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Preface

This volume contains the papers presented at ISNN 2019: the 16th International
Symposium on Neural Networks held during July 10–12, 2019, in Moscow. Located
by the Moskva River, Moscow is the capital and largest city in Russia with a popu-
lation of over 13 million. Thanks to the success of the previous events, ISNN has
become a well-established series of popular and high-quality conferences on the theory
and methodology of neural networks and their applications. ISNN 2019 aimed to
provide a high-level international forum for scientists, engineers, and educators to
present the state of the art of neural network research and applications in related fields.
The symposium also featured plenary speeches given by world renowned scholars,
regular sessions with a broad coverage, and special sessions focusing on popular topics.

This year, the symposium received more submissions than previous years. Each
submission was reviewed by at least two, and on average, 4.5 Program Committee
members. After the rigorous peer reviews, the committee decided to accept 111 papers
for publication in the Lecture Notes in Computer Science (LNCS) proceedings. These
papers cover many topics of neural network-related research including learning system,
graph model, adversarial learning, time series analysis, dynamic prediction, uncertain
estimation, model optimization, clustering, game theory, stability analysis, control
method, industrial application, image recognition, scene understanding, biomedical
engineering, hardware. In addition to the contributed papers, the ISNN 2019 technical
program included three keynotes and plenary speeches by renowned scholars: Prof.
Andrzej Cichocki (IEEE Fellow, Skolkovo Institute of Science and Technology,
Moscow, Russia), Prof. Yaochu Jin (IEEE Fellow, University of Surrey, Guildford,
UK), and Prof. Nikhil R. Pal (IEEE Fellow, Indian Statistical Institute, Calcutta, India).

Many organizations and volunteers made great contributions toward the success of
this symposium. We would like to express our sincere gratitude to Skolkovo Institute of
Science and Technology and City University of Hong Kong for their sponsorship, the
International Neural Network Society, Asian Pacific Neural Network Society, Polish
Neural Network Society, and Russian Neural Network Society for their technical
co-sponsorship. We would also like to sincerely thank all the committee members for
their great efforts in organizing the symposium. Special thanks to the Program
Committee members and reviewers whose insightful reviews and timely feedback
ensured the high quality of the accepted papers and the smooth flow of the symposium.
We would also like to thank Springer for their cooperation in publishing the pro-
ceedings in the prestigious LNCS series. Finally, we would like to thank all the
speakers, authors, and participants for their support.

June 2019 Huchuan Lu
Huajin Tang

Zhanshan Wang
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Abstract. In this paper, a decentralized robust zero-sum optimal con-
trol method is proposed for modular robot manipulators (MRMs) based
on the adaptive dynamic programming (ADP) approach. The dynamic
model of MRMs is formulated via joint torque feedback (JTF) technique
that is deployed for each joint module, in which the local dynamic infor-
mation is used to design the model compensation controller. An uncer-
tainty decomposition-based robust control is developed to compensate
the model uncertainties, and then the robust optimal control problem of
MRMs with uncertain environments can be transformed into a two-player
zero-sum optimal control one. According to the ADP algorithm, the
Hamilton-Jacobi-Isaacs (HJI) equation is solved by constructing action-
critic neural networks (NNs) and then the approximate optimal control
policy derivation is possible. Experiments are conducted to verify the
effectiveness of the proposed method.

Keywords: Modular robot manipulators ·
Adaptive dynamic programming · Optimal control · Zero-sum game

1 Introduction

Modular robot manipulators have attracted wildly attentions in robotics com-
munity since they are possessed of better structural adaptability and flexibility
than conventional robot manipulators. An MRM is composed by standardized
robotic modules, which consist of actuators, speed reducers, sensors and com-
munication units. These modules can be assembled to desired configurations via
standard mechanical interfaces according to the requirements of various tasks.
Benefitting from the advantages above, MRMs are often utilized in dangerous
and complex environments. Correspondingly, appropriate control systems are
c© Springer Nature Switzerland AG 2019
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required to guarantee the robustness and precision of MRMs with uncertain
environments.

In order to seek out appropriate control for MRMs, joint torque feedback
techniques have attached attentions of both robotic researchers and industrial
manufacturers. JTF technique can not only eliminate the necessity of contact
model in motion control of robot-environment interactive tasks, it also facilitates
in suppressing the effect of uncertain contact force created between the end-
effector and payloads [1–3]. However, the existed JTF-based motion/force control
methods have not considered the issue of optimal implementation between the
error performance of joint motion and the output torque of actuator. Indeed,
an ideal controllers for MRMs should be possessed of the properties that ensure
the robustness of the robotic systems, and simultaneously take into account the
optimal realization of the composite of error performance and output power.

Adaptive dynamic programming methodology is considered as one of the key
directions to address the optimal control problems in complex systems. Some
investigations reported the latest research progress of ADP-based optimal con-
trol methods for robot manipulators systems [4–6]. These strategies both follow
the premise that the dynamic models of the robotic systems are completely
unknown, thus the application of these methods are limited to address the
optimal control problems of specific classes of robotic systems without imple-
menting dynamic compensation. Dong et al. address the optimal control prob-
lems of MRMs by combining the model-based compensation control with ADP-
based learning control [7], and their researches are further expanded to deal
with the optimal tracking control issues of MRMs with uncertain environments
[8]. However, the existing methods consider the disturbance torques, which are
introduced by environmental contacts, as a class of dynamic uncertainties, and
ignoring the intractability of decomposing the effects of model uncertainties and
environmental contact disturbance targetedly. Indeed, there is less discussion on
ADP-based robust optimal control for robot manipulators with both dynamic
decomposition and optimal compensation, especially, for MRMs with uncertain
environmental contact.

In this paper, a novel decentralized robust zero-sum neuro-optimal control
method is presented for MRMs with uncertain environments. First, the dynamic
model of the MRM systems is formulated via JTF technique, and a model-based
compensation controller is designed by effectively utilizing the local dynamic
information of each joint module. Second, a decentralized robust controller is
proposed to deal with the compensation control issue of model uncertainties.
Then, the robust optimal control problem of uncertain environment-contacted
MRMs is transformed into a two-player zero-sum optimal control one. The ADP
algorithm is employed to solve the HJI equation, in which the cost function, opti-
mal control policy and worst disturbance can be approximated by constructing
one critic NN and two action NNs, and then the decentralized robust zero-sum
neuro-optimal control is developed. Finally, experiments are performed to verify
the effectiveness of the proposed method.
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2 Dynamic Model Formulation

We consider the MRMs comprise n joint modules installed in series, and each
integrated with a DC motor, a speed reducer, two encoders and a joint torque
sensor. By referencing the modelling methods of JTF-based robot manipulators
with multi-degree of freedom (DOF) [9,10], we formulate the dynamic model of
the MRM system as a synthesis of interconnected robotic joint subsystems, in
which the ith joint subsystem dynamic model is represented as:

Imiγiq̈i + fi (qi, q̇i) + zi (q, q̇, q̈) +
τsi

γi
+ di (qi) = τi, (1)

where the subscript “i” indicates the ith subsystem; Imi is the moment of inertia
of actuator rotor about the rotation axis; γi denotes the gear ratio; qi, q̇i and q̈i

are the joint angular position, velocity and acceleration respectively; fi (qi, q̇i)
represents the joint lumped frictional torque; zi (qi, q̇i, q̈i) denotes the intercon-
nected dynamic coupling (IDC) among the joint subsystems; τsi represents the
coupling torque at the torque sensor location; di (qi) is the disturbance torque
and τi indicates the control torque.
(1) Joint friction

The friction term can be defined as a function with respect to joint angular
position and velocity, which is given as:

fi(qi, q̇i) ≈f̂biq̇i +
(
f̂sie

(−f̂τiq̇
2
i ) + f̂ci

)
sgn(q̇i) + fpi(qi, q̇i) + Y (q̇i)F̃i, (2)

where F̃i =
[
fbi − f̂bi fci − f̂ci fsi − f̂si fτi − f̂τi

]T
indicates the parametric

uncertainty of the friction; fbi, fsi, fτi and fci represent the ideal parameters
of the friction model; fpi (qi, q̇i) denotes the position dependency of friction and
the other friction modeling errors; sgn (q̇) is a classical sign function; f̂bi, f̂si, f̂τi

and f̂ci are estimated parameters of the friction model and Y (q̇i) is defined as:

Y (q̇i) =
[
q̇i, sgn (q̇i) , e(−f̂τiq̇

2
i ) sgn (q̇i) , −f̂siq̇

2
i e(−f̂τiq̇

2
i ) sgn (q̇i)

]
. (3)

(2) Interconnected dynamic coupling
The IDC term zi (q, q̇, q̈), which is considered a complex nonlinear function,

can be defined with respect to the positions, velocities and accelerations of the
lower joint modules (from joint 1 to i − 1), that is given as:

zi (q, q̇, q̈) = Imi

i−1∑
j=1

Di
j q̈j + Imi

i−1∑
j=2

j−1∑
k=1

Θi
kj q̇k q̇j = Uzi + Vzi,

Uzi =
i−1∑
j=1

[
ImiD̂

i
j Imi

] [
q̈j D̃i

j q̈j

]T

, Vzi =
i−1∑
j=2

j−1∑
k=1

[
ImiΘ̂

i
kj Imi

] [
q̇k q̇j Θ̃i

kj q̇k q̇j

]T

,

(4)
where Di

j and Θi
kj are given as Di

j = zT
mizlj and Θi

kj = zT
mi (zlk × zlj) respec-

tively, zmi, zlj and zlk are the unity vectors along the axis of rotation of the



6 B. Dong et al.

ith robot, jth joint and kth joint respectively. Moreover, we have the relations
D̂i

j = Di
j −D̃i

j and Θ̂i
kj = Θi

kj −Θ̃i
kj , where D̃i

j and Θ̃i
kj are the alignment errors.

(3) Joint torque and disturbance torque
The coupled joint torques τsi, which are measured by using the embedded

torque sensors, can be represented as the following form:

τsi = τsri + τsci, (5)

where τsri indicates the joint torque that is obtained in free space and τsci denotes
the torque produced by environmental contact in constrained space. Besides, the
disturbance torque term di (qi) can be defined as:

di (qi) = dis (qi) + dic (qi) , (6)

where dis (qi) represents the disturbance of torque sensor and dic (qi) indicates
unmeasured environmental contact torque in joint space.

Assumption 1. The uncertainty term F̃i is bounded by
∣∣∣F̃i

∣∣∣ ≤ ρFin, the fric-

tion modeling error is bounded by
∣∣∣Y (q̇i) F̃i

∣∣∣ ≤ Y (q̇i) ρFin and fpi (qi, q̇i) is
bounded by |fpi (qi,q̇i)|≤ρfpi.

Assumption 2. The terms Uzi and Vzi are bounded by |Uzi| ≤ ρUi, |Vzi| ≤ ρV i.

Assumption 3. The disturbance dis (qi) is bounded by |dis (qi)| ≤ ρdsi and the
unmeasured environmental contact torque dic (qi) is bounded by |dic (qi)| ≤ ρdci.

Then, define Bi = (Imiγi)
−1 ∈ R+ and the state vector xi =

[
xi1 xi2

]T =[
qi q̇i

]T ∈ R2×1 and the control input ui = τi ∈ R1×1, i = 1, 2, . . . n, the state
space of ith subsystem can be formulated as

Si =

⎧
⎪⎨
⎪⎩

ẋi1 = xi2

ẋi2 = φi (xi) + υi (x) + pi (xi) + Biui

y = xi1

, (7)

where φi (xi), υi (x) and pi (xi) are represented as follows:

φi (xi) = Bi

⎛
⎜⎝

−
(
f̂sie

(−f̂τiq̇
2
i ) + f̂ci

)
sgn (q̇i)

− f̂biq̇i − τsi

γi

⎞
⎟⎠

υi (x) = Bi

(
−Uzi− Vzi − fpi (qi, q̇i)−Y (q̇i) F̃i

)

pi (xi) = Bi (−dis (qi) − dic (qi))

. (8)

Next, a decentralized robust zero-sum optimal control method is presented
for MRMs to ensure that both position and velocity of the closed-loop robotic
systems are asymptotically stable.
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3 Decentralized Robust Zero-Sum Neuro-Optimal
Control Based on ADP

Consider the MRM systems with the dynamic model formulation (1) and the
state space description (7), if the contact disturbance pi (xi) is viewed as a system
control input, the robust optimal control problem can be transformed into a two-
player zero-sum optimal control issue, in which the continuously differentiable
infinite horizon local cost function can be defined as follows:

Ji (si0 (ei)) =
∫ ∞

0

{
si(ei (τ))T

Qisi (ei (τ)) + ui(τ)T
Riui (τ)

− γ2
pipi(xi (τ))T

pi (xi (τ))

}
dτ, (9)

where
si (ei) = ėi + αeiei (10)

is a filtered error function with the initial filtered error si0 (ei) = si (0); ei =
xi1 − xid and ėi = xi2 − ẋid indicate the position and velocity tracking error of
the ith joint module respectively; xid, ẋid and ẍid represent the desired angular
position, velocity and acceleration that are known and bounded reference states.
QT

i = Qi, RT
i = Ri denote the positive constant matrixes; αei and γpi are

determined positive constants.
According to (9), one can define the local Hamiltonian as:

Hi (si, ui, pi,∇Ji) = sT
i Qisi + uT

i Riui

+ ∇JT
i (si) (φi + υi + pi + αeiėi + Biui − ẍid) − γ2

pip
T
i pi

, (11)

where ∇Ji (si) = (∂Ji (si)/∂si) denotes the partial derivative of Ji (si) with
regard of si. Define the utility function as

Ωi (si, ui, pi) = sT
i Qisi + uT

i Riui − γ2
pip

T
i pi. (12)

Then, one obtain that the optimal local cost function J∗
i satisfies:

J∗
i (si) = min

ui

max
pi

∫ ∞

0

Ωi (si, ui, pi) dτ = max
pi

min
ui

∫ ∞

0

Ωi (si, ui, pi) dτ.

(13)
According to (11) and (13), the local optimal control pair (u∗

i , p
∗
i ) satisfies

the following HJI equation:

0 = ∇J∗T
i (si) (φi + υi + p∗

i + αeiėi + Biu
∗
i − ẍid) + Ωi (si, u

∗
i , p

∗
i ) . (14)

On the basis of the principle of optimality, the local optimal control pair
(u∗

i , p
∗
i ) can be represented as follows:

u∗
i = −1

2
R−1

i BT
i ∇J∗

i , p∗
i =

1
2γ2

pi

∇J∗
i . (15)

Rewriting the optimal control law u∗
i of the ith subsystem as:

u∗
i = ui1 + ui2 + u∗

i3 (16)
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to deal with modeled dynamic term φi, model uncertainty term υi and contact
disturbance term pi respectively, then, the HJI equation can be modified as:

0 = ∇J∗
i

(
φi + υi + p∗

i + αeiėi − ẍid

+ Biui1 + Biui2 + Biu
∗
i3

)
+ Ωi (si, u

∗
i , p

∗
i ) . (17)

Therefore, the zero-sum optimal control problem has been transformed into
the one of obtaining the decentralized control laws ui1, ui2 and u∗

i3 respectively,
and therefore, to realize the optimal compensation of model uncertainty and
environmental contact disturbance of the MRM system.

First, we can design control law ui1, that is given as:

ui1 = −
(

−
(
f̂sie

(−f̂τix
2
i2) + f̂ci

)
sgn (xi2)− f̂bixi2 − B−1

i ẍid − τsi

γi
+ B−1

i αeiėi

)
.

(18)
Second, we consider that the MRM systems, which work in free space, is

possessed of accurate joint torque sensing. Thus, substituting (18) into (17), one
obtains:

0 = Ωi (si, u
∗
i , p

∗
i )+ ∇J∗

i (υi+ p∗
i + Biui2 + Biu

∗
i3) . (19)

Note that we have p∗
i = u∗

i3 = 0 when the MRM system works in free
space, therefore, combining the time derivative of (10) and the model-based
compensation control (18), one obtains

ṡi = Bi

( − fpi (xi1, xi2) − Uzi − Y (xi2) F̃i − Vzi

)
+ Biui2. (20)

Here, we introduce the decentralized robust control ui2 to compensate the
effects of model uncertainties. For the unmodeled friction in (2), we decomposed
F̃i as the summation of constant part and variable part, which is given as:

F̃i = F̃ic + F̃iv, (21)

where F̃ic indicates an unknown constant vector and F̃iv denotes an unknown
variable vector that is bounded as:

∣∣∣F̃iv

∣∣∣ ≤ ρFivn, n = 1, 2, 3, 4, (22)

in which ρFivn = [ρFiv1 ρFiv2 ρFiv3 ρFiv4]
T is a determined constant vector.

Then, one can design the robust control law ui2f , which is given as:

ui2f = ui2fu + Y (xi2) (ui2fc + ui2fv) , (23)

where ui2fu is designed to compensate friction term fpi (xi1, xi2); ui2fc, ui2fv

are used to compensate the effect of uncertainties F̃ic and F̃iv respectively:

ui2fu =

{−ρfpi
si

|si| if |si| > εifu

−ρfpi
si

εifu
if |si| ≤ εifu

, (24)
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ui2fc = −εifc

(∫ t

0

Y (xi2)sidτ + si

)
, (25)

ui2fv =

⎧
⎨
⎩

−ρFivn
Y (xi2)si

|Y (xi2)si| if |Y (xi2)si| > εifvn

−ρFivn
Y (xi2)si

εifvn
if |Y (xi2)si| ≤ εifvn

, n = 1, 2, 3, 4 (26)

where εifu, εifc and εifvn are determined positive parameters. Moreover, we
decomposed the terms of Uzi and Vzi as:

Uzi = Uzic + Uziv, Vzi = Vzic + Vziv, (27)

where Uzic and Vzic are with known up-bounds; Uziv and Vziv are bounded as:

|Uziv| ≤ ρUiv, |Vziv| ≤ ρV iv, (28)

where ρUiv and ρV iv are constant up-bounds to be determined.
Then, by adopting the decomposition-based analysis of the uncertainties, we

can design the robust control law ui2h, which is formulated as:

ui2h = ui2hU + ui2hV , (29)

where ui2hU is used to compensate the effect of the term Uzi, that is given as:

ui2hU = ui2hUc + ui2hUv,

ui2hUc = −εiUs

(∫ t

0

εiUssidτ + si

)
, ui2hUv=

{−ρUiv
εiUssi

|εiUssi| if |εiUssi|>εiUB

−ρUiv
εiUssi

εiUB
if |εiUssi|≤εiUB

,

(30)
where εiUs and εiUB are positive parameters to be determined. Moreover, one
can design the control law ui2hV to compensate the effect of the term Vzi:

ui2hV = ui2hV c + ui2hV v

ui2hV c =−εiV s

(∫ t

0

εiV ssidτ + si

)
, ui2hV v =

{−ρV iv
εiV ssi

|εiV ssi| if |εiV ssi|>εiV B

−ρV iv
εiV ssi

εiV B
if |εiV ssi| ≤ εiV B

,

(31)
where εiV s and εiV B are positive parameters to be determined. Then, by com-
bining (23) with (29), one obtain the decentralized control law ui2, which is given
as follows:

ui2 = ui2f + ui2h. (32)

Then, we introduce the critic NN, u-action NN and p-action NN to approx-
imate the performance index function Ji (si), the optimal control law u∗

i3 and
the worst contact disturbance p∗

i respectively.
By employing RBF NNs, the ideal critic NN is represented as:

Ji (si) = wT
ciσci (si) + εci, (33)
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where wci is the unknown ideal NN weight, εci represent the finite approximation
error of the critic NN, σci (si) indicates a standard activation function. Besides,
the gradient of the approximated cost function is given as:

∇Ji (si) = ∇σci(si)
T
wci + ∇εT

ci, (34)

where ∇σci (si) = ∂σci (si)/∂si indicates the gradients of the activation function
and ∇εci is the gradient error. Then, one can rewrite the Hamiltonian and obtain
the following relation:

Hi (si, ui, pi, wci) = Ωi (si, ui, pi) +
(
wT

ci∇σci (si)
)
ṡi − ecHi = 0, (35)

where ecHi denotes the approximation error of the critic NN:

ecHi = Ωi +
(
wT

ci∇σci

)
ṡi. (36)

Let ŵci be the estimated weight vector of wci, therefore, one obtains:

Ĵi (si) = ŵT
ciσci (si) . (37)

Then, one can define the approximate Hamilton function as:

Ĥi (si, ui, pi, ŵci) = Ωi (si, ui, pi) +
(
ŵT

ci∇σci (si)
)
ṡi. (38)

Define the weight approximation error w̃ci = wci − ŵci, then, one obtains:

eci = ecHi − w̃T
ci∇σci (si) ṡi. (39)

Define the residual error function Eci = 1
2e2ci, which is minimized to adjust

the weight vector of the critic NN, that is updated by

˙̂wci = −αci

(
∂Eci

∂ŵci

)
= −αci

pci

(
pT

ciŵci + Ωi

)
(
pT

cipci + 1
)2 , (40)

where αci > 0 is the learning rate of the critic NN, and pci=∇σci (si) ṡi.
Then, we employ the action NNs to approximate u∗

i3 and p∗
i respectively. The

ideal u- and p-action NNs are given as follows:

u∗
i3 = wT

aiσai (si) + εai, p∗
i = wT

piσpi (si) + εpi, (41)

where wai, wpi represent the ideal weight vectors, σai, σpi denote the activation
functions and εai, εpi are the finite approximation errors of u- and p-action
respectively. Let ŵai and ŵpi be the estimation weight vectors of wai and wpi,
then we have:

ûi3 = ŵT
aiσai (si) , p̂i = ŵT

piσpi (si) . (42)

Since
(
∂Ĥi (si, ûi, p̂i, ŵci)/∂ûi

)
= 0 and

(
∂Ĥi (si, ûi, p̂i, ŵci)/∂p̂i

)
= 0, so

that ûi3 and p̂i can be further described as follows:

ûi3 = −1
2
R−1

i BT
i ∇σT

ci (si) ŵci, p̂i =
1

2γ2
pi

∇σT
ci (si) ŵci, (43)
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where the update laws for u- and p-action NN weights are given as:

˙̂wai = −αaiσai (si) ·
(

ŵT
aiσai (si) +

1
2
R−1

i BT
i ∇σT

ci (si) ŵci

)T

, (44)

˙̂wpi = −αpiσpi (si) ·
(

ŵT
piσpi (si) − 1

2γ2
pi

∇σT
ci (si) ŵci

)T

, (45)

where αai and αpi are the positive learning rates of u- and p-action NNs.
Then, by combining (18), (32) with (43), the proposed decentralized robust

zero-sum neuro-optimal control law u∗
i is given as:

u∗
i = −

⎛
⎜⎝

− f̂bixi2 − B−1
i ẍid − τsi

γi
+ B−1

i αeiėi

−
(
f̂sie

(−f̂τix
2
i2) + f̂ci

)
sgn (xi2)

⎞
⎟⎠ − (−ui2hU − ui2hV )

− (−ui2fu − Y (xi2) (ui2fc + ui2fv)) − 1
2
R−1

i BT
i ∇σT

ciŵci

. (46)

Theorem 1. Consider an n-DOF modular robot manipulator, with the dynamic
model of the ith joint subsystem formulated in (1); the model uncertainties existed
in (2), (4) and the environmental contact disturbance given in (6). The closed-
loop robotic system is asymptotically stable under the decentralized robust zero-
sum neuro-optimal control law proposed by (46).

Proof. A Lyapunov function candidate is selected as:

Vg (t) =
n∑

i=1

Vgi (t) =
n∑

i=1

⎛
⎝

δsis
T
i si + δΩiJi (si)

+ δpi

∫ ∞

t

γ2
pip

T
i (τ) pi (τ) dτ

⎞
⎠, (47)

where δsi > 0 and δpi ≥ δΩi > 0 are determined positive definite constants.
Then, one obtains the time derivative of (47) that is given as:

V̇g (t)≤
n∑

i=1

(
2δsi

(
‖si‖2+

1
2
‖Bi‖2‖u∗

i3‖2
))

−
n∑

i=1

(−δsi−(δΩi − δpi) γ2
pi

)‖pi‖2

−
n∑

i=1

δΩi

(
λmin (Qi) ‖si‖2 + λmin (Ri) ‖ui1‖2

+ λmin (Ri) ‖ui2‖2 + λmin (Ri) ‖u∗
i3‖2

)

= −
n∑

i=1

(δΩiλmin (Qi) − 2δsi) ‖si‖2 −
n∑

i=1

(δΩiλmin (Ri)) ‖ui1‖2

−
n∑

i=1

(δΩiλmin (Ri)) ‖ui2‖2 −
n∑

i=1

(
δΩiλmin (Ri) − δsi‖Bi‖2

)
‖u∗

i3‖2

−
n∑

i=1

(−δsi − (δΩi − δpi) γ2
pi

)‖pi‖2

.

(48)
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Therefore, we know that V̇g (t) ≤ 0 when the following condition holds:

λmin (Qi) ≥ 2δsi

δΩi
, λmin (Ri) ≥ δsi

δΩiI2miγ
2
i

, δpi ≥ δΩi +
δsi

γ2
pi

. (49)

Besides, from (48), one obtains that if (49) is satisfied, then V̇g (t) < 0 for
any si �= 0. Therefore, by the Lyapunov theory, the closed-loop robotic system is
asymptotically stable under the proposed decentralized robust zero-sum neuro-
optimal control (46). This completes the proof of the Theorem 1.

4 Experimental Results

In this section, the experimental results are presented based on the experimental
platform as illustrated in [8], and the experimental results are collected to verify
the effectiveness of the proposed control method. We consider the environmental
contact as a kind of instantaneous collision between the MRM link and the
collision object that may create instantaneous contact forces.

Table 1. Parameters setting

Name Value Name Value Name Value

f̂bi 12mNms/rad f̂ci 30mNm f̂si 40mNm

f̂τi 20 s2/rad2 γi 100 Imi 120 gcm2

ρFiv1 30mNms/rad ρFiv2 60mNm ρFiv3 80mNm

ρFiv4 50 s2/rad2 ρdsi 10mNm ρdci 50mNm

ρV iv 2.3 ρfpi 0.5 ρUiv 2.6

αei 0.5 εifu 0.1 εifc 1

αci, αpi, αai 0.8 εifv1, εifv2 0.01 εifv3, εifv4 0.01

γpi 1.87 εiUs, εiV s 0.02 εiV B , εiUB 0.02

The parameter definition is represented as follows: The critic NN is chosen
as 2-5-1 with 2 input neurons, 5 hidden neurons and 1 output neuron, and
the weight vectors are selected as ŵc1 =

[
ŵc11 ŵc12 ŵc13 ŵc14 ŵc15

]T for joint

1 and ŵc2 =
[
ŵc21 ŵc22 ŵc23 ŵc24 ŵc25

]T for joint 2, with the initial values
ŵc1 = ŵc2 = [0]. The NN structures and initial weight values of the and action
NNs are selected as the same of the critic NNs. The other model parameters,
uncertainty up-bound parameters and control parameters are given in Table 1.

Figure 1 illustrate the position and velocity error curves under the situation
of instantaneous collision contact. In this figure, obvious position and velocity
deviations are captured, which are due to the effect of collision force. Moreover,
we also observe that the error values decreased to normal ranges with very short
time periods, which may attribute to the performance of the proposed zero-sum
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Fig. 1. Error curves under the collision contact, (a) position errors, (b) velocity errors.

neuro-optimal controller that realized the optimal compensation of unknown
contact disturbance.

Figure 2(a) illustrate the control torque curves under the situation of instan-
taneous collision contact. From this figure, the reliable control torque outputs
are obtained, in which the instant increase of control torques keep in safe limits.
This is attribute the contribution of the proposed optimal control that realizes
the optimization of tracking errors and output torques.

Figure 2(b) illustrate the variations of the estimated critic NN weights under
the proposed method. From this figure, one obtain that the critic NN weights
may converge in certain ranges for each isolated joint subsystem. With the critic
NN weight estimations, the HJI equation and the optimal control law can be
solved and derived respectively.
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5 Conclusion

In this paper, we develop a decentralized robust zero-sum neuro-optimal control
scheme for MRMs. Based on local dynamic information of each joint module
and the JTF technique, a model-based compensation controller and an uncer-
tainty decomposition-based robust controller are designed for controlling MRM
systems. Based on ADP algorithm, the HJI equation is solved by constructing
the action-critic NNs, and then the decentralized robust zero-sum neuro-optimal
control is developed. Finally, experimental results are illustrated to verify the
effectiveness and advantages of the proposed method.
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Abstract. This paper investigates the leader-following consensus prob-
lem of nonlinear multi-agent systems with directed topology by a novel
delayed impulsive controller. The impulsive moments are determined by
an event-triggered condition. Meanwhile, we also consider the delays in
impulsive term on account of the network’s limited communication. Some
sufficient conditions are derived to achieve the leader-following consensus,
and the Zeno-behavior dose not exhibit. A numeral example is derived
to show the validity of our results.

Keywords: Multi-agent systems · Event-triggered ·
Impulsive control · Delayed impulses

1 Introduction

Many natural phenomenon and man-made networks can be modeled by leader-
following multi-agent systems (MASs), such as [1–4]. The leader-following con-
sensus (LFC) problems of MASs have received much attention during the
past decades due to the widely applications in signal process, coordination of
unmanned vehicles, wireless senor networks, and so on [5–7]. Recently, many
literatures adopted the existing distributed control techniques to study the LFC
problems. However, common control protocols need continuous monitoring and
communication between agents, which may caused the redundant cost and packet
dropout in the large-scale MASs. Hence, designing an effective control protocol
is a great challenge for the LFC problems.

Impulsive control method, which describes the abrupt change at certain
instants, has been widely used to deal some practical problems. There existed
many works concerning the impulsive consensus [8–10]. Besides, some researchers
focused on the influence of impulsive time sequence on the consensus. Lu et al.
presented a novel concept named average impulsive interval to describe the fre-
quency of impulses in [11]. Then Wang et al. [12] extended the concept to a form
of limited and given a novel notion of average impulsive gain. Furthermore, the
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H. Lu et al. (Eds.): ISNN 2019, LNCS 11555, pp. 15–24, 2019.
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concept of impulsive time window was used to determine impulsive moments pre-
viously [13]. The impulsive instants in the above studies are restricted into some
regions, but the accurate instants when the impulses occur are not determined.

On the other hand, event-triggered (ET) control method, that the controller
updates only at ET instants which determined by some predefined conditions,
is a very useful in some practise industrial field, due to this control mechanism
can greatly save the communication cost [14]. In [15], the LFC problems of
second-order MASs with or without switching topology were addressed using
distributed ET sampling strategy. Although the ET control protocol is a valid
approach to avoid continuous communication, it is not easy to implement this
control method due to the limited network bandwidth and limited information
processing capability.

From the above discussion, we can see that ET method can accurately deter-
mined the time when the agent broadcasts its state or exchange information
with its neighbors. Considering the advantage and disadvantage of impulsive
controller, using appropriate ET conditions to decide the impulsive instants
is a very available method. Many existing results discussed the ET impulsive
control protocol. The L∞ leader-following consensus of continuous-time MASs
via a ET observer-type protocol under an impulsive framework was concerned
in [16]. An ET impulsive control protocol was designed to enhance the property
of differential evolution algorithms in [17]. Subsequently, Zhu et al. [18] used the
event-based impulsive control method to study the exponential stabilization and
applied the results to memristive neural networks. Recently, by the ET impul-
sive control method, the LFC for MASs was derive in [19]. Although these work
have discussed the event-based impulsive control schemes, there are few litera-
tures considering the delay naturally caused by network communication between
sensors, actuators and controllers.

Motivated by the above discusses, this paper studies the LFC problem for
nonlinear MASs with delay impulses via designing a ET impulsive controller.
The rest of the paper is organized as following: In Sect. 2, several definitions
and important lemmas are given. Main results are formulated in Sect. 3. Then,
we provide a numerical simulation to show the valid of our results in Sect. 4.
Section 5 concludes our results and discussed the further work.

2 Preliminaries and Problem Statement

The network’s topology described by a directed graph G = {V, E}, where V =
{v1, v2, . . . , vN} is the set of nodes, and the edges set is E ⊆ V ×V. If node j can
receive information from node i, then (i, j) ∈ E . The corresponding Laplacian
matrix is defined as follows: lij > 0 if (i, j) ∈ E , lij = 0 otherwise. We used the
diagonal matrix D = diag{d1, d2, . . . , dN} to describe the relationship between
the the follower nodes and leader node, i.e. di > 0 means the agent i can take
over information from the leader node, otherwise di = 0.

Consider the following nonlinear multi-agent network:

ẋi(t) = Bxi(t) + Cf̃(xi(t)) + ui(t), (1)
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where i = 1, 2, · · · , N , B and C ∈ R
n×n, the nonlinear function f̃(·) =

(f1(·), f2(·), · · · , fn(·))T : R
n → R

n, and ui(t) is control input which will be
designed in the following.

The objective leader agent’s dynamics is

ẋ0(t) = Bx0(t) + Cf̃(x0(t)). (2)

Definition 1. The leader-following exponential consensus of the MASs (1)
with the leader node x0(t) is said to be achieved if ‖e(t)‖ ≤ Me−α(t−t0),
i = 1, 2, · · · , N , where M and α are given positive constants, ei(t) = xi(t)−x0(t).

In this paper, we will adopt the impulsive control method to achieve the
leader-following exponential consensus, and the impulsive instants are decided by
an ET condition. Next, we will give the ET condition. Let si(t) =

∑

j∈Ni

aij(xj(t)−
xi(t)) + di(x0(t) − xi(t)) and ε(t) = si(tik) − si(t). The communication events of
agent i are triggered at time sequence

tik = inf{t : t > tik−1, zi(t) ≥ 0}, (3)

where zi(t) = ‖ε(t)‖ − β‖si(tik)‖. Then, ui(t) is defined as

ui(tik) = csi(tik − τ i
k). (4)

and ui(t) = 0, t �= tik. For ei(t) = xi(t) − x0(t), then the error systems can be
rewritten as

{
ėi(t) = Bei(t) + Cf(ei(t)), t �= tik,

	ei(tik) = ei(t+k ) − ei(t−k ) = −csi(tik − τ i
k).

(5)

where f(ei(t)) = f̃(xi(t)) − f̃(x0(t)). Then
{

ė(t) = IN ⊗ Be(t) + IN ⊗ CF (e(t)), t �= tk,

	e(tk) = e(t+k ) − e(t−k ) = −cδ(k)s(tk − τk),
(6)

where ζ = {t1, t2, · · · } is rearrangement of all tik according to chrono-
logical order, F (e(t)) = (fT (e1(t)), fT (e2(t)), · · · , fT (eN (t)))T , and e(t) =
(eT

1 (t), eT
2 (t), · · · , eT

n (t))T . δi(k) = 1 if event occurs for agent i at tk, δi(k) = 0
otherwise. We use δ(k) to describe the triggered situation for every agent.

δ(k) =

⎛

⎜
⎜
⎜
⎝

δ1(k) δ2(k) · · · δN (k)
δ1(k) δ2(k) · · · δN (k)

...
... · · · ...

δ1(k) δ2(k) · · · δN (k)

⎞

⎟
⎟
⎟
⎠

.

From the above matrices, it is easy to see that there are no more than 2N

possibilities for δ(k). We assume that δ(k) ∈ Ω = {δ1, δ2, . . . , δ2N , }.

Assumption 1. For nonlinear function f̃(·), there exists a constant L > 0 such
that for any y1, y2 ∈ R

n one has

‖f̃(y1) − f̃(y2)‖ ≤ L‖y1 − y2‖. (7)
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3 Main Results

This section will discuss the LFC of systems (1) and (2) under the ET impulsive
controller. Firstly, we will prove that there is no Zeno-behavior.

Lemma 1. Consider the systems (1), (2) and impulsive controller (4) under the
event condition (3). The Zeno behavior is excluded for the closed loop systems.

Proof. Computing the right-upper Dini derivative of ‖ei(t)‖ on the interval
[tik, tik+1), one has

D+εi(t) = ‖ε̇(t)‖
=

∑

j∈Ni

aij(ẋj(t) − ẋi(t)) + di(ẋ0(t) − ẋi(t))

≤ ‖B + CL‖[
∑

j∈Ni

aij(xj(t) − xi(t))

+ di(x0(t) − xi(t))]
≤ ã‖si(t)‖
≤ ã‖εi(t)‖ + ã‖si(tik)‖,

(8)

where ã = ‖A + BL‖. Hence, one has

‖εi(t)‖ ≤ ‖si(tik)‖(eã(t−ti
k) − 1),

Furthermore, we have

β‖si(tik)‖ = ‖εi(tik+1)‖ ≤ ‖si(tik)‖(eã(ti
k+1−ti

k) − 1),

and

tik+1 − tik ≥ ln(β + 1)
ã

.

Hence, η = inf
i=1,2,···N,k∈N+

{tik+1 − tik} > 0, i.e. the Zeno-behavior is excluded.

Theorem 1. Suppose that Assumption 1 and tk − tk−1 > τk hold. Consider the
MASs (1) and the leader node (2) with the ET impulsive controller (4). The
corresponding error systems (5) is exponential stability if there exist constants
α, p > 0, ω > 0, 0 < ρ < 1, positive-definition matrices P > 0 and Ψ > 0 such
that the for any δ ∈ Ω, the following inequalities hold:

(
PB + BT P + L2Ψ − αP PC

∗ −Ψ

)

< 0, (9)

⎛

⎝
−(� − ωβ2

2)IN IN − cHδ 0
∗ −IN cHδ
∗ ∗ −ωIN

⎞

⎠ < 0, (10)
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ln ρ

η
+ α < 0, (11)

where β2 = (‖B‖ + ‖CΨ‖)
√

λN (P )
λ1(P ) τ .

Proof. Let V (t) =
N∑

i=1

eT
i (t)Pei(t). Considering the derivative along the error

systems (6), it follows from Assumption 1 that

V̇ (e(t)) = eT (t)(In ⊗ (PB + BT P ))e(t)
+eT (t)(In ⊗ PC)F (e(t))
+FT (e(t))(IN ⊗ CT P )e(t)

≤ eT (t)(IN ⊗ (PB + BT P ))e(t)
+eT (t)(IN ⊗ PC)Ψ−1(IN ⊗ CT P )e(t)
−FT (e(t))ΨF (e(t))

≤ αV (e(t)).

Hence, we have V̇ (e(t)) ≤ αV (e(t)).
Let V0 = sup

t∈[t0−τ,t0)

‖V (t)‖. Firstly, there exists a constant μ1 > 0 such that

V (t) ≤ μ1V0e
−ε(t−t0−τ) holds for t ∈ [t0 − τ, t0 + τ). Let Ṽ (t) = V (t)eε(t−t0−τ)

and μ2 = μ1
� , where 0 < � < 1. For t ∈ [t0 + τ, t1), we will prove that Ṽ (t) ≤

μ2V0. If it is not true, i.e. there exist t such that Ṽ (t) > μ2V0, then we have
Ṽ (t∗) = μ2V0 and Ṽ (t∗∗) = �μ2V0, where t∗ = inf{t ∈ [t0 + τ, t1], Ṽ (t) ≥ μ2V0}
and t∗∗ = sup{t ∈ [t0 + τ, t1], Ṽ (t) ≤ �μ2V0}.

Then if ε is sufficient small, we can get

˙̃
V (t) = eε(t−t0−τ)(εV (t) + V̇ (e(t)))

< αeε(t−t0−τ)V (e(t))

= αṼ (e(t)).

Hence, it follows from (11) that

Ṽ (e(t∗)) < Ṽ (e(t∗∗))eα(t∗−t∗∗)

≤ �μ2V0e
αη

< μ2V0,

which is contradict with Ṽ (t∗) = μ2V0. Hence, for t ∈ [t0 + τ, t1) we have

Ṽ (t) ≤ μ2V0. (12)

Suppose that (12) holds for t ∈ [t0 − τ, tm], next, we will prove that (12) holds
for t ∈ [tm, tm+1). Actually, if we have

Ṽ (tm) ≤ �μ2V0, (13)
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then for any t ∈ [tm, tm+1)

Ṽ (e(t)) ≤Ṽ (tm)eα(t−tm)

≤�μ2V0e
αη

≤μ2V0.

(14)

Hence we only need to prove (13) holds.
Denote E(t−m) = e(t−m) − e(t−m − τm), then we have

e(t+m) =e(t−m) − cHδ(m)e(t−m − τm)

=((IN − cHδ(m)) ⊗ In)e(t−m)

+ cHδ(m) ⊗ InE(t−m).

It follows from

‖(In ⊗
√

P )e(t)‖2 ≤ e−ε(t−t0−τ)μ2V0, t ∈ [t0, tm) (15)

that

‖e(t)‖2 ≤ ‖ 1
λ1(P )

e−ε(t−t0−τ)μ2V0. (16)

For t ∈ [tm−1, tm), one has

‖(In ⊗
√

P )ė(t)‖
≤

√
λN (P )(‖B‖ + ‖CΨ‖)‖e(t)‖

≤(‖B‖ + ‖CΨ‖)

√
λN (P )
λ1(P )

√
e−ε(t−t0−τ)μ2V0,

and

‖(In ⊗
√

P )E(t−m)‖

≤
∫ tm

tm−τm

‖(In ⊗
√

P )ė(s)‖ds

≤(‖A‖ + ‖BΨ‖)

√
λN (P )
λ1(P )

τm

√
e−ε(tm−t0−τ)μ2V0

≤β2

√
e−ε(tm−t0−τ)μ2V0.

(17)

It follows from the definition of Ṽ (e(t)) that (13) holds if and only if the
following LMI holds

(−�μ2V0e
−ε(t−t0−τ) eT (tm)(IN ⊗ P )
∗ −IN ⊗ P

)

< 0, (18)
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which can be decomposed into the following LMI
(−�μ2V0e

−ε(t−t0−τ) eT (t−m)((IN − cHδ(m))T ⊗ P )
∗ −IN ⊗ P

)

+
(

ET (t−m)(IN ⊗ √
P )

0

)
(
0 c(Hδ(m))T ⊗ √

P
)

+
(

0
cHδ(m) ⊗ √

P

)
(
(IN ⊗ √

P )E(t−m) 0
)

< 0.

Then for any constant ω > 0, one has
(

E(t−m)(IN ⊗ √
P )

0

)
(
0 c(Hδ(m))T ⊗ √

P
)

+
(

0
cHδ(m) ⊗ √

P

)
(
(IN ⊗ √

P )E(t−m) 0
)

≤ ω

(
ET (t−m)(IN ⊗ √

P )
0

)
(
(IN ⊗ √

P )E(t−m) 0
)

+ω−1

(
0

cHδ(m) ⊗ √
P

)
(
0 c(Hδ(m))T ⊗ √

P
)
.

Hence we only need to prove the following inequality holds

⎛

⎜

⎝

−�μ2V0e−ε(t−t0−τ) + ωET (t−
m)(IN ⊗ P )E(t−

m) eT (t−
m)(IN − c(Hδ(m))T ⊗ P ) 0

∗ −IN ⊗ P cHδ(m) ⊗ √
P

∗ ∗ −ωIN

⎞

⎟

⎠
< 0.

(19)

Actually,

⎛
⎝

−(� − ωβ2
2)μ2V0e−ε(t−t0−τ) eT (t−m)(IN − c(Hδ(m))T ⊗ P ) 0

∗ −IN ⊗ P cHδ(m) ⊗ √
P

∗ ∗ −ωIN

⎞
⎠ < 0. (20)

For (17), if ω is small enough, we can from the LMI (20) to obtain (19).
Actually, based on (10), we can conclude that the following inequality holds,

where Υ = diag{eT (t−m)(IN ⊗ √
P ), IN ⊗ √

P , IN ⊗ In}.

ΥT

⎛

⎝
−(� − ωβ2

2)IN IN − c(Hδ(m))T 0
∗ −IN cHδ(m)
∗ ∗ −ωIN

⎞

⎠ Υ < 0. (21)

It follows from (14) that (19) holds for some small enough ε. Hence, according
to the above analysis, we can obtain (13). Furthermore, we have proved that for
t ∈ [t0 − τ,+∞) one has

V (e(t)) ≤ μ2V0e
−ε(t−t0−τ). (22)
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Therefore

e(t) ≤
√

μ2V0

λ1(P )
e− ε

2 (t−t0−τ). (23)

The leader-following systems (1) and (2) are exponential consensus with converge
rate ε

2 .

4 Numerical Example

In this section, we will provide a numerical example to show the feasibility of
our results. Consider the leader-following MASs with four agents described by

ẋi(t) = Bxi(t) + Cf(xi(t)) + ui(t), (24)

where

B =

⎛

⎝
−1 0 0
0 −1 0
0 0 −1

⎞

⎠ , C =

⎛

⎝
0.25 −0.2 −0.2
−0.2 0.1 −0.4
−0.2 0.5 0.1

⎞

⎠ ,

with f(xi(t)) = (f1(xi1), f2(xi2), f3(xi3))T and fi(y) = 1
2 (|y + 1| + |y − 1|), i =

1, 2, 3. The corresponding topology construction is shown as in Fig. 1. Let c = 4
and τk = τ = 0.02. By Theorem 1 and the LMI Toolbox, there exist positive-
definition matrices P and Ψ satisfying (9)–(11), hence the LFC of systems (24)
can be achieved see in Fig. 2.

2
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Fig. 1. The Network topology of MASs
(24).
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Fig. 2. The error state trajectory of leader-
following MASs.
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5 Conclusion and Further Work

In this paper, we employed a distributed ET impulsive controller to studied
the LFC of nonlinear delayed MASs. Using an ET condition to determine the
impulsive instants, our results enhanced the accuracy of general impulsive con-
troller. Besides, considered the limited communication ability, time delays are
concerned in the impulsive controller. Some sufficient conditions are obtained to
assure the LFC for MASs. The effectiveness of our results is shown in a example.
This paper used a matrix to consolidate all the systems to a form of integration.
However, this method may increase the computation complexity. Hence, find-
ing a efficient method to overcome the computation complexity is indispensable.
Another interesting and urgent issue is to design more suitable ET condition to
study the consensus problems for MASs.
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Abstract. Recently, an adaptive distributed observer for a class of
uncertain leader systems was established over undirected connected
graphs. In this paper, we further study the same problem over directed
connected graphs. It is shown that, if the graph is acyclic, then an adap-
tive distributed observer exists in the sense that it can not only estimate
the leader’s state, but also the unknown parameters of the leader’s sys-
tem matrix exponentially.

Keywords: Distributed observer · Leader-following · Consensus ·
Uncertain leader · Multi-agent systems

1 Introduction

The distributed observer is an effective approach to dealing with various leader-
following control problems of multi-agent systems. A distributed observer for a
leader system is a distributed dynamic compensator that can provide for each
follower the estimated state of the leader system. The distributed observer was
first developed for solving the cooperative output regulation problem for linear
multi-agent systems over static networks in [6] and over jointly connected switch-
ing networks in [7], respectively. In both [6] and [7], the distributed observer
assumes that every follower knows the system matrix of the leader system. This
assumption was removed in [1] where a so-called adaptive distributed observer
for the leader system was proposed which estimates both the state, and the sys-
tem matrix of the leader system. A distinct feature of the adaptive distributed
observer in [1] is that only the children of the leader need to know system matrix
of the leader. Thus, the adaptive distributed observer in [1] is more practical than
the distributed observer in [6,7].
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In practice, a leader system may contain some unknown parameters. Typi-
cally, a linear uncertain leader system takes the following form:

v̇ = S(ω)v (1)

where v ∈ Rm is the state of the leader system and S(ω) ∈ Rm×m relies on some
unknown constant vector ω ∈ Rl.

Some efforts have been made on designing distributed observer for an uncer-
tain leader system of the form (1) [5,9–11]. Specifically, reference [5] proposed
a distributed dynamic compensator for an uncertain leader system and showed
that this compensator can estimate the state of (1) asymptotically using off-
policy reinforcement learning. However, [5] did not consider the convergence
issue of the estimated unknown parameters of the matrix S to the actual value
of the unknown parameters of the matrix S. [10] further developed an adaptive
distributed observer for (1) that estimated both v and ω using the local informa-
tion only and showed that the estimated parameters can converge to the actual
value of the unknown parameters asymptotically provided the state of the leader
system is persistently exciting. More recently, [11] further strengthened the result
in [10] by showing that the adaptive distributed observer in [10] can actually esti-
mate the unknown parameter vector ω exponentially. This strengthen result is
the key for handling the cooperative output regulation problem for linear multi-
agent systems with an uncertain leader system.

A common assumption in [5,9–11] is that the communication graph of the
follower subsystems is undirected. This assumption limits the applications of the
adaptive distributed observer. In this paper, we will further tackle if the assump-
tion that the communication graph of the follower subsystems is undirected can
be removed or can be relaxed. By using a quite different approach from the one
in [10], we show that if the graph is connected and acyclic, then the distributed
observer in [10,11] can also estimate the leader’s state and the unknown param-
eters of the leader’s system matrix exponentially. Thus, our result can at least
handle systems whose communication graph does not contain loops.

Notation: ⊗ denotes the Kronecker product of matrices. A function f :
[t0,∞) �→ Rn×m is uniformly bounded if there exists a positive constant c such
that

‖f(t)‖ ≤ c, ∀t ≥ t0.

For F1, · · · , Fk ∈ Rn×m, let col (F1, · · · , Fk) =
[
FT
1 , · · · , FT

k

]T . 1n =
col (1, · · · , 1) ∈ Rn, ∀f ∈ Rn, unless described otherwise, fi denotes the ith

component of f and let diag be such that

diag (f) =

⎡

⎢
⎣

f1
. . .

fn

⎤

⎥
⎦ . (2)



Adaptive Distributed Observer for an Uncertain Leader 27

For any f ∈ Rm with m an even positive integer, the matrix function φ(·) :
Rm �→ R

m
2 ×m is defined as follows:

φ(f) =

⎡

⎢
⎣

−f2 f1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −fm fm−1

⎤

⎥
⎦ . (3)

2 Some Technical Lemmas

As in [1], we view a multi-agent system of N + 1 agents with (1) as the leader
and the N subsystems as N followers. The network topology of the multi-agent
system is described by a graph Ḡ =

(V̄, Ē)
with V̄ = {0, · · · , N} and (i, j) ∈ Ē

if and only if aji > 0. Here the node 0 is associated with the leader system (1)
and the node i, i = 1, . . . , N , is associated with the ith follower of the multi
agent system. We use N̄i to denote the neighbor set of note i. Let G = (V, E) be
the subgraph of Ḡ where V = {1, · · · , N} and E is obtained from Ē by removing
those edges of Ē incident on the agent 0. We call G the communication graph of
the follower subsystems.

We will first list some assumptions as follows.

Assumption 1. Ḡ contains a spanning tree with the node 0 as the root and G
is acyclic graph.

Since G is acyclic, by appropriately labeling the nodes of Ḡ, we can assume
that the Laplacian matrix L of G is in the lower triangular matrix form. Let
D = block diag (a10, · · · , aN0) and H = L+D. Then H is also a lower triangular
matrix as follows:

H =

⎡

⎢
⎢
⎢
⎣

h11 0 · · · 0
h21 h22 · · · 0
...

...
. . .

...
hN1 hN2 · · · hNN

⎤

⎥
⎥
⎥
⎦

(4)

where hii =
∑

j �=i

aij , hij = −aij for i �= j.

Assumption 2. The matrix S(ω) takes the following form:

S(ω) = diag (ω) ⊗ a (5)

where a =
[

0 1
−1 0

]
, ω = col (ω01, · · · , ω0l) ∈ Rl, 2l = m and ω0k > 0, for

k = 1, · · · , l.

Remark 1. It is assumed in [5,9–11] that G is undirected. In Assumption
1, we have replaced this assumption with the assumption that G is acyclic.
Assumption 2 is equivalent to saying that the matrix S(ω) is nonsingular and all
of its eigenvalues are semi-simple with zero real part.



28 S. Wang and J. Huang

Let us review some results in [8,11] as follows.

Definition 1 [8]. A uniformly bounded piecewise continuous function f :
[0,+∞) �→ Rn×m is said to be persistently exciting (PE) if there exist positive
constants ε, t0, T0 such that,

1
T0

∫ t+T0

t

f(s)fT (s)ds ≥ εIn, ∀t ≥ t0.

Lemma 1 [11]. Suppose f(t), g(t) : [0,+∞) �→ Rn×m are uniformly bounded,
and lim

t→∞ (g(t) − f(t)) = 0. Then, f(t) is persistently exciting if and only g(t) is.

Lemma 2 [11]. For any z ∈ Rl and x, y ∈ Rm with m = 2l,

φ(x)y = − φ(y)x, (6)

S (z) x = − φT (x)z, (7)

where S (z) = diag (z) ⊗ a.

Before stating our main results, we first study the stability of the following
system:

ẋ = (S(ω) − μ2cIm) x + cφT (y)θ̃ + z, (8a)
˙̃
θ = −μ3φ(y)x, (8b)

where μ2, μ3, c are any positive numbers.

Lemma 3. Consider the system (8). Under Assumption 2, for any x(0), θ̃(0),

1. if y(t) and z(t) are uniformly bounded and lim
t→∞ z(t) = 0 exponentially, then

x(t), ẋ(t), ˙̂
θ(t) and θ̂(t) exist and are uniformly bounded,

lim
t→∞ x(t) = 0 and lim

t→∞
˙̃
θ(t) = 0;

2. if lim
t→∞ z(t) = 0 exponentially, y(t), ż(t) and ẏ(t) are uniformly bounded and

φ (y(t)) is persistently exciting, then system (8) is exponentially stable.

Proof. (i) Consider the following function:

V = 0.5
(
xT x + cμ−1

3 θ̃T θ̃
)
. (9)

Differentiating V along the trajectory of (8) gives

V̇ = xT ẋ + cμ−1
3 θ̃T ˙̃

θ

= xT (S(ω) − μ2cIm) x + cxT φT (y)θ̃

+ xT z + cμ−1
3 θ̃T ˙̃

θ. (10)
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Using the fact that S(ω) is skew symmetric gives

V̇ = − cμ2x
T x + xT z + cθ̃T φ(y)x + cμ−1

3 θ̃T ˙̃
θ

= − cμ2x
T x + xT z + cθ̃T

(
φ(y)x + μ−1

3
˙̃
θ
)

= −cμ2x
T x + xT z

≤ −0.5cμ2‖x‖2 + 0.25ε−1‖z‖2, (11)

with 0 ≤ ε ≤ 0.5cμ2. Thus, we have

V̇ ≤ 0.25ε−1‖z‖2. (12)

Therefore, for any t ≥ 0, V (t) − V (0) ≤ ∫ t

0
0.25ε−1‖z(τ)‖2dτ . As lim

t→∞ z(t) = 0

exponentially,
∫ ∞
0

‖z(τ)‖2dτ is bounded. Thus V (t) is bounded over t > 0, which
concludes that x and θ̃ are uniformly bounded. Since y and z are uniformly
bounded, from Eq. (8), ẋ and ˙̃

θ are uniformly bounded.
Let W (t) = V (t) − ∫ t

0
xT zdτ . As lim

t→∞ z(t) = 0 exponentially, we have
∫ ∞
0

xT zdτ is bounded. Differentiating W along the trajectory (8) and using
(11) gives

Ẇ = V̇ − xT z = −cμ2x
T x ≤ 0. (13)

Since Ẅ = −2cμ2x
T ẋ, Ẇ (t) is uniformly continuous. By Barbalat’s Lemma, we

have lim
t→∞ Ẇ (t) = 0, which implies lim

t→∞ x(t) = 0 from Eq. (13). From Eq. (8b),

we have lim
t→∞

˙̃
θ(t) = 0.

(ii) We first consider system (8) with z = 0, which can be rewritten as the
following linear time varying system:

Ẏ = B(t)Y, (14)

where

Y =
[

x

θ̃

]
, B(t) =

[
(S(ω) − μ2cIm) cφT (y)

−μ3φ(y) 0

]
.

The rest of the proof is based on Lemma B.2.3 of [3], which can be found as
Lemma 6 in the Appendix of this paper. Note that (14) is in the form (28) with

A = (S(ω) − μ2cIm) , P = Im, Λ = μ3c
−1Im, Ω(t) = cφ (y(t)) .

We will verify that (14) satisfies all conditions of Lemma 6. Clearly Λ and P
are positive definite matrices. Since all the eigenvalues of S(ω) have zero real
parts, A is Hurwitz for any μ2 > 0. Next, it can be verified that PA + AT P =
−2μ2cIm. Since y(t), ẏ(t) are uniformly bounded and φ (y(t)) is persistently
exciting. Equation (14) satisfies all conditions of Lemma 6. Thus, system (8)
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with z = 0 is exponentially stable. Next note that system (8) can be written
into the following form

Ẏ = B(t)Y +
[

z
0

]
. (15)

Let Φ(t, τ) be the transition matrix of (14). Then, for any t0, the solution of (15)
satisfies

Y (t) = Φ(t, t0)Y (t0) +
∫ t

t0

Φ(t, τ)
[

z(τ)
0

]
dτ (16)

Since (14) is exponentially stable and lim
t→∞ z(t) = 0 exponentially, there exist

some positive constants αi and λi, i = 1, 2, such that, for any t ≥ τ ≥ 0,
‖Φ(t, τ)‖ ≤ α1e

−λ1(t−τ), and ‖z(t)‖ ≤ α2e
−λ2(t−τ) ‖z(τ)‖. Without loss of gen-

erality, we assume that λ1 �= λ2. Simple calculation shows

‖Y (t)‖ ≤α1‖Y (t0)‖e−λ1(t−t0) +
‖z(t0)‖ α1α2

λ1 − λ2

(
e−λ2(t−t0) − e−λ1(t−t0)

)
(17)

Thus, lim
t→∞ Y (t) = 0 exponentially.

3 Adaptive Distributed Observer

In what follows, we will remove the assumption that the subgraph G is undirected
at the cost of assuming that the graph Ḡ is acyclic. We first recall the distributed
observer proposed in [10] as follows:

ξ̇i = S(ωi)ξi + μ2

N∑

j=0

aij(ξj − ξi) (18a)

ω̇i = μ3φ

⎛

⎝
N∑

j=0

aij(ξj − ξi)

⎞

⎠ ξi (18b)

where, for i = 1, · · · , N , ξi ∈ Rm, ξ0 = v, μ2 and μ3 are some positive numbers,
ωi ∈ Rl is the estimator of ω, and S (ωi) = (diag (ωi) ⊗ a).

Remark 2. It was shown in Lemma 4 of [11] that, under Assumption 2 and the
assumption that the subgraph G is undirected and contains a spanning tree with
node 0 as the root, the solution of (18) is such that

lim
t→∞ (ξi(t) − v(t)) = 0 and lim

t→∞ (ωi(t) − ω) = 0, i = 1, · · · , N.

For i = 1, · · · , N , let, evi =
∑N

j=0 aij(ξj − ξi), ω̃i = (ω̂i − ω), v̂ = 1N ⊗
v, ev = col (ev1, · · · , evN ), ξ = col (ξ1, · · · , ξN ), ω̂ = col (ω1, · · · , ωN ), ξ̃ =
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(ξ − v̂), Sd (ω̂) = block diag (S (ω1) , · · · , S (ωN )). Then, we have the following
relation:

ev = − (H ⊗ Im) (ξ − v̂) .

System (18) can be put into the following compact system

ξ̇ = Sd (ω̂) ξ − μ2 (H ⊗ Im) (ξ − v̂), (19a)
˙̂ω = μ3φd(ev)ξ, (19b)

where φd (ev) = block diag (φ(ev1), · · · , φ(evN )).
Under Assumption 1, by Theorem 2.5.3 of [4], there exists a positive definite

diagonal matrix D = diag (d1, · · · , dN ), such that H̄ = DH + HT D is positive
definite. Let λh denote the minimum eigenvalue of H̄ and dM = max{di, i =
1, · · · , N}.

Lemma 4. Consider systems (1) and (19a). Under Assumptions 1 and 2, for
any ξ(0) and ω(0), μ2, μ3 > 0, ξ(t) and ξ̇(t) are uniformly bounded.

Proof. We first consider Eq. (19a) with v = 0:

ξ̇ = A(t)ξ, (20)

where A(t) = (Sd (ω̂) − μ2 (H ⊗ Im)). Define the following Lyapunov function
for Eq. (20),

X0 = ξT (D ⊗ Im) ξ ≤ dM‖ξ‖2.
The time derivative of X0 along the trajectory of (20) is

Ẋ0 = 2ξT (D ⊗ Im) ξ̇

= 2ξT (D ⊗ Im) Sd (ω̂) ξ − 2μ2ξ
T (DH ⊗ Im) ξ

=
N∑

i=1

2diξ
T
i S (ωi) ξi − μ2ξ

T
(
(DH + HT D) ⊗ Im

)
ξ.

Since, for, i = 1, · · · , N , S(ωi) is skew symmetric,

Ẋ0 = −μ2ξ
T
(
H̄ ⊗ Im

)
ξ ≤ −μ2λhd−1

M X0. (21)

Thus, the origin of the system (20) is exponentially stable. Under Assumption 2,
v is uniformly bounded for all t ≥ 0. By Example 2.11 in [2], system (19a) is
input-to-state stable with ξ as the state and μ2ξ

T
(
H̄ ⊗ Im

)
v̂ as the input. Since

v̂ is uniformly bounded for all t ≥ 0, ξ is also uniformly bounded for all t ≥ 0.
Now differentiating (19a) gives

ξ̈ = A(t)ξ̇ + Sd( ˙̂ω)ξ + μ2 (H ⊗ Im) ˙̂v. (22)

Since system ξ̈ = A(t)ξ̇ is exponentially stable with ξ̇ as the state, again, by
Example 2.11 in [2], system (22) is input-to-state stable with ξ̇ as the state and

Sd( ˙̂ω)ξ + μ2 (H ⊗ Im) ˙̂v
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as the input. Under Assumption 2, v̇ is uniformly bounded. We have proved
that ξ is uniformly bounded. From Eq. (19b), we have ˙̂ω is uniformly bounded.
Thus, Sd( ˙̂ω)ξ + μ2 (H ⊗ Im) ˙̂v is uniformly bounded. Hence ξ̇ is also uniformly
bounded.

Under Assumption 1, the matrix H is in the form (4). Thus,

evi =
i−1∑

j=0

aij(ξj − ξi), i = 1, · · · , N. (23)

Equations (18) and (23) give

ėvi = (S(ω) − μ2hiIm)evi − hiS (ω̃i) ξi + mi (24a)
˙̃ωi = μ3φ(evi)ξi, i = 1, · · · , N, (24b)

where mi =
i−1∑

j=0

aij (μ2evj + S (ω̃j) ξj) and hi =
i−1∑

j=0

aij .

By Lemma 2, we can rewrite Eq. (18) into the following form:

ėvi = (S(ω) − μ2hiIm)evi + hiφ
T (ξi) ω̃i + mi, (25a)

˙̃ωi = −μ3φ(ξi)evi, i = 1, · · · , N. (25b)

Lemma 5. Consider systems (1) and (25). Under Assumptions 1 and 2, sup-
pose, for all k = 1, · · · , l, col (v2k−1(0), v2k(0)) �= 0. Then, for all ξi(0), ωi(0)
and μ2, μ3 > 0, ξi(t), ξ̇i(t) and ωi(t), ω̇i(t) exist and are uniformly bounded and
satisfy lim

t→∞ ξ̃i(t) = 0 and lim
t→∞ ω̃i(t) = 0, exponentially.

Proof. When i = 1, Eq. (25) takes the following form:

ėv1 = (S(ω) − μ2h1Im)ev1 + h1φ
T (ξ1) ω̃1, (26a)

˙̃ω1 = −μ3φ(ξ1)ev1, (26b)

where h1 = a10. System (26) can be viewed as a special case of (8) with z = 0.
By Lemma 4, ξ1 is uniformly bounded for all t > 0. System (26) satisfies all the
conditions in Case 1 of Lemma 3, we have lim

t→∞
˙̃ω1(t) = 0 and lim

t→∞ ev1(t) = 0

which implies lim
t→∞ ξ̃1(t)= 0. Thus, lim

t→∞ (φ (ξ1(t)) − φ (v(t))) = lim
t→∞ φ

(
ξ̃1(t)

)
= 0.

Since, for all k = 1, · · · , l, col (v2k−1(0), v2k(0)) �= 0, under Assumptions 2,
from Lemma 4 of [11], we have φ (v) is persistently exciting. By Lemma 1, φ (ξ1)
is persistently exciting. From Lemma 4, ξ̇1 is uniformly bounded. Since system
(26) satisfies all conditions in Case 2 of Lemma 3 with z = 0, both

lim
t→∞ ev1(t) = 0 and lim

t→∞ ω̃1(t) = 0

exponentially. Hence lim
t→∞ ξ̃1(t) = 0 and lim

t→∞ ω̃1(t) = 0 exponentially.
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Now suppose, for some n satisfying 1 ≤ n−1 < N , and, for all i = 1, · · · , n−1,

lim
t→∞ ω̃i(t) = 0 and lim

t→∞ ξ̃i(t) = 0

exponentially and ω̇i(t) is uniformly bounded. We prove

lim
t→∞ ω̃n(t) = 0 and lim

t→∞ ξ̃n(t) = 0

exponentially and ω̇n(t) is uniformly bounded for all t ≥ 0. From Eq. (25), we
have the following equation

ėvn = (S(ω) − μ2hnIm)evn + hnφT (ξn) ω̃n + mn, (27a)
˙̃ωn = − μ3φ(ξn)evn. (27b)

For j = 1, · · · , n − 1, lim
t→∞ ω̃j(t) = 0 and lim

t→∞ ξ̃j(t) = 0 exponentially. Then,

we have lim
t→∞ mn(t) = 0 exponentially. Since, for j = 1, · · · , n − 1, ω̃j(t) and

˙̃ωj(t) are uniformly bounded for all t ≥ 0 and, by Lemma 4, ξj , ξ̇j are uniformly
bounded for all t > 0. Also,

ṁn =
n−1∑

j=0

anj

(
μ2ėvj + S

( ˙̃ωj

)
ξj + S (ω̃j) ξ̇j

)
.

Then, we have ṁn is uniformly bounded for all t ≥ 0. Since system (27) satisfies
all the conditions in Case 1 of Lemma 3, we have

lim
t→∞

˙̃ωn(t) = 0 and lim
t→∞ evn(t) = 0.

Since

evn =
n−1∑

j=0

anj

(
ξ̃j − ξ̃n

)
=

n−1∑

j=0

anj ξ̃j − hnξ̃n

and, for j = 1, · · · , n − 1, lim
t→∞ ξ̃j(t) = 0, we have lim

t→∞ ξ̃n(t) = 0. Thus,

lim
t→∞ (φ (ξn(t)) − φ (v(t))) = lim

t→∞ φ
(
ξ̃n(t)

)
= 0.

Since, for all k = 1, · · · , l, col (v2k−1(0), v2k(0)) �= 0, under Assumption 2, φ (v) is
persistently exciting by Lemma 4 of [11]. Thus, by Lemma 1, φ (ξn) is persistently
exciting. By Lemma 4, ξ̇n is uniformly bounded for all t > 0. System (27)
satisfies all the conditions in Case 2 of Lemma 3. Thus, both lim

t→∞ ξ̃n(t) = 0 and

lim
t→∞ ω̃n(t) = 0 exponentially.

4 Conclusion

In this paper, we have considered establishing adaptive distributed observer for
an uncertain leader system over directed graphs. We have shown that such an
observer exists if the graph is connected and acyclic. A natural future work is
to further eliminate the assumption that the graph is acyclic.



34 S. Wang and J. Huang

Appendix

The following lemma is rephrased from Lemma B.2.3 of [3].

Lemma 6. Consider the following linear time-varying system

ẋ = Ax + ΩT (t)z, x ∈ Rn (28a)

ż = −ΛΩ(t)Px, z ∈ Rp (28b)

where A ∈ Rn×n is Hurwitz, P ∈ Rn×n is a symmetric positive definite matrix
satisfying AT P +PA = −Q with Q some symmetric positive definite matrix, and
Λ ∈ Rn×n is some symmetric positive definite matrix. If ‖Ω(t)‖ and ‖Ω̇(t)‖ are
uniformly bounded and Ω(t) is persistently exciting, then, the origin of system
(28) is exponentially stable.
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Abstract. As an important technique of preventing overfitting, regularization is
widely used in supervised learning. However, regularization has not been sys-
tematically studied in deep reinforcement learning (deep RL). In this paper, we
study the generalization of deep Q-network (DQN), applying with mainstream
regularization approaches, including l1, l2 and dropout. We pay attention on
agent’s performance not only in original environments, but also in parameter-
varying environments which are variational but the same task type. Furthermore,
the dropout is modified to make it more adaptive to DQN. Then, a new dropout
is proposed to speed up the optimization of DQN. Experiments show that
regularization helps deep RL achieve better performance in both original and
parameter-varying environments when the number of samples is insufficient.

Keywords: Regularization � Deep RL � Control learning task

1 Introduction

Although neural networks are lauded for generalization capabilities [1], which means
being able to approximate arbitrary functions, they are often troubled by overfitting
problems, especially in deep networks [2]. In supervised learning, regularization, as a
reliable technique preventing overfitting, has been widely practiced in the optimization
of deep networks. Main idea of regularization is to control the solution’s complexity in
a large function space. A relatively simple model is smoother and less affected by the
noise generated by uneven sample distribution than common ones [3]. Thus, in the
classification task, regularization can impressively improve the generalization ability of
the model for unseen samples [4].

As a general learning algorithm, deep reinforcement learning (deep RL) has made
remarkable achievements on complex decision problems [5]. An RL agent entirely
depends on experience-driven, obtaining an optimal policy through trial-and-error
method in the process of continuous interaction with environments [6]. Regularization
technique was also utilized to get a smooth policy network to improve generalization
ability in new episodes [7]. At present, the mainstream RL evaluation method is to use
the trained policy network to verify its performance in the original environment.
However, if the agent just remembers the order of actions instead of learning decision
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knowledge, it is also possible to get a good performance [8]. Thus, we are interested at
whether the knowledge learned by deep RL can be generalized on parameter-varying
environments.

In this paper, we investigate the generalization ability of deep RL and the impact of
applying regularization with deep RL for parameter-varying control learning tasks.
A parameter-varying task is training an agent in a default environment but evaluating
the policy in variational environments. First, we employ l1 regularization, l2 regular-
ization and dropout [9] in deep Q-network (DQN) [10] and train it in default envi-
ronments. Cartpole task and mountain car task are chosen as our experimental
environments and the pole length in cartpole task and the car weight in mountain car
task are changed to create variational environments. Then we evaluate the learned
policy in variational environments. In traditional control field, this kind of general-
ization ability can also be regarded as robustness. We show that most regularization
approaches have an ability to help deep RL achieve better control performance and
better generalization with limited learning samples. Besides, we adapt the dropout
approach to DQN which makes it work well as other regularization approaches.
Finally, a new dropout approach is proposed that enable the network work better and
stable. Experimental results can be seen as a novel aspect for generalization in deep RL.

2 Background

2.1 Reinforcement Learning

RL is a universal algorithm that the agent aims to select good actions for maximizing
accumulated rewards. The RL problem can be formalized as the Markov decision
process (MDP), defined by a 5-tuple S;A;P;R; ch i, with the state space S, the action
space A, the state-transition function p, the reward function R and the discounted factor
c [10]. At every time step t, the agent receives the state information st 2 S and then
selects actions at 2 A that need to be executed according to the policy p. After that, the
environment transfers to the next state stþ 1 2 S described by the state-transition
function P and feeds reward signal rt, generated by reward function R, to the agent. The
goal of agent is to find an optimal policy p� which enable agent to maximize long-term
expected return Gt _¼P1

k¼0 c
krtþ k with c 2 ½0; 1Þ. c determines the considered times-

pan or planning horizon [11].
DQN [12] is one of the most successful deep RL algorithm. DQN uses a multi-layer

neural network to approximate the state-action pair value function, denoted as function
Q s; a; hð Þ, where h are weights of the network. To make a correct evaluation on state-
action pairs, an object designed to be minimized as follows:

LDQN ¼ Efst ;at ;rt ;stþ 1g�Uð�Þ rt þ maxa02A QðStþ 1; a
0; h�Þ � Qðst; at; hÞð Þ2

h i
; ð1Þ

where st; at; rt; stþ 1f g are independently distributed samples, randomly being sampled
from U �ð Þ, a fixed-capacity experience replay buffer. h� are target network parameters
that copy the current network parameters according to a certain frequency k. There are
two key techniques to ensure that DQN performs outstandingly and works reasonably.
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One is experience replay, overcoming the problem caused by correlated data and non-
stationary distribution. The other one is target network, which results in the well-
defined optimization problem similar to supervised learning.

2.2 Regularization Approaches

In supervised learning problem, regularization is very important for improving gen-
eralization capability of networks. Suppose that we want to optimize an input-to-output
parameterized mapping function ŷi ¼ f ðXi; hÞ, where Xi denotes input data, ŷi denotes
predicted output, f ð�Þ denotes mapping function and h denotes parameters of the
mapping function network. Overfitting problem makes the mapping function perform
very badly on unseen data sets [13]. The main idea of regularization is to perform a
series of operations on h, so that the network model approaches smoothing and sup-
presses overfitting. Three popular regularization approaches are l1 regularization, l2
regularization and dropout.

l1 and l2 regularization achieve the purpose of improving generalization capability
by adding a penalty term for network parameters to the optimization objective. As for l1
regularization, the objective is:

minh
1
n

Xn

i¼1
Lðyi; ŷiÞþ kl1

2
jjhjj1; ð2Þ

where Lð�Þ is a loss function which is differential and measures the distance between
the actual output yi and predicted output ŷi. The second term is the form of l1 regu-
larization and parameter kl1 is the penalty coefficient for l1 regularization. As for l2
regularization, the objective is:

minh
1
n

Xn

i¼1
Lðyi; ŷiÞþ kl2

2
jjhjj22; ð3Þ

where kl2 is the penalty coefficient for l1 regularization and the second term is the form
for l2 regularization.

Dropout is based on the idea of monte-carlo model averaging and is a very efficient
way of performing model averaging with neural networks. When using dropout to
optimize network parameters, there is a certain probability pdropout 2 ½0; 1Þ randomly
dropping some hidden units out during forward propagation, which makes the current
network thinner than the original network. Researchers found that dropout regular-
ization can be interpreted as a data augmentation approach in the input space without
domain knowledge [14], which makes each hidden unit more robust and prevents them
from co-adapting too much [15].
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3 Regularization in DQN

In this paper, we explore the impact of regularization on DQN for parameter-varying
control learning tasks, focusing on the following two aspects:

– The impact of different regularization approaches on the DQN in the original
environment.

– The generalization capabilities of DQN with different regularization approaches in
variational environments.

For general deep RL problems, policy evaluation is performed in the environment
whose parameters of the environmental model is the same as that of training. Notice that
in this case, the state-transition function P stays unchanged. Here, we pay attention to a
new generalization perspective in deep RL. That is whether an optimized policy can
generalize to parameter-varying environments that are slightly different from the orig-
inal environments but do not affect the essence of the task. If we use MDP to describe
this situation, the new state-transition function P

0
in the parameter-varying environment

is slightly different from the state-transition function P in the original environment.
In DQN, we need to evaluate every state-action pair Qðst; at; hÞ and choose the

action with the max state-action value. As for an optimized DQN, the Bellman opti-
mality equation for Q�ðst; at; hÞ is

Q� st; at; hð Þ ¼ E½rt þ cmax
a0

Q� stþ 1; at; hð Þ�

¼
X

stþ 1; ;rt
P stþ 1; rtjst; atð Þ½rt þ cmaxa0Qðstþ 1; a

0
; hÞ�;

ð4Þ

where Q�ð�Þ denotes the state-action pair value function under an optimal policy and
P stþ 1; rtjst; atð Þ denotes the state-transition function that transfer the state st to the state
stþ 1. In parameter-varying environments, P stþ 1; rtjst; atð Þ becomes P

0
stþ 1; rtjst; atð Þ,

which impact the evaluation for the optimal Qðst; at; hÞ. If the state action pair can be
evaluated correctly no matter how the state transition function P changed, we think that
the current network has a good generalization capability.

