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Abstract. Background and environmental noises negatively affect the
quality of verbal communication between humans as well as in human-
computer interaction. However, this problem is efficiently solved by a
healthy auditory system. Hence, the knowledge about the physiology of
auditory perception can be used along with noise reduction algorithms
to enhance speech intelligibility. The paper suggests an approach to noise
reduction at the level of the auditory periphery. The approach involves an
adaptive neural network algorithm of independent component analysis
for blind source separation using simulated auditory nerve firing proba-
bility patterns. The approach has been applied to several categories of
colored noise models and real-world acoustic scenes. The suggested tech-
nique has significantly increased the signal-to-noise ratio for the auditory
nerve representations of complex sounds due to the variability in spatial
positioning of sound sources and a flexible number of sensors.
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1 Introduction

Background noises given by single or multiple sound sources are always present
in the environment. In engineering practice, they have a significant impact on
acoustic signal processing. However, human or mammalian auditory systems are
less responsive to noise than computational systems, as they process sensory
signals of the auditory periphery using high-level neuronal structures that form
biological neural networks.

Humans can concentrate attention on a certain acoustic source, e.g. the
speaker’s voice, despite the variability of the sound environment. This allows
for verbal communication in noisy environments, including conditions of multi-
talker babble noise. This phenomenon of auditory perception is widely known
as the “cocktail party effect”, accentuated by E.C. Cherry back in 1953. It rep-
resents a unique hearing ability that enables extracting the necessary acoustic
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signal source in the presence of varied background noises. In psychoacoustics,
this feature is associated with auditory scene analysis (ASA) [1]. ASA is related
to the problem of acoustic scene, event, or source recognition through the percep-
tual mechanisms of the auditory system. The principles of ASA underlie various
biologically relevant computational studies, which examined the systems of prac-
tical acoustic signal processing and used one or two microphone recordings in the
experimental setup. These studies are known as computational auditory scene
analysis (CASA) [2].

However, there are certain conditions where technical systems of automatic
speech signal processing and acoustic scene analysis may have an advantage over
biological auditory systems. This advantage is due to the fact that microphone
sensors used in the setup can be arbitrarily allocated and optimally positioned in
space. Besides, unlike monaural or binaural hearing, a technical system can have
multiple microphone sensors and channels, which allows improving the quality
of results through information redundancy and appropriate signal processing
[3–5]. Thus, if there are no restrictions on the number and relative position of
microphones, the limitations of CASA can be circumvented.

To create machine hearing and audition systems, it is advisable to combine
the advantages of auditory signal processing with technical capabilities. Auditory
peripheral coding of an input acoustic signal in the form of neural responses
provides a robust representation against background noises [6] due to neural
phase-locking [7]. Furthermore, the representation and parametrization of speech
signals based on the responses of auditory nerve (AN) fibers provides noise-
robust features for automatic speech recognition, outperforming common mel-
frequency cepstral coefficients under certain noise conditions [8–11].

Our study aims to develop a signal processing algorithm for noisy vowel
phoneme representations in the form of simulated AN responses with the purpose
of noise reduction. The approach described in the present paper imitates some
features of biological neural processing. It employs a computational model of the
auditory periphery and an artificial neural network for blind separation of AN
responses. Three different spontaneous rates for signal and noise mixture were
considered in the study.

2 Simulation of the AN Responses

A physiologically-motivated computer model of the auditory periphery by R.
Meddis [9] was used to obtain neural responses of auditory nerve fibers. This
model simulates the temporal fine structure of AN firing for three types of fibers
corresponding to the input speech signal: low spontaneous rate (LSR)—less than
0.5 spikes/s, middle spontaneous rate (MSR)—0.5–18 spikes/s, and high spon-
taneous rate (HSR)—18–250 spikes/s [12]. In the present study, the model was
set to generate a probabilistic firing rate pattern.

The model requires a digitalized speech signal in the WAV format, sam-
pled at 44.1 kHz. The sound pressure level of the input signal was adjusted to
60 dB, as it must correspond to the preferred listening level for conversational
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speech. Further, the signal passes through a processing cascade that simulates
the functions of the outer, middle, and inner ear. The nonlinear mechanical
behavior of the basilar membrane is modeled by a dual-resonance nonlinear fil-
terbank (DRNL) [13]. Each segment of the basilar membrane provides the most
pronounced response for a specific frequency of the acoustic stimulus, which is
defined as best frequency (BF) for sounds near threshold. Thus, DRNL decom-
poses the signal into 41 frequency bands, logarithmically spaced from 250 to
8,000 Hz, corresponding to BFs in the most significant range for speech. The sub-
sequent processing stages simulate stereocilia movement, inner hair cells trans-
duction, synaptic exocytosis, and AN firing.

