simultaneously
applicable to different copies of objects in configuration c, and the configura-
tion c′ is the result of the application of the rules in R′. The configuration c′

is obtained from c by applying the rules in the maximally parallel manner, if
we add the additional requirement that the set R′ is maximal, that is, for any
r ∈ R, the rules in the rule multiset {r} ⊕ R′ are not simultaneously applicable
to c.

A sequence of configurations c0, c1, . . . of Π is called a computation if each
configuration in the sequence is obtained directly from the previous one, starting
from the initial configuration. Computations halt if no rule can be applied, the
result of a halting computation is the number of objects that are present in the
output compartment (compartment io) in the halting configuration.

2.2 Multiset Approximation Spaces

There are different ways of set approximations originating in rough set theory
proposed in the early 1980’s, [11,12]. The theory and its different generaliza-
tions uses different kinds of indiscernibility relations to provide lower and upper
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approximations of sets. An indiscernibility relation on a given set of objects is
given by a set of base sets by which lower and upper approximations can be
constructed for any set. This way of set approximation was generalized to par-
tial set approximation in [7], giving the possibility to embed available knowledge
into an approximation space. The lower and upper approximations also rely on
base sets which can be thought of as representants of the available knowledge.
Having the concepts of lower and upper approximations, we can also introduce
the concept of boundary as the difference between these two.

As membrane systems can be represented by multisets, in order to use the
above described concepts in membrane systems theory, we need to generalize
the set approximation framework for multisets. With the membrane structure
as a background, an underlying multiset approximation space can be defined.
The nature of this space is basically determined by its constituents, to a cer-
tain extent, independently of the membrane structure. The notion of multiset
approximation spaces has been introduced in [7] (see also [8] for more details).
Multiset approximations also rely on a set of base multisets given beforehand.
By creating the lower and upper approximations using the usual approximation
technique, the boundaries of multisets (boundaries of membrane regions) can
also be defined, and we will make use of this feature in subsequent parts of the
paper.

A multiset approximation space over a finite alphabet O consists of the fol-
lowing:

– A domain: in our case it is MS<∞(O), the set of finite multisets over some
finite set O. The elements of the domain are approximated using the approx-
imation space.

– A base system: B ⊆ MS<∞(O), a nonempty set of finite base multisets
providing the basis for the approximation process.

– The approximation functions: l, u, b : MS<∞(O) → MS<∞(O) determining
the lower and upper approximations (and the boundaries) of multisets of the
domain.

A multiset approximation space is a quintuple (O,B, l, u, b) where O is a
finite set, B ⊆ MS<∞(O) is a base system (a set of base multisets), and b, u, l :
MS<∞(O) → MS<∞(O) are the approximation functions generated by B.

For any multiset M = (O, f) ∈ MS<∞(O), we define the lower approxima-
tion function:

l(M) =
⊔

{⊕nB | B ∈ B, B 	 M, and B 	n M},

the boundary function:

b(M) =
⊔

{⊕nB | B ∈ B, and B � (M � l(M)) 	n M � l(M)},

and the upper approximation function:

u(M) = l(M) � b(M).
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In addition, we also define be(M) = b(M) � M as the external part of the
boundary of M , and bi(M) = b(M) � M , the internal part of the boundary of
M .

Intuitively, we can think of the lower approximation of the multiset M as
the collection of elements that can be covered by the base multisets in such a
way that the covering is inside M completely. If we also cover those elements of
M that are left out of the lower approximation, then the union of the covering
base sets contains M , thus, it can be thought of as the upper approximation of
M , while the difference between the upper and the lower approximations of M
is the boundary.

3 Regulating Rule Application in the Multiset
Approximation Framework

In [2] we considered P systems with dynamical structure where the dynamic
character of the membrane system was encoded in the reformulation of the
region structure regarding a closeness property defined among the membranes
based on the actual configuration of the system. Here we examine questions that
arise when we require that in order for a rule to be applicable, the multisets
on its lefthand side must conform to certain properties defined in the multiset
approximation framework associated to the system. We discuss the following
two approaches: first we require that a rule to be applied should only work with
the lower approximations of the compartments’ contents. The second approach
demands that the multisets on the lefthand sides of the rules should come from
the boundaries of the respective compartments.

Conforming the requirement of clear observability when dealing with rough
sets, first we stipulate in the following definition that a rule should be applicable
in a P system only if the multisets on its lefthand side come from the inner
approximations of the containing regions, this means that we are absolutely
sure that the rule application affects elements of the corresponding regions. The
second requirement, on the other hand, corresponds to a system where rule
application can only alter those elements about which our knowledge is vague,
so the configuration changes of these systems might be thought of as steps in the
direction of reducing vagueness, obtaining more and more determinate knowledge
about the objects distributed in the membranes.

We formalize these notions in the following definition.

Definition 1. Let Π = (O,B, w1, w2, . . . , wn, R, io) where B ⊆ MS<∞(O) is
a base system and (O,w1, w2, . . . , wn, R, io) is a generalized P system.

We call Π a generalized P system with an associated multiset approximation
space and inner rules, if the applicability of a rule r = (x1, α1) . . . (xk, αk) →
(y1, β1) . . . (yl, βl) ∈ R in a configuration c = (u1, . . . , un) is defined by the
requirement that xi is a submultiset of l(uαi

), the inner approximation of the
respective region, 1 ≤ i ≤ k. If r ∈ R is applicable to c in this sense, then we
call r an inner rule (with respect to c).
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We call Π a generalized P system with an associated multiset approximation
space and boundary rules, if the applicability of a rule r = (x1, α1) . . . (xk, αk) →
(y1, β1) . . . (yl, βl) ∈ R in a configuration c = (u1, . . . , un) is defined by the
requirement that xi is a submultiset of bi(uαi

), the internal part of the boundary
of the respective region, 1 ≤ i ≤ k. If r ∈ R is applicable to c in this sense, then
we call r a boundary rule (with respect to c).

Example 1. Assume that C = (w1, w2) is a configuration of Π, a generalized
P system with an associated multiset approximation space for w1 = a3b3c2

and base sets B1 = a2, B2 = bc. Further, let r1 = (ab2, 1) → (c, 1)(d3, 2) and
r2 = (ab, 1) → (e2, 1) be to rules of Π.

If Π is a system with inner rules, then both rules are applicable in C, as
B1 � ⊕2B2 = a2b2c2 is the lower approximation of w1.

If Π is a system with boundary rules, then only the rule r2 is applicable in
C, as a2bc is the boundary of w1 with inner part ab.

We claim that the use of inner rules do not add much to the computational
strength of the P system in the sense that in the non-synchronized mode a
generalized P system with an associated multiset approximation space and inner
rules is not Turing complete. To show this, we construct a simple place-transition
Petri net that simulates the P system in question. This is sufficient, because
Petri nets in this simple setting are strictly weaker in computational power than
Turing machines, see for example [13,14]. The idea of the proof is similar to that
of Theorem 2 in [2], the construction of the Petri net, however, is different.

A place-transition Petri net [13] is a quintuple U = (P, T, F, V,m0) such that
P , T are finite sets with P ∩T = ∅, P ∪T �= ∅, the sets of places and transitions,
respectively. The set F ⊆ (P ×T )∪ (T ×P ), is a set of “arcs” connecting places
and transitions, the flow relation of U . The function V : F → N>0 determines
the multiplicity (the weight) of the arcs, and m0 : P → N is a function called
the initial marking. In general, a marking is a function m : P → N associating
nonnegative integers (the number of tokens) to the places of the net. Moreover,
for every transition t ∈ T , there is a place p ∈ P such that f = (p, t) ∈ F and
V (f) �= 0.

Let x ∈ P ∪T . The pre- and postsets of x, denoted by •x and x•, respectively,
are defined as •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}.

For each transition t ∈ T , we define two markings, t−, t+ : P → N as follows:

t−(p) =
{

V (p, t), if (p, t) ∈ F,
0 otherwise,

t+(p) =
{

V (t, p), if (t, p) ∈ F,
0 otherwise.

A transition t ∈ T is said to be enabled if t−(p) ≤ m(p) for all p ∈ •t. Let
� t(p) = t+(p) − t−(p) for p ∈ P , and let us define the firing of a transition as
follows. A transition t ∈ T can fire in m (notation: m −→t) if t is enabled in m.
After the firing of t, the Petri net obtains a new marking m′ : P → N, where
m′(p) = m(p)+ � t(p) for all p ∈ P (notation: m −→t m′).
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Petri nets can be considered as computing devices: Starting with the initial
marking, going through a series of configuration changes by the firing of a series
of transitions, we might obtain a marking where no transitions are enabled. This
final marking is the result of the Petri net computation.

Theorem 1. For any generalized P system with an associated multiset approx-
imation space and inner rules, Π, there is a place-transition Petri net N , such
that N generates the same set of numbers as Π in the unsynchronized manner
of rule application.

Proof. Let Π = (O,B, w0
1, w

0
2, . . . , w

0
n, R, io) be a generalized P system with an

associated multiset approximation space and inner rules, let the underlying set
of base sets be B = {Bi | 1 ≤ i ≤ m}, and let x ∈ MS<∞(O) be arbitrary.
Then there exists an hx ∈ N such that, for any subset {B1, . . . , Bs} ⊆ B, either
x 	 ⊕hx

B1 � . . . � ⊕hx
Bs or x cannot be covered by the union of sums of

{B1, . . . , Bs} at all. In fact, if x = aj1
1 aj2

2 . . . ajt
t , then it is enough to choose

hx = max{j1, . . . , jt}.
Assume that r = (x1, α1) . . . (xk, αk) → (y1, β1) . . . (yl, βl) ∈ R, and let hr =

max{hx1 , . . . , hxk
} (which is a positive integer number). Let us denote with H(r)

the set of all tuples H = (H1, . . . , Hk), such that Hj = ⊕hj
1
Bj

1 � . . . � ⊕hj
nj

Bj
nj

with hj
t ≤ hr and xj 	 Hj (1 ≤ j ≤ k). Since xi 	 l(uαi

) if and only if there
exists a Hi 	 uαi

such that xi 	 Hi, in order to check the applicability of
r in a configuration (uα1 , . . . , uαn

), it is enough to check whether there exists
an H ∈ H(r), such that Hi 	 uαi

for every element of H, 1 ≤ i ≤ k. We
construct the Petri net which makes sure that xi 	 l(uαi

) and simulates the rule
application at the same time.

Let us define the Petri net N = (P, T, F, V,m0) with P = O × {1, . . . , n} ∪
{pini}. A place (a, j) ∈ P represents the number of objects a ∈ O inside the jth
membrane at every step of the computational sequence, so let us set m0(p) =
w0

j (a) for every place p = (a, j) ∈ O × {1, . . . , n}, and let also m0(pini) = 1.
The net N consists of subnets for each pair (r,H) ∈ RH = {(r,H) | r ∈

R,H ∈ H(r)}. These subnets are responsible for the simulation of the effect of r
together with checking the condition that r is an inner rule. The place pini makes
sure that only one of the subnets can operate at a time, hence the simulation of
the rule executions are mutually exclusive.

Let T = {tδ | δ ∈ RH} with δ = (r,H1, . . . , Hk) ∈ RH, and let r be denoted
as r = (x1, α1) . . . (xk, αk) → (y1, β1) . . . (yl, βl). Then, for 1 ≤ j ≤ k,

p = (a, αj) ∈ •tδ ∩ t•δ if and only if a ∈ Hj .

For p = (a, βq), 1 ≤ q ≤ l, we have

p = (a, βq) ∈ •tδ ∩ t•δ if and only if βq = αj

for some 1 ≤ j ≤ k and a ∈ Hj . Otherwise, p = (a, βq) ∈ t•δ . In addition,
pini ∈ •tδ ∩ t•δ .



Membrane Systems and Multiset Approximation 247

pini (a, 1) (b, 1)

t(r,H)

2

2

(c, 1)

2

(d, 2)

1

pini (a, 1) (b, 1)

t(r,H)

1

(c, 1)

3

(d, 2)

3

1

Fig. 1. Assume that w0
1 = a3b3c2, w0

2 = d, r = (ab2, 1) → (c, 1)(d3, 2) and let B1 = a2,
B2 = bc be base sets. Then, for H = (H1) ∈ H(r), H1 = B1 � ⊕2B2 = a2b2c2 are
appropriate. The figure on the left shows the arcs pointing to transition t(r,H) together
with their weights, the figure on the right shows the arcs going out from transition t(r,H)

together with their weights. (The arcs with zero weight are not indicated explicitly.)

Let p = (a, αj) with 1 ≤ j ≤ k, and let tδ ∈ T , δ ∈ RH, then the weights of
the arcs are computed as V (p, tδ) = Hj(a), that is, we check whether Hj(a) ≤
uαj

(a). Additionally, if αj �= βq (q ∈ {1, . . . , l}), then we have V (tδ, p) = Hj(a)−
xαj

(a), so that the necessary amount of tokens (those which correspond to the
objects in Hj �xj) are returned to p = (a, αj). This way the Petri net transition
decreases the number of tokens in p only by xj(a). When αj = βq for some
q ∈ {1, . . . , l}, then V (tδ, p) = Hj(a) − xj(a) + yq(a), that is, the righthand side
of the rule returns further tokens to uαj

.
For p = (a, βq), 1 ≤ q ≤ l, if βq = αj for some 1 ≤ j ≤ k, then the situation

is as above. Otherwise, if βq �= αj for any 1 ≤ j ≤ k, then V (p, tδ) = 0 and
V (tδ, p) = yβq

(a). Furthermore, V (pini, tδ) = V (tδ, pini) = 1.
To summarize the idea of the construction above, the places of the Petri

net represent the objects in the different compartments of the P system. For
every r, we are able to identify the union of the finite sums of the base sets that
must be examined in order to decide whether the multisets x1, . . . , xk appearing
on the lefthand side of the rule are in the inner approximation of uαi

, that is,
for every xi we confine ourselves to (Bi

1, . . ., Bi
ki

) ∈ H(xi), 1 ≤ i ≤ k, such
that xi 	 ⊕hi

1
Bi

1 � . . . � ⊕hi
ki

Bi
ki

and hj
t ≤ hr, where hr ∈ N is determined

by r. Let H = (H1, . . . , Hk) ∈ H(r) be a tuple of such multiset unions. To
render r applicable and inner, we have to check whether Hi 	 uαi

. For each
pair δ = (r,H), where r = (x1, α1) . . . (xk, αk) → (y1, β1) . . . (yl, βl) ∈ R and
H = (H1, . . . , Hk) ∈ H(r) is a tuple of elements of B with xi 	 Hi, we define
a subnet consisting of all the places of N and a transition tδ together with
the corresponding arcs. This subnet simulates an application of r while the
conditions on H ensure that r is an inner rule. The whole process is controlled
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by the place pini. Each of the subnets is connected with pini in such a manner
that only one subnet is able to operate at a time. Figure 1 illustrates the structure
of one such a subnet that constitutes the whole Petri net N .

The Petri net halts if and only if the membrane system halts, and the number
of objects in the output membrane are indicated by the number of tokens in the
corresponding places.

As we have already mentioned, the expressive power of place-transition Petri
nets are less than that of Turing machines, so we obtain the following corollary.

Corollary 1. Generalized membrane systems with multiset approximation
spaces and inner rules using the unsynchronized manner of rule application are
strictly weaker in computational power than Turing machines, that is, they are
not computationally complete.

Now we continue with the investigation of the case of boundary rules. We
show that generalized P systems with boundary rules generate any recursively
enumerable set of numbers. We do this by demonstrating how these systems sim-
ulate the computations of register machines, a computational model equivalent
in power to Turing machines.

A register machine is a construct W = (m,H, l0, lh, Inst), where m is the
number of registers, H is the set of instruction labels, l0 is the start label, lh is
the halting label, and Inst is the set of instructions. Each label from H labels
only one instruction from Inst. There are several types of instructions which can
be used. For li, lj , lk ∈ H and r ∈ {1, . . . , m} we have:

– li : (nADD(r), lj , lk) - nondeterministic add: Add 1 to register r and then go
to one of the instructions with labels lj or lk, nondeterministically chosen.

– li : (ADD(r), lj) - deterministic add: Add 1 to register r and then go to the
instruction with label lj .

– li : (CHECKSUB(r), lj , lk) - zero check and subtract: If register r is empty, then
go to the instruction with label lj , if r is non-empty, then subtract one from
it and go to the instruction with label lk.

– lh : HALT - halt: Stop the machine.

Register machines compute sets of numbers by starting their computation
with empty registers and proceeding by applying instructions in the order indi-
cated by the labels, beginning with the instruction l0. If the machine reaches the
halt instruction lh : HALT, then its work is finished, and the number stored in the
first register is said to be the result of the computation. Note that the computed
sets of numbers can be infinite, due to the nondeterminism in choosing the con-
tinuation of the computation in the case of nondeterministic add instructions,
li : (nADD(r), lj , lk).

We would like to add here, that register machines can also be defined as deter-
ministic computing devices (without the nondeterministic add instructions). In
this case they compute functions of input values placed initially in (some of) the
registers. They are able to compute all functions which are Turing computable
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(see, for example [10]), if they have at least two registers. By providing the
machine with the nondeterministic add instruction, as above, we obtain a device
which generates sets of numbers starting from a unique initial configuration.
Since any recursively enumerable set can be obtained as the range of a Tur-
ing computable function on the set of non-negative integers, register machines
defined this way are able to generate any recursively enumerable set of numbers.

Theorem 2. Generalized P systems with associated multiset approximation
spaces and boundary rules generate any recursively enumerable set of numbers,
even in the unsynchronized manner of rule application.

Proof. Let L be a recursively enumerable set of numbers, and consider the reg-
ister machine W = (m,H, l0, lh, Inst) generating L. We construct a generalized
P system with an associated multiset approximation space and boundary rules,
such that it also generates L in the sense that the generated numbers correspond
to the multiplicity of a certain object in the output region when the computation
halts. Let Π = (O,B, w1, w2, w3, R, 2) with

O = {l, l′ | l ∈ H} ∪ {ar, a
′
r | 1 ≤ r ≤ m} ∪ {b1, b2, c},

B = {ara
′
r | 1 ≤ r ≤ m} ∪ {lhb1 | lh : HALT} ∪ {b2c, lc | l ∈ H},

w1 = l0b1, w2 = ∅, w3 = ∅,

R = RAdd ∪ RCheckSub ∪ REx,

where

RAdd = {(li, 1) → (lj , 1)(ar, 2), (li, 1) → (lk, 1)(ar, 2) | for all
li : (nADD(r), lj , lk) ∈ Inst} ∪

{(li, 1) → (lj , 1)(ar, 2) | for all li : (ADD(r), lj) ∈ Inst},

RCheckSub = {(li, 1) → (l′j , 1)(a′
r, 2), (l′j , 1)(a′

r, 2) → (lj , 1),
(li, 1)(ar, 2) → (lk, 1) | for all li : (CHECKSUB(r), lj , lk) ∈ Inst},

REx = {(b1, 1) → (b2, 3), (b2, 3) → (b1, 1)}.

To see how Π simulates the computations of W , consider its initial config-
uration (l0b1, ∅, ∅): it corresponds to the initial configuration of W , as the first
region contains l0, the label of the instruction that has to be executed next,
and the number of occurrences of ar, 1 ≤ r ≤ m, in the second region are 0,
corresponding to the fact that all registers are initially empty.

Notice that as long as lh is not present, it is possible to exchange b1 in the first
region with b2 in the third (and back), since both symbols are in the boundary of
the respective regions, so one of the rules of REx is always applicable. When lh
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appears in the first region, then after b1 also appears there, they are “removed”
from the boundary of the region (as lhb1 ∈ B is a base multiset of the multiset
approximation space), and after this happens, no rule of R is applicable. From
these considerations we can see that Π reaches a halting configuration only if
the label of the halting instruction, lh appears.

Let us consider the case when the generalized P system Π is in the config-
uration (liδ1w1,in, ww2,in, δ2) with w(ar) = kr, 1 ≤ r ≤ m, corresponding to a
situation when W is going to execute instruction li, and the contents of register r
is kr ≥ 0, 1 ≤ r ≤ m. The symbols δ1, δ2 are used to denote either b1 or b2, their
exact meaning is not important, as they do not interfere with the simulation pro-
cess until lh appears. The submultisets w1,in and w2,in denote those elements of
the first two regions that are not on the region boundary. By looking at the rules
of Π, we might notice that as long as the object lh is not present, all elements of
the first region are on the boundary, thus, we might omit the submultiset w1,in

from the above notation, having the configuration (liδ1, ww2,in, δ2). Note also,
that w2,in = (ara

′
r)

i for some i ≥ 0.
If li is the label of an add, or nondeterministic add instruction, then the rule

simulating the instruction li : (nADD(r), lj , lk) is applicable, yielding the config-
uration (l′δ1, warw2,in, δ2) with l′ ∈ {lj , lk} (or the configuration (ljδ1, war, δ2)
if li : (ADD(r), lj) is simulated). In any of these cases, we get a configuration
(lδ1, war, δ2) where l corresponds to the instruction that has to be executed
next, while the second region contains one more object ar, that is, the number
stored in register r was incremented, as required by the simulated add instruc-
tions.

Suppose now, that Π is in a configuration (liδ1, ww2,in, δ2) and the instruc-
tion to be executed is li : (CHECKSUB(r), lj , lk). By applying the rules in RCheckSub

we might obtain (l′jδ1, wa′
rw2,in, δ2). If w(ar) = 0, we get (ljδ1, ww2,in, δ2) after

the next step, or if w(ar) > 0, then as ara
′
r ∈ B is a base multiset, one copy

of ar and a′
r is removed from the boundary, so we have (l′jδ1, w

′w′
2,in, δ2) where

arw
′ = w and w′

2,in = ara
′
rw2,in. In this case l′j cannot be changed any more, and

due to the rules in REx, the computation can never reach a halting configuration.
On the other hand, if w(ar) > 0, then applying the rule (li, 1)(ar, 2) → (lk, 1), we
get (lkδ1, w

′w2,in, δ2) with w′ar = w, thus the checking and subtracting instruc-
tion of W is correctly simulated by the system Π.

The simulation is finished when the object lh appears in the first region. The
only rules that are applicable are the rules of REx, but when b1 also appears
in the first region, the computation halts, because lhb1 is a base multiset, so all
these objects disappear from the region boundary.

After halting, the result of the computation is the number of a1 objects in
the second region, as they correspond to the contents of the first register (the
output register) of the register machine W .
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4 Concluding Remarks

We have used multiset approximation spaces to restrict the applicability of mul-
tiset evolution rules of generalized P systems. This way we incorporated some
additional “dynamics” into the system, as not only the presence or absence of
elements, but also the underlying approximation spaces have a role in determin-
ing the applicability of the rules.

It turned out that restricting the operation of the rules to the boundaries of
compartments increases the computational power of generalized P systems, as
they are able to generate any recursively enumerable sets of numbers even in the
unsynchronized manner of rule application. We have shown this by demonstrat-
ing that they are able to simulate register machines, a computational model
equivalent in power to the model of Turing machines. On the other hand, a
similar restriction allowing the rules to manipulate only elements of the lower
approximation of the compartments of the system does not result in a similar
increase of the computational power, as the resulting systems can be simulated
by simple place-transition Petri nets, a model which is known to be weaker in
computational power than the model of Turing machines.

As a final remark, we would like to add some thoughts on a related model
called P systems with anti-matter [1,6]. In P systems with anti-matter, objects
have complementary “anti objects”, and when they are both present, they anni-
hilate (disappear). In this paper we considered boundary rules which cannot be
applied to objects that are not on the boundary: when all the elements of a
base multiset are present in a region, they “disappear” from the scope of bound-
ary rules. This effect is similar to the effect of annihilation rules, although not
exactly the same. The difference can be seen from a simple example: let two base
multisets be ab, ac ∈ B. The fact that they form base multisets is not directly
modeled by the annihilation rules ab → ε, bc → ε (as used in the case of P sys-
tems with anti-matter), because of the following. If a region contains ab, then
these are “invisible” for the boundary rules, but they are not annihilated, as
can be seen when an object c enters the region. As bc is also a base multiset, c
immediately “disappears” by becoming part of the inner, lower approximation
part of the region contents. As we see, the relationship of boundary rules and
anti-matter is not as simple as it might look, but it definitely seems to be an
interesting topic for further investigations.
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Pérez-Hurtado, I., Riscos-Núñez, A. (eds.) Proceedings of the Fifth Brainstorming
Week on Membrane Computing, pp. 33–62. Fénix Editora, Sevilla (2007)
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8. Mihálydeák, T., Csajbók, Z.E.: On the membrane computations in the presence of
membrane boundaries. J. Automata Lang. Comb. 19(1), 227–238 (2014)
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16. Păun, G.: Membrane Computing: An Introduction. Natural Computing Series, 1st

edn. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-56196-2
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Abstract. In this paper, a soft Petri net model has been proposed based
on a soft production rule. A soft implication operator has been intro-
duced based on logical and set theoretic operations in a soft set. The
truth degree in initial marking is considered as a binary number and
boolean operators are used as In, Out1 and Out2 operators in the Petri
net. Algorithms have been proposed to describe an approximate reason-
ing process with the soft Petri net. A numerical problem related to the
purchase of a beautiful flat by a rational buyer has been discussed to
establish relevance of the theory proposed.

Keywords: Soft set · Soft implication · Production rule ·
Knowledge representation · Approximate reasoning · Petri net

1 Introduction

A soft Petri net is a parameterized graphical representation of a soft production
rule to address imprecise situation in an expert system or other decision sup-
port system. A soft production rule is used to represent IF-THEN rule, where
antecedent or/and consequents are imprecise information, modeled by a soft set.
In the recent past, a number of remarkable research with fuzzy production rule
and fuzzy Petri net in intelligent system have been executed [11,13,16] with both
backward and forward reasoning. A reasoning algorithm was given by Scarpelli
et al. [11] related to the construction of a subnet and consequently a high level
fuzzy Petri net. Suraj [12–14] proposed a fuzzy Petri net in a different way with
input/output operators. Fryc et al. [3] proposed an extended fuzzy Petri net
with matrix representation. Suraj and Bandyopadhyay [15] described the fuzzy
Petri net with an intuitionistic fuzzy number and intuitionistic fuzzy weights
based on a dual structured (N,N ′) fuzzy Petri net. Bandyopadhyay and Suraj
[1] proposed a modified generalized fuzzy Petri (mGFP) with a modified oper-
ator binding function δ. There were also some research in the field of a rough
Petri net. Peters et al. [7] proposed models of sensors, filters, and sensor fusion
using the rough Petri net. Peters et al. [8] used guarded transition in the rough
Petri net to simulate conditional computation in a various form of the system.
But a membership function in the fuzzy set or rough set is not unique and hence
leads to a lot of complications. The reason is the lack of parametrization of the
c© Springer Nature Switzerland AG 2019
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imprecision concerned. A soft set can be considered as more generalized than the
fuzzy set and rough set with parametrization of the imprecision. The soft Petri
net can be a useful parameterized tool in an intelligent system in this situation.

The main objective of the paper is to develop a generalized Petri net model
addressing an imprecise situation in an intelligent system. A parameterized
model can be useful in this direction. We have used a soft set in a Petri net
to serve this purpose. We proposed a soft production rule, i.e., IF-THEN pro-
duction rule, where antecedent and consequent are the soft set. This production
rule is based on different logical and set theoretic operations on the soft set. We
have developed the concept of a soft implication operator and also the truth
degree of a soft set based on the operations given in [4,5]. The firing rules have
been given based on the concept that (In,Out1, Out2) operators are respectively
the boolean product/boolean sum, boolean product and boolean sum. The truth
degree of each soft set in initial position are also represented as a coordinate with
elements 0, 1. The certainty factor β and threshold value γ are also coordinate
with 0, 1 elements. We proposed algorithms to describe approximate reasoning
with the soft Petri net. Ultimately, the proposed theory is established with the
help of a numerical example.

The structure of the paper is as follows: In Sect. 2, some preliminaries related
to the soft set, logical and set theoretic operations are given. Section 3 proposes
the definition of a soft implication operator. A soft production rule and a soft
Petri net is also described. In Sect. 4, computational algorithms are proposed to
describe the approximate reasoning process. Section 5 makes the proposed theory
relevant based on an elaborated numerical example. In Sect. 6, the comparison
of the proposed theory is given with the existing literature. In addition, this
section provides some conclusions.

2 Preliminaries

We first discuss some basic definitions and results to understand a soft Petri net.
A soft set, defined by Molodtsov [5], is based on an initial universe set U and a
set of parameters E. P(U) represents power set of U and A ⊂ E.

Definition 1. Let φ : A → P(U) be a mapping. Then a soft set over U is defined
as an ordered pair (φ,A). In other words, a soft set over U can be considered as
parameterized family [4] of subsets of the universe U. For any parameter δ ∈ A,
φ(δ) represents δ−approximate elements of the soft set (φ,A). If φ(ε) = null
set ∀ε ∈ A then (φ,A) is a null soft set. If φ(ε) = U ∀ε ∈ A then (φ,A) is an
absolute soft set.

Example 1. Let U denote a set of cars under consideration and E - a set of
parameters like expensive, comfortable, fashionable, cheap. In this case, a soft
set (φ,E) represents the “Attractiveness of cars”, which somebody may buy.
Suppose U = {p1, p2, p3, p4, p5} represents five cars and their comfort level is
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given by the set of parameters E = {e1, e2, e3, e4}. Parameters e1, e2, e3, e4 rep-
resent expensive, comfortable, fashionable, cheap, respectively. Let us suppose

φ(e1) = {p2, p4}, φ(e2) = {p1}, φ(e3) = {p3, p5}, φ(e4) = {p1, p4, p5} (1)

which is a parameterized family of subsets of U and describes a collection of
approximate representation of an object (Table 1).

Table 1. Tabular representation of soft set from Example 1.

U/E Expensive Comfortable Fashionable Cheap

p1 0 1 0 1

p2 1 0 0 0

p3 0 0 1 0

p4 1 0 0 1

p5 0 0 1 1

Definition 2. Suppose (φ,A) and (Ψ, B) are two soft sets over the same uni-
verse U . Then, (φ,A) is said to be a soft subset of (ψ,B) if

1. A ⊂ B, and
2. ∀δ ∈ A, φ(δ) and ψ(δ) represent the same approximations.

We denote it as (φ,A) ˜⊂ (ψ,B). If (φ,A) ˜⊂ (ψ,B) and simultaneously
(ψ,B)˜⊂(φ,A), then we say that a soft set (φ,A) is equal to (ψ,B) and write
(φ,A) = (ψ,B).

Definition 3. (φ,A)c is said to be complement of the soft set (φ,A) if (φ,A)c =
(φc, �A), where φc : �A → P(U) is a mapping defined as φc(α) = U−φ(�α),∀α ∈
�A. �α means not α, i.e., if α represents ‘expensive’ then �α represents ‘not
expensive’. �A consists of all such �α,∀α ∈ A.

Definition 4. Logical operations on two soft sets: The logical operations
AND and OR on two soft sets (φ,A) and (ψ,B) are defined as follows

1. (φ,A) AND (ψ,B) = (φ,A) ∧ (ψ,B) = (Ω,A × B), where Ω(α, β) = φ(α) ∩
ψ(β),∀(α, β) ∈ A × B

2. (φ,A) OR (ψ,B) = (φ,A) ∨ (ψ,B) = (Γ,A × B), where Γ (α, β) = φ(α) ∪
ψ(β),∀(α, β) ∈ A × B

Proposition 1.

1. ((φ,A) ∨ (ψ,B))c = (φ,A)c ∧ (ψ,B)c

2. ((φ,A) ∧ (ψ,B))c = (φ,A)c ∨ (ψ,B)c
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Definition 5. Algebraic operations on two soft sets: The algebraic oper-
ations ˜∪ and ˜∪ on two soft sets (φ,A) and (ψ,B) are defined as follows

1. (φ,A) ˜∪ (ψ,B) = (Ω,A ∪ B), where

Ω(α) =

⎧

⎪

⎨

⎪

⎩

φ(α) if α ∈ A − B,

ψ(α) if α ∈ B − A,

φ(α) ∪ ψ(α) if α ∈ A ∩ B

2. (φ,A) ˜∩ (ψ,B) = (O,A ∩ B), where O(α) = φ(α) or ψ(α)

Proposition 2.

1. ((φ,A) ˜∪ (ψ,B))c = (φ,A)c ˜∪ (ψ,B)c
2. ((φ,A) ˜∩ (ψ,B))c = (φ,A)c ˜∩ (ψ,B)c

Proposition 3.

1. (φ,A) ˜∪ (φ,A) = (φ,A)
2. (φ,A) ˜∩ (φ,A) = (φ,A)
3. (φ,A) ˜∪ Φ = Φ, where Φ is the null soft set
4. (φ,A) ˜∩ Φ = Φ
5. (φ,A) ˜∪ ˜A = ˜A, where ˜A is the absolute soft set [4]
6. (φ,A) ˜∩ ˜A = ˜A

3 Soft Implication

In this section, we introduce implication operators on soft sets. The implication
on soft set can be described with a statement “If ‘Houses are attractive’ Then
‘Rational buyers will come’ ”. Attractiveness of houses can be described by the
terms ‘expensive’, ‘beautiful look’, ‘modern amenities’, ‘cheap’ etc. On the other
hand, ‘Rational buyers’ also describe houses with the terms ‘houses for huge
funds’, ’houses for low funds’, ’selective houses’ etc. Let two soft sets (φ,A) and
(ψ,B) represent ‘attractive houses’ and ‘Rational buyers’, respectively. A and B
are described over the same universe. Then the implication can be described as

if (φ,A) then (ψ,B) (2)

or (φ,A) → (ψ,B) (3)

or, NOT (φ,A) ∨ (ψ,B) (4)

which is equivalent to that in classical logic.

Definition 6. Implication operator from a soft set (φ,A) to another soft set
(ψ,B) denoted as (φ,A) → (ψ,B) is defined as (φc, �A) ∨ (ψ,B) = (ρ, �A ×
B), ρ(α, β) = φc(α) ˜∪ ψ(β).

Definition 7. Truth degree of a soft set (φ,A) is defined as Tr(φ,A) =
((0, 1)A1 , (0, 1)A2 , · · · , (0, 1)Am

), where m is the cardinality of the set A and
each (0, 1)Ai

, i = 1, 2, · · · ,m is an nth ordered coordinate, m representing the
cardinality of set U.
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3.1 Soft Production Rules and Soft Petri Net

The imprecise information in a real world can often be parameterized using the
soft set model. We can use a production rule based on soft sets, i.e., a soft pro-
duction rule (SPR) to process vague or imprecise knowledge. SPRs can be used
in an expert system and inference rules can be represented in the form of SPRs.
SPRs are considered as IF-THEN rules, where both antecedents and consequents
are imprecise terms modeled by soft sets. A SPR is said to be a compound SPR
if both antecedents and consequents are associated with connectors AND or OR.

A set of SPRs is given by ˜R = {˜R1, ˜R2, · · · , ˜Rn}, where the ith rule is
expressed as:

˜Ri : IF (φ,A) THEN (ψ,B) (CF = t), λi (5)

where:

– (φ,A) = {(φ,A1), (φ,A2), · · · , (φ,Ak)} represents the antecedent proposition
connected by AND or OR connectors;

– (ψ,B) = {(ψ,B1), (ψ,B2), · · · , (ψ,Bl)} represents the consequent proposi-
tions connected by AND or OR connectors;

– t is the certainty factor of the rule ˜Ri, i = 1, 2, · · · , n;
– λi, i = 1, 2, · · · , k gives the threshold values for each antecedent proposition.

We can describe soft production rules by classifying it as below:

– Type 1: A soft simple rule is expressed as

˜R : IF (φ,A) THEN (ψ,B) (CF = t), λ (6)

– Type 2: A soft conjunctive (disjunctive) rule for the antecedent is expressed as
˜R : IF (φ,A1) AND(OR) (φ,A2) · · · AND(OR) (φ,Ak) THEN (ψ,B) (CF =
t), λi, i = 1, 2, · · · , k

– Type 3: A soft conjunctive (disjunctive) rule for the consequent is expressed as
˜R : IF (φ,A) THEN (ψ,B1) AND(OR) (ψ,B2) · · · AND(OR) (ψ,Bl)
(CF = t), λ

3.2 Soft Petri Net

A soft Petri net (SPN) is described, based on SPRs. The soft Petri net can be
used as a tool for graphical representation or mathematical modelling for expert
systems and others. The SPN is considered as a parameterized modification of
classical Petri nets [9], where the net places assume soft variables with values as
nth ordered (0, 1) coordinate representing truth values for different parameters.
This truth value is said to be the truth degree of a statement associated with a
net place. The transitions can be considered as soft implications where the input
places represent premises of an implication and the output places correspond to
conclusions of that implication. The threshold values of transitions are given to
determine the possibility of a transition firing. The formal definition of an SPN
is given as follows:
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Definition 8. An SPN (over a soft set with the universe U) can be defined as
a tuple N = (P, T, S, I,O, α, β, γ,M0), where:

1. P = {p1, p2, · · · , pn} represents a finite set of places, n > 0;
2. T = {t1, t2, · · · , tm} is a finite set of transitions, m > 0;
3. S = {s1, s2, · · · , sn} is a finite set of statements and P,T,S are pairwise

disjoint, i.e., P ∩ T = S ∩ T = P ∩ S = ∅ and card(P ) = card(S);
4. I : T → P(P ) is the input function;
5. O : T → P(P ) is the output function;
6. α : P → S is the statement binding function;
7. β : T → (0, 1)l is the truth degree function;
8. γ : T → (0, 1)l is the threshold function;
9. M0 : P → (0, 1)l is the initial marking,

and P(P ) represents power set of P, l is the cardinality of set U , (0, 1)p is an p
tuple consisting of 0 and 1.

Following the convention of the graphical representation, in this discussion,
we denote the places by circles and transitions by rectangles. Oriented arcs
connecting places with transitions give the function I and the oriented arcs
connecting transitions with places express the function O. Logical operators OR
and AND are interpreted in SPN as boolean sum and boolean product for binary
vectors, and denoted by SUM and PROD, respectively. Based on the theory given
so far, we propose a firing rule defined as follows.

3.3 Firing Rule

We suppose that tuple N = (P, T, S, I,O, α, β, γ,M0) is a SPN with marking
M : P → (0, 1)l. A transition [12] t ∈ T is considered to be enabled for firing at
the marking M , if it satisfies the following conditions

In(M(pi1),M(pi2), · · · ,M(pin)) ≥ γ(t) (7)

where formula (7) provides the condition for firing transitions in SPN and I(t) =
{pi1, pi2, · · · , pin} gives a set of input places corresponding to a transition t ∈ T
and β : T → (0, 1)l. In is an input operator and Out1, Out2 are represented as
output operators corresponding to the transition t. These operators are boolean
product/boolean sum, boolean product and boolean sum, respectively. With
these assumptions, the mode of firing is proposed as follows.

Let M denotes a marking of N which enables transition t, and M ′ is the
marking derived from M by firing transition t. For each t ∈ T we have

M ′(p) =

{

Out2(Out1(In(M(pi1),M(pi2), · · · ,M(pin)), β(t)),M(p)) if p ∈ O(t),
M(p) otherwise

Now, we will describe a different type of firing rules for different type of Petri
nets based on the soft production rules.
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– Type 1: A soft simple rule is expressed as (Fig. 1)

˜R : IF (φ,A) THEN (ψ,B) (CF = t), λ (8)

Fig. 1. SPN for type 1 rule.

– Type 2: A soft conjunctive (disjunctive) rule for the antecedent is expressed as
˜R : IF (φ,A1) AND(OR) (φ,A2) · · · AND(OR) (φ,Ak) THEN (ψ,B) (CF =
t), λi, i = 1, 2, · · · , k (Fig. 2)

Fig. 2. SPN for type 2 rule.

– Type 3: A soft conjunctive (disjunctive) rule for the consequent is expressed as
˜R : IF (φ,A) THEN (ψ,B1) AND(OR) (ψ,B2) · · · AND(OR) (ψ,Bl)
(CF = t), λ (Fig. 3)

Fig. 3. SPN for type 3 rule.



260 S. Bandyopadhyay et al.

4 Computational Algorithms

In this section, two algorithms [13] are proposed for the construction of a SPN
to express an approximate reasoning process with the production rules given in
Sect. 3.3.

The Algorithm 1 constructs a SPN on the base of a given set of production
rules; the transformation of production rules into SPN is realized depending on
the form of the transformed production rule (see previous section). However, the
second one describes a reasoning process realized by execution of SPN represent-
ing a given set of production rules.

Algorithm 1. Construction of a SPN with production rules as given in
Sect. 3.3.
Input : Finite set R of production rules with parameters.
Output: SPN N .
F ← ∅; (* The empty set. *)
for each r ∈ R
if r is a type 1 rule then

construct a subnet Nr as shown in Fig. 1;

if r is a type 2 rule then
construct a subnet Nr as shown in Fig. 2;

if r is a type 3 rule then
construct a subnet Nr as shown in Fig. 3;

F ← F ∪ {Nr};
Integrate all subnets from a family F on joint places and create a result net N ;
return N ;

In order to describe the second algorithm, we need two auxiliary notions. In
some situations we may want to determine the antecedence-consequence rela-
tionships between two groups of statements: the starting (given) statements
si1, . . . , sik, and goal (computed) statements so1, . . . , sol. In the Petri net rep-
resentation, the places associated with the first group of statements are called
starting places, whereas the places associated with the second one are called goal
places. Furthermore, if the truth degrees of the starting statements si1, . . . , sik
are given, we may want to know what the truth degrees of the goal statements
so1, . . . , sol are. These problems can be solved by using an approximate reasoning
algorithm based on SPNs.

We assume that the truth degrees of the starting statements are given by the
domain expert. The goal of the reasoning is to determine the truth degrees of
the output (goal) statements.

The Algorithm 2 is based on the idea of the reachability tree [6,10]. The main
benefits of this approach are the ease of understanding the algorithm and the
ease of finding the path of inference. On the other hand, its weaker side is the
more complex data structure and the relatively slow speed of inference (cf. [17]).
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Algorithm 2. Approximate reasoning based on SPN.
Input : The initial marking of the starting places with elements of the form

(φ, A).
Output: The final marking of the goal places with elements of the form (ψ, B).
while it is not the end of simulation do

Determine transitions enabled for firing based on firing rule in Section. 3.3
while there is a transition enabled for firing do

Compute a new marking of all places after firing the transition;
Determine a new transition enabled for firing;

Read final marking of goal places;
Reset final marking of all places;

5 Numerical Example

Let us consider that, a ‘Rational buyer’ wants to buy a ‘Beautiful flat’. The
rational buyer is inclined to buy a non-expensive, beautiful flat. On other hand,
a ‘Beautiful flat’ should have three or more bedrooms, a top floor, a garden
face, satisfactory amenities from the buyer’s perspectives. There are three flats
{H1,H2,H3} to choose from. The buyer first visited flat H1 having four bed-
rooms but not on the top floor. Other two flats H2,H3 are on top floors but they
have only two bedrooms. After satisfying these primary conditions there are two
more issues. H1 and H3 are expensive but H2 is non-expensive. Moreover, H2

and H3 have a garden face. H3 has satisfactory amenities but H2 does not. Now,
which house is the most rational according to the buyer’s expectations? If (φ,A)
represents ‘Beautiful house’ and (ψ,B) represents ‘Rational buyer’, then we may
write the situation as

(φ,A) → (ψ,B) (9)

{A1, A2, A3, A4, A5} represent parameters ‘expensive’, ‘three or more rooms’,
‘top floor’, ‘garden face’, ‘satisfactory amenities’, respectively. We can write

A =
5

⋃

i=1

Ai, (φ,Ai) ⊂ (φ,A), i = 1, 2, · · · , 5 (10)

The situation is represented logically as follows:

1. IF s2 OR s3 THEN s6;
2. IF s1 AND s4 AND s6 THEN s7;
3. IF s4 AND s5 THEN s8,

where we can represent the variables as follows:

– s1: = ‘The flat is expensive.’
– s2: = ‘The flat has three or more rooms.’
– s3: = ‘The flat is on the top floor.’
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– s4: = ‘The flat is garden face.’
– s5: = ‘The flat has satisfactory amenities.’
– s6: = ‘The flat is good for a rational buyer.’
– s7: = ‘The flat is comfortable for a rational buyer.’
– s8: = ‘The flat has a good look.’ (Fig. 4)

Fig. 4. SPN - before firing.

We see that at place ‘The flat is comfortable for a rational buyer.’ the truth
degree is (0,0,1). It implies that the flat H3 is acceptable to a rational buyer,
which can be described as expensive but it is on the top floor with satisfactory
amenities and a garden face. So, (ψ,B) can be described as B ={‘expensive’,
‘top floor’, ‘garden face’, ‘satisfactory amenities’} and ψ(B) = {H3} (Fig. 5).

Fig. 5. SPN - after firing.
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6 Conclusion

In this paper, a Petri net based on a soft set has been proposed. It holds some
advantages compared to others in the literature:

1. This is a parameterized model using the soft sets and hence does not need to
configure membership function as in fuzzy Petri net [2].

2. Since SPN involves fewer complex functions, it involves lesser computational
complexity.

Here, parameterized knowledge representation have been proposed with the
soft Petri net. A soft implication operator and a soft production rule have been
proposed to construct the soft Petri net. The In, Out1, and Out2 operators
are given as boolean operators and the truth degree is represented by binary
numbers. This model does not involve any complex operators unlike the fuzzy
Petri net [12]. In the fuzzy Petri net, determination of a membership function
is sometimes unrealistic and not unique. Moreover, in a backward reasoning an
inverted fuzzy implication is not always possible. The parameterized form of the
Petri net modeled by the soft set is free from such complications and it presents
lesser computational complexity. There is some further scope to use the soft
Petri net in the backward reasoning process.
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Abstract. In this paper, we examined by using Formal Concept Anal-
ysis methods, the interrelation between the lattices of upper (lower)
approximations induced by two tolerance relations R ⊆ ρ ⊆ U × U .
These lattices are isomorphic (dually isomorphic) to the concept lattice
L(U, U, Rc), L(U, U, ρc) respectively, where Rc and ρc stand for the com-
plements of the corresponding relations. We proved sufficient conditions
and we characterized the case when the concept lattice L(U, U, ρc) is a
complete sublattice of L(U, U, Rc). We used the so-called compatibility
condition introduced recently and we showed that in the case when ρ
is R-compatible and L(U, U, ρc) is a complete sublattice of L(U, U, Rc),
ρ must be an equivalence. Detailed examples for each case were presented.

Keywords: Lower and upper approximation · Rough set ·
Complete sublattice of a concept lattice · Compatibility condition

1 Introduction

The theory of rough sets was initiated by Pawlak [7]. His idea was that our
knowledge about the objects of a universe U is given in the terms of an indis-
tinguishability relation R ⊆ U × U reflecting the indiscernibility of the objects.
Originally, Pawlak assumed that this relation is an equivalence, i.e. a reflexive,
symmetric and transitive binary relation, however in the literature numerous
studies can be found where approximations are defined by other types of rela-
tions (see e.g. [13], [3] or [4]).

For any binary relation R ⊆ U×U and any element u ∈ U , we denote by R(u)
the R-neighborhood of u, i.e. R(u) := {x ∈ U | (u, x) ∈ R}. Now, for any subset
X ⊆ U the lower approximation of X is defined as XR := {x ∈ U | R(x) ⊆ U},
and the upper approximation of X is given by XR := {x ∈ U | R(x) ∩ X �= ∅}.
If R is a reflexive relation then XR ⊆ X ⊆ XR. The rough set of X can be
defined as the pair (XR,XR), and the set of all rough sets is identified with

RS(U,R) = {(XR,XR) | X ⊆ U}.

The set RS(U,R) may be canonically ordered by the componentwise inclusion:

(XR,XR) ≤ (YR, Y R) ⇐⇒ XR ⊆ YR and XR ⊆ Y R,
c© Springer Nature Switzerland AG 2019
T. Mihálydeák et al. (Eds.): IJCRS 2019, LNAI 11499, pp. 265–279, 2019.
https://doi.org/10.1007/978-3-030-22815-6_21
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resulting in a partially ordered set RS(U,R) := (RS(U,R),≤). If R is an equiv-
alence, then RS(U,R) is a complete distributive lattice (having many other nice
properties).

The sets ℘(U)R = {XR | X ⊆ U} and ℘(U)R = {XR | X ⊆ U} in gen-
eral form dually isomorphic complete lattices (℘(U)R,⊆) and (℘(U)R,⊆), called
respectively the lattice of upper approximations and the lattice of lower approxi-
mations (see [4]). If R is a tolerance, i.e. a reflexive and symmetric relation, then
in [4] it is shown that (℘(U)R,⊆) is isomorphic to the concept lattice L(U,U,Rc)
of the context (U,U,Rc), where Rc = (U × U)\R is the complement of the rela-
tion R. (These notions will be explained in Sect. 2.) Inspired by this observation,
we will apply Formal Concept Analysis (FCA) methods to describe the sublat-
tices of the lattices of upper (or lower) approximations. These lattices have an
important role in numerous applications of rough set theory (see e.g. [8–11,14])
and comparing different approximations is in the focus of several papers (see e.g.
[10], [13] or [6]). In our paper we deduce sufficient conditions which guarantee
that for some tolerance relations R ⊆ ρ ⊆ U × U , the lattice ℘(U)ρ (℘(U)ρ) is a
complete sublattice of ℘(U)R (of ℘(U)R).

The paper is structured as follows: In Sect. 2, we present some basic proper-
ties of the approximation operators X → XR and X → XR, X ⊆ U . In case of
a tolerance relation R, the interrelation between the concept lattice L(U,U,Rc)
and the lattices (℘(U)R,⊆) and (℘(U)R,⊆) is also presented. In Sect. 3, suf-
ficient conditions are proved, and we characterize that when R ⊆ ρ, and the
concept lattice L(U,U, ρc) is a complete sublattice of L(U,U,Rc). In Sect. 4, the
conditions of our previous results are combined with the so-called “compatibility
condition” introduced in [6], and several conclusions are deduced. For instance,
we prove that in the case when R2 = R◦R ⊆ ρ and L(U,U, ρc) is a complete sub-
lattice of L(U,U,Rc), ρ must be an equivalence. Our conclusions are summarized
in Sect. 5.

2 Preliminaries

The above defined approximations for any X ⊆ U and any H ⊆ P(U) have the
following properties:

(a)
( ⋃

X∈H
X

)R

=
⋃

X∈H
XR and

( ⋂
X∈H

X

)
R

=
⋂

X∈H
XR;

(b) (Xc)R = (XR)c, (Xc)R =
(
XR

)c.

In view of (a), X → XR, X ⊆ U is a complete join-homomorphism and X → XR,
X ⊆ U is a complete meet-homomorphism. Thus ℘(U)R is a closure system,
being closed under arbitrary intersections and ℘(U)R is an interior system,
because it is closed under any union. Therefore, ℘(U)R and ℘(U)R are com-
plete lattices with respect to ⊆. If R is a tolerance relation, then these mappings
are adjoint, i.e. for any X,Y ⊆ U we have: XR ⊆ Y ⇔ X ⊆ YR.

Property (b) implies that the lattices (℘(U)R,⊆) and (℘(U)R,⊆) are dually
isomorphic via the map H : ℘(U)R → ℘(U)R, H : X → Xc, because we have
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H(XR) = (XR)c = (Xc)R. If R is an equivalence, then ℘(U)R = ℘(U)R and
these approximations form the same Boolean lattice (see e.g. [12]). A detailed
analysis of rough approximation operators can be found in [2].

A formal context is a triple K = (G,M, I), where G is a set of objects, M is
a set of attributes and I ⊆ G × M is a relation, called incidence relation. The
notations (g,m) ∈ I and g I m both express that an object g is in relation I
with an attribute m, and we read it as “the object g has the attribute m”. The
basics of Formal Concept Analysis (FCA) can be found e.g. in [1]. By defining
for all subsets A ⊆ G and B ⊆ M

AI = {m ∈ M | (g,m) ∈ I, for all g ∈ A},

BI = {g ∈ G | (g,m) ∈ I, for all m ∈ B}
we establish a Galois connection between the power-set lattices (℘(G),⊆) and
(℘(M),⊆) and the maps A → AII , A ⊆ G and B → BII , B ⊆ M are closure
operators on ℘(G) and ℘(M), respectively.

A small context usually is represented by a cross table (i.e. by a rectangle
table) the rows of which are headed by objects and the columns are headed by
attributes. A cross in row g and column m means that the object g has the
attribute m. The following example is from [5]

Example 1.

Table 1. An example of a formal concept. The objects are geometric forms: 1= general
triangle, 2 = square, 3= circle, 4 = rectangle, 5= rhomb.

Angular (a) Right angles (r) Equilateral (e) Central symmetry (cs)

1 ×
2 × × × ×
3 ×
4 × × ×
5 × × ×

A formal concept of the context K is a pair (A,B) ∈ ℘(G)×℘(M) with AI =
B and BI = A, where the set A is called the extent and B is called the intent of
the concept (A,B). It is easy to check that (A,B) ∈ ℘(G) × ℘(M) is a concept
if and only if (A,B) = (AII , AI) = (BI , BII). For instance, ({2}, {a, r, e, cs})
, ({2, 4}, {a, r, cs}) or ({1, 2, 3, 4, 5}, ∅) are some concepts of the formal context
from Table 1. The set of all concepts of the context K is denoted by L(K). This
set is ordered by

(A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2,

resulting in a complete lattice, called the concept lattice of the context K =
(G,M, I), which is denoted by L(G,M, I). Let Int(G,M, I) = {AI | A ⊆ G}
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stand for the intents of the context K. Then L(G,M, I) is isomorphic to
(Int(G,M, I),⊇), via the mapping ϕ(A,B) = B, (A,B) ∈ L(G,M, I).

A relation J ⊆ I is called a closed subrelation of the context (G,M, I) if
every concept of the context (G,M, J) is also a concept of (G,M, I). In [1] it is
proved that this definition is equivalent to the condition that the concept lattice
L(G,M, J) is a complete sublattice of L(G,M, I).

For a tolerance relation R ⊆ U × U , the relationship between the lattices of
approximations and the concept lattice L(U,U,Rc) was described in [4]. Indeed,
let I = Rc. Then for any X ⊆ U we have XI = {u ∈ U | xRcu, for all
x ∈ X} = {u ∈ U | (x, u) /∈ R, for all x ∈ X} = U \ XR =

(
XR

)c. Thus

XR =
(
XI

)c
and XR =

(
(Xc)R

)c

= (Xc)I ,

according to (b). In [4] it is also proved that ℘(U)R and ℘(U)R are complemented
lattices such that

(
℘(U)R,⊆) ∼= (℘(U)R,⊇) ∼= L(U,U,Rc). In this case, the

complement of a concept (AII , AI) is just the concept
(
AI , AII

)
.

3 Complete Sublattices of Approximation Lattices

Now let ρ,R be two tolerance relations such that R ⊆ ρ ⊆ U × U . Consider the
formal contexts KR = (U,U,Rc) and Kρ = (U,U, ρc). Since J := ρc ⊆ Rc := I,
Kρ is a subcontext of KR. We intend to characterize the case when the lattice
℘(U)ρ (℘(U)ρ) is isomorphic (dually isomorphic) to a complete sublattice of
℘(U)R (℘(U)R, respectively). The general situation can be formulated as follows:

Lemma 1. The following conditions are equivalent:
(1)

(
℘(U)R,⊆)

is isomorphic to a complete sublattice of (℘(U)ρ,⊆);
(2) (℘(U)R,⊆) is isomorphic to a complete sublattice of (℘(U)ρ,⊆) ;
(3) L(U,U, ρc) is isomorphic to a complete sublattice of L(U,U,Rc).

Proof. Since
(
℘(U)R,⊆) ∼= (℘(U)R,⊇) and (℘(U)ρ,⊆) ∼= (℘(U)ρ,⊇) the equiv-

alence of (1) and (2) is obvious. The equivalence of (1) and (3) follows from the
facts

(
℘(U)R,⊆) ∼= L(U,U,Rc) and (℘(U)ρ,⊆) ∼= L(U,U, ρc). �

Lemma 2. If L(U,U, ρc) is a complete sublattice of L(U,U,Rc), then the fol-
lowing hold:

(1’) (℘(U)ρ,⊆) is a complete sublattice of
(
℘(U)R,⊆)

,
(2’) (℘(U)ρ,⊆) is a complete sublattice of (℘(U)R,⊆).

Proof. (1’): If our condition holds, then Int(U,U, ρc) is also a complete sublat-
tice of Int(U,U,Rc). Let Xρ ∈ ℘(U)ρ. Then (Xρ)c = XJ ∈ Int(U,U, ρc) ⊆
Int(U,U,Rc), and hence (Xρ)c = Y I =

(
Y R

)c, for some Y ⊆ U . Hence
Xρ = Y R ∈ ℘(U)R, therefore we get ℘(U)ρ ⊆ ℘(U)R. Observe that the map-
ping X → Xc, X ⊆ ℘(U)ρ is an order-isomorphism between (℘(U)ρ,⊆) and
(Int(U,U, ρc),⊇), and also X → Xc, X ⊆ ℘(U)R is an order-isomorphism
between

(
℘(U)R,⊆)

and (Int(U,U, ρc),⊇). Now, from the condition that
Int(U,U, ρc) is a complete sublattice of Int(U,U,Rc), it follows (1’). Assertion (2’)
is proved similarly. �
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Example 2. This example contains two tolerance relations ρ and R, their lower
and upper approximations, the contexts and the concept lattices corresponding
to Rc and ρc on the same universe U = {a, b, c, d} (Table 2). Because all the
discussed relations are reflexive, loops are not noted in what follows (see Table 3
and Fig. 3).

a

b c

d a

b c

d

Fig. 1. Relations R and ρ

Table 2. Lower and upper approximations defined by relations R and ρ from Fig. 1.

X XR XR Xρ Xρ

∅ ∅ ∅ ∅ ∅
{a} ∅ {a, b} ∅ {a, b, c}
{b} ∅ {a, b, c} ∅ {a, b, c, d}
{c} ∅ {b, c, d} ∅ {a, b, c, d}
{d} ∅ {c, d} ∅ {b, c, d}
{a, b} {a} {a, b, c} ∅ {a, b, c, d}
{a, c} ∅ {a, b, c, d} ∅ {a, b, c, d}
{a, d} ∅ {a, b, c, d} ∅ {a, b, c, d}
{b, c} ∅ {a, b, c, d} ∅ {a, b, c, d}
{b, d} ∅ {a, b, c, d} ∅ {a, b, c, d}
{c, d} {d} {b, c, d} ∅ {a, b, c, d}
{a, b, c} {a, b} {a, b, c, d} {a} {a, b, c, d}
{a, b, d} {a} {a, b, c, d} ∅ {a, b, c, d}
{a, c, d} {d} {a, b, c, d} ∅ {a, b, c, d}
{b, c, d} {c, d} {a, b, c, d} {d} {a, b, c, d}
{a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

It is visible on (the next) Fig. 2 that the upper approximations defined by ρ
form a sublattice of the lattice of upper approximations defined by R. However,
the concept lattice of the context (U,U, ρc) is not even a subset of the concept
lattice of the context (U,U,Rc).

Observe that the conditions (1’) and (2’) do not imply that L(U,U, ρc) is a
complete sublattice of L(U,U,Rc), they imply only that L(U,U, ρc) is isomorphic
to a complete sublattice of L(U,U,Rc).
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∅

{a, b}

{a, b, c}

{a, b, c, d}

{b, c, d}

{c, d}

∅

{a, b, c}

{a, b, c, d}

{b, c, d}

Fig. 2. The lattices of upper approximations defined by R and by ρ, respectively

Table 3. The contexts (U, U, Rc) and (U, U, ρc)

Rc a b c d

a × ×
b ×
c ×
d × ×

ρc a b c d

a ×
b

c

d ×

(∅, U)

({a}, {c, d})

({a, b}, {d})

(U, ∅)

({c, d}, {a})

({d}, {a, b})

(∅, U)

({a}, {d})

(U, ∅)

({d}, {a})

Fig. 3. The Hasse-diagram of the concept lattices L(U, U, Rc) and L(U, U, ρc)

Let (G,M, I) be a formal context and g ∈ G, m ∈ M . The sets {g}I and
{m}I will be denoted simply by gI and mI . In [1] was proved that a relation
J ⊆ I is a closed subrelation of the context (G,M, I), or equivalently, L(G,M, J)
is a complete sublattice of L(G,M, I) if and only if the following condition holds:

(+) (g,m) ∈ I \ J implies (h,m) /∈ I for some h ∈ G with gJ ⊆ hJ as well as
(g, n) /∈ I for some n ∈ M with mJ ⊆ nJ .

Let ρ be a tolerance on U . Let us define
� (ρ) := {(x, y) ∈ U × U | ρ(x) ⊆ ρ(y)} and
� (ρ) := {(x, y) ∈ U × U | ρ(x) ⊇ ρ(y)}.
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Clearly, � (ρ) and � (ρ) are reflexive and transitive relations, i.e. they are
quasiorders and � (ρ) is the inverse relation of � (ρ). Let the symbol ◦ stand
for the relational product, in what follows.

Remark 1. Observe that in the case R ⊆ ρ the relations R◦ � (ρ) ⊆ ρ and
� (ρ) ◦ R ⊆ ρ always hold. Indeed, for any x, y ∈ U, (x, y) ∈ R◦ � (ρ)
means that there exists a z ∈ U with (x, z) ∈ R ⊆ ρ and (z, y) ∈ � (ρ). Then
x ∈ ρ(z) ⊆ ρ(y) implies (x, y) ∈ ρ, proving R◦ � (ρ) ⊆ ρ. The second inclusion
is proved dually.

By using these notions and condition (c) we can formulate:

Theorem 1. Let ρ,R be tolerance relations satisfying R ⊆ ρ ⊆ U × U . Then
the following conditions are equivalent:

(C) L(U,U, ρc) is a complete sublattice of L(U,U,Rc);
(D) For any (a, b) ∈ ρ \ R there exist some elements c, d ∈ U such that

(c, b), (a, d) ∈ R and ρ(c) ⊆ ρ(a), ρ(d) ⊆ ρ(b);
(E) R◦ � (ρ) = ρ;
(E’) � (ρ) ◦ R = ρ.

Proof. (C) ⇔ (D). Set I := Rc and J := ρc. Then J ⊆ I and in view of [1]
L(U,U, J) is a complete sublattice of L(U,U, I), if and only if condition (+) is
satisfied by the incidence relations I and J . We prove that (+) is equivalent to
condition (D). Since G = M = U and Rc \ ρc = Rc ∩ ρcc = ρ \ R, (by setting
a := g, b := m, c := h and d := n) we obtain that for any elements (a, b) ∈ ρ \ R
there exist some elements c, d ∈ U such that (c, b), (a, d) ∈ Ic = R and aJ ⊆ cJ ,
bJ ⊆ dJ . These relations imply ρ(c) = {c}ρ =

(
cJ

)c ⊆ (aJ)c = {a}ρ = ρ(a) and
similarly, ρ(d) ⊆ ρ(b) (see Fig. 4).

(D) ⇒ (E). Assume that (D) holds. In order to prove (E) it is enough to show
ρ ⊆ R◦ � (ρ). Since R ⊆ R◦ � (ρ), it is enough to check that ρ\R ⊆ R◦ � (ρ).
Take any (a, b) ∈ ρ \ R. Then, in view of (D) there exists an element d ∈ U with
(a, d) ∈ R and ρ(d) ⊆ ρ(b). Thus (d, b) ∈ � (ρ), whence we get (a, b) ∈ R◦ � (ρ),
proving ρ \ R ⊆ R◦ � (ρ).

(E) ⇔ (E’). Because we have
ρ = R◦ � (ρ) ⇔ ρ = ρ−1 = � (ρ)−1 ◦ R−1 = � (ρ) ◦ R.

(E’) ⇒ (D). Suppose that (E’) holds. Then (E) is also satisfied, i.e. R◦ � (ρ) =
ρ = � (ρ) ◦ R. Now take any (a, b) ∈ ρ \ R. Since (a, b) ∈ R◦ � (ρ) and
(a, b) ∈ � (ρ) ◦ R, there exist some elements c, d ∈ U with (a, d), (c, b) ∈ R
and (d, b) ∈ � (ρ), (a, c) ∈ � (ρ). The latter relations imply ρ(d) ⊆ ρ(b) and
ρ(c) ⊆ ρ(a). This means that condition (D) is satisfied. �

The next corollary is an immediate consequence of Lemma 2:

Corollary 1. Let R, ρ be two tolerance relations on U such that R ⊆ ρ. If R
and ρ satisfy one of the equivalent conditions of Theorem 1, then (℘(U)ρ,⊆) is
a complete sublattice of

(
℘(U)R,⊆)

and (℘(U)ρ,⊆) is a complete sublattice of
(℘(U)R,⊆).
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a b

d c

R R

ρ ρ

ρ \ R

Fig. 4. Condition (D)

Corollary 2. Let R be a tolerance relation and ρ an equivalence relation on U
such that R ⊆ ρ. Then the condition (D) is satisfied and (℘(U)ρ,⊆) is a complete
sublattice of

(
℘(U)R,⊆)

and of (℘(U)R,⊆).

Proof. Clearly, we may suppose that R �= ρ. Let (a, b) ∈ ρ \ R. Since R is
reflexive, we can choose c := b and d := a such that (c, b), (a, d) ∈ R. In this
case, since (c, d) = (b, a) ∈ ρ and ρ is an equivalence relation, we obtain ρ(c) =
ρ(b) = ρ(a) = ρ(d). This means that condition (D) is satisfied. Since ρ is an
equivalence, we have ℘(U)ρ = ℘(U)ρ, and now by using Corollary 1, we obtain
that (℘(U)ρ,⊆) is a complete sublattice of

(
℘(U)R,⊆)

and of (℘(U)R,⊆). �

Corollary 3. Let ρ, T,R be tolerance relations satisfying R ⊆ T ⊆ ρ ⊆ U × U .
If L(U,U, ρc) is a complete sublattice of L(U,U,Rc), then it is also a complete
sublattice of L(U,U, T c). Accordingly, (℘(U)ρ,⊆) and (℘(U)ρ,⊆) are complete
sublattices of

(
℘(U)T ,⊆)

and (℘(U)T ,⊆), respectively.

Proof. If the assumptions of this corollary hold, then condition R◦ � (ρ) = ρ
is also satisfied, according to Theorem 1. Now, let T ⊆ U × U be an arbitrary
tolerance relation with R ⊆ T ⊆ ρ. We already noted (see Remark 1), that
the inclusion T ⊆ ρ implies T◦ � (ρ) ⊆ ρ. On the other hand, we obtain
ρ = R◦ � (ρ) ⊆ T◦ � (ρ). Thus we get T◦ � (ρ) = ρ. In view of Theorem 1
and Corollary 1, this implies our assertion. �

Example 3. Let R be a tolerance relation and ρ an equivalence relation on the
set U = {a, b, c, d} in Fig. 5 where R ⊆ ρ. Note that in view of Corollary 2, the
lattice L(U,U, ρc) is a sublattice of L(U,U,Rc), and (℘(U)ρ,⊆) is a sublattice
of

(
℘(U)R,⊆)

(Tables 4 and 5) (see Figs. 6 and 7).
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a

b c

d a

b c

d

Fig. 5. Relations R and ρ

Table 4. Lower and upper approximations defined by relations R and ρ from Fig. 5.

X XR XR Xρ Xρ

∅ ∅ ∅ ∅ ∅
{a} ∅ {a, b, c} ∅ {a, b, c}
{b} ∅ {a, b} ∅ {a, b, c}
{c} ∅ {a, c} ∅ {a, b, c}
{d} {d} {d} {d} {d}
{a, b} {b} {a, b, c} ∅ {a, b, c}
{a, c} {c} {a, b, c} ∅ {a, b, c}
{a, d} {d} {a, b, c, d} {d} {a, b, c, d}
{b, c} ∅ {a, b, c} ∅ {a, b, c}
{b, d} {d} {a, b, d} {d} {a, b, c, d}
{c, d} {d} {a, c, d} {d} {a, b, c, d}
{a, b, c} {a, b, c} {a, b, c} {a, b, c} {a, b, c}
{a, b, d} {b, d} {a, b, c, d} {d} {a, b, c, d}
{a, c, d} {c, d} {a, b, c, d} {d} {a, b, c, d}
{b, c, d} {d} {a, b, c, d} {d} {a, b, c, d}
{a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

Table 5. The contexts (U, U, Rc) and (U, U, ρc)

Rc a b c d

a ×
b × ×
c × ×
d × × ×

ρc a b c d

a ×
b ×
c ×
d × × ×
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∅

{a, b}

{a, b, c}

{a, c}

{a, b, d}

{a, d}

{a, c, d}

U

∅

{a, b, c} {d}

U

Fig. 6. The lattices of upper approximations defined by R and by ρ respectively

(∅, U)

({b}, {c, d})

({a, b, c}, {d})

({c}, {b, d})

({b, d}, {c})

({d}, {a, b, c})

({c, d}, {b})

(U, ∅)
(∅, U)

({a, b, c}, {d}) ({d}, {a, b, c})

(U, ∅)

Fig. 7. The concept lattices L(U, U, Rc) and L(U, U, ρc)
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4 Compatibility Condition

Let T be a tolerance and E an equivalence relation on a set U . The notion of an
E-compatible tolerance T was introduced in [6], and means that the condition
E◦T = T holds. The definition was motivated by the fact that in such a case any
neighbourhood T (x) is an E-definable set (i.e. T (x)E = T (x)E = T (x)). Then
this fact was used to show that the approximation pairs {(XE ,XT ) | X ⊆ U}
form a complete lattice with respect to the componentwise inclusion, generalizing
in this way the traditional notion of rough sets.

Let ρ,R ⊆ U × U be two tolerance relations. Generalizing the above notion
we will say that the tolerance ρ is R-compatible if R ◦ ρ = ρ. Clearly, this yields
R ⊆ ρ and R2 = R ◦ R ⊆ ρ. Since ρ−1 = ρ and (R ◦ ρ)−1 = ρ−1 ◦ R−1 = ρ ◦ R

we get R ◦ ρ = ρ ⇔ (R ◦ ρ)−1 = ρ−1 ⇔ ρ ◦R = ρ. Hence R ◦ ρ = ρ and ρ ◦R = ρ
are equivalent conditions.

In [6] we can find several examples of compatible relations. For instance,
defining the kernel of a tolerance relation ρ as the equivalence kerρ := {(x, y) ∈
U × U | ρ(x) = ρ(y)}, it is proved that ρ is compatible with an equivalence
R ⊆ U × U iff R ⊆ kerρ. Obviously, if E and F are equivalence relations on U ,
then F is E-compatible iff E ⊆ F . Another interesting example was given by
using a so-called information system.

An information system in the sense of Pawlak is a triple (U,A, {V }a∈A), where
U is a set of objects, A is a set of attributes, and Va is the value set of an
a ∈ A. Each attribute is a mapping a : U → Va, and a(x) ∈ Va is the value of the
attribute a for the object x. For any subset B ⊆ A, the strong indiscernibility
relation of B is defined by

Ind(B) = {(x, y) ∈ U × U | a(x) = a(y), for all a ∈ B}.

The weak indiscernibility relation of B is given by

Wind(B) = {(x, y) ∈ U × U | a(x) = a(y), for some a ∈ B}.

Clearly, Ind(B) is an equivalence relation and Wind(B) is a tolerance relation on
U . Indeed, Wind(B) is reflexive by its definition and (x, y) ∈ Wind(B) ⇔ a(x) =
a(y) for some a ∈ B ⇔ a(y) = a(x) for some a ∈ B ⇔ (y, x) ∈ Wind(B). Hence
the relation Wind(B) is also symmetric. In [6] is proved that Ind(B)◦Wind(B) =
Wind(B), that is, Wind(B) is compatible with Ind(B).

Lemma 3. Let C ⊆ B ⊆ A. Then Ind(B)◦Wind(C)= Wind(C), that is,
Wind(C) is Ind(B)-compatible.