When applying l1 regularization with DQN, we get the loss function as

Loss ¼ 1
n

Xn

i¼1
L rt þ maxa02A Qðstþ 1; a

0; h�Þ;Q st; at; hð Þð Þþ kl1
2
jjhjj1; ð5Þ

where n is the size of a mini-batch.
When applying l2 regularization with DQN, we get the loss function as

Loss ¼ 1
n

Xn

i¼1
L rt þ maxa02A Qðstþ 1; a

0; h�Þ;Q st; at; hð Þð Þþ kl2
2
jjhjj22: ð6Þ

In supervised learning, dropout happens during every time when the network
forward propagates to get predicted outputs. However, in DQN, there are three pro-
cesses that perform forward propagation. First, the maximum Q value is calculated for
the current state in order to choose a good action. The second is to use the target
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network to evaluate samples in mini-batch. The third is to use the current network to
evaluate samples in mini-batch. We found that the dropout rate pdropout is very sensitive
in DQN. If dropout is added in all three processes, the network optimization process
will become extremely fragile. Therefore, we improve dropout approach to adapt itself
to DQN. Unlike the dropout in supervised learning, the improved dropout approach
only occurs when the current network evaluates samples from the mini-batch, while it
does not occur at other times.

Base on the improved dropout, aiming at accelerating the optimization process and
reducing fluctuating in performance during training, a new dropout approach is pro-
posed. The main idea is that output of the subnet after random dropout should be
consistent with the output of the original network. Therefore, the squared difference
between subnet output and original network output is add to the loss function so we can
get the loss function as

Loss ¼ 1
n

Xn

i¼1
L rt þ maxa02A Q stþ 1; a

0; h�ð Þ;Q st; at; hð Þð Þþ L ysub; yorigin
� �� �

; ð7Þ

where ysub denotes the output of the subnet obtained by randomly dropping unit out and
yorigin denotes the output of the original network.

4 Problem Description and Evaluation Protocol

In control problems, there are two basic types of task specification [16]:

1. Avoidance problem. The goal is trying to keep the controlled object from falling
into certain states. One of these typical problems is pole balancing.

2. Reaching goals problem. The goal is trying to reach the target state from the initial
state as soon as possible. One of these typical problems is mountain car.

In this paper, we implement deep RL on these two control learning tasks, the
cartpole task and the mountain-car task, which are supported by the OpenAI gym
environment [17]. OpenAI gym environment is a popular testbed in deep RL domain.
In order to explore the two aspects of regularization in deep RL, we modify one of the
environmental parameters of each control task to generate a series of variational
environments with the same task objectives but slightly different state-transition
function P

0
. In the cartpole task, the length of the pole can be changed, which allows us

to create a series of slightly different environments and test the performance under these
conditions. In the mountain-car task, the weight of the car is also allowed to be changed
for the same purpose.

In order to observe the role of regularization in deep RL, we redesign the experi-
ment. First, set a default value for the adjustable parameter x. In cartpole task, the pole
length x is set to 1.0 by default, and in mountain car task, the car weight x is set to
0.2 kg by default. After that, the agent optimizes in the default environment and ends
up training after different time steps, which limits the sample size that agents have
learned. If we finish learning after 10 thousand steps, it means that the agent has
experienced a maximum of 10,000 * n samples and n is the size of a mini-batch.
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Finally, we change the adjustable parameter in the environment and test the policy we
obtained after different time steps to focus on the performance in parameter-varying
environments.

5 Experimental Results and Empirical Analysis

In cartpole task and mountain car task, state information is represented by several
values. Thus, we construct a DQN with three hidden layers and there are 256 units on
each hidden layer. The first two hidden layers are followed by rectified linear unit
(ReLU) [18] layers, and the last hidden layer is the linear fully connected layer. We
apply regularization approaches including l1, l2, dropout, improved dropout and new
dropout proposed with DQN. In details, we separately apply these regularization
approaches on all hidden layers in the network. Grid search is performed for the penalty
coefficient k 2 f0:1; 0:01; 0:001; 0:0001; 0:00001g and the dropout rate pdropout 2
f0:1; 0:01; 0:001; 0:0001g on the default environment setting to find reasonable

Fig. 1. Performance of agents trained with default pole length (1.0 unit) and evaluated the
policy learned after 50 thousand steps, 75 thousand steps and 100 thousand steps with the pole
length changing from 0.1 unit to 1.6 units. Notice that for each picture we train from the
beginning. The x-axis is the pole length and the y-axis are the accumulated rewards received by
the agent. The solid line is the mean value and the shadow is the standard deviation and each line
is averaged over ten seeds. In each seed, the agent performs 100 times evaluations with the pole
length and calculates the average value of these 100 times evaluations as the performance.
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hyperparameters. We end up searching with k ¼ 0:00001 for both cartpole task and
mountain car task and in cartpole task, pdropout is fixed at 0.01 while in mountain-car
task, pdropout is fixed at 0.001. The capability of storing historical samples for experi-
ence replay is set to 10000 in both tasks.

In this paper, 6 sets of experiments are done and they are DQN, DQN with l1
regularization, DQN with l2 regularization, DQN with dropout, DQN with improved
dropout and DQN with new dropout. In each set of experiments, we run twenty times
random seeds and take the top ten groups with the highest average scores in evaluating
for statistics and charting. Because it is possible for DQN algorithm rapidly fluctuating
in performance during training, the statistical methods we utilized can effectively avoid
the effects of fluctuations at the end of training.

5.1 The Cartpole Task

In cartpole task, we separately train 50 thousand steps, 75 thousand steps and 100
thousand steps for the six approaches, and evaluated policies after training. In this task,
each step of the agent gets a reward of 1 until it failed or reached the maximum number
of steps in an episode. During the training, the maximum number of steps in an episode
is limited to 500. In policy evaluation, the maximum number of steps in an episode is
limited to 1000. The experimental results are shown in Fig. 1. We can observe that
when the training ends up at 50 thousand steps, most regularization approaches perform
better with DQN, except for dropout. When the length of pole is set to 1.0 units, the
DQN with regularization techniques perform better than DQN, the baseline. Further-
more, we can observe that the blue line quickly deteriorates when the pole length is
reduced. At 75 thousand steps, except for the blue line, other line grows up and the line
with regularization are still higher than the baseline. At 100 thousand steps, except for
the blue one, other lines are basically coincident. The light blue line has the smallest
performance fluctuation under both extreme pole length conditions.

Through the experimental results of cartpole task, it is found that DQN itself has a
capability of generalization. Except for the dramatic change on the length of pole, the
baseline does not crash down at most time. This means that the policy learned is able to
generalize on parameter-varying environments. However, we can also observe that
regularization is beneficial to DQN. In one hand, DQN applying with regularization
approaches achieve better performance than the baseline under the same pole length
condition. On the other hand, at 100 thousand steps, DQN with l1 and l2 regularization
had almost no performance degradation with a very long pole although other methods
crashed down quickly. Notice that when samples are insufficient, the new dropout we
proposed help DQN get better performance than others at most time.

5.2 The Mountain Car Task

In mountain car task, we separately train 50 thousand steps, 75 thousand steps, 100
thousand steps and 200 thousand steps for the six approaches, and evaluated policies
after training. In this task, each step of the agent gets a reward of -1 until it reached the
goal. There is no limited number of steps in an episode. In policy evaluation, the
maximum number of steps in an episode is limited to 1000. The experimental results
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are shown in Fig. 2. At 50 thousand steps, there are three lines higher than the baseline.
Among these three lines, the yellow line is relatively stable under different car weight.
As the number of training steps increases, all the lines except the blue line move up,
and the performance is getting better and better. At 100 thousand steps, only DQN with
improved dropout and DQN with new dropout perform better than the baseline. At 200
thousand, except the blue one, other lines are basically coincident. Among these 5
lines, when the weight of the car is lighter than about 0.27 kg, the purple line is slightly
higher than the others. However, when the weight of the car is heavier than about
0.27 kg, the purple line deteriorates quickly.

Through the experimental results of the mountain car task, we can observe that
different regularization approaches have a different impact on DQN. In mountain car
task, the basic rule is that the lighter the car, the easier it is to reach the target point.
Notice that DQN with dropout behaved abnormally, so it is removed by default in
comparison. With limited samples, DQN with l1 show a better capability of general-
ization because at 50 thousand steps, when the weight of the car gradually increases,

Fig. 2. Performance of agents trained with default car weight (2.0 kg) and evaluated the policy
learned after 50 thousand, 75 thousand, 100 thousand and 200 thousand steps with the car weight
changing from 0.16 kg to 0.26 kg. Notice that for each picture we train from the beginning. The
x-axis is the car weight and the y-axis are the accumulated rewards received by the agent. The
solid line is the mean value and the shadow is the standard deviation and each line is aver-aged
over ten seeds. In each seed, the agent performs 100 times evaluations with the pole length and
calculates the average value of these 100 times evaluations as the performance.
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the performance is only slightly reduced. From the whole experiment, compared with
the baseline, regularization based on dropout help DQN achieve better performance,
whether in the default environment or variational environments. Furthermore, the new
dropout we proposed helped DQN get better performance than baseline at all times
except when the weight of the car becomes particularly heavy and the performance
deteriorates rapidly.

6 Conclusion

In this paper, we systematically studied regularization approaches on deep RL. First,
due to the difference between supervised learning and deep RL, we adapted dropout to
DQN. Applying with the improved dropout, DQN worked well and reasonably. Base
on it, a new dropout method was proposed which speeded up the optimization and
enabled DQN get better control performance. Then, for cartpole task and mountain car
task, a comparative test of DQN and its combination with five regularization approa-
ches were conducted. In the case of relatively few samples, the role of regularization is
obvious. On the one hand, most regularization approaches helped deep RL get a better
control performance in the original environment. On the other hand, some regular-
ization techniques also improved the generalization capability in parameter-varying
environments and suppressed performance degradation. The more impressive regu-
larization techniques are the improved dropout and the new dropout we proposed
because their improvement in generalization capability is more obvious on deep RL.
Finally, we believe our work is valuable in theoretical exploration on generalization of
deep RL and it would be a milestone for the field if we were able to develop an
algorithm that can generalize across among completely different tasks.
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Abstract. In this paper, a gradient-descent neurodynamic approach is
proposed for the distributed linear programming problem with affine
equality constraints. It is rigorously proved that the state solution of
the proposed gradient-descent approach with an arbitrary initial point
reaches agreement and is convergent to an optimal solution of the consid-
ered optimization problem at the same time. In the end, some numerical
experiments are conducted to verify the effectiveness of the proposed
gradient-descent approach.
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1 Introduction

Optimization problems are ubiquitous in science and engineering field such as
Traveling Salesman Problems [6] and economic resource allocation [1]. It has been
a long history to study various optimization problems via numerous approaches
[8,11,14,19]. As the complexity and scales of optimization problems increase, it
becomes rather urgent to seek distributed approaches for solving complex and
large-scale optimization problems. Thanks to the inspiring progresses in multi-
agent systems [9,10,24], the study of distributed optimization has made great
advances [3,5,7,17,18,22].

The research on asymptotic behaviors of dynamical systems [11,15,16,21]
demonstrates that neurodynamic approaches exerts their great efficiency in
real-time and parallel computing contrast to discrete-time algorithms [2]. As
a consequence, recent years have witnessed abundant research results involving
neurodynamic approaches for distributed optimization. Yi et al. [23] studied a
distributed smooth convex optimization problem with inequality constraints and
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presented a distributed gradient algorithm via Lagrangian method. In [25], Zhu
et al. further proposed a projected primal-dual dynamic for a more general dis-
tributed nonsmooth convex optimization problem. However, due to the practical
requirements, the neurodynamic approaches mentioned above may fail to solve
distributed optimization problems over directed graphs. To break through this
restrictions, Kia et al. [7] established a distributed coordination algorithm to
solve the unconstrained distributed optimization problem over weight-balanced
directed graphs. In [26], Zhu et al. constructed a novel neurodynamic approach
for distributed convex optimization over weight-unbalanced directed graphs.

It is well known that gradient or subgradient descent algorithms are quite
powerful for solving optimization problems [4,17]. Motivated by above research
results, a gradient-descent neurodynamic approach based on Karush-Kuhn-
Tucker condition is proposed to cope with the distributed linear optimization
problem with affine equality constraints. The global existence of the proposed
gradient-descent approach is firstly studied. By Lyapunov method, the consensus
as well as convergence to an optimal solution of our gradient-descent approach
is finally derived.

The rest of this paper is organized as follows. Several related preliminaries
concerning graph theory are introduced in Sect. 2. In Sect. 3, we firstly formulate
the considered distributed optimization problem and present a neurodynamic
approach, and then study the asymptotic behaviors of the proposed gradient-
descent approach. Some numerical examples are given to illustrate our results
in Sect. 4, and Sect. 5 concludes this paper.

2 Preliminaries

In this section, we introduce some basic preliminaries concerning graph theory
which are needed in this paper.

A directed graph is denoted by G = (V, E ,A), where V = {1, 2, · · · , m} is
a node set, E ⊂ V × V is an edge set and A = (aij) ∈ R

m×m is an weighted
adjacency matrix. If (i, j) ∈ E , then aij > 0 otherwise aij = 0. There is no
self-connection in graph G, that is aii = 0. Denote by Ni = {j : aij > 0} the
neighbors set, N 2

i = {k : aij > 0 and ajk > 0} the second-order neighbors set
and N −

i = {l : ali > 0} the in-neighbors set of the ith node. Let di
out =

∑m
j=1 aij

be the outer degree of the node i. The Laplacian matrix of the graph G is
defined as Lm = D − A with D = diag{d1out, d2out, · · · , dm

out}. A directed path
between the node i0 and ik in graph G is a finite sequence of directed edges
(i0, i1), (i2, i3), · · · , (ik−1, ik) with il ∈ V (l = 0, 1, · · · , k). A directed graph is
said to be strongly connected if for any pair of distinct vertices i and j, there
exists a directed path starting from i and reaching to j.

3 Problem Description and Convergence Analysis

In this paper, we consider a network of m agents over a strongly con-
nected directed graph G to solve the following distributed linear programming
cooperatively:
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min f(x) =
m∑

i=1

eTi x

s.t. Aix = bi, i = 1, 2, · · · , m.
(1)

where x ∈ R
n is the decision variable, Ai ∈ R

pi×n and bi ∈ R
pi . It is assumed

that the distributed optimization problem (1) has at least an optimal solution.

Remark 1. In optimization problem (1), the matrices Ai (i = 1, 2, · · · , m) in
constraints are not necessarily full row rank. Compared with the problems con-
sidered in [12,13,20], it is no need to equivalently convert Ai (i = 1, 2, · · · , m)
into full row rank ones, which reduces computational loads.

Assumption 1. The connection graph G is directed and strongly connected.

Let r =
∑m

i=1 ri, p =
∑m

i=1 pi. Denote by L = Lm ⊗ In, e = (eT1 , eT2 , · · · ,
eTm)T ∈ R

mn, b = (bT1 , bT2 , · · · , bTm)T ∈ R
r, A = blkdiag{A1, A2, · · · , Am} ∈

R
r×mn. Thus, according to Lemma 3.1 in [5], the following lemma can be derived.

Lemma 1. Suppose Assumption 1 holds and let x= (xT
1 , xT

2 , · · · , xT
m)T ∈R

mn.
Then the optimization problem (1) is equivalent to the following problem

min f(x) = eTx
s.t. Ax = b,

Lx = 0.
(2)

It is clear that the problem (1) is a convex optimization problem. Let μ =
(μT

1 , μT
2 , · · · , μT

m)T, ν = (νT
1 , νT

2 , · · · , νT
m)T with μi ∈ R

pi and νi ∈ R
n. The

following lemma gives a necessary and sufficient condition of an optimal solution
to the optimization problem (1).

Lemma 2. x∗ is an optimal solution to the optimization problem (2) if and
only if there exist μ∗ ∈ R

p and ν∗ ∈ R
mn such that

ATμ∗ + LTν∗ + e = 0, (3a)

Ax∗ = b, Lx∗ = 0, (3b)

For convenience, denote by z = (xT, μT, νT)T. Define an energy function V
as follows.

V (z) = ‖ATμ∗ + LTν∗ + e‖2 + ‖Ax − b‖2 + ‖Lx‖2. (4)

We propose a neurodynamic approach to handle the distributed optimization
problem (1):

ẋi = −AT
i (Aixi − bi) −

∑

j∈Ni

[
aij

∑

k∈Ni

aik(xi − xk) − aji

∑

k∈Nj

ajk(xj − xk)

]
,

μ̇i = −Ai

[
AT

i μi + ei +
∑

j∈Ni

(aijνi − ajiνj)

]
,

ν̇i = −
∑

j∈Ni

aij

[
ei − ej + AT

i μi − AT
j μj +

∑

k∈Ni

(aikνi − akiνk) −
∑

l∈Nj

(ajlνj − aljνl)

]
.

(5)
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Remark 2. It is worth noting that the ith agent is assumed to have access to
its local information, neighbor information, second-order neighbor information,
and in-neighbor information. Therefore, the gradient-descent approach (5) is
distributed.

For simplicity, the distributed gradient-descent approach (5) can be further
rewritten in the following compact forms:

ż(t) = −∇V (z(t)), (6)

where V is defined in (4). Denote C the equilibrium point set of the gradient-
descent approach (6), that is,

C =
{
z ∈ R

mn+p+r : ∇V (z) = 0
}

.

Theorem 1. The state solution of the gradient-descent approach (6) with an
arbitrary initial point z0 ∈ R

mn+r+p globally exists and is bounded.

Proof. On the basis of the right side of (6) being continuous, we have that for
any initial point z0 ∈ R

mn+r+p, there is a local solution z(t) of the gradient-
descent approach (6) defined on [0, Tmax). Differentiating ε0V (z(t)) with respect
to t on [0, Tmax), we have

dV (z(t))
dt

= 〈∇V (z(t)), ż(t)〉 = −‖∇V (z(t))‖2 ≤ 0. (7)

So V (z(t)) is nonincreasing along the state solution of the gradient-descent app-
roach (6). Due to V (z(t)) ≥ 0, then it follows that lim

t→T−
max

V (z(t)) exists, and

denote by V̄ . That is,
lim

t→T−
max

V (z(t)) = V̄ . (8)

Let
W (t) = V (z(t)) +

1
2
‖z(t) − z∗‖2, (9)

where z∗ is an equilibrium point of the gradient-descent approach (6). Differenti-
ating W (t) on [0, Tmax), owing to the fact that ∇V (z∗) = 0 and the monotonicity
of ∇V , one has

dW (t)
dt

=
dV (z(t))

dt
+ 〈z(t) − z∗, ż(t)〉

= −‖∇V (z(t))‖2 − 〈z(t) − z∗,∇V (z(t)) − ∇V (z∗)〉
≤ 0.

(10)

Integrating the both sides of (10) from 0 to t, for any t ≤ Tmax, it obtains

1
2
‖z(t) − z∗‖2 ≤ W (t) ≤ V (z(0)) +

1
2
‖z(0) − z∗‖2, (11)

which indicates Tmax = +∞ and z(t) is bounded on [0,+∞). The proof is
complete.
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Theorem 2. For any initial point z0 ∈ R
mn+p+r, the state solution z(t) of

gradient-descent approach (6) is convergent to an equilibrium point of gradient-
descent approach (6).

Proof. By Theorem 1, the state solution z(t) is bounded. Thus, there is a
sequence {tn} such that lim

n→∞ z(tn) = z̄. Due to the continuity of ∇V and the

gradient-descent approach (6), we have ż(t) is also bounded. So there exists
M > 0 such that equilibrium point of gradient-descent approach (6).

‖ż(t)‖ ≤ M. (12)

Next, we prove that z̄ is an equilibrium point of gradient-descent approach (6).
If not, we have ∇V (z̄) �= 0. Thus, there exists m > 0, δ > 0, such that

‖∇V (z)‖ > m, ∀z ∈ B(z̄, δ). (13)

On account of lim
n→∞ z(tn) = z̄, there exists N ∈ N such that

z(tn) ∈ B(z̄,
δ

2
), ∀n ≥ N. (14)

For any n ≥ N and t ∈ [
tn − δ

2M , tn + δ
2M

]
, it can be derived that

‖z(t) − z̄‖ ≤ ‖z(t) − z(tn)‖ + ‖z(tn) − z̄‖ ≤ M · δ

2M
+

δ

2
≤ δ. (15)

As a result, by (7), (8), (13) and (15), it has

lim
t→+∞ V (z(t)) − V (z0) = −

∫ +∞

t=0

‖∇V (z(t))‖2dt

≥ −
∞∑

n=N

∫ tn+ δ
2M

tn− δ
2M

m2dt ≥ −
∞∑

n=N

m2 · δ

M
= −∞,

(16)

which results in a contradiction. Therefore, z̄ is an equilibrium point of gradient-
descent approach (6). Let

W1(t) = V (z(t)) − V∞ +
1
2
‖z(t) − z̄‖2. (17)

Similar to (10) and (8), we also obtain

dW1(t)
dt

≤ 0, (18)

and lim
t→+∞ W1(t) exists. Finally, owing to lim

n→∞ W1(tn) = 0, it is clear that

lim
t→+∞ W1(t) = 0, (19)

and (19) indicates
lim

t→+∞ z(t) = z̄. (20)

The proof is complete.
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Remark 3. By Theorem 2, the state solution of gradient-descent approach (6) is
convergent to an equilibrium point of gradient-descent approach (6). Combining
Lemma 2 and the definition of V , an optimal solution to distributed optimization
problem (2) can be obtained by the derived equilibrium point.

4 Simulations

Example 1. Consider a network of 3 agents interacting over a strongly connected
directed graph to cooperatively minimize a global linear objective function with
affine constraints:

min
3∑

i=1

eTi x,

s.t. 5x1 + 11x2 − x3 + 3x4 = 7,

(21)

where
x = (x1, x2, x3, x4)T ∈ R

4, e1 = (−1,−5, 1, 1)T,

e2 = (−2, 4,−2,−6)T, e3 = (−12,−32, 4,−4)T.

where x = (x1, x2, x3, x4)T. The considered connection directed graph in this
example is shown in Fig. 1.

This optimization problem (21) can also be solved by the gradient-descent
approach (6). The transient behaviors of the state solution of the gradient-
descent approach (6) is depicted in Fig. 2, which implies that the output x of
the gradient-descent approach (6) in each agent is convergent to same optimal
solution (0.7201, 0.6176,−0.0107,−1.1346)T.

Fig. 1. The interaction topology of the 3-agent network in Example 1.

Example 2. Consider a network of 5 agents interacting over a strongly connected
directed graph to minimize a global objective function with an affine equality
constraint:

min
5∑

i=1

dTi x,

s.t. x1 + x2 + x3 + x4 + x5 = 5,

(22)
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Fig. 2. Transient behaviors of the state of (6) in Example 1.

where
x = (x1, x2, x3, x4, x5)T ∈ R

5, d1 = (−10,−5,−10, 5, 10)T,

d2 = (−5,−10, 5, 10,−10)T, d3 = (−10, 5, 10,−10,−5)T,

d4 = (5, 10,−10,−5,−10)T, d5 = (10,−10,−5,−10, 5)T.

In this example, the considered communication graph is described in Fig. 3.
This optimization problem (22) can also be solved by the gradient-descent app-
roach (6). The transient behaviors of the state solution of the gradient-descent
approach (6) is exhibited in Fig. 4, which implies that the output x of the
gradient-descent approach (6) reach consensus as well as converges to an optimal
solution (0.8800, 1.0800, 1.2200, 0.3800, 1.4400)T.

Fig. 3. The interaction topology of the 5-agent network in Example 2.
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Fig. 4. Transient behaviors of the state of (6) in Example 2.
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5 Conclusions

This paper presented a gradient-descent neurodynamic approach to cope with
the distributed linear optimization problem. The state solution of the presented
gradient-descent approach is proved to reach consensus and converges to an opti-
mal solution via rigorously theoretical deduction. We obtain the related results
by Lyapunov function theory, and give some numerical results in order to verify
the obtained result.

Acknowledgments. This research is supported by the National Natural Science
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Abstract. In this paper, a robust identifier is developed for unmanned
surface vehicles (USVs) subject to uncertain dynamics. The uncertain
dynamics comes from parametric model uncertainty and external ocean
disturbance. The identifier for USV is designed based on Robust Inte-
gral Sign of the Error (RISE) and neural networks. With the proposed
identifier, asymptotic stability of the estimation errors can be proven
in the presence of parametric model uncertainties and external ocean
disturbances. The proposed method can be used in a variety of practi-
cal settings such as trajectory tracking and formation control of marine
vehicles for achieving better performance.

Keywords: Neural networks · Unmanned surface vehicle ·
Derivative estimation · Robust identification

1 Introduction

One of the major challenges in motion control of autonomous marine vehicles is
to identify the uncertain dynamics induced by parametric model uncertainty and
external ocean disturbance [1–3]. Estimation of the model uncertainty and ocean
disturbance is crucial for many practical applications [4–6], and a number of
control methods are available such as sliding model control [7,8], neural network
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control [11,12,14,15,17–20], fuzzy control [9,10], and extended-state-observer-
based control [16,21]. In particular, neural networks have received a significant
growth for estimating unknown vehicle kinetics [12,14,15,17–20]. However, in
these works, only uniform ultimate boundedness (UUB) of estimation errors can
be achieved.

In this paper, an asymptotically stable identifier is developed for USVs sub-
ject to unknown dynamics which caused by parametric model uncertainty and
external ocean disturbance. The identifier is designed based on RISE and neu-
ral networks. With the proposed identifier, asymptotic stability of the estima-
tion errors are proven. The developed asymptotically stable identifier can be
used in trajectory tracking, formation tracking and motion control of vehicles
for achieving better performance and stability results. The main feature of the
presented identifier is concluded as follows. Compared with the neural-network-
based approximation methods in [12,14,15,17–20] where only UUB of estimation
errors can be proven, the developed identifier can ensure the asymptotic stability
of estimation errors based on neural networks and RISE.

2 Preliminaries and Problem Formulation

2.1 Neural Networks

A continuous function g(ξ) can be approximated as

g(ξ) = WT
g β(V T

g ξ) + εg(ξ), ξ ∈ Ω, (1)

where ξ is the input vector; Wg, Vg are the ideal wights of neural network
satisfying ‖Wg‖F ≤ W ∗

g and ‖Vg‖F ≤ V ∗
g with W ∗

g > 0 and V ∗
g > 0; β(V T

g ξ) is
the activation function satisfying ‖β(V T

g ξ)‖ ≤ β∗ with β∗ > 0; εg(V T
g ξ) is the

neural network approximation error satisfying ‖εg(V T
g ξ)‖ ≤ ε∗

g with ε∗
g > 0; Ω

is a compact set.

2.2 Problem Formulation

The dynamics of the USV can be described as [1]

η̇s = R(ψs)νs, (2)

Msν̇s = τs − Cs(νs)νs − Ds(νs)νs + gs(νs) + τws(t), (3)

where ηs = [xs, ys, ψs] denotes the position-yaw in earth-fixed; νs = [us, vs, rs]T

is the body-fixed velocity vector denoting surge velocity, sway velocity and
angular velocity; Ms = MT

s is an inertial matrix; Cs(νs) = −Cs(νs)
denotes the centrifugal and coriolis matrix; Ds(νs) is a damping matrix;
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τws = [τwus, τwvs, τwrs]T is a vector of environmental forces satisfying ||τws|| ≤
||τ∗

ws|| with τ∗
ws > 0; τs = [τus, τvs, τrs]T is the control input; and

R(ψs) =

⎡
⎣

cos ψs − sin ψs 0
sin ψs cos ψs 0

0 0 1

⎤
⎦ . (4)

The control objective in this paper is to develop an asymptotically stable
identifier for unmanned surface vehicles (USVs) subject to unknown dynamics.

3 Identifier Design and the Asymptotic Stability Analysis

3.1 Identifier Design

Rewrite (3) as

Msν̇s = τs + g(νs) + τws(t), (5)

where g(νs) = −Cs(νs)νs − Ds(νs)νs + gs(νs).

Lemma 1 [22,23]. The given constants ε∗
kg and τ∗

ws satisfy ε∗
kg > 0 and τ∗

ws > 0
for k = 1, 2, 3, the ideal wight of neural network Wg = [W1g,W2g,W3g] satisfies
|Wkg| ≤ W ∗

kg, (k = 1, 2, 3), and the continuous function g(νs) can be estimated
by neural network as

g(νs) = WT
g β(V T

g νs) + εg, (6)

where εg = [ε1g, ε2g, ε3g]T with |εkg| ≤ ε∗
kg, (k = 1, 2, 3), and τws =

[τwus, τwvs, τwrs]T with ||τws|| ≤ ||τ∗
ws||.

The asymptotically stable identifier design is based on the following assump-
tions.

Assumption 1. The state νs(t) and control input τs of system (3) are bounded,
i.e., νs(t) ∈ L∞, τs ∈ L∞ and ν̇s(t) ∈ L∞.

Assumption 2. The neural network activation function β(V T
s νs) and its deriva-

tive β
′
(V T

s νs) are bounded.

ν̂s = [ûs, v̂s, r̂s]T denotes the estimation of νs, and then the following dynamic
neural network identifier for (5) is proposed as [27]

⎧
⎪⎪⎨
⎪⎪⎩

Ms
˙̂νs = ŴT

g β(V̂ T
g ν̂s) + τs + μs,

μs � c1ν̃s(t) − c1ν̃s(0) + 
,
ν̃s(t) = νs(t) − ν̂s(t),

̇ = (c1c2 + c3)ν̃s + c4sgn(ν̃s), 
(0) = 0,

(7)

where μs is the RISE feedback term, sgn(ν̃s) is the vector signum function and
c1, c2, c3, c4 are positive constants.

The dynamics of velocity estimation ν̃s can be described as

Ms
˙̃νs = WT

g β(V T
g νs) − ŴT

g β(V̂ T
g ν̂s) + εg + τws − μs. (8)
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3.2 Asymptotic Stability Analysis

To analyze the stability, the notion of a filtered identification error is introduced

e � Ms
˙̃νs + c2Msν̃s. (9)

Using (8), the derivative of (9) can be achieved as

ė =WT
g β

′
V T

g ν̇s − ˙̂
WT

g β̂ − ŴT
g β̂

′ ˙̂
V T

g ν̂s − ŴT
g β̂

′
V̂ T

g
˙̂νs

+ ε̇f + τ̇ws − c1e − c3ν̃s − c4sgn(ν̃s) + c2 ˙̃νs. (10)

Based on (10), Ŵg and V̂g are updated as follows
{ ˙̂

Wg(t) = Proj[ΓW β̂
′
V̂ T

g
˙̂νsν̃

T
s ],

˙̂
Vg(t) = Proj[ΓV

˙̂νsν̃
T
s ŴT

g β̂
′
],

(11)

where ΓW , ΓV denote the positive constant adaptation gain matrices. From [24],
there exist constants ε1 and ε2 satisfying

‖Ŵg(t)‖ ≤ W ∗
g + ε1, ‖V̂g(t)‖ ≤ V ∗

g + ε2. (12)

Rewrite (10) as

ė = W̃1 + WB1 + ŴB2 − c1e − c3ν̃s − c4sgn(ν̃s). (13)

W̃1,WB1 and ŴB2 are defined as
⎧
⎪⎨
⎪⎩

W̃1 = c2 ˙̃νs − ˙̂
WT

g β̂ − ŴT
g β̂

′ ˙̂
V T

g ν̂s + 1
2WT

g β̂
′
V̂ T

g
˙̃νs + 1

2ŴT
g β̂

′
V T

g
˙̃νs,

WB1 = WT
g β

′
V T

g ν̇s − 1
2ŴT

g β̂
′
V̂ T

g ν̇s − 1
2ŴT

g β̂
′
V T

g ν̇s + ε̇g + τ̇ws,

ŴB2 = 1
2W̃T

g β̂
′
V̂ T

g
˙̂νs + 1

2ŴT
g β̂

′
Ṽ T

g
˙̂νs,

(14)

where WB = WB1 + WB2, W̃g = Wg − Ŵg, and Ṽg = Vg − V̂g. Using Eq. (12)
and Assumption 2 , we can get

⎧
⎨
⎩

||W̃1|| ≤ α1(||h||)||h||, ||W̃B1|| ≤ λ1, ||W̃B2|| ≤ λ2,

||ẆB || ≤ λ3 + λ4α2(||h||)||h||,
|| ˙̂νT

s W̃B2|| ≤ λ5||ν̃s||2 + λ6||e||2,
(15)

where h = [ν̃T
s eT ]T , and α1, α2 are positive, globally invertible, non-decreasing

functions, and λi (i = 1, 2, ...) are positive constants. From [13], define a domain
containing function y(t) = 0, where y = [ν̃T

s eT
√

P y

√
Qy]T with Py(h, t) and

Qy(W̃g, Ṽg) satisfying
⎧
⎨
⎩

Ṗy = −Ly, Py(0) = c4
∑n

i=1 |ν̃si(0)| − ν̃s(0)WB(0),
Qy = 1

4 [tr(W̃T
g ΓW

−1W̃g) + tr(Ṽ T
g ΓV

−1Ṽg)],
Ly = eT (WB1 − c4sgn(ν̃s)) + ˙̂νT

s WB2 − c5α2(||h||)||h||||ν̃s||,
(16)
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and tr(·) is the trace of a matrix.
To ensure Py ≥ 0, c4 and c5 are chosen as follows [25]

c4 ≥ max(λ1 + λ2, λ1 +
λ3

c2
), c5 ≥ λ4. (17)

Theorem 1. Based on the proposed neural network weight update laws (11),
the presented identifier (7) is proved to be asymptotically stable. Besides, the
presented identifier ensures the asymptotic stability of the velocity estimation,
such that

lim
t→∞ ||ν̃s(t)|| = 0, lim

t→∞ || ˙̃νs(t)|| = 0, (18)

provided that

c1 ≥ λ5

c2
, c1 ≥ λ6. (19)

Proof. Construct the Lipschitz continuous definite function as

VL =
1
2
eT e +

1
2
c3ν̃

T
s ν̃s + Py + Qy, (20)

which satisfies U1(w) ≤ VL(w) ≤ U2(w) with U1 = 1
2min(1, c3)||w||2 and U2 =

1
2max(1, c3)||w||2.

From (8), (11), (13) and (16), the closed-loop differential equations are
defined as ẇ = s(w, t) with s(w, t) being the system error signals. By Filippov’s
theory [26], there exists ẇ ∈ K[s](w, t) satisfying

{
K[s] =

⋂
σ>0

⋂
μsN=0 cos(B(w, σ) − N, t),

B(w, σ) = {νs|||w − νs|| < σ},
(21)

where σ is a constant;
⋂

μsN=0 is the intersection over all sets N of Lebesgue
measure zero; and co is convex closure.

From [13], to identify the stability of ẇ = s(w, t), a Lyapunov stability theory
is introduced. Define V̇L is the derivative of VL, and it is satisfying

{
V̇L(w) ∈a.e. ˙̃VL(w), t ∈ [t0, tf ],
˙̃VL(w) =

⋂
ς∈∂VL(w) ςT K[ėT ˙̃νT

s
1
2P

− 1
2

y Ṗy
1
2Q

− 1
2

y Q̇y]T .
(22)

Using (13), (16) and (21), the derivative of VL can be described as

V̇L ≤a.e. −c2c3||ν̃s||2 − c1||e||2 + α1(||h||)||h||||e||
+ λ5||ν̃s||2 + λ6||e||2 + c5α2(||h||)||h||||ν̃s||.

Using c1 = c1a + c1b, c3 = c3a + c3b, V̇L is

V̇L ≤a.e. −(c2c3a − λ5)||ν̃||2 − (c1a − λ6)||e||2

+
α1(||h||)2

4c1b
||h||2 +

c25α2(||h||)2
4c2c3b

||h||2. (23)
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Because of c1 ≥ λ5
c2

and c1 ≥ λ6, for ∀y ∈ D∞, we can get

V̇L ≤a.e. −ρ||h||2 +
α(||h||)2

4η
||h||2

≤a.e. −U(w), (24)

where
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ = min{c2c3a − λ5, c1a − λ6},
η = min{c1a, c2c3b/c26},
α(||h||2) = α1(||h||2) + α2(||h||2),
U(w) = c||h||2, c ≥ 0,
D = {w(t)| ||w|| ≤ (2

√
ρη)}.

(25)

Note that, from (24) and U1(w) ≤ VL(w) ≤ U2(w), we can get VL(w) ∈ L∞
in D, therefore, ν̃s(t), e(t) ∈ L∞ in D. From (3) and Assumption 1, ˙̂νs(t) ∈ L∞
in D. From (9) and the standard linear analysis, we can get ˙̃νs(t) ∈ L∞ in D.

From (11), ˙̂
Wg(t) ∈ L∞; from Assumption 1, τs(t) ∈ L∞, β̂(t) ∈ L∞; from (7),

μs(t) ∈ L∞ in D. Based on the previous bounds, the ė(t) ∈ L∞ in D and U(w) is
uniformly continuous in D can be easily obtained. Define a set χ which satisfies
χ = {w(t) ⊂ D|U2(w(t)) < 1

2 (α−1(2
√

ρη))2}, it reveals that we can increase the
control gain η to contain any initial conditions, therefore, for ∀w(0) ∈ χ, t → ∞,
we can obtain

c||h||2 → 0, ||ν̃s(t)|| → 0, || ˙̃νs(t)|| → 0, ||e|| → 0. (26)

As a consequence, the proposed identifier for USVs is asymptotically stable.

4 Conclusions

In this paper, an asymptotically stable identifier is developed for USVs subject to
unknown dynamics which caused by parametric model uncertainty and external
ocean disturbance. The identifier for USV is designed based on RISE and neural
networks. Based on the proposed identifier, the estimation errors are proved to
be asymptotically stable in the presence of parametric model uncertainties and
external ocean disturbances. In the future, the developed asymptotically stable
identifier can be used in trajectory tracking and formation tracking for achieving
the desired formation tracking of a group of USVs.
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Abstract. This paper studies the global stabilization problem for a class
of fuzzy inertial neural networks (FINN) with time delays and deals
with the FINN directly by non-reduced order method. By Lyapunov
theory and some analytical techniques, some criteria of global asymptotic
and exponential stabilization for the considered FINN are obtained. An
example is given to show the effectiveness and validity of the theoretical
results.
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1 Introduction

In recent years, neural networks has received a great deal of attention due to its
applications or potentials in associate memory, information science, bioinspired
engineering, and signal processing [1–5]. In [5], Guo et al. gave results on global
exponential synchronization of multiple coupled memristive neural networks via
pinning control. As we know, stability of the addressed system is the basis of its
application in many emerging technologies, therefore it is of both theoretical and
practical significance to study the stability and stabilization problem for neural
networks [6–8]. We also note that, fuzzy neural networks have been investigated
for several years as they are closely related to complexity of neural networks.
Among various fuzzy logics, especially the T-S fuzzy rules [9], is frequently used
to analyze and synthesize nonlinear systems [10,11].

Most of the previous work is mainly focused on first-order derivative of the
states. However, it is also vital to investigate the dynamics of the networks with
second-order terms, which is called an inertial term. It has been shown that
the inertial term is a key tool to generate complicated bifurcations and chaos
for artificial neural networks. Babcock and Westervelt mentioned in [12] that
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the dynamics could be complex if the neuron couplings comprise of an inertial
nature. Many authors have addressed inertial neural networks (INN) in a deep
manner [13–21]. In [17], Xiao et al. studied the passivity and robust passivity
for a class of memristive INNs by LMI techniques and matrix analysis. It is
worthy of note that the second-order INNs are transformed into the first-order
INNs by a linear transformation in most of the above works. However, it may be
more meaningful to study the non-reduced order INNs directly. To the best of
the authors’ knowledge, just a few works have been done based on non-reduced
order INNs [15]. In [15], the authors studied a class of delayed INNs without
any order-reducing for the first time. As we can see, it remains much room for
investigations of fuzzy INN (FINN) with non-reduced order approaches.

Motivated by the above statements, in this paper, we will study the sta-
bilization problem for a class of delayed FINN by non-reduced order app-
roach. Roughly stated, the main contributions of this paper are the following
twofold. (i) The global asymptotic and exponential stabilization is investigated
for the addressed FINN. Some criteria guaranteeing the stabilization of FINN
are obtained; (ii) Different from using the linear transformation, this paper deals
with the stabilization problem directly by non-reduced order approach, which
has never been used for FINN.

The rest of this paper is organized as follows. In Sect. 2, some preliminaries
are prepared, and the problem is also formulated. Then in Sect. 3, global stabi-
lization problems, including global asymptotic stabilization and global exponen-
tial stabilization, are studied, respectively, followed by one numerical example
in Sect. 4. Finally, conclusions are made in Sect. 5.

2 Preliminaries and Problem Formulation

Notations. R and Z are the real set and integer set; In is the index set
{1, 2, · · · , n}; c�

pq = maxr{|cr
pq|}, d�

pq = maxr{|dr
pq|}.

We consider a class of INNs described by:

ẍp(t) = −a�
pẋp(t) − b�

pxp(t) +
n∑

q=1

cpqfq(xq(t)) +
n∑

q=1

wpqfq(xq(t − τq)), (1)

with the initial values xp(s) = φp(s), ẋp(s) = ψp(s),−τ ≤ s ≤ 0, for p ∈ In,
where the second-order derivative of xp(t) is called an inertial term of INN (1),
xp(t) ∈ R is the state of neuron p at time t, τq is the time delay which satisfies
max{τq} = τ for q ∈ In, a�

p > 0, b�
p > 0, fq(·) is the activation function, cpq

and dpq represent connection weights without and with delays. φp(s), ψp(s) are
bounded functions.

Introducing T-S fuzzy sets into INN (1), where the rth rule is as follows:
Plant Rule r:

IF ζ1(t) is Σ1
r and · · · and ζq(t) is Σq

r

THEN ẍp(t) = −a�
pẋp(t) − b�

pxp(t) +
n∑

q=1

cr
pqfq(xq(t)) +

n∑

q=1

wr
pqfq(xq(t − τq)),
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where ζl(t)(l ∈ Iq) are the premise variables, Σl
r(r ∈ Im, l ∈ Iq) are fuzzy sets

and m is the number of IF-THEN rules.
Let fr(ζ(t)) be the normalized membership function, i.e., fr(ζ(t)) =

πr(ζ(t))∑m
r=1 πr(ζ(t))

, r ∈ Im, where πr(ζ(t)) = Πq
q=1Σ

q
r (ζq(t)), Σq

r (ζq(t)) is the grade
of membership of ζq(t) in Σq

r . Then f�(ζ(t)) ≥ 0 and
∑m

�=1 f�(ζ(t)) = 1.
After introducing fuzzy module, (1) can be represented by the following

FINN

ẍp(t) = − a�
pẋp(t) − b�

pxp(t) +
n∑

q=1

m∑

�=1

f�(ζ(t))cr
pqfq(xq(t))

+
n∑

q=1

m∑

�=1

f�(ζ(t))wr
pqfq(xq(t − τq)),

(2)

An assumption is made for the main results.

Assumption 1: fq(·) is bounded and satisfies

|fq(θ) − fq(ϑ)| ≤ kq|θ − ϑ|, fq(0) = 0,∀q ∈ In,

for ∀θ, ϑ ∈ R and θ �= ϑ, where constant kq > 0. Obviously, x0 = (0, 0, · · · , 0)T

is an equilibrium of FINN (2).

In order to stabilize FINN (2) to x0, the error state feedback control term
uk is considered in this paper. Let

up(t) = −a�
pẋp(t) − b�

pxp(t), (3)

for any p ∈ In, where a�
p and b�

p are state feedback gains, then FINN (2) turns
into

ẍp(t) = − apẋp(t) − bpxp(t) +
n∑

q=1

m∑

�=1

f�(ζ(t))cr
pqfq(xq(t))

+
n∑

q=1

m∑

�=1

f�(ζ(t))wr
pqfq(xq(t − τq)),

(4)

for any p ∈ In, where ap = a�
p + a�

p, bp = b�
p + b�

p.

Definition 1. FINN (1) is said to be globally asymptotically stabilized (GAS)
to its equilibrium x0 under control protocol (3) provided |xp(t) − x0| → 0 as
t → +∞ for any p ∈ In.

Definition 2. FINN (1) is said to be globally exponentially stabilized (GES)
to its equilibrium x0 under control protocol (3) provided there exists positive
constants r and M = M(φ, ψ) such that |xp(t) − x0| ≤ Mert for any t ≥ 0 and
for any p ∈ In, φ, ψ is the initial value of FINN (1).

Lemma 1 [22]. Function f(t) is defined on interval [0,+∞), if f(t) is uniformly
continuous and

∫ ∞
0

f(τ)dτ exists and is bounded, then limt→∞ f(t) = 0.
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3 GAS and GES of FINN

In this section, GAS and GES of FINN (2) are considered, respectively.
For convenience, for any p ∈ In, we define

qp = −2bp +
n∑

q=1

(
c�
pqlq + 2c�

qplp + d�
pqlq + 2d�

qplp
)
,mp = 4 − 2ap − 2bp

kp = 2 − 2ap +
n∑

q=1

(
c�
pq + d�

pq

)
lq, s = max

p

{
qp − m2

p

4kp

}
.

Theorem 1. Assume that Assumption 1 holds. If

max
p

{kp} < 0 and s < 0, (5)

then FINN (1) is globally asymptotically stabilized.

Proof. Consider the following Lyapunov candidate V (t) = V1(t)+V2(t)+V3(t),
where

V1(t) =
n∑

p=1

x2
p(t), V2(t) =

n∑

p=1

(xp(t) + ẋp(t))2,

V3(t) = p

n∑

p=1

n∑

q=1

2d�
qplp

∫ t

t−τp

x2
p(s)ds.

Taking the derivative of V (t) along the trajectories of (4) gives

V̇1(t) =
n∑

p=1

2xp(t)ẋp(t), V̇2(t) =
n∑

p=1

2(xp(t) + ẋp(t))(ẋp(t) + ẍp(t)),

V̇3(t) =
n∑

p=1

n∑

q=1

2d�
qplpx

2
p(t) −

n∑

p=1

n∑

q=1

2d�
qplpx

2
p(t − τp).

By Assumption 1 and the fact that 2ab ≤ a2 + b2,

n∑

p=1

2xp(t)(ẋp(t) + ẍp(t))

≤
n∑

p=1

2(1 − ap)xp(t)ẋp(t) −
n∑

p=1

2bpx
2
p(t) +

n∑

p=1

n∑

q=1

(c�
pqlq

+ c�
qplp + d�

pqlq)x
2
p(t) +

n∑

p=1

n∑

q=1

d�
qpplpx

2
p(t − τp)),

n∑

p=1

2ẋp(t)(ẋp(t) + ẍp(t))
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≤
n∑

p=1

2(1 − ap)ẋ2
p(t) −

n∑

p=1

2bpxp(t)ẋp(t) +
n∑

p=1

n∑

q=1

(c�
pqlq

+ d�
pqlq)ẋ

2
p(t) +

n∑

p=1

n∑

q=1

c�
qplpx

2
p(t) +

n∑

p=1

n∑

q=1

d�
qplpx

2
p(t − τp)).

Combining them, we get

V̇ (t) ≤
n∑

p=1

(
−2bp +

n∑

q=1

(c�
pqlq + 2c�

qplp + d�
pqlq + 2d�

qplp)

)
x2

p(t)

+

n∑

p=1

(
4 − 2ap − 2bp

)
xp(t)ẋp(t) +

n∑

p=1

(
2 − 2ap +

n∑

q=1

(
c�

pq + d�
pq

)
lq

)
ẋ2

p(t)

=
n∑

p=1

kp

(
ẋp(t) +

mp

2kp

)2

+
n∑

p=1

(
qp − m2

p

4kp

)
x2

p(t).

Using (5), we get

V̇ (t) ≤ sV1(t) < 0, (6)

therefore, V (t) < V (0) for any t ∈ R
+. It follows that xp(t) and ẋp(t) are

bounded for any t ∈ R
+ and p ∈ In. Hence, the derivative of V1(t) is bounded,

implying that V1(t) is uniformly continuous. In addition, by (6), for any t ∈ R
+,

we have
∫ t

0
V1(ζ)dζ ≤ V (0)

−s < +∞, thus
∫ ∞
0

V1(ζ)dζ ≤ V (0)
−s < +∞, together

with Lemma 1, we get xp(t) → 0 as t → +∞. By Definition 1, FINN (1) is
globally asymptotically stabilized under the control protocol (3). �

Remark 2. Theorem 1 deals with the global asymptotic stabilization of FINN
(1) under control protocol (3). One can see that Lemma 1 plays an important
role in Theorem 1. Next, the global exponential stabilization is addressed.

Also, for any p ∈ In, we define

q̄p = 2λ − 2bp +
n∑

q=1

(
2d�

qplpeλτp + c�
pqlq + 2c�

qplp + d�
pqlq

)
m̄p = 4 + 2λ − 2ap − 2bp,

k̄p = 2 + λ − 2ap +
n∑

q=1

(
c�

pqlq + d�
pqlq

)
, s̄ = max

p

{
qp − m2

p

4kp

}
.

Theorem 2. Assume that Assumption 1 holds. If there exists a positive con-
stant λ such that maxp{k̄p} < 0 and s̄ < λ, then FINN (1) is globally exponen-
tially stabilized.



Global Stabilization for FINN 67

Proof. By the similar analysis, one gets V̇ (t)e−λt ≤ s̄
∑n

p=1 x2
p(t) = s̄e−λtV1(t),

therefore, V̇ (t) ≤ s̄V1(t). Next, two cases are considered.

Case 1: s̄ < 0. Then we have V̇ (t) < 0, and hence V (t) < V (0) for any t ∈ R
+.

It follows that
∑n

p=1 x2
p(t) = e−λtV1(t) ≤ e−λtV (t) ≤ e−λtV (0).

Case 2: s̄ ≥ 0. Then V̇ (t) ≤ s̄V1(t) ≤ s̄V (t), therefore, V (t) ≤ es̄tV (0). So we
have

∑n
p=1 x2

p(t) = e−λtV1(t) ≤ e−λtV (t) ≤ e(s̄−λ)tV (0).
Together with Definition 2, FINN (1) is globally exponentially stabilized

under control protocol (3). �

Remark 3. It is obvious that λ > 0 is a necessity of Theorem 2. If λ = 0, then
we can only get the global asymptotically stabilization of FINN (1). Therefore,
Theorem 2 could be viewed as a generalization of Theorem 1.

Remark 4. In Theorems 1 and 2, we deal with the stabilization problem for
FINN directly by the non-reduced order approach, rather than the variable trans-
formation method. As far as the authors’ knowledge, very few paper has been
considered the dynamics of FINN in a non-reduced order manner. Therefore, the
results in this paper are novel.

4 An Example

Example 1. Consider a two-neuron delayed FINN with two fuzzy rules:
Plant Rule 1: IF xp(t) is xp(t) ≤ 0, THEN

ẍp(t) = −a�
pẋp(t) − b�

pxp(t) +
2∑

q=1

c1pqfq(xq(t)) +
2∑

q=1

d1pqfq(xq(t − τq)), (7)

Plant Rule 2: IF xp(t) is xp(t) > 0, THEN

ẍp(t) = −a�
pẋp(t) − b�

pxp(t) +
2∑

q=1

c2pqfq(xq(t)) +
2∑

q=1

d2pqfq(xq(t − τq)). (8)

where a�
p = b�

p = 0.01 for any p = 1, 2; τ1 = 0.01, τ2 = 0.005; c111 = 0.05,
c211 = 0.01, c112 = 0.02, c212 = 0.01, c121 = 0.07, c221 = 0.05, c122 = 0.03, c222 = 0.05,
d111 = 0.01, d211 = 0.04, d112 = 0.09, d212 = 0.05, d121 = 0.07, d221 = 0.01, d122 = 0.05,
d222 = 0.06, and f1(x) = f2(x) = (|x + 1| − |x − 1|)/2.

The state trajectories of FINNs (7) and (8) are shown in Fig. 1(a)–(b), which
shows FINNs (7)–(8) is unstable. Now the state feedback control protocol (3) is
considered. Let a�

p = b�
p = 1.49 for any p = 1, 2. Then it is easy to be verified that

conditions of Theorem 1 are satisfied with maxp{kp} = −0.750 and s = −0.9767.
Therefore, FINNs (7)–(8) is globally asymptotically stabilized, which is shown
in Fig. 1(c)–(d).
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Fig. 1. The trajectories of state x1(k) and x2(k).

5 Conclusions

This paper considered the global asymptotic stabilization and global exponential
stabilization problem for a class of delayed fuzzy inertial neural networks (FINN).
Rather than using the reduced order approach, this paper utilizes the non-
reduced order method. Some criteria for the stabilization of FINN are derived by
Lyapunov method and some analytical techniques. The obtained results in this
paper enrich and improve some previous ones. An example are given to illustrate
the effectiveness and validity of the main results.
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1 Introduction

In recent decades, unmanned surface vehicles (USVs) have gained increasing
attention due to their wide applications in marine industry, military and scientific
fields [1–4]. A large number of researchers are dedicated to motion control of
USVs and numerous control methods are proposed [5–16].

Surge speed control is a fundamental problem in motion control of USVs. The
speed of ship is not only related to the thrust provided by the propulsion system,
but also to the shape of the hull, the size of the sea surface waves and the flowing
speed of seawater. As for surge speed dynamics driven by a DC motor, it is dif-
ficult to attain good control performance by using conventional control methods
such as PID control and traditional adaptive control [17]. With the development
of modern control theory and artificial intelligence theory, fuzzy control, neural
network and adaptive control combined with other control methods are used
to control ship speed, exhibiting better control performance than conventional
control methods [17–19]. In [17], three control algorithms are applied to velocity
control of an USV, namely, classical PID control with gain scheduling, model
reference adaptive control, and L1 adaptive control. Moreover, a comparative
study of three approaches is presented to test the capability of speed stabiliza-
tion. In [18], an L1 adaptive controller is designed to achieve surge speed control.
In [19], a nominal PI controller is designed for speed tracking control by using
the H∞ output feedback technique. However, the previous studies on propulsion
system and ship speed control have been carried out independently [17–20].

In this paper, we consider the surge speed control problem of USV subject
to unknown models of DC motor, propeller, and surge dynamics. An MNDSC
design method is adopted to design controller for USV to achieve the goal of
surge speed tracking. Two identifiers based on NNs are developed to deal with
the uncertainties due to the unknown model of surge dynamics, propeller, and
DC motor. Then, a robust adaptive surge speed controller is designed based on
a dynamic surface control design method. The proposed surge velocity tracking
controller is capable of tracking any time-varying bounded velocity profiles in
the presence of unknown surge dynamics and motor dynamics. Compared to the
existing NNs based adaptive control method [21], the MNDSC method improves
the speed of approaching unknown functions by NNs. Therefore, the proposed
surge velocity tracking controller designed by the MNDSC has a satisfactory
dynamic performance. The stability of close-loop system is proved by ISS theory
and cascade theory. The simulation results indicate that the controller is able to
achieve desired control performances not only in steady-state behavior but also
in dynamic properties.

The remainder of this paper is organized as follows. The DC motor model,
propeller model and surge dynamics are established in Sect. 2. Section 3 gives
controller design procedure and stability analysis. Section 4 provides the simu-
lation results to illustrate the efficacy of the proposed approach. Section 5 con-
cludes this paper.
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2 Problem Formulation

In this section, DC motor model, propeller model and surge speed dynamics
are established and the motion equation for the system composed of them are
provided.

2.1 DC Motor Model

According to the electromagnetic torque equation, armature voltage and motor
torque balance equation in [22], the motion equation of DC motor can be
obtained as

Tmω̇ + ω = Kmua − KcMc, (1)

where Km, Kc are transfer coefficients of motor, Tm is electromechanical coef-
ficient of motor, ω is motor rotating speed, ua is the motor input voltage, and
Mc is total load torque.

2.2 Propeller Model

According to [23], the thrust and torque of the propeller in open water can be
expressed as (usually referred to as non-bounded forms)

P = (1 − r)KP ρD4n|n|, (2)

T = KT ρD5n|n|, (3)

where P and T are propeller thrust and torque, KP and KT are propeller thrust
coefficient and torque coefficient, which are functions of the advance ratio J , i.e.,
KP = KP (J), KT = KT (J), r is the thrust reduction factor, ρ is the density of
seawater, n is propeller shaft speed, and D is propeller diameter.

The advance ratio J is defined as [19]:

J =
vp

nD
, (4)

where vp is actual forward speed of the propeller.

2.3 Surge Speed Dynamics

According to [24], a 3-DOF maneuvering model can be decoupled in a forward
speed (surge) model and a sway-yaw subsystem for maneuvering. Therefore, the
surge model can be written as follows

mu̇ − Xuu − X|u|uu = τ, (5)

where m is the mass of ship, u is surge speed and τ is the sum of control and
external forces on the ship.
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According to (1), (2), (3) and (5), the dynamic equation can be rewritten in
the following form: {

u̇ = f1(u, ω) + b0ω,

ω̇ = f2(ω) + b1ua,
(6)

where b0 = 1/m, b1 = Km/Tm, f1(u, ω) = {[(1 − r)KpρD4|ω|ω/4π2] + Xuu +
X|u|uu − ω}/m and f2(ω) = (−ω − KcKT ρD5|ω|ω/4π2)/Tm. The control objec-
tive of this paper is to develop a adaptive control law for a USV driven by a DC
motor to track a time-varying velocity reference signal ur.

3 Surge Tracking Controller Design

3.1 Identifier Design

In this subsection, two identifiers are developed to identify the uncertain non-
linear functions of the system (6).

Step 1: The unknown function f1(u, ω) can be approximated by an NN as
follows

f1(u, ω) = WT
1 θ(u, ω) + ε1, u, ω ∈ S, (7)

where θ(·) is a known activation function, W1 is an ideal NN weigh satisfying
‖W1‖F ≤ W ∗

1 with W ∗
1 is a positive constant, S ⊂ � is a compact set, and ε1 is

the function reconstruction error, there exists a positive constant ε∗
1, such that

‖ε1‖ ≤ ε∗
1.

A surge speed identifier is developed to design an update law for Ŵ1 as follows

˙̂u = ŴT
1 θ(u, ω) + b0ω − (ζ1 + μ1)ũ, (8)

where ζ1 ∈ R and μ1 ∈ R are positive constants, û is an estimated value of u
and ũ = û − u.

The update law for Ŵ1 is designed as

˙̂
W1 = −Γ1[θ(u, ω)ũ + k1Ŵ1], (9)

where Γ1 ∈ R and k1 ∈ R are positive constants.
Step 2: The unknown function f2(ω) can be approximated by an NN as

follows

f2(ω) = WT
2 θ(ω) + ε2, ω ∈ S, (10)

where W2 is an ideal NN weigh satisfying ‖W2‖F ≤ W ∗
2 with W ∗

2 is a positive
constant, and ε2 is the function reconstruction error, there exists a positive
constant ε∗

2, such that ‖ε2‖ ≤ ε∗
2.
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A motor speed identifier is proposed to develop an update law for Ŵ2 as
follows

˙̂ω = ŴT
2 θ(ω) + b1ua − (ζ2 + μ2)ω̃, (11)

where ζ2 ∈ R and μ2 ∈ R are positive constants, ω̂ is an estimated value of ω
and ω̃ = ω̂ − ω.

The update law for Ŵ2 is designed as

˙̂
W2 = −Γ2[θ(ω)ω̃ + k2Ŵ2], (12)

where k2 ∈ R and Γ2 are positive constants.

3.2 Controller Design

In this subsection, a dynamic surface control (DSC) technique is applied to
design surge tracking controller for the USV driven by DC motor.

Step 1: First of all, define the first dynamic surface error z1 = u − ur, and
the time derivative of z1 along (6) is

ż1 = f1(u, ω) + ω − u̇r. (13)

The virtual control law αω is designed as

αω = [−ζ1(u − ur) + u̇r − ŴT
1 θ(u, ω)]/b0, (14)

where ur is the given surge speed.
Let αω pass through a first-order filter to get ωd

σ1ω̇d = αω − ωd, αω(0) = ωd(0), (15)

where σ1 ∈ R is a positive constant, and ωd is an estimate of αω.
Step 2: Similar to Step 1, let the second surface error be z2 = ω − ωd, and

the time derivative of z2 along (6) satisfies

ż2 = f2(ω) + ua − ω̇d. (16)

The practical control law ua is designed as follows

ua = [−ζ2(ω − ωd) + ω̇d − ŴT
2 θ(ω)]/b1, (17)

where ζ2 is a positive constant.
A frame diagram of the proposed surge tracking controller is displayed in

Fig. 1.



Modular Neural DSC for SST of an USV Driven 75

4 Stability Analysis

Let ẑ1 = û − ur, ẑ2 = ω̂ − ωd, q2 = ωd − αω, W̃1 = Ŵ1 − W1, W̃2 = Ŵ2 − W2,
and then, the error dynamics of ẑ1, ẑ2, ũ, ω̃, W̃1 and W̃2 can be written as{

˙̂z1 = −ζ1ẑ1 − μ1ũ − ω̃ + ẑ2 + q2,
˙̂z2 = −ζ2ẑ2 − μ2ω̃,

(18)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̃u = −(ζ1 + μ1)ũ + W̃T
1 θ(u, ω) − ε1,

˙̃ω = −(ζ2 + μ2)ω̃ + W̃T
2 θ(ω) − ε2,

˙̃W1 = −Γ1[θ(u, ω)ũ + k1Ŵ1],
˙̃W2 = −Γ2[θ(ω)ω̃ + k2Ŵ2].

(19)

The stability of the subsystem (18) is provided by the lemma below:

Lemma 1. The subsystem (18) with states being ẑ1 and ẑ2, and inputs being ũ,
ω̃ and q2 is ISS.

ru
w

u

u

uu

W

d au

W

Fig. 1. A frame diagram of surge speed controller.

Proof. Firstly, select a Lyapunov function for the subsystem (18)

Vc =
1
2
ẑ21 +

1
2ζ2μ2

ẑ22 . (20)
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The derivative the Lyapunov function (20) to time is

V̇c = ẑ1 ˙̂z1 +
1

ζ2μ2
ẑ2 ˙̂z2

= −ζ1ẑ
2
1 − μ1ũẑ1 − ω̃ẑ1 + ẑ1ẑ2 + ẑ1q2 − 1

μ2
ẑ22 − 1

ζ2
ω̃ẑ2

≤ −ζ1‖ẑ1‖2 + μ1‖ũ‖‖ẑ1‖ + ‖ω̃‖‖ẑ1‖ + ‖ẑ1‖ẑ2‖ + ‖ẑ1‖‖q2‖ (21)

− 1
μ2

‖ẑ2‖2 +
1
ζ2

‖ω̃‖‖ẑ2‖.

Let G1 = [‖ẑ1‖, ‖ẑ2‖]T , H1 = [μ1‖û‖, 1
ζ2

‖ω̃‖, ‖q2‖]T , and K =
[
ζ1 −1
0 1

μ2

]
, c1 =

λmin(K), and then the aforementioned inequality (21) can be written as

V̇c ≤ −c1‖G1‖2 + ‖H1‖‖G1‖. (22)

If and only if ‖G1‖ satisfies ‖G1‖ ≥ ‖H1‖
c1η1

,

V̇c ≤ −(1 − η1)c1‖G1‖2, (23)
where 0 < η1 < 1.

We can draw the conclusion that the subsystem (18) is ISS. Letting P1 =
diag(1, 1

ζ2μ2
), there exists a KL function β1(·) and K∞ functions Δũ(·), Δω̃(·)

and Δq2(·) such that

‖G1(t)‖ ≤ β1(‖G1(t0)‖, t − t0) + Δũ(‖ũ‖) + Δω̃(‖ω̃‖) + Δq2(‖q2‖), (24)

where Δũ(s) = sμ1

√
λmax(P1)

c1η1

√
λmin(P1)

, Δω̃(s) = s
√

λmax(P1)

c1η1ζ2
√

λmin(P1)
, and Δq2(s) =

s
√

λmax(P1)

c1η1

√
λmin(P1)

.

The stability of the subsystem (19) is provided by the lemma below:

Lemma 2. The subsystem (19) with states being ũ, ω̃, W̃1 and W̃2 and inputs
being ε1, ε2, W1 and W2 is ISS.

Proof. Firstly, set up a Lyapunov function for subsystem (19)

Ve =
1
2
ũ2 +

1
2
ω̃2 +

1
2
Γ−1
1 W̃T

1 W̃1 +
1
2
Γ−1
1 W̃T

2 W̃2. (25)

The derivative of the Lyapunov function (25) to time is

V̇e = ũ ˙̃u + ω̃ ˙̃ω + Γ−1
1 W̃T

1
˙̃W1 + Γ−1

2 W̃T
2

˙̃W2,

= −(ζ1 + μ1)ũ2 − ũε1 − k1W̃
2
1 − k1W̃

T
1 W1 − (ζ2 + μ2)ω̃2

− ω̃ε2 − k2W̃
2
2 − k2W̃

T
2 W2,

≤ −(ζ1 + μ1)‖ũ‖2 + ‖ũ‖‖ε1‖ − k1‖W̃1‖2 + k1‖W̃T
1 ‖‖W1‖ (26)

− (ζ2 + μ2)‖ω̃‖2 + ‖ω̃‖‖ε2‖ − k2‖W̃2‖2 + k2‖W̃T
2 ‖‖W2‖.
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Let G2 = [‖ũ‖, ‖ω̃‖, ‖W̃1‖, ‖W̃2‖]T , H2 = [‖ε1‖, ‖ε2‖, k‖W1‖, k‖W2‖]T , k =
min(k1, k2), c2 = min(ζ1 + μ1, ζ2 + μ2, k1, k2), and then the aforementioned
inequality (26) can be rewritten as

V̇e ≤ −c2‖G2‖2 + ‖H2‖‖G2‖. (27)

If and only if ‖G2‖ satisfies ‖G2‖ ≥ ‖H2‖
c2η2

,

V̇e ≤ −(1 − η2)c2‖G2‖2, (28)

where 0 < η2 < 1.
We can draw the conclusion that the subsystem (19) is ISS. Letting P2 =

diag(1, Γ−1
1 , Γ−1

2 ), there exists a KL function β2(·) and K∞ functions Δε1(·),
Δε2(·), ΔW1(·) and ΔW2(·) such that

‖G2(t)‖ ≤ β2(‖G2(t0)‖, t − t0) + Δε1(‖ε1‖) + Δε2(‖ε2‖) (29)

+ ΔW1(‖W1‖) + ΔW2(‖W2‖),

where Δε1(s) = Δε2(s) = s
√

λmax(P2)

c2η2

√
λmin(P2)

and ΔW1(s) = ΔW2(s) = sk
√

λmax(P2)

c2η2

√
λmin(P2)

.

The stability of the system cascaded by (18) and (19) is provided by the following
theorem.

Theorem 1. The closed-loop system cascaded by (18) and (19) is ISS.

Proof. According to Lemma 1 in [25], both the subsystems (18) and (19) are ISS,
and then the system cascaded by (18) and (19) is ISS.

5 Simulation Verification

To verify the validity of the surge speed tracking controller, the simulation is
established for the system described by (6). The system parameters are chosen
as: Km = 6, Kc = 0.02, Tm = 3, m = 23.8 kg, Xu = −0.7225, X|u|u = −1.3274,
D = 0.05m, ρ = 1025 kg/m3, r = 0.9. The controller parameters are chosen as:
ζ1 = ζ2 = 1, σ1 = 0.01, Γ1 = Γ2 = 1000, k1 = k2 = 0.001, μ1 = μ2 = 10. The
activation function is chosen as: θ = (1 − e−x)/(1 + e−x).

Figures 2, 3, 4 and 5 show the simulation results. Figure 2 shows that the
system response at a desired reference speed of 0.4 m/s. It can be seen that the
trajectory of surge speed rises quickly and smoothly and tracks the given speed
well. Figure 3 depicts that the curve of the controller output, i.e., the DC motor
input voltage. Figures 4 and 5 demonstrate that estimate performance of NNs
and it can be observed that the outputs of NNs are able to fast approximate the
uncertain nonlinear functions.
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Fig. 2. The surge speed controller result.
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Fig. 3. The output of controller.
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6 Conclusions

In this paper, a surge speed control method is presented for a USV driven by a
DC motor. An MNDSC design scheme is used to develop the controller for the
surge speed tracking. By utilizing neural-network-based identifiers, the uncertain
nonlinear functions can be approximated. The surge speed tracking controller
can track any time-varying bounded velocity profiles. The stability of the total
closed-loop system is analyzed based on ISS theory and cascade theory. Finally,
the simulation results illustrate the effectiveness and rationality of the designed
controller.
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Abstract. In this paper, the data-based approximate policy iteration
(API) method is used for optimal course-keeping control with unknown
ship model. When we deal with the nonlinear optimal control problem,
the Hamilton Jacobi Bellman (HJB) equation, which is difficult to be
solved analytically, needs to be tackled. Furthermore, because of numer-
ous parameters to be determined and unknown nonlinear terms, it is usu-
ally difficult to establish the accurate mathematical model for ships. In
order to overcome these difficulties, the API method, which can solve the
problem of model-free system, is introduced for optimal course-keeping
control of marine surface vessels. And the asymptotic stability of the
closed-loop system can be guaranteed via Lyapunov analysis. Finally, a
numerical example is provided to demonstrate the effectiveness of the
control scheme.

Keywords: Optimal course-keeping control · Unknown ship model ·
Neural network · Approximate policy iteration

1 Introduction

With the development of shipping industry, ships are playing a more and more
important role in world trade, and the navigation of ships has always been a
major problem for sailors [1]. The energy consumption and the heading control
accuracy are important indexes when the performance of ship course control sys-
tem is evaluated. A large number of control methods for course-keeping control
of ships have been reported [2–8], such as backstepping control, sliding model
control, robust control, fuzzy logic control [10], PID control, neural network con-
trol [22], and so forth. However, with economic development, it is increasingly
important to save energy as much as possible while ensuring the safety of ship
navigation. Therefore, optimal control problem of ships becomes a hot topic and
attracts extensive attentions of scholars nowadays.

The objective of optimal control is to find a control policy that drives the
controlled system to a desired target in an optimal way, i.e., to minimize or max-
imize the performance index [9]. In recent years, many optimal control methods
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have been introduced for ship control, and gradually become one of the research
hotspots in control field. An estimator is developed in [10] based on the opti-
mal command signal and the fuzzy system. By using the backstepping technique
and disturbance observer method, an optimal control scheme is presented for
the ship with external disturbances in [11]. In [12], a novel path-following con-
trol strategy for vessels with roll constraints is proposed with the combination
of Kalman filter, disturbance observer, and robust constrained model predictive
control method. However, most of these methods require the accurate mathe-
matical model of ships.

In the real world, the ship motion is very complicated which includes 6
degrees of freedom and makes it difficult for system modeling. There are many
remarkable achievements have been obtained for the simplification of the ship
model [25,26]. For example, Abkowitz proposed the small perturbation model;
the Manoeuvring Model Group (MMG) of Japan proposed the MMG mathemat-
ical model; Japanese scholar Nomoto simplified the third-order heading control
model of ships. Using the ship rudder as the system input, the course as the
output, establishing the second-order model of ship course-keeping. This work
is of great significance. In real life, however, the model parameters are usually
difficult to get when the mathematical model of ships is established. To solve this
problem, many strategies have been proposed for the ship control with uncer-
tain parameters. For example, a nonlinear robust controller is designed in [13] to
improve the robust performance and tracking characteristics of ships in the pres-
ence of significant modeling uncertainties. A novel sliding mode control approach
is proposed in [14] for robust tracking control of an underactuated surface vessel
with parameter uncertainties. In [15], an online adaptive near-optimal controller
is presented for linear and nonlinear systems with parameter uncertainty, which
is also applied to course control of underactuated surface vessels.

Adaptive dynamic programming (ADP) is an optimization method that
avoids solving the Hamilton Jacobi Bellman (HJB) equation, and this algorithm
has developed rapidly in recent years [16]. In [17], ADP is introduced for opti-
mal control of linear systems and nonlinear systems. For the infinite horizon
optimal control of nonlinear systems, a novel discrete-time policy iteration app-
roach is developed in [18]. With the utilization of the input-output data during
the controller design process of the system, a novel data-driven adaptive iter-
ative learning predictive control algorithm is presented in [19]. By developing
a new data-based approximate policy iteration (API) algorithm, the model-free
nonlinear optimal control problem is solved in [20].

In this paper, the API method is used to obtain the optimal course-keeping
controller of ships by using the system input-output data, and the model-free
problem of the ship is solved successfully.

The main contributions of this paper can be summarized as follows:

(1) The controller is designed based on the input-output data, rather than the
explicit mathematical model of ships.
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(2) By utilizing the input-output data, an optimal controller is developed for
course-keeping control of ships, and the problem of unknown model of the
ship is dealt with successfully.

(3) Based on the (API) method, a simulation is conducted on the YUPENG
ship to verify the effectiveness of the control algorithm.

The rest of the paper is organized as follows. The problem formulation and
some preliminaries are presented in Sects. 2 and 3. In Sect. 4, the critic neural
network and actor neural network are introduced to approximate the ship per-
formance index and the course-keeping controller, respectively. The application
of data-based API method to course-keeping control of ships is developed in
Sect. 5 and the simulation results are shown in Sect. 6. Finally, the conclusion of
this paper is given in Sect. 7.

Notation. R is the set of real numbers. The superscript T represents the trans-
pose of a matrix and I denotes the identify matrix of appropriate dimension. For
a symmetric matrix A, A > 0 (≥0) means that the matrix A is a positive (semi-
positive). ‖u‖TA = uTAu for some real vector and symmetric matrix A > 0 (≥0)
with appropriate dimension.

2 Problem Formulation

Consider the mathematical expression of the Nomoto model as follows [1]:

ϕ̈ +
1
T

H(ϕ̇) =
K

T
δ (1)

where ϕ and δ are the course and rudder angle of ships, respectively. K and T
are model parameters. H(ϕ̇) = a1ϕ̇ + a2ϕ̇

3 + a3ϕ̇
5 + . . ., where ai(i = 1, 2, . . .)

are nonlinear coefficients of ships and ai is a constant.
Let x1 = ϕ, x2 = ϕ̇ and u = δ, system (1) is written as:

⎧
⎨

⎩

ẋ1 = x2

ẋ2 = − 1
T H(x2) + K

T δ
y = x1

(2)

where y is the output of the system.
Assume that the system (2) is controllable, and asymptotically stable on X,

X ⊂ R, where X is a compact set. In the real world, because of the variation of
water depth, ship loading and speed, the dynamic parameters K and T will be
changed. Accordingly, it is difficult to obtain the accurate mathematical model
of the ship.

In order to minimize the energy consumption of ships, define the performance
index as follow:

V (x0)
Δ=

∫ ∞

0

(Q(x) + ‖δ(t)‖2R)dt (3)

where ‖δ(t)‖2R Δ= δT(t)Rδ(t), R > 0, and Q(x) is a positive definite function.
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In this paper, the optimal control is to find the optimal controller δ∗(x), such
that the system (2) can track the desired trajectory stably, and the performance
index (3) is minimized. i.e.

δ(t) Δ= δ∗(x) Δ= arg min
δ

V (x0) (4)

Remark 1. According to the different point of view, the mathematical model
of ships has many different divisions. In the Nomoto model, the ship is regarded
as a dynamic system, with ship control (rudder angle) and ship motion (ship
heading or yaw rate) as input and output of system, respectively. Compared
with other mathematical models of ships, the Nomoto model has a relatively
simple structure and keeps accuracy high enough.

3 Preliminary Works

3.1 GHJB Equation

Definition 1 [21] (GHJB equation). Suppose that u is an admissible con-
trol, the function V satisfies the generalized Hamilton Jacobi Bellman (GHJB)
equation, i.e.

∂V

∂x
(f + gu) + l + ‖u‖2R = 0, V (0) = 0 (5)

In order to achieve optimal control objective, the controller u(x) minimize
the pre-Hamiltonian equation, i.e.

u(x) = arg min
u∈Ω

{
∂V T

∂x
(f + gu) + l + ‖u‖2R

}

= −1
2
R−1gT

∂V

∂x

(6)

The controller of u is given by the solution of the Eq. (5). It can be proved
that when the process is iterated until V̂ (x) ≤ V (x) for each x ∈ Ω, the value
functions converges uniformly to the solution of the follow HJB equation: ∂V T

∂x f+
l − 1

4
∂V T

∂x gR−1gT ∂V
∂x = 0, that is to say, lim

i→∞
V (i) = V ∗ and lim

i→∞
u(i) = u∗.

