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Abstract. Hysteresis is a nonlinear phenomenon which is involved with
dynamics, non-smoothness and multi-valued mapping. It usually exists in elastic
materials, smart materials, and energy-storage materials. For describing the
characteristic of hysteresis, a basis function based neural network model is
proposed in this paper. In this method, the multi-valued mapping of hysteresis is
transferred into a one-to-one mapping with an expanded input space involving
the input variable and a constructed hysteretic auxiliary function. Thus, the
neural network can be employed to approximate the characteristic of hysteresis.
Finally, the method is used to the modeling of hysteresis in a smart material
based sensor.
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1 Introduction

It is known that hysteresis usually exists in many smart materials such as piezoceramic,
ionic polymer-metal composite (IPMC) and electromagnetic materials etc. [1–3].
Hysteresis is a nonlinear phenomenon with dynamics, non-smoothness and multi-
valued mapping. The existence of hysteresis usually affects the performance of actuators
or sensors made by these smart materials, e.g. dynamic performance and positioning
accuracy etc. Accurate modeling of hysteresis in smart material based actuators or smart
material based sensors is important for the design of a model based compensator to
reduce the effect of hysteresis.

It has been found out that modeling of hysteresis is a challenge due to its features of
multi-valued mapping and non-smoothness. Up till now, there have been some models
proposed to describe the hysteresis phenomenon such as Preisach [5], Prandtl-Ishlinskii
(PI) [6] and Bouc-Wen models [4]. However, both Preisach model and PI model are
having the structure with a sum of weighted hysteretic operators and used for
description of rate-independent hysteresis. Moreover, they usually employ lots of
hysteretic operators even more than hundred for modeling of hysteresis. Additionally,
Bouc-Wen model is usually used to describe the hysteresis between restoring force and
displacement. It can also be used to describe the rate-dependent hysteretic behavior.
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However, the identification of a Bouc-Wen model needs to use a method of nonlinear
optimization [4] which may encounter the obstacle that the optimization may trap into
local minima. Moreover, the parameters needed to be estimated in the Bouc-Wen
model are involved in a group of non-smooth components, the gradients of the hys-
teresis output with respect to the estimated parameters may not exist at non-smooth
points of the system. Furthermore, it is noted that the conventional identification
methods cannot be utilized to model hysteresis behavior, directly, due to its charac-
teristic of multi-valued mapping.

For modeling of hysteresis, neural networks are potential measures due to their
well-known capability of universal approximation. However, the neural networks are
applicable only for modeling the systems with one-to-one mapping between the input
and output [7, 8]. Those neural networks will be unable to model the hysteresis which
has the features of non-smoothness and multi-valued mapping between the input and
output. Hence, using neural networks for modeling hysteresis directly becomes a
challenge.

For modeling the hysteresis with non-smoothness and multi-valued mapping, Refs.
[7, 8] proposed the so-called expanded input space based neural network hysteresis
models. In these models, the sigmoidal functions are used as the active functions of
neurons. For the simplification of modeling procedure, in this paper, a simple basis
function based neural network is proposed for modeling of hysteresis. In this method,
an expanded input space is built to transform the multi-valued mapping between input
and output of hysteresis to a one-to-one mapping. Then, a basis function based neural
network is applied to modeling of hysteresis on the expanded input space. The pro-
posed basis function has a simple structure and can be trained conveniently just by
least-square-type algorithm.

For test the performance of the proposed modeling method, the experimental results
of modeling for an IPMC sensor are presented.

2 Hysteresis in Smart Material Based Sensors

Ionic polymer-metal composite (IPMC) is a kind of electroactive polymer (EAP) ma-
terial, which is also called as artificial muscle. IPMC can generate electric signal
correlated with its mechanical deformation or displacement. Based on this property, it
can be used as a sensor to measure displacement and deformation of flexible mecha-
nism. It is known that IPMC is usually composed of three layers, namely, an ion-
exchange polymer membrane sandwiched in between noble metal electrodes. The
negatively charged anions, in the polymer membrane, covalently fixed to polymer
chains are balanced by positively charged moving cations. When an externally
mechanical force to make IPMC deformed, the moving cations will be redistributed. In
this case, IPMC will produce a detectable electric signal (e.g. voltage or current) which
is associated with the externally mechanical excitation [2, 9]. This phenomenon enables
IPMC to be used as a sensor to measure the displacement, vibration, or deformation of
a load. Conversely, based on its inverse electroactive feature, IPMC can also be used as
an actuator when voltage is implemented on it.
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Moreover, IPMC can be used as a sensor to measure mechanical displacement in
humid or flexible case for IPMC has the property that generates electrical signal cor-
responding to its mechanical deformation.