Proof. Indeed, the inclusion Wind(C) ⊆ Ind(B) ◦ Wind(C), is clear. In order to
prove the converse inclusion, take any (x, y) ∈ Ind(B)◦Wind(C). Then (x, z) ∈
Ind(B) and (z, y) ∈ Wind(C), for some z ∈ U . As C ⊆ B, (x, z) ∈ Ind(B) yields
a(x) = a(z), for all a ∈ C, and we have also a′(z) = a′(y), for some a′ ∈ C,
because (z, y) ∈ Wind(C). Thus we get a′(x) = a′(y), for some a′ ∈ C, i.e.
(x, y) ∈ Wind(C). This yields also Ind(B) ◦ Wind(C) ⊆ Wind(C), completing
the proof. �
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Let X ⊆ U be arbitrary and let ρ be an R-compatible tolerance. The following
relations can be easily proved:

(f) (Xρ)R = Xρ◦R = Xρ = XR◦ρ =
(
XR

)ρ;
(g) (Xρ)R = Xρ◦R = Xρ = XR◦ρ = (XR)ρ.

Indeed, Xρ◦R = Xρ = XR◦ρ is clear. Let us check for instance the equality
(Xρ)R = XR◦ρ. Now, by definition we have x ∈ (Xρ)R ⇔ R(x) ∩ Xρ �= ∅ ⇔
(∃y ∈ U and ∃z ∈ X with xRy and yρz) ⇔ ((x, z) ∈ R ◦ ρ, for some z ∈ X) ⇔
x ∈ XR◦ρ.

In what follows, we will show that the conditions from Theorem 1 and the
compatibility condition are interrelated.

Proposition 1. Let ρ,R ⊆ U ×U be two tolerance relations satisfying condition
(E) and R ⊆ ρ. Then R2 ⊆ ρ if and only if ρ is R-compatible.

Proof. Let R ⊆ ρ. We noted that R2 ⊆ ρ holds whenever ρ is R-compatible.
Suppose that condition (E) also holds. Since ρ ⊆ R ◦ ρ, to prove the converse
inclusion it suffices to show that R2 ⊆ ρ implies R ◦ (ρ \ R) ⊆ ρ. Take any
(x, b) ∈ R ◦ (ρ \ R). This means that we may consider any (a, b) ∈ ρ \ R and
x ∈ U with (x, a) ∈ R. Condition (E) and (a, b) ∈ ρ imply that there exists an
element d ∈ U with (a, d) ∈ R and ρ(d) ⊆ ρ(b). Then (x, d) ∈ R ◦ R = R2 ⊆ ρ.
ρ being symmetric, we get (d, x) ∈ ρ, i.e. x ∈ ρ(d) ⊆ ρ(b). This implies (x, b) ∈ ρ,
proving R ◦ (ρ \ R) ⊆ ρ. �

Corollary 4. Let R be an equivalence and ρ a tolerance relation satisfying one
of the equivalent conditions from Theorem 1, and R ⊆ ρ. Then ρ is R-compatible.

Proof. Since R2 = R ⊆ ρ, by using Proposition 1, we obtain the required asser-
tion. �

Theorem 2. Let ρ,R ⊆ U × U be two tolerance relations with R ⊆ ρ. Then
L(U,U, ρc) is a complete sublattice of L(U,U,Rc) and ρ is R-compatible if and
only if ρ is an equivalence.

Proof. If ρ is an equivalence, then in view of Corollary 2 condition (D) is satisfied
and R2 ⊆ ρ2 = ρ implies that ρ is R-compatible, according to Proposition 1.
Now, Theorem 1 implies that L(U,U, ρc) is a complete sublattice of L(U,U,Rc).

Conversely, assume that ρ is R-compatible and that L(U,U, ρc) is a complete
sublattice of L(U,U,Rc). Then, in view of Theorem 1, condition (E’) also holds.
In order to prove that ρ is an equivalence, let us consider some elements a, b, e ∈
U such that (a, b), (b, e) ∈ ρ. We will show that (a, e) ∈ ρ, proving in this way
the transitivity of ρ, and this means that ρ is an equivalence.

Indeed, in view of condition (E’) there exists an element c ∈ U with (c, b) ∈
R ⊆ ρ and (a, c) ∈ � (ρ), i.e. ρ(a) ⊇ ρ(c). Then (b, e) ∈ ρ implies (c, e) ∈ R◦ρ =
ρ, i.e. e ∈ ρ(c) ⊆ ρ(a). This yields (a, e) ∈ ρ, completing our proof. �
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Corollary 5. Let (U,A, {Va}a∈A) be an information system, B ⊆ A and R ⊆
Ind(B) a tolerance relation on the set U . Then the equivalence Ind(B) is R-
compatible,

(
℘(U)Ind(B),⊆)

is a complete sublattice of the lattice
(
℘(U)R,⊆)

,
and (℘(U)Ind(B) ,⊆) is a complete sublattice of (℘(U)R,⊆). In particular, this
holds for any relation R = Ind(B) ∩ Wind(C), where C ⊆ A,C �= ∅.
Proof. Since Ind(B) is an equivalence relation, in view of Theorem 2, Ind(B) is
R-compatible and the concept lattice L(U,U,Ind(B)c) is a complete sublattice
of the concept lattice L(U,U,Rc). Now by applying Corollary 1, we get our first
assertion. Since the meet of two tolerance relations is also a tolerance relation,
our second assertion is a simple consequence of this. �

Corollary 6. Let R be an equivalence and ρ a tolerance relation on a set U
such that R ⊆ ρ. Then L(U,U, ρc) is a complete sublattice of L(U,U,Rc) if and
only if ρ is an equivalence.

Proof. In view of Theorem 1, L(U,U, ρc) is a complete sublattice of L(U,U,Rc)
if and only if condition (D) holds. If (D) holds then ρ is R-compatible, according
to Corollary 4, and by applying Theorem 2, we obtain that ρ is an equivalence.
If ρ is an equivalence, then condition (D) holds, according to Corollary 2. �

5 Conclusions

In this paper, we examined the relationship between the lattices of upper and
lower approximations of two tolerance relations R ⊆ ρ. We have shown that
the approximation lattices corresponding to ρ form complete sublattices of the
approximation lattices defined by R, whenever the concept lattice L(U,U, ρc) is
a complete sublattice of L(U,U,Rc). We deduced several conditions (see e.g. (D),
(E), (E’)) equivalent to this latter condition on concept lattices (i.e. to one being
a complete sublattice of the other). We also showed that if the greater relation is
an equivalence, then condition (D) automatically holds. However, the converse
is not necessarily true. This is shown in Example 4, where condition (D) holds,
but neither of the relations is an equivalence. However, if in addition, the toler-
ance relations satisfy the compatibility condition (i.e. ρ is R-compatible), then
the greater relation has to be an equivalence. As a future work we propose to
investigate particular types of tolerance relations satisfying the mentioned condi-
tions. For instance, we plan to investigate tolerances induced by an irredundant
covering of the universe, which can be considered as a natural generalization of
equivalences (see e.g. [5]), or tolerances defined by some particular subsets of the
attribute set in an information system.

Example 4. Let R, ρ be two tolerance relations with R ⊆ ρ defined on the
universe U = {a, b, c, d}. This example shows that the concept lattice L(U,U, ρc)
is a (complete) sublattice of L(U,U,Rc), although ρ is not an equivalence relation
(Figs. 8, 9 and Table 6).



278 D. Gégény et al.

a

b c

d a

b c

d

Fig. 8. Tolerances R and ρ satisfy condition (D), but none of them is an equivalence.

Table 6. The contexts (U, U, Rc) and (U, U, ρc)

Rc a b c d

a ×
b ×
c ×
d ×

ρc a b c d

a

b

c ×
d ×

(U, ∅)

(∅, U)

({a}, {b})

({c}, {d}) ({d}, {c})

({b}, {a})

(U, ∅)

(∅, U)

({c}, {d}) ({d}, {c})

Fig. 9. The Hasse-diagrams of the concept lattices L(U, U, Rc) and L(U, U, ρc)
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6. Järvinen, J., Kovács, L., Radeleczki, S.: Defining rough sets using tolerances com-
patible with an equivalence (submitted, 2019)

7. Pawlak, Z.: Rough sets. Int J. Comput. Inf. 11, 341–356 (1982)
8. Pawlak, Z.: Rough set theory and its applications to data analysis. Cybern. Syst.

29(7), 661–688 (1998)
9. Rissino, S., Lambert-Torres, G.: Rough set theory - fundamental concepts, prin-

cipals, data extraction, and applications. In: Ponce, J., Karahoca, A. (eds.) Data
Mining and Knowledge Discovery in Real Life Applications, pp. 35–58. InTech,
Vienna (2009)

10. Pomykala, J.A.: On similarity based approximation of information. Demonstratio
Mathematica XXVII, 663–671 (1994)

11. Slimani, Th.: Application of rough set theory in data mining, arXiv preprint (2013)
arXiv:1311.4121

12. Yang, L., Xu, L.: Algebraic aspects of generalized approximation spaces. Int. J.
Approximate Reasoning 51(1), 151–161 (2009)

13. Yao, Y.Y.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.)
Rough Sets in Knowledge Discovery, pp. 286–318. Physica-Verlag, Heidelberg
(1998)

14. Zakowski, W.: Approximations in the space (U ; Π). Demonstratio Mathematica
16, 761–769 (1983)

http://arxiv.org/abs/1311.4121


Three–Way Classification: Ambiguity
and Abstention in Machine Learning

Andrea Campagner1,3, Federico Cabitza1,2, and Davide Ciucci1(B)

1 Dipartimento di Informatica, Sistemistica e Comunicazione,
University of Milano–Bicocca, Viale Sarca 336, 20126 Milan, Italy

davide.ciucci@unimib.it
2 IRCCS Istituto Ortopedico Galeazzi, Via Galeazzi 4, 20161 Milan, Italy

3 Deloitte Italia, Via Tortona 25, Milan, Italy

Abstract. Ambiguity, that is the lack of information to produce a
specific classification, is an important issue in decision–making and
supervised classification. In case of ambiguity, human–decision makers
can resort to abstaining from making precise classifications (especially
when error-related costs are high), but this behaviour has been scarcely
addressed, and applied, in machine learning algorithms. This contribu-
tion grounds on previous works in the areas of three–way decisions,
cautious classification and orthopairs, and proposes a set of techniques
we developed to address this form of ambiguity, by providing both a
general–purpose technique to create three–way algorithms from proba-
bilistic ones, and also more specific techniques which could be applied
to popular machine learning frameworks. We also evaluate the proposed
idea, by performing a set of experiments where we compare classical
classification algorithms with the corresponding three–way generaliza-
tions, in order to study the trade–off between classification accuracy and
abstention: the results are promising.

Keywords: Machine Learning · Abstention · Three–way decision ·
Data Mining · Ambiguity · Orthopair · Orthopartition · Uncertainty

1 Introduction

Research in the Machine Learning and Data Mining fields has recently taken
central stage in the Computer Science research community: this interest has
been driven by theoretical advancements [3,11,17,23], technological advance-
ments and, chiefly among all, the promising results in different application areas
(driven by the availability of large amounts of data) [13,24,26].

Despite all the attention and recent achievements, a limitation of current
Machine Learning methods is the inability to properly deal with uncertainty
and biases affecting the training datasets which are fed to learning algorithms
as input [15,18,30]. Indeed, as noted in [4] for the healthcare domain, various
forms of uncertainties and biases can affect the training data (missing data,
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inter–rater disagreement, lack of information, ambiguity, . . . ) thus hampering
the performance and, most relevantly, the reliability of the resulting models.

Several uncertainty theories (e.g. rough–set theory [27], fuzzy–set theory [32],
three–way decisions [31],...) have been proposed in order to cope with these
different forms of uncertainty, also with application to Machine Learning [2,21],
but their adoption in mainstream Machine Learning has been lagging, due to
different reasons (e.g. those evidenced in [22] for the case of fuzzy sets).

In this work, we will consider a particular type of uncertainty, lack of
information, also called ambiguity in the terminology of [19]. In the decision–
making/classification domain, this type of uncertainty occurs when a human
(or computational) agent deems the available information insufficient to cast a
univocal and reasonable decision.

Whenever possible, the usual strategy that human decision–makers adopt, in
order to cope with either ambiguous input or uncertain output, is to reject any
pretense of giving a clear–cut decision and, instead, abstain from expressing a
judgment. This approach has the merit of highlighting, in a simple form, which
instances are more uncertain and, consequently, pointing out which ones would
require the acquisition of further information.

While this approach is still little adopted, different authors have tried to
address the abstention behaviour under a computational perspective: here, we
especially mention the work on cautious classifiers [16,20] and the work on three–
way decisions [31]. In the same direction, in order to develop Machine Learning
models with this abstention ability, the authors proposed in [5,6] an extended
decision tree–learning model, based on orthopairs [9,10] and three–way decisions.

In this article, we extend this line of research:

– We introduce a general framework for classification with abstention (or three–
way classification), based on three–way decisions and orthopartitions, which
can be applied to any classification algorithm;

– We define a set of specific strategies which can be used to directly implement
three–way classification in the context of popular learning algorithms (e.g.
decision trees, random forests, logistic regression);

– We conduct an experimental study, in which we compare different classi-
cal learning algorithms with the corresponding three–way ones on various
datasets.

More specifically, in Sect. 2, we give a basic introduction to orthopairs and
orthopartitions. In Sect. 3 the basic methods are introduced, that is: in Sect. 3.1,
we define our approach to convert any classifier into a three–way classifica-
tion algorithm, both in the binary and multi–class settings, providing also a
theoretical–algorithmic analysis of these frameworks; in Sects. 3.2 and 3.3, we
describe the strategies to directly implement three–way classification for three
popular learning models (i.e., Decision Trees, Random Forests and Convex
Learning via Gradient Descent). In Sect. 4.1, we illustrate the setting of the
empirical analysis we conducted in order to compare traditional learning algo-
rithms with three–way ones. In Sect. 4.2, we present the results of the conducted
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experiments, considering the advantages offered by three–way classification algo-
rithms and evaluating the effect of abstention with respect to their performance,
supporting our analysis with standard statistical validation techniques. Finally,
in Sect. 5 we present our conclusions and outline the set of open problems and
issues that we plan to investigate in our future works.

2 Orthopairs and Orthopartitions

Let us recall some basic notions on orthopairs and orthopartitions [6,10].
Let U be a set of objects, an orthopair is a pair O = 〈P,N〉 of subsets of U

such that P ∩ N = ∅. From these two sets we can also define the boundary as
Bnd = (P ∪ N)c. Note that we could take an orthopair as a partially specified
set which expresses our (incomplete) knowledge about the assignment of objects
in a universe to a certain concept class; in this case, set P represents the positive
examples for the concept while N represents the negative ones. We say that a
set S is consistent with an orthopair O if it holds that:

x ∈ P → x ∈ S ∧ x ∈ N → x /∈ S

That is, if we interpret the orthopair O as a partially specified set expressing
our degree of knowledge about the belonging (or not) of certain objects to a set,
S is coherent with our partial knowledge.

We say that two orthopairs O1, O2 are disjoint if it holds that:

(Ax D1) P1 ∩ P2 = ∅;
(Ax D2) P1 ∩ Bnd2 = ∅ and Bnd1 ∩ P2 = ∅.

Definition 1. An orthopartition is a set O = {O1, ..., On} of orthopairs such
that the following axioms hold:

(Ax O1) ∀Oi, Oj ∈ O Oi, Oj are disjoint;
(Ax O2)

⋃
i(Pi ∪ Bndi) = U ;

(Ax O3) ∀x ∈ U (∃Oi s.t. x ∈ Bndi) → (∃Oj with i �= j s.t. x ∈ Bndj);
(Ax O4) |O| ≤ |U |

It can be observed that an orthopartition represents a partial classification,
or a classification with abstentions (in a multi–class setting): the objects in the
boundaries represent those objects whose class assignment is not precisely known
(given the available evidence and, hence, the presence of ambiguity).

Definition 2. A partition π is consistent with an orthopartition O iff ∀Oi ∈
O, ∃!Si ∈ π such that Si is consistent with Oi. We denote with ΠO the set of
all partitions consistent with O: ΠO = {π|π is consistent with O}.
Viewing an orthopartition as a partial state of knowledge about a multi–class
classification (associated with the set ΠO which represents all possible consis-
tent complete states of knowledge), we can extend many measures defined on
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classical partitions to orthopartitions, in particular we will focus on the entropy
and accuracy (the extension of other metrics based on the confusion matrix is
analogous). The logical entropy [14] of a partition π is defined as:

h(π) = dit(π)
|U |2

where dit(π) = {(u, u′) ∈ U × U |u, u′ belong to two different blocks of π}.
We can define three different generalizations of this concept, when applied to
orthopartitions:

Definition 3. Given an orthopartition O, we define the lower entropy, the
upper entropy and the mean entropy respectively as:

h∗ = min{h(π)|π ∈ ΠO} (1a)
h∗ = max{h(π)|π ∈ ΠO} (1b)

hA =
1

|ΠO|
∑

π∈ΠO

h(π) (1c)

As shown in [6,7], all three values can be computed in polynomial time. Let
π1, π2 be two partitions and f : π1 �→ π2 be a bijection between the blocks of
π1, π2, the accuracy of π2 wrt π1 is defined as:

accπ1(π2) =
1

|U |
∑

Si∈π1

|Si ∩ f(Si)|

Similarly, we can provide three generalizations of the accuracy:

Definition 4. Given a partition π∗, an orthopartition O, and a bijection f
between the respective blocks, we define the lower accuracy, the upper accuracy
and the mean accuracy respectively as:

acc∗ = min{acc(π)|π ∈ ΠO} (2a)
acc∗ = max{acc(π)|π ∈ ΠO} (2b)

accA =
1

|ΠO|
∑

π∈ΠO

acc(π) (2c)

Another interesting measure of accuracy (that we denote as accO) is obtained by
considering, in the computation of the accuracy value, only the instances which
are not in the boundary regions: that is, if Ur ⊆ U is the restriction of U to the
objects which are not placed in boundaries for orthopartition O then:

accO =
1
Ur

∑

Si∈π1

|Si ∩ f(Si)|

where Si and f(Si) are similarly restricted to Ur.
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3 The Methods

In this section, we propose the main method of three-way classification and apply
it to different learning strategies.

3.1 Three–Way Classification

Let Y = {y1, ..., yk} be a set of class labels, X = {x1, ..., xn} be a set of objects,
C : X → Y be a function which associates with each object xi ∈ X its true
classification yi

j ∈ Y . Let A be a probabilistic classifier, that is, an algorithm
which, given an object xi ∈ X, returns a probability distribution A(xi) over
Y , that is, A : X → P(Y ), where P(Y ) is the space of probability distribu-
tions over Y . For each yj ∈ Y , A(xi)j represents the probability that algo-
rithm A assigns to the event that yj is the correct class labeling for object xi

(i.e., the subjective probability that C(xi) = yj). Typically, in the Machine
Learning domain, this soft probabilistic classification is then converted into an
hard one by selecting the yj ∈ Y with maximum probability: that is, we define
D(xi) = argmaxyj∈Y A(xi)j and we denote with A(xi)∗ the corresponding prob-
ability. Note that this classification rule completely hides away the uncertainty
of the classifier and, consequently, the ambiguity intrinsic in its input. An app-
roach to let the classifier A fully express its uncertainty, which fully reflects the
ambiguity of its input datum, is to let the classifier abstain on those instances
whose assignment to the classification labels is considered ambiguous.

First, we limit ourselves to a binary classification problem, that is, Y = {0, 1}.
Let ε be the cost associated with an erroneous classification, and let τ the cost
associated with an abstention. Let x ∈ X be an object, it is evident and widely
known [8,16,31] that, in this context, algorithm A should choose to abstain on
x if:

τ < ε ∗ minj∈{0,1}A(xi)j

that is, if choosing to abstain would incur (in the expected value) a lower cost
than adopting a clear-cut classification (selected using the standard decision
rule). The same decision rule could be given using a probability threshold; it is
easy to show that the two formulations are equivalent.

Theorem 1. Algorithm A should select to abstain iff maxj∈{0,1}A(xi)j < 1− τ
ε

Proof. Let A(x)∗ = maxj∈{0,1}A(xi)j , the rule expressed above is equivalent to
τ < ε ∗ (1 − A(x)∗) ⇒ τ

ε < 1 − A(x)∗ ⇒ A(x)∗ < 1 − τ
ε .

The generalization to the multi–class setting, in which partial decisions could
also be expressed, is also feasible and clearly more interesting. Indeed, in [6], a
generalization of this classification rule is proposed as follows. Let Z ⊆ Y , then
in this context we allow the algorithm A to express a decision Z, by which we
mean that the algorithm is confident that the true label of x is in Z but it is
unsure about its precise identity. Let A(x)Z =

∑
yj∈Z A(x)j . If, as in the binary
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classification setting, we adopt a constant abstention cost τ , then the algorithm,
with the abstention decision rule, should abstain on instance x if:

τ ∗ A(x)Z∗ + ε ∗ A(x)Y \Z∗ < ε ∗ (1 − A(x)∗) (3)

where Z∗ ⊆ Y is the set of labels which minimizes the left hand of the inequality,
otherwise it should output the yj corresponding to A(x)∗.

Note that, directly translating this definition (as done in [6]) to an algorithm,
yields a decision procedure which has complexity exponential w.r.t. |Y |. However,
it is easy to observe that not every Z ⊆ Y should be considered in the above
minimization problem. In fact, the above minimization problem can be solved

correctly in a greedy approach: let
∧

A(x) = 〈y∗
1 , ..., y

∗
k〉 be the result of sorting

A(x) in order of decreasing probability. Then the above decision rule can be
expressed, without loss of generalization, as:

τ ∗
j∑

i=1

∧
A(x)i + ε ∗

k∑

i=j+1

∧
A(x)i < ε ∗ (1 − A(x)∗) (4)

where j is the index which minimizes the left hand of the inequality.

Theorem 2. The greedy version of the optimization algorithm is solvable with
time complexity Θ(n) (if A(x) is already sorted).

Proof. For each j we can pre-compute
∑j

i=1

∧
A(x)i in constant time (by accu-

mulating the values of the sum over previous js), from this value we can obtain
∑k

i=j+1

∧
A(x)i in constant time. The result easily follows.

As observed in [6], a constant value of τ has the result that, when the algo-
rithm abstains, Z∗ (i.e. the set of labels which minimizes the optimization prob-
lem) is always Z∗ = Y . This problem can be solved in a regularization fashion,
by penalizing overly uncertain responses from the algorithm. In this case τ is
defined as a function τ : {1, ..., |Y |} → R+ such that, given A,B ⊆ Y , it holds
|A| ≤ |B| → τ(|A|) ≤ τ(|B|).

An interesting aspect to note is that not every value of τ is meaningful in
this context, namely the following result holds:

Theorem 3. Let us consider a n–class classification problem. Abstention can
be achieved only if τ < ε ∗ n−1

n .

Proof. Consider the case of constant τ and the formulation given by Eq. 3. Then,
we have that the algorithm should decide to abstain iff τ < ε ∗ (1 − A(x)∗). But
A(x)∗ ≥ 1

n , thus τ < ε ∗ (1 − A(x)∗) ≤ ε ∗ (1 − 1
n ), from which we obtain the

result.

Example 1. Let x be an instance and A a probabilistic algorithm, defined over
the label set Y = {1, 2, 3, 4} such that A(x) =

[
0.3 0.3 0.2 0.2

]
, and let ε = 1,

τ = 0.4. Then, the right hand of Eq. (3) is 0.7, while Z∗ can be verified to
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be, as expected, Z∗ = Y with the left hand of inequality (3) assuming value
0.4. If, on the other hand, we do not assume a constant τ but instead adopt
τ(Z) = 0.4 · 1

1− |Z|−2
|Y |

, thus penalizing abstentions over a larger set of alternatives,

we have that Z∗ = {1, 2, 3} (equivalently, Z∗ = {1, 2, 4}) and the left hand of
the inequality has value 0.63.

3.2 Decision Trees and Random Forests

In [6] an extended Decision Tree model, called Three–Way Decision Tree
(TWDT), is proposed. It provides a more tight integration of Decision Trees
and Three–Way Classification than the main approach described in this paper.
Let D = {x1, ..., x|D|} ⊆ X be a given dataset with a set of features {a1, ..., am}.
We denote by Da

i = {x ∈ D|va(x) = va
i } the set of instances that have value

va
i for feature a. We associate with Da

i the classification Ca
i , which is obtained

by the decision rule described in Sect. 3.1 (note that this class assignment is
done locally on the tree nodes, and not only on the final output of the clas-
sifier). Since this classification determines an orthopartition Oa, we can then
compute the accuracy of Oa w.r.t. D as described in Sect. 2 (selecting among
acc∗, acc∗, accA) and choose the feature a∗ which results in the maximum accu-
racy value, and then recur (until a termination criterion is met) on the subsets
of D determined by feature a∗.

This approach can be easily extended to Random Forests (or other ensemble
learning algorithms). Basically, the learning process, as in standard Random
Forest learning, first induces a set of n TWDT estimators, which we denote as
T1, ..., Tn. Each of these TWDT estimators can be viewed as an orthopartition
Oi = {〈Py1 , Ny1〉, ...〈Pyk

, Nyk
〉} on the set of instances X, which assigns a set of

labels Ti(x) ⊆ Y to each instance x ∈ X.
Let x ∈ X be a new instance to classify, then the ensemble of trees T1, ..., Tn

determines a basic belief assignment (BBA) (in the sense of evidence theory [28])
mx(S) = |{Ti|Ti(x)=S}|

n . This BBA could then be transformed to a probability
distribution using the pignistic transformation [29] p(yj) =

∑
S�yj

m(S)
|S| , obtain-

ing a probabilistic classifier to which the decision procedure described in Sect. 3.1
could be applied.

3.3 Convex Learning Approximation

Several ML approaches (e.g. logistic regression, SVMs, multi–layer neural net-
works, ...) are based on the Gradient Descent algorithm, which is used to itera-
tively update the parameters of the models by taking in consideration the gra-
dient of a loss function w.r.t. the parameters. A caveat, in order to ensure that
the algorithm converges to a global minimum, is that the loss function should be
a convex function. It is easy to note that the decision rule described in Sect. 3.1
(which could be seen as a generalized version of the standard 0–1 loss) does not
result in a convex loss function:
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Theorem 4. The loss function determined by the decision procedure described
in Sect. 3.1 is not convex.

Proof. Let D(xi) =

⎧
⎨

⎩

Z∗ ∃Z∗which solves Eq. 3,
∧
yi otherwise

Then the loss of algorithm A w.r.t to instance x is L(x) =

⎧
⎪⎨

⎪⎩

0 D(x) = C(x)
τ C(x) ∈ D(x)
ε otherwise

Clearly, L(x) is not convex.

Fig. 1. The depiction of the loss function (in red), and its convex piece–wise linear
approximation (in blue), for positive examples. (Color figure online)

We can, however, define a convex approximation of the above described
loss function [1]. Consider first a binary classification problem, the loss func-
tion described above is depicted in Fig. 1. As shown in Fig. 1 we can, however,
define a convex piece–wise linear approximation to the real loss. Consider first
a binary classification problem assuming, without loss of generality, that ε = 1.
For the positive examples (i.e., those x ∈ X s.t. C(x) = 1) we can express an
approximation from above (so that we never underestimate the error) as:

L(w) = max{0, 1 − w,
(2 ∗ τ − 1) ∗ w + 3 ∗ τ − 1 − τ2

2 ∗ τ − 1
, 2 − w

τ
} (5)

where w = A(x)1 (i.e. the probability that algorithm A assigns object x to the
positive class).

Theorem 5. The loss function described in Eq. 5 is convex.

Proof. Each of the arguments of the max function is linear in w, thus it is convex
(every linear function is both convex and concave). Furthermore the point–wise
max of convex function is convex, from which the statement follows.
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The expression for negative examples is equivalent and symmetric. This loss
function could be then used to directly train convex learning algorithms and,
given a new instance x ∈ X to classify, we compute A(x)1 and then, we classify
x using the decision rule defined in Sect. 3.1.

In order to extend this approach to multi–class classification, we simply adopt
a one–vs–one learning scheme, in which, for each pair of labels yi, yj ∈ Y we
train a classifier Ai,j using the convex loss function described above. Then, given
a new instance x ∈ X to classify, we compute for each classifier Ai,j its output
Di,j(x) and we implement a voting schema:

votey(x,Ai,j) =

⎧
⎪⎨

⎪⎩

1 Di,j(x) = y
1

|Di,j(x)| y ∈ Di,j(x)

0 otherwise

and the final votes are computed as votey(x) =
∑

Ai,j votey(x,Ai,j) which,
again, determines a probabilistic classifier to which the decision rule described
in Sect. 3.1 can be applied.

4 Experimental Comparison

In order to test the flexibility offered by allowing an abstention decision (or a set
of abstention decisions, in the multi–class setting) we performed an experimental
comparison, analyzing a variety of traditional ML algorithms and their respective
Three–Way generalization, on a set of datasets. More specifically, we considered
the following algorithms: k–nearest neighbors (KNN), logistic regression (LR),
linear discriminant analysis (LDA), Naive Bayes (NB), SVM s, random forest
(RF). For each of these algorithms we also considered the three-way general-
ization obtained as described in Sect. 3.1 (these algorithms are denoted as TW
followed by the acronym of the algorithm as defined previously); in addition, we
also considered the three–way decision tree model (in the following denoted as
TWDT), described in Sect. 3.2.

4.1 Settings

We compared the algorithms on the following datasets:

– Iris: 150 instances, 4 features, 3 classes;
– Wine: 178 instance, 13 features, 3 classes;
– Breast cancer : 569 instance, 30 features, 2 classes;
– Digits: 1797 instances, 64 features, 10 classes;
– Yeast : 1484 instances, 8 features, 10 classes;
– Olivetti faces: 400 instances, 4096 features, 40 classes;
– SF12 Mental score (described in [5]): 462 instances, 10 features, 2 classes;



Three-Way Classification 289

In order to set the values of τ and ε (i.e. the abstention and error costs), we simply
selected ε = 1 and determined the optimal value of τ using cross-validation.
Indeed, for each of the above datasets, we trained the classification algorithms
using a 5–fold cross-validation, in order to select the optimal hyper–parameters
(which includes τ) of the algorithms (e.g., the tree depth for decision trees).
Then, we retrained the algorithms with the best selected hyper–parameters and
reported the means and standard deviations of the accO accuracy measure (we
considered this measure, as motivated in [16], in order to better analyze the
trade–off between classification accuracy and abstention). For the three–way
classification algorithms, in order to evaluate the trade-off among classification
accuracy and coverage (defined as the fraction of objects which are assigned a
clear–cut classification), we also measured the abstention rate, simply defined as:

Abst(A, T ) =
∑

x∈T

|D(x)|
|Y |

where A is a three–way classification algorithm, T is a testing set and D(x) ⊆ Y ,
as in Sect. 3.1, is the output labeling of algorithm A on instance x.

In order to more systematically study the trade-off among abstention and
classification, for the dataset Breast cancer and for algorithms TWRF and
TWSV M , we also reported the variation with respect to the abstention cost
τ of three different metric: accuracy, true positive rate (TPR), and true negative
rate (TNR).

4.2 Results

The results of the experimental comparison are illustrated in Table 1 and, for
one specific dataset (Yeast), in Fig. 2.

Table 1. Measured 95% confidence intervals, centered around the mean accuracy, for
the considered datasets and algorithms.

Algorithm Iris Wine Breast Digits Yeast Faces SF12

KNN 0.98 ± 0.03 0.75 ± 0.13 0.93 ± 0.04 0.98 ± 0.03 0.57 ± 0.03 0.90 ± 0.16 0.82 ± 0.02

TWKNN 1.00 ± 0.00 0.99 ± 0.02 0.99 ± 0.01 0.90 ± 0.00 0.67 ± 0.02 0.89 ± 0.01 0.82 ± 0.01

LR 0.95 ± 0.06 0.95 ± 0.05 0.95 ± 0.02 0.93 ± 0.04 0.53 ± 0.03 0.96 ± 0.03 0.73 ± 0.13

TWLR 0.96 ± 0.01 0.98 ± 0.02 0.98 ± 0.01 0.96 ± 0.02 0.78 ± 0.01 0.98 ± 0.01 0.77 ± 0.01

LDA 0.98 ± 0.04 0.98 ± 0.03 0.96 ± 0.03 0.92 ± 0.03 0.59 ± 0.01 0.98 ± 0.01 0.83 ± 0.12

TWLDA 0.98 ± 0.04 0.99 ± 0.00 0.97 ± 0.01 0.94 ± 0.02 0.72 ± 0.07 0.99 ± 0.01 0.83 ± 0.12

NB 0.95 ± 0.04 0.96 ± 0.03 0.94 ± 0.03 0.81 ± 0.06 0.15 ± 0.02 0.82 ± 0.03 0.82 ± 0.07

TWNB 0.97 ± 0.03 0.98 ± 0.03 0.95 ± 0.03 0.83 ± 0.05 0.16 ± 0.02 0.84 ± 0.02 0.86 ± 0.05

SVM 0.98 ± 0.03 0.73 ± 0.09 0.94 ± 0.02 0.97 ± 0.02 0.52 ± 0.03 0.79 ± 0.05 0.74 ± 0.04

TWSVM 0.98 ± 0.01 0.90 ± 0.01 0.96 ± 0.01 1.00 ± 0.00 0.81 ± 0.02 0.87 ± 0.04 0.83 ± 0.06

RF 0.97 ± 0.03 0.98 ± 0.03 0.96 ± 0.02 0.94 ± 0.02 0.58 ± 0.03 0.93 ± 0.02 0.83 ± 0.05

TWRF 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.80 ± 0.02 0.98 ± 0.01 0.85 ± 0.03

TWDT 0.97 ± 0.03 0.89 ± 0.07 0.94 ± 0.03 0.83 ± 0.04 0.63 ± 0.02 0.61 ± 0.15 0.84 ± 0.06
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Fig. 2. Measured values of accuracy (and their 95%CIs) for the algorithms under test
(regular version, R, on the left) and their three–way version (TW, on the right), on the
dataset Yeast. Comparing the confidence intervals visually, it is clear that significant
differences are observed for 5 model families (namely, KNN, LR, LDA, SVM and RF).

In Table 2, we reported the average ranks of the algorithms (i.e. for each dataset
we sorted the algorithms in order of decreasing average accuracy, then we com-
puted the average rank across the datasets).

Table 2. Average ranks of the top 10 performing algorithms.

Alg. TWRF TWLDA TWLR TWSVM LDA RF TWKNN KNN LR TWNB

Rank 1.75 2.96 3.18 3.57 4.32 4.64 4.64 5.86 6.14 6.78

As can be easily observed from Table 2, in every case the adoption of the pos-
sibility of abstention decreases the average rank of the respective algorithm (thus,
the algorithm increases its performance). This effect can be explained by noting
that the possibility of abstention gives the algorithm the ability to not express a
clear–cut decision in those instances which are placed near the decision boundary
(i.e. the instances whose class assignment is most uncertain) but, instead, report
a list of possible classifications (which, with high confidence, includes the real
label). In order to assess if the improvements given by the possibility of absten-
tion were statistically significant, we performed a pair–wise Friedman test [12]
for each pair of three–way/classical algorithm, with Li’s correction for multiple
hypothesis testing [25]: one of the three–way algorithms (TWSVM) was found to
be significantly better than the respective classical with a p-value = 0.02, for two
others (TWRF, TWLR) there was weak evidence of improvement, albeit with a
lower p-value = 0.08 (all other algorithm pairs reported a p–value > 0.1), when
considering the standard confidence level of CL = 95% only the first difference
is statistically significant.

In order to investigate the trade–off between classification accuracy and
abstention, as mentioned in Sect. 4.1, we measured the abstention rate of the
three–way algorithms, as shown in Table 3. It could be easily observed that,
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Table 3. Measured abstention rates for the considered datasets and three–way algo-
rithms.

Algorithm Iris Wine Breast Digits Yeast Faces SF12

TWDT 0.05 0.00 0.08 0.00 0.24 0.08 0.49

TWKNN 0.13 0.58 0.20 0.95 0.11 0.04 0.00

TWLR 0.01 0.19 0.14 0.19 0.27 0.02 0.60

TWLDA 0.00 0.05 0.08 0.30 0.16 0.03 0.00

TWNB 0.07 0.03 0.02 0.05 0.02 0.02 0.34

TWSVM 0.16 0.42 0.05 0.04 0.17 0.11 0.29

TWRF 0.05 0.15 0.13 0.08 0.17 0.05 0.31

in general, the abstention rate is greater than the corresponding increase of
accuracy. This effect likely emerges because some of the instances that were
classified correctly by a classical algorithm, were so only by chance (i.e., they
were assigned to the correct class label, but with a low confidence level) and,
thus, the corresponding three–way algorithm makes this phenomenon appar-
ent (this is particularly evident for the TWKNN, which registered the highest
value of abstention rate). An interesting observation is that in the Yeast dataset,
the three–way algorithms performed significantly better than the classical ones,
with only a moderate increase in abstention rates. It could also be observed that
the best performing algorithm (TWRF) was consistently better than the other
algorithms in every dataset, although no statistically significant difference (at
CL = 95%) could be found with the second ranking algorithm (i.e., TWLDA,
p − value = 0.28).

Finally, as mentioned in Sect. 4.1, we analyzed the variation of different met-
rics, that is accuracy, true positive rate (TPR), true negative rate (TNR) and
abstention rate, with respect to varying τ on two algorithms: the results are
shown in Figs. 3 and 4.

Fig. 3. Variation, w.r.t. abstention cost τ , of different metric for the TWRF algorithm:
accuracy, tpr, tnr (left); abstention rate (right).
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Fig. 4. Variation, w.r.t. abstention cost τ , of different metric for the TWSVM algo-
rithm: accuracy, tpr, tnr (left); abstention rate (right).

As can be easily observed, both the accuracy and the abstention rate increase
monotonically with decreasing τ (for both algorithms); furthermore there is a
variation in the observed measures only for values τ ≤ 0.2 and, even at τ = 1,
the observed abstention rates were small; this can be explained, as noted by
Theorem 1, as the algorithms assigned great confidence to their predictions.

A final point to note is that the TNR for algorithm TWSVM, shown in Fig. 4,
decreases with decreasing abstention cost: this could be related to a deficit in the
training dataset, which highlights a possible difficulty in detecting true negative
instances.

5 Conclusion

In this work we presented a comprehensive framework to address three–way
classification, both in the binary and the multi–class case, by providing a gen-
eral approach to convert probabilistic classifiers into three–way algorithms. To
this aim, we also focused on two techniques to directly embed the possibility of
abstention given by this classification approach into three popular learning mod-
els. Consequently, in order to evaluate the proposed classification framework, we
performed an empirical evaluation comparing a set of traditional learning algo-
rithms with the respective three–way generalizations, on a variety of datasets.

The obtained results showed that, in every case, the possibility to abstain on
difficult instances, given by three–way classification yields an increase, sometimes
significant, in performance and, perhaps more importantly, the possibility to iden-
tify the instances that are considered ambiguous by the classification algorithms.

This last aspect, in our view, is especially important because it could be used
in a human in the loop setting, to point out to the human decision–maker which
instances might require the acquisition of further or more precise information
and require special attention: that is, despite the uncertainty intrinsic to these
three–way predictions, these could nevertheless be useful to the human decision
maker as a way to raise awareness of the weak points and ambiguities affecting
the available data.
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Given the promising results that we obtained, we plan to continue this line
of research considering the following issues and open problems:

– in this paper, we introduced both a general approach to build three–way clas-
sifiers and also two more techniques that may be applied to specific learning
algorithms. Although we analyzed one such technique (learning of three–way
decision trees), we plan to study if directly implementing three–way classi-
fication in ensemble tree–based algorithms (e.g. random forests) and convex
learning algorithms could be more advantageous than the general post–hoc
strategy evaluated in this work;

– in this work, we primarily focused on ambiguity in the output, that is, how
ambiguity could be managed by allowing three–way, instead of crisp, classifi-
cations. However, ambiguity is a multi–faceted problem that could arise also
in the input: both in the target attributes (e.g. abstentions are already present
in the given gold standard) and the predictor ones (which could present miss-
ing or partial values). While we performed some initial works relating to these
issues [5,6], we plan to expand this line of research, especially in regard to
ambiguity in predictor attributes, in order to build a comprehensive frame-
work for managing ambiguity in machine learning.
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Abstract. This paper is an attempt to show how dialogue between a
system and a user is important to design a robust system which can learn
a user’s perspective and revise its knowledge base through interactions.
The dialogue is crucial in order to better respond to a given query of a
user. The problems, where dialogues can play a role, are discussed from
two aspects. One is the aspect in which the system becomes able to learn
the perspectives of the user(s) and improve its quality of classifications.
The other is the aspect where the system can help a user to get answers
to its queries. We have, in particular, considered the problems of (i)
learning a user’s ontology of concepts, (ii) explaining the system’s own
classification for a cluster to the user in order to get feedback, and (iii)
generating a global description for a cluster, in a user-friendly language,
based on a sample of objects available to the system.

Keywords: Rough set · Concept approximation · Dialogue ·
Classification

1 Introduction

In the present era of information science, looking for relevant information using
a system-user interface is a more common practice than enquiring to a next-door
neighbour [1]. Different web application systems are increasing in numbers with
different information providing facilities. How the system can answer all possible
questions of a user related to a domain? Clearly, apart from an initial knowledge
base, the system must have a continuous access to this dynamically changing
real physical world. So, naturally to build such a system one must include a fea-
ture, e.g., continuous learning and developing through interactions with a set of
domain experts or users. For this the system requires learning a user’s ontology
of the domain of concepts. Moreover, a language, through which the user-system
interactions can be modeled, is needed. This language, aim of which is to express
the behaviour of a community of agents to satisfy their needs, can be treated as a
complex dynamic object evolving with time [2–4]. The behaviour of community
c© Springer Nature Switzerland AG 2019
T. Mihálydeák et al. (Eds.): IJCRS 2019, LNAI 11499, pp. 295–311, 2019.
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of agents may lead to cooperation, competition or coalition formation. The skills
of the community members can improve with time. The continuous learning of
new communication forms and strategies causes evolution of the whole communi-
cation language. The discussed issues are especially important for constructing
intelligent systems, which are able to explain undertaken decisions (see, e.g.,
home.earthlink.net/˜dwaha/research/meetings/ijcai17-xai/).

We shall discuss some exemplary cases concerning the evolution of a com-
munication language among the system and the users. Let there be a database
system for a particular domain D. While designing the system the general ontol-
ogy of the concepts related to D is already embedded to the system by the
designer of it. Given a concept from this general ontology, the system is able
to classify it with respect to a set of finitely many simple concepts, lying in
the lower level of the ontology. These simple concepts can be regarded as the
attributes or parameters for classifying the available objects of the system as the
positive/negative cases of a certain higher level concepts. In particular, let the
domain D be about the papers on approximation. There are different branches
of approximation, among which some are related by some means and some are
non-comparable. While designing the database for the papers on approximation,
it is expected that this general ontology of D is incorporated in the system. So,
one classification problem is sorting the database for the articles on rough set
approximation. Based on the known domain ontology the system may select a
set of keywords such as rough set, lower approximation, upper approximation
etc. as attributes, and classify the articles as positive and negative instances of
rough set approximation. If the attributes for classification are changed, the pos-
itive and negative instances of the concept vary as well. So, based on the general
domain ontology, some concepts are already characterized by the system with
respect to the available articles. Now, let us assume that a user is looking for
articles related to rough approximation operators. If the concept appears new to
the system, the challenges for the system are as follows.

1. What is the relationship between the concepts already approximated by the
system and the concept, the user is looking for?

2. How to understand the user’s ontology of the domain of literature based on
the system’s own ontology of the domain of literature?

3. What form of communication is needed to provide a well approximation of
the user’s concept, in the language understandable by the user, with the help
of the already existing classifications of the concepts available to the system?

Such problems are typical cases, that one needs to consider while designing
an automated intelligent system which can provide answer to a user’s query.
Let us denote the general ontology of the concepts of a domain, which consists
of the concepts of different levels, including the atomic attributes/features, and
their interrelations, by the symbol OG. For simplicity, OG may be identified with
its underlying set of concepts. The system classifies objects based on a subset
A of attributes from OG. The user’s ontology of the same domain of concepts
may be different from that of the system. Here, we impose that the system’s
ontology OG is somehow embedded in the user’s ontology OU as it is natural

http://www.home.earthlink.net/~dwaha/research/meetings/ijcai17-xai/
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that being an expert or interested user of the domain of literature the user is
aware of the existing general ontology of the domain. So, f(OG) ⊆ OU where
f is a mapping which embeds the general ontology OG into a specific ontology
OU . In particular, f can be a translation of the language of OG to that of OU .
Now, given C ∈ OU either C ∈ OG or C ∈ OU \ f(OG). For C ∈ OG, the
system must have a classification, and with the help of that classification C can
be represented by a set of lower level attributes from OG. As f(OG) ⊆ OU ,
the user can translate the system’s classification of the concept C in terms of
her ontology. The user may or may not agree with the system’s classification.
This leads to one direction of exploration. The other possible aspect is when C
lies outside the system’s ontology of the domain of concepts. Here, the question
of learning the user’s ontology of the concepts comes; consequently a necessity
for the user-system dialogue comes in as well. To explain how dialogues can be
integrated in the process of learning, to some extent, we shall depend on [5,6].

This paper attempts to address the challenges of the following aspects of the
classification problem. One is to learn a user’s ontology of concepts in order to
classify a concept given by the user using the database available to the system.
The second is to build a communication language between the system and the
user so that (i) the system can ask for the user’s feedback on a classified concept,
(ii) the user can ask for the system’s explanation about the method of classifi-
cation, (iii) and through such interactions the system can learn to improve its
quality of classification. The issues discussed in this paper are also relevant to
the recently raised problems of Explainable AI [7]:

Deep learning approaches, trained on extremely large data sets or using reinforce-

ment learning methods have even exceeded human performance in visual tasks, partic-

ularly on playing games [...] Even in the medical domain there are remarkable results.

However, the central problem of such models is that they are regarded as black-box mod-

els and even if we understand the underlying mathematical principles of such models

they lack an explicit declarative knowledge representation, hence have difficulty in gen-

erating the underlying explanatory structures. This calls for systems enabling to make

decisions transparent, understandable and explainable. [...] medical professionals must

have a possibility to understand how and why a machine decision has been made.

As the possible challenges to the above aspects cannot be all visualized a
priori, we focus on a few aspects of such challenges. We will explain the problems
and the proposals through some exemplary cases, such as classifying articles
from a particular domain of literature, classifying handwritten digits etc. The
proposed prescription to the problems is not a complete flow-chart of a step-
by-step method; our intention is to see the possibility of using the approach to
some fragments of the challenges, and develop the proposal further as future
work. In Sect. 2, we present a very brief introduction to the language of dialogue
as required for this paper. Sections 3–6 focus on different aspects of the problem
mentioned in the last paragraph. Section 7 presents an example.
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2 A Language Modeling Dialogues Between User
and System

In [5], we developed a notion of dialogue in a dialogue base (G1, G2, . . . , Gr, Rint,
Rext), where by dialogue base we mean a set of databases G1, . . . , Gr having an
internal relation Rint within each database, and an externel relation Rext connect-
ing different databases. The idea was to incorporate a possibility of interaction
among databases of different agents. Here, at the simplest case, we assume two
databases; one corresponds to the system and the other corresponds to the user.
Below we present an example showing the basic forms of dialogues between agents.

Example 1. An outcome of a dialogue is presented just by a sequence of symbols.
These symbols can be objects, attributes, values of the attributes, or compound
concepts from the ontology of the domain of the database, and some auxilliary sym-
bols. Here we present how the syntax of the language of dialogue would look like.

(i) A sequence of the form 〈a1, a2, . . . , al〉 for any finite l, and attributes
a1, . . . , al is a dialogue. Any concept from the ontology is also regarded as
an attribute.

(ii) A sequence of the form 〈x1, . . . , xk〉 consisting objects of the database is
a dialogue.

(iii) A dialogue of the form 〈x1, . . . , xk §y1, . . . , yq §C〉 consisting of objects
x1, . . . , xk, y1, . . . , yq, and a concept C represents that the first sequence
of objects are positive instances of C, and the second sequence of objects
are negative instances of C. The symbol § is an auxilliary symbol behaving
as a separator.

(iv) A dialogue of the form 〈x1, ( ), . . . , xk §y1, . . . , yq §C〉 represents dropping
some cases from the positive instances. Similarly, one can express dropping
some cases from negative instances and/or both.

(v) A dialogue of the form 〈a §x1, . . . , xk §?〉 represent a query whether the
objects satisfy the attribute a.

(vi) A dialogue of the form 〈a §x1, x2, . . . , xk §+,−, . . . ,+ §〉 represents that
x1 is a positive instance of a, x2 is a negative instance of a, and so on.

(vii) A dialogue of the form 〈x1, . . . , xk §�?‘〉 represents a query that which
attributes characterize the objects x1, . . . , xk.

(viii) A dialogue of the form 〈� §a1, . . . , al〉 represents that the attributes
a1, . . . , al needs to be modified.

(ix) A dialogue of the form 〈x1, . . . , xk §C ?〉 indicates to verify if x1, . . . , xk

satisfies C.
(x) A dialogue of the form 〈x1, . . . , xk §C �?‘〉 indicates to explain by which

attributes x1, . . . , xk are counted as instances of C.
(xi) A dialogue of the form 〈a1, . . . , al � C〉 represents that the attributes

a1, . . . al define the concept C. Moreover, C ≈ C ′ represents that two
concepts C and C ′ are equivalent. Hence a combined dialogue of the form
〈a1, . . . , al � C §C ≈ C ′〉 represents an explanation that the attributes
defining C can also define C ′.
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(xii) A dialogue of the form 〈x1, . . . , xk � C〉 denotes the objects x1, . . . xk

classify C.
(xiii) A dialogue of the form 〈[x1, x2, . . . , xk−1, xk] §xk � C §a1, . . . al〉 repre-

sents that x1, . . . xk−1, xk belong to a similarity class, where only xk is
classified by C with respect to the attributes a1, . . . , al.

(xiv) Acceptance and rejection notifications for a set of objects classifying a
concept C can be presented by 〈x1, . . . , xk §C��〉 and 〈x1, . . . , xk §C�〉
respectively.

3 Learning User’s Ontology of Concepts Through
Dialogues

Here, the main issue is to learn the user’s ontology of a domain through inter-
actions. In this regard, the readers are referred to Fig. 1 and the papers [8,9].
Let C be a concept of OU \ f(OG), of which the system does not have a clas-
sification. The system’s task here is to learn the user’s concept C, on the basis
of its own available objects and already classified concepts, through dialogue.
One such possibility is when the user provides a feedback on a sample of objects

Fig. 1. Learning user’s ontology of concepts through dialogue [8,9]

Fig. 2. Learning attributes through user’s feedback on classifying objects
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Fig. 3. Learning approximation of concepts through dialogues

with respect to a binary attribute a representing the characteristic function of
C (Fig. 2). The system then tries to discover relevant objects to approximate
a. The result of approximation may be tested through dialogues with the user
(Fig. 3). Another possibility is as follows.

(i) In order to understand C ∈ OU \ f(OG), the system first matches the given
description of C with its set of attributes A. Let C be described by the
user using the set of attributes DC . The system can check |B∩DC |

|DC | for any
B ⊆ A such that B ∩ DC �= φ. This value provides a degree of matching
between DC and the attributes available to the system. Based on this value,
the system selects a set of attributes B.1

(ii) The system then checks the relationship of the user’s concept with the
concepts that are classified by the system with respect to B. Let C1

B , . . . , Ck
B

be the concepts that are classified by the system with respect to B. The
system now can one by one check the relationships of these concepts with C.
Without loss of generality, we assume that the system first starts interaction
with the user to check the relationship of C with C1

B . As f(C1
B) ∈ OU , the

system’s target would be to understand the interrelation between C and
f(C1

B), the embedded image of C1
B in OU .

(iii) Let {xp1, . . . , xpi} and {xn1, . . . , xnj} be respectively the sets of posi-
tive and negative examples for C1

B . So, the system sends 〈xp1, . . . , xpi §
xn1, . . . , xnj §C1

B〉 to the user for her feedback. Let us also note, that follow-
ing the terminologies of rough set literature the positive instances of C1

B can
be identified as the objects belonging to the lower approximation of C1

B and
the negative instances of C1

B can be identified with the objects belonging to the
complement of the upper approximation of C1

B . So, we denote C1+
B = C1

B and

(C1−
B )c = C1

B , with respect to the set of attributes B.
(iv) The user can either change the position or drop an object from the sequence.
1 Here, it is to be noted that there can be a situation when DC does not have non-

empty intersection with any available subset of attributes. Such a possibility will
also be touched upon in the later part of this discussion (cf. item (c)).
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Dropping Instances

(a) If the user drops some objects from the positive instances of C1
B , then accord-

ing to the user a subset of the set of positive instances of C1
B are the positive

instances of C. So, there might be a set B′, where B ⊆ B′ ⊆ A, character-
izing the set of positive and negative examples accepted by the user. If the
search for such a B′ ends in an affirmative result, the system learns a clas-
sification of a new concept C with respect to its available sets of attributes
and objects.

(b) When the user drops some objects from the negative instances of C1
B , C1

B ⊆
C. So, C is considered a more general concept than C1

B . So, there can be
B′(⊆ B), which classifies C by the pair of sets of objects, recommended by
the user.

(c) If the user drops some objects from the positive as well as negative instances,
then C ⊆ C1

B and C1
B ⊆ C. So, borderline instances of C is more than that

of C1
B .

In the system there can be a subset B′ of attributes such that B ⊆ B′ ⊆ A
and it characterizes exactly those positive instances of C1

B , that are recom-
mended by the user. On the other hand, as C1

B ⊆ C there can be some
attributes in B by which some possible cases of C cannot be described. In
that case, the system needs to learn those attributes of B′(⊇ B) that are
more crucial to understand C. The system initiates a dialogue with the user
by sending a sequence 〈aB′

1 , . . . aB′
n 〉 of attributes from B′ in order to under-

stand whether the concept C satisfies those properties. In response the user
can drop and/or add some new to the list. If all the revised attributes are
already available to the system, it starts a new dialogue by sending the set
of positive and negative examples, characterized by those attributes, to the
user. If some of the attributes are not listed in the database, then the sys-
tem needs to learn the relationship of that set of attributes, say B′′, with the
already available ones. So, for each a ∈ B′′, the system sends a sequence of
the form 〈a §x1, . . . , xn §?〉 where {x1, . . . , xn} is the set of objects present in
the system’s database. In response, the user returns a sequence where each
object xi is either replaced by + or −, or left unchanged. The signs + and
− respectively indicate that the respective object is a positive and negative
instance of a; if it is left unchanged, that means the user considers it nei-
ther as a positive nor as a negative instance of a. Thus, the system learns a
classification for each new attribute of B′′, and returns to the step (iii).

Changing Position

(d) We suppose that the user changes some positive instances of C1
B to the

negative instances. So, C ⊆ C1
B and (C1

B)c ⊆ (C)c, i.e., C ⊆ C1
B . This is same

as step (a) with one additional constraint that some of the positive instances
of C1

B are counterexamples for C. Here, because C ⊆ C1
B , there must be some

more additional attributes which are not qualifying a few positive instances
of C1

B as the positive instances of C. So, the attributes that characterize the
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thrown out cases are important. Let xpk1 , . . . xpki
be those positive instances

of C1
B that are considered as negative instances of C. The system takes into

account the additional attributes which satisfy {xpk1 , . . . xpki
} but not the

rest of the positive instances of C1
B . These attributes are sent to the user as

a form of a dialogue in order to get feedback from the user. As like case (c),
the user can either drop or add some new attributes, and if some of these
new attributes are new to the system, system first learns the classifiers for
these new attributes.

(e) Let us assume that the user changes some negative instances of C1
B to the

positive instances. So, C1
B ⊆ C and C1

B ⊆ C. As like above, the system
first tries to find the set of attributes that characterizes {xqk1 , . . . , xqkj

},
the negative instances from C1

B which satisfy C. The process of learning is
similar as (c) by asking for the user’s feedback on some possible attributes.
After that, it returns to the step (iii) with respect to new attributes.

(f) Let us assume that the system changes xpk1 , . . . , xpki
, a few positive

instances of C1
B to the negative instances of C and xqk1 , . . . , xqkj

, a few
negative instances of C1

B to the positive instances of C. Here, three sets of
attributes have significant role in designing the required concept C. One is
the set, say B′, that characterizes C ∩ C1

B . The others are the sets B′′ and
B′′′ respectively characterizing {xqk1 , . . . , xqkj

} and {xpk1 , . . . , xpki
}. The

sets of attributes B′ and B′′ need to pass through a close scrutiny as they
are satisfying two subsets of C, and the set B′′′ of attributes need to be
avoided as they satisfy xpk1 , . . . , xpki

, the cases which are denied to be pos-
itive instances of C. So, the system enquires for a feedback on these three
sets of attributes. After coming to a consensus with the user, the system
repeat the step (iii) with the set of attributes, agreed with the user.

Dropping and Changing

(g) Here the user drops some positive instances from C1
B and changes some

negative instances of C1
B to the set of positive instances of C. So, here

(C)c ⊆ (C1
B)c, and hence C1

B ⊆ C. So, first thing is to find a subset B′ of
attributes such that B′ ⊆ B and B′ characterizes C. But as C ⊆ C the
system must find some additional attributes which characterizes exactly C.
One way is to find out the sets of attributes which characterizes respectively
C ∩ C1

B and the subset of negative instances of C1
B which are considered as

positive instances of C. Learning the set of attributes is same as before by
collecting feedback of the user.

(h) Let us consider that the user drop some negative instances of C1
B , and change

some positive instances of C1
B to the negative instances of C. Clearly C ⊆

C1
B . So, there must be B′ such that B ⊆ B′ and B′ characterizes C. To

find the additional attributes one may look for those attributes which do
not satisfy those positive instances of C1

B that are considered as negative
instances of C.
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4 Explanation of System’s Classifications Through
Dialogues

Here we consider the problem of ontology approximation pertaining to under-
standing how the system labels a pair of clusters as respectively the positive
and negative instances of a concept. Let C ∈ OG, for which the system has an
available classification.

(i) Let us assume that the user enters a query for C, and in response the system
provides a sequence of positive and negative instances of C.

(ii) We consider the case when the user is interested to know based on what
parameters or reasoning the system chooses the positive and negative
instances of C.

(iii) In this regard, the user asks the system to explain its classifica-
tion for the positive and negative instances of C using the dialogue
〈xp1 , . . . , xpk

;xn1 , . . . , xni
§�?‘〉.

(iv) In response the system sends the sequence of attributes 〈a1, . . . , al〉, based
on which the classification is made. If the user needs more detailed expla-
nation she can ask for next round of explanation by sending a sequence
〈a1, . . . , al � C §�?‘〉. The explanation may have an indirect explanation
of the form 〈a1, . . . al � C ′ §C ′ ≈ C〉, meaning that the set of parameters
{a1, . . . , al} implies C ′ and C ′ is similar to C.

(v) One possibility is that the explanation satisfies the user. If not, it may
still help the user to guess the differences between the system’s way of
understanding C and that of her own. This forces the user to be more
precise in choosing a set of attributes for describing C. The system then
starts a new search based on these new attributes.

(vi) In step (v) if the system learns some new attributes, which were not taken
care of by the system before while classifying the positive and negative
instances of C, then the system revises its database by introducing new
attributes for describing C.

5 Learning How to Label Clusters Through Dialogues

Let the system through dialogues, as discussed above, be able to approximate
OU , the user’s ontology (Fig. 1). Now we assume that the system discovers a
cluster of objects, obtained by a heuristic method. For instance, the system can
notice that some objects with respect to some attributes assume quite similar
values, and the system creates a heuristic algorithm for defining the cluster. But
the description of such an algorithm may not be very simple to communicate to
the user. So, the system needs to learn how to label this cluster with a description
that can be understandable by the user.

(i) The system, in this context, sends a sequence of the form 〈xp1 , . . . , xpk
§�?‘〉

to the user asking for the attributes that would describe xp1 , . . . , xpk
.
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(ii) The user can send a sequence 〈C1, . . . , Cj〉 of concepts to check if that
describe the cluster. As for each concept of OU , the system already learned
a way of approximation, the system checks the positive and the negative
instances of each of C1, . . . , Cl, using the characteristic functions of the
approximations of these concepts as attributes, and match with the cluster
of objects xp1 , . . . , xpk

.
(iii) If the cluster matches with the lower approximation obtained with respect

to each of C1, . . . , Cj to an extent greater than or equals to a threshold,
the system can label the cluster by the proposed set of properties. If not,
the system may simply drop those concepts, say Cj1, . . . Cjl, for which the
clustering mismatches to a greater extent, and label the cluster by the rest
of the concepts. But if number of such concepts not matching the cluster
is significantly big, the system also can request the user for modification of
those attributes by sending a sequence 〈�;Cj1, . . . , Cjl〉. Now though for
each Ci, 1 ≤ i ≤ l, {xp1 , . . . , xpk

} ∩{xp1 , . . . , xpk
}

Ci

has a significant num-
ber of elements, each of the lower approximations may not have the same
intersection with {xp1 , . . . , xpk

}. If ∩l
i=1({xp1 , . . . , xpk

}
Ci

∩ {xp1 , . . . , xpk
})

contains significant number of cases, then the resultant set can be considered
as the positive instances of the combined concept C1& . . . &Cl. Otherwise,
dropping some of the concepts would help the system to have a more general
description of the cluster.

So, when with respect to the available set of attributes all the elements of the
cluster become difficult to describe, it needs to be described approximately. In
such cases, the descriptions involving generalized quantifiers can help.

6 Searching Relevant Description for a Complex Cluster

In this section we focus on, how through the dialogues the system learns to
create a general description for a cluster from the descriptions of the individual
objects of the cluster. The description should be understandable by the user.
Continuing the example of Sect. 5, we consider a cluster of objects for which the
system does not have a simple, straightforward description. The issue is to learn,
through dialogues with the user, an invariant description for the whole cluster.
We assume that the cluster has a huge number of elements the patterns of which
are not easy to formulate with a well-defined description. The system wants to
learn a description for the cluster by gathering the user’s point of view on a
sample of it. To illustrate, let us consider that from a sample {x1, . . . , xk} of
(images of) objects the system induce a description, such as a region surrounded
by a circular disc. The system wants to make its description more generalized
and of improved quality so that it suits to all objects of the cluster.
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(i) In order to get the user’s feedback on the given description for the set of
objects, the system sends a sequence 〈x1, . . . , xk §+,−, · · · + §C〉 to the
user where C represents a region surrounded by a circular disc, and + and
− represent the respective positive and negative instances of C from the
sample.

(ii) Observing the individual objects and the description provided by the sys-
tem, the user suggests a new description viz., handwritten letter O. This
dialogue formally looks like 〈x1, . . . , xk §+,−, . . . ,+ §C ′〉, where C ′ rep-
resents handwritten letter O.

(iii) The system then checks if such a description fits to the other objects
of the cluster. So, it selects an arbitrary test set of positive instances of
C, say {xpk1 , . . . , xpkj

}, from the same cluster, and sends the sequence
〈xpk1 , . . . , xpkj

§C ′?〉 to the user for verifying whether according to the
user these are positive instances of C ′.

(iv) The user either can agree with the same description for this new set of
objects from the cluster, or can provide a more general description fitting
both the sample and test set of objects. In the latter case, the system again
starts a new verification round with the user based on a new test set of
objects. In the former case, the user continues the verificactions for a few
number of times with different test sets of objects. If with a significantly
high probability these test sets conform with the description provided by
the user, the system accepts the description C ′ for the whole cluster.

(v) Once a description C ′ is settled between the system and the user as a
relevant description for the whole cluster, the system needs to learn the
definition of C ′ in terms of a set of lower level attributes.
The system thus sends a request for explaining the defining attributes for
C ′ by sending a sequence of the form 〈x1, . . . , xk §C ′ �?‘〉.

(vi) The user replies by sending a set of lower level attributes 〈a1, . . . , al � C ′〉
conveying that C ′ can be defined using a1, . . . , al. For instance, in case of
the particular example C ′ = handwritten letter O, the user can suggest a
set of attributes such as a1 = closed curve, a2 = circular, a3 = oval, a4 =
curve with hollow inside etc.

(vii) Given the recommended attributes, the system now degranulates the sam-
ple by considering the values assumed by the individual objects with
respect to the proposed attributes. These values can be binary, such as
simply + and −, or even a grade rendering the degree of matching the
attribute.

(viii) Based on the number of instances of the sample falling into the positive
instances of the concepts a1, . . . , al, the system needs to label the whole
cluster with the respective properties. So, for each ai, 1 ≤ i ≤ l, the system
sends a description of x1, . . . , xk in terms of their binary/graded values in
the similar fashion as mentioned in item (i) of this section. The user then
may suggest labels of the form ‘most of the elements of the sample have
the property a1, ‘few elements of the sample have the property a2’, ‘many
of the elements of the sample satisfy the property a3’ etc.
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The question arises that how the system would abstract out properties for
the individual objects of the cluster based on the degranulated sample and the
descriptions provided by the user involving generalized quantifiers. Through dia-
logues with the user, the system can introduce some constraints on these prop-
erties a1, . . . , al so that each object from the cluster can be described. This,
in turn, helps the system to learn the user’s perspectives for the generalized
quantifiers, such as ‘most’, ‘few’, ‘many’ etc. For example, if for a property ai,
the user suggests that most of the elements of the sample have the property ai,

and the system computes
|{x1,...,xk}

ai
∩{x1,...,xk}|

|{x1,...,xk}| ≥ 4
5 , then the system learns

an interpretation of the user for the generalized quantifier ‘most’. Additionally,
the ratio also helps the system to fix a grade so that it can be claimed that
each element of the cluster has property ai to some specific degree. Moreover, if
|{x1,...,xk}

aj
∩{x1,...,xk}|

|{x1,...,xk}| ≤ 1
5 for some attribute aj , the system gets an idea about

the relevance of aj in defining C ′.

(a) Let us assume that the system considers an attribute to be relevant if the
above mentioned ratio exceeds a prefixed degree, say 4

5 . So the degranulation
with respect to ai deems to be important, and the system looks back to the
value of ai for each element of the sample. Based on the outliers which
belong to {x1, . . . , xk} \ {x1, . . . , xk}

ai
, the system fixes a threshold ti such

that the modified property ai ≥ ti holds for all elements of the sample. As
the number of such outliers is comparatively small this process of tuning a
threshold ti is not difficult. In the similar fashion the system can generate
modifications of all those concepts for which the concerned ratio exceeds the
prefixed grade.

(b) In case of the example of C ′ = handwritten letter O let us assume that
a1, a2, a3, a4 are considered to be relevant following (a). Then the system
generates the modified descriptions of the form a1 ≥ t1, . . . , a4 ≥ t4 for the
sample. With respect to these new attributes, C ′ now have a straightforward
definition fitting to the whole sample.

(c) Through a dialogue 〈x1, . . . , xk §a1 ≥ t1, . . . , a4 ≥ t4〉 the system sends this
modification to the user. The user may agree with the thresholds, or suggest
to drop some positive instances of some of the ai’s. In the latter case, the
system again tries to tune the respective ti. Thus, through interactions with
the user the system creates a description for a complicated cluster in the
language understandable by the user.

Another relevant aspect of learning a concept is through assimilation of varia-
tions of the available objects suggested by the user. This can help the system to
induce robust classifiers with respect to deviations of objects. Here we assume,
that given a sample set of objects {x1, . . . , xk}, the user also can suggest some
new images to be counted as a positive instance of the concept handwritten let-
ter O just by reorienting the objects from the sample itself. By reorientation we
mean rotating the image of the object with respect to one of its coordinate in a
specific angle, or swapping among some coloured pixels and white pixels within
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a specific radius of a given point. In general, by allowing different orientations
of an object we address the case that if an object falls in a specific category, a
similar sets of objects with little variations also can be counted of that category.
Moreover, as these variations are imposed by the user, they are likely to reflect
the possibilities of deviation of a standard case (such as a typed letter O), caused
by real physical noises. In order to present such a recommendation of orientation
function in the form of a dialogue, let us introduce the following possibility in
the formal set-up.

Definition 1. Given any object x from the universe of the system, and a param-
eter ε > 0, Orε(x), called as orientation of x respective to ε, is an object falling
into a similarity class of x parametrized by ε.

In particular, for images such as handwritten scripts, the notion of Orε(x)
can be interpreted as follows. Let x be an image from the universe of the system.
A very small positive number ε can be regarded as the degree of angle or radius
with respect to a coordinate of the image of x. Then Orε(x) can be either of the
following cases.

– �ε(x): object obtained by rotating x from the upper left corner point to ε
degree,

– (x)ε�: object obtained by rotating x from the upper right corner point to ε
degree,

– �ε(x): object obtained by rotating x from the lower left corner point to ε
degree,

– (x)ε�: object obtained by rotating x from the lower right corner point to ε
degree,

Similarly one can think about UL(�, ε)(x) to represent an object obtained by
swapping coloured and white pixels in a radius of ε with respect to the upper left
coordinate of x, and UR(�, ε)(x) to represent an object obtained by swapping
coloured and white pixels in a radius of ε with respect to the upper right coordi-
nate of x. Similar meanings can be considered for LL(�, ε)(x) and LR(�, ε)(x)
where the first letter L stands for lower.

We already have discussed the case when the system initiates a dialogue of the
form 〈x1, . . . , xk §+,−, · · ·+ §C〉 with the user (cf. (i)). After introducing Orε, a
possible reply of the user to the system can be 〈Orε(x1), . . . , Orε(xk) § +,−, · · ·+
§C ′〉. That is, apart from suggesting a new concept C ′, the user also can suggest
a possible set of similar objects of the sample as instances of the concept C ′ too.
In that case, the system gathers new instances for the concerned cluster. These
new instances can be taught to the system in the following way. With respect to
a sequence of time points a little variation of the initial object at each turn, as
a whole can be regarded as a video. So, an instance of Orε(x), say �ε(x) can be
conveyed to the system by a video, which is nothing but a sequence of images
consisting x at the initial position and a little variation of x at the consecutive
instances. These variations of x are obtained by tilting it from it’s leftmost upper
corner coordinate to a degree β1 ≤ ε, and continuing this process finitely many
times till reaching the deviation of angle ε.
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Below is another relevant aspect of learning to be noted. Let us consider
the concept handwritten digit 1. In the same fashion as for the letter O, the
user can teach the system possible variant images of the digit 1 by orienting
the available images of 1. So, given a certain instance of 1 by the system, the
user creates a sequence of finitely many variations Orβ0(1), Orβ1(Orβ0(1)), . . .,
where 0 < β0 < β1 < . . . < βn ≤ ε; variation is so that two consecutive
instances in the sequence are very close to each other. Let us simply denote
1, 1βo , 1β1 , . . . , 1βn−1 , 1βn to be the sequence of variations of one instance of the
handwritten digit 1. The variations are such that though 1βn−1 and 1βn are
very close in appearance, the former can be counted as an instance of 1 and
the latter is more likely to be counted as an instance of 7. So, the concern is
not only to show the possible variations of image 1, but also possible varia-
tions of image that are not regarded as 1 or borderline instances of 1. So, we
can consider that 1βn−1 and 1βn belong to the upper approximation of hand-
written digit 1, and they are the borderline instances of handwritten digit 1. In
such a situation, the user can make the system learn that with respect to what
parameters or attributes these two instances fall into two different categories.
Such an information can be conveyed to the system by a dialogue of the form
〈[1, 1β0 , . . . , 1βn−1 , 1βn ] § 1βn � handwritten digit 7 §a1, . . . , am〉 indicating
1βn is similar to the handwritten digit 7, and it is distinguished from 1βn−1 with
respect to the attributes a1, . . . , am. All these attributes can be stored in the
system as an explanation; collecting such explanations for all possible cases pro-
vided by the user the system can form arguments for and against to classify a
new instance as 1 or 7.

