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Abstract. In this paper, a decentralized robust zero-sum optimal con-
trol method is proposed for modular robot manipulators (MRMs) based
on the adaptive dynamic programming (ADP) approach. The dynamic
model of MRMs is formulated via joint torque feedback (JTF) technique
that is deployed for each joint module, in which the local dynamic infor-
mation is used to design the model compensation controller. An uncer-
tainty decomposition-based robust control is developed to compensate
the model uncertainties, and then the robust optimal control problem of
MRMs with uncertain environments can be transformed into a two-player
zero-sum optimal control one. According to the ADP algorithm, the
Hamilton-Jacobi-Isaacs (HJI) equation is solved by constructing action-
critic neural networks (NNs) and then the approximate optimal control
policy derivation is possible. Experiments are conducted to verify the
effectiveness of the proposed method.

Keywords: Modular robot manipulators ·
Adaptive dynamic programming · Optimal control · Zero-sum game

1 Introduction

Modular robot manipulators have attracted wildly attentions in robotics com-
munity since they are possessed of better structural adaptability and flexibility
than conventional robot manipulators. An MRM is composed by standardized
robotic modules, which consist of actuators, speed reducers, sensors and com-
munication units. These modules can be assembled to desired configurations via
standard mechanical interfaces according to the requirements of various tasks.
Benefitting from the advantages above, MRMs are often utilized in dangerous
and complex environments. Correspondingly, appropriate control systems are
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required to guarantee the robustness and precision of MRMs with uncertain
environments.

In order to seek out appropriate control for MRMs, joint torque feedback
techniques have attached attentions of both robotic researchers and industrial
manufacturers. JTF technique can not only eliminate the necessity of contact
model in motion control of robot-environment interactive tasks, it also facilitates
in suppressing the effect of uncertain contact force created between the end-
effector and payloads [1–3]. However, the existed JTF-based motion/force control
methods have not considered the issue of optimal implementation between the
error performance of joint motion and the output torque of actuator. Indeed,
an ideal controllers for MRMs should be possessed of the properties that ensure
the robustness of the robotic systems, and simultaneously take into account the
optimal realization of the composite of error performance and output power.

Adaptive dynamic programming methodology is considered as one of the key
directions to address the optimal control problems in complex systems. Some
investigations reported the latest research progress of ADP-based optimal con-
trol methods for robot manipulators systems [4–6]. These strategies both follow
the premise that the dynamic models of the robotic systems are completely
unknown, thus the application of these methods are limited to address the
optimal control problems of specific classes of robotic systems without imple-
menting dynamic compensation. Dong et al. address the optimal control prob-
lems of MRMs by combining the model-based compensation control with ADP-
based learning control [7], and their researches are further expanded to deal
with the optimal tracking control issues of MRMs with uncertain environments
[8]. However, the existing methods consider the disturbance torques, which are
introduced by environmental contacts, as a class of dynamic uncertainties, and
ignoring the intractability of decomposing the effects of model uncertainties and
environmental contact disturbance targetedly. Indeed, there is less discussion on
ADP-based robust optimal control for robot manipulators with both dynamic
decomposition and optimal compensation, especially, for MRMs with uncertain
environmental contact.

In this paper, a novel decentralized robust zero-sum neuro-optimal control
method is presented for MRMs with uncertain environments. First, the dynamic
model of the MRM systems is formulated via JTF technique, and a model-based
compensation controller is designed by effectively utilizing the local dynamic
information of each joint module. Second, a decentralized robust controller is
proposed to deal with the compensation control issue of model uncertainties.
Then, the robust optimal control problem of uncertain environment-contacted
MRMs is transformed into a two-player zero-sum optimal control one. The ADP
algorithm is employed to solve the HJI equation, in which the cost function, opti-
mal control policy and worst disturbance can be approximated by constructing
one critic NN and two action NNs, and then the decentralized robust zero-sum
neuro-optimal control is developed. Finally, experiments are performed to verify
the effectiveness of the proposed method.
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2 Dynamic Model Formulation