Just like most smart materials, hysteresis is also inherent in IPMC materials.
Figure 1 has shown the experimental result having shown that the hysteresis in IPMC
sensor has dynamic drift and rate-dependent characteristic. As hysteresis is a non-
smooth function with multi-valued mapping, the conventional neural networks may fail
to model it properly due to the conventional neural networks can only be applied to
modeling of smooth systems with one-to-one mapping [7, 8].

Therefore, in this paper, an important task is to transform themulti-valuedmapping of
hysteresis to a one-to-one mapping. In order to realize the task to transform the multi-
valuedmapping between the input and output of hysteresis to a single-valuedmapping, an
expanded input spacewill be constructed using the system input and a hysteresis auxiliary
function [10]. The hysteretic auxiliary function introduced into the input space is served as
an additional coordinate to construct an expanded input space. Actually, the function of
the hysteretic auxiliary function is used as an “imagine” of hysteresis that can extract the
movement tendency of hysteresis, such as ascending, descending and turning point etc.

3 Expanded Input Space

From the well known Preisach formula to describe hysteresis [10], we have

H½u�ðkÞ ¼
ZZ
S

lða; bÞca;b½u�ðkÞdadb

¼
ZZ
Sþ 1

lða; bÞdadb�
ZZ
S�1

lða; bÞdadb
ð1Þ
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Fig. 1. Rate-dependent behavior of hysteresis with drift in IPMC sensor.
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where H½u�ðkÞ is the output of hysteresis, lða; bÞ is the weighting function and
ca;b½u�ðkÞ is the hysteretic operator. Then, it can be decomposed as

Hþ ½u�ðkÞ ¼ H�½up� þDHþ ½u� up�;Du[ 0

H�½u�ðkÞ ¼ Hþ ½up� � DH�½up � u�;Du\0
ð2Þ

where up is the local extreme of the input, Hþ ½up� and H�½up� represent the dominant
maximum and minimum of the output of the hysteretic model, while DHþ ½u� up� and
DH�½up � u� are the incremental output of the model as uðkÞ monotonically increases
or decreases from the extreme. It is known that the hysteresis described in (1) has the
following feature:

For two different time instants k1 and k2, if uðk1Þ ¼ uðk2Þ, H½u�ðk1Þ 6¼ H½u�ðk2Þ due
to the different input extremes. Hence, suppose that an auxiliary function satisfies
f ½u�ðk1Þ 6¼ f ½u�ðk2Þ can be found. Then, we introduce it to the expanded input space to
uniquely determine the output of hysteresis on ðuðkÞ; f ½u�ðkÞÞ.
Definition 1: Define the hysteresis auxiliary function as

f ðkÞ ¼ f ðuexÞþ juðkÞ � uexj f juðkÞ � uexjð Þ; ð3Þ

where uex is the local extreme of the input, and f ðxÞ� 0 is a smooth and monotonic
function not dependent on time k, and f(uex) is the current local extreme of the auxiliary
function.

Remark: Based on Definition 1, it is known the procedure to construct an auxiliary
function, i.e. (i) selecting a piecewise function with the structure shown as in Eq. (3),
which includes local extreme of input and the output of function corresponding to the
local extreme of input. (ii) each segment of piecewise function is a smooth and
monotonic function not dependent on time k. (iii) the switch of the piecewise function
is triggered at the extreme of input.

Then, we have

Definition 2: Define

U ¼ fuðkÞg ð4Þ

as the input set. Then, the expanded input space is defined as

E ¼ fuðkÞ; f ðkÞg ð5Þ

Afterward, we have
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Theorem: Suppose uðkÞ 2 U and f ðkÞ is the hysteresis auxiliary function defined by
(3) and

U ¼ fHðkÞg ð6Þ

is the output set of hysteresis. If there exists a continuous mapping C, such that

Ej �!C U ð7Þ

Then, C is a one-to-one mapping.

Proof: Please refer to Appendix.

4 Basis Function Based Neural Network

On the proposed expanded input space, the multi-valued mapping of hysteresis can be
transformed to a one-to-one mapping.