Now, there can be a community of users, like a popular social media, and the
system can have separate dialogues with a number of users for understanding
and learning the same concept. For example, with respect to different users the
system can gather different sets of new images obtained by orienting a given
sample set of the digit 1, along with the properties of those classifications. In
appearance of a new case, the system can use one or some of these different
classifiers to check the belongingness of the case to the concept. This also helps

A
<Letter A, Image, Accent>

SYSTEM USER
handwriting 

interface opens

c1

cn

:

a1 … am

c1 . . . cn

sequence of images 
orienting the image of the 

user

-- --

features

ca
se

s

Fig. 4. Language-learning interface
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the system to compare different classifiers and resolve the issue of thinning the
boundary region by initiating a dialogue with a group of agents.

7 Conclusion: Towards a Practical Application

The idea presented in the above sections can have diverse applications. As dis-
cussed in Sect. 1, and from the patterns of examples considered in previous sec-
tions, we can expect that this approach can be of use in designing an automated
support system with the ability of learning and revising its database based on
interactions with a set of agents sitting in the real physical world. One such pos-
sible example is given below. The example has two aspects; in one the system
learns from the real environment and in the other it provides a support to an
apprentice to learn.

Let us think of designing a system which can help a kid to learn basics of a
language. To such a system the expectation is to know the letters of the alphabet,
a basic list of words and the basic formation rules of sentences. To develop such
a system it is fed with a possible set of finitely many images for each letter.
These images can be of standard typed form of a letter or various handwritten
forms. For each cluster of images there are some properties (i.e., attributes) that
every element of the cluster satisfy.

We propose such a system based on dialogues with users. Following the pro-
posed notion of Orε described in Sect. 6, for each letter a sequence of images can
be created by a user just by considering different orientations of that very letter.
The set of images given by a user is identified as instances of a particular letter
with respect to a set of attributes (cf. Sect. 6). The set of images may vary from
one user to the other, and so the respective set of attributes too. The system,
thus, is enriched with different classifiers for a single letter. Among these differ-
ent attributes and clusters of images, the system can select a set of attributes
and a sample set of images for a letter by stratified sampling.

We assume that the system is embodied with a language-learning interface.
When a kid enters to a language-learning interface, the system first provides the
sample set of images for each letter through a dialogue. An example can be a
sequence 〈x1, . . . , xk � letter A〉 where x1, . . . , xk are the images for the concept
letter A. These images have certain attributes in common. One of the attributes
of any letter is the accent of the letter. After familiarizing the kid with possible
images of a letter, the system opens a handwriting-interface, where the kid writes
the letter she learnt. This image is analyzed by the system with respect to the
available sample and attributes. If it looks closer to a satisfactory degree with
the available images, the system includes this image as a new instance of the
letter. From this aspect, the system also learns new cases. If the handwritten
script does not match to a satisfactory extent, the system takes an attempt to
improve the kid’s attempt by providing a sequence of orientations, as discussed
in Sect. 6, of the script obtained from the kid, and ending at the desired one.
Now the writing-interface again gets open to the kid and the kid writes in the
interface what she learnt. Following the same process, a few number of time, the
kid can learn the proper script for a particular letter (see Fig. 4).
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In the similar fashion, at the next level corresponding to each letter there
can be a sequence of words starting with that letter. In the simplest case we can
consider the words from the names of objects, e.g. fruits, birds, animals, nature,
daily-necessary utelsils, colours, shapes etc. Each word is associated to an image,
and this association is fed to the system by the designer of the system. At the
beginning the system has an object, a name of a real physical object, and as an
attribute is has an image. Through dialogues with a group of users, the system
at the next round learns a few sets of attributes describing the object. Let, for
instance, for the letter A, the system have the word Apple. So, in the database
of the system there would be a row pertaining to the object Apple, and a set
of attributes containing an image of apple, as well as some descriptions such as,
fruit, colour, shape, taste, living, non-living, accent etc. These set of attributes
may be fixed by the system by considering stratified sampling among different
sets of attributes provided by different users. The sets of attributes for a word
must also include the accent. Similarly, the system can have a database for a list
of basic useful verbs. A possible image to visualize a verb can be an image of an
action. Thus, in the database of the system each word can be classified by the
concepts, e.g., subject, verb, predicate. Now in the language-learning interface the
system sends a sequence consisting of the word Apple, followed by the properties
image, accent, colour, shape, fruit. Clicking on each single attribute the kid can
enter into a new sub-dialogue box with the image, accent, and spelling of the
word. For instance, a click on colour, would generate a sequence starting with
the word red, followed by its image through a patch of red, and its accent. The
writing interface opens automatically after familiarizing the kid with the word
Apple and its basic properties. In the writing interface the words mis-spelled or
differently written by the kid is analyzed by the system, and through dialogues
it attempts to improve the writing of the kid, as explained before.

At the next level, the system is taught a few basic typical rules for
forming simple sentences. In the form of a dialogue, it can be 〈(subject),
(verb), (predicate)〉. At the lower level, the system already learned words falling
into the categories subject, verb and predicate. Here, to be mentioned that teach-
ing the system the syntax of a correct simple sentence is not difficult through
interaction; but making the system learn the semantics, and thus forming a
meaningful sentence is a challenging task. Without going into the deeper tech-
nical aspects, we assume that for each type of sentences, obtained by replacing
subject, verb and predicate by respective particular instances, the designer pro-
vides a number of sentences with a respective set of images and accent for each.
The system then generates new sentences just by following the syntax of the
rule. Whether the sentence generated by the system is meaningful that can be
verified again by initiating dialogues with the group of users. But this issue
would dig into some deeper aspects pertaining to the semantics of a sentence.
For instance, let us suppose that the system generates a sentence Computer eats
apple. It is a syntactically correct sentence. But the semantics of the sentence
would depend on how an agent interpret its components. If the user consider
the semantics of the sentence with respect to a real physical action, then this
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sentence does not have meaning in a real physical world. But in a world where a
pegasus can exist, Computer eats apple may also have meaning. Without going
into such debates, we assume that the group of users are agreed to designate a
sentence to be meaningful if it corresponds to a real physical action in a real
physical world. So, when the system generates a sentence Computer eats apple,
it is sent through a dialogue to the users. The user sends a rejection notification,
and suggests possible replacements for the components of the sentence generated
by the system. So, the user sends 〈(Computer) (eats) (apple) §�〉 notifying that
the sentence generated by the system is not accepted. The suggestion for the
correct sentence can be sent by 〈( ) (eats) (apple) § living � subject〉 indicating
the category subject to be replaced by instances satisfying the attribute living.
This would help the system to learn new sentences which have meaning in the
real physical world. The semantics of the sentences can be manipulated by going
to the semantics of its individual component already stored in the system. The
system can then store this new sentence with its semantics. The learning phase
of the kid can follow the similar pattern as above.
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Abstract. In real-world many information systems are varying over
time. How to process efficiently dynamic data is a hot issue in data
mining research field. Processing information with preference-ordered
attribute domain is an important task in multi-criteria decision mak-
ing. Since dominance-based rough set approach can process information
with preference-ordered attribute domain, it has been applied widely to
multi-criteria decision making. In the paper, we introduce a new strat-
egy of updating approximations in DRSA under the cases when a lot
of objects being added. For thus, the notation of base boundaries of
approximations in DRSA is given to reduce the redundant computation
in updating approximations. The feasibility of the approach was vali-
dated by a numerical example.

Keywords: Rough set · Dominance relation · Dynamic data mining

1 Introduction

Rough Set Theory (RST) was introduced by Pawlak in 1982 for processing uncer-
tain, inconsistence and incomplete information [1,2]. As a popular tool in data
mining research field, it has been widely applied to faults diagnose, image pro-
cessing, knowledge discovery, intelligent control systems, etc. [3].

To process information with preference-ordered attribute domains, Greco et
al. have proposed Dominance-based Rough Set Approach (DRSA) by replacing
the indiscernibility relation in RST with a dominance relation [4]. DRSA inher-
its many advantages of RST in information processing. The great advantage
of DRSA is that it can process information with preference-ordered attribute
domains. Then DRSA has applied widely in many real applications related to
MCDA problems, e.g., rural sustainable development potentialities evaluation
[5], airline services evaluation [6–8], group decision [9], multi-criteria web mining
[10] and business indicator analysis [11].
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In many real applications, the information systems often evolve over time.
New information becomes available while outdated information being sifted out. It
raises a problem of how to maintain knowledge in a dynamic information system.
In order to solve the problem, many scholars employed the increment update tech-
niques to maintain knowledge, e.g., Blaszczynski et al. discussed the incremental
induction of decision rules from dominance-based rough approximations to select
the most interesting representatives in the final set of rules [12]. Greco et al. con-
sidered incremental induction of decision rules in the context of multiple criteria
decision analysis [13]. Li et al. analyzed the variations happened in each step of
approximations computation of DRSA when the information system varying and
then explored the mechanism of updating approximations of DRSA. They pro-
posed three incremental approaches for updating approximations of DRSA under
the object set varying, the attribute set varying and the attributes’ values varying,
respectively [14–16]. Luo et al. proposed three approaches for updating approxi-
mation of set-valued dominance-based rough set approach for three different cases
in dynamic data environment, respectively [17–19]. Chen et al. proposed an incre-
mental approach for update approximations of DRSA while attribute values refin-
ing or coarsening in incomplete information system [20]. Wang et al. propose an
incremental algorithm which can efficiently update approximations of DRSA when
objects and attributes increase simultaneously [21]. Luo et al. attempted to apply
Dominance-based Rough Set Approach in processing hierarchical attribute value
and then provided an approach and corresponding algorithm for updating rough
approximations [22].

Following the literature [14], we only investigate the case when some new
objects becoming available. In the paper, we introduce a new strategy to main-
tain the approximations of DRSA. We give a notation of base boundaries of
approximations. By the notation, we can reduce the computation in approxima-
tions updating when some new objects being added into the information system.
The main idea is that new added objects are regarded as a new information sys-
tem of the same type, then compute approximations of the new information sys-
tem. By comparison base boundaries of approximations of the new information
system and the original one, we reduce redundant computations in approxima-
tions updating. A numerical example was employed to illustrate the feasibility
of our strategy.

The rest of the paper is organized as follows. In Sect. 2, we review some basic
notions of DRSA. Section 3 introduces a new strategy of updating approxima-
tions of DRSA. A numerical example is employed to illustrate the feasibility of
our strategy in Sect. 4. The paper ends with conclusions and further research
work in Sect. 5.

2 Preliminaries

We briefly review some basic notations and concepts of DRSA [4] in the following.
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Definition 1. Let S = (U,A, V, f) be an information system, where

– U is a non-empty finite set of objects, which is called the universe;
– A = C ∪{d}, C is a non-empty finite set of condition attributes, and d is the

decision attribute;
– V =

⋃
a∈A Va is regarded as the domain of all attributes, where Va is a domain

of attribute a;
– f : U × A → V is an information function such that ∀x ∈ U , ∃f(x, a) ∈ Va.

Definition 2. Let P ⊆ C, then the dominance relation with respect to P on
universe U presents as DP = {(x, y) ∈ U × U | f(x, a) ≥ f(y, a),∀a ∈ P}.

For x, y ∈ U , x dominates y with respect to the attribute set P , denoted by
xDP y, which means x at least as good as y with respect to each a, a ∈ P .

In DRSA, a dominance relation can partition the universe U into two families
of information granules that respectively are two kinds of sets as follows:

– D+
P (x) = {y ∈ U | yDPx} is the P -dominating set of the object x, which

presents the collection of objects that are at least as good as the object x
with respect to P ;

– D−
P (x) = {y ∈ U | xDP y} is the P -dominated set of the object x, which

presents the collection of objects that are at most as worse as the object x
with respect to P .

The decision attribute d can classify the universe U into a family of decision
classes, denoted by Cl = {Cln, n ∈ T}, T = {1, · · · , |Vd|}. The concepts charac-
terized are upward and downward unions of decision classes in DRSA. They can
be defined respectively as follows:

Cl≥n =
⋃

n′≥n

Cln′ , Cl≤n =
⋃

n′≤n

Cln′ , ∀n, n′ ∈ T.

Cl≥n is the upward union of decision class Cln which means that if x ∈ Cl≥n then
x belongs to at least class Cln; Cl≤n is the downward union of decision class Cln
which means that if x ∈ Cl≤n then x belongs to at most class Cln.

The lower and upper approximations of Cl≥n are defined respectively as:

P (Cl≥n ) = {x ∈ U | D+
P (x) ⊆ Cl≥n }

P (Cl≥n ) = {x ∈ U | D−
P (x) ∩ Cl≥n 
= ∅}

Analogously, The lower and upper approximations of Cl≤n are defined respec-
tively as:

P (Cl≤n ) = {x ∈ U | D−
P (x) ⊆ Cl≤n }

P (Cl≤n ) = {x ∈ U | D+
P (x) ∩ Cl≤n 
= ∅}

For convenience to understand the rest of this paper, we introduce the fol-
lowing definitions.
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Definition 3. The base boundaries of P (Cl≥n ), P (Cl≥n ), P (Cl≤n ) and P (Cl≤n )
are respectively defined as

– BP (P (Cl≥n )) = 〈Ba1(P (Cl≥n )), . . . , Bai
(P (Cl≥n )), . . . , Bam

(P (Cl≥n ))〉;
– BP (P (Cl≥n )) = 〈Ba1(P (Cl≥n )), . . . , Bai

(P (Cl≥n )), . . . , Bam
(P (Cl≥n ))〉;

– BP (P (Cl≤n )) = 〈Ba1(P (Cl≤n )), . . . , Bai
(P (Cl≤n )), . . . , Bam

(P (Cl≤n ))〉;
– BP (P (Cl≤n )) = 〈Ba1(P (Cl≤n )), . . . , Bai

(P (Cl≤n )), . . . , Bam
(P (Cl≤n ))〉.

In where

– Bai
(P (Cl≥n )) = min{f(x, ai)|x ∈ P (Cl≥n )};

– Bai
(P (Cl≥n )) = min{f(x, ai)|x ∈ P (Cl≥n )};

– Bai
(P (Cl≤n )) = max{f(x, ai)|x ∈ P (Cl≤n )};

– Bai
(P (Cl≤n )) = max{f(x, ai)|x ∈ P (Cl≤n )}.

Here, P = {a1, . . . , ai, . . . , am}.
Definition 4. ∀i, j ∈ T and ∀a ∈ P , the following items hold.

(1) If Ba(P (Cl≥i )) ≥ Ba(P (Cl≥j )), then BP (P (Cl≥i )) ≥ BP (P (Cl≥j ));
(2) If Ba(P (Cl≥i )) ≤ Ba(P (Cl≥j )), then BP (P (Cl≥i )) ≤ BP (P (Cl≥j ));
(3) If Ba(P (Cl≥i )) ≥ Ba(P (Cl≥j )), then BP (P (Cl≥i )) ≥ BP (P (Cl≥j ));
(4) If Ba(P (Cl≥i )) ≤ Ba(P (Cl≥j )), then BP (P (Cl≥i )) ≤ BP (P (Cl≥j ));
(5) If Ba(P (Cl≤i )) ≥ Ba(P (Cl≤j )), then BP (P (Cl≤i )) ≥ BP (P (Cl≤j ));
(6) If Ba(P (Cl≤i )) ≤ Ba(P (Cl≤j )), then BP (P (Cl≤i )) ≤ BP (P (Cl≤j ));
(7) If Ba(P (Cl≤i )) ≥ Ba(P (Cl≤j )), then BP (P (Cl≤i )) ≥ BP (P (Cl≤j ));
(8) If Ba(P (Cl≤i )) ≤ Ba(P (Cl≤j )), then BP (P (Cl≤i )) ≥ BP (P (Cl≤j )).

3 An Strategy for Processing Dynamic Order Data

This strategy focuses on the case when some new objects becoming available.
Assume that a dynamic process lasts from time t to t + 1. Let •(t) and •(t+1)

denote the corresponding notations at time t and t + 1, respectively.
The collection of objects added from time t to t + 1 may be regarded as the

increment of the universe U (t) and denoted by ΔU . ΔCln is a decision class with
respect to d on the universe ΔU . Accordingly, ΔCl≥n and ΔCl≤n are upward and
downward unions of the decision class ΔCln.

For the base boundaries of approximations on U (t) and ΔU , we present the
following proposition.

Proposition 1. The following items hold.

1. If BP (P (Cl(t)
≥
n )) � BP (P (ΔCl≥n )), and there is at least an attribute a sat-

isfying Ba(P (Cl(t)
≥
n )) ≥ Ba(P (ΔCl≤n−1)), then P (Cl(t+1)≥

n ) = P (Cl(t)
≥
n ) ∪

P (ΔCl≥n );
2. If BP (P (Cl(t)

≥
n )) � BP (P (ΔCl≥n )), then P (Cl(t+1)≥

n ) = P (Cl(t)
≥
n ) ∪

P (ΔCl≥n );
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3. If BP (P (Cl(t)
≤
n )) � BP (P (ΔCl≤n )), and there is at least an attribute a sat-

isfying Ba(P (Cl(t)
≤
n )) ≤ BP (P (ΔCl≥n+1)), then P (Cl(t+1)≤

n ) = P (Cl(t)
≤
n ) ∪

P (ΔCl≤n );
4. If BP (P (Cl(t)

≤
n )) � BP (P (ΔCl≤n )), then P (Cl(t+1)≤

n ) = P (Cl(t)
≤
n ) ∪

P (ΔCl≤n ).

For the other cases, we investigate the changes of the dominance relation at
first. Let Δ1DP be the dominance relation from ΔU to U (t) and Δ2DP be the
dominance relation from U (t) to ΔU .

Δ1DP = {(x, y) ∈ ΔU × U (t) | f(x, a) ≥ f(y, a), a ∈ P} (1)

Δ2DP = {(x, y) ∈ U (t) × ΔU | f(x, a) ≥ f(y, a), a ∈ P} (2)

Based on Eqs. (1) and (2), we define the increments of P -dominating and
P -dominated sets of x ∈ U (t) related to ΔU as follows:

Δ1D
+
P (x) = {y ∈ ΔU | yΔ1DPx} (3)

Δ1D
−
P (x) = {y ∈ ΔU | xΔ1DP y} (4)

Analogously, for x ∈ ΔU , the increments of P -dominating and P -dominated
sets related to U (t) are respectively defined as follows:

Δ2D
+
P (x) = {y ∈ U (t) | yΔ2DPx} (5)

Δ2D
−
P (x) = {y ∈ U (t) | xΔ2DP y} (6)

Proposition 2. The following items hold.

P (Cl(t+1)≥
n ) = (P (Cl(t)

≥
n ) ∩ Δ1P (Cl≥n )) ∪ (Δ2P (Cl≥n ) ∩ P (ΔCl≥n )) (7)

P (Cl(t+1)≥
n ) = P (Cl(t)

≥
n ) ∪ Δ1P (Cl≥n ) ∪ Δ2P (Cl≥n ) ∪ P (ΔCl≥n ) (8)

In where

Δ1P (Cl≥n ) = {x ∈ U (t) | Δ1D
+
P (x) ⊆ ΔCl≥n } (9)

Δ2P (Cl≥n ) = {x ∈ ΔU | Δ2D
+
P (x) ⊆ Cl(t)

≥
n } (10)

Δ1P (Cl≥n ) = {x ∈ U (t) | Δ1D
−
P (x) ∩ ΔCl≥n 
= ∅} (11)

Δ2P (Cl≥n ) = {x ∈ ΔU | Δ2D
−
P (x) ∩ Cl(t)

≥
n 
= ∅} (12)

Δ1P (Cl≤n ) = {x ∈ U (t) | Δ1D
−
P (x) ⊆ ΔCl≤n } (13)

Δ2P (Cl≤n ) = {x ∈ ΔU | Δ2D
−
P (x) ⊆ Cl(t)

≤
n } (14)

Δ1P (Cl≤n ) = {x ∈ U (t) | Δ1D
+
P (x) ∩ ΔCl≤n 
= ∅} (15)

Δ2P (Cl≤n ) = {x ∈ ΔU | Δ2D
+
P (x) ∩ Cl(t)

≤
n 
= ∅} (16)
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4 A Numeric Illustration

Example 1. Table 1 presents a information system at time t, and Table 2 presents
the collection of new objects added from time t to t + 1. C = {a1, a2, a3} in two
tables. Let P = C.

Firstly, we list the results related to Table 1 as follows:

– P -dominating and P -dominated sets
D−

P (x1)(t) = {x1, x2}, D+
P (x1)(t) = {x1};

D−
P (x2)(t) = {x2}, D+

P (x2)(t) = {x1, x2};
D−

P (x3)(t) = {x3}, D+
P (x3)(t) = {x3};

D−
P (x4)(t) = {x4}, D+

P (x4)(t) = {x4}.
– Upward and downward unions of decision classes

Cl(t)
≥
1 = U (t), Cl(t)

≥
2 = {x2, x3};Cl(t)

≤
1 = {x1, x4}, Cl(t)

≤
2 = U (t).

– Approximations
P (Cl(t)

≥
2 ) = {x3}, P (Cl(t)

≥
2 ) = {x1, x2, x3}

P (Cl(t)
≤
1 ) = {x4}, P (Cl(t)

≤
1 ) = {x1, x2},

P (Cl(t)
≤
2 ) = P (Cl(t)

≤
2 ) = P (Cl(t)

≥
1 ) = P (Cl(t)

≥
1 ) = U (t).

Table 1. An information table at time t.

U (t) a1 a2 a3 d

x1 2 1 3 1

x2 2 1 2 2

x3 3 1 1 2

x4 2 3 1 1

Table 2. A table of new objects added.

U+ a1 a2 a3 d

x5 1 2 3 1

x6 2 2 1 2

x7 3 1 2 3

Secondly, we compute the results related to Table 2 as follows:

– P -dominating and P -dominated sets
ΔD−

P (x5) = {x5}, ΔD+
P (x5) = {x5}; ΔD−

P (x6) = {x6}, ΔD+
P (x6) = {x6};

ΔD−
P (x7) = {x7}, ΔD+

P (x7) = {x7}.
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– Upward and downward unions of decision classes
ΔCl≥1 = ΔU,ΔCl≥2 = {x6, x7},ΔCl≥3 = {x7};ΔCl≤1 = {x5},ΔCl≤2 =
{x5, x6},ΔCl≤3 = ΔU .

– Approximations
P (ΔCl≥2 ) = {x6, x7}, P (ΔCl≥3 ) = {x7};
P (ΔCl≥2 ) = {x6, x7}, P (ΔCl≥3 ) = {x7};
P (ΔCl≤1 ) = {x5}, P (ΔCl≤2 ) = {x5, x6};
P (ΔCl≤1 ) = {x5}, P (ΔCl≤2 ) = {x5, x6};
P (ΔCl≤3 ) = P (ΔCl≤3 ) = P (ΔCl≥1 ) = P (ΔCl≥1 ) = ΔU .

Thirdly, we compute the base boundaries of approximations and list the
results as follows:

BP (P (Cl(t)
≥
2 )) = {3, 1, 1}, BP (P (Cl(t)

≥
2 )) = {2, 1, 1};

BP (P (Cl(t)
≤
1 )) = {2, 3, 1}, BP (P (Cl(t)

≤
1 )) = {2, 1, 3};

BP (P (Cl(t)
≤
2 )) = BP (P (Cl(t)

≤
2 )) = {3, 3, 3};

BP (P (Cl(t)
≥
1 )) = BP (P (Cl(t)

≥
1 )) = {2, 1, 1};

BP (P (ΔCl≥2 )) = {2, 1, 1}, BP (P (ΔCl≥3 )) = {3, 1, 2},
BP (P (ΔCl≥2 )) = {2, 1, 1}, BP (P (ΔCl≥3 )) = {3, 1, 2},
BP (P (ΔCl≤1 )) = {1, 2, 3}, BP (P (ΔCl≤2 )) = {2, 2, 3},
BP (P (ΔCl≤1 )) = {1, 2, 3}, BP (P (ΔCl≤2 )) = {2, 2, 3},
BP (P (ΔCl≤3 )) = BP (P (ΔCl≤3 )) = {3, 2, 3};
BP (P (ΔCl≥1 )) = BP (P (ΔCl≥1 )) = {1, 1, 1}.

By Proposition 1, we can obtain some new approximations as follows:
P (Cl(t+1)≥

2 ) = {x1, x2, x3, x6, x7}; P (Cl(t+1)≤
2 ) = {x1, x2, x3, x4, x5, x6}.

Fourthly, we update other approximations by Propositions 2 as follows:

– Increments of P -dominating and P -dominated sets
Δ1D

−
P (x1) = ∅, Δ1D

+
P (x1) = ∅; Δ1D

−
P (x2) = ∅, Δ1D

+
P (x2) = {x7};

Δ1D
−
P (x3) = ∅, Δ1D

+
P (x3) = {x7}; Δ1D

−
P (x4) = {x6}, Δ1D

+
P (x4) = ∅;

Δ2D
−
P (x5) = ∅, Δ2D

+
P (x5) = ∅; Δ2D

−
P (x6) = ∅, Δ2D

+
P (x6) = {x4};

Δ2D
−
P (x7) = {x2, x3}, Δ2D

+
P (x7) = ∅.

– Increments of approximations
Δ1P (Cl≥2 ) = U (t),Δ1P (Cl≥3 ) = {x1, x2, x3}; Δ1P (Cl≥3 ) = {x2, x3};

Δ1P (Cl≤1 ) = {x1, x2, x3},Δ1P (Cl≤2 ) = U (t);Δ1P (Cl≤1
1
)1 = ∅.

Δ2P (Cl≥2 ) = {x5, x7},Δ2P (Cl≥3 ) = {x5, x7};Δ2P (Cl≥3 ) = ∅;
Δ2P (Cl≤1 ) = {x5, x6},Δ2P (Cl≤2 ) = U+;Δ2P (Cl≤1 ) = {x6}.

– New approximations
P (Cl(t+1)≥

2 ) = {x3, x7}, P (Cl(t+1)≥
3 ) = {x7}; P (Cl(t+1)≥

3 ) = {x2, x3, x7}.
P (Cl(t+1)≤

1 ) = {x5}, P (Cl(t+1)≤
2 ) = {x1, x2, x3, x4, x5, x6};

P (Cl(t+1)≤
2 ) = {x1, x2, x3, x4, x5, x6}.
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5 Conclusions and Future Work

In this paper, we proposed a new strategy of updating approximations of DRSA.
In order to reduce the redundant computation in updating approximations, we
give the notation of base boundaries of approximation of DRSA. A numerical
example is employed to illustrate the feasibility of the strategy. Our future work is
to investigate the corresponding parallel strategies for updating approximations
of DRSA when the object set varying.
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non-incremental rule induction for multicriteria classification. In: Peters, J.F.,
Skowron, A., Dubois, D., Grzyma�la-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.)
Transactions on Rough Sets II. LNCS, vol. 3135, pp. 33–53. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27778-1 3

14. Li, S., Li, T., Liu, D.: Dynamic maintenance of approximations in dominance-based
rough set approach under the variation of the object set. Int. J. Intell. Syst. 28(8),
729–751 (2013)

15. Li, S., Li, T., Liu, D.: Incremental updating approximations in dominance-based
rough sets approach under the variation of the attribute set. Knowl. Based Syst.
40, 17–26 (2013)

16. Li, S., Li, T.: Incremental update of approximations in dominance-based rough
sets approach under the variation of attribute values. Inf. Sci. 294, 348–361 (2015)

https://doi.org/10.1007/978-3-540-27778-1_3


320 S. Li and Z. Hong

17. Luo, C., Li, T., Chen, H., Liu, D.: Incremental approaches for updating approxima-
tions in set-valued ordered information systems. Knowl. Based Syst. 50, 218–233
(2013)

18. Luo, C., Li, T., Chen, H.: Dynamic maintenance of approximations in set-valued
ordered decision systems under the attribute generalization. Inf. Sci. 257, 210–228
(2014)

19. Luo, C., Li, T., Chen, H., Lu, L.: Fast algorithms for computing rough approxima-
tions in set-valued decision systems while updating criteria values. Inf. Sci. 299,
221–242 (2015)

20. Chen, H., Li, T., Ruan, D.: Maintenance of approximations in incomplete ordered
decision systems while attribute values coarsening or refining. Knowl. Based Syst.
31, 140–161 (2012)

21. Wang, S., Li, T., Luo, C., Fujita, H.: Efficient updating rough approximations with
multi-dimensional variation of ordered data. Inf. Sci. 372, 690–708 (2016)

22. Luo, C., Li, T., Chen, H., Fujita, H., Yi, Z.: Incremental rough set approach for
hierarchical multicriteria classification. Inf. Sci. 429, 72–87 (2018)



CSLI: Cost-Sensitive Collaborative
Filtering with Local Information

Embedding

Heng-Ru Zhang(B) , Jie Qian , and Fan Min

School of Computer Science, Southwest Petroleum University,
Chengdu 610500, China

zhanghrswpu@163.com,swpu jieqian@163.com,minfanphd@163.com

http://www.fansmale.com

Abstract. Mean absolute error and root mean square error are typi-
cally used to evaluate the accuracy of recommender system. However,
these evaluation metrics implicitly mean that the cost of different wrong
recommendation actions is the same. In this paper, we propose the cost-
sensitive collaborative filtering with local information embedding (CSLI)
algorithm to handle unequal misclassification costs. First, we employ
a clustering algorithm to extract local rating information. Second, we
design a collaborative filtering algorithm embedding local rating infor-
mation to compute the prediction p. Third, we construct a 2 × 2 cost
matrix by considering different misclassification costs. We employ the
trichotomy method to obtain the recommendation threshold rt with the
cost matrix. Finally, the recommendation actions are determined based
on p and rt. Combined with the cost matrix, we calculate the average
misclassification cost and use it to evaluate the performance of the CSLI
algorithm. Experimental results show that the proposed algorithm is
lower than the state-of-the-art ones in term of average cost.

Keywords: Collaborative filtering · Cost-sensitive ·
Local rating information · Misclassification cost

1 Introduction

In recommender systems, mean absolute error (MAE) and root mean square
error (RMSE) [18,20] are two classical accuracy metrics. They are used to mea-
sure how close the prediction is to the actual rating. However, these evaluation
metrics do not take into account the cost of different wrong recommendation
actions.
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In this paper, we propose the cost-sensitive collaborative filtering with local
information embedding (CSLI) algorithm to handle unequal misclassification
costs. A misclassification cost [23] is incurred for wrong recommender actions,
e.g., recommending items to users who dislike them or not recommending items
to users who would like them. In fact, misclassification cost exists widely in
different data mining applications [14,25]. It is a major issue in cost-sensitive
learning [1,5,16,17,31].

First, we employ M-distance [30] to construct user and item clusters. Users in
the same cluster have similar item preferences, and items in the same cluster have
similar popularity. Compared with other general purpose clustering algorithms,
the M-distance based algorithm is very efficient. The time complexity is only
O(mn), where m is the number of users, and n is the number of items.

Second, we design a collaborative filtering (CF) algorithm embedding local
rating information [15] to obtain the prediction p. The local information corre-
spond to the rating of a cluster of users to a cluster of items. There are three
methods of local rating embedding. One is that local-user and global-item rating
information acts as input, another is global-user and local-item rating informa-
tion, and the third is local-user and local-item rating information.

Third, we construct a 2 × 2 cost matrix by considering different misclassifi-
cation cost. The cost is incurred for the wrong recommendation actions [22,23].
The system will set different costs for different application scenarios [7]. Based
on the misclassification cost, we employ trichotomy method [23] to compute the
recommendation threshold rt.

Finally, the recommendation actions are determined based on p and rt. If p >
rt, the item is recommended to the user. Otherwise, the item is not recommended
to the user. There are two wrong actions. One is that users do not like the
recommended items. The other is that the system does not recommend items
liked by users. Misclassification cost is incurred to the two actions. The average
cost is computed based on misclassification one [22].

Experiments on the well-known MovieLens data set (http://www.movielens.
org/). The results show that our proposed algorithm is lower than the state-of-
the-art ones in term of the average cost metric.

2 Related Works

This section first reviews the definition of the rating system. Second, we outline
the popular CF algorithms. Finally, we introduce the cost-sensitive learning.

2.1 Rating System

We revisit the definition of a rating matrix R [22]. Let U = {u1, u2, . . . , um} be
the user set and T = {t1, t2, . . . , tn} be the item set. The rating matrix is defined
as

R : U × T → RL, (1)

http://www.movielens.org/
http://www.movielens.org/
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where RL = {rl, . . . , rh}, rl is the lowest rating level, and rh is the highest
rating level. ri,j = R(ui, tj) represents the rating for ui to tj . Naturally, we have
ri,j ∈ [rl, rh].

Table 1 shows an example of a rating matrix R, where n = 6, m = 6, rl = 1,
and rh = 5. “–” indicates that the user has not rated the corresponding item.

Table 1. The rating matrix (R)

UID�TID t1 t2 t3 t4 t5 t6

u1 – 3 – 2 1 5

u2 3 1 4 3 – 1

u3 2 5 2 3 1 –

u4 5 2 – 4 3 1

u5 4 – 5 – 5 1

u6 – 2 3 5 3 2

2.2 Collaborative Filtering

The core idea of CF [13,18,24,29] is to use the preferences of users with similar
interests and common experiences. User-based and item-based CF are widely
used in recommender system. They make recommendations by calculating the
similarities between users or items. User-based approaches [29] make recommen-
dations by calculating the similarities between users. As the number of users
increases, user-based approaches will increase the computation time. Item-based
approaches [18] can handle this issue due to the stability of item number.

The k-nearest-neighbor (kNN) [11,17] algorithm is one of the most funda-
mental CF recommendation ones. One key factor in the performance of kNN
algorithm is the definition of the distance metric. Popular metrics include the
cosine distance [28], Eucliden distance [4], and Pearson distance [2].

Slope one [13] is an item-based CF algorithm based on linear regression. It
employs Global-User and Global-Item (GUGI) information to make prediction
(see GUGI of Table 2). There are four steps to predict the rating of uu to tj :
(1) Obtain a set of users who rate ti and tj ; (2) Compute the rating deviation
between ti and tj ; (3) Obtain a set of items rated by uu; and (4) Compute the
prediction for uu to tj .

2.3 Cost-Sensitive Learning

Most research in cost-sensitive learning [12,26,31] is an extension of machine
learning approaches through the consideration of different costs. Hunt et al. [10]
proposed misclassification cost and test cost. Yao et al. [21] considered misclassi-
fication cost and delay cost. Turney [19] proposed a taxonomy of costs, including
test cost, misclassification cost, delay cost, teacher cost, etc.
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Our work only considers misclassification cost. It is that incurred as
a result of classification errors. AdaCost [8] used the misclassification
cost to update the training distribution of successive boosting rounds.
An optimal Bayesian classification rule has been constructed to minimize
the expected misclassification cost for various cost functions [3]. Zhang
et al. constructed random-forest-based [22] and regression-based [23] rec-
ommender systems to minimize classification costs. In real applications,
how to evaluate misclassification cost is a very difficult problem. In some
cases, relative values are assigned to represent misclassification cost [27].

3 Algorithms

This section first employs clustering algorithm to extract the local information.
The new algorithm is designed through embedding the local information [15] in
the popular CF algorithm. Then, we compute the average cost to evaluate the
performance of the new algorithm.

t1 t2 t3 t4 t5 t6

u1 - 4 - 2 1 5

u2 3 1 4 3 - 1

u3 2 5 2 3 1 -

u4 5 2 - 4 3 1

u5 4 - 5 - 5 1

u6 - 2 3 5 3 2

t1 t4 t3 t5 t2 t6

t1 t2 t3 t4 t5 t6

u1 - 4 - 2 1 5

u3 2 5 2 3 2 -

u2 3 1 4 3 - 1

u5 4 - 5 - 5 1

u4

u6

t1 t4 t2 t6 t3 t5

u1

u3

u2

u5

u4

u6

(a) Item clusters

(b) User clusters (c) User-item clusters
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Fig. 1. Local information extraction
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3.1 Collaborative Filtering for Local Information Embedding

CF computes a predicted rating for items to users based on their history ratings
[6,9]. Existing CF algorithms usually use global ratings as input. This will lead
to under-fitting problem. To handle this issue, we employ clustering algorithms
to extract local information, and then embed it to popular CF algorithms.

Figure 1 depicts an example for local rating extraction. User cluster represents
that a group of users have similar preferences. Let U i be i-th user cluster. We
have U = U1 ∪ U2 · · · ∪ Ug and U1 ∩ U2 · · · ∩ Ug = ∅, where i ∈ [1, g]. u1 and
u3 purchased the same items t2 and t4, and their ratings for the same item are
very close. Therefore, they are combined in a user cluster U1.

Item cluster represents a group of items with similar popularity. Let T j be
j-th item cluster. We have T = T 1 ∪T 2 · · · ∪Th and T 1 ∩T 2 · · · ∩Th = ∅, where
j ∈ [1, h]. t1 and t4 are purchased by the users u2, u3 and u4. For the same user,
the ratings for the two items are very close. Therefore, t1 and t4 are combined
in a item cluster T 1.

The user-item clusters include local user and item information. Local user
and item information are obtained based on global user and item information,
respectively. It describes user preference or item popularity in a more granular
way. {u1, u3} and {t1, t4} construct a user-item cluster.

There are three local information embedding methods. LUGI of Table 2
depicts Local-User and Global-Item algorithm that embeds local user infor-
mation. GULI of Table 2 depicts Global-User and Local-Item algorithm that
embeds local item information. LULI of Table 2 depicts Local-User and Local-
Item algorithm that embeds local user and item information.

3.2 Average Cost Computation

Table 3 lists the cost matrix for correct and incorrect recommendation actions,
where L represents the set of users liked by users, ˜L represents the set of users
disliked by users. The costs of incorrect recommendation actions are λ12 and
λ21. λ12 indicates that the items liked by users are not recommended. λ21 indi-
cates that the items disliked by users are recommended. In general, there are
no costs when the recommendation actions are correct [7]. Mathematically, it
should always be the case that λ11 = 0 and λ22 = 0.

Similarly, we use two notations (RN,NY ) to indicate the classification num-
bers of incorrect recommendation actions. RN is the number of users who dislike
the recommended items, which will result in a cost corresponding to λ12. NY is
the number of users who like the no recommended items, which will result in a
cost corresponding to λ21.

Algorithm 1 depicts three steps for average-cost computation.
Step 1. We use a CF algorithm embedding local rating information to predict

the rating p. This step corresponds to line 3 of the algorithm.
Step 2. We employ the trichotomy method [23] to obtain the recommenda-

tion threshold rt. This step corresponds to lines 5–17 of the algorithm.
Step 3. We calculate the average cost. This step corresponds to line 18 of

the algorithm.
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Table 2. The prediction process for different slope one algorithms

Approach Step Formula

GUGI 1 S.,.
i,j = {uk|rk,i > 0, rk,j > 0, uk ∈ U}

2 dev.,.
i,j =

∑
uk∈S

.,.
i,j

(rk,j−rk,i)

|S.,.
i,j |

3 N .,.
u,j = {ti|ru,i > 0, ru,j > 0, ti ∈ T}

4 p.,.
u,j =

∑
ti∈N

.,.
u,j

(ru,i+dev
.,.
i,j)

|N.,.
u,j |

LUGI 1 Sg,.
i,j = {uk|rk,i > 0, rk,j > 0, uk ∈ Ug}

2 devg,.
i,j =

∑
uk∈S

g,.
i,j

(rk,j−rk,i)

|Sg,.
i,j |

3 Ng,.
u,j = {ti|ru,i > 0, ru,j > 0, ti ∈ T}

4 pg,.
u,j =

∑
ti∈N

g,.
u,j

(ru,i+dev
g,.
i,j )

|Ng,.
u,j |

Example p1,.
1,1 = (2−5)+4+(2−3)+2+(2−2)+1

3 = 1

GULI 1 S.,h
i,j = {uk|rk,i > 0, rk,j > 0, uk ∈ U}

2 dev.,h
i,j =

∑

uk∈S
.,h
i,j

(rk,j−rk,i)

|S.,h
i,j |

3 N .,h
u,j = {ti|ru,i > 0, ru,j > 0, ti ∈ T h}

4 p.,h
u,j =

∑

ti∈N
.,h
u,j

(ru,i+devi,j)

|N.,h
u,j |

Example p.,1
1,1 = (3−3)+(2−3)+(5−4)

3 + 2 = 2

LULI 1 Sg,h
i,j = {uk|rk,i > 0, rk,j > 0, uk ∈ Ug}

2 devg,h
i,j =

∑

uk∈S
g,h
i,j

(rk,j−rk,i)

|Sg,h
i,j |

3 Ng,h
u,j = {ti|ru,i > 0, ru,j > 0, ti ∈ T h}

4 pg,h
u,j =

∑

ti∈N
g,h
u,j

(ru,i+devi,j)

|Ng,h
u,j |

Example p1,1
1,1 = 2−3

1 + 2 = 1

Table 3. Misclassification cost matrix

Actions L L̃

Recommend λ11 λ12

Not recommend λ21 λ22
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Algorithm 1. Average-cost computation
Input: Rating matrix (R), like threshold (rs)
Output: average cost (Ac)
Method: costComputation

1: R is divided into the training set (Tr) and the testing set (Te);
2: //Step 1. Predict Te based on Tr

3: P = {pi,j |i ∈ [1, m], j ∈ [1, n]} is predicted based on Table 2;
4: //Step 2. Employ the trichotomy method to obtain the recommendation threshold

(rt)
5: left = rl, right = rh;
6: while |left − right| > ε do
7: md = left+right

2 ;

8: mmd = md+right
2 ;

9: ls(R, P, md, rs) = λ12×RN(R,P,md,rs)+λ21×NY (R,P,md,rs)
|Te| ;

10: ls(R, P, mmd, rs) = λ12×RN(R,P,mmd,rs)+λ21×NY (R,P,mmd,rs)
|Te| ;

11: if ls(R, P, md, rs) < ls(R, P, mmd, rs) then
12: right = mmd;
13: else
14: left = md;
15: end if
16: end while
17: rt = left;
18: //Step 3. Compute the lowest average cost
19: Ac = ls(R, P, rt, rs);
20: return Ac;

4 Experiments

In this section, we conduct several experiments on the well-known MovieLens data
set. The original set is repeated 10 times to divide into the training set and the test-
ing set with different random partitionings (i.e., 10× cross-validation). We choose
80% of the original set as the training set and the rest as the testing set.

We set the total misclassification cost to 135 and change λ10
λ01

from 0.125 to 8.
To evaluate the performance of local information embedding, we conducted three
basic methods and three integrating ones. They compare with the original slope
one algorithm GUGI and kNN . The three basic algorithms are LULI, LUGI
and GULI. LULGI represents the integration of LULI and LUGI. LGULI rep-
resents the integration of LULI and GULI. LGULGI represents the integration
of LUGI and GULI.

Based on Algorithm 1, we obtain the recommendation threshold rt listed
in Table 4. The recommendation threshold decreases with the increase of λ21

λ12
.

When λ21
λ12

= 0.125, the recommendation threshold has been close to the highest
rating level. When λ21

λ12
= 8, the recommendation threshold has been close to the

lowest rating level. Therefore, the range of λ21
λ12

we set is appropriate.
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Table 4. rt for different ratio of λ21
λ12

λ21
λ12

kNN GUGI LULI LUGI GULI LULGI LGULI LGULGI

0.125 4.6 4.5 4.6 4.5 4.6 4.5 4.6 4.5

0.25 4.2 4.1 4.2 4.1 4.2 4.2 4.2 4.1

0.5 3.9 3.8 3.7 3.8 3.7 3.8 3.7 3.8

1 3.6 3.4 3.4 3.4 3.4 3.4 3.4 3.4

2 2.6 3.1 2.9 3.1 3.0 3.1 3.1 3.1

4 2.2 2.7 2.6 2.7 2.6 2.6 2.6 2.6

8 1.0 2.3 2.3 2.1 2.0 2.1 1.8 2.3

Table 5 lists the average costs of the eight algorithms under different setting
of misclassification costs. Compared to kNN , our proposed algorithms have
lower average costs. When λ21

λ12
= 0.125 or 4 or 8, LGULGI algorithm obtains

the lowest average cost. When λ21
λ12

= 0.25, LGULI algorithm obtains the lowest
average cost. When λ21

λ12
= 1, GULI algorithm obtains the lowest average cost. In

summary, our proposed algorithm performs better than the counterparts on five
out of seven ratio settings. The other two are close to the lowest average cost.

Table 5. Average cost for different ratio of λ21
λ12

λ21
λ12

kNN GUGI LULI LUGI GULI LULGI LGULI LGULGI

0.125 8.30 8.16 8.23 8.15 8.19 8.14 8.19 8.13

0.25 14.20 13.58 13.58 13.55 13.52 13.55 13.50 13.52

0.5 20.60 17.88 18.16 17.97 18.06 18.04 18.05 17.95

1 22.50 18.98 19.10 19.11 18.91 18.98 19.03 18.93

2 18.40 15.88 16.18 15.99 16.13 15.95 16.16 15.91

4 11.90 10.90 10.95 11.01 10.90 10.91 10.87 10.85

8 6.70 6.44 6.48 6.43 6.47 6.47 6.48 6.43

5 Conclusions

In this paper, we have proposed the CSLI algorithm to handle unequal mis-
classification costs. M-distance algorithm is employed to extract local rating
information. The local information is embedded into the slope one algorithm.
According to our experiments on Movielens data set, the performance of our
proposed algorithm is mostly lower than kNN and the traditional slope one
algorithm in terms of average cost. In the future, we will consider more costs,
such as promotion one, and test one.
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Abstract. Attribute reduction is the most important and widely
applied part in rough sets. Multi-granulation rough set model is a signifi-
cant generalization of classical rough sets, which includes pessimistic and
optimistic multi-granulation models. Several attribute reduction algo-
rithms based on multi-granulation models are designed in literatures,
but all of them are based on pessimistic models, while the attribute
reduction based on optimistic models has not been developed. Thus, in
this paper, we propose an attribute reduction approach, named related
family, for the first and the second optimistic multi-granulation covering
rough set models, which is the basis of attribute reduction of all opti-
mistic multi-granulation rough set models and decrease the time com-
plexity of attribute reduction.

Keywords: Optimistic multi-granulation · Covering rough set ·
Related family · Attribute reduction

1 Introduction

Since Pawlak proposed rough set theory in 1982 [7], it has been a powerful tool to
deal with uncertainty and incompleteness. Compared with fuzzy sets, evidence
theory and probability theory, rough set is a data driving method, since it can
be used to process data without any prior knowledge. Attribute reduction is the
most important research topic in rough set theory, it has been widely used in
data compression, pattern recognition, management systems and so on.

Covering rough set was first proposed by Zakowski [14], which extended the
strict theoretical base–equivalence relation to covering. Because of the complex-
ity of covering relation, there are much more approximation operators of cover-
ing rough sets than those of Pawlak rough sets. Yao et al. [13] classify covering
c© Springer Nature Switzerland AG 2019
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rough sets into three categories: element based, granule based and subsystem
based approximation operators. The properties of some approximation opera-
tors resulted in that the attribute reduction methods based on Pawlak’s rough
set are not suitable for all types of covering set approximation operators. In
reference [12], yang demonstrated that the discernibility matrix is not suitable
for the third type of covering set approximations, and proposed the related fam-
ily to replace discernibility matrices, which provided a fast attribute reduction
algorithm based on covering rough sets.

Qian et al. [8,10] proposed a multi-granulation rough set model where the
set approximation operators are defined by using multi equivalence relations on
the universe, and developed two different multi-granulation rough sets (MGRS)
called optimistic and pessimistic, respectively. Then on the basis of multi-
granulation rough set model, Qian and Liang [9] extended MGRS to incomplete
information systems with respect to multiple tolerance relations. Lin [4] proposed
covering based multi-granulation rough sets to solve problems in multi-source
information systems with a covering environment. Liu and Pedrycz [6] proposed
multi-granulation fuzzy rough sets in the covering approximation space. Similar
with covering rough sets, the classical attribute reduction based on discernibility
matrix, dependency degree, information entropy and evidence theory can not be
applied to all types of multi-granulation rough sets. Scholars proposed several
elegant attribute reduction algorithms for pessimistic multi-granulation models
based on discernibility matrix, dependency degree, information entropy or evi-
dence theory [2,3,5]. However, as the other important part of multi-granulation
rough sets, optimistic multi-granulation models have never been studied from
the view of attribute reduction. As a result, we focus on attribute reduction of
optimistic multi-granulation rough set models in this paper. The related family
is defined based on optimistic multi-granulation rough set models as the first
step. Then we design the attribute reduction procedure based on related fam-
ily and Boolean operation. The complexity of proposed method is lower than
existing algorithms, and it can calculate all attribute reducts.

The structure of this paper is as follows. Section 2 introduces the background
knowledge of Pawlak’s rough set, covering rough set and approximation oper-
ators of multi-granulation rough set models. Section 3 introduces related fam-
ily attribute reduction methods for the first and the second types of multi-
granulation optimistic covering rough set. Finally, conclusion and problems
needed to be further studied are presented in Sect. 4.

2 Background Knowledge

2.1 Basic Notions of Pawlak’s Rough Set

Let 〈U,AT 〉 be an information system, where AT = {R1, R2, ..., Rm} is a finite
non-empty set of attributes on U = {x1, x2, ..., xn}. For any xi ∈ U , we use a(xi)
to denote the value of xi under the attribute Ri(Ri ∈ AT ). Given R ⊆ AT ,
an indiscernibility relation ind(R) can be defined as: ind(R) = {(x, y) ∈ U ×
U |a(x) = a(y), a ∈ R}.
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Based the indiscernibility relation ind(R), we can define the lower and upper
approximation of X on U as R(X) = {x ∈ U |[x]R ⊆ X}, R(X) = {x ∈ U |[x]R ∩
X �= ∅}, respectively, where [x]R = {y ∈ U |(x, y) ∈ ind(R)} is an equivalence
class containing x.

2.2 Covering Rough Sets

Suppose C is a family of nonempty subsets of U and ∪C = U , we call C a
covering and 〈U, C〉 a covering approximation space. Obviously, a partition on U
is definitely a covering on U , thus partition is a special case of covering.

Yao et al. [13] classify covering rough sets into three categories: element
based, granule based and subsystem based approximation operators. We mainly
investigate granule based approximation operators in this paper.

Definition 1 [1] (Minimal description). Let C be a covering on U , MdC(x) =
{K ∈ C|x ∈ K ∧(∀S ∈ C ∧x ∈ S ∧S ⊆ K) ⇒ K = S} is the minimal description
of x. When there is no confusion, we omit C from the subscript.

Definition 2 [16] (Neighborhood). Let C be a covering on U , For x ∈ U , the
neighborhood of x is defined as NC(x) = ∩{K ∈ C|x ∈ K}. When there is no
confusion, we omit C from the subscript.

2.3 Multi-granulation Rough Set

Qian et al. [8] propose a generalized rough set model called multi-granulation
rough set model. According to two different approximation strategies, Qian
developed two different multigranulation rough sets (MGRS) including opti-
mistic and pessimistic models. Then, Lin et al. [4] introduce multi-granulation
notions into covering based rough sets by the idea of MGRS. In this paper, we
mainly investigate optimistic multi-granulation covering rough sets.

The Optimistic Multi-granulation Rough Set

Definition 3 [11]. Let I be an information system in which A1, A2, ..., Am ⊆
AT ; then ∀X ⊆ U , the optimistic multi-granulation lower and upper approxima-

tions are denoted by
∑m

i=1 Ai
O(X) and

∑m
i=1 Ai

O
(X), respectively.

∑m
i=1 Ai

O(X) = {x ∈ U |[x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ ... ∨ [x]Am
⊆ X};

∑m
i=1 Ai

O
(X) =∼ (

∑m
i=1 Ai

O(∼ X))
where [x]Ai

(1 ≤ i ≤ m) is the equivalence class of x in terms of set of attributes
Ai, and ∼ X is the complement of X.
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The First Type of Optimistic CMGRS

Definition 4 [4]. Let 〈U,Ω〉 be a multi-granulation covering information
system, Ω = {C1, C2, ..., Cn} a family of coverings of U with Ci =
{Ki1,Ki2, ...,Kimi

}, and X ⊆ U . An optimistic lower approximation and
an optimistic upper approximation of X with respect to Ω are denoted by
∑n

i=1 Ci
O1(X) and

∑n
i=1 Ci

O1
(X), respectively.

∑n
i=1 Ci

O1(X) = ∪{Kij ∈ Ci| ∨ (Kij ⊆ X), i ∈ {1, 2, ..., n}; j = 1, 2, ...,mi}
∑n

i=1 Ci

O1
(X) =∼

∑n
i=1 Ci

O1(∼ X)

The Second Type of Optimistic CMGRS

Definition 5 [15]. Let 〈U,Ω〉 be a multi-granulation covering information
system, Ω = {C1, C2, ..., Cn} a family of coverings of U with Ci =
{Ki1,Ki2, ...,Kimi

}, and X ⊆ U . Let Ni = {Ni(x1), Ni(x2), ..., Ni(x|U |)}, where
Ni(xj) = ∩{Kit ∈ Ci|xj ∈ Kit}, i = 1, 2, ..., n, j = 1, 2, ..., |U | , t = 1, 2, ...,mi.
An optimistic lower approximation and an optimistic upper approximation of X

with respect to Ω are denoted by
∑n

i=1 Ci
O2(X) and

∑n
i=1 Ci

O2
(X), respectively.

∑n
i=1 Ci

O2(X) = ∪{Ni(xj) ∈ Ni| ∨ (Ni(xj) ⊆ X), i ∈ {1, 2, ..., n}; j =
1, 2, ..., |U |}

∑n
i=1 Ci

O2
(X) =∼

∑n
i=1 Ci

O2(∼ X)

Example 1. Let 〈U,Ω〉 be a multi-granulation covering information system,
where Ω = {C1, C2}, where U = {x1, x2, x3, x4, x5, x6, x7}, C1 = {{x1, x2, x3, x4},
{x1, x3, x6}, {x4, x6, x7}, {x5}}, C2 = {{x1, x3}, {x1, x2, x3, x7}, {x2, x3, x4, x6},
{x4, x5, x7}}.

For X = {x1, x3, x4, x6}, we have
C1 + C2

O1(X) = {x1, x3, x6},

C1 + C2
O1(X) = {x1, x2, x3, x4, x6, x7}.

For X = {x1, x3, x4, x6}, we have
N1 = {{x1, x3}, {x1, x2, x3, x4}, {x4}, {x5}, {x6}, {x4, x6, x7}},
N2 = {{x1, x3}, {x2, x3}, {x3}, {x4}, {x4, x5, x7}, {x2, x3, x4, x6}, {x7}},
C1 + C2

O2(X) = {x1, x3, x4, x6},

C1 + C2
O2(X) = {x1, x2, x3, x4, x6}.

It can be seen that the lower and upper approximations of the first type of
optimistic CMGRS are derived from the original covering set, and the lower and
upper approximations of the second type of optimistic CMGRS are derived from
the covering set, which is formed by the neighbourhood induced by the original
covering set Ci.

3 Attribute Reduction

Suppose 〈U,Ω〉 is a multi-granulation covering information system, Ω =
{C1, C2, ..., Cn} be a family of coverings on U . The goal of reduction of multi-



Attribute Reduction Based on Optimistic Multi-granulation 335

granulation covering information system is to find the minimal granulation set
G of Ω such that the approximations of any X ⊆ U are invariant.

In the above three pairs of approximation operators, we can see that the lower
approximation operator and upper approximation operator are dual operators,
and the upper approximation operator is defined by the lower approximation
operator. In other words, as long as the lower approximation operator is invari-
ant, the upper approximation operator will also be invariant. Therefore, we only
need to investigate lower approximation operators in this reduction method.

Additionally, if any Ci ∈ Ω, i = {1, 2, ..., n} is a partition on the universe
U , the lower approximation operator in the first and second types of optimistic
CMGRS will degenerate into the MGRS. Namely, MGRS is a special case of the
first and second types of optimistic CMGRS. Therefore, any one of the following
two methods can be used to reduce granulation in MGRS.

3.1 Reduction Based the First Type of Optimistic CMGRS

In the first type of optimistic CMGRS, there is reducible elements in approxi-
mation space formed by lower approximation operator. In Reference [17], it is
proved that the same lower approximation can be generated in the approxima-
tion space after deleting and reducible elements. And ∪{Md(x)|x ∈ U} is the
minimal covering set which can generate the same lower approximation.

Definition 6 (type-1 space). Suppose 〈U,Ω〉 is a multi-granulation covering
information system, Ω = {C1, C2, ..., Cn} be a family of coverings on U , and
Ci = {Ki1,Ki2, ...,Kimi

}. Since ∪Ω is also a covering on U , we define T 1(Ω) =
∪{Md∪Ω(x)|x ∈ U} as the first type of multi-granulation space, denoted T 1-
space.

∪Ω = {Kij |Kij ∈ Ci, i = 1, 2, ..., n; j = 1, 2, ...,mi}. We define attribute
reduction of the first type of optimistic CMGRS based on the first type of multi-
granulation space, since the upper and the lower approximations of the first type
of optimistic CMGRS are invariant as long as the first type of multi-granulation
space is unchanged.

Definition 7. Let 〈U,Ω〉 be a multi-granulation covering information system,
Ω = {C1, C2, ..., Cn} be a family of coverings on U . Ci is dispensable in Ω if
T 1(Ω) = T 1(Ω −{Ci}). Otherwise, Ci is indispensable in Ω. If G ⊆ Ω, T 1(Ω) =
T 1(G) and every attribute in G is indispensable, then G is called a reduct of Ω.
The collection of all reducts of Ω is denoted by RED(Ω). The collection of all
indispensable granulations in Ω is called the core of Ω, denoted as CORE(Ω).

Yang et al. [12] proposed an attribute reduction method, called related family
to compute the reducts of the third types of covering rough sets. We define
the related set and the related family based on T 1-space for multi-granulation
covering rough sets.
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Definition 8 (Related family on type-1 space). Let 〈U,Ω〉 be a multi-granulation
covering information system, Ω = {C1, C2, ..., Cn} be a family of coverings on U ,
and T 1(Ω) = {K1,K2, ...Km} be the T 1-space of Ω. For any Ki ∈ T 1(Ω), we
define r1(Ki) = {Ct|Ki ∈ Ct ∈ Ω} is the related set of Ki, and R1(U,Ω) =
{r1(Ki)|i = 1, 2, ...,m} is the related family of (U,Ω).

Proposition 1. CORE(Ω) = {C ∈ Ω | ∃r1(Ki) ∈ T 1(Ω)s.t.r1(Ki) = {C}}.

Proof. Suppose C ∈ CORE(Ω), then T 1(Ω) �= T 1(Ω − {C}). There must be
Ki ∈ T 1(Ω)s.t.Ki /∈ T 1(Ω − {C}). Since Ki is join irreducible in ∪Ω, it is
evident that Ki ∈ C and Ki /∈ ∪(Ω − {C}). In another word, C is the only
attribute containing Ki, thus r1(Ki) = {C}.

Suppose there is r1(Ki) such that r1(Ki) = {C}, it is evident that C ∈
CORE(Ω).

Proposition 2. Let Ω′ ⊆ Ω, then T 1(Ω′) = T 1(Ω) if and only if Ω′ ∩r1(Ki) �=
∅, for any r1(Ki), i = 1, 2, ...,m.

Proof. Suppose T 1(Ω′) = T 1(Ω), then for any Ki ∈ T 1(Ω), Ki ∈ T 1(Ω′). That
means there is C ∈ Ω′ such that Ki ∈ C. It is evident that C ∈ Ω′ and C ∈ r1(Ki),
thus Ω′ ∩ r1(Ki) �= ∅.

Suppose Ω′ ∩ r1(Ki) �= ∅, for any r1(Ki), i = 1, 2, ...,m. Then for any Ki ∈
T 1(Ω), since Ω′ ∩ r1(Ki) �= ∅, suppose C ∈ (Ω′ ∩ r1(Ki)). It is obvious that
Ki ∈ C ∈ Ω′, then Ki ∈ T 1(Ω′). Thus T 1(Ω′) = T 1(Ω).

Proposition 3. Let Ω′ ⊆ Ω, then Ω′ is a reduct of Ω, if and only if it is a
minimal subset satisfying Ω′ ∩ r1(Ki) �= ∅, for any r1(Ki) �= ∅, i = 1, 2, ...,m.

Definition 9. Let 〈U,Ω〉 be a multi-granulation covering information sys-
tem, Ω = {C1, C2, ..., Cn} be a family of coverings on U , R1(U,Ω) =
{r1(Ki)|i = 1, 2, ...,m} be the related family. A related function f1(U,Ω) is a
Boolean function of n boolean variables C1, C2, ..., Cn corresponding to the cov-
erings C1, C2, ..., Cn, respectively, which is defined as: f1(U,Ω)(C1, C2, ..., Cn) =
∧{∨(r1(Ki)|r1(Ki) ∈ R1(U,Ω)}.

Theorem 1. Let 〈U,Ω〉 be a multi-granulation covering information system,
f1(U,Ω) be a related function. If g(U,Ω) = (∧Ω1) ∨ ... ∨ (∧Ωl) is a reduced
disjunctive derived from f1(U,Ω) via the laws of multiplication and absorption.
Namely, for any Ωk ⊆ Ω, k = 1, 2, ..., l, there is no repeated element in Ωk. Then
RED(Ω) = {Ω1, Ω2, ..., Ωl}.

Proof. For any r1(Ki) ∈ R1(U,Ω), ∧Ωk ≤ ∨r1(Ki) is established for every
k = 1, 2, ..., l, so Ωk ∩ r1(Ki) �= ∅. Let Ω′

k = Ωk − {C} for any C ∈ Ωk, then
g(U,Ω) � ∨k−1

t=1 (∧Ωt) ∨ (∧Ω′
k) ∨ (∨l

t=k+1(∧Ωt)). If for every r1(Ki) ∈ R1(U,Ω),
we have Ω′

k ∩ r1(Ki) �= ∅, then ∧Ω′
k ≤ ∨r1(Ki) for every r1(Ki) ∈ R1(U,Ω).

Namely, g(U,Ω) ≥ ∨k−1
t=1 (∧Ωt)∨(∧Ω′

k)∨(∨l
t=k+1(∧Ωt)), which is a contradiction.

It means there is r1i0 ∈ R1(U,Ω) such that Ω′
k∩r1i0 = ∅. Therefore, Ωk is a reduct

of Ω.
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For any X ∈ RED(Ω), X ∩ r1(Ki) �= ∅ is established for every r1(Ki) ∈
R1(U,Ω), so f1(U,Ω) ∧ (∧X) = ∧(∨r1(Ki)) ∧ (∧X) = ∧X, which means ∧X ≤
f1(U,Ω) = g(U,Ω). Suppose Ωk − X �= ∅ for every k = 1, 2, ..., l. Then there
is Ck ∈ Ωk − X for every k. Through rewriting g(U,Ω) = (∨l

k=1Ck) ∧ Φ, ∧X ≤
∨l

k=1Ck. Thus, there is Ck0 such that ∧X ≤ Ck0 , that is to say, Ck0 ∈ X, which
is a contradiction. So Ωk0 ⊆ X for some k0, since both X and Ωk0 are reducts,
it is clearly that X = Ωk0 . Therefore, RED(Ω) = {Ω1, Ω2, ..., Ωl}.

From the above theorem, we can compute all attribute reducts of Ω with
related functions.

Example 2. Let 〈U,Ω〉 be a multi-granulation covering information sys-
tem, where Ω = {C1, C2, C3}, where U = {x1, x2, x3, x4}, C1 =
{{x1}, {x2, x3}, {x3, x4}}, C2 = {{x1, x2, x4}, {x1, x2, x3}, {x3, x4}}, C3 =
{{x1, x2, x3}, {x2, x4}, {x1, x4}}.

We can see that
∪Ω = {{x1}, {x2, x3}, {x3, x4}, {x1, x2, x4}, {x1, x2, x3}, {x2, x4}, {x1, x4}}.
It is easy to calculate that
Md∪Ω(x1) = {{x1}},
Md∪Ω(x2) = {{x2, x3}, {x2, x4}},
Md∪Ω(x3) = {{x2, x3}, {x3, x4}},
Md∪Ω(x4) = {{x3, x4}, {x2, x4}, {x1, x4}}.
Obviously,
∪{Md∪Ω(x)|x ∈ U} = {{x1}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4}}
r1({x1}) = {C1},
r1({x1, x4}) = {C3},
r1({x2, x3}) = {C1},
r1({x2, x4}) = {C3},
r1({x3, x4}) = {C1, C2}.
f1(U,Ω)(C1, C2, C3) = ∧{∨(r1(Ki)|r1(Ki) ∈ R1(U,Ω)} = C1∧C3∧(C1∨C2) =

C1 ∧ C3.
That is to say, {C1, C3} is a reduct of these granular structures in the the first
type of optimistic CMGRS.

3.2 Reduction Based the Second Type of Optimistic CMGRS

Suppose 〈U,Ω〉 is a multi-granulation covering information system, Ω =
{C1, C2, ..., Cm} be a family of coverings on U , and Ni = {Ni(x1), Ni(x2), ...
Ni(x|U |)} is the set of all neighborhoods induced by Ci. It is clear that ∪Ni =
{Ni(x) ∈ Ni|x ∈ U, i = 1, 2, ...,m} is still a covering of U . Obviously, it is the
minimal covering set which can generate the same lower approximation in the the
second type of optimistic CMGRS.

Definition 10 (type-2 space). Suppose 〈U,Ω〉 is a multi-granulation covering
information system, Ω = {C1, C2, ..., Cm} be a family of coverings on U , and
Ni = {Ni(x1), Ni(x2), ...Ni(x|U |)}. We define T 2(Ω) = ∪m

i=1Ni as the second
type of multi-granulation space, denoted T 2-space.
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Definition 11. Let 〈U,Ω〉 be a multi-granulation covering information sys-
tem, Ω = {C1, C2, ..., Cm} be a family of coverings on U , and Ni =
{Ni(x1), Ni(x2), ...Ni(x|U |)}. Ci is said to be dispensable granulation in Ω if
T 2(Ω) = T 2(Ω − {Ci}). Otherwise, Ci is indispensable granulation in Ω. For
every G ⊆ Ω, if T 2(Ω) = T 2(G) and every granulation in G is indispensable, G

is called a reduct of Ω, the collection of all reducts of Ω is denoted by RED(Ω).
The collection of all indispensable granulations in Ω is called the core of Ω,
denoted as CORE(Ω).

Definition 12 (Related family on type-2 space). Let 〈U,Ω〉 be a multi-
granulation covering information system, Ω = {C1, C2, ..., Cm} a family of cover-
ings of U , and Ni = {Ni(x1), Ni(x2), ...Ni(x|U |)}. For any Ni(xj) ∈ T 2(Ω), we
define r2(Ni(xj)) = {Ci ∈ Ω|Ni(xj) ∈ T 2(Ω)} is the related set of Ni(xj), and
R2(U,Ω) = {r2(Ni(xj))|Ni(xj) ∈ T 2(Ω)} is the related family of (U,Ω).

Proposition 4. CORE(Ω) = {C ∈ Ω | ∃r2(Ni(xj)) ∈ T 2(Ω)s.t.r2(Ni(xj)) =
{C}}.

Proof. Suppose C ∈ CORE(Ω), then T 2(Ω) �= T 2(Ω − {C}). Let T 2(Ω) =
{Ni(xj), i = 1, 2, ...,m; j = 1, 2, ..., |U |} and T 2(Ω − {C}) = {N ′

i(xj), i =
1, 2, ...,m; j = 1, 2, ..., |U |}. There must be 1 ≤ i ≤ m and 1 ≤ i ≤ |U | such that
Ni(xj) �= N ′

i(xj), then Ni(xj) ⊂ N ′
i(xj). Suppose y ∈ (N ′

i(xj) − Ni(xj)), then
there must be K ∈ C such that y ∈ K and xi /∈ K and for any K ′ ∈ ∪(Ω −{C}),
if y ∈ K ′ then xj ∈ K ′. Thus r2(Ni(y)) = {C}.

Suppose there is r2(Ni(xj)) such that r2(Ni(xj)) = {C}, thus Ni(xj) will be
changed if we delete C from Ω. It is evident that C ∈ CORE(Ω).

Proposition 5. Let Ω′ ⊆ Ω, then T 2(Ω′) = T 2(Ω) if and only if Ω′ ∩
r2(Ni(xj)) �= ∅, for any r2(Ni(xj)), i = 1, 2, ...,m.

Proof. Suppose T 2(Ω′) = T 2(Ω), then for any Ni(xj) ∈ T 2(Ω), Ni(xj) can
be induced by Ω′. That means Ci ∈ Ω′. Based on the definition of related set,
we get that Ci ∈ r2(Ni(xj)). It is obvious that Ci ∈ (r2(Ni(xj)) ∩ Ω′). Then
Ω′ ∩ r2(Ni(xj)) �= ∅, for any r2(Ni(xj)), i = 1, 2, ...,m.

Suppose Ω′ ∩ r2(Ni(xj)) �= ∅, for any r2(Ni(xj)), i = 1, 2, ...,m. Then for
any Ni(xj) ∈ T 2(Ω), since Ω′ ∩ r2(Ni(xj)) �= ∅, suppose C ∈ (Ω′ ∩ r2(Ni(xj))).
It is obvious that Ni(xj) can be induced by C, then T 2(Ω) can be induced by
Ω′. Thus T 2(Ω′) = T 2(Ω).

Proposition 6. Let Ω′ ⊆ Ω, then Ω′ is a reduct of Ω, if and only if it is a
minimal subset satisfying Ω′ ∩ r2(Ni(xj)) �= ∅, for any r2(Ni(xj)) �= ∅, i =
1, 2, ...,m.

Definition 13. Let 〈U,Ω〉 be a multi-granulation covering information sys-
tem, Ω = {C1, C2, ..., Cm} be a family of coverings on U , R2(U,Ω) =
{r2(Ni(xj))|Ni(xj) ∈ T 2(Ω)}. A related function f2(U,Ω) is a Boolean
function of m boolean variables C1, C2, ..., Cm corresponding to the cover-
ings C1, C2, ..., Cm, respectively, which is defined as: f2(U,Ω)(C1, C2, ..., Cm) =
∧{∨(r2(Ni(xj))|r2(Ni(xj)) ∈ R2(U,Ω)}.
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Theorem 2. Let 〈U,Ω〉 be a multi-granulation covering information system,
f2(U,Ω) be a related function. If g(U,Ω) = (∧Ω1) ∨ ... ∨ (∧Ωl) is a reduced
disjunctive derived from f2(U,Ω) via the laws of multiplication and absorption.
Namely, for any Ωk ⊆ Ω, k = 1, 2, ..., l, there is no repeated element in Ωk. Then
RED(Ω) = {Ω1, Ω2, ..., Ωl}.
Proof. The proof is similar to that of Theorem1.

From the above theorem, we can compute all attribute reducts of Ω with
related functions.

Example 3. Let 〈U,Ω〉 be a multi-granulation covering information system, and
Ω = {C1, C2, C3}, where U = {x1, x2, x3, x4}, C1 = {{x1, x2, x3}, {x2, x3, x4}, {x1, x3, x4}},

C2 = {{x1, x2, x3}, {x1, x2, x4}, {x2, x4}}, C3 = {{x1, x2}, {x3, x4}, {x1, x2, x3}}.

It is easy to calculate that
N1 = {{x1, x3}, {x2, x3}, {x3}, {x3, x4}},

N2 = {{x1, x2}, {x2}, {x1, x2, x3}, {x2, x4}},

N3 = {{x1, x2}, {x3}, {x3, x4}}.

Obviously,
∪3
i=1 Ni = {{x1, x2}, {x1, x3}, {x2}, {x2, x3}, {x1, x2, x3}, {x2, x4}, {x3}, {x3, x4}}

r2({x1, x2}) = {C2, C3},

r2({x1, x3}) = {C1},

r2({x2}) = {C2},

r2({x2, x3}) = {C1},

r2({x1, x2, x3}) = {C2},

r2({x2, x4}) = {C2},

r2({x3}) = {C1, C3},

r2({x3, x4}) = {C1, C3}.

f2(U, Ω)(C1, C2, C3) = ∧{∨(r2(Ni(xj))|r2(Ni(xj)) ∈ R2(U, Ω)} = (C2 ∨ C3)∧
C1 ∧ C2 ∧ (C1 ∨ C3) = C1 ∧ C2.