We consider the MRMs comprise n joint modules installed in series, and each
integrated with a DC motor, a speed reducer, two encoders and a joint torque
sensor. By referencing the modelling methods of JTF-based robot manipulators
with multi-degree of freedom (DOF) [9,10], we formulate the dynamic model of
the MRM system as a synthesis of interconnected robotic joint subsystems, in
which the ith joint subsystem dynamic model is represented as:

Imiγiq̈i + fi (qi, q̇i) + zi (q, q̇, q̈) +
τsi

γi
+ di (qi) = τi, (1)

where the subscript “i” indicates the ith subsystem; Imi is the moment of inertia
of actuator rotor about the rotation axis; γi denotes the gear ratio; qi, q̇i and q̈i

are the joint angular position, velocity and acceleration respectively; fi (qi, q̇i)
represents the joint lumped frictional torque; zi (qi, q̇i, q̈i) denotes the intercon-
nected dynamic coupling (IDC) among the joint subsystems; τsi represents the
coupling torque at the torque sensor location; di (qi) is the disturbance torque
and τi indicates the control torque.
(1) Joint friction

The friction term can be defined as a function with respect to joint angular
position and velocity, which is given as:

fi(qi, q̇i) ≈f̂biq̇i +
(
f̂sie

(−f̂τiq̇
2
i ) + f̂ci

)
sgn(q̇i) + fpi(qi, q̇i) + Y (q̇i)F̃i, (2)

where F̃i =
[
fbi − f̂bi fci − f̂ci fsi − f̂si fτi − f̂τi

]T
indicates the parametric

uncertainty of the friction; fbi, fsi, fτi and fci represent the ideal parameters
of the friction model; fpi (qi, q̇i) denotes the position dependency of friction and
the other friction modeling errors; sgn (q̇) is a classical sign function; f̂bi, f̂si, f̂τi

and f̂ci are estimated parameters of the friction model and Y (q̇i) is defined as:

Y (q̇i) =
[
q̇i, sgn (q̇i) , e(−f̂τiq̇

2
i ) sgn (q̇i) , −f̂siq̇

2
i e(−f̂τiq̇

2
i ) sgn (q̇i)

]
. (3)

(2) Interconnected dynamic coupling
The IDC term zi (q, q̇, q̈), which is considered a complex nonlinear function,

can be defined with respect to the positions, velocities and accelerations of the
lower joint modules (from joint 1 to i − 1), that is given as:

zi (q, q̇, q̈) = Imi

i−1∑
j=1

Di
j q̈j + Imi

i−1∑
j=2

j−1∑
k=1

Θi
kj q̇k q̇j = Uzi + Vzi,

Uzi =
i−1∑
j=1

[
ImiD̂

i
j Imi

] [
q̈j D̃i

j q̈j

]T

, Vzi =
i−1∑
j=2

j−1∑
k=1

[
ImiΘ̂

i
kj Imi

] [
q̇k q̇j Θ̃i

kj q̇k q̇j

]T

,

(4)
where Di

j and Θi
kj are given as Di

j = zT
mizlj and Θi

kj = zT
mi (zlk × zlj) respec-

tively, zmi, zlj and zlk are the unity vectors along the axis of rotation of the
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ith robot, jth joint and kth joint respectively. Moreover, we have the relations
D̂i

j = Di
j −D̃i

j and Θ̂i
kj = Θi

kj −Θ̃i
kj , where D̃i

j and Θ̃i
kj are the alignment errors.

(3) Joint torque and disturbance torque
The coupled joint torques τsi, which are measured by using the embedded

torque sensors, can be represented as the following form:

τsi = τsri + τsci, (5)

where τsri indicates the joint torque that is obtained in free space and τsci denotes
the torque produced by environmental contact in constrained space. Besides, the
disturbance torque term di (qi) can be defined as:

di (qi) = dis (qi) + dic (qi) , (6)

where dis (qi) represents the disturbance of torque sensor and dic (qi) indicates
unmeasured environmental contact torque in joint space.