Subsequently, a basis function based neural network (BFBNN) on the constructed
expanded input space is used to describe the hysteresis characteristic of IPMC sensor.
The advantage of using BFBNN is that it has a simpler model structure determined
based on the parsimony principle, which does not require a large number of neural
basis functions, hysteretic operators, or not rely on empirical skills by comparing with
the modeling methods provided by Refs. [10, 11] and [12]. Thus, the corresponding
model on expanded input space is defined by

yðkÞ ¼ g½uðk � 1Þ; fðk � 1Þ; yðk � 1Þ� ð8Þ

where gð�Þ is the mapping between the input space and the output of system,
uðk � 1Þ ¼ ½uðk � 1Þ; � � � ; uðk � nuÞ�T and yðk � 1Þ ¼ ½yðk � 1Þ; � � � ; yðk � nyÞ�T are
the input vector and output vector, respectively; fðk � 1Þ ¼ ½f ðk � 1Þ; � � � ; f ðk � nf Þ�T
is the output vector of hysteretic auxiliary function. nu, nf and ny are the lags for
sequences fug, ff g and fyg, respectively. Then, (8) can also be described by:

yðkÞ ¼
Xp
i¼1

hi zi ðkÞ; ð9Þ

where hi is the ith weighting factor, ziðkÞ is the ith basis function of the neural network
while p is the number of basis function. Figure 2 illustrates the corresponding structure
of the basis function based neural network.
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The candidates of basis function can be sin(u), cos(u); 1/(1 + exp(−x));
exp(−(x − m)2/q2); or uiyj. The selection of the proper basis function depends upon the
specific requirement of application. In this paper, we use uiyj as the basis function just
for the simple structure of the neural model. Thus, Eq. (8) can be represented by

yðkÞ ¼
Xp
i1¼1

ĥi1zi1ðkÞþ
Xp
i1¼1

Xp
i2¼i1

ĥi1i2zi1ðkÞzi2ðkÞþ � � �

þ
Xp
i1¼1

� � �
Xp

iq¼iq�1

ĥi1���iq zi1ðkÞ � � � ziqðkÞþ ĥn1 þ 1;

ð10Þ

where ĥn1 þ 1 is the estimated bias, bh ¼ ½ĥ1; � � � ; ĥn1 ; ĥn1 þ 1�T is the estimated coefficient
vector, n1 ¼ ðpþ qÞ!=ðp!q!Þ � 1, and q is the order of model. Define the variable
vector as

hðkÞ ¼½zi1ðkÞ; � � � ; zpðkÞ; z1ðkÞ � z1ðkÞ; � � � ; zpðkÞ � zpðkÞ;
� � � ; z1ðkÞ � � � z1ðkÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

q

; . . .; zpðkÞ � � � zpðkÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
q

; 1�T : ð11Þ

Then, the BFBNN model can be denoted as:

yðkÞ ¼ hTðkÞbhðk � 1Þþ eðkÞ; ð12Þ

where eðkÞ is the modeling residual. Hence, the problem to model the dynamic drift and
hysteresis becomes the training of the BFBNN model.

Fig. 2. Structure of basis function based neural network.
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5 Training of Basis Function Based Neural Network

As the expanded input space based BFBNN has a very simple structure shown as in
Eq. (12), the least square algorithm can be used for network training. Then, the cor-
responding recursive training algorithm is shown as follows:

eðkÞ ¼ yðkÞ � hTðkÞbhðk � 1Þ; ð13Þ

bhðkÞ ¼ bhðk � 1ÞþKðkÞeðkÞ; ð14Þ

SeðkÞ ¼ kðkÞhTðkÞPðk � 1ÞhðkÞþ lðkÞ
X̂

ðkÞ; ð15Þ

KðkÞ ¼ kðkÞPðk � 1ÞhðkÞS�1
e ðkÞ; ð16Þ

PðkÞ ¼ 1=lðkÞð Þ½Pðk � 1Þ �KðkÞhTðkÞPðk � 1Þ�; ð17Þ

and X̂
ðkÞ ¼

X̂
ðk � 1Þþ qðkÞ½r̂2ðkÞ �

X̂
ðk � 1Þ�; ð18Þ

where qðkÞ� 1 is the convergence factor, lðkÞ ¼ qðk�1Þ
qðkÞ 1� qðkÞ½ � is the forgetting

factor, r̂2ðkÞ ¼ r̂2ðk � 1Þþ e2ðkÞ=k, Pð0Þ ¼ gI, I is an identity matrix, 0\g\1, and
kðkÞ is a switch coefficient and defined as

kðkÞ ¼
0; eðkÞj j � jrj

bðr̂2ðkÞ�r2Þ
hT ðkÞPðk�1ÞhðkÞr2 otherwise

(
; ð19Þ

where 0\b� lðkÞP̂ðkÞ.

6 Experimental Results

In this experiment, the sampling frequency is chosen as 1000 Hz. Also, the proposed
BFBNN model on expanded input space is applied to the modeling of hysteresis
behavior of IPMC sensor. To determine the architecture of the model, the criterion
shown in the following is defined to evaluate what structure can properly describe the
behavior of the IPMC sensor.