That is to say, {C1, C2} is the attribute reduct of the second type of optimistic
CMGRS.

4 Conclusions

We propose two approximation spaces for two types of optimistic multi-
granulation rough set models, the first type of multi-granulation space and the
second type of multi-granulation space, respectively. Based on the two approxi-
mation spaces, we defined related family to calculate all attribute reducts of two
types of optimistic multi-granulation rough set models, which enriches the theo-
retical basis of attribute reduction. In the future, we will continue to investigate
other multi-granulation approximation operators, and try to design efficient and
effective attribute reduction algorithms.
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Abstract. Rough set theory is an important tool to solve the uncer-
tain problems. How to use the existing knowledge granules to approx-
imately describe an uncertain target concept X has been a key issue.
However, current research on theories and methods is still not compre-
hensive enough. R0.5(X), a kind of approximation sets of an uncertain
concept, was proposed and analyzed in detail in our previous research
work. However, whether R0.5(X) is the optimal approximation set of
an uncertain concept X is still unable to determine. As a result, in this
paper, based on the approximation of an uncertain concept, the existence
of the optimal approximation set is explored. Then an optimal approxi-
mation set RBest(X) is proposed and discussed. At first, the definition of
RBest(X) is defined. Then several comparative analysis between RBest(X)
and other approximation sets is carried out. Next, operation properties
of RBest(X) are presented and proved respectively. Finally, with changing
knowledge granularity spaces, the change rules of the similarity between
an uncertain set X and its RBest(X) are revealed.

Keywords: Rough sets · Uncertain concept · Similarity ·
Knowledge granularity · Granular computing

1 Introduction

Recently, computer technology and automatic control technology have rapidly
developed, and research on the uncertain information system has attracted more
and more researchers’ attention [18,22]. Fuzzy set theory, rough set theory and
quotient space theory are three basic granular computing models which have
been successfully applied to process uncertain information. As a simple comput-
ing model, rough set theory [4,13] is an important method for handling uncertain
problems as well as probability theory, fuzzy set theory and evidence theory. In
the view of Pawlak’s rough sets, people usually research how to acquire deci-
sion rules from the upper approximation set R(X) and the lower approximation
c© Springer Nature Switzerland AG 2019
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set R(X). Furthermore, many extended rough set models are proposed to deal
with the real-life uncertain information, such as variable precision rough set
model [26], probability rough set model [11], game-theoretic rough sets [2] and
so on [10,12,25]. Pawlak and Skworn analyzed and summarized these extended
models referred to [11]. Mi analyzed the variable precision rough set model and
discussed how to use this model to obtain attribute reduction [8]. Yao and Ziarko
et al., combining probability and inclusion degree, proposed probability rough
set model and obtained many related results [17,19,20]. However, these meth-
ods mainly focus on constructing the extended approximation operators of tra-
ditional rough set model. There is little research on how to use the existing
knowledge granules in knowledge base to construct an approximation set of X.
Could we construct an approximation set which is more approximate to X than
R(X) or R(X)? And does an optimal approximation set exist? The first prob-
lem is solved in our previous work [21], and the second problem is our main
motivations in this paper.

Based on above assumptions, the related models and results on the approx-
imation set of an uncertain set were proposed in our other paper referred to
[21,23]. In these papers, the basic idea is translating rough sets into fuzzy sets
according to the different membership degree of elements in boundary region and
constructing an approximation set of an uncertain concept by using cut-set of
the fuzzy set with some thresholds. With this construction method, the approx-
imation sets with the existing knowledge granules can be obtained directly. In
the literature [21], a general approximation set was constructed and it had many
good properties. Experimental results show that R0.5(X) is a better model deal-
ing with uncertain information systems. Better classification results could be
obtained with R0.5(X). The amount of correct classification objects increases
and amount of uncertain classification objects reduces.However, that R0.5(X) is
the optimal approximation set of an uncertain set X is still unable to determine,
and the related concepts and results on the optimal approximation were not
presented in [21]. It is difficult to search for the optimal approximation set of an
uncertain set directly. Based on the research referred to [21], through minimizing
similarity between the target concept and its approximation sets, the optimal
approximation set RBest(X) is defined, and an algorithm for constructing the
optimal approximation set RBest(X) is proposed in this paper. And several com-
parative analysis between RBest(X) and other approximation sets is carried out
In addition, the operations properties of RBest(X) is analyzed. Finally we dis-
cuss the change rules of the similarity degree between X and its RBest(X) in
different knowledge granularity levels.

The rest of this paper is organized as follows. In Sect. 2, the related basic con-
cepts and preliminary knowledge are reviewed. The RBest(X) of an uncertain set
X in rough approximation spaces is proposed in Sect. 3. Besides, several compara-
tive analysis between RBest(X) and other approximation sets and many operation
rules related the RBest(X) are given in Sect. 3. The change rules of the similarity
degree between X and its RBest(X) in the different knowledge granularity levels
are discussed in Sect. 4. Finally, the conclusions are drawn in Sect. 5.
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2 Preliminaries

In order to better present the context of this paper, many preliminary concepts,
definitions and results related to rough set and uncertainty measurement are
reviewed as follows.

Definition 1 (Information table of knowledge system [9,14]). A knowl-
edge system can be described as S = 〈U,A, V, f〉. U is the domain. A = C ∪D is
the set of all attributes. Subset C is the set of conditional attributes, and D is the
set of decision attributes. V = ∪r∈AVr is the set of attribute values. Vr describes
the range of attribute values r where r ∈ A. f : U × A → V is a function which
describes attribute values of object x in U .

Definition 2 (Indiscernibility Relation [9,14]). For any attribute set R ⊆
A, an indiscernibility relation is defined as

IND(R) = {(x, y)|(x, y) ∈ U2 ∧ ∀b∈R(b(x) = b(y))}.

Definition 3 (Upper Approximation Set and Lower Approximation
Set [9,14]). Let S = 〈U,A, V, f〉 be a knowledge System, for any X ⊆ U and
R ⊆ A, the upper approximation set R(X) and the lower approximation set
R(X) of X are defined as follows,

R(X) = ∪ {Yi|Yi ∈ U/IND(R) ∧ Yi ∩ X �= ∅} ,

R(X) = ∪ {Yi|Yi ∈ U/IND(R) ∧ Yi ⊆ X} ,

where U/IND(R) = {X|X ⊆ U ∧ ∀x∈X,y∈Y,b∈R (b(x) = b(y))} is a partition
of equivalence relation R on U . The upper approximation set and the lower
approximation set of X on R can be defined in another form as follows,

R(X) = {x|x ∈ U ∧ [x]R ∩ X �= ∅} ,

R(X) = {x|x ∈ U ∧ [x]R ⊆ X} ,

where [x]R ∈ U/IND(R), and [x]R is an equivalence class of x on relation R.
R(X) is a set of objects which certainly belong to U according to knowledge R;
R(X) is a set of objects which possibly belong to U according to knowledge R.
BNDR(X) = R(X)−R(X) is called as Boundary region of the target concept
X on attribute set R. POSR(X) = R(X) is called as Positive region of target
concept X on attribute set R. NEGR(X) = U − R(X) is called as Negative
region of target concept X on attribute set R. BNDR(X) is a set of objects
which just possibly belong to target concept X.

Let U be a finite domain. Let X ⊆ U , x ∈ U , and the membership degree of
x belong to set X is defined as

μR
X(x) =

|X ∩ [x]R|
|[x]R| ,

obviously, 0 ≤ μR
X(x) ≤ 1.
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Definition 4 (λ-Approximation Sets of X [21]). Let X be a subset (the
target concept) of U , let

Rλ(X) = {x|x ∈ U ∧ μR
X(x) ≥ λ} (1 ≥ λ > 0),

then Rλ(X) is called as λ-approximation sets of X. Let

R. λ(X) = {x|x ∈ U ∧ μR
X(x) > λ} (1 ≥ λ > 0),

then R. λ(X) is called as λ-strong approximation sets of X.
So when λ = 0.5, R0.5(X) is called as 0.5-approximation sets of X and

R. 0.5(X) is called as 0.5-strong approximation sets of X.

Definition 5 [14]. Let U = {x1, x2, · · · , xn} be a non-empty finite set, P ′ =
{P ′

1, P
′
2, · · · , P ′

l } and P ′′ = {P ′′
1 , P ′′

2 , · · · , P ′′
m} be two partition spaces on U . If

∀P ′
i∈P ′(∃P ′′

j ∈P ′′(P ′
i ⊆ P ′′

j )), then P ′ is finer than P ′′, denoted by P ′ � P ′′.

Definition 6 [14]. Let U = {x1, x2, · · · , xn} be a non-empty finite set, P ′ =
{P ′

1, P
′
2, · · · P ′

l } and P ′′ = {P ′′
1 , P ′′

2 , · · · P ′′
m} be two partition spaces on U . If P ′ �

P ′′, and ∃P ′
i∈P ′(∃P ′′

j ∈P ′′(P ′
i ⊂ P ′′

j ))(P ′
i ⊂ P ′′

j )), then P ′ is strictly finer than
P ′′, denoted by P ′ ≺ P ′′.

Definition 7 (Similarity Degree [21]). Let A and B be two subsets of U , the
mapping: S : U × U → [0, 1]. S(A,B) is called as similarity degree between A
and B, if and only if S(A,B) satisfy the following properties:

(1) For any A,B ⊆ U , 0 ≤ S(A,B) ≤ 1 (Boundedness),
(2) For any A,B ⊆ U , S(A,B) = S(B,A) (Symmetry),
(3) For any A ⊆ U , S(A,A) = 1; S(A,B) = 0 if and only if A ∩ B = ∅.
Any formula that satisfy above (1), (2) and (3) is a similarity degree formula

between two sets. In similarity measurement of rough sets, because of its uni-
versality and effectiveness, most experts and scholars have adopted a similarity
degree formula in reference [7] as

S (A,B) =
|A ∩ B|
|A ∪ B| ,

where |·| represents cardinality of elements in finite subset. Obviously, this for-
mula satisfies above (1), (2) and (3).

3 Optimal Approximation Set of Rough Set

In our previous works, we find that R0.5(X), as an approximation set of X, has
many excellent properties. However, whether R0.5(X) is the optimal approxi-
mation set of X when 0 ≤ λ < 0.5? Let us analyze according to the following
example.



Constructing the Optimal Approximation Sets of Rough Sets 345

Table 1. Decision information table

x1 x2 x3 x4 x5 x6 x7 x8 x9

a 1 1 1 1 1 1 1 1 1

b 1 1 0 1 1 0 1 1 0

c 1 0 0 1 0 0 1 0 0

d 1 1 1 0 0 0 0 0 0

Example 1. In a decision information table (Table 1), let U = {x1, x2, . . . , x9},
the condition attribute set C = {a, b, c} and the decision attribute set D = {d}.

According to rough set theory, the following partitions can be obtained easily,

IND(C) = {{x1, x4, x7}, {x2, x5, x8}, {x3, x6, x9}},

IND(D) = {{x1, x2, x3}, {x4, x5, x6, x7, x8, x9}}.

Let X1 = {x1, x2, x3}, X2 = {x4, x5, x6, x7, x8, x9}. According to the definition
μR

X(x) = |[x]R∩X|
|[x]R| , a fuzzy set can be obtained as

FX1(U) =
{

1/3
x1

,
1/3
x2

,
1/3
x3

,
1/3
x4

,
1/3
x5

,
1/3
x6

,
1/3
x7

,
1/3
x8

,
1/3
x9

}
.

Then
R0.5(X1) = ∅, R0.3(X1) = U.

While

S (X1, R0.5(X1)) =
|X1 ∩ R0.5(X1)|
|X1 ∪ R0.5(X1)| =

0
3

= 0, S (X1, R0.3(X1)) =
1
3
.

So, S (X1, R0.3(X1)) > S (X1, R0.5(X1)).
In the same way, the following fuzzy set can be obtained,

FX2(U) =
{

2/3
x1

,
2/3
x2

,
2/3
x3

,
2/3
x4

,
2/3
x5

,
2/3
x6

,
2/3
x7

,
2/3
x8

,
2/3
x9

}
.

Then we have R0.5(X2) = U, R0.3(X2) = U . Here we have S (X2, R0.3(X2)) =
S (X2, R0.5(X2)).

So, we find that the approximation set R0.5(X1) is not the optimal approxi-
mation set of X1, on the contrary, R0.5 (X2) is the optimal approximation set of
X2. Therefore, the approximation set R0.5(X) may not be the optimal approx-
imation set of X and an optimal approximation set of X in rough approxima-
tion spaces must exist. Thus, based on the membership degree function μR

X (x),
the optimal approximation set of X in rough approximation space is proposed
through minimizing similarity between the target concept and its approximation
sets.
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Definition 8. (Optimal approximation set) Let X be a subset (target concept) of
U , Rλ(X) be a λ− approximation set of X, and SBest = max

0<λ≤1
{S (X,Rλ (X))}.

For any λ(0 < λ ≤ 1), if S (X,Rλ (X)) =SBest, then the Rλ(X) is
called the optimal approximation set of X, denoted by RBest (X). Namely,
S (X,RBest (X)) = SBest.

According to Definition 8, we know if Rλ(X) is the RBest(X), λ must be in
the interval (0, 0.5]. In order to more clearly show the Definition 8, an example
with a decision information table (Table 2) is presented.

Example 2. Let domain U = {x1, x2, . . . , x15}, the condition attribute set C =
{a, b, c} and the decision attribute set D = {d}.

Table 2. Decision information table

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

a 1 1 1 1 2 2 1 1 1 2 1 2 1 2 2

b 2 2 0 0 1 2 2 0 0 1 2 2 0 1 2

c 0 0 2 2 1 1 0 2 2 1 0 1 2 1 1

d 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

According to rough set theory, the following partition is obtained easily,

U/IND(D) = {{x1, x2, x3, x4, x5}, {x6, x7, x8, x9, x10}, {x11, x12, x13, x14, x15}} .

Here, three decision concepts induced by decision attribute set are generated, and
they are X1 = {x1, x2, x3, x4, x5}, X2 = {x6, x7, x8, x9, x10} and X3 = {x11, x12,
x13, x14, x15} respectively. For the decision concept X1, computing U/IND(C),

U/IND(C) = {{x1, x2, x7, x11}, {x3, x4, x8, x9, x13}, {x5, x10, x14}, {x6, x12, x15}}.

Then let Y1 = {x1, x2, x7, x11}, Y2 = {x3, x4, x8, x9, x13}, Y3 = {x5, x10, x14},
Y4 = {x6, x12, x15}. Computing the membership degree μ(x) of x (x ∈ U),
where μ(x) = |Yi∩X|

|Yi| , that is to say, every object in equivalence class Yi has
same membership degree. For X1, the membership degrees are shown as follows,
(1) For equivalence class Y1, the membership degree is1/2;
(2) For equivalence class Y2, the membership degree is 2/5;
(3) For equivalence class Y3, the membership degree is 1/3;
(4) For equivalence class Y4, the membership degree is 0.

Computing R0.5(X1) and Rμi
(X1) and sorting the μi, then we can get

R1/3(X1) = {x1, x2, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14};
R2/5(X1) = {x1, x2, x3, x4, x7, x8, x9, x11, x13};R0.5(X1) = {x1, x2, x7, x11} .
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Further, we can obtain:

S
(
X1, R1/3 (X1)

)
=

5
12

, S
(
X1, R2/5 (X1)

)
=

2
5
, S (X1, R0.5 (X1)) =

2
7
.

We find that S1/3(X1) is maximum value, that is to say, the approximation set
R1/3(X1), is the optimal approximation set of X1. Then we can obtain RBest(X1)
as follows,

RBest(X1) = R1/3(X1) = {x1, x2, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14}.

Similarly,

RBest(X2) ={x3, x4, x5, x6, x8, x9, x10, x12, x13, x14, x15};
RBest(X3) = {x5, x6, x10, x12, x14, x15} .

The purpose of selecting RBest(X) is to characterize a target concept and
further acquire rules. So compared with R(X), R(X) and R0.5(X), what advan-
tages does the RBest(X) have? Then, relative analysis is shown as follows:
(Continue)Example 3. In Table 2, we can get three decision concepts X1 =
{x1, x2, x3, x4, x5}, X2 = {x6, x7, x8, x9, x10} and X3 = {x11, x12, x13, x14, x15}.
With these decision concepts, we can obtain,

R(X1) = ∅, R(X2) = ∅, R(X3) = ∅;

R(X1) = {x1, x2, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14},

R(X2) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15},

R(X3) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15};
R0.5(X1) = {x1, x2, x7, x11}, R0.5(X2) = ∅, R0.5(X3) = ∅;
RBest(X1) = {x1, x2, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14},

RBest(X2) = {x3, x4, x5, x6, x8, x9, x10, x12, x13, x14, x15},

RBest(X3) = {x5, x6, x10, x12, x14, x15}.

From the decision information Table 2 we can acquire many decision rules
based on R(X) are shown as follows,

(1) For X1, the corresponding approximation set is ∅;
(2) For X2, the corresponding approximation set is ∅;
(3) For X3, the corresponding approximation set is ∅.
We can acquire many decision rules based on R(X) are shown as follows,
(1) For X1, the decision rule is (a = 1 ∧ b = 2 ∧ c = 0) ∨ (a = 1 ∧ b = 0 ∧ c =

2) ∨ (a = 2 ∧ b = 1 ∧ c = 1) → d = 1;
(2) For X2, the decision rule is (a = 2 ∧ b = 2 ∧ c = 1) ∨ (a = 1 ∧ b = 2 ∧ c =

0) ∨ (a = 1 ∧ b = 0 ∧ c = 2) ∨(a = 2 ∧ b = 1 ∧ c = 1) → d = 2;
(3) For X3, the decision rule is (a = 1 ∧ b = 2 ∧ c = 0) ∨ (a = 2 ∧ b = 2 ∧ c =

1) ∨ (a = 1 ∧ b = 0 ∧ c = 2) ∨ (a = 2 ∧ b = 1 ∧ c = 1) → d = 3.
We can acquire many decision rules based on R0.5(X) are shown as follows,
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(1) For X1, the decision rule is (a = 1 ∧ b = 2 ∧ c = 0) → d = 1;
(2) For X2, the corresponding approximate set is ∅;
(3) For X3, the corresponding approximate set is ∅.
We can acquire many decision rules based on RBest(X) are shown as follows,
(1) For X1, the decision rule is (a = 1 ∧ b = 2 ∧ c = 0) ∨ (a = 1 ∧ b = 0 ∧ c =

2) ∨ (a = 2 ∧ b = 2 ∧ c = 1) ∨ (a = 2 ∧ b = 1 ∧ c = 1) → d = 1;
(2) For X2, the decision rule is (a = 2 ∧ b = 1 ∧ c = 1) ∨ (a = 1 ∧ b = 0 ∧ c =

2) ∨ (a = 2 ∧ b = 2 ∧ c = 1) → d = 2;
(3) For X3, the decision rule is (a = 2 ∧ b = 1 ∧ c = 1) ∨ (a = 2 ∧ b = 2 ∧ c =

1) → d = 3.

Table 3. Comparative analysis

Supporting amount Wrong amount Unrecognized amount

R(X) X1 0 0 5

X2 0 0 5

X3 0 0 5

R(X) X1 5 7 0

X2 5 10 0

X3 5 10 0

R0.5(X) X1 2 2 3

X2 0 0 5

X3 0 0 5

RBest(X) X1 5 7 0

X2 4 7 1

X3 3 3 2

A comparative analysis Table 3 is constructed according to the above decision
rules. From these above rules acquired from R(X), R(X), R0.5(X) and RBest(X)
and Table 3, the qualitative and quantitative comparisons could be made. It
obvious that many objects can not determine decision classification if the decision
rules are acquired based on R0.5(X) and R(X), and this is not an expected result
in actual decision problems. Though each object belongs to a certain decision
classification if the decision rules are acquired based on R(X) the objects in the
boundary cannot be assigned to a certain decision classification, and the error
classifications will be produced. Compared with R0.5(X) and R(X), the amount
of correct classification objects increases, and amount of uncertain classification
objects reduces if the decision rules are acquired based on RBest(X). Compared
with R(X), although the amount of correct classification objects weakly declines,
the amount of error classification objects also reduces if the decision rules are
acquired based on RBest(X).

According to above comparison results, we find that the decision rules based
on RBest(X) have more powerful classification ability than the decision rules
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based on R(X), R(X) and R0.5(X). The RBest(X) provide a novel perspective
for approximate characterization of a target concept in multi-granularity spaces.
Furthermore, it would be an effective method that could be suitable to real-life
knowledge discovery from the uncertain information systems.

4 Operation Properties of RBest(X)

It is well known that R(X) and R(X) have many important operation proper-
ties as literature [8,24]. Now, we will prove that the optimal approximation set
RBest(X) has many similar operation properties with the upper approximation
set and lower approximation set also. For convenience, let RBest(X) = Rk(X),
(0 < k ≤ 0.5), U be a finite domain, and X, Y be two subsets on U , we have

(1) Rk(∼ X) =∼ R. 1−k(X), R. k(∼ X) =∼ R1−k(X);
(2) if X ⊆ Y , then Rk(X) ⊆ Rk(Y ), R. k(X) ⊆ R. k(Y );
(3) Rk(X ∩ Y ) ⊆ Rk(X) ∩ Rk(Y ), R. k(X ∩ Y ) ⊆ R. k(X) ∩ R. k(Y );
(4) Rk(X ∪ Y ) ⊇ Rk(X) ∪ Rk(Y ), R. k(X ∪ Y ) ⊇ R. k(X) ∪ R. k(Y ).

Proof. (1) Because

Rk(∼ X) =
{
x|µR

X̃(x) ≥ k
}

=

{
x| |[x]R ∩ (∼ X)|

|[x]R| ≥ k

}
=

{
x| |[x]R ∩ (U − X)|

|[x]R| ≥ k

}

=

{
x|1 − |[x]R ∩ X|

|[x]R| ≥ k

}
=

{
x| |[x]R ∩ X|

|[x]R| ≤ 1 − k

}
=∼ R. 1−k(X),

Similarly, R. k(∼ X) =∼ R1−k(X) holds. Hence, the proposition (1) is proved.
(2) ∀x ∈ Rk(X), we have [x]R satisfying |[x]R∩X|

|[x]R| ≥ k; because X ⊆ Y , we

have |[x]R ∩ X| ≤ |[x]R ∩ Y |, then |[x]R∩X|
|[x]R| ≤ |[x]R∩Y |

|[x]R| , then |[x]R∩Y |
|[x]R| ≥ k. So we

can get x ∈ Rk(Y ), and then Rk(X) ⊆ Rk(Y ). Similarly, ∀x ∈ R. k(X), we have
[x]R satisfying |[x]R∩X|

|[x]R| > k; because X ⊆ Y , we have |[x]R ∩ X| ≤ |[x]R ∩ Y |,
then |[x]R∩X|

|[x]R| ≤ |[x]R∩Y |
|[x]R| , and we can get |[x]R∩Y |

|[x]R| > k. Therefore, we have x ∈
R. k(Y ), and then R. k(X) ⊆ R. k(Y ). So, the proposition (2) is proved successfully.

(3) Because X ∩ Y ⊆ X and X ∩ Y ⊆ Y , according to proposition (2) we
have Rk(X ∩ Y ) ⊆ Rk(X) and Rk(X ∩ Y ) ⊆ Rk(Y ), and we have Rk(X ∩ Y ) ⊆
Rk(X) ∩ Rk(Y ). Similarly, we can get R. k(X ∩ Y ) ⊆ R. k(X) ∩ Rk. (Y ). So the
proposition (3) holds.

(4) Because X ⊆ X ∪ Y and Y ⊆ X ∪ Y , according to proposition (2),
Rk(X) ⊆ Rk(X ∪ Y ) and Rk(Y ) ⊆ Rk(X ∪ Y ), so Rk(X ∪ Y ) ⊇ Rk(X)∪Rk(Y )
is held. Similarly because X ⊆ X∪Y and Y ⊆ X∪Y , both R. k(X) ⊆ R. k(X ∪ Y )
and R. k(Y ) ⊆ R. k(X ∪ Y ) are held, so we have R. k(X ∪ Y ) ⊇ R. k(X) ∪ R. k(Y ).
Then the proposition (4) is proved successfully.

5 Change Rules of RBest(X) with Changing Knowledge
Granularity

Currently, in different knowledge granularity levels, change rules of rough set
uncertainty is one of important issues to measure the uncertainty of knowledge
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[1,3,5,6,15,16]. Therefore, in different knowledge granularity levels, change rules
of S(X,RBest(X)) are also focus on our attention. Next, we will discuss the
change rules in detail. Firstly, suppose a, b, c, d, e and f be all real number,
and some basic results and lemmas are reviewed in order to discuss the relevant
theorems easily.

Lemma 1. [21] If 0 < a < b and 0 < c < d, then a/b < (a + d)/(b + c).

Lemma 2. [21] If f/e = (b + d)/(a + c) and b/a < f/e, then d/c > f/e.

Lemma 3. [19] Let 0 < c < a, 0 < d < b. If a/b ≥ c/d, then a/b ≤
(a − c)/(b − d). On the contrary, if a/b ≤ c/d, then a/b ≥ (a − c)/(b − d).

Next, we would discuss the relationship between S(X, RBest(X)) and
S(X,R′

Best(X)) in different knowledge granularity levels. Let RBest(X) = Rλ(X)
then (0 < λ ≤ 0.5). And let [xi1 ]R, [xi2 ]R, . . . ,[xik ]R be the equivalence classes
induced by an equivalence relation R on U , and [xi1 ]R′ , [xi2 ]R′ ,. . . , [xik ]R′ be
the equivalence classes induced by another equivalence relation R′ on U . If the
partition U/R′ is finer than U/R namely U/R′ � U/R, for any x ∈ U , there is
[x]R′ ⊆ [x]R. For convenience, let Rλ(X) = R(X) ∪ [xi1 ]R ∪ [xi2 ]R ∪ . . . ∪ [xik ]R,
and BNDR(X) = [xi1 ]R ∪ [xi2 ]R ∪ . . . ∪ [xim ]R. The equivalence classes divided
into finer equivalence classes (sub-granules) may be in NEGR(X), POSR(X) or
BNDR(X). When the equivalence classes divided into finer equivalence classes
are in NEGR(X) or POSR(X), S(X,Rλ(X)) = S(X,R′

λ(X)) is held. Next we
will focus on S(X,R′

λ(X)) when the equivalence classes divided into finer equiv-
alence classes are in BNDR(X). For simplicity, suppose there is only one granule
subdivided to two disjoint granules and others remain unchanged. That is to say,
suppose [xit ]R = [x1

it
]R′ ∪ [x2

it
]R′ . This situation will be discussed as follows.

Theorem 1. If λ = 0.5, 1 ≤ t ≤ k, that is [xit ]R ⊂ Rλ(X):
(1) If [x1

it
]R′ ⊂ R′

λ(X), [x2
it

]R′ ⊂ R′
λ(X), then S (X,Rλ(X)) = S (X,R′

λ(X));
(2) If [x1

it
]R′ ⊂ R′

λ(X), [x2
it

]R′ �⊂ R′
λ(X), then S (X,Rλ(X)) ≤ S (X,R′

λ(X)).

Proof. ∀x ∈ R0.5(X), we have μR
X(x) = |[x]R∩X|

[x]R
≥ 0.5. Then we can obtain,

R0.5(X) =
{
x|μR

X(x) ≥ 0.5
}

=
{
x|μR

X(x) = 1
} ∪ {

x|0.5 ≤ μR
X(x) < 1

}
.

Obviously,
{
x|μR

X(x) = 1
}

= R(X), and then Let
{
x|0.5 ≤ μR

X(x) < 1
}

=
[xi1 ]R ∪ [xi2 ]R ∪ . . . ∪ [xik ]R, we have

X ∩ R0.5(X) = X ∩ (R(X) ∪ [xi1 ]R ∪ [xi2 ]R ∪ . . . ∪ [xik ]R) .

Since the intersection sets between any two elements in R(X), [xi1 ]R, [xi2 ]R, . . . ,
[xik ]R is empty set, we have

|X ∩ R0.5(X)| =|X ∩ R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xin ]R|
=|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + | . . . | + |X ∩ [xin ]R|.
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Since X ∪ Rλ(X) = X ∪ ([xi1 ]R − X) ∪ ([xi2 ]R − X) ∪ . . . ∪ ([xik ]R − X) and
the intersection between any two elements in X, ([xi1 ]R − X), ([xi2 ]R − X), . . . ,
([xik ]R − X) is empty set, we have

|X ∪ R0.5(X)| = |X| + |([xi1 ]R − X)| + |([xi2 ]R − X)| + | . . . | + |([xik ]R − X)|.
Therefore,

S(X,R0.5(X)) =
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| .

While [x1
it

]R′ ⊂ R′
λ(X) and [x2

it
]R′ ⊂ R′

λ(X), we can get

S(X,R′
0.5(X))

=
|R′(X)| + |X ∩ [xi1 ]R′ | + . . . + |X ∩ [x1

it ]R′ | + |X ∩ [x2
it ]R′ | + . . . + |X ∩ [xik ]R′ |

|X| + |[xi1 ]R′ − X| + . . . + |[x1
it ]R′ − X| + |[x2

it ]R′ − X| + . . . + |[xik ]R′ − X|

=
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X|

=S(X,Rλ(X)).

So the part (1) is proved successfully.
For the part (2) when [x2

it
]R′ �⊂ R′

λ(X), we can have the equality as follows,

S(X,R′
0.5(X)) =

|R′(X)| + |X ∩ [xi1 ]R′ | + . . . + |X ∩ [x1
it ]R′ | + . . . + |X ∩ [xik ]R′ |

|X| + |[xi1 ]R′ − X| + . . . + |[x1
it ]R′ − X| + . . . + |[xik ]R′ − X| .

With Lemma 2, we have the inequality
|X∩[x1

it
]R′ |

|[x1
it
]R′−X| >

|X∩[xit ]R′ |
|[xit ]R′ −X| , let

|X∩[x1
it
]R′ |

|[x1
it
]R′ −X| =

|X∩[xit ]R′ |+p

|[xit ]R′−X|+q , then p
q >

|X∩[xit ]R′ |
|[xit ]R′ −X| , then we can get

S(X,R′
λ(X))

=
|R′(X)| + |X ∩ [xi1 ]R′ | + |X ∩ [xi2 ]R′ | + . . . + |X ∩ [x1

it ]R′ | + . . . + |X ∩ [xik ]R′ |
|X| + |[xi1 ]R′ − X| + |[xi2 ]R′ − X| + . . . + |[x1

it ]R′ − X| + . . . + |[xik ]R′ − X|

=
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R| + p

|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| + q
.

We know

S(X,R0.5(X)) =
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| ,

according to Definition 6 we have 0 ≤ S(X,R0.5(X)) ≤ 1, then we can easily get
the inequality as follow,

|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
≤ |X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X|.
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Since p
q >

|X∩[xit ]R′ |
|[xit ]R′−X| we have p > q. With Lemma 1,

|R(X)| + |X ∩ [xi1 ]R| + . . .+ |X ∩ [xik ]R| + p

|X| + |[xi1 ]R − X| + . . .+ |[xik ]R − X| + q
≥ |R(X)| + |X ∩ [xi1 ]R| + . . .+ |X ∩ [xik ]R|

|X| + |[xi1 ]R − X| + . . .+ |[xik ]R − X| ,

namely S(X,R0.5(X)) ≤ S(X,R′
0.5(X)). Hence the part (2) is proved success-

fully.

Theorem 1 show that when λ = 0.5, no matter the equivalence classes divided
into many sub-granules are in NEGR(X), POSR(X) or BNDR(X), similarity
degree S(X,R′

λ(X)) is not smaller than S(X,Rλ(X)).

Theorem 2. If 0 < λ < 0.5, k < t ≤ m, that is [xit ]R �⊂ Rλ(X):
(1) If [x1

it
]R′ ⊂ R′

λ(X), [x2
it

]R′ �⊂ R′
λ(X) and S(X, Rλ(X)) ≤

|X ∩ [x1
it

]R′ |/|[x1
it

]R′ − X|, then S(X, Rλ(X)) ≤ S(X,R′
λ(X));

(2) If [x1
it

]R′ �⊂ R′
λ(X), [x2

it
]R′ �⊂ R′

λ(X), then S(X,Rλ(X)) = S(X,R′
λ(X)).

Proof. According to the Theorem 1 we can get the equality as follow,

S(X,Rλ(X)) =
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| .

Since [x1
it

]R′ ⊂ R′
λ(X) and [x2

it
]R′ �⊂ R′

λ(X) we can obtain the following
equality,

S(X,R′
λ(X)) =

|X ∩ R′
λ(X)|

|X ∪ R′
λ(X)|

=
|R′(X)| + |X ∩ [xi1 ]R′ | + |X ∩ [xi2 ]R′ | + . . . + |X ∩ [xik ]R′ | + |X ∩ [x1

it
]R′ |

|X| + |[xi1 ]R′ − X| + |[xi2 ]R′ − X| + . . . + |[xik ]R′ − X| + |[x1
it

]R′ − X|

=
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R| + |X ∩ [x1

it
]R′ |

|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| + |[x1
it

]R′ − X| .

Let S(X,Rλ(X)) = k, |R(X)| + |X ∩ [xi1 ]R| + . . . + |X ∩ [xik ]R| = k1 and |X| +
|[xi1 ]R − X| + . . . + |[xik ]R − X| = k2, we can get the equality as follow,

S(X,R′
λ(X)) =

k1 + |X ∩ [x1
it

]R′ |
k2 + |[x1

it
]R′ − X| .

For S(X,Rλ(X)) = k = k1
k2

≤ |X∩[x1
it
]R′ |

|[x1
it
]R′−X| , and according to Lemma2 we can

easily obtain the following inequality,

S(X,R′
λ(X)) =

k1 + |X ∩ [x1
it

]R′ |
k2 + |[x1

it
]R′ − X| ≥ k1 + k1

k2 + k2
= S(X,Rλ(X)).

Therefore the part (1) is proved.
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For the part (2), since [x1
it

]R′ �⊂ R′
λ(X) and [x2

it
]R′ �⊂ R′

λ(X), we can easily
get the equality,

S(X,R′
λ(X)) =

|X ∩ R′
λ(X)|

|X ∪ R′
λ(X)|

=
|R′(X)| + |X ∩ [xi1 ]R′ | + |X ∩ [xi2 ]R′ | + . . . + |X ∩ [xik ]R′ |

|X| + |[xi1 ]R′ − X| + |[xi2 ]R′ − X| + . . . + |[xik ]R′ − X|

=
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X|

=S(X,Rλ(X)).

Therefore the part (2) is proved completely.

Note: since [xit ]R �⊂ Rλ(X), according to the Lemma 2, the inclusion relations
[x1

it
]R′ ⊂ R′

λ(X) and [x2
it

]R′ ⊂ R′
λ(X) are not existed.

Theorem 3. If 0 < λ < 0.5, k < t ≤ m, that is [xit ]R ⊂ Rλ(X):
(1) If [x1

it
]R′ ⊂ R′

λ(X), [x2
it

]R′ ⊂ R′
λ(X), then S (X,Rλ(X)) =

S (X,Rλ(X)).
(2) If [x1

it
]R′ ⊂ R′

λ(X), [x2
it

]R′ �⊂ R′
λ(X), as well as S (X,Rλ(X)) ≥∣∣X ∩ [x2

it
]R′

∣∣/∣∣[x2
it

]R′ − X
∣∣, then S (X,Rλ(X)) ≤ S (X,R′

λ(X)).

Proof. For the part (1), since [x1
it

]R′ ⊂ R′
λ(X), and [x2

it
]R′ ⊂ R′

λ(X), we can
easily get the equality as follow,

S(X,R′
λ(X)) =

|X ∩ R′
λ(X)|

|X ∪ R′
λ(X)|

=
|R′(X)| + |X ∩ [xi1 ]R′ | + |X ∩ [xi2 ]R′ | + . . . + |X ∩ [xik ]R′ |

|X| + |[xi1 ]R′ − X| + |[xi2 ]R′ − X| + . . . + |[xik ]R′ − X|

=
|R(X)| + |X ∩ [xi1 ]R| + |X ∩ [xi2 ]R| + . . . + |X ∩ [xik ]R|
|X| + |[xi1 ]R − X| + |[xi2 ]R − X| + . . . + |[xik ]R − X| = S(X,Rλ(X)).

Hence the part (1) is proved.
For the part (2), since [x2

it
]R′ �⊂ R′

λ(X), we can easily get the equality as
follow,

S(X,R′
λ(X)) =

|X ∩ R′
λ(X)|

|X ∪ R′
λ(X)|

=
|R′(X)| + |X ∩ [xi1 ]R′ | + |X ∩ [xi2 ]R′ | + . . . + |X ∩ [x1

it ]R′ | + . . . + |X ∩ [xik ]R′ |
|X| + |[xi1 ]R′ − X| + |[xi2 ]R′ − X| + . . . + |[x1

it ]R′ − X| + . . . + |[xik ]R′ − X|

=
|R′(X)| + |X ∩ [xi1 ]R′ | + . . . + |X ∩ [xit ]R′ | + . . . + |X ∩ [xik ]R′ | − |X ∩ [x2

it ]R′ |
|X| + |[xi1 ]R′ − X| + . . . + |[xit ]R′ − X| + . . . + |[xik ]R′ − X| − |[x2

it ]R′ − X|

=
|X ∩ Rλ(X)| − |X ∩ [x2

it ]R′ |
|X ∪ Rλ(X)| − |[x2

it
]R′ − X| .

Since S(X,Rλ(X)) ≥ |X ∩ [x2
it

]R′ |/|[x2
it

]R′ − X|, then according to Lemma3, we
can get S(X,Rλ(X)) ≤ S(X,R′

λ(X)). So the part (2) is proved perfectly.
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Note: Since [xit ]R ⊂ Rλ(X), according to the Lemma 2, the inclusion rela-
tions [x1

it
]R′ �⊂ R′

λ(X) and [x2
it

]R′ �⊂ R′
λ(X) are not held either.

Theorems 2 and 3 show that when 0 < λ < 0.5 and the equivalence classes
are subdivided into many finer equivalence classes (sub-granules) by R′, the
similarity degree between R′

λ(X) and X is not generally lower than the similarity
degree between Rλ(X) and X.

6 Conclusions

Since rough set theory was proposed in 1982, it has developed more than 30
years. Many scholars have made some improvements for the traditional models
and obtained many extended rough set models which overcome some shortcom-
ings of the traditional models. Combining with the fuzzy set theory, we have
constructed an approximation set of an uncertain set X with the cut-set and
proposed a general approximation model R0.5(X), but the optimal approxima-
tion set of X still is not established. In order to solve this problem, in this paper
the optimal approximation set through minimizing similarity between the uncer-
tain concept and its approximation sets is defined. Then comparative analysis
between RBest(X) and other approximation sets is given. Next, the operation
properties of RBest(X) are presented and proved successfully. Finally, change
rules of the similarity degree between X and RBest(X) in different knowledge
granularity levels are discussed in detail. These research presents a computa-
tional method for establishing or searching an optimal approximation set of X
from the perspective of similarity. We hope these works can expand the range
of rough set theory model to deal with uncertain problems in the real world and
promote the development of uncertainty artificial intelligence.
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and Development Program of China under Grant 2017YFC0 804002, in part by
the Chongqing Postgraduate Scientific Research and Innovation Project under Grant
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Abstract. In the paper, theoretical background, as well as practical
implementation, of discovering flow graphs (both fuzzy and rough set)
from data tables are presented. We assume that data tables represent
information/decision systems in the Pawlak’s sense. The implementa-
tion was made in a software tool called the Classification and Prediction
Software System (CLAPSS). CLAPSS is a tool developed in the Java
technology for solving different classification and prediction problems
using, among others, some specialized approaches based mainly on fuzzy
sets and rough sets. In general, those specialized approaches implemented
in CLAPSS are not available in other tools.

Keywords: Flow graphs · Rough sets · Fuzzy sets · Software tool

1 Introduction

Information flow distribution is the kind of knowledge that can be helpful in
solving different problems appearing in data analysis, especially, if we deal with
temporal data, i.e., results of observations or measurements are ordered in time,
(cf. [5,10]). In the literature, different approaches based on flow graphs were pro-
posed. The fundamental one, called flow networks, was proposed by Ford and
Fulkerson [3]. In the paper, we are interested in two other approaches introduced
in the area of data mining, namely fuzzy flow graphs proposed by Mieszkowicz-
Rolka and Rolka [6] and flow graphs (called here, rough set flow graphs) pro-
posed by Pawlak [12]. These approaches were implemented in a software tool
called Classification and Prediction Software System (CLAPSS) [8,9]. It is a tool
developed over the last few years for solving different classification and predic-
tion problems using, among others, some specialized approaches based mainly
on fuzzy sets and rough sets. Last time, the tool was supplemented with the
possibility of discovering fuzzy flow graphs and rough set flow graphs from data
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tables representing information/decision systems in the Pawlak’s sense. On the
entry side, the tool accepts popular text formats of data tables used in other
data mining and machine learning tools (WEKA [4], RSES [1]) and the XML
format used in ROSETTA [7]. The output in the form of a flow graph can be
exported to the popular DOT format used in the Graphviz tool [2].

Discovering fuzzy flow graphs is preceded by the fuzzification process of
attribute values. The fuzzification process can be made in CLAPSS in one of
the two ways, graphical and scripting. The details are described in Sect. 3. It
is worth noting that the graphical way is very useful for the users. Discover-
ing rough set flow graphs can be preceded by the discretization process. The
discretization process can be made in CLAPSS in a scripting way.

There has been a lack of a general purpose software tool in which discovering
fuzzy as well as rough set flow graphs is implemented. The implementation made
in CLAPSS bridges this gap. The paper describes this new possibility, added to
CLAPSS lately.

In the remaining part of the paper, theoretical background as well as practical
implementation of discovering flow graphs (both fuzzy and rough set) from data
tables are presented.

2 Theoretical Background

2.1 Information and Decision Systems

In the presented approaches, information systems are understood as Pawlak’s
knowledge representation systems.

Formally, an information system IS is a quadruple

IS = (U,A, {Va}a∈A, finf ),

where:

– U is the nonempty, finite set of objects,
– A is the nonempty, finite set of attributes,
– {Va}a∈A is the family of nonempty sets of attribute values,
– finf : A × U → ⋃

a∈A

Va is the information function such that finf (a, u) ∈ Va

for each a ∈ A and u ∈ U .

In many applications (e.g. supervised learning), two classes of attributes (the
so-called condition attributes and decision attributes) are distinguished in the
set of attributes of an information system. The information system, with two
classes of attributes distinguished, is called a decision system. Formally, the
decision system DS is a tuple

DS = (U,C,D, {Va}a∈C∪D, finf , fdec),
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where:

– U is the nonempty, finite set of objects,
– C is the nonempty, finite set of condition attributes,
– D is the nonempty, finite set of decision attributes,
– {Va}a∈C∪D is the family of nonempty sets of condition and decision attribute

values,
– finf : C × U → ⋃

c∈C

Vc is the information function such that finf (c, u) ∈ Vc

for each c ∈ C and u ∈ U .
– fdec : D × U → ⋃

d∈D

Vd is the decision function such that fdec(d, u) ∈ Vd for

each d ∈ D and u ∈ U .

We often consider a decision system with one decision attribute, i.e., D = {d}.
Further, only information systems will be considered since a decision system

can be treated as a special case of an information system.
There are two key types of values: numerical and symbolic. Numerical values

are expressed by numbers (e.g., real numbers, integers, prime numbers, etc.).
Symbolic values usually describe qualitative concepts. Let R be a set of real
numbers. A numerical attribute is an attribute whose set of values is a nonempty
subset of R. A symbolic attribute is an attribute whose set of values includes
symbolic values only.

2.2 Fuzzification

Fuzzification is the process that transforms the real value variables into linguistic
variables whose domains contain linguistic values which can be described by
fuzzy sets (their membership functions).

Now, we are interested in information systems with numerical attributes only.
Let IS = (U,A, {Va}a∈A, finf ) be an information system such that Va ⊆ R for
each a ∈ A. For each attribute a ∈ A, we can define a linguistic variable λa.
With each linguistic variable λa, a set Lλa of linguistic values is associated:

Lλa = {la1 , la2 , . . . , laka
}.

Each linguistic value lai , where i = 1, 2, . . . , ka, is described by a membership
function μlai

: R → [0, 1]. Many types of membership functions can be used
to describe linguistic values. The following types of membership functions have
been implemented in CLAPSS:

– triangular shaped membership function,
– trapezoidal shaped membership function,
– Gaussian shaped membership function,
– generalized bell shaped membership function,
– S shaped membership function,
– π shaped membership function,
– sigmoidal shaped membership function,
– fuzzy singleton membership function,
– sinusoidal shaped membership function,
– Z shaped membership function.
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2.3 Fuzzified Information Systems

We are interested in information systems with numerical attributes only. Let:

– IS = (U,A, {Va}a∈A, finf ) be an information system with U = {u1, u2, . . . ,
un} and A = {a1, a2, . . . , am}, such that Va ⊆ R for each a ∈ A,

– {Lλa}a∈A be the family of sets of linguistic values associated with linguistic
variables from the family {λa}a∈A defined for attributes from A, where Lλa =
{la1 , la2 , . . . , laka

} for each a ∈ A.

A fuzzified information system F(IS) corresponding to IS, is a quadruple

F(IS) = (UF , Φ, {Vφ}φ∈Φ, fF
inf ),

where:

– UF is the nonempty, finite set of objects such that each u∗ ∈ UF corresponds
exactly to one u ∈ U ,

– Φ = Φa1 ∪ Φa2 ∪ · · · ∪ Φam
is the nonempty, finite set of fuzzified attributes,

such that

• Φa1 = {a
l
a1
1
1 , a

l
a1
2
1 , . . . , a

l
a1
ka1
1 },

• Φa2 = {a
l
a2
1
2 , a

l
a2
2
2 , . . . , a

l
a2
ka2
2 },

• . . . ,

• Φam
= {a

lam
1

m , a
lam
2

m , . . . , a
lam
kam

m },
– {Vφ}φ∈Φ is the family of sets of fuzzified attribute values and Vφ = [0, 1] for

each φ ∈ Φ,
– fF

inf : Φ × UF → ⋃

φ∈Φ

Vφ is the information function such that

• fF
inf (alai , u∗) ∈ Vφ for each alai ∈ Φ and u∗ ∈ UF ,

• fF
inf (alai , u∗) = μlai

(finf (a, u)), where μlai
is a membership function

describing lai and u∗ ∈ UF corresponds to u ∈ U ,
for each a ∈ A and i = 1, 2, . . . , ka.

If some attributes of an information system are symbolic (this situation is
common for decision attributes), then we can use the so-called binary fuzzifica-
tion for them.

If for a given a ∈ A, the value set of a is a finite set Va = {v1, v2, . . . , vka
} of

symbolic values, then

– Φa = {av1 , av2 , . . . , avka },

– fF
inf (avi , u∗) =

{
1, finf (a, u) = vi,

0, finf (a, u) �= vi,

where u∗ ∈ UF corresponds to u ∈ U and i = 1, 2, . . . , ka. One can see that in
this case we use, in fact, a fuzzy singleton membership function.
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2.4 Fuzzy Flow Graphs

Fuzzy flow graphs were proposed by Mieszkowicz-Rolka and Rolka (see [6]) to
allow representation of information/decision tables with fuzzy attributes. In our
software tool, we have adopted the following formal definition of a fuzzy flow
graph. Let F(IS) = (UF , Φ, {Vφ}φ∈Φ, fF

inf ) be a fuzzified information system
corresponding to an information system IS = (U,A, {Va}a∈A, finf ) with U =
{u1, u2, . . . , un} and A = {a1, a2, . . . , am}. A fuzzy flow graph corresponding to
F(IS) is a tuple

FFG(F(IS)) = (N,B, cer),

where:

– N = Na1 ∪ Na2 ∪ · · · ∪ Nam
is the set of nodes such that for each a ∈

{a1, a2, . . . , am}: Na = {âla1 , âla2 , . . . , âlaka },
– B ⊆ N ×N is a set of labelled directed branches such that for any (φ̂x, φ̂y) ∈

B, φ̂x ∈ Nai−1 and φ̂y ∈ Nai
and i ∈ {2, 3, . . . ,m},

– cer : B → [0, 1] is a certainty function labelling branches such that:

cer(âl
aj
x

j , â
l
ak
y

k ) =

∑

u∗∈UF
finf (al

aj
x

j , u∗)finf (al
ak
y

k , u∗)

card(U)

for any (âl
aj
x

j , â
l
ak
y

k ) ∈ B.

One can see that we can distinguish particular layers in the set N of nodes
of FFG(F(IS)). The layer Na, where a ∈ {a1, a2, . . . , am}, corresponds exactly
to one attribute a ∈ A. Each node in the layer Na corresponds exactly to one
linguistic value from the set Lλa of linguistic values assigned to a linguistic
variable λa defined for the attribute a. It is worth noting that, in the numerator
of the fraction defining the value of the certainty function, the so-called fuzzy
cardinality (power) is calculated.

2.5 Rough Set Flow Graphs

Rough set flow graphs were defined by Pawlak (see [12]) as a tool for reasoning
from data. In our software tool, we have adopted the following formal definition
of a rough set flow graph. Let IS = (U,A, {Va}a∈A, finf ) be an information
system with U = {u1, u2, . . . , un} and A = {a1, a2, . . . , am}, such that Va =
{v1

a, v2
a, . . . , vka

a } for each a ∈ A. A rough set flow graph corresponding to IS is
a tuple

RSFG(IS) = (N,B, cer, str, cov),

where:

– N = Na1 ∪ Na2 ∪ · · · ∪ Nam
is the set of nodes such that for each a ∈

{a1, a2, . . . , am}: Na = {âv1
a , âv2

a , . . . , âvka
a },

– B ⊆ N × N is a set of multi-labelled directed branches such that for any
(nx, ny) ∈ B, nx ∈ Nai−1 and ny ∈ Nai

and i ∈ {2, 3, . . . ,m},
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– cer : B → [0, 1] is a certainty function labelling branches such that:

cer(â
vx
a−1

i−1 , â
vy
a

i ) =
card({u ∈ U : finf (ai−1, u) = vx

ai−1
∧ finf (ai, u) = vy

ai
})

card({u ∈ U : ai−1(u) = vx
ai−1

})
,

for any (â
vx
a−1

i−1 , â
vy
a

i ) ∈ B,
– str : B → [0, 1] is a strength function labelling branches such that:

str(â
vx
a−1

i−1 , â
vy
a

i ) =
card({u ∈ U : finf (ai−1, u) = vx

ai−1
∧ finf (ai, u) = vy

ai
})

card(U)
,

for any (â
vx
a−1

i−1 , â
vy
a

i ) ∈ B,
– cov : B → [0, 1] is a covering function labelling branches such that:

cov(â
vx
a−1

i−1 , â
vy
a

i ) =
card({u ∈ U : finf (ai−1, u) = vx

ai−1
∧ finf (ai, u) = vy

ai
})

card({u ∈ U : ai(u) = vy
ai})

,

for any (â
vx
a−1

i−1 , â
vy
a

i ) ∈ B.

One can see that we can distinguish particular layers in the set N of nodes
of RSFG(IS). The layer Na, where a ∈ {a1, a2, . . . , am}, corresponds exactly to
one attribute a ∈ A. Each node in the layer Na corresponds exactly to one value
from the set Va of values of a.

3 CLAPSS Implementation

CLAPSS (Classification and Prediction Software System) is a software tool
developed for solving different classification and prediction problems using,
among others, some specialized approaches based mainly on fuzzy sets and rough
sets. The tool is developed in the Java technology. Selected functionalities of the
earlier versions of CLAPSS were described in [8] and [9]. The main features of
CLAPSS are the following:

– Portability. Thanks to the Java technology, the application works on various
software and hardware platforms.

– User-friendly interface (see Fig. 1).
– Modularity. CLAPSS implementation takes into consideration modularity.

In this section, we present a new possibility added to CLAPSS lately. It
is the possibility to discover fuzzy flow graphs and rough set flow graphs form
data tables representing information/decision systems in the Pawlak’s sense. The
general scheme of this functionality of CLAPSS is shown in Fig. 2. The tool uses
its own text format to enter the input data. Moreover, the tool accepts popular
text formats of data tables used in other data mining and machine learning tools
(WEKA [4], RSES [1]) and the XML format used in ROSETTA [7]. The output
flow graph can be exported to the popular DOT format used in the Graphviz
tool [2].



362 K. Pancerz et al.

Fig. 1. A user-friendly interface of CLAPSS.

Fig. 2. A general scheme of the possibility to discover fuzzy flow graphs and rough set
flow graphs form data tables in CLAPSS.

Rough set flow graphs require symbolic or discrete numerical attribute values
in the input data tables. Therefore, in case of numerical attribute values, discov-
ering rough set flow graphs in CLAPSS can be preceded by the discretization
process that can be made in a scripting way using a special language. Discovering
fuzzy flow graphs is preceded by the required fuzzification process of attribute
values. In CLAPSS, two ways of the fuzzification process were implemented,
namely the graphical way and the scripting one. Particularly, the tool aiding
the fuzzification process in a graphical way is important and useful. The main
window of this tool is shown in Fig. 4.

In the remaining part of this section, we present two simple examples clari-
fying the new possibility added to CLAPSS.
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Example 1. Let us consider a simple information system IS1 = (U1, A1,
{Va}a∈A1 , f1

inf ), where U1 = {u1, u2, . . . , u10}, A1 = {a1, a2, a3}, Va1 =
{X,Y,Z}, Va2 = {W,Y,Z}, and Va3 = {X,Y }. This information system is
shown in Table 1 as a data table. This table was included in a text file using the
CLAPSS format:
TABLE Example_RSFG
a1 a2 a3
string string string
condition condition condition
X W X
Y W X
X W X
Z Y Y
X Y Y
X Y Y
X Y Y
Y Z X
Y Z Y
Y Z Y

Table 1. The information system IS1.

U1 A1 a1 a2 a3

u1 X W X

u2 Y W X

u3 X W X

u4 Z Y Y

u5 X Y Y

u6 X Y Y

u7 X Y Y

u8 Y Z X

u9 Y Z Y

u10 Y Z Y

The rough set flow graph corresponding to the information system IS1, gen-
erated in CLAPSS was exported to the DOT format:

digraph FuzzyFlowGraph {
label="RSFG" fontsize=20
labelloc=top
N0 [label=<<TABLE><TR><TD>a1</TD></TR><TR><TD>X</TD></TR></TABLE>> ]
N1 [label=<<TABLE><TR><TD>a1</TD></TR><TR><TD>Y</TD></TR></TABLE>> ]
N2 [label=<<TABLE><TR><TD>a1</TD></TR><TR><TD>Z</TD></TR></TABLE>> ]
N3 [label=<<TABLE><TR><TD>a2</TD></TR><TR><TD>W</TD></TR></TABLE>> ]
N4 [label=<<TABLE><TR><TD>a2</TD></TR><TR><TD>Y</TD></TR></TABLE>> ]
N5 [label=<<TABLE><TR><TD>a2</TD></TR><TR><TD>Z</TD></TR></TABLE>> ]
N6 [label=<<TABLE><TR><TD>a3</TD></TR><TR><TD>X</TD></TR></TABLE>> ]
N7 [label=<<TABLE><TR><TD>a3</TD></TR><TR><TD>Y</TD></TR></TABLE>> ]
N0->N3 [label="cer=0.4000 str=0.2000 cov=0.6667" ]
N0->N4 [label="cer=0.6000 str=0.3000 cov=0.7500" ]
N0->N5 [label="cer=0.0000 str=0.0000 cov=0.0000" ]
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N1->N3 [label="cer=0.2500 str=0.1000 cov=0.3333" ]
N1->N4 [label="cer=0.0000 str=0.0000 cov=0.0000" ]
N1->N5 [label="cer=0.7500 str=0.3000 cov=1.0000" ]
N2->N3 [label="cer=0.0000 str=0.0000 cov=0.0000" ]
N2->N4 [label="cer=1.0000 str=0.1000 cov=0.2500" ]
N2->N5 [label="cer=0.0000 str=0.0000 cov=0.0000" ]
N3->N6 [label="cer=1.0000 str=0.3000 cov=0.7500" ]
N3->N7 [label="cer=0.0000 str=0.0000 cov=0.0000" ]
N4->N6 [label="cer=0.0000 str=0.0000 cov=0.0000" ]
N4->N7 [label="cer=1.0000 str=0.4000 cov=0.6667" ]
N5->N6 [label="cer=0.3333 str=0.1000 cov=0.2500" ]
N5->N7 [label="cer=0.6667 str=0.2000 cov=0.3333" ]
}

Visualization of this graph in the Graphviz tool is shown in Fig. 3.

Fig. 3. The rough set flow graph corresponding to the information system IS1.

Example 2. Let us consider a simple information system IS2 = (U2, A2,
{Va}a∈A2 , f2

inf ), where U1 = {u1, u2, . . . , u10}, A2 = {a1, a2, a3}. This infor-
mation system is shown in Table 2 as a data table. For each attribute a ∈ A2,
we defined a linguistic variable λa with a set Lλa of linguistic values Lλa =
{low,medium, high}. The following membership functions were used to fuzzify
values of attributes from A2.

1. For the linguistic value low:

μlow(x) =

⎧
⎨

⎩

1 if x ≥ 0 and x ≤ 1.0,
1 − x−1.0

3.0−1.0 if x > 1.0 and x ≤ 3.0,

0 otherwise.

2. For the linguistic value medium:

μmedium(x) =

⎧
⎨

⎩

x−1.0
2.5−1.0 if x ≥ 1.0 and x ≤ 2.5,

1 − x−2.5
4.0−2.5 if x > 2.5 and x ≤ 4.0,

0 otherwise.
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Fig. 4. The main window of the tool aiding the fuzzification process in a graphical way.

3. For the linguistic value high:

μhigh(x) =

⎧
⎨

⎩

x−2.0
4.0−2.0 if x ≥ 2.0 and x ≤ 4.0,

1 if x > 4.0 and x ≤ 5.0,
0 otherwise.

In fact, for low and high, we used trapezoidal shaped membership functions
whereas for medium we used a triangular shaped membership function.

Table 2. The information system IS2.

U2 A2 a1 a2 a3

u1 0.3 3.2 4.9

u2 0.5 0.9 3.0

u3 1.9 4.5 2.0

u4 4.2 4.3 0.8

u5 3.5 2.5 0.4

u6 0.5 1.1 2.6

u7 0.7 0.7 3.5

u8 2.5 3.0 4.9

u9 0.8 0.8 1.8

u10 3.7 2.0 0.1
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Table 3. The fuzzified information system F(IS2) corresponding to the information
system IS2.

ID alow
1 amedium

1 ahigh
1 alow

2 amedium
2 ahigh

2 alow
3 amedium

3 ahigh
3

u1 1.0000 0.0000 0.0000 0.0000 0.5333 0.6000 0.0000 0.0000 1.0000

u2 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.6667 0.5000

u3 0.5500 0.6000 0.0000 0.0000 0.0000 1.0000 0.5000 0.6667 0.0000

u4 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000

u5 0.0000 0.3333 0.7500 0.2500 1.0000 0.2500 1.0000 0.0000 0.0000

u6 1.0000 0.0000 0.0000 0.9500 0.0667 0.0000 0.2000 0.9333 0.3000

u7 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.3333 0.7500

u8 0.2500 1.0000 0.2500 0.0000 0.6667 0.5000 0.0000 0.0000 1.0000

u9 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.6000 0.5333 0.0000

u10 0.0000 0.2000 0.8500 0.5000 0.6667 0.0000 1.0000 0.0000 0.0000

Fig. 5. The fuzzy flow graph corresponding to the information system IS2.

In case of a scripting fuzzification process, the user must put the script in a
special language implemented in CLAPSS. In this script, linguistic values and
membership functions (their shapes and parameters) associated with them are
determined. The script for the fuzzification process of the attribute values of the
information system shown in Table 2 has the form:
ATTR[0]->fuzzification(lingvalues={low=(trapezoidal,0.0000,0.0000,1.0000,3.0000),
medium=(triangular,1.0000,2.5000,4.0000),high=(trapezoidal,2.0000,4.0000,5.0000,5.0000)});
ATTR[1]->fuzzification(lingvalues={low=(trapezoidal,0.0000,0.0000,1.0000,3.0000),
medium=(triangular,1.0000,2.5000,4.0000),high=(trapezoidal,2.0000,4.0000,5.0000,5.0000)});
ATTR[2]->fuzzification(lingvalues={low=(trapezoidal,0.0000,0.0000,1.0000,3.0000),
medium=(triangular,1.0000,2.5000,4.0000),high=(trapezoidal,2.0000,4.0000,5.0000,5.0000)});

In case of a graphical fuzzification process, the user determines linguistic
values and membership functions (their shapes and parameters) associated with
them in a special window shown in Fig. 4. On the left-hand side, the membership
function panel can be seen. In the centre of the window, one can see the panel
with defined membership functions for the whole range of a given attribute. In
this panel, the membership functions created earlier can be manually modified
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(e.g., characteristic points or slopes can be moved). On the right-hand side,
the panel with calculated values of the fuzzified attribute can be seen. These
values are automatically updated if some changes in membership functions are
made by the user. The fuzzified information system F(IS2) corresponding to the
information system IS2 is shown in Table 3 as a data table. The fuzzy flow graph
corresponding to the information system IS2 visualized using the Graphviz tool
is shown in Fig. 5.

4 Conclusions

In the paper, we have presented a new possibility added to the Classification
and Prediction Software System (CLAPSS). This possibility enables the users
to discover flow graphs (both fuzzy and rough set) from data tables. These
flow graphs can be used further as the spaces to extract the useful knowledge
(in a form of rules or episodes) hidden in the analysed data. One of the main
directions in further developing of CLAPSS is to implement the approaches in
which the semantics of data (for example, expressed by ontologies) is taken into
consideration in the processes of discovering flow graphs (cf. [11]).

Acknowledgments. This work was partially supported by the Center for Innovation
and Transfer of Natural Sciences and Engineering Knowledge at the University of
Rzeszów.
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Abstract. In multi-label classification problems, instances can be asso-
ciated with several decision classes (labels) simultaneously. One of the
most successful algorithms to deal with this kind of problem is the ML-
kNN method, which is lazy learner adapted to the multi-label scenario.
All the computational models that realize inferences from examples have
the common problem of the selection of those examples that should be
included into the training set to increase the algorithm’s efficiency. This
problem in known as training sets edition. Despite the extensive work in
multi-label classification, there is a lack of methods for editing multi-label
training sets. In this research, we propose three reduction techniques for
editing multi-label training sets that rely on the Rough Set Theory. The
simulations show that these methods reduce the number of examples in
the training sets without affecting the overall performance, while in some
case the performance is even improved.

Keywords: Multi-label classification · Rough Set Theory ·
Granular Computing · Machine learning · Edit training set

1 Introduction

In multi-label classification (MLC), each example in the training set belongs to
several classes from a set of predefined labels [15,29]. MLC continues to receive
attention within the machine learning community because of the wide variety of
real-world problems that can be modeled in that context. In text categorization,
an electronic document can be referred to sport topics as to politics and society.
In semantic scene classification, an image may contain multiple objects. In video
annotation, a film can be annotated with several labels or tags. In bioinformatics,
each protein may be labeled with multiple functional labels such as metabolism,
energy and cellular biogenesis [9,17,25,26].

ML-kNN [38] is an adaptation of the k -NN algorithm [11] to the multi-label
scenario. Given a set of n training examples, upon receiving a new instance to
be predicted, the k -NN classifier identifies k nearest examples of that instance
and then it assigns a set of labels to that instance. The probability of associating
c© Springer Nature Switzerland AG 2019
T. Mihálydeák et al. (Eds.): IJCRS 2019, LNAI 11499, pp. 369–380, 2019.
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the instance with a certain decision class is determined based on the number of
neighbors that contain the target label.

Some aspects that have a pivotal relevance on k -NN’s performance are the
reduction of the classification error and the reduction of the computational cost.
The k -NN method is very sensitive to incorrectly labeled examples close to the
decision boundary as such instances are liable to create a region around them
where new examples will also be misclassified [1,5]. Moreover, in large data col-
lections, searching for the nearest neighbor can be quite a time-consuming task.
A major problem of instance-based learners is that classification time increases
as more examples are added to training set.

All reasoning models that perform the inference process from examples have
the problem of selecting the examples that should be included in the training
set to increase the efficiency. This problem is known as the training sets edition
[4,32]. In the literature, several papers [4,13,14,30] have been proposed to cope
with this problem in the context of single-label learning. These techniques are
usually based on the reduction or edition of training instances [5] with the goal
of reducing the learning matrix. Overall, it decreases the algorithm’s workload
even when it might yield a little less precision [33].

Moreover, edition techniques can eliminate instances that induce an incorrect
classification, even though it is certain that they produce elimination of exam-
ples, their fundamental objective is to obtain a training sample of better quality
to have a better precision with the system [16].

Despite the extensive work in multi-label classification [21], there is a lack
of methods for editing multi-label datasets. Existing methods reported in the
literature mainly focus on selecting prototypes [6,18,19]. This fact became a
driving-force to study this problem in the multi-label learning context. By doing
so, we rely on Rough Set Theory (RST) [22] which is a mathematical theory for
data analysis and reasoning [1,20]. The advantage of RST include (1) it only uses
the original data and does not need any external information, (2) no assumption
about the data is necessary, and (3) it is useful to analyze both qualitative and
quantitative attributes [34] in a straightforward manner.

Being more explicit, this paper presents three training edition methods for
MLC problems with the goal of increasing algorithms’ efficacy without signifi-
cantly harming their efficacy. Those methods rely on the lower and upper approx-
imations as computed in RST to determine a suitable granularity degree in the
training set. The first method builds a training set as the union of the lower
approximations attached with each decision class. The second method addition-
ally includes objects that are in the boundary region, which have been relabeled
by taking into account the membership degree to each decision class. The third
method is similar to the second one, but it omits the connection among decisions
classes, so that labels are treated independently.

The rest of the paper is organized as follows. Section 2 presents the theo-
retical background on rough sets, while Sect. 3 introduces the edition methods
for MLC datasets. Section 4 is dedicated to evaluating the performance of the
ML-kNN algorithm on synthetic datasets that have been improved with the pro-
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posed algorithms. Finally, in Sect. 5 we formalize relevant concluding remarks
and future research directions to be explored.

2 Rough Set Theory

RST is a methodology proposed in the early 1980’s for handling uncertainty
that is manifested in the form of inconsistent data [2,22]. It uses two main com-
ponents: an information system and an inseparability relationship. The former
is defined as IS = (U,A), where U is a non-empty finite set of objects, and A
is a non-empty finite set of attributes that describe each object. A particular
case are the decision systems where DS = (U,A ∪ {d}), whereas d /∈ A is the
decision attribute. The inseparability relation allows granulating the universe of
discourse using the principles behind rough sets [23,36].

According to [37] the information granulation involves partitioning objects
into granules, with a granule being a clump of objects which are drawn together
by indistinguishability, similarity or functionality. Any subset X ⊆ U can be
approximated by two crisp sets [3]: the lower and the upper approximation. They
are defined as B∗X = {x ∈ U : [x]B ⊆ X} and B∗X = {x ∈ U : [x]B ∩ X �= ∅}
respectively, where [x]B denotes the set of inseparable objects associated to x
using an indiscernibility relation defined by B ⊆ A.

The objects in B∗X are categorically members of X, whereas the objects in
B∗X are possible members of the subset X. This model does not consider any
tolerance of errors: if two inseparable objects belong to different classes then the
decision system will be inconsistent. However, the definition of indiscernibility
as an equivalence relation is excessively strict. It means that two inseparable
objects could incorrectly be labeled as separable.

This problems can be alleviated in some extent by extending the concept of
inseparability relation [27] and replacing the equivalence relation with a weaker
binary relation. Equation (1) shows an indiscernibility relation, where 0 ≤ δ(x, y)
≤ 1 is a similarity function. This weak binary relation states that objects x and
y are inseparable as long as their similarity degree δ(x, y) exceeds a similarity
threshold 0 ≤ ξ1 ≤ 1. This relation actually defines a similarity class R(x) =
{y ∈ U : yRx} that replaces the equivalence class.

R1 : xRy ⇐⇒ δ(x, y) ≥ ξ (1)

The similarity function could be formulated in a variety of ways, for example,
ϕ(x, y) = 1 − δ(x, y) with δ(x, y) being the distance between objects x and y.
In reference [31] the authors studied the properties of several distance functions
which allow comparing heterogeneous instances, i.e., objects comprising both
numerical and nominal attributes. In this paper, we have adopted the Hetero-
geneous Euclidean-Overlap Metric (HEOM) defined in Eq. (2), which computes
the normalized Euclidean distance between numerical attributes and an overlap
metric for nominal attributes,
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δ(x, y) =

√
√
√
√

∑M
j=1 ωjσj(x, y)
∑M

j=1 ωj

(2)

such that

σj(x, y) =

⎧

⎪⎨

⎪⎩

0 if Aj is nominal ∧ x(j) = y(j)
1 if Aj is nominal ∧ x(j) �= y(j)
(x(j) − y(j))2 if Aj is numerical

(3)

where A represents the set of features describing the problem, 0 ≤ ωj ≤ 1 is the
relative relevance of the jth attribute, x(j) and y(j) denote the values of the jth
attribute associated to objects x and y respectively.

Equations (4) and (5) formalize how to compute lower and upper approxima-
tions respectively, based on the elements described above,

B∗X = {x ∈ U : R(x) ⊆ X} (4)

B∗X =
⋃

x∈X

R(x). (5)

The lower and upper approximations allow computing three well-defined
regions of set X. The positive region POS(X) = B∗X includes those objects
that are certainly contained in X, the negative region NEG(X) = U − B∗X
denotes those objects that are certainly not related to X, while the boundary
region BND(X) = B∗X − B∗X captures the objects whose membership to X
is uncertain, i.e., they might be members of X [35].

3 Edition Methods for Multi-label Training Sets

In this section, we propose three methods for editing multi-label training sets
which employ the upper and lower approximation concepts as defined in RST. It
offers a pattern-oriented model the deal with uncertainty in the form of inconsis-
tency, as often happen in the presence of noise. In fact, the lower approximation
eliminates the cases having a noisy behavior.

As mentioned, in MLC scenarios an instance may be associated with multiple
labels. Let mlDS = (U,A ∪ L) be a multi-label decision system, where the set
U is a non-empty finite set of objects, A is a non-empty finite set of attributes
that describe each observation, and L = {L1, L2, . . . , Lk} is a non-empty finite
set of labels such that the label domain is Li = {0, 1}.

Aiming at extending the reduction technique proposed in [5] for the multi-
label case, we must define what is considered to be a decision class in the MLC
context. In this paper, the following variants are contemplated:



Methods to Edit Multi-label Training Sets Using Rough Sets Theory 373

– Each combination Ci of labels represents a decision value. For example, let
L = {L1, L2, L3} denote the set of labels, a combination of labels could be
“101”, pointing out that the object belongs to the labels L1 and L3, then
“101” defines a decision class, so that all objects associated with labels L1

and L3 belong to that decision class.
– Each label (Li) is considered a decision value, so that all the objects associated

that label belong to this decision class. According with this definition, in the
example above there are three decision classes.

3.1 Each Label Combination Is a Decision Value

The basic idea behind the first edition method is summarized as follows. First, we
detect all possible combinations of labels (i.e., decision classes according with the
first definition) that have been observed in the dataset. Afterwards, we compute
the lower approximations and construct the news dataset as the union of those
information granules as formalized in the following equation,

mlTS = B∗(X1) ∩ B∗(X2) ∩ . . . ∩ B∗(Xk) (6)

where B∗(Xi) is the lower approximation associated with the i-th decision class
and k is the number of label combinations. This is equivalent to saying that the
training set will be the positive region of the decision system since objects that
are incorrectly labeled or near to the decision boundary will be eliminated from
the dataset [10]. Algorithm 1 formalized this procedure.