Assumption 1. The uncertainty term F̃i is bounded by
∣∣∣F̃i

∣∣∣ ≤ ρFin, the fric-

tion modeling error is bounded by
∣∣∣Y (q̇i) F̃i

∣∣∣ ≤ Y (q̇i) ρFin and fpi (qi, q̇i) is
bounded by |fpi (qi,q̇i)|≤ρfpi.

Assumption 2. The terms Uzi and Vzi are bounded by |Uzi| ≤ ρUi, |Vzi| ≤ ρV i.

Assumption 3. The disturbance dis (qi) is bounded by |dis (qi)| ≤ ρdsi and the
unmeasured environmental contact torque dic (qi) is bounded by |dic (qi)| ≤ ρdci.

Then, define Bi = (Imiγi)
−1 ∈ R+ and the state vector xi =

[
xi1 xi2

]T =[
qi q̇i

]T ∈ R2×1 and the control input ui = τi ∈ R1×1, i = 1, 2, . . . n, the state
space of ith subsystem can be formulated as

Si =

⎧
⎪⎨
⎪⎩

ẋi1 = xi2

ẋi2 = φi (xi) + υi (x) + pi (xi) + Biui

y = xi1

, (7)

where φi (xi), υi (x) and pi (xi) are represented as follows:

φi (xi) = Bi

⎛
⎜⎝

−
(
f̂sie

(−f̂τiq̇
2
i ) + f̂ci

)
sgn (q̇i)

− f̂biq̇i − τsi

γi

⎞
⎟⎠

υi (x) = Bi

(
−Uzi− Vzi − fpi (qi, q̇i)−Y (q̇i) F̃i

)

pi (xi) = Bi (−dis (qi) − dic (qi))

. (8)

Next, a decentralized robust zero-sum optimal control method is presented
for MRMs to ensure that both position and velocity of the closed-loop robotic
systems are asymptotically stable.
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3 Decentralized Robust Zero-Sum Neuro-Optimal
Control Based on ADP

Consider the MRM systems with the dynamic model formulation (1) and the
state space description (7), if the contact disturbance pi (xi) is viewed as a system
control input, the robust optimal control problem can be transformed into a two-
player zero-sum optimal control issue, in which the continuously differentiable
infinite horizon local cost function can be defined as follows:

Ji (si0 (ei)) =
∫ ∞

0

{
si(ei (τ))T

Qisi (ei (τ)) + ui(τ)T
Riui (τ)

− γ2
pipi(xi (τ))T

pi (xi (τ))

}
dτ, (9)

where
si (ei) = ėi + αeiei (10)

is a filtered error function with the initial filtered error si0 (ei) = si (0); ei =
xi1 − xid and ėi = xi2 − ẋid indicate the position and velocity tracking error of
the ith joint module respectively; xid, ẋid and ẍid represent the desired angular
position, velocity and acceleration that are known and bounded reference states.
QT

i = Qi, RT
i = Ri denote the positive constant matrixes; αei and γpi are

determined positive constants.
According to (9), one can define the local Hamiltonian as:

Hi (si, ui, pi,∇Ji) = sT
i Qisi + uT

i Riui

+ ∇JT
i (si) (φi + υi + pi + αeiėi + Biui − ẍid) − γ2

pip
T
i pi

, (11)

where ∇Ji (si) = (∂Ji (si)/∂si) denotes the partial derivative of Ji (si) with
regard of si. Define the utility function as

Ωi (si, ui, pi) = sT
i Qisi + uT

i Riui − γ2
pip

T
i pi. (12)

Then, one obtain that the optimal local cost function J∗
i satisfies:

J∗
i (si) = min

ui

max
pi

∫ ∞

0

Ωi (si, ui, pi) dτ = max
pi

min
ui

∫ ∞

0

Ωi (si, ui, pi) dτ.