CðnÞ ¼ 1
n

Xn
k¼1

ðyðkÞ � ŷðkÞÞ2: ð20Þ

Then, ICðnÞ and TCðnÞ are used to denote the values of CðnÞ in training and model
validation procedures, respectively. Afterwards, the proposed training algorithm is
employed to estimate the coefficients of the model with the corresponding model
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architecture. Table 1 presents the corresponding values ICðnÞ and TCðnÞ of different
model structures, so the structure of the proposed model can be selected as ny ¼ 0,
nu ¼ 9, nf ¼ 9, when q ¼ 2, and in this case, TC(n), the criterion of model validation
reaches the smallest value. For comparison, a classical nonlinear auto-regressive and
moving-average with exogenous input (NARMAX) is also used to describe the char-
acteristics of the IPMC sensor. The structure parameters of the NARMAX model are
chosen as ny ¼ 0, q ¼ 2 and nu ¼ 9, respectively.

Figure 3 shows the comparison of model validation between the proposed model
and the BFBNN model not on the expanded input space. To show the detail of the
model validation results, the data from 0 s to 0.098 s are removed to avoid illustrating
the influence of initial values. In Fig. 3(a), the dotted line denotes the output of the
proposed model while the dot and dash line represents the output of classical NAR-
MAX model. In Fig. 3(b), the solid line and dotted line denote modeling errors of the
proposed model and classical NARMAX model, respectively. Note that the modeling
error of the classical NARMAX model illustrates larger fluctuation and the maximum
absolute model error of the classical NARMAX model is 0.14 mV, while that of the
proposed modeling method is 0.014 mV, respectively. Moreover, Fig. 4 shows the
comparison of output versus input curves between the proposed modeling strategy and
the classical NARMAX modeling result. Obviously, the proposed model is more
suitable to describe the performance of IPMC sensor.

Table 1. Determination of model structure of IPMC sensor.

ny ¼ 0 nu ¼ 7
nf ¼ 7

nu ¼ 8
nf ¼ 8

nu ¼ 9
nf ¼ 9

nu ¼ 10
nf ¼ 10

ICðnÞ 1:41� 10�4 1:01� 10�5 1:58� 10�6 1:23� 10�7

TCðnÞ 1:45� 10�4 1:20� 10�5 4:68� 10�6 1:29� 10�5
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Fig. 3. Comparison of model validation results between the proposed model and the classical
NARMAX model.
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7 Conclusions

In this paper, a BFBNN model on the expanded input space to describe the hysteretic
and dynamic drifting behavior of IPMC sensor is developed. A method for constructing
a proper hysteresis auxiliary function for expanded input space is also presented. Then,
a training algorithm is presented to train the BFBNN model of IPMC sensor.

In the modeling experiment, it has shown that the proposed method can achieve
better modeling result of hysteresis and dynamic drift in IPMC sensor than a classical
NARMAX model.
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Appendix

The proof of theorem is as follows:

For any HðkÞ 2 U, there, at least, exists a uðkÞ 2 U. Thus, Ej �!C U is a surjective
mapping. Figure 5 illustrates the case of surjective mapping of the expanded input

space. Now, we prove Ej �!C U is also a one-to-one mapping.

Case 1: For two different time instants k1 and k2, assume uðk1Þ ¼ uðk2Þ are not
extremes, but the output of hysteresis Hðk1Þ 6¼ Hðk2Þ for the effect of the different
extremes related to the output of hysteresis. In this case, we can choose a proper f ðkÞ
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Fig. 4. Comparison of the input-output curves between the proposed model and the classical
NARMAX model (the proposed model: dotted line; the classical NARMAX model: dashed line).
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satisfies f ðk1Þ 6¼ f ðk2Þ. Then, Ej �!C U is an injective mapping. To demonstrate the
mapping of Case 1, Fig. 6 is presented.

Case 2: If uðk1Þ ¼ uðk2Þ and Hðk1Þ ¼ Hðk2Þ where uðk1Þ and uðk2Þ are extremes,
based on the characteristic of hysteresis [13], it leads to Hðk1Þ ¼ Hðk2Þ. In this case, it

also results in f ðk1Þ ¼ f ðk2Þ. In this situation, Ej �!C U is also an injective mapping.
The corresponding description of Case 2 is illustrated in Fig. 7.

In terms of what we discussed, Ej �!C U is not only a surjective but also an injective
mapping. Therefore, it is a bijection, i.e. C is a one-to-one mapping.

Fig. 5. The surjection of expanded input space.

Fig. 6. The injective mapping of expanded input space (Case 1).

Fig. 7. The injective mapping of expanded input space (Case 2).
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