Algorithm 1. Edit1mlTS
1: Form the sets Xi ⊆ U , where Xi denotes the ith decision class that contains all

objects associated with the ith combination Ci.
2: For each set Xi, calculate its lower approximation B∗(Xi).
3: Construct the edited training set as the union of all the sets B∗(Xi) as defined in

Equation (6).

In the second edition method, we use the lower approximation and the bound-
ary region of each label combination to create the edited training set. Besides the
objects that belong to the lowers approximation, this method detects suspicious
objects by computing the boundary regions while changing the decision class of
some of them by using a likelihood measure.

If an object y belongs to the ith boundary region, then there are inseparable
objects to x which are associated with different label combinations. Therefore y
is considered suspicious. The relabeling method uses the membership function
in Eq. (7) as a likelihood measure,

μXi
(x) =

| Xi ∩ R(x) |
| R(x) | (7)
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where Xi comprises all objects associated with the ith label combination, and
R(x) is the similarity class for object x. Hence, for each object y in the boundary
regions, we calculate the membership degree to each combination (as defined in
Eq. (7) so that we can assign to x the combination that reaches the highest
membership degree. Algorithm 2 displays this method.

3.2 Each Label Is Considered a Decision Value

As mentioned, each label combination observed in the dataset can be considered
as a decision class in the MLC problem. The third edition method takes this idea
into account, as described in the Algorithm 3.

Algorithm 2. Edit2mlTS
1: Form the sets Xi ⊆ U , where Xi denotes the ith decision class that contains all

objects associated with the ith combination (Ci).
2: For each set Xi do

Calculate their lower approximation B∗(Xi) and upper approximation B∗(Xi)
mlST = mlST ∪ B∗(Xi)
Ti = BND(Xi) = B∗(Xi) − B∗(Xi)

3: T =
⋃k

i=1 Ti, where k represents the number of label combinations.
4: For each object x ∈ T , calculate the membership degree to each Xi, and re-labelling

the x object with the Ci combination associated with the ith decision class in which
the highest membership degree is reached.

5: mlST = mlST ∪ T ′

Algorithm 3. Edit3mlTS
1: Form the sets Xi ⊆ U , where Xi is the ith decision class that contains all the

objects that have the ith label (Li).
2: For each set Xi do

Calculate their lower approximation B∗(Xi) and upper approximation B∗(Xi)
mlST = mlST ∪ B∗(Xi)
Ti = BND(Xi) = B∗(Xi) − B∗(Xi)

3: T =
⋃k

i=1 Ti, where k denotes the number of labels.
4: For each object x ∈ T , calculate the membership degree to each Xi, and re-labelling

the x object with the Li label when the membership grade is greater than a β
threshold.

5: mlST = mlST ∪ T ′

As a first step, we compute the lower approximations with respect to each
existing label in the MLC dataset. Afterwards, we consider the elements that
are on the boundary, that is, those objects in which there is suspicion about
their membership to the concept denoted that label. These objects are relabeled
according with their degree of membership to a label. In other words, suspicious
objects will be linked with the labels reporting a membership degree greater
than a threshold β. Therefore, the edited training set will composed of relabeled
objects and objects belonging to the lower approximations.
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4 Experimental Results

In this section, we explore the global performance of our edition methods when
coupled with the ML-kNN classification algorithm. To do this, we used Hamming
Loss (HL) metric which is probably the most used performance metric in MLC
scenarios [15,24]. This metric is defined in Eq. (8),

HammingLoss =
1
n

1
k

n∑

i=1

|YiΔZi| (8)

where Δ operator returns the symmetric difference between Yi (the real label set
of the ith instance) and Zi (the predicted one). Observe that, since the mistakes
counter is divided by the number of labels (k), this metric will result in different
assessments for the same amount of errors when used with MLDs having a label
set with a different cardinality.

We leaned upon 12 multi-label datasets corresponding with three application
areas in which multi-label data is often observed: text categorization, multimedia
classification and bioinformatics. Such datasets were taken from the MULAN [28]
and RUMDR [7] repositories.

Table 1 summarizes the number of instances, attributes, and labels for each
dataset. The number of distinct labelsets, calculated as the number of distinct
combinations of labels found in the dataset is also given. The TCS metric [8] in
Eq. (9) is adopted as a theoretical complexity indicator. The higher the value,
the more complex the MLC dataset.

TCS = log(attributes × labels × distinct) (9)

Remark that TCS values are logarithmic, thus a difference of only one unit
implies one order of magnitude lower or higher.

Figure 1 displays the reduction percent in the original datasets applying the
proposed editions methods to the original training sets. In this experiment, the
similarity threshold ξ used in Eq. (1) ranges from 0.9 to 0.99, while the parameter
β in Algorithm 3 goes from 0.5 to 0.75.

From the results in Fig. 1 we can conclude that the proposed edition methods
always obtain in the most of cases multi-label datasets with a less number of
examples than the original. In the case of bibtex, corel5k, enron, medical, scene,
slashdot and yeast the first edition method reported higher reduction rates when
compared with the other two variants.

To determine whether the reduction is statistically significant, we computed
the Friedman two-way analysis of variances by ranks [12]. The test suggests
rejecting the null hypothesis H0 (p-value = 3.8867E−7 < 0.05) for a confidence
interval of 95%, so that there are significant differences in the number of instances
after applying the proposed edition methods.

Table 2 shows the HL values achieved by the ML-kNN method for the original
multi-label data sets without the preprocessing step, and the results obtained
after applying the three edition methods proposed in the paper.
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Table 1. Characterization of the MCL datasets used in our study.

Dataset Domain Instances Attributes Labels Labelsets TCS

bibtex text 7395 1836 159 2856 20.541

birds audio 645 260 19 133 13.395

cal500 music 502 68 174 502 15.597

corel5k images 5000 499 374 3175 20.2

emotions music 593 72 6 27 9.364

enron text 1702 1001 53 753 17.503

flags images 194 19 7 54 8.879

genbase biology 662 1186 27 32 13.84

medical text 978 1449 45 94 15.629

scene images 2407 294 6 15 10.183

slashdot text 3785 1079 22 156 15.125

yeast biology 2417 103 14 198 12.562
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Fig. 1. Reduction percent achieved by each edition method.

For each datasets, we have estimated the HL value by using a 10-fold cross
validation scheme. For each fold, this procedure splits the whole training set into
two data pieces, namely, the training set and the test set. It should be highlighted
that, while the training set is preprocessed with the editing methods, the test
set is never modified so that it only serves to compute the HL associated with
the current fold.
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Similarly, Table 2 shows that the reduced datasets lead to similar HL values.
Actually, in some cases the ML-kNN method using the edited datasets reports
better results (e.g., such as bibtex, corel5k, flags, genbase and slashdot) than those
obtained with the original datasets. This might be a result of addressing the uncer-
tainty that comes in the form of inconsistent patterns. For example, no classifica-
tion algorithm will properly recognize two inseparable objects with different deci-
sion classes when using equivalence classes to derive the rough granules.

Table 2. HL values achieved by the ML-kNN method.

OriginalmlTS Edit1mlTS Edit2mlTS Edit3mlTS

bibtex 0.01364 0.01341 0.01363 0.01364

birds 0.04725 0.04725 0.04725 0.04725

cal500 0.13881 0.13843 0.13881 0.13883

corel5k 0.00936 0.00934 0.00937 0.00936

emotions 0.19512 0.19512 0.19512 0.19512

enron 0.05235 0.0514 0.05251 0.05278

flags 0.25357 0.25132 0.25132 0.25357

genbase 0.0048 0.00475 0.00475 0.0048

medical 0.01511 0.02308 0.01561 0.01516

scene 0.08621 0.08434 0.08621 0.08628

slashdot 0.05169 0.04986 0.05188 0.05169

yeast 0.1933 0.22805 0.1933 0.1933

In order to examine the existence of statistically differences in perfor-
mance, we computed the Friedman two-way analysis of variances by ranks. For
this experiment, the test suggests accepting the null hypothesis H0 (p-value
= 0.142 > 0.05) for a confidence interval of 95%. Therefore, we can conclude
that the proposed methods reduce the number of examples in the training sets,
while preserving the efficacy of the ML-kNN method.

5 Concluding Remarks

The efficacy and efficiency of the Machine Learning models depend on the quan-
tity and quality of data. In the case of lazy learners, such as the k -NN method,
the number of instances is relevant in the efficiency since these algorithms go
over all examples each time a new problem is presented. Moreover, these models
are sensitive to incorrectly classifier instances. One alternative to deal with these
issues is to edit the training set as a pre-processing step with the intention either
to reduce the number of instances or improve data quality.
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This paper proposed three methods based on Granular Computing to editing
training sets in MLC environments. These methods rely on the concepts of lower
and upper approximations while introducing different approaches to define the
semantics of decision classes. The experiments using several multi-label training
sets have shown that the methods allow to significantly reduce the number of
instances in the training set without affects the performance of the classification.
Actually, in some cases we observed an increase the discriminatory power of the
ML-kNN algorithm when operating on edited datasets.
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Abstract. Thousands of research papers on rough set theory and its
applications have been published since Pawlak’s seminal work Rough
Sets in 1982. A large number of rough sets papers were published in pro-
ceedings of conferences such as the International Conference on Rough
Sets and Current Trends in Computing (RSCTC); International Confer-
ence on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing
(RSFDGrC); International Conference on Rough Sets and Knowledge
Technology (RSKT); International Conference on Rough Sets and Intel-
ligent Systems Paradigms (RSEISP); and more recently, merged Interna-
tional Joint Conference on Rough Sets (IJCRS). The aim of this paper is
to analyse the influences and impact of rough set conference papers using
Scientometrics approaches based on the information obtained from Web
of Science. The results suggest that rough set conference papers have an
impact in research which is similar to other computer science domains.

1 Introduction

Conference papers are often viewed as important as journal articles in computer
science. In many cases, conference papers, especially those appearing in highly
rated conference proceedings, are considered as top research outcomes. A recent
study confirms that our particular discipline “values conferences as a publication
venue more highly than any other academic field of study” [24]. It also shows that
top computer science conferences papers have received higher average citations
than journal or book chapters. This could be true for rough set conference papers
but has yet to be confirmed. As the first step of the confirmation, we would like
to study the impact and influence of rough set conference papers in this article
by using scientometrics approaches.

Thousands of research papers on rough set theory and its applications
appeared in journals, books, and conference proceedings since the birth of rough
set theory in 1982 [44]. Scientometrics can be viewed as a science of science
which studies the measuring and analysis of scientific literature. It has been
used for identifying research areas, trends, relationships, development and future
directions [20]. Yao and Zhang [31] classified rough set research into three cate-
gories, namely, content based approach that focuses on the contents of rough set
research, method based approach that focuses on the constructive and algebraic
(axiomatic) methods of rough sets, and scientometrics approach that focuses on
c© Springer Nature Switzerland AG 2019
T. Mihálydeák et al. (Eds.): IJCRS 2019, LNAI 11499, pp. 383–394, 2019.
https://doi.org/10.1007/978-3-030-22815-6_30
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quantitatively analyzing the contents and citations of rough set publications.
This paper focuses on scientometrics study of rough sets and can be viewed as a
followup of previous work published in 2013 [31] and 2017 [29]. We would like to
understand rough set research contribution, development, and impact especially
in flagship conferences in this article.

2 Methodology and Search Setting

The study is based on search of Institute for Scientific Information’s Web of
Science (https://webofknowledge.com) database including its subsection Con-
ference Proceedings Citation Index. We used “rough sets” or “rough set” or
“rough computing” or “rough computation” in the Topic field in Web of Science
as the definition of rough set papers in our previous studies [29,31]. By using
the same query, we have 12,066 rough set papers. The h-index is 130 and Highly
Cited in Field is 72. Web of Science defines highly cited papers as papers that
“received enough citations to place [them] in the top 1% of the academic field
based on a highly cited threshold for the field and publication year”. Due to
the fact that more than 10, 000 papers appeared in the result, Web of Science
analysis in terms of citation report cannot be obtained. In the current study,
we use the same keywords in the Conference field which result in 2,341 items in
an early March 2019 search. In fact, when we changed the keywords to “rough
sets” or “rough set” the same results were generated as no one uses “rough com-
puting” or “rough computation” in conference titles. Further examining Source
Titles, we found that there are some non rough set conferences and journals that
published special issues of rough set conferences.

We only consider flagship rough set conferences including International Con-
ference on Rough Sets and Current Trends in Computing (RSCTC); Interna-
tional Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Com-
puting (RSFDGRC); International Conference on Rough Sets and Knowledge
Technology (RSKT); Rough Sets and Intelligent Systems Paradigms (RSEISP);
and newly merged International Joint Conference on Rough Sets (IJCRS) in this
research. Out of a total of 2,341 papers, there are 2,044 papers from the above
mentioned 5 flagship conferences. Some statistical results are:

– Number of papers: 2,044
– H-index: 34
– Average citations per item: 4.34
– Sum of times cited: 8,870
– Sum of times cited without self citations: 7,827
– Citing articles: 5,849
– Citing articles without self citations: 5,265

We list some of the results we obtained in June 2013 [31],
Number of papers: 7,088; H-index: 80; Average citations per item: 5.90; Sum

of Times Cited: 41, 844; and June 2016 [29], Number of papers: 9,570; H-index:
106; Average citations per item: 8.02; Sum of Times Cited: 76,733 for comparison.

https://webofknowledge.com
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3 Papers in Rough Set Flagship Conferences

We show some statistics and analysis of research papers published in rough
set flagship conference proceedings in this section. Table 1 shows the number
of papers and shares in percentage of the total papers published each year. It
is noted that all rough set conference proceedings were published as Lecture
Notes in Computer Science or Lecture Notes in Artificial Intelligence series by
Springer. The earliest conference included in Web of Science is RSFDGrC 1999.
However, there are early conference proceedings such as the first RSCTC in
1998, RSCTC 2000, and the first International Workshop on Rough Sets and
Knowledge Discovery in 1993, all published by Springer, which are not included
in the database.

Table 1. Number of publications per year

Year 1999 2002 2003 2004 2005 2006 2007 2008

No of papers 68 83 127 64 152 213 225 152

% of total 3.33% 4.06% 6.21% 3.13% 7.44% 10.42% 11.01% 7.44%

Year 2009 2010 2011 2013 2014 2015 2016 2017

No of papers 151 182 151 81 158 90 53 94

% of total 7.39% 8.90% 7.39% 3.96% 7.73% 4.40% 2.59% 4.60%

Table 2 lists the most prolific authors with the number of papers they pub-
lished and the share of total publication. The top 5 prolific authors are Yao YY,
Wang GY, Slowinski R, Skowron A and Tsumoto S. By comparing with our
2013 (Slowinski R, Skowron A, Yao YY, Wang GY, and Peters JF) and 2017
(Slowinski R, Yao YY, Skowron A, Wang GY, and Zhu W) results, we found
that the top 4 of the top 5 are the same except position shifts. The fifth one is
different from year to year.

Table 2. The most prolific authors

Rank Author names Papers Share in % Rank Author name Papers Share in %

1 Yao YY 51 2.50% 11 Peters JF 24 1.17%

2 Wang GY 49 2.40% 12 Nakata M 23 1.13%

3 Slowinski R 46 2.25% 13 Sakai H 23 1.13%

4 Skowron A 43 2.10% 14 Lingras P 22 1.08%

5 Tsumoto S 37 1.81% 15 Suraj Z 22 1.08%

6 Slezak D 35 1.71% 16 Zhu W 22 1.08%

7 Greco S 33 1.61% 17 Li TR 21 1.03%

8 Wu WZ 31 1.52% 18 Moshkov M 21 1.03%

9 Miao DQ 30 1.47% 19 Yao JT 21 1.03%

10 Grzymala-Busse JW 26 1.27% 20 Hirano S 19 0.93%
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Table 3. No of papers by organizations

Rank Organization Papers Share in %

1 University of Warsaw 121 5.92%

2 University of Regina 109 5.33%

3 Polish Academy of Sciences 78 3.82%

4 Southwest Jiaotong University 70 3.42%

5 Chongqing University of Posts Telecommunications 59 2.89%

6 Poznan University of Technology 56 2.75%

7 Polsko Japonska Akademia Technik Komputerowych 54 2.64%

7 Warsaw University of Technology 54 2.64%

9 Chinese Academy of Sciences 50 2.45%

10 Shimane University 43 2.10%

11 Zhejiang Ocean University 42 2.05%

12 University of Rzeszow 38 1.86%

13 Tongji University 37 1.81%

14 Xi’an Jiaotong University 36 1.76%

15 University of Catania 34 1.66%

16 University of Silesia 29 1.41%

17 Nanjing University 28 1.37%

18 University of Manitoba 27 1.32%

19 Anhui University 26 1.27%

19 University of Kansas 26 1.27%

21 Kyushu Institute of Technology 24 1.17%

22 Tsinghua University 24 1.17%

23 University of Information Technology Management Rzeszow 23 1.13%

24 Harbin Institute of Technology 22 1.08%

24 University of Electronic Science Technology of China 22 1.08%

26 Beijing Jiaotong University 21 1.03%

26 California State University System 21 1.03%

26 Indian Statistical Institute Kolkata 21 1.03%

26 Infobright Inc. 21 1.03%

26 Josai International University 21 1.03%

31 Jilin University 20 0.98%

31 Minnan Normal University 20 0.98%

31 Osaka University 20 0.98%

Table 3 shows the top 30 organizations each published at least 21 or 1% of
papers in rough set conference proceedings. The similar results for countries are
shown in Table 4.

There are 5,354 articles citing the 2,044 rough set conference papers. There
are 4,770 articles remaining after removing self citations. The citing articles are
published in journals, conference proceedings, and some featured books. The
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Table 4. No of papers from countries

Rank Country Papers Share in % Rank Country Papers Share in %

1 China 749 36.64% 9 Spain 47 2.30%

2 Poland 452 22.11% 10 Taiwan 43 2.10%

3 Canada 232 11.35% 11 Australia 38 1.86%

4 Japan 169 8.27% 12 Russia 23 1.13%

5 USA 152 7.44% 13 Malaysia 22 1.08%

6 India 99 4.84% 14 England 20 0.98%

7 Italy 62 3.03% 15 Germany 20 0.98%

8 South Korea 56 2.74% 16 Sweden 19 0.93%

total Source Titles number is 2,077. Table 5 shows top 10 journals, which are all
SCI indexed journals, with articles citing rough set conference papers. Please be
noted that we exclude self citation in this statistics. The Articles column shows
the number of articles in that journal citing rough set conference papers, the
Share in % shows the percentage of the articles in the journal amongst the total
number of citing articles. It is noted 6 out of the 10 top journals are Q1 journals,
i.e. top 25% of journals based on impact factor (IF) distribution. Similarly, Q2
denotes the middle-high position (between top 50% and top 25%), Q3 middle-
low position (between top 75% to top 50%), and Q4 the lowest position (bottom
25% of the IF distribution). The data was retrieved from SCImago Journal &
Country Rank (https://www.scimagojr.com/). There are at least 1,050 journal
articles that cited these rough set conference papers based on Table 5’s numbers.
This is about 22% of total citing articles. Further, consider Q1 journals, the total
number is at least 715 which is about 15% of total citing articles.

Table 5. Top 10 journals citing rough set conference papers

Rank Journal name (IF quartile) Articles Share in %

1 Information Sciences (Q1) 254 5.33%

2 Fundamenta Informaticae (Q3) 190 3.98%

3 Knowledge Based Systems (Q1) 136 2.85%

4 Int. Journal of Approximate Reasoning (Q1) 134 2.81%

5 Expert Systems with Applications (Q1) 79 1.66%

6 Applied Soft Computing (Q1) 66 1.38%

7 Journal of Intelligent Fuzzy Systems (Q2) 57 1.20%

8 Int. Journal of Machine Learning & Cybernetics (Q2) 52 1.09%

9 Neurocomputing (Q1) 46 0.96%

10 Soft Computing (Q2) 36 0.76%

https://www.scimagojr.com/
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4 Most Influential Rough Set Conference Papers

We analyzed the most influential rough set papers and authors in the previ-
ous study [29,31]. Similarly, we analyze the most influential papers published in
rough set conference proceedings. As shown above, the h-index of these confer-
ence papers is 34. Table 6 shows the top 38 papers with at least 34 citations.

Table 7 shows number of papers published each year. Tables 8 and 9 list
organizations and countries the authors of these papers are from respectively.
We can observe that these influential papers are more or less equally distributed
from 1999–2010. There is one paper in 2013, two papers in year 2014, and no
papers in 2015 onward due to the short time of publication. University of Regina
with 11 papers topped the organization list. Poland with 12 papers topped the
country list. There are 7 authors who published at least 2 influential papers.

From Table 6, we also find that these top cited papers attracted at least 2
citations per year. The top 5 in terms of citation per year are 11.38 [32], 8.91 [34],
7.00 [14], 7.00 [5], and 6.86 [35]. It is interesting to know that the top two most
cited papers by Yao YY are also top 2 cited per year.

We classify the top 38 influential papers listed in Table 6 into three groups,
rough set theory (RS theory), rough set applications (RS app) and other theory
and applications (Others). Although we keep the same number of groups, we
combined rough set theory and hybrid groups as classified in previous research.
The Others group is a new class. It is interesting to know that the similarity of
the clustering result identified by Wei, Miao and Li [27] for rough set research
are classified into four groups, dimensionality reduction, hybrid, three-way view
decision, and others (Table 10).

There are 15 papers in RS theory, 9 papers in RS app, and 14 papers in
others. The theory papers includes decision-theoretic rough sets [32], three-way
decisions [34,35], granular computing [12,33], generalize rough sets [5,22,38],
covering based rough sets [17,18], game-theoretic rough sets [7], Bayesian rough
sets [37], probabilistic rough sets [43], reduction of rough sets [36], and a hybrid
model of fuzzy sets and rough sets [3]. The application paper includes asso-
ciation rules [15], dealing with missing values [4], a system with various kind
of rough set approaches [1], classification rules [30], reduction algorithm [8],
incomplete data [6], Web-based support systems [28], dominance rough sets [19],
and information measures [16]. Other papers include classifications [14], fuzzy
sets [11,13], soft sets [23], decision trees [41], support vector machines [10,42],
neural networks [21,26], GIS [9], mutual information [2], concept lattice [40], and
quotient space [39].

Three-way decision is a newly emerged research originally extended from
rough set theory.

Please be noted that more than one-third of top papers are in Others group.
This means that not only are our flagship conferences a good venue for rough
set research but they are also a good venue for other research.
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Table 6. Top 38 cited papers contributed to H-index

Rank Authors Year Cites Avg Category

1 Yao YY [32] 2007 148 11.38 RS theory

2 Yao YY [34] 2009 98 8.91 RS theory

3 Stefanowski J & Tsoukias A [22] 1999 96 4.54 RS theory

4 Nguyen HS & Slezak D [15] 1999 95 4.52 RS app

5 Yao YY [38] 2003 80 4.71 RS theory

6 Qin KY, Gao Y & Pei Z [17] 2007 77 5.92 RS theory

7 Napierala K, Stefanowski J & Wilk S [14] 2010 70 7.00 Other

8 Greco S, Matarazzo B & Slowinski R [4] 1999 68 3.24 RS app

9 Bazan JG, Szczuka MS & Wroblewski J [1] 2002 67 3.72 RS app

10 Cornelis C, De Cock M & Radzikowska AM [3] 2007 65 5.00 RS theory

11 Yao JT & Yao YY [30] 2002 58 3.22 RS app

12 Lin, TY [12] 2003 57 3.35 RS theory

13 Yao YY [33] 2007 56 4.31 RS theory

14 Hu F, Wang GY, Huang H & Wu Y[8] 2005 52 3.47 RS app

14 Grzymala-Busse JW [6] 2004 52 3.25 RS app

16 Li D, Deogun J, Spaulding W & Shuart B[11] 2004 49 3.06 Other

17 Yao YY [35] 2013 48 6.86 RS theory

17 Sun Q-M, Zhang Z-L & Liu J [23] 2008 48 4.00 Other

17 Zhou ZH & Tang W [41] 2003 47 2.76 Other

20 Yao JT & Herbert JP [28] 2007 44 3.38 RS app

21 Samanta P & Chakraborty MK [18] 2009 42 3.82 RS theory

21 Lai KK, Yu L, Zhou LG & Wang SY [10] 2006 42 3.00 Other

23 Stateczny A & Wlodarczyk-Sielicka M[21] 2014 40 6.67 Other

23 Herbert JP & YaoJT [7] 2008 40 3.33 RS theory

23 Greco S, Matarazzo B & Slowinski R[5] 2005 40 7.00 RS theory

26 Maji PK [13] 2009 39 3.55 Other

27 Yao YY & Zhou B [37] 2010 38 3.80 RS theory

28 Ziarko W [43] 2005 37 2.47 RS theory

28 Slowinski R, Greco S & Matarazzo B[19] 2002 37 2.06 RS app

30 Janowski A, Nowak A, Przyborski M & Szulwic J[9] 2014 36 6.00 Other

31 Walters-Williams J & Li Y [25] 2009 36 3.27 Other

32 Blaszczynski J, Deckert M, Stefanowski J & Wilk S[2] 2010 35 3.50 Other

32 Zhang WX, Wei L & Qi JJ [40] 2005 35 2.33 Other

34 Qian YH & Liang JY [16] 2006 34 2.43 RS app

34 Yao YY, Zhao Y & Wang J [36] 2006 34 2.43 RS theory

34 Wang, SJ [26] 2003 34 2.00 Other

34 Zhang, L and Zhang, B [39] 2003 34 2.00 Other

34 Zhu ML, Wang Y, Chen SF & Liu XD [42] 2003 34 2.00 Other
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Table 7. Number of publications per year for top 38 papers

Year 1999 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2014

No of papers 3 3 6 2 4 3 5 2 4 3 1 2

% of total 7.90 7.90 15.79 5.26 10.53 7.90 13.16 5.26 10.53 7.90 2.63 5.26

Table 8. Number of top papers by organizations

Organization Papers Share in %

University of Regina 11 28.95%

Poznan University Technology 6 15.79%

Chinese Academy Sciences 3 7.90%

University Catania 3 7.90%

Nanjing University 2 5.26%

Polish Academy Sciences 2 5.26%

Warsaw University 2 5.26%

Table 9. No of top papers from countries

Country Papers Share in % Country Papers Share in %

Poland 12 31.56% Italy 3 7.90%

Canada 11 28.95% USA 3 7.90%

China 11 28.95% India 2 5.26 %

Table 10. Authors who contributed top cited papers

Papers Author names Share in %

8 Yao YY 21.05%

3 Greco S 7.90%

3 Matarazzo B 7.90%

3 Slowinski R 7.90%

3 Yao JT 7.90%

2 Herbert JP 5.26%

2 Wilk S 5.26%
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5 Concluding Remarks

We presented our analysis of productivity and impact of rough set conference
papers based on search results on Web of Science database. There are a total
of 2,044 papers published from 1999 to 2017 and these papers received 8,870
citations. The average citation per paper is 4.34. The top 5 most prolific authors
are Yao YY, Wang GY, Slowinski R, Skowron A and Tsumoto S. The h-index of
these papers is 34 and 38 papers received at least 34 citations. Yao YY, Greco
S, Matarazzo B, Slowinski R, Yao JT, Herbert JP, and Wilk S contributed at
least 2 influential top 38 papers. In addition, journals are also paying attention
to papers published in rough set conferences. More than 20% of citations are
from 10 journals which cite the most rough set conference papers. Amongst the
10 journals, 6 are Q1 journals and they contributed at least 15% of citation
counts. The fact of most cited papers, average citation per paper, citing journals
show that rough set research presented in conference proceedings have certain
impact on research. It is recommend that rough set researchers should continue
to contribute to rough set flagship conferences to get your research result known.
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Abstract. We present new results related to retrospective detection of
ovulation days basing on information entered by the users of one of online
platforms available in the market. Comparing to our previous studies, we
improve the accuracy of algorithms which are based on evaluation and
synthesis of multivariate data sources. Results are reported for 224 men-
strual cycles which were labeled by medical experts. In the experiments,
we pay special attention to the aspect of uncertainty associated with the
tagging process.

Keywords: Ovulation window detection · e-Health advisory systems ·
Multivariate time series · Uncertain data tagging

1 Introduction

The problem of infertility is increasing all over the world. Female partner in
every fifth couple actively trying to have children is not able to get pregnant
within the first year of attempts. As a result, women are ready to share within
various online platforms the detailed data about their family status, age, weight,
physical symptoms associated with menstruation, results of ovulation and preg-
nancy tests, temperature measurements, mood, medications, etc. – everything
that lets them compare themselves with similar cases of other couples and that
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might be useful for them to support further attempts, e.g., by means of more
accurate detection of ovulation windows.

In [1], we showed how to construct an ovulation day detection layer within
an online decision support platform – delivered by a digital health company
OvuFriend – which utilizes intelligent data analysis to support women in building
their families. The platform is designed to help the users to get pregnant faster
by basing on insights derived from information which they enter. There are a
great number of documented cases of women who got pregnant while being the
OvuFriend’s users.

In our studies up to now, we concentrated on retrospective detection, i.e., the
ability to automatically tag the already-finished menstrual cycles. We relied on
our own multivariate similarity-based methods summarized in [2], so we could
leverage information about the past menstrual cycles (of the given user and/or
users with similar profiles) while analyzing the new ones. Besides investigating
standard sequences of day-to-day temperature jumps, we proposed the detection
process basing on more diversified information, whereby time series instances of
body measurements that are difficult for the users are combined with other
data sources which are more convenient for women to enter via the OvuFriend’s
questionnaires and interfaces.

In this paper, we explain our approach to aggregating information from
local, single-scope similarity-based indicators, especially from the perspective
of evaluating information sources which can vary with respect to their relia-
bility. Comparing to our previous research in this area, we test our method
against a smaller data set derived from the OvuFriend’s database, but now more
completely (and iteratively) annotated by medical experts. In particular, in our
experiments we pay attention to the influence of the experts’ confidence levels
(which they mark by themselves while assigning ovulation time windows to spe-
cific menstrual cycles) on the accuracy of each of single indicators, as well as the
whole proposed multivariate detection schema.

The paper is organized as follows. In Sect. 2, we refer to the literature. In Sect. 3,
we recall the OvuFriend’s platform and its database backend. In Sect. 4, we outline
previously unpublished aspects of our detection method. In Sect. 5, we discuss how
to cooperate with medical experts in order to enrich the training data. In Sect. 6,
we report our new experimental results. Section 7 concludes our work.

2 Related Work

There are many approaches to menstrual cycle modeling [3,4]. There are also a
number of self-awareness-supporting applications for controlling ovulation [5,6].
Still, there is a need to develop new methods which could cope incompleteness
and uncertainty of the data gathered by such applications. One possible solution
is to let the users register their wearable devices which can measure parameters of
stress, sleep, etc. [7,8]. The corresponding signals can be a source of information
beyond the data entered manually. Although precision of such signals is often
questionable, one can work on models which learn from both manually- and
machine-generated data sources.
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Fig. 1. The OvuFriend’s system architecture [1].

In the considered area, a special attention should be paid to time series
analysis [9,10], including techniques developed for the purpose of dealing with
incomplete and imprecise multidimensional data sequences. Moreover, given the
specifics of our approach, various aspects of similarity-based time series pro-
cessing are worth taking into account as well [11,12]. Last but not least, it is
important to refer to interactive methods which let machine learning algorithms
accommodate feedback from subject matter experts [13] and to remember that
the outcomes of detection models can lead the experts toward changing their
opinions about particular examples [14].

3 The System and the Data

Figure 1 illustrates the OvuFriend’s system architecture. It composes of the user
modules (reports, memoires, etc.), the browser-based GUI, as well as the OLTP
layer including menstrual cycle and ovulation day detection AI/ML (where ML
stands for machine learning) algorithms (data enrichment). The OLTP layer
outputs are stored together with the original data (data warehouse). The AI/ML
algorithms can be used for both prognostic (day-by-day) and retrospective (after
a given cycle has finished) ovulation day detection. That latter mode – the topic
of next sections – is useful while discovering cycle anomalies and irregularities,
leading toward higher-level advisory reports indicating, e.g., a risk of suffering
from various diseases [15,16].
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Fig. 2. The current OvuFriend’s data warehouse schema (revised comparing to [1]).
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The OvuFriend’s GUI displays such components as ovulation day detector
(with a checkpoint whether any ovulation days have been already identified),
pregnancy detector (including information about observations which make preg-
nancy more likely), temperature trend (based on manual inputs and interpola-
tions), etc. It contains also a dialog window to enter the new data, which will be
combined in the future with acquisition of wearable device signals and a forum
post analysis. Surely, the quality of information entered by the users is in relation
with the quality of the outcomes of AI/ML algorithms. One of solutions with
this respect is to make the dialog more iterative, whereby the user is requested to
answer just a few adaptively generated questions every time and the underlying
detection models adjust their work to partial answers.

Figure 2 shows the current OvuFriend’s data warehouse schema. From the
data model perspective, it resembles some of electronic health record system
architectures [17], although it is devoted mainly to manual inputs and user feed-
back. By the end of 2018, it included information about over 4,000,000 single
day measurements and observations (table fact cycles data). Given such sizes,
the system can still perform efficiently on standard PostgreSQL, especially when
taking into account the ability of query sharding [18]. However, as both the vol-
umes and the complexity of queries are expected to grow over time, other scalable
solutions should be considered, particularly those of them which are compatible
with PostgreSQL [19].

Columns such as ovulation day represent information that can be derived
using the method outlined in Sect. 4. The algorithm is simple enough to be
executed as a part of the enriched ETL process. Although it refers to the previous
cycles of the given user (and/or some statistics characterizing similar users),
the data schema is optimized well enough to run the corresponding scripts in
real time (and to recalculate aggregations such as avg cycle length in table
fact users as well). In the future, the OvuFriend’s data warehouse will also
contain fully integrated feedback from medical experts acquired using the expert
labeling module (through the labeling platform client) visible in Fig. 1. As for
now, such feedback is registered remotely for experimental purposes. We will go
back to this aspect in Sect. 6.

4 Ovulation Window Detection

Overall, our retrospective detection approach is similar to the one presented in
[1]. For the given menstrual cycle of the given user, the algorithm first applies
local detectors corresponding to particular types of registered information and
then combines them using a simple procedure. Such single-scope detectors are
quite standard, as they refer to temperature, mucus and cervix measurements
(if available), as well as to additional aspects of manually entered information
reported in Table 1. As for the temperature, the corresponding component of the
detection system is now significantly improved using selected tools of fuzzy data
analysis and modeling [9].

The combination procedure requires additional explanation which was not
provided in our previous papers. Each of single detectors/indicators delivers a
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Table 1. Examples of additional fertility indicators.

Name Description

Ovulation test It works with a series of ovulatory tests (based on urine, saliva,
etc.). The case of positive test preceded by negative test means
that the LH hormone begins to rise. It marks one of the next
three days as the ovulation start, while the remaining days are
labeled with appropriately computed fuzzy weights

Simple stats Ovulation window is determined from basic statistics of the
user’s cycles (shortest, longest, etc.). Ovulation start is
estimated as an average length of the user’s luteal phase in the
past

User history Cycles of the given user are featurized and, for the considered
cycle, the most similar historical cases are chosen using
similarity-based techniques introduced in [2]. Ovulation days
are estimated using best-matching cycles and defuzzyfication
techniques reported in [22]

Profile history Analogous detector which takes into account historical cycles of
other users belonging to the same profile cluster

Symptoms Detector based on automatically derived rules which correlate
ovulation days with over 70 kinds of symptoms occurring in
table fact cycles data symptoms

Ovulation monitor Indicator based on the monitoring device measurements which
are entered manually by the user via the OvuFriend’s GUI. In
the future, the scope of such measurements will be extended
and their acquisition will be automatized

USG monitor Feedback from examination by a medical doctor. Such types of
feedback are not yet represented in GUI but we are able to
extract them partially from text comments

Moon cycle A detector which takes into account the user’s biorhythms
determined on the basis of her date and time of birth

fuzzy vector of its beliefs regarding ovulation days spanned over the given men-
strual cycle. The resulting matrix is then aggregated into a unified vector which
assigns the overall belief to each of days. One can use a number of aggregation
mechanisms utilizing, e.g., OWA operators [20] or adapting the ideas of weak
classifier combination developed in machine learning [21]. The choice of particu-
lar method may depend on interpretation of output vectors produced by single
indicators (e.g.: fuzzy relation or probability distribution) and it should take into
account the aspect of day-by-day detection.

Currently, as illustrated by Fig. 3, the algorithm annotates the most reliable
day of ovulation as a day with the maximum weighted total score of single-
indicator beliefs. However, the following aspects are worth additional attention:

1. Although our aggregation method does not seem to take into account any
temporal aspects, they are implicitly expressed by “fuzzified” outputs of
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single-scope detectors. For instance, for ovulation test (Table 1), there are
several days with non-zero beliefs. Such smoothing helps the overall algorithm
to cope situations, when indications based on different information sources
are shifted in time.

2. Indicators that are insufficiently reliable in the given situation are not taken
into account. Each of indicators has its reliability policy, e.g., referring to the
amount of measurements within the analyzed cycle or the amount of past
cycles with similar parameters. This way, we gain flexibility in adjusting to
different kinds of users – with or without history, preferring particular tests
over the others, etc.

3. For new users, the coefficients applied for particular indicators during the
combination process are fixed. However, they can be readjusted over time
basing on the indicators’ efficiency assessments referring to, e.g., the quality
of the data entered by the users. One can also employ a basic local search
algorithm to learn coefficient vectors against the training data set consisting
of historical cycles which have sufficiently credible ovulation day labelings.

Table 2. Retrospective detection results reported in [1].

5 Training Set Preparation

In [1], we conducted the experiments using the methodology outlined in Sect. 4
over a sample of menstrual cycles tagged by the experts from Medical University
of Warsaw. Table 2 summarizes the previous results for 1122 cycles. The amounts
of cases for which automatically estimated ovulation windows were aligned with
expert labels are reported with variable tolerance: precise (window0) means that
the expert and the algorithm point at the same day, one-day (window1) allows
for a mismatch of at most one day before/after ovulation, etc. The following
issues were observed:

– Although the outcomes were better than in the case of original algorithms
implemented at OvuFriend, their further improvement was necessary. More-
over, as visible in Table 2, we focused only on recall coefficients while other
measures (such as precision, accuracy and F1-score) should be also taken into
account.

– Although a lot of effort was devoted to achieve reliable ovulation window
labels for the considered menstrual cycles, our algorithm’s suggestions turned
out to decrease confidence of some of the experts in regard to their own
annotations. On the other hand, they claimed that some types of cycles were
still not covered.
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Fig. 4. Exemplary feedback. The 13th cycle’s day is assessed as the most reliable day
of ovulation. It is also indicated that, in the expert’s opinion, this cycle has normal
luteal phase and length, insufficient cervix and ovulation test data, good data variety
and temperature fluctuations.
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Given the above observations, we decided to both, work more on the efficiency
of our detection methods and construct a more representative set of menstrual
cycles. The new sample – consisting of 224 more completely represented cycles
– was tagged using a prototype designed in MS Excel (as reported in [1]), with
its contents extracted automatically from the OvuFriend’s database. Besides the
most reliable day of ovulation and optional indicators, medical experts were
asked to annotate the chosen days with factors (between 0 and 1, default 1)
reflecting their assessment certainty. Before reporting the results obtained on
such data set, let us comment on the following aspects:

– Certainty factors acquired from the experts are used, up to now, only to eval-
uate the already-created detection models. They are not taken into account
while constructing those models yet. On the other hand, it is quite natural –
as we plan in the future – to consider models whereby, e.g., the labeled cases
with different weights could have different influence on the analysis of new
objects [23].

– As for now, the interface designed to gather hints from the experts is very sim-
plistic and development of more interactive functionalities should be planned
[13]. In particular, we can attempt to learn the characteristics of experts’
mistakes and uncertainties in order to assist them in the process of data
improvement.

– Optional indicators which can be marked by medical experts (as visible in
Fig. 4) can be utilized in the future to build more intuitive hierarchical detec-
tors [24]. As pointed out in Sect. 3, the ability to identify anomalies and
irregularities in menstrual cycles can lead toward automatic risk assessment in
regard to such diseases as, e.g., endometriosis and polycystic ovary syndrome
(PCOS). However, as the first step, we need well-labeled data sets which allow
our AI/ML algorithms to learn the most important cycle descriptors.

6 Experimental Results

The outcomes of our new experiments are presented in Tables 3, 4, 5 and 6, with
abbreviations TP (true positive), TN (true negative), FP (false positive), FN
(false negative), P (precision), R (recall), A (accuracy), F1 (F1-score). Tables 4,
6 and 3, 5 outline the evaluation of our methods, respectively, with and without
taking into account certainty factors assigned by medical experts to particular
cycles. In that latter case, all quality scores and measures were derived in a
weighted fashion.

The objective behind evaluating our models on both, weighted and standard
(non-weighted) data sets of menstrual cycles was to verify whether their detec-
tion quality could change significantly when medical expert’s self assessment
scores are considered. In other words, if the proportions of TP/TN/FP/FN
amounts were too different from each other for both scenarios, then it would
mean that our overall algorithm may not cope relatively more difficult cases
(where the experts’ certainty is lower). However, the respective P/R/A/F1 scores
turn out to be quite comparable to each other.
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Table 3. Comparison of ovulation day detection methods using the new data (standard
scenario).

Tolerance Previous algorithm [1] Revised algorithm

window1 TP 146 TN 13 P 0.94 R 0.73 TP 180 TN 16 P 0.96 R 0.90

FP 10 FN 55 A 0.71 F1 0.82 FP 7 FN 21 A 0.88 F1 0.93

window2 TP 176 TN 13 P 0.95 R 0.88 TP 191 TN 16 P 0.96 R 0.95

FP 10 FN 25 A 0.84 F1 0.91 FP 7 FN 10 A 0.92 F1 0.96

Table 4. Comparison of ovulation day detection methods using the new data (weighted
scenario).

Tolerance Previous algorithm [1] Revised algorithm

window1 TP 112.15 TN 12.00 P 0.92 R 0.74 TP 138.00 TN 14.75 P 0.95 R 0.90

FP 9.50 FN 40.35 A 0.71 F1 0.82 FP 6.75 FN 14.50 A 0.88 F1 0.93

window2 TP 134.15 TN 12.00 P 0.93 R 0.88 TP 146.05 TN 14.75 P 0.96 R 0.96

FP 9.50 FN 18.35 A 0.84 F1 0.91 FP 6.75 FN 6.45 A 0.92 F1 0.96

When looking at Tables 3, 4, we can conclude that improvements comparing
to our previously reported research are truly substantial. Although we report the
cases of window1 and window2 tolerance, the same tendency would be visible for
window0 and window3 too. As a side note, let us mention that – by definition –
the TN/FP amounts are invariant with respect to the length of detection toler-
ance windows. The difference between window1- and window2-specific outcomes
can be seen on TP/FN.

Tables 5, 6 illustrate the detection quality coefficients which would be
obtained without applying the combination procedure on top of single-scope
outputs. The total TP+TN+FP+FN amounts of analyzed cycles are different
for Temperature (174 cases), Mucus (199), Ovulation test (201) and Cervix (74).
The same would happen also for other examples of indicators in Table 1. These
differences occur because of the reliability thresholds implemented for particular
indicators (item 2 in Sect. 4).

Let us emphasize that all reported experimental results were obtained for
fixed aggregation coefficients (see Fig. 3), without any learning/readjusting pro-
cedure implemented yet. Therefore, one may expect that the quality of our mul-
tivariate detection model can be further increased. We are now in the process
of introducing two parameter learning mechanisms. The first one (compare with
item 3 in Sect. 4) relies on supervised learning over the data set consisting of the
whole history of those of the OvuFriend’s users for whom the aforementioned
sample contained a menstrual cycle annotated correctly at window0 level. The
second mechanism is designed to tune the considered coefficients by basing on
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Table 5. Ovulation day detection using each of revised indicators separately (standard
scenario).

Tolerance Temperature Mucus Ovulation test Cervix

window1 TP 96 P 0.83 TP 146 P 0.90 TP 165 P 0.95 TP 40 P 0.82

FP 20 A 0.56 FP 17 A 0.77 FP 9 A 0.87 FP 9 A 0.58

TN 2 R 0.63 TN 6 R 0.83 TN 9 R 0.90 TN 3 R 0.65

FN 56 F1 0.72 FN 30 F1 0.86 FN 18 F1 0.92 FN 22 F1 0.72

window2 TP 121 P 0.86 TP 158 P 0.90 TP 176 P 0.95 TP 47 P 0.84

FP 20 A 0.71 FP 17 A 0.82 FP 9 A 0.92 FP 9 A 0.68

TN 2 R 0.80 TN 6 R 0.90 TN 9 R 0.96 TN 3 R 0.76

FN 31 F1 0.83 FN 18 F1 0.90 FN 7 F1 0.96 FN 15 F1 0.80

Table 6. Ovulation day detection using each of revised indicators separately (weighted
scenario).

Tolerance Temperature Mucus Ovulation test Cervix

window1 TP 75.55 P 0.80 TP 114.20 P 0.88 TP 125.85 P 0.93 TP 29.60 P 0.77

FP 18.75 A 0.56 FP 16.00 A 0.78 FP 8.75 A 0.86 FP 8.75 A 0.57

TN 1.75 R 0.65 TN 5.50 R 0.86 TN 8.50 R 0.91 TN 2.75 R 0.66

FN 41.20 F1 0.72 FN 18.50 F1 0.87 FN 12.50 F1 0.92 FN 15.30 F1 0.71

window2 TP 94.30 P 0.83 TP 122.05 P 0.88 TP 133.85 P 0.93 TP 35.25 P 0.80

FP 18.75 A 0.70 FP 16.00 A 0.83 FP 8.75 A 0.91 FP 8.75 A 0.67

TN 1.75 R 0.81 TN 5.50 R 0.92 TN 8.75 R 0.97 TN 2.75 R 0.79

FN 22.45 F1 0.82 FN 10.65 F1 0.90 FN 4.5 F1 0.95 FN 9.65 F1 0.79

information about applicability of particular indicators, as well as their abil-
ity to point at particular days with high (close to 1) confidence. In the future,
such mechanisms can be extended by taking into account the already-discussed
certainty factors of the learning cases too.

7 Conclusions

We presented the new research on ovulation window detection methods embed-
ded into the OvuFriend’s online platform which is designed to assist women in
increasing their chances of getting pregnant. Comparing to our previous stud-
ies, we improved the accuracy of retrospective detection. Our method is based
on dynamic evaluation and synthesis of multivariate data sources acquired from
the platform users. From the perspective of quality assessment, it required to
build a representative sample of menstrual cycles (including also the access to
information about the past cycles of the corresponding users, if available) which
were carefully tagged by medical experts.
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It is important to note that approaches introduced in this paper are just
a part of the currently running R&D project related to the OvuFriend’s sys-
tem architecture. Herein, among the others, we can point out the tasks of opti-
mizing the user dialog interfaces (so the data sources utilized as inputs to the
implemented machine learning algorithms are of better quality), introducing
new machine learning algorithms (so they provide higher-accuracy results and
become more robust with respect to partially uncertain information), making a
better usage of the available – and potentially available – information sources
(so the machine learning algorithms can be based on richer data), providing the
users with relevant examples of other cases within the same behavioral/medical
profiles, as well as assuring that the platform is scalable, it can serve many users
simultaneously and the data analytics outputs are provided to them without any
delays.

One of our specific challenges refers to – as already mentioned above – par-
tially unreliable information expressed in this paper by means of uncertainty fac-
tors assigned to particular cases by medical experts. In the future, we intend to
utilize these factors at the phase of learning/tuning the coefficients of our detec-
tion models as well. On the other hand, one needs to remember that there are
also many other aspects of uncertainty related to the data stored by OvuFriend,
e.g., with respect to observations entered manually by the platform’s users. Any
progress in the area of investigation of such kinds of data can be of great impor-
tance in many real-world applications.
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Abstract. Most traditional face recognition classifiers attempt to min-
imize recognition error rate rather than misclassification costs, which is
unreasonable in many real world applications. On the other hand, many
facial images are usually unlabeled, and the label process may result
in high costs. Considering imbalanced misclassification costs and the
hardship of gathering sufficient labeled images, an incremental sequen-
tial three-way decisions (3WD) model for cost-sensitive face recognition
is proposed, in which a deep stacked autoencoder (DSAE) is used to
extract an efficient deep feature set. The model takes full account of the
costs of obtaining labeled data in real life. In addition, the model incorpo-
rates the boundary decision into the process of making decision, leading
to a delayed decision with insufficient labeled images, which simulates
the decision-making process from a small amount to a large amount of
data. In summary, the model aims to select an optimal decision step so
as to gain the desirable recognition results with the least amount of data.
This strategy is applied to two facial image databases, which validate the
effectiveness of the proposed methods.

Keywords: Face recognition · Cost-sensitive · Incremental learning ·
Sequential three-way decisions

1 Introduction

In many traditional face recognition systems, the recognition accuracy is the
evaluation indicator of most previous methods, which is to minimize the recog-
nition error rate [24]. However, this assumption is not reasonable because it
neglects the unbalanced misclassification costs in real-world scenarios. For many
real-world applications, the losses caused by different types of errors are dif-
ferent [23]. Thus, a face recognition system with superior performance should
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take the misclassification costs into account rather than simply minimizing the
classification error rate.

In addition to the cost of misclassification errors mentioned above, cost of
computation and cost of acquiring cases are also available in real-world appli-
cations. Turney [11] made a detailed induction of the cost of concept learning.
Typically the performance of machine learning algorithm is positively correlated
with the number of data in a certain range. However, using sufficient cases in the
real world is either impossible or expensive. The main reasons lie in two aspects.
First of all, the cost of acquiring cases, especially labeled ones, should not be
ignored. Furthermore, computing resources are limited. Thus, it makes sense to
consider the cost of computation. In the case that only a few facial images are
available, a delayed decision is better than an immediate decision, since the cost
of making a wrong decision is much higher than the cost of making a delayed
decision. It is likely to make wrong decisions when labeled images are scarce.
However, it is no longer an advantage to make a delayed decision after gathering
more labeled images, which would be more costly. In this case, the samples that
were previously delayed might be explicitly determined. Such a decision method
denotes a three-way decision strategy [16].

In a traditional two-way decisions model, only two options of acceptance and
rejection are considered [22]. In the application of two-way decisions model, peo-
ple also have to make decisions under the condition of incomplete information,
which may lead to irreparable consequences. As a generalization of the traditional
two-way decisions theory, three-way decisions model adds a third alternative to
acceptance and rejection, that is non-commitment, namely indecision or delayed
decision [17]. When information is not enough to accept or reject, delayed deci-
sion is more in line with the way people deal with practical problems. Thus,
researchers apply three-way decisions in numerous fields, including, clustering
analysis [21], email spam filtering [3], face recognition [5], etc.

Three-way decisions can be divided into two categories: a single one-step
three-way decision and a sequential three-way decision. The latter is a multi-
step decision-making and the former can be regarded as a step of the latter [20].
Delayed decision is the key of sequential three-way decisions. Sequential three-
way decisions use a sequential strategy, which can use granular structure [14].
When the information used to make decisions is not sufficient, people have rough
granular feature of objects, so it is difficult to make a precise decision. Therefore,
the decision can be postponed, that is to say, the boundary decision is adopted.
In this case, the decision cost is the least, which conforms to the minimum
risk Bayes decision theory. The boundary decision indicates that the informa-
tion available for decision making is insufficient at present. In order to make
the correct decision, we need to collect more information needed for the mak-
ing decision. After collecting information fully, the object is transformed from
rough granule to precise granule, which makes it possible to make precise deci-
sions. These multi-step decision-making processes from rough granule to precise
granule establish multi-granulation three-way decisions. A sequential, multi-step
three-way decision-making strategy is constituted, which describe the dynamic
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progressive decision-making process used in many practical problems. It is worth
mentioning that accurate conditional probability is necessary to make the correct
decision. Thus, DSAE is used to extract the deep features so that the accurate
conditional probability can be obtained.

In order to transform decision objects from rough granule to precise gran-
ule, we need to collect enough information. There are several ways to gather
more information: more decision attributes and features [5], or increasing the
number of samples [8]. Increasing the number of labeled samples is what we
are researching. To the best of our knowledge, if enough labeled samples can
be collected to train the classifier, a classifier with superior generalization per-
formance can be obtained. Collecting images is cheap while labeling them is
very high cost or even impossible in real applications [4]. Generally speaking,
the more training samples, the better the effect of the classifier. But when the
number of samples reaches a certain number, the classifier effect is improved
little or no longer with the increase of samples. In other words, the problem is
thought in threes [19]: insufficient samples leads to poor performance, sufficient
samples results in required performance and minimal cost while over-sufficient
samples cause better performance and high cost. Thus, we attempt to achieve
a required level of accuracy with a minimal cost under the consideration of the
cost of obtaining samples.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
introduce some related work on cost sensitivity and three-way decision. In Sect. 3,
we propose a dynamic cost-sensitive incremental sequential three-way decision
model. In Sect. 4, we present the implementation of incremental sequential learn-
ing. In Sect. 5, we introduce a popular deep neural network to obtain the con-
ditional probability. In Sect. 6, the experimental results and analysis are shown
and verified. In the last section, we make a conclusion of this paper.

2 Related Work

Three-way decision strategy was proposed by Yao in [15]. Three-way decision
was further extended into sequential three-way decision in consideration of the
update and supplement of information [20]. Many researches related to three-
way decisions mainly studied the extension researches of rough sets. There are
several typical types of three-way decisions, such as three-way decisions based on
decision-theoretic rough sets (DTRS), fuzzy sets, interval-valued fuzzy rough sets
(IVFRS), interval sets, random sets, probability rough sets and so on. These were
discussed in detail by Hu [2]. Some preferred to extend static three-way decision
to the dynamic version. Yao [18] attempted to interpret sequential three-way
decisions based on multiple levels of granularity. Li et al. proposed a cost-sensitive
sequential three-way decision model. This model is dynamic and based on DTRS.
In recent months, Yao [19] put forward a TAO model, which integrated three-way
decision and granular computing and proposed thinking in threes.

In addition, the applications of three-way decisions in many fields and dis-
ciplines were widely studied. Zhang et al. used random forests to build recom-
mender systems which applied three-way decisions. Li et al. [6] focused on the
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application of cost-sensitive sequential three-way decisions in image recognition.
Luo et al. [8] put forward some propositions on incremental three-way deci-
sions. In order to incrementally updating three-way probabilistic regions, Yang
et al. [13] proposed a unified dynamic framework of decision-theoretic rough sets.
Yu et al. [21] considered that the data we collected are incremental in real world
and combined incremental clustering method with three-way decision theory. It
is obvious that three-way decisions can be applied in many realistic decisions
problems. Despite many studies on incremental three-way decisions, only a few
are applied to face recognition.

3 Incremental Sequential Three-Way Decision

3.1 Sequential Three-Way Decision Model

As mentioned in Sect. 1, it is difficult to have enough information at the beginning
in practical applications. Relatively speaking, it is much easier to get a small
piece of information. In this case, for these subjects that are difficult to categorize
correctly, delayed decisions are better choices, which allows us to make a further
precise decision after gathering more information. The process continues with the
increase of information until satisfactory results are achieved or more information
is difficult to obtain. This process forms a sequential three-way decision from
rough granularity to precise granularity, which is similar to that of the way
human make decisions. In this section, we will make a problem formulation and
exhibit the decision cost and process of sequential three-way decisions.

When training a cost sensitive face recognition classifier, many face images
form a training set X = {X1,X2, . . . , XM}, where M is the number of images.
Each image Xi ∈ Rp×q is an p×q image matrix. The class label of Xi is denoted as
li ∈ {1, 2, . . . , nG, nG+1, . . . , n}, where the former nG labels are gallery subjects
and the last nI (nI = n − nG) labels are impostor subjects. For convenience, P
denotes gallery subjects label and the label of impostor subjects is represented
as N.

For a cost-sensitive sequential three-way decision face recognition problem,
the decision choices involve three options: positive decision (gallery subject),
negative decision (impostor subject) and delayed decision (boundary), which
are described as D = {aP , aN , aB}. These three options lead to six results and
the cost is determined by the recognition results. These six costs are displayed
and explained below:

1. λPP : a gallery subject is correctly classified as a gallery subject.
2. λNN : an impostor subject is correctly classified as an impostor subject.
3. λPN : an impostor subject is wrongly classified as a gallery subject.
4. λNP : a gallery subject is wrongly classified as an impostor subject.
5. λBP : a gallery subject is classified to the boundary for further decision.
6. λBN : an impostor subject is classified to the boundary for further decision.
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These six costs form a matrix (λij)2×3, where i ∈ {P,B,N}, j ∈ {P,N}. It is
obvious that the classification costs of different decisions should not be equal.
Generally speaking, the cost of making a right decision is lower than that of
boundary decision and error classification. In addition, the cost of delayed deci-
sion is lower than that of wrong decision, otherwise there is no need for delayed
decision. So λPP � λBP � λNP , λNN � λBN � λPN . For a cost-sensitive prob-
lem, false rejection is easier to accept than false acceptance, namely, λNP < λPN .
To facilitate the discussion, this paper ignores the costs of correct classification,
that is, λPP = 0, λNN = 0.

Definition 1. Let X be an image data set. Xi represents the data set obtained
by acquiring images i times. X1

� X2
� · · · � Xt ⊆ X, where t is number of

increases in data. XT = {X1,X2, . . . , Xt} is called as a incremental update data
set on X. Assume D = {aP , aN , aB} is a decision set. Cost(d|X l) denotes the
cost of deciding X l as d, then we can obtain the following series, which is called
sequential three-way decisions:

SD = (SD1, . . . , SDl, . . . , SDn) = (φ∗(X1), . . . , φ∗(X l), . . . , φ∗(Xt)). (1)

where φ∗(X l) = argmind∈D Cost(d|X l).
As mentioned above, φ∗(X l) = argmind∈D Cost(d|X l). So we can transform

the solution of SD into minimizing Cost(d|X l). Based on Bayesian decision
procedure, the decision costs(cost(ai|X l), i = P,B,N) are computed as follows:

cost(aP |X l) = λPPPr(P |X l) + λPNPr(N |X l),
cost(aN |X l) = λNNPr(N |X l) + λNPPr(P |X l), (2)
cost(aB |X l) = λBPPr(P |X l) + λBNPr(N |X l).

Then, select the minimum cost from the three costs computed according to (2).
We can get the optimal decision for the l-th step, i.e. SDl, which is formulated
as follows [7]:

SDl = φ∗(X l) = arg min
i∈P,N,B

Cost(ai|X l) (3)

As mentioned in Sect. 1, besides decision cost, the training cost is not negligible
in practical applications. The optimal decision step SDl is closely related to the
training cost. The calculation of the total cost will be introduced later.

3.2 Cost Calculation for Three-Way Decision

Generally, the overall cost consists of misclassification costs CostM and training
costs. In this paper, the time cost CostT and the data cost CostD constitute the
training cost. These two costs should be an increasing function of the decision
step. Time cost is the time spent training classifiers and the time cost is given
by the program. Data cost refers to the cost of tagging pictures. It is worth
mentioning that we assume that the cost of labeling each image is the same and
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the initial training set is also counted into the number of labeled images D. To
sum up, the total cost consists of misclassification cost, time cost and data cost,
so the total cost is a function for pooling together these three costs [18], that is:

Cost = F (CostM , CostT , CostD) (4)

We take a linear combination to calculate the cost as (5).

Cost = ωM × CostM + ωT × CostT + ωD × CostD (5)

The cost weight ωM , ωT and ωD can be changed according to the actual situation.
Equation (5) shows that if we acquire a low decision cost with a large number

of labeled images, the total cost will also be high. Labeling much fewer images
with little increase in decision costs can lead to a lower total cost, which requires
a superior sampling strategy. How to obtain the optimal incremental data set
Xi will be investigated in the next section.

4 Incremental Sampling for Sequential 3WD

In the information age where the Internet industry is highly developed, it is no
longer as difficult to obtain data as before, but it is still costly to label data
manually. How to select the most informative samples from a large number of
samples so as to train a satisfactory model with as few labeled data as pos-
sible and finally obtain satisfactory results at a relatively low marking cost is
a hot research topic in recent years. It must be noted that expert marking is
expensive and slow. When the labeled data is insufficient, three-way decisions
is a better choice. The process of incremental sequential three-way decision is
as in Algorithm 1. It can be seen that the sampling strategy is the core of the
incremental sequential three-way decision. The quality of the sampling strat-
egy directly determines the information of the training set and then influences
the effect of the classifier. Among all the sampling strategies, the uncertainty
sampling strategy is the most commonly used sampling strategy, because it is
simple, effective and universal. Firstly, it does not depend on the base classifier,
whether in the probabilistic model or in the non-probabilistic model such as deci-
sion tree, it has a good effect. Secondly, its computational complexity is smaller
than the version space reduction and expected error reduction strategy. The
simplest uncertainty sampling strategy is the minimum confidence strategy. For
the multiclass problem, the strategy selects the example with the least posterior
probability in the most probable class, that is, arg min

x∈Xu

(arg min
j∈l

P (y = j | x)).

The disadvantage of the minimum confidence strategy is that it only considers
the most probable class, while ignoring the probability of the other categories.
Although the final classification results are determined by the maximum pos-
terior probability, it is not appropriate to consider only this probability when
selecting examples in multiclass classification problems. In order to overcome this
shortcoming, marginal sampling strategy for multiclass classification problems
is proposed. In the marginal sampling strategy, in addition to the maximum
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Algorithm 1. The process of incremental sequential three-way decision
Input: Initial training set X1; The unlabeled image pool Xu; The number of decision

steps s; The number of incremental images per step n
Output: The total cost of two-way decisions C2WD and three-way decisions C3WD;
1: for 1 ≤ i ≤ s do
2: Train a classifier Γi with training set Xi

3: Use Γi to calculate the total cost Ci
2WD and Ci

3WD

4: Extract n samples from Xu to form Ii

5: Let experts label Ii

6: Xi+1 ← Xi ∪ Ii, Xu ← Xu \ Ii

7: end for
8: C2WD = {C1

2WD, C2
2WD, . . . , Cs

2WD}
9: C3WD = {C1

3WD, C2
3WD, . . . , Cs

3WD}
10: return C2WD and C3WD

probability, the information of the second largest probability category is used
rather than discarded directly. It calculates the margin of each sample, that is,
the posterior probability difference between the most probable category and the
second possible category, and selects the example x∗ with the smallest margin
according to Eq. 6.

x∗ = arg min
x∈Xu

(P (y = j1 | x) − P (y = j2 | x)) (6)

where j1 = arg min
j∈l

P (y = j | x) is the most probable class and j2 =

arg min
j∈l\j1

P (y = j | x) represents the second most probable class. Obviously, the

example with high margin is easily distinguished by the classifier, such an exam-
ple can be regarded as a small amount of information, marking the example may
lead to a waste of resources. Those samples with very small margin are liable to
be misclassified by the classifier, and obtaining the labels of these examples will
greatly improve the performance of the classifier.

Such a reasonable assumption can be made that the most probable category
is considered as the final category and the second most probable category is
regarded as the most easily misclassified category in decision making. Based
on this assumption, the cost sensitive margin can be calculated. The strategy of
selecting the most informative examples with cost-sensitive margin is called cost-
sensitive minimum margin strategy (CSMM), which makes the minimum margin
strategy cost sensitive. Compared with simple minimum margin strategy, the
cost-sensitive minimum margin strategy can be targeted to select such impostor
x̃∗ that are easily misclassified as galleries and these galleries that are easily
misclassified as impostors.

x̃∗ = arg min
x∈Xu

(P (y = j1 | x) − P (y = j2 | x))W (j1, j2) (7)

where W (j1, j2) is the weight of misclassifying j1 to j2.
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In addition to incremental image set, the optimal decision SDl is also closely
related to conditional probability Pr(P |X l), as (2) and (3) shows. Compared
with traditional approaches, the probability using deep neural network is more
accurate. The calculation method of conditional probability will be explained in
detail in the next section.

5 DSAE Extract Features for 3WD

To estimate the conditional probability mentioned in the previous section, DSAE
is used to extract features. Deep neural network has been a common and effective
classifier since it was proposed because it has more powerful ability than other
classifiers in image recognition. It is generally believed that the development of
deep learning began in 2006. Hinton et al. [1] proposed a method to build multi-
layer neural networks on unsupervised data and used greedy layerwise approach
to extract features, which formed a deep stacked autoencoder.

The autoencoder, an unsupervised deep neural network, whose purpose is to
reconstruct the input data and to approximate an identity mapping function [10]
(obviously, input size = output size), namely, x̂ ≈ x, where x̂ represents the
real output of neural networks and x represents input data. If the number of
hidden layers is limited to less than the input size, the autoencoder is forced to
learn the compressed representation of the input data which makes it useful to
extract features from unlabeled data, and then classify or label them [9]. Encoder
phase and decoder phase are the two phases of the autoencoder’s execution
process, respectively. A mapping from the input layer X to the hidden layer Y
is established in encoder phase, represented as H(x) = Y = f(W1X + b1), where
W1 and b1 are kernel vector and bias, respectively. f depicts the sigmoid function.
The decoding phase is the process of reconstruction, in which the hidden layer
Y to the output layer X̂ is mapped as X̂ = f(W2X + b2), where W2 is used to
represent kernel vector and b1 is the bias.

Let {x1, x2, . . . , xm} represent the data set, the mean squared reconstruction
error (MSRE) representing the dispersion of the input and the actual output
is calculated as Jcost = 1

2‖X̂ − X‖2. To reduce the impact of overfitting prob-
lems, a weight decay term is added to the loss function in order to diminish the
magnitude of the weight, mathematical representation as Jweight = W 2

1 + W 2
2 .

If a sparsity constraint on the hidden units was imposed on autoencoder, it con-
structs a sparse autoencoder. The sparsity constraint forces most neural to be
inactive, that is, the output value is close to zero, which helps the neural network
to remove the feature of useless information. Taking an average on training set,
then the average activation of hidden units j is denoted as ρ̂j = 1

m

∑m
i=1 y

(i)
j ,

where m is the number of training images.
Let {y1, y2, . . . , yn} denotes the hidden layer Y, in order to implement the

above sparsity constraint, an additional penalty function based on Kullback-
Leibler (KL) divergence is defined as Jsparse =

∑n
j=1 KL(ρ‖ρ̂j), where ρ is a
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sparse parameter, whose value is close to zero. And the formula to calculate
Kullback-Leibler (KL) divergence is represented as in 8:

n∑

j=1

KL(ρ‖ρ̂j) =
n∑

j=1

(ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
) (8)

The ultimate optimization objective of an sparse autoencoder is presented as
follows:

J(W, b) = Jcost +
λ

2
Jweight + βJsparse (9)

where λ is the weight decay parameter and β decides the importance of the sparse
penalty function. Then the back-propagation algorithm is applied to decrease the
loss function, which will make the output as perfect as possible to reconstruct
the input, and finally get the weights W1, W2 and biases b1, b2.

According to the above method, we can train a deep stacked autoencoder
(DSAE) by greedy layerwise approach. The DSAE is a deep neural network with
multiple layers of sparse autoencoders. In DSAE, the output of k-th layer is the
input of k +1 layer. Assuming that DSAE has (2n− 1) hidden layer, the n layer
is its deepest hidden layer. The activation value of the neuron in this layer is a
higher order representation of the input value and contains the information that
we are most interested in. Labels of training data are unnecessary when training a
DSAE, that is, it is an unsupervised learning scheme. A classifier such as softmax
is necessary when the features from the DSAE is used for classification tasks.
Here we use the softmax classifier to obtain conditional probability. Usually the
decoder is discarded and the output of the n layer is fed as the input feature of
the classifier [12]. In order to obtain better results, after training the classifier,
the parameters of all layers are adjusted simultaneously. Finally, the output layer
of softmax is the conditional probability needed to make the three-way decision.

6 Experiments

In this section, experiments based on two popular face databases Extended YaleB
and PIE are designed to verify the superiority of incremental sequential three-
way decisions and the effectiveness of the proposed incremental selection method
in the case of insufficient data. We compare the performance of sequential three-
way decisions with two-way decisions, and make a comparison of the filter incre-
mental method proposed and simple incremental method.

6.1 Face Databases

The Extended YaleB database contains 38 subjects, with a total of 2414 frontal
images collected under various strictly controlled illumination conditions. We take
all five subsets of frontal face images and randomly obtain part of them as training
set and test set. The PIE database consists of over 40000 face images of 68 subjects,
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Fig. 1. Some samples of EYaleB (a) and PIE (b) face databases used in experiments

including 13 poses, 43 illumination conditions and 4 emotions. We selected all the
images under various light conditions from a subset, that contains 24 images per
subject. All images are cropped and resized to 50×50 pixels. The partial images of
the two databases are shown in Fig. 1. Since we mainly study cost-sensitive sequen-
tial three-way decision, we would better set different parameters for gallery sub-
jects and impostor subjects. Moreover, to avoid the effects of class imbalance, we
make an assumption that the number of images in each class is the same. For each
gallery and impostor subject, Tr images are included in training set to gain incre-
mental data sets, while Te images are used to calculate the accuracy and misclas-
sification. The initial training set is extracted from the training set, and the others
are used as unlabeled image pools. The number of gallery and impostor subjects
selected from each database is represented by G and I, respectively. The number of
additional labeled samples per step is represented by Ni. The cost matrix (λij)2×3

used to calculate misclassification cost and threshold α and β is given by experi-
ence. Since it is the proportion rather than the value of the cost matrix that affects
the experimental results, we set the minimum value λBP as 1 while ignoring the
cost of the correct classification. All parameter are presented in Table 1. Because
the size of the training set and the test set are different between the two databases,
the weights in Eq. (5) should also be different in our experiments. For simplicity,
ωM is set to 1 for two databases. ωT and ωD are set to 4 and 0.7 for EYaleB while
10 and 2.5 for PIE, respectively, to ensure that the data cost is more important
than the time cost.

Table 1. Experimental parameter settings

Database G I Tr Te Ni λPN : λNP : λBN : λBP

EYaleB 20 15 24 24 25 12 : 3 : 2 : 1

PIE 20 15 8 16 8 12 : 3 : 2 : 1

In order to meet the practical situation and avoid the experimental errors
caused by randomness, the sequence of images obtained is fixed in each exper-
iment. In this case we can accurately compare the experimental results of sim-
ple incremental method and active incremental method. In each experiment,
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the training set, the set to be marked and the test set of random increment
method and active increment method should be identical, so that the validity
of the experimental results can be proved. Thus, for each database, 10 different
orderly fixed data sets are acquired in the random way. One data set is used
in each experiment, and the average value of 10 experiments is regarded as the
result. In addition, all experiments were carried out on a computer equipped
with GTX1050Ti.

6.2 Costs and Errors of Sequential Incremental Learning

In order to verify the superiority of the proposed sequential three-way decision
over the sequential two-way decision in incremental learning, we compare their
decision cost and decision errors in this section. All experimental parameters are
set strictly according to the data in Table 1. We mainly compare and show the
following items:

1. Decision cost: the cost of misclassifying the image into wrong categories,
that is, the sum of all the six costs mentioned in Sect. 3.

2. Total cost: the sum of decision cost and training cost.
3. Error rate: the ratio of the number of images misclassified to the number

of test sets. It should be pointed out that the boundary regions of three
decisions are considered to be classified errors in order to ensure fairness
when compared with two decisions.

4. Three regions: the changes of three regions with the decision steps in the
three-way decision.

All four items of these experimental results on EYaleB and PIE are shown in
Fig. 2. As shown in Fig. 2, the variation trend of decision cost and error rate of
sequential two-way decision and sequential three-way decision are the same. In
most cases the decision cost and error rate decrease with the increase of decision
steps. This is because in sequential incremental learning, as the decision steps
increase, more images are labeled and added to the training set, which increases
the available information for decision. More available information can help the
classifier to make more correct decision and finally reduce the decision cost and
error rate. In addition, we should also see that when the decision cost and error
rate are low, there also are scenarios where the decision steps increase while the
decision cost and error rate increase. The existence of anomalies is also normal
because generally only the overall trend satisfies the consistency of decision.