3.2 API Algorithm

The explicit expression of the GHJB equation (5) is not available, because the
dynamic parameters K,T and H(ϕ̇) in system (2) are completely unknown.
Therefore, it is impossible to solve the GHJB equation (5) with model-based
methods. The API algorithm using real system data instead of the explicit system
information, so this method can be used for control problem of unknown ship
model [20].

The system (3) can be rewritten as:

ẋ = − 1
T

H(x) +
K

T
δ(i) +

K

T
[δ − δ(i)] (7)
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Combining Eqs. (5) and (6), the derivative of V (i+1)(x) along the state of
system (7) is:

dV (i+1)(x)
dt

= [
∂V (i+1)

∂x
]T(−H

T
+

K

T
δ(i)) + [

∂V (i+1)

∂x
]T

K

T
[δ − δ(i)]

= −Q(x) −
∥
∥
∥δ(i)

∥
∥
∥
2

R
+ 2[δ(i+1)]TR[δ(i) − δ]

(8)

Integrating both sides of the above formula on the interval [t, t + Δt], i.e.,

V (i+1)(x(t)) − V (i+1)(x(t + Δt)) + 2
∫ t+Δt

t
[δ(i+1)(x(τ))]

T
R[δ(i)(x(τ)) − δ(τ)]dτ

=
∫ t+Δt

t
[Q(x(τ)) +

∥
∥
∥δ(i)(x(τ))

∥
∥
∥
2

R
]dτ

(9)

where V (i+1)(x) and δ(i+1)(x) are the unknown cost function and undetermined
controller, respectively. In Preliminary works, we need to solve the GHJB equa-
tion (5) to get performance index V and control policy δ. After the formula trans-
formation, if there exist an initial control policy δ(0), V and δ can be obtained by
Eq. (9). Therefore, the parameter unknown problem of K,T and H(ϕ̇) is sorted.

Lemma 1 [20]. When (V (i+1)(x), δ(i+1)(x)) is the solution of Eqs. (5) and (6),
it is also the solution of Eq. (9). In other words, Eq. (9) is equivalent to Eqs. (5)
and (6).

The key step of the proof is proving (V (i+1)(x), δ(i+1)(x)) is the unique
solution of Eq. (9). As space is limited, the detailed proof procedure won’t be
described here. The proof is completed in [20].

Remark 2. Lemma 1 indicate that the controller δ(i+1) which obtained by iter-
ate Eq. (9) is equivalent to δ(i+1) obtained by iterate Eqs. (5) and (6), which
has been proven the convergence of the system in [21]. That means the API
algorithm can be guaranteed to be convergent.

4 Ship Optimal Course-Keeping Actor-Critic Neural
Network Structure

Because the accurate mathematical model of ships is unknown, it is impossible
to obtain the performance index V (x) and control policy δ(x) directly. To over-
come this problem, the API method study V (i+1)(x) and δ(i+1)(x) by Eq. (9).
In this section, the critic and actor neural networks (NNs) are introduced to
approximate the performance index V (i+1)(x) and controller δ(i+1)(x) respec-
tively. The frameworks of critic and actor NNs are constructed in light of the
method of [23].

4.1 Critic Network

Critic NN is used to approximate the performance index V (i+1)(x). Suppose that
the number of hide layer neurons in critic NN is Nc, and the weight vector of
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critic NN is ωc, The activation function is φ(x) Δ= [φ1(x) . . . φj(x) . . . φNc
(x)]T,

j = 1, 2, . . . , Nc. So, the output of the critic NN is

V̂ (i)(x) =
Nc∑

j

ω(i)
c φj(x) = φT(x)ω(i)

c (10)

for ∀i = 0, 1, . . . , Nc, where ω
(i)
c means the weight vector ωc with i-th iteration.

4.2 Actor Network

Actor NN is used to approximate the controller u(i+1)(x). Suppose that the
number of hide layer neurons in actor NN is Na, and the weight vector of critic
NN is ωa, The activation function of the n-th sub-actor NN for approximating
control policy un is ψn(x) Δ= [ψn

1 (x) . . . ψn
k (x) . . . ψn

Na
(x)]T, n = 1, . . . , m,

where k = 1, 2, . . . , Na. So,the output of the n-th sub-actor NN can be given by

δ̂(i)(x) =
Na∑

k

ω(i)
an

ψk(x) = ψT(x)ω(i)
an

(11)

for ∀i = 0, 1, . . . , Na, where ω
(i)
an means the weight vector ωan

with i-th iteration.

4.3 Convergence Analysis

In the light of [20], the stability of the closed-loop system of the ship control
system can be simplified as follows:

ẋ = − 1
T

H(x) +
K

T
δ̂(i)(x) (12)

The Lyapunov function is selected as V (i)(x). The estimation error of actor
NN is ε

(i)
δ (x) Δ= δ̂(i)(x) − δ(i)(x), differentiating V (i) with respect to system (12)

we have

V̇ (i) = [
∂V (i)

∂x
]T(−H

T
+

K

T
δ̂(i))

= [
∂V (i)

∂x
]T[−H

T
+

K

T
(δ̂(i) + ε

(i)
δ )] + Q

+
∥
∥
∥δ(i−1) − δ(i)

∥
∥
∥
2

R
− Q −

∥
∥
∥δ(i−1) − δ(i)

∥
∥
∥
2

R

= [
∂V (i)

∂x
]T[−H

T
+

K

T
δ̂(i)] + Q +

∥
∥
∥δ(i−1) − δ(i)

∥
∥
∥
2

R

+ [
∂V (i)

∂x
]T[−H

T
+

K

T
+ ε

(i)
δ ] − Q −

∥
∥
∥δ(i−1) − δ(i)

∥
∥
∥
2

R

(13)
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where the controller δ(i) makes the Eq. (6) tenable. Substituting (5) into (13)
and combining (5)

V̇ (i) = [
∂V (i)

∂x
]T[−H

T
+

K

T
(δ(i−1))] + Q +

∥
∥
∥δ(i−1)

∥
∥
∥
2

R

+ [
∂V (i)

∂x
]T

K

T
ε
(i)
δ − Q −

∥
∥
∥δ(i)

∥
∥
∥
2

R
−

∥
∥
∥δ(i−1) − δ(i)

∥
∥
∥
2

R

= [
∂V (i)

∂x
]T

K

T
ε
(i)
δ − Q −

∥
∥
∥δ(i)

∥
∥
∥
2

R
−

∥
∥
∥δ(i−1) − δ(i)

∥
∥
∥
2

R

(14)

According to Lyapunov theorem, the closed-loop system (12) is asymptoti-
cally stable when V̇ (i) < 0. The appropriate activation function and Na can be
selected to ensure that the following formula is established

Q(x) +
∥
∥
∥δ(i)

∥
∥
∥
2

R
+

∥
∥
∥δ(i−1) − δ(i)

∥
∥
∥
2

R
> [

∂V (i)

∂x
]T

K

T
ε
(i)
δ (15)

where ε
(i)
δ is an arbitrarily small positive number so that the Eq. (14) satisfies

V̇ (i) < 0, i.e. system (12) is asymptotically stable.

5 The Optimal Course-Keeping Controller Design Based
on API Algorithm

5.1 The Solution of Iterative Formula

In this section, the iteration formula of API algorithm is computed by input-
output data of ships.

Using V̂ (i+1) and δ̂(i+1) instead of V (i+1) and δ(i+1) in (11). Define x′(t) Δ=
x(t+Δt), Due to the approximation error of NN, adopt the residual error formula
in [20] as follow:

σ(i)(x(t), δ(t), x′(t))

Δ= [φ(x(t)) − φ(x′(t))]Tω(i+1)
c + 2

∫ t+Δt

t

[δ(i)(x(τ)) − δ(τ)]
T
Rδ(i+1)(x(τ))dτ

−
∫ t+Δt

t

Q(x(τ))dτ −
∫ t+Δt

t

∥
∥
∥δ(i)(x(τ))

∥
∥
∥
2

R
dτ

= [φ(x(t)) − φ(x′(t))]Tω(i+1)
c + 2

m∑

n1=1

m∑

n2=1

rn1,n2

∫ t+Δt

t

[(ψn1(x(τ)))Tω(i)
an1

− δn1(τ)](ψn2(x(τ)))Tω(i+1)
an2

dτ −
∫ t+Δt

t

Q(x(τ))dτ

−
m∑

n1=1

m∑

n2=1

rn1,n2

∫ t+Δt

t

(ω(i)
an1

)
T
ψn1(x(τ))(ψn2(x(τ)))Tω(i)

an2
dτ

(16)
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When σ(i)(x(t), δ(t), x′(t)) (for ∀t ≥ 0) tends to zero, the undetermined NN
weight vector ω(i+1) can be computed.

Utilizing the least-square method, the iterative formula can be obtained as
follow:

ω(i+1) = {[[φ(x(t)) − φ(x′(t))]T 2

∫ t+Δt

t

δn1(τ)(ψn2(x(τ)))Tdτ ] T

× [[φ(x(t)) − φ(x′(t))]T 2

∫ t+Δt

t

δn1(τ)(ψn2(x(τ)))Tdτ ] }−1

× [[φ(x(t)) − φ(x′(t))]T2

∫ t+Δt

t

δn1(τ)(ψn2(x(τ)))Tdτ ]T[

∫ t+Δt

t

Q(x(τ))dτ

+

m∑

n1=1

m∑

n2=1

rn1,n2(ω
(i)
an1

)T
∫ t+Δt

t

ψn1(x(τ))(ψn2(x(τ)))Tdτ ω(i)
an2

]

(17)

5.2 The Step of the Optimal Course-Keeping Controller Design
Based on API Algorithm

The controller of ship δ(x) is obtained by Eq. (11). In order to train the NNs,
a sufficient number of ship input-output data are required. The ship maintains
or changes its course and speed by using propeller thrust and rudder, which
means the input data of ships include ship speed and rudder angle. They can be
obtained by acoustic doppler current profiler (ADCP) and rudder angle sensor,
respectively. The output data are ship course and they can be obtained by the
rate sensor, gyro, numerical differentiation of the heading measurement or a
state estimator [24].

The steps of the optimal course-keeping controller design are:

Step 1: Perform a large number of experiments on the target ship to get
enough input-output data. For each different input signal u, the corresponding
output data (xk, δk, xk+1) can be obtained. All of this data constitutes a
sample set ΩM .
Step 2: Select the appropriate initial weight vector of actor NN and critic NN.
Step 3: Let i = 0, utilize the input-output data obtained in Step 1, iterative
calculate NN weight ω(i+1) by Eq. (17).
Step 4: If

∥
∥ω(i+1) − ω(i)

∥
∥ ≤ ξ, where ξ is a small enough positive number, stop

iteration, and u(i+1) is the final control policy of the ship system. Otherwise,
return to Step 3 and continue iterating.
Step 5: Apply the optimal course-keeping controller to the ship model and
get the output ship heading.

Remark 3. Through the steps of the controller design, we can learn that: (1)
The real input-output data instead of the exact mathematical model of ships
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is used during the process of optimal course-keeping controller design. (2) The
first part of the algorithm is collecting ship motion state and rudder angle input
signal for data processing; The second part is iteratively computing the optimal
controller of ships. Finally, the optimal controller is applied to model-free ship
course-keeping control system.

6 Simulation

In this section, the API methods is applied to the YUPENG ship of Dalian
Maritime University.

The research object of this paper is the model free system of ships. However,
the system we chose has an accurate mathematical model in the simulation.
That does not mean that we have to know the exact information of ship model.
The system we chose in simulation just used to get the input-output data of
ships. The information of system is not required in the process of algorithm
implementation.
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Fig. 1. The iteration of critic NN weights and actor NN weights.

In the simulation, we chose the ship Nomoto model as the control objectives.
From system (3), the simulation model is written as:

{
ẋ1 = x2

ẋ2 = − 1
T (a1x2 + a2x

3
2) + K

T u
(18)

where K = 0.21, T = 107.78, a1 = 13.14, a2 = 16212.5.
Choose Q(x) = xTx and R = I in Eq. (3). The value of the expectation

error ξ = 10−5. The activation functions of critic NN and actor NN are: φ(x) =
[x2

1 x1x2 x2
2]

T, ψ(x) = [x1 x2 x2
1 x1x2 x2

2]
T with Nc = 3, Na = 5, respectively.

The initial weight vectors of critic NN and actor NN are: ω
(0)
c = [0 0 0]T, and

ω
(0)
a = [−1 − 1 − 1 − 1 − 1]T, respectively.

From Fig. 1, we can learn that the weight vectors of critic NN and actor NN
converge to ω∗

c and ω∗
a at the 20-th iteration, respectively. At the 20-th iteration
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Fig. 2. The output and controller of ship model.

the weight ω
(20)
c = [−0.1062 − 0.0041 0.0870]T, ω

(20)
a = [0 0 − 0.9428 0.1035

0.2938]T. Then, the optimal control policy is used to control the ship model (18),
and its input signal (rudder angle) and output signal (ship heading) are shown
in Fig. 2.

Figure 2 shows the course and rudder angle of the ship, respectively. And the
initial value of the course and rudder angle are 5 and −30, respectively. We can
learn from that the ship course control system is converges to zero along time.

7 Conclusions

The approximate policy iteration (API) method has been used to solve the opti-
mal control problem of surface vessels with uncertain parameters, and the ship
control system has proved to be stable. In the implementation of algorithm, the
optimal controller calculates by real input-output data of ships instead of accu-
rate mathematical model. The application on YUPENG ship has illustrated the
effective performance of the API method. Further work of this paper would be
focused on the controller design for ship course control problem.
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Abstract. In this paper, an intelligent fuzzy kinetic control scheme
based on online identification is developed for an under-actuated
autonomous surface vehicle in the presence of unknown uncertainties
and disturbances from ocean environment. An adaptive fuzzy system
is used to approximate the unknown dynamics in real time by using
recorded input and output data of the vessel. To improve the learning
performance, the parameters of the fuzzy system are updated based on
a stochastic gradient descent approach and a predictor design. With the
estimated dynamics from the fuzzy system, a robust kinetic controller
is designed without any off-line learning. The proposed intelligent fuzzy
control method can be applied at the kinetic level of various control sce-
narios, such as target tracking, path following and trajectory tracking.
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ASV lies in the identification and compensation of these unknown dynamics
[10–13]. The fuzzy system, as an effective approximation approach, is wildly
applied to identify the nonlinear dynamics, such as to deal with the unknown
dynamics in steering system [14], to approximate the disturbance in output-
feedback control [15], and to identify model uncertainties in tracking control
[16]. However, the updated laws of these fuzzy control schemes are designed
based on Lyapunov theory and the model reference adaptive control approach.
The transient approximation performance of the fuzzy system is remained to be
improved.

The stochastic gradient descent (SGD) approach, as a fast and reliable online
learning technique, is widely used in system identification [17,18]. With the
advantage of rapidity, robustness and extensibility, SGD takes the merit of train-
ing any model within a reasonable period of time [19]. It is applied to train the
weights of radial basis function neural network (NN) in [17], and it is used in
adaptive NN controller in [18]. However, the SGD algorithm is not used in a
predictor-based adaptive fuzzy control scheme, where the key challenge is how
to construct a loss function without using the unavailable dynamics.

This paper presents an intelligent fuzzy controller based on online identifica-
tion for velocity control of an under-actuated ASV. An adaptive fuzzy system
is used to identify the unknown dynamics of ASV, and a predictor is developed
based on the fuzzy system. The updated law of system parameters is designed
based on the SGD approach and the predictor errors, such that the transient
learning performance of the fuzzy system is improved. Then, with the estimated
terms from fuzzy system, robust fuzzy kinetic control laws are designed. The
stability of proposed SGD-based adaptive fuzzy controller is proved to be input-
to-state stable (ISS) via Lyapunov analysis, and the velocity tracking errors are
uniformly ultimately bounded.

The paper is organized as follows. The preliminaries and problem formulation
are introduced in Sect. 2. The design and analysis of SGD-based fuzzy kinetic
controller are in Sect. 3. Conclusions are presented in Sect. 4.

2 Preliminaries and Problem Formulation

2.1 SGD-Based Fuzzy System

A fuzzy system which consists of a fuzzy rule base, a fuzzifier and a defuzzifier,
has the capability to approximate a nonlinear function. Let F l

i be the fuzzy sets
for a state ξi, and its membership functions are given by μF l

i
(ξi) with i = 1, . . . , n.

The fuzzy rule base is composed of the If-Then inference rules [20].
Rl : If ξ1 is F l

1 and ξ2 is F l
2 and . . . and ξn is F l

n, then g is Gl, l = 1, 2, . . . , N .
Then, the fuzzy system can be expressed as

g(ξ) =

∑N
l=1 ḡl

∏n
i=1 μF l

i
(ξi)

∑N
l=1[

∏n
i=1 μF l

i
(ξi)]

, (1)
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where ḡl = maxg∈R μGl(g) with membership functions μGl(g); ξ =
[ξ1, ξ2, . . . , ξn]T .

Let θT = [θ1, θ2, . . . , θN ] = [ḡ1, ḡ2, . . . , ḡN ], φ(ξ) = [φ1(ξ), φ2(ξ), . . . , φN (ξ)]T

with

φl =

∏n
i=1 μF l

i
(ξi)

∑N
l=1[

∏n
i=1 μF l

i
(ξi)]

, (2)

satisfying ‖φ(ξ)‖ ≤ φ∗ with φ∗ being a positive constant. Then, the fuzzy system
can be represented as g(ξ) = θT φ(ξ).

Lemma 1 [20]. For a given continuous function f(ξ) defined in a compact set
ΩF , there exists a fuzzy system such that for any εe > 0

sup
ξ∈ΩF

|f(ξ) − θT φ(ξ)| ≤ εe. (3)

Then, define the fuzzy system approximation error E = f(ξ)− θ̂T φ(ξ), where
θ̂ ∈ �N is the estimate of θ. To design the update law of θ̂, an SGD algorithm
is applied here. This method calculates the gradient of the loss function 1

2E2

online repeatedly, such that a minimum of the loss function is achieved. Based
on SGD algorithm [17], the parameter update rule of θ̂l is given by

θ̂l(k + 1) = θ̂l(k) + κEφl, (4)

where l = 1, 2, . . . , N , k ≥ 0, k ∈ ℵ, and the positive gain κ ∈ � denotes the
learning rate. The stability and convergence of SGD can be found in [21].

2.2 Problem Formulation

The motion of an under-actuated ASV can be described with kinematics [22]
⎧
⎪⎨

⎪⎩

ẋt = ut cos ψt − vt sin ψt,

ẏt = ut sin ψt + vt cos ψt,

ψ̇t = rt,

(5)

and kinetics ⎧
⎪⎨

⎪⎩

muu̇ = fu(u, v, r) + τu + τdu(t),
mv v̇ = fv(u, v, r) + 0 + τdv(t),
mr ṙ = fr(u, v, r) + τr + τdr(t),

(6)

where x, y, ψ represent the position of the ASV and its yaw angle; u, v, r
represent the surge velocity, sway velocity and yaw rate; mu,mv and mr

denote mass effects; fu(·), fv(·), fr(·) represent nonlinear uncertainties including
hydrodynamic damping forces, Coriolis forces and unmodeled hydrodynamics;
τdu(t), τdv(t), τdr(t) are environmental disturbances; τu, τr denote control inputs.
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The control objective is to develop a fuzzy kinetic controller for the ASV
with kinetics (6) suffering from unknown dynamics and extraneous disturbance
to track a desired velocity, such that

lim
t→∞ |u − ud| ≤ εu, lim

t→∞ |r − rd| ≤ εr, (7)

are satisfied for small constants εu and εr, where ud ∈ � and rd ∈ � are desired
surge velocity and yaw rate, respectively.

3 Controller Design and Analysis

At first, kinetic tracking errors are defined as ue = u − ud and re = r − rd, and
their time derivatives along with (6) are

{
muu̇e = σu(·) + τu,
mr ṙe = σr(·) + τr,

(8)

where σu(·) = fu(u, v, r) + τdu − muu̇d and σr(·) = fr(u, v, r) + τdr − mr ṙd.
The time-varying disturbances τdu and τdr are unknown, so σu(·) and σr(·)

cannot be approximated by the fuzzy system directly. Hence, the inputs and
outputs are used to approximate the unknown dynamics. From Lemma1, σu(·)
and σr(·) can be rewritten as

{
σu = θT

u φ(ξu) + εu,

σr = θT
r φ(ξr) + εr,

(9)

where ξu = [ue(t), ue(t− td), τu]T ∈ �3 and ξr = [re(t), re(t− td), τr]T ∈ �3 with
the sample period td; θu ∈ �N and θr ∈ �N satisfying ||θu|| ≤ θ∗

u and ||θr|| ≤ θ∗
r

with positive constants θ∗
u, θ∗

r ; |εu| ≤ ε∗
u and |εr| ≤ ε∗

r with positive constants
ε∗
u, ε∗

r .
To achieve the fast learning of unknown functions, a predictor for (8) is

designed based on the fuzzy system as
{

mu
˙̂ue = −k1(ûe − ue) + θ̂T

u φ(ξu) + τu,

mr
˙̂re = −k2(r̂e − re) + θ̂T

r φ(ξr) + τr,
(10)

where k1, k2, are positive constants; ûe and r̂e are the estimates of ue and re;
θ̂u = [θ̂u1, θ̂u2, . . . , θ̂uN ]T and θ̂r = [θ̂r1, θ̂r2, . . . , θ̂rN ]T are the estimates of θu

and θr. The weights θ̂ul(t) and θ̂rl(t) are defined by
{

θ̂ul(t) = (t − k)
(
θ̂ul(k + 1) − θ̂ul(k)

)
+ θ̂ul(k),

θ̂rl(t) = (t − k)
(
θ̂rl(k + 1) − θ̂rl(k)

)
+ θ̂rl(k),

(11)

where l = 1, 2, . . . , N .
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Based on the SGD algorithm and the predictor errors, the iterative equation
of θ̂ul and θ̂rl in (11) are given by

{
θ̂ul(k + 1) = θ̂ul(k) − κuEuφl,

θ̂rl(k + 1) = θ̂rl(k) − κrErφl,
(12)

where k ≥ 0, k ∈ ℵ, and κu ∈ �, κr ∈ � are positive learning rates. Eu and Er

are defined by

Eu = −k1ũe − muũd
er, Er = −k2r̃e − mr r̃

d
er, (13)

where ũe = ûe −ue, r̃e = r̂e − re; ũd
er, r̃d

er are estimates of ˙̃ue, ˙̃re from a tracking
differentiator (TD) designed as

{
˙̃uer = ũd

er, ˙̃ud
er = −κ2

1(ũer − ũe) − 2κ1ũ
d
er,

˙̃rer = r̃d
er, ˙̃rd

er = −κ2
2(r̃er − r̃e) − 2κ2r̃

d
er,

(14)

with κ1, κ2 ∈ � being positive gains, and ũer, r̃er ∈ � being estimates of ũe, r̃e,
respectively. According to the property of TD in [23], there exist positive con-
stants γ∗

ud, γ∗
rd such that

ũd
er − ˙̃ue = γud, |γud| ≤ γ∗

ud, r̃d
er − ˙̃re = γrd, |γrd| ≤ γ∗

rd. (15)

From (8), (10), (13) and (15), it leads to
{

Eu = σu(·) − θ̂T
u φ(ξu) − muγud,

Er = σr(·) − θ̂T
r φ(ξr) − mrγrd.

(16)

According to the convergence of SGD and (15), one has

σu(·) − muγud = θ̂T
u φ(ξu) + εσu, σr(·) − mrγrd = θ̂T

r φ(ξr) + εσr, (17)

where εσu, εσr ∈ � satisfy |εσu| ≤ ε∗
σu, |εσr| ≤ ε∗

σr with positive constants ε∗
σu,

ε∗
σr. Let θ̃u = θ̂u −θu and θ̃r = θ̂r −θr. From (9) and (17), the bounds of θ̃T

u φ(ξu)
and θ̃T

r φ(ξr) are given by
{

|θ̃T
u φ(ξu)| = |muγud + εσu + εu| ≤ muγ∗

ud + ε∗
σu + ε∗

u � ε∗
1,

|θ̃T
r φ(ξr)| = |mrγrd + εσr + εr| ≤ mrγ

∗
rd + ε∗

σr + ε∗
r � ε∗

2.
(18)

Based on the estimated terms from fuzzy system, two control laws are pro-
posed for (10) {

τu = −kuûe − θ̂T
u φ(ξu),

τr = −kr r̂e − θ̂T
r φ(ξr),

(19)

where ku, kr, are positive constants.
Taking the time derivatives of ũe, r̃e along (8) and (10), one has

{
mu

˙̃ue = − k1ũe + θ̃T
u φ(ξu) − εu,

mr
˙̃re = − k2r̃e + θ̃T

r φ(ξr) − εr.
(20)

The stability of predictor error subsystem (20) is presented as follows.
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Lemma 2. The subsystem (20) with the states ũe, r̃e and the inputs θ̃T
u φ(ξu),

θ̃T
r φ(ξr), εu, and εr is ISS.

Proof. The Lyapunov function is defined as follows

V1 =
1
2
{
muũ2

e + mr r̃
2
e

}
. (21)

The time derivative of V1 along (20) satisfies

V̇1 = −XT
1 K1X1 + lT1 X1 ≤ −λmin(K1)‖X1‖2 + ‖l1‖‖X1‖, (22)

where X1 = [ũe, r̃e]T , K1 = diag{k1, k2}, and l1 = [θ̃T
u φ(ξu)−εu, θ̃T

u φ(ξu)−εr]T .
Since ‖X1‖ ≥ 2

λmin(K1)

(|θ̃T
u φ(ξu)| + |θ̃T

u φ(ξu)| + |εu| + |εr|
)

renders V̇1 ≤
− 1

2λmin(K1)‖X1‖2, the subsystem (20) is ISS, and

‖X1(t)‖ ≤ max
{
�1(‖X1(0)‖, t), β11(|θ̃T

u φ(ξu)|) + β12(|θ̃T
r φ(ξr)|) + β13(|εu|)

+ β14(|εr|)
}
, (23)

where �1 is a KL function and β11 = β12 = β13 = β14 =
√

λmax(S1)
λmin(S1)

2s
λmin(K1)

,
with S1 = diag{mu,mr}. The proof is completed.

Then, substituting (19) into (10), one gets the controller error subsystem as
follows {

mu
˙̂ue = −kuûe − k1ũe,

mr
˙̂re = −kr r̂e − k2r̃e.

(24)

The following lemma presents the stability of subsystem (24).

Lemma 3. The velocity tracking error subsystem (24) with the states being ûe,
r̂e and the inputs being ũe, r̃e is ISS.

Proof. Construct the Lyapunov function as follows

V2 =
1
2
{
muû2

e + mr r̂
2
e

}
, (25)

whose time derivative along (24) satisfies

V̇2 = −XT
2 K2X2 + lT2 X2 ≤ −λmin(K2)‖X2‖2 + ‖l2‖‖X2‖, (26)

with X2 = [ûe, r̂e]T , K2 = diag{ku, kr}, and l2 = [k1ũe, k2r̃e]T .

Since ‖X2‖ ≥ 2
λmin(K2)

(|ũe| + |r̃e|) renders V̇2 ≤ − 1
2λmin(K2)‖X2‖2, the sub-

system (24) is ISS, and

‖X2(t)‖ ≤ max
{
�2(‖X2(0)‖, t), β21(|ũe|) + β22(|r̃e|)

}
, (27)

where �2 is a KL function and

β21 =

√
λmax(S1)
λmin(S1)

2k1s

λmin(K2)
, β22 =

√
λmax(S1)
λmin(S1)

2k2s

λmin(K2)
. (28)

At last, following theorem states the stability of the cascade system formed
by the predictor error subsystem and the velocity tracking error subsystem.
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Theorem 1. The cascade system formed by subsystem (20) and subsystem (24) is
ISS. Besides, all error signals in the closed-loop system are uniformly ultimately
bounded.

Proof. It is shown in Lemmas 2 and 3 that subsystem (20) with states being ũe,
r̃e and inputs being θ̃T

u φ(ξu), θ̃T
r φ(ξr), εu, εr is ISS; subsystem (24) with states

being ûe, r̂e and inputs being ũe, r̃e is ISS. By Lemma C.4 in [24], it follows that
the cascade system formed by (20) and (24) with states being ûe, r̂e, ũe, r̃e and
inputs being θ̃T

u φ(ξu), θ̃T
r φ(ξr), εu, εr is ISS, and there exists class KL function

� and class K function β, such that

‖X(t)‖ ≤ max
{
�(‖X(0)‖, t), β(‖l‖)

}
, (29)

where X = [ûe, r̂e, ũe, r̃e]T and l = [θ̃T
u φ(ξu), θ̃T

r φ(ξr), εu, εr]T .

Since θ̃T
u φ(ξu), θ̃T

r φ(ξr), εu, εr are bounded by ε∗
1, ε∗

2, ε∗
u, ε∗

r respectively, the
errors ûe, r̂e, ũe, r̃e are uniformly ultimately bounded. Moreover, since |ue| =
|ûe − ũe| ≤ |ûe|+ |ũe| and |re| = |r̂e − r̃e| ≤ |r̂e|+ |r̃e|, the kinetic errors ue, re are
uniformly ultimately bounded, such that the control objective (7) is achieved.

4 Conclusions

In this paper, an intelligent fuzzy velocity control scheme is proposed for an
under-actuator ASV suffering from unknown dynamics and environmental dis-
turbances. The parameters of the fuzzy system are updated based on an SGD
approach such that the unknown dynamics and disturbances of the ASV can be
approximated online. Moreover, a predictor is developed based on the fuzzy sys-
tem, which optimizes the learning performance of the fuzzy system. Then, fuzzy
adaptive control laws are designed based on the estimated dynamics. The errors
in the closed-loop kinetic control system are proved to be uniformly ultimately
bounded with Lyapunov analysis.
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Abstract. In this paper, a new type protocol is proposed. Second-order
consensus in multi-agent dynamical systems with this protocol is stud-
ied using a new analytical method. A necessary and sufficient condition
for reaching consensus of the system with the this protocol is obtained,
which depending on the spectrum of the Laplacian matrix and the con-
trol parameter setting. Meanwhile, a simple and practical criterion of
sampling period is given in the ordinary case. Finally, two simulation
examples are given to verify and illustrate the theoretical analysis.

Keywords: Second-order consensus · Multi-agent systems ·
Sampling period

1 Introduction

The consensus problem has a long history in the computer science especially for
the field of distributed computing. The idea for consensus originated from statis-
tical consensus theory in [1]. The consensus means that a group of autonomous
agents converge to a common state under some appropriate protocols. In
recent decade, the consensus control problem in a multi-agent systems networks
(MASN) is getting a lot of attention because their potential and practical appli-
cations in many aspects, such as sensor networks, unmanned air vehicle forma-
tions, robotic teams, and underwater vehicles (see [2–7]). The recent works can
be found in [8–21] and references therein. Theoretically, the consensus problem
in MASN is equivalent to the stability problem of some system. Formally, the
consensus problem in MASN can be divided into two broad categories: one is
MASN with dynamic model (leader-following consensus) [22–29], and the other
is MASN without dynamic model (leaderless consensus) [30–40]. On other hand,
it plays a key role to design some appropriate protocols (control or algorithm) in
the consensus in MASN. So far, various types of protocols have been proposed
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11555, pp. 101–110, 2019.
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on the consensus in MASN, such as continuous protocols, sampled protocols,
hybrid protocols and so on.

Since most of the original physical models in the real world are second-order
differential systems, so it is important to study second-order control problems.
The second order control problem is essentially different from the first order con-
trol, and its controller types are more selective than the first order control, which
means that its theories are richer in content. In last decade, the second-order
consensus problem has come to receiving particular attention. Firstly, a neces-
sary and sufficient condition was proved [30], where the second-order dynamics
are governed by the position and velocity terms of the agents. Since then, many
researchers have focused on investigating second-order consensus in multi-agent
systems with various types of protocols. By using zero-order holds or direct dis-
cretization, some necessary and sufficient conditions were established for multi-
agent systems with sampled-data control [31–33]. On the other hand, for second-
order continuous-time multi-agent systems, the consensus problem under a time-
varying topology and sampled data control was addressed in [35]. In addition,
via the position and velocity sampled data protocols, continuous position and
sampled velocity data protocols, continuous position protocols with delay and
sampled position protocols with delay, the necessary and sufficient conditions
developed for reaching consensus in [36–39], respectively. A containment control
problems for networked multi-agent systems is investigated in [40]. It should be
noted that all these aforementioned works were considered based on the basis
solution matrix of the second order system.

Although sufficient and necessary conditions are obtained, they are compli-
cated and difficult to apply in the ordinary case.The main contributions of this
paper lies in the following two aspects: (i) Second-order consensus in multi-agent
dynamical systems with this protocol is studied. A necessary and sufficient con-
dition for reaching consensus of the system with the this protocol is obtained,
which depending on the spectrum of the Laplacian matrix and the control param-
eter setting. Meanwhile, a simple and practical criterion of sampling period is
given in the ordinary case. (ii) A new method is used to study linear consensus
in multi-agent dynamical systems, which does not need the calculation of the
fundamental solution matrix of the common subsystem.

2 Preliminaries

In this section, some preliminaries are introduced. The commonly studied second-
order consensus protocol is described as follows:

ẍi(t) = ui(t), i ∈ N (1)

where N = {1, 2, · · · , N}, xi(t) ∈ R and ui(t) ∈ R represent the ith agent’s state
and control input, respectively.
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A new consensus protocol ui(t) with current position state, sampled position
state data and velocity state is considered as follows:

ui(t) = −α
N∑

j=1

cij(xj(t) − xi(t))

+β
N∑

l=1

cil[(ẋl(tk) − ẋi(tk)) + (xl(tk) − xi(tk))], i ∈ N
(2)

for t ∈ [tk, tk+1), where cij ≥ 0 for i �= j and i, j ∈ N , tk are the sampling
instants satisfying 0 = t0 < t1 < · · · < tk < · · · , and α and β are the coupling
strengths. For simplicity, assume that tk+1−tk = T , where T > 0 is the sampling
period.

Remark 2.1. In [36–39], some protocols are designed respectively. However, no
work has been found on the consensus protocols (2) for second-order continuous-
time multi-agent systems.

Under the protocol (2), we have the following second closed-loop system:

ẍi(t) = α
N∑

j=1

�ijxj(t) − β
N∑

l=1

�il[ẋl(tk) + xl(tk)], i ∈ N , (3)

for t ∈ [tk, tk+1), where L = (�ij)n×n denote the Laplacian matrix of the graph
G, that is �ii =

∑

j �=i

cij and �ij = −cij for i �= j.

Definition 2.1. Second-order consensus in multi-agent system (MAS) (3) is
said to be achieved if, for any initial conditions,

lim
t→∞ |xi(t) − xj(t)| = 0, and lim

t→∞ |ẋi(t) − ẋj(t)| = 0,

for any i, j ∈ N .

3 Main Results

MAS (3) can be written as

ẍ(t) = αLx(t) − βL(ẋ(tk) + x(tk)), (4)

for t ∈ [tk, tk+1), where x(t) = (x1(t), x2(t), · · · , xN (t))T . For Laplacian matrix
L, there exists a nonsingular matrix P such that L = PJP−1, where J is the
Jordan form associated with the Laplacian matrix L. Then, from MAS (4) one
has

ÿ(t) = αJy(t) − βJ(ẏ(tk) + y(tk)), (5)

for t ∈ [tk, tk+1), where y(t) = P−1x(t).
Since G is directed, some eigenvalues of L can be complex. Let

J = diag{J1, J2, · · · , Jr}
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where Ji (i = 1, 2, · · · r) are Jordan block of L. It is well known that 0 is a
simple eigenvalue of the Laplacian matrix L if the network G contains a directed
spanning tree. Let y(t) = (y1(t), y2(t), · · · , yN (t))T . If i0 ∈ N is root of the
directed spanning tree, then

ÿi0(t) = 0 (6)

for t ∈ [tk, tk+1). Without loss of generality, assume i0 = 1.

Lemma 3.1. Suppose that the network G contains a directed spanning tree.
Then, the second consensus in MAS (3) can be reached if and only if the system
(5) is asymptotically stable, i.e.,

lim
t→∞ yi(t) = 0, lim

t→∞ ẏi(t) = 0 (7)

for any i = 2, · · · , N .

Lemma 3.2. Suppose that the network G contains a directed spanning tree.
Then, the second consensus in MAS (3) can be reached if and only if the following
r systems are asymptotically stable:

z̈i(t) = αλizi(t) − βλi(żi(tk) + zi(tk)), i = 1, 2, · · · , r. (8)

for t ∈ [tk, tk+1), where λi ∈ σ(L) \ {0}.
Introducing new variables vi1(t) = zi(t), vi2(t) = żi(t), and let vi(t) =

(vi1(t), vi2(t))T , i ∈ N . The system (8) can be further written as:

v̇i(t) = (A + αλiB)vi(t) − βλiCvi(tk), i ∈ N , (9)

for t ∈ [tk, tk+1) and i = 1, · · · , r − 1 where A,B ∈ R
n×n,

A =
(

0 1
0 0

)

, B =
(

0 0
1 0

)

, C =
(

0 0
1 1

)

.

The following basic assumption is required in our results.

Assumption 1. 0 < α < β and β√
α
�(

√
λ) + �min > 1 for all λ ∈ σ(L) \ {0},

where �min = min
λ∈σ(L)\{0}

{|�(λ)|}.

Remark 3.1. Assumption 1 is a necessary condition even in the case of the
consensus protocol.

Under Assumption 1, one has

det(A + αλiB − βλiC) = λi(β − α) �= 0, (10)

and
det(A − λiαB − βλiI2) = λ2

i β
2 − λiα �= 0 (11)

for any λi ∈ σ(L) \ {0}.
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Let wi(t) = vi(t) + (A + αλiB − βλiI2)−1(βλiC − βλiI2)vi(tk), then

ẇi(t) = (A + αλiB)wi(t) − βλiwi(tk), t ∈ [tk, tk+1) (12)

where λi ∈ σ(L) \ {0}, and i = 1, 2, · · · , r.

Lemma 3.3. Under Assumption 1, the system (12) is asymptotically stable if
and only if the system (12) is asymptotically stable.

By using the structure of J(A − αλiB), one has the following lemma.

Lemma 3.4. Consider the following systems:

˙̂wij(t) = ±
√

λiαŵij(t) − βλiŵij(tk), (13)

for i = 1, 2, · · · , r, where λi ∈ σ(L)\{0}. Then, the system (12) is asymptotically
stable if and only if the system (13) is asymptotically stable. From Lemmas 3.2,
3.3 and 3.4, we have the following lemma.

Lemma 3.5. Suppose that the network G contains a directed spanning tree.
Under Assumption 1, the second consensus in MAS (3) can be reached if and
only if the system (13) is asymptotically stable.

Theorem 3.1. Suppose that the network G contains a directed spanning tree.
Under Assumption 1, the second-order consensus in MAS (3) if and only if

∣
∣
∣
∣1 +

(
e±√

λαT − 1
) (

1 ∓ β√
α

√
λ

)∣
∣
∣
∣ < 1, (14)

for any λ ∈ σ(L) \ {0}.

Remark 3.2. A sufficient and necessary condition (14) is established in
Theorem 3.1 to achieve the second-order consensus in MAS (3). In general, it
is still a challenging issue that how to devise the system parameters that satisfy
the condition (14). But, we can consider some particular cases or some simple
and convenient sufficient conditions.

Theorem 3.2. Suppose that the network G contains a directed spanning tree.
Under Assumption 1, the second-order consensus in MAS (3) can be reached if
T is sufficiently small. In addition, Let ρ = |1 ∓ β√

α

√
λ|,

T+
λ = 1

�(
√

λ)
√

α

× ln
[

2
ρ2

[
β√
α
(�(

√
λ) + |�(

√
λ)|) − 1

]
+ 1

]

T−
λ = 1

−�(
√

λ)
√

α
,

× ln
[

−2
ρ2

[
β√
α
(�(

√
λ) − �(

√
λ)) + 1

]
+ 1

]
,

T ∗
min = min

λ∈σ(L)\{0}
{T+

λ , T−
λ ;T−

λ ∈ R
+},

T ∗
max = max

λ∈σ(L)\{0}
{T+

λ , T−
λ ;T−

λ ∈ R
+}.

(15)

Then the second-order consensus in MAS (3) can be reached if 0 < T < T ∗ −
o(T�max) and the second-order consensus in MAS (3) can not be reached if
T > T ∗

max + o(T�max), where �max = max
λ∈σ(L)\{0}

{|�(λ)|}.
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Corollary 3.1. Suppose that the network G contains a directed spanning
tree, all the eigenvalues of its Laplacian matrix are real and α > 0. Under
Assumption 1, the second-order consensus in MAS (3) can be reached if and
only if β >

√
α

λmin
and

T < T ∗ = min{T+, T−;T− ∈ R
+}, (16)

where λmin = min
1≤i≤r−1

{λi}.

T± = min
1≤i≤r−1

1
±√

λiα
ln

( ±2
√

λiα

βλi ∓ √
λiα

+ 1
)

. (17)

Remark 3.3. The criteria are fairly simple and broad in Theorem3.2 and
Corollary 3.1. When the network G has an undirected topology T ∗ can be a
threshold of the sampling period T . In general, T ∗

min can be an approximate
threshold of the sampling period T .

4 Examples and Simulations

In this section, we take two examples to further test the previous theoretical
analysis.

Example 4.1. Consider the problem of second-order consensus in an MAS (3)
with a directed topology, where α = 1, β = 1.6 and

L =

⎛

⎜
⎜
⎝

1 −1 0 0
0 1 −1 0
0 0 1 −1

−1 0 0 1

⎞

⎟
⎟
⎠ .

By computing, one has λ1 = 0, λ2,3 = 1 ± i and λ4 = 2. T ∗
min = 0.6712 and

T ∗
max = 1.1885. Therefore, the second-order consensus in an MAS (3) can be

reached for some T < T ∗ − o(T ). The states and the consensus error with
T = 0.5 and T = 0.55 are shown in Figs. 1 and 2.
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Fig. 1. The consensus can be reached when T = 0.32 in Example 4.2.
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Fig. 2. The consensus can not be reached when T = 0.34 in Example 4.2.

Example 4.2. Consider the problem of second-order consensus in an MAS (3)
with an undirected topology, where α = 1, β = 2 and

L =

⎛

⎜
⎜
⎜
⎜
⎝

3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 2 0 0
−1 0 0 2 −1
0 0 0 −1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

By computing, one has λ1 = 0, λ2 = 0.5188, λ3 = 2.3111, λ4 = 3 and λ5 =
4.1701. T ∗ = 0.3319. Therefore, the second-order consensus in an MAS (3) can
be reached for some T < 0.3319. The states (x(t), V (t)) and the consensus error
(ex(t), eV (t)) with T = 0.32 and T = 0.34 are shown in Figs. 3 and 4.
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Fig. 3. The consensus can be reached when T = 0.32 in Example 4.2.
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Fig. 4. The consensus can not be reached when T = 0.34 in Example 4.2.
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5 Conclusion

In this paper, a new type protocol is proposed. Second-order consensus in multi-
agent dynamical systems with this protocol is studied using a new analytical
method. A necessary and sufficient condition for reaching consensus of the system
with the this protocol is obtained, which depending on the spectrum of the
Laplacian matrix and the control. Meanwhile, a simple and practical criterion
of sampling period is given in the ordinary case. In particular, used method
and obtained results does not need the calculation of the fundamental solution
matrix of the common subsystem. There are many ways to promote this article,
such as the synchronization problem of nonlinear MAS, the containment control
problem, the event-triggered control problem and so on. These will be considered
in future.
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Abstract. An adaptive backstepping control method is developed for a
class of uncertain non-lower triangular nonlinear systems by combining
techniques of neural network online approximation and dynamic surface
control. In the design, adaptive backstepping technique is employed to
establish virtual control laws and actual control law recursively. The
unknown functions contained in control laws are replaced by neural net-
work online approximators. And dynamic surface control technique is
used to eliminate the problem of circular structure of the controller. The
results of stability analysis show that all the closed-loop system signals
are guaranteed to be uniformly ultimately bounded, and the steady-
state tracking error can be made to converge to an arbitrarily small
neighborhood of zero by choosing control parameters appropriately. The
effectiveness of the proposed approach is demonstrated via a numerical
simulation example.
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1 Introduction

Adaptive backstepping has been a powerful method for synthesizing controllers
for uncertain nonlinear systems with lower triangular forms [1,2]. In [3,4], adap-
tive backstepping control design was developed for lower triangular nonlinear
systems with linearly parameterized uncertainties. For nonlinear systems with
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uncertainties that cannot be linearly parameterized or are completely unknown,
online approximation based adaptive backstepping control approaches were pro-
posed, such as NN control [5–12], fuzzy control [13–18], and wavelet control
[19–22]. A drawback of “complexity of controller design” exists in traditional
backstepping based adaptive control design methods. To reduce the complex-
ity of control design, techniques of DSC [23–28], minimal learning parameter
[26,29,30], single neural network online approximation [31–34], and so on were
incorporated into backstepping based adaptive control design framework.

Aforementioned methods all focus on control design of uncertain nonlinear
systems with a lower triangular form. While the uncertain lower triangular non-
linear systems have been much studied via adaptive backstepping design, rela-
tively fewer results are available in literatures for the control of uncertain non-
linear systems with a non-lower triangular form. One of the main difficulties in
control of non-lower triangular nonlinear systems is a circular construction of
controller which is caused by the structure feature of the class of nonlinear sys-
tems and the differentiations of virtual control laws in backstepping design pro-
cedure. In fact, for some lower triangular nonlinear systems with pure-feedback
forms, the circular structure problem also exists in backstepping based control
design. In [10], by using input-to-state stability modular approach, the circularity
problem was solved in adaptive backstepping control of non-affine pure-feedback
nonlinear systems. In [27], an adaptive backstepping DSC design approach was
proposed for a class of pure-feedback nonlinear systems. In the work, DSC tech-
nique was used to eliminate the circular structure problem.

In this paper, we will consider the problem of adaptive control design for a
class of uncertain nonlinear systems with a non-lower triangular form. It should
be pointed out that the aforementioned adaptive backstepping based control
design methods are not valid for the class of uncertain non-lower nonlinear sys-
tems because the circular structure problem cannot be solved. Inspired by the
approach of solving circular structure problem in [27], we will develop an NN
online approximation based adaptive backstepping DSC design method. For an
nth-order uncertain non-lower triangular nonlinear system, the controller design
is divided into n steps. Firstly, by replacing an unknown function with an NN
online approximator, a full state feedback virtual control law is designed to sta-
bilize the first i subsystems at intermediate step i, i = 1, 2, ..., n − 1. Then,
employing a first-order filter to handle the virtual control signal, and let the
filter output enter into next step of the design. By doing this, the circular struc-
ture problem can be eliminated effectively. At the last step (step n), a full state
feedback actual control law is given to stabilize all n subsystems. Stability results
of the closed-loop system are given. It is showed that all the closed-loop system
signals are uniformly ultimately bounded, and the tracking error of the system
can converge to a small neighborhood of zero via appropriately choosing control
parameters. A simulation example is given to demonstrate the effectiveness of
the approach.

The rest of the paper is organized as follows. Section 2 presents the problem
formulation. And the brief description of NN online approximator is also given
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in this section. In Sect. 3, the NN based adaptive backstepping DSC design
procedure is presented. Stability results of the closed-loop control system are
given in Sect. 4. Numerical simulation verification and conclusion of the work
are provided in Sects. 5 and 6 respectively.

2 Problem Description and Preliminaries

2.1 Problem Description

Consider a class of uncertain nonlinear dynamical systems as follows,
⎧
⎪⎨

⎪⎩

ẋi = xi+1 + fi(x̄n), i = 1, 2, ..., n − 1,

ẋn = u + fn(x̄n),
y = x1,

(1)

where x̄n = (x1, x2, ..., xn), xi ∈ R are system state variables, i = 1, 2, ..., n;
u ∈ R and y ∈ R are input and output of the system, respectively; fi(x̄n) are
unknown continuous nonlinear functions, i = 1, 2, ..., n.

The control objective is, by designing an adaptive controller for the class of
nonlinear systems (1), the system output y can follow a given reference signal
yr, and all the close-loop system signals remain uniformly ultimately bounded.

Assumption 1. The reference signal yr is sufficiently smooth.

2.2 Neural Network Description

A brief introduction to Gaussian radial basis function neural network online
approximator is given as follows,

FNN (x̄n) = θT ξ(x̄n), (2)

where

x̄n = (x1, x2, ..., xn) input vector of the network;
FNN (x̄n) = θT ξ(x̄n) output of the network;

θ = (θ1, θ2, ..., θN )T weight vector of the network;

ξ(x̄n) = (ρ1(x̄n), ρ2(x̄n), ..., ρN (x̄n))T vector valued function;

ρi(x̄n) = μe−||x−ςi||2/σ2
Gaussian kernel functions, i = 1, 2, ..., N ;

N number of neurons of the network;
ςi centers of kernel functions, i = 1, 2, ..., N ;
σ width of kernel functions;
μ amplification factor of kernel functions.
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Remark 1. The neural network given above has the ability of approximating
any continuous function [35,36]. That is, for a given continuous function, by
appropriately choosing the number of neurons and parameters of the network
(centers, width, and amplification factor), there is an ideal weights vector, such
that the output of the network can approximate the given function with the
network reconstruction error no more than a specified upper bound, i.e.,

f(x̄n) = θT ξ(x̄n) + ε, (3)

where |ε| ≤ ε∗, and ε∗ is upper bound of network reconstruction error.

Remark 2. Being unknown about f(x̄n), the ideal weights vector of the network
need to be estimated online in the operation process of the control system. In
the controller design of Sect. 3, θ̂ denotes the estimation of θ, and an updated
law will established to modify its value.

3 Adaptive Backstepping DSC Design

In this section, an NN online approximation based adaptive backstepping DSC
design is established for the class of uncertain non-lower triangular nonlinear
systems (1). The procedure of the controller design is as follows.

Step 1 : Consider the first error surface S1 = x1 − yr (i.e. the system tracking
error). The derivative of S1 is

Ṡ1 = ẋ1 − ẏr = x2 + f1(x̄n) − ẏr. (4)

By regarding x2 as control input of subsystem (4) and replacing unknown
function f1(x̄n) with an NN online approximator, then a virtual control law can
be designed as follows,

α2 = −k1S1 − θ̂T1 ξ1(x̄n) + ẏr, (5)

where k1 > 0 is a control parameter. The updated law of θ̂1 is as follows,

˙̂
θ1 = Γ1

(
ξ1(x̄n)S1 − η1θ̂1

)
, (6)

where Γ1 is a real matrix satisfies Γ1 = ΓT
1 > 0, and η1 is a real scalar satisfies

η1 > 0.
A first-order filter is introduced to process virtual control signal α2 (That is

to use the DSC technique),
τ2ż2 + z2 = α2, (7)

where z2 is the output of the filter, and τ2 is a filter parameter.

Remark 3. xn is contained in network θ̂T1 ξ1(x̄n), thus the derivative of α2 will
contain actual control input u. If α2 is passed into x2-subsystem directly, the
established virtual control law in next step will depend on u. Thus, the problem
of circular dependence of control laws will arise. By letting z2 enter into x2-
subsystem, virtual control law would not depend on u directly in next step.
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Step i( i = 2, 3, ..., n − 1): Consider the ith error surface Si = xi − zi. The
derivative of Si is

Ṡi = ẋi − żi = xi+1 + fi(x̄n) − żi. (8)

By regarding xi+1 as control input of subsystem (8) and replacing unknown
function fi(x̄n) with an NN online approximator, then a virtual control law can
be designed as follows,

αi+1 = −kiSi − θ̂Ti ξi(x̄n) + żi, (9)

where ki > 0 is a control parameter. The updated law of θ̂i is as follows,

˙̂
θi = Γi

(
ξi(x̄n)Si − ηiθ̂i

)
, (10)

where Γi is a real matrix satisfies Γi = ΓT
i > 0, and ηi is a real scalar satisfies

ηi > 0.
A first-order filter is introduced to process virtual control signal αi+1,

τi+1żi+1 + zi+1 = αi+1, (11)

where zi+1 is the output of the filter, and τi+1 is a filter parameter.
Step n: The last error surface is Sn = xn − zn. The derivative of Sn is

Ṡn = ẋn − żn = u + fn(x̄n) − żn. (12)

By replacing unknown function fn(x̄n) with an NN online approximator,
then an actual control law can be designed as follows,

u = −knSn − θ̂Tn ξn(x̄n) + żn, (13)

where kn > 0 is a control parameter. The updated law of θ̂n is as follows,

˙̂
θn = Γn

(
ξn(x̄n)Sn − ηnθ̂n

)
, (14)

where Γn is a real matrix satisfies Γn = ΓT
n > 0, and ηn is a real scalar satisfies

ηn > 0.

4 Stability of the Closed-Loop Systems

The stability of the control system is described by the following theorem.

Theorem 1. Consider the closed-loop control system consisting of system (1),
control laws (5), (9), (13), adaptive laws of NN online approximators (6), (10),
(14), and first-order filters (7), (11). For any bounded initial states of the sys-
tem, all signals of the closed-loop system can be guaranteed uniformly ultimately
bounded, and the error of system output tracking the reference signal can be made
arbitrarily small by appropriately choosing control parameters.
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The proof is omitted due to the space limit.

5 Numerical Simulation

Consider a third-order uncertain nonlinear system in the form of Eq. (1). Then,
according to the control design procedure given in Sect. 3, the controller of the
system contains three control laws, three NN online approximators, and two
first-order filters.

For simulating, it is assumed that f1(x̄3) = x2
1 + x2 + x3, f2(x̄3) = x1 +

x2
2 + 2x3, f3(x̄3) = x1x2 + x2

3, yr = sin t, and the initial states of the system are
(x1(0), x2(0), x3(0))T = (0.8, 0, 0)T .

In simulation, control parameters are chosen as k1 = 3, k2 = 3, k3 = 3.
For three NN online approximator, centers of kernel functions are chosen as
{ςi|i = 1, 2, ..., 45} = {−1,−0.5, 0, 0.5, 1} × {−0.5, 0, 0.5} × {−0.5, 0, 0.5}, and
other parameters are σ = 10, μ = 1, Γ = 1, η = 0.2, θ̂1(0) = θ̂2(0) = θ̂3(0) = 0.
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Fig. 1. Performance of the system output tracking the reference signal.
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Fig. 3. Performance of neural networks approximating unknown functions.

For two first-order filters, filtering parameters are τ2 = 0.1, τ3 = 0.05, and
z2(0) = z3(0) = 0.

Figures 1, 2 and 3 demonstrate the simulation results of this case. From Fig. 1,
it can be seen that the system output y follows the reference signal yr precisely.
The maximum steady state tracking error is less than 3%. The actual control
input signal is given in Fig. 2. The performance of three NN online approximators
are given in Fig. 3.

6 Conclusion

An NN online approximation based adaptive backstepping DSC method is pro-
posed for a class of uncertain non-lower triangular nonlinear systems. In the
control design, NN online approximators are used to compensate the uncertain-
ties of the nonlinear systems. And DSC technique is introduced to eliminate
the problem of “circular design”. By doing this, the recursive design of adap-
tive backstepping is feasible. The result of stability shows that all signals in
the closed-loop control system can be guaranteed to be uniformly ultimately
bounded, and the steady state tracking error converge to a small neighborhood
of zero. A numerical simulation example demonstrates the effectiveness of the
approach.
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Abstract. This paper addresses receding horizon control of a heating,
ventilation, and air-conditioning (HVAC) system based on neurodynamic
optimization. The receding horizon control problem for the HVAC system
is formulated as sequential quadratic programs, which are solved by using
a neurodynamic optimization model. Simulation results on temperature
setpoint regulation of the HVAC system are discussed to substantiate
the efficacy of the approach.
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1 Introduction

Heating, ventilation, and air-conditioning (HVAC) of buildings or rooms are
widely demanded [23]. Control of HVAC systems is of great engineering value [1,
3,24]. A good control approach saves energy and renders comfort simultaneously.

Many methods are available for controlling HVAC systems. In [3], a learning-
based model predictive control approach is used to reduce electricity/energy
consumption in an HVAC system. In [5,6], heuristic algorithms are used for
energy management of HVAC systems. Reinforcement learning technique is used
in [39] for controlling HVAC systems. An open-loop demand response control
algorithm is introduced in [8] for commercial HVAC systems. Model predictive
control technique is used in [21] for temperature controlling in a real building.
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Neural network based model predictive control approaches are used in [2,12] for
controlling HVAC systems in commercial/residential buildings. Model predictive
controllers are presented in [7] for energy savings and comfort optimization in
buildings. A model predictive control algorithm with a specifically tailored cost
function is used in [9] for temperature control of buildings.

Neurodynamics-based receding horizon control (also known as model predic-
tive control) approaches are able to handle constrained systems [19,34,35,37,38].
HVAC systems have various physical constraints [3,24]. Thus neurodynamics-
based receding horizon control approaches are suitable for controlling HVAC
systems.

In this paper, a neurodynamics-based receding horizon control approach is
presented to an HVAC system. The receding horizon control technique is used
to regulate the temperature. The control problem is formulated as sequential
quadratic programs, and solved by using a neurodynamic model. In contrast
to, for example, neural dynamic surface control approach in [20], the proposed
approach is able to handle constraints and optimize performances.

2 Problem Formulations

2.1 An HVAC System

Consider an HVAC model [24]:

ẋ1 =
1

Vhe
[(T0 − x2)u3 + (x2 − x1)u2 +

u1

ρcp
],

ẋ2 =
1

Vts
[(x1 − x2)u2 +

ql

ρcp
],

(1)

where x1 is the air temperature of the heat exchanger, x2 is the thermal space
temperature, Vhe is the effective heat exchanger volume, Vts is the effective
thermal space volume, T0 is the temperature of the fresh air (usually refers to
the outdoor air), u1 is the heat input to the heat exchanger, u2 is the volumetric
airflow rate, u2/u3 is the flow-rate ratio, ρ is the density of the air, cp is the
constant heat of air, ql is the thermal load on the room.

By using Euler method, system dynamic equation (1) is discretized as

x1(k + 1) = x1(k) + Tsζ1(k) := x1(k)+
Ts

Vhe
[(T0 − x2(k))u3(k) + (x2(k) − x1(k))u2(k) +

u1(k)
ρcp

],

x2(k + 1) = x2(k) + Tsζ2(k) := x2(k) +
Ts

Vts
[(x1(k) − x2(k))u2(k) +

Ql

ρcp
],

(2)

where Ts is a sampling interval.



122 J. Wang et al.

2.2 Receding Horizon Control

Let Tr denote the reference to the thermal space temperature. It is supposed
that Tr are piecewise constants; i.e., only regulation problems are considered.
The control objective is to make x2 track Tr by using control variables u1, u2,
and u3, and meanwhile the control variables and states should not violate a
series of physical constraints.

The receding horizon control problem is formulated as an optimization prob-
lem at time k as follows:

min
u(t|k)

k+N−1∑

t=k

{‖[x1(t + 1|k) − Tr, x2(t + 1|k) − Tr]T ‖2Q +

‖[ζ1(t|k), ζ2(t|k)]T ‖2R
}

+ ‖[x1(k + N |k) − Tr, x2(k + N |k) − Tr]T ‖2P , (3a)
s.t. xi(t + 1|k) = xi(t|k) + Tsζi(t|k), i = 1, 2, t = k, ..., k + N − 1 (3b)

‖[x1(k + N |k) − Tr, x2(k + N |k) − Tr]T ‖O ≤ α, (3c)
u1(t|k) ∈ [−4000, 4000], t = k, ..., k + N − 1 (3d)
u2(t|k), u3(t|k) ∈ [0.0354, 2], u2(t|k) ≥ u3(t|k), t = k, ..., k + N − 1 (3e)
x1(t|k) ∈ [5, 35], x2(t|k) ∈ [10, 30], t = k + 1, ..., k + N, (3f)

where v(t|k) denotes the prediction of variable v at time t with known informa-
tion v(k), N is the prediction horizon, O, P , Q, R are positive definite weighting
matrices, α is a positive parameter. The objective function (3a) is a trade-off
between transient temperature tracking error and terminal temperature track-
ing error by using matrices P , Q, and R. (3b) are the predicted form of system
state equations in (2). (3c) is an elliptical terminal state constraint. (3d)–(3f),
introduced in [24], are polyhedral constraints of states and control variables. In
particular, the constraint u3(t|k) ≥ 0.0354 in (3e) is used to render comfort and
hygiene.

Problem (3) is rewritten into a compact form as follows:

min f(ξ) s.t. g(ξ) ≤ 0, h(ξ) = 0, (4)

where ξ is a vector containing all the decision variables in problem (3), g(ξ) is a
concatenated vector containing (3c)–(3f), h(ξ) is a concatenated vector contain-
ing all the predicted state equations in (3b).

Sequential quadratic programming [4,18] can be used for solving problem (4).
A slack variable s is introduced such that g(ξ)+s = 0 [18]. Two direction vectors
d1 and d2 are introduced with d1 = col(d11, d12), d2 = col(d21, d22), where col(·)
denotes column concatenation of vectors or matrices. Vectors d11 and d21 are
used to move the decision variable ξ toward its local optimal solution; vectors d12
and d22 are used to move the slack variable s toward its local optimal solution.
Problem (4) can be approximately solved by sequentially solving the following
quadratic programs [4]:

min
d1

dT
1 AlA

T
l d1 + 2[hT (ξl), (g(ξl) + sl)T ]AT

l d1

s.t. ‖d1‖ ≤ br, − d12 − τ/2 ≤ 0,
(5)
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min
d2

1
2
dT
2 Gld2 + ∇fT (ξl)d21 − μeT d22 + (Gld1)T d2

s.t. ‖d2‖2 ≤ r2 − ‖d1‖2, − d22 ≤ τe + d12,

∇hT (ξl)d21 = 0, ∇gT (ξl)d21 + Sld22 = 0,

(6)

where l denotes iteration index, Al = col([∇h(ξl),∇g(ξl)], [0, Sl]), ξl is the deci-
sion vector at the lth iteration, Sl = diag(sl), sl is the slack variable at the lth
iteration, Gl = diag(∇2

xLl, SlΣlSl), Ll = f(ξl)−μeT ln sl + yT
l h(ξl)+ zT

l (g(ξl)+
sl), Σl = μdiag(s−2

l1 , s−2
l2 , ...), r, τ , b are positive scalars, e = [1, ..., 1]T .

As in [4], a merit function δ is defined as δ(ξ, s, ν) = f(ξ) − μeT ln(s) +
ν‖[hT , (g + s)T ]‖; an evaluation function V is defined as V (ξ, s, μ) = ‖[∇f(ξ) +
∇h(ξ)y+∇g(ξ)z, Sz−μe, h(ξ), g(ξ)+s]‖∞. A sequential optimization procedure
for solving (4)/(3) is presented as follows [4]:

– Initialization: Set initial values for scalars r, μ, εtol, εμ, τ , and for vector ξ0;
Set positive elements for the slack variable s0.

– Repeat until V (ξl, sl, 0) ≤ εtol or reaching the maximum number of iterations:
• Repeat until V (ξl, sl, μ) ≤ εμ or reaching the maximum number of itera-

tions: (i) Solve problem (5) to obtain solution d1. (ii) Solve (AT
l Al)col(y, z)

= AT
l col(−∇f(ξl), ue) to get solutions yl and zl. (iii) Solve problem

(6) to get solution d2. (iv) dξ = d11 + d21, ds = Sl(d12 + d22). If
δ(ξl + dξ, sl + ds, ν) < δ(ξl, sl, ν), then ξl+1 = ξl + dξ, sl+1 = sl + ds,
r = (1 + θ)r; otherwise ξl+1 = ξl, sl+1 = sl, r = (1 − θ)r. l = l + 1.

• μ = �μ, εμ = �εμ, r = max(5r, 1).

To speedup the convergence, the solution of problem (3) at time k − 1 is
shifted one step forward to initialize problem (3) at time k.

When the solution of problem (3) is obtained, u(k|k) is used to control system
(2) at time k. At time k+1, the optimization and control processes are repeated
again. The iterative control procedure based on optimization on a finite horizon
is where the term “receding horizon control” comes from.

3 Receding Horizon Control Based on Neurodynamic
Optimization

Problems (5) and (6) are quadratic programs. Many neurodynamic models are
available for solving quadratic programs [10,11,13–17,22,25–33,36,40]. In partic-
ular, for solving nonlinear inequality constrained program {min f(x), s.t. g(x) ≤
0}, a neurodynamic model is introduced in [16] with the following dynamic equa-
tion:

ε
dx

dt
= −∇f(x) − σ∇g(x)ϕ[0,1](g(x)), (7)

where ε is a positive time constant, σ is a positive scalar, ∇g(x) =
[∇g1(x),∇g2(x), ...], ϕ[0,1](g(x)) = [ϕ[0,1](g1(x)), ϕ[0,1](g2(x)), ...]T ,

ϕ[0,1](gi(x)) =

⎧
⎪⎨

⎪⎩

1 gi(x) > 1,

gi(x) 0 ≤ gi(x) ≤ 1,

0 gi(x) < 0.
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4 Simulation Results

Consider a temperature setpoint regulation problem. Specifically, regulating
thermal space temperature x2 to Tr = 16 ◦C is specified. The parameters are set
as follows: (i) The fresh air temperature T0 is 15 ◦C. As in [24], Vhe = 25.5 m3,
Vts = 255 m3, cp = 1005 J/kg ◦C, ρ = 1.19 kg/m3, ql = 0W. (ii) As in [4], r = 1,
τ = 0.995, εμ = 0.1, � = 0.2, b = 0.8. (iii) Q = R = diag(5, 5), P = diag(50, 50),
O = diag(1, 1), ε = 10−2, Ts = 10 s, α = 1, N = 20. Extra bound constraints
x1(t|k) ≤ Tr (t = k + 1, ..., k + N) are added in the optimization problem (3) to
eliminate the overshooting of x1.

The simulation results are shown in Figs. 1, 2, 3, 4 and 5. Figure 1 depicts a
snapshot of the transient neuronal states. Figure 2 depicts the transient objec-
tive values. Figure 3 depicts the transient behaviors of the control variable u1.
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Fig. 1. A snapshot of the transient neuronal states.
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Fig. 2. Transient objective values.
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Fig. 3. Transient behaviors of u1.
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Figure 4 depicts the transient behaviors of the control variables u2 and u3. It
shows that u2 and u3 do not violate their bounds as specified in problem (3),
rendering comfort to the occupants. Figure 5 depicts the transient behaviors of
states x1 and x2. It shows that the thermal space temperature x2 is regulated to
the desired temperature Tr = 16 ◦C, and the states do not violate their bounds
as specified in problem (3).

5 Conclusions

In this paper, neurodynamics-based receding horizon control of an HVAC system
is addressed. The control problem on a discrete HVAC system is formulated as
a nonlinear optimization problem, which are further formulated as sequential
quadratic programs. A neurodynamic model is used for solving the quadratic
programs. Simulation results on a temperature setpoint regulation problem are
reported to substantiate the efficacy of the control approach.
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Abstract. Hysteresis and vibration are main factors in reducing the
accuracy and the speed of a nanopositioner. In order to improve the
positioning accuracy and the speed, a robust adaptive resonant damping
control is proposed for trajectory tracking of a nanopositioner system
driven by a piezoelectric actuator. Radial basis function neural network
is employed to approximate unknown nonlinearities in the controller so
as to reduce the dependence on model information. Linear and hysteresis
model are establish based on nanopositioning stage measured data. The
proposed control strategy is verified by simulation using an identified
model.

Keywords: Piezoelectric actuators · Robust adaptive ·
Resonant damping · Radial basis function · Hysteresis

1 Introduction

Recently, nanopositioning systems driven by piezoelectric actuators (PEAs) are
widely utilized in various of precision manufacturing equipments, such as scan-
ning probe microscopy, micro-manipulators, and nanofabrication equipments [1–
3]. The key part of a nanopositioning stage is the PEA for its superior virtues of
high resolution, fast response, and large execution force [4]. However, the PEAs
possess two major demerits that limit the accuracy and speed of a nanopo-
sitioner: (i) hysteresis nonlinearity of piezoelectric ceramic materials, and (ii)
lightly damped resonant modes due to the mechanical structure [5].

Hysteresis is the key problem in decreasing the positioning accuracy. Hys-
teresis nonlinearity produces positioning error up to 15% of the motion range
[6] and can even result in a unstable system. In order to address the hystere-
sis, many effective efforts have been made. Inverse-based control is a commonly
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used method [7]. Among them, the feedforward control based on the inverse hys-
teresis models, to some extent, is effective. However, when the hysteresis model
does not match the system dynamics, the inverse-based approaches do not take
effect. Generally, rather than reconstructing the inverse hysteresis model, feed-
back control, such as PID [8], is utilized to mitigate the hysteresis. In this paper,
in order to improve the tracking performance in presence of hysteresis, robust
adaptive (RA) control, combined with sliding mode control and adaptive con-
trol methods, is presented. Desired transient and steady state performances are
guaranteed in the presence of disturbances and hysteresis. Radial basis function
(RBF) neural network is employed to approximate unknown nonlinearities in
a robust adaptive controller. Recently, related neural network modeling [9] and
control [10] has been successfully applied for PEAs.

Resonant modes is the main issues that hinder the operation speed of the
PEAs. It limits the operating frequency to less than 1/10–1/100 of the first res-
onant frequency of a stage [11]. Although it is possible to construct a sufficiently
stiff stage to augment the operating speed, its maximum motion range is limited
to a few micrometers and the driving force is limited [12]. Therefore, it is nec-
essary to exploit a desired control approach to suppress the vibration effects. In
order to address this issue, a number of effective damping control approaches,
such as shunt damping [13], positive position feedback [14], positive speed and
position feedback [15], resonant control [16] and robustness control [17] has been
proposed. However, high order controllers and accurate system models are neces-
sary [18]. Integral resonant control (IRC) has been demonstrated to be a simple
method in damping vibrations for nanoscale positioning [19]. However, IRC is
limited in dealing with hysteresis and disturbances in the case of voltage driven
control.

In order to improve the control performance of IRC, a robust adaptive control
algorithm is designed to overcome hysteresis and disturbances. By combining the
benefits of RA and IRC control, a robust adaptive resonance damping control
is presented to reduce the resonant modes, improve the operation speed and
positioning accuracy in nanopositioning.

2 System Description and Modeling

Dynamical model of a piezoelectric-driven nanopositioning stage can be
described as [20]

ẍ(t) + a0ẋ(t) + a1x(t) = b0vin(t) − b′H(q). (1)

where a0, a1, b0, b
′ denote system parameters, vin represents the input voltage,

H(q) describes the hysteresis effect, and x(t) is the position of the positioner.
Let y = x = x1, system (1) is and can be rewritten as

ẋ1 = ẋ2

ẋ2 = f(x) + g(x)u + w(t)
y = x1

. (2)
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where x = [x1, x2 ]T , y, u = vin indicate state variables, system output and
input, respectively; f(x) and g(x) as unknown nonlinear functions; w(t) is the
bounded disturbances, we have a known constant w0 > 0, i.e., |w(t)| ≤ w0.

Without losing generality, assume that g(x) > 0. One has a known smooth
function ḡ(x) satisfies |g(x)| ≤ ḡ(x). In this paper, ḡ(x) is taken as a constant.

Define vector xd, e and an extended error s as xd = [yd, ẏd]T , e = [e, ė]T , s =
[λ, 1]e = λe + ė. Here λ > 0 is chosen such that polynomial s + λ is Hurwitz.
The time derivative of s can be written as

ṡ = f(x) + v + g(x)u + w(t) . (3)

where v = −ÿd + λė.

2.1 Linear Model

The linear dynamics model of nanopositioning stage is identified by the input
and output data

G(s) =
9.207 × 105

s2 + 332.4s + 1.296 × 106
. (4)

By comparing the coefficients of (1) and (5), parameters in dynamics model
(1) are a1 = 332.4, a0 = 1.296 × 106, and b0 = 9.207 × 105, respectively.

2.2 Prandtl-Ishlinskii Hysteresis Model

Prandtl-Ishlinskii (PI) model was chosen to establish the nonlinear dynamics.
As a basic element of the PI model, rate independent backlash operator can be
implemented as [21]

yb(t) = Hr[vin, yb0](t) = max{vin(t) − r,min{vin(t) + r, yb(t − T )}}
yb(0) = max{vin(0) − r,min{vin(0) + r, yb0}} . (5)

where vin = 21.12sin(πt)+18.59 (V ) is chosen as input signal, yb represents the
output of the backlash operator, r denotes the set threshold, and T indicates
the sampling period. In general, the initial value of yb0 is nonzero.

PI hysteresis model consists of the sum of a number of rate independent
backlash operators with different thresholds and weight values [22]. In this paper,
for simple calculation, the threshold is set to be a fixed value, i.e., r = 1.5, and
the weight is recognized by the measured data of the nanopositioning stage.

yh(t) =
n∑

i=0

wT i

h Hi
r[vin, yb0](t), (6)

where yh represents the output of the hysteresis model. Considering the range of
measured data, 19 operators have been chosen [21]. We have n = 18. Measured
data and model output are shown in Fig. 1. Modeling accuracy indices, including
root mean square error (RMSE), mean absolute error (MAE), and maximum
absolute error (MAXE), have been presented in Table 1.
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Fig. 1. Hysteresis loop generated by the identified model.

Table 1. Indexes of hysteresis model

MAXE MAE RMSE

Value 0.6460 0.0709 0.1032

3 Robust Adaptive Resonant Damping Control

In order to improve positioning accuracy and eliminates oscillation, a compound
control method is proposed.

3.1 Integral Resonant Control

The integral resonant control (IRC) changes the zero-pole interleaving of the
colocated system by adding a constant as feed-through term [23]. The unique
phase response of such a system enables a simple integral feedback controller
to raise substantial damping. The block diagram of a typical IRC scheme is
presented in Fig. 2 [24]. i indicates the output of the controller, d represents
the feed-through term, Kd refers to the damping gain of IRC, w(t) denotes
disturbances. Linear dynamics can be rewritten as

G(s) =
γ2

s2 + 2ζωps + ω2
p

. (7)

Fig. 2. Block diagram for the IRC damping controller.
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According to Eq. (5) identified in Sect. 2.1, ζ = 1.282 × 10−4 represents the
damping coefficient, ωp = 1138 is the natural frequency, γ = 959.5. According

to Ref. [23] d = −2
γ2

ω2
p

= −1.42, and Kd = 1000.

3.2 Robust Adaptive Control by RBF Neural Network

Theorems 1. Ignoring the disturbance, desired feedback control (DFC) law is
designed as

u∗ = − 1
g(x)

(f(x) + v) −
(

1
εg(x)

+
1

εg2(x)
− ġ(x)

2g2(x)

)
s. (8)

where ε > 0 as a adjustable parameter, one has lim
t→∞ ‖e(t)‖ = 0.

Proof. Substituting DFC control law (8) u∗ into Eq. (3) and letting w(t) = 0,
we have

ṡ = −
(

1
ε

+
1

εg(x)

)
s +

ġ(x)
2g(x)

s. (9)

Selecting a Lyapunov function as V = s2/2g(x), so

V̇ = − 1
g(x)

sṡ − ġ(x)
2g2(x)

s2 = −
(

1
εg(x)

+
1

εg2(x)

)
s2. (10)

Since g(x) > 0, then V̇ ≤ 0, it implies lim
t→∞ |s| = 0 [24]. Then, lim

t→∞ ‖e(t)‖ = 0.

From (10), it is indicated that the smaller the adjustment parameter ε is, the
more negative V̇ will be. Therefore, the convergence rate relies on ε. From (8),
we can see that u∗ can be rewritten as a function of x, v, s and ε. Let

z = [xT , s,
s

ε
, v ]T ∈ Ωz ∈ R5. (11)

where Ωz = {(xT , s,
s

ε
, v)|x ∈ Ω;xd ∈ Ωd; v = −ÿd + λė; s = [λ 1 ]e}.

Due to nonlinear functions f(x) and g(x) are unknown, u∗ is unavailable for
controller. Hence, RBF neural network (NN) [25] is applied for approximating
the unknown u∗. From (9), we can see that elements s and s/ε are in different
scopes when ε is small. Therefore, s/ε is also an available input for RBF NN to
improve the approximation accuracy.

There is an ideal NN weight vector W∗, and adaptive neural deal with
unknown hysteresis be introduced in [26]

u∗(z) = W∗T h(z) + μl, ∀z ∈ Ωz. (12)

where h(z) is radial basis function vector; μl indicates the approximation error
of NN, satisfied |μl| < μ0, and

W∗ = arg min
W∈R

{ sup
z∈Ωz

|W∗T h(z) − u∗(z)|}
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Fig. 3. Block diagram of the robust adaptive control.