At the output, the auditory periphery model generates a signal encoded by
the average firing rate of the auditory nerve fibers. The present study compares
the results for three types of AN fibers as mentioned above. Figure 1 demon-
strates a sequence of five English long vowels – clean (first column) and with
additive white Gaussian noise at 0 dB SNR (second column). The duration of
each vowel sound is 300 ms. The figure illustrates AN responses for LSR, MSR,
and HSR fibers correspondingly. Every BF channel of the obtained AN firing
probability pattern provides responses, which are then smoothed using a 20 ms
Hann window and a 10 ms frame shift to extract feature data. Thus, each input
signal is represented by its own multivariate data matrix consisting of 41 spectral
features and an equal number of samples.

Fig. 1. AN firing probability patterns for three nerve fiber types for the vowel sequence:
first column – clear speech signal, second column – signal corrupted by AWGN with
0 dB SNR.
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3 Blind Signal Processing for AN Responses

Let us suppose that the sources of background noise are localized in environment
about the target signal source. In that case, all sound signals are received by all
sensors, but with different intensity, thus forming a linear mixture. Using the
information about signal intensity difference on various sensors, we can solve
the noise reduction problem for the target signal as a problem of blind source
separation (BSS) [14]. Let us assume two mutually independent sound sources.
The first source corresponds to the speech signal represented by a sequence of
vowel phonemes. The second source is localized background environmental noise.
In this case, the blind noise reduction problem [15] comes down to the task of
independent component analysis (ICA).

The paper suggests using blind signal processing to solve the problem of noise
reduction for a speech signal at the level of the auditory periphery. However, a
technical system allows for arbitrary placement of multiple sensors in space,
as distinct from the mammalian auditory system. Therefore, the intensity of
signals may vary significantly, depending on the positions of sources in relation
to sensors. Every sensor is represented by an auditory periphery model that
encodes information in the form of stationary AN firing probability patterns.
In this case, the mixing model of the speech signal and the background noise
remains indeterminate, and source separation is based only on the AN responses
on different sensors.

Let us consider a case where the two aforementioned sound sources are sep-
arated with the use of two biologically relevant sensors. The mixing model is a
transformation of two AN output signals by a non-singular mixing matrix H,
the dimension of which depends on the number of mixed sound sources. If the
sources of mixing are significantly different in amplitude or if the location of
the sensors is chosen poorly, the mixing matrix is ill-conditioned. For a stable
operation of the separation algorithm, it is advisable to perform a decorrelated
transformation of the signal mixture in advance. The use of a decorrelation
matrix makes it possible to present mixed signals in such a way that their cor-
relation matrix is identity: Rx1x1 = E

{
x1xT

1

}
= I. The mixing matrix will take

the form A = QH, where H is the original unknown mixing matrix.
At the output of the auditory periphery model built-in each sensor, a mixture

of sources is formed. Some of the signals represent the neural responses to the
target signal, and others represent the responses to the noise caused by the
sound environment: s (t) = [s1 (t) , s2 (t)]T . The speech signal and the noise are
mixed, and the additional mixture can affect the formed mixture to represent
the intrinsic noise n (t) = [n1 (t) , n2 (t)]T of the system elements. The result of
the conversion is the observed and measured signal x (t) = As (t) + v (t), where
v (t) = [v1 (t) , v2 (t)]T . The task is reduced to the search for the separation
matrix W of the observed signal vector x (t) by means of an artificial neural
network. The matrix W should be such that the estimate y (t) of the unknown
signal vector s (t) would be the result of applying the separation matrix to the
measured signal: y (t) = Wx (t). In other words, the BSS task for the AN firing
rate pattern is reduced to estimating the original signal by searching for the
inverse mixing operator.
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We separate the stationary AN response patterns into components
attributable to signal or noise, assuming the independence of neural responses to
these two factors. The independence condition is determined by the minimum of
information that the neural responses to signal and noise have in common. The
transformation of two-dimensional signals of the AN output X1 (t) ,X2 (t) into
vectors is performed according to the equation: xn(i−1)×j = xi,j . Therefore, the
goal of source separation is to minimize the Kullback-Leibler divergence between
the two distributions – the probability density function (PDF) f (y,W), which
depends on the coefficients of the matrix W and the factorial distribution:

f1 (y,W) =
m∏

i=1

f1,i (yi,W) . (1)

Df ||f1 (W) = −h (y) +
m∑

i=1

h1 (yi) . (2)

where h (y) is the entropy at the output of the separator, h1 (yi) is the entropy of
the i-th element of the vector. For BSS, we used an approximation of probability
density f1,i (yi) by truncating the Gram-Charlier decomposition:

f1,i (yi) ≈ N (yi)

[

1 +
κi,3

3!
H3 (yi) +

κi,2

4!
H4 (yi) +

κi,6 + 10κ2
i,3

6!
H6 (yi)