Comparing the decision cost of sequential three-way decision with sequential
two-way decision, we find that the former is lower than the latter, especially at
the beginning, which is the benefit of boundary decision. As we discussed earlier,
when the available information is not sufficient, if the classifier has to make a
decision, it will easily lead to errors, so the boundary decision is the better choice.
However, the advantages of boundary decision are no longer apparent when
available information is not scarce, which can be seen from the cost-sensitive
minimum margin strategy in Fig. 2. Cost-sensitive minimum margin strategy
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(a) Random on
EYaleB

(b) CSMM on
EYaleB

(c) Random on PIE (d) CSMM on PIE

Fig. 2. Comparison of sequential two-way decision and sequential three-way decision
on two databases

can obtain information quickly, so in the later decision stage, the superiority
of three-way decision is whittled away. In addition, the total cost, which is the
sum of decision cost and training cost, is also shown in Fig. 2. The increase of
training data not only brings more information, but also increases the time cost
and data cost. Although more information brings lower decision cost, the total
cost decreases at first and then increases because of the existence of training
cost. As we emphasize in Fig. 2, the total cost is minimized at some middle
decision step. The results show that the decision cost and total cost of sequential
three-way decision are lower than that of sequential two-way decision, which
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Fig. 3. Comparison of random sampling strategy and cost-sensitive minimum margin
strategy on two databases.

verifies the superiority of three-way decision in dealing with the cost-sensitive
face recognition problem.

Besides decision cost and total cost, we compare the error rates between
sequential two-way decision and sequential three-way decision. The error rate of
sequential three-way decision is higher than that of sequential two-way decision,
which is the result of boundary decision. The uncertain face image is classified
into the boundary region in three-way decision, which is considered to be a
misclassification but they may be classified correctly in two decisions. Boundary
decision not only brings lower decision cost, but also leads to higher error rate,
which shows that three-way decision are not suitable for cost-insensitive face
recognition.

The changes of the three regions are also shown and marked in Fig. 2. The
increase of information is accompanied by the increase of decision steps, which
makes the classifier more effective, so the range of the boundary region has been
reduced. With enough information, the boundary region disappears completely
and all samples are classified precisely.

A comparison between random sampling strategy and cost sensitive minimum
margin strategy is made, as shown in Fig. 3. In the initial stage, due to the small
number of labeled samples, the cost-sensitive minimum margin strategy has no
obvious advantage, but as the number of labeled samples increases, the cost and
error rate of the cost-sensitive minimum marginal strategy are significantly lower
than that of the random sampling strategy. The reason is that the cost-sensitive
minimum margin strategy selects the most informative sample and takes into
account the misclassification cost of gallery and impostor. The random sampling
strategy also gets a good effect with enough labeled data, and the performance
of the two sampling strategies tends to be the same.
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7 Conclusion

A sequential incremental three-way decision strategy is proposed in this paper
for cost-sensitive face recognition. The cost-sensitive minimum margin strategy
is used to select images that need to be labeled, and the boundary decision is
made for images that are difficult to classify. DSAE is used to calculate accurate
conditional probability. All the experimental results show that the performance
of the three-way decision is better than that of the two-way decision. It is better
to select the data by the cost-sensitive minimum margin strategy than the ran-
dom sampling strategy with the same unlabeled images. Sequential incremental
three-way decision conforms to human thinking pattern and it is an effective
strategy for cost-sensitive problems.
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Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS (LNAI),
vol. 8537, pp. 375–383. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08729-0 39

23. Zhang, Y., Zhou, Z.H.: Cost-sensitive face recognition. IEEE Trans. Pattern Anal.
Mach. Intell. 32(10), 1758–1769 (2010)

24. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1),
63–77 (2006)

https://doi.org/10.1007/978-3-642-02962-2_81
https://doi.org/10.1007/978-3-642-02962-2_81
https://doi.org/10.1007/978-3-642-32115-3_1
https://doi.org/10.1007/978-3-642-41299-8_3
https://doi.org/10.1007/978-3-642-41299-8_3
https://doi.org/10.1007/978-3-319-08729-0_39
https://doi.org/10.1007/978-3-319-08729-0_39


Three-Way Decision Collaborative
Recommendation Algorithm Based

on User Reputation

Fulan Qian1(B), Qianqian Min1, Shu Zhao1, Jie Chen1, Xiangyang Wang2,
and Yanping Zhang1

1 School of Computer Science and Technology, Anhui University,
Hefei 230601, Anhui, People’s Republic of China

qianfulan@hotmail.com
2 Anhui Electrical Engineering Professional Technique College,

Hefei 230051, Anhui, People’s Republic of China

Abstract. Collaborative filtering algorithm is a widely used personal-
ized recommendation technology in e-commerce system. However, due to
data sparsity, obtained information is insufficient, so that recommenda-
tion accuracy is insufficient. By analyzing user rating data to establish
user reputation system, and taking full advantage of user reputation to
supplement information contribute to improve recommendation accu-
racy. In this paper, we use three-way decision to make delayed recom-
mendation and propose an algorithm called Three-way Decision Collabo-
rative Recommendation Algorithm Based on User Reputation (TWDA).
Firstly, based on Beta distribution, we introduce three-way decision to
the process of calculating user reputation, and we use boundary region
parameter to reasonably assign ratings in boundary region into positive
or negative region. Then, we combine user reputation with matrix fac-
torization model of collaborative filtering recommendation field. Exper-
imental results on two classic data sets show that TWDA improves rec-
ommendation accuracy compared with existing recommendation algo-
rithms.

Keywords: Recommendation system · Collaborative filtering ·
User reputation · Three-way decision

1 Introduction

Collaborative filtering algorithm is a widely used recommendation technology
in personalized recommendation system. It has received widespread attention
from scholars and made great progress. However, with the continuous expansion
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of scale, sparsity of user-item rating matrix seriously affects the effect of rec-
ommender algorithm. Due to data sparsity, obtained information is lacking, so
that recommendation accuracy is insufficient. By analyzing user rating data to
establish user reputation system, and taking full advantage of user reputation
and three-way decision to supplement information and make delayed recommen-
dation respectively, both contribute to improve recommendation accuracy.

Three-way decision may be viewed as an extension of rough set theory, based
on the same philosophy but goes beyond [1]. It is a decision-making model based
on human cognition and an extension of two-way decision theory. Three-way deci-
sion is to segment a finite non-empty universe of objects or observations U into
three-pairwise disjoint regions (positive region, negative region and boundary
region) based on a set of criteria or conditions [2]. Ideas of dividing and process-
ing the universe with three regions have been widely used in many fields [3–6],
such as medicine [7], social networks [6], recommender system [8–11]. The key
of the three-way decision theory is that introducing boundary region (delayed
decision) to the two-way decision except positive region and negative region, and
the three-way decision gives boundary region the semantic of delayed decision, so
there is a problem of further characterization of the boundary region. Three-way
decision first selects the most important decision attributes to classify the uni-
verse roughly, then select an attribute to classify the boundary after obtaining
the boundary region, and so on until the results are satisfactory.

The so-called three-way recommendation introduces delay recommendation
strategy based on the two-way recommendation. Zhang et al. [8] proposed a
three-way recommendation system based on regression, which aims to minimize
the average cost by adjusting the thresholds of different behaviors. Zhang et al.
[9] proposed an algorithm that integrates three-way decision and random forests
to construct a recommendation system. In addition to recommendation and non-
recommendation, the third option is to consider the teacher cost of delay decision.
Xu et al. [10] proposed a three-way decision method for recommendation system.
In addition to recommended items and unrecommended items, the model adds a
set of items that may be recommended to users. Huang et al. [11] proposed a new
three-way recommended system considering variable cost, where the variable cost
is a function of project popularity. In summary, existing research on three-way
recommendation mainly focuses on single rating granulation, it is completely
based on the framework of granular computing, so recommended accuracy is not
sufficient.

In this paper, we take advantage of user reputation to supplement informa-
tion, and use three-way decision to make delayed recommendation contribute
to improve recommendation accuracy, therefore, we propose a three-way deci-
sion collaborative recommendation algorithm based on user reputation (TWDA),
by giving each user a corresponding reputation coefficient. For the less-reputed
users, their influence is suppressed by the reputation coefficient, and the impact
on accuracy of natural factors of real users with lower reputation in the system
can be corrected. By introducing delay decision, three-way decision can further
improve the recommendation accuracy through correction of boundary region.
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Experimental results show that TWDA can improve recommendation accuracy
to a certain extent compared with existing recommendation models.

The following sections of this paper are organized as follows: Sect. 2 briefly
introduces the matrix factorization model in collaborative filtering recommen-
dation algorithm; Sect. 3 describes three-way decision collaborative recommen-
dation algorithm based on user reputation in detail; Sect. 4 presents the experi-
mental results and analysis; Sect. 5 is the conclusion of the full paper.

2 Related Concepts

The matrix factorization method is used most commonly in the current recom-
mendation system, which has achieved outstanding results in the Netflix Prize
recommendation system competition. Taking the user-item rating matrix as an
example, matrix factorization predicts missing values in the rating matrix and
then recommends them to the user in some way based on the predicted val-
ues. Common matrix factorization methods are basic matrix factorization (basic
MF), regularized matrix factorization (Regularized MF), probabilistic matrix
factorization (PMF) [12], etc., where Regularized MF is known to be one of
the most successful methods for rating prediction outperforming other meth-
ods like Pearson-correlation based KNN or co-clustering [13–16]. So we use the
regularized matrix factorization (Regularized MF) model in this paper.

Basic MF is the most basic factorization method. The high-dimensional rat-
ing matrix R is decomposed into two low-dimensional user matrices U and
project matrices V. Through continuous iterative training, the product of U
and V is closer to the real matrices. Regularized MF is an optimization of Basic
MF, which solves the over-fitting problem caused by MF. It adds a normalization
factor λ(‖Ui‖2 + ‖Vi‖2) based on the loss function, then considering the whole
as a loss function as shown in Eq. (1),

L =
∑

(i,γ)∈train

(riγ −
F∑

f=1

UifVif )2 + λ(‖Ui‖2 + ‖Vi‖2) (1)

When solving U and V, we still use gradient descent method to minimize the
loss function, and the iteration formula becomes Eqs. (2) and (3):

Uif = Uif + α(EiγVγf − λUif ) (2)

Vγf = Vγf + α(EiγUif − λVγf ) (3)

where,

Eiγ = riγ −
F∑

f=1

UifVif (4)
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3 Collaborative Recommendation Algorithm Based
on User Reputation and Three-Way Decision

The rating system can be described by a weighted bipartite network, which
consists of users denoted by set U and objects denoted by set O. We use the
Latin and Greek letters to represent the users and objects. The rating riγ given
by user i to object γ is the weight of the link in the bipartite network and all the
ratings could be described as a rating matrix A. The degree of user i is denoted
as ki. Moreover, the reputation of user i and the quality of object γ are denoted
as Ri and Qγ [17].

3.1 User Reputation Calculation Based on the Three-Way Decision

Beta distribution can be used to represent the posterior probability of a binary
event. The general Beta distribution can be represented by the gamma function
Γ as shown in Eq. (5):

f(p|α, β) =
Γ (α + β)
Γ (α)Γ (β)

pα−1(1 − p)β−1, where 0 ≤ p ≤ 1, α > 0, β > 0 (5)

And the probability expectation value of the Beta distribution is given by Eq. (6)
[18]:

E(p) = α/(α + β) (6)

Based on Beta distribution, we evaluate user’s reputation based on the prob-
ability expectation value and distribution that user i will provide a fair rating.
Firstly, considering user’s personalization that different users tend to have dif-
ferent rating standards. Some people tend to give high ratings, while others tend
to give low ratings. Therefore, we use a normalized method to transform a rating
to the extent of fanciness as shown in Eq. (7):

r′
iγ =

{
2(riγ−rmin

i )

(rmax
i −rmin

i )
− 1, rmax

i �= rmin
i

0, rmax
i = rmin

i

(7)

where rmax
i and rmin

i denote the maximum and minimum rating user i gives. In
this way, all ratings given by a specific user will be mapped to [−1, 1]. Specifically,
for users who always give the same ratings, their ratings will be normalized to 0.
The normalized rating matrix is denoted by A′, where each element represents
the ratings’ extent of fanciness. The positive and negative value of the element
could be interpreted as the positive and negative opinion given by users. Pγ and
Nγ denote the number of users who have positive and negative attitude toward
object γ, respectively. When the normalized rating r′

iγ > 0, we define a rating
as fair rating if Pγ > Nγ , otherwise as unfair rating if Pγ < Nγ . Else when the
normalized rating r′

iγ < 0, we define a rating as fair rating if Pγ < Nγ , otherwise
as unfair rating if Pγ > Nγ .
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However, there are a large number of indistinguishable ratings except dis-
tinguishable fair and unfair ratings in recommendation system. And the indis-
tinguishable ratings including two situations. One is Pγ = Nγ , for the ratings
given by users to object γ, half of the users have a positive attitude and half
of the users have a negative attitude. The other is r′

iγ = 0, that is when the
normalized rating is 0. In both situations, we are unable to determine the fair-
ness of ratings. Therefore, based on the idea of three-way decision, we define
fair ratings as positive region (POS), unfair ratings as negative region (NEG),
and indistinguishable ratings that need to be judged twice as boundary region
(BND). Thus, the fairness of all user ratings in the system can be described in
Table 1.

Table 1. Fairness of all user ratings.

r′
iγ > 0 Pγ > Nγ fair POS

Pγ < Nγ unfair NEG

Pγ = Nγ secondary decision BND

r′
iγ < 0 Pγ > Nγ unfair NEG

Pγ < Nγ fair POS

Pγ = Nγ secondary decision BND

r′
iγ = 0 - secondary decision BND

Regarding a large number of indistinguishable ratings existing in the bound-
ary region, a second determination is made by defining the rating difference
degree |riγ − Qγ |. The rating is considered to be fair when the rating difference
degree is not greater than threshold value α, otherwise, the rating is considered
to be unfair. Therefore, the fairness of ratings in the boundary region can be
described in Table 2.

Table 2. Fairness of ratings in the boundary region

Pγ = Nγ |riγ − Qγ | ≤ α fair POS

|riγ − Qγ | > α unfair NEG

r′
iγ = 0 |riγ − Qγ | ≤ α fair POS

|riγ − Qγ | > α unfair NEG

In summary, we can get a fairness matrix for all user ratings in the system.
And all the symbols describing the fairness of the ratings are collectively shown
in Table 3. If all the ratings in the recommendation system can be considered as
two types, namely, fair ratings and unfair ratings. We use the Bayesian analysis
to model the user reputation. Bayesian analysis adopts a binary event to measure
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each of users ratings: Fair rating (denoted by 1) or unfair rating (denoted by
0). Therefore, we first use distinguishable rating data of user i as training set to
obtain Beta prior distribution as shown in Eq. (8):

α = r0i + 1, r0i ≥ 0

β = s0i + 1, s0i ≥ 0
(8)

thus, the probability expectation value of Beta distribution, which is defined as
user reputation, is given by Eq. (9):

Ri = E(pi) = (r0i + 1)/(r0i + s0i + 2) (9)

where r0i is the number of distinguishable fair ratings and s0i is the number of
distinguishable unfair ratings.

Table 3. Symbol description

r0 # of fair ratings in non-boundary regions

s0 # of unfair ratings in non-boundary regions

r1 # of fair ratings in boundary region

s1 # of unfair ratings in boundary region

r(r0 + r1) # of fair ratings in all user ratings

s(s0 + s1) # of unfair ratings across all user ratings

Then, after making a secondary decision on the boundary region, we use all
the rating data of user i as training set to obtain a new Beta prior distribution
as shown in Eq. (10):

α = r0i + 1 + r1i , r0i ≥ 0, r1i ≥ 0

β = s0i + 1 + s1i , s
0
i ≥ 0, s1i ≥ 0

(10)

and its expectation is shown in Eq. (11):

E(pi) = (r0i + 1 + r1i )/(r0i + r1i + s0i + s1i + 2) (11)

consequently, we can get the reputation of user i as shown in Eq. (12):

Ri = E(pi) = (r0i + 1 + r1i )/(r0i + r1i + s0i + s1i + 2)

=
ri + 1
ki + 2

(12)
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where ki = r0i + r1i + s0i + s1i , which is all ratings that user i gave, this formula
indicates that the more the percentage of fair ratings user i gives, the larger
reputation he/she will have.

In this paper, we still use the method in enhanced iterative algorithm with
reputation redistribution (short for IARR2) [19] to calculate the quality of
objects. For the IARR2 method, the quality of an object is not only determined
by the received weighted average rating, but also relied on the maximum repu-
tation of the users who rate it, thus the quality of object γ could be expressed
as Eq. (13):

Qγ = max
i∈Uγ

{Ri}

∑
i∈Uγ

Ririγ

∑
i∈Uγ

Ri
(13)

3.2 Matrix Factorization Model Based on User Reputation

Introducing reputation coefficient into the Regularized MF model to obtain a
reputation-based regularization matrix factorization model, which can be shown
as Eq. (14):

L =
∑

(i,γ)∈train

Ri(riγ −
F∑

f=1

UifVif )2 + λ(‖Ui‖2 + ‖Vi‖2) (14)

In the process of optimizing loss function, when reputation value is higher,
forcing the predicted value and the user’s real rating to get closer, users with high
reputation value has a greater influence on recommendation result. Conversely,
it will weaken impact of users with low reputation value on recommendation
result. Regarding natural noise users who are not rigorous in actual system,
their ratings are less correlated with weighted average reputation of the object,
that is, reputation of not rigorous users is lower, which weakens influence of
natural noise on recommendation results, thus achieve the purpose of improving
recommendation quality.

We adopt a stochastic gradient descent algorithm to optimize above model.

The final U and V, according to the formula r̂iγ =
F∑

f=1

UifVγf , can be used to

obtain corresponding prediction rating.
The flow description and schematic illustration of TWDA algorithm are

shown in Algorithm 1 and Fig. 1.
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Algorithm 1. Three-way Decision Collaborative Recommendation Algo-
rithm Based on User Reputation(TWDA)

Input: rating matrix AM∗N (M: the number of users in the rating
system, N: the number of items in the rating system)

Output: predicted rating r̂iγ , user reputation Ri

1: Normalizing rating matrix A by formula (7);

2: Obtain fairness of all user ratings by Table 1;

3: Get user reputation by formula (8);

4: Introducing reputation coefficient into the Regularized MF model
and optimizing it by formula (14);

Fig. 1. A schematic illustration of TWDA algorithm. The black arrow shows the steps
of the procedure. (a) The corresponding rating matrix, A. The row and column corre-
spond to users and objects, respectively. (b) The normalized rating matrix, A’. Take
U2 as an example, r21 = 4, r′

21 = 2 ∗ (4 − 1)/(4 − 1) − 1 = 1. (c) Whether each rat-
ing is fair or not could be represented as the matrix B. Take O1 as an example, since
r′
11 < 0, r′

21 > 0, r′
31 < 0, r′

41 < 0, the ratings given by U1, U3 and U4 to O1 are regarded
as fair ratings (denoted by Y) and the rating given by U2 is defined as an unfair rating
(denoted by N). (d) Fairness matrix for all ratings, B’. Since there are indistinguishable
ratings in matrix B, it is necessary to make a second decision on these ratings. (e) The
number of fair and unfair ratings, say s and f, given by each of users, could be denoted
as matrix C. Take U4 as an example, U4 gives 3 fair ratings and 1 unfair rating, so
s4 = 3, f4 = 1. (f) The reputation matrix, R. R4 = (1 + s4)/(2 + s4 + f4) = 2/3.
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4 Experimental Analysis

In order to verify the effectiveness of TWDA algorithm, this section will further
analyze the role of user reputation coefficient in the recommendation process
through experiments, that is, its impact on the recommendation accuracy.

4.1 Data Description

In this paper, we employe two experimental datasets which are well-known
and widely used in recommender systems, MovieLens-100k and MovieLens-1M1.
Specifically, MovieLens-100K dataset contains nearly 100,000 rating records of
943 users on 1,682 movies, and MovieLens-1M dataset contains 1,000,209 rating
records from 6,040 users for 3,952 movies, both of two data sets come from the
MovieLens website. In addition, each user has rated at least 20 movies, the inte-
ger rating scale from 1 to 5, representing the degree of preference from low to
high, 1 point means very dissatisfied, and 5 points means very satisfied. Table 4
is a description of basic statistical characteristics of the two datasets.

Table 4. The information of data sets

Users Items Ratings Ratings
per user

Ratings
per item

Rating sparsity

MovieLens-100k 943 1682 100,000 106 59 0.0063046

MovieLens-1M 6040 3952 1,000,209 165 253 0.0419022

4.2 Evaluation Metric

Many websites that offer recommendation services have a feature that allows
users to rate items. Then, if we know user’s historical rating of the product, we
can learn the user’s interest model from it, and predict the score that the user
will rate when he sees an unrated item in the future. The behavior of predicting
a user’s rating of an object is called rating prediction.

The prediction accuracy of rating prediction is generally calculated by Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE). We adopt MAE,
which is widely used in many fields, including recommendation systems, to mea-
sure the average deviation between true rating and predicted rating. Regarding
a user u and item i in test set, MAE is defined as shown in Eq. (15):

MAE =

∑
u,i∈T

|rui − r̂ui|

|T | (15)

where rui is actual rating of item i given by user u, r̂ui is prediction rating given
by the recommendation algorithm and |T | is the number of testing data samples.

Obviously, the lower value of MAE indicates better performance of the model.
1 https://grouplens.org/datasets/movielens/.

https://grouplens.org/datasets/movielens/
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4.3 Selection of Boundary Region Parameter

Three-way decision model acquires decision rules according to positive region,
negative region, and boundary region. When dealing with ambiguous and incom-
plete data, they can give non-commitment rules, which can reduce false decisions
and improve decision accuracy. The existence of boundary region is temporary.
As the information is increased, the knowledge of the objects in boundary region
is more refined, the final division must be clear, that is, the positive region or the
negative region. Regarding to ratings in boundary region, rating difference degree
|riγ −Qγ | is used to represent absolute value of difference between the rating and
quality of the object, the rating is considered fair when difference degree is less
than threshold α, otherwise, the rating is considered unfair, thereby achieving a
secondary division of boundary region.

In order to evaluate the influence of threshold α on recommender system, it
is necessary to clarify the range of α. For that reason, we conduct experiments
to get distribution of rating differences, and the proportion of training set is set
to 80%. From Fig. 2(a) and (b), we can see the distribution of rating differences
on two datasets.

(a) MovieLens-100K. (b) MovieLens-1M.

Fig. 2. Distribution of rating differences on two datasets

Then, we compare the accuracy of our method on two datasets under differ-
ent α. From Fig. 3(a), it can be seen that our method obtains optimal value
when α = 1 and eventually tend to be stable on MovieLens-100k dataset.
In addition, Fig. 3(b) shows that our method has best performance when α = 0.5
and eventually tend to be stable on MovieLens-1M dataset. (The abscissa is
rating difference). Furthermore, we change the proportion of training set. The
training ratio is set to 50%, 60%, 70%, and 80%, it also shows that our method
gets best performance when training ratio is set to 80%.

Table 5 shows the number of fair and unfair ratings under different α on two
datasets, and the proportion of training set is set to 80%. It can be seen that more
and more ratings are divided into positive region, but our method only obtains
optimal value when α = 1 on MovieLens-100k dataset, and when α = 0.5 on
MovieLens-1M dataset. That is, the performance of our method didn’t increase
as the number of fair rating increases. Thus, following experiments set α to 1 on
MovieLens-100k dataset, and set α to 0.5 on MovieLens-1M dataset.
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(a) MovieLens-100K. (b) MovieLens-1M.

Fig. 3. Performance on two datasets under different α

Table 5. Two types of ratings in boundary region on two dataset

α 0.5 1 1.5 2 2.5 3 3.5 4

100k-fair 316 556 795 930 1028 1037 1040 1043

100k-unfair 727 487 248 113 15 6 3 0

1M-fair 857 1370 1936 2170 2350 2361 - -

1M-unfair 1504 991 425 191 11 0 - -

4.4 Experimental Results and Analysis

In this paper, we verify the accuracy of the proposed model by comparing with
other recommendation algorithms. We chose the following famous and state-of-
the-art recommendation algorithms to compare with our method, we also com-
pare the proposed model with its two variants. Below we provide the names of
algorithms that will be used in following experiments, and its brief introduction.

• PMF: Probabilistic matrix factorization model, which is a widely used matrix
factorization model.

• SRimp : Exploiting users implicit social relationships for recommendation.
• PRMF: Learning users dependencies without prior information.
• RegSVD: A rating prediction algorithm based on SVD.
• LOD-MF: A novel recommender model based on matrix factorization and

semantic similarity measure.
• FRAIPA: A fast recommendation algorithm based on self-adaptation and

multi-thresholding.
• TWA: An original algorithm without processing boundary region.
• TWA-POS: A variant of the proposed model which adopts two-way decision

method and divided all ratings in the boundary region into positive region.
• TWA-NEG: A variant of the proposed model which adopts two-way decision

method and divided all ratings in the boundary region into negative region.
• TWDA: Our proposed model which adopts three-way decision method to

process the boundary region and divided all ratings in boundary region into
positive region or negative region reasonably.
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After extensive experiments, we found that TWA-NEG and TWA always have
the same result, because calculation of user reputation is only related to the rat-
ings in positive region, dividing all the ratings into negative region is equivalent
to no improvement. Therefore, following figures only give experimental results
of TWA.

Impact of Latent Factors. In order to examine our method in depth, we
compare our method with other variant algorithms under different dimension
of latent factor (F), ranging from 10 to 100. Similar to previous sections, we
randomly choose 80% of original data as training set and remaining 20% as test
set. In addition, the number of iterations is set to 100, learning rate is set to 0.02
and the parameter of regularization term is set to 0.03 on both two datasets.

Figure 4(a) shows that with increase of F, performance of all methods keep
improving and eventually tend to be stable on MovieLens-100K, and we can
see that TWDA outperforms other variant algorithms. As for performance on
MovieLens-1M, it is unstable with the change of F. Figure 4(b) shows MAE
of TWDA maintains a gradual decline when F < 50. We can see that MAE
of TWDA is obviously lower than other algorithms, though the improvement
becomes smaller and smaller when F > 50. According to above analysis, we can
conclude that the performance of TWDA becomes better and gradually reaches
a stable state with increase of F, but obviously, the computational complexity
of matrix factorization is proportional to F. Therefore, we should consider the
balance between accuracy and efficiency according to actual situation.

(a) MovieLens-100K. (b) MovieLens-1M.

Fig. 4. Performance on two datasets under different F

Impact of Sparsity. Sparsity is one of the most important factors that affect
the performance of recommender system. To further evaluate our method, we
change the proportion of training set. The training ratio is set to 50%, 60%,
70% and 80%. The dimension F of latent factor is set to 70 on MovieLens-100K
dataset and 90 on MovieLens-1M dataset.

As we have expected, the sparsity of dataset greatly affects the performance
of recommendation algorithm. Figure 5(a) shows the results on MovieLens-100K
dataset, we can see that training ratio from 50% to 80%, MAE of TWDA is
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always maintained at a relatively low level, and TWDA performs substantially
well over all other variant algorithms. From Fig. 5(b), we can see clearly that on
Movielens-1M dataset, our method outperforms all methods discussed here under
different data sparsity, even though the improvement of performance becomes
relatively low. That is because of the influence of latent factor. In conclusion,
our method can make less prediction error on extremely sparse datasets.

(a) MovieLens-100K. (b) MovieLens-1M.

Fig. 5. Performance on two datasets under different sparsity

Above experimental results demonstrate that TWDA obtains less prediction
error when latent factor F = 70 and training ratio K = 0.8 on MovieLens-100K,
and has better performance when latent factor F = 90 and training ratio K = 0.8
on MovieLens-1M. Therefore, in following comparison experiments, we randomly
choose 80% of original data as training set and the remaining as test set on two
datasets. And the dimension of latent factors is set to 70 and 90.

In following experiments, the benchmark algorithms contain PMF, SRimp,
PRMF, RegSVD, LOD-MF and FRAIPA. They are closely relevant to our work
and achieve good results in recommender systems.

Figure 6 shows the comparison of accuracy of different algorithms on two
datasets. From Fig. 6, we can see clearly that on both two datasets, MAE of
TWDA is better than other algorithms discussed above, that is, TWDA outper-
forms significantly all benchmark algorithms on two datasets. In conclusion, our
method that combined with rating fairness has better performance on accuracy.

Fig. 6. Comparison of MAE on two datasets
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5 Conclusion

In this paper, we propose TWDA algorithm to make recommendation. Firstly,
based on Beta distribution, we introduce three-way decision to the process of cal-
culating user reputation, and using boundary region parameter α to reasonably
assign ratings in boundary region into positive or negative region. Then user rep-
utation is calculated by the number of ratings in the positive region. Finally, we
combine user reputation with matrix factorization model, through user reputa-
tion coefficient limits the role of some less rigorous users in the recommendation
process, that is, filtering out natural noise to improve accuracy. Experimental
results on two classic data sets show that TWDA algorithm improves recom-
mendation accuracy compared with existing recommendation algorithms.
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Abstract. This study proposes a novel multiple rule-base decision-making
(MRDM) model to transform the current bipolar model into a multi-graded one
based on the theoretical foundation of rough set approximations. In the existing
bipolar model, the decision class (DC) comprises only three classes: positive,
others, and negative ones, and the induced positive or negative rules by the
dominance-based rough set approach (DRSA) or variable-consistency
dominance-based rough set approach (VC-DRSA) are constrained by the
dominance relationship. In certain scenarios or applications, the decision attri-
bute of a bipolar model might need to be transformed into multi-graded DCs to
meet practices; examples are the commonly observed Likert 5-point scale
questionnaire adopted in a marketing survey. In other words, by eliciting a
decision maker’s (DM’s) preferential judgements on the preferred degree of
each DC, the newly proposed model may be more flexible to reflect the DM’s
preferences or knowledge on modeling an application in a more delicate manner.
To reach this goal, the present study proposes a novel MRDM model with multi-
graded preferential degree of each DC. Furthermore, the performance of each
alternative’s score on each rule can be assessed by the crisp (i.e., binary) or
fuzzy set technique (FST) and aggregated by a linear or nonlinear operator. This
study provides an exemplary case by evaluating the performance of a group of
financial holding companies in Taiwan by using the binary assessment and the
simple additive weight (SAW) aggregator. The obtained ranking by evaluating
their financial data in 2016 is consistent with their actual financial performance
in 2017, which suggests the validity of the proposed model.
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1 Introduction

The decision rule approach [1] has gained increasing interests in the multiple criteria
decision-making (MCDM) research in recent years, also termed as the multiple-rule-
based decision-making (MRDM) [2, 3] approach. Though there are various theoretical
foundations of the decision rule approach (e.g., the decision tree [4]), in this study, we
focus on the methodology yielded (or extended) from the rough set theory (RST) [5].
Around the early 2000s, the eminent Laboratory of Intelligent Decision Support Sys-
tems (IDSS) research group proposed the dominance-based rough set approach
(DRSA) [6, 7] and the subsequent variable-consistency dominance-based rough set
approach (VC-DRSA) [8, 9] to consider the dominance relationship among the con-
dition and decision attributes, to replace the indiscernibility of the classical RST. Ever
since, the advantages of the decision rule approach have been acknowledged in MCDM
research [1]; examples are the insights brought by the DRSA approximations, in the
form of “if…then…” decision rules.

At the early stage, this approach was regarded as a classification tool rather than a
decision model. Later on, Greco et al. [10] discussed how to apply the RST method-
ology for sorting problems in the presence of multiple criteria. It is worthwhile to
mention that both the DRSA and VC-DRSA algorithms depend on the dominance
relationship among the condition and decision attributes to conduct approximations.
Though most criteria (attributes) exhibit a preference-order characteristic, such as the
higher the better (or the lower the better), still some criteria might have one or more
than one superior range over their full spectrum. Take the debt ratio of a company—
regarding investment—for example. The lower debt ratio often implies lower financial
risk; however, low debt ratio also intimates losing the opportunity to leverage external
capital from financial markets to gaining higher profitability for shareholders. Some
other ratios, such as the cash and profitability ratios should be jointly considered to
judging if a low debt ratio is superior to a higher one.

To resolve the kind of issues, Greco et al. [10] proposed a framework to cover three
types of relationship in the context of MCDM: (1) indiscernibility (from the classical
RST), (2) dominance relation, and (3) similarity. In this regard, the aforementioned
issue of lacking preference-order of an attribute (or termed criterion in MCDM) can be
modeled by considering more than one of the abovementioned relationships in a
decision model.

The framework proposed by Greco et al. [10] paved a theoretic foundation to
applying DRSA/VC-DRSA approximations to resolve the sorting problem while
considering multiple heterogeneous criteria. Furthermore, to model the preference of a
decision maker (DM), Greco et al. [6] introduced a pairwise comparison table (PCT) to
elicit a DM’s preference from a partial set of reference alternatives (points) that the DM
has confidence in. Once a decision model induced multiple rules to serve as a decision
model, the DM may calculate the net flow score (NFS) of a new alternative (object),
yielded from the four-valued logic outranking [11]. It can be termed as the reference-
point-based approach. This innovative design bridged the conventional outranking
theory with the RST to resolve the ranking problems in MCDM.
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Though the combination of the PCT and NFS by the DRSA/VC-DRSA approxi-
mations has served as an innovative approach to indicate the preference of a DM,
several limitations remain. First, this approach mainly depends on a DM’s confidential
judgements to form an initial PCT, which is more suitable to deal with the subjective
opinions or preferences of an individual. However, in many MCDM industrial appli-
cations (e.g., engineering and finance), the research goal is to explore the
implicit/hidden patterns or knowledge from a data set (historical records) and domain
expert’s judgements. To obtain reliable results, this kind of applications often involve
multiple experts. And the final outcome is usually calculated by averaging the opinions
from those experts. A DM’s preference thus plays a marginal role in handling this kind
of problem.

Second, the NFS comprises four outranking situations: (1) true, (2) false, (3) con-
tradictory, and (4) unknown ones. A PCT yielded from one DM may include multiple
contradictory situations; the increased number of experts might deteriorate the con-
sistency of the obtained result, which devastates the credibility of the obtained NFS for
ranking new alternatives (objects). Therefore, the reference-point-based approach has
been rarely applied for the data-centric industrial applications.

To bridge the gap, Shen and Tzeng [12, 13] proposed a bipolar model based on the
DRSA/VC-DRSA approximations, to deal with the data-centric problems with the
minimal requirements from DMs. To form a bipolar model, a DM merely has to
classify the decision class (DC) of an alternative as the Positive (preferred) or the
Negative (unwanted) or the Neutral/Others (unknown) one. The bipolar approach
structures an information system (IS), similar to the classical DRSA one, by defining a
4-tuple IS as: IS ¼ U;A�;V ; fh i. In which, U is a finite set of n alternatives or objects
(i.e., U ¼ o1; . . .; oj; . . .; on

� �
), and A� comprises two types of attributes (considering a

time factor), the condition attributes Ct and the decision one Dtþ 1 with a predefined
time-lag (this setting is revised from the original DRSA to induce causal rules for
decision-aids). In the DRSA, the condition and decision attributes are two disjoint sets
(i.e., C \D ¼ £ and C [D ¼ A). Similarly, in a bipolar model, Dtþ 1 (usually a
singleton dtþ 1

� �
) can be treated as the consequence (in the subsequent t + 1 period) of

an alternative that a DM can categorize it without hesitation (also Ct \Dtþ 1 ¼ £ and
Ct [Dtþ 1 ¼ A�).

The associated condition attributes Ct of an alternative are organized in an infor-
mation table with the corresponding values at time period t; the consequence as a DC at
the period t + 1. The approximations may yield two groups of rules: the positive and
the negative ones, which are regarded as the new criteria of a bipolar model. The
bipolar model is devised to unveil the cause-effect logical consequences under a pre-
defined time lag, which has been applied on modeling the yearly or quarterly financial
performance (FP) of companies in previous research [12].

While applying a bipolar model to assess a group of new alternatives (objects), an
alternative would be ranked higher if it is more similar to the positive rules and
dissimilar to the negatives ones. The details of the bipolar model will be provided in the
next section. Thus, the bipolar model can be regarded as a hybrid decision model.
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It requires a DM (or DMs) to assign the values of a group of alternatives (objects) at the
beginning, and it also needs a DM (or DMs) to assess a group of new alternatives
regarding the degree of its similarity with the positive rules and the dissimilarity to the
negatives ones, for supporting the ranking decisions.

Though the bipolar model has contributed to devising a logical approach to rank a
group of alternatives with the combination of DMs’ inputs and the rough approxi-
mations, several limitations remain. For instance, the idea of a bipolar model might not
be ideal for all practical scenarios. Once a business practice is designed to classify a
decision attribute in five or more DCs (e.g., the well-known Likert 5-point scale
questionnaire [14], from 1 (very unsatisfied) to 5 (very satisfied)), a more delicate
classification of the decision attribute would be needed. To amend this potential
weakness, the present study proposes a flexible hybrid MRDM model to address this
issue.

The new approach also attempts to resolve the limitation of the bipolar model that
assumes the equal importance of the positive and the negative aspects while setting a
threshold to cover the supporting objects. In other words, if a DM thought that being
similar to the Positive rules is much more important than dissimilar to the Negative
group (e.g., two- or threefold) while ranking new alternatives, the bipolar model lacks a
mechanism to make the adjustments. In this study, we propose a weighting mechanism
by adjusting the relative importance of each DC associated rules, similar to the concept
of the analytical hierarchy process (AHP) [15]. The new multi-graded MRDM
approach could be more flexible to fit business practices on various applications.

Overall, this study focuses on devising a hybrid MRDM model that can explore the
hidden knowledge of a complicated data-centric problem with two sources of inputs:
(1) a historical data set and (2) a group of domain experts. This hybrid approach
transforms the decision attribute of the bipolar model into a multi-graded one con-
sidering the weighting of each DC. Such a design aims to meet business practices and
specific requirements or preferences of DMs, which offers more flexibility to DMs
based on the encountered scenarios. A numerical case will illustrate the associated
calculations in Sect. 4.

2 Multi-graded Hybrid MRDM Model

This section begins with the essentials of the DRSA and the extended bipolar model,
which are the predecessors of the proposed approach of this work. In addition, the
conceptual framework that fuses the inputs from a group of data set and DMs is
illustrated in Fig. 1.

2.1 Briefing of Dominance-Based Rough Set Approach (DRSA)

As mentioned in the previous Section, the DRSA extended the classical RST by
adopting the dominance relationship to replace the indiscernibility one while making
approximations. In a typical DRSA model, we can define an IS as: IS ¼ U;A�;V ; fh i,
where U and A� (i.e., A� ¼ a1; a2; . . .; am; amþ 1f g, which indicates that there are
m condition attributes and a decision attribute) are mentioned in the previous section.
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Also, V is the value domain of A�; more specifically, Vai denotes the value domain of
ai. V ¼ [ ai2AVai and i ¼ 1; 2; . . .;mþ 1. In this IS, f denotes a total function, such that
f oj; ai
� � 2 Vai for j ¼ 1; . . .; n and i ¼ 1; 2; . . .;mþ 1. Generally,
Dtþ 1 ¼ df g ¼ amþ 1f g, which can be assigned as the last attribute at time period tþ 1
of an information table. For any object (alternative) in U (i.e., oj 2 U), oj can only be
assigned to a specific class regarding an attribute ai. To express the idea of a class in
DRSA formally, let Cl ¼ Cla; a 2 1; . . .;Nf gf g and thus for each o 2 U belong to
only one Cla 2 Cl on each attribute (for any a 2 A).

Assume that there are n objects in U; in an IS that considers the dominance
relationship, Cla can be defined as a preference-ordered classification. And two unions
of sets can be formed as: (1) an upward union Cl

�
a ¼ [ b�aClb and (2) a downward

union Cl
�
a ¼ [ b�aClb of Cls. Start from here, we merely use the upward union to

explain the followings. The downward union can be reasoned by analogy. Therefore, to
describe the dominance relationship between any two objects op and oq in U, if op
dominates oq on a partial set of C (i.e., P�C), it can be denoted as opPDomoq (i.e.,

op�PDom
oq). In this regard, two sets termed as P-dominating (D"

PDom
�ð Þ) and P-domi-

nated (D#
PDom

�ð Þ) sets are defined in Eqs. (1)–(2):

D"
PDom

op
� � ¼ op 2 U : opPDomoq

� � ð1Þ

D#
PDom

op
� � ¼ op 2 U : oqPDomop

� �
: ð2Þ

In the next, the DRSA further defines the P-upper and the P-lower approximations

of an upward union Cl
�
a as: (1) P Cl

�
a

� �
¼ [ op2Cl�a D

"
PDom

op
� �

and

(2) P Cl
�
a

� �
¼ op 2 U : D"

PDom
op
� ��Cl

�
a

n o
, where Cla 2 Cl. In the P-lower approxi-

mation, P Cl
�
a

� �
also can be defined as P Cl

�
a

� �
¼ op 2 U : D#

PDom
op
� �\Cl

�
a 6¼ £

n o
.

The differences between the P-upper and the P-lower approximations is the P-
boundary set (BP �ð Þ), shown in Eq. (3) (the P-boundary set of a downward union is
similar as Eq. (3)). The issues relate to measuring the approximation quality and the
concept of REDUCT are not necessary to the understanding of the DRSA approxi-
mations, which can be found in the previous research [1, 6, 7].

BP Cl
�
a

� �
¼ P Cl

�
a

� �
� P Cl

�
a

� �
ð3Þ

With the lower and upper approximations of the upward and/or downward unions
of DCs, the DRSA can induce a group of decision rules, which is the cornerstone of the
MRDM approach. Although Greco et al. [1] defined five types of decision rules, only
two types of certain rules (i.e., the Dtþ 1

� and the Dtþ 1
� decision rules) are mainly

applied for decision aids. Take the Dtþ 1
� certain rule regarding a class Cla for instance,

which provides descriptions of the objects/alternatives belonging to the Cl�a union with
certainty. In other words, if an object satisfies the ithDtþ 1

� certain rule that only has three
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antecedents regarding a1, a2, and a3 (i.e., if “ob �a1oa” and “ob �a3oa” and

“ob �a5oa”, then “ob 2 Cl
�
a ”), then any oi 2 U that satisfies the ithDtþ 1

� certain rule

should be categorized at least as good as Cla.

2.2 Bipolar MRDM Model

The bipolar model was inspired by a well-known MCDM method: the TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution) [19]. And the bipolar
model is based on an idea to handle the ranking problem: to be more similar (closer) to
the positive rules and dissimilar to the negative ones. It begins with dividing the
decision attribute in DRSA (Dtþ 1) into three disjoint Cls: Positive (ClPOS), Others
(ClOTR), and Negative (ClNEG). While organizing an existing data with known records
(objects), DMs may base on their knowledge/experience or preferences to classify the
objects on hands as ClPOS and ClNEG at t + 1 time period. Therefore, the two group of
rules associated with Cl

�
POS and Cl

�
NEG with certainty can be transformed into the new

criteria of a bipolar decision model.
Since the DRSA approximations may generate multiple rules, a researcher (or a

DM) has to set up a threshold W (0\W	 100%) regarding the percentage of how
many objects (instances or alternatives) should be covered in each group (the
Positive/Negative group). Therefore, the bipolar model proposes a mechanism to select
the rules that should be kept in each group. Let’s assume that DMs categorize e and /
objects as ClPOS and ClNEG of a data set respectively, where eþ/	 n (n is the total
number of the objects of this data set). Also, �j j indicates cardinality in here; thus,

oPOSi

�� �� and oNEGj

���
��� denotes the number of objects while 1	 i	 e	 n and 1	 j	/	 n

in Eqs. (4)–(5):

[ i2 1;...;eminf goPOSi

�� ��
e


W ð4Þ

[ j2 1;...;/minf goNEGj

���
���

/

W: ð5Þ

In here, emin and /min denote the minimum numbers that may satisfy Eq. (4) and
Eq. (5), respectively. Also, if a Positive (or Negative) object satisfied all the require-
ments (antecedents) of a rule at time period t and its DC belonged to Cl�POS (or Cl

�
NEG) at

time period t + 1, this object can be defined as a support of this rule. The higher
number of supports of a rule indicates its higher importance (or influence), vice versa.

In each group of rules (i.e., the positive and negative ones), the certain positive
(associated with Cl

�
POS) and the negative (associated with Cl��NEG) rules should be listed

in sequence (RulePOSi2 1;...;sf g or Rule
NEG
j2 1;...;tf g) according to their supporting numbers, from

high to low (i.e., SUPPRulePOS1
[ SUPPRulePOSs

and SUPPRuleNEG1
[ SUPPRuleNEGt

). Each

group of rules should keep the minimal number of certain rules by cross-reference the
positive group sequence with Eq. (4) or the negative group sequence with Eq. (5).
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In this regard, the raw weight of the i-th strong positive rule is oPOSith

�� ��	e and the raw

weight of the j-th strong negative rule is oNEGjth

���
���
.
/. After calculating the raw weight of

each rule of the newly formed bipolar model, all the raw weights have to be normalized
to sum up to one for a bipolar model. Recently, the stability issue of a bipolar was
discussed [13], and it can enhance to deal with non-deterministic or semi-
nondeterministic condition attributes by adopting an extended approach.

2.3 Multi-graded MRDM Model

A multi-graded MRDM model, just like the bipolar decision model, focuses on dealing
with those data-centric problems that also require the knowledge or preference from
DMs. The bipolar model begins with dividing a DRSA decision attribute into three
disjoint Cls. Similarly, the First Step of a multi-graded MRDM model begins with
defining the number of Cls for a decision attribute (Dtþ 1) in a DRSA IS. For instance,
let’s assume that there are five disjoint Cls of a decision attribute (i.e.,
Dtþ 1 ¼ dð4Þ; dð3Þ, dð2Þ, dð1Þ; d�

� �
, where dð4Þ \ dð3Þ \ dð2Þ \ dð1Þ \ d� ¼ £ and

dð4Þ � dð3Þ � dð2Þ � dð1Þ �� d�).
While applying a multi-graded MRDM model, the lowest-ranked d� denotes the

unwanted Cl, and dð1Þ is the one (a granule or an interval) that a DM can accept with
the minimal requirement. Take the case of investment as an example, d� might suggest
net losses, and dð1Þ could be within the minimal range of profitability (e.g.,
0%	 dð1Þ 	 1:5%) that a DM feels acceptable. Intuitively, while ranking a new object
(alternative), an object that is more similar to a rule associated with Cl

�
dð4Þ should be

ranked higher comparing with another object that is more similar to a rule associated
with Cl

�
dð1Þ . One thing should be noticed in here. Unlike the bipolar model that con-

siders both the upper and the downward unions, the multi-graded MRDM model only
involves the upper unions associated decision rules by excluding the rules associated
with Cl

�
d� . Though we merely use five Cls as an illustration, it can be reduced to three

or extended to more than five Cls to fit a specific ranking problem.
In the Second Step, a DM needs to set a threshold, similar to the mechanism in the

bipolar model, to select the minimal associated rules for each involved Cls. Suppose
that a threshold is assigned as X (0\X	 100%). Take the objects covered by the rules
associated with Cl

�
dð4Þ for instance. Assuming that there are u objects categorized in

dð4Þ, which leads to the following Eq. (6):

[ j2 1;...;uminf go
ð4Þ
k

���
���

u

X; for k ¼ 1; . . .;u: ð6Þ

Similar to the rule selection mechanism in the bipolar decision model, all the certain
rules should be ranked from high to low supports in a sequence. And the rules that
satisfy Eq. (6) should be reserved in this multi-graded MRDM model. This rule-
selection mechanism applies for the other DCs’ associated rules, and all the decision
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rules associated with Cl
�
dðiÞ (for i ¼ 1; 2; ::; 4 in here) can be regarded as the (i)-th group

of rule. The raw support weight of each rule in the (i)-th group can be named as
SUPPp�th

RdðiÞ for the p-th rule (assume that there are xðiÞ decision rules in this group of

rules and 1	 p	xðiÞ). Then the initial support weight of the p-th decision rule can be

calculated as: SUPPp�th

RdðiÞ

.PxðiÞ
p¼1 SUPPp�th

RdðiÞ

� �
; the sum of all the initial support weight

of each rule in the (i)-th group should be 100%. Unlike the bipolar decision model, the
multi-graded MRDM one further relaxes the equal weighting assumption of each new
criterion, transformed from the decision rules, by allowing a DM(s) to denote his/her
preferences toward each DC.

Thus, the Third Step adopts the concept of the AHP method by soliciting a DM’s
preferential opinions by a questionnaire. A DM should denote his/her preference
regarding the relative importance of each DC over the other ones, and we follow the
relative importance scale proposed by Saaty [15] in here (i.e., from “9 : 1” to “1 : 9”).
Though there several approaches in the AHP to calculate the relative importance of
each criterion, this study adopts the row geometric mean method (RGMM) [16] to
simplify the calculation procedures.

Let D ¼ dij
� �

m�m, where m ¼ 4 for dð4Þ; dð3Þ, dð2Þ, dð1Þ
� �

and 1	 i; j	 4 in here.

D is a preferential judgement matrix, where dij denotes the relative importance of dðiÞ to
dðjÞ and d11 ¼ d22 ¼ d33 ¼ d44 ¼ 1. In RGMM, Aguaron and Moreno-Jiménez [17]
suggested that the geometric means of the rows of matrix D can be applied as the
relative weight for each DC in Eq. (7):

wdðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ4

j¼1 dij
1=4
q

P4
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ4
j¼1 dij

1=4
q� � : ð7Þ

The relative importance of each DC can be applied to adjust the initial support
weight of each rule for a specific Cl

�
dðiÞ associated group. Thus, the Fourth Step

calculates the final supporting weight of each rule by multiplying wdðiÞ (from Eq. (7)
with all the rules’ initial support weights in the (i)-th group. This step normalizes all the
supporting weights of the rules in a multi-graded MRDM model.

In the Fifth Step, while applying a multi-graded MRDM model to evaluate a group
of new alternatives with the same information structure, a DM needs to decide if each
antecedent of each rule was satisfied or not to assign the assessment score of each
alternative on each rule. There are at least four combinations to forming the final score
of a new alternative at this step. On one side, a DM may choose a binary assessment
(Yes or No) to decide if a new alternative satisfied an antecedent of a rule, also termed
as the crisp binary assessment. Or, the assessment can be extended into a verbal
assessment with the fuzzy judgement in various techniques. On the other side, the final
aggregation of all the scores from each rule can be either linear (e.g., simple additive
way; SAW) or nonlinear (e.g., the fuzzy integral [18]). To simplifie the illustration for
this preliminary work, we chose the combination of the binary assessment and the
SAW aggregation in the following section.

446 K.-Y. Shen et al.



3 An Illustrative Case

In here, we illustrate how to apply the multi-graded MRDM model to rank the financial
performance of a group of financial holding companies by using their historical
financial data.

3.1 Data

Since 2011, there are 13 financial holding companies in the public listed stock market
of Taiwan. Because those financial holding companies require certain distinct measures
to monitor their financial soundness and sustainability, the Taiwan Economic Journal
(TEJ) database [19] offers a group of indicators that comprises general financial ratios
and three specific ones (e.g., Bank of International Settlement (BIS) capital adequacy
ratio) for this industry.

Among this group of indicators, there are 60 ratios from six dimensions. To sim-
plify the modeling, we interviewed with experts to remove certain redundant indicators.
The research flows and the associated experimental settings are shown in Fig. 1.

To simplify the modeling, we conducted several rounds of interviews with two
domain experts, and the intersection of their selected indicators (ratios) were adopted as
the 22 attributes in this case (i.e., 21 condition attributes and one decision attribute
(return on equity, ROE)). To illustrate the proposed multi-graded MRDM model, only
one domain expert (a retired vice president of a financial institution and works as a
senior consultant for a think tank) was invited for the following experiments, including
the assessments for the testing set.

Discretize all condition 
and decision attributes

Discretize the 
decision attrib-
ute as five DCs

Select the adopted condition 
and decision attributes from 
the TEJ’s list (by an expert)

Conduct DRSA ap-
proximations to obtain 
the certain rules asso-
ciated with the 4 DCs

Set a threshold = 70% 

Form judgmental 
matrix D by the 
DM’s inputs

Identify the rules and their initial 
supporting weights in each group  

Form the adjusted final sup-
porting weight of each rule

Select four 
companies 

Judge the four 
companies’ 
performance scores 
on each rule by the 
binary method

Ranking
Aggregate the 
final scores of 
the 4 companies  

Fig. 1. Research flow of the hybrid multi-graded MRDM model in this case.
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In this case, we used the companies’ yearly data to form two sets: a training set
(from 2011 to 2015) and a testing one (the condition attributes in 2016 and the decision
attribute in 2017). Therefore, the timeframe is structured based on the annual data, all
retrieved from the TEJ database [19].

3.2 Forming a Multi-graded MRDM Model

After collecting the raw data (i.e., the 24 indicators or ratios) of the 13 financial holding
companies from 2011 to 2017, all the 23 condition attributes were discretized into three
values: High (H), Middle (M), and Low (L), based on the percentile method (e.g., the
top 33.33% were categorized as H) in each year. The 13 financial holding companies’
decision attribute (ROEt+1) was discretized into five DCs: dð4Þ; dð3Þ, dð2Þ, dð1Þ; d�

� �
,

where d� denotes unwanted net losses in the time period t + 1 (i.e., dð�Þ\0%). The
other four DCs were defined as: (1) dð4Þ 
 9%, (2) 9%[ dð3Þ 
 6%, (3) 6%[
dð2Þ 
 3%, and (4) 3%[ dð1Þ 
 0%, based on the historical data and the expert’s
suggestion. The following experiments only adopted the four DCs. The settings are in
line with dð4Þ � dð3Þ � dð2Þ � dð1Þ �� d�.

In the next, we conducted the DRSA approximations for the training set (65
observations/alternatives). After applying a 3-fold cross-validation for five times, the
averaged classification accuracy (CA) was 62.07%. In here, CA is defined as the
correctly classified instances divided by all the instances of a test. Also, all the training
was adopted to conduct DRSA approximations, and reclassification accuracy was
81.54%. The training set generated 19 certain rules associated with the upper unions
and 13 certain rules the downward unions.

In this illustration, we set the threshold X ¼ 70% to select the rules associated with
Cl

�
dð4Þ to Cl

�
dð1Þ . Nevertheless, there was no certain rule associated with Cl

�
dð1Þ ; thus only

the rules associated with the first three groups are shown in Table 1. Sincere there are
31, 20, and 13 objects categorized as dð4Þ, dð3Þ, and dð2Þ in the training set, each group
should reserve rules that cover at least 22, 14, and 9 non-repetitive supports in each
group. Thus, refer to Eq. (6), the minimal numbers of objects that should be covered in
each group and the associated rules are reported in Table 1.

Table 1. Three groups of rules and supports by the initial DRSA approximations.

Associated
certain rules

Supports Supporting instances

Cl
�
dð4Þ

R1 12 2, 7, 15, 24, 29, 31, 41, 42, 44, 46, 54, 57
R2 10 2, 5, 15, 16, 24, 29, 33, 42, 46, 54
R3 10 2, 7, 15, 20, 24, 28, 41, 46, 54, 63
R4 10 5, 18, 23, 24, 27, 37, 44, 50, 57, 64

Cl
�
dð3Þ

R16 23 2, 3, 7, 12, 15, 16, 20, 22, 24, 28, 29, 33, 41, 42, 44,
46, 54, 55, 57, 59, 60, 63, 65

Cl
�
dð2Þ

R17 46 2, 3, 4, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 22,
23, 24, 27, 28, 29, 30, 32, 33, 35, 36, 37, 41, 42, 43,
44, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 60, 61, 62,
63, 65
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Though there is no certain rules associated with Cl
�
dð1Þ , the present study still

requested the expert to denote his opinions (i.e., only one DM in this case) to forming
the judgmental matrix D (Table 2). Also, by referring to Eq. (7), the relative impor-
tance of each DC, the initial support weight and the final supporting weight of each rule
are reported in Table 3. The details (including antecedents and consequences) of the
involved rules are shown in Table 4.

Table 2. Judgmental matrix D.

dð4Þ dð3Þ dð2Þ dð1Þ

dð4Þ 1 3 5 7

dð3Þ 1/3 1 3 5

dð2Þ 1/5 1/3 1 3

dð1Þ 1/7 1/5 1/3 1

Table 3. Final supporting weight of each rule.

Relative
importance of
each DC

Rules Initial
supporting
weights

Adjusted
supporting
weights

Normalized
final weights

dð4Þ 56.46% R1 26.09%* 14.73% 16.43%
R2 21.74% 12.27% 13.70%
R3 21.74% 12.27% 13.70%
R4 21.74% 12.27% 13.70%

dð3Þ 26.31% R16 100.00% 26.31% 29.36%

dð2Þ 11.76% R17 100.00% 11.76% 13.21%

dð1Þ 5.47% – – – –

*Note: The total number of supports of R1, R2, R3, and R4 are 44 (12 + 10 + 10 + 10 = 44).
Refer to Table 2, the initial support weight of R1 is 26.09% (12=44 ¼ 26:09%).

Table 4. The involved rules of this multi-graded MRDM model.

Rules Antecedents Consequences

R1 (PerExpense	 L) & (Worth U
H) �dð4Þ

R2 (PerExpense	 L) & (CASHshare
H) & (Worth U
M) �dð4Þ

R3 (PerExpense	M) & (ROA
H) & (Worth U
H) �dð4Þ

R4 (UsuEPS
M) & (CASHshare
M) & (Issu Deposit	 L) �dð4Þ

R16 (PerExpense	M) & (DivAuth
M) & (UsuEPS
M) �dð3Þ

R17 (DivAuth
M) �dð2Þ

Multi-graded Hybrid MRDM Model 449



Until here, we finished the four steps mentioned in Subsect. 2.3. In the next step,
four financial holding companies’ financial figures in 2017 would be provided to the
expert for performance assessments. One thing needs to be noted in here, all the
antecedents of a rule were assumed to be equal in this model.

3.3 Ranking and Discussions

The four selected financial holding companies are: (1) Fubon Financial Holdings (code:
2881), (2) China Development Financial (code: 2883), (3) Yuanta Financial Holdings
(code: 2885), and (4) SinoPac Holdings (code: 2890). As mentioned in Subsect. 2.3,
we adopted the binary approach (Yes/No) for the expert to decide whether the four
companies’ associated financial indicators in 2016 could satisfy the antecedents (re-
quirements) in Table 4.

For brevity, only the condition attributes appeared in Table 4 are briefly described
in Appendix A. And the four companies’ performance scores on each rule and their
final performance scores, aggregated by the SAW method, are reported in Table 5.

The actual ROE figures of the four companies in 2017 are 11.07% (Fubon), 4.69%
(China_Dev), 7.10% (Yuanta), and 6.57% (SinoPac), which is fully consistent with the
model’s ranking: Fubon � Yuanta � SinoPac � China_Dev. This finding suggests the
ranking capability of the hybrid multi-graded MRDM model by adopting the binary
assessment and the SAW aggregation method.

Although this preliminary test revealed consistent result, which lacks sufficient
sensitivity analysis and robust checks. Regarding the sensitivity analysis, several
thresholds can be applied to induce different sets of rules to forming different models.
Also, in an extended experimental design, the training and the testing can be extended
to several combinations to ensure the robustness of the model. The two extended
analytics are the limitations of the present work, which is still at the preliminary stage.

Table 5. The four companies’ final scores and ranking.

Rules R1 R2 R3 R4 R16 R17 Final
performance
(Ranking)

Normalized final
supporting weights

16.43% 13.70% 13.70% 13.70% 29.36% 13.21%

Fubon (2881) 1.00 0.66* 1.00 0.66 1.00 1.00 90.78% (1)
China_Dev (2883) 0.00 0.00 0.00 0.33 0.00 0.00 4.52% (4)
Yuanta (2885) 0.00 0.33 0.33 1.00 0.66 1.00 55.33% (2)
SinoPac (2890) 0.00 0.33 0.00 0.66 0.33 1.00 36.46% (3)
*Note: Fubon (2881) satisfied two antecedents (“PerExpense	 L” & “Worth U
M”) of the
three antecedents on R2; therefore, its performance score on R2 is 0.66 (0:33þ 0þ 0:33 ¼ 0:66).
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4 Concluding Remarks

To conclude, the present study is still at the preliminary stage, which proposes a hybrid
multi-graded MRDM model. And a group of financial holding companies was used as
an example to illustrate this new model with an affirmative result. The meaning of
“hybrid” in this work denotes the collaborations between the expert (or a DM) and the
DRSA approximated decision rules.

At the beginning, a DM may define the number of DCs to forming a suitable
spectrum for the confronted problem. This step enables a DM(s) to express his/her
preferences or emphases toward the disjointed DCs (granules) of the full spectrum of
decision space. This design is the pivotal point to bridge a DM’s
preferences/knowledge to the outcomes induced by the rough machine learning in the
next stage.

We presume that a complicated logical reasoning problem, no matter based on the
indiscernibility, dominance or similarity relations, is very difficult for human beings to
conclude objective and consistent logics (i.e., rules). However, with the supports of
DRSA or some other soft computing techniques, the obstacle can be resolved.
Therefore, how to devise a reasonable mechanism that may leverage the strength of
human beings and machine learning techniques should be a promising field in decision-
making.

Still, there are many limitations of the proposed model, and there are several
directions to enhance it in the future. Examples are incorporating the FST-based verbal
assessment techniques and adopting non-linear aggregators to forming the final score
for each alternative. Or, different discretization approaches can be applied using the
unsupervised machine learning methods. We intend to exchange opinions and learn
from the other researchers’ feedbacks by this preliminary work.

Acknowledgement. The authors appreciate the funding supports from the two grants of the
Ministry of Technology and Science (MOST) of Taiwan: MOST-105-2410-H-034-019-MY2 and
MOST-107-2410-H-034-018-MY2.

Appendix A

See Table 6.

Table 6. Brief description of the symbols used in Table 4.

Symbols Descriptions

PerExpense The average cost or expense for manpower
Worth_U Net return rate-Net income-exc dispo
CASHshare Cash flow per share
WorthProf Net after-tax return ratio

(continued)
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Abstract. Unlike 2D face recognition (FR), the problem of insufficient
training data is a major difficulty in 3D face recognition. Traditional
Convolutional neural networks (CNNs) can not comprehensively learn
all proper filters for FR applications. We embed a handcrafted feature
map into our CNN framework—A hybrid data representation is proposed
for 3D face. Furthermore, we use a Squeeze-Excitation block to learn the
weights of data channels from training face datasets. To overcome the
bias of training model based on a small 3D dataset, transfer learning is
applied by fine-turning pre-training models, which is trained based on a
large 2D face datasets. Tests show that, under challenge conditions such
as expression and occlusion, our method outperforms other state-of-the-
art methods and can run in real-time.

Keywords: 3D face · Face recognition · Deep learning ·
Local binary pattern

1 Introduction

The human face is the most important biometric feature due to its accessibility
and non-intrusiveness nature. Face recognition (FR) has been an active research
topic for many years. FR has a number of applications in a broad fields of
surveillance, security, entertainment, etc. Even already applied in many com-
mercial applications, FR is still a challenging problem under many uncontrolled
scenarios, the facial appearance and surface of a person can be vary greatly due
to changes in pose, illumination, make-up, expression and occlusions.

Extracting effective face feature is essential to facial recognition. Convolu-
tional Neural Networks (CNNs) are effective in feature extraction, especially
perform well on images. A big amount of prior research has focused on designing
novel architectures of convolutional layers or loss functions, or on strengthening
the representational power of CNNs to find a more effective learning mechanism.

Supported by The National Natural Science Foundation of China (61876158), Sichuan
Science and Technology Program (2019YFS0432).

c© Springer Nature Switzerland AG 2019
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As the first CNNs application in FR task, DeepFace [1] outperformed human in
face recognition for the first time in unconstrained scenarios. More recently,
trained on million-scale databases (Ms-celeb-1M [2]), Cao et al. [3] achieved the
state-of-the-art recognition results on the challenging data sets IJB-A [4] and
IJB-B [5].

Nowadays, with the rapid development of 3D acquisition technologies, 3D
face recognition (FR) has drawn growing attention due to its potential capability
to overcome the inherent disadvantage of its 2D counterpart. However, current
3D face modeling and recognition algorithms are still suffering from one main
challenge:

– Limitation of 3D face data. The 3D face datasets are so limited, most of
current existing 3D datasets are less than 1000 identities [6]. It’s very difficult
to overcome pose, illumination and data degeneration problem when training
CNNs with limited 3D face data. Some challenges can be seen in Fig. 1, where
we can see 2 models, one is a high-resolution 3D face while the other is low-
resolution. Hair occlusion and pose variations can impose dramatic negative
effects on 3D models.

Fig. 1. Illustration of major challenges in building feature representation for 3D faces:
missing parts, occlusions and data degeneration.

As lacking large number of 3D faces, CNNs can not comprehensively learn all
proper filters for FR tasks. Therefore we propose to add a handcrafted feature
map into our CNN framework. As shown in Fig. 2, we have a hybrid data which
contains a depth image and a LBP feature image. Furthermore, in order to learn
a powerful 3D feature model, we choose to use transfer learning which is trained
on a huge 2D dataset previously. And then we fine-tune the model on a 3D
dataset.

The contribution of each channel in hybrid data is unknown, in order to
allocate an appropriate weights for each channel, we propose to use a “Squeeze
and Excitation” (SE) block [7] to learn the importance of each layer during
the training stage. SE is used as channels’ weights adjusting mechanism for any
hybrid data D. These weights are taken to fuse the channels of D to generate
the output of the SE block, which is then fed to the subsequent convolutional
neural network.
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Fig. 2. Flowchart of the proposed hybrid data 3D face feature CNN

Our main contributions can be summarized as follows:

1. A hybrid data for 3D facial shape is proposed. It comprises of 2 types of data
that can represent different aspects of a 3D data.

2. In order to modulate channels’ contribution by allocate a suitable weight for
each layer, SE block is used to learn the importance of each channel at the
training stage.

3. Transfer learning is applied by fine-turning a pre-training model, which is
trained based on a large 2D face datasets. We illustrate that our method
outperforms state-of-the-art literature in 3D face recognition.

2 Related Work

The human face is a 3D surface that contains rich geometric characteristics. The
Basel Face Model (BFM) [8] represents a 3D face using a set of shape and texture
parameters, under various lighting conditions and various poses. These parame-
ters can be used to identify different people. Iterative Closest Point (ICP) [9] is
another commonly used holistic method for 3D face matching. Generally, holistic
methods of those type are sensitive to variance in head poses, resolutions and
illuminations.

Local feature models human face more robustly against expressions and
occlusions [10]. Mehryar et al. [11] use the nasal region to develop an expression-
insensitive 3D face representation, which was quite robust in recognition.
Lei et al. [12] propose a local facial descriptor. They set the descriptor by cal-
culating four types of geometric features in a keypoint area. Then they use a
two-phase classification framework with extracted local descriptors for recogni-
tion. The main advantage of local feature-based methods is robustness in the
presence of changes in facial expression and occlusion.

Data augmentation is always used for creating a big data set for CNNs meth-
ods. Kim et al. [13] propose a 3D face augmentation technique which synthesizes
a number of different facial expressions from a single 3D face scan. And they con-
duct transfer learning from a CNN trained on 2D face images to alleviate the data
insufficiency problem. Li et al. [14] proposed an efficient 2D+3D facial expression
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recognition (FER) deep fusion convolutional neural network (DF-CNN), which
fully utilizes the geometric information of the 3D model to improve the recogni-
tion rate. To overcome the limited available RGB-D data for deep learning, Lee
et al. [15] first train their network using color and grayscale images from a 2D
face dataset, and later fine-tune them using depth images. Their result is robust
against variations in head rotation and environmental illumination.

3 Hybrid Data and Weights Learning

To make full use of 2D data with sophisticated network architectures, using
multiple projected 2D views of a 3D face is a natural and widely adopted strategy
in 3D face analysis. For example, Li et al. [14] used six 2D facial attribute maps
to represent a textured 3D face scan. All the six maps are fed into a CNN and
contribute equally to subsequent feature learning and fusion. However, when all
these maps are fed into the network and treated independently, there is no way
to learn the mutual information among those different views. Our idea is not
only merge different types of information into an integrated representation, but
also design a mechanism to explore the mutual information.

3.1 Hybrid Data

Our hybrid facial shape data is built from 2 types of information: (a) depth map,
(b) handcrafted feature map, as illustrated in Fig. 2.

Geometric Map. A simple yet effective way to use 3D geometric information
is to convert it to a depth image. Extensive experiments have proved that depth
image is effective for FR once it has been created properly [16]. Otherwise, the
depth image will introduce errors in feature extraction. We map the fitted face
plane to the 2D plane, and translate the face so that the nose tip is projected to
the plane center. The final image is scaled to a specified resolution, i.e., 0.5 mm
per pixel. This depth map keeps the real scale of the human face. In general,
the position of nose tip is easy to obtain by finding the vertex with the largest
Z value. Note that this method sometimes may fail to find the actual nose tip
due to the burrs, which can be easily wiped off by a filter. So it is still the most
significant geometrical feature in 3D space that is widely used in 3D FR area.

Handcrafted Feature Map. With the geometric images created in the pre-
vious step, we also introduce a handcrafted feature map. Theoretically, similar
features may be trainable through deep neural networks directly from images.
However, this is the case only when large volume of training data is available.
With the limited number of subjects and scans, automatically extracting all
effective feature maps are difficult. Therefore we choose adopt LBP [17] as our
handcrafted filters, which is proved a high effective feature extractor.

3.2 Weights Learning by Squeeze and Excitation Block

Unlike common strategies adopted in existing literature [13,14,20] which sepa-
rates different channels of a 3D face into independent images. Our goal is to build
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an integrated scheme with 2 different channels coupled together (see Fig. 2). To
effectively learn/extract the coupling relationship between channels, we intro-
duce an SE block scheme to compute the importance weight for each channel
from training data.

Obviously, different channel of our hybrid data encodes distinctive informa-
tion of a 3D face. They usually play different roles in FR task. Instead of pre-
determining the importance of each channel by heuristics, we hope to train the
network to find weights for face recognition scenarios. However, conventional
CNN takes all input channels equally. In other words, given a convolutional
operator Fcov on the input data layer, we have

Y = Fcov (D) ,D ∈ �H×W×C ,Y ∈ �H′×W ′×C′
(1)

let

yj = fj ∗ D =
C∑

i=1

f i
j ∗ di, 1 ≤ j ≤ C ′ (2)

where * denotes the convolutional operation, fj =
[
f i
j , f

i
j , ..., f

C
j

]
is the convolu-

tion kernels. D =
[
d1,d2, ...,dC

]
is the input hybrid data with C channels. f i

j is
a 2D spatial kernel representing a single channel that acts on the corresponding
channel of D. As we can see, just as fully discussed in CNNs related work [21],
convolutional kernel fj has local effects on the inputs across all channels. As a
consequence, the channel relationships modeled by convolution are inherently
local. In order to weigh the importance of each input channel, we need to con-
sider the relationship of each channel in a global manner. Inspired by SENet [7],
we use squeeze and excitation steps before data fed into CNNs.

Squeeze. In order to assign weights for channels in a reasonable and global way,
like SENet, we use a global average pooling to generate channel-wise statistics.
Formally, a statistic z ∈ �C is generated by condensing D throughout its spatial
dimensions (H × W ), such that the c-th element of z is calculated by:

zc = Fsq (dm) =
1

H × W

H∑

h=1

W∑

w=1

dc (i, j) (3)

Excitation. To capture channel-wise dependencies, after the squeeze operation,
excitation operation is applied, which can flexibly learning a nonlinear interac-
tion between channels. A gating mechanism with sigmoid activation is used:

s = σ (W2 ∗ δ (W1 ∗ z)) (4)

where δ refers to the ReLU function, σ is sigmoid activation. W1 and W2 are
1 × 1 point-wise convolution filters used for dimension reduction and dimension
increasing respectively. The final output of the block is obtained by rescaling
each channel of hybrid data:

S (dm) = sm · dm (5)
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This is a channel-wise multiplication between the scalar sm and the data
channel dm ∈ �H×W . The excitation operator assigns each channel of the input
with a specific weight, which is learned automatically based on the channel data
itself. Undoubtedly, this procedure helps to boost feature discriminability in the
feature extraction CNNs.