Closed-loop block diagram is presented in Fig. 3. Define
�

W as an estimate NN
weight of W∗. The output of RBF NN u0 as direct robust adaptive controller,
one has

u0 =
�

W
T

h(z), (13)

and the NN weights updating law as [27]

�̇

W = −Γ(h(z)s + σ
�

W). (14)

where Γ = ΓT > 0 represents an adaptation gain matrix and σ > 0 denotes a
constant.

3.3 Robust Adaptive Resonant Damping Design

Combining IRC and robust adaptive control strategy, a robust adaptive control
is designed to improve the positioning accuracy in existence of disturbances and
uncertain nonlinearities. IRC is designed to damp the resonant modes of the
PEAs and eliminate oscillations. The compound control diagram is presented in
Fig. 4.

i = u0

Kt

s
. (15)

where Kt is the adjustable gain of the integral controller.

Fig. 4. Robust adaptive resonant damping control scheme.
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4 Simulation Results

In this section, the presented control strategy is actualized on the system model
established in Sect. 2. For the comparison, three control approaches are designed:
(1) the proportional integral (PI) control; (2) the robust adaptive (RA) control
realized by a RBF neural network; (3) the robust adaptive resonant damping
control realized by the combination of the robust adaptive and IRC (RA+IRC).
Control parameters are given in Table 2.

The structure of a RBF NN is selected to be 5-9-1, and center point vector
values of Gaussian function are selected by the range of input z. Parameters ci

and bi can be chosen to be [−2,−1.5,−1, 0, 0.5, 1, 1.5, 2] × 106 and 5 × 106. The
sampling time is selected to be 2 × 10−4s. Disturbance signals are described as
follows

d(t) =
{

0.5 Ts/4 ≤ t < Ts/2
0.25 sin(2π

Ts
+ π

2 ) + 0.25 Ts/2 ≤ t < Ts
. (16)

where defined Ts as the simulation time.

Table 2. Parameters of the three controllers

Controllers λ Γ ε σ Kt(P ) Kd(I)

PI - - - - 0.5 100

RA 100 1 × 10−7I9 0.1 1 × 10−7 - -

RA+IRC 100 1 × 10−7I9 0.1 1 × 10−7 5 1000

4.1 Step Response

Firstly, the set-point positioning performances and the disturbances rejection
performances have been confirmed. Simulation results are depicted in Fig. 5.

Figure 5(a) presents that the response of RA+IRC is faster than RA and PI.
It is worth noting that, root mean square (RMS) of control efforts generated by
PI, RA, and RA+IRC control are 16.7362, 16.8162, and 13.9892, respectively.
Thus, RA+IRC requires significantly small control efforts to get desired perfor-
mance. RMSE, MAE, and ITAE values are listed in Table 3.

4.2 Triangular Response

In this section, the motion tracking performances for a 20-Hz triangular trajec-
tory have been tested. Figure 6(a) reveals that RA produces the best tracking
accuracy with almost no tracking error. The cost of high precision, as can be
seen from Fig. 6(b), is the obvious oscillates of the control effort. Meanwhile,
RA+IRC has a smooth control effort, but positioning accuracy is sacrificed.
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Fig. 5. Step responses and control efforts. (a) Position tracking results. (b) Control
efforts.
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Fig. 6. Triangular responses and control efforts. (a) Position tracking results. (b) Con-
trol efforts.



Robust Adaptive Resonant Damping Control of Nanopositioning 137

Table 3. Parameters of the three controllers

Input Performance PI RA RA+IRC

Step wave RMSE 0.8710 0.7241 0.8823

MAE 0.1876 0.1060 0.1070

ITAE 0.0122 0.0023 0.0023

Tria wave RMSE 2.3014 0.0599 1.2590

MAE 1.9911 0.0523 1.1008

ITAE 0.0378 0.0010 0.0228

Vibration Small Large Small

5 Conclusion

A novel RA+IRC control has been designed and verified in this paper. The
performance of RA+IRC has been validated by simulations. Numerical results
demonstrate that RA scheme can improve the robustness of the positioning sys-
tem to hysteresis and disturbance. The robust adaptive resonant damping con-
trol can reduce the oscillations, but to a certain extent, the positioning accuracy
is sacrificed. Future work is to improve the positioning accuracy of the robust
adaptive resonant damping control.
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Abstract. In this paper, a novel active optimal fault-tolerant control
(FTC) scheme is designed based on adaptive dynamic programming (ADP) for
modular manipulator when sensor and actuator faults are concurrency. Firstly,
the sensor fault is transformed into the pseudo-actuator fault by constructing a
nonlinear transformation with diffeomorphism theory. Secondly, the faults
estimated by the adaptive fault observer are applied to establish an improved
performance index function. Next, the online policy iteration (PI) algorithm is
used to solve the Hamilton-Jacobi-Bellman (HJB) equation via establishing a
critic neural network. The optimal fault-tolerant controller is proved to be uni-
formly ultimately bounded (UUB) based on Lyapunov stable theory. Finally, the
effectiveness of the proposed multi-fault-tolerant control algorithm is verified by
simulation results.

Keywords: Adaptive dynamic programming � Modular manipulators �
Optimal fault-tolerant control � Critic neural network � Policy iteration

1 Introduction

With the rapid development of robotics, modular manipulators are widely used in the
real world such as space exploration, smart factories, and high-risk operations owing to
the structural flexibility [1]. However, due to the complex and harsh working envi-
ronment of the modular manipulator, the actuator and the sensor inevitably occur fault
and cannot be artificially interfered. To ensure the safety and reliability of the modular
manipulator system, it is an urgent need to design a control system that can tolerate
multi-fault during operation.

Active FTC (AFTC) is greatly attracting researcher’s attention owing to they can
cope with unexpected faults. Researchers have achieved outstanding results in the field
of AFTC recently. Niemann et al. [2] proposed a fault-tolerant control approach based
on the model, Xu et al. [3] designed a dynamic surface control technology based
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adaptive fuzzy fault-tolerant control, Yoo et al. [4] presents actuator fault detection
based adaptive accommodation control of flexible-joint robots. However, in the above
literature, the research on AFTC is only for single fault. Actually, the actuator and
sensor concurrency faults are more general and practical. In this regard, Rotondo et al.
[5] proposed a virtual actuator and sensor method for FTC of linear variable parameter
systems. Sami and Patton [6] proposed AFTC for nonlinear systems when actuator and
sensor faults are concurrency. Under the premise of ensuring the stability and accuracy
of the modular manipulator trajectory tracking control, achieving the optimal control
performance and power consumption is one of the most theoretical research topics in
the field of robotics. However, there are few fault-tolerant control methods based on
optimal control scheme.

In recent years, the optimal control policies based on ADP have received extensive
attentions [7–10]. Since the modular manipulator is a nonlinear system, the difficulty of
the optimal fault-tolerant strategy is the solution of the HJB equation. ADP has a
unique advantage in solving the HJB equations for nonlinear systems. Some efforts
have been made to modular manipulator based on ADP. Zhao et al. [11] develop an
ADP based decentralized approximate optimal tracking control scheme for reconfig-
urable manipulators. Xia et al. [12] proposed an ADP based FTC scheme for recon-
figurable manipulators with actuator failures.

Aiming at this research situation, an ADP based multiple FTC method for modular
manipulators with simultaneous actuator and sensor faults is proposed in this paper.
Firstly, using the diffeomorphism theory, the sensor fault is converted into a pseudo-
actuator fault. Then a proper performance index function is constructed via the fault
which is estimated through the adaptive fault observer. Besides, the improved HJB
equation is settled by a critic neural network. At the same time, the parameter can be
automatically updated by gradient descent method. Based on the Lyapunov stability
theory, it is proved the closed-loop system with multiple faults is uniformly ultimately
bounded (UUB). Finally, the proposed control method is verified by 2-DOF modular
manipulators with two different configurations with concurrent actuator and sensor
failures. The proposed control policy not only guaranteed the fault system to be UUB
but also meet the minimum performance index function.

2 Problem Formulation

Consider the n-degree-of-freedom modular manipulator dynamics model as follows:

M qð Þ€qþC q; _qð Þ _qþG qð Þ ¼ u ð1Þ

Where q 2 Rn; _q 2 Rn and €q 2 Rn are the actual joint position, velocity and
acceleration, M qð Þ 2 Rn�n represents the inertia matrix term, C q; _qð Þ 2 Rn�n represents
the Coriolis and centrifugal force term, G qð Þ 2 Rn represents the gravity term, and
u 2 Rn is the joint motor output torque.
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Equation (1) can be expressed as

S :
_x ¼ AxþB f xð Þþ g xð Þu½ �
y ¼ x1

�
ð2Þ

where x ¼ x1; x2½ �T¼ q; _q½ �T , A ¼ 0 1
0 0

� �
, B ¼ 0

1

� �
and g xð Þ ¼ M�1 qð Þ, f xð Þ ¼

M�1 qð Þ �C q; _qð Þ _q� G qð Þ½ � both are nonlinear local Lipschitz continuous functions.
Considering the situation where the system suffering actuator and the sensor fail-

ures, the faulty dynamic model is shown below:

Sf :
_x ¼ AxþB f xð Þþ g xð Þ uþ fað Þ½ �
y ¼ x1 þ fs

�
ð3Þ

where fa is the actuator fault of the system Sf , fs is the sensor fault of system Sf .
Introduce a simple filter as

_xa ¼ �axa þ b x1 þ fsð Þ ð4Þ

where a and b are constants and a[ 0, b 6¼ 0. So the extended system dynamics can be
formulated as

_x1 ¼ x2
_x2 ¼ f xð Þþ g xð Þ uþ fað Þ
_xa ¼ �axa þ bx1 þ bfs
y ¼ xa

8>><
>>:

ð5Þ

3 Fault Tolerant Controller Design

3.1 Performance Index Function and HJB Equation Establishment

Assumption 1. The desired joint angle qd , the desired joint velocity _qd and the desired
joint acceleration €qd are bounded, besides f xð Þ, g xð Þ are also bounded.

Assumption 2. The actuator sensor faults of the system have the unknown upper
bound as fak k� e1, fsk k� e2 where e1 and e2 are positive constants.

The established performance index function is as follows

J e sð Þð Þ ¼
Z 1

0
q1 f̂

T
a ðsÞf̂aðsÞþ q2 f̂

T
s ðsÞf̂sðsÞþ c rJ� e sð Þð Þð Þ2

�

þ r e sð Þ; u e sð Þð Þð ÞÞds
ð6Þ

where e ¼ x� xd is the tracking error, r e; uð Þ ¼ eTQeþ uTRu is the effect function,
r 0; 0ð Þ ¼ 0 and r e; uð Þ[ 0, in which Q, R are the positive definite matrices. f̂aðsÞ is the

Active Optimal Fault-Tolerant Control Method for MFCMM Based on ADP 141



observed value of the actuator failure, f̂sðsÞ is the observed value of the sensor failure
and c[ 0, q1 [ 0, q2 [ 0 are constants.

Assume that the given expected trajectory is as follows

_xd ¼ f xdð Þþ g xdð Þud ð7Þ

ud is the nominal control rate, the tracking error is guaranteed to be zero,

ud ¼ gþ xdð Þ _xd � f xdð Þð Þ ð8Þ

where gþ �ð Þ is the generalized inverse of g �ð Þ.
The time derivative of e is

_e ¼ f ðxÞ � f ðxdÞþ gðxÞðuþ faÞ � gðxdÞud
¼ fe þ gðxÞu� gðxdÞuþ gðxdÞu� gðxdÞud þ gðxÞfa
¼ fe þ ½gðxÞ � gðxdÞ�uþ gðxdÞue þ gðxÞfa

ð9Þ

where fe ¼ f ðxÞ � f ðxdÞ, u ¼ ud þ ue, the performance index function is rewritten as

J e sð Þð Þ
ue2w Xð Þ

¼
Z 1

0
q1 f̂

T
a sð Þf̂a sð Þþ q2 f̂

T
s sð Þf̂s sð Þþ c rJ� eðsÞð Þð Þ2

�

þ r e sð Þ; ue e sð Þð Þð ÞÞds
ð10Þ

where r e; ueð Þ ¼ eTQeþ uTe Rue is the effect function and r e; ueð Þ[ 0, w Xð Þ is a set of
permissible control sequences.

Definition 1. For the system (1), l eð Þ is defined as a control policy, denoted by
l eð Þ 2 w Xð Þ, if l eð Þ is continuous on X, l 0ð Þ ¼ 0, l eð Þ ¼ u eð Þ stabilizes on X and
J eð Þ is finite, 8e 2 X.

For the system with the admissible control set and the improved performance index
function (10), it is needed that find a control policy ue eð Þ 2 l eð Þ, in addition, the
performance index function (10) is minimized.

If the performance index function

V e sð Þð Þ ¼
Z 1

0
q1 f̂

T
a sð Þf̂a sð Þþ q2 f̂

T
s sð Þf̂s sð Þþ c rV� e sð Þð Þð Þ2

�

þ r e sð Þ; ue e sð Þð Þð ÞÞds
ð11Þ

is continuously differentiable, then the infinitesimal form of Eq. (11) is the so-
called Lyapunov equation as

0 ¼ q1 f̂
T
a sð Þf̂a sð Þþ q2 f̂

T
s sð Þf̂s sð Þþ c rV� e sð Þð Þð Þ2 þ r e; ueð Þ

þ rV eð Þð ÞT� fe þ g xð Þ � g xdð Þ½ �uþ g xdð Þueð Þ
ð12Þ

where rV eð Þ ¼ @V eð Þ
@e , V 0ð Þ ¼ 0 and r 0; 0ð Þ ¼ 0.
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Define the Hamiltonian function as

H e; ue;rV eð Þð Þ ¼ q1 f̂
T
a sð Þf̂a sð Þþ q2 f̂

T
s sð Þf̂s sð Þþ c rV� e sð Þð Þð Þ2

þ r e; ueð Þþ rV eð Þð ÞT fe þ g xð Þ � g xdð Þ½ �uþ g xdð Þueð Þ
ð13Þ

Define the optimal performance indicator function as

J� eð Þ ¼ min
ue

Z 1

0
r e sð Þ; ue e sð Þð Þð Þds ð14Þ

and which also satisfies

0 ¼ min
ue

H e; ue;rJ� eð Þð Þ ð15Þ

where rJ� eð Þ¼ @J� eð Þ
@e . Therefore, the optimal multi-fault-tolerant control strategy is

obtained,

u�e ¼ � 1
2
R�1gT xð ÞrJ� eð Þ ð16Þ

Combine Eqs. (12) and (15), one obtains

rJ eð Þð ÞT fe þ g xð Þ � g xdð Þ½ �uþ g xdð Þueð Þ
¼ � eTQe� uTe Rue � q1 f̂

T
a f̂a � q2 f̂

T
s f̂s � c rJ� eð Þð Þ2

ð17Þ

3.2 Adaptive Fault Observer Design

Assumption 3. The estimated error of the actuator and sensor failure have an unknown
upper bound as fa � f̂a

�� ��� e3, fs � f̂s
�� ��� e4.

Design the following adaptive faults observer form

_̂x ¼ f xð Þþ g xð Þ uþ f̂a
� �þ a1 x� x̂ð Þ

_̂xa ¼ �ax̂a þ bx̂1 þ bf̂s þ a2 xa � x̂að Þ

�
ð18Þ

where x̂ is the observed value of the system state vector x, the definition f̂a is the
estimated value of the actuator fault fa, the definition f̂s is the estimated value of the
actuator fault fs, a1 and a2 are the positive definite observer gain. The observed values
of the sensor and actuator failures are updated according to the following adaptive
update rate.

_̂f a ¼ a3g
T xð Þex ð19Þ
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_̂f s ¼ ba4exa ð20Þ

where ex ¼ ex1
ex2

� �
¼ x1 � x̂1

x2 � x̂2

� �
, exa ¼ xa � x̂a, the actuator observation error as

ea ¼ fa � f̂a, and the sensor observation error as es ¼ fs � f̂s, a3 and a4 are the positive
definite matrix.

3.3 Construction of the Critic Network

The approximate performance indicator function can be expressed as

V eð Þ ¼ WT
c rc eð Þþ ec ð21Þ

where Wc 2 Rk is the ideal weight vector, k is the number of neurons in the hidden-
layer, rc eð Þ is the activation function, ec is the approximation error of the neural
network, and the gradient of V eð Þ is approximated by the neural network:
rV eð Þ ¼ rrc eð Þð ÞTWc þrec.

Therefore, the Hamiltonian function is expressed as

H e; ue;Wcð Þ ¼ q1 f̂
T
a sð Þf̂a sð Þþ q2 f̂

T
s sð Þf̂s sð Þ

þ c rrc eð Þð ÞTWc þrec
� �T� rrc eð Þð ÞTWc þrecÞ

� �
þ r e; ueð Þþ WT

c rrc eð Þ� �
_e ¼ �reTc _e ¼ ecH

ð22Þ

where ecH is the evaluation error of the evaluation network. Define Ŵc to be the
estimated value of Wc, then evaluate the actual output of the network as
V̂ eð Þ ¼ ŴT

c rc eð Þ, then the gradient of V̂ eð Þ is rV̂ eð Þ ¼ rrc eð Þð ÞTŴc. So the
approximate Hamiltonian function is expressed as

Ĥ e; ue; Ŵc
� � ¼ q1 f̂

T
a ðsÞf̂aðsÞþ q2 f̂

T
s ðsÞf̂sðsÞþ cððrrcðeÞÞTŴcÞT

� rrc eð Þð ÞTŴc
� �þ r e; ueð Þþ ŴT

c rrc eð Þ� �
_e ¼ ec

ð23Þ

Define # ¼ rrc eð Þ _e, the minimum performance criterion in the training process is

Ec ¼ 1
2 e

T
c ec, the weight is updated by the gradient descent method _̂Wc ¼ �acec#,

where ac [ 0 is the adaptive gain of the evaluation network.
Define the weight estimation error as

~Wc ¼ Wc � Ŵc ð24Þ

Combine (22), (23) and (24), we can obtain
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ec ¼ ecH � ~WT
c # ð25Þ

The weight approximation error is updated as

_~Wc ¼ � _̂Wc ¼ ac ecH � ~WT
c #

� �
# ð26Þ

The ideal optimal feedback fault-tolerant control strategy can be obtained

ue ¼ � 1
2
R�1gT xð Þ rrc eð Þð ÞTWc þrec

� � ð27Þ

and it can be approximated as

ûe ¼ � 1
2
R�1gT xð Þ rrc eð Þð ÞTŴc ð28Þ

3.4 Online Policy Iteration Algorithm

The online PI algorithm is used to approximate the HJB and obtain the optimal
feedback control strategy u�e , the specific method is shown below:

Step 1: Parameter initialization, select a small normal number e, select i ¼ 0 as the
number of iterations and,V ð1Þ ¼ 0, start from the initial control strategy u 0ð Þ

e to
iterate;
Step 2: Combine the u ið Þ

e to update Jðiþ 1Þ by the following equation

0 ¼ q1 f̂
T
a sð Þf̂a sð Þþ q2 f̂

T
s sð Þf̂s sð Þþ c rV iþ 1ð Þ e sð Þð Þ

� 	2
þ r e; u ið Þ

e

� 	
þ rV ðiþ 1Þ eð Þ
� 	T

� fe þ g xð Þ � g xdð Þ½ �uþ g xdð Þu ið Þ
e

� 	

Step 3: Control strategy u iþ 1ð Þ
e is updated by u iþ 1ð Þ

e ¼ � 1
2R

�1gT xð ÞrV iþ 1ð Þ eð Þ.
Step 4: If i[ 0 and V iþ 1ð Þ eð Þ � V ið Þ eð Þ

 

� e, the operation is stopped, and one can
obtain the approximate optimal control strategy, otherwise i ¼ iþ 1, then the pro-
cess returns to step 2.
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3.5 Stability Analysis

It can be seen from the above analysis that the optimal control strategy consists of two
parts: the nominal control rate ud and the optimal feedback control rate ue, so the
control rate can be described as

u ¼ ud þ ûe ð29Þ

where ud can be directly obtained by the formula (8).

Assumption 4. The nominal controller ud is bounded and udk k� g, where g is an
unknown positive constant.

Theorem 1. For the multi-fault-tolerant control problem of the modular manipulator
system with Assumptions 1–4, if the solution based on the HJB equation exists, the
control strategy can ensure that the tracking error of the system is UUB in the case of
multiple faults.

Proof. Choose the Lyapunov function as

V1 tð Þ ¼ 1
2
eTeþ J� eð Þ ð30Þ

Combine (17), the time derivative of (30) is

_V1 tð Þ ¼ eT _eþ rJ� eð Þð ÞT _e
¼ eTg xð Þfa þ eT fe þ g xð Þ � g xdð Þ½ �uþ g xdð Þue½ �
þ rJ� eð Þð ÞTg xð Þfa � eTQe� uTe Rue � q1 f̂

T
a f̂a

� q2 f̂
T
s f̂s � c rJ� eð Þð Þ2

ð31Þ

Since f ðzÞ is a Lipschitz function, Lf [ 0, so that fek k� Lf ek k, g xð Þk k�Dg,
g xdð Þk k�Dgd , and thus g xð Þ � g xdð Þk k�DD. Using triangular inequalities, and

considering the Assumptions 2, 3 and 4, the above equation is rewritten as

_V1 tð Þ� � w1 ek k � DDg� el
ek k

� �
ek k � w2 uek k2�q2 f̂

T
s f̂s

� q1 � K2
g

� 	
f̂ Ta f̂a � c� 1

2

� �
rJ� eð Þð Þ2

ð32Þ

where w1 ¼ kmin Qð Þ � Lf � 1
2D

2
gd � 1

2, w2 ¼ kmin Rð Þ � 1
2D

2
gd � 1

2DD
2 � 1

2, el ¼ D2
g

2e1 þ e3ð Þe3.
We find that _V1 tð Þ� 0 when e lies outside the compact set

X3 ¼ e : ek k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DD2g2 þ 4w1el

4w2
1

q on
, and the following conditions need to be met

kmin Qð Þ� Lf þ 1
2D

2
gd þ 1, kmin Rð Þ� 1

2D
2
gd þ 1

2DD
2 þ 1

2, q1 �D2
g, q2 [ 0, c� 1

2.
Therefore, the closed-loop system is UUB. This completes the proof.
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4 Simulation Research

In order to verify the effectiveness of the proposed active optimal multi-fault-tolerant
control method, two-degree-of-freedom manipulator models with different configura-
tions are selected for simulation verification.

The system’s control torque u ¼ ½u1; u2�T , the starting position and angular velocity
are q1 0ð Þ ¼ q2 0ð Þ ¼ 0:5, _q1 0ð Þ ¼ _q2 0ð Þ ¼ 0. The critic NN is chosen as 4-10-1 with 4
input neurons, 10 hidden neurons and 1 output neuron, and defined the NN weight
vector ŵ ¼ ŵ1; ŵ2; . . .; ŵ9; ŵ10½ �T , with the initial value ŵ ¼ 20; 30; 40; 20; 30; 40; 50;½
40; 50; 55�T . The desired trajectories of the modular manipulator configuration a and
configuration b is shown below

qa1d ¼ 0:4 sinð0:3tÞ � 0:1 cosð0:5tÞ qb1d ¼ 0:2 cosð0:5tÞþ 0:25 sinð0:4tÞ
qa2d ¼ 0:3 cosð0:6tÞþ 0:6 sinð0:2tÞ qb2d ¼ 0:3 cosð0:2tÞ � 0:4 sinð0:6tÞ

Considering configuration a, an actuator fault fa ¼ 2sin 2� q1ð Þ is added to the
joint 1 at t ¼ 20 s, and a sensor fault fs ¼ �0:5q1 is added to the joint 2 at t ¼ 40 s.
Considering configuration b, an actuator fault fa ¼ 3� sin 0:2tð Þ + cos 1tð Þ is added
to the joint 1at t ¼ 30 s, and a sensor fault fs ¼ 2 is added to the joint 2 at t ¼ 40 s.

The simulation results of the configuration a are shown in Figs. 1, 2, 3 and 4.
Figures 1 and 2 are the actuator fault and sensor fault estimation curves respectively. It
can be seen that the fault observer designed can accurate estimate the faults. Figure 3 is
a trajectory tracking curve of the configuration a. It can be observed that the actual
trajectories follow the desired ones well though after the actuator failure occurred in the
20 s and the sensor failure occurred in the 40 s. Figure 4 shows the trajectories of
tracking error.

Fig. 1. The estimation of actuator fault. Fig. 2. The estimation of sensor fault.
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We further verify the effectiveness of our multi-fault-tolerant control algorithm
without changing the controller parameters, the simulation results of the configuration b
as shown Figs. 5, 6, 7 and 8, Figs. 5 and 6 are the actuator fault and sensor fault
estimation curves respectively. It can be seen from the figures both the actuator and the
sensor fault observer accurately estimate fault information online. Figure 7 is a tra-
jectory tracking curve of the configuration b. It can be observed that the actual tra-
jectories follow the desired ones well though after the actuator failure occurred in the
30 s and the sensor failure occurred in the 40 s. Figure 8 shows the trajectories of
tracking error. The simulation results show that when the sensor and actuator of the
modular manipulator system are faulty, the control method designed is used for dif-
ferent configurations, which proves the effectiveness of the control method.

Fig. 4. Tracking error curves for configura-
tion a.

Fig. 3. Tracking curves for configuration a.

Fig. 5. The estimation of actuator fault. Fig. 6. The estimation of sensor fault.
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5 Conclusion

This paper proposes an active optimal multi-fault-tolerant control method for modular
manipulators based on ADP. An adaptive fault observer is utilized to build an improved
performance index function to transform the multiple FTC problems into optimal
control. Next, an evaluation neural network is established to handle the HJB equation,
and the online PI algorithm is used to solve the optimal feedback control rate. In
addition, the Lyapunov theory is utilized to prove that the closed-loop system is UUB.
Finally, one validated the effectiveness of our designed fault-tolerant control method by
selecting two-degree-of-freedom manipulators in two configurations.
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Abstract. The epileptic automatic detection was very significance in clinical.
The nonlinear time series analysis method based on complex network theory
provided a new perspective understand the dynamics of nonlinear time series. In
this paper, we proposed a new epileptic seizure detection method based on
statistical properties of improved transition network. First, we improved the
transition network and electroencephalogram (EEG) signal was constructed into
the improved transition network. Then, based on the statistical characteristics of
improved transition network, the mathematical expectation of node distribution
in a network was extracted as the classification feature. Finally, the performance
of the algorithm was evaluated by classifying the epileptic EEG dataset.
Experimental results showed that the classification accuracy of proposed algo-
rithm is 97%.

Keywords: Complex network � Improved transition network �
Mathematical expectation � Seizure detection � EEG

1 Introduction

Epilepsy is a kind of chronic neurological disease of the brain which has a wide
influence and is not infectious. Clinically, epilepsy was diagnosed by electroen-
cephalogram (EEG). However, there are many problems in the prevention, diagnosis,
treatment and other aspects of epilepsy at present. For example, the hospital lack
specialists in epilepsy, the clinical manifestations of epilepsy are very complex, seizure
types are diverse and epilepsy misdiagnosis and mistreatment is very common.
Therefore, the study of automatic classification algorithm with high performance is of
great clinical significance.

The two main parts of automatic epilepsy detection algorithm are feature extraction
method and classifier. The features extracted by feature extraction method should be
able to clearly represent the fundamental differences between the different EEG signals.
Yuan et al. [1] and Kumar et al. [2] studied approximate entropy to characterize EEGs.
Khoa et al. [3] utilized Lyapunov spectrum to filter noise and detect epilepsy. Empirical
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H. Lu et al. (Eds.): ISNN 2019, LNCS 11555, pp. 153–161, 2019.
https://doi.org/10.1007/978-3-030-22808-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_16&amp;domain=pdf
https://doi.org/10.1007/978-3-030-22808-8_16


mode decomposition (EMD) [4], fast Fourier transform (FFT) [5] and wavelet trans-
form (WT) [6] were introduced into epileptic signal processing to extract the time
domain, frequency domain and time-frequency domain features from the processed
signals. Artificial neural network (ANN), decision tree classifier, extreme learning
machine (ELM) and other classifiers combined with features are also important
research directions in epilepsy detection algorithms.

The transformation of nonlinear time series into complex networks opens a new
perspective for the study of time series. Zhang and Small [7] constructed complex
networks from pseudo-periodic time series and found that time series with different
dynamic characteristics have different topological structures. Lacasa et al. [8] presented
a method called visibility graph that can transform arbitrary time series into complex
networks. Sun et al. [9] proposed transition network construction algorithm, by which
the dynamics behind the time series are encoded into the network structure. Many
scholars had improved the algorithm of visibility graph and proximity network [11, 12]
and used complex network to study the automatic detection and classification algo-
rithms of epileptic EEG [13, 14]. However, due to the disadvantages of information
loss and low efficiency in the construction of the transition network, few scholars use
the transition network to study epileptic EEG.

In this study, we make improvements from two aspects for the transition network
construction algorithm. First, the transition network construction algorithm combines
the proximity network method to process the original data. Second, our new method
reduces the number of nodes appearing in the network, thus decreasing the redundant
information and computing complexity. According to our improved transition network
construction algorithm, EEG signals are transformed into complex network. Then
mathematical expectation of node distribution in a network is extracted as features. The
classification results of our improved method reach 97%, which means that our method
can effectively detect epilepsy automatically.

2 Method

Figure 1 shows a summary of the improved transition network analysis of nonlinear
time series. The most important part is the construction of complex network.

Fig. 1. The process of the improved transition network analysis of time series.
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2.1 Construction of the Improved Transition Network from Time Series

For time series as x1; x2; . . .; xi; . . .; xNf g i 2 1;N½ �ð Þ, according to the local maximum
value, the original time series is divided into several non-overlapping cycles, and the
cycle set is expressed as c1; c2; . . .; cnf g. Then, we calculate the Euclidean distance
between every adjacent ci. Because each ci has a different length, the Euclidean dis-
tance is modified to:

dij ¼ minl¼0;1;...;lj�li
1
li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xli

k¼1
ci kð Þ � cj kþ lð Þ� �2

r !

ð1Þ

where li and lj are respectively the length of ci and cj, the ci kð Þ and cj kð Þ are respec-
tively the kth point of ci and cj (supposing li � lj). A new sequence is obtained by
calculating the Euclidean distance between each pair of adjacent cycles, denoted as
d12; d23; . . .; d n�1ð Þn
� �

.
For every dij, according coarse gaining method, we denote the new numerical

sequence sif g:

si ¼

4; Q3\dij
3; Q2\dij\Q3

2; Q1\dij\Q2

1; dij\Q1

8
>>><

>>>:

ð2Þ

where Q1, Q2 and Q3 are the threshold values. Coarse graining processing discards
small details, decomposes the original time series data into finite subintervals, and uses
different characters to represent each subinterval.

After the coarse graining processing, the Euclidean distance sequence is trans-
formed into the new numerical sequence sif g, which is defined as:

S ¼ s1; s2; s3; . . .; sn�1ð Þ si 2 1; 2; 3; 4ð Þð Þ ð3Þ

Based on the generated numerical sequence sif g above, we set the appropriate
dimension m and delay time s to divide the numerical sequence into coarse gaining
modes. The resulting mode can be denoted as CGif g; i ¼ 1; 2; . . .; n� 1� mð Þ=sþ 1.
Each CGi is a vector of length m.

As the sliding window moves, many coarse gaining modes that have the same
vector are created. In the original transition network construction algorithm. Each
coarse gaining mode is a network node. There are a lot of redundant information in the
network. and the computational complexity is high.

In our study, the different coarse graining modes consider as network nodes and
denoted to be vi, i ¼ 1; 2; . . .;M;M\ n� 1� mð Þ=sþ 1. Therefore, we can study the
characteristics of different time series by studying the modes that fluctuate with time.
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The edge weight between node vi and node vj is expressed as:

wvivj ¼ count ð4Þ

where the coarse graining modes represented by node vi and node vj is CGvi and CGvj .
count denotes the transformation frequency of CGvi transferred to CGvj in the fCGig.

The complex network constructed by the improved transition network algorithm is
a directed weighted network. The connection directions between nodes are set in the
order in which coarse graining modes appear when moving with sliding windows.

If the mapping numerical sequence of the time series is sif gi¼1;2;...;15 ¼
321432321414321f g. Setting m is 4 and s is 1. Figure 2 shows the network structure of

improved transition network. Although coarse graining modes {3214} and {1432}
appear twice, they only appear once as nodes in the network. Edge weight between
nodes are all 1.

2.2 Feature Extraction Method Based on Improved Transition Network

Weighted degree of node is the basic statistic in complex network. In directed and
weighted networks, the weighted degree of the node i is denoted as the total weights of
all the edges that connected to node i, and it can be calculated as follows:

ki ¼
Xn

j¼1
aij ¼ kiin þ kiout ð5Þ

where kiout and kiin are the out-strength and in-strength of node i. n is the number of the
nodes in complex network.

Based on the structural characteristics of improved transition network, mathemat-
ical expectation of node distribution in a network is proposed to evaluate and measure
the structural complexity of improved transition network.

Fig. 2. Network structure of improved transition network.
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According to the weighted degree of node in a network, the probability set of
weighted degree is constructed and expressed as:

Q ¼ q1; q2. . .qi. . .qn½ � ð6Þ

where, the qi can be calculated using the following formula:

qi ¼ kiPn
i¼1 ki

ð7Þ

The mathematical expectation of node distribution in a network is calculated based
on the probability set Q, defined as:

E ¼
Xn

i¼1
qiki ð8Þ

3 Experimental Result and Analysis

In this paper, the EEG data is obtained from Department of Epileptology, University of
Bonn, Germany. This public database has five sets. The interictal periods (set D) and
ictal periods (set E) are utilized for evaluating the performances of the extracted feature
and the proposed detection algorithm. Each set has 100 single-channel EEG data
lasting 23.6 s. The EEG signals are recorded using 128 channel amplifiers and sampled
at a rate of 173.61 Hz. Every signal has 4097 points.

The improved transition network algorithm is applied to the EEG database to
extract the mathematical expectation of node distribution in a network.

In the process of complex network construction, the selection of parameters
determines the characteristics of the final network, so it will affect the classification
accuracy. In performance evaluation process, the interictal EEG and the ictal EEG are
regarded as the positive case and the negative case. In order to find out the best

Table 1. The classification results of the proposed method.

Method Data
length

Dimension of
modes

Sensitivity Specificity Accuracy

Improved transition
network

2048 3 98% 91% 94.5%
2048 4 96% 93% 94.5%
2048 5 95% 94% 94.5%
2048 6 96% 93% 94.5%
4096 3 97% 96% 96.5%
4096 4 98% 96% 97%
4096 5 98% 96% 97%
4096 6 98% 96% 97%
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performance of the classification method based on improved transition network, the
dimensions of the coarse graining modes are 3, 4, 5, and 6, respectively, the delay time
s is 1 and the data length are 2048 and 4096 points, respectively. Q1, Q2 and Q3 are
respectively the lower quartile, median and upper quartile corresponding to the
Euclidean distance sequence generated by 100 sample signals in the interictal periods.

The detailed classification results are shown in Table 1. As can be seen from
Table 1, data length is the most important factor affecting classification accuracy. Only
when the data reaches a certain length can the difference of network topological
characteristics represented by different data sets be more obvious. As the data length is
4096, 97% accuracy can be achieved.

When the accuracy is the same, we hope to achieve higher sensitivity and speci-
ficity at the same time. When the data length is 2048 and m is 5, the sensitivity and
specificity reach the same value. But when m is changed in a certain range, both
specificity and sensitivity are acceptable. Especially when the length of data reaches
4096, specificity and sensitivity will not be affected. The dimension of the coarse
graining modes in this method is not suitable to choose too large value. If the
dimension is too large, the number of nodes and the computational complexity in the
network will increase.

The mathematical expectation of node distribution with data length of 4096 and
m of 5 is shown in Fig. 3. Each ‘+’ presents the ictal signal and each ‘*’ presents the
interictal signal. The solid line in the figure is the threshold for the best classification.
As can be seen from Fig. 3, the feature values of interictal signals are more concen-
trated and the values of the ictal signals are very sparse.

In order to more vividly describe the difference of the mathematical expectation of
node distribution between interictal signals and ictal signals, Fig. 4 show the box plots
for signals using mathematical expectation of node distribution in network. There are
significant numerical differences between interictal signals and ictal signals.
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The classification result
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ictal

Fig. 3. The classification result with data length of 4096 and m of 5.
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Table 2 shows the accuracy of epileptic EEG single feature classification based on
improved transition network and other methods, which use same data sets. It shows that
the improved transition network algorithm based on the mathematical expectation of
node distribution in a network achieves the highest classification accuracy compared
with other established detection algorithms. Our method provides a new idea for
improving the algorithm of complex network construction.

4 Conclusions

In this paper, an improved transition network construction algorithm is proposed for
automatic seizure detection and classification. Firstly, we combine the proximity net-
work construction algorithm with the original transition network construction algorithm
to process EEG signals, which makes it easier to obtain the statistical characteristics of
epileptic data. Then, in order to reduce the computational complexity, we make dif-
ferent coarse graining modes as nodes in the network instead of each coarse graining
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Fig. 4. The box plots with data length of 4096 and m of 5.

Table 2. Classification accuracy of several detection algorithms.

Method Data length Feature Acc.

WVG [13] 1024 Modularity and weighted degree 93.25%
RQA [16] 1024 DET 90.5%
Sample entropy [15] 2048 *** 91%
DWT [2] 4096 Approximate entropy 95%
Proposed method 4096 Mathematical expectation 97%
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mode as node, and the edge weight is determined by the transition frequency. Finally,
the mathematical expectation of node distribution is extracted to verify the classifica-
tion performance.

According to the experimental results, we conclude that the method proposed in
this paper can effectively distinguish the interictal signals and ictal signals. With the
increase of epilepsy patients, we hope that our method can provide a good idea for the
automatic detection of epilepsy.
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Abstract. Hysteresis is a nonlinear phenomenon which is involved with
dynamics, non-smoothness and multi-valued mapping. It usually exists in elastic
materials, smart materials, and energy-storage materials. For describing the
characteristic of hysteresis, a basis function based neural network model is
proposed in this paper. In this method, the multi-valued mapping of hysteresis is
transferred into a one-to-one mapping with an expanded input space involving
the input variable and a constructed hysteretic auxiliary function. Thus, the
neural network can be employed to approximate the characteristic of hysteresis.
Finally, the method is used to the modeling of hysteresis in a smart material
based sensor.

Keywords: Hysteresis � Expanded input space � Neural network � Modeling

1 Introduction

It is known that hysteresis usually exists in many smart materials such as piezoceramic,
ionic polymer-metal composite (IPMC) and electromagnetic materials etc. [1–3].
Hysteresis is a nonlinear phenomenon with dynamics, non-smoothness and multi-
valued mapping. The existence of hysteresis usually affects the performance of actuators
or sensors made by these smart materials, e.g. dynamic performance and positioning
accuracy etc. Accurate modeling of hysteresis in smart material based actuators or smart
material based sensors is important for the design of a model based compensator to
reduce the effect of hysteresis.

It has been found out that modeling of hysteresis is a challenge due to its features of
multi-valued mapping and non-smoothness. Up till now, there have been some models
proposed to describe the hysteresis phenomenon such as Preisach [5], Prandtl-Ishlinskii
(PI) [6] and Bouc-Wen models [4]. However, both Preisach model and PI model are
having the structure with a sum of weighted hysteretic operators and used for
description of rate-independent hysteresis. Moreover, they usually employ lots of
hysteretic operators even more than hundred for modeling of hysteresis. Additionally,
Bouc-Wen model is usually used to describe the hysteresis between restoring force and
displacement. It can also be used to describe the rate-dependent hysteretic behavior.
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However, the identification of a Bouc-Wen model needs to use a method of nonlinear
optimization [4] which may encounter the obstacle that the optimization may trap into
local minima. Moreover, the parameters needed to be estimated in the Bouc-Wen
model are involved in a group of non-smooth components, the gradients of the hys-
teresis output with respect to the estimated parameters may not exist at non-smooth
points of the system. Furthermore, it is noted that the conventional identification
methods cannot be utilized to model hysteresis behavior, directly, due to its charac-
teristic of multi-valued mapping.

For modeling of hysteresis, neural networks are potential measures due to their
well-known capability of universal approximation. However, the neural networks are
applicable only for modeling the systems with one-to-one mapping between the input
and output [7, 8]. Those neural networks will be unable to model the hysteresis which
has the features of non-smoothness and multi-valued mapping between the input and
output. Hence, using neural networks for modeling hysteresis directly becomes a
challenge.

For modeling the hysteresis with non-smoothness and multi-valued mapping, Refs.
[7, 8] proposed the so-called expanded input space based neural network hysteresis
models. In these models, the sigmoidal functions are used as the active functions of
neurons. For the simplification of modeling procedure, in this paper, a simple basis
function based neural network is proposed for modeling of hysteresis. In this method,
an expanded input space is built to transform the multi-valued mapping between input
and output of hysteresis to a one-to-one mapping. Then, a basis function based neural
network is applied to modeling of hysteresis on the expanded input space. The pro-
posed basis function has a simple structure and can be trained conveniently just by
least-square-type algorithm.

For test the performance of the proposed modeling method, the experimental results
of modeling for an IPMC sensor are presented.

2 Hysteresis in Smart Material Based Sensors

Ionic polymer-metal composite (IPMC) is a kind of electroactive polymer (EAP) ma-
terial, which is also called as artificial muscle. IPMC can generate electric signal
correlated with its mechanical deformation or displacement. Based on this property, it
can be used as a sensor to measure displacement and deformation of flexible mecha-
nism. It is known that IPMC is usually composed of three layers, namely, an ion-
exchange polymer membrane sandwiched in between noble metal electrodes. The
negatively charged anions, in the polymer membrane, covalently fixed to polymer
chains are balanced by positively charged moving cations. When an externally
mechanical force to make IPMC deformed, the moving cations will be redistributed. In
this case, IPMC will produce a detectable electric signal (e.g. voltage or current) which
is associated with the externally mechanical excitation [2, 9]. This phenomenon enables
IPMC to be used as a sensor to measure the displacement, vibration, or deformation of
a load. Conversely, based on its inverse electroactive feature, IPMC can also be used as
an actuator when voltage is implemented on it.
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Moreover, IPMC can be used as a sensor to measure mechanical displacement in
humid or flexible case for IPMC has the property that generates electrical signal cor-
responding to its mechanical deformation.

Just like most smart materials, hysteresis is also inherent in IPMC materials.
Figure 1 has shown the experimental result having shown that the hysteresis in IPMC
sensor has dynamic drift and rate-dependent characteristic. As hysteresis is a non-
smooth function with multi-valued mapping, the conventional neural networks may fail
to model it properly due to the conventional neural networks can only be applied to
modeling of smooth systems with one-to-one mapping [7, 8].

Therefore, in this paper, an important task is to transform themulti-valuedmapping of
hysteresis to a one-to-one mapping. In order to realize the task to transform the multi-
valuedmapping between the input and output of hysteresis to a single-valuedmapping, an
expanded input spacewill be constructed using the system input and a hysteresis auxiliary
function [10]. The hysteretic auxiliary function introduced into the input space is served as
an additional coordinate to construct an expanded input space. Actually, the function of
the hysteretic auxiliary function is used as an “imagine” of hysteresis that can extract the
movement tendency of hysteresis, such as ascending, descending and turning point etc.

3 Expanded Input Space

From the well known Preisach formula to describe hysteresis [10], we have

H½u�ðkÞ ¼
ZZ
S

lða; bÞca;b½u�ðkÞdadb

¼
ZZ
Sþ 1

lða; bÞdadb�
ZZ
S�1

lða; bÞdadb
ð1Þ
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Fig. 1. Rate-dependent behavior of hysteresis with drift in IPMC sensor.
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where H½u�ðkÞ is the output of hysteresis, lða; bÞ is the weighting function and
ca;b½u�ðkÞ is the hysteretic operator. Then, it can be decomposed as

Hþ ½u�ðkÞ ¼ H�½up� þDHþ ½u� up�;Du[ 0

H�½u�ðkÞ ¼ Hþ ½up� � DH�½up � u�;Du\0
ð2Þ

where up is the local extreme of the input, Hþ ½up� and H�½up� represent the dominant
maximum and minimum of the output of the hysteretic model, while DHþ ½u� up� and
DH�½up � u� are the incremental output of the model as uðkÞ monotonically increases
or decreases from the extreme. It is known that the hysteresis described in (1) has the
following feature:

For two different time instants k1 and k2, if uðk1Þ ¼ uðk2Þ, H½u�ðk1Þ 6¼ H½u�ðk2Þ due
to the different input extremes. Hence, suppose that an auxiliary function satisfies
f ½u�ðk1Þ 6¼ f ½u�ðk2Þ can be found. Then, we introduce it to the expanded input space to
uniquely determine the output of hysteresis on ðuðkÞ; f ½u�ðkÞÞ.
Definition 1: Define the hysteresis auxiliary function as

f ðkÞ ¼ f ðuexÞþ juðkÞ � uexj f juðkÞ � uexjð Þ; ð3Þ

where uex is the local extreme of the input, and f ðxÞ� 0 is a smooth and monotonic
function not dependent on time k, and f(uex) is the current local extreme of the auxiliary
function.

Remark: Based on Definition 1, it is known the procedure to construct an auxiliary
function, i.e. (i) selecting a piecewise function with the structure shown as in Eq. (3),
which includes local extreme of input and the output of function corresponding to the
local extreme of input. (ii) each segment of piecewise function is a smooth and
monotonic function not dependent on time k. (iii) the switch of the piecewise function
is triggered at the extreme of input.

Then, we have

Definition 2: Define

U ¼ fuðkÞg ð4Þ

as the input set. Then, the expanded input space is defined as

E ¼ fuðkÞ; f ðkÞg ð5Þ

Afterward, we have
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Theorem: Suppose uðkÞ 2 U and f ðkÞ is the hysteresis auxiliary function defined by
(3) and

U ¼ fHðkÞg ð6Þ

is the output set of hysteresis. If there exists a continuous mapping C, such that

Ej �!C U ð7Þ

Then, C is a one-to-one mapping.

Proof: Please refer to Appendix.

4 Basis Function Based Neural Network

On the proposed expanded input space, the multi-valued mapping of hysteresis can be
transformed to a one-to-one mapping.

Subsequently, a basis function based neural network (BFBNN) on the constructed
expanded input space is used to describe the hysteresis characteristic of IPMC sensor.
The advantage of using BFBNN is that it has a simpler model structure determined
based on the parsimony principle, which does not require a large number of neural
basis functions, hysteretic operators, or not rely on empirical skills by comparing with
the modeling methods provided by Refs. [10, 11] and [12]. Thus, the corresponding
model on expanded input space is defined by

yðkÞ ¼ g½uðk � 1Þ; fðk � 1Þ; yðk � 1Þ� ð8Þ

where gð�Þ is the mapping between the input space and the output of system,
uðk � 1Þ ¼ ½uðk � 1Þ; � � � ; uðk � nuÞ�T and yðk � 1Þ ¼ ½yðk � 1Þ; � � � ; yðk � nyÞ�T are
the input vector and output vector, respectively; fðk � 1Þ ¼ ½f ðk � 1Þ; � � � ; f ðk � nf Þ�T
is the output vector of hysteretic auxiliary function. nu, nf and ny are the lags for
sequences fug, ff g and fyg, respectively. Then, (8) can also be described by:

yðkÞ ¼
Xp
i¼1

hi zi ðkÞ; ð9Þ

where hi is the ith weighting factor, ziðkÞ is the ith basis function of the neural network
while p is the number of basis function. Figure 2 illustrates the corresponding structure
of the basis function based neural network.
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The candidates of basis function can be sin(u), cos(u); 1/(1 + exp(−x));
exp(−(x − m)2/q2); or uiyj. The selection of the proper basis function depends upon the
specific requirement of application. In this paper, we use uiyj as the basis function just
for the simple structure of the neural model. Thus, Eq. (8) can be represented by

yðkÞ ¼
Xp
i1¼1

ĥi1zi1ðkÞþ
Xp
i1¼1

Xp
i2¼i1

ĥi1i2zi1ðkÞzi2ðkÞþ � � �

þ
Xp
i1¼1

� � �
Xp

iq¼iq�1

ĥi1���iq zi1ðkÞ � � � ziqðkÞþ ĥn1 þ 1;

ð10Þ

where ĥn1 þ 1 is the estimated bias, bh ¼ ½ĥ1; � � � ; ĥn1 ; ĥn1 þ 1�T is the estimated coefficient
vector, n1 ¼ ðpþ qÞ!=ðp!q!Þ � 1, and q is the order of model. Define the variable
vector as

hðkÞ ¼½zi1ðkÞ; � � � ; zpðkÞ; z1ðkÞ � z1ðkÞ; � � � ; zpðkÞ � zpðkÞ;
� � � ; z1ðkÞ � � � z1ðkÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

q

; . . .; zpðkÞ � � � zpðkÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
q

; 1�T : ð11Þ

Then, the BFBNN model can be denoted as:

yðkÞ ¼ hTðkÞbhðk � 1Þþ eðkÞ; ð12Þ

where eðkÞ is the modeling residual. Hence, the problem to model the dynamic drift and
hysteresis becomes the training of the BFBNN model.

Fig. 2. Structure of basis function based neural network.
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5 Training of Basis Function Based Neural Network

As the expanded input space based BFBNN has a very simple structure shown as in
Eq. (12), the least square algorithm can be used for network training. Then, the cor-
responding recursive training algorithm is shown as follows:

eðkÞ ¼ yðkÞ � hTðkÞbhðk � 1Þ; ð13Þ

bhðkÞ ¼ bhðk � 1ÞþKðkÞeðkÞ; ð14Þ

SeðkÞ ¼ kðkÞhTðkÞPðk � 1ÞhðkÞþ lðkÞ
X̂

ðkÞ; ð15Þ

KðkÞ ¼ kðkÞPðk � 1ÞhðkÞS�1
e ðkÞ; ð16Þ

PðkÞ ¼ 1=lðkÞð Þ½Pðk � 1Þ �KðkÞhTðkÞPðk � 1Þ�; ð17Þ

and

X̂
ðkÞ ¼

X̂
ðk � 1Þþ qðkÞ½r̂2ðkÞ �

X̂
ðk � 1Þ�; ð18Þ

where qðkÞ� 1 is the convergence factor, lðkÞ ¼ qðk�1Þ
qðkÞ 1� qðkÞ½ � is the forgetting

factor, r̂2ðkÞ ¼ r̂2ðk � 1Þþ e2ðkÞ=k, Pð0Þ ¼ gI, I is an identity matrix, 0\g\1, and
kðkÞ is a switch coefficient and defined as

kðkÞ ¼
0; eðkÞj j � jrj

bðr̂2ðkÞ�r2Þ
hT ðkÞPðk�1ÞhðkÞr2 otherwise

(
; ð19Þ

where 0\b� lðkÞP̂ðkÞ.

6 Experimental Results

In this experiment, the sampling frequency is chosen as 1000 Hz. Also, the proposed
BFBNN model on expanded input space is applied to the modeling of hysteresis
behavior of IPMC sensor. To determine the architecture of the model, the criterion
shown in the following is defined to evaluate what structure can properly describe the
behavior of the IPMC sensor.

CðnÞ ¼ 1
n

Xn
k¼1

ðyðkÞ � ŷðkÞÞ2: ð20Þ

Then, ICðnÞ and TCðnÞ are used to denote the values of CðnÞ in training and model
validation procedures, respectively. Afterwards, the proposed training algorithm is
employed to estimate the coefficients of the model with the corresponding model
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architecture. Table 1 presents the corresponding values ICðnÞ and TCðnÞ of different
model structures, so the structure of the proposed model can be selected as ny ¼ 0,
nu ¼ 9, nf ¼ 9, when q ¼ 2, and in this case, TC(n), the criterion of model validation
reaches the smallest value. For comparison, a classical nonlinear auto-regressive and
moving-average with exogenous input (NARMAX) is also used to describe the char-
acteristics of the IPMC sensor. The structure parameters of the NARMAX model are
chosen as ny ¼ 0, q ¼ 2 and nu ¼ 9, respectively.

Figure 3 shows the comparison of model validation between the proposed model
and the BFBNN model not on the expanded input space. To show the detail of the
model validation results, the data from 0 s to 0.098 s are removed to avoid illustrating
the influence of initial values. In Fig. 3(a), the dotted line denotes the output of the
proposed model while the dot and dash line represents the output of classical NAR-
MAX model. In Fig. 3(b), the solid line and dotted line denote modeling errors of the
proposed model and classical NARMAX model, respectively. Note that the modeling
error of the classical NARMAX model illustrates larger fluctuation and the maximum
absolute model error of the classical NARMAX model is 0.14 mV, while that of the
proposed modeling method is 0.014 mV, respectively. Moreover, Fig. 4 shows the
comparison of output versus input curves between the proposed modeling strategy and
the classical NARMAX modeling result. Obviously, the proposed model is more
suitable to describe the performance of IPMC sensor.

Table 1. Determination of model structure of IPMC sensor.

ny ¼ 0 nu ¼ 7
nf ¼ 7

nu ¼ 8
nf ¼ 8

nu ¼ 9
nf ¼ 9

nu ¼ 10
nf ¼ 10

ICðnÞ 1:41� 10�4 1:01� 10�5 1:58� 10�6 1:23� 10�7

TCðnÞ 1:45� 10�4 1:20� 10�5 4:68� 10�6 1:29� 10�5
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Fig. 3. Comparison of model validation results between the proposed model and the classical
NARMAX model.
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7 Conclusions

In this paper, a BFBNN model on the expanded input space to describe the hysteretic
and dynamic drifting behavior of IPMC sensor is developed. A method for constructing
a proper hysteresis auxiliary function for expanded input space is also presented. Then,
a training algorithm is presented to train the BFBNN model of IPMC sensor.

In the modeling experiment, it has shown that the proposed method can achieve
better modeling result of hysteresis and dynamic drift in IPMC sensor than a classical
NARMAX model.
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Appendix

The proof of theorem is as follows:

For any HðkÞ 2 U, there, at least, exists a uðkÞ 2 U. Thus, Ej �!C U is a surjective
mapping. Figure 5 illustrates the case of surjective mapping of the expanded input

space. Now, we prove Ej �!C U is also a one-to-one mapping.

Case 1: For two different time instants k1 and k2, assume uðk1Þ ¼ uðk2Þ are not
extremes, but the output of hysteresis Hðk1Þ 6¼ Hðk2Þ for the effect of the different
extremes related to the output of hysteresis. In this case, we can choose a proper f ðkÞ
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Fig. 4. Comparison of the input-output curves between the proposed model and the classical
NARMAX model (the proposed model: dotted line; the classical NARMAX model: dashed line).
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satisfies f ðk1Þ 6¼ f ðk2Þ. Then, Ej �!C U is an injective mapping. To demonstrate the
mapping of Case 1, Fig. 6 is presented.

Case 2: If uðk1Þ ¼ uðk2Þ and Hðk1Þ ¼ Hðk2Þ where uðk1Þ and uðk2Þ are extremes,
based on the characteristic of hysteresis [13], it leads to Hðk1Þ ¼ Hðk2Þ. In this case, it

also results in f ðk1Þ ¼ f ðk2Þ. In this situation, Ej �!C U is also an injective mapping.
The corresponding description of Case 2 is illustrated in Fig. 7.

In terms of what we discussed, Ej �!C U is not only a surjective but also an injective
mapping. Therefore, it is a bijection, i.e. C is a one-to-one mapping.

Fig. 5. The surjection of expanded input space.

Fig. 6. The injective mapping of expanded input space (Case 1).

Fig. 7. The injective mapping of expanded input space (Case 2).
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Abstract. We have investigated the density of states of the Edwards-Anderson
model and derived an approximation formula which agrees well with the results
of numerical experiments. It is important that the formula can well approximate
not only the density of states, but also its first and second derivatives, which are
most valuable for obtaining the critical parameters of the system. The evalua-
tions can be further used for examining the behavior of 2D Ising models at
different temperatures, particularly for tackling Bayesian inference problems and
learning algorithms.

Keywords: Edwards-Anderson model � Spin glass � Global state �
Density of states

1 Introduction

The finding of the statistical sum is the key goal of statistical physics and informatics.
A few conceptual models permit exact solutions [1]. Among all the models the 2D
Ising model [2] is most illustrative. Though simple, it proved very important for
investigating critical phenomena. Having made much contribution to the development
of the spin glass theory, the Edwards-Anderson model [3] and Sherrington-Kirkpatrick
model [4] are also worth pointing out. However, the models that allow exact solutions
are very few. That is why numerical methods are used to examine the behavior of
complex systems. We would like to mark two most advanced methods. First, it is the
Monte-Carlo approach [5, 6] allowing us to determine and examine the critical
parameters of a system [7, 8]. The capabilities and accuracy of the method are scru-
tinized in papers [9, 10]. Unfortunately, the method requires a large amount of com-
putation and doesn’t permit us to find the free energy directly. Based on the ideas
formulated in [11, 12], the second approach has been recently implemented as a fast
algorithm [13, 14]. The point of the approach is that the finding of the free energy is
reduced to the computation of the determinant of a particular matrix. The algorithm is
popular because the free energy is computed to machine accuracy with concurrent
determination of ground-state energy E0 and configuration S0.

We investigate the distribution of states of a finite spin system. Its interaction
matrix is of Edwards-Anderson type and has a quadratic-functional Hamiltonian (1).
This sort of functional is often used in machine learning and image processing. Since
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quantities si ¼ �1 can indicate the affiliation to either of two pixel classes in a pattern
(background/object) or the activity of neurons in a Bayes neural network, the use of the
approach in such systems can reveal new algorithms for machine learning.

2 The Density of States

Let us consider a system which is described by Hamiltonian:

E ¼ � 1
2N

XN
i6¼j

Jijsisj ð1Þ

This is a set of N Ising spins si ¼ �1 (i ¼ 1; 2; . . .;N) located at the nodes of a
planar grid, its nodes being numbered by index i.

We deal with a planar Edwards-Anderson model (EA model) where spins are
positioned at the nodes of a two-dimensional grid. Each spin has non-zero connections
with four nearest neighbors; couple interactions Jij are normally distributed ð�J ¼ 0,
rJ ¼ 1Þ

Our interest is the free energy of the system:

f ¼ � 1
N
ln Z; Z ¼

X
S
e�NbEðSÞ; ð2Þ

where statistical sum Z is defined as a sum over all possible configurations S, and
b ¼ 1=kT is the inverse temperature. The knowledge of the free energy allows us to
calculate the key measurable parameters of the system:

U ¼ @f
@b

; r2 ¼ � @2f

@b2
; C ¼ �b2

@2f

@b2
; ð3Þ

where internal energy U ¼ Eh i is the ensemble average at a given b, r2 ¼ E2
� �� Eh i2

is the energy variance, and C ¼ b2r2 is the specific heat. Papers [15–17] give thorough
description of how quantities (3) depend on the grid dimension and how they change
when the matrix with a constant non-zero mean suffers from slight noise. Now we
concentrate on the analysis of the density of states of EA model when the interaction
matrix elements comply with a normal distribution and have a non-zero mean. Let
DðEÞ be the number of states with energy E. Then the statistical sum can be represented
as Z ¼ P

E DðEÞe�NbE. Going from summation to integration, we get the following
expression which is accurate to an insignificant constant:

Z�
Z1

�1
eN½WðEÞ�bE�dE ð4Þ
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where WðEÞ ¼ lnDðEÞ=N. If we evaluate integral with the saddle point method, we get
Z� exp½�Nf ðbÞ�, where

f ðbÞ ¼ bE �WðEÞ; dWðEÞ
dE

¼ b ð5Þ

The first of expressions (5) defines the free energy, the second determines E at the
saddle point where the derivative of WðEÞ � bE becomes zero.

Papers [13, 14] offer an algorithm for accurate computation of the free energy of
planar grids. The algorithm allowed us to compute function f ¼ f ðbÞ and its derivatives.
That in turn permits us to investigate the energy distribution DðEÞ ¼ exp NWðEÞ½ �.
Indeed, it isn’t difficult to derive from Eq. (5) the spectral function:

WðEÞ ¼ bE � f ðbÞ;E ¼ df
db

ð6Þ

and its derivatives

dW
dE

¼ b;
d2W
dE2 ¼ d2f

db2

� ��1

ð7Þ

Note that WðEÞ is the entropy up to a constant, and Eq. (6) is the well-known
Lagrange transformation which is also applicable to the analysis of state distribution of
finite-dimension models [18, 19]. It follows from these equations that when b changes
from 0 to ∞, E changes from 0 to E0, and we have a couple of values of E and WðEÞ
for each b. Thereby we define the form of functionWðEÞ and its derivatives. Figures 1–
3 give the plots of function W(E) built around experimental data. In the figures the
values plotted as abscissas present parameter e ¼ E= E0j j.

Fig. 1. (a) The density of states; the solid line represents the analytical expression, marks stand
for experimental data (only one in ten points is depicted). (b) The square of the difference
between theoretical and experimental data at each point.
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3 Approximating the Experimental Data

It is almost impossible to find the density of states of a system because the number of
its states grows with dimensionality exponentially. The exact analytical expressions are
also impossible to get. In the previous paragraph, using free energy f ¼ f ðbÞ, we
determined density function WðEÞ that can be computed experimentally.

Examining distribution WðEÞ, we have come to the approximation formula:

W eð Þ ¼ ln 2� a 1� beð Þ ln 1� ceð Þþ 1þ beð Þ ln 1þ ceð Þ½ �: ð8Þ

where

e ¼ E= E0j j ð9Þ

Varying free parameters a, b, and c, it is possible to determine their optimal values:

a ¼ 0:32; b ¼ 1:19; c ¼ 0:94: ð10Þ

which give the best agreement with experimental data.
Figure 1a shows the agreement between experimental (marks) and formula (8)

(solid line). It is seen that (8) describes WðEÞ excellently. The mean square deviation of
approximation (Fig. 1b) is dh i � 3:4 � 10�8 throughout the range. The worst agreement
is observed at the ends of the distribution because there are few states near the global
minimum and they are hard to be discovered experimentally. To visualize the
approximation error, the plot of error d0 is presented in Fig. 1b. This error is the square
of the difference between theoretical (8) and experimental data at each point:

d0 ¼ WðEÞ �WexpðEÞ
� �2 ð11Þ

Good agreement with experimental data also results if we take the derivative of
expression (8):

@W
@E

¼ � a
E0j j b ln

1þ ce
1� ce

þ 2c b� cð Þe
1� c2e2

� 	
ð12Þ

It is seen from Fig. 2a that expression (12) provides excellent description of the
behavior of the first derivative of the density function without having to adjust
parameters or add new ones. The approximation error (Fig. 2b) doesn’t exceed 2 � 10�5

within [−0.85; 0.85] interval, and is one to three orders of magnitude smaller in the
middle of the distribution.

Figure 2b shows the plot of error d1, which is the squared difference between
theoretical (12) and experimental data at each point:

d1 ¼ dW
dE

� dWexp

dE

� 	2
ð13Þ

176 M. Y. Malsagov et al.



A similar result comes out with the second derivative:

@2W
@E2 ¼ � 2ac

E2
0
� 2b� c� c3e2

1� c2e2ð Þ2 : ð14Þ

In Fig. 3b the effect of deficiency of experimental data near the global minimum is
quite noticeable. Expression (13) provides good agreement in the middle portion of the
distribution, disagreement growing rapidly at the ends of the distribution.

Figure 3b presents the plot of error d2, which is the squared difference between
theoretical (14 and experimental data at each point:

Fig. 2. (a) the first derivative of the density function; the solid line indicates the theory, marks
stand for experimental data (only one in ten points is shown). (b) the squared difference between
theoretical (12) and experimental data at each point.

Fig. 3. (a) the second derivative of the density function: the solid line indicates the theory,
marks stand for experimental data (only one in ten points is shown). (b) the squared difference
between theoretical (12) and experimental data at each point.
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d2 ¼ d2W
dE2 � d2Wexp

dE2

� 	2
ð15Þ

Nevertheless, expressions (8) and (9) are excellent to describe not only the density
function itself (6), but also its first and second derivatives (7). It is important that
experiments showed that with given normalization of Hamiltonian (1) the change of
dimensionality doesn’t change the form of the density function and the corresponding
plots coalesce. For this reason expression (8) can be used to describe the EA model on
a planar grid of any dimensionality.

4 Conclusion

Having used the experimental data of accurate computations of the free energy, we
could build the function of the density of states for the EA model on a planar grid. We
obtained the simple expression (8) that defines the density function. More importantly,
the approximation proved so good that it allowed us to derive the approximations for
the first and second derivatives of the density function without having to use additional
adjustments. The latter fact is very important: research [21] shows that even a slight
deviation of the density of states can bring about radical changes of thermodynamical
properties of the system. For instance, the relative difference between the densities of
states of two-dimensional models of Ising and Bethe lattice is no greater than 1%.
However, the two models exhibit widely different properties: in the Ising model the
heat capacity has a divergence at the critical point, and in the Bethe model it
demonstrates a finite jump.

In the future the findings of [20] may allow us to connect the free parameters of the
approximation to the statistical characteristics of the grid-element distribution. We hope
that the simple approximation formulae we have obtained will enable us to develop
new algorithms for computer-aided image processing and tackle other planar neural-
net-based Bayes-inference problems.
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Abstract. Real-world data are often linked with each other since they
share some common characteristics. The mutual linking can be seen as
a core driving force of group analysis. This study proposes a general-
ized linked canonical polyadic tensor decomposition (GLCPTD) model
that is well suited to exploiting the linking nature in multi-block ten-
sor analysis. To address GLCPTD model, an efficient algorithm based
on hierarchical alternating least squa res (HALS) method is proposed,
termed as GLCPTD-HALS algorithm. The proposed algorithm enables
the simultaneous extraction of common components, individual compo-
nents and core tensors from tensor blocks. Simulation experiments of
synthetic EEG data analysis and image reconstruction and denoising
were conducted to demonstrate the superior performance of the proposed
generalized model and its realization.

Keywords: Linked tensor decomposition ·
Hierarchical alternating least squares · Canonical polyadic ·
Simultaneous extraction

1 Introduction

Linked tensor decomposition (LTD) is an emerging technique for group analysis
in recent years, specially designed for simultaneous analysis of multi-block tensor
data. It has been successfully applied in the fields of neuroscience [1], multi-
dimensional harmonic retrieval [2], array signal processing [3] and metabolic
physiology [4].

Linked tensor decomposition can be seen as an extension of tensor decompo-
sition applied to single-block tensor [5–7] in multi-block data analysis, e.g., anal-
ysis of electrophysiological (EEG) data collected from different subjects under a
certain stimulus, which can be naturally linked together for sharing the similar
brain activities [1]. LTD method can take full advantage of such linking/coupling
c© Springer Nature Switzerland AG 2019
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information among data blocks to improve the decomposition identifiability [3].
In addition, LTD method has its advantage in imposing constraints on par-
ticular modes or components compared to its matrix counterpart [9,10]. Any
combination of constraints including independence, sparsity, smoothness and
non-negativity can be added more easily and flexibly [11]. Moreover, impos-
ing specific constraints on different modes or components would contribute to
obtaining more reasonable decomposition solutions with convincing interpreta-
tions [6,8,11]. For example, the constraint of non-negativity is applied in the
processing of ERP data with time-frequency representation [6]. Furthermore,
tensor decomposition is superior to two-way matrix factorization such as solu-
tion uniqueness and component identification in some cases [12]. To unfold some
of the modes in matrix factorization will inevitably loss the potential interactions
under the multiway structure [13]. Therefore, it is reliable to take the high-order
characteristics of tensors into consideration in data analysis.

With the LTD model, simultaneous extraction of common components, indi-
vidual components and core tensors can be obtained. The notion ‘linked’ is based
on the assumption that different data blocks share the same or highly correlated
components while retaining individual information [14]. In group data analysis,
e.g. face images collected from different subjects with the same expression [14], or
EEG data collected from different participants under the same stimulus [8], all sub-
jects may share the similar or even identical information, which can be regarded
as linking factors among tensors. However, individual characteristics will exist in
particular subjects at the same time, which may lead to inconsistent number of
components for tensors. Obviously, this inconsistency does not match the linked
canonical polyadic tensor decomposition (LCPTD) model in [14]. Therefore, this
study aims to develop a more generalized and flexible model with inconsistent com-
ponent number for linked tensor decomposition. To obtain the solution of the new
model, we propose a generalized linked canonical polyadic tensor decomposition
algorithm based on HALS strategy [7], which is termed as GLCPTD-HALS algo-
rithm. The experiment results show that the generalized model is more practical
in multi-block data analysis, and its realization can achieve better performance.

This paper is organized as follows. Section 2 introduces LCPTD model and
its generalization. In Sect. 3, GLCPTD-HALS algorithm is proposed. In Sect. 4,
simulation experiments are conducted to verify the performance of proposed
algorithm. The last section summarizes this paper.

2 Problem Formulation

In this section, we mainly introduce the linked canonical polyadic tensor decom-
position (LCPTD) model [14] and its generalization. CP model [15] is also called
parallel factor analysis (PARAFAC) [16] and canonical composition (CANDE-
COMP) [17]. CP decomposition (CPD) can decompose a tensor into a minimal
number of rank-1 tensors, and the minimum number R is termed as the rank of
a tensor. It can achieve good unique identification under some mild conditions
without any special constraints. Please refer to [18] for a detailed description of
standard notations and basic tensor operations.
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2.1 Review of LCPTD Model

To deal with multi-block tensors with coupling information, researchers in [14]
proposed a model of simultaneous decomposition, namely LCPTD model, which
is defined as follows:

X (s)≈X̂
(s)

=
R∑

r=1

λ(s)
r u(1,s)

r ◦ u(2,s)
r ◦ · · · ◦ u(N,s)

r

=
�
G(s);U (1,s),U (2,s), · · · ,U (N,s)

�
, (1)

where X (s) ∈ �I1×I2×···IN and X̂
(s) ∈ �I1×I2×···IN denote the original and

estimated tensors, respectively. U (n,s) =
[
u (n,s)

1 ,u (n,s)
2 , · · · ,u (n,s)

R

]
∈ �In×R

denotes the n-mode factor matrix of sth tensor. S , R, N are denoted as the
number, rank and order of tensors, respectively. G(s) ∈ �R×R×···R denotes
the sth core tensor with non-zero entries only on the super-diagonal. λ

(s)
r is

the (r, r, ..., r)th element of G(s). The LCPTD model assumes that each factor
matrix U (n,s) =

[
U

(n)
C U

(n,s)
I

]
∈ �In×R consists of two parts: U (n)

C ∈ �In×Ln ,

0 ≤ Ln ≤ R and U
(n,s)
I ∈ �In×(R−Ln). The former shared by all tensor blocks

represents the coupling (same or highly correlated) information, whereas the
latter corresponds to the individual characteristics of each tensor block.

2.2 Generalization of LCPTD Model

Even though multiple data blocks are collected under the same condition, indi-
vidual characteristics will exist in the particular blocks due to the individual dif-
ferences. These characteristics may lead to inconsistent number of components
for tensors. Obviously, this inconsistency does not match the LCPTD model.
Therefore, we extend the LCPTD model to the generalized case with different
component number R(s), termed as GLCPTD, which is defined as:

X (s)≈X̂
(s)

=
R(s)∑

r=1

λ(s)
r u(1,s)

r ◦ u(2,s)
r ◦ · · · ◦ u (N,s)

r

=
�
G(s);U (1,s),U (2,s), · · · ,U (N,s)

�
. (2)

The generalized LCPTD model still assumes that each factor matrix U (n,s) =[
U

(n)
C U

(n,s)
I

]
∈ �In×R(s)

consists of two parts: U (n)
C ∈ �In×Ln , 0 ≤ Ln ≤ min

(R(s)) and U
(n,s)
I ∈ �In×(R(s)−Ln), representing the same meanings with LCPTD

model. G(s) ∈ �R(s)×R(s)×···R(s)
denotes the sth core tensor.

Figure 1 illustrates the conceptual model of dual-linked tensor decomposition
based on CP model (all tensors are linked together by the common parts U

(1)
C

and U
(2)
C ).
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Fig. 1. Conceptual illustration of GLCPTD model with dual-linked parts [11]

3 Realization of GLCPTD Model

In this section, we aim to provide a solution of how to solve the above-
mentioned GLCPTD model through HALS strategy [7]. The optimization crite-
rion of squared Euclidean distance minimization is utilized to minimize the error
between the original and estimated tensors. Therefore, the cost function can be
expressed as:

min

S∑

s=1

∥∥∥∥∥∥
X (s) −

R(s)∑

r=1

λ(s)
r u(1,s)

r ◦ u(2,s)
r ◦ · · · ◦ u (N,s)

r

∥∥∥∥∥∥

2

F

(3)

s.t.u (n,1)
r = · · · = u(n,S)

r , r ≤ Ln,
∥∥∥u (n,s)

r

∥∥∥ = 1, n = 1 · · · N, r = 1 · · · R(s), s = 1 · · · S.

The above minimized optimization problem can be transformed into
max(R(s)) sub-problems via HALS strategy, which can be solved sequentially
and iteratively as follows:

D
(r)
F (λ(s)

r ,u(n,s)
r ) =

S∑

s=1,r≤R(s)

∥∥∥Y (s)
r − λ(s)

r u(1,s)
r ◦ u(2,s)

r ◦ · · · ◦ u(N,s)
r

∥∥∥
2

F
, (4)

where Y (s)
r

.= X(s) − ∑R(s)

k �=r λ
(s)
k u

(1,s)
k ◦ u

(2,s)
k ◦ · · · ◦ u

(N,s)
k . For the solution of

u
(n,s)
r , we only set the derivative of D

(r)
F (λ(s)

r ,u
(n,s)
r ) with respect to u

(n,s)
r to

zero. The learning rule of u(n,s)
r can be formulated as:

u(n,s)
r =

⎧
⎨

⎩

∑
s

(
Y (s)

r,(n)λ
(s)
r {u (s)

r }�−n

)
/
∑
s

(
λ
(s)T
r λ

(s)
r

)
, r ≤ Ln,

Y (s)
r,(n){u(s)

r }�−n/λ
(s)T
r , r > Ln,

(5)
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where Y (s)
r,(n) is the mode-n matricization of Y (s)

r . {u(s)
r }�−n = u

(N,s)
r � · · · �

u
(n+1,s)
r �u

(n−1,s)
r � · · ·�u

(1,s)
r and ‘�’ denotes the Khatri-Rao product. If r ≤

Ln, u(n,s)
r will be calculated by combining all tensor information and assigned

to each s. Otherwise, it needs to be calculated separately. u (n,s)
r needs to be

normalized to unit variance by u(n,s)
r ← u(n,s)

r /‖u (n,s)
r ‖2 in each iteration. After

N iterations of u(n,s)
r , the (r, r, ..., r)th element λ

(s)
r of core tensors is updated

as follows:
λ(s)
r ← Y (s)

r ×1 u(1,s)
r ×2 u(2,s)

r · · · ×N u(N,s)
r . (6)

These max(R(s)) stages are alternatively updated one after another until
convergence. In order to impose non-negativity, a simple “half-rectifying” non-
linear projection is applied as u(n,s)

r ← ‖u (n,s)
r ‖+ or λ

(s)
r ← ‖λ

(s)
r ‖+ after (5) and

(6). We summarize the extended GLCPTD-HALS algorithm in Algorithm 1.