]

. (3)

where κi,k is the cumulant k-order of the variable yi; H3 (yi) = y3
i −3yi,H4 (yi) =

y4
i − 6y2

i + 3,H6 (yi) = y6
i − 15y4

i + 45y2
i − 15 are Hermite polynomials; N (yi) =

1√
2π

exp
(−y2

i

2

)
is a PDF of a random quantity. The rule of weights correction

when adapting a shared matrix is:

W (n + 1) = W (n) + μ (n)
[
I − ϕ (y (n))yT (n)

]
W−T (n) . (4)

where μ (n) is the convergence rate parameter, ϕ (y (n)) = [ϕ (y1 (n)) , ϕ (y2 (n))]T

is a vector consisting of activation functions, the formofwhich changes in the course
of adaptation. The activation functions change in the learning process, since their
magnitude depends on the observed values yi (n).

4 Results and Discussion

4.1 Experimental Setup

This study addresses the problem of blind noise reduction. A series of computa-
tional experiments was conducted in which noise with different spectral power
distributions was removed from the signal. The study aimed to investigate the
impact of noise on the stationary AN firing probability pattern distortion and
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included different kinds of colored noises on the first stage: white, pink, red, blue,
and violet. White Gaussian noise is a widespread noise model in robustness stud-
ies. In application areas, it is also important to remove pink (or flicker) noise,
whose power spectral density is inversely proportional to frequency. The spec-
tral density of red noise decreases in proportion to the square of the frequency.
The spectral density of blue noise is specular with respect to pink noise, i.e. it
increases with increasing frequency. Blue noise was synthesized using spectrum
inversion. The spectral density of violet noise is inverted with respect to the red
noise frequency spectrum.

On the second stage of blind noise reduction computational experiments,
mixtures with real-world environmental noise were considered, including eight
categories of urban acoustic scenes: airport, travelling by a bus, travelling by
an underground metro, travelling by a tram, street with medium level of traffic,
public square, metro station and indoor shopping mall. To obtain such categories
of the environmental noises a TUT Urban Acoustic Scenes 2018 dataset [16] from
DCASE Challenge was used.

Here is a summary of the experimental setup of our study. In accordance with
the problem statement, we used two sensors and two sound sources. The first
source was a clean speech signal. The second source was interference represented
by one of the aforementioned noise types. On the first stage of computational
experiments with colored noise interferences, the speech signal was a sequence
of English long vowels represented by a multi-frequency complex tone that was
synthesized as a sum of the first five formant frequencies – a speech-related model
sound. Sound mixture had a duration of 1.5 s. On the second stage, the vowel
sequence was pronounced several times by a male speaker. Sound mixture with
real-world noise interferences had a duration of 10 s.

Each sensor received a sound mixture of two sources, with different mixing
parameters specified in the mixing matrix. In this way, a certain spatial location
of each sound source was simulated. Then, auditory peripheral representation
was modelled for the sound mixtures in the form of AN average firing rate
probability pattern. The output data matrices served as inputs for the FastICA
algorithm of blind source separation [17]. The resulting data matrices describe
the unmixed patterns of the corresponding sound sources. Finally, the impact on
the blind noise reduction quality by the increase in the number of sensors from
2 to 8 has been considered.

4.2 Blind Noise Reduction Evaluation

The noise reduction performance for simulated AN fibers response patterns was
evaluated through the signal-to-noise ratio (SNR) and noise intensity measure-
ments. SNR allows estimating the ratio of target signal power to the power of
background noise. For denoised response pattern Y of AN fibers, SNR is defined
as follows:

SNRy = 10log10

(
‖X‖2

‖Y − X‖2
)

. (5)
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where X is the response pattern for the clean vowel sequence. Also, SNR was cal-
culated for the response patterns for initial signal mixtures S1 and S2. The tables
below demonstrate SNR estimation results corresponding to different sponta-
neous rate types of AN fibers and colored noise interferences. Table 1 presents
the initial SNR for sound mixtures on two sensors provided by the mixing matrix,
averaged for the vowel sequence. Table 3 presents the SNR values for the unmixed
AN response pattern for the vowel sequence – a result of blind noise reduction.

