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Abstract. Power system fault detection has been an import area of study for
power distribution networks. The power transmission systems often operate in
the kV range with significant current flowing through the lines. A single fault,
even lasting for a fraction of a second, can cause huge losses and manufacturing
downtime for industrial applications. In this research, we develop an approach to
detect, classify, and localize different types of phase-to-ground and phase-to-
phase faults in three-phase power transmission systems based on discrete
wavelet transform (DWT) and artificial neural networks (ANN). The multi-
resolution property of wavelet transform provides a suitable tool to analyze the
irregular transient changes in voltage or current signals in the network when
fault occurs. An artificial neural network is employed to discriminate the types
of fault based on features extracted by DWT. Computer simulation results show
that this method can effectively identify various faults in a typical three-phase
transmission line in power grid.
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1 Introduction

In today’s society, electricity is a necessity for our daily lives. From large industrial
companies to small households, energy is consumed and always needed to be readily
available. A major issue that power companies face is the power transmission disconti-
nuity due tovarious faults along transmission lines. It is known that thepower transmission
systems often operate at high voltage (in kV range) for lesser resistive losses over long
distance; thus when fault occurs, excessively high current flows through the power net-
work which may cause severe damages to equipment and devices ([1–3]). A single fault,
even when lasting only for a fraction of a second, may affect potentially millions of
customers on the grid and result in huge losses and manufacturing downtime in industry.
These power quality events (PQEs) can be caused by natural disasters, equipment failures,
or human errors. For example, a line-to-ground fault may be caused by a fallen tree limb
that makes contact with one transmission phase line and the ground. If an object, such as a
bird or other animal, makes a contact with two transmission phase lines may result in a
short current of these two phases called a line-to-line fault.

© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11555, pp. 266–272, 2019.
https://doi.org/10.1007/978-3-030-22808-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_27&amp;domain=pdf
https://doi.org/10.1007/978-3-030-22808-8_27


The conventional approach to discover and identify faults in power networks is to
manually analyze the system. However, this method is usually time-consuming and not
very efficient. In recent years, there have been some developments in the applications
of computational intelligent models and algorithms for fault detection and diagnosis. In
[4], support vector machine (SVM) is employed to detect and classify four different
types of faults in a distributed power network. The output of SVM is binary; thus four
SVMs are used in the system and each SVM is trained to detect and classify fault for a
particular phase. In [5], transformer disturbances in power networks are discussed. Two
artificial neural networks (ANN) are connected in cascade form; one for fault detection
and one for classification. Once the disturbance is detected by the first neural network,
the algorithm enables the second ANN to discriminate different types of faults
appropriately. Reference [6] considers the application of a probabilistic neural network
(PNN) with discrete wavelet transform (DWT). The details of dataset and simulation
results are not given. In [7], DWT and neural networks are combined to detect three
different faults for a typical three-phase inverter used in power systems. The inputs to
neural network are the normalized approximate coefficients of level 1, 2, and 3 from
wavelet transform. The performance of ANN is tested on a limited dataset (12 tests
total), with satisfactory results.

This paper focuses on the development of a hybrid approach to detect, classify, and
localize different types of phase-to-ground and phase-to-phase faults in three-phase
power transmission systems based on discrete wavelet transform and artificial neural
networks. The multi-resolution property of wavelet transform provides a suitable tool
to extract and analyze the transient changes in voltage or current signals when a
network fault occurs. Note this “irregular” change in time domain also results in the
change of signal power distribution in frequency domain. In this research, instead of
using DWT coefficients directly as proposed in literature, the power of the subband
signal (decomposed by DWT) is used as the feature vector. An artificial neural network
is then employed to discriminate various types of faults in the network. Seven different
cases are considered, namely, no fault, phase A line-to-ground fault, phase B line-to-
ground fault, phase C line-to-ground fault, phase A and B line-to-line fault, phase B
and C line-to-line fault, and phase A and C line-to-line fault. Computer simulation
results show that this method can effectively identify various faults in a typical three-
phase transmission line in power grid.

This paper is organized as follows. Section 2 provides the background information
on discrete wavelet transform (DWT), artificial neural networks (ANN), as well as the
hybrid approach based on DWT and ANN. Section 3 discusses the computer simu-
lation results. Section 4 concludes the paper and gives direction for future work.

2 The Hybrid Approach for Power System Fault
Identification

In this section, the background information on discrete wavelet transform and artificial
neural networks is introduced first; then the hybrid approach for power grid fault
detection based on DWT and ANN is discussed.