(13)
According to (11) and (13), the local optimal control pair (u∗

i , p
∗
i ) satisfies

the following HJI equation:

0 = ∇J∗T
i (si) (φi + υi + p∗

i + αeiėi + Biu
∗
i − ẍid) + Ωi (si, u

∗
i , p

∗
i ) . (14)

On the basis of the principle of optimality, the local optimal control pair
(u∗

i , p
∗
i ) can be represented as follows:

u∗
i = −1

2
R−1

i BT
i ∇J∗

i , p∗
i =

1
2γ2

pi

∇J∗
i . (15)

Rewriting the optimal control law u∗
i of the ith subsystem as:

u∗
i = ui1 + ui2 + u∗

i3 (16)
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to deal with modeled dynamic term φi, model uncertainty term υi and contact
disturbance term pi respectively, then, the HJI equation can be modified as:

0 = ∇J∗
i

(
φi + υi + p∗

i + αeiėi − ẍid

+ Biui1 + Biui2 + Biu
∗
i3

)
+ Ωi (si, u

∗
i , p

∗
i ) . (17)

Therefore, the zero-sum optimal control problem has been transformed into
the one of obtaining the decentralized control laws ui1, ui2 and u∗

i3 respectively,
and therefore, to realize the optimal compensation of model uncertainty and
environmental contact disturbance of the MRM system.

First, we can design control law ui1, that is given as:

ui1 = −
(

−
(
f̂sie

(−f̂τix
2
i2) + f̂ci

)
sgn (xi2)− f̂bixi2 − B−1

i ẍid − τsi

γi
+ B−1

i αeiėi

)
.

(18)
Second, we consider that the MRM systems, which work in free space, is

possessed of accurate joint torque sensing. Thus, substituting (18) into (17), one
obtains:

0 = Ωi (si, u
∗
i , p

∗
i )+ ∇J∗

i (υi+ p∗
i + Biui2 + Biu

∗
i3) . (19)

Note that we have p∗
i = u∗

i3 = 0 when the MRM system works in free
space, therefore, combining the time derivative of (10) and the model-based
compensation control (18), one obtains

ṡi = Bi

( − fpi (xi1, xi2) − Uzi − Y (xi2) F̃i − Vzi

)
+ Biui2. (20)

Here, we introduce the decentralized robust control ui2 to compensate the
effects of model uncertainties. For the unmodeled friction in (2), we decomposed
F̃i as the summation of constant part and variable part, which is given as:

F̃i = F̃ic + F̃iv, (21)

where F̃ic indicates an unknown constant vector and F̃iv denotes an unknown
variable vector that is bounded as:

∣∣∣F̃iv

∣∣∣ ≤ ρFivn, n = 1, 2, 3, 4, (22)

in which ρFivn = [ρFiv1 ρFiv2 ρFiv3 ρFiv4]
T is a determined constant vector.

Then, one can design the robust control law ui2f , which is given as:

ui2f = ui2fu + Y (xi2) (ui2fc + ui2fv) , (23)

where ui2fu is designed to compensate friction term fpi (xi1, xi2); ui2fc, ui2fv

are used to compensate the effect of uncertainties F̃ic and F̃iv respectively:

ui2fu =

{−ρfpi
si

|si| if |si| > εifu

−ρfpi
si

εifu
if |si| ≤ εifu

, (24)
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ui2fc = −εifc

(∫ t

0

Y (xi2)sidτ + si

)
, (25)

ui2fv =

⎧
⎨
⎩

−ρFivn
Y (xi2)si

|Y (xi2)si| if |Y (xi2)si| > εifvn

−ρFivn
Y (xi2)si

εifvn
if |Y (xi2)si| ≤ εifvn

, n = 1, 2, 3, 4 (26)

where εifu, εifc and εifvn are determined positive parameters. Moreover, we
decomposed the terms of Uzi and Vzi as:

Uzi = Uzic + Uziv, Vzi = Vzic + Vziv, (27)

where Uzic and Vzic are with known up-bounds; Uziv and Vziv are bounded as:

|Uziv| ≤ ρUiv, |Vziv| ≤ ρV iv, (28)

where ρUiv and ρV iv are constant up-bounds to be determined.
Then, by adopting the decomposition-based analysis of the uncertainties, we

can design the robust control law ui2h, which is formulated as:

ui2h = ui2hU + ui2hV , (29)

where ui2hU is used to compensate the effect of the term Uzi, that is given as:

ui2hU = ui2hUc + ui2hUv,

ui2hUc = −εiUs

(∫ t

0

εiUssidτ + si

)
, ui2hUv=

{−ρUiv
εiUssi

|εiUssi| if |εiUssi|>εiUB

−ρUiv
εiUssi

εiUB
if |εiUssi|≤εiUB

,

(30)
where εiUs and εiUB are positive parameters to be determined. Moreover, one
can design the control law ui2hV to compensate the effect of the term Vzi:

ui2hV = ui2hV c + ui2hV v

ui2hV c =−εiV s

(∫ t

0

εiV ssidτ + si

)
, ui2hV v =

{−ρV iv
εiV ssi

|εiV ssi| if |εiV ssi|>εiV B

−ρV iv
εiV ssi

εiV B
if |εiV ssi| ≤ εiV B

,

(31)
where εiV s and εiV B are positive parameters to be determined. Then, by com-
bining (23) with (29), one obtain the decentralized control law ui2, which is given
as follows:

ui2 = ui2f + ui2h. (32)

Then, we introduce the critic NN, u-action NN and p-action NN to approx-
imate the performance index function Ji (si), the optimal control law u∗

i3 and
the worst contact disturbance p∗

i respectively.
By employing RBF NNs, the ideal critic NN is represented as:

Ji (si) = wT
ciσci (si) + εci, (33)
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where wci is the unknown ideal NN weight, εci represent the finite approximation
error of the critic NN, σci (si) indicates a standard activation function. Besides,
the gradient of the approximated cost function is given as:

∇Ji (si) = ∇σci(si)
T
wci + ∇εT

ci, (34)

where ∇σci (si) = ∂σci (si)/∂si indicates the gradients of the activation function
and ∇εci is the gradient error. Then, one can rewrite the Hamiltonian and obtain
the following relation:

Hi (si, ui, pi, wci) = Ωi (si, ui, pi) +
(
wT

ci∇σci (si)
)
ṡi − ecHi = 0, (35)

where ecHi denotes the approximation error of the critic NN:

ecHi = Ωi +
(
wT

ci∇σci

)
ṡi. (36)

Let ŵci be the estimated weight vector of wci, therefore, one obtains:

Ĵi (si) = ŵT
ciσci (si) . (37)

Then, one can define the approximate Hamilton function as:

Ĥi (si, ui, pi, ŵci) = Ωi (si, ui, pi) +
(
ŵT

ci∇σci (si)
)
ṡi. (38)

Define the weight approximation error w̃ci = wci − ŵci, then, one obtains:

eci = ecHi − w̃T
ci∇σci (si) ṡi. (39)

Define the residual error function Eci = 1
2e2ci, which is minimized to adjust

the weight vector of the critic NN, that is updated by

˙̂wci = −αci

(
∂Eci

∂ŵci

)
= −αci

pci

(
pT

ciŵci + Ωi

)
(
pT

cipci + 1
)2 , (40)

where αci > 0 is the learning rate of the critic NN, and pci=∇σci (si) ṡi.
Then, we employ the action NNs to approximate u∗

i3 and p∗
i respectively. The

ideal u- and p-action NNs are given as follows:

u∗
i3 = wT

aiσai (si) + εai, p∗
i = wT

piσpi (si) + εpi, (41)

where wai, wpi represent the ideal weight vectors, σai, σpi denote the activation
functions and εai, εpi are the finite approximation errors of u- and p-action
respectively. Let ŵai and ŵpi be the estimation weight vectors of wai and wpi,
then we have:

ûi3 = ŵT
aiσai (si) , p̂i = ŵT

piσpi (si) . (42)

Since
(
∂Ĥi (si, ûi, p̂i, ŵci)/∂ûi

)
= 0 and

(
∂Ĥi (si, ûi, p̂i, ŵci)/∂p̂i

)
= 0, so

that ûi3 and p̂i can be further described as follows:

ûi3 = −1
2
R−1

i BT
i ∇σT

ci (si) ŵci, p̂i =
1

2γ2
pi

∇σT
ci (si) ŵci, (43)
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where the update laws for u- and p-action NN weights are given as:

˙̂wai = −αaiσai (si) ·
(

ŵT
aiσai (si) +

1
2
R−1

i BT
i ∇σT

ci (si) ŵci

)T

, (44)

˙̂wpi = −αpiσpi (si) ·
(

ŵT
piσpi (si) − 1

2γ2
pi

∇σT
ci (si) ŵci

)T

, (45)

where αai and αpi are the positive learning rates of u- and p-action NNs.
Then, by combining (18), (32) with (43), the proposed decentralized robust

zero-sum neuro-optimal control law u∗
i is given as:

u∗
i = −

⎛
⎜⎝

− f̂bixi2 − B−1
i ẍid − τsi

γi
+ B−1

i αeiėi

−
(
f̂sie

(−f̂τix
2
i2) + f̂ci

)
sgn (xi2)

⎞
⎟⎠ − (−ui2hU − ui2hV )

− (−ui2fu − Y (xi2) (ui2fc + ui2fv)) − 1
2
R−1

i BT
i ∇σT

ciŵci

. (46)

Theorem 1. Consider an n-DOF modular robot manipulator, with the dynamic
model of the ith joint subsystem formulated in (1); the model uncertainties existed
in (2), (4) and the environmental contact disturbance given in (6). The closed-
loop robotic system is asymptotically stable under the decentralized robust zero-
sum neuro-optimal control law proposed by (46).

Proof. A Lyapunov function candidate is selected as:

Vg (t) =
n∑

i=1

Vgi (t) =
n∑

i=1

⎛
⎝

δsis
T
i si + δΩiJi (si)

+ δpi

∫ ∞

t

γ2
pip

T
i (τ) pi (τ) dτ

⎞
⎠, (47)

where δsi > 0 and δpi ≥ δΩi > 0 are determined positive definite constants.
Then, one obtains the time derivative of (47) that is given as:

V̇g (t)≤
n∑

i=1

(
2δsi

(
‖si‖2+

1
2
‖Bi‖2‖u∗

i3‖2
))

−
n∑

i=1

(−δsi−(δΩi − δpi) γ2
pi

)‖pi‖2

−
n∑

i=1

δΩi

(
λmin (Qi) ‖si‖2 + λmin (Ri) ‖ui1‖2

+ λmin (Ri) ‖ui2‖2 + λmin (Ri) ‖u∗
i3‖2

)

= −
n∑

i=1

(δΩiλmin (Qi) − 2δsi) ‖si‖2 −
n∑

i=1

(δΩiλmin (Ri)) ‖ui1‖2

−
n∑

i=1

(δΩiλmin (Ri)) ‖ui2‖2 −
n∑

i=1

(
δΩiλmin (Ri) − δsi‖Bi‖2

)
‖u∗

i3‖2

−
n∑

i=1

(−δsi − (δΩi − δpi) γ2
pi

)‖pi‖2

.