3.3 Network Architecture

We choose to use a 36-layer Resnet CNN [22], which performs well in 2D face
recognition, as our backbone for feature extraction. As shown in Table 1, we
can see that SE block is applied after the data layer and at the end of every
convolutional unit. A 2D dataset CASIAWebFace [23] is used in pre-trained
model. Then we transfer the model to 3D by fine-tuning on our hybrid data of
3D models.

Table 1. CNN architecture. Conv1.x, Conv2.x and Conv3.x denote convolution units
that contain multiple convolution layers and residual units. The last column denotes
the position of the SE block, where ‘Y’ means SE is applied after the corresponding
layer, ‘N’ means there is no SE block after the layer.

Layer 20-layer CNN SE block

Data Y

Conv1. x [3 * 3, 64] * 1, S2 N

[3 * 3, 64] * 2 N

[3 * 3, 64] * 2 Y

Conv2. x [3 * 3, 128] * 1, S2 N

[3 * 3, 128] * 4 N

[3 * 3, 128] * 4 Y

Conv3. x [3 * 3, 256] * 1, S2 N

[3 * 3, 256] * 8 N

[3 * 3, 256] * 8 Y

Conv4. x [3 * 3, 512] * 1, S2 N

[3 * 3, 512] * 2 N

[3 * 3, 512] * 2 Y

FC1 512

Slice&Eltwise(Max) 256

4 Experiments

In this section, we carry out extensive experiments to test the robustness of our
methods in 3D FR application. 2 high-resolution 3D face datasets are tested, i.e,
Bosphorus [24] and FRGCv2 [25].
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All 3D faces are normalized to upright pose as a preprocessing step [16].
Below are the details of datasets and experiments.

– Bosphorus: contains 4652 facial scans belonging to 105 individuals (60 men
and 45 women aged between 25 and 35). These scans have been recorded
under different poses, expressions and external occlusions, which therefore
provide a challenging and large benchmark for the evaluation of 3D face
recognition algorithms. These occlusions include: (1) occlusion of the mouth
with hand, (2) glasses, (3) occlusion of the face with hair, and (4) occlusion
of the left eye and forehead regions by hands.

– FRGCv2: includes 4007 3D facial scans. The validation dataset contains 2410
facial scans with neutral expression, and 1597 facial scans with various facial
expressions including disgust, happiness, sadness, surprise, and anger. Based
on test protocol [26], we select the first neutral scan of each individual to
form the gallery set (466 in total). Then, three experimental subsets are con-
structed: (1) “neutral vs. neutral” (N-N) experiment (1944 probes); (2) “neu-
tral vs. non-neutral” (N-NN) experiment (1,597 probes); (3)“neutral vs. all”
(N-A) experiment (3541 probes).

4.1 FR Evaluation on FRGCv2 Dataset

A accuracy comparison between our approach and the state-of-the-art
approaches is given in Table 2. We follow the FRGCv2 protocols of face recog-
nition and include only one scan of each individual (466 in total) in the gallery.
Our approach gets an overall Rank-1 IR of 98.88% and a VR of 98.80% (0.1%
FAR) in the N-A experiment. In the N-NN experiment, our approach achieves a
Rank-1 FRR of 97.23% and a VR of 97.22% (0.1% FAR), respectively. A Rank-1
FRR of 99.80% and a VR of 99.79% (0.1% FAR) are achieved respectively for
the easier case of N-N experiment. However, since all of the facial scans in the

Table 2. Comparison with the state-of-the-art on the FRGCv2 dataset. (a) 0.1%
FAR VRs for the “neutral vs. neutral”, “neutral vs. nonneutral” and “neutral vs. all”
experiments and (b) the rank-1 IDs for the “neutral vs. all” experiment. (%)

Approaches Neutral Non-neutral All

I-Rate V-Rate I-Rate V-Rate I-Rate V-Rate

Gilani et al. [27] 99.90 99.90 96.90 96.60 98.50 98.70

Li et al. [28] 96.30

Guo et al. [29] 99.90 97.00 97.18 99.01

Mian et al. [30] 99.40 99.90 92.10 96.60 96.10 98.60

Drira et al. [31] 99.20 96.80 97.70 97.10

Mehryar et al. [11] 98.45 98.50 97.90 93.50

Ours 99.80 99.79 97.23 97.22 98.88 98.80
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Fig. 3. Face recognition results on the FRGCv2 dataset. CMC results for face identi-
fication. ROC results for face verification.

FRGCv2 dataset are in nearly frontal views with very high quality compared
to other 3D face datasets (e.g., the Bosphorus), it is not difficult to achieve a
good recognition performance by most of the existing 3D FR approaches. Nev-
ertheless, our approach achieves a very competitive performance (a rank-1 FRR
of 98.88% and a 0.1% FAR VR of 98.80%) in the N-A experiment. Our results
are comparable to the best results reported in the literature (a 0.1% FAR VR
of 99.01%). ROC and CMC charts are shown in Fig. 3.

4.2 FR Evaluation on Bosphorus Dataset

For experiments on Bosphorus dataset, we follow the test protocols used in [28],
where the first neutral scan of each subject is used to construct the gallery, and
the remaining scans or their subsets are used as probes. Our approach gets an
overall Rank-1 FRR of 99.64% and VR of 99.03% (0.1% FAR) in the Bos(all)
experiment. In the Bos(exp) experiment, our approach achieves a Rank-1 FRR
of 99.66% and VR of 99.34% (0.1% FAR), respectively. A Rank-1 FRR of 99.63%
and a VR of 96.3% (0.1% FAR) are achieved respectively for the difficult case
of Bos(occ) experiment.

Comparative results are given in Table 3. Our proposed technique signifi-
cantly outperforms the state-of-the-art in pose invariant face recognition. And
at the same time it performs well in expression and occlusion cases. Although
occlusion is commonly a hard problem for traditional 3D FR methods, most of
existing methods cannot achieve good results on the Bos(occ) tests, however,
our method can get a 99.68% accuracy in this subset.
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Table 3. Rank-one recognition performance on the subsets of expressions, occlusions
and the entire Bosphorus database (%)

Approaches Li et al. [14] Mehryar et al. [15] Ours

Neutral (105 scans) vs. expressions (2,797 scans)

Neu(194) 100.00 98.96 100.00

Anger(71) 97.18 94.12 98.01

Disgust(69) 86.96 88.24 100.00

Fear(70) 98.57 98.55 100.00

Happy(106) 98.11 98.08 100.00

Sadness(66) 100.00 96.92 100.00

Surprise(71) 98.59 100.00 100.00

LFAU(1,509) 98.84 99.80

CAU(169) 100.00 100.00

UFAU(432) 100.00

All 98.82 99.86

Neutral (105 scans) vs. Occlusions (381 scans)

Eye(105) 100.00 100.00

Glass(104) 100.00 100.00

Hair(67) 95.52 96.51

Mouth(105) 100.00 100.00

All(381) 99.21 99.42

Neutral (105 scans) vs. all scans (3178 scans)

All 96.56 95.35 99.68

5 Conclusions

Insufficient training data is a major difficulty in learning 3D facial features. We
propose to use a hybrid data including a handcrafted feature map as 3D face rep-
resentation. What’s more, we propose to use SE block to learn the importance of
channels from training data. SE is a light-weight block that can easily apply to
current feature extraction networks without bring any computational complexi-
ties. Extensive experiments have conducted on 2 challenging high-resolution 3D
face datasets. Tests show that, under challenge conditions such as expression
and occlusion, our method outperforms other state-of-the-art methods and can
run in real-time.
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Abstract. The standard method for diagnosis of connective tissue disor-
ders is based on the automatic classification of antinuclear autoantibod-
ies by analyzing indirect immunofluorescence images of human epithelial
type 2 (HEp-2) cells. In this regard, the paper presents a new method
to select relevant texture features for HEp-2 cell staining pattern recog-
nition. The proposed method is developed by judiciously integrating the
theory of rough sets and the merits of local texture descriptors. While
hypercuboid equivalence partition matrix of rough sets helps to select
important texture descriptors for HEp-2 cell classification, the maxi-
mum relevance-maximum significance criterion of feature selection facil-
itates identification of significant and relevant features under important
descriptors. Finally, support vector machine with different kernels as well
as extreme learning machine are used to recognize one of the known
staining patterns present in HEp-2 cell images. The effectiveness of the
proposed method, along with a comparison with related approaches, is
demonstrated on publicly available MIVIA HEp-2 cell image database.

Keywords: Connective tissue disorders · HEp-2 cell classification ·
Local texture descriptor · Feature selection · Rough sets

1 Introduction

A group of disorders, which has connective tissues of the body as a target of
pathology, is referred to as connective tissue disease (CTD). Connective tissue,
being a biological tissue with an extensive extracellular matrix, supports, binds
together, and protects organs. It forms a matrix for the body and is composed
of two major structural protein molecules - collagen and elastin. In patients
with CTD, collagen and elastin become injured by inflammation. Many CTDs
feature abnormal immune system activity with inflammation in tissues, as a
result of an immune system that is directed against one’s own body tissues. The
classic CTDs include systemic lupus erythematosus, Sjögren’s syndrome, Sclero-
derma, and rheumatoid arthritis. These types of CTDs are mainly characterized
by the presence of antinuclear autoantibodies (ANAs) in the blood of patients.
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The ANAs are a specific class of autoantibodies that have the capability of
binding and destroying certain structures within the nucleus of the cells [1].
Indirect immunofluorescence (IIF) is a technique that is becoming increasingly
important for the diagnosis of several autoimmune diseases. The correct inter-
pretation of the IIF-ANA results is important and must always be correlated
with the patient’s symptoms and signs. In case of ANA tests, the most used
substrate is the human epithelial type 2 (HEp-2) cells. HEp-2 cells allow the
recognition of more than 30 different nuclear and cytoplasmic patterns, which
are given by upwards of 100 different autoantibodies [2].

The evaluation of a patient’s serum is made by looking for specific fluores-
cent staining patterns in the HEp-2 cells of IIF images. The manual analysis
of IIF images usually consists of the classification of the staining pattern for
each slide where the patient serum is dispensed, diluted and incubated to react
with the HEp-2 cells. During this task, the doctor has to recognize staining
patterns, each corresponding to a different autoimmune disease. This task is
really challenging because of the high number of classes that can be recognized.
There can be more than 30 different nucleolar, nucleoplasmic and cytoplasmic
staining patterns [2]. However, usually the following six ANA patterns are con-
sidered: Centromere, Nucleolar, Homogeneous, Fine Speckled, Coarse Speckled
and Cytoplasmic. In recent years, there has been a growing interest towards
the realization of Computer-Aided Diagnosis (CAD) systems for the analysis of
IIF images. Results produced by these techniques can be used to support the
scientists’ subjective analysis, leading to test results being more reliable and con-
sistent across laboratories [3–5]. Image processing and pattern recognition play
an important role for the CAD system development to diagnose CTDs. The pri-
mary objective is to identify one of the known staining patterns present in the
HEp-2 cell images.

Texture is generally considered to distinguish different HEp-2 patterns, as
it carries much information about the surface of the HEp-2 cells. The inherent
textures in different HEp-2 cell images are quite different from each other. The
HEp-2 cell pattern images have also unpredictably ambiguous texture. This dif-
ficulty exists in both inter-class and intra-class examples. An important aspect
of texture is also scale. To characterize a cell image, several local texture descrip-
tors, namely, local binary pattern (LBP) [6], rotation-invariant uniform LBP [7],
completed LBP [8], co-occurrence of adjacent LBPs [9], rotation-invariant co-
occurrence of adjacent LBPs [10], are used in [11], while the concept of gradient-
oriented co-occurrence of LBP is introduced in [12]. One of the main problems
in HEp-2 cell classification is uncertainty. Some of the sources of this uncer-
tainty include incompleteness and vagueness in HEp-2 cell staining pattern class
definition. The theory of rough sets [13] is an effective paradigm to deal with
uncertainty, vagueness, and incompleteness. It provides a mathematical frame-
work to capture uncertainties associated with the data. While rough set has been
applied successfully for feature selection of discrete valued data [13–15], rough
hypercuboid approach [16,17] is found to be suitable for numerical data sets.
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In this background, the paper presents a new method for staining pattern
recognition of HEp-2 cell IIF images. It helps in the diagnosis of CTDs through
automatic identification of ANAs. Integrating judiciously the merits of local
texture features and the theory of rough sets, the proposed method classifies
staining pattern present in HEp-2 cell images. Given an HEp-2 cell image data
set, the proposed method first identifies a set of relevant local texture descriptors
for a pair of staining pattern classes, and then selects an important feature set
corresponding to each relevant descriptor. The theory of rough hypercuboid app-
roach is used to compute the relevance of a descriptor. It helps to find important
features, characterizing the HEp-2 cell images as well as HEp-2 staining pattern
classes. The feature set for multiple classes is formed from all the important
features selected under several relevant local descriptors for all pairs of classes.
The performance of the proposed method is evaluated by using support vector
machine with different kernels and extreme learning machine. The effectiveness
of the proposed method, along with a comparison with related approaches, is
demonstrated on MIVIA HEp-2 cell image databases.

2 Preliminaries

This section presents a brief description of some local texture descriptors, along
with the theory of rough hypercuboid.

2.1 Rough Hypercuboid

A hyperrectangle, in geometry, is the generalization of a rectangle for higher
dimensions. An m-dimensional hyperrectangle or hypercuboid is defined as the
Cartesian product of orthogonal intervals, in the m-dimensional Euclidean space
represented by m features of objects or samples [17]. An m-dimensional hyper-
cuboid with m attributes as its dimensions is defined as the Cartesian prod-
uct of m orthogonal intervals. It encloses a region in the m-dimensional space,
where each dimension corresponds to a certain attribute. The value domain of
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each dimension is the value range or interval that corresponds to a particular
class. For all hypercuboids, any two objects that belong to a same class hyper-
cuboid are said to be indiscernible with respect to that particular class [16,17].
In real data analysis, uncertainty arises due to overlapping class boundaries,
marked by shaded region of Fig. 1 for HEp-2 cell data as example. Hence, every
two class hypercuboids may intersect with each other. The intersection of two
hypercuboids forms an implicit hypercuboid, which encompasses the misclassi-
fied samples or objects those belong to more than one classes. The degree of
dependency of the decision attribute set or class label on the condition attribute
set depends on the cardinality of the implicit hypercuboids. The degree of depen-
dency increases with the decrease in cardinality [16,17].

Let U = {O1, · · · ,Ok, · · · ,On} be the finite set of n objects or samples, and
C = {A1, · · · ,Aj , · · · ,Am} and D are the condition and decision attribute sets
in U, respectively. If U/D = {β1, · · · , βi, · · · , βc} denotes c equivalence classes
or information granules of U generated by the equivalence relation induced from
the decision attribute set D, then c equivalence classes of U can also be gener-
ated by the equivalence relation induced from each condition attribute Aj ∈ C.
If U/Aj = {δ1, · · · , δi, · · · , δc} denotes c equivalence classes or information gran-
ules of U induced by the condition attribute Aj and n is the number of objects
in U, then c-partitions of U are the sets of (cn) values {hik(Aj)} that can be
conveniently arrayed as a (c × n) matrix H(Aj) = [hik(Aj)], termed as hyper-
cuboid equivalence partition matrix of the condition attribute Aj [16], where
hik(Aj) = 1 if Ok(Aj) ∈ [Li,Ui] and 0 otherwise.

A c × n hypercuboid equivalence partition matrix H(Aj) represents the c-
hypercuboid equivalence partitions of the universe generated by an equivalence
relation induced by Aj . Each row of the matrix H(Aj) is a hypercuboid equiv-
alence partition or class. Here hik(Aj) ∈ {0, 1} represents the membership of
object Ok in the ith equivalence partition or class βi. The interval [Li,Ui] is
the value range of condition attribute Aj with respect to class βi. The value
of each object Ok with class label βi falls within interval [Li,Ui]. The intersec-
tion between every two intervals may form the implicit hypercuboids (marked
by shaded region of Fig. 1 for HEp-2 cell data as example). Using the concept
of hypercuboid equivalence partition matrix, the misclassified objects of implicit
hypercuboids are identified based on the confusion vector V(Aj) = [vk(Aj)] [16],
where

vk(Aj) = min{1,
c∑

i=1

hik(Aj) − 1}; and vk(Aj) ∈ {0, 1}. (1)

If vk(Aj) = 0, then Ok belongs to only one equivalence partition; otherwise
Ok belongs to more than one equivalence classes and so falls within the implicit
hypercuboid, formed at the intersection of equivalence classes. Hence, the hyper-
cuboid equivalence partition matrix and corresponding confusion vector of the
condition attribute Aj can be used to define the lower and upper approxima-
tions of the ith class βi of the decision attribute set D. Let βi ⊆ U. βi can be
approximated using only the information contained within Aj by constructing
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the A-lower and A-upper approximations of βi [16]:

A(βi) = {Ok| hik(Aj) = 1 and vk(Aj) = 0}; (2)

A(βi) = {Ok| hik(Aj) = 1}; (3)

where equivalence relation A is induced from attribute Aj . Based on the defi-
nitions of lower and upper approximations, the cardinality of positive region of
decision attribute set D can be defined as:

|POSA(D)| =

∣∣∣∣∣∣

⋃

βi∈U/D

A(βi)

∣∣∣∣∣∣
=

c∑

i=1

n∑

k=1

hik(Aj)[1 − vk(Aj)]. (4)

Hence, the dependency between condition attribute Aj and decision attribute D

is defined as follows:

γAj
(D) =

1
n

c∑

i=1

n∑

k=1

hik(Aj)[1 − vk(Aj)] = 1 − 1
n

n∑

k=1

vk(Aj), (5)

where 0 ≤ γAj
(D) ≤ 1. If γAj

(D) = 1, D depends totally on Aj , if 0 < γAj
(D) <

1, D depends partially on Aj , and if γAj
(D) = 0, then D does not depend on Aj .

2.2 Local Texture Descriptors

Four local descriptors, namely, local binary pattern (LBP) [6], rotation invari-
ant LBP (LBPri) [7], rotation invariant uniform LBP (LBPriu2) [7], and co-
occurrence of adjacent LBPs (CoALBP) [9], which are considered in the current
study, are presented next.

Local Binary Pattern (LBP): LBP, proposed by Ojala et al. [18], is an
operator that describes texture within a small region around a pixel as a binary
pattern. A local neighborhood is thresholded by the gray value of the center pixel
and a binary bit pattern is generated, which is then converted to a corresponding
decimal number to assign unique label to the local textural element. From a gray
scale image, LBP values are computed as follow:

LBPN,R =
N−1∑

i=0

S(gi − gc)2i; S(x) =

{
1, x ≥ 0
0, x < 0

(6)

where N is the number of neighboring pixels considered and R is the radius
of the neighborhood. gc is the center pixel intensity and gi denotes the inten-
sity of ith neighboring pixel whose coordinates are given by (−R sin(2πi/N),
R cos(2πi/N)). So, the N bit binary pattern in LBP characterizes the micro-
patterns of the image, formed by the intensity variation of a pixel along with it’s
immediate neighbors. Computation of LBP on an example 3×3 neighborhood is
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original thresholded weights

6 5 2
7 6 1
9 3 7

1 0 0
1 0
1 0 1

4 2 1
8 128
16 32 64

LBP8,1 = (01011100)2 = 92

LBPri
8,1 = (00010111)2 = 23

LBPriu2
8,1 = 8 + 1 = 9

Fig. 2. Computation of LBP, LBPri and LBPriu2 from a 3 × 3 neighborhood.

illustrated in Fig. 2, where the 8 bit binary pattern and the corresponding deci-
mal value is presented. Histogram of LBP values can be used for further analysis
of the textural properties of the image. Instead of using original intensity values,
LBP uses relative intensities of pixels for computation which makes it robust to
monotonic gray scale transformation. Again, histogram of the micro-patterns is
considered, which implies locations of the patterns are not preserved, and so,
LBP is invariant to image translation as well. The distribution of the 2N LBP
values thus characterizes the texture of an image. The LBP operator can be
extended for multiscale analysis by simply varying the parameters (N,R).

Rotation Invariant LBP (LBPri, LBPriu2): The operator LBPN,R is not
rotationally invariant. When the image is rotated, pattern obtained from the
neighborhood of a center pixel will also be rotated. Rotation of a pattern will
automatically lead to a different LBPN,R value. This is not applicable for pat-
terns consisting of only 0s or 1s, as they are inherently rotation invariant. In
order to remove the effect of rotation from the patterns, LBPri is introduced by
Ojala et al. in [7]. Robustness to rotation is achieved by grouping all the binary
patterns together that are basically rotated versions of the same pattern. An
unique identifier is assigned to each of the rotationally invariant patterns as:

LBPri
N,R = min{ROR(LBPN,R, i) | i = 0, 1, .., N − 1} (7)

where ROR(x, i) represents i times circular bit-wise right shift operation on the
N bit number x. In the example, presented in Fig. 2, the LBPri and LBPriu2

values are turn out to be 23 and 9, respectively. Histogram of LBPri
N,R quantifies

the occurrence statistics of each rotation invariant patterns corresponding to
certain micro-structures in the image, and hence, can be interpreted as feature
vector for the image. Considering only the unique rotation invariant patterns,
LBPri leads to a significant reduction in the feature vector dimensionality. For
example, only 36 unique patterns can occur in case of 8 neighborhood opera-
tion. The LBPri losses directional information, which can be crucial for certain
applications. However, it has proven to be efficient than LBP for the analysis of
homogeneous textures.

Ojala et al. [7] observed that not all local patterns are able to model the
characteristics of textures in the images. Certain binary patterns, known as uni-
form patterns, represent fundamental micro-structures of local image textures.
The circular representation of these patterns exhibits limited number of dis-
continuities. So, they appear uniform in nature and hence, they are termed as
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‘uniform’ patterns. These patterns constitute a major portion of textural pat-
terns present in the images. The most frequently occurring uniform patterns
correspond to primitive micro-structures, such as spots, edges, and corners. A
uniformity measure U(pattern) is introduced, which corresponds to the number
of bitwise transition from 0 to 1 and 1 to 0 in the circular representation of the
pattern. For example, 11111111 has uniformity value 0, 11110000 has uniformity
value 2, whereas 11001100 has uniformity value 4. Patterns with uniformity value
at most 2 are referred to as uniform patterns. The rotation invariant uniform
operator is defined as:

LBPriu2
N,R =

⎧
⎨

⎩

N−1∑
i=0

S(gi − gc) if U(LBPN,R) ≤ 2

N + 1 otherwise;
(8)

U(LBPN,R) =| S(gN−1 − gc) − S(g0 − gc) | +
N−1∑

i=1

| S(gi − gc) − S(gi−1 − gc) | .

According to (8), exactly N + 1 uniform patterns can occur in a circularly sym-
metric neighborhood of N pixels. Each of such uniform patterns is assigned an
unique quantifier, corresponding to the number of 1s present in the pattern (0
to N). Rest of the non-uniform patterns are accumulated under a miscellaneous
label N + 1, which leads to a significant amount of suppression of noise like
patterns, and reduction in the dimensionality of texture descriptor as well.

Co-occurrence of Adjacent LBP (CoALBP): Conventional LBP histogram
describes textural properties of an image for a small neighborhood, where each
LBP value, corresponding to certain micro-structure, is accumulated into a single
bin. Thus, spatial relation information among the LBP values is lost. The concept
of co-occurrence is introduced in [9] to take into account the spatial relationship
among the LBP values. Co-occurrence among LBP values measures how often a
LBP value has co-occurred with another LBP value spatially. So, incorporation
of co-occurrence among LBPs extracts global structures from the image along
with the micro-structures. CoALBP at r is defined as:

CoALBP(r) = (LBP(r),LBP(r + Δr)) (9)

where Δr = (r cos θ, r sin θ) denotes the displacement vector between a pair of
LBP values. The magnitude of r signifies the distance between the LBP pair,
whereas θ defines the angle LBP pair makes with the positive horizontal axis.
Generally, co-occurrence of LBP pair along horizontal, left diagonal, vertical
and right diagonal directions (θ = 0, π/4, π/2, 3π/4) are considered. Since LBP
offers 2N (= NP ) number of possible patterns, CoALBP computes four NP ×NP

auto-correlation matrices of spatial co-occurrence of adjacent LBPs at 4 possible
directions. The matrices are vectorized and feature vector of dimension 4N2

P is
obtained. Surely, CoALBP produces feature vector of dimensionality significantly
greater than conventional LBP, but it complements the descriptive ability of
features representing the intricate structures of the image.
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3 Proposed Algorithm

The proposed method assumes that a particular descriptor at a given scale may
be effective in differentiating a specific pair of staining pattern classes, but may
not be able to capture the intrinsic properties of other pairs of pattern classes. So,
the proposed method selects important features from the effective local descrip-
tors for each pair of classes, and then forms the final feature set for multiple
staining pattern classes.

Let us consider a set of n training HEp-2 cell images, denoted by
U = {O1, · · · ,Ok, · · · ,On}, where each image Ok ∈ �m. Each Ok is rep-
resented by a set of m features C = {A1, · · · ,Aj , · · · ,Am}. So, a set
Lk = {Lk1, · · · , Lkj , · · · , Lkm}, consisting of m feature values, represents an
image Ok, where Lkj = Ok(Aj) is the value of the j-th feature Aj of the k-
th image Ok. In the current study, four local descriptors, namely, LBP [18],
LBPri [7], LBPriu2 [7], and CoALBP [9], are considered. Hence, Lk repre-
sents the normalized histogram of the image Ok, obtained from either of the
four local descriptors. Let, Lk be sorted in descending order and represented
by L̃k = {L̃k1, · · · , L̃kj , · · · , L̃km}, and the corresponding feature index of L̃k

is maintained in Jk = {Jk1, · · · , Jkj , · · · , Jkm}. Let us also assume that the
images of U are classified into one of the known c staining pattern classes
U/D = {β1, · · · , βi, · · · , βc}, where D represents the set of sample categories.

Primarily, the important characteristics of an image Ok can be represented
in terms of the feature values Lkj ’s of the normalized histogram Lk. The current
study is based on the assumption that all the feature values of Lk do not con-
tribute uniformly in describing the properties of the image Ok. Indeed, significant
characteristics of Ok can be efficiently demonstrated by only a subset of features
of C, which is defined as the important set of features of Ok and denoted by Ik,
where Ik ⊆ C. However, different images have their own characteristics, which
can be described with different sets of important features.

In order to identify the important features of each sample image Ok, cumu-
lative sum of first q features of corresponding L̃k is computed and denoted as
E(Ok, q). Clearly, E(Ok, q) ∈ [0, 1] and E(Ok,m) = 1,∀Ok ∈ U. Here, E is termed
as the energy function. It represents the fraction of total energy, contained in
the sorted normalized histogram L̃k, preserved by the first q features of Ok. So,
the important information about the sample Ok can be expressed in terms of the
energy of Ok obtained from L̃k. For each sample Ok, the number of important
features dk required to preserve a given fraction of energy E0 is computed from
the sorted histogram L̃k. The average number of important features d is com-
puted from the dks corresponding to the entire set of samples U, while the set
of important features Ik, corresponding to the sample Ok, is defined as

Ik = {Aj | Jkq = j and q ≤ d}. (10)

Hence, the set Ik ⊆ C contains only the important features of Ok, which can
sufficiently represent the significant characteristics of the image Ok.

Now, it is expected that the samples belonging to the same class will have
similar sets of important features, while the samples belonging to different classes
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will have different sets of important features. So, the probability of occurrence
Pr(Aj |βi) of a feature Aj in the important sets of samples of a particular class
βi is computed. In order to discard the noisy features, the feature set C(βi)
corresponding to the class βi is formed, based on the value of a threshold ε, as
follows:

C(βi) = {Aj | Pr(Aj |βi) ≥ ε}. (11)

A feature Aj will only be present in the set C(βi) if it is important in most of
the samples of βi as well as bears significant amount of information regarding
the characteristics of class βi.

Let, C({βi, βr}) denote the feature set corresponding to the pair of classes
{βi, βr}. It contains the features that represent significant characteristics, com-
mon to the particular pair of classes βi and βr, and is defined as follows:

C({βi, βr}) = {Aj | Pr(Aj |βi) ≥ ε and Pr(Aj |βr) ≥ ε}. (12)

In the proposed method, a modality refers to a particular local texture
descriptor considered under a specific scale. Considering a set of t number of
modalities M = {M1, · · · ,Mp, · · · ,Mt}, the proposed method computes the
relevance Γp({βi, βr}) of the feature set Cp({βi, βr}), corresponding to the pair
of classes {βi, βr} under the p-th modality Mp. The concept of hypercuboid
equivalence partition matrix of rough hypercuboid approach [16] is used to com-
pute the relevance. The relevance Γp({βi, βr}) of the feature set Cp({βi, βr})
represents the relevance of the p-th modality Mp, with respect to the class-pair
{βi, βr}, and is computed based on (5) as follows:

Γp({βi, βr}) = 1 − 1
nir

nir∑

k=1

vk(Cp({βi, βr})) (13)

where nir is the number of samples belonging to class-pair {βi, βr} and

V(Cp) = [v1(Cp), · · · , vk(Cp), · · · , vn(Cp)] (14)

is termed as the confusion vector for the feature set Cp({βi, βr}), which can
be computed from the corresponding hypercuboid equivalence partition matrix
H(Cp). So, the relevance Γp({βi, βr}) ∈ [0, 1]. If Γ = 1, {βi, βr} depends totally
on Cp, if 0 < Γ < 1, {βi, βr} depends partially on Cp, and if Γ = 0, then {βi, βr}
does not depend on Cp.

After computing the relevance of the feature set Cp({βi, βr}) corresponding
to t modalities for each pair of classes {βi, βr}, t̃ most relevant feature sets
{Cp({βi, βr})} are chosen, and the set C̃ir = {Cp({βi, βr})} is formed for the pair
of classes βi and βr. The final feature set is obtained as the union of the feature
set C̃ir over all possible pairs of classes. The set Cp({βi, βr}) corresponding to
the class-pair {βi, βr}, obtained in the proposed method, may contain redundant
information that has no significant contribution in differentiating the samples of
class βi from that of βr. So, during the computation of relevance Γp({βi, βr})
of the feature set Cp({βi, βr}), irrelevant and insignificant features are removed
from the set, based on maximum relevance-maximum significance criterion of
feature selection reported in [15].
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4 Performance Analysis

The performance of the proposed method is studied extensively and the cor-
responding results are reported in this section, along with a comparison with
related methods.

4.1 Algorithms Compared and Data Set Used

In order to validate the proficiency of the proposed method in recognizing the
HEp-2 cell staining pattern classes, the performance of the proposed method is
extensively compared with various local texture descriptors, namely, local binary
pattern (LBP) [18], rotation invariant LBP (LBPri) [7], rotation invariant uni-
form LBP (LBPriu2) [7] and co-occurrence among adjacent LBPs (CoALBP) [9],
computed at different scales, such as scale 1 (S1), scale 2 (S2), scale 3 (S3),
scale 4 (S4), concatenation of S1, S2 and S3 (S123), concatenation of S1, S2 and
S4 (S124). The descriptors, used in the current study, are chosen at arbitrary
and hence, the proposed descriptor selection method is equally compatible with
any other sets of descriptors. For CoALBP, 4 neighboring pixels are considered
to capture the micro-pattern around a center pixel, while 8 neighboring pixels
are considered for the rest of the descriptors. The performance of the proposed
method is also studied with reference to the existing multimodal data integra-
tion methods. Four different classifiers, namely, support vector machine (SVM)
[19] with polynomial (SVMP), radial basis function (SVMR) and linear (SVML)
kernels, and extreme learning machine (ELM) [20] are used to evaluate the per-
formance of different approaches.

In this section, a brief description of the data set, which is used for validation
of the proposed method, is provided. This data set is the ICPR 2012 HEp-2 cell
classification contest data set, termed as MIVIA image database [21]. The data
set contains 1455 cells from 28 images among which four images belong to cyto-
plasmic, fine speckled and nucleolar staining patterns each, five images belong to
coarse speckled and homogeneous each, and six centromere images are present.
The images have 24 bits color depth with uncompressed 1388 × 1038 pixels reso-
lution. The data set contains 721 and 734 Hep-2 cell images in the training set and
test set, respectively. The robustness of the proposed method as well as existing
approaches is studied through evaluation on this data set. Table 1 indicates the
number of training and testing cells with respect to different HEp-2 patterns of
this data set, which are used to validate the performance of the proposed algo-
rithm as well as existing methods.

4.2 Optimum Values of Parameters

In the proposed method, energy E of an image represents the important informa-
tion specific to that image, whereas threshold ε is defined to identify the features
that significantly contribute in characterizing a class of HEp-2 cell images. The
feature set C(βi) corresponding to the class βi is formed based on the values of
E and ε. So, the performance of the proposed method depends on the values of
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Table 1. Description of data set used

Data sets Number of cells

Centromere Homogen. Nucleolar Coarse Speckl. Fine Speckl. Cytoplasmic

Training 208 150 102 109 94 58

Test 149 180 139 101 114 51
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Fig. 3. Variation of classification accuracy with respect to energy E and threshold ε.

E and ε to a great extent. In order to obtain the optimum values of E and ε,
extensive experiment is carried out on MIVIA data set by varying the value of E
from 0.50 to 1.00 with an interval of 0.05 and ε is varied from 0.00 to 0.70 with
an interval of 0.10. Figure 3(a-c) depicts the variation of classification accuracy,
obtained using three classifiers - SVMR, SVML, and ELM, on HEp-2 cell images
of test data set, with respect to E and ε. Similar results are found for SVMP also.
From the results reported in Fig. 3, it can be observed that the proposed method
achieves significantly better accuracy at E = 0.55 and ε = 0.40, irrespective of
classifiers used. So, the optimum values of E and ε are chosen to be 0.55 and 0.40
in the current study for the MIVIA data set. It ensures compact representation
of the feature set C(βi), corresponding to the class βi, by considering only the
features which preserve 55% of total energy by at least 40% samples of βi.

4.3 Importance of Max Relevance-Max Significance Criterion

In the proposed method, maximum relevance-maximum significance (MRMS)
criterion [15] is employed to discard the insignificant and irrelevant features from
the feature set, corresponding to a pair of classes. Using the MRMS criterion,
a significantly reduced feature set can be obtained, while the relevance value of
the set remains unaltered. To establish the effectiveness of MRMS criterion in
the proposed method, Fig. 4 compares the classification accuracy obtained using
MRMS criterion with the accuracy without applying MRMS. It can be noticed
from Fig. 4 that discarding irrelevant and insignificant features not only reduces
the cardinality of the final feature set from 546 to 277, but also increases the
classification accuracy obtained using different classifiers.
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Fig. 4. Effect of MRMS criterion on classification accuracy of HEp-2 cell images.
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Fig. 5. Comparative performance analysis of proposed method with different local
texture descriptors at various scales (top: single scale; bottom: multiple scales).

4.4 Comparison with Existing Approaches

A particular descriptor, computed at a specific scale, is generally used to classify
different staining pattern classes of HEp-2 cell images. However, the proposed
method first identifies relevant modalities for each pair of classes, and then final
feature set is formed from the significant features of selected modalities. To val-
idate the importance of class-pair specific modalities over uniform modalities,
the proposed method is compared with the four local descriptors LBP, LBPri,
LBPriu2 and CoALBP, each computed at different single scales and concate-
nated scales as well. Figure 5(a-d) exhibits the comparative performance analysis
between proposed method and existing approaches on the HEp-2 cell images of
MIVIA data set for different classifiers. Top row of Fig. 5 presents the perfor-
mance of existing approaches at single scales, while the bottom row describes the
same for concatenated scales. From the results presented in Fig. 5, it can be seen
that the proposed method attains better classification accuracy, irrespective of
descriptors, scales and classifiers, except for LBPriu2 at S4 for SVMP.
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Fig. 6. Classification accuracy of proposed and different data integration methods.

Finally, the performance of the proposed method is studied with reference
to different statistical data integration methods, such as canonical correlation
analysis (CCA) [22], regularized CCA (RCCA) [23], CuRSaR [24], and FaRoC
[25]. In these methods, information from different modalities is combined to
categorize the HEp-2 cell staining patterns into one of the known classes. Figure 6
reports the performance of proposed method along with that of four existing data
integration methods, on HEp-2 cell images of MIVIA database for four different
classifiers. It is evident from Fig. 6 that the proposed method achieves highest
classification accuracy with respect to all the data integration methods for each
of the classifiers.

5 Conclusion

The paper presents a new method to select relevant textural features of impor-
tant modalities for diagnosis of connective tissue disorders. The theory of rough
sets and the merits of local textural descriptors have been integrated judi-
ciously to develop the proposed method. While hypercuboid equivalence parti-
tion matrix helps to select class-pair specific important modalities, the maximum
relevance-maximum significance criterion of feature selection facilitates identifi-
cation of significant and relevant features under important modalities. Finally,
support vector machine and extreme learning machine are used to recognize one
of the known staining patterns present in IIF images. The effectiveness of the
proposed method, along with a comparison with related approaches, has been
demonstrated on publicly available MIVIA HEp-2 cell image database.
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Abstract. This work explores utilizing a combination of features, built
with text analytics, and other features to predict prices of works of art.
Basic metrics, such as the length of the text descriptions and the pres-
ence of the artist’s social media links are considered as attributes for
predicting the price of art. This work also utilizes the Paragraph2Vec
algorithm combined with clustering as a method of classifying artworks
for price.

Keywords: Data analytics · Art market · Social media

1 Introduction

How is the ideal price of a work of art determined? This question is relevant
for art collectors, art investors, artists, and art dealers. The art market is highly
uncertain, and has proven to be a challenge to explain using traditional economic
theories [10]. The value of a work of art comes from its aesthetic quality and the
reputation of the artist that created it rather than simply the cost of the mate-
rials or the number of hours it took to create [10]. In art auctions, aspects such
as the format and the relationship between bidders can all influence the results
[14]. In today’s primary art market, many artists sell their works themselves on
Internet platforms such as SaatchiArt or Artfinder [6,7]. How should an artist
on one of these platforms without a previous sales record decide how to price
their work?

Online sales are a critical part of today’s art market and are growing in
importance. According to [5], online driven sales make up 29% of total gallery
sales and those sales are valued at 4.22 billion USD. However, some collectors
prefer being able to examine works in person and object to losing the communal
aspects of buying art [16]. Another obstacle to the growth of the online market is
buyer confidence. In the 2018 Hiscox trade report on the art market it is stated
that:
c© Springer Nature Switzerland AG 2019
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Although existing collectors are used to secrecy and non-transparency
when it comes to pricing, this is an aspect which clearly doesn’t sit com-
fortably with new buyers. In this year’s survey, 90% of new buyers and
92% of small spenders said that price transparency was a key considera-
tion when buying art online [5].

Buyers making online purchases from markets such as Saatchi or Artfinder
have limited information about the work. Without doing external research on
the artist on other sites, their information is limited to what the artist, or artist
representative, posted on the site. Usually, this is restricted to one or more pho-
tographs of the work, a description of the work and its characteristics, and
biographical information about the artist. An artist’s reputation is vital for
establishing the quality of that artist’s work and reducing buyer uncertainty
[10]. However, when this information is limited or the buyer is not an expert on
judging an artist’s achievements, how can they feel certain in a price?

This work proposes a method of predicting the prices of works of art using
artist provided information combined with text analytics. This work will discuss
using methods such as the word count and presence or absence of provided social
media links on the prices of the given works. Next, this work proposes using the
Paragraph2Vec algorithm [11,21], which is sometimes referred to as Doc2Vec or
the Distributed Memory Model of Paragraph Vectors (PV-DM), to create vector
representations of the provided text which can then be clustered. These methods
are tested on a dataset collected from an art sales site and the results will be
discussed in this paper.

2 Recommender Systems

In this section, we will provide a short overview of existing recommendation
approaches and some examples of their application domains [17,25].

Collaborative filtering is a method of making automatic predictions (filter-
ing) about the interests of a user by collecting preferences or taste information
from many users (collaborating). The underlying assumption of the collaborative
filtering approach is that if a person A has the same opinion as a person B on
an issue, A is more likely to have B’s opinion on a different issue than that of a
randomly chosen person [20].

Content-based filtering compares the content of already consumed items with
new items that can potentially be recommended to the user, i.e., to find items
that are similar to those already rated positively by the user. This approach was
proposed by Pazzani and Billsus [31].

Knowledge-based recommender systems have been introduced by Felfernig
[17]. They are based on explicit knowledge, rules or constraints about the item
assortment, user preferences, and recommendation criteria (i.e., which item
should be recommended in which context). For instance, system presented in
[24] belongs to that group. It is based on the knowledge extracted from HCUP
datasets.
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Group recommender systems, presented in [13], are based on the idea that
recommendations are not determined for a single user but the whole group should
be satisfied with the given recommendation (e.g., a family’s decision regarding
a smart home solution). Recommendations in this context are often determined
on the basis of group decision heuristics. For example, least misery is a heuristic
that prefers recommendations with the property that the misery of all group
members is minimized. In contrast, most pleasure tries to maximize the pleasure
of individual group members.

Hybrid recommendation is based on the idea of combining basic recommenda-
tion approaches in such a way that one helps to compensate the weaknesses of the
other. For example, when combining content-based filtering with collaborative
recommendation, content-based recommendation helps to recommend unrated
items. If a user has already consumed some items (e.g., purchased them), the
content description of a new item can be compared with the descriptions of items
already purchased by the user. System CLIRS (presented in [31,33]) belongs to
that group.

Recommender systems are utilized in a variety of areas including healthcare
[24], business [33,36], tourism [40], social life [28], healthy food [37], and the art
market [30].

Existing recommender systems in the art market domain do not use data
analytics but human experts to evaluate fine art pieces and make recommenda-
tions. For instance, MutualArt (https://www.mutualart.com/artappraisal) has
the world’s most comprehensive database of past sale results but the number of
features describing these sales is quite small. Its advisors are assigning price tags
to new pieces of art by comparing them with similar pieces in the MutualArt
database. The charge for a single service (one piece of art) is $49 and the waiting
time to get a recommendation is 72 h.

FINDARTINFO (http://www.findartinfo.com/english.html) is a similar but
free art appraisal service which contains information about 438,003 artists and
3,775,762 art prices. With this art appraisal tool, an artist can value his/her fine
art by comparing it with recent auction prices of similar pieces. There are also
websites providing free art appraisal hints. For instance, wikiHow (https://www.
wikihow.com/Value-Your-Art) helps to value artworks. There are professional
art appraisers available, but they charge $300+ for a single service and the
waiting time to get price recommendations is still relatively long.

Our knowledge-based recommender system, called ArtIST, will be based on
big data analytics. Knowing the artist’s name, appraisal of the piece of art will
be done by its personalized module built from the data describing similar artists
and similar art pieces including information about their sales. To evaluate an art
piece using ArtIST, the user needs to submit the same information about it as
is required by existing art appraisal tools/websites. It may appear that we will
be in a competition with art consulting/appraising companies and professional
art appraisers, but our recommendations will be more reliable, more accurate,
less expensive, and delivered in real time.

https://www.mutualart.com/artappraisal
http://www.findartinfo.com/english.html
https://www.wikihow.com/Value-Your-Art
https://www.wikihow.com/Value-Your-Art
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3 Methods

3.1 Dataset

This work exclusively models prices for the primary art market. Artworks are
sold online by their original creators or by a representative working for them.
These creators may or may not have gallery representation, but the art used
in this work is posted on a third party site. Predicting prices in the secondary
market would involve adding a number of other features, such as the provenance
of the artwork, its previous owners, and its past sales value, which would go
considerably beyond the scope of this work.

In this work, all artworks were extracted from Artfinder.com [6] using a
webscraper. To ensure consistence across records, only one sales site was used.
Artfinder was an ideal choice for this analysis because of its diverse collection of
artists and artworks. Many countries, artistic styles, mediums and artistic sub-
jects are represented on their site. The dataset collected includes artists from
over 60 countries and their works represent a variety of styles and mediums.
These mediums include photography, printmaking, drawing, collage, and sculp-
ture in addition to painting and mixed media. These works were scraped from the
Artfinder website using a combination of Python, Apache Selenium [2] to handle
the Javascript, and Beautiful Soup [1]. A dataset of approximately 160,000 works
representing over 2000 artists were collected for use in this work. On Artfinder,
a page for a single artwork provides a number of features for use in classification.
All pages include at least one photograph of the work, as well as information
such as the medium used, the size of the work, and if the work is signed. A
number of the features collected were provided by the artists themselves and
are used for tagging in the site’s search engine. For example, features such as
the artist’s country and the medium used are searchable. Other tags, such as
the subject of the work or it style can also be used to refine the search process.
The initial list of features used takes cues from the features developed in [30].
Another important piece of information provided by the artists is the artwork’s
text description which will be discussed in detail in another section.

Artists also have the option to provide information about themselves. This
information is listed in “About” pages, which have optional sections for the
artist’s biography, education, past and future events, awards received, their cur-
rent country and links to other locations where they can be found online. In
addition to this information, a number of artists have visible reviews from past
customers. However, these are extremely limited. The only visible reviews have
come from previous customers and unless the reviewers directly stated it in their
comment, it is not always obvious what work they are complimenting or criti-
cizing. On Artfinder, artists are rated on a 5-star scale and comments may or
may not be provided. However, a significant number of artists do not have any
reviews visible on their profiles. In the dataset collected, approximately 50% of
the artists have one or more reviews. Additionally, reviews are something which
an artist will accumulate over a span of time on a site. This would make a model
that relies excessively on comments far less useful for artists that have spent less
time on Artfinder.
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Prices in the dataset range from a maximum of 1,000,000 USD to 12.97 USD.
However, significantly more lower priced works appear in the dataset. 85.66%
of the works are 1000 USD or less. Only 0.26% of the artworks are valued at
greater than 10,000 USD. According to [18], the majority of online art sales
are valued at 1,500 USD or less. The exact price distribution is represented in
Fig. 1. This figure omits works greater than 10,000 USD for reasons of scale. For
the purposes of analysis, the price dimension was reduced to discrete intervals.
These intervals are as follows: (0–105), (105–205), (205–405), (405–605), (605–
810), (810–1030), (1030–1445), (1445–1825), (1825–2455), (2455–3855), (3855–
5000), (5000–10,000), (>10000). All prices are in USD, however, a number were
converted from their original currency. The intervals were selected by searching
for areas where very few works were priced and splitting the price feature in
these gaps. However, this led to an excessive number of very small intervals.
When examining the price distribution in detail, a significant number of works
cluster around the 50 and 100 values which creates many gaps. Therefore, sets
of intervals were merged to form the discretization described above.

The features listed below were used as the base set of attributes. All attributes
are discrete. Their effects, alone and paired with other features, is discussed in
detail in the Sect. 4.

– artistID - A unique identifier for an artist
– artistCountry - The artist’s current country of residence as listed on their

profile
– percent five stars - Percentage of five star reviews out of the total reviews.
– percent four stars - Percentage of four star reviews out of the total reviews.
– percent three stars - Percentage of three star reviews out of the total reviews.
– percent two stars - Percentage of two star reviews out of the total reviews.
– percent one star - Percentage of one star reviews out of the total reviews.
– medium - Artist provided medium of the artwork.
– style - Artist provided style of the artwork.
– subject - Artist provided subject of the artwork.
– authentication - Artist provided method of authenticating the work.
– artwork width - The width of the artwork.
– artwork height - The height of the artwork.

3.2 Product Descriptions

On Artfinder, as with many other sales sites, artists write descriptions of their
products. Product descriptions can be used to capture customer interest, but
they are more factual in nature than advertising [38]. In the Shotfarm Product
Information Report, they found that:

Ninety-five percent of those surveyed say product information is important
when making a purchase decision, with nearly four in five indicating that
it is very important [4].
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Fig. 1. Price distribution

However, there is little certainty about what is considered a complete or infor-
mative description.

For example, the ideal length of a description and its impact on sales is an
open question. In [34], the researchers determined that between 40 to 55 words
should be focused on product description for eBay sellers. They also found that
the use of words denoting uncertainty, such as “probably” or jargon harmed sales
[34]. However, that length for descriptions is far from universally agreed upon.
In [29], retailers are advised to keep product descriptions between 350 and 400
words.

In [34], a number of other features were determined to have an influence on
buyer behavior and the price that a piece sold for in an online auction. Rawlins
et al. determined that readability is crucial when encouraging buyers, and also
that attributes such as the length of the description and the seller’s use of slang
also had a bearing on the resulting price [34]. The impact of the length of the
description on the price is explored in detail later in this work.

Using text analytics as a method of predicting consumer behavior has
received attention from the research community. In [19], the direction of move-
ment of the price of stocks was predicted using text analytics, with a particular
focus on modeling sentiment. Another work [23], used text analytics of news
articles to predict shifts in price in oil. In [3], the use of word clouds and count-
ing the frequency of words is used as method of determining the sentiment of
speeches given in the financial sector to predict future market behavior.

Product descriptions for the artworks in this dataset are largely factual in
nature, with many being concerned primarily with listing attributes such as the
medium, size, subject and other similar features. The descriptions are heavily
dominated by words describing basic facts. Factual terms such as ‘canvas’, ‘x’
(which is used to indicate the dimensions of the work), ‘original’, ‘signed’, and
‘shipping’ are heavily emphasized. More emotionally evocative words, such as
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‘beautiful’, ‘love’, ‘inspired’ and ‘feel’ are much less frequent. Interestingly, the
word ‘please’ appears quite frequently. A partial listing of words found in the
product descriptions extracted from a subset of 150,000 works can be found in
Table 1. This list was developed using Orange [15], and omits stop words.

Table 1. 60 most frequent words in artwork descriptions

Word Frequency Word Frequency Word Frequency

Painting 131,754 x 62,106 Canvas 60,649

Art 51,793 Original 51,006 Signed 49,227

Paper 47,758 Artwork 47,734 Shipping 43,429

Painted 42,656 Please 41,013 One 37,370

Work 36,729 Frame 36,102 Ready 36,018

Acrylic 35,046 Oil 34,225 Hang 32,638

Print 31,577 Certificate 31,007 Artist 30,693

Paintings 29,333 cm 28,998 Authenticity 28,674

Back 28,550 Size 27,259 Quality 25,583

Abstract 23,422 Piece 23,252 Colors 21,963

Paint 21,786 Made 20,372 Using 20,242

Series 19,963 Front 19,666 White 18,917

Also 18,811 5 18,758 May 18,395

1 18,112 Edition 18,097 Different 17,875

Like 17,644 Time 17,588 Created 17,392

Contact 17,366 Image 17,281 Note 16,592

Free 16,531 Days 16,319 3 16,156

Materials 15,875 Hands 15,154 Stretched 14,532

Shipped 14,484 Printed 14,457 Life 14,400

Works 14,079 High 13,617 Artworks 13,608

3.3 Social Media

A number of artists cultivate a social media presence to improve their sales. In
the Hiscox online art trade review, they found that Instagram is the preferred
social media platform for the art market [5]. Instagram is popular because of its
tight focus on visuals, so artist’s work can be appreciated without sharing space
with other types of content [8]. A number of artists also have their own websites
to display their work.

On the Artfinder platform, the artist’s “About” pages have a section for
social media links. In the collected dataset of approximately 2,000 artists, 85%
have Facebook accounts listed. 42% have Twitter accounts provided on their
profiles and 54% have Instagram links.
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The section on the artist’s about pages for social media links were checked for
the presence or absence of the words, upper and lower case, “Facebook”, “Twitter”
and “Instagram”. This was used as a Boolean attribute in the classifier.

3.4 Clustering Text Using Doc2Vec

In this work, text describing the artists and their works were converted into vectors
and those vectors were clustered. The algorithm used for the construction of these
features was Doc2Vec, a Gensim implementation of Paragraph Vector [21].

Paragraph Vector, and its parent Word2Vec, have received considerable
attention from the research community. Word2Vec combined with decision trees
was used in [39]. In [22], Doc2Vec was used to classify product descriptions into
categories. This methodology has also been applied to other tasks such as finding
item similarities [9], and in determining the similarity of pieces of text [12].

Word2Vec represents words as vectors [11,27]. It makes use of the Skip-
Gram model which was created in [26]. This model uses a neural network to
predict a word given other words in a sequence of words [11,26,27]. “The training
objective of the Skip-gram model is to find word representations that are useful
for predicting the surrounding words in a sentence or a document.” [27] This
model was then used in [27] to create Word2Vec. It can be used to find words that
are used in similar contexts and is more efficient than other methods developed
at the time [27]. Another interesting feature is that vectors can be combined
mathematically with simple vector addition to find words near the sum of two
terms [27].

Paragraph Vector, which sometimes referred to as the “Distributed Mem-
ory Model of Paragraph Vectors (PV-DM)”, is an adaptation of the original
Word2Vec [11,21]. Paragraph Vector expands the model so that vector repre-
sentations can be created for sentences or lengthy documents [21]. Each para-
graph is represented as a unique vector in a matrix which is concatenated with
the vectors for each word in that matrix [21]. The identifier for the paragraph
“remembers” the subject of the document but otherwise functions as another
word [21].

In this work, to create the vectors, the Gensim [35] implementation of Para-
graph Vector, which is termed Doc2Vec, was trained on text provided by the
artist. The vectors were calculated for the text of the artist’s biographies, the
text of the artist provided description of the artwork, the title of the artwork,
the artist provided description of their education, the artist provided description
of awards received, and the artist provided description of events they have held.
The biography, awards section, education section and events section were found
on the artist’s about page. Gensim includes pre-built packages for basic text
preprocessing which were used on the text before it was used in the creation of
the model. Then, the resulting model was given the original text for each piece
of training text. This created a set of 100 term vectors. They were then clustered
using K-Means, implemented with Python’s Sci-Kit Learn Library [32].
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4 Results

The following experimental results were obtained on a randomly selected subset
of 150,000 works using Orange [15], and tested using 10 fold cross validation.

4.1 Base Results

Table 2 gives the results of testing the base set of features with k-Nearest Neigh-
bors, Support Vector Machines and Random Forest classifiers. These results
were obtained on a subset of 150,000 artworks. These attributes were all listed
in Sect. 3.1. The k value used was 5 and 100 trees were used in the Random For-
est classifier. As can be readily seen here, Random Forest had the best results,
and so it was used for testing the extensions of the base set of features.

Table 2. Results with base features

Method AUC CA F1 Precision Recall

kNN 0.884 0.625 0.621 0.619 0.625

SVM 0.608 0.169 0.17 0.221 0.169

Random Forest 0.938 0.667 0.663 0.662 0.667

4.2 Word Counts

The number of words used in the biography and in the description of artworks do
have an impact on the price of a work of art. The results found when testing this
impact can be found in Table 3. As can be seen from the table, the word count
of the description has a more notable impact on the accuracy of the classifier
than the word count of either the title or the artist’s biography. However, the
word count of the biography combined with the word count of the description
has a slight increase in the accuracy of the classifier. Adding the word count of
the title to these two features does not have a notable impact on the accuracy
of the classifier.

4.3 Social Media Presence

As can be seen in Table 4, the presence or absence of social media does not have
a significant impact on the accuracy of the classifier.

4.4 Document Vector Based Clusters

In Tables 5 and 6 the results of testing the quality of the classifier extracted from
the dataset with base features enlarged by the document vector based clusters
are shown. In Table 5, each feature is placed in one of 10 clusters. Extending
the feature set with the awards cluster, biography cluster, education cluster, or
events cluster in some combination has the highest positive impact.
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Table 3. Results with word counts

AUC CA F1 Precision Recall

Base Features 0.938 0.667 0.664 0.663 0.667

Base Features and Biography
Word Count (BWC)

0.939 0.67 0.667 0.665 0.67

Base Features and Description
Word Count (DWC)

0.94 0.674 0.67 0.669 0.674

Base Features and Title Word
Count (TWC)

0.938 0.668 0.664 0.663 0.668

Base Features, BWC, and DWC 0.941 0.677 0.673 0.672 0.676

Base Features, BWC, and TWC 0.939 0.671 0.668 0.666 0.671

Base Features, DWC, and TWC 0.94 0.674 0.67 0.669 0.674

Base Features, BWC, DWC and
TWC

0.941 0.677 0.673 0.672 0.677

Table 4. Results with social media

AUC CA F1 Precision Recall

Base Features 0.938 0.667 0.664 0.663 0.667

Base Features and Facebook (FB) 0.938 0.667 0.663 0.662 0.667

Base Features and Twitter (TWT) 0.938 0.668 0.665 0.664 0.668

Base Features and Instagram (INST) 0.938 0.669 0.665 0.664 0.669

Base Features, FB and TWT 0.939 0.669 0.666 0.665 0.669

Base Features, FB and INST 0.939 0.669 0.665 0.664 0.669

Base Features, TWT and INST 0.939 0.669 0.666 0.665 0.669

Base Features, FB, TWT and INST 0.9339 0.67 0.667 0.665 0.67

Table 5. Results with 10 clusters

AUC CA F1 Precision Recall

Base Features (BF) 0.938 0.667 0.664 0.663 0.667

BF and Awards Cluster (Cl) 0.938 0.669 0.665 0.664 0.669

BF and Biography (Bio) Cl 0.939 0.671 0.668 0.667 0.671

BF and Description (Desc) Cl 0.936 0.662 0.658 0.657 0.662

BF and Education (Edu) Cl 0.939 0.67 0.667 0.666 0.67

BF and Events Cl 0.939 0.669 0.666 0.665 0.669

BF and Title Cl 0.934 0.656 0.652 0.651 0.656

Base Features, Awards,
Bio, Desc, Edu, Events, Title Clusters

0.939 0.667 0.663 0.662 0.667
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Table 6. Results with 25 clusters

AUC CA F1 Precision Recall

Base Features (BF) 0.938 0.667 0.664 0.663 0.667

BF and Awards Cluster (Cl) 0.939 0.669 0.666 0.665 0.669

BF and Biography (Bio) Cl 0.939 0.671 0.668 0.667 0.671

BF and Description (Desc) Cl 0.936 0.664 0.66 0.659 0.664

BF and Education (Edu) Cl 0.939 0.6 0.667 0.665 0.67

BF and Events Cl 0.939 0.67 0.667 0.665 0.67

BF and Title Cl 0.935 0.659 0.655 0.654 0.659

Base Features, Awards,
Bio, Desc, Edu, Events, Title Clusters

0.941 0.672 0.668 0.667 0.672

4.5 Combined Features

In Table 7, the results of extending the dataset with different set of features
combined are shown. The social media features combined with the word count
features have a positive impact on the accuracy of the classifier. The text cluster
features when combined with the social media and word count features have a
noticeable positive impact on the accuracy of the classifier. In keeping with the
results when testing the cluster features alone, the largest gain appeared when
the awards, biography, education or events clusters were used.

5 Discussion

How artists present their work to the public can be used as a predictor of the
price of that work. The length of the artist’s descriptions and biography, both
tied to how a potential customer will perceive their work, is a predictive fea-
ture. Interestingly, whether an artist links to social media in the profile has
no apparent impact on the price of their work when it is not combined with
other features. However, their language and word choice can be used to classify
artworks by price.

All artworks analyzed in this work were selected from a single source. A
relevant topic to be explored in later research is the impact of the sales platform
on the price. This could function as a method for artists to improve their profits
by placing their works at more opportune sales locations. Do customers have
different expectations about how an artist presents their work depending on the
sales platform? Do auction based sites have different results? This could be used
to help artists better tailor their messages to their platforms audiences.

Why the number of words used in the description of an artwork or the biogra-
phy of an artist impacts the price is unclear. The length of the artist’s biography
may be a measure of that artist’s experience and accomplishments. An exces-
sively short description of a product may not give a potential customer sufficient
information to decide to make a purchase. As it does have an impact, this may



Developing Pricing Models for Online Art Sales 491

Table 7. Results with features combined

AUC CA F1 Precision Recall

Base Features (BF) 0.938 0.667 0.664 0.663 0.667

BF, FB, TWT, INST, BWC, DWC, TWC 0.942 0.681 0.677 0.676 0.681

BF, FB, TWT, INST, BWC, DWC, TWC,
Awards Cl (10 Clusters)

0.943 0.682 0.678 0.677 0.682

BF, FB, TWT, INST, BWC, DWC, TWC,
Bio Cl (10 Clusters)

0.943 0.683 0.679 0.678 0.683

BF, FB, TWT, INST, BWC, DWC, TWC,
Desc Cl (10 Clusters)

0.941 0.677 0.673 0.672 0.677

BF, FB, TWT, INST, BWC, DWC, TWC,
Edu Cl (10 Clusters)

0.943 0.682 0.679 0.678 0.682

BF, FB, TWT, INST, BWC, DWC, TWC,
Events Cl (10 Clusters)

0.943 0.682 0.678 0.677 0.682

BF, FB, TWT, INST, BWC, DWC, TWC,
Title Cl (10 Clusters)

0.941 0.674 0.67 0.669 0.674

BF, FB, TWT, INST, BWC, DWC, TWC,
Awards, Bio, Desc, Edu, Events,
Title Clusters (10 Clusters)

0.943 0.678 0.674 0.674 0.678

BF, FB, TWT, INST, BWC, DWC, TWC,
Awards Cl (25 Clusters)

0.943 0.683 0.679 0.678 0.683

BF, FB, TWT, INST, BWC, DWC, TWC,
Bio Cl (25 Clusters)

0.943 0.683 0.6679 0.679 0.683

BF, FB, TWT, INST, BWC, DWC, TWC,
Desc Cl (25 Clusters)

0.941 0.677 0.672 0.672 0.677

BF, FB, TWT, INST, BWC, DWC, TWC,
Edu Cl (25 Clusters)

0.942 0.683 0.68 0.679 0.683

BF, FB, TWT, INST, BWC, DWC, TWC,
Events Cl (25 Clusters)

0.942 0.683 0.679 0.678 0.683

BF, FB, TWT, INST, BWC, DWC, TWC,
Title Cl (25 Clusters)

0.941 0.674 0.67 0.669 0.674

BF, FB, TWT, INST, BWC, DWC, TWC,
Awards, Bio, Desc, Edu, Events,
Title Clusters (25 Clusters)

0.944 0.68 0.676 0.675 0.68

prove useful when making online sales or talking about a work on social media.
Determining the ideal length, and if that changes depending on the medium,
platform, or subject is a topic for further study.

The artist’s social media presence had little to no impact on the accuracy of
the classifier. It could be argued that the use of social media is a measure of the
artist skill in marketing or their level of experience as an artist. Therefore, these
features may be too strongly associated with other features, such as the artist’s
identifier, to be of any use. It is also possible that the presence of a social media
page is not a relevant feature, but their popularity, measured through follower
counts or a similar metric would be.
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Another potential topic for later research is determining the optimum num-
ber of clusters for the text features. In this work, 10 clusters and 25 clusters
were used. The number of clusters did not significantly impact the accuracy of
the classifier. However, the potential of this method is still largely unexplored.
The highest positive impact on the accuracy of the classifier comes from the
awards cluster, biography cluster, education cluster, or events cluster in some
combination. Each of these features comes from the artist’s about page, so there
are only approximately 2,000 points being clustered. In contrast, the features
with the lowest positive impact are from the clusters made from the artwork
description or artwork title. These are unique to each artwork, so over 160,000
points were clustered. A greater number of clusters for these features or a more
guided approach may improve the results.

Text analytics can be used as a price predictor in artworks. This work
explored the possibility of using vector representation of posted information
about artworks and artists to form clusters that can be used as predictors for
the prices of artworks in a commercial setting.

Acknowledgement. This research is supported by the National Science Foundation
under grant IIP 1749105. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

References

1. Beautiful Soup. https://www.crummy.com/software/BeautifulSoup/
2. Selenium. https://www.seleniumhq.org/
3. New directions in sentiment analysis: charting words. In: Sentiment Indicators, pp.

227–250. Wiley, October 2015. https://doi.org/10.1002/9781119204398.ch12
4. 2015/2016 The Shotfarm Product Information Report. Technical report (2016)
5. The Hiscox Online Art Trade Report 2018. Technical report, ArtTactic (2018).

https://arttactic.com/product/hiscox-online-art-trade-report-2018/
6. Artfinder.com (2019). https://www.artfinder.com/
7. Saatchiart.com (2019). https://www.saatchiart.com/
8. Bamberger, A.: How Artists Use Instagram to Present and Sell Their Art. https://

www.artbusiness.com/artists-how-to-use-post-sell-art-on-instagram.html
9. Barkan, O., Koenigstein, N.: Item2Vec: neural item embedding for collaborative

filtering (2016). arXiv:1603.04259v3
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Abstract. The rough sets theory developed by Prof. Z. Pawlak is one
of the tools used in intelligent systems for data analysis and process-
ing. In modern systems, the amount of the collected data is increasing
quickly, so the computation speed becomes the critical factor. One of the
solutions to this problem is data reduction. Removing the redundancy in
the rough sets can be achieved with the reduct. Most of the algorithms
of generating the reduct are only software implementations, therefore
having many limitations coming from using the fixed word length, as
well as consuming time for fetching and processing of the instruction
and data. These limitations make the software-based implementations
relatively slow. Unlike a software, the hardware systems can process the
data faster than software. In this paper, the hardware implementation of
the two-stage greedy algorithm to find the one reduct is presented. The
first stage of the algorithm is calculating the core using the discernibility
matrix, and the second is enriching the core with the attributes that are
necessary to build the reduct. The presented algorithm was implemented
in Field Programmable Gate Array (FPGA) as a digital device consist-
ing of blocks that process the data in a single step. For the research
purpose, the algorithm was also implemented in C language and run on
a PC. The times of execution of the reduct calculation in hardware and
software were considered. Obtained results show an increase in the speed
of data processing.

Keywords: Data reduction · Digital systems design ·
Field Programmable Gate Array (FPGA) · Reduct · Rough set

1 Introduction

The rough sets theory developed in the eighties of the twentieth century by
Prof. Z. Pawlak is one of the tools that can be used in the intelligent systems for
data analysis and processing. Banking, medicine, image recognition and security
are among the possible fields of utilization. In all these fields the amount of
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the collected data is increasing quickly, but with the increase of the data, the
computation speed become the critical factor.

Data reduction is one of the solutions to this problem. Removing the redun-
dancy in the rough sets can be achieved with the reduct, which is the subset
of the decision attributes that provides the discernibility of the objects. For the
given decision table there can be more than one reduct, but for the reduction
purposes one reduct is sufficient.

A lot of algorithms of generating the reduct were developed, but most of them
are only software implementations, therefore have many limitations. Micropro-
cessor uses the fixed word length, consumes a lot of time for either fetching as
well as processing of the instruction and data, consequently the software based
implementations are relatively slow. Hardware systems don’t have these limi-
tations and can process the data faster than a software, what was shown in
previous authors’ papers. Connecting all hardware implementations into single
system will allow to build a solution, that is capable of processing large collec-
tions of data in significantly shorter time comparing to pure software system.
Of course, there is also a disadvantage of hardware approach: created system is
not flexible in terms of processing datasets with different structure. Each time
structure changes, system has to modified to different data characteristic. But
as long, as data have the same structure, what is the case for most practical use
cases, hardware system will perform much better than it’s software version.

Some hardware implementations of the specific rough set methods exists at
the moment. Moreover only few of them were implemented in a hardware devices,
a bulk of the ideas were only described theoretically and left unimplemented in
the real devices. The idea of a sample processor generating the decision rules
from the decision tables was described in [5]. In [3] the design, simulation, imple-
mentation and experiment of the rough set processor was described. Authors of
paper [7] have presented the design for generating a reduct from the binary
discernibility matrix.

Foregoing authors’ research results focused on a subject of the hardware
implementations of the rough sets methods can be found in the previously pub-
lished papers. Simple solution for the hardware supported reduct calculation
was described in [1] and a core generation using the FPGA based solution was
presented in [2]. In [6] the core computation algorithm was optimized for using
with the large datasets. Solution described in this paper is using the discernibil-
ity matrix for the two-staged reduct generation. First stage of this algorithm is
a calculating the core, and the second is enriching the core with the attributes
necessary to generate the reduct.

The paper is organized as follows. In Sect. 2 some information about the
notion of the discernibility matrix, core and reduct are provided. Also the pseu-
docodes of the algorithms are presented as well as the dataset used during the
research is described. The Sect. 3 focuses on a description of the hardware solu-
tion, while the Sect. 4 is devoted to the experimental results.
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2 Introductory Information

In this section one can find the definitions of a discernibility matrix, a core and
a reduct, as well as the algorithms for generating all of the mentioned above
structures and sets.

2.1 The Notion of Discernibility Matrix, Core and Reduct in the
Rough Set Theory

Some of the condition attributes in the decision table may be superfluous (redun-
dant in other words). Removing any of the redundant attribute should not lead
to worsen the classification and thus preserve the discernibility of the objects.
There can be a few condition attributes that cannot be removed without affecting
the classification power of all condition attributes. The set of all indispensable
condition attributes is called the core.

One can also observe that the core is the intersection of all reducts – each
element of the core belongs to every reduct. Thus, in a sense, the core is the
most important subset of condition attributes. In order to compute the core we
can use discernibility matrix.

The notion of a discernibility matrix was introduced by Prof. A. Skowron
and first described in [4]. Both the rows and columns of the discernibility matrix
are labeled by the objects. An entry of the discernibility matrix is the set that
consists of all condition attributes on which the corresponding two objects have
distinct values. If an entry consists of only one attribute, the unique attribute
must be a member of core. A much more detailed description of the concept of
the core can be found, for example, in the book [8].

We can compute a reduct using the discernibility matrix by the following
observation: If a condition attribute is more frequent in the discernibility matrix,
then the more important this attribute might be.

2.2 Pseudocode for Generating the Discernibility Matrix – DMgen

Below one can find pseudocode for generating discernibility matrix. The discerni-
bility matrix generated by this pseudocode is used by the algorithms described
in the following subsections.
INPUT: decision table (U,A ∪ {d})
OUTPUT: discernibility matrix DM
1: for x ∈ U do
2: for y ∈ U do
3: DM(x, y) ← ∅
4: if d(x) �= d(y) then
5: for a ∈ A do
6: if a(x) �= a(y) then
7: DM(x, y) ← DM(x, y) ∪ {a}
8: end if
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9: end for
10: end if
11: end for
12: end for

The discernibility matrix entry DM(x, y) is generated in lines 3–10. First in
line the entry DM(x, y) is cleared (ie. loaded with empty set). Then the decision
attributes d(x) and d(y) are compared and if they are not equal the discernibility
matrix entry generation is performed. Loop in lines 5–9 is used for finding the
differences between the conditional attributes a(x) and a(y) for every attribute
a. In line 6 the values are compared and if they are not equal the attribute a
is added to the entry DM(x, y). All calculations are repeated for every entry of
the decision table (lines 1 and 2).

2.3 Pseudocode for Generating a Core Using the Discernibility
Matrix – COREgen

Pseudocode for algorithm of calculating the core using discernibility matrix can
be found below. This is the first stage of the algorithm for the reduct generation.
INPUT: discernibility matrix DM
OUTPUT: core C ⊆ A
1: C ← ∅
2: for x ∈ U do
3: for y ∈ U do
4: if |DM(x, y)| = 1 and DM(x, y) �∈ C then
5: C ← C ∪ DM(x, y)
6: end if
7: end for
8: end for

This algorithm is using a singleton for generating the core. Singleton is a
cell from the discernibility matrix consisted of the only one attribute. Singleton
detection is done in line 4 of the algorithm. Lines 2 and 3 iterates all of the
discernibility matrix entries. After finding the singleton the attribute is added
to the core in line 5.