Power System Fault Detection and Classification 267



For a three-phase power grid, there are two different types of faults, i.e. the sym-
metric fault and the asymmetric fault. About 5% of power transmission line faults are
symmetric (or balanced) faults, which affect each of the three phases equally ([1–3]).
Typical symmetrical faults include line to line to line (L-L-L) and line to line to line to
ground (L-L-L-G). Asymmetric faults (or unbalanced faults), which do not affect each
of the three phases equally, are more common in power systems. Asymmetric faults
include line-to-line, line-to-ground, as well as double line-to-ground faults. In this
research, we consider six different types of asymmetric faults, i.e., phase A line-to-
ground fault, phase B line-to-ground fault, phase C line-to-ground fault, phase A and B
line-to-line fault, phase B and C line-to-line fault, and phase A and C line-to-line fault.

Wavelet transform is a powerful mathematical tool for signal processing. It
decomposes signals into multiple frequency bands with different resolutions, and is
especially suitable to analyze non-stationary signals or to detect irregular transient
changes in signals. The continuous wavelet transform of a signal f tð Þ can be written as:

Tðs; sÞ ¼ 1
ffiffi

s
p

Z 1

�1
f ðtÞw� t � s

s

� �

dt ð1Þ

where w �ð Þ is called the “mother wavelet” and w� �ð Þ represents its complex conjugate;
s is the scaling factor and s is the shifting factor. In computer simulations, discrete
wavelet transform is performed by selecting

s ¼ 2a; s ¼ 2b ð2Þ

where a and b are positive integers.
The wavelet transform can be considered as passing a signal through a set of low-

pass (LP) and high-pass filters (HP). Through this process, a signal can be decomposed
into various levels. At each level, it contains a set of detail coefficients (D) and
approximation coefficients (A). In this research, we use DWT to extract features from
the voltage or current signals in the power network. Instead of using DWT coefficients
directly as proposed in literature, the power of the subband signal (decomposed by
DWT) is used as the feature vector. Daubechies (db4) wavelet is employed for
decomposition to level 4; then the power of the subband signal is calculated using
detail coefficients of level 4:

Es ¼
X

Lm

i¼1

Dið Þ2 ð3Þ

where Di is the i
th detail coefficient of the decomposition level m which contains totally

Lm detail coefficients.
After feature extraction, a neural network model is proposed to classify different

types of faults, with the subband signal power obtained from wavelet transform as its
inputs. The weights of the neural network are initialized randomly, and then updated
with the Levenberg-Marquardt algorithm [8]:
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Wðk þ 1Þ ¼ WðkÞ þ gðJTa Ja þ lIÞ�1JTa e ð4Þ

where Ja is the first order derivative of the error function with respect to the neural
network weight (also called the Jacobian matrix); e is the output error (i.e., the dif-
ference between the neural network outputs and the desired outputs. In this application,
it represents the classification error); l and g are learning parameters; and k is the index
of iterations.

A typical multi-layer feedforward neural network has an input layer, an output
layer, and one or more hidden layer(s). The wavelet transform is performed on three
voltage or line current signals, one for each phase (i.e., phase A, B, and C); thus the
neural network classifier has three inputs. In this research, by trial and error, we choose
the neural network with one hidden layer and ten hidden neurons for the simulation in
Sect. 3. The output of neural network represents the type of each fault, or no fault.
Therefore, the neural network classifier can have either a single output, or three outputs
with the fault type ID binary encoded for seven different cases. Initial training and test
results show that the single output neural network classifier performs slightly better
than the binary encoded outputs. As a result, in Sect. 3, we choose the neural network
with a single output. The overall system diagram is shown in Fig. 1.

3 Simulation Results

A typical configuration of a power grid consists of three major modules, i.e. generation,
transmission, and distribution. Figure 2 illustrates the Matlab Simulink model of such a
network. In this section, the performance of the proposed approach based on DWT and
ANN is tested by computer simulations.

In Fig. 2, the three-phase transmission line between the 50 Hz power generator site
and the load is divided into two series-connected portions by the fault location in
network, where the first portion shows the connection between the source and fault
location; the second portion illustrates the connection between the fault location and the
load. The resistance, capacitance, and inductance per unit length for the positive- and
zero-sequence of the transmission lines are summarized in Table 1. These values of
parameters are chosen to match with the parameters of the power source. Note the
transmission line is continually transposed; i.e., the positive and negative sequences are
equal. Also, a small non-zero ground resistor should be included. In this simulation, it
is chosen to be 0.001 X. All of these values of parameters can be varied upon one’s
choice.