Table 1. Initial SNR/dB for a mixture on two sensors by spontaneous rate

Noise White Pink Red Blue Violet

Sensor 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

LSR 10.8 6.9 9.5 2.6 11.5 6.3 11.3 5.4 11.5 8.2

MSR 9.6 5.3 8.2 2.2 9.7 5.8 9.3 5.4 9.5 8.5

HSR 9.1 4.4 7.6 1.9 8.5 5.2 8.2 5.1 8.4 8.1

Table 2. Initial noise intensity for a mixture on two sensors by spontaneous rate

Noise White Pink Red Blue Violet

Sensor 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

LSR 26.7 20.5 27.5 24.1 25.7 15.6 25.6 15.7 25.4 13.9

MSR 106.4 85.6 109.8 100.7 65.9 43.3 101.2 62.6 100.1 54.8

HSR 154.1 128.6 159.2 150.8 93.3 63.4 145.4 91.3 143.7 79.2

The noise intensity for each of 41 BF bands of the AN firing probability pat-
tern can be approximated by the standard deviation. For the resultant response
pattern Y , it can be defined as follows:

σy =

√√
√
√ 1

T

T∑

t=1

(

y(t) −
[

1
T

T∑

t=1

y(t)

])2

. (6)

where T represents the total number of samples. Table 2 shows initial noise
intensity values for the AN response pattern of the two-sensor sound mixture.
Table 4 lists the resulting noise intensity values for the output AN response
pattern obtained through blind noise reduction algorithm.

As can be seen, the results of noise reduction are most representative for HSR
AN fibers. As for MSR and LSR fibers, the performance of blind noise reduction
was poorer for colored noises. While the AN response pattern turned out to be
less sensitive to red noise, the most distortion was made by violet noise. Let us
consider the second stage of computational experiments. Table 5 summarizes the
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Table 3. Resultant SNR/dB for mixture
with colored noise

Noise White Pink Red Blue Violet

LSR 10.9 10.1 15.8 12.7 12.6

MSR 11.4 11.4 16.2 11.9 11.7

HSR 11.5 12.1 16.2 11.4 11.3

Table 4. Resultant noise intensity for
mixture with colored noise

Noise White Pink Red Blue Violet

LSR 44.3 43.8 45.8 45.1 45.1

MSR 45.3 45.3 35.6 45.6 45.4

HSR 45.9 46.1 36.1 45.8 45.6

Table 5. Results of two-sensor blind noise reduction (SNR/dB) for HSR AN fibers:
mixture with real-world environmental noise

Noise Airport Bus Metro Tram Traffic Square Station Mall

Sensor 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Input 6.3 −4.4 6.2 −4.4 5.5 −6.5 6.1 −5.1 4.6 −7.4 4.7 −7.3 7.4 −4.6 4.5 −7.6

Average 0.9 0.9 −0.5 0.5 −1.4 −1.3 1.4 −1.5

Output 7.6 7.5 6.6 6.9 7.2 7.1 6.2 7.2

blind noise reduction results in terms of SNR for a vowel sequence mixed with
real-world environmental noises represented by eight categories of urban acoustic
scenes. These noises largely overlap with the speech range, so their removal is
the challenging task. The location of sound sources with respect to sensors was
set by the mixing matrix so that the average SNR value for the sound mixtures
was approximately 0 dB. As can be seen from the obtained results, the approach
allowed us to improve the average value of SNR by 7 dB. This is a good result
for an initial study.

Fig. 2. Blind noise reduction performance for vowel sequence represented by HSR AN
fibers, depending on the number of sensors: left panel – mixture with colored noises,
right panel – mixture with real-world environmental noises.
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As mentioned in the introduction, technical systems of speech signal process-
ing allow the use of multiple microphone sensors. Therefore, we also evaluated
blind noise reduction performance with increasing number of sensors for an HSR
AN fiber response pattern. As seen from Fig. 2, performance was improved for
the considered types of noise interference with increasing number of sensors,
both for colored noise models and for real-world environmental noises.

5 Conclusions

The paper has suggested an approach to enhancement of noisy speech intelli-
gibility by means of processing the signals of the auditory periphery. We have
considered the task of designing a blind noise reduction system, which uses the
information about the sound sources that is received by biologically relevant
sensors distributed in space. The sensors simulates the processes of encoding
information at the AN level of the auditory periphery. The speech signal, repre-
sented by a sequence of English long vowels, was separated from noise by means
of independent component analysis of stationary AN firing probability patterns.

Two stages of computational studies were carried out – the first stage involved
colored noise models, and the second dealt with background noises of real-world
acoustic scenes. The quality of noise reduction largely depends on the mutual
position of sound sources and sensors. In our case, arbitrary positions were cho-
sen, modelled by a well-conditioned mixing matrix. The suggested approach has
improved the SNR of the stationary AN firing activity pattern for colored and
real-world noises. Besides, an increased number of sensors has demonstrated an
improved quality of blind noise reduction.

An increase in SNR values can also be achieved through the optimization of
quantity and relative placement of sensors in a given acoustic environment. Fur-
ther elaboration of the approach will involve methods of blind signal extraction
and real-time processing of dynamic AN firing activity patterns. The developed
methodology can be used at the stage of pre-processing in machine hearing and
biologically-inspired speech signal classification systems, such as [6,11,18]. Ulti-
mately, it can become part of the new generation of neurocomputer interfaces
and find use in cochlear implants [19].
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