2.4 Pseudocode for Generating a Reduct Using the Discernibility
Matrix – REDgen

Below is the pseudocode for calculating reduct using discernibility matrix. This
is the second stage of the algorithm for the reduct generation.
INPUT: discernibility matrix DM , core C
OUTPUT: reduct R
1: R ← C
2: for x ∈ U do
3: for y ∈ U do
4: for a ∈ C do
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5: if a ∈ DM(x, y) then
6: DM(x, y) ← ∅
7: end if
8: end for
9: end for

10: end for
11: while DM �= ∅ do
12: for a ∈ A do
13: counts(a) ← 0
14: end for
15: for x ∈ U do
16: for y ∈ U do
17: for a ∈ A do
18: if a ∈ DM(x, y) then
19: counts(a) ← counts(a) + 1
20: end if
21: end for
22: end for
23: end for
24: redAttr ← {b ∈ A \ R :

counts(b) = max{counts(a) : a ∈ A \ R}
25: R ← R ∪ {redAttr}
26: for x ∈ U do
27: for y ∈ U do
28: if redAttr ∈ DM(x, y) then
29: DM(x, y) ← ∅
30: end if
31: end for
32: end for
33: end while

In the first step in the line 1 the variable storing the reduct R is initialized
with the value of the core C obtained in the first stage. Then all of the entries
having any attribute from the core are removed from the discernibility matrix
(lines 2–10). Line 11 contains main loop which continues an execution while the
discernibility matrix DM has any attribute within its cells. In lines 12 to 14 all
cells of counts vector for counting the occurrences of each condition attribute in
discernibility matrix is set to 0. Two loops in lines 15 and 16 iterates through a
whole discernibility matrix. Loop in line 17 processes each condition attribute.
If given attribute exists in DM cell (line 18), then the value of the counts vector
for this attribute is incremented by 1. Line 24 chooses attribute with maximum
number of occurrences. This attribute, stored in redAttr variable, is added to
the final reduct R in line 25. Two loops in lines 26 and 27 iterates over the
discernibility matrix again. Condition in line 28 checks if attribute stored in
redAttr exists in DM cell corresponding to x and y objects. If so, then whole
cell in the discernibility matrix is cleared (contains no attributes).
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2.5 Data for Experimental Results

In this paper, we conduct experimental studies using data about children with
insulin-dependent diabetes mellitus (type 1). Insulin-dependent diabetes mellitus
is a chronic disease of the body’s metabolism characterized by an inability to pro-
duce enough insulin to process carbohydrates, fat, and protein efficiently. Treat-
ment requires injections of insulin. Twelve condition attributes, which include
the results of physical and laboratory examinations and one decision attribute
(microalbuminuria) describe the database used in our experiments.

The data collection so far consists of 107 cases. Out of twelve condition
attributes eight attributes describe the results of physical examinations, one
attribute describes insulin therapy type and three attributes describe the results
of laboratory examinations. The former eight attributes include sex, the age
at which the disease was diagnosed and other diabetological findings. The lat-
ter three attributes include the criteria of the metabolic balance, hypercholes-
terolemia and hypertriglyceridemia. The decision attribute describes the pres-
ence or absence of microalbuminuria. All this information is collected during
treatment of diabetes mellitus.

The database is shown at the end of the paper [9]. A detailed analysis of the
above data (only with the use of software systems) is in chapter 6 of the book [8].

3 Hardware Implementation

This section describes the architecture of the system for the reduct generation
using two-stage algorithm.

All of the blocks included in this system were designed to perform the actions
described is the pseudocodes DMgen, COREgen and REDgen.

System architecture was presented as block diagram in Fig. 1. It consists of
the listed below blocks:

– Decision Table DT – memory for storing the values from the decision table;
this block must be capable to store all the objects.

– Comparators – block consisting of the comparators used for comparing the
objects from the decision table and generating the entries of the discernibility
matrix.

– Comparator Block CB – single comparator used to compare the decision
table entries.

– Discernibility matrix – memory for storing the discernibility matrix
entries.

– Core generator – block for generating the core from the discernibility
matrix.

– Reduct generator – block for finding the attribute which is a candidate for
the reduct.

– Control logic – block for controlling the system.
– AMR/RED (Attribute Mask Register/REDuct register) – register used for

masking the attributes in following steps of the algorithm and for storing the
result.
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Fig. 1. Block diagram of the two-stage reduct generation system

At the beginning DT is filled with the values from the decision table. Then
the values of the decision table are passed to the set of the comparators (CB),
which are related to the condition in line 7 of the DMgen pseudocode. Because
there are as many CB blocks as the entries in the discernibility matrix, the loops
in lines 4 and 5 are not needed.

Moreover, AMR/RED register is used to masking the attributes in the dis-
cernibility matrix and therefore there is no need for the loops in lines 2–10 and
26–32 of the REDgen pseudocode. The only loop implemented in hardware was
line 11 from REDgen pseudocode in the Control logic block.

Discernibility matrix entries are passed to two blocks: Core generator and
Reduct generator. These blocks form the two-stage system for the reduct gener-
ation and are described below in details.

Architecture of the core generator block was presented as block diagram in
Fig. 2. It consists of the listed below blocks:

– Singleton detector – block for detecting if the input value is a singleton,
ie. consists of the only one “1”.

– OR-cascade – block for generating the core by concatenating the singletons
from all singleton detectors.

The singleton detector function is described in line 4 of the COREgen pseu-
docode. OR-cascade behaves in a way described in the line 5 of the COREgen
pseudocode. Because there are as many mentioned above blocks as the entries
in the discernibility matrix, the loops in lines 2 and 3 are not needed.
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Fig. 2. Block diagram of the core generation block

Fig. 3. Block diagram of the reduct generation block

Architecture of the core generator block was presented as block diagram in
Fig. 3. It consists of the listed below blocks:

– Ones counter – block for counting the number of “ones” in the input word.
– Maximum – block for selecting the maximum from the input words.

The ones counter is a block performing all the activities described in lines
15–23 of the REDgen pseudocode. Maximum is a block equivalent to the line 24
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of the REDgen pseudocode. All these blocks are repeated for all the conditional
attributes and therefore there is no need to create the blocks for controlling the
loops in lines 15–23.

4 Experimental Results

For the research purpose algorithms described in Sects. 2.2, 2.3 and 2.4 were
implemented in C language. The main reason for choosing such language was
deterministic program execution time, huge flexibility in the software creation,
easiness of low-level communication implementation and the future plans of mov-
ing control program to the microprocessor independent from PC. The role of the
microprocessor would be controlling operation of rough sets hardware implemen-
tation modules. Microcontroller, due to the limited memory and computational
resources in comparison to the PC, should not use additional runtime environ-
ments required by e.g. Java.

The results of the software implementation were obtained using a PC
equipped with an 8 GB of RAM and 2-core Intel Core i5-4210U with maximum
2.7 GHz in Turbo mode clock speed running Windows 10 operational system.
The source code of application was compiled using the GNU GCC 4.9.2 com-
piler. Given times are averaged for 10 000 runs of each algorithm with the same
data set.

The hardware implementation was written in VHDL. Quartus II 13.1 was used
for creation, compilation, synthesis andverifying simulation of the hardware imple-
mentation. Synthesized hardware blocks were downloaded and run on TeraSIC
DE-3 equipped with Stratix III EP3SL150F1152C2N FPGA chip. FPGA clock
running at 50 MHz (64 times slower than PCs clock) for the sequential parts of
the project was derived from development board oscillator. Timing results were
obtained using Tektronix TDS3052B (500 MHz bandwidth, 5 GS/s) oscilloscope.

All calculations were performed using diabetes dataset. Full decision table
has 107 objects and 13 attributes (12 condition and 1 decision). Presented results
have been obtained using full set and smaller subsets (in terms of smaller number
of objects).

Table 1 presents the results of the time elapsed for software and hardware
reduct calculation. Column “Objects” provides the number of the objects used
as input of the algorithm. Column “Software - tS” presents the times of the exe-
cution of the software implementation of the algorithm while column “Hardware
- tH” presents the times of the execution of the hardware implementation. Last
column “ tS

tH
” shows the quotient of the execution times.

Obtained results show a huge increase in the speed of data processing. Hard-
ware module execution times compared to the software implementation is at least
a 100 times shorter for reduct calculation what is shown in Table 1 in column
tS
tH

and is increasing with larger data sets.
Because the Control logic block is a sequential circuit, one must remember

to take the clock speed difference between FPGA and PC under consideration.
FPGA in our configuration uses 50 MHz clock and the PCs clock runs at 2.7 GHz
(54 times faster). Despite of this, the FPGA is still significantly faster.
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Table 1. Comparison of execution time for calculating reduct using hardware and
software version.

Objects
—

Software - tS
[µs]

Hardware - tH
[µs]

tS
tH

—

15 343 1.88 182.45

30 1360 4.46 304.93

45 3 170 6.91 458.76

60 5 560 10.20 545.10

90 12 900 17.32 744.80

107 19 700 26.71 737.55

Table 2 presents the FPGA structure utilization in Logical Elements (LEs)
basis for hardware implementation of the full system.

Table 2. FPGA structure utilization in LEs for full hardware system.

Objects LEs

15 2 196

30 8 661

45 19 400

60 34 415

90 77 271

107 109 146

Big FPGA resources consumption is caused by the fact, that the complete
discernibility matrix is generated. Consequently for all entries are other blocks
generated (e.g. comparator block, singleton detector). In general, the combina-
tional solutions consume more resources than the sequential types, but these
are few orders of magnitude faster. For practical solutions sequential units are
preferred than combinational because of their resources saving implementation.

For the most real datasets it is impossible to create a single hardware struc-
ture capacious enough to store the entire data. Besides the real datasets are so
differential, so there is no universal structure of the processing unit.

5 Conclusion

Proposed hardware implementation of the two-stage reduct generation algorithm
shows a big acceleration comparing to the software. The hardware implementa-
tion is very competitive to high computing power PCs, especially in real time
solutions. The factor of acceleration is greater than a 180 and is increasing with
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the size of dataset. But when taking into account the difference in clock speeds
between a PC and a FPGA this acceleration is factor rises to over 9000. Major
disadvantage of proposed solution is a resources consumption and hence need an
additional software processing such as the data decomposition. Hardware mod-
ule must be also recompiled for different structures of datasets. Of course the
biggest advantage of FPGA is possibility of its reprogramming, but it needs a
supplementary software processing unit.

Further research can include using the decomposition algorithms for the
big datasets, multiplying the hardware modules processing subsequent parts of
dataset, as well as create other hardware blocks for supporting different parts of
the algorithm.
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Abstract. Predicting latent user identity across social networks has
many application scenarios and it can be demonstrated by using the
similarity of network structure caused by the similarity of friend rela-
tionships. Former related research works consider the structural simi-
larities only while not sufficiently modeling the higher order structural
properties. Moreover, the very limited supervisory anchor pairs, which
are crucial for the task of user identification across social networks, are
not utilized effectively. Based on the idea of multi-granularity cognitive
computing and for partly solving the problem of multiple granularity
representation of data proposed in DGCC (Data-driven granular cogni-
tive computing) [23], this paper proposes a high-performance framework
called multi-granularity representation learning (MGRL) framework for
user identification across social networks which facilitates a well-designed
heuristic mechanism to weight the edges on which a guided sampling
strategy is conducted for vertex sequence generation. This enhances the
model’s capability of capturing the higher-order structural proximity. By
integrating two aspects of structural properties, the multi-granularity
structural features are preserved well. Experiments on real life social
networks demonstrate that the MGRL significantly outperforms other
state-of-the-art methods on the task of identifying latent corresponding
users across social networks.

Keywords: Granular computing · Network representation learning ·
Social network analysis · User identity alignment

1 Introduction

With the rapid development of social networks, a person usually registers on
several websites for diverse usages, such as Twitter, Flickers, Facebook, and
LinkedIn [19,24]. It is a large group of people who choose not to share account
information (also called user identity) on multiple social networks due to some
considerations such as privacy. This poses the problem of identifying the corre-
sponding accounts that belong to one natural person across different social net-
works (also called user identity linkage across social networks). Research about
c© Springer Nature Switzerland AG 2019
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this problem can support network inference tasks such as cross-domain recom-
mendation [5], link prediction [27], and network fusion [26].

The name or users’ profile can be used for identity prediction across social
networks, but these information cannot be always reliable due to privacy prob-
lems. Alternatively, as one person’s circle of friends is highly individual and it’s
almost impossible for two users share the same circle of friends, the circle of
friends has strong distinction in one’s identity. Moreover, the connections on
social networks can be quite directly acquired and the relationships among users
can be represented by graph structures. Comparing with other kinds of infor-
mation such as user profile and the user generated content in social networks,
the structure-based approach has the strongest universality and it is compatible
with the similarities extracted from other kinds of information. A typical way of
merging the structural features with the features extracted by other information
is simply concatenate the feature vectors [28].

Existing approaches that leverage network structure for identity prediction
across social networks can be categorized into two classes: Feature-based and
Embedding-based. In the feature-based methods, the macro structural features
are used to find the certain structural similarity between vertices across net-
works. They address it as a problem of network alignment [8]. This kind of
methods suffers NP-Hard combinatorial optimization problem and the scope of
application of this method is very limited [1]. The feature-based methods utilize
micro structural features such as in/out degree [10], the number of involved tri-
angles [9] and common neighbors [3] to calculate the match degree between two
vertices across network. These feature-based models are not robust against any
slight disturbance or noise.

Network representation learning (NRL), which is also called network embed-
ding, maps the structural properties of each vertex on network into a low-
dimensional vector and its effectiveness for structural property preserving is
well-demonstrated on many network inference tasks in last several years [6,7].
Figure 1 shows the basic ideas of NRL based identity alignment across social
networks. The user “001” in source network and user “001” in target network
are two accounts but they belong to one person. This is called one anchor pair.
If the anchor pair is given beforehand, it’s called supervisory anchor pair (SAP).
The relationship (graph structure) of each user in the original network space
can be represented in a latent vector space and the users’ similarities can be
calculated by their structural representation vectors (embeddings). In the NRL
based approaches, the PALE [13] predicts anchor links by using network embed-
ding of observed links as the supervised information. It suffers the difference
of scales and initialization of parameters of two networks. The human-designed
objective function is deficient on unifying the semantics of embeddings for two
networks due to the structural complexity and non-linear properties in networks
[22]. Inspired by the 1st-order proximity which means the weight of linkage and
2nd-order proximity which means the number of friends shared by two vertices
[21], works such as IONE [12] and MAH [20] considers the second order proximity
and regard source network Gs and target network Gt as an entire network and
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map it to a hyper-graph to learn latent network features. The latent semantic of
network structure is extracted by them and models can be stable when the local
statistic parameters such as vertex degree, number of neighbors slightly changed.
However they are deficient on modeling the higher-order structural proximity.
For instance, in Fig. 1, the unknown user “007” and user “011” has the higher-
order structural proximity with user “001” and user “003” respectively, but they
are far away from the known SAPs. The problem of how to represent the net-
work structural features into low-dimensional vectors is still open. Designing a
novel framework which utilizes the higher-order structural proximity and take
advantage of the supervisory information to discover the hidden anchor links
across social networks is still of great significance.
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Fig. 1. NRL based identity alignment across social networks

In order to utilize the structural information to improve the performance of
aligning user identities across social networks, we consider the multi-layer char-
acteristics which essentially exist in networks when looking into network prop-
erties [2,17,18]. Inspired by the idea of multi-granularity cognitive computing,
this paper proposes a novel multi-granularity representation learning (MGRL)
framework for user identification across social networks. Specifically, (1) On the
local structural feature learning, the higher order structural properties are cap-
tured through the establishment of the corpus obtained by random walk. (2)
For modeling the anchor pairs oriented structural features, we train a heuristic
weight assigner based on the SAPs, and the edge to which the higher weight is
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assigned will guide the random walker in the direction more likely to touch the
potential anchors. Through modeling the network features on two granularities,
this representation framework not only satisfies adequately capturing the local
structural features, but also emphasizes the anchor pairs oriented features across
the source and target networks. In this way, the model enables that the corre-
sponding user accounts that belongs to one natural person share more context
across networks to get closer vector representations in the latent low-dimensional
vector space.

To evaluate the quality of the proposed MGRL, we conduct experiments on
the task of aligning user identities across two real-world social networks: Twitter
and Foursquare. Comparing with the baselines, under the unify metrics, the
proposed MGRL model achieves higher precision in the task of corresponding
user pair prediction across Twitter and Foursquare social networks.

2 Problem Formulation

Given a single real-world natural person registered on two online social networks,
e.g. networkX and networkY. The purpose of user identification across networks
is to find the corresponding user accounts that belong to persons who registered
in networkX as well as networkY. The basic concepts and notations are defined
as below:

Online Social Network: An online social network is denoted as a graph G =
(V,E) where V is a set of vertices and each vertex vi ∈ V represents a user
account ui. E ⊆ V × V is a set of weighted or unweighted edges, eij ∈ E
represent the connection between ui and uj in social network. The notation
Gs = (V s, Es) and Gt = (V t, Et) represent the graph structure for source
network (e.g. networkX, randomly selected) and target network (e.g. networkY)
respectively. Vertices in source network are represented by set of V s while those
in target network are represented by V t in Gt. The Us and U t denotes the sets
of user accounts in source and target networks.

Adjacency Matrix A: A ∈ R
|V |×|V |. For an unweighted graph, Aij = 1 if and

only if there exists an edge from vi to vj and Aij = 0 otherwise. For a weighted
graph, Aij is a real number wij called the weight of the edge eij . We only discuss
the weight from 0 to 1 since the other range of weight can be normalized into
[0, 1]. Note the wij also denotes the weight of eij in this paper. For a graph with
adjacency matrix A, the degree matrix D of that graph can be defined as:

Dij =
{∑

p Aip, if i = j

0, if i �= j
(1)

Transition Probabilities Matrix T : For a random walker on a graph, the transition
matrix determines the probability of the walker transits from one vertex to
another. The 1-step probability transition matrix T is defined as:

T = D−1A (2)
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Where Tij is the probability of a transition from vi to vertex vj within one step,
and the weight wij is proportional to the transition probability Tij : wij ∝ Tij .

Cross-net Identification: Given two online social networks Gs and Gt, the task
of Cross-net identification is to predict whether a pair of vertices vi and vj
chosen from V s and V t respectively belong to a same real natural person, i.e.,
f : V s × V t �→ {0, 1} such that,

f(vi, vj) =
{

1, if ui and uj belong to same person,
0, otherwise. (3)

where f(·) is the prediction function that our model wants to learn. ui is the
user account of vertex vi and uj is the user account of vertex vj .

Network Representation Learning: The network representation learning can be
viewed as the extraction for structural features of network components. Net-
work representation learning is to learn a mapping Φ : vi �→ zi where the
low-dimensional vector zi ∈ R

d is the embedding for vertex vi, and the integer
d � |V | is the dimensionality of vector zi .

Considering that fully aligned networks hardly exist in the real world, in
this paper, we also adopt the assumption of partially aligned social platforms as
proposed. Table 1 summarizes the notations in this paper.

3 Multi-granularity Representation Learning for User
Identification Across Social Networks

User Identity Alignment Across Social Networks. The User identity alignment
across social networks is searching for a projection functions Φ by minimizing
the following objective function:

min
∑

ui∈Us,uj∈Ut

D(Φ(ui),Φ(uj)) (4)

where ui and uj belong to one person, while D(·) is a distance measuring func-
tion, such as cosine distance.

3.1 Parameter Sharing by Zippering SAPs

In the embedding-base methods, it’s intuitive that the optimal embeddings can
be obtained by minimizing the difference between the embedding of Gs and Gt

with the help of supervisory anchor pairs (SAPs, some known corresponding
user pairs beforehand). This method cannot completely bypass the disunity of
the embeddings in different latent feature space due to the elusiveness of latent
feature space. However, MGRL conducts this uniform in the process of gener-
ating embeddings, and this is regarded as the hard constrain for our model.
Figure 2 shows how the MGRL zippers the Gs and Gt together by SAPs. Each
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Table 1. Table of notations

Notation Description

Gs, Gt Graph of source network and target network

Gm Graph of the zippered network

Gm
w Weighted Graph of the zippered network

V s, V t Sets of vertices in Gs and Gt

Us, U t Sets of user accounts in source and target networks

Es, Et Sets of edges in Gs and Gt

V m, Em Set of vertices and edges in the zippered network

Ep Set of edges that connect supervisory anchors

En Set of edges that do not connect supervisory anchors

ui User account for vertex vi in graph G

vi Vertex of user ui in Gs

v′
i Vertex of user ui in Gt, (vi, v

′
i) is a corresponding vertex pair

us, ut User account from graph Gs and Gt

zi Low-dimensional representing vector for vertex vi on un-weighted graph
Gm

zm
i Low-dimensional representing vector for vertex vi on weighted graph Gm

w

zij The low-dimensional representation vector for edge eij

Φ(·) Mapping from one vertex into its low-dimensional vectorial representation

Ω(·) Mapping from Gs and Gt into Gm, the graph of zippered network

σ(·) Sigmoid function

P acr The set of supervisory anchor pairs

pk The supervisory anchor pair, pk ∈ P acr

(vk, v′
k) The k-th supervisory anchor pair, merged into vk in zippering operation

Y Set of labels for edge properties

wij Weigh for edge eij given by the heuristic weight assigning model

r(ij) The feature representation for edge eij

Tij The random walker’s transition probability from vi to vj , Tij ∝ wij

SAP consists of one user in the Gs and one user in the Gt. After zippering,
each SAP is treated as one vertex in the network Gm. Such that, the Gs and
Gt share same process of iteration of parameters. Although this operation may
lead to slight changes in structural characteristics, multi-step random walk con-
cerns more about the relationships in the entire sampled vertex sequence. The
experiment result indicates that this operation is beneficial to the improvement
of model performance.

The zippering operation can be viewed as a mapping of two graphs into one
graph. We note it as Ω : Gs, Gt �→ Gm. Assume we have a n-size supervisory
anchor pair set: P acr = {p1, . . . , pn} and pk = {(vk, v′

k)|vk ∈ V s
a , v′

k ∈ V t
a} where
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V s
a ⊂ V s is subset of vertices in Gs and V t

a ⊂ V t is subset of vertices in Gt. The
vertices vk and v′

k belongs to one natural person’s identity: uk ∈ Uacr = (Us∩U t)
where Uacr is all the corresponding user accounts contains known and unknown
corresponding account pairs.

Network Gs Network Gt

Network Gm

Zippering

SAPs

Fig. 2. Zipper the SAPs for parameter sharing

3.2 Higher-Order Proximity Sampling and Embedding

In order to obtain the low-dimensional vectors preserving the structural proper-
ties of vertices in graph, MGRL borrows the methods of DeepWalk [16]. Walkers
sample the connecting information of vertices such that the sequences of ver-
tices, namely corpora, are generated under the transition probability of Tij . The
low-dimensional vector is the result of optimization using model of word2vec
[14,15]. The sequence of vertices generated by random walk can be denoted as:
v1, v2, . . . , vn under the transition probability of T12, T23, . . . , T(n−1)n.

In the DeepWalk model, the likelihood of observing vertex vi given all the
previous vertices visited so far in the random walk:

Pr (vi|(v1, v2, . . . , vi−1)) (5)

When we define the mapping function Φ : vi �→ zi , the problem is to estimate
the likelyhood:

Pr (vi|(Φ(v1),Φ(v2), . . . ,Φ(vi−1))) = Pr (vi|(z1,z2, . . . ,zi−1)) (6)
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Refer to the recent relaxation in language modeling [14,15], the model is
required to maximize the probability of any word appearing in the context with-
out the knowledge of its offset from the given word. This yields the optimization
problem for network representation:

arg min
Φ

− 1
|V m|

|V m|∑
i=1

log Pr({vi−w, · · · , vi−1, vi+1, . . . , vi+w}|vi) (7)

Solving the optimization problem from Eq. (7) builds representations, e.g.
vectors that capture the shared similarities in local graph structure between
vertices. Vertices which have similar neighborhoods will acquire similar repre-
sentations.

3.3 Heuristic Weight Assigner Training

Given the embedding zi for vertex vi, zj for vertex vj , and the edge eij ∈ Em

that connects vertex vi and vj . MGRL takes the Hadamand product (also known
as the Schur product [4]) of zi and zj as the embedding of edge eij , and the
embedding is denoted as zij , such that:

zij = zi ◦ zj = [ai1bj1, . . . , aidbjd] (8)

where aik ∈ R
d is the k-th dimension of vector zi = [ai1, . . . , aid] and bk ∈ R

d

is the k-th dimension of vector zj = [bj1, . . . , bjd]. The Hadamard product of zi

and zi is denoted as: zi ◦ zj .
For the edge eij ∈ Em connecting vertex vi and vj , the weight wij can be

given by a trained weigh assigning function W(zij) �→ wij where wij is the
weight for edge eij .

Particularly, we have a set of training examples D = [zij ,Yij ], where i, j ∈
[1, . . . , |V s + V t|] and i �= j. The value of Yij is defined below:

Yij =
{

1, if vi or vj belongs to known anchor set,
0, otherwise. (9)

The Θ ∈ R
d notes the parameter vector for model W, d is the dimensionality

of embedding vector zi. We define the weight of edge eij is the conditional
probability models of the form:

wij = Pr(Yij = 1|Θ,zij) = W(ΘTzij) = W(
∑

eij∈Em

θij(zi ◦ zj)) (10)

In what follows we use the logistic link function:

W(r) =
exp(r)

1 + exp(r)
(11)
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r(ij) =
∑

eij∈Em

θij(zi ◦ zj) + b (12)

thereby producing a logistic regression model. The rij is the feature representa-
tion for edge eij weighted by parameter vector θij and added bias b.

The cost function:

J = − 1
m

[
m∑

k=1

Y(k) log W(r(k)) + (1 − Y(k)) log(1 − W(r(k)))] (13)

The parameter Θ can be updated by:

Θ := Θ + ΔΘ, ΔΘ = −η∇J(Θ) (14)

And the derivative of J can be calculated by:

∂J

∂Θ
=

1
m

· x(k) · [
m∑

k=1

W(r(k)) − Y(k)] (15)

where the k-th sample xk = zi ◦ zj , and its label Yk = Yij . The m is number
of samples sampled from zippered graph Gm. Finally, use the update equation
below to get the parameter vector Θ:

Θ := Θ + η

m∑
k=1

(Y(k) − W(r(k)))x(k) (16)

Where η is the step of iteration. The algorithms such as stochastic gradient
descent (SGD) or mini batch SGD [11] can be used when large number of edges
are sampled.

3.4 Multi-granularity Cooperative Representation

The weighted network Gm
w can be obtained by assigning weight on the zip-

pered graph Gm using the heuristic weight assigner trained in Sect. 3.3. Perform
weighted random walk on Gm

w can obtain the corpus Cw. Initialize the represen-
tation of each vertex of Gm

w and update the representation with the model of
Skip-Gram with the similar steps of Sect. 3.2. The representation of vi on Gm

w is
denoted as zm

i .
MGRL concatenates the embeddings obtained on two granular layers, i.e. the

embeddings from the unweighted zippered network and the embeddings from the
weighted network. The concatenating operation can be denoted as:

zi := [zi,z
m
i ] (17)

Through this way, the structural semantic on two networks will be preserved
in the concatenated embeddings.
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4 Experiments

In this section, some preliminary experiments are conducted to compare pro-
posed MGRL with existing baselines on two realistic datasets.

4.1 Dataset

Twitter - Foursquare dataset. The real-world social network datasets collected
from Foursquare and Twitter [25]. The ground truth of anchors are provided in
Foursquare profiles. Twitter dataset consists of 5,120 users and 164,919 connec-
tions while Foursquare dataset consists of 5,313 users and 76,972 connections.
There are 1,609 user pairs are known as corresponding user pairs.

4.2 Experimental Settings

In the step of embedding the zippered network, we set the walk-length parame-
ter as 80 for sampling longer sequence of corpus and the higher-order structural
proximity can be contained in corpus. The window size for word2vec model in
DeepWalk is set to 4, the number of walks is set to 10 by default. When calcu-
lating the distance between two vectors, we use the cosine distance in general
way.

4.3 Comparative Methods

We compare the proposed MGRL model with several state-of-the-art methods,
which are summarized as follows:

– PALE-DeepWalk [13]: This method performs reconciliation in an
embedding-matching framework in which the representation method is Deep-
Walk [16]. We implemented this method with the matching of MLP (multi-
layer perceptron).

– IONE [12]: This method considers the following/followee relations are
approximated in the latent space with an explicit constraint to ensure that
latent feature vectors are equal. We evaluate this method by using the source
code they offer.

– MAG [20]: It computes the user-to-user pairwise weight and builds a social
graph for each network. The identification is conducted by manifold align-
ment.

– CRW [25]: A method called collective random walk with restart that is essen-
tially a collective link fusion across partially aligned probabilistic networks.

– Mego2Vec-struct [28]: This method pre-aligns the potential corresponding
identity pairs by the similarity of user names and uses structural and attribute
information to learn a neural network classifier. In order to equally compare
the performance of identifying purely using structural information, we only
use the structural embedding model of Mego2Vec framework. This is noted
as Mego2Vec-struct in this paper.
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4.4 Evaluation

We have the test set V s
test ⊂ V s consists of hidden anchors vi ∈ Vtest, where

i = 1, . . . , m and m = |V s
test|. MGRL generates the embeddings zi for vi, and

zj for vj ∈ V t, where V t is the set of vertices on target network Gt. For each
vi ∈ Vtest, calculate the cosine distance between zi and zj . Note the number of vj
is |V t|, such that we got |V t| distances. Rank the |V t| distances, we pick out the
vjs that are in top-K distances as the set of candidates H. If the corresponding
vertex v′

i ∈ V t of vi is in the set of candidates H, we mark vi as ‘hit’, otherwise,
vi is ‘not hit’. Do the distance calculating for every vi in Vtest and summarize the
number of ‘hit’s. The number of ‘hit’s described above is denoted as hits number
in the equation below:

hits number =
∑

vi∈Vtest

vj∈V t

f(vi, vj)

where

f(vi, vj) =
{

1, if us
i and ut

j belong to one person
0, otherwise

The us
i is the user account for vertex vi in source network while the ut

j is the user
account for vertex vj in target network. Thus, the precision at K-size candidate
set can be calculated as:

precision@K =
hits number@K

|V s
test|

To be consistent, we use same metrics of IONE [12]. The value of K determines
the size of candidate set. Larger K makes the model have higher probability to
find the corresponding vertex of vi ∈ Vtest while the bigger size of candidate
means the less accurate the result is.

4.5 Experiment Result

The overall performance is evaluated by precision defined in Sect. 4.4 and Fig. 3
shows the precision got from the MGRL model and the comparative methods. We
can find the proposed MGRL out-performs the baselines given different experi-
mental conditions. In Fig. 3(a), K, the size of candidate set, is set to 30. When
the ratio of training ground truth is 10%, the proposed MGRL algorithm can
get about 50% promotion over the best performance among the base line meth-
ods. With the increase of the ratio of training ground truth, the promotion is
decreasing and finally the proposed MGRL has about 7% promosion over IONE
[12]. As we discussed in the Sect. 1, comparing with the IONE or IONE like



518 S. Fu et al.

methods, the proposed MGRL considers more about capturing the higher-order
structural proximity by building the corpus of vertices via random walking. It’s
worth mentioning that with the increase of the ratio of training ground truth
(training ratio), the ratio of higher-order anchor pairs that need to be explored
is decreasing. The experiment result matches the analysis. On the other hand,
Fig. 3(b) shows the changing of precision with different size of candidate, i.e. the
value of K, under the condition that training ratio (the ratio of ground truth
that used for training) is set to 90%. The MGRL also out-performs with the
baselines with respect to precision. We can see that when the K is at 5 to 10,
the proposed MGRL has the most significant promotion over the baselines. The
smaller K at which the model achieves the significant promotion, the higher
performance is the model for user identification across social networks since the
smaller K means the model has higher accuracy for identifying the corresponding
user account in target network.

The detailed results of precision with respect to training ratio and K are
shown in Tables 2 and 3.

(a) The precision on K = 30 (b) The precision on training ratio = 90%

Fig. 3. Detailed performance comparison on Twitter-Foursquare Dataset

Table 2. The precision for different ratio of ground truth used for training

Precision at different training ratio (K = 30)

10% 20% 30% 40% 50% 60% 70% 80% 90%

CRW 0.0843 0.0992 0.1172 0.1137 0.1179 0.1216 0.1181 0.1437 0.1646

MAG 0.0718 0.1079 0.1584 0.1609 0.2013 0.2503 0.2584 0.2798 0.3381

PALE-DeepWalk 0.1659 0.2698 0.2739 0.3492 0.3739 0.4009 0.3840 0.4404 0.4367

Mego2Vec-struct 0.1324 0.2572 0.3337 0.3534 0.3591 0.4242 0.4592 0.4752 0.4810

IONE 0.1492 0.2746 0.3419 0.3903 0.4328 0.4812 0.5094 0.5443 0.6012

MGRL 0.2255 0.3302 0.4073 0.4223 0.5006 0.5397 0.5696 0.5902 0.6456
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Table 3. The precision for different value of K

Precision at different K (Training ratio = 90%)

1 5 9 13 17 21 25 30

CRW 0.0031 0.0158 0.0474 0.0664 0.0822 0.1044 0.1360 0.1646

MAG 0.0696 0.1329 0.1772 0.2056 0.2500 0.2879 0.3037 0.3381

PALE-DeepWalk 0.1012 0.2088 0.2721 0.3227 0.3607 0.3860 0.4113 0.4367

Mego2Vec-struct 0.1455 0.2278 0.2911 0.3797 0.4241 0.4430 0.4684 0.4810

IONE 0.2056 0.3575 0.4398 0.4968 0.5411 0.5664 0.5727 0.6012

MGRL 0.2341 0.4430 0.5443 0.5570 0.5759 0.6013 0.6329 0.6456

5 Conclusion and Future Work

In this paper, we rethink how to employ the structural features for hidden corre-
sponding user identity alignment. With the contribution of known anchors’ struc-
tural features, the proposed MGRL generate a heuristic weigh assigner which
emphasize the edge that contains structural feature of supervisory anchors. This
heuristic weighting mechanism makes the corpus of vertices contain context with
more SAPs. And finally, the distance of hidden corresponding users especially
the higher-order latent anchor pairs will be close after model’s iteration. In the
future, we plan to explore more discriminating structural features and the multi-
granularity models for effectively extracting them.
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Abstract. Pedestrian Detection Technology has become a hot research topic in
target detection field recent years. But how to track the pedestrian target accu-
rately in real time is still a challenge problem. Recently deep learning has got the
extensive research and application in both target tracking and target detection.
However, the tracking effect based on deep learning needs to be improved in the
motion blur and occlusion cases. In this paper, we propose a new model that
combines the target tracking and target detection and introduce the idea of
granular computing to realize high-precision long-term robust pedestrian
tracking. In this model, we use a pre-trained tracking model to track the spec-
ified object and use the three-way decision theory to judge the color histogram
feature and correct the results by the detector. Compared with the separated
tracker, our model invokes the target detector to detect the current frame when
the tracking result is wrong and the detection result which is the most similar to
the target is selected as the tracking result. Experimental results show that our
model can significantly improve the tracking accuracy especially in the complex
situations, compared with the separated tracker and the detector.

Keywords: Long-term tracking � Tracking by detection �
Color histogram � Granular computing � Three-way decision

1 Introduction

Conventional target tracking methods cannot handle and adapt to complex tracking
changes, and its robustness and accuracy remain to be improved. It is because that
these classical algorithms do not rely on the prior knowledge, but use the method of
probability density, manual setting or other methods to detect the moving target directly
from the image, and finally locate the interest moving target in each frame of a video.
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On the contrary, the methods based on deep learning [1] could learn the valid features
from big data automatically, which would cost years for conventional methods. That is
the reason why deep learning methods are superior to the conventional methods [2]
which use the hand-designed features such as HOG [3] or CN in the representation of the
feature.

Deep learning has long been used in various fields of computer vision, such as
image classification, target detection, semantic segmentation and so on. Until recently,
with the great development of big data and the continuous improvement of computing
power, deep learning began to be applied in the fields of target tracking and target
detection.

In 2013, Wang and Yeung [4] proposed the use of the stacked denoising autoen-
coder (SADE) to extract the target features from a large number of data by unsuper-
vised pre-training, and then use the particle filter to track online. This is the first
tracking algorithm that applies depth models to single target tracking tasks. In 2014,
Wang and Yeung proposed SO-DLT [5], which is a successful application of large-
scale CNN in target tracking. Long and Shelhamer proposed the FCNT [6], its char-
acteristic is expressing the difference and connection in the target attributes by
exploring the CNN features of different layers and using tiny convolution neutral
network to make them sparse. These measures can effectively prevent the drift of the
tracker and have better robustness to the deformation of the target itself. Nam and Han
proposed pre-training CNN by tracking videos directly to obtain general target
expression ability and using an innovative multi-domain training method [7]. It wined
over other contestants in the VOT-2015 Challenge, it is also the first time that there is
alternate training in tracking. In 2016, Held put forward a deep vision tracking algo-
rithm named Generic Object Tracking Using Regression Networks. GOTURN uses
offline learning to learn through a large number of video and picture samples [8], so
that the network can learn the appearance models and motion models of objects, it is
the first time that the target tracking algorithm using depth learning achieves 100 FPS.

At present, the mainstream target detection algorithm is mainly based on the deep
learning model. It can be divided into R-CNN algorithm based on region proposal [15],
such as Fast R-CNN [16], Faster R-CNN [17], and end to end algorithm, such as
YOLO [18], SSD [19]. The Faster R-CNN algorithm is widely used for the moment,
which can be regarded as the combination of Region Proposal Network (RPN) [17] and
fast R-CNN and uses the idea of shared convolutional layer to reduce the computa-
tional burden of proposal generation.

Before GOTURN was proposed, most of the tracking methods based on deep
learning cannot meet the real-time requirement [12–15], it is the first model which
makes the real time tracking with deep learning is possible. However, the tracking
effect of GOTURN algorithm still needs to be improved in the cases of blurred target
and target occlusion, and the loss of target often occur. Therefore, we hope to establish
a tracking model to achieve impressive success in robust tracking.

Pedestrian is a non-rigid target, the complexity of its scenes and shape changing,
view changing makes pedestrian tracking has been a difficult challenge in the field of
computer vision research. The tracker could use the information from previous frames
to lock the target efficiently but do not work well in complex situations. On the
contrary, a well pre-trained target detector could detect the pedestrians easily under the
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condition of motion blur or partial occlusion. Therefore, we consider integrating the
advantages of tracking and detection and propose a new model which combines
detection and tracking to achieve long term robust tracking for pedestrians using the
idea of tracking-by-detection.

The pedestrian tracking model built by us includes 3 layers, the first layer is a target
tracker used GOTURN algorithm and the third layer is a target detector used Faster
R-CNN. The most important second layer is to judge the tracking result and decide
whether to call the detector according to the judge result.

The way to judge the result is to calculate the similarity between the two crops of
the tracking target and the tracking result. We cannot directly compare two pictures,
considering that the target is moving and the shape of the target or the angle of view
may change. But at the same time, the color of the target will be roughly the same in a
short time. Therefore, we consider using color histogram algorithm [21] to compare
similarity between tracking result and tracking target.

In order to improve the accuracy of classification of tracking results, we abandon
the traditional two-branch decision and adopt the three-way decision theory in the
second layer. In 2009, Yao proposed three-way decision theory [9–11] based on
decision rough set theory. Today, three decision-making theories have been widely
used in many fields. So far it has been widely used in many fields, such as emotional
classification [23] and image classification [24].

In general, our model could improve the accuracy of tracking results efficiently
especially in some challenging cases such as fast motion, motion blur and occlusion.

The main contributions of this paper are as follows:

• Construct a long term robust pedestrian tracking model by combining the tracker
and detector. Use the detector to correct the tracking result.

• Design an algorithm based on three-way decision to judge the tracking result by the
feature of color histogram and decide the appropriate time to call the detector.

• Determine the appropriate threshold to get accurate tracking model.

The rest of the paper is organized as follows: In Sect. 2, we introduce the related
work. In Sect. 3, we describe our model. In Sect. 4, we present the experiments and
analyze the results. We make the conclusion in Sect. 5.

2 Related Work

2.1 The Faster R-CNN

Since the concept of deep learning has been introduced in many computer vision tasks,
especially target detection, there were a lot of algorithms have been proposed which
based on CNN. Both the R-CNN [15] and the Fast R-CNN [16] rely on the CNN to
extract the feature form the proposals. But the speed of proposal generation is not good
enough. Therefore, to reduce the computational burden of proposal generation, the
Faster R-CNN was proposed. It could be considered as a combination of the Region
Proposal Network (RPN) [17] which could extract proposals quickly and the Fast
R-CNN detector whose purpose is to refine the proposals. The most important idea of
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the Faster R-CNN is that the RPN share the convolutional layers with the Fast R-CNN,
as Fig. 1. In this way, the image could pass through the CNN only once and could
extract proposals efficiently.

In the Faster R-CNN model, an input image firstly passes through the Conv layers
which was made up of 13 convolutional layers, 13 ReLU layers and 4 pooling layers to
extract the feature map of the whole image. Then use the feature map as the input of
RPN to get the region proposals. The RoI pooling gathers the proposals and the feature
map and to create the proposal feature maps and sends them to the classifier to calculate
the class value and process with regression to get the accurate bounding-box.

2.2 Generic Object Tracking Using Regression Network (GOTURN)

There were many algorithms of tracking a single object in a video using deep learning,
but the speed of them is too difficult to be assured. So, Held proposed GOTURN which
is faster than previous algorithms and can track at 100 FPS [8]. It takes offline pre-
training by massive images and videos.

Fig. 1. Network architecture for Faster R-CNN [17].

Fig. 2. Network architecture for GOTURN [8].
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As seen from Fig. 2, if the target located in the bounding-box centered at c = (cx, cy)
with a width of w and a height of h in previous frame, it takes two crops of the previous
frame and the current frame at c = (cx, cy) with a width of k1w and a height of k1h. Then
input these crops into the convolutional layers. It supposes that the target object is not
moving too quickly and will be located within this region. The outputs of the network
are high-level features and are then fed through the fully connected layers. The fully
connected layers compare the feature from the current frame and the feature of the
previous frame to find where the target has moved.

2.3 Three-Way Decision

In the well-known two-branch decision-making model, only acceptance and rejection
are generally considered, but this is often not the case in practical application. Based on
the rough set theory proposed by Pawlak [20], Yao’s three decision-making theories
provide a third alternative to acceptance and rejection: non-commitment [9–11]. The
idea of three decision-making is based on three categories: acceptance, rejection and
non-commitment. The goal is to divide a domain into three disjoint parts. Positive rules
acquired from positive domain are used to accept something, negative rules acquired
from negative domain are used to deny something, and rules that fall on boundary
domain need further observation, which called delayed decision-making. This way of
decision-making describes the thinking mode of human beings in solving practical
decision-making problems and has been widely used in decision tree [20] and other
fields.

3 The Proposed Algorithm

3.1 Tracking by Detection Model

The tracking algorithms based on deep learning have been deeply investigated in recent
years. However, the reality is rather more complicated and the trackers may occur the
loss of target in the complex environment. It is because that most of trackers could use
the information from previous frame to get the result in the current frame. If the target
object moves too fast or it is occluded by other object, the tracker could not get the
matching information in the search region and it is likely to lose the target.

In this paper, our research focus on improving the tracking effect in complex
situations. For example, our solution of partial occlusion is to introduce a checking
scheme based on three-way decision into the model (see as Fig. 3). We use the
checking scheme to judge the tracking result to determine if it is occluded, then renew
the standard according to the judge result. This method can guarantee the robustness of
the standard to the occlusion. In our model, we draw lessons from the idea of tracking
by detection. After judging the tracking result, we call the detector when the result is
wrong. The detector will get the coordinates of all the pedestrian and select the result
which is the most similar to the standard to correct the tracking result. The main
notations in this paper are listed in Table 1.
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3.2 Picture Similarity Discriminant Model

In the long-term tracking tasks, there are many different instances of the tracking result.
In the model, we need to make one of three decisions: (a) accept it if it is correct;
(b) reject it if it is wrong; (c) delay judgment if it is uncertain. Since the tracker just
gives the result which is the most possible, we need to judge the result by calculating
the similarity between the tracking result and the tracking target. We set two threshold
and judge the tracking result is correct if meeting the condition1: sim1 [ Th�corr and
is wrong if meeting the condition2: sim1\Th�wrong. The condition1 guarantees that
the crop of result in previous frame is similar to the crop of tracking result in the current
frame. We define the condition under the hypothesis that meeting the condition means
that the tracking result is not wrong (see Algorithm 1). The condition2 guarantees that

Fig. 3. Framework of our model.

Table 1. List of main notations.

Variable Explanation

Imgt�1 The previous frame
Imgt The current frame
ci ¼ ðcxi; cyiÞ The center of bounding box of tracking result in frame i

ðwi; hiÞ The width and height of bounding box in frame i
bboxi The bounding box in the frames i
cropi The crop at ci = (cxi, cyi) with (k1wi, k1hi)
st The standard of tracking
j The sequence number of the standard frame
sim1 The similarity between the bboxt and bboxt�1

Dt ¼ fdt1; � � � ; dtng The detection results of the frame Imgt, including n results
Th�corr The threshold to determine if the result is totally correct
Th�wrong The threshold to determine if the result is totally wrong
Th�occl The threshold to determine if the result is partial occluded
Th�frm The threshold to determine if the standard has not been renewed for a

long time
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the crop of result in previous frame is totally different to the crop of tracking result in
the current frame.

However, there is also a situation that the tracking result is not wrong while the
target is partial occluded. If this situation has not been considered, it may cause the
accumulation of errors and will loss the target a few frames later. Thus, we need to
judge the result again which we think is correct by the similarity between the result and
the tracking target. We establish a Occl-Judge model. We set a threshold and judge the
tracking result is not partial occluded if meeting the condition: sim1 [ Th3. If the
tracking result satisfies this condition, we can assume that the tracking result in this
frame is almost precisely the same to the tracking result in the previous frame.

3.3 Renew Standard Model

Under the theory of color histogram, we build a tracking by detection model based on
the color histogram (see Algorithm 2). The first layer is the tracker used GOTURN, and
the second layer includes judging whether the result is correct and whether the result is
partial occluded. The third layer is the detector (Faster R-CNN). We put Imgt into the
first layer, send the tracking result bboxt to the discriminant layer. Next, the discrim-
inant layer calculates the similarity and make one of two decisions: (a) the result is
correct and put the result to the Occl-Judge Model to renew the standard; (b) the result
is wrong and call the detector.

If the result is correct, we set the crop as the bounding-box. If the result is uncertain,
we calculate the similarity between bboxt and st, get the sim2 (We initialize the st to the
bbox1). The model need to compare sim2 with Th�occl and make one of two decisions:
(a) the result is almost the same to the standard; (b) the result may be partial occluded.

528 Z. Wang et al.



If the tracking result is not partial occluded, we renew the standard. If the tracking
result is partial occluded, we need to return the tracking result as the final result without
renewing the standard. But if we do not renew the standard for

a long time, that may be the object has moved too quickly or the angle of the view
changed a lot. We need to force the model to update the standard.

If the result is wrong, we believe we have lost the tracking target. Then we input the
Imgt to the detector layer and get all the detection results of pedestrian. We calculate
the similarity between dti and st, get the simti. We will choose the final result from Dt.
Model computing see Formula (1).

i ¼ indexðmaxðdt1; dt2; � � � ; dtnÞÞ ð1Þ

We will choose the detection result which is the most similar to the standard.
Return the ith detection result as the final tracking result.

To sum up, our model could handle some special cases and can avoid losing of the
target efficiently.
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4 Experiments

4.1 Training

In this paper, we do experiments on a deep learning framework named Caffe. We train
the Faster R-CNN detector using the Caltech Pedestrian Dataset and the Pascal
VOC2007. The Caltech Pedestrian Dataset consists of approximately 10 h of 640�
480 30 Hz video taken from a vehicle driving through regular traffic in an urban
environment. It has about 250000 frames with a total of 350000 bounding boxes. The
Pascal VOC2007 dataset has 20 classes. It contains 9963 images and 26460 bounding
boxes. We only use the labels of pedestrian in the dataset to train our model. We choose
the VGG16 model and set the number of iterations to be [80000, 40000, 80000,
40000]. The mAP of the detector is 0.763 when use the Caltech Pedestrian Dataset. The
mAP is 0.777 when use the Pascal VOC2007. And the further experiment shows that
the model trained by the Pascal VOC2007 perform better in the deformed cases.
Therefore, we select the Pascal VOC2007 pedestrian part to train the detector for the
subsequent applications.

4.2 Test Set

Our test set consists of the 16 videos from the OTB-100 Dataset [10] and 14 videos
from the VOT 2015 Tracking Challenge [22]. Both of the OTB-100 and the VOT 2015
are standard tracking benchmarks that allow us to compare our tracker to a wide variety
of other trackers. All the videos we selected take pedestrian as tracking targets. The
trackers are evaluated using two standard tracking metrics: precision and success rate,
which range from 0 to 1.

Each sequence is annotated with a number of attributes and we mainly focus on
occlusion and motion blur. The trackers are also compared with each other for sepa-
rately from these two attributes.

4.3 Results

In order to select completely correct and incorrect tracking results from the three
decision-making branches, experiments show that when the similarity of two croppers
of person exceeds 0.95, they are basically identical, and when the similarity is less than
0.75, they are different. So in this experiment, we set Th�corr 0.95, set Th�wrong
0.75 and set Th�occl 0.98. We use the tracker of GOTURN, MDNet and our model to
get groups of the bounding box coordinates. Then we get the coordinates of the ground
truth boxes from the corresponding data.

Calculate the center location error of every frame in the test dataset. Define the
center location error as the average Euclidean distance between the center locations of
the manually labeled ground truth box and the center locations of bounding box in
every frame. This metric can show the performance for the whole sequence. The
precision is defined as the percentage of frames whose center location error is less than
the location error threshold. It can evaluate the overall tracking performance.
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Calculate the bounding box overlap of every frame. The overlap is the value of the
intersection of bounding box and the ground truth box divide the value of the union of
these two areas. The success rate, defined as the percentage of the number of the frames
whose overlap is not less than the threshold could measure the performance of the
video.

Fig. 4. Success rate plot and precision plot for all 30 sequences. Best viewed in color.

Fig. 5. Success rate plot and precision plot for sequences with attributes: occlusion, motion blur.
Best viewed in color.
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As can be seen in Fig. 4, both of the success rate and the precision of our model is
higher than GOTURN algorithm but lower than MDNet. In the calculation results we
can see that the precision of our model is 0.655 when we set the location error
threshold = 20. And the success rate of our model is 0.5891 when the overlap
threshold = 0.5. This suggest that certain improvement in the overall performance of
our model is observed but there is still room to growth.

The sequences in the test dataset are annotated with attributes. It can be seen from
the attributes that what challenges the trackers will face in the sequences [9]. According
to the purpose of establishing a long-term robust tracker, we report results for two
attributes in Fig. 5: occlusions, motion blur.

When we set the location error threshold of occlusion = 20, we can see that the
precision of our model is 0.641 while the precision of GOTURN is 0.416. The success
rate of our model and GOTURN are 0.556, 0.445 when the overlap threshold of
occlusion = 0.5.

When we set the location error threshold of motion blur = 20, the precision of our
model and GOTURN are 0.682 and 0.315. The success rate of our model and
GOTURN are 0.670 and 0.279 when the overlap threshold of motion blur = 0.5.

Overall, the performance of our tracking-by-detection model is more stable in
occlusion or motion blur situations. The experimental results show that our model can
effectively improve the accuracy and the stability of long term pedestrian tracking
compare with a single tracker based on GOTURN.

5 Conclusion and Future Work

In this study, we integrate target tracking and target detection to build a tracking-by-
detection model. The results of experiments show that our model can effectively
improve the accuracy of long term pedestrian tracking especially in the cases of
occlusion and motion blur. The contributions of this paper are: (i) Judging the tracking
result whether it is wrong by using the color histogram. (ii) Introduce the tracking
standard and call the detector to make modifications to the tracking result.

In future work, we will do more experiments to adjust the threshold to prove the
precision of the tracking and increase the speed of our model.
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Abstract. Rough sets theory is a powerful mathematical tool for modelling
various types of inexact, incomplete or uncertain information. Rough sets theory
and its applications have attracted significant attention among researchers and
extensive research has been carried out since it was first proposed by Pawlak in
1982. This paper presents a panorama of rough sets and quantitatively analyzes
the developments of rough sets research by scientometrics approach. The bib-
liometric analysis is conducted based on 11833 Web of Science indexed papers
published from 1982 to 2018. The science mapping tool, VOSviewer, is
employed to cluster the documents and to assist in summarizing the important
publications over the last ten years. The results are presented in the following
aspects: development stages over the recent two decades, thematic structure of
publications, citation distribution on subjects, core journals and conferences,
international research collaboration profiles and top scholars. The results can
benefit the scholars who want to go further in future research of rough sets.

Keywords: Rough sets � Bibliometric analysis � Research theme �
Institutes performance � Cooperation network � Scholars distribution

1 Introduction

1.1 A Subsection Sample

Rough sets theory (briefly, RS) was proposed by Pawlak in 1982. Many complicated
problems in economics, engineering, environmental science, medical science and social
science may not be successfully solved because of various uncertainties arising in these
problems. Motivated by the practical needs, RS models are developed to extract
knowledge from incomplete, inaccurate and uncertain data sets.

The brilliant approach to classifying objects with their features and the introduction
of approximation spaces can cope with large scale and diverse data easily. RS enables
dealing with data granularity, which establishes the foundations of granular computing
and provides an incisive approach to pattern recognition.

In the light of dealing with practical problem effectively, many researchers and
practitioners have been imparted the study of hybridizations combining RS with other
mathematical structures that are distinct but closely related. The RS blending with
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fuzzy sets, soft sets and neural network has been studied in recent years and some
hybrid uncertain models occur [1]. Pawlak [2] has listed a wide range of applications of
methods based on RS including machine learning, pattern recognition, data mining,
knowledge discovery, bioinformatics, medicine, multicriteria decision making [3],
signal processing, image processing, hierarchical learning, ontology approximation.

This paper presents a bibliometric profile of RS and quantitatively analyzes the
developments of RS research by scientometrics approach. We will carry out biblio-
metric analysis to gain more insights in the domain of RS.

2 Data Source and Methodology

Bibliometric analysis helps to identify the influential works and to reveal some rela-
tions between academic entities. By adopting bibliometric analysis researchers will
easily locate their positions in the research area and find new points for future research.
The bibliographic metadata of literatures provided by publishers have abundant
information for statistical treatment to evaluate the research performance of researchers,
journals, countries and institutions [4–6]. Bibliographic coupling analysis is often used
to outline the publications in a certain field [7, 8]. When two articles reference a
common third article in their bibliographies, the two articles have bibliographic cou-
pling, indicating that they study a related subject matter, and the similarity of their
bibliographies can be defined as “coupling strength”. The more citations to other
articles they share the higher coupling strength they have.

The bibliometric maps in this paper are constructed by VOSviewer (www.
vosviewer.com). It can be used to cluster publications and to analyze the resulting
clustering solutions related to citations, co-occurrence (i.e. co-authorship and co-
institute), bibliographic coupling and co-citations in bibliometric map.

The bibliographic data are obtained through the Clarivate Analytics’ Web of Sci-
ence™ (WoS), which contains 7 core collection databases, including SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH. To analyze
the distribution characterizations of the literatures, the related information is extracted
from particular fields of the metadata downloaded from WoS. We retrieve 11833
papers by the query as follows: TS = (“rough set$” or “rough fuzzy set$” or “rough
soft set$”) and PY = (1982–2018). We use the ($) in the search as a wild card character
to make our search simpler and more comprehensive as it will track all possible forms
of the terms used (i.e. set or sets).

3 Academic Development of RS

3.1 Development Stages

The line in Fig. 1 shows the number of RS paper publications by year from 1999 to
2018. The documents can roughly be classified into two types, proceeding papers and
journal articles, as indicated by bars in Fig. 1. In fact, we used “Meeting Abstract OR
Meeting Summary OR Proceedings Paper” for searching proceeding papers, and
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selected “Article OR Editorial Material OR Letter OR Review” to obtain journal
articles, and found that few other document types left. If one paper is both labeled
article and proceeding paper, it will be treated as article.

As shown in Fig. 1, the number of articles published before 2001 is relatively
small. There is a rapid growth from 2002 to 2009, and then the annual paper publi-
cation number drops below 800 and grows slowly but steadily from 2010 to 2018.
Compared with that of the previous decade, the proportion of journal articles has
increased and gradually exceeded that of conference papers in the 2010–2018 period.
For these reasons, the period from 2002 to 2009 can be considered as a growth period
of RS, and the 2010–2018 period can be interpreted as mature period. During the
growth period many conferences have been held and publishing articles in journals is
relatively difficult, while during the mature period journal articles have thrived.

3.2 Theme Clustering

To illustrate the general situation of original researches of RS in the last decade from
2009 to 2018 that covers the mature period, bibliographic coupling network of the
documents is made by Vosviewer (Fig. 2). Bibliographic coupling of papers, as pointed
out before, shows the relation between papers that citing at least one same other paper.
This relationship provides the basis for topic clustering. It is proved to be an efficient
approach for grasping the main themes of a research area of some scale.

As is shown in Fig. 2, every bubble shows its citations by the size. The nodes with
less than 20 citations have been cut off to make the figure more readable. The articles
published in the last three years have not got citations sufficiently. In order to make the
newly published articles that are not sufficiently cited displayed fairly with the old ones,
the papers’ citations of each year are weighted by a factor calculated from the citation
trends of the previous three years.

Fig. 1. RS publication year distribution in WoS.
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Clusters with different colors reflect different themes of this area. We will explore
and explain the themes of these clusters one by one by scanning the larger nodes in
every cluster.

Red Cluster: Dimensionality Reduction and Its Application
One of the major limitations of the traditional rough set model in the real applications is
the inefficiency in the computation of core attributes and reducts. Jensen and Shen [9]
provided the approaches of fuzzy-rough feature selection for dimensionality reduction.
Chen et al. [10] proposed a RS approach to solve feature selection problems suc-
cessfully by using ant colony optimisation, which adopts mutual information based
feature significance as heuristic information. Qian et al. [11] introduced a positive
approximation framework to accelerate a heuristic process of attribute reduction. Wang
et al. [12] proposed an index to characterize the discrimination of a neighborhood
relation for their feature selection algorithm. He et al. [13] combined RS theory, data
envelopment analysis and fuzzy artificial neural network to explore the effects of
influencing factors on industrial energy efficiency. Cai et al. [14] improved the pre-
diction of sensitive information by using RS approach to avoid inference attack for
social network. Choudhary et al. [15] reviewed the multiple approaches of knowledge
discovery and data mining applied in manufacturing process.

Green Cluster: Hybrids of RS
The RS hybridization with fuzzy sets has been studied much from early time because of
the natural correlation between fuzzy sets and RS. Dubois and Prade [16] clarified the
difference between fuzzy sets and RS and developed the concept of fuzzy RS to deal
with numerical and fuzzy attributes. Yao [17] compared theories of fuzzy sets and RS

Fig. 2. Articles clustering by bibliographic coupling. (Color figure online)
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and pointed out that RS under set-oriented view are closely related to fuzzy sets. Wu
et al. studied generalized fuzzy RS [18] and related approximation operators [19] in
which both the constructive and axiomatic approaches are used. Yeung et al. [20]
presented a unified framework for fuzzy RS theory and set up its mathematical
foundation for extending its applications. Hu et al. [21] introduced a simple and effi-
cient hybrid attribute reduction algorithm based on a generalized fuzzy-rough model
that can keep or improve the classification power with very few features. Mi and Zhang
[22] extended approximation concepts to generalized fuzzy lower and upper approxi-
mation operators.

Besides, another kind of hybrid uncertain model, soft RS can be observed in this
cluster. Soft sets, introduced by Molodtsov [23] in 1992, are a special case of context
dependent fuzzy sets. Maji et al. [24] first presented an application of soft sets in a
decision making problem with the help of RS. Chen et al. [25] then compared the
parameterization reduction of soft sets with the attribute reduction in rough set and
improved the application of a soft set in a decision-making problem. Aktaş and Çaǧ-
man [26] compared soft sets to RS and Feng et al. [27] expanded soft sets to rough soft
sets by embedding RS. In recent years rough soft sets and soft rough sets are mainly
used in decision making problems [28]. Feng et al. proposed the hybrid models rough
soft sets [27] and soft RS [29]. Zhan et al. [30] merged RS, soft sets and hemirings to
provide soft rough algebraic structures. They [31] also extended the notion of soft RS
and rough fuzzy sets to study roughness in hemirings.

Blue Cluster: Three-Way View Decision
The three-way decision-theoretic RS model was proposed by Yao [32]. The three-way
decisions theory considers a decision-making problem as a ternary classification one.
The positive, negative and boundary regions are associated with different levels of
uncertainty. Yao [33] discussed the advantages of three-way decision in probabilistic
rough set models.

Li and Zhou [34] proposed a three-way view decision model based on decision-
theoretic RS. Herbert and Yao [35] investigated the Game-theoretic RS to reduce the
boundary region in the decision problem. Sun et al. [36] constructed a multigranulation
fuzzy decision-theoretic three-way group decision making method. Li et al. [37]
developed an axiomatic approach to characterize three-way concepts. The three-way
decision model has been used in face recognition [38] and recommender system [39].
Yu et al. [40] investigated the method for automatically determining the number of
clusters by the decision-theoretic rough set model. Qi et al. [41] presented the con-
structing of three-way concept lattices based on classical concept lattices. Jia et al. [42]
provided the minimum cost attribute reduction method for decision-theoretic RS
models.

The Rest Clusters
The remaining clusters focus on some special extensive research themes which have
not been studied too much. The yellow cluster studies covering-based RS. In RS
theory, relation-based RS and covering-based RS are two important extensions of the
classical RS. Covering-based RS [43] is a successful generalization for the Pawlak’s
model to make use of non-equivalence relations. Zhang et al. [44] recently established
some constructive methods of rough approximation operators to make the equivalence
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relations in RS not too restrictive for practical applications. The pink cluster focuses on
multi-granulation RS which was developed by Qian [45] to extend Pawlak’s model to a
multi-granulation RS model using multi-equivalence relations. In addition, a growing
research interest of neighborhood RS [46] is observed in recent years for its effec-
tiveness of dealing with data of multi-granularity [47]. Finally, the bright blue cluster is
mainly concerned with formal concept analysis and RS.

3.3 Subject Distribution of Citations

The total number of citations to RS research articles is larger than 39,200 and is
increasing quickly. The citations come from different subject areas in WoS. Some
interesting areas are selected to reveal the extension of RS researches to the compli-
cated world.

Figure 3 shows some research areas with increasing RS research citations. Com-
puter science and mathematics are the circumstances that give birth to RS. The other
areas like management science and environmental science may give the application and
development environments for RS. RS researches have been increasingly applied to
power industry [48], natural resources sustainable utilization [49], medical diagnosis
and prognosis [50] and synthetic materials design [51], etc.

4 Journals and Conferences Analysis

4.1 Core Journals

There are 4427 papers published on 778 journals in WoS from 1999 to 2018. The top
10 journals are listed in Fig. 4 and Table 1.

Fig. 3. Some research areas that citing RS from 2009 to 2018. (Color figure online)
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The journals are chosen according to the total number of papers on RS, and the
number of citations got over the period is also taken into consideration. The longitu-
dinal coordinates are set to the same range so that the annual documents can be
compared. The two periodicals, Information Sciences and Knowledge Based Systems
are the mostly cited journals in RS researches. The number of documents on RS in
these periodicals has an obvious growth trend in recent years.

The number of RS research articles in Expert Systems with Applications was rel-
atively large over the particular period of 2009–2012, but it has remained at a low level
in recent 6 years. In Journal of Intelligent & Fuzzy Systems, by contrast, the number of
RS theory papers has thrived these years.

Fig. 4. Annual documents benchmarking for the top journals on RS researches.

Table 1. Profile of the top journals.

Journal name Documents Citations Journal
IF

Quartile

INFORMATION SCIENCES 417 19156 4.305 Q1
FUNDAMENTA INFORMATICAE 279 2608 0.725 Q3
KNOWLEDGE-BASED SYSTEMS 229 4754 4.396 Q1
JOURNAL OF INTELLIGENT &
FUZZY SYSTEMS

180 517 1.426 Q3

INTERNATIONAL JOURNAL OF
APPROXIMATE REASONING

178 4744 1.766 Q2

EXPERT SYSTEMS WITH
APPLICATIONS

172 4456 3.768 Q1

APPLIED SOFT COMPUTING 106 1825 3.907 Q1
INTERNATIONAL JOURNAL OF
MACHINE LEARNING AND
CYBERNETICS

89 543 2.692 Q2

SOFT COMPUTING 88 1041 2.367 Q2
EUROPEAN JOURNAL OF
OPERATIONAL RESEARCH

61 4488 3.428 Q1

540 W. Wei et al.



Table 1 gives an outline of the top journals and the last impact factors and the
quartiles are listed. In addition to considering the fitness of the article to the subject of a
journal, the international influence and status of a journal should also be taken into
account.

4.2 Important Conferences

For computer science research, conference papers are sometimes more important than
journal articles. There are about 4000 proceeding papers of RS recorded in WoS,
including 2 highly cited papers in this period. The number of the proceeding papers is
larger than that of the journal articles in WoS in the recent decade. But in the last
decade, the conference papers are much more numerous than journal articles, which
can be seen from Fig. 1.

The eight top conferences in RS research field are selected from 1999 to 2018
according to the number of papers, as shown in Table 2.

Proceeding papers have been indexed in these database: SCI-EXPANDED, SSCI,
A&HCI, CPCI-S, CPCI-SSH. For some conferences, the number of papers in WoS
databases might be smaller than that published actually in the conferences. The quality
of papers in a conference may affect their number included in the database. The annual
heatmap of papers in the top eight conferences is shown in Fig. 5. The labels of the
horizontal ordinate refer to the abbreviations in Table 2.

Some conferences have changed over the past two decades. Since 2015, IJCRS has
integrated the four conferences, RSKT, RSFDGrC, RSCTC and RSEISP (whose full
name is Rough Sets and Intelligent Systems Paradigms), which are the major threads of
RS conferences. FSKD has been held as part of International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) from 2016.

Table 2. Top conferences in RS research field from 1999 to 2018.

Conference name Abbreviation Papers

International conference on rough sets and knowledge technology RSKT 377
International conference on machine learning and cybernetics ICMLC 309
International conference on rough sets fuzzy sets data mining and
granular computing

RSFDGrC 289

IEEE international conference on granular computing GrC 226
International conference on rough sets and current trends in
computing

RSCTC 216

International conference on fuzzy systems and knowledge
discovery

FSKD 174

International joint conference on rough sets IJCRS 128
IEEE international conference on fuzzy systems FUZZ-IEEE 120
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5 Main Institutes and Scholars of RS Research

5.1 International Collaborators

The collaboration between countries or regions is shown in Fig. 6. The line thickness
of each pair of countries or regions represents the strength of the collaboration. The
colors of labels represent the clusters which are calculated by their links’ similarity in
VOSviewer. If some countries or regions often link to each other or if they have the
same links with the other nodes, they tend to be classified in the same cluster.

In Fig. 6, we can see Mainland China, USA, Canada and Poland have established a
tight group in the center, which features the close relationship of their cooperative RS
research. Saudi Arabia England and Japan also have relatively strong partnership with
China.

Fig. 6. Co-occurrence of country/region for RS research from 2009 to 2018.

Fig. 5. Annual heatmap of the top conferences.
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5.2 Main Institutes

Since more than half of the RS research articles are from China, the rankings of the
institutions from other countries would be forced to sink. To avoid this, we select the
top three influential institutes according to their citations in WoS for the eight top
countries chosen from the map of Fig. 6, and these 24 institutes are compared in the
number of documents and citations simultaneously in Fig. 7.

The main influential institutes are labeled in Fig. 7. Those organizations with less
than 50 documents and less than 500 citations are too close to be labeled on the figure.
It can be noticed that Southwest Jiaotong University has more papers than the others,
but University of Regina has received more citations than any other institutes. Tongji
University is very close to Polish Academy of Sciences both in the number of docu-
ments and citations. Poznan University of Technology and Indian Statistical Institute
are about the same on citations but have different numbers of documents.

5.3 Top Authors

The cooperation networks of authors with more than 30 papers and 15 citations in the
recent decade are shown in Fig. 8. The sizes of the nodes represent the amount of
papers the authors have published in the RS area. To highlight some of the most
productive authors and to distinguish them from their affiliations, the authors with more
than or equal to 50 articles are marked with different colors according to their recent
institutes. The other authors are all labeled by ‘_’ in gray.

Min from Southwest Petr University, Liang and Qian both from Shanxi University
have the broadest range of cooperation. They all have collaborated with up to 9
scholars in the co-author network. Only two of the top authors are not Chinese, Pedrycz
from Univ of Alberta and Slowinski from Poznan Univ Tech. Pedrycz has cooperated
much more with Chinese than Slowinski in RS area.

Fig. 7. Comparation in the number of documents and citations of the top institutes.
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5.4 Chinese Scholars

From the above section, we see that most productive authors come from China. The RS
research in China is growing very quickly in recent years. We further analyze the city
distribution of Chinese RS community.

Figure 9 shows the main cities of RS researches distributed in China. The number
of papers of each city is extracted from address field of bibliographic meta data
downloaded from WoS. Full counting is used, i.e. if two cities co-exist in the address of
scholars, the amount of papers of each city will increase by 1.

There are 4295 literatures contributed by Chinese scholars about RS indexed in
WoS in recent decade. The scholars are distributed in 190 cities in China. The figure is
drawn by pyecharts, and cities with fewer than 10 papers are cut out to make the main

Fig. 8. Cooperation network of authors with more than 30 papers and 15 citations from 2009 to
2018. (Color figure online)

Fig. 9. The distribution of cities in China with more than 10 RS papers.
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cities noticeable. Among those cities, Beijing has gathered most scholars (617 papers),
followed by Chengdu, Xi’an, Shanghai and Nanjing whose numbers of papers are 417,
329, 321 and 283 respectively.

The top Chinese authors are listed in Table 3, and their institutes and their most
frequently published journals are shown. These Chinese scholars are also highlighted in
Fig. 9 above.

Most of the top authors prefer to publish articles in INFORMATION SCIENCES.
They also favour KNOWLEDGE BASED SYSTEMS and INTERNATIONAL JOUR-
NAL OF MACHINE LEARNING AND CYBERNETICS, etc.

6 Conclusion and Discussion

This paper provides the comprehensive analysis of research landscape on research of
rough sets. We use WoS databases and provide the overview of RS by conducting the
bibliometric analysis of 11833 papers published from 1982 to 2018. First, from the
distribution of publication, we identify the main development stages over the period
The timespan of the science map covers the years from 2009 to 2018 which allows us
to identify key points of RS research in recent years. We find some research areas citing

Table 3. The top Chinese authors in RS in recent decade.

Author Papers Institute Journal with most publications

LI, TR 110 Southwest Jiaotong
Univ

INFORMATION SCIENCES

ZHU, W 88 Minnan Normal
Univ

INFORMATION SCIENCES

MIAO, DQ 73 Tongji Univ INFORMATION
SCIENCES/KNOWLEDGE BASED
SYSTEMS

WANG,
GY

69 Chongqing Univ
Posts &
Telecommun

INFORMATION SCIENCES

HU, QH 67 Tianjin Univ INFORMATION SCIENCES
LIANG, JY 66 Shanxi Univ KNOWLEDGE BASED SYSTEMS
WU, WZ 64 Zhejiang Ocean

Univ
INFORMATION SCIENCES

QIAN, YH 63 Shanxi Univ INFORMATION SCIENCES
CHEN, DG 56 North China Elect

Power Univ
INFORMATION SCIENCES/IEEE
TRANSACTIONS ON FUZZY SYSTEMS

XU, WH 51 Chongqing Univ
Technol

INTERNATIONAL JOURNAL OF
MACHINE LEARNING AND
CYBERNETICS

MIN, F 50 Southwest Petr
Univ

INFORMATION SCIENCES
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RS are broadening. Second, we identify the main journals and conferences as well as
their changes over the last two decades. The third part is the analysis of research
collaborations at different granularity of authorship, including the international col-
laboration, the research performance of top organizations in different countries, the
cooperation network of authors, the distribution of cities in China and the top Chinese
scholars.

We apply different approaches to visualize data in form of different illustrative
graphs to make our analysis easy to read and understand. The results of the study can
benefit the researchers who are ready to dive into RS research, as well as those who
have launched the relevant investigation.
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