(48)
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Therefore, we know that V̇g (t) ≤ 0 when the following condition holds:

λmin (Qi) ≥ 2δsi

δΩi
, λmin (Ri) ≥ δsi

δΩiI2miγ
2
i

, δpi ≥ δΩi +
δsi

γ2
pi

. (49)

Besides, from (48), one obtains that if (49) is satisfied, then V̇g (t) < 0 for
any si �= 0. Therefore, by the Lyapunov theory, the closed-loop robotic system is
asymptotically stable under the proposed decentralized robust zero-sum neuro-
optimal control (46). This completes the proof of the Theorem 1.

4 Experimental Results

In this section, the experimental results are presented based on the experimental
platform as illustrated in [8], and the experimental results are collected to verify
the effectiveness of the proposed control method. We consider the environmental
contact as a kind of instantaneous collision between the MRM link and the
collision object that may create instantaneous contact forces.

Table 1. Parameters setting

Name Value Name Value Name Value

f̂bi 12 mNms/rad f̂ci 30 mNm f̂si 40 mNm

f̂τi 20 s2/rad2 γi 100 Imi 120 gcm2

ρFiv1 30 mNms/rad ρFiv2 60 mNm ρFiv3 80 mNm

ρFiv4 50 s2/rad2 ρdsi 10 mNm ρdci 50 mNm

ρV iv 2.3 ρfpi 0.5 ρUiv 2.6

αei 0.5 εifu 0.1 εifc 1

αci, αpi, αai 0.8 εifv1, εifv2 0.01 εifv3, εifv4 0.01

γpi 1.87 εiUs, εiV s 0.02 εiV B , εiUB 0.02

The parameter definition is represented as follows: The critic NN is chosen
as 2-5-1 with 2 input neurons, 5 hidden neurons and 1 output neuron, and
the weight vectors are selected as ŵc1 =

[
ŵc11 ŵc12 ŵc13 ŵc14 ŵc15

]T for joint

1 and ŵc2 =
[
ŵc21 ŵc22 ŵc23 ŵc24 ŵc25

]T for joint 2, with the initial values
ŵc1 = ŵc2 = [0]. The NN structures and initial weight values of the and action
NNs are selected as the same of the critic NNs. The other model parameters,
uncertainty up-bound parameters and control parameters are given in Table 1.

Figure 1 illustrate the position and velocity error curves under the situation
of instantaneous collision contact. In this figure, obvious position and velocity
deviations are captured, which are due to the effect of collision force. Moreover,
we also observe that the error values decreased to normal ranges with very short
time periods, which may attribute to the performance of the proposed zero-sum
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Fig. 1. Error curves under the collision contact, (a) position errors, (b) velocity errors.

neuro-optimal controller that realized the optimal compensation of unknown
contact disturbance.

Figure 2(a) illustrate the control torque curves under the situation of instan-
taneous collision contact. From this figure, the reliable control torque outputs
are obtained, in which the instant increase of control torques keep in safe limits.
This is attribute the contribution of the proposed optimal control that realizes
the optimization of tracking errors and output torques.

Figure 2(b) illustrate the variations of the estimated critic NN weights under
the proposed method. From this figure, one obtain that the critic NN weights
may converge in certain ranges for each isolated joint subsystem. With the critic
NN weight estimations, the HJI equation and the optimal control law can be
solved and derived respectively.
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5 Conclusion

In this paper, we develop a decentralized robust zero-sum neuro-optimal control
scheme for MRMs. Based on local dynamic information of each joint module
and the JTF technique, a model-based compensation controller and an uncer-
tainty decomposition-based robust controller are designed for controlling MRM
systems. Based on ADP algorithm, the HJI equation is solved by constructing
the action-critic NNs, and then the decentralized robust zero-sum neuro-optimal
control is developed. Finally, experimental results are illustrated to verify the
effectiveness and advantages of the proposed method.
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