Fig. 1. The power system fault detection and classification using DWT and ANN
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The computer simulation results are shown in Tables 2, 3, 4 and 5. In Tables 2 and
3, “N” represents “no fault”; “A” represents phase A line-to-ground fault; “B” repre-
sents phase B line-to-ground fault; and “C” represents phase C line-to-ground fault.
Similarly, “AB” represents phase A to B line-to-line fault; “BC” represents phase B to
C line-to-line fault; and “AC” represents phase A to C line-to-line fault. The per-
centages on main diagonal positions are the percentage of correct classification; while
all the other percentages on the off-diagonal positions are the percentage of misclas-
sification. For example, the first column shows that for the true “no fault” case, the
algorithm yields a 99.95% correct classification rate while 0.05% of the true “no fault”
cases are misclassified as phase A to B line-to-line fault. The “no-fault” accuracy is
obtained based on 3800 input/output data pairs and for each fault case, the accuracy of
detection is obtained based on 300 input/output data pairs. Table 2 shows the confusion
matrix if the data used are line current measurements; Table 3 shows similar results but
with data taken on voltage signals. The average accuracy for the seven different cases is
83.33%.

Fig. 2. The three-phase power transmission line

Table 1. Parameters of transmission lines

Parameter Positive sequence Zero sequence

Resistance per unit length (Ohms/km) 0.01273 0.3864
Capacitance per unit length (H/km) 12.74 � 10−9 7.751 � 10−9

Inductance per unit length (F/km) 0.9337 � 10−3 4.1264 � 10−3
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Tables 4 and 5 shows the simulation results on fault localization (for simplicity,
only phase A line-to-ground fault is considered) using the current or voltage signals,
respectively. The distances in the tables indicate the fault location. For example,
“0 km” indicates the fault occurs right at the end of the power lines where measure-
ments are taken; “50 km” indicates the fault occurs 50 km away from the endpoint (or
150 km to the power source); etc. For simplicity, only four locations are considered in
this proof-of-concept study. For example, the neural network correctly identifies the
fault location with an accuracy of 66.67% if the fault occurs 50 km away from the
measurement data acquisition location; while the neural network misclassifies 11.11%
of the fault locations as 150 km away from the point where measurement data are
taken. For each distance, 450 sample pairs are generated in this simulation. In general,
the fault detection accuracy decreases as the distance between fault location and
measurement point increases, except at the midpoint in Table 5 (100 km away from
both source and load) which needs further analysis.

Table 2. Fault identification confusion matrix based on current signals

N A B C AB BC AC

N 99.95% 16.67% 8.33% 8.33% 0 0 0
A 0 83.33% 8.33% 16.33% 8.33% 0 8.33%
B 0 0 75.00% 0.33% 0 8.33% 8.33%
C 0 0 8.33% 75.00% 8.33% 0 0
AB 0.05% 0 0 0 83.33% 0 0
BC 0 0 0 0 0 91.67% 8.33%
AC 0 0 0 0 0 0 75.00%

Table 3. Fault identification confusion matrix based on voltage signals

N A B C AB BC AC

N 99.95% 16.67% 8.33% 8.33% 0 0 0
A 0 83.33% 8.33% 16.67% 8.33% 0 8.33%
B 0 0 75.00% 0 0 8.33% 8.33%
C 0.05% 0 8.33% 75.00% 8.33% 0 0
AB 0 0 0 0 83.33% 0 0
BC 0 0 0 0 0 91.67% 8.00%
AC 0 0 0 0 0 0 75.33%

Table 4. Fault location determination confusion matrix based on current signals

0 km 50 km 100 km 150 km 200 km

0 km 99.95% 22.22% 11.11% 5.56% 0
50 km 0 66.67% 16.67% 33.33% 20.22%
100 km 0 0 55.56% 0 18.67%
150 km 0 11.11% 5.56% 55.56% 5.56%
200 km 0.05% 0 11.11% 5.56% 55.56%
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4 Conclusions

In this paper, we develop an approach to detect, classify, and localize different types of
phase-to-ground and phase-to-phase faults in three-phase power transmission systems
based on discrete wavelet transform and artificial neural networks. Satisfactory com-
puter simulation results are obtained and presented. For future work, we plan to con-
sider the situation when measurement data contain noise and/or outliers. Pre-processing
noisy data using adaptive filtering and/or outlier detection may speed up neural net-
work learning and improve the neural network generalization ability. More tests will be
conducted to further investigate the performance of this hybrid approach.
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