Algorithm 1: GLCPTD-HALS algorithm
Input: X (s), Ln and R(s), n = 1, · · · , N , s = 1, · · · , S
Initialization: G(s), U (n,s), u(n,s)

r ← u(n,s)
r /‖u(n,s)

r ‖2

E(s) = X (s) − ∑R(s)

r λ
(s)
r u

(1,s)
r ◦ u

(2,s)
r ◦ · · · ◦ u

(N,s)
r

while not convergence do

for r = 1, 2, · · · , max(R(s)) do

Y (s) = E(s) + λ
(s)
r u

(1,s)
r ◦ u

(2,s)
r ◦ · · · ◦ u

(N,s)
r , r ≤ R(s), s = 1, 2, · · · , S

for n = 1, 2, · · · , N do

update u(n,s)
r , r ≤ R(s), s = 1, 2, · · · , S via equation (5)

end

update λ
(s)
r , s = 1, 2, · · · , S via equation (6)

E(s) = Y (s) − λ
(s)
r u

(1,s)
r ◦ u

(2,s)
r ◦ · · · ◦ u

(N,s)
r , r ≤ R(s), s = 1, 2, · · · , S

end

end

Output: G(s), U (n,s), n = 1, ..., N , s = 1, ..., S

4 Simulation Results

4.1 Synthetic EEG Data Analysis

In this part, we synthetically generate three types of factor matrices based on
brain activities, respectively presenting topography, waveform and power spec-
trum, as shown in the Fig. 2(a)–(c). Through the back projection of factor matri-
ces, four tensor blocks representing four subjects are constructed with the SNR
of 10 dB, as shown in Fig. 2(d). SNR refers to the signal-to-noise ratio, which
is defined as SNR = 10log10(σs/σn). σs and σn denote the levels of signal and
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noise, respectively. To prove the usefulness of GLCPTD model, we set the num-
ber of components for four tensors as {4, 4, 3, 3}. Furthermore, factor matrices
of topography and power spectrum consist of two common bases and one or
two individual bases (L1 = L2 = 2), while the components of waveform are
completely individual (L3 = 0). The common bases represent that the occipital
region in the mid-line and left-hemisphere of four subjects are activated with
the alpha oscillations (8∼13 Hz).

Fig. 2. Illustration of factor matrices of (a) topography, (b) waveform and (c) power
spectrum and (d) tensors (frequency × time × channel) for four subjects. Factor matri-
ces of topography and power spectrum for each subject consist of two common compo-
nents and one/two individual components, while temporal components are individual
for each subject.

We apply LCPTD-HALS [14], GLCPTD-HALS, and NTF-HALS [7] algo-
rithms with nonnegative constraint to analyze the four tensor blocks. Solutions
of topography learned by these algorithms are shown in Fig. 3(a)–(d). We can
see that, GLCPTD-HALS and NTF-HALS algorithms can successfully extract
the common components as well as individual components. The difference is
that the components learned by NTF-HALS algorithm are disordered. Cluster-
ing and other post-ordering methods need to be applied to obtain the common
bases. Although LCPTD-HALS algorithm can extract all the common compo-
nents, only 3 components are extracted from subject 1 or subject 2 shown in
Fig. 3(c) and 4 components are recovered from subject 3 or subject 4 shown
in Fig. 3(d). The former causes potential components to be omitted (subject 1)
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or merged (subject 2). The latter depends on the magnitude of the particular
component being redistributed in a certain way driven by algorithm (e.g. the 1st
component of subject 3 in Fig. 2(a) is recovered to the 1st and 4th components
in Fig. 3(d) corresponding to that its magnitude is divided into two parts from
predefined 1), which makes group analysis more complicated especially when the
number of components increases.

Fig. 3. Illustration of factor matrices of topography for four subjects under four condi-
tions. (a)–(d) show the components learned by GLCPTD-HALS, NTF-HALS, LCPTD-
HALS (R = 3) and LCPTD-HALS (R = 4) algorithms, respectively.

4.2 Image Reconstruction and Denoising

In this part, to examine and demonstrate the performance of the proposed algo-
rithm, we apply the LCPTD and GLCPTD models to image reconstruction
and denoising. There are 165 gray-scale images from 15 individuals in the Yale
face database. Each individual has 11 images of different face expressions (‘cen-
terlight’, ‘glasses’, ‘happy’, ‘leftlight’, ‘noglasses’, ‘normal’, ‘rightlight’, ‘sad’,
‘sleepy’, ‘surprised’, ‘wink’), and the size of each image is 215 × 171 pixels. We
construct the multi-block tensors by stacking corresponding face images under
two conditions: (1) Face images from the same subject with different expressions,
I1 = 215, I2 = 171, I3 = 11, S = 15; (2) Face images from different subjects with
the same expression, I1 = 215, I2 = 171, I3 = 15, S = 11. Furthermore, 5% salt-
and-pepper noises are added to all face images. We use the peak-signal-to-noise
ratio (PSNR) to measure the quality of reconstructed images.
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In terms of the number of components in each tensor, we set R to 40 in the
LCPTD model, which is consistent with the original parameter in [14]. Differently,
in the GLCPTD model, we use the following method to calculate it: we concate-
nate each tensor along the first mode to generate a matrix, and perform principle
component analysis (PCA) on the matrices successively; when the percentage of
the total variance explained by each principle component is greater than 99.6%, the
number of corresponding principle components is chosen as the number of compo-
nents. In this experiment, we assume that the coupling information exists in two
modes of images so that we set the number of coupled components to L1 = L2,
L3 = 0, and the values of L1,2 are changed in {10, 20, 30}.

17.5099 22.9862 21.9793 20.0933 19.3200

16.9517 21.9548 21.4064 20.6532 20.1881

17.1596 20.6686 20.5557 20.1793 18.5204

16.9923 22.5435 21.3091 19.7628 18.7277

Fig. 4. Original, noisy and reconstructed face images of ‘centerlight’ from four subjects
with PSNRs (dB). 1st column: original images, 2nd column: noisy images, 3rd column:
GLCPTD model of condition I, 4th column: LCPTD model of condition I, 5th column:
GLCPTD model of condition II, 6th column: LCPTD model of condition II.

By performing the LCPTD-HALS [14] and GLCPTD-HALS algorithms with
nonnegative constraint on the above two models, we can compute the PSNRs of
reconstructed images. Figure 4 depict the original, noisy and reconstructed face
images from subject 1–4 with the same expression of ‘centerlight’ (I1,2 = 10).
We can see that the images reconstructed by LPCTD model/condition II are
more fuzzier or distorted than those from GLCPTD model/condition I. Table 1
shows the averaged PSNRs of the reconstructed images under the two conditions.
The PSNRs obtained by GLCPTD model are higher than those obtained by
the LCPTD model in both conditions. It can be considered that the proposed
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GLCPTD model matches the real-world data more closely, which may make it
more practical in real-world data analysis. The PSNRs obtained under condition
I are higher than those under condition II, which means that it is more reliable
to stack face images from the same subject with different expressions together.
It seems that if the number of common components becomes larger, the PSNRs
become smaller. The excessive number of common components may affect the
fitness of the estimated tensors. However, the selection of parameter Ln is still
an open issue in the current study, which will be one of our future works.

Table 1. Averaged PSNRs (dB) of reconstructed images

Condition I Condition II

L1, L2 = 10 20 30 L1, L2 = 10 20 30

LCPTD 21.3651 20.7517 19.9021 19.0809 18.8694 18.5321

GLPCTD 22.0421 21.5476 20.8134 19.9649 19.6537 19.4444

5 Conclusion

The main objective of this paper is to develop a generalized and flexible model
of linked tensor decomposition which is more suitable for group analysis. We
proposed the generalized LCPTD model as well as its realization, in which the
common components, individual components and core tensors can be extracted
simultaneously. Experiments of synthetic EEG data analysis and image recon-
struction and denoising were conducted to compare the performance of pro-
posed algorithm with LCPTD-HALS and NTF-HALS algorithms. The results
illustrated the superior performance of the newly generalized model and its real-
ization.
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Abstract. In the academic world, a large amount of data is handled each day,
ranging from student’s assessments to their socio-economic data. In order to
analyze this historical information, an interesting alternative is to implement a
Data Warehouse. However, Data Warehouses are not able to perform predictive
analysis by themselves, so machine intelligence techniques can be used for
sorting, grouping, and predicting based on historical information to improve the
analysis quality. This work describes a Data Warehouse architecture to carry out
an academic performance analysis of students.

Keywords: Intelligent data retrieval � Data Warehouse �
Unique Identification Number � Academic performance

1 Introduction

One of the most commonly used actions in educational institutions to give value to
information and to support decision-making processes is the design of reports. The
report designing is an exploratory action where certain crosses of data are made and,
depending on the results, other criteria are analyzed until reaching a point in which the
results are enough to make decisions about the organization. Support for the decision-
making process can be provided by specially designed systems such as [1] DSS
(Decision Support Systems), which can generate configurable reports on a regular,
quick, and easy basis, as expressed in [2].

On the other hand, Data Warehouses (DW) are electronic data repositories specially
designed for generating reports and data analyses [3, 4]. The distinctive features of DW
about systems described above are the following: (i) they are flexible, (ii) integrate all
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points of interest about the organization, (iii) can efficiently handle large amounts of
data, and (iv) allow the creation and calculation of management indicators. In addition,
the DW are designed with the aim to be efficient in the analysis requirements for
strategic levels in organizations, directly considering the organizational strategic
objectives [5]. In the same way, DW let efficiently analyze historical information and
allow to visualize trends in the behavior of management indicators over time. However,
even though the historical information can provide an indication of the historical trend
followed by an indicator, it is not enough to certainly predict any particular indicator.
A DW can certainly provide a solid basis for analysis and initial performance in the
Machine Intelligence techniques [6] that allow learn the patterns of these indicators to
predict future patterns. For the latter, the Artificial Neural Networks (ANN) are algo-
rithms that can associate or classify patterns, compress data, control processes and
approximate nonlinear functions [7, 8].

In this work, the DW has been designed for the behavior analysis of approval and
advance in a curriculum with real data of the curricula vitae of students from different
universities in Colombia that offer the Industrial Engineering career. The DW is not
focused only on the analysis of historical behaviors of students, but also has been
thought of as a base architecture for the prediction of future trends through ANN
techniques. This research proposes the approach of data retrieval from an Intelligent
Distributed Data Warehouse (IDDW), which is a hierarchical distributed data store of
N levels.

2 Theoretical Review

2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) can learn from data and can be used to construct
reasonable input-output mapping, with no prior assumptions on the statistical model of
the input data (Haykin, 2009) [9]. ANN have non-linear modeling capability with a
data-driven approach so that the model is adaptively formed based on the features
presented from the data (Zhang 2003) [10]. An introduction to ANN model specifi-
cations and implementation and their approximation properties has been provided from
an econometric perspective (Kuan 2008) [11]. Several studies show that ANN can
solve a variety of challenging computational problems, such as pattern classification,
clustering or categorization, function approximation, prediction or forecasting, opti-
mization (traveling salesman problem), retrieval by content, and control (Jain, Mao,
and Mohiuddin, 1996) [12].

Some studies of ANN application related to financial early warning models have
been conducted by Sevim et al. (2014) [13], as well as Sekmen and Kurkcu (2014) [14]
who used ANN as a classifier with a categorical output. Other authors used ANN as
financial forecasting models with continuous value. Some of them are Singhal and
Swarup (2011) [15], as well as Mombeini and Yazdani-Chamzini (2015) [16] who
implemented ANN with a single-step prediction output. A previous study on ANN
forecasting model was also proposed by Kulkarni and Haidar (2009) [17] for a multi-
step prediction with a direct strategy, so the number of models is equal to the number of
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the prediction horizon. In the context of basic commodity prices, the need for pre-
diction is not limited to one-step forward but could be extended to include multi-step
ahead predictions. Three strategies to tackle the multi-step forecasting problem can be
considered, namely recursive, direct, and multiple output strategies (Bontempi, Ben
Taieb, and Borgne 2013) [18]. The Multiple Input Multiple Output (MIMO) techniques
train a single prediction model f that produces vector outputs of future prediction
values. The study proposes to Multi-Layer Perceptron with Multiple Input and Multiple
Output (MLP-MIMO) as an agricultural product price prediction model coupled with
the variation coefficient from the Colombian state price reference to the criteria of
warning level.

2.2 Data Retrieval

Initially, the data retrieval techniques were restricted only to the centralized processing,
as discussed by Duan L. et al. (2009) [19]. But, according to Abhay et al. (2015) [20],
the data retrieval from the distributed data warehouse refers to the implementation of
the classic procedure for retrieving data in a distributed computing environment that
seeks to maximize the use of available resources (communication networks, computers,
and databases). Some algorithms and systems used for the distributed retrieval of
databases are the following: the partition algorithm of Savasere et al. (1995) [21];
Multiagent system based on JAVA JAM by Stolfo et al. (1997) [22] and Prodromidis
et al. (2000) [23]; Parthasarathy et al. (2000) [24] in D-DOALL uses the primitive
distributed do-all to easily program the task of independent retrieval in a workstations
network; Grossman et al. (1999) [25] proposed the Papyrus, a JAVA-based system
which aims to wide-area distributed data on clusters and meta-clusters; and the system
based on Java for distributed enterprises by Chattratichat et al. (1999) [26].

The data retrieval in a highly parallel environment on multiple processors was
explained by Wang et al. (2013) [27]. There are two commonly used parallel pro-
gramming models: Subprocesses (POSIX subprocesses by Butenhof (1997) [28]) and
message passing (OpenMP by Duan et al. (2009)) [19]. Modern programming lan-
guages are also structured to efficiently use innovative architectures. There are parallel
programming paradigms focusing on parallelizing the algorithms on multiprocessor
systems and networks. OPENMP and MPI are used to achieve the parallelization of
shared and distributed memory. CUDA is a programming language that is designed for
parallel programming used by Garciarena et al. (2015) [29]. In CUDA, the threads
access different memories of the GPU. CUDA offers a model of data parallel pro-
gramming which is incomplete without discussing the more recent approach called
MapReduce that can process large amounts of data in a highly parallel way, as shown
by Bhaduri et al. (2008) [30]. Several data recovery algorithms have been modified for
parallel processing architectures as discussed in Parthasarathy et al. (2000) [24].
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3 Materials and Methods

3.1 Data

The databases were obtained from the Ministry of Higher Education in Colombia, the
Colombian Institute for the Promotion of Higher Education (ICFES - Instituto
Colombiano para el Fomento de la Educación Superior) [31] and four (4) private
universities of this country. Such data consisted of the reports described in Table 1.

3.2 Methods

3.2.1 Implementation of the Data Warehouse
A DW system can be implemented under Molap approach (MultidimensionalOlap),
Rolap (RelacionalOlap) or by using the hybridHolap (allows bothMolap andRolap) [32].
In this study, Rolap approach was used. Independently from the approach, the main
processes carried out in the development of a DW are as follows.

The process of conceptual modeling: The conceptual model is independent from
technology and is essential for specifying the analysis requirements and information
availability. When talking about DW conceptual models, there is no consensus in the
scientific community about a standard model type for the representation of a DW.
However, there are various proposals presented in [33–35]. During the process of
conceptual modeling, a DW conceptual scheme is generated. In this study, the MCMD
conceptual model was used [3] due to its notation simplicity and because its objective
is precisely the conceptual specification of a DW.

Logical modeling process and physical implementation: The logical model for-
mally specifies the multidimensional scheme, its restrictions, and capabilities. In the
same way, the logical scheme is implemented directly in a database engine, becoming
physical tables. In the case of DW schemes with logical design, they are the star
scheme and snowflake scheme [32]. At the stage of physical implementation, dimen-
sion tables and fact tables are created depending on the type of scheme, whether star or
snowflake.

ETL data load process: The ETL (Extraction, Transformation, Load) process is
responsible for extracting, transforming, and loading the data from the original

Table 1. Database of the study sample.

Database Description

Student Personal data of students and their status
Subject Data of the subjects taught, and entry conditions of universities under

study
Region Regions and cities where students come from
Opportunity Data on possible opportunities to study the subjects
Advance time Permanence time of a student in the career, based on semesters
Geographical
area

Geographical area where the student is located

Cohort Cohort to which students belong
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databases into the DW. The data retrieval approach is proposed from the Intelligent
Distributed Data Warehouse (IDDW), which is a hierarchical distributed data store of
N levels. Based on Abhay et al. (2017) [36], the data retrieval approach begins when
the user enters the UIN (Unique Identification Number) corresponding to the data store
located in IDDW. Once the data store is located, the desired data are retrieved.
A flowchart of the IDDW data retrieval approach is shown in Fig. 1.

The ETL process in Fig. 1 consists of extracting data from the system database of
the university student’s curriculum information, which is not supported by a relational
engine and works through files (legacy systems). This system is accessible only
through a user interface over the network via a console application inherited from the

Fig. 1. Flowchart of the data retrieval approach from the IDDW [36].
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COBOL language. To remove this information, the manual process of extraction was
simulated by means of an application specially designed for this purpose, after which,
the curriculum of each student was extracted in text format. These text files were
transformed using a custom software and loaded to a relational database. Then, the files
were transformed again by another application for loading them to the DW.

3.2.2 Implementation of the ANN Architecture
At this stage, the ANN architecture was created to be fed with some data obtained by
means of the DW. After uploading the DW, an ANN architecture was designed for
predicting student’s performance using MATLAB algorithms. In this case, the ANN
was used to estimate the behavior of a student in next semester. The neural network
was trained with backpropagation algorithm and the sigmoid logarithmic function was
used on both layers of the network [7].

The obtained results were validated using performance measures that indicate the
generalization degree of the used model. Among the indices used are [8]: The Mean
Square Error (MSE), the Residual Standard Error (RSE) and the Index of Adequacy
(IA), shown in Eqs. (1), (2), and (3) respectively, where oi and pi are observed and
predicted values respectively, in the time i, and N is the total number of data. In
addition, pi′ = pi − om and oi′ = oi − om, om representing the average value of the
observations.

The IA indicates the adjustment degree that the estimated values present with the
actual values of a variable. A value close to 1 indicates a good estimate. On the other
hand, MSE and RSE close to zero indicate a good adjustment quality [8].
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4 Analysis and Results

This section analyzes the behavior of certain indicators over time through the DW
architecture implemented and the prediction of any of these indicators through an ANN.
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4.1 DW Analysis

In order to validate the IDDW operation when integrating the generated profiles, 1.500
queries were carried out, with a limit of 860 records to be retrieved for each by
executing the data retrieval processes mentioned in Fig. 1. The effectiveness of the
IDDW was evaluated in three aspects: (a) the storage of the links to the profiles, (b) the
retrieval of the entity data, and (c) the registry of the relationships between the entities
retrieved from the same document [36]. The results obtained can be seen in Table 2.

Initially, the UIN “13302010410520017” is entered through the developed form
(Abhay et al., 2017) [36]. The first identifier calculated by the identifier search engine
for this UIN is “1330201041052001”. The data store locator searches for the address of
the machine, corresponding to this identifier in the Central Look-Up data store tables.
For levels of hierarchy see Table 3.

Table 3 shows the correctly retrieved data (in percentage) from the data warehouse
located in various levels of hierarchy. The correct data are the data that must be
retrieved for the entered UIN. From the values in Table 2, it may be seen that as the
data warehouse is placed at lower levels of hierarchy, the percentage of correct data
retrieved increases. It is because the number of times the Identifier is calculated are less,
and chances of error are less too.

Table 2. Validation results

Metrics Value

Number of profiles to generate 750
Effectiveness of persistence 90%
Effectiveness of retrieval 76%
Effectiveness of the relationship generation between entities 95%

Table 3. The percentage of correctly retrieved data from the common table of the data store
located at different levels of hierarchy.

Level in hierarchy Percentage (%)

1 90
2 91
3 93
4 94
5 95
6 98
7 99
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4.2 Results of the Prediction Using ANN

The number of subjects enrolled by a student was estimated, analyzing the 760
recovered data, taking only one semester toward the future (number of courses
approved). With respect to the foregoing, Table 4 shows the values of the indices
obtained for estimating both variables.

The results confirm that the prediction is adjusted to the DW historical trend. So,
the complement between DW and ANN is a powerful tool to predict the future
behavior of a management indicator.

5 Conclusions

The implementation of a Data Warehouse and the Artificial Neural Network archi-
tecture has been carried out for the analysis and prediction of academic performance in
students of Industrial Engineering at a group of Colombian private universities. The
main advantage of using a DW lies in the possibility of crossing different analysis
dimensions in a simple and fast way to perform an exploratory analysis of data for the
creation of reports. It can be noted that the process of ETL (Extraction, Transformation,
and Loading) is the one that more time and resources demanded, mainly since the
information should be cross-posted from different sources. Additionally, operational
systems are not designed to analyze data, and the heterogeneity of the platforms where
the information is located adds a greater difficulty that requires the creation of specific
applications and systems to draw on historical data. The use of a multidimensional
conceptual model to generate the IDDW conceptual scheme with UIN becomes a great
tool that, independently from the platforms, allows to narrow down the analysis and
give clarity to the ETL subsequent process.

To obtain summaries and reports using DW as a product of the historical analysis of
data, a solid database can be created for the ANN architecture and the prediction of
future behavior. Based on the above, the use of DW combined with the use of esti-
mation or prediction techniques (in our case, the ANN), provides a complement to
substantiate more extensive analyzes because, as shown in this study, it is possible to
predict the management indicators obtained from the DW. This allows the institution to
take steps to analyze, modify, and validate the management indicators or, perhaps, to
generate new strategies to improve and/or optimize the management process, since
knowledge is extracted from the same databases, thus giving value to the management
information that is logged but that is not always considered.

Table 4. Indices of adequacy and errors in test data estimation.

Indices Estimation of quantity of enrolled
subjects

Estimation of quantity of approved
subjects

IA 0.8714 0.8124
RMS 0.3001 0.3492
RSD 0.0899 0.1199
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Abstract. The choice of academic itineraries and/or optional subjects to attend
is not usually an easy decision since, in most cases, students lack the infor-
mation, maturity, and knowledge required to make right decisions. This paper
evaluates the support of Collaborative Systems for helping and guiding students
in this decision-making process, considering the behavior and impact of these
systems on the use of data different from the formal information the students
usually use. For this purpose, the research applied the clustering based Multi-
dimension Tensor Factorization approach to build a recommendation system
and confirm that the increment in tensors improves the recommendation accu-
racy. As a result, this approach permits the user to take advantage of the con-
textual information to reduce the sparsity issue and increase the recommendation
accuracy.

Keywords: Collaborative filtering � Context aware recommendation system �
Contextual Modeling � Item recommendations � Multi-dimensionality �
Tensor Factorization

1 Introduction

People are continually making important decisions, sometimes facing many alterna-
tives to consider. There are three main elements that play a fundamental role in the
decision-making process: (i) the maturity degree of the individual, (ii) the level of
knowledge, and (iii) the information available to make the best decision [1, 2].
Sometimes, inexperienced individuals in a specific field of education may not reach the
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desirable level of knowledge for making the best choices, so it is important to provide
tools to assist them either by providing relevant information or by defining the different
options to get orientation for a better decision making.

During the educational training stage of every individual, there are moments when
the student must make certain decisions regarding the future. Some questions arise:
what kind of training suits me? what area to choose? what academic itinerary to follow?
which subjects to choose…? This fact is inevitable and happens in most educational
stages, starting with Secondary Education in which the degree of responsibility,
maturity, and knowledge of the students when making these important decisions is
questionable. Is there any way to help students in these proposed tasks either by
defining the spectrum of possibilities or by orienting towards an educational itinerary?
[3–5]. This research intends to answer to these questions by proposing a Recom-
mendation System based on Collaborative Filtering algorithms (hereinafter CF).

A generic multi-dimensional framework based on Tensor Factorization is presented
to address context aware recommendations with MD-TFCF (Multi-dimension Tensor
Factorization Collaborative Filtering). Tensor Factorization is used as it can handle any
number of contextual variables. Tensor Factorization allows flexible assimilation of
contextual information by modeling the context associated with user and products. The
contextual information is related to additional dimensions that are represent in the form
of tensors. The factorization of this tensor helps in building a unified model of data
which provides context aware recommendations. The proposed approach allows inte-
grating more than one context at a time and helps predicting the missing ratings.

The contribution of the research are the following: (1) an efficient 5-mode Tensor
Factorization approach is proposed to factorize the tensors, (2) uses Tensor Factor-
ization for the explicit generation of recommendations in which model based clustering
and Tensor Factorization learning method is combined to predict missing ratings,
(3) Comparative analysis of higher order tensors with lower order tensors is done and
confirms that the proposed approach, so the MD-TFCF, leads to more promising results
when more contextual dimensions are considered. The results confirm that as the
number of contextual dimensions increases, more accurate the recommendations are.

2 Theoretical Review

Various recommendation systems are used on the basis of content based collaborative
filtering or hybrid-based approach. Most of the work on CF has been done on tradi-
tional 2D-matrix, i.e. user-item rating matrix, but recently, context has become an
important factor to be integrated into the recommendation generation algorithms as
context plays an important role in real applications such as temporal effect while doing
online shopping or selecting places [6]. So, the relevant work of the study in this
domain focuses in this point.

Recommendation Systems have been initially devised to improve the decision
strategy of users under complex information environments [7, 8]. Recommendation
Systems reduce the problem of information overload by recommending the users most
relevant information. Recommendation Systems use content based [9, 10], collabora-
tive filtering [11], and hybrid filtering [12] techniques for efficient recommendations.
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The collaborative filtering approach is the most prevailing approach which is further
divided into implicit feedback and explicit feedback [13] and [14] methods. In the
implicit feedback method, the user’s interaction is analyzed in clicks, time spent, and
other indicators, and in explicit feedback about the ratings assigned to specific items,
questionnaires filled by the user, and others are considered. Then, based on these
factors, recommendations are given [15]. CF approach can also be broadly categorized
in two types: memory-based, and model-based [16]. In the memory-based method, user
or product rating vectors are used to compute analogy among users or products which
further operate on a neighborhood-based method. But the major challenge faced in
memory-based collaborative filtering approach is the sparsity of the user-item rating
matrix, i.e. several entries in the rating matrix might be NULL as there are many non-
rated products available in the data pool. This sparsity problem can be reduced by using
the model-based approach. In this approach, the generalized model is built to discover
latent factors or use the contextual information of users or items for capturing user´s
preferences. The most common model-based approach is the Matrix Factorization
technique as it considers latent factors that reduce the sparsity of the matrix and gives
better results than the User-based Collaborative Filtering approach which simply uses
neighborhood approach to find similar users [8]. But the Matrix Factorization technique
[16] cannot integrate the contextual information in a straightforward way, so this
concept has been extended to multi-dimensional matrices known as Tensor Factor-
ization [15]. that, in this contextual information, can be integrated in more easy ways to
give more accurate results than the Matrix Factorization.

The more related work in this domain is elaborated like there are various Tensor
Factorization models available which can be used to incorporate contextual information
which increases the flexibility and quality of the recommendation systems [17]. Tensor
factorization models are applicable in almost every domain due to the increase of
computational complexity and the need of a dynamic environment. [18] issued a
thorough survey on tensor models, their application domains and the available soft-
ware. The authors [18] propose various tensor decomposition models such as PAR-
AFAC, DEDICOM, PARATUCK2. Other successful recommendation approaches are
the Context-Aware filtering techniques which are broadly categorized as Contextual
Pre-Filtering, Contextual Post-Filtering, and Contextual Modeling [15]. The compar-
ative analysis of the three approaches is done by [19] to determine which approach is
better and under what situation in relation to accuracy and diversity. The factors
considered for evaluating the performance are the dataset type, type of recommenda-
tion, and context granularity.

Similarly, [20] presented the Tensor Factorization and Tag Clustering Model
(TCM) for recommendations in social tagging systems in which content information is
processed to find tags among comparable items, then the tag clusters are formed and
finally, association among users, items, and topics are discovered by working upon the
Tensor Factorization technique, i.e. Higher Order Singular Value Decomposition
(HOSVD). But this work is limited to just three dimensions whereas the proposed
approach extends to 5 dimensions and confirms that higher dimensions gives better
results. In the same way, [21] proposed a new model Multiverse Recommendation in
which contextual information has been integrated with the traditional user-item rating
matrix which is not as easy for integrating the contextual information in other model-
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based approaches like Matrix Factorization. This contextual information represents
additional dimensions to original user-item rating matrix as tensor. This approach
outperforms other traditional methods which do not involve contextual information in
terms of Mean Absolute Error up to 30% whereas the proposed work implements up to
5 dimensions while the performance of proposed recommendation system is assessed
against various evaluation metrics.

Recently, [22] introduced the Contextual Modeling Probabilistic Tensor Factor-
ization (CMPTF) model which is basically abstraction of the Probabilistic Tensor
Factorization (PTF). In PTF model, the entire information like ratings, item content,
context, and social relationship is integrated into a single model which was not possible
in earlier approaches. CMPTF further integrates topic modeling information which
improves the quality of recommendation systems, and experimental results prove that
this approach is superior than traditional approaches. [23] proposed other generic
context-aware implicit feedback recommendation algorithms and employ a fast, ALS-
based tensor factorization learning method that linearly scales with the number of non-
zero elements in the tensor while maintaining the computational efficiency.

Thus, considering the mentioned confrontations by various researchers, the pro-
posed MD- TFCF approach integrates the contextual information as higher order
tensors and results support that increment in tensors improves the recommendation
performance.

3 Data and Methods

The formal teaching that allows some degree of choice present the following structural
patterns: (i) there are students who are enrolled in subjects and obtain certain qualifi-
cations; (ii) the subjects are associated to a course, level, or degree, and can be of
different types depending on whether they are mandatory, optional, referring to a
specific modality or profile, with groupings of subjects that form profiles or educational
itineraries in the case of attending to all or a group of them. An academic record can be
defined as a set of grades obtained by a student in a series of subjects taken over a
certain time period.

The main objective of this contribution is to answer to the following question: is it
possible to use people’s academic records to offer suggestions when choosing their
future? Initially, the answer is not entirely clear since subjective, psychological, and
aptitude factors come into play.

Since qualifications provide reliable information about the skills of a student, the
areas where people perform best, and even their preferences, a Collaborative Recom-
mendation System is evaluated, estimating the possible qualification that a student
would obtain in a subject in case of studying it, to observe if it provides relevant
information which, properly linked to future information, could help individuals to
make decisions about their future. To this purpose, a series of experiments was con-
ducted to obtain a reliable output to this issue.
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3.1 Data

The used data set consists of a total of 7315 anonymous students from primary,
secondary, and university levels from several private education institutions in
Colombia, considering up to 100 subjects and a total of 155,022 qualifications, which
involve values from 0 and 5.

3.2 The Proposed MD-TFCF Mechanism

This section presents the framework of the Multi-dimension Tensor Factorization
Collaborative Filtering (MD-TFCF) approach. The work flow of the proposed frame-
work is shown in Fig. 1 [24], which illustrates that the process starts from the data
processing and continues to predictions according to the wishes of the users.

3.2.1 Hierarchical Clustering Approach
Hierarchical Clustering is one of the coherent clustering techniques [12] in which
hierarchies of clusters are formed and every formed cluster is part of another cluster.

Fig. 1. Proposed Multi-dimension Tensor Factorization Collaborative Filtering (MD-TFCF)
Framework, based in Lee et al. [24]
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This research applies the agglomerative hierarchical clustering-based approach in
which the clustering process starts with one initial cluster and then a pair of clusters are
merged up together. So, clusters based on age are formed first including users grouped
by age, as shown in Table 1 [4].

3.2.2 Decomposition of the Singular Value of Higher Order
In the consulted literature, several tensor decomposition models are available [18] such
as PARAFAC, Tucker, Canonical, HOSVD, etc. In the study, the Higher Order Sin-
gular Value Decomposition (HOSVD) Model is used to factor the tensors in matrices
obtained from the qualification matrix. The main benefit of using HOSVD is to address
the high dimensionality of the data in an effective way [14, 20], which helps to discover
the relationship between users, the qualifications, and other contextual dimensions such
as age, gender, and academic term.

The Higher Order Singular Value Decomposition (HOSVD) Model is constituted
by the following stages, for more details see Lee et al. [24]:

• Initial Construction of Tensor
• Matricization of Tensor (Ti)
• Apply SVD on each matrix (TMi)
• Construction of Core Tensor (SM)
• Reconstruction of Tensor (TM’)
• Recommendation List.

3.3 Experimental Setup

The Pareto Principle which is also known as 80/20 rule is used for the verification of
the predicted rating allotted through the projected MD-TFCF approach. According to
the Pareto Principle the dataset is divided and evenly distributed into training and test
set in the ratio of 80% and 20% respectively. The data is evenly distributed in 80–20
ratio so that the entire dimensions data are distributed conceptually. The approach is
experimented and assessed on cluster sets formed through the hierarchical clustering
approach, for dataset each experiment is run 26 times. Henceforth, the prediction error
is minimized using Pareto Principle as it arbitrates in evaluating the efficiency of the
proposed MD-TFCF approach.

Table 1. Categorization according to age

Age Group Group Name

0–12 Kids
13–17 Teenager
18–25 Youth
26–50 Middle
51–73 Aged
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3.3.1 Evaluation Metrics
The peculiarity of a recommendation algorithm can be assessed using different forms of
metrics. The suitability of the metrics used reckons on the recommendation approach,
dataset, and what the recommender system will perform. Moreover, Mean Absolute
Error (MAE), precision, and recall [13, 17] are statistical measures to assess the
accuracy and peculiarity of the recommendation system.

Mean Absolute Error (MAE): the MAE is the most popular and simplest form of
metrics [15] for measuring the accuracy. The MAE basically measures the average
absolute difference between the predicted and the actual rating. It is simply, as the name
suggests, the mean of the absolute error. It is a measure of deviation of the recom-
mendation or absolute error between the predicted value and the user specific rating
value. It is formally calculated using Eq. (1) as:

MAE ¼ 1
N

X

u;i2N pu;i � ru;i
�

�

�

� ð1Þ

Where pu,i is the predicted rating for user u on subject i, ru,i is the actual rating, and
N is the total number of ratings. The lower is the value of MAE, the more accurate the
recommendation system is for predicting ratings of users. It tells how big an error can
be expected from the approach. Other metric measures used for evaluation are classic
measure-precision and the recall.

Precision: The Precision is basically the measurement of the probability that the
retrieved record is a relevant record [15]. The precision rate is the fraction of successful
rating prediction that is predicted by users. The precision is computed using the Eq. (2) as:

precision ¼ Correctly Predicted Rating
Total No: of Correctlyþ Incorrectly Predicted Rating

ð2Þ

Therefore, the precision identifies the ratio of the number of the correctly predicted
rating retrieved to the total number of incorrectly and correctly predicted ratings.

Recall: It is defined as fraction of relevant prediction retrieved to the total number
of the user prediction in the dataset. The recall is computed using the Eq. (3) as:

Recall ¼ Correctly Predicted Rating
Total number of User Assigned Prediction

ð3Þ

4 Results and Discussions

The proposed MD-TFCF approach is different from existing approaches as an inte-
grated framework is developed in the proposed approach to unanimously represent the
five dimensions. Figure 2 shows that there are remarkable improvements in results in
form of precision, recall, and mean absolute error for the datasets.

Figure 2 infers that precision varies from 0.54 to 0.96; recall varies from 0.30 to
0.80, and the mean absolute error decreases from 2.2 to 0.38 for dataset, while simi-
larly, precision varies from 0.753 to 0.916, recall varies from 0.50 to 0.73, and the
mean absolute error decreases from 2.2 to 0.38 showing that the MD-TFCF approach
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achieves more promising results than the traditional user-item based collaborative fil-
tering approach. In the same way, on adding even one dimension, i.e. 5-tensor
approach, is better than 4-tensor as accuracy in results has been improved as precision
varies from 0.50 to 0.77, recall varies from 0.30 to 0.60, and the mean absolute error
decreases from 1.86 to 1.02. Thus, a new technique is concurrently proposed to deal
with 5 dimensions and used for comparative analysis with traditional user-item based
approach and with lower dimensional spaces.

It is empirically validated that MD-TFCF approach gains about 49% accuracy in
form of precision, 20% in form of recall and 32% in terms of mean absolute error for
the studied dataset. Thus, the proposed approach is achieving more desirable results
whenever more contextual parameters are considered. Figure 3 shows results of con-
ventional user-item based neighborhood CF process and MD-TFCF (higher order
tensors with lower order tensors) approach in comparison to each other in form of
graph. As shown in Fig. 3, conventional algorithm’s precision and recall varies from
5%–50% and 1%–5% respectively, for dataset.

Fig. 2. Comparative analysis of higher order tensor with lower order tensor results

Fig. 3. Comparative analysis results for the set of data studied
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The precision and recall values show improvement in dataset because of the large
data size. The following graphs (x-axis represent number of folds and y-axis represents
recall, precision and mean absolute error respectively) validate that tensor factorization
approach provides more accuracy in results in form of precision, recall, and mean
absolute error as evaluation metrics than traditional.

5 Conclusions

In this research, a novel Multi-dimension Tensor Factorization Collaborative Filtering
(MD-TFCF) approach is introduced to mitigate the sparsity problem as this is the major
challenge of the Collaborative Filtering approach. In traditional user-item based Col-
laborative Filtering approach, the user-item matrix is formed by considering only
ratings accredited by users to different products, but several entries in rating matrix are
NULL because there are diverse set of items that are generally not rated by users. So, to
overcome this problem, User-Item based approach is extended to Model based
approach MD-TFCF and mainly comparative analysis of MD-TFCF with user-item
based collaborative filtering and lower order dimensional spaces is done.

After analyzing the recommendation systems based on proposed collaborative fil-
tering, it has been proved that their use can be useful for making personalized rec-
ommendations to students about educational itineraries [25] when choosing optional
subjects and foreseeing which common subjects will present greater learning difficul-
ties or specific needs of reinforcement in the student.
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Abstract. Agricultural activity is characterized by an intensive use of capital
and a considerable dependence on external financing. Access to credit is often
limited by the scarcity of resources and lack of guarantees, seriously affecting
the productivity and economic performance of agricultural exploitations. The
objective of this paper is to assess the sustainability of agricultural production
chain of rice in Latin America using multi-criteria analysis tools to facilitate
decision-making through a benchmarking process to contribute to their eco-
nomic sustainability. The implementation of the model in an exploitation typy
depending on financing sources (conservative, intermediate, and innovative) has
revealed the conflict between the goals, being the intermediate exploitation,
which gets the best results. The conclusions show that the flexibilization of
financing options positively affects the economic performance.

Keywords: Agricultural financing � Multicriteria programming �
Sustainability rice farming � Decision making � Goals programming

1 Introduction

The rice in Latin America and the Caribbean (LAC) is a crop of great social and
economic importance. Rice consumption in LAC has significantly increased during the
last few years, presenting a current average of 30 kg per person per year. The
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particularity of the rice produced in LAC lies in its high grain quality, and a production
that is most often performed under mechanized systems with direct seeding. In LAC,
rice is produced under irrigation and rainfed areas in different eco-regions (temperate,
tropical moist, tropical dry). Food security and climate change constitute a challenge
for rice market in LAC, facing the need to increase production, but stabilizing the
yields and the grain quality [1].

The objective of this research is to evaluate the economic sustainability of the
agricultural production chain of rice in Latin America through a multicriteria pro-
gramming model that represents the rice exploitations in Latin America, considering
the short-term financing and production. This model will facilitate the formulation of
agricultural policies and will serve to reorient the services now provided by institutions.
At the same time, the study will allow to deepen in the understanding of real goals of
farmworkers and the importance they attach to the different criteria for selecting
sources.

2 Literature Review

Mathematical programming has been widely used for analyzing financing alternatives
in enterprises through financial planning models in the short-term under both certainty
[2], and uncertainty conditions [3, 4]. These models consider alternatives such as long-
term loans, credit lines, loans postponement, trade credits, and pledge.

In the field of agriculture, for incorporating credit in mathematical programming
models, the year is divided into time periods and the circulating capital requirements
are added in each of them [5]. If credits are acquired, the interest payments must be
added as a cost in the objective function. Alternative financing sources such as tradi-
tional lenders, credit unions, or banks can be added as separate activities and it is
possible to integrate restrictions on credit limitations by source type [6, 7].

When several objectives must be integrated, including qualitative data, the multi-
criteria programming can be used. This technique assumes that economic agents seek
to find a balance or compromise between a set of objectives, usually in conflict [8, 9].
The commonly used methodologies for solving this issue are the restrictions method,
the weighting method, and the goals and commitments programming method [10].

The financial management of agricultural exploitations has been presented by
models that use the multicriteria analysis and its different resolution methods, inte-
grating objectives related to agricultural planning [11], which consider the objective of
indebtedness minimization. The following researches are the basis for the development
of this study [12, 13, 14].

3 Method

The research was developed in three phases, according to [15, 16, 17]. The first of them
consisted of a documentary monographic research on the statistical information about
the risk sources in rice production, mainly about the interest rate, inflation, and the
financial problems, among others.
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The second one consisted of a study of the reality of a sample of the rice farmers in
5 Latin American countries, among them: Brazil, Cuba, Colombia, Venezuela, and
Uruguay. A population of 1648 producers was considered, from which a sample was
extracted by means of stratified random sampling. For this purpose, the sample was
divided into 6 strata (from 1 to 50 hectares, from 51 to 100 hectares, from 101 to 150
hectares, from 151 to 200 hectares, from 201 to 500 hectares, and greater than 500
hectares).

Finally, the sample was constituted by 160 producers. An optimal allocation was
made, which is the distribution method for a given sample size in n units since it
produces more accurate results [10, 11], thus constituting the strata. The producers
were randomly selected by the method of random numbers [6].

In order to characterize these producers, a technical survey was applied and 18 of
the qualified entities of the Latin American financial institutions were interviewed,
applying both instruments at the end of 2018.

Additionally, interviews were conducted with experts in the field of rice financing
and cultivation. Given the limitation to apply the model to each exploitation, a typology
was made of the exploitations under study, based on the characteristics of an innovative
producer in relation with its financial decisions [15]. The variables considered were
diversification of the number of sources, dominance of economic criteria over personal
criteria, lower total cost per hectare, lower financial cost, lower percentage of external
financing, desire to explore other sources, and higher performance [16].

These variables were entered into the Statgraphics plus 5 software to establish the
cluster, using the maximum distance method (Furthest Neighbor) and the Squared
Euclidean distance measure [18].

The third phase centered on the design of a multicriteria programming model that
represents the economic operation of the exploitations in the typology, using the
average of the explotations as data from each group. The model is mathematically
presented in Gams language and developed through non-linear programming, adding
some scenarios to see the behavior of the model against some changes in its variables
[11, 12].

4 Results and Analysis

4.1 Presentation of the Area Under Study and Survey Results

The results of the surveys applied to rice producers in the Latin American sample show
that the most important general problems were the limitations of small producers to
access private credits, high dependence on production with external financing, and
scarcity of medium and long-term credits. The benefits of the crops are highly influ-
enced by inflation, the exchange rate, the State price fixing, and the political conditions
at the time of the survey.

In rice production, there is a horizontal integration between producers and between
financing sources, as well as vertical integration between the producer and the sources
through the harvest; scarce problems of asymmetric information, differences in credit
conditions in relation to interest rates, granted amounts, time of granting, closeness to
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the client, technical assistance, and responsibility, among other features. The most used
criteria for choosing the source by the part of the producers were: the opportunity
(referred to the granting of credit in the required time), interest rate, amount, client,
trust, input availability, technical assistance, deadline, organization, and proximity.

The most used financing institutions were the associations, followed by the com-
mercial houses, banks, public institutions, and the agroindustries.

4.2 Farmers Typology

Three groups were formed: innovative, conservative, and intermediate exploitation
depending from their attitude toward financing [19]. The results are shown in Table 1.

4.2.1 Intermediate Exploitation
This type presents average values with respect to the other groups in variables such as
yields, income, financial cost for interest payments, profit, depreciation, and total cost.
About the criteria for choosing the financing source, they give more value to trust,
being a client of the financial institution, opportunity, and interest. By having these first
two values higher than the rest of the types, it can be said that they give an important
weight to personal criteria and are not interested in exploring new sources. On the other
hand, this group includes those farmworkers who sow in a staggered way and diversify
the sources. It can be concluded that, from a technical point of view, they are inno-
vative or have no limitations to carry out a greater number of sowing but are more
reluctant to explore new sources.

4.2.2 Innovative Exploitation
In this group, the income is greater but the variable costs, financing costs, benefit, and
the depreciation are also higher. For this type, the most important criteria are oppor-
tunity, amount, technical assistance, and interest, prevailing the economic criterion.
They also value the shared risk by preferring technical assistance. In addition, the data
suggest an open disposition to innovations.

4.2.3 Conservative Exploitation
This type presents low returns, income, total cost, benefit, and average depreciation.
Interests are more important than the opportunity and show low values in relation to the

Table 1. Results of the cluster and centroids

Cluster No of producers % NS OPP CLI TC FC FFX CA RY

1 87 54.38 1.85 0.92 0.71 1.2342 0.1023 61 0.62 5.102
2 43 26.88 1.95 0.832 0.12 1.5821 0.115 60.2 0.93 5.839
3 30 18.75 0.795 0.42 0 1.1025 0.0452 32 0.7 4.93

NS: number of sources, OPP: opportunity; CLI: client; TC: total cost; FC: financing cost;
FFX: foreign financing percentage; CA: desire to explore other forms of financing; RY: rice
yield (kg/ha).
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other criteria. In relation to the ratios, this group shows the greatest relationships, so it
can be said that they are efficient from an economic point of view.

4.3 Design of the Optimization Model

The fundamental features of the model can be summarized as follows: descriptive, with
qualitative and quantitative variables; economic-productive, integrating linear and non-
linear functions; in the short term, with random elements and multiple objectives which
include the criteria for choosing farmworkers with respect to their financing source.

For the model, the following assumptions are assumed [15]: the alternative activ-
ities are the financing sources; the introduction of other crops or technologies is not
proposed; only rice production with two crops per year is considered; the same variety
of rice is used, and with the same price. The producer is solvent and has the necessary
guarantees to take loans, no agricultural insurance is taken, and pays the established
interest; there are no additional charges for technical assistance, insurance, or contin-
gency funds. The credit restrictions are taken according to the information provided by
the financial sources; credits are requested at the beginning of the sowing and are paid
at the end.

Following is the programming model used to optimize the sample through algo-
rithms 1 and 2, following the model of [21]:

Algorithm 1. Optimize objectives and agronomic constraints
(1) Objective - profit maximization in thousands of dollars:

Z ¼ ð
X12

p

ðITp � CVTP � CfijpÞÞ � CFT ð1Þ

(2) Objective - satisfaction of producer’s preferences regarding the financing
source:

W ¼
X12

f¼1

X12

s¼1

ðEff � XfsÞ ð2Þ

(3) Objective - risk minimization:

V ¼ 1
n

X7

n¼1

ðZNn � Z2Þ ð3Þ

Subject to:
Restrictions on surface occupation per period:

X12

s¼1

usosusp � NHAs � d sup ð4Þ
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Restrictions on occupation of the total area per planting:

X12

s¼1

NHAs ¼ 2 � d sup ð5Þ

Equation of Random Benefit Calculation:

ZNn ¼ ð
X12

s¼1

X12

p¼1

ðrens � prpnÞ � NHAsÞ � ð
X12

p¼1

ðCVTp þCfijpÞÞ

� ð
X5

f¼1

X12

s¼1

X12

p¼1

ðVsps � Xfs � tifn � vusÞÞ ð6Þ

Where:
Z: total exploitationbenefit; ITp: total income;CVTp: total variable cost;Cfijp:fixedcost

per period; CFT: total financial cost and p: period; W: measure that establishes the order of
the financing sources according to the producer’s preferences; Eff: distance L1 from the
weight of the score provided by the producers to each criterion by rating of each standardized
source; Xfs: amount of credit requested by source; V: benefit variance; ZNn: benefit in each
state of nature (n); usosusp: period of time in which each planting of rice occupies the soil
surface; NHAs: surface to be sown; dsup: maximum surface availability in hectares; rens:
rice yields in kg/ha per planting; prpn: sale price of rice production for each state of nature
(thousands US$/kg); Vsps: month of the production’s sale; vus: credit useful life corre-
sponding to months (periods); and tifn: monthly interest rate for each state of nature.

Algorithm 2. Financial restrictions
Restrictions on the total amount of credit to be requested by planting:

X12

f¼1

Xfs\CVTp ð7Þ

Restrictions of maximum amount granted by financing source:

Xfs �mff � d sup ð8Þ

Financial cost per period:

CFpp ¼ ð
X

f¼1

X

s¼1

Vssp � XfsÞ � ðtrf � VusÞ ð9Þ

Credit payment per period:

AMORp ¼ ð
X12

f¼1

X12

s¼1

Vssp � XfsÞ � ð1þðtrf � VusÞÞ ð10Þ
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Total financial cost:

CFT ¼
X12

p¼1

CFpp ð11Þ

General Balance per period:

ð
X12

f¼1

X12

s¼1

Xfs � isspÞþ liq0p þ LIQðp�1Þ þ ITp ¼CVTp þCONSp þ LIQp þAMORp þCfijp

ð12Þ

Short-term financial balance equation per period:

ð
X5

f¼1

X12

s¼1

Xfs � isspÞþ liq0 p þ LIQ ðp�1Þ �CVTp ð13Þ

Restrictions on the amounts covered by financing sources, planting, and period:
In the case of financing by agrocommerce.

Xagrocomercio;s �CVLs;cmprod;p þCVLs;cpprod;p þCVLs;fprod;p þCVLs;rprod;p ð14Þ

In the case of financing by agroindustry.

Xagroindustria;s �CVLs;semilla;p þCVLs;cmprod;p þCVLs;cpprod;p þCVLs;fprod;p þCVLs;rprod;p
ð15Þ

Where:
Xfs: amount of credit that is requested by source and by seeding; CVTp: total variable

cost; mff: amount to be financed by the source (thousands of US$/ha); Vssp: month of the
production sale in each sowing; trf: interest rate per period for each source monthly per-
centage; Vus: useful life of the credit which corresponds to the months (periods) between
the granting and its payment; CFpp: financial cost period, liq0p: initial liquidity per
planting; LIQp-1: liquidity of the previous period; ITp: total income; CVTp: total variable
cost; CONSp: monthly family consumption; LIQp: liquidity of the period; AMORp:
payment of the credit; Cfijp: fixed cost, Xagrocomercio,s: amount of credit that is requested
to the agrocommerce; Cvlslp: variable cost per task; cmprod: cost per products for weed
control; cpprod: cost per products for pest control; fprod: cost per products for fertilization;
rprod: cost per products for the reboot; Xagroindustria,s: amount of credit requested by the
agroindustry; and, CVLs,semilla,p: variable costs by seed purchase for planting rice.

As the exclusive means of external financing used by producers is credit, the
alternatives presented correspond to the existing sources of credit. Five types of
institutions are established (banking, association, public, agrocommerce, and agroin-
dustry), while the data assumed for the model is calculated using the average or the
mode of the characteristics in the eighteen surveyed sources.
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The objectives are [21]: maximize the benefit (max Z), satisfaction of the pro-
ducer’s preferences with respect to the financing source (min W) and minimize the risk
(min V). These objectives contribute equal weight. The objective of min W is used as
an ordinal condition (a fictitious objective) to establish a measure that reflects the order
of funding sources, according to the producer’s preferences. For this purpose, the
amounts of credits to be requested are used, multiplied by the weight attributed by the
producer to each chosen source according to their criteria. Therefore, the smaller its
value (minimization), the closer it is to the observed producer’s preferences with
respect to its financing source.

The procedure for converting the qualitative selection criteria into quantitative
variables was as follows [1]: identification of opinions related to financing sources,
quantification of the attribute according to the number of producers who vote for each
of them, introduction of the distance between the assigned values and the ideal value.
Each choice or non-dominated alternative is considered an efficient endpoint. Calcu-
lation of the distances between each alternative or efficient endpoint with respect to the
ideal point, for the L1 metric.

The model incorporates the risk in the cultivation of rice, which is affected by some
variables, including climatology (rainfall), productivity (attack of weeds and pests),
economy by the change in price of the product, and financial variables by the variation
of the credit interest rate. In the model, the risk is measured by means of the variance in
benefit, integrating the variation of the interest rate (as a financial risk) and the price of
the rice (as business risk) using its historical series of the last seven years. The producer
can improve its financing if its management and productive processes are improved.
Therefore, several scenarios and sensitivity analyses were considered, as follows [14,
21]:

Scenario E1: Base Model. The multi-objective model of exploitation described
above is considered.

Scenario E2: Credits per Periods. A credit modality is introduced in the base model
in which the producer can have the credit in the month it needs it and pays interests
according to the months elapsed from its granting to the payment date. The difference
of this type of credit, given by items, is that the interest rate is the same as at the
beginning of the sowing when it was requested. However, in this case, the period for
calculating the loan payment and interests will be that of the months that elapsed from
the withdrawn until the payment date.

Scenario E3: Stepped Planting. It integrates the possibility of selecting up to twelve
plantings of rice per year, one for each month. The stepped planting is recommended
by technicians of the zon, because it generates a periodicity in the income that will
favor the producer and diminishes the foreign financing requirements. It is achieved by
making time periods in a circular way where the planting number thirteen (s13)
becomes the first planting (s1) again.

Sensitivity Analysis: new prices are introduced so that two possibilities are
appraised, namely: a 10% increase in prices, which should improve the results in the
base model and a price decrease by 10%. In this way, the sensitivity of the base model
to this change was identified.
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4.4 Results of the Model

For the resolution of the base model, it is assumed that the exploitation is cultivated in
its entirety, for all eploitations, in both sowings (summer and winter). This is intro-
duced to achieve that the analysis of the selection behavior about the amounts and
financing sources are comparable in the three objectives [13]. The model calculates
total revenues and costs according to the financial cost generated by the interest accrued
by the credits requested from the financing source, considered as optimal by the model
(Table 2).

The payment matrix of the base model objectives is presented in Table 3. In this
matrix, the conflict that represents the variation between the ideal (in bold) and the anti-
ideal (underlined) between the objectives when max Z, for the INTERMEDIA
exploitation is 31.7% and min W represents 120,15%; however, in minV, the conflict is
18.41%. In the case of INNOVATIVE exploitation, max Z presents a conflict of
33.23%. On the other hand, min W of 170.01%, and the risk of 18.52%. However, the
CONSERVATIVE exploitation presents a conflict of 40.03% in profits, higher than the
rest of the holdings, while for the case of min W, it presents a lower conflict than the
rest of 64.29%, and 18.03% for min V.

Despite the little conflict manifested in the minimization of risk, its integration into
the model introduces changes in the source selection since risk is a fundamental ele-
ment in the granting of a loan. The low conflict is since the variation of the interest rate

Table 2. Economic calculations of the base model for profit maximization

Exploitation Income Costs Costs financial Benefit

Intermediate 3.068952346 2.196523741 0.092 0.957
Innovative 3.41256327 2.423058941 0.132 0.899
Conservative 2.895742385 2.0005211 0.093 0.735

Table 3. Payments matrix of the base model

Exploitation FO Z (thousands of $ US) W V

Intermediate Max Z 72.542 5,754.32 2,682.10
Min W 59.98 2,512.42 2,410.15
Min V 55.242 4,341.23 2,299.42

Innovative Max Z 45.524 5,252.13 1,615.12
Min W 34.899 1,852.10 1,442.12
Min V 34.312 3,754.44 1,412.25

Conservative Max Z 79.015 5,098.91 3,852.12
Min W 78.998 4,785.14 3,851.41
Min V 56.725 7,995.73 3,751.10
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affects the financial cost, which is a part of the total costs. Therefore, its magnitude is
small in relation to the random benefits. Starting from the payment matrix, the extreme
points closest to the ideal were obtained through the programming goals. The goal set
was calculated, which defines the restricted efficient set to obtain efficient solutions of
max Z, min W, and min V together. In relation to the benefit, the target solution per
hectare shown in Table 4 is between 0.795 to 0.802 thousand US$/ha for the
INTERMEDIATE operation, at 0.707 US$/ha for the INNOVATIVE, and between
0.761 and 0.710 US$/ha for the CONSERVATIVE; therefore, it is higher in the
INTERMEDIA exploitation.

Figure 1 compares the choice of financing source between the producers and the
Base Model for the different objectives.

Table 4. Results for L1 and L? in the base model

Metric and exploitation Z (thousands of US$) W V

Metric L1
Intermediate 60,042 2,595.46 2,481.22
Innovative 36,508 1,966.61 1,405.12
Conservative 76,568 4,891.05 3,814.29
Metric L?
Intermediate 60,591 2,668.39 2,464.87
Innovative 36,508 1,966.61 1,405.12
Conservative 71.38 5,373.19 3,702.58

L1: distance one. L?: infinite distance

Fig. 1. Comparison of the choice of financing source between producers and the base model for
the different objectives.
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When observing the financing sources chosen in the base model by objective
(Fig. 1) where the thickest color strip is the first choice and the last one is the thinnest,
it means that for the max Z, the INTERMEDIA exploitation first chooses the public
source and then banking. For INNOVADORA, the order will be public, banking, and
agroindustry; for the CONSERVATIVE, it will be public and banking, for min W, the
INTERMEDIA and INNOVATIVE exploitations use the association and agro-
commerce source, while the CONSERVATIVE chooses the public sources and
agroindustry.

In the objective min V, they use association and public. The model reproduces the
producer’s behavior in the second objective when it establishes the satisfaction of the
producer’s preferences with respect to the financing source, except in the case of the
CONSERVATIVE, which uses agrocommerce in the second place instead of the
association, as happens with the producers.

5 Conclusions

The studied producers give great value to their criteria for choosing the financing
source, including the opportunity (credit granting time) and shared risk (evidenced
through the criteria of being a client, technical assistance, and trust with the source).
Not always the most innovative producers obtain greater benefits with respect to
financing, probably because they are not looking for better financial opportunities. The
resulting alternatives privilege the public source and the banks in the maximization of
benefits. The same occurs with the association and agrocommerce source in the sat-
isfaction of preferences, and with the association and public source in the risk
minimizing.

The model shows results that positively respond to an increase in profits when the
price increase is introduced, the stepped planting, the credit per period and, negatively,
to the decrease in prices. The benefits are highly affected by price variations. As the
analyzed scenarios and variations can be used together, it is expected that a producer
who obtains periodic credits and staggers in a price increase, reaches the maximum
benefit. When facing a price reduction, producers of the conservative type have a lower
impact on the reduction of benefits.
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Abstract. High-impedance faults (HIFs) detection with high reliability has
been a prominent challenge for protection engineers over the years. This is
mainly because of the nature and characteristics this type of fault has. Although
HIFs do not directly pose danger to the power system equipment, they pose a
serious threat to the public and agricultural environment. In this paper, a tech-
nique which comprises of a signal decomposition technique, feature extraction,
feature selection and fault classification is proposed. A practical experiment was
conducted to validate the proposed method. The scheme is implemented in
MATLAB and tested on the machine intelligence platform WEKA. The scheme
was tested on different classifiers and showed impressive results for both sim-
ulations and practical cases.

Keywords: Fault classification � Fault detection � Feature extraction �
High impedance fault � Power system � Fault detection

1 Introduction

The ever-growing demand and expansion of electricity has brought complexity within
the power utilities. Nonetheless, power system protection philosophies are still required
to reliably detect any faults which may arise in the system. This requirement has been
well-achieved by conventional protection for dynamic fault detection, which results in
a drastic increase in fault current at the location of the fault. However, conventional
protection has proven to have limitations in detecting high impedance faults (HIFs) [1].
HIFs usually occur when an energized overhead conductor makes contact with a high
impedance object, either by falling on the ground or making contact with the object. In
both cases, the fault current is limited below the threshold value detectable by over-
current protection devices. In either case, HIFs can ignite fires, which may negatively
impact the community [2]. It is for this reason that reliable detection of HIFs is
required. A comprehensive literature review of methods proposed for HIF detection
from classical to heuristically has been presented in [1]. The authors provide a sum-
mary of about 255 HIF proposed methods between the years 1960 to 2008. This may
form part of a useful guide in tracking the progress made in an attempt to find a more
suitable technique for HIFs detection. Fractal theorem (FT) [3], discrete wavelet
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transforms (DWT) [4, 5], neural network (NN) [6, 7] and Fuzzy logic (FL) [8] were
amongst her methods proposed to detect HIFs.

In later years, there were more developments in techniques proposed to detect HIFs.
An inter-harmonic content algorithm was developed to detect HIFs [9]. A real-time
based method using transients induced by HIFs was incorporated using with wavelet
transform (WT) to calculate the energy content was proposed to detect HIFs [10].
Another method based on using sum approach to detect HIFs was presented in [11].
A technique based on smart meters for HIF detection and location in distribution
network was proposed in [12] this technique uses the voltage unbalanced based
approach. The method uses Mathematical Morphology (MM) and Spectral Analysis
(SA) to diagnose HIFs. In [13] the method based on neuro-fuzzy learning is proposed.
The method uses WPT for feature extraction combined with a variation of evolving
neuro-fuzzy network. The lengthy discussion of the attempts made to develop a more
suitable technique for HIFs detection reveals that, although much work has been done
there is still a need to enhance the development of a more practical solution. In this
paper, we introduce the concept of data window reduction to improve the window shift
method. In Sect. 2, the signal processing tool is introduced, Sect. 3 discusses the
feature extraction, selection and fault classification schemes. The modelling of the
power system under study is outlined in Sect. 4. The proposed method is discussed in
Sect. 5. The results of the proposed method based on simulations and experimental
work is also outlined in Sect. 5. Lastly, the conclusion and future work are discussed in
Sect. 6.

2 Signal Processing Technique

2.1 Discrete Wavelet Transform (DWT)

Discrete wavelet transform (DWT) has over the years emerged as a powerful signal
processing tool. This is because of DWT has the ability to give both frequency and time
information simultaneously. This has proven to be effective for transient signal analysis
and showed good results in power system applications [14]. The discrete wavelet can
be mathematically expressed as:

x tð Þ ¼
X

k

cj kð Þ/ t � kð Þþ
X

k

X

j�1

dj kð Þu 2�jt � k
� � ð1Þ

where cj and dj are the approximation and detail coefficient respectively. / is the
scaling function and u is the wavelet function. The approximation and detail coeffi-
cients represent the low and high pass filters outputs respectively.

2.2 Multiresolution Analysis (MRA)

The MRA technique is used to decompose the signal into its cj and dj, this is done by
passing the signal through a series of high and low filters. The scaling and the wavelet
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coefficients of a signal x nð Þ at different levels can be determined by the following
equations:

cj nð Þ ¼
X

K

x nð Þ:h 2n� kð Þ; ð2Þ

dj nð Þ ¼
X

K

x nð Þ:g 2n� kð Þ: ð3Þ

3 Feature Extraction and Selection

Feature extraction forms the basis of most pattern recognition and classification
schemes. In order to effectively classify different types of faults and incidents in a
power system, the set of features should be compatible in size and have minimum
computational burden [15]. In this work statistical features are extracted from the
decomposed signal and subsequently used as inputs to classifiers. Four cases are
considered in this work namely the HIFs, capacitor switching (CS), normal operation
(NO) and load switching (LS). Feature selection involves the critical selection of an
appropriate feature which may be used in classification problems. The viability of the
extracted features using DWT is studied using three different machine learning tech-
niques: (i) information gain, (ii) gain ratio and (ii) support vector machine. In this work
iHIF, iCS, iNC, and iLS represent the HIF current, CS current, NO current and LS current
features respectively. Similarly, vHIF, vCS, vNC, and vLS represent the HIF voltage, CS
Voltage, NO voltage and LS voltage features.

3.1 Fault Classification

In order to effectively distinguish HIFs from other power system operations, a clas-
sification scheme is required. In this work, three classifiers are studied namely the
SVM, J48 and neural network (NN). In this work, delay samples are used.

Table 1. The feature set ranking matrix.

Feature IG GR SVM

iHIF 0.35 0.91 3
IIC 0.40 0.92 6
INO 0.35 0.90 2
ILS 0.51 1.23 9
vHIF 0.23 0.33 1
VIC 0.23 0.42 5
vNC 0.23 0.44 11
vLS 0.40 0.42 14
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4 Modelling of the Radial Distribution System – A Case
Study

The distribution system under study in this work is presented in Fig. 1. The network is
a representation of an Eskom power system. Eskom is the largest power utility in
Africa. The system comprises of the three feeders, (i) Middleburg, (ii) Witbank and
(iii) Trans-alloys, with the length of the lines of 55 km, 28.3 km and 16.9 km at 22 kV
supply voltage. The positive resistance and reactance sequences parameters of the
conductor represented by the power systems are 0.195 (Ω/km) and 0.183 (Ω/km)
respectively. The zero phase resistance and reactance sequences parameters are 0.453
(Ω/km) and 0.453 (Ω/km) respectively. The source parameters of the system are pre-
sented in Table 1. The loading on the Middleburg, Witbank and Trans-alloys are 12.8
MVA, 9.2 MVA and 7.6 MVA respectively. In this work, the Emmanuel arc model for
HIF is used in this work [16] (Table 2).

5 The Proposed Method for HIF Detection

The proposed method for HIF detection follows a sequence of various schemes to
adequately address the problem. The first stage is the current measuring, subsequent to
that, the current is decomposed to level 5 using DWT. Features are then extracted from
the decomposed signal and the best feature scheme is employed to select the best
features to minimize the data sample window. The features are then used to train
different classifiers in order to detect and distinguish HIFs from other power system
operation. The schematic diagram of the proposed method is presented in Fig. 2.

WITBANK 22 kV

HILLSIDE 22 kV MIDDLEBURG 22 kV

TRANS-ALLOYS 22 kV

Fig. 1. Eskom’s distribution system.

Table 2. Source parameters.

Source Short circuit power
(MVA)

Short circuit current
(KA)

X/R
ratio

X0/X1
ratio

R0/R1
ratio

Hillside 61.9 16.3 133.1 5.52 12.12
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DWT (Level 5)

Feature Extraction 

Classifiers

HIF Detected?

Fault/ Current Signal

Feature selection 

No

Yes

Trip the breaker

Fig. 2. Proposed method schematic diagram.

Fig. 3. Level 1 detail coefficient of HIF using sym4.

Fig. 4. Level 2 detail coefficient of HIF using sym4.
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5.1 Simulations and Discussions

The simulations performed in this work were carried out using MATLAB/Simulink
platform and the proposed method was tested using WEKA. When using DWT it is
important to select carefully the mother wavelet. In this work symlet4 (sym4) mother
wavelet was used as it has been shown that it performs better for transient signals [14].
The decomposed signal at level 5 (level 1 and 2) for HIF is presented from Figs. 3, 4
and 5. The performance of the classifiers (SVM, J48 and NN) based on the proposed
method for different time delays are presented in Tables 3, 4 and 5.

Fig. 5. HIF original and approximated signal using sym4.

Table 3. SVM classifier performance for different time delays.

SVM classifier parameters 4 samples delay ¼ cycle delay ½ cycle delay

Time taken to build the model 12.5 11.3 15.8
Number of cases 16 250 25 025 32 580
Correct classified 2 028 24300 31 625
Incorrectly classified 14 222 725 1 225
Correctly classified % 87.5 97.1 96.24
Incorrectly classified % 12.5 2.9 3.76
Mean absolute error 0.0158 0.0098 0.0168
Root mean 0.0113 0.0 0.0781
Kappa statistic 0.883 0.938 0.965
Coverage cases (0.95 level)% 95.231 95.661 96.281
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5.2 Experimental Work and Discussions

In order to practically validate the proposed method, an experiment was conducted. The
experiment was performed at the high voltage laboratory, at the Tshwane University of

Table 4. J48 classifier performance for different time delays.

J48 classifier parameters 4 samples delay ¼ cycle delay ½ cycle delay

Time taken to build the model 12.5 11.3 15.8
Number of cases 16 250 25 025 32 580
Correct classified 14 350 23 980 31 435
Incorrectly classified 1 900 1 045 1 145
Correctly classified % 88.3 95.8 96.5
Incorrectly classified % 11.7 4.2 3.5
Mean absolute error 0.0009 0.0098 0.0397
Root mean 0.0185 0.0985 0.0892
Kappa statistic 0.889 0.959 0.966
Coverage cases (0.95 level)% 95.101 96.261 97.181

Table 5. NN classifier performance for different time delays.

NN classifier parameters 4 samples delay ¼ cycle delay ½ cycle delay

Time taken to build the model 12.5 11.3 15.8
Number of cases 16 250 25 025 32 580
Correct classified 15 890 24 110 30 080
Incorrectly classified 360 915 2500
Correctly classified % 97.8 96.3 92.4
Incorrectly classified % 2.2 3.7 7.6
Mean absolute error 0.0085 0.0089 0.00667
Root mean 0.0867 0.0785 0.0858
Kappa statistic 0.976 0.938 0.921
Coverage cases (0.95 level)% 96.335 95.661 95.152

Fig. 6. Experimental configuration.
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Technology, eMalahleni campus. The experimental configuration and setup are pre-
sented in Figs. 6 and 7. respectively. When the conductor is energized, an arc is
created. The instrument used to perform the experiment is the ICM8 power analyzer to
detect the presence of the arc (HIF). The experimental parameters are presented in
Table 6.

The experiment was conducted to determine the arc current and voltage, which are
associated with HIF. A dry tree was used to bridge the gap between the electrodes to
create a high impedance path and subsequently a HIF. The proposed method is sub-
sequently tested using experimental data; the results are presented in Table 7, showing
that NN performed better than the others.

Voltage TransformerCapacitor divider

Tree

Fig. 7. Laboratory setup.

Table 6. Experimental set up parameters.

Source Transformer Mean absolute
deviation

Atmosphere
conditions

5A, 50 Hz, 2.5% source
impedance

10kVA,
11/132 kV, 4.5%

HV 100 pF, 132 kV,
LV 100nF

T = 31 °C

Table 7. Experimental Results.

Classifier No. of tested cases Correctly classified Incorrectly classified Accuracy (%)

SVM 100 92 8 92
J48 100 87 13 87
NN 100 96 4 96
Total 300 275 25 92
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6 Conclusion

In this paper, a technique for HIF is proposed. The method uses a signal decimation
tool (DWT), a feature extraction and selection scheme (LG, GR and SVM) to select
best possible features to be used as inputs to test and train classifiers (SVM, J48 and
NN). The method showed good classification results both on simulated and experi-
mental results. Future work will include location and prediction schemes and the
application of this method to multi-grounded power distribution systems.
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Abstract. We develop a data-driven model, introducing recent
advances in machine learning to reservoir simulation. We use a con-
ventional reservoir modeling tool to generate training set and a spe-
cial ensemble of artificial neural networks (ANNs) to build a predictive
model. The ANN-based model allows to reproduce the time dependence
of fluids and pressure distribution within the computational cells of the
reservoir model. We compare the performance of the ANN-based model
with conventional reservoir modeling and illustrate that ANN-based
model (1) is able to capture all the output parameters of the conven-
tional model with very high accuracy and (2) demonstrate much higher
computational performance. We finally elaborate on further options for
research and developments within the area of reservoir modeling.

Keywords: Reservoir modeling · Machine learning ·
Surrogate modeling · Artificial neural networks

1 Introduction and Justification

Hydrodynamical reservoir modeling based on variations of Darcy’s law has been
an acknowledged foundation for field development for several decades [11,21,30].
This modeling is typically based on numerical integration of diffusion-type equa-
tions within a computational domain represented by several hundreds to several
tens of billions of cells. The number of cells depends on the complexity of reser-
voir geology, field development system and placement of the wells. Some of the
modern reservoir simulation software packages support multi-CPU and some-
times multi-GPU environments, which allow to speed up the computations. But
even highly parallelized software releases can execute a single field development
scenario for several days and even weeks for complex reservoir systems.

We strive to build models for fast approximation, or the so-called surrogate
models, to estimate selected properties based on the results of physical model-
ing (for details, see example of surrogate model application in [5,7]). Surrogate
models are a well-known way of solving various industrial engineering problems
[4,6,12,15,17,27–29].
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Previous efforts on surrogate modeling for reservoir development could be
found in [14,16,18–20,26]. These approaches were able to predict either well-by-
well or a field scale production. Our approach differs significantly from the ones
presented in [14,16,18–20,26]. We aim to predict the evolution of distribution of
pressures and reservoir fluids within all the computational cells.

Therefore, in this paper we consider utilization of recent advances in deep
Artificial Neural Network based models (ANNs) to speed up the simulations by
substituting specific time consuming portions of physics-driven simulation by
relatively fast data-driven forecast.

In Sect. 2 we describe the initial physical simulator, used ANN architecture
and its training. In Sect. 3 we provide results of computational experiments. In
Sect. 4 we draw conclusions and discuss possible future research directions.

2 Methods

2.1 Description of Features

The information about the state of a hydrocarbon reservoir is typically stored
for numerous time steps. It might contain either time series of actual records of
fluid production from the wells or simulated data with a fixed time resolution.
The latter contains distribution of pressure and saturation of reservoir fluids
over 3D cells, which represent the reservoir model. The pressure and saturation
values are considered to be constant within a cell for a given time step. These
values are obtained using conventional mathematical modeling software, such as
Eclipse, TNavigator or CMG software products [1–3].

Depending on several factors, a cell might be either active or inactive. An
inactive cell does not play significant role in petrophysical processes in the reser-
voir and is disregarded both in conventional reservoir modelling and in surrogate
modelling procedure. The same cell can be active (contain a numerical value) for
some of the physical characteristics, and be inactive for others. For example, a
given cell might simultaneously have pressure value (be active for pressure) and
lack value for another physical characteristic (be inactive for it).

In this study we use the reservoir model represented by a parallelogram
computational domain containing 70 × 145 × 114 cubic cells. The number of
active cells for the most of physical characteristics is 715112. This amount makes
straightforward application of conventional machine learning techniques, such as
linear regression, or decision trees [13] relatively infeasible even for two sequen-
tial timesteps, due to the size of the sample vector and of complete dataset. 3D
convolutions, which were explicitly designed to work with similar data [22], are
impractical for the same reason when using conventional workstations. The total
number of timesteps exceeds 100, which also complicates the usage of conven-
tional algorithms.

The information about oil reservoir for a given timestep is not limited to 3D
cubic structure. For each timestep, we have a set of directives for every oil well.
For our purposes, we considered three kinds of directives: oil extraction, water
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Fig. 1. Target cell with its local set

extraction and water injection. Depending on the timestep, these can be his-
torical values or the ones, acquired with petrophysical mathematical modelling
software. Generally, extraction of the coordinates of each oil well and conversion
of them to a set of indices of 3D cubic structure, mentioned above, might be
straightforward as well.

Therefore, for each timestep we have a parallelogram cubic structure, con-
taining petrophysical information about the reservoir, and a set of directives for
every oil well in the reservoir. Our goal, given information about the current
timestep and all the previous ones, is to predict physical values for all cells for
the next timestep. As we have indicated above, straightforward application of
conventional machine learning techniques without any preprocessing is infeasible
for regular workstations.

To overcome these difficulties, we use a general approach for grid-based Sur-
rogate Reservoir Modeling: to predict physical values for a given cell, we use its
state, the state of local neighbor cells, the set of directives for all oil wells for a
considered timestep, and geometrical information about the given cell. We will
denote examined cell as a target cell. The reasoning behind such approach is that
the cell state mostly depends on the state of neighboring cells and the nearest
oil wells. The influence of distant cells or oil wells is insignificant if we consider
a single timestep. Therefore, such information can be safely disregarded. The
cells, which have a common face with considered cell, were chosen as a local set,
forming a kind of cross shape. The local set consists of seven cells.

In Fig. 1 we introduced an enumeration for neighboring cells. Green cell in
the center corresponds to the target cell, gray cells are active, and transparent
cells are inactive.

To introduce geometrical information to the algorithm, coordinates of a tar-
get cell in parallelogram computational domain and distances to all wells from
the target cell were introduced as additional features, as well as running sums of
oil extraction, water extraction and injection for all wells. To sum up, a single
sample vector contains physical values for a target cell, neighboring cells, oil
wells directives, running sums, and geometrical information for the target cell.
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As all these values differ in absolute size and have different units of measure-
ment, it is reasonable to normalize them before applying any machine learning
algorithm.

Permeability for all 3 axes and porosity were chosen as static physical char-
acteristics for each cell. Oil saturation and pressure were chosen as dynamic
physical characteristics, and will have to be predicted by the resulting algorithm.

2.2 Surrogate Modeling Based on Artificial Neural Networks

As we are going to predict values for oil saturation and pressure, which, at least
explicitly, are governed by different physical laws, we will use a separate ANN
for each kind of target variable. Their architecture is almost similar, and the
same input values will be used for both networks for each target variable. For
initialization and training of ANNs we used algorithms from [5,8,10].

As target cells might have different patterns of activity of neighbors (26 − 1
neighbors to be exact, excluding the one with all cells in the local set being inac-
tive), one network will be used for each possible pattern. Simply replacing input
values corresponding to a given inactive cell with zeros will be not sufficient, as
such approximation does not have any implicit physical meaning. This approach
might also greatly obscure the calculations. It is convenient to use a dictionary
for storing these networks, as each pattern can be represented with 6-digit binary
code, where i’th position is 0, if cell i is inactive and 1 if it is active. These codes
are used as dictionary keys to retrieve neural networks during training.

As we are working with simple numerical data and 3D convolutional neural
networks might be impractical for conventional workstations due to the size of
the input, standard feedforward architecture will be used for all the networks. In
addition, complex high-dimensional structure of the input data, which reflects
terrain features of the oil deposit, prevents from using recurrent neural network
models.

To sum up, there is a total of n = 2(26 − 1) ANNs, used in learning and
prediction processes. Each ANN is designed to process active and neighbouring
cells with specific pattern of activity as input and predict one type of dynamic
physical characteristic. The number of ANNs is relatively high, but such quantity
provides the flexibility, needed for the group of networks to correctly process
more peculiarities of the structure of oil deposit for all time steps. For each
timestep we iteratively acquire predictions of physical characteristics for each
cell using ensemble of ANNs. Prediction for an arbitrary number of timesteps
is acquired by sequentially processing individual ones. The outputed dynamic
physical characteristics are used as input for the next timestep. Since n � 1,
we used rather simple network architecture to speed up learning process. Each
network contains five hidden layers with varying numbers of hidden units. This
number of layers was chosen to facilitate fast training and inference even on
machines without GPUs without significantly sacrificing representational power.
All layers use rectified linear unit as activation function, except for the final layer
of saturation prediction model. As saturation values belong to [0, 1] interval,
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sigmoid activation function allows to effectively restrict output to provide only
acceptable saturation values.

2.3 Model Training and Prediction Routines

The sheer amount of target cells and neighbors configurations, paired with corre-
sponding geometrical and well information, effectively prevents storing all train-
ing set directly. Another procedure needs to be implemented in order to perform
training and prediction using described group of ANNs.

For convenience, each parallelogram computational domain for a given
timestep is padded with inactive cells. For each previously active cell on a given
timestep we determine the pattern of neighboring active cells, their physical
values and geometrical information, then flatten and concatenate them. Well
directives for a given timestep are also added. After that, the resulting vector is
stored in a dictionary with a key, corresponding to the observed pattern. State
of the target cell on the next step is also stored to serve as an output value for
training. As the number of vectors in the dictionary for a given pattern reaches
predetermined batch size, two corresponding networks are trained on the assem-
bled dataset. After that, values, corresponding to the used batch, are removed.
When the final cell for the timestep has been processed, training is performed on
all datasets, still remaining in the dictionary before their removal. The algorithm
then proceeds to the next timestep.

We have found out, that normalization of input and target cell values, so
that they all have zero mean and unit variance among all timesteps, greatly
improves prediction quality. Normalizing values only for a given timestep is not
enough, as the same normalized values will correspond to different values on
the previous timesteps. This preprocessing takes O(n) time, requires constant
memory to store means and variances of values, and can easily be reversed. If
input or target cell value already belongs to [0, 1] interval, such as saturation for
example, no normalization is required.

Both models are trained using the Adam optimizer with default parameters.
All the remaining parameters were set to their default values. Pressure prediction
model uses L2-loss function, and saturation prediction model is trained with
binary cross entropy loss. Using binary cross entropy loss is counterintuitive,
but provides better results in practice.

Prediction is done in a similar fashion: for each cell, activity pattern of its
neighbors is examined, their values are flattened, concatenated and passed as
an input to trained network. By processing all currently active cells we estimate
the state of the reservoir on the next step, and by consequently repeating the
procedure we recover the state of the reservoir on all examined timesteps.

3 Results

We used data from currently developed oil reservoir with size of 70×145×114 in
order to evaluate models’ performance. 20 timesteps, starting from step 0, were
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used to train the models and 50 timesteps, starting from the same step, were
used to evaluate its performance.

Below are histograms of error distributions for pressure and saturation, see
Figs. 2 and 3. Predictions for timesteps were obtained sequentially: starting from
timestep 0, we use its values as an input to predict values for timestep 1, then
we use timestep 1 values to predict timestep 2 values and so on. Note, that the
histograms are normalized.

Fig. 2. Histograms of errors in pressure prediction

Fig. 3. Histograms of errors in saturation prediction

Not all observations are included in the plot. Insignificant number of strong
outliers was excluded as abscissa axis was limited to interval [−75, 75], where
the majority of observations are located. Error for the most of cells on timesteps
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from 1 to 20, on which the models were trained, stays close to 0. And, the
models were able to provide reasonable estimations for a significant amount of
cell configurations on timesteps it had not seen during training. This leads to
conclusion that chosen approach generalizes well and could be used for other
applications.

Fig. 4. Pressure prediction error for layer 33

Fig. 5. Saturation prediction error for layer 33

The following set of error heatmaps for the single layer for different timesteps
illustrates the same idea: difference between prediction and true value increases
in time, see Figs. 4 and 5. For all layers, error clusters in a subset of cubes, cor-
responding to geologically heterogeneous regions, which might have peculiarities
not covered by a chosen subset of physical characteristics.
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Prediction was done on conventional workstation using NVIDIA GTX 970
GPU. Inference for a single timestep, containing 715105 active cells, requires
approximately 104.87344 s, or 0.00015 s per cell.

4 Conclusions and Discussion

This paper illustrates that surrogate modeling is a powerful tool for accelera-
tion of routine simulations representing a critical element of field development
planning workflow. The area of applicability of the presented approach requires
re-training of the data-driven model for each new reservoir which might be con-
sidered as a limitation. However, the tool is of practical use for a very fast sce-
nario modeling of reservoirs, for which there exist a history of conventional mod-
els usage. The computational performance enables very efficient optimization of
field development schemes aimed at minimizing financial risks of cost-intensive
decisions on reservoir development and redevelopment planning.

One potential direction of algorithm improvement includes adding more types
of values to the model. Besides simply increasing the amount of value types pre-
dicted, one can also improve the quality of inference by employing data augmen-
tation. Data augmentation is a method, mostly used in Computer Vision. It is
used to increase the size of the dataset by making use of possible invariances
derived from the nature of the dataset samples. For example, if our goal is to
recognize, whether the image contains a dog, we can train the model not just on
the initial image, but on the rotated, mirrored, and slightly noised images also.

Finally, one could consider to apply adaptive design of experiments, devised
for industrial engineering problems, to simultaneously increase efficiency of sensi-
tivity analysis and to improve utilization of computational budget of generating
a training sample [9,23–25].

As both training and prediction are done for all cubes independently, one
may argue that using a distributed programming model, such as MapReduce
can be a viable choice. Implementation of both map and reduce phases both for
training and prediction is straightforward, but its description goes outside of the
scope of this article.
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Abstract. This paper proposes a general and efficient reservoir encod-
ing method to encode information captured by spike-based and analog-
based sensors into spike trains, which helps to realize near-sensor
classification with rate-coding based spiking neural networks in real appli-
cations. The concept of reservoir is proposed to realize long-term resid-
ual information storage while encoding. This method has two configurable
parameters, integration time and threshold, and they are determined opti-
mal based on our analysis about encoding requirements. Trough different
setting we proposed, reservoir encoding method can be configured as com-
pression mode to compress sparse spike trains obtained from spike-based
sensors, or conversion mode to convert pixel values captured by analog-
based sensor into spike trains respectively. Verified on MNIST and SVHN
dataset, the mapping relationship of information before and after encod-
ing are linear, and the experimental results prove that rate-coding based
spiking neural networks with our reservoir encoding method can realize
high-accuracy and low-latency classification in two modes.

Keywords: Rate coding · Reservoir encoding ·
Near-sensor classification · Spiking neural networks

1 Introduction

Object classification is one of the most important problems in computer vision.
Recently, deep-learning based neural networks, particularly the convolutional
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neural networks (CNNs), achieve state-of-the-art classification accuracy but
always require high-performance data center that consume large energy. As a
candidate for solving this problem, spiking neural networks (SNNs) are consid-
ered as the power efficient solution with the help of emerging ultra-low power
neuromorphic hardware platforms. Comparing with some brain-like learning
rules, converted SNNs perform higher accuracy, especially the converted spik-
ing convolutional neural networks (Spiking CNNs) [2,3,8]. They inherit high-
accuracy and noise-robustness from CNN while maintaining the spike-based
computing paradigm of SNN. In the whole network, information is represented
as the spike density of neuron’s output spike train, which is a typical rate coding
method. Also, the input of converted SNNs must be in the form of spike train
with rate coding. As the result, abundant non-spiking information cannot be
used directly and a spike generator or encoder is necessary.

In general, sensor’s output information is in one of the following forms:
sequence of spikes (events) and real-value. The sensors with that form of output
are called as spike-based sensor and analog-based sensor respectively in follow-
ing for convenience. For spike-based sensors, pre-processing circuits are included
in each pixel to generate and encode events into rate-based AER information
encoding [7]. Besides, due to the property of some photodiodes themselves, their
output is rate coded spike train naturally without any pre-processing nor encod-
ing, like single photon avalanche photodiode [1]. These sensors fit for the con-
verted SNNs naturally, but there are also some shortcomings for direct use. Both
the low photo detection efficiency of sensors and low illumination in scenes can
cause sparse spike out [1], which increase the accuracy convergence time and
deteriorate the power efficiency when SNNs are implemented in hardware. How-
ever, these problems have not been researched yet, and we still lack of efficient
compression encoding method to increase the information density of spike-based
sensors’ sparse output.

For analog-based sensors, their outputs are in the form of real-values within
a dynamic range [6]. Rueckauer et al. proposed that analog input can be fed into
converted SNNs directly [5]. The analog input is convoluted by the weight matrix
of first hidden layer and the result is accumulated in the membrane potential
of spiking neuron for firing spike to following layer. So extra multiplications
are needed and power efficiency is worsen. Therefore, an encoding method for
spiking conversion is needed before feeding into SNNs. Recently, some spike
generator and encoding method have been researched and verified for improving
the latency and accuracy of SNNs [2,9,10]. But, logarithm function or random
number generator in uniform distribution are used while encoding. Both of them
are difficult to be implemented in hardware precisely and efficiently. So it is still
a challenge that encodes analog-based into rate coding spike train through a
simple and hardware-friendly method for near-sensor processing.

To realize near-sensor classification with rate-coding based SNNs, we pro-
posed a general and efficient method to encode imaging information captured
by various sensors into rate-coding spike trains with high information density.
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2 Encoding Requirements and Issues

The converted Spiking CNN consists of convolution layers with convolutional
kernels mapped from a well-trained CNN, pooling layers, a fully connected linear
classifier and a spike counter. The classification result is the label with maximum
number of spikes emitted during a period of time Tdt counting by the spike
counter lied in the end of whole network. Integrate-and-fire (IF) neuron is one of
spiking neurons commonly used in converted SNNs to realize rate coding. Based
on the conversion theory proposed by Rueckauer et al. [5], the firing rate of IF
neuron in SNNs approximate the real-value of its corresponding neuron in CNNs
linearly, which is the key to minimize the accuracy drop when mapping CNNs
into Spiking CNNs. Therefore, to prevent information distortion while encoding,
the mapping relationship of information after and before encoding should be
linear too.

For converted SNNs, the time step dt is period of time for once spiking
computation, which is various for different hardware platforms. Also, the imaging
information need to be fed into network in same step. Therefore, we use the spike
density of pixel’s output train to describe whether information is sparse or not,
that is:

d =
N

T
, (1)

where T is the maximum number of spikes that pixel can generate during Tdt and
N represents the total number of spikes actually generate during Tdt. So spike
density is a normalized index ranging from 0 to 1 without notion of time. For
realizing low-latency classification, the density of spike trains fed into network
should as high as possible, which means that the maximum spike density after
encoding should equal or near 1 at best.

The encoding issues are different for two types of sensors because their dif-
ferent encoding goals. For encoding sparse spike-based output, the goal is com-
pressing spike trains to increase their spike density. But the times that spikes
(events) appear are random and difficult to predict, which increase the com-
plexity of encoding. For encoding analog-based output, the goal is converting
the information representation field, which is also the main difficulty. In sum-
mary, to realize near-sensor classification with rate-coding based Spiking CNNs
efficiently, there are some requirements for encoding:

– 1 the encoding method must be linear;
– 2 the maximum spike density within pixel array after encoding should equal

or near 1;
– 3 the encoding method is general for two types of sensors through simple

parameters configuration.

3 Reservoir Encoding Method

To solve the encoding issues mentioned above, we present a reservoir encoding
method. Encoding-timestep is the basic encoding unit that reservoir obtain and
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process sensor’s original information then judge whether an encoded spike output
in current timestep. The information stored in reservoir is updated during each
encoding-timestep by the following equation:

Rij(n) = Xij(n) + Rij(n − 1), (2)

where Xij(n) is the processed original information obtained from pixel (i, j)
during nth encoding-timestep. In the end of every encoding-timestep, if Rij(n) ≥
τ , a spike is generated in encoded train and reset Rij(n) = Rij(n)−τ , where τ is
the encoding threshold. During encoding, reservoir play a role like buffer, storing
the residual information that have not been encoded. Therefore, the residual
information left in reservoir is the total information obtained from sensor except
for the part released as spikes in encoded train, that is:

Rij(n) =
∑

n

Xij(n) − τNe
ij(n), (3)

where Ne
ij(n) indicates the total number of spikes in encoded train during n

encoding-timesteps. Through different parameters’ settings, reservoir encoding
method can be configured as different modes to encode two types of sensors’
output respectively.

3.1 Reservoir Encoding in Compression Mode

Reservoir encoding method works in compression mode to encode the sparse
output of spike-based sensors. The original output of pixel (i, j) is a spike train
which can be described as

∑
s∈Sij

δij(t − s) with Sij = {s1ij , s
2
ij , ......} indicated

the spike time. The time resolution of spike train is decided by various circuits
design, which is abstracted as “timestep” without any notion of time. To increase
the spike density, we compress several successive original output in the length of
Ti timesteps into one encoded output (spike or not) in one encoding-timestep.
Therefore, every encoding-timestep contains Ti timesteps, and Xij(n) is the total
number of spikes generated during nth encoding-timestep by pixel (i, j), that is:

Xij(n) =
nTi∑

t=(n−1)Ti+1

∑

s∈Sij

δij(t − s). (4)

Fig. 1. Reservoir encoding. (a) compression mode. (b) conversion mode.
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Therefore, the residual information in reservoir can be obtained by putting Eq.
(4) into Eq. (3):

Rij(n) =
nTi∑

t=1

∑

s∈Sij

δij(t − s) − τNe
ij(n) = No

ij(nTi) − τNe
ij(n). (5)

According to Eq. (5) and (1), the spike density of encoded train can be written as:

de
ij(n) =

Ti

τ
· do

ij(nTi) − Rij(n)
nτ

, Rij(n) ∈ [0, τ), (6)

which are mapped from the spike density do
ij of original output linearly. Though

an additional encoding error exists, it can be ignored when n becomes larger.
Within pixel array, the highest spike density of original output is DM . According
to Eq. (6), the highest spike density before encoding are mapped into:

de
M (n) =

Ti

τ
· DM − Rij(n)

nτ
, Rij(n) ∈ [0, τ). (7)

To satisfy the second requirement listed in Sect. 2, the maximum spike density
after encoding de

M (n) ≈ 1, so Ti

τ ≈ 1/DM . In compression mode, τ is the thresh-
old of reservoir where stores the number of spikes, so τ is an integer starting
from 1. Therefore, to minimize the integrate time Ti and realize fast encoding,
we configure Ti = 1/DM and τ = 1.

Figure 1(a) shows the encoding process of pixel (i, j). For example Ti = 5 and
τ = 1, in every encoding-timestep, each reservoir Rij(n) accumulates Xij(n),
which is the number of spikes generated from pixel (i, j) during integrate time
Ti, with the value left from previous encoding-timestep Rij(n − 1). In the end
of current encoding-timestep, if Rij(n) ≥ 1, a spike output in encoded train and
reset Rij(n) = Rij(n) − 1. Repeating several encoding-timesteps, the encoded
train is generated. In compression mode, reservoir acts like a buffer to eliminate
the encoding issues caused by the spike time randomness of original output.

3.2 Reservoir Encoding in Conversion Mode

Reservoir encoding works in conversion mode to encode the output of analog-
based sensors. Their original output of pixel (i, j) is a real-value within sensor’s
dynamic range, indicated as Iij , like typical RGB/gray image with pixel value
ranging from 0 to 255. The original output of pixel (i, j) without any notion of
time, so reservoir receives same information in every encoding-timestep:

Xij(n) = Iij . (8)

According Eq. (3), residual information in conversion mode is:

Rij(n) = nIij − τNe
ij(n). (9)
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Based on Eq. (9) and (1), the spike density after encoding is:

de
ij(n) =

Ne
ij(n)
n

=
Iij

τ
− Rij(n)

nτ
, Rij(n) ∈ [0, IM ). (10)

Same as the mapping relationship shown in Eq. (6), the spike density de
ij(n)

of encoded train approximates the analog input Iij linearly with an encoding
error that can be ignored when n is large enough. After encoding, the maximum
value within sensor’s dynamic range IM is converted into a spike train with spike
density equals to:

dM (n) =
IM

τ
− Rij(n)

nτ
. (11)

Therefore, the threshold are set as τ = IM to map the maximum pixel value into
the spike train with density nearing 1. For example, the pixel value Iij = 125
and τ = IM = 255. The reservoir encoding method works in conversion mode are
shown in Fig. 1(b). Sensor captures an image first, and the image is converted into
the form of spike trains through several encoding-timesteps. In every encoding-
timestep, each reservoir Rij(n) accumulates the analog input Xij = Iij = 125
with value left from previous encoding-timestep Rij(n−1). In the end of current
encoding-timestep, if Rij(n) ≥ 255, a spike generate in encoded train and reset
Rij(n) = Rij(n) − 255.

Through above analysis, we derive the information mapping relationship
when reservoir encoding method works in compression and conversion mode
respectively, Eqs. (7) and (10), which prove that the mapping relationship
between the spike density of encoded train and their original information are
linear for both modes. And the optimal configurable parameter setting ensure
that the maximum spike density after encoding near 1. Besides, in conversion
mode, Xij(n) can be written as: Xij(n) =

∑Ti

t=1 Iij(t), where Iij(t) remains con-
stant as pixel value Iij and Ti = 1, and the result is same as Eq. (8). Therefore,
through different configuration of threshold τ and integration time Ti shown in
Table 1, reservoir encoding method becomes general for two types of sensors’
output. In compression mode, reservoir encoding method encodes the sparse
spike trains from spike-based sensor with integration time set as the inverse of
maximum spike density within all pixels and threshold set as 1. In conversion
mode, reservoir encoding method encodes the pixel value from analog-based sen-
sor with integration time set as 1 and threshold set as the maximum value within
sensor’s dynamic range. So far, all requirements for encoding listed in Sect. 2 are
satisfied.

4 Experimental Results and Discussions

4.1 Experimental Setup

To test conversion performance of reservoir encoding method, we use images
in MNIST and SVHN datasets directly, which contains gray handwritten digit
images and color street view house number images respectively in 10 classes.
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Table 1. Parameters configuration for different modes of reservoir encoding method.

Mode Reservoir Xij(n) Ti τ

Compression Rij(n) = Xij(n) + Rij(n − 1)
∑nTi

t=(n−1)Ti+1

∑
s∈Sij

δij(t − s) 1
DM

1

Conversion
∑Ti

t=1 Iij(t) 1 IM

However, there lack of dataset that contains enough samples captured by spike-
based sensor in rate-coding. So, we generate the spike-based output based on
MNIST and SVHN datasets. At timestep t, pixel (i, j) in kth channel pro-
duces a spike if: rand() < cIijk, where rand() is a random number generator
with uniform distribution on (0, 1) and all images are normalized Iijk ∈ [0, 1],
k = 1, 2, 3 for RGB images, and k = 1 for gray images. To test the compres-
sion performance, we set c = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 to generate spike-based
output with different ideal maximum spike density DM = c. While in real-time
encoding, maximum spike density DM is an estimated value that obtained by
counting the total number of spikes generated by all pixels within a period of
time and selecting the maximum one. For MNIST dataset classification, the net-
work architecture of Spiking CNN is same as [3] that 28×28−12c5−2s−64c5−
2s − 10o. The parameters of convolutional layer are denoted as “<numbers of
channels>c<receptive field size>”, and the stride of non-overlapping average
pooling is shown as “<stride>s”. “<number of classes>o” indicates a fully con-
nected layer with the output class number. For SVHN dataset, the network
architecture of Spiking CNN is 32×32−32c5−2s−96c5−2s−64c3−3s−10o.
ReLU activation after convolution are used in both networks.

4.2 Encoding Efficiency and Linearity

The encoding results are shown in Fig. 2 from pixel and image level both when
the maximum spike density of original spike-based output within pixel array
is DM = 0.1. As shown in Fig. 2(a), a bright and a dark pixel are selected to
compare the encoding result. For compression mode, two pixels’ original spike
train are in the length of 1000 timesteps, and their encoded spike train are
compressed into 100 timesteps after encoding. The spike density of encoded train
increase dramatically, and the original output with higher density are encoded
into trains with higher spike density. For conversion mode, the pixel value are
245 and 19 respectively. They are encoded into two spike train in the length
of 100 timesteps both, and the spike density of their encoded spike train are
proportional to their pixel value. The encoding results in image level are shown
in Fig. 2(b). The images in last three columns are reconstructed with all pixels’
spike train in same length (100 timesteps). Obviously, the reconstructed images
with original sparse spike-based output are blurred or almost informationless.
While for both MNIST and SVHN dataset, our method shows well performance
in compression and conversion mode, encoding sensor’s original information into
high spike density that can be reconstructed with less timesteps. Figure 3 shows
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Fig. 2. Encoding results. (a) comparison of original output and encoded spike train in
pixel level. The encoding results of two pixels lied in a sample selected from MNIST
dataset are shown with blue and green background respectively. (b) comparison of orig-
inal output and encoded output in image level. The encoding results of samples selected
from MNIST and SVHN dataset are shown in the first and second row respectively.
(Color figure online)

the curves describing the information relationship before and after encoding.
The mapping curves of conversion mode shown in Fig. 3(c) are almost perfect
linear for two datasets. And the mapping relations are also linear in compression
mode for both datasets with all different levels of maximum spike density DM .
For two modes, the spike density after encoding are range from 0 to 1, covering
the whole representation range. Thus, reservoir encoding method are satisfied
the requirements listed in Sect. 2, and verified general for all types of outputs
from analog-based to spike-based sensors.

Fig. 3. Linearity. (a) linearity of compression mode on MNIST dataset. (b) linearity of
compression mode on SVHN dataset. (c) linearity of conversion mode on MNIST and
SVHN dataset.

4.3 Accuracy and Convergence Time

Though encoding errors always exist, we assess the information distortion sever-
ity by using the classification accuracy directly. The accuracy of converted Spik-
ing CNNs with our reservoir encoding method are listed in Table 2, comparing
with other methods. For compression mode, the result listed in Table 2 is an
average accuracy over six different DM = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. Our method
realizes 99.09% and 99.10% classification accuracy on MNIST dataset, 96.20%
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and 96.32% accuracy on SVHN dataset for compression and conversion mode
respectively. For both modes, our encoding method achieves similar accuracy
with [3] on MNIST and state-of-the-art accuracy on SVHN with converted Spik-
ing CNN. Therefore, it proved that the impact on classification accuracy caused
by encoding errors and information distortion can be ignored.

Table 2. Comparison of classification accuracy for different methods.

Dataset Method Accuracy

MNIST converted Spiking CNN+Weight Normalization [3] 99.11%

Spiking CNN+Perceptron-Inception [8] 88.00%

converted Spiking CNN (compression) 99.09%

converted Spiking CNN (conversion) 99.10%

SVHN converted Spiking CNN+Threshold rescaling [9] 93.66%

Spiking CNN+Synaptic filter [4] 93.92%

converted Spiking CNN (compression) 96.20%

converted Spiking CNN (conversion) 96.32%

Table 3. Classification accuracy and times of latency improvement.

DM 0.05 0.1 0.2 0.3 0.4 0.5

MNIST Accuracy 99.13% 99.07% 99.07% 99.08% 99.08% 99.11%

Speed up ×20 ×7.7 ×4 ×3.3 ×1.6 ×1.5

SVHN Accuracy 96.22% 96.19% 96.18% 96.26% 96.18% 96.14%

Speed up ×19 ×5.6 ×2.5 ×2.3 ×1.5 ×1.2

Classification latency is various for different sparsity of input spike trains. We
found that latency of networks without compressed input becomes worse with
maximum spike density DM within pixel array going down on both two datasets.
However, after compression, the convergence time for all different DM are near
100 and 300 on MNSIT and SVHN dataset respectively. The precise times of
latency improvement on MNIST and SVHN dataset with different DM are listed
in Table 3 with accuracy. Overall, the results show that the latency of converted
Spiking CNN are shortened on two dataset obviously without much accuracy
drop. And we test the conversion mode, the latency on two datasets are also near
those achieved by reservoir encoding method in compression mode. Therefore,
both compression and conversion mode can realize efficient spike encoding to
ensure low classification latency with converted Spiking CNN.
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5 Conclusion

To realize near-sensor classification with rate-coding based SNNs, we proposed
a general and efficient encoding method. Through different setting about two
configurable parameters, integration time and threshold, our reservoir encoding
method can be configured as conversion and compression modes to encode output
information captured by analog-based and spike-based sensor into rate-coding
spike trains respectively. Verified on MNIST and CIFAR-10 dataset, the experi-
mental results prove that Spiking CNNs achieve high-accuracy and low-latency
classification with the help of our reservoir encoding method in both modes. In
future work, we plan to test our encoding method with raw data obtained from
spike-based sensor rather than simulation. And our reservoir encoding method
can be improved by introducing the concept of temporal coding to fit for more
types of SNNs.
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Abstract. Considering the difficulties in constructing physical models to sim-
ulate fuel systems of gas turbines, we introduce an improved approach based on
SOM neural network for the fault diagnosis of fuel systems. In this model the
competitive layer structure is decided by an objective function, the parameter
functions are selected with genetic algorithm, and the weight vectors are ini-
tialized with a pre-segmentation method. Meanwhile, before the data is inputted,
PCA dimensional reduction is used to decrease the training consumption.
Eventually, practical dataset verification suggests that this improved SOM
neural network performs better in recognition rate than other classification
algorithms and original SOM network in fault diagnosis of gas turbine fuel
system.

Keywords: Fuel system � Fault diagnosis � SOM (Self-Organized Map)

1 Introduction

Gas turbine is one of the most advanced and complicated industrial equipment, which has
been widely used in aviation, nautical industry, power generation and other industrial
fields. Due to the sophisticated mechanical structure and its severe working environment
of high temperature, high pressure and high rotate speed, various components of gas
turbines are likely to malfunction and gradually age, decreasing the ability and efficiency
of gas turbines.

The fuel system, a vital part of a gas turbine that directly affects the combustion
process and determines the performance of the gas turbine, consists of the fuel injection
pump, delivery valve, needle valve, high pressure fuel pipe and fuel injector. Data
shows that fuel system failure accounts for 27% of the causes of gas turbine shutdown.
However, for the complex multi-layer system, it is difficult for researchers to construct
an accurate physical model to effectively describe it. And owing to the diversity and
strong specificity of different gas turbines, establishing a universal physical model for
the fuel system of various gas turbines is almost impossible. Factually, most physical
models are only equal to the lab simulation for a single component.

Consequently, models based on data are now one of the most efficient methods for
fault diagnosis of fuel system, by which the fault information can be extracted and
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analyzed, and the eventual judgement can be made according to artificial neural net-
works or other algorithms. Concretely, in engineering applications, the most popular
way to extract working information of the fuel system is to collect the pressure data of
the fuel in high-pressure fuel pipe provided by pressure sensors. When a fault occurs in
a certain component, the waveform of the fuel supply state will change, so the mea-
sured waveform information will also change. A large number of experiments have
shown that the pressure information of high-pressure fuel pipe can adequately reflect
the working state of a fuel system and be used to diagnose whether faults have occurred
or not. However, with a severe working environment of high temperature, high pres-
sure and strong vibration, many helpful characteristic signals are interfered by noises,
which leads to the difficulty for traditional statistic models to detect fault information
contained in pressure data. Therefore, a more effective and general data-driven method
should be proposed to support the fault diagnosis for fuel systems of gas turbines.

2 Related Works

In the past 40 years, fault diagnosis can be roughly divided into two categories:
methods based on physical models and methods based on data [1]. In the early stage,
physical models are usually constructed to accurately represent real mechanical sys-
tems. But as systems becoming more and more complicated and comprehensive, the
value of traditional physical models is becoming more and more limited. Intelligent
fault diagnosis, a data-driven method utilizing digital signal processing, modeling,
artificial intelligence, have now shown obvious superiorities compared with physical
models for large scale equipment fault diagnosis [2–4]. Specifically, some machine
learning algorithms, such as logistic regression, decision tree or random forest, support
vector machine (SVM), and various artificial neural networks, have been widely used
and improved to diagnose faults for complicated systems and shown excellent per-
formance [5–8].

Jianmin, Yupeng et al. proposed a fault monitoring method by analyzing the
cylinder head variations and proved in the paper that peak characteristics in combustion
stage signal of cylinder vibration under different work conditions can accurately
describe injection information and can be regarded as input data for fault diagnosis [9].
In Albarbar, Gu and Ball’s work, an ICA (Independent Component Analysis) based
scheme was developed to decompose air-borne acoustic signals. Then the fuel injection
process characteristics were processed and monitored by WVD (Wigner-Ville Distri-
bution) technique in time-frequency domain, which was testified to be valid by signal
simulations and empirical measurements [10]. Zhiling, Bin et al. presented an expert
system to diagnose gear box in wind turbine timely and accurately, which was based on
fault tree analysis and developed by C# on the .NET platform [11]. Amirat, Choqueuse
et al. provided a method on the basis of the generator stator current data collection and
the Hilbert transformation and validly detected failures in DFIG (Doubly-Fed Induction
Generator) based wind turbine for both stationary and nonstationary conditions [12].

More concretely, considering the application of neural networks in fault diagnosis,
Fengming proposed the design and implementation of the fault diagnosis of diesel fuel
system based on wavelet analysis, of which the overall approach is to preprocess the
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dataset by wavelet transform, extract some features of faulty data, and then make them
the input samples of the neural network. One of the advantages of this approach is that
both the value of dataset and physical significance of model are taken into account [13].
Cheng presented a new fault identification method based on H-H wavelet transform
and SOM (Self Organized Map) neural network, whose main innovations lay on
effectively separating the frequency family of the gear vibration signals by EMD
(Empirical Mode Decomposition), obtaining Hilbert spectrum and Hilbert edge spec-
trum according to the Hilbert transformation of IMFs (Intrinsic Mode Functions), and
then using the energy percentage of the first six IMFs as the input vector of SOM neural
network [14]. Based on SOM network, Jafari-Marandi proposed a SOED (Self-
Organizing and Error-Driven) artificial neural network clustering method and showed
that SOED is a reliable technique by testing several datasets [15]. Delgado, Higuera
et al. developed an original computational approach based on SOM prototype for
cluster analysis, where topology-preserving and connectivity functions were used in the
process of clustering [16]. Additionally, the improved method of preprocessing original
data with principle components analysis proposed by Wei was testified to be capable to
enhance the accuracy and speed of training process [17].

3 Establishment of Improved SOM Network for Fuel System

3.1 Basic Introduction of SOM Network

SOM, a kind of visual unsupervised learning algorithm, is short for Self-Organized
Map. A typical 2-dimensional SOM neural network structure is as Fig. 1 shows, which
usually contain only two layers of neurons. The same as other artificial neural net-
works, update of the weight matrix is the key to SOM algorithm.

The learning algorithm of SOM network consists of two steps: competitive learning
and self-stabilizing learning. Competitive learning means that if the distance between
an input vector and a weight vector is shorter, the adjustment of the weight vector will
be greater, so that a series of competitive layer neurons that resemble one specific
winning neuron will gather. The most classical SOM algorithm is Kohonen training
algorithm, which can be presented as Fig. 2 below.

Fig. 1. A 2-dimensional SOM neural network

254 Z. Chen et al.



What calls for special attention is that SOM network is more suitable to those prob-
lemswith features that samples in the same category are concentrated in output layer plane
and that samples in different categories are relatively far away from each other. Besides,
the input training data should have obvious characteristics for classification.

Fig. 2. Flow chart of Kohonen algorithm
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3.2 Description of Fault Phenomena of Fuel System

There are eight main fault phenomena for the fuel system of gas turbines, which are
shown in Table 1.

These eight fault phenomena can be attributed to the failure of three components:
oil gauge in fuel pipe, needle valve, and delivery valve. Experimental facts indicate that
once the physical state of these three components change, the pressure signal in high-
pressure fuel pipe of the fuel system will be directly affected. Meanwhile, effective
information extraction of high-pressure fuel pipe and proper data analysis can help
researchers determine the working state of these three components and distinguish the
eight fault phenomena validly.

3.3 Extraction of the Characteristic Data

A typical waveform of the pressure in fuel system describing the variation of fuel
pressure over time is shown in Fig. 1. By analyzing the working state of fuel system,
one can divide the pressure signal curve into several stages, which are marked below
the time axis in Fig. 3.

The first stage starts at the moment delivery valve opens and ends at the moment
the needle valve of fuel injector opens. In this stage, the pressure curve rises from the

Table 1. Main fault phenomena of fuel system

a. Normal state
b. 75% fuel supply
c. 25% fuel supply
d. Idle fuel supply
e. Needle valve sticking (small fuel volume)
f. Needle valve sticking (calibrated fuel volume)
g. Needle valve leakage
h. Delivery valve failure

Fig. 3. Waveform of the pressure in fuel pipe
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initial state into a higher level, during which a gap will always appear in the middle of
this period. Some specific pressure data, reflecting the state information of the needle,
can be extracted from the gap curve.

The second stage is the period while fuel keeps moving forward after the opening
of needle valve of fuel injector. There is only one component that is engaged in this
stage, so the waveform in the second stage contains the working state information of
the needle valve.

The third stage is the free expansion process, in which the working state of delivery
valve changes.

The fourth stage refers to the free attenuation process of the residual pressure.
Components who affect this period mainly include delivery valve and fuel circuit,
whose sealing may matter.

Besides, for a long time period, the pressure waveform is regular and shows a
certain periodicity. In consequence, it is convenient and useful for us to monitor the
pressure sensors of fuel pipe with a specific sample frequency and obtain a clear
waveform and pressure data.

Based on a large number of experiments, eight characteristic parameters, including
starting pressure, maximum pressure, and so on, can give a complete and accurate
description of the fuel system, which are shown in Fig. 4 in more detail.

The meaning of characteristic parameters that marked in the diagram above are
shown in Table 2.

Fig. 4. Diagram of characteristic extraction

Table 2. Characteristic parameters of pressure waveform

P1 Max pressure
P2 Secondary pressure
P3 Wave range
P4 Rising edge width
P5 Wave width
P6 Max repercussion width
P7 Wave integral area
P8 Starting pressure
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3.4 The Structure of SOM Network

The structure of input layer of SOM network is usually a simple 1-dimensional array (a
vector) that are directly decided by the number of attributes of original data. Therefore,
in this case, as Table 2 shows, input layer can be represented by an 8-dimensional
vector ðP1;P2;P3;P4;P5;P6;P7;P8Þ.

As for the competitive layer (output layer), the structure is related to the number of
clusters of samples and their topological structure [18]. In this paper, there are eight
fault phenomena that can be converted into eight modes as Table 1 shows, which can
be regarded as priori knowledge. Considering that the characteristic parameters of these
eight modes are not separated but correlated with each other and full of continuity in
some dimensions, a 2-dimensional plane competitive layer is more suitable for the fault
diagnosis of fuel system.

To ensure both a good fitting rate of the training set and a high predictive accuracy
for the test set, a variable indicating the error of the fitting process can be used to design
the structure of competitive layer.

err ¼
XD
i¼1

ðxi � wijÞ2 ð1Þ

For training set, errtrain expresses the training error, and for test set, errtest expresses
the generalization error. So, an objective function is defined as Eq. (2).

obj : min errtrain � errtest ð2Þ

Under this objective, the structure of competitive layer can be determined based on
the priori knowledge and an iteration test. In terms of competitive layer, for x ¼ 7; 8; 9
and y ¼ 7; 8; 9, nine kinds of 2-dimensional plane are tested with each 1600 times
iterations, from which the conclusion that the optimal structure is a 2-dimensional
8 � 8 plane is drawn (Fig. 5).

Fig. 5. Structure of SOM network of fuel system
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3.5 Parameters of SOM Network

After the topological structure of SOM network decided, some structure parameters
related to the performance of network need to be chosen properly: learning rate, weight
adjustment function, and winning neighborhood [19]. Here for every parameter, several
alternatives are considered and the most suitable one is finally chosen by using genetic
algorithm.

Learning Rate. At the beginning of training, learning rate should be relatively large,
which helps the algorithm quickly obtain a rough structure of weight vector. And as
number of training increases, to make the model more accurate, learning rate should be
designed to gradually decline and eventually reach zero. Therefore, a linear attenuation
function and an exponential attenuation function are optional as Eqs. (3) and (4).

gðtÞ ¼ C 1� t
T

� �
ð3Þ

gðtÞ ¼ Ce�Bt=T ð4Þ

Weight Adjustment Function. The most common and useful alternative weight
adjustment functions are shown in Fig. 6, in which (a) is called “Mexican straw hat
function”, (b) is called “Top hat function”, and (c) is called “Chef cap function”. The
interval ð�R;RÞ on horizontal axis is the winning neighborhood.

Because of a relatively simple competitive layer structure and a small number of
fault modes, the “Top hat function” and “Chef cab function” are more appropriate with
a low time consumption and an adequate training accuracy.

Fig. 6. Response neighborhood functions
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Winning Neighborhood. The basic design criterion of winning neighborhood is that
range of neighborhood shrinks as number of training increases, which guarantees the
existence of both differences and similarities between the weight vectors corresponding
to adjacent neurons on the competitive layer plane. In result, similar to the design
method of learning rate, two winning neighborhood attenuation functions are designed
to be chosen as Eqs. (3) and (4).

Elements in alternate function set are discrete, so genetic algorithm can be applied
to optimize the selection of these parameter functions, of which the detailed steps are as
follows.

(1) Encode each function that can be selected for each structure parameter.
(2) Randomly generate the initial population structure, keeping the objective function

still min errtrain � errtest.
(3) Determine the fitness function.
(4) Generate new individuals according to the fitness criterion: individuals with high

fitness have high genetic probability, while individuals with low fitness have low
genetic probability.

(5) Generate a new generation of population according to a certain cross-genetic
method.

(6) Generate some variants according to a certain degree of variability.
(7) Evaluate the new generation of population.
(8) Repeat steps 2–7 until the optimal solution is selected.

Finally, after experiments for each parameter, the result of genetic algorithm
indicates that learning rate function and winning neighborhood function should be both
linear attenuation function, and the weight adjustment function should be the “Chef cab
function”.

4 Data Implementation of Fault Diagnosis for Fuel System

4.1 Data Pre-processing

Experimental data is collected in the actual operation process of gas turbine, which has
been divided into training set (40 samples) and test set (8 samples). Each sample
contains an 8-dimensional vector expressing the eight characteristic parameters men-
tioned in 3.3 and a tag in range of 1–8 expressing the fault modes.

Normalization. Dimensional variables in different ranges can be transformed into
dimensionless variables by normalization. By simple calculation, values in different
dimensions are limited in the interval ½�1; 1�, in case that values in different dimensions
affect the training process differently. Equation (5) is the normalization formula.

yi ¼ 2ðxi � xminÞ
xmax � xmin

� 1 ð5Þ

Part of normalized data is as Table 3 shows.
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Table 3. Part of normalized data

Fault modes Number P1 P2 P3 P4 P5 P6 P7 P8

Normal state 1 1.000 0.802 0.027 0.549 0.556 0.400 0.706 0.631
2 1.000 0.837 0.092 0.901 0.556 0.400 0.882 0.620
3 0.920 0.744 0.114 0.930 1.000 0.600 0.824 0.464
4 0.952 0.674 0.481 0.479 0.556 0.400 0.765 0.473
5 0.936 0.605 0.341 0.747 1.000 0.600 0.924 0.486

… … … … … … … … … …

PCA and Data Dimensional Reduction. PCA (Principle Component Analysis)
algorithm is used to transform the original normalized data into a series new vector and
meanwhile speed up the training process, with most of the information in the original
data remaining [20]. It has been calculated that the largest four eigenvalues of the
covariance matrix account for more than 95% of the sum of eight eigenvalues, so four
principle components are chosen to approximate the whole information of original data.
Eventually, the dimensionality of normalized dataset declines from eight to four.

4.2 Initialization of the Network Neurons

Now there are mainly three initialization method of SOM network [21]. First, the
network can be directly initialized by random normalized constant vectors. The second
method is to use part of data from training set as initial weight vectors, which saves
much training time compared with the first method. The third method is to initialize the
network at the center of competitive layer plane first, and then add some small random
values to the other neurons as the distance increases.

However, in this case, on account of the fact that the data we have obtained is
already tagged, a pre-segmentation makes it more convenient and appropriate to ini-
tialize the neurons in each segment. The specific operation steps are as follows.

(1) Create a 2-dimensional 8� 8 SOM neural network.
(2) Append two types of unknown fault modes to eight fault modes ever known

before and notate them with number 1–10.
(3) Transform the discrete competitive layer plane into continuous plane and divide it

in to 10 pieces evenly.
(4) Choose eight proper pieces corresponding to the fault mode 1–8 and initialize

each piece of network with the second initialization method.
(5) Initialize the other two pieces of network with random weight vectors.

By this means, the network has a certain topological structure at the beginning of
training process, which guarantees the convergence of algorithm and a relatively low
time consumption.

4.3 Verification of the Algorithm

Directly Validation. After initialization, the improved network is trained with pre-
processed training set data for 1600 iterations and the weight vectors are up to date.
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Then the test set data is inputted into the input layer of SOM network, in order to verify
the algorithm. The result is as Fig. 7 shows, in which the color of small rectangles
reflects the distance between the neuron and other neurons.

From the result picture of training set, it is clear that the eight fault modes are identified
in clusters in the competitive layer plane of SOM network, whose topological structure
has been presented. According to the result of test set, the recognition rate of the
network is almost 100%. Additionally, when it is observed that a cluster of winning
neurons are distant from all the other winning neurons, the cluster can be regarded as a
brand-new fault mode we have never known before.

Cross Validation. For the available dataset is extremely small, the verification result
lacks convincingness. So as Fig. 8 shows that the training set is divided into many
subsets (6 subsets in this case) and for each iteration, a subset acts as the test fold and
the other act as training folds. Consequently, the original dataset is adequately utilized,
and the training accuracy can be improved. Furthermore, over-fitting problem can also
be avoided by cross validation.

Fig. 7. Result of SOM network

Fig. 8. Schematic diagram of cross validation
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After cross validation, the precision rate of this improved SOM network algorithm
eventually lies at 89.6%.

4.4 Analysis of the Algorithm

Comparison Between Original SOM Network. The time consumptions of both
original SOM network and the improved algorithm are firstly calculated, where the
training time is an average of 100 times training, as Table 4 shows.

It can be seen that the improvement of algorithm helps reduce the training time by
about 30%. On analysis, it is the PCA process that play the dominant role in reducing
training time. Therefore, SOM network combined with PCA algorithm is superior in
time consumption, especially when dealing with a big and high-dimensional dataset.

Then in consideration of the convergence result, as Fig. 9 shows, the convergence
speed and training error of improved SOM network are both better than original one.
The reason why improved SOM is worse than the original one at the beginning may
lies in that random initialization of original one happened to reach a higher accuracy.

Comparison Between Other Algorithms. To verify the classification accuracy of this
improved network, some other algorithms are also used to be compared with, such as
original SOM neural network, NB (Naïve Bayes Classification) and KMeans clustering
algorithm (When a clustering algorithm are applied to a classification problem, it is
essential for experts to judge which categories the clusters belong to by professional
experience after the clustering process. Then the number of correctly classified samples
can be counted, and the precision rate can be calculated). The test accuracies of these
algorithms are as Table 5 shows.

Table 4. Comparison of time consumption

Methods Original SOM Improved SOM

Training time (s) 1.71 1.17

Fig. 9. Comparison of convergence curve
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5 Conclusion

In consideration of the difficulties in establishing physical models for fuel system of gas
turbines, a data-driven method is proposed and applied in fault diagnosis of fuel sys-
tem. Concretely, in this paper, an improved SOM neural network is designed and
constructed. In this process, the structure of competitive layer plane is designed based
on a quantitative test, the parameters of network are chosen using genetic algorithm,
and the weight vectors are initialized with a specific pre-segmentation method. Besides,
PCA algorithm is utilized before the samples are inputted, improving both the con-
vergence and training speed of the network. Finally, the network is verified by a dataset
and proved to reach a satisfying performance for fault diagnosis compared with other
existing algorithms.

From the verification result of this fault diagnosis algorithm we can draw the
conclusion that this improved SOM neural network has the advantages of data-driven
characteristic, self-organized characteristic and unsupervised characteristic, which are
of vital importance on condition that it is almost impossible to create physical models
for complicated fuel systems of various gas turbines.

However, limited by the size of dataset, this paper does not testify the performance
of network with a big size of training data and hence lacks the analysis of space
consumption of the algorithm in more detail.
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Abstract. Power system fault detection has been an import area of study for
power distribution networks. The power transmission systems often operate in
the kV range with significant current flowing through the lines. A single fault,
even lasting for a fraction of a second, can cause huge losses and manufacturing
downtime for industrial applications. In this research, we develop an approach to
detect, classify, and localize different types of phase-to-ground and phase-to-
phase faults in three-phase power transmission systems based on discrete
wavelet transform (DWT) and artificial neural networks (ANN). The multi-
resolution property of wavelet transform provides a suitable tool to analyze the
irregular transient changes in voltage or current signals in the network when
fault occurs. An artificial neural network is employed to discriminate the types
of fault based on features extracted by DWT. Computer simulation results show
that this method can effectively identify various faults in a typical three-phase
transmission line in power grid.

Keywords: Power systems � Fault detection � Fault classification �
Wavelet transform � Artificial neural networks

1 Introduction

In today’s society, electricity is a necessity for our daily lives. From large industrial
companies to small households, energy is consumed and always needed to be readily
available. A major issue that power companies face is the power transmission disconti-
nuity due tovarious faults along transmission lines. It is known that thepower transmission
systems often operate at high voltage (in kV range) for lesser resistive losses over long
distance; thus when fault occurs, excessively high current flows through the power net-
work which may cause severe damages to equipment and devices ([1–3]). A single fault,
even when lasting only for a fraction of a second, may affect potentially millions of
customers on the grid and result in huge losses and manufacturing downtime in industry.
These power quality events (PQEs) can be caused by natural disasters, equipment failures,
or human errors. For example, a line-to-ground fault may be caused by a fallen tree limb
that makes contact with one transmission phase line and the ground. If an object, such as a
bird or other animal, makes a contact with two transmission phase lines may result in a
short current of these two phases called a line-to-line fault.
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The conventional approach to discover and identify faults in power networks is to
manually analyze the system. However, this method is usually time-consuming and not
very efficient. In recent years, there have been some developments in the applications
of computational intelligent models and algorithms for fault detection and diagnosis. In
[4], support vector machine (SVM) is employed to detect and classify four different
types of faults in a distributed power network. The output of SVM is binary; thus four
SVMs are used in the system and each SVM is trained to detect and classify fault for a
particular phase. In [5], transformer disturbances in power networks are discussed. Two
artificial neural networks (ANN) are connected in cascade form; one for fault detection
and one for classification. Once the disturbance is detected by the first neural network,
the algorithm enables the second ANN to discriminate different types of faults
appropriately. Reference [6] considers the application of a probabilistic neural network
(PNN) with discrete wavelet transform (DWT). The details of dataset and simulation
results are not given. In [7], DWT and neural networks are combined to detect three
different faults for a typical three-phase inverter used in power systems. The inputs to
neural network are the normalized approximate coefficients of level 1, 2, and 3 from
wavelet transform. The performance of ANN is tested on a limited dataset (12 tests
total), with satisfactory results.

This paper focuses on the development of a hybrid approach to detect, classify, and
localize different types of phase-to-ground and phase-to-phase faults in three-phase
power transmission systems based on discrete wavelet transform and artificial neural
networks. The multi-resolution property of wavelet transform provides a suitable tool
to extract and analyze the transient changes in voltage or current signals when a
network fault occurs. Note this “irregular” change in time domain also results in the
change of signal power distribution in frequency domain. In this research, instead of
using DWT coefficients directly as proposed in literature, the power of the subband
signal (decomposed by DWT) is used as the feature vector. An artificial neural network
is then employed to discriminate various types of faults in the network. Seven different
cases are considered, namely, no fault, phase A line-to-ground fault, phase B line-to-
ground fault, phase C line-to-ground fault, phase A and B line-to-line fault, phase B
and C line-to-line fault, and phase A and C line-to-line fault. Computer simulation
results show that this method can effectively identify various faults in a typical three-
phase transmission line in power grid.

This paper is organized as follows. Section 2 provides the background information
on discrete wavelet transform (DWT), artificial neural networks (ANN), as well as the
hybrid approach based on DWT and ANN. Section 3 discusses the computer simu-
lation results. Section 4 concludes the paper and gives direction for future work.

2 The Hybrid Approach for Power System Fault
Identification

In this section, the background information on discrete wavelet transform and artificial
neural networks is introduced first; then the hybrid approach for power grid fault
detection based on DWT and ANN is discussed.
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For a three-phase power grid, there are two different types of faults, i.e. the sym-
metric fault and the asymmetric fault. About 5% of power transmission line faults are
symmetric (or balanced) faults, which affect each of the three phases equally ([1–3]).
Typical symmetrical faults include line to line to line (L-L-L) and line to line to line to
ground (L-L-L-G). Asymmetric faults (or unbalanced faults), which do not affect each
of the three phases equally, are more common in power systems. Asymmetric faults
include line-to-line, line-to-ground, as well as double line-to-ground faults. In this
research, we consider six different types of asymmetric faults, i.e., phase A line-to-
ground fault, phase B line-to-ground fault, phase C line-to-ground fault, phase A and B
line-to-line fault, phase B and C line-to-line fault, and phase A and C line-to-line fault.

Wavelet transform is a powerful mathematical tool for signal processing. It
decomposes signals into multiple frequency bands with different resolutions, and is
especially suitable to analyze non-stationary signals or to detect irregular transient
changes in signals. The continuous wavelet transform of a signal f tð Þ can be written as:

Tðs; sÞ ¼ 1
ffiffi

s
p

Z 1

�1
f ðtÞw� t � s

s

� �

dt ð1Þ

where w �ð Þ is called the “mother wavelet” and w� �ð Þ represents its complex conjugate;
s is the scaling factor and s is the shifting factor. In computer simulations, discrete
wavelet transform is performed by selecting

s ¼ 2a; s ¼ 2b ð2Þ

where a and b are positive integers.
The wavelet transform can be considered as passing a signal through a set of low-

pass (LP) and high-pass filters (HP). Through this process, a signal can be decomposed
into various levels. At each level, it contains a set of detail coefficients (D) and
approximation coefficients (A). In this research, we use DWT to extract features from
the voltage or current signals in the power network. Instead of using DWT coefficients
directly as proposed in literature, the power of the subband signal (decomposed by
DWT) is used as the feature vector. Daubechies (db4) wavelet is employed for
decomposition to level 4; then the power of the subband signal is calculated using
detail coefficients of level 4:

Es ¼
X

Lm

i¼1

Dið Þ2 ð3Þ

where Di is the i
th detail coefficient of the decomposition level m which contains totally

Lm detail coefficients.
After feature extraction, a neural network model is proposed to classify different

types of faults, with the subband signal power obtained from wavelet transform as its
inputs. The weights of the neural network are initialized randomly, and then updated
with the Levenberg-Marquardt algorithm [8]:
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Wðk þ 1Þ ¼ WðkÞ þ gðJTa Ja þ lIÞ�1JTa e ð4Þ

where Ja is the first order derivative of the error function with respect to the neural
network weight (also called the Jacobian matrix); e is the output error (i.e., the dif-
ference between the neural network outputs and the desired outputs. In this application,
it represents the classification error); l and g are learning parameters; and k is the index
of iterations.

A typical multi-layer feedforward neural network has an input layer, an output
layer, and one or more hidden layer(s). The wavelet transform is performed on three
voltage or line current signals, one for each phase (i.e., phase A, B, and C); thus the
neural network classifier has three inputs. In this research, by trial and error, we choose
the neural network with one hidden layer and ten hidden neurons for the simulation in
Sect. 3. The output of neural network represents the type of each fault, or no fault.
Therefore, the neural network classifier can have either a single output, or three outputs
with the fault type ID binary encoded for seven different cases. Initial training and test
results show that the single output neural network classifier performs slightly better
than the binary encoded outputs. As a result, in Sect. 3, we choose the neural network
with a single output. The overall system diagram is shown in Fig. 1.

3 Simulation Results

A typical configuration of a power grid consists of three major modules, i.e. generation,
transmission, and distribution. Figure 2 illustrates the Matlab Simulink model of such a
network. In this section, the performance of the proposed approach based on DWT and
ANN is tested by computer simulations.

In Fig. 2, the three-phase transmission line between the 50 Hz power generator site
and the load is divided into two series-connected portions by the fault location in
network, where the first portion shows the connection between the source and fault
location; the second portion illustrates the connection between the fault location and the
load. The resistance, capacitance, and inductance per unit length for the positive- and
zero-sequence of the transmission lines are summarized in Table 1. These values of
parameters are chosen to match with the parameters of the power source. Note the
transmission line is continually transposed; i.e., the positive and negative sequences are
equal. Also, a small non-zero ground resistor should be included. In this simulation, it
is chosen to be 0.001 X. All of these values of parameters can be varied upon one’s
choice.

Fig. 1. The power system fault detection and classification using DWT and ANN
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The computer simulation results are shown in Tables 2, 3, 4 and 5. In Tables 2 and
3, “N” represents “no fault”; “A” represents phase A line-to-ground fault; “B” repre-
sents phase B line-to-ground fault; and “C” represents phase C line-to-ground fault.
Similarly, “AB” represents phase A to B line-to-line fault; “BC” represents phase B to
C line-to-line fault; and “AC” represents phase A to C line-to-line fault. The per-
centages on main diagonal positions are the percentage of correct classification; while
all the other percentages on the off-diagonal positions are the percentage of misclas-
sification. For example, the first column shows that for the true “no fault” case, the
algorithm yields a 99.95% correct classification rate while 0.05% of the true “no fault”
cases are misclassified as phase A to B line-to-line fault. The “no-fault” accuracy is
obtained based on 3800 input/output data pairs and for each fault case, the accuracy of
detection is obtained based on 300 input/output data pairs. Table 2 shows the confusion
matrix if the data used are line current measurements; Table 3 shows similar results but
with data taken on voltage signals. The average accuracy for the seven different cases is
83.33%.

Fig. 2. The three-phase power transmission line

Table 1. Parameters of transmission lines

Parameter Positive sequence Zero sequence

Resistance per unit length (Ohms/km) 0.01273 0.3864
Capacitance per unit length (H/km) 12.74 � 10−9 7.751 � 10−9

Inductance per unit length (F/km) 0.9337 � 10−3 4.1264 � 10−3
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Tables 4 and 5 shows the simulation results on fault localization (for simplicity,
only phase A line-to-ground fault is considered) using the current or voltage signals,
respectively. The distances in the tables indicate the fault location. For example,
“0 km” indicates the fault occurs right at the end of the power lines where measure-
ments are taken; “50 km” indicates the fault occurs 50 km away from the endpoint (or
150 km to the power source); etc. For simplicity, only four locations are considered in
this proof-of-concept study. For example, the neural network correctly identifies the
fault location with an accuracy of 66.67% if the fault occurs 50 km away from the
measurement data acquisition location; while the neural network misclassifies 11.11%
of the fault locations as 150 km away from the point where measurement data are
taken. For each distance, 450 sample pairs are generated in this simulation. In general,
the fault detection accuracy decreases as the distance between fault location and
measurement point increases, except at the midpoint in Table 5 (100 km away from
both source and load) which needs further analysis.

Table 2. Fault identification confusion matrix based on current signals

N A B C AB BC AC

N 99.95% 16.67% 8.33% 8.33% 0 0 0
A 0 83.33% 8.33% 16.33% 8.33% 0 8.33%
B 0 0 75.00% 0.33% 0 8.33% 8.33%
C 0 0 8.33% 75.00% 8.33% 0 0
AB 0.05% 0 0 0 83.33% 0 0
BC 0 0 0 0 0 91.67% 8.33%
AC 0 0 0 0 0 0 75.00%

Table 3. Fault identification confusion matrix based on voltage signals

N A B C AB BC AC

N 99.95% 16.67% 8.33% 8.33% 0 0 0
A 0 83.33% 8.33% 16.67% 8.33% 0 8.33%
B 0 0 75.00% 0 0 8.33% 8.33%
C 0.05% 0 8.33% 75.00% 8.33% 0 0
AB 0 0 0 0 83.33% 0 0
BC 0 0 0 0 0 91.67% 8.00%
AC 0 0 0 0 0 0 75.33%

Table 4. Fault location determination confusion matrix based on current signals

0 km 50 km 100 km 150 km 200 km

0 km 99.95% 22.22% 11.11% 5.56% 0
50 km 0 66.67% 16.67% 33.33% 20.22%
100 km 0 0 55.56% 0 18.67%
150 km 0 11.11% 5.56% 55.56% 5.56%
200 km 0.05% 0 11.11% 5.56% 55.56%
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4 Conclusions

In this paper, we develop an approach to detect, classify, and localize different types of
phase-to-ground and phase-to-phase faults in three-phase power transmission systems
based on discrete wavelet transform and artificial neural networks. Satisfactory com-
puter simulation results are obtained and presented. For future work, we plan to con-
sider the situation when measurement data contain noise and/or outliers. Pre-processing
noisy data using adaptive filtering and/or outlier detection may speed up neural net-
work learning and improve the neural network generalization ability. More tests will be
conducted to further investigate the performance of this hybrid approach.
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Abstract. In this paper, we propose a novel modified distributed Kalman
algorithm, which is a diffusion strategy that the state estimation is more precise
while the system model is time-varying. Our focus is on the missing data
gathered by a set of sensor nodes that may obtain incomplete information
because of the harsh environment. Simulation results evaluate the performance
of the proposed distributed Kalman filtering algorithm.

Keywords: Diffusion estimation � Kalman filtering � Missing data

1 Introduction

The sensor network is deployed in a large number of micro sensor nodes distributed
spatially independent in the monitoring area. Due to the limited energy, sensing range,
communication and computing ability of the node, distributed algorithms exhibit
superior performance over traditional centralized algorithms, especially the diffusion
strategy of LMS distributed algorithm [1].

However, LMS algorithm is usually used for estimating constant parameters instead
of dynamic model such as target tracking [2] which is also an important research area
of sensor networks no matter military or civilian. In time-varying model, Kalman filter
algorithm is one of the most popular recursion algorithm since it was proposed in 1960s
[3]. Cattivelli and Sayed [4] studied DKF using a diffusion strategy, whose technical
challenge is how to migrate mature central (or traditional) Kalman filtering methods to
complex large dynamic systems and distribute the measurements across a large geo-
graphic area.

Most of Previous distributed algorithms in sensor networks assume that the
information sensed by sensor nodes are lossless. As the size of the deployed sensor
network grows, raw data typically has significant data loss because data collection is
heavily influenced by hardware and wireless conditions [5]. Another advantage of
Kalman filter algorithm is that estimating the states of dynamic system from an
incomplete and noisy measurement [6]. But Kalman filter algorithm cannot be directly
implemented for improving estimations with missing data because of the unique data
loss patterns of sensor network [7].

© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11555, pp. 273–281, 2019.
https://doi.org/10.1007/978-3-030-22808-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_28&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_28&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_28&amp;domain=pdf
https://doi.org/10.1007/978-3-030-22808-8_28


In this paper, a sensor network is considered which is developed to track targets.
Our work is to derive a diffusion algorithm based on KF, then obtain accurate values
even the measurements are missing.

The reminder of the paper is arranged as follows: In the next section, the system
model is presented and the problem is formulated. Section 3 derives the novel diffusion
Kalman estimation algorithm with some data missing. Simulations results of a target
tracking example are presented and discussed in Sect. 4 as well as with other existing
strategy, showing improvement in performance. Finally, we sum up the article in
Sect. 5.

2 The System Model and Problem Formulation

2.1 System Model

We consider the connection network composed of N nodes with limited communica-
tion ranges which are spatially distributed over a remote and inaccessible region, as
shown in Fig. 1. Nodes that can share information with each other are connected by
edges [8]. The neighborhood of node k is represented by Nk, which consists of all nodes
connected to k by edges (including node k itself). Assume an undirected graph. If node
k is the neighbor of node l, then node l is also the neighbor of node k. That is to say, the
information between two adjacent nodes is bidirectional flow.

Consider a state-space model associated with the environment for a target system
described by

xiþ 1 ¼ Fixi þ ni ð1Þ

yi ¼ Hixi þ vi ð2Þ

where i ¼ 1; 2; 3; . . . is a the time index, xi 2 RM is the state (signal) vector with initial
state x0 distributed as a zero mean Gaussian vector with covariance q0, yi 2 Rri is the

Fig. 1. Sensor network

274 S. Xiao et al.



(possibly) time-varying observation measurement vector by any node k at time i.
Fi 2 RM�M and Hi 2 RMy�M denote the sparse localized transition matrix and the local
observation matrix of the system, respectively. The signal ni 2 RM is the state noise
with covariance Qi � 0, and vi is the measurement noise with covariance Ri tð Þ[ 0.
Both of them are assumed to be zero-mean i.i.d. Gaussian noises denoted by

E
ni
vi

� �
nj
vj

� ��
¼ Qi 0

0 Ri

� �
dij ð3Þ

where the operator � denotes complex conjugate transposition and dij is the Kronecker
delta. Also, the noise at different nodes are independent of each other,

To describe this problem well, Eq. (2) is rewritten as

yik ¼ Cixk þ vik ð4Þ

2.2 Missing Data Problem

We assume that the data is missing at random (MAR) and the missing does not relay on
the data [9]. Let pi;k denote the probability of missing data by sensor k at time i in the
sensor network and the missing is independent of time and space. Oik is binary value,
which indicate if the data values gathered by node K at time i are missing or not. Oik is
defined as

Oik ¼ 0 if yk;i is missing
1 otherwise

�
ð5Þ

When any node k lose the signal, it can receive nothing but noise which lead to
deviations in estimation results.

3 Diffusion Kalman Algorithm with Missing Data

Kalman filtering (KF) algorithm was proposed in dynamic system model like target
tracking for decades. The iterations are shown in (6) and (7)

Measurement update:

Ki ¼ Pi i�1j H�
i Ri þHiPi i�1j H�

i

� ��1

x_i ij ¼ x_i i�1j þKi yi � Hix
_

i i�1j
� �

Pi ij ¼ Pi i�1j � KiHiPi i�1j

ð6Þ
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Time update:

x_iþ 1 ij ¼ Fixi ij þ ui
Piþ 1 ij ¼ FiPi i�1j F�

i
ð7Þ

where x_i jj denote the linear minimum mean-square error estimate of xi and Pi jj denote

the covariance matrix of the estimation error ~xi jj , xi � x_i jj . Ki is the Kalman filtering
gain.

On the basis of Kalman filtering which refer to the local measurement information,
nodes obtained the current estimates of the target state by communicating with their
neighbors in the sensor network [10]. Therefore, we could add the intermediate esti-
mate information from its neighbors to node k to update the Eq. (5). Formally, Eq. (5)
is rewritten as

P�1
k;i ij ¼ P�1

k;i i�1j þ P
l2Nk

H�
l;iR

�1
l;i Hl;i

x_k;i ij ¼ x_k;i i�1j þPk;i ij
P
l2Nk

H�
l;iR

�1
l;i yl;i � Hl;ix

_

k;i i�1j
� �

x_k;iþ 1 ij ¼ Fix
_

k;i ij
Pk;iþ 1 ij ¼ FiPk;i ij F�

i þGiQiG�
i

ð8Þ

In this paper, we investigate how to get state estimate as accurately as possible in a
dynamic system when the missing sensor data exist. For deal with missing data
problem, we introduce an imputation strategy into the step 1 of the diffusion Kalman
filter [11] to reconstructing missing information.

Before designing the imputation, we device a simple detection system to detect the
nodes with missing data. Let’s set a threshold cik which refers to environment noise.
The threshold is used to size up the missing data, i.e., the indicate Oik is determined by
cik as the following:

Oik ¼ 0; yk;i\cik
1; yk;i [ cik

�
ð9Þ

For the node detected by the detection system that the data was lost, its measure
message yk;i is replaced by the estimate values of Kalman algorithm at time i − 1,
otherwise remain unchanged:

yk;i ¼ x_k;iþ 1 ij ; Oik ¼ 0
yk;i; Oik ¼ 1

�
ð10Þ

Let uk;i denote the intermediate estimate for the node k at time i. Then ul;i means
the intermediate estimate for the node l at time i as well. We rewrite the second of
Eq. (8) using all neighbors’ intermediate estimate as following:
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uk;i=i ¼ uk;i=i�1 þPk;i=ið
X
l2Nk

HT
l;iR

�1
l;i yl;i �

X
l2Nk

HT
l;iR

�1
l;i Hl;iuk;i=i�1Þ ð11Þ

P�1
k;i=i can be rewritten as the same.
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4 Simulation

In this section, the performance of the proposed algorithm is demonstrated by
numerical simulation. We present the MSD performance of the non-cooperate Kalman
filter (KF) with missing and non-missing data. In order to illustrate the performance of
the IDKF, we also make a comparison of the proposed strategy and the usual strategy
to the step 1 of the diffusion Kalman filter. To achieve this objective, we build a time-
varying random system.

4.1 Simulation Environment

For simplicity, we consider the problem of tracking the trajectory of a Parabolic object
observed by a network consists of 20 nodes with the topology shown in Fig. 2, where
nodes obtain incomplete measurements (noise or missing) of the object’s position
independently and communicate with its neighbors.

In our simulation, the system model is given by

F ¼
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

2
664

3
775;

H ¼ 1 0 0 0
0 1 0 0

� �
;

where T ¼ 0:1, Q ¼ 5I, Rk ¼ 5.
The missing probability for all nodes are set up to 0.1.
For the object, the initial position state x0 ¼ 1 y0 ¼ 31 and the initial speed v ¼ 15,

the gravity g ¼ 10, angel h ¼ p=3

Fig. 2. Topology of sensor network
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Figure 3(a) shows noisy measurements at node 5 without missing, indicating that
the noise can cause deviations in measurement but is not damaged. Compared with (a),
Fig. 3(b) demonstrate that missing data can lead to bad influence to the measurements
even if the probability is 0.1.

4.2 Simulation Results

In the following simulations, we use the mean-square deviation (MSD) to evaluate the
influence of the performance of missing as shown in Fig. 4. The MSD is defined as

MSDi ¼ 1
N

XN
k¼1

Eðx� x_k;i ij Þ ð12Þ

Fig. 3. Noisy measurements at node 5 (a), average measurements among 3 patterns (b)

Fig. 4. MSD of non-imputation DKF with and without missing
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For a more intuitive explanation, error is used directly to testing the performance of
the imputation strategy compared to the normal strategy and the measurements.
Figure 5 demonstrate the proposed IDKF perform better than the DKF and can dealing
with missing data problem effectively.

5 Conclusions

In this paper, we provided a new imputation diffusion Kalman filter (IDKF) algorithm
to track the object with missing data at random. We reconstruct the missing data by
using last estimation result of Kalman filter replacement. Our simulation examples have
demonstrated that the proposed algorithm can deal with the missing data problem and
improve the accuracy of the sensor network. The modifications of detection and
imputation can recognize the nodes who lose data when the noise is Gaussian white
noise and perform better than usual strategy in the first step of DKF.
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Abstract. Agathosma Buchu plants are a holistic healing system used as alter-
native medicine in dealing with numerous diseases and also for cooking oil pro-
duction. There are two types namely, Betulina and Crenulata. The plants are
difficult to separate if mixed up after harvest. Furthermore, the high rate of the
plants’ cultivation poses challenges in separating them for specific functions.
Hence, other identification methods are crucial. This paper presents an imple-
mentation of machine learning algorithms based on spectroscopic imagery prop-
erties for automatic recognition of the plants’ species. Image Local Polynomial
Approximation method is used for the image processing to reduce classification
error and dimensionality of classification challenges. To demonstrate the efficacies
of the processed dataset, K-Nearest Neighbour, Naïve Bayes, Decision Tree, and
Neural Network classifiers were used for the classification procedures in different
data mining tools. The classifiers’ performances are valuable for decision-makers
to consider tradeoffs in method accuracy versus method complexity.

Keywords: Image � Agathosma � Separability � Classification

1 Introduction

Agathosma (Buchu) grown in the Southern part of Africa and known as genus plant in
the family of Rutaceae (citrus) has over 120 species flowering plants. Among the
various species is Agathosma (A.) Betulina, a fragrant shrub with round leaves, which
grows to a height of 2 m and the Agathosma (A.) Crenulata plant, a pungently aro-
matic, woody, single- stemmed shrub that reaches a height of 2.5 m. As an alternative
medicine, traditional healers use the plants as an antispasmodic, antipyretic cough
remedy and diuretic for health care purposes [1]. Furthermore, the plants are used to
treat urinary tract infectivity, stomach pains, for treating wounds, kidney problems, and
symptomatic treatment for rheumatism [2, 3]. In addition, the plants are also used for
oil production. A. Betulina produces good quality oil and available for sales while A.
Crenulata oil is of a less quality [4]. The plants are well-known plants used for
medicinal purposes in South Africa [5]. The leaves are normally recognized based on
their morphology. A. Betulina leaves are round in shape while A. Crenulata leaves are
oval in shape. Figures 1 and 2 show the pictures of the leaves.
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However, the morphological method of recognition cannot be used for the plants’
identification due to the extensive cultivation of the plants. New crossbreeds of the
plants now exist which cannot be clearly separated. A. betulina and A. crenulata have
been studied extensively by investigating the volatile oil consistents [5], while few
studies have been done on the identification of the leaves using hyperspectral data
processing and classification methods for the leave separability. This research aims at
exploring the Local Polynomial approximation (LPA) method of hyperspectral image
processing and thereafter classifies the processed data using machine-learning algo-
rithms as tools for separating the species.

Hyperspectral images are made up of a large number of spectral bands, which are
about 200–250 imageries with identical views. The spectral bands found applications in
various fields for analyzing objects and materials within the electromagnetic spectrum
[6–9]. Research studies have shown that leaf image classification is an acceptable
technique for leaf identification and classification [9, 10]. The process involves taking
images of different leaves under question and subjects them for processing in a com-
puter so as to extricate necessary information from the images. This is followed by the
identification of the leaves’ patterns through the application of machine learning tools.

Fig. 1. Agathosma Betulina

Fig. 2. Agathosma Crenulata
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The study is carried out with the application of the first and second order Local
Polynomial Approximation techniques for data processing. The paper is structured as
follows: discussions on the Local Polynomial Approximation (LPA) method is pre-
sented in section two, section three presents the classification algorithm, description of
the study site is presented in section four, we discussed the experimental procedures
and results in section five, while section six concludes the work.

2 Local Polynomial Approximation

Consider a set of data points xkf g, where the points are evenly spaced. Piecewise
polynomials are used in many places to smooth data and to calculate the derivatives of
a set of data. Savitzky and Golay made this popular by using a least-square technique
[11, 12] for designing a polynomial filter. The idea of local polynomial approximation
is to take the raw data within a certain interval (this interval, also called a window, is
moving across the whole data set, one data point at a time) and fit a polynomial of a
certain degree to the data inside the interval. The length of the interval, also referred to
as the window length, is either a fixed value chosen based on prior knowledge of the
data, or based on some adaptive window length selection method, like that used in [13].
The use of a least-squares technique enables fitting the polynomial and finding the LPA
filter coefficients, which define the impulse response of the filter [12, 14].

There are 3 window types, namely right, left and center. The right-sided window
implies that all the samples in that particular window are to the right of the sample to be
estimated (or smoothed). Likewise, for the central and left-sided windows the data
point to be estimated is in the middle and far-right of the window respectively. For the
purpose of this research, we only use the central window.

Consider only the data samples in the window of interest. To derive the LPA
model, let the sample to be estimated have an index k ¼ 0. A continuous-time poly-
nomial function of order p is given by:

f tð Þ ¼ c0 þ c1tþ c2t
2 þ c3t

3 þ � � � þ cpt
p; ð1Þ

where the polynomial coefficients are ci. Sampling the polynomial with period T, the
time becomes t ¼ kT . The sampled Eq. (1) becomes

f kð Þ ¼ c0 þ c1kT þ c2 kTð Þ2 þ � � � þ cp kTð Þp: ð2Þ

To solve ci (central window) using least squares, the following objective function is
obtained:

J ¼
Xwn

k¼�wn
xk � f kð Þð Þ2; ð3Þ

where the window length is 2wn þ 1, with xk the k � th point in the current window and
f kð Þ the function value based on the model in (1). Setting the gradient @J

@ci
¼ 0 enables

solving the set of equations for coefficients ci. For this technique [12], there is only
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interest in the point k ¼ 0. In this case the s� th derivative requires an expression for
only cs. Considering a single polynomial term fi kð Þ ¼ ci kTð Þi, the s� th order
derivative becomes:

f si kð Þ ¼ i� sþ 1ð Þ i� sþ 2ð Þ � � � i� 1ð Þici kTð Þi�s¼ i!
i� 1ð Þ! ci kTð Þi�s: ð4Þ

Using Eq. (4), and then taking the s� th order derivative of (2), one gets

f sð Þ kð Þ ¼
Xp

i¼s
f sð Þ
i kTð Þ: ð5Þ

See [15] for more details regarding LPA. Local Polynomial Approximation is used
to generate the derivative signal of the original data. The derivative gives information
about the shape of the original data, and this could be a useful feature in classification
techniques.

3 Classification Algorithms

The data classification algorithms used in the research are the Naive Bayes (NB),
Decision tree (DT), Neural Network (NN), and K-Nearest Neighbor (KNN). These
tools are implemented in Waikato Environment for Knowledge Analysis (WEKA) and
Orange. The process involves constructing the classifier model by learning the training
set with the class labels. This is followed by applying the test dataset in the classifiers to
predict the accuracy of the classification algorithms.

K-Nearest Neighbor: This algorithm classifies new objects using the Euclidean
equation [16, 17]. The classification is based on the similarity measure. The algorithm
is easy and normally good for handling noise and uses large computerization.

Naive Bayes: This is known to be a fast learning and testing algorithm. This is a
simplified version of the Bayesian classifier and operates on two assumption that is,
(i) the latent attribute has no effect on the prediction process; (ii) for the class label,
attributes are conditionally independent [18].

Neural Networks: This tool can handle problems with lots of parameters and can
classify objects, even when the distribution of object in n-dimensional parameter space
is very complex. They are nonlinear models and this makes them flexible in modeling
real-world complex relationships. The method of classification is easy but also very
popular because as easy as it is, it is very efficient [19].

Decision Tree: This algorithm is efficiently used in data mining because of its ability to
solve difficult problems through the generating simple computer-readable graphical
illustrations, which can easily be understood by experts and non-experts. The algorithm
has been successfully used in proffering solutions to real-world problems [20].

Separability Method for Homogeneous Leaves 285



3.1 Classification Tools Description

All the experimental tools used are open-source machine learning software and are
freely available online for download.

WEKA: This machine learning tool was firstly developed by the University of Waikato,
New Zealand. The tool has been numerously used by researchers for the application of
machine learning and data mining. Weka software written in Java contains a huge
collection machine learning with visualization tools for data analysis and predictive
modeling.

Orange: This tool contains the machine learning component and has visual pro-
gramming or Python scripting use for data analysis and visualization. In addition, the
tool has add-ons for bioinformatics, text mining and also has various features for data
analysis. The components in the tool are refer to as widgets and ranges from simple
data visualization, subset selection and preprocessing up to the experimental assess-
ment of classifiers and predictive modeling. Orange was developed and maintained by
the Bioinformatics Laboratory, Faculty of Computer and Information Science,
University of Ljubljana, Slovenia.

4 Study Sites

The experimental site is the Buchu Moon farm, Wellington, Western Cape, South
Africa. The farm is divided into various blocks in which different type of Agathosma
(Buchu) are planted. There are more than 130 species of Buchu, but only two are
commercially viable. These are the Betulina and crenulata spiecies. Seven samples of
the different Buchu types were collected and used for the research. They are named as
follows:

• Big tank – Betulina (BTB)
• Block 1 – Crenulata (CR)
• Block 2 – Betulina, fast grower, low diosphenol Chemotype (BFG)
• Block 3 – Betulina, mid-range diosphenol Chemotype (BMR)
• Block 5 – Betulina, low diosphenol Chemotype (BL)
• Block 7 – Betulina, high diosphenol Chemotype (BH)
• Mother Block – Betulina, mid to high diosphenol Chemotype (MB)

The different types of Buchu leaves produce different quality of Buchu oils, and if
the plants get mixed up after harvesting, it is difficult to distinguish which type is
which. This research aims to help with classification of the leaves by means of multi-
spectral analysis.
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5 Experimental Procedures

5.1 Dataset

The total number of instances and attributes used for the experiment is 4200 and 257
respectively. The data is further divided into two so that the train dataset is 60% (2520
instances) and the remaining 40% (1680 instances) is for test data. The dataset is
subjected for classification procedures using various machine learning tools as men-
tioned earlier.

5.2 Classification Algorithm Evaluation Using WEKA

The classifiers’ performance is evaluated using a Confusion Matrix. The following
tables present the correlation of the predicted instances values. Tables 1, 2, 3 and 4
present the confusion matrices for K-NN, NB, DT and NN.

Table 1. Performance evaluation using K-NN

TRUE: BTB CR BFG BMR BL BH MB R

BTB: 239 0 0 0 0 0 0 239
CR: 0 226 6 0 0 1 0 233
BFG: 0 0 232 0 0 0 3 235
BMR: 0 0 0 232 0 0 0 232
BL: 0 0 0 0 241 0 0 241
BH: 0 0 1 0 0 262 0 263
MB: 0 0 8 0 0 0 229 229
R 239 226 247 232 241 263 232 1680

Table 2. Performance evaluation using decision tree

TRUE: BTB CR BFG BMR BL BH MB R

BTB: 231 0 0 6 2 0 0 239
CR: 0 225 6 0 0 2 0 233
BFG: 0 8 214 1 0 1 11 235
BMR: 0 0 0 232 0 0 0 232
BL: 2 0 0 0 239 0 0 241
BH: 0 6 2 0 0 255 0 263
MB: 0 1 17 1 0 1 217 237
R 233 240 239 240 241 259 228 1680
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5.3 Classification Algorithm Evaluation Using Orange

Evaluation of the classifiers’ performance is also evaluated using the Confusion Matrix.
We present the correlation of the predicted instances in Tables 5, 6, 7 and 8. The
K-NN, NB, DT and NN are used in Orange Machine Learning tool.

Table 3. Performance evaluation using neural network

TRUE: BTB CR BFG BMR BL BH MB R

BTB: 231 0 0 6 2 0 0 239
CR: 0 225 6 0 0 2 0 233
BFG: 0 8 214 1 0 1 11 235
BMR: 0 0 0 232 0 0 0 232
BL: 2 0 0 0 239 0 0 241
BH: 0 6 2 0 0 255 0 263
MB: 0 1 17 1 0 1 217 237
R 233 240 239 240 241 259 228 1680

Table 4. Performance evaluation using Naïve Bayes

TRUE: BTB CR BFG BMR BL BH MB R

BTB: 225 0 0 0 14 0 0 239
CR: 0 199 6 0 0 28 0 233
BFG: 0 15 162 0 0 17 41 235
BMR: 0 0 0 232 0 0 0 232
BL: 10 0 0 0 231 0 0 241
BH: 0 18 1 0 0 244 0 263
MB: 0 0 32 0 0 0 205 237
R 235 232 201 232 245 289 246 1680

Table 5. Performance evaluation using K-NN

TRUE: BTB CR BFG BMR BL BH MB R

BTB: 240 0 0 0 0 0 14 254
CR: 0 223 8 0 0 9 0 240
BFG: 0 5 218 0 0 3 0 226
BMR: 0 0 0 240 0 0 0 240
BL: 0 0 0 0 240 0 0 240
BH: 0 1 2 0 0 239 0 240
MB: 0 0 16 0 0 0 224 240
R 240 229 242 240 240 251 238 1680
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6 Conclusion

In this research, we used Algathosma (Buchus) datasets from the Buchu moon farm,
Wellington, Western Cape, South Africa. The dataset has 7 independent variables,
4200 instances and 256 attributes are used for the experiments. The Local Polynomial
Approximation method is used for the data processing and the classification procedures
are carried out using various machine learning algorithms. The implementations are
carried out in WEKA and Orange data mining tools. The performance of the classi-
fication models based on the accuracy is compared as presented in Table 9:

Table 6. Performance evaluation using decision tree

TRUE: BTB CR BFG BMR BL BH MB R

BTB: 239 0 0 1 0 0 0 240
CR: 0 228 8 0 0 44 0 240
BFG: 0 10 212 0 0 1 17 240
BMR: 0 0 1 238 0 0 1 240
BL: 0 0 0 0 240 0 0 240
BH: 0 6 5 0 0 229 0 239
MB: 0 1 13 3 0 0 223 240
R 239 245 239 242 240 234 241 1680

Table 7. Performance evaluation using neural network

TRUE: BTB CR BFG BMR BL BH MB R

BTB: 240 0 0 0 0 0 0 240
CR: 0 240 0 0 0 0 0 240
BFG: 0 0 240 0 0 0 0 240
BMR: 0 0 0 240 0 0 0 240
BL: 0 0 0 0 240 0 0 240
BH: 0 0 0 0 0 240 0 240
MB: 0 0 0 0 0 0 240 240
R 240 240 240 240 240 240 240 1680

Table 8. Performance evaluation using Naïve Bayes

TRUE: BTB CR BFG BMR BL BH MB R

BTB: 193 0 0 0 47 0 0 240
CR: 0 205 25 0 0 10 0 240
BFG: 0 18 181 1 0 13 27 240
BMR: 0 0 0 240 0 0 0 240
BL: 10 0 0 0 230 0 0 240
BH: 0 27 26 0 0 187 0 240
MB: 0 0 78 33 0 0 129 240
R 203 250 310 274 277 210 156 1680
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From the table, it is evident that the WEKA tool generally performed better when
compared with the Orange tool on the processed datasets, although the Orange estimate
on neural network gives 100%, which is not significant as compared to WEKA’s
performance. Naïve Bayes has the lowest performance on the two machine tools.
Further work will be to apply other machine learning tools in addition to the tools used
in this research on the raw dataset and then validate the experimental results. The
outcome will give room for better analysis and assessment of the of results which will
assist in taking adequate decisions on the choice of plants.
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Abstract. The main aim of this work is to develop and implement an
automatic anomaly detection algorithm for meteorological time-series.
To achieve this goal we develop an approach to constructing an ensemble
of anomaly detectors in combination with adaptive threshold selection
based on artificially generated anomalies. We demonstrate the efficiency
of the proposed method by integrating the corresponding implementation
into “Minimax-94” road weather information system.

Keywords: Anomaly detection · Predictive maintenance · RWIS

1 Introduction

Effective operation of federal highways in Russia during the winter period is a
very complicated and important task which reduces the number of road acci-
dents and incidents significantly. Sleet, frost, low visibility are several examples
of meteorological conditions on the road that increase the car crash chances.
Preventing such conditions and reducing their consequences is a complicated
problem to deal with for two main reasons. First, they require immediate mea-
sures like involving snow removal machinery, reducing the speed limits or even
closing certain parts of the road. Secondly, dangerous conditions are difficult to
recognize using global weather reports as they depend strongly on local road
conditions like the presence of water bodies, forests, traffic intensity, etc. Very
strong locality is a real challenge in this case.

An urgent need of constant monitoring road surface meteorological condi-
tions caused development and implementation of what is called Road Weather
Information Systems (RWIS) [7,21,30]. A standard RWIS consists of three main
components: monitoring, forecasting, and decision supporting.

As in any multi-component system, there are a lot of sources of errors. In
addition to the entirely autonomic and automatic mode of meteorological sta-
tions, they work in an aggressive environment with sharp temperature changes,
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heavy precipitation and a wide range of mechanical impacts. Breakage of sen-
sors, external impacts, server connection errors result in providing unreliable
data and creating incorrect forecasts. The consequences of errors can be dif-
ferent from road accidents caused by improper road service to environmental
problems caused by an excessive amount of road salts poured onto the surface.

Clearly, in the case of the road information system, the mentioned problem
of malfunctioning equipment and incorrect data delivery detection can be formu-
lated as a problem of outliers/anomalies detection in the sensor data, collected
by RWIS (in this work we use words “outlier” and “anomaly” interchangeably).

In this work, we propose the ensemble-based approaches for creating an out-
lier detector to be used for different kinds of outliers and artificial outliers gen-
eration for the optimal threshold selection. Ensemble techniques have achieved
significant success in many data mining problems in recent years [15,25,27].
Although the ensemble approach for outlier detection is not as widely studied
as for classification and clustering tasks, several algorithms showed considerable
improvement and allowed to achieve significant advances [1,2,32]. The proposed
method allows coping with heterogeneous outliers caused by different factors
due to its ensemble structure, as different individual algorithms in the ensemble
compensate errors of each other.

Moreover, the proposed method allows selecting a threshold for the given
consensus function which is very close to the threshold, which is optimal w.r.t.
F1-score metric.

We conducted experiments on the data provided by “Minimax-94” to ver-
ify the proposed approach. We used records for five years collected with the
frequency of two measurements per hour from 59 meteorological stations: we
utilized data from 50 stations to train the anomaly detector and data from nine
stations to test the model. To prove the general applicability of the method
for multidimensional datasets without time series structure we also conducted
experiments on the so-called Shuttle dataset.

The paper is organized as follows. In Sect. 2 we discuss related work. In Sect. 3
we describe the proposed methods. We discuss our experimental setup in Sect. 4
and the obtained experimental results in Sect. 5. In Sect. 6 we draw conclusions.

2 Related Work

In this section, we introduce a survey of existing outlier detection techniques,
some of which are used in this paper as base learners to build an ensemble
of anomaly detectors. We describe their motivations, comparative advantages,
disadvantages and underlying assumptions.

Local Outlier Factor (LOF) [6] is a typical representative of density-based
methods. It is based on computing a local density of each point and comparing
it with the density of its neighborhood. Thus, the anomaly score of LOF is
the ratio of the local density of this point and the local density of its nearest
neighbors. The points with density lower than that of their k neighbors are
considered to be outliers. There are also several extensions and modifications of
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Local Outlier Factor algorithm. For example, Local Correlation Integral (LOCI)
[20], which uses Multi-Granularity Deviation Factor (MDEF) as an abnormal
measure. MDEF expresses how the number of data points in the neighborhood
of a particular point compares with that of the points in its neighborhood.

Outlier detection methods based on statistical parametric approaches work
under the assumption that data is generated from a known distribution with
unknown parameters. Thereby, the way for detecting outliers with such models
includes two steps: training and testing. Train step implies the estimation of
the distribution parameters. Test step involves checking whether a new instance
was generated from the probabilistic model with parameters determined on the
previous step or came from another distribution. Usually, a class of distributions
to model normal data is based on some prior assumptions and a user personal
experience. For example, Elliptic Envelope uses multivariate Gaussian distribu-
tion assumption and robust covariance matrix estimation by MinCovarianceDet
estimator [23].

Outlier detection methods based on regression analysis have been extensively
used for time series data. The procedure of regression-based outlier detection
is generally the following: a regression model is fitted to the data during the
training phase, during the test phase the fitted model is applied to the new
data instances and the abnormality of each instance is evaluated according to
the obtained residuals. If the instance is located far from the regression line,
we mark it as an outlier. We can use regression conformal confidence measures
to estimate an abnormality threshold [10,12,18]. Note that we can efficiently
utilize the same methodology for conformal measures construction to define non-
parametric anomaly detectors in time-series data [16,24,31].

One-class Support Vector Machine (OCSVM) [26] is an outlier detection
modification of Support Vector Machine (SVM). While in supervised tasks SVM
aims to find a maximal margin hyperplane separating two classes, OCSVM
aims to separate training data instances from the origin. In [9] they consider
approaches to OCSVM model selection. Generalization of OCSVM taking into
account privileged information is provided in [11,29].

Isolation Forest (IForest) [19] is a successful modification of the standard
decision tree-based algorithm for outlier detection. It randomly selects a feature
and then randomly selects a split value from the interval between the minimum
and the maximum values of the chosen parameter. The process continues until
each leaf of the tree is assigned to only one observation from the dataset. The
primary assumption of the algorithm is that anomalous observations can be sep-
arated during the first steps of this process because the algorithm requires fewer
conditions to isolate the anomalies from normal instances. Normal observations,
on the contrary, require more conditions to be separated from each other. The
resulting anomalous score equals the length of the path from the root to the leaf.

If at least partial labeling of anomalies is known, we can use approaches to
imbalanced classification for the anomaly detector construction, see [8,28].
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Algorithm 1. Threshold Selection Using Artificial Anomalies
Input:
D – given dataset; E – set of base ensemble models;
G – distribution to generate anomalies from; N – number of outliers;
Output:
Ẽ – trained ensemble base methods; T – threshold

1: Divide D into Dtrain for training and Dthresh for selecting threshold
2: for i in range (1, N) do
3: Generate an outlier o ∼ G
4: Dthresh = Dthresh

⋃{o}
5: end for
6: Sthresh = ∅ – scores obtained on Dthresh

7: for algorithm e in E do
8: Train e on Dtrain

9: Obtain se – output score of e on Dthresh

10: Sthresh = Sthresh

⋃{se}
11: end for
12: Combine scores Sthresh and get sfinal

13: Select threshold T for sfinal, which optimizes the quality metric

3 Proposed Method

The meteorological time series dataset explored in this work is notable for the
diverse nature of occurring outliers. Anomalies in the given dataset are caused by
many different factors like sensor malfunction, some external events like a bird
sitting on the station, server connection errors, etc. An individual algorithm can
hardly cope with the whole range of outliers, due to strong underlying assump-
tions. Hence, exploiting ensemble analysis seems to be an appropriate choice.
In this section, we propose an ensemble outlier detection method with artificial
anomalies generation for selecting an optimal threshold. We affirm that the pro-
posed approach has several advantages over the existing methods, especially in
the case of outlier detection in meteorological time series.

Most algorithms require either defining an exact threshold for outlier scores
or percentage of outliers in the given data to convert the scores into binary labels.
The proposed method is aimed at solving the mentioned problem of selecting an
optimal threshold. The first step of the algorithm includes dividing the data into
two samples: for training ensemble base models and for selecting the threshold.
The next and essential step is generating some amount of artificial anomalies and
adding them to the second part of the data. The pseudo code for the proposed
method is given in Algorithm 1.
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4 Experiment Setup

4.1 Dataset Description

Company “Minimax-94” provided the primary dataset used in this work. “Mini-
max-94” is the research and production company working in the road industry
and specializing in the creation of intelligent transport meteorological control
systems. Archived data received from RWIS and provided for the research con-
tains records for the period from 2012 to 2017. The stations aggregate data and
send it to the data storage with a frequency of approximately two measurements
per hour. For the train part, we selected 50 stations covering all main Russian
climate zones. Then we divided them into two subsets.

The first subset of stations consists of 35 stations (∼ 2 ·106 time ticks). There
are two different versions of data from these stations: initial with noise, and clean
data. The cleaning process was applied only to road surface temperature; other
components remain in their original form. We removed each anomaly point with
a rather big neighborhood of length equal to several days.

The second part of the training sample consists of only clean records from
the rest 15 meteorological stations (∼ 1 · 106 time ticks). It is used for creating
artificial outliers and the threshold selection.

The test contains records from nine stations with labeled data; we marked
each anomaly point with its 2–3 h local neighborhood, i.e., we labeled all data
points from anomaly’s vicinity as outliers. In total test data contains about 8·105

records, and ∼ 1% of which we marked as outliers.
We can roughly categorize typical outliers behavior into two categories:

short-term anomalies usually caused by some external impact, like exhaust pipe
directed at the sensor (Fig. 1) and long-term anomalies caused by serious station
malfunction (Fig. 2).

To prepare data we conducted the following steps. If the time gap between
two nearest records from RWIS is longer than two hours, then the time series is
divided into two parts. We remove patterns with duration less than 12 h from
the sample. Finally, we linearly interpolate the data.

Fig. 1. Example of a single outlier

Also, we consider another dataset to test the proposed approach—the Shuttle
dataset. It has been generated to classify which type of control to use during
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Fig. 2. Example of long-term malfunction

Fig. 3. Example of artificially generated single outlier

the landing of the spacecraft depending on the external conditions. The dataset
contains 58000 instances, described by nine integer attributes and divided into
seven classes: 1: Rad Flow, 2: Fpv Close, 3: Fpv Open, 4: High, 5: Bypass, 6:
Bpv Close, 7: Bpv Open. We attribute classes 1 and 4 to normal instances while
assigning the rest five categories to outliers. Two normal classes constitute about
94% of the sample, so the number of outliers is 6%.

For the test part, we selected 25% of the dataset. Remaining 75% were split
into two parts: 2/3 is used to train and validate outlier detection algorithms and
consists of both normal and abnormal classes, the other 1/3 is used to select
an optimal threshold for an ensemble of algorithms using artificially generated
outliers and includes only instances of the normal classes.

4.2 Anomaly Generation

Since real outliers probably come from different distributions and have different
nature, we model the most frequent examples of outliers occurring in the given
time series. They are single outliers (see Algorithm 2 and Fig. 3), short-term
outliers (see Algorithm 3 and Fig. 4) and long-term sensor malfunctions (see
Algorithm 4 and Fig. 5). For each station we generate 30 single outliers, 20
short-term and 3 long-term anomalies. Artificial labels are generated based on
real-life data which was labeled by experts. During the labeling, the experts
eliminated the sudden weather changes and so these events were not marked as
sensors malfunctions.

The algorithm for generating artificial outliers for the Shuttle dataset consists
of three steps. Transform the train data using Principal Component Analysis
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Algorithm 2. Single Outliers Generation
Input:
S – list of meteorological stations;
troad – road surface temperature time series;
N = 30 – number of outliers per each station in S;
alow = 2, aup = 5 – lower and upper boundaries of the uniform distribution
Output: t̃road – road surface temperature time series along with artificially
generated anomalies

1: t̃road = troad
2: for each station s in S do
3: Randomly select N time stamps from t̃road[s, :]
4: for each selected time stamp t do
5: Generate perturbation p ∼ U(alow, aup)
6: Randomly select sign from {−1, 1}
7: t̃road[s, t] = troad[s, t] + sign ∗ p
8: end for
9: end for

Fig. 4. Example of artificially generated short-term anomalous series

(PCA) decomposition, consider only 2 components corresponding to the largest
singular values. Randomly generate 450 instances with the first component from
Uniform(−10000, 10000) and the second component equal to zero. Randomly
generate 450 instances with the first component equal to zero and the second
component from Uniform(−5000, 5000). Conduct inverse PCA transformation.

4.3 Evaluation

The meteorological test sample is labeled as follows: for each anomaly point we
mark its 2–3 h neighborhood as anomalous.

The developed quality metric is an extension of simple F1-score to the con-
sidered case. The standard F1-the score is defined as

F1 = 2 · recall × precision

recall + precision
, (1)

where recall is the fraction of true positive instances over the number of all real
positive instances, while precision is the fraction of true positive points among all
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Algorithm 3. Short-Term Anomaly Generation
Input:
troad – road surface temperature time series; S – list of meteorological stations;
N = 20 – number of anomalies per each station in S;
λ = 2 – rate parameter of exponential distribution;
dlow = 3, dup = 12 – lower and upper boundaries of anomalous duration
Output: t̃road – time series along with artificially generated anomalies

1: t̃road = troad
2: for each station s in S do
3: Randomly select N time stamps from t̃road[s, :]
4: for each selected time stamp t do
5: d ∼ RandInteger(dlow, dup)
6: Randomly select sign from {−1, 1}
7: Perturbation array p = zeros(d)
8: for i in range(2, d) do
9: p[i] ∼ Exp(λ)

10: p[i] = p[i] + p[i − 1]
11: end for
12: t̃road[s, t : (t + d)] = troad[s, t : (t + d)] + sign ∗ p
13: end for
14: end for

Fig. 5. Example of artificially generated long-term sensor malfunction

the instances labeled as positive. The modified version of the quality metric is the
following. Recall is the fraction of instances labeled as outliers (by the algorithm)
in the vicinity of which there is at least one instance marked as an outlier (real
label) to the total amount of positive instances (real labels). Precision is the
fraction of instances labeled as outliers (real label) in the vicinity of which there
is at least one instance marked as an outlier (by the algorithm) to the total
amount of positive instances (by the algorithm).

4.4 Base Learners for Anomaly Detection

We consider several outlier detection approaches to test the effectiveness of the
proposed method for threshold selection: single regression models, model aver-
aging, feature bagging ensemble. All of them except for Multi Layer Perceptron
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Algorithm 4. Long-Term Anomaly Generation
Input:
troad – road surface temperature time series;
S – list of meteorological stations;
N = 3 – number of anomalies per each station in S;
alow = 30, aup = 200 – lower and upper boundaries of multiplier;
dlow = 30, dup = 200 – lower and upper boundaries of anomalous duration;
μ = 0, σ = 5 – mean and standard deviation of perturbation
Output: t̃road – time series along with artificially generated anomalies

1: t̃road = troad
2: for each station s in S do
3: Randomly select N time stamps from t̃road[s, :]
4: for each selected time stamp t do
5: d ∼ RandInteger(dlow, dup)
6: Randomly select multiplier mult from Uniform(ml, mu)
7: Perturbation array p = zeros(d)
8: for i in range(1, d) do
9: p[i] ∼ N(μ, σ)

10: end for
11: t̃road[s, t : t + d] = mult ∗ troad[s, t : (t + d)] + p
12: end for
13: end for

(MLP) use 35 clean stations as a training set. Forecasting based anomaly detec-
tion approach predicts target value 30 min ahead.

As features, we used air, road surface and subsurface temperatures, pressure,
and humidity for several previous hours; besides that we used differences between
the first six lags, solar azimuth, and altitude angles, road id, longitude and
latitude of the station, sine and cosine of the hour, day of the year and month.

We tested several algorithms: XGBoost Regression [14], MLP (2 hidden layers
with 64 and 16 neurons on the first and the second layers relatively, rectified lin-
ear unit (ReLU) activation function), XGBoost Air, One-class SVM (OCSVM),
Elliptic Envelope (Ell. Env.), Local Outlier Factor (LOF), Isolation Forest (IFor-
est).

In case of the Shuttle dataset model averaging includes the following algo-
rithms: Local Outlier Factor, Isolation Forest, Elliptic Envelope, One-class SVM,
Ridge (we use the first feature as a target variable, and others as independent
variables).

We created two feature bagging based ensembles on the base of Ridge Regres-
sion, Elliptic Envelope for the meteorological dataset. We implemented feature
bagging in combination with Ridge Regression, Elliptic Envelope, Local Outlier
Factor and One-Class SVM for the Shuttle dataset.

Ensembles built for the meteorological dataset include some minor modifica-
tions concerning the number of selected features, i.e., the amount of features is
generated from an interval that is different from the initial [�d/2�, d−1] interval,
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Fig. 6. Threshold selection using artificial anomalies for the meteorological dataset

where d is the complete number of features: (1) Ridge Regression—20 models
in the ensemble, number of features is a random integer from �d/6� to �d/2�;
(2) Elliptic Envelope—10 models in the ensemble, number of features for each
model is a random integer from 2 to �(2 · d)/3�.

Ensembles built for the Shuttle dataset completely repeat the described
method. Shuttle dataset ensembles consist of 20 models each, and the number
of features is a random integer from �d/2� to d − 1 interval.

4.5 Combination of Scores

To build a combination of predictions, we normalize predictions to [0, 1] and
try three approaches: simple averaging, averaging with weights equal to Pearson
correlation between scores on the artificial data sample and the vector with
labels, and finally training logistic regression with model scores as an input
feature vector and artificial data as labels.

5 Experimental Results

The proposed threshold selection method shows excellent performance in case
of applying individual regression algorithms to the meteorological dataset. The
main advantage of the method is a rather precise estimation of the F1-optimal
threshold obtained on the artificial data. As can be seen in Fig. 6 the threshold
selected using the generated data is very close to the threshold optimizing real
F1-score on the actual data.

As described in Sect. 4, we examined three different ensembles for the meteo-
rological dataset: model-centered model averaging and two data-centered ensem-
bles based on feature bagging with Ridge and Elliptic Envelope base algorithms
(denoted as “Ridge FB”, “Ell.Env. FB”). For each algorithm different combi-
nation functions have been used: an average of the scores linearly transformed
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Table 1. Results: meteorological dataset

Algorithm Ridge XGBoost MLP XGBoost air LOF Ell.Env OCSVM IForest

Recall 0.668 0.640 0.637 0.662 0.513 0.719 0.904 0.395

Precision 0.758 0.655 0.738 0.722 0.502 0.482 0.130 0.252

F1-score 0.710 0.647 0.684 0.691 0.507 0.577 0.227 0.308

Ensemble Model averaging Ridge FB Ell.Env FB

Combination LT WLT LogReg LT WLT LogReg LT WLT LogReg

Recall 0.701 0.668 0.753 0.671 0.685 0.690 0.691 0.696 0.76

Precision 0.750 0.802 0.797 0.789 0.731 0.829 0.739 0.708 0.630

F1-score 0.725 0.729 0.774 0.725 0.707 0.753 0.714 0.701 0.670

into [0, 1] interval (“LT”), a weighted average of the linearly transformed scores
(“WLT”) and a Logistic Regression (“LogReg”).

We compared the ensemble approach with individual outlier detectors on
the meteorological dataset. In this experiment, all individual algorithm results
serve as a baseline for the ensemble approach. We provided the results of the
comparison in Table 1. As can be observed from the table, almost all ensemble
techniques outperformed individual algorithms and, what is more critical, out-
performed all included base ensemble models. In case of the meteorological data
Logistic Regression consensus function turned out to show the best performance,
although it is a kind of “risky” choice as it tends to overfit and as a result is
somewhat unstable, which we can observe when using Elliptic Envelope. The
similar situation happens with the Shuttle dataset.

Table 2. Results: shuttle dataset

Algorithm Ridge LOF Ell.Env OCSVM IForest

Recall 0.955 1.00 0.704 0.461 0.799

Precision 0.767 0.512 0.680 0.193 0.791

F1-score 0.851 0.677 0.692 0.272 0.795

Ensemble Model Averaging Ridge FB Ell.Env FB

Combination LT WLT LogReg LT WLT LogReg LT WLT LogReg

Recall 0.957 0.924 0.756 0.956 0.953 0.681 0.625 0.567 0.476

Precision 0.979 0.986 0.815 0.871 0.938 0.801 0.937 0.930 0.915

F1-score 0.968 0.953 0.784 0.911 0.946 0.736 0.750 0.704 0.626

Ensemble LOF FB OCSVM FB

Combination LT WLT LogReg LT WLT LogReg

Recall 0.587 0.577 0.311 0.981 0.999 0.999

Precision 0.891 0.850 0.882 0.992 0.998 0.998

F1-score 0.704 0.688 0.460 987 0.999 0.999
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Table 2 shows that ensembling techniques improve the results of the individ-
ual algorithms significantly almost in all cases for the Shuttle Dataset. The most
considerable improvement of F1-score has been achieved by One-class SVM,
which increased it from 0.272 to 0.999. As a result, feature bagged OCSVM
achieved the best result for the Shuttle dataset.

6 Conclusions

In this paper, we proposed a new method for outlier detection in the RWIS
data. The method allows to detect anomalies of heterogeneous nature efficiently,
makes the selection of the decision rule less subjective and also turns out to
be applicable not only to the RWIS data but also to more general cases of
multidimensional datasets.

The results of the experiments show us that ensembles tend to outperform
individual algorithms for both datasets. Ensembles tested on the meteorological
data show better performance than all compared individual methods, which
proves the assumption about benefits of ensemble-based methods for detecting
anomalies in the RWIS data. There is no such strong tendency for the Shuttle
data, for example, single Ridge Regression or Isolation Forest obtain higher
F1-scores than LOF feature bagging ensemble. However, even for the Shuttle
dataset, the combination of different ensembles received higher F1-score than
any individual algorithm included in the combination.

The comparison of different combination functions showed that although lin-
ear transformation seems to perform better than weighted linear transformation,
there is no significant difference between these two methods and choosing the
best one largely depends on the specific setting of the problem, ensemble tech-
nique and included individual algorithms. Ensembles achieve the best results on
both datasets with Logistic Regression. However, this combination method can
easily overfit especially in case of the Shuttle dataset and is considered to be
the most unstable, as providing the best and the worst results depending on the
ensemble technique.

The proposed threshold selection technique showed significant performance
for both ensemble approaches and individual algorithms. We can observe that
the thresholds optimizing F1-score for the artificial data are very close to the
ones for the real data.

An ensemble with the best results, i.e., a model averaging (Sect. 4.5) with
Logistic Regression consensus function, has been chosen as the principal method
for outlier detection in “Minimax-94” road information system. It was imple-
mented in Python as a separate module and integrated into the company sys-
tem in the test mode. According to the experiments conducted on the archive
records the selected method allows to detect 75% of occurring anomalies with
20% false alarm rate, which is sufficient for “Minimax-94”. The future work
assumes aggregation of statistics obtained in online mode during the test period
and incorporation of the module into the working cycle of the “Minimax-94”
system. To perform online aggregation, we are going to use long-term aggrega-
tion strategies [17] along with approaches to model quasi-periodic data [5] and
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extraction of trends in the presence of non-stationary noise with long tails [3,4].
Approaches to multidimensional time-series prediction [22] and multichannel
anomaly detection [13] will allow detecting complex anomalies related to change
of dependencies between time-series components.

We also would like to note that the resulting approach is highly dependent on
the algorithm of synthetic data generation. We selected this technique based on
certain domain knowledge. In order to adapt the technique for any new problem
we have to find out what are the most common patterns of anomalous data
appearing due to malfunctioning sensors. If due to some reason behavior of the
sensors changes and malfunctioning sensors start to produce other patterns of
anomalous data or some drastic weather change happens, then there is a chance
that our algorithm fails to detect anomalies. However, this is a common problem
for all machine learning algorithms.
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Abstract. Background and environmental noises negatively affect the
quality of verbal communication between humans as well as in human-
computer interaction. However, this problem is efficiently solved by a
healthy auditory system. Hence, the knowledge about the physiology of
auditory perception can be used along with noise reduction algorithms
to enhance speech intelligibility. The paper suggests an approach to noise
reduction at the level of the auditory periphery. The approach involves an
adaptive neural network algorithm of independent component analysis
for blind source separation using simulated auditory nerve firing proba-
bility patterns. The approach has been applied to several categories of
colored noise models and real-world acoustic scenes. The suggested tech-
nique has significantly increased the signal-to-noise ratio for the auditory
nerve representations of complex sounds due to the variability in spatial
positioning of sound sources and a flexible number of sensors.

Keywords: Speech enhancement · Noise reduction ·
Blind source separation · Independent component analysis ·
Machine hearing · Auditory periphery model ·
Auditory nerve responses · FastICA

1 Introduction

Background noises given by single or multiple sound sources are always present
in the environment. In engineering practice, they have a significant impact on
acoustic signal processing. However, human or mammalian auditory systems are
less responsive to noise than computational systems, as they process sensory
signals of the auditory periphery using high-level neuronal structures that form
biological neural networks.

Humans can concentrate attention on a certain acoustic source, e.g. the
speaker’s voice, despite the variability of the sound environment. This allows
for verbal communication in noisy environments, including conditions of multi-
talker babble noise. This phenomenon of auditory perception is widely known
as the “cocktail party effect”, accentuated by E.C. Cherry back in 1953. It rep-
resents a unique hearing ability that enables extracting the necessary acoustic
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signal source in the presence of varied background noises. In psychoacoustics,
this feature is associated with auditory scene analysis (ASA) [1]. ASA is related
to the problem of acoustic scene, event, or source recognition through the percep-
tual mechanisms of the auditory system. The principles of ASA underlie various
biologically relevant computational studies, which examined the systems of prac-
tical acoustic signal processing and used one or two microphone recordings in the
experimental setup. These studies are known as computational auditory scene
analysis (CASA) [2].

However, there are certain conditions where technical systems of automatic
speech signal processing and acoustic scene analysis may have an advantage over
biological auditory systems. This advantage is due to the fact that microphone
sensors used in the setup can be arbitrarily allocated and optimally positioned in
space. Besides, unlike monaural or binaural hearing, a technical system can have
multiple microphone sensors and channels, which allows improving the quality
of results through information redundancy and appropriate signal processing
[3–5]. Thus, if there are no restrictions on the number and relative position of
microphones, the limitations of CASA can be circumvented.

To create machine hearing and audition systems, it is advisable to combine
the advantages of auditory signal processing with technical capabilities. Auditory
peripheral coding of an input acoustic signal in the form of neural responses
provides a robust representation against background noises [6] due to neural
phase-locking [7]. Furthermore, the representation and parametrization of speech
signals based on the responses of auditory nerve (AN) fibers provides noise-
robust features for automatic speech recognition, outperforming common mel-
frequency cepstral coefficients under certain noise conditions [8–11].

Our study aims to develop a signal processing algorithm for noisy vowel
phoneme representations in the form of simulated AN responses with the purpose
of noise reduction. The approach described in the present paper imitates some
features of biological neural processing. It employs a computational model of the
auditory periphery and an artificial neural network for blind separation of AN
responses. Three different spontaneous rates for signal and noise mixture were
considered in the study.

2 Simulation of the AN Responses

A physiologically-motivated computer model of the auditory periphery by R.
Meddis [9] was used to obtain neural responses of auditory nerve fibers. This
model simulates the temporal fine structure of AN firing for three types of fibers
corresponding to the input speech signal: low spontaneous rate (LSR)—less than
0.5 spikes/s, middle spontaneous rate (MSR)—0.5–18 spikes/s, and high spon-
taneous rate (HSR)—18–250 spikes/s [12]. In the present study, the model was
set to generate a probabilistic firing rate pattern.

The model requires a digitalized speech signal in the WAV format, sam-
pled at 44.1 kHz. The sound pressure level of the input signal was adjusted to
60 dB, as it must correspond to the preferred listening level for conversational
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speech. Further, the signal passes through a processing cascade that simulates
the functions of the outer, middle, and inner ear. The nonlinear mechanical
behavior of the basilar membrane is modeled by a dual-resonance nonlinear fil-
terbank (DRNL) [13]. Each segment of the basilar membrane provides the most
pronounced response for a specific frequency of the acoustic stimulus, which is
defined as best frequency (BF) for sounds near threshold. Thus, DRNL decom-
poses the signal into 41 frequency bands, logarithmically spaced from 250 to
8,000 Hz, corresponding to BFs in the most significant range for speech. The sub-
sequent processing stages simulate stereocilia movement, inner hair cells trans-
duction, synaptic exocytosis, and AN firing.

At the output, the auditory periphery model generates a signal encoded by
the average firing rate of the auditory nerve fibers. The present study compares
the results for three types of AN fibers as mentioned above. Figure 1 demon-
strates a sequence of five English long vowels – clean (first column) and with
additive white Gaussian noise at 0 dB SNR (second column). The duration of
each vowel sound is 300 ms. The figure illustrates AN responses for LSR, MSR,
and HSR fibers correspondingly. Every BF channel of the obtained AN firing
probability pattern provides responses, which are then smoothed using a 20 ms
Hann window and a 10 ms frame shift to extract feature data. Thus, each input
signal is represented by its own multivariate data matrix consisting of 41 spectral
features and an equal number of samples.

Fig. 1. AN firing probability patterns for three nerve fiber types for the vowel sequence:
first column – clear speech signal, second column – signal corrupted by AWGN with
0 dB SNR.
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3 Blind Signal Processing for AN Responses

Let us suppose that the sources of background noise are localized in environment
about the target signal source. In that case, all sound signals are received by all
sensors, but with different intensity, thus forming a linear mixture. Using the
information about signal intensity difference on various sensors, we can solve
the noise reduction problem for the target signal as a problem of blind source
separation (BSS) [14]. Let us assume two mutually independent sound sources.
The first source corresponds to the speech signal represented by a sequence of
vowel phonemes. The second source is localized background environmental noise.
In this case, the blind noise reduction problem [15] comes down to the task of
independent component analysis (ICA).

The paper suggests using blind signal processing to solve the problem of noise
reduction for a speech signal at the level of the auditory periphery. However, a
technical system allows for arbitrary placement of multiple sensors in space,
as distinct from the mammalian auditory system. Therefore, the intensity of
signals may vary significantly, depending on the positions of sources in relation
to sensors. Every sensor is represented by an auditory periphery model that
encodes information in the form of stationary AN firing probability patterns.
In this case, the mixing model of the speech signal and the background noise
remains indeterminate, and source separation is based only on the AN responses
on different sensors.

Let us consider a case where the two aforementioned sound sources are sep-
arated with the use of two biologically relevant sensors. The mixing model is a
transformation of two AN output signals by a non-singular mixing matrix H,
the dimension of which depends on the number of mixed sound sources. If the
sources of mixing are significantly different in amplitude or if the location of
the sensors is chosen poorly, the mixing matrix is ill-conditioned. For a stable
operation of the separation algorithm, it is advisable to perform a decorrelated
transformation of the signal mixture in advance. The use of a decorrelation
matrix makes it possible to present mixed signals in such a way that their cor-
relation matrix is identity: Rx1x1 = E

{
x1xT

1

}
= I. The mixing matrix will take

the form A = QH, where H is the original unknown mixing matrix.
At the output of the auditory periphery model built-in each sensor, a mixture

of sources is formed. Some of the signals represent the neural responses to the
target signal, and others represent the responses to the noise caused by the
sound environment: s (t) = [s1 (t) , s2 (t)]T . The speech signal and the noise are
mixed, and the additional mixture can affect the formed mixture to represent
the intrinsic noise n (t) = [n1 (t) , n2 (t)]T of the system elements. The result of
the conversion is the observed and measured signal x (t) = As (t) + v (t), where
v (t) = [v1 (t) , v2 (t)]T . The task is reduced to the search for the separation
matrix W of the observed signal vector x (t) by means of an artificial neural
network. The matrix W should be such that the estimate y (t) of the unknown
signal vector s (t) would be the result of applying the separation matrix to the
measured signal: y (t) = Wx (t). In other words, the BSS task for the AN firing
rate pattern is reduced to estimating the original signal by searching for the
inverse mixing operator.
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We separate the stationary AN response patterns into components
attributable to signal or noise, assuming the independence of neural responses to
these two factors. The independence condition is determined by the minimum of
information that the neural responses to signal and noise have in common. The
transformation of two-dimensional signals of the AN output X1 (t) ,X2 (t) into
vectors is performed according to the equation: xn(i−1)×j = xi,j . Therefore, the
goal of source separation is to minimize the Kullback-Leibler divergence between
the two distributions – the probability density function (PDF) f (y,W), which
depends on the coefficients of the matrix W and the factorial distribution:

f1 (y,W) =
m∏

i=1

f1,i (yi,W) . (1)

Df ||f1 (W) = −h (y) +
m∑

i=1

h1 (yi) . (2)

where h (y) is the entropy at the output of the separator, h1 (yi) is the entropy of
the i-th element of the vector. For BSS, we used an approximation of probability
density f1,i (yi) by truncating the Gram-Charlier decomposition:

f1,i (yi) ≈ N (yi)

[

1 +
κi,3

3!
H3 (yi) +

κi,2

4!
H4 (yi) +

κi,6 + 10κ2
i,3

6!
H6 (yi)

]

. (3)

where κi,k is the cumulant k-order of the variable yi; H3 (yi) = y3
i −3yi,H4 (yi) =

y4
i − 6y2

i + 3,H6 (yi) = y6
i − 15y4

i + 45y2
i − 15 are Hermite polynomials; N (yi) =

1√
2π

exp
(−y2

i

2

)
is a PDF of a random quantity. The rule of weights correction

when adapting a shared matrix is:

W (n + 1) = W (n) + μ (n)
[
I − ϕ (y (n))yT (n)

]
W−T (n) . (4)

where μ (n) is the convergence rate parameter, ϕ (y (n)) = [ϕ (y1 (n)) , ϕ (y2 (n))]T

is a vector consisting of activation functions, the formofwhich changes in the course
of adaptation. The activation functions change in the learning process, since their
magnitude depends on the observed values yi (n).

4 Results and Discussion

4.1 Experimental Setup

This study addresses the problem of blind noise reduction. A series of computa-
tional experiments was conducted in which noise with different spectral power
distributions was removed from the signal. The study aimed to investigate the
impact of noise on the stationary AN firing probability pattern distortion and
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included different kinds of colored noises on the first stage: white, pink, red, blue,
and violet. White Gaussian noise is a widespread noise model in robustness stud-
ies. In application areas, it is also important to remove pink (or flicker) noise,
whose power spectral density is inversely proportional to frequency. The spec-
tral density of red noise decreases in proportion to the square of the frequency.
The spectral density of blue noise is specular with respect to pink noise, i.e. it
increases with increasing frequency. Blue noise was synthesized using spectrum
inversion. The spectral density of violet noise is inverted with respect to the red
noise frequency spectrum.

On the second stage of blind noise reduction computational experiments,
mixtures with real-world environmental noise were considered, including eight
categories of urban acoustic scenes: airport, travelling by a bus, travelling by
an underground metro, travelling by a tram, street with medium level of traffic,
public square, metro station and indoor shopping mall. To obtain such categories
of the environmental noises a TUT Urban Acoustic Scenes 2018 dataset [16] from
DCASE Challenge was used.

Here is a summary of the experimental setup of our study. In accordance with
the problem statement, we used two sensors and two sound sources. The first
source was a clean speech signal. The second source was interference represented
by one of the aforementioned noise types. On the first stage of computational
experiments with colored noise interferences, the speech signal was a sequence
of English long vowels represented by a multi-frequency complex tone that was
synthesized as a sum of the first five formant frequencies – a speech-related model
sound. Sound mixture had a duration of 1.5 s. On the second stage, the vowel
sequence was pronounced several times by a male speaker. Sound mixture with
real-world noise interferences had a duration of 10 s.

Each sensor received a sound mixture of two sources, with different mixing
parameters specified in the mixing matrix. In this way, a certain spatial location
of each sound source was simulated. Then, auditory peripheral representation
was modelled for the sound mixtures in the form of AN average firing rate
probability pattern. The output data matrices served as inputs for the FastICA
algorithm of blind source separation [17]. The resulting data matrices describe
the unmixed patterns of the corresponding sound sources. Finally, the impact on
the blind noise reduction quality by the increase in the number of sensors from
2 to 8 has been considered.

4.2 Blind Noise Reduction Evaluation

The noise reduction performance for simulated AN fibers response patterns was
evaluated through the signal-to-noise ratio (SNR) and noise intensity measure-
ments. SNR allows estimating the ratio of target signal power to the power of
background noise. For denoised response pattern Y of AN fibers, SNR is defined
as follows:

SNRy = 10log10

(
‖X‖2

‖Y − X‖2
)

. (5)
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where X is the response pattern for the clean vowel sequence. Also, SNR was cal-
culated for the response patterns for initial signal mixtures S1 and S2. The tables
below demonstrate SNR estimation results corresponding to different sponta-
neous rate types of AN fibers and colored noise interferences. Table 1 presents
the initial SNR for sound mixtures on two sensors provided by the mixing matrix,
averaged for the vowel sequence. Table 3 presents the SNR values for the unmixed
AN response pattern for the vowel sequence – a result of blind noise reduction.

Table 1. Initial SNR/dB for a mixture on two sensors by spontaneous rate

Noise White Pink Red Blue Violet

Sensor 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

LSR 10.8 6.9 9.5 2.6 11.5 6.3 11.3 5.4 11.5 8.2

MSR 9.6 5.3 8.2 2.2 9.7 5.8 9.3 5.4 9.5 8.5

HSR 9.1 4.4 7.6 1.9 8.5 5.2 8.2 5.1 8.4 8.1

Table 2. Initial noise intensity for a mixture on two sensors by spontaneous rate

Noise White Pink Red Blue Violet

Sensor 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

LSR 26.7 20.5 27.5 24.1 25.7 15.6 25.6 15.7 25.4 13.9

MSR 106.4 85.6 109.8 100.7 65.9 43.3 101.2 62.6 100.1 54.8

HSR 154.1 128.6 159.2 150.8 93.3 63.4 145.4 91.3 143.7 79.2

The noise intensity for each of 41 BF bands of the AN firing probability pat-
tern can be approximated by the standard deviation. For the resultant response
pattern Y , it can be defined as follows:

σy =

√√
√
√ 1

T

T∑

t=1

(

y(t) −
[

1
T

T∑

t=1

y(t)

])2

. (6)

where T represents the total number of samples. Table 2 shows initial noise
intensity values for the AN response pattern of the two-sensor sound mixture.
Table 4 lists the resulting noise intensity values for the output AN response
pattern obtained through blind noise reduction algorithm.

As can be seen, the results of noise reduction are most representative for HSR
AN fibers. As for MSR and LSR fibers, the performance of blind noise reduction
was poorer for colored noises. While the AN response pattern turned out to be
less sensitive to red noise, the most distortion was made by violet noise. Let us
consider the second stage of computational experiments. Table 5 summarizes the



314 A. Yakovenko et al.

Table 3. Resultant SNR/dB for mixture
with colored noise

Noise White Pink Red Blue Violet

LSR 10.9 10.1 15.8 12.7 12.6

MSR 11.4 11.4 16.2 11.9 11.7

HSR 11.5 12.1 16.2 11.4 11.3

Table 4. Resultant noise intensity for
mixture with colored noise

Noise White Pink Red Blue Violet

LSR 44.3 43.8 45.8 45.1 45.1

MSR 45.3 45.3 35.6 45.6 45.4

HSR 45.9 46.1 36.1 45.8 45.6

Table 5. Results of two-sensor blind noise reduction (SNR/dB) for HSR AN fibers:
mixture with real-world environmental noise

Noise Airport Bus Metro Tram Traffic Square Station Mall

Sensor 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Input 6.3 −4.4 6.2 −4.4 5.5 −6.5 6.1 −5.1 4.6 −7.4 4.7 −7.3 7.4 −4.6 4.5 −7.6

Average 0.9 0.9 −0.5 0.5 −1.4 −1.3 1.4 −1.5

Output 7.6 7.5 6.6 6.9 7.2 7.1 6.2 7.2

blind noise reduction results in terms of SNR for a vowel sequence mixed with
real-world environmental noises represented by eight categories of urban acoustic
scenes. These noises largely overlap with the speech range, so their removal is
the challenging task. The location of sound sources with respect to sensors was
set by the mixing matrix so that the average SNR value for the sound mixtures
was approximately 0 dB. As can be seen from the obtained results, the approach
allowed us to improve the average value of SNR by 7 dB. This is a good result
for an initial study.

Fig. 2. Blind noise reduction performance for vowel sequence represented by HSR AN
fibers, depending on the number of sensors: left panel – mixture with colored noises,
right panel – mixture with real-world environmental noises.
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As mentioned in the introduction, technical systems of speech signal process-
ing allow the use of multiple microphone sensors. Therefore, we also evaluated
blind noise reduction performance with increasing number of sensors for an HSR
AN fiber response pattern. As seen from Fig. 2, performance was improved for
the considered types of noise interference with increasing number of sensors,
both for colored noise models and for real-world environmental noises.

5 Conclusions

The paper has suggested an approach to enhancement of noisy speech intelli-
gibility by means of processing the signals of the auditory periphery. We have
considered the task of designing a blind noise reduction system, which uses the
information about the sound sources that is received by biologically relevant
sensors distributed in space. The sensors simulates the processes of encoding
information at the AN level of the auditory periphery. The speech signal, repre-
sented by a sequence of English long vowels, was separated from noise by means
of independent component analysis of stationary AN firing probability patterns.

Two stages of computational studies were carried out – the first stage involved
colored noise models, and the second dealt with background noises of real-world
acoustic scenes. The quality of noise reduction largely depends on the mutual
position of sound sources and sensors. In our case, arbitrary positions were cho-
sen, modelled by a well-conditioned mixing matrix. The suggested approach has
improved the SNR of the stationary AN firing activity pattern for colored and
real-world noises. Besides, an increased number of sensors has demonstrated an
improved quality of blind noise reduction.

An increase in SNR values can also be achieved through the optimization of
quantity and relative placement of sensors in a given acoustic environment. Fur-
ther elaboration of the approach will involve methods of blind signal extraction
and real-time processing of dynamic AN firing activity patterns. The developed
methodology can be used at the stage of pre-processing in machine hearing and
biologically-inspired speech signal classification systems, such as [6,11,18]. Ulti-
mately, it can become part of the new generation of neurocomputer interfaces
and find use in cochlear implants [19].

Acknowledgments. The reported study was funded by the Russian Foundation for
Basic Research according to the research project No 18-31-00304.

References

1. Bergman, A.S.: Auditory Scene Analysis: The Perceptual Organization of Sound.
MIT Press, Cambridge (1994)

2. Wang, D.L., Brown, G.J.: Computational Auditory Scene Analysis: Principles,
Algorithms, and Applications. Wiley-IEEE Press, Hoboken (2006)

3. Nugraha, A.A., Liutkus, A., Vincent, E.: Deep neural network based multichannel
audio source separation. In: Makino, S. (ed.) Audio Source Separation. SCT, pp.
157–185. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73031-8 7

https://doi.org/10.1007/978-3-319-73031-8_7


316 A. Yakovenko et al.

4. Schwartz, O., David, A., Shahen-Tov, O., Gannot, S.: Multi-microphone voice
activity and single-talk detectors based on steered-response power output entropy.
In: 2018 IEEE International Conference on the Science of Electrical Engineering
in Israel (ICSEE), pp. 1–4 (2018)

5. Bu, S., Zhao, Y., Hwang, M.Y., Sun, S.: A robust nonlinear microphone array
postfilter for noise reduction. In: 2018 16th International Workshop on Acoustic
Signal Enhancement (IWAENC), pp. 206–210 (2018)

6. Alam, M.S., Jassim, W.A., Zilany, M.S.A.: Neural response based phoneme clas-
sification under noisy condition. In: Proceedings of International Symposium on
Intelligent Signal Processing and Communication Systems, pp. 175–179 (2014)

7. Miller, R.L., Schilling, J.R., Franck, K.R., Young, E.D.: Effects of acoustic trauma
on the representation of the vowel “eh” in cat auditory nerve fibers. J. Acoust.
Soc. Am. 101(6), 3602–3616 (1997)

8. Kim, D.-S., Lee, S.-Y., Kil, R.M.: Auditory processing of speech signals for robust
speech recognition in real-world noisy environments. IEEE Trans. Speech Audio
Process. 7(1), 55–69 (1999)

9. Brown, G.J., Ferry, R.T., Meddis, R.: A computer model of auditory efferent sup-
pression: implications for the recognition of speech in noise. J. Acoust. Soc. Am.
127(2), 943–954 (2010)

10. Jurgens, T., Brand, T., Clark, N.R., Meddis, R., Brown, G.J.: The robustness of
speech representations obtained from simulated auditory nerve fibers under differ-
ent noise conditions. J. Acoust. Soc. Am. 134(3), 282–288 (2013)

11. Yakovenko, A., Sidorenko, E., Malykhina, G.: Semi-supervised classifying of
modelled auditory nerve patterns for vowel stimuli with additive noise. In:
Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds.) NEU-
ROINFORMATICS 2018. SCI, vol. 799, pp. 234–240. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-01328-8 28

12. Liberman, M.C.: Auditory nerve response from cats raised in a low noise chamber.
J. Acoust. Soc. Am. 63(2), 442–455 (1978)

13. Lopez-Poveda, E., Meddis, R.: A human nonlinear cochlear filterbank. J. Acoust.
Soc. Am. 110, 3107–3118 (2001)

14. Houda, A., Otman, C.: Blind audio source separation: state-of-art. Int. J. Comput.
Appl. 130(4), 1–6 (2015)

15. Vorobyov, S., Cichocki, A.: Blind noise reduction for multisensory signals using
ICA and subspace filtering, with application to EEG analysis. Biol. Cybern. 86(4),
293–303 (2002)

16. Heittola, T., Mesaros, A., Virtanen, T.: TUT Urban Acoustic Scenes 2018, Devel-
opment dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.1228142

17. Miettinen, J., Nordhausen, K., Taskinen, S.: fICA: FastICA algorithms and their
improved variants. R J. 10(2), 148–158 (2018)

18. Yakovenko, A.A., Malykhina, G.F.: Bio-inspired approach for automatic speaker
clustering using auditory modeling and self-organizing maps. Procedia Comput.
Sci. 123, 547–552 (2018)

19. Kokkinakis, K., Azimi, B., Hu, Y., Friedland, D.R.: Single and multiple microphone
noise reduction strategies in cochlear implants. Trends Amplif. 16(2), 102–116
(2012)

https://doi.org/10.1007/978-3-030-01328-8_28
https://doi.org/10.5281/zenodo.1228142


Automatically Generate Hymns Using
Variational Attention Models

Han K. Cao, Duyen T. Ly, Duy M. Nguyen, and Binh T. Nguyen(B)

Inspectorio Research Lab, University of Science, Ho Chi Minh City, Vietnam
hancao@inspectorio.com, ngtbinh@hcmus.edu.vn

Abstract. Building an intelligent system for automatically composing
music like human beings has been actively investigated during the last
decade. In this work, we propose a new approach for automatically cre-
ating hymns by training a variational attention model from a large col-
lection of religious songs. We compare our method with two other tech-
niques by using Seq2Seq and attention models and measure the corre-
sponding performance by BLEU-N scores, the entropy, and the edit dis-
tance. Experimental results show that the proposed method can achieve
a promising performance that is able to give an additional contribution
to the current study of music formulation. Finally, we publish our dataset
online for further research related to the problem.

Keywords: Seq2Seq · Variational attention model · Music generation

1 Introduction

With the recent rise in popularity of artificial neural networks especially from
deep learning methods, many successes have been found in the various machine
learning tasks covering classification, regression, prediction, and content gener-
ation. These techniques have achieved great results in many aspects of artificial
intelligence including the generation of visual art [7] as well as language mod-
elling problem in the field of natural language processing [21]. During the last
decade, there is a new trend for applying machine learning techniques in music
generation.

Music is an artistic and creative domain which is an important part of human
life since it plays a significant role in many social and cultural activities, for exam-
ple, singing, dancing, or playing instruments in an orchestra. Therefore, music
is human in its nature. Automatic music generation is versatilely applicable.
For instance, it can provide an access to a huge amount of copyright-free music
for multiple purposes such as aiding the narration of videos and improving the
moods of computer game scenes. The special thing of this is that it does not
require users to have knowledge in music theory in order to produce a piece of
music, thus simplifying the process of content creation. Automatic music compo-
sition has had a long history of researches since Hiller and Isaacson [8] proposed
the use of Markov chains for this problem in 1956. As music can be interpreted
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11555, pp. 317–327, 2019.
https://doi.org/10.1007/978-3-030-22808-8_32
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as a sequence of musical events, it can be modelled as conditional probabilities
between these events. This can be observed in a typical example of chord pro-
gressions rules: some chords are more likely to occur after the given chords than
others, and they are all dependent on the central key of the musical piece. By
assuming that the current state only depends on the states in the past events,
one can generate a sequence of musical events given a primer sequence as a seed.

One notable property of music, which is also one of the biggest challenges in
the field of automatic music composition, is the non-locality. For example, musi-
cal patterns are often repeated with or without variations in different time in a
score. Most computer-generated music sounds good in a short duration, however,
lacks any larger structure such as sections or recurring and developing themes.
Recurrent Neural Networks (RNNs) are suited for modelling this property by
reason of their ability to represent long-term dependency. The idea of experi-
menting with RNNs started with the use of a simple version of RNNs, Jordan
net [11], which was used to generate chord sequences [17]. A system called CON-
CERT [14] was proposed to generate melodies by training on 10 Bach pieces.
Theoretically, RNN models can remember infinitely long sequences; however,
said ability is limited in practice due to the vanishing gradient problem [9]. To
solve this limit, Long Short-Term Memory Networks (LSTMs) [10] are used to
retain information for much longer periods of time. Eck and co-workers proposed
an LSTM system to learn 12-bar Blues chord progressions and melodies [6].

Musical events generation can mean a wide variety of tasks ranging from
the composition of melody, harmony to writing lyrics [3,4,19,26]. Regarding
harmony, musicians have written thousands of treatises to propose rules for
building beautiful harmony from given melodies. One example is the treatise of
Arnold Schoenberg [20], which is the most accomplished treatise of tonal music.
As for lyrics, this is more likely to be a natural language processing problem.
Consequently, RNNs [23] can be applied to the task of generating folk music [22]
using a text-based representation of music. This method covers the generation
of music titles, along with other metadata of the music piece. In this paper,
we mainly focus on investigating a machine-learning method to automatically
generate melodies, especially for hymns. Precisely, we consider the problem of
composing a sequence of notes, which at most one note is played at the same
time. To this aim, we present an approach by using variational attention models
to create a list of melodies from a given sequence of notes as an initial seed.
We measure the performance by comparing with other methods using Seq2Seq
(sequence-to-sequence) models and attention models. Experimental results show
that using variational attention models can surpass two other techniques and
achieve a very good performance in BLEU scores, the entropy, and the edit
distance. The results can give an additional contribution for the current research
of music generation.

2 Methodology

In what follows, we formulate the original problem and present an approach for
generating melodies by using variational attention models. After that, we com-
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pare the proposed method with a variety of algorithms by measuring a number
of metrics in a specific dataset including thousands of hymns.

2.1 Problem Formulation

We study a machine-learning method such that given a sequence of notes (which
can be initially composed by a musician), it can automatically predict the most
appropriate melodies to play next. The predicted melodies are combined with
the previous ones to act as a new input for doing another generation and so
on. The corresponding flow of the problem can be illustrated in Fig. 1. It is
important to note that the most popular format of symbolic music available
on the Internet is MIDI (Musical Instrument Digital Interface) files. MIDI is a
protocol to connect electronic instruments and digital musical tools - such as
synthesizer, samplers, and computers - using a series of MIDI messages. These
messages specify information such as note (pitch, velocity) and control signals for
parameters (volume, vibrato, instruments, etc.). Especially, they instruct MIDI
instruments to trigger sound. There are two most important kinds of messages
that one can concern:

– note-on messages containing a MIDI note number (the note’s pitch, an integer
within the interval [0, 127]; for example, a MIDI number of 60 corresponds to
the middle C), a velocity (how forcefully the note is played, an integer within
the interval [0, 127]);

– note-off messages indicating that a note ends in a similar manner.

Using MIDI messages, one can convert a song into an array of MIDI notes. For
example, an array A = a1a2 . . . an satisfying ai ∈ [−2, 127] represents a melody
of n time steps. A value ai from 0 to 127 indicates a MIDI note played at the
i-th time step; the value −1 stands for no action (the previous note keeps on
being played); and the value −2 represents a rest (the playing note is released).
In this work, one can ignore the notes’ velocity at this point. As a result, it
gives the possibility to transform the current problem to a new problem by
producing the next sequence of melodies from a given list of MIDI notes. It
turns out that the problem can be considered as an “NLP-like” problem and
usually, one can leverage the current state-of-the-art NLP approaches for finding
the most suitable solution. Figure 2 illustrates a sequence of melodies from the
song “Twinkle Twinkle Little Star”. This English lullaby can be translated into
a NoteSequence of (60, −1, 60, −1, 67, −1, 67, −1, 69, −1, 69, −1, 67, −1, −1,
−1, 65, −1, 65, −1, 64, −1, 64, −1, 62, −1, 62, −1, 60, −1).

2.2 Problem Solution

There are several ways to construct an appropriate model for the problem. Usu-
ally, for a given input sequence of notes x = (x1, . . . xT ), a recurrent neu-
ral network (RNN) can be trained to compute a sequence of hidden vectors
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Fig. 1. In the formulated problem, one can use an initial seed (1) to generate a predicted
sequence of melodies (2) by a trained model and then combine those sequences together
as another input (3) for the next generation.

Fig. 2. A sequence of melodies extracted from the song “Twinkle Twinkle Little Star”.

h = (h, . . . hT ) and an output sequence y = (y1, . . . yT ) by iterating the following
equations from t = 1 to T :

ht = H (Wxhxt + Whhht−1 + bh)
yt = Whyht + by (1)

where the W(..) terms denote weight matrices and the b(.) terms denote bias
vectors and H(.) is the hidden layer function. Here, H(.) is often an element-wise
application of a sigmoid function.

It is important to emphasize that recurrent neural network is a popular class
of artificial neural networks that have shown great results in various tasks, espe-
cially ones dealing with sequential information such as speech, text, audio, and
video. They were initially presented in the 1980’s, but can only show their real
potential recently, which is due to the development of computational power and
an increase of the amount of available data. RNNs are called recurrent as they
perform the same function for each element of one sequence, with the output
being dependent on the previous computations. This is different from traditional
neural networks as their outputs are independent of previous computations.
RNNs can be considered an a special type of machine-learning models which
is capable of “remembering” information calculated so far. Theoretically, RNNs
can take into consideration the past information in arbitrarily long sequences,
but in practice, they are limited to looking back only a few steps [25].

Normally, an RNN can be interpreted as a sequence of neural networks which
are trained one after another with the back-propagation procedure. This training
process is called Back Propagation Through Time (BPTT) and the correspond-
ing errors can be back-propagated from the last step to the first-time step. The
error corresponding to each step can be calculated and then weights of RNNs
can be updated. When there is a large number of time steps, the computation
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becomes very intensive. Due to the fact that repetitive calculations could lead
to over minimizing or amplifying effects, RNNs are prone to problems with the
gradients: exploding gradients and vanishing gradients [9]. The former problem
happens when the algorithm assigns an unreasonably high importance to the
weights and can be solved by truncating or squashing the gradients. Whereas,
the vanishing gradients problem is much harder to solve when the values of a
gradient are too small causing the model to stop learning efficiently. To solve
this, a new variation of RNNs was introduced by Hochereiter and Schimidhuber
[10], which is called Long Short-Term Memory (LSTM) Networks.

In this work, we consider three different models leveraging architectures of
LSTMs and bi-RNNs to investigate the music generation, especially for auto-
matically composing hymns, including Sequence-to-Sequence (Seq2Seq) model,
the original attention model, and the variational attention model. We briefly
describe those techniques in the following paragraphs.

Long Short-Term Memory Networks - Seq2Seq. Seq2seq models can be
trained from a given dataset and then take a sequence of input notes to predict
a sequence of output notes as the expected results. Sutskever and co-workers
propose an appropriate architecture for Seq2Seq [24] by including two LSTMs:
the first LSTM (encoder) maps the input sequence to a fixed-length vector repre-
sentation, and the second LSTM (decoder) is a recurrent neural network model
which predicts the target sequence step by step. It has been ubiquitously applied
in the field of natural language processing and demonstrated the state-of-the-
art performance in many studies, especially in machine translation problems.
Figure 3 describes an example of Seq2Seq architecture.

Fig. 3. An example for a Seq2Seq architecture. Here, an input sentence A B C is passed
through an LSTM layer - the encoder. The final output is used to initiate the state of
the decoder which regressively produces an output sentence from an < SOS > (start
of sentence) token until a < EOS > (end of sentence) token is met.

Attention Models. Attention model has been one of the well-known techniques
in Neural Machine Translation (NMT). Although there are a huge number of
applications using the Seq2Seq model [24], this model seems not to have enough
effect for very long sentences, which are quite common in the music generation
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problem. As a consequence, the attention model [13] has been proposed to over-
come that weakness. It can generate quite well for long-series inputs with an
encoder using Bi-RNN [27] instead of a single RNN cell and a decoder using an
attention layer. This technique is quite close to the visual attention mechanism
found in humans. The structure of the attention model can be found at [1].

Variational AttentionModels. Variational attention models have been exten-
sively investigated during the last few years. Variational auto-encoder (VAE)
model [2] uses a variational approach for the latent representation learning. It
includes an encoder, a decoder, and a loss function. The encoder maps the input
data into latent variables with a given probabilistic distribution and the decoder
then reconstructs the input data from the latent variables. During the training pro-
cess, the model optimizes the loss function, which is usually chosen as a variational
lower bound of the log-likelihood of the data [2]. The VAE model learns to repro-
duce the original content. In attempt to solve the common issue of a sequence-to-
sequence model mentioned previously, it is extended to another framework called
variational encoder-decoder (VED), proposed by Zhou and Neubig [28], by assum-
ing the output data is a function of the input data. Bahuleyan and colleagues
[2] present a variational attention mechanism for Variational Encoder-Decoder
(VED) by modelling attention vectors as Gaussian distributed random variables.
We leverage the power of variational attention models for resolving the hymn gen-
eration problem by using an architecture depicted at Fig. 4.

Fig. 4. A variational attention model [2] is applied for the hymn generation problem.

Evaluation Metrics. In order to compare the performance of different meth-
ods described above, we first use Bleu-N scores (N = 1, 2, 3, 4). It is important
to note that BLEU (BiLingual Evaluation Understudy) [18] scores are ubiqui-
tously selected to measure the average N-gram precision on a set of generated
sentences in the machine translation. They count up to N-grams for comparing
the candidate translation and the reference translation. The value of each metric
has a range from 0 to 1 with a perfect match attaining a score of 1.0. Two other
metrics chosen for evaluation are the entropy [5] and the edit distance [15]. The
minimum edit distance measures how dissimilar two strings are to one another
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by calculating the minimum number of insertions, deletions, and substitutions
that are required to transform one string into the other one. These metrics are
useful to analyze the performance of a music generation model.

3 Experiments and Discussion

In this section, we introduce all experiments related to three methods discussed
in the previous section. We firstly describe the data collection process and how to
set all experiments up. After that, we show experimental results and all possible
discussion.

3.1 Data Collection

We create a dataset for training and testing various models by collecting from
the website Hymnal.net. This website provides a large number of hymns which
predate copyright laws and whose copyright has expired. Every hymn is available
in a lead sheet, mp3, MIDI, and Tune (MIDI). We use the Tune format to extract
all possible melodies as training data and a Python library “music21” to convert
all MIDI files into NoteSequences. Since most of the hymns consist of simple
melodies, training melodies are quantized at the granularity of an eighth note
instead of the usual approach of a sixteenth note. This means each time step
corresponds to one-eighth of a bar of music. Then, each melody can be transposed
to the key of C. We filter out songs which do not have the time signature of 4/4,
resulting in a total of 1471 songs and publish this dataset in [16].

3.2 Setup

All models are implemented in Keras by using TensorFlow as the backend. They
are trained with the Adam optimizer [12] with a fixed learning rate 1e−5 and the
epoch size is 20 (samples). We construct all algorithms in one personal computer
with 8 GB RAM and 4 cores (2.9 GHz Intel Core i7). For generating training,
validating, and testing datasets, we use an 1-bar sliding window to extract all
training sequences where the input and output lengths are 4 bars (32 time steps)
and 1 bar (8 time steps) accordingly. As a result, there are 19846 samples in total.
Among those, a model can be trained by using 15876 samples and validated on
3970 samples.

To train a Seq2Seq model, we use two Bi-LSTM layers with 256 units per
cell as the encoder and two normal LSTM layers with the same amount of units
(256) as the decoder with a teacher forcing ratio of 0.5. The decoder regressively
produces each time step event, passing its output through a linear layer and
SoftMax to create a distribution over 130 classes. Here, the total number of
classes is exactly the number of values of MIDI notes which vary from −2 to
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127. For the original attention model, the encoder is trained by using a Bi-
LSTM layer with 64 hidden units whose length of the input sequence is 64.
Meanwhile, the decoder is trained by using a LSTM layer with 64 hidden units
in which the length of the input sequence is 8. We choose the same value 0.1
for hyper-parameters of both attention and latent KL terms. For measuring
the performance of the variational attention model, we use a Bi-LSTM as the
encoder with 40 hidden units whose the length of the input sequence is 64 and
the decoder is constructed by a LSTM layer with 40 hidden units whose input
length 8. In the experiments, we select the same value 1.0 for hyper-parameters
of both attention and latent KL terms.

Fig. 5. The performance of three methods for different epochs by using BLEU-N scores
(N = 1, 2, 3, 4).



Automatically Generate Hymns Using Variational Attention Models 325

Table 1. The performance of three methods with different metrics.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 Entropy Edit distance

seq2seq 70.15% 56.43% 45.84% 37.12% 1.49 3.27

att 69.32% 57.22% 48.19% 41.00% 1.32 2.99

var-att 70.51% 58.44% 49.59% 42.53% 1.42 3.00

3.3 Results

Table 1 and Fig. 5 indicate the performance of these three models with different
measurements: BLEU-N scores (N = 1, 2, 3, 4). One can easily see that all models
have achieved good results on BLEU-1 scores while the Seq2Seq model has suf-
fered from low scores in the rest. For the entropy, the computed results are very
interesting in the sense of the ground-truth labels on the testing dataset have
an entropy of 1.7860. Figure 6 also shows that the Seq2Seq model can achieve
the best result which is the closest to the ground-truth entropy. Although the
variational attention model and the original attention model may be good at
keeping the structure of a music, they somehow lose the variability, in other
words, the creativity of the pieces. For the edit distance, all models have quite
close values together (nearly to 3.0) as depicted in Fig. 6. Experimental results
show that the variation attention model can achieve a better performance in
most of measurements and outperforms other techniques for all BLEU-N scores.
These results are very encouraging and illustrate how the variational attention
models can be well implemented to the hymn generation problem.

Fig. 6. The performance of three methods for different epochs by using the edit distance
and the entropy.
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4 Conclusion

We have investigated the problem of composing hymns given a sequence of
melodies by using MIDI messages and deep learning approaches. We have com-
pleted a number of experiments by comparing three different methods: the
Seq2Seq model, the attention model, and the variational attention model by
using one dataset of thousands of hymns. Experimental results show that the
variational attention model can achieve a promising performance and surpass
other approaches in BLEU scores. We publish our dataset for additional con-
tribution to the research community related to the musical generation problem.
In the future, we will extend our research for different types of musical prod-
ucts and study other advance techniques for improving the performance of the
proposed algorithm.

Acknowledgments. CKH and BTN would like to thank The National Foundation
for Science and Technology Development (NAFOSTED), University of Science, and
Inspectorio Research Lab in Viet Nam for supporting two authors throughout this
paper.
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Abstract. In this paper, the mixed-norm optimization is investigated
for sparse signal reconstruction. Furthermore, an iterative optimization
algorithm based on the projection method is presented for face recogni-
tion. From the theoretical point of view, the optimality and convergence
of the proposed algorithm is strictly proved. And from the application
point of view, the mixed norm combines the L1 and L2 norms to give
a sparse and collaborative representation for pattern recognition, which
has higher recognition rate than sparse representation algorithms. The
algorithm is designed by combining the projection operator onto a box set
with the projection matrix, which is effective to guarantee the feasibility
of the optimal solution. Moreover, numerical experiments on randomly
generated signals and three face image data sets are presented to show
that the mixed-norm minimization is a combination of sparse represen-
tation and collaborative representation for pattern classification.

Keywords: Mixed norm · Projection method · Iterative algorithm ·
Face recognition

1 Introduction

Recently, sparse representation, especially L1-norm-based sparse representation
algorithms have been investigated and used for signal processing and pattern
classification [1,2]. In general, we assume a vector b ∈ R

m to be a linear combi-
nation of column vectors of matrix A ∈ R

m×n with full row-rank; i.e., b = Ax,
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where x ∈ R
n. The aim of sparse representation is to recover or find the solution

of vector x from the signals in b and A, which is solved by the L0-min problem

minimize ‖x‖0,
subject to Ax = b,

(1)

in which ‖ · ‖0 is the L0-norm. Generally, if the L0-min problem has sufficiently
sparse solution, it can be converted into the following L1-min problem [3]:

minimize ‖x‖1,
subject to Ax = b,

(2)

where ‖ · ‖1 is the L1-norm.
The L0-min and L1-min problems are both widely used to sparse signal recon-

struction, including data clustering [4], face recognition [1], image restoration [5],
and image classification [6]. At the same time, many sparse algorithms are pre-
sented to solve the L0-min and L1-min problems, such as orthogonal matching
pursuit algorithm [7], gradient projection method [8], and primal-dual interior-
point method [9]. In addition, the sparse reconstruction algorithms are widely
used for face recognition [10,11].

In the literature, recurrent neural networks (RNNs) as one of the real-time
optimization methods, described as continuous-time or discrete-time dynamic
systems, have been investigated for engineering optimization with applications
[12,13]. The Lyapunov method is developed for the analysis of the convergence
of the systems, which is generally guaranteed to be globally convergent or initial
free. In particular, based on projection method, the projection neural networks
and their collective networks have been developed to solve linear and nonlinear
optimization problems [14,15] and distributed optimization problems [16,17],
which can be applied to face recognition [2], image processing [18], support
vector machine learning [19], and robot motion planning [20].

In this paper, the L1-norm minimization problem (2) is converted into a
mixed-norm problem, which considers the influence of both sparse representation
and collaborative representation [21]. To seek the optimal solution of mixed-norm
problem, a projection-based algorithm is designed for face recognition. Compared
with existing sparse representation algorithms, the proposed algorithm shows
good performance in the examples.

2 Preliminaries

Definition 1. A matrix P is said to be a projection matrix if P is symmetric
and P 2 = P . For a general projection operator g(x) onto a closed convex set X ,
it can be defined as

g(x) = arg min
γ∈X

‖x − γ‖2,

where ‖ · ‖2 is the L2-norm.
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Here the closed convex set X is assumed to be X = {μ ∈ R
n : −1 ≤ μi ≤ 1},

then the element of g is generally described as a piecewise-linear function

g(μi) =

⎧
⎪⎨

⎪⎩

1, μi > 1,

μi, −1 ≤ μi ≤ 1,

−1, μi < −1.

Lemma 1. [22] For the projection operator, we have

(u − g(u))T (g(u) − v) ≥ 0, ∀ u ∈ R
n, v ∈ X .

Then the following lemma is got directly from the previous one.

Lemma 2. For the projection operator, we have

(u − v)T (g(u) − g(v)) ≥ ‖g(u) − g(v)‖22, ∀ u, v ∈ R
n.

In this paper, the mixed-norm optimization is studied for solving the pattern
classification problem. Combining the L1 and L2 norms, the following minimiza-
tion problem is considered

minimize ‖x‖1 +
1
2
‖x‖22,

subject to Ax = b.
(3)

Since the objective function in (3) is strictly convex and not less than ‖x‖22/2,
the optimal solution is always finite provided that the feasible set {x ∈ R

n : Ax =
b} is nonempty.

Lemma 3. [2] x∗ ∈ R
n is an optimal solution to (3) if and only if there exists

a point y∗ ∈ R
n such that y∗ − Pg(y∗) − q = 0 and x∗ = y∗ − g(y∗), where

P = AT (AAT )−1A and q = AT (AAT )−1b.

3 Algorithm Description and Convergence Analysis

According the result in Lemma 3, the projection-based iterative algorithm for
solving (3) is formulated as

yk+1 = Pg(yk) + q, (4a)
xk = yk − g(yk). (4b)

Theorem 1. For any initial value z0 ∈ R
n, the vector xk in (4) is globally

convergent to the optimal solution of (3).

Proof. From Lemma 3, x̄ = ȳ − g(ȳ) is an optimal solution of (3), where ȳ is a
convergence point (equilibrium point) of (4a) satisfying

ȳ = Pg(ȳ) + q. (5)
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Substituting (5) into (4a) follows yk+1 − ȳ = P (g(yk) − g(ȳ)). Then ‖yk+1 −
ȳ‖22 − ‖yk − ȳ‖22 = ‖P (g(yk) − g(ȳ))‖22 − ‖yk − ȳ‖22.

Let J1 = ‖P (g(yk)−g(ȳ))‖22−‖yk − ȳ‖22 and J2 = ‖yk − ȳ−P (g(yk)−g(ȳ))‖22.
Then

‖yk+1 − ȳ‖22 − ‖yk − ȳ‖22 = J1,

and

J2 = ‖yk − ȳ‖22 + ‖P (g(yk) − g(ȳ))‖22 − 2(yk − ȳ)T P (g(yk) − g(ȳ)).

It follows

J1 + J2 = 2‖P (g(yk) − g(ȳ))‖22 − 2(yk − ȳ)T P (g(yk) − g(ȳ)).

From (4a), we have Pyk+1 = Pg(yk) + q due to P 2 = P and Pq = q, which
follows Pyk+1 = yk+1 and P ȳ = ȳ. Then

J1 + J2 = 2‖P (g(yk) − g(ȳ))‖22 − 2(yk − ȳ)T (g(yk) − g(ȳ)).

Combining with Lemma 2 results in

J1 + J2 ≤ 2‖(g(yk) − g(ȳ))‖22 − 2(yk − ȳ)T (g(yk) − g(ȳ)) ≤ 0,

in which the first inequality holds due to ‖P‖2 = 1.
Based on above analysis, we have

‖yk+1 − ȳ‖22 − ‖yk − ȳ‖22 ≤ −J2

= −‖yk − ȳ − P (g(yk) − g(ȳ))‖22
= −‖yk − Pg(yk) − q‖22,

where the last equality holds due to (5).
The candidate Lyapunov function is considered as

V (y) = (y − ȳ)T (y − ȳ).

Then
V (yk+1) − V (yk) ≤ −‖yk − Pg(yk) − q‖22 ≤ 0. (6)

From the LaSalle invariance principle in [23], yk is convergent to S, the largest
invariant subset of W = {yk ∈ R

n : V (yk+1) − V (yk) = 0}.
According to (6), if V (yk+1)−V (yk) = 0, one gets yk −Pg(yk)−q = 0. Then

combining with above analysis, yk converges to the equilibrium set of (4a).
Furthermore, following (6), it results in

‖yk+1 − ȳ‖22 ≤ ‖yk − ȳ‖22 ≤ · · · ≤ ‖y0 − ȳ‖22.
Then yk is bounded. Furthermore, there exists an increasing subsequence {kl}∞

l=1

with a limit point ỹ such that liml→∞ ykl
= ỹ, where ỹ is an convergence point.

On one hand, from above analysis, we have ‖yk+1 − ỹ‖22 ≤ ‖yk − ỹ‖22. On the
other hand, for any k, there exists kl such that ‖yk−ỹ‖22 ≤ ‖ykl

−ỹ‖22. Let l → ∞,
then k → ∞. It results in limk→∞ ‖yk − ỹ‖22 = liml→∞ ‖ykl

− ỹ‖22 = 0. That is,
limk→∞ yk = ỹ. Furthermore, due to V (y) = (y − ȳ)T (y − ȳ) being radially
unbounded, one gets that for any initial point y0 ∈ R

n, the global convergence
of yk in (4) is guaranteed. As xk = yk − g(yk), the convergence of xk is derived
directly from that of yk. 	
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4 Application to Face Recognition

Next, the proposed mixed-norm algorithm is applied to face recognition. Gener-
ally, the frontal face images are expressed by a low dimensional linear subspace
spanned by

Ai = {ai1, ai2, . . . , aini
},

where aij (j = 1, 2, . . . , ni) in vector form is training image in the ith subject.
Assume c subjects for the recognition and let A ∈ R

m×n be the matrix for
collecting training images

A = (A1, A2, . . . , Ac).

Our aim is to find the sparsest linear representation of the test image from all
the training ones, which can be written as

b = Ax, (7)

where x = (x1, x2, . . . , xn)T ∈ R
n. Generally, if b is valid from one of the c

subjects, the above representation x in (7) can be expressed as a sparse vector
x = (0, . . . , 0, xi1, xi2, . . . , xini

, 0, . . . , 0)T ∈ R
n with zero entries except those

associated with the ith subject. Herein, we solve the mixed-norm problem (3)
to get the sparse solution. To perform the sparse representation classification
(SRC), similar to the algorithm in [2] for face recognition, the proposed algorithm
in (4) is utilized and it is stated as the Algorithm1.

5 Experiments

5.1 ORL Data Set

The ORL data set [24] contains 400 images from 40 individuals. Some example
images of the faces are depicted in Fig. 1. In the experiment, The dimension of
image is reduced to 50 by the Principal Component Analysis (PCA) method [25].
The first 7 images are selecting for training. The recognition rates of the MPZSC
with different sparsity levels as well as the sparse representation classification
(SRC) [1], zero-to-sparse classification (ZSC) [2] and collaborative representa-
tion classification (CRC) [21] are shown in Fig. 2. In Fig. 2, it shows that the
recognition rates of MPZSC are higher than the others, such as SRC, ZSC and
CRC, if the sparsity levels are set properly.

Fig. 1. Some image samples of the ORL data set.
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Algorithm 1. Mixed-norm Projection-based Zero-to-Sparse Classification
(MPZSC)
Initialization:
1: Initialize k = 0, z0 = x0 = 0, sparsity level K and reconstruction error ε. Input

training images A1, A2, . . . , Ac and a test image b.
Iteration:
2: while ‖Ax − b‖2 > ε and ‖xk‖0 < K do
3: yk+1 ← Pg(yk) + q,
4: xk+1 ← yk+1 − g(yk+1).
5: end while
6: return x ← xk.
Classification:
7: Calculate the residuals

ei(b) = ‖b − Aix
i‖2/(‖xi‖0‖xi‖2),

where xi = (xi1, xi2, . . . , xini)
T is the sparsity representation vector with the ith

subject.
8: The index of b is guaranteed by

index(b) = arg min
i

{ei}.
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Fig. 2. Recognition rates on the Extended Yale B data set for different algorithms
(MPZSC, ZSC, SRC and CRC).
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5.2 Extended Yale B Data Set

The Extended Yale B (EYB) data set includes 2, 414 frontal face images from
38 individuals [26]. Figure 3 shows some example images of the data set. In the
experiment, the images are cropped into the size of 192 × 168. The number of
image samples for each class is set as 20 and the samples are selected randomly
for training and testing. The PCA method is also used to reduce the dimension
of images to 200. The recognition rates of the MPZSC under different sparsity
levels compared with the other algorithms are given in Fig. 4. We can observe
that the MPZSC algorithm displays better performance than the others if the
sparsity levels are set properly.

Fig. 3. Some image samples of the EYB data set.
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Fig. 4. Recognition rates on the Extended Yale B data set for different algorithms
(MPZSC, ZSC, SRC and CRC).

5.3 CMU PIE Data Set

TheCMUPIEdata set consists of 41, 368 face images of 68 individuals under 13 dif-
ferent poses, four different expressions and 43different illumination conditions [27].
Figure 5 depicts some example images of the data set. In the experiments, two
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Fig. 5. Some image samples of the CMU PIE data set.

0 10 20 30 40 50 60
sparsity level K

94.8

95

95.2

95.4

95.6

95.8

96

96.2

96.4

re
co

gn
iti

on
 r

at
e 

(%
)

MPZSC

ZSC

SRC

CRC

Fig. 6. Recognition rates on the CMU PIE data set (camera 05) for MPZSC, ZSC,
SRC and CRC.
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Fig. 7. Recognition rates on the CMU PIE data set (camera 27) for different algorithms
(MPZSC, ZSC, SRC and CRC).

subsets of the data set are used, in which one is got near frontal (camera 27) and the
other one is with horizontal rotation (cameras 05). In the experiment, we randomly
select 10 images as training samples for each class, and the remainders as testing
samples. The number of image dimension is compressed to 100. The experimental
results on recognition rates of MPZSC, ZSC, SRC and CRC are shown in Figs. 6
and 7, which show the better performance of MPZSC than the others.
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6 Conclusions

In this paper, a mixed-norm projection-based signal reconstruction algorithm
has been proposed for face recognition with convergence analysis by using the
Lyapunov method. To illustrate the algorithm’s performance, experiment on
random Gaussian signals is presented, which shows that the proposed algorithm
is a combination of the sparse reconstruction and collaborative reconstruction. In
addition, experiments on three publicity available data sets are provided to show
the better performance of the proposed MPZSC algorithm for face recognition
under proper sparsity level setting.
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Abstract. Expression recognition has achieved impressive success in
recent years. Most methods are based on the assumption that the train-
ing and testing databases follow the same feature distribution. However,
distribution discrepancy among datasets is pretty common in practical
scenarios. Thus, the performance of these methods may drop sharply on
target datasets. To address this issue, we aim to learn a facial expression
classification model from several labeled source databases and general-
ize it to target databases. This is achieved by integrating domain align-
ment and class-compact features learning across source domains. Domain
alignment paves the way to involve more expression-related representa-
tions. Learning compact features can signicantly diminish the intra-class
divergence, which is beneficial to both domain alignment and expression
recognition. Experimental results demonstrate that the proposed model
has a more promising performance compared with other cross-database
expression recognition methods.

Keywords: Facial expression recognition · Domain alignment ·
Class-compact feature learning

1 Introduction

Facial expression recognition is an essential research field to comprehend human
emotions. Autonomous recognition of expressions has drawn considerable atten-
tion of researchers. Extensive studies have been performed on facial expression
recognition [1,10] and facial feature extraction [5–7]. Usually, the existing meth-
ods depend on supervised learning with the assumption that the distribution
remains unchanged between training and testing face images. However, in many
applications, biases in collected databases are common primarily due to different
collecting conditions and personal characteristics. In this condition, the afore-
mentioned distribution consistency between the training and testing instances
is not satisfied. Consequently, the performance of the existing methods often
degrades significantly. Hence, cross-database expression recognition is an impor-
tant and challenging research topic.
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To alleviate this issue, many studies have been conducted recently. Na Liu
et al. [9] propose a regression network to solve the unsupervised cross-database
expression recognition problem. Zheng et al. [25] introduce a transductive trans-
fer subspace learning framework to predict the expression categories of the target
samples. Yan et al. [19] present a domain adaptive dictionary learning (DADL)
method to build a mutual relation between the source and target instances. The
fundamental idea of these approaches is to adapt the learned model to unlabeled
images of the corresponding target dataset. Nevertheless, gathering sufficient
samples for each new target domain is often time-wasting and even impossible.
Hence Marcus et al. [21] perform cross-database expression recognition based on
the fine-tuned deep convolutional network without access to the target sets.

Though recent research on cross-database expression recognition has shown
positive results, there remain two limitations: (1) Due to the unmatched feature
distributions of source domains, irrelevant domain information is involved in the
expression representations. Thus the generalization ability of the network in [21]
may be poor. (2) Researches [4,10,14] reported that the performance of expres-
sion recognition systems on unseen subjects often decreases, mainly due to the
intra-expression variations triggered by personal characteristics. Such variations
are even more considerable among multi-source databases, which requires the
model to extract compact features. However, in previous studies, the learned
features are only separable but not compact enough.

Fig. 1. The necessity of integrating domain alignment and compact feature learning.
Three source domains are shown, circle, square, triangle indicate three different expres-
sion categories, respectively. The features need to be generalized across domains and
compact enough.

In order to address the aforementioned two problems, this paper proposes
to joint domain alignment and class-compact representations learning in one
optimization framework. As described in Fig. 1, minimizing the private domain
characteristics is beneficial to construct a latent feature space shared by all
source datasets, thus improving the generalization of the model. Additionally,
enforcing the intra-expression samples with better compactness enhances the
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discriminability of representations. Specifically, to reduce the distribution dis-
crepancy across source datasets, we approach cross-database expression recog-
nition from the perspective of domain generalization (DG). A deep convolution
network with domain-adversarial training is developed with the manner pro-
posed in [2]. Simultaneously, a sample-based compact feature learning method
is proposed. More importantly, the combination of these two strategies realizes
a complementary advantage: (1) Along with the reduction of domain shift, the
interference of domain-specific features is decreased, making the representations
in each cluster more relevant to expressions. (2) Since the intra-class features
are better clustered, more emphasis is put on the inconsistency across domains
when performing domain alignment.

To validate the effectiveness of our method, we conducted experiments on the
following widely used databases: the Extended Cohn-Kanade Database database
(CK+) [11], the Japanese Female Facial Expression database (JAFFE) [13], the
MMI database [15], the Karolinska Directed Emotional Faces database (KDEF)
[12]. These databases comprise images from subjects of various genders, ages,
and ethnicities in different environments. The results indicate the superior per-
formance of our method.

2 Joint Domain Alignment and Compact Feature
Learning

With the aim of obtaining a latent feature space that is also effective for the
related target domain, we expect the following conditions to be satisfied in this
space:

Fig. 2. The proposed network for cross-database expression recognition. We use two
streams of CNN with shared weights. It consists of three components: feature extractor
F which transforms the given image into corresponding feature maps, expression recog-
nition network C which classifies the expressions with softmax loss, domain recognition
network D which discriminates domains with softmax loss.
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• Let x and y denote the expression features and the corresponding labels, the
conditional distribution p(y|x) should be aligned. Since if the distributions
of diverse datasets differ greatly, which means there are more domain-related
characteristics involved in the final classification, the generalization ability of
the model would be poor.

• The learned feature representations need to form compact intra-class clusters
to classify the target samples more precisely.

Based on the above ideas, we integrate domain alignment and class-compact
representations learning into a unified framework. The architecture is illustrated
in Fig. 2. Specifically, during the training process, each sample of the image pair is
fed into one CNN stream. The expression classification loss is computed for both
images to ensure the learned features are meaningful for expression recognition.
The domain classification loss is calculated to help the feature extractor reduce
the interference of domain-specific features. Simultaneously, the compact loss is
computed using the expression related features to make the within-class samples
closer in the latent space. Additionally, during testing, an input image is fed into
one CNN stream, and the expression relevant features are used for prediction.

2.1 Domain Alignment with Adversarial Training

To match the conditional distribution across domains, we introduce an auxiliary
task. It prevents the discriminator of distinguishing the domains, which benefits
the main recognition task.

Assume we observe i = 1...S source domains, the ith domain contains Ni

labeled instances{xi
j , y

i
j}, where xi

j represents the input image and yi
j denotes the

expression label, y = 1...K. The domain classification loss can be formulated as:

Ld =
1
S

S∑

i=1

1
Ni

Ni∑

j=1

I(zij , ẑ
i
j), (1)

where I(·) denotes the cross-entropy loss function between the probability dis-
tribution of predicted domain category q(ẑ) and the probability distribution of
real category p(z). Namely, I(z, ẑ) = −p(z)log(q(ẑ)).

We propose a gradient-reversal layer (GRL) to minimize the distribution
divergence across domains by following [2]. This gradient-reversal layer feeds the
input to the following layer during forward propagation and reverses the gra-
dient during the back propagation to obtain an opposite optimization direction
from the domain classifier. Such domain-adversarial training can guide the fea-
ture extractor to be less sensitive to the domain-specific information, which is
beneficial to the recognition of unknown target samples.
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2.2 Learning Compact Features

The expression recognition task will be executed by the classifier C. Thus the
loss function for the classification of the labeled instances in source domains can
be described as:

Lc =
1
S

S∑

i=1

1
Ni

Ni∑

j=1

l(yi
j , ŷ

i
j), (2)

where l(·) denotes the cross-entropy loss function between the probability dis-
tribution of predicted expression category q(ŷ) and the probability distribution
of real expression category p(y). Namely, I(y, ŷ) = −p(y)log(q(ŷ)).

Furthermore, the discriminative power of feature space is of vital importance
for the classification task. Since images of the same expression can be quite dif-
ferent due to various factors, there is great intra-class variation in multi-source
expressions. To minimize the distance between samples in the same expression
class, inspired by the contrastive loss [3], we propose the compact feature learn-
ing as:

da,bcp = max(0, ‖g(xa) − g(xb)‖2), (3)

Lcp =
1
2

∑

a,b

da,bcp , (4)

where g(xa) and g(xb) are d-dimensional vectors representing features of the
intra-class samples xa and xb, squared Euclidean distance ‖ · ‖ is used to mea-
sure the feature distribution distance between the paired samples. Clearly, by
minimizing the compact loss, we highly enhance the discriminative power of the
feature space.

We integrate all the mentioned losses into a deep learning framework. The
overall loss is defined as follows:

L = Lc − λ1Ld + λ2Lcp, (5)

where parameters λ1 and λ1 are weights to balance the contribution of each
loss. For λ1 we adopt the rule introduced by [2], which increases the weight of
domain discriminator from 0 to 1 with training epochs: λ1 = 2

1+exp(−10w) − 1,

where w = current epoch
total epochs .

During minimization of the overall loss L, the feature extractor tends to learn
both domain-invariant and class-compact representations for source domains,
making the model better generalized to the target domains.

3 Experimental Results

To demonstrate the validity of our method, cross-database facial expression
recognition experiments have been conducted on the following widely used
expression databases: the CK+ database [11], the JAFFE database [13], the
MMI database [15], and the KDEF database [12].
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The Extended Cohn-Kanade (CK+) database [11] contains 327 video
sequences from 118 subjects labeled with six basic expressions (disgust, fear,
anger, happiness, sadness, surprise) and contempt. Each sequence starts with a
neutral frame and gradually reaches the peak expression. The first and last three
frames are extracted in our experiment.

The Japanese Female Facial Expression (JAFFE) database [13] consists of
213 images from 10 Japanese females. Each subject has six basic expressions
(disgust, fear, anger, happiness, sadness, surprise) plus neutral.

The Karolinska Directed Emotional Faces (KDEF) database [12] comprises
980 images from 70 subjects with six basic facial expressions plus neutral.

The Oulu-CASIA database [24] contains 2880 sequences from 80 subjects.
The sequences start from neutral frames and end with peak expressions. The
last three peak frames from the 480 videos collected by the VIS system labeled
with six basic expressions are selected, resulting in 1440 images.

The MMI database [15] contains 213 sequences labeled with six basic expres-
sions. These sequences start from a neutral expression and reach a peak state
in the middle, then back to the neutral expression. Three peak frames of each
selected image sequence are collected, resulting in 323 images.

Pre-Processing: Pre-processing is required to reduce variations that are irrel-
evant to expressions, such as different scales, backgrounds, and poses [8]. Thus
the multi-task convolutional neural network (MTCNN) [22] is used to detect
landmarks of facial images. Further face alignment using the coordinates of land-
marks is conducted, then the face regions are cropped and scaled to a size of
80×80. Finally, the images are transformed into grayscale to minimize the data
bias among databases.

Data Augmentation: Deep neural networks demand large-scale training data
to gain better generalization ability. However, most available databases for
expression recognition do not have sufficient samples. Hence data augmenta-
tion is embedded to improve the generalizability of our model. Precisely, during
the training phase, input images are randomly cropped and flipped horizontally.
During the test phase, only the center patch of each instance is used for expres-
sion prediction.

Implementation Details: VGG-11 [18] is used to recognize facial expressions,
it consists of 8 convolutional layers, followed by 3 FC layers. As mentioned above,
directly training with insufficient expression datasets is easy to cause overfit-
ting. Hence VGG-11 with softmax loss is pre-trained using the CASIA-WebFace
dataset [20]. The architecture of our network is as follows: the convolutional
layers of VGG-11 followed by an FC layer is used as the feature extractor F ,
attached a shallow network as expression classifier C and domain discriminator
D. Units of the last FC layer are set to the number of categories. The GRL layer
is connected to the feature extractor.
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For all networks used in experiments, parameters of the convolution layers
are initialized by weights of the pre-trained VGG-11 model, parameters of FC
layers are randomly initialized. Therefore, the learning rate of FC layers is set to
10 times that of convolution layers. SGD with a momentum of 0.9 is used, and
dropout is set at 0.5. Source domains are divided into a training set (90%) and a
validation set (10%). To create positive and negative image pairs, we randomly
selected two samples from all available source domains. All of the experiments
are repeated five times to decrease the impact of random factors, and the average
classification accuracies are reported.

We compare our proposed cross-database expression recognition method with
the following methods in terms of accuracy on target domains.

• Combine sources: using all samples in source datasets to train the network
with only expression classification loss.

• Domain alignment: using all samples in source datasets to train the net-
work with expression classification loss and domain classification loss.

• Domain alignment and compact feature learning (DACFL): using all
samples in source datasets to train the network with expression classification
loss, domain classification loss, and compact loss.

Table 1. Performance comparison in terms of accuracy (%) on expression database

Sources Target Combine sources Domain alignment DACFL

KDEF, JAFFE, Oulu-CASIA CK+ 85.54 85.77 85.75

KDEF, JAFFE, Oulu-CASIA MMI 63.13 63.60 64.33

CK+, JAFFE, Oulu-CASIA KDEF 73.45 75.68 76.45

CK+, JAFFE, Oulu-CASIA MMI 59.22 59.50 61.32

KDEF, CK+, Oulu-CASIA JAFFE 42.67 46.60 48.13

KDEF, CK+, Oulu-CASIA MMI 62.85 64.84 65.06

Avg 64.48 66.00 66.84

The experimental results of the aforementioned deep-learning-based methods
are summarized in Table 1. DACFL achieves the best performance when testing
on different target domains except for the CK+ database. The domain-aligned
network gets an average accuracy of 66.00%, which is 1.52% higher than that
for the original combine sources method. Additionally, learning compact fea-
tures in the shared feature space enhances the average performance by 0.84%.
Notably, our approach improves the accuracy of the JAFFE database signif-
icantly from 42.67% to 48.13%. For the KDEF database, our model achieves
76.45% of accuracy, which is 3.00% higher than the baseline (73.45%). These
results convincingly emphasize the vital of constructing both domain alignment
and class-compact representations learning.
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Table 2. Results of different methods for cross-database expression recognition.

Target Sources Method Accuracy

CK+ BOSPHORUS Da Silva et al. [17] 57.60

MMI MKL framework [23] 61.20

MMI IACNN [14] 71.29

FERA, MMI Inception-ResNet with CRF [4] 73.91

6 databases∗ Marcus et al. [21] 88.58

3 databases† DACFL 85.75

KDEF 6 databases∗ Marcus et al. [21] 72.55

3 databases‡ DACFL 76.45

JAFFE CK SVM (RBF) [16] 41.30

CK Da Silva et al. [17] 42.30

6 databases∗ Marcus et al. [21] 44.32

3 database◦ DACFL 48.13

MMI CK+ IACNN [14] 55.41

3 databases◦ DACFL 65.06
∗Trained with CK+, BU3DFE, JAFFE, RaFD, MMI, KDEF, ARFace
except the target dataset.
†Trained with KDEF, JAFFE, Oulu-CASIA.
‡Trained with CK+, JAFFE, Oulu-CASIA.
◦Trained with KDEF, CK+, Oulu-CASIA.

We further compare the performance of our model with other methods, the
results are shown in Table 2. Notice that the accuracy of the JAFFE database is
the lowest among these databases, mainly due to the high divergence in ethnic
with other databases. As can be seen, DACFL achieves superior performance
over competitive works. For the KDEF database, DACFL reports 76.45% of
accuracy, which is 3.90% higher than that in [21]. For the JAFFE database, the
result of DACFL is 3.81% higher than the best result of previous studies. For the
MMI database, DACFL increases the performance by 9.65%. Hence, DACFL is
an excellent feature extraction method for the expression classification task.

4 Conclusion

In this paper, we propose a novel framework for cross-database facial expression
recognition. This framework outperforms previous methods because it combines
domain alignment and class-compact representations learning. Domain-invariant
adversarial training makes the discriminator cannot distinguish the source of
images. Furthermore, a sample-based compact feature learning method is pro-
posed to guarantee the discriminative ability of the generalized features. We
evaluate the method on several widely used databases, and the results demon-
strate the effectiveness of our model.
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Abstract. An adaptive Chirplet filter approach is proposed to deal with the
aircraft recognition problem based on high-resolution range profiles. The
Chirplet filter is a joint feature extraction and target identification method
derived from the feed-forward neural networks, which consists of two layers: the
Chirplet-atoms transform in the input layer is used for replacing the conven-
tional sigmoid function, and the weights between the input and the output layer
are taken as the linear classifier. The Chirplet-atoms parameters and the weights
are adaptively adjusted by using the nonstationarity degree as the measurement
of the features. The simulation results suggest that the adaptive Chirplet filter
has advantages especially in noisy conditions.

Keywords: Automatic target recognition � Adaptive Chirplet filter �
Neural network � Joint feature extraction and target identification �
High-resolution range profiles

1 Introduction

Automatic target recognition (ATR) with one-dimensional high-resolution radar
(HRR) range profiles is a research focus in the signal processing areas. The HRR range
profiles can be obtained by transmitting a burst of broadband pulses (e.g. chirp signal
and the stepped-frequency signal). Thus, an aircraft is separated into several range
resolution units along the radar line-of-sight [1]. The range profiles reflect the distri-
bution of the scattering strength of an aircraft’s scatterers (e.g. the wings, engine
intakes and the tail) at a certain aspect. The HRR range profiles can also avoid the
scaling and rotation problems in the image recognition [2]. Therefore, it is efficient to
use range profiles as the raw signatures for target recognition. Over the past few
decades, many universities and institutes have made great achievements in range
profiles target recognition [1–10].

The difficulty of HRR range profiles based ATR is to acquire effective information
from the original data to characterize the target and to classify it accurately and timely.
A target recognition system is commonly divided into two separated stages: feature
extraction and classification. The classification performance of an ATR system is
closely associated with the features extracted from the targets. Thus, it is necessary to
design an ATR system considering the most feasible and suitable feature extraction
approaches. The popular HRR range profiles features include Fourier transform, power
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spectrum, Gabor transform, wavelet transform, etc. [3–5]. In the classification stage, the
unknown targets are identified by pattern recognition methods, such as neural net-
works, support vector machine, and so on [5–10]. However, the parameters of the
features and classifiers are not optimized collaboratively in such ATR system.
If all parameters are adjusted concurrently, the classification performance can be
improved [4].

The Chirplet transform is proved to be a more adequate representation of the
original signals [11]. Furthermore, an adaptive algorithm was presented in reference
[12], which has two distinct advantages: a compact description of the signal and a
possible means of classification. It is thus a highly promising feature extraction method
for the target recognition. The Chirplet-atoms network demonstrates these advantages
in target recognition especially in noisy conditions [13]. Combined the Chirplet
transform with the adaptive filter and the feed-forward neural networks, we proposed
an adaptive Chirplet filter for joint feature extraction and classification. The Chirplet
filter adopts the nonstationarity degree as the dynamic property measurement of the
features to select the optimal Chirplet-atoms parameters as well as the tap-weights of
the adaptive filter simultaneously.

2 Chirplet Filter

2.1 Chirplet-Atoms Transform

The Chirplet transform can be generalized from short-time Fourier transform (STFT) as
well as wavelet transform [14]. In terms of the parameters space, the Chirplet transform
is considered as a generalization of the three-dimensional space (time-frequency-scale)
to four-dimensional space (time-frequency-scale-chirprate). The Chirplet atom is
defined as [15]:

gu;n;s;cðtÞ ¼
1ffiffi
s

p gðt � u
s

Þej nðt�uÞþ c
2ðt�uÞ2½ �; ð1Þ

where

gðtÞ ¼ 21=4e�pt2 ð2Þ

is the Gaussian window function, the parameters of shift u, frequency n, scale s and
chirprate c are related to an aircraft’s scatterers, geometric shape and size, material
coatings, etc.

2.2 The Structure of Chirplet Filter

The Chirplet filter is a two-layer network structure, which reduces the computational
complexity of the well-known multilayer feedforward neural network through single-
layer linear combination. As shown in Fig. 1, the input layer uses Chirplet transform to
extract range profiles features, the tap-weights and output layer constitute the adaptive
filter for classification.
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The input vector xn ¼ ½xn1; xn2; . . .; xnL�T is the range profile samples, where
n ¼ 1; 2; . . .;N denotes the number of the samples, and L is the number of range profile
units. The range profiles are input to K Chirplet atoms c1 � cK to extract the features
un1 �unK . The bold connected lines indicate to calculate the inner product. The
weights are w11 �wKM , and yn ¼ ½yn1; yn2; . . .; ynM �T represents the outputs, where M is
the number of output nodes.

The HRR range profiles features are extracted by calculating the absolute value of
the inner product of the input signals and Chirplet-atoms in the input layer:

u ¼ c; xh ij j ¼
Z
t
g�ðt � u

s
Þe�j nðt�uÞþ c

2ðt�uÞ2½ �xðtÞdt
����

����: ð3Þ

The HRR range profiles are discrete-time real signals, so the integral in (3) can
be replaced by the sum, namely, the kth feature of nth range profile unk can be
given by:

unk ¼
XL
l¼1

xnl
21=4ffiffiffiffi
sk

p e
�p

tl�uk
sk

� �2

cos nk tl � ukð Þþ ck
2

tl � ukð Þ2
h i������

������: ð4Þ

In the output layer, the feature unk and the weights wkm are used to obtain the output
ynm:

ynm ¼
XK
k¼1

unkwkm;m ¼ 1; . . .;M ð5Þ

Fig. 1. The two-layer network structure of Chirplet filter
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During the training phase, the Chirplet filter searches for the optimal Chirplet-atoms
parameters and the weights concurrently. The parameters of the Chirplet atoms are
tuned with the classical gradient descent algorithm, whereas the weights are updated by
adaptive filter algorithms. We select the recursive least square (RLS) algorithm to
adjust the weights for its faster convergence rate and smaller steady value of the
ensemble-average squared error.

2.3 Nonstationarity Degree

Due to the uncertainty of the training process, the adjustment of the Chirplet-atoms
parameters can be very complex. In order to effectively train the Chirplet filter, we use
the nonstationarity degree as the measurement of the features [16]:

a ¼
PN

n¼1 xHðnÞuðnÞj j2PN
n¼1 tðnÞj j2

" #1=2

; ð6Þ

where xðnÞ is the process noise vector, uðnÞ is the input vector of the filter; tðnÞ is the
measurement noise assumed to be white with zero mean.

The nonstationarity degree a is used to regulate the update step size according to
the following principles: If a decreases in a training period, which means the features
are suitable for the classifier, the weights will be constantly updated until the filter
converge; If a increases, the atoms parameters should be updated to start a new training
period. In addition, it can be applied to regulate the learning rate for the atoms-
parameters tuning.

2.4 Update the Chirplet-Atoms Parameters

Let bk ¼ fuk; nk; sk; ckg indicate the parameters’ set of the kth Chirplet-atoms node, the
updated bk by delta rule is defined as:

bkðnÞ ¼ bkðn� 1Þ � a2g0
@E
@bk

; ð7Þ

where a is the nonstationarity degree, g0 is the initial learning rate, and E is the mean
square error (MSE), which is calculated by the expected outputs dnm and the actual
outputs ynm of the Chirplet filter:

E ¼ 1
2

XN
n¼1

XM
m¼1

dnm � ynmð Þ2: ð8Þ

Accordingly, the partial derivative of the MSE with respect to the parameters uk , nk,
sk and ck of the Chirplet-atoms is derived as follows:
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2.5 Update the Tap-Weights

Let wm ¼ ½w1m;w2m; . . .;wKm�T; ðm ¼ 1; 2; . . .;MÞ denote the mth weight-vector, ini-
tialize the weight-vector wmð0Þ ¼ ½1. . .1�T and the inverse correlation matrix vector
Bmð0Þ ¼ ðdIK�KÞ�1, where d is the regularization factor. According to RLS algorithm,
for each instant of time n ¼ 1; 2; . . .;N, the weight-vector can be updated by [17]:

kmðnÞ ¼ Bmðn� 1ÞuðnÞ
kþuTðnÞBmðn� 1ÞuðnÞ ; ð14Þ

emðnÞ ¼ dmðnÞ � ŵT
mðn� 1ÞuðnÞ; ð15Þ
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ŵmðnÞ ¼ ŵmðn� 1Þþ kmðnÞemðnÞ; ð16Þ

BmðnÞ ¼ k�1 Bmðn� 1Þ � kmðnÞuTðnÞBmðn� 1Þ	 

; ð17Þ

where uðnÞ is the feature vector, k denotes the forgetting factor.

2.6 Training Algorithm and Testing Algorithm

The Chirplet filters of P classes can be trained in a parallel way. For the pth class of
aircrafts, the training algorithm is shown in Algorithm 1. After the Chirplet-atoms
parameters and the filter weights are obtained, the testing samples will be input into the
Chirplet filter to identify the aircrafts (see Algorithm 2).

Algorithm 1. Training algorithm of Chirplet filter

Initialization: The nodes’ number K and M , initial learning rate 0η , regu-
larization factor δ , forgetting factor λ ; Initialize Chirplet-atoms 
parameters set kβ and weights vector mw  randomly. 

Repeat: 
1:   Calculate the features nkϕ by (4);

2:   Do
3:       Calculate the outputs nmy by (5);

4:       Calculate the mean square error E by (8);
5:       If E < the chosen threshold then
6:           Return kβ  and mw ; 

7: Exit; 
8:       Else
9:           Do
10:             Update mw by (14) - (17);

11:             Calculate nonstationarity degree α by (6);
12: While α is first time obtained in the period 
13: End if; 
14: While α decreases
15: Update kβ by (7) - (13); 

Until the number of training epochs exceeds the set value
Return kβ  and mw .
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Algorithm 2. Testing algorithm of Chirplet filter

Input: HRR range profiles testing samples nx , Chirplet-atoms parameters 

sets )(p
kβ , weights vectors )p

mw .

For p=1 to P do
1:   Calculate the features nkϕ by (4);
2:   Calculate the actual outputs nmy by (5);
3:   Compare nmy with the set value to judge whether the samples be-

long to the pth class of the targets.

End for
Return classification results.

(

3 Simulations

The range profiles are collected from the scaled aircraft (YF22, F117, J6 and B2)
models in a microwave anechoic chamber, which are obtained from the aspect range of
0o*180o with an equal interval of 0.6o. The training set includes the 1st; 7th; . . .; 295th
HRR range profile of each aircraft, and the others are used for testing. Thus, the
training set contains 200 samples and the testing set contains 1000 range profiles. The
signal-noise ratio (SNR) of the simulation data is 30 dB. In order to reduce the
influence of initialization in weights training, the initial value of the correlation matrix
should be relatively small, we set the regularization factor d ¼ 0:01. The other
parameters of the Chirplet filter acquired through numerous simulations are shown in
Table 1. For convenience, the number of Chirplet filter’s output layer M is set to 1.

In order to evaluate the recognition performance of the Chirplet filter, we inves-
tigate the HRR range profiles, the magnitude of the FFT, the Chirplet transform
coefficients, and the Gabor filter for comparison. The recognition results are shown in
Table 2.

According to the recognition results, since the time-domain range profiles and the
frequency-domain feature FFT describe the targets in a single domain, i.e., the

Table 1. The parameters of the Chirplet filter

Parameters Targets
YF22 J6 F117 B2

The number of atom nodes 45 40 50 45
Forgetting factor 0.999 0.99 0.9999 0.9999
Initial learning rate 0.001 0.001 0.0001 0.0001
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representations are insufficient for classification, so their recognition rates are less than
the joint time-frequency features Chirplet transform. Due to the optimal parameter sets,
the Gabor filter and the Chirplet filter obtain better recognition performance. The
Chirplet filter achieves the best recognition results based on the two advantages:
Chirplet transform with more complete description of the aircrafts, and the collabo-
rative optimization of all parameters.

To assess the noise immunity, we examine the average recognition rates of four
aircrafts in different SNR conditions as shown in Fig. 2. In addition, Table 3 shows the
detailed recognition rates of the Chirplet filter.

As Fig. 2 showed, with the noise increasing, the performance of the HRR range
profiles, FFT and the Chirplet transform methods is rapidly getting worse. In the
contrast, the performance of the adaptive filter methods still remains at a relevant high

Table 2. The recognition rate (%) with SNR = 30 dB

Methods Targets
YF22 J6 F117 B2

Range profiles 72.9 79.5 72.4 79.5
FFT 73.8 84.2 73.5 96.1
Chirplet transform 82.4 91.8 79.4 95.4
Gabor filter 83.0 91.3 82.7 95.6
Chirplet filter 84.3 92.2 84.7 95.3

Fig. 2. The average recognition rate with the SNR from 30 dB to 5 dB
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level due to the property of joint feature extraction and target identification. Even if the
SNR is 5 dB, the average recognition rates of the Chirplet filter are over 75%. The
Chirplet filter with good noisy immunity suggests that the four-dimensional Chirplet
transform contains more useful information for target identification. Meanwhile the
feature parameter sets and the weights of the classifier are optimized concurrently is
effective to improve the recognition performance. Moreover, the initialization and the
tuning of all parameters can be further investigated to obtain higher recognition rates.

4 Conclusion

This paper proposes an adaptive Chirplet filter approach for aircrafts recognition. Based
on the feed-forward neural network structure, the Chirplet filter combines Chirplet-
atoms transform with the adaptive filter to extract features and identify the aircrafts
adaptively and cooperatively. The Chirplet atoms contain more effective characteristics
information, and the training process is regulated by the nonstationarity degree to
ensure the performance of the classifier. The simulation results show that the Chirplet
filter has better recognition performance even in the lower SNR conditions. In the
future works, it needs to collect more types of targets data and conduct the experiments
with the HRRPs measured from actual targets in the outfield.
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Abstract. In this paper, we propose an unsupervised HMAX-based
Spiking Deep Neural Network (HMAX-SDNN) for object recognition.
HMAX is a biologically plausible model based on the hierarchical activ-
ity of object recognition in visual cortex. In HMAX-SDNN, input layer
with HMAX structure is followed by a stacked convolution-pooling struc-
ture, in which convolutional layers are hierarchically trained with STDP.
After that, a linear SVM is used for classification. Then, we demon-
strate that the firing threshold has positive correlation with receptive
fields size in convolutional layers, and optimize HMAX-SDNN with this
conclusion. With the optimized structure, we validate HMAX-SDNN on
Caltech dataset, and HMAX-SDNN outperforms other SNNs by reach-
ing 99.2% recognition accuracy. Furthermore, the experiments show that
HMAX-SDNN is robust to different kinds of objects.

Keywords: HMAX · Spiking Deep Neural Network · STDP ·
Deep learning · Object recognition

1 Introduction

Recently, development and achievement of deep neural networks have brought
much attention in artificial intelligence. Deep Convolutional Neural Networks
(DCNNs) [1,2] perform well in wide range of applications such as image recog-
nition. Though DCNNs perform high recognition accuracy, there are still some
problems: (1) in the training process, large amount of training data is needed,
limiting the applications with small-scale training data; (2) the bulk computation
cost in training and testing process limits the applications in the hardware.

Spiking Neural Networks (SNNs) composed of biologically inspired neuron
models can save computation cost and energy consumption through the event-
driven computation. A straightforward idea is to convert CNNs to SNNs by
replacing their computing nodes into spiking neurons [3–5]. In order to achieve
the learning ability based on a biological mechanism, Spike Timing Dependent
Plasticity (STDP) is provided to adjust connections between cortex neurons.
STDP has been converted to learning rule in unsupervised forward-connected
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SNNs [6,7]. Shallow spiking neural networks have scalability problem in process-
ing high dimensional images [8]. To solve this problem, the hierarchical struc-
ture of DCNN has been applied in SNNs to construct deeper SNNs [9–13]. In
[9], a STDP-based spiking deep neural network (SDNN) is proposed, which is
comprised of a temporal-coding layer followed by a cascade of consecutive con-
volutional (feature extractor) and pooling layers.

In this paper, we proposed an HMAX-SDNN model, comprising HMAX layer,
stacked convolutional and pooling layers for feature extraction and dimensional-
ity reduction. HMAX model [14] is a biologically inspired model based on ventral
stream of visual cortex. It enables HMAX-SDNN to mimic image reception pro-
cess of human brain in image recognition tasks. Different from DoG filter in
SDNN model [9], HMAX is more likely to detect features within more complex
objects like face or motorbike in Caltech dataset, and keep more feature infor-
mation such as position, scale and viewpoint. Furthermore, HMAX can extract
precise direction features which contributes to robust recognition, whereas DoG
filters cannot guarantee stable feature extraction.

2 Integrate-and-Fire Neuron

In a biologically inspired network, neurons can be excitatory or inhibitory and
deliver spikes throughout the whole SNN. There are several types of spiking
neuron model, such as integrate-and-fire (IF) model [15], the Hodgkin-Huxley
(HH) model [16], and the Izhikevich (IM) model [17]. In HMAX-SDNN, we use
the IF neuron model. As shown in Fig. 1(a) and (b), the membrane potential
of the postsynaptic neuron increases as it receives weighted presynaptic current
Ii
syn from the ith neuron. After the neuron emits a spike, its membrane poten-

tial will gradually return to rest state. (Implementation of the neuron model is
demonstrated in Sect. 3.2)

Fig. 1. (a) Output neuron connects to afferent neurons with weighted synapses, receiv-
ing spike trains from them. (b) The membrane potential of postsynaptic neuron dynam-
ically increases when received presynaptic spikes. The output neuron will fire a spike
when the membrane potential reaches the firing threshold −50 mv, then the membrane
potential will return back to the rest level.
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3 HMAX-SDNN Model

As shown in Fig. 2, HMAX-SDNN model is composed of 1 HMAX layer, two
convolutional layers each followed by a max pooling layer, and a global pooling
layer. HMAX layer contains HMAX structure and temporal coding. In the con-
volutional layer, we use “same” mode of convolution, indicating the output does
not differ in size as the input. For instance, Pooling1 and Conv2 are same in size
(27 × 42), but differ in depth (8 and 20). Deeper layers with more filters detect
more complex features by combining simpler features extracted from previous
layers. Pooling layers compress redundant information from previous layers, and
provide visual invariance as visual cortex.

Fig. 2. Proposed HMAX-SDNN comprises three convolutional layers, each of which
followed by a pooling layer. The ith convolutional layer and the ith pooling layer are
separately denoted by Convi and Pooli. HMAX is applied on the first layer, the HMAX
layer, to detect edges in four different orientations and encode input image information
into spikes. The sizes of neuron maps are marked below each layer.

3.1 HMAX Layer

The role of HMAX layer is to extract edge features in images with HMAX
structure and encode input signal into spike output. HMAX is a biologically
plausible visual recognition system that closely follows organization of visual
cortex and has been widely used in visual recognition, containing a series of
position-tolerant and scale-tolerant feature detectors. We applied two S1 and
C1 parts in HMAX layer. Within S1, input images are filtered by Gabor filters
in different scales and four orientations −π

4 , 0, π
4 and π

2 . We apply these filters
in pyramid shape spanning in sizes from 7 × 7 to 37 × 37 pixels. Then we get
64 output results in S1 (16 different sizes × 4 orientations in each band). The
reason that we chose S1 in HMAX layer is that in previous experiments we
found that the weight matrices in the first convolutional layer converged to edge
detectors in four orientations, −π

4 , 0, π
4 and π

2 . Hence, as the function of the
first convolutional layer is the same as that of S1, we use S1 as the first part
of HMAX layer. Figure 3 demonstrates the HMAX processing for two samples
from Caltech and MNIST. Our experimental results show that S1 has better
capability in edge detection task and there is no trainable parameter.
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As for C1, it is used for translation invariance. In C1, MAX pooling opera-
tions are performed over two adjacent S1 bands, thus 4 scale groups are formed.
Figure 3(c) shows the first map out of 4 maps within a C1 band. Thus, output
from HMAX layer contains 4 maps indicating neurons’ responses to 4 oriented
edge features in different scales. The responses are temporally encoded and the
firing time is inversely proportional to the activation extent.

Fig. 3. (a) Two samples from Caltech and MNIST. (b) Filtered images in 4 different
orientations within a C1 scale band. (c) The first map of 4 maps varied in scale.

3.2 Convolutional Layer

Convolutional layers consist of several neuron maps. Each neuron map detects its
preferred feature in different locations within images. At each time step, neurons
in the convolutional layer perform convolution operations on the previous layer
by weight kernels. When a neuron detects the appearance of its preferred feature,
the neuron is more likely to fire.

Neuron maps consist of many IF neurons. As receptive field sliding over input
activities (1 means firing a spike and 0 means no spike), the membrane potential
of a neuron in the neuron map will update as follows:

ΔPi(t) =
∑

j

WijSj(t − 1), (1)

where ΔPi(t) is the change of the membrane potential of the ith neuron at
time t, and Wij is the synaptic weight between the ith neuron in convolutional
layer and the jth neuron in previous layer. Sj(t − 1) refers to the activity of the
jth neuron at time t−1, and Sj(t−1) = 1 when the jth neuron fires at time t−1,
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otherwise Sj(t − 1) = 0. If Pi(t) reaches the threshold Thri, then the ith neuron
will fire a spike, and its membrane potential Pi(t) will reset to 0 afterwards.

Si(t) =
{

0 , ifPi(t − 1) + ΔPi(t) < Thri,
1 , ifPi(t − 1) + ΔPi(t) ≥ Thri,

(2)

Within neuron maps, lateral inhibition is introduced in convolutional layers.
Lateral inhibition is a mechanism to prevent action potential from spreading to
neighbor neurons. When a neuron has fired, it is not allowed to fire again, and
lateral inhibition will inhibit neurons nearby and neurons in same position but
other maps to fire until the appearance of next image. Because neighbor neurons
have highly overlapped receptive field, thus they may receive intensive stimuli
and fire once the appearance of a same feature is detected. Once a feature is
detected from one location, other features do not likely exist in this place. Thus,
we use lateral inhibition to encode the output from convolutional layers in a
sparse but highly informative way. Also, in each neuron map, all neurons detect
the same visual feature because they share the same weight matrix. The sharing
of weights can largely reduce trainable parameters in convolutional layers.

3.3 STDP Learning in the Convolutional Layer

As mentioned above, convolutional layers consisting of IF neurons are trained
by STDP method that is derived from Hebbian learning. Hebbian theory claims
that with repeated stimuli from presynaptic neurons to postsynaptic neuron,
synaptic efficacy between them will be enhanced. Similar to Hebbian learning,
simplified STDP learning rule used in HMAX-SDNN model can be described as:

Δwij =
{

a+wij(1 − wij) , if tj ≤ ti,
a−wij(1 − wij) , if tj > ti,

(3)

where a+ and a− are two parameters separately in excitation and inhibition,
and ti refers to the firing time of ith neuron. This equation, in which jth and ith

neurons are respectively pre- and post-synaptic neuron, implies that the sign of
weight change has no direct relation with exact firing times of jth and ith neurons
but with chronological order of their firing times. If the presynaptic neuron fires
a spike just before the postsynaptic neuron, the presynaptic neuron contributes
to the firing of the postsynaptic neuron. In this case, the connection between
pre- and postsynaptic neuron will be strengthened. In addition, polynomial
wij(1 − wij) can ensure wij in range [0, 1] when updating weights.

a+ and a− are set to 0.003 and 0.004 initially and will be updated in STDP
learning. If learning parameters are large at first, it will cause declination in
learning memory, i.e. the network can memorize the last shown image but forget
that of previous images. Whereas tiny value of the learning parameter will slower
the learning speed.

As weights updated with iterations of STDP learning, they will gradually
converge to be selective to one certain visual feature. When they reach the con-
vergence point, it is needless to train the neuron maps with STDP continuously.
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To this end, we use convergence index Cl to quantify the learning convergence
at lth layer:

Cl =
∑

f

∑

i

wf,i(1 − wf,i)
nw

, (4)

where wf,i is the ith weight of the f th weights matrix, and nw is the total
number of weights. In our experiments, weights are randomly chosen from a
normal distribution with μ = 0.8 and σ = 0.05, and we set them in range [0, 1].
Weights will converge from the random numbers in [0, 1] to zero or one, as Cl

tends to be 0.

4 Experiment Results

The simulation experiments are in two phases, training phase and testing phase.
In training phase, namely, HMAX-SDNN is trained with object training dataset.
In the testing phase, the trained HMAX-SDNN is first used to extract features of
training images and testing images without knowing labels. Then SVM classifier
is trained with the training features and tested with the testing features. Testing
images are not seen in the training phase.

We evaluated our proposed HMAX-SDNN on face and motorbike categories
in Caltech dataset, containing 435 face images and 798 motorbike images. In our
experiment, we randomly selected 200 images separately from face and motorbike
into training set. And remaining images form testing set to evaluate performance
of our model. This cross-validation method can measure the network’s ability in
generalization.

Here, the HMAX-SDNN structure we used is similar to the sample network
mentioned in Sect. 3, with 1 HMAX layer, 3 convolutional layers, 2 pooling layers
and a global pooling layer. Input images are of size 160 × 250 pixels. Processed
by convolution and pooling layer by layer, 20 features are extracted from global
pooling layer as a vector, which will be used in the classification afterward.
Detailed parameters of the network are demonstrated in Table 1.

To start with, we tried a relatively shallower HMAX-SDNN (HMAX-2C-P-G-
SDNN) composed of 1 HMAX layer, 2 convolutional layers, 1 pooling layer and a
global pooling layer. In the experiment, recognition accuracy of HMAX-2C-P-G-
SDNN fluctuated in multiple trials with cross-validation method, and its variance
of accuracy was up to 0.02. The unstable performance of the HMAX-2C-P-G-
SDNN can be attributed to its shallow structure. In maps of shallower convolu-
tional layers, the preferred features are simple. More abstract features like object
contour that is important in object recognition lack in HMAX-2C-P-SDNN. For
the purpose of increasing accuracy and stability, we applied stacked convolution-
pooling structure in HMAX-SDNN. We used an HMAX-3C-2P-SDNN, namely,
comprising 1 HMAX layer, 3 convolutional layers, 2 pooling layer and a global
pooling layer. HMAX-3C-2P-SDNN outperforms HMAX-2C-P-SDNN on recog-
nition accuracy by up to 10%. The parameter in Table 1 is set by trial and error
to get the lowest recognition error rate. Also, HMAX-3C-2P-SDNN performs
well in stability by reducing the variance of accuracy to 0.003.
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Table 1. Parameters of HMAX-3C-2P-G-SDNN.

Conv1 Pool1 Conv2 Pool2 Conv3

Number of filters 8 8 20 20 20

Size of filter 7 7 17 5 5

Convolution stride 1 / 1 / 1

Pooling stride / 6 / 5 /

Threshold of firing 20 0 60 0 2

To optimize structure of HMAX-SDNN, we explored HMAX-SDNN with
3 × 3 and 7 × 7 filters in Conv1. The result is shown in Fig. 4(a). With larger
convolution filters, neurons will receive more spikes. Therefore, we correspond-
ingly adjust the threshold of firing in each convolutional layer, ensuring receiver
neurons can and only can fire when features appear in the receptive field. If we
set a relatively low threshold and a larger filter, neurons are likely to fire even
when no clear visual feature exists in receptive field. Thus, we explore different
network structures that vary in size of convolution filters and thresholds. As
shown in Fig. 4(a), HMAX-SDNN achieves high accuracy only when thresholds
are moderate. Also, in this experiment, the 5×5 filter performs better than 3×3
and 7 × 7 filters by achieving 99.2% recognition accuracy (Table 2).

Fig. 4. (a) Recognition accuracy of HMAX-SDNN varies with filter size and firing
threshold. (b) Each line shows the convergence variation of different convolutional
layers in STDP learning process.

In Fig. 4(b), learning process of each layer is demonstrated by its extent of
convergence. As it can be seen in Fig. 4(b), weight change in lower layer with
fewer filters is much faster than that in higher layer. One direct explanation to
this is that there is fewer and simpler features that need to be detected in lower
layer. Conv2 and Conv3 have the same amount of filters but differ in convergence
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speed. This is mainly due to more intensive competition among neurons in larger
filters. Because of lateral inhabitation, when a neuron won the competition in
STDP learning, it inhibited excitation of other neurons. Neurons in higher layers,
with larger filters, are likely to prevent more neurons from firing because they
will compete with more neurons in these layers. In this case, only a few neurons
can update their wights in an iteration of STDP learning. Thus more iterations
are needed in training process.

Fig. 5. The figure shows spike output and visualized features of SDNN separately
extracted from airplane/face dataset and motorbike/face dataset. With those edges
features in (a) extracted in Conv1, complex features in deeper layers cannot be formed
as that in [9].

We also tested SDNN and HMAX-SDNN with other categories in Caltech
dataset. In airplane/face recognition task, accuracy of SDNN fluctuates between
92% and 96%, while HMAX-SDNN outperforms SDNN with 96% to 98% accu-
racy. As shown in Fig. 5, the filters of SDNN can extract edges in four orienta-
tions, −π

4 , 0, π
4 and π

2 , in motorbike/face recognition task (shown in Fig. 5(b)).
While they did not perform stably in airplane/face recognition task. Conv1 in
SDNN preferred to learn horizontal features (Conv1 features in Fig. 5(a)), which
appear more frequently in airplane images. The same problem occurred in other
experiments with motorbike/airplane, motorbike/watch, face/watch. As is shown
in experiments above, the edge detectors in Conv1 are not stable enough in all
circumstances. The features in deeper convolutional layers combined from simple
features in previous layers, are not shaped perfectly, hence reducing recognition
accuracy. While in HMAX-SDNN, its hand-crafted Gabor filters enable HMAX-
SDNN to extract features in four orientations stably, ensuring its robustness to
different shape of objects.
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Table 2. Recognition accuracy of SNNs on Caltech face/motor dataset

Architecture Neural coding Learning type Learning rule Accuracy

Two layer network [8] Spike-based Supervised Tempotron rule 95

SDNN [9] Spike-based Unsupervised STDP 99.1

SpiCNN [18] Spike-based Unsupervised STDP 91.1

Proposed HMAX-SDNN Spike-based Unsupervised STDP 99.2

5 Conclusion

In this paper, we proposed an HMAX-SDNN model that consists of HMAX
layer, stacked convolutional and pooling layers. HMAX layer is used to extract
features of input images. In convolutional layers, weight matrices are hierarchi-
cally trained with STDP learning rule. Comparing with DoG filter in the existing
SDNN model, HMAX layer can keep more feature information. Furthermore, we
also studied the relationship between the firing threshold and receptive field size
to provide optimal values of threshold for each layer. We validated our proposed
HMAX-SDNN on Caltech face/motorbike dataset. Experimental results show
that the proposed HMAX-SDNN model can achieve 99.2% recognition accuracy.
Comparing to SDNN, HMAX structure enhances robustness to various objects of
HMAX-SDNN by presetting edge detectors before the first convolutional layer.
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Abstract. Data-driven methods such as convolutional neural networks
(CNNs) are known to deliver state-of-the-art performance on image
recognition tasks when the training data are abundant. However, in some
instances, such as change detection in remote sensing images, annotated
data cannot be obtained in sufficient quantities. In this work, we pro-
pose a simple and efficient method for creating realistic targeted syn-
thetic datasets in the remote sensing domain, leveraging the opportuni-
ties offered by game development engines. We provide a description of
the pipeline for procedural geometry generation and rendering as well as
an evaluation of the efficiency of produced datasets in a change detec-
tion scenario. Our evaluations demonstrate that our pipeline helps to
improve the performance and convergence of deep learning models when
the amount of real-world data is severely limited.

Keywords: Remote sensing · Deep learning · Synthetic imagery

1 Introduction

Remote sensing data is utilized in a broad range of industrial applications includ-
ing emergency mapping, deforestation, and wildfire monitoring, detection of ille-
gal construction and urban growth tracking. Processing large volumes of the
remote sensing imagery along with handling its high variability (e.g ., diverse
weather/lighting conditions, imaging equipment) provides a strong motivation
for developing automated and robust approaches to reduce labor costs.

Recently, data-driven approaches such as deep convolutional neural net-
works (CNNs) have seen impressive progress on a number of vision tasks,
including semantic segmentation, object detection, and change detection
[7,17,21,22,34,44,45]. Such methods offer promising tools for remote sensing
applications as they can achieve high performance by leveraging the diversity
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of the available imagery [11,19,41]. However, in order to successfully oper-
ate, most data-driven methods require large amounts of high-quality annotated
data [24,28,29,41]. Obtaining such data in the context of remote sensing poses
a significant challenge, as (1) aerial imagery data are expensive, (2) collection of
raw data with satisfactory coverage and diversity is laborious, costly and error-
prone, as is (3) manual image annotation; (4) moreover, in some instances such as
change detection, the cost of collecting a representative number of rarely occur-
ring cases can be prohibitively high. Unsurprisingly, despite public real-world
annotated remote sensing datasets exist [8,19,27,38,48], these challenges have
kept them limited in size, compared to general-purpose vision datasets such as
the ImageNet [23].

The alternatives considered to avoid dataset collection issues suggest produc-
ing synthetic annotated images with the aid of game development software such
as Unity [4], Unreal Engine 4 [5], and CRYENGINE [1]. This approach has been
demonstrated to improve the performance of computer vision algorithms in some
instances [20,24,28,46,49,50,54]. Its attractive benefits include (1) flexibility in
scene composition, addressing class imbalance issue, (2) pixel-level precise auto-
mated annotation, and (3) the possibility to apply transfer learning techniques
for subsequent “fine-tuning” on real data. However, little work has been done in
the direction of using game engines to produce synthetic datasets in the remote
sensing domain. Executing procedural changes on large-scale urban scenes is
computationally demanding and requires smart optimization of rendering or the
object-level reduction (number of polygons, textures quality). Levels of realism
rely heavily on the amount of labor on scene design and optimization. Thus,
research on the procedural construction of synthetic datasets would contribute
to the wider adoption of data-driven methods in the remote sensing domain.

In this work, we focus on the task of change detection, however, it is straightfor-
ward to adapt our method to other tasks such as semantic segmentation. We lever-
age game development tools to implement a semi-automated pipeline for procedu-
ral generation of realistic synthetic data. Our approach uses publicly available car-
tographic data and produces realistic 3D scenes of real territory (e.g ., relief, build-
ings). These scenes are rendered using Unity engine to produce high-resolution
synthetic RGB images. Taking advantage of real cartographic data and emula-
tion of image acquisition conditions, we create a large and diverse dataset with a
low simulated-to-real shift, which allows us to efficiently apply deep learning meth-
ods. We validate our data generation pipeline on the change detection task using
a state-of-the-art deep CNN. We observe consistent improvements in performance
and convergence of our models on this task with our synthetic data, compared to
when using (scarce) real-world data only.

In summary, our contributions in this work are:

– We describe a semi-automatic pipeline for procedural generation of realistic
synthetic images for change detection in the domain of remote sensing.

– We demonstrate the benefits of large volumes of targeted synthetic images for
generalization ability of CNN-based change detection models using extensive
experiments and a real-world evaluation dataset.
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The rest of this paper is organized as follows. In Sect. 2, we review prior work
on change detection in the remote sensing domain, including existing image
datasets, data generation tools, computational models, and transfer learning
techniques. Section 3 presents our data generation pipeline. Section 4 poses three
experiments investigating the possible benefits of our approach and presents their
results. We conclude with a discussion of our results in Sect. 5.

2 Related Work

2.1 Computational Models For change Detection

Change detection in multi-temporal remote sensing images has attracted consid-
erable interest in the research community, where approaches have been proposed
involving anomaly detection on time series and spectral indices [18], Markov Ran-
dom Fields and global optimization on graphs [32,58,65], object-based segmen-
tation followed by changes classification [36,40,60], and Multivariate Alteration
Detection [39,61] (cf. [57] for a broader review). These approaches generally work
with low-resolution imagery (e.g ., 250–500 m/px) and require manual tuning of
dozens of hyperparameters to handle variations in data such as sensor model,
seasonal variations, image resolution, and calibration.

Recently, deep learning and CNNs have been extensively studied for classi-
fication, segmentation, and object detection in remote sensing images [13,66].
However, only a handful of CNN-based change detection approaches exist. Due
to the lack of training data [26,53] use ImageNet pre-trained models to extract
deep features and use super-pixel segmentation algorithms to perform change
detection. We only study the influence of pre-training on ImageNet in one of
the experiments; otherwise, we train our deep CNN from scratch using our syn-
thetic dataset. [25,27] proposed a CNN-based method for binary classification
of changes given a pair of two high-resolution satellite images. In contrast, we
focus on predicting a dense mask of changes from the two registered images. The
closest to our work are [11,62], which predict pixel-level mask of changes from
the two given images; additionally, [11] uses a U-Net-like architecture as we do.
Nevertheless, their models are different from ours, which is inspired by [17].

Due to the scarcity of the available data in some instances, transfer learning
techniques have been extensively investigated in many image analysis tasks,
including image classification [63,64], similarity ranking [67] and retrieval [10,
55]. Additionally, transfer from models pre-trained on RGB images to a more
specialized domain, such as magnetic resonance images or multi-spectral satellite
images, has been studied for automated medical image diagnostics [33,43,59] and
remote sensing image segmentation [37]. In the context of the present work, of
particular interest is the transfer learning from synthetic data to real-world data,
that has proven effective for a wide range of tasks [20,24,28,46,49,50,54]. In the
remote sensing domain, however, synthetic data has been only employed in the
context of semantic segmentation [41]. However, their data generation method
relies on pre-created scene geometry, while our system generates geometry based
on the requested map data.
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2.2 Image Datasets For change Detection

Real-World Datasets. Datasets for change detection are commonly structured
in pairs of registered images of the same territory, made in distinct moments
in time, accompanied by image masks per each of the annotated changes.
With the primary application being emergency mapping, most datasets typi-
cally feature binary masks annotating damaged structures across the mapped
areas [8,12,27,48]. L’Aquila 2009 earthquake dataset [8] contains data span-
ning 1.5× 1.5 km2 annotated with masks of damaged buildings during the 2009
earthquake. California wildfires [48] contains 2.5×2.5 km2 and 5×8 km2 images,
representing changes after a 2017 wildfire in California, annotated with masks
of burnt buildings. ABCD dataset [27] is composed of patches for 66 km2 of
tsunami-affected areas, built to identify whether buildings have been washed
away by the tsunami. Besides, OSCD dataset [19] addresses the issue of detect-
ing changes between satellite images from different dates, containing 24 pairs of
images from different locations, annotated with pixel-level masks of new build-
ings and roads. All these datasets are low in diversity and volume, while only
providing annotations for a limited class of changes (e.g ., urban changes). In
contrast, our pipeline can produce massive amounts of highly diverse synthetic
images with flexible annotation, specified by the user. Other known datasets,
such as the Landsat ETM/TM datasets [31], are of higher volume, but have
an extremely low spatial resolution (on the order of 10 m), while featuring no
annotation.

Synthetic Datasets and Visual Modelling Tools. To the best of our knowl-
edge, AICD dataset [12] is the only published synthetic dataset on change detec-
tion in remote sensing domain. It consists of 1000 pairs of 800×600 images. It is
a synthetic dataset in which the images are generated using a realistic rendering
engine of a computer game, with ground truth generated automatically. The
drawbacks of this dataset are low diversity in target and environmental changes
and low graphics quality.

Despite tools for creating synthetic datasets are actively developed and stud-
ied in the domain of computer vision [4,5,49], research on the targeted generation
of synthetic datasets for remote sensing applications is still in its infancy. Modern
urban modeling packages require manual creation of assets and laborious tun-
ing of rendering parameters (e.g ., lighting) [2,3,6]. This could be improved by
leveraging extensive opportunities offered by game development engines, that
combine off-the-shelf professional rendering presets, realistic shaders, and rich
scripting engines for fine customization. In our pipeline, procedural generation of
geometry and textures is followed by a rendering script, leveraging rich rendering
opportunities. Other tools such as DIRSIG [30] allow simulating realistic multi-
spectral renders of the scenes but rely on the existing geometry. Our pipeline, in
contrast, enables us to create both geometry-based on real-world map data and
realistic renders using a game engine.



Procedural Synthesis of Remote Sensing Images 375

3 Synthesis of Territory-Specific Remote Sensing Images

3.1 Data Requirements and the Design Choices of Our Pipeline

A good change detection dataset should contain application-specific target
changes, such as, e.g ., deforestation or illegal construction, as well as high vari-
ability, which can be viewed as non-target changes. Such variability in data
commonly involves appearance changes, e.g ., lighting and viewpoint variations,
diverse directions of shadows, and random changes of scene objects. However,
implementing an exhaustive list of non-target changes is too laborious. Thus, we
restricted ourselves to the following general requirements to the synthetic data:

– Visual scene similarity. To reduce the omnipresent simulated to real shift, it
is necessary that the modeled scenes have a high visual resemblance to the
actual scenes. We approach the target territory modeling task by imitating
the visual appearance of structures and environment.

– Scale. To match the largest known datasets in spatial scale, we have chosen
to model scenes with large spatial size. In our dataset, scenes are generated
with spatial extents of square kilometers, a spatial resolution of less than 1 m,
and image resolution of tens of Megapixels.

– Target changes. We have chosen to only model damaged buildings as target
class as they are of general interest in applications such as emergency mapping
(see, e.g ., [11,25,26,36,39,40,53,57,60,62]). They are also straightforward to
implement in our pipeline with procedural geometry generation and rendering
scripts.

– Viewpoint variations. Real-world multi-temporal remote sensing images for
the same territory are commonly acquired using varying devices (e.g ., devices
with different field of view) and viewpoints. The acquisition is commonly per-
formed at angles not exceeding 25◦, and the data are then post-processed by
registration and geometric correction. In our pipeline, we imitate the preces-
sion of a real satellite by randomly changing the image acquisition angle and
the field of view.

– Scene lighting changes. Scene illumination is commonly considered to consist
of a point-source illumination (produced by the Sun) and an ambient illumi-
nation due to the atmospheric scattering of the solar rays. In our work, we
consider the changes in the Sun’s declination angle and model both compo-
nents of the illumination.

– Shadows. Real-world objects cast shadows that are irrelevant variations and
should be ignored. We model realistic shadows again by varying the Sun’s
declination angle.

To meet these requirements, we have developed a two-stage pipeline con-
sisting of geometry generation and rendering steps. The entire routine is
semi-automatic and involves two widely used 3D engines. Specifically, we use
Esri CityEngine [2] to procedurally build geometry from real-world map data
and Unity [4] to implement the logic behind dataset requirements and leverage
rendering capabilities. The reasons behind our choice of CityEngine as our geom-
etry manipulation tool are its flexibility in the procedural geometric modeling
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Fig. 1. Terrain reconstruction: (a) satellite imagery, (b) altitude data, (c) 3d model.

Fig. 2. Geometry generation: (a) polygon extrusion, (b) adding roofs, (c) texturing.

and built-in UV/texturing capabilities. Other tools, commonly implemented as
plugins for Unreal Engine 4 (e.g ., StreetMap1) and Unity (e.g ., Mapbox Unity
SDK 2), offered significantly less freedom. In these tools, either non-textured or
textured but oversimplified shapes (e.g ., as simple as boxes) are the only objects
available for urban geometry generation.

Unity game engine was selected to execute a generation procedure of change
detection dataset. Compared to CAD software often used for the production of
datasets, game engines offer advantages such as powerful lighting/shadows out of
the box and scripting possibilities. Additionally, Unity allows implementing tar-
get changes, controlling lightning and viewpoint changes, and adjusting change
rate in the dataset. Certain features in Unity are more suited to our needs, com-
pared to Unreal Engine 4. For instance, we have found shadows in Unity to be
more stable while rendering scenes from large distances, and the Layers feature3

to add more flexibility by allowing to exclude objects from rendering or post-
processing. It is natural, however, that we had to execute some initial settings of
Unity before the generation, as the typical requirements of the remote sensing
domain differ from those of 3D games. We describe these settings in Sect. 4.

3.2 Geometry Generation

To procedurally generate geometry in CityEngine, we obtain cartographic data
(vector layers) from OpenStreetMap and elevation data (a geo-referenced Geo-
TIFF image) from Esri World Elevation. Vector data contains information about
1 https://github.com/ue4plugins/StreetMap.
2 https://www.mapbox.com/unity.
3 https://docs.unity3d.com/Manual/Layers.html.

https://github.com/ue4plugins/StreetMap
https://www.mapbox.com/unity
https://docs.unity3d.com/Manual/Layers.html
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the geometry of buildings and roads along with semantics of land cover (forests,
parks, etc.), while elevation data is used to reconstruct terrain.

First, we reconstruct terrain using the built-in functionality in CityEngine,
obtaining a textured 3D terrain mesh (see Fig. 1), to which we z-align flat vector
objects; second, we run our geometry generation procedure implemented in the
engine’s rule-based scripting language; last, we apply textures to the generated
meshes. Our implementation of the geometry generation involves extruding the
polygon of a certain height and selecting a randomly textured roof (architec-
tural patterns such as rooftop shapes are built into CityEngine), see Fig. 2. We
have experimented with more complex geometry produced by operations such
as polygon splitting and repeating; however, such operations (e.g ., splitting)
increase the number of polygons significantly without adding much to the scene
detail, render quality, or performance of change detection models. Focusing on
our scalability and flexibility requirements, we avoid overloading our scenes with
objects of redundant geometry.

We select two types of buildings to construct our scenes: small buildings with
colored gable roofs and concrete industrial-looking structures with flat roofs,
see Fig. 4. A set of roof textures has been selected manually, CityEngine built-
in packs of textures for OpenStreetMap buildings were used for facades. We
approach the emergency mapping use-case by texturing buildings footprints to
imitate damaged appearance, see Fig. 3.

Fig. 3. Addressing the case of emergency
mapping: scene model (a) before and (b)
after the emergency situation (note that
some structures are missing).

Fig. 4. The two models of buildings
used in our pipeline: (a) photo and (c)
our render of residential houses, (b)
photo and (d) our render of industrial
structures. (Color figure online)

3.3 Rendering

We construct the synthetic dataset by rendering the generated geometry using
built-in functionality in Unity, obtaining high-definition RGB images.

To achieve a high degree of variations, we leverage rich scripting capabili-
ties in Unity, that allow flexible scene manipulation via scripts written in C#.
As shadow casting and lighting algorithms are built in, we only adjust their
parameters, as indicated in Sect. 4.1. We implement target changes by randomly
selecting object meshes and placing them onto the separate layer: the camera will
not render these meshes, rendering corresponding damaged footprints instead.
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Non-target variations are further added to scenes modified by target changes, by
random alterations of lighting and camera parameters, resulting in m different
image acquisition conditions per each target change.

Each element in the dataset was obtained after three rendering runs: first, we
render the original scene; second, we apply both target and non-target changes,
moving the changed objects in the separate layer; finally, only the layer with the
changed objects is rendered to obtain annotations.

4 Experiments

We demonstrate the effectiveness of our pipeline in an emergency mapping sce-
nario, where the goal is to perform a rapid localization and assessment of incurred
damage with extremely limited amounts of annotated data [48]. To this end, we
produce a synthetic training dataset in Sect. 4.1 and design a series of experi-
ments to investigate the influence of training strategy on the change detection
performance with different data volumes in Sects. 4.4 and 4.5.

4.1 Datasets

California Wildfires (CW). The dataset contains high-resolution satellite
images depicting cases of wildfires in two areas of Ventura and Santa Rosa coun-
ties, California, USA. The annotation has been created manually [48].

Synthetic California Wildfires (SynCW) Dataset. Using our pipeline,
we created a synthetic training dataset for the California wildfires case study.
We collected OpenStreetMap and ESRI world elevation data from the area of
interest in Ventura and Santa Rosa counties, California, USA. Two major meta-
classes imported from OpenStreetMap data were building (including apartments,
garage, house, industrial, residential, retail, school, and warehouse) and highway
(road structures including footway, residential, secondary, service, and tertiary).
We generate geometry using our pipeline configured according to Fig. 5. We
add target changes by randomly selecting 30–50% of buildings geometry. To
introduce non-target changes in the dataset, we select m = 5 different points
of view, positioning camera at zenith and at four other locations determined by
an inclination angle α from an axis pointing to zenith (we select α uniformly
at random from [5◦, 10◦]), and orienting it to the center of the scene. To model
daylight variations, we select Sun’s declination angle uniformly at random from
[30◦, 140◦]. In the resulting dataset, the generated scenes of 4 distinct locations
have spatial extents of approximately 2 × 2 km2 with spatial resolution of 0.6 m
and image resolution of 3072 × 3072 px.

4.2 Our Change Detection Model and Training Procedure

When designing our change detection architecture, we take inspiration from
recent progress in semantic segmentation [17,37,51]. Our architecture is a
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Geometry generation parameters (CityEngine)

Export format Autodesk FBX
Terrain Export all terrain layers
Mesh granularity One model per start shape
Merge normals Force separated normals
Center Checked

Rendering parameters (Unity)

Shadows Hard and soft shadows
Shadow distance 1100
Shadow resolution Very high
AntiAliasing 8× multi-sampling

Camera settings (Unity)

Clipping planes 0, 1200
Field of view 30.0

Fig. 5. Configuration of geometry generation and
rendering parameters in our evaluation.
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Fig. 6. Datasets considered in
our evaluation.

Siamese U-Net [51] with residual units [35] in encoder blocks and upsampling
units in decoder blocks, which can be viewed as a Siamese version of a segmen-
tation model from [17] (see Fig. 7). While our model is composed of well-known
building blocks, to the best of our knowledge, we are the first to study its Siamese
version in a change detection setting. While selecting the top-performing archi-
tecture is beyond the scope of this paper, we have found our architecture to con-
sistently outperform those examined previously [37,51] in all settings we have
considered.

Fig. 7. Our siamese neural network for change detection: (a) overall architecture, (b)
ResNet units (dashed arrows indicate skip-connections, if present), (c) decoder blocks.
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Fig. 8. Visual comparison of our training and eval-
uation data: (a)–(c) CW, Ventura area, (d)–(f)
CW, Santa Rosa area, (g)–(i) synthetic California
wildfires (SynCW).

To study the benefits of
pre-training on a large image
dataset, we have kept the
encoder architecture a replica
of ResNet-34 architecture [35].
In all settings, the models were
trained using 352×352 patches
for 20 epochs. Adam opti-
mizer [42] was used with a
batch size of 8 and initial learn-
ing rate of 10−4.

4.3 Metrics

To evaluate our models, we
chose two performance mea-
sures standard for segmenta-
tion tasks: Intersection over
Union (IoU) and F1-measure,
both obtained by applying the
threshold 0.5 to the confidence
output. Given a pair of binary
masks, IoU can be interpreted as a pixel-wise metric that corresponds to localiza-
tion accuracy between these two samples, IoU(A,B) = |A∩B|

|A∪B| = |A∩B|
|A|+|B|−|A∩B| .

F1-measure is the harmonic mean of precision and recall values between the
predicted and ground truth masks: F1 = 2 · (Precision−1 + Recall−1).

4.4 The Evaluation Setup

When training a deep learning-based change detection model, an annotated real-
world remote sensing dataset (e.g ., CW [48]), would be a natural choice; how-
ever, its volume does not allow training an architecture such as ours from scratch
(i.e., starting from randomly-initialized weights). A stronger initialization is com-
monly obtained with models pre-trained on ImageNet [52], a large-scale and real-
world dataset. Unfortunately, ImageNet contains images from a completely differ-
ent domain; thus, it is unclearwhether features trained on ImageNetwould general-
ize well for the change detection scenario. Furthermore, the decoder cannot be ini-
tialized and must still be trained. In our setting, SynCW, which is a target-domain
large-scale dataset with change annotations, could be employed, but would train-
ing on synthetic images lead to good generalization?Thus, there exists no definitive
choice of a training data source (cf . Fig. 6); as we demonstrate further, the choice
of training strategy is crucial for achieving high performance.

We design seven training strategies for our task, summarized in Table 1.
Strategy A would be a standard setting with excessive amounts of data. In
strategies B-1 and B-2, we attempt to model the synthetic-to-real transfer sce-
nario. During pre-training, we either randomly initialize and freeze the encoder
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Table 1. Statistical change detection results with models trained using strategies A–E.
When using CW as a fine-tuning target, we only select a training subset; (*) indicates
frozen encoder, (**) indicates augmentations (see Sect. 4.4).

Training datasets Ventura full Ventura 1/16 SR full SR 1/16

Init. Pre Fine IoU F1 IoU F1 IoU F1 IoU F1

A – CW – 0.695 0.820 0.310 0.460 0.487 0.504 0.337 0.639

B-1 – SynCW∗ CW 0.713 0.832 0.312 0.476 0.487 0.549 0.392 0.563

B-2 – SynCW CW 0.702 0.825 0.327 0.490 0.487 0.629 0.331 0.497

C ImageNet – CW 0.716 0.835 0.499 0.704 0.626 0.770 0.435 0.607

D-1 ImageNet SynCW∗ CW 0.714 0.833 0.572 0.735 0.680 0.800 0.649 0.787

D-2 ImageNet SynCW CW 0.718 0.835 0.580 0.744 0.684 0.812 0.631 0.774

E ImageNet – CW∗∗ 0.724 0.840 0.317 0.458 0.034 0.066 0.044 0.084

(i.e., set its learning rate to zero, B-1 ) or train it (B-2 ). Strategies C, D-1, D-2,
and E all initialize the encoder with ImageNet-pretrained weights, a widely used
initialization: C realizes a common transfer learning setting, D-1 and D-2 pro-
ceed in two fine-tuning stages and use the synthetic, then the target training set,
either training decoder only (D-1, similarly to B-1 ) or the entire model (D-2 ). E
is a common transfer learning setting widely used in, e.g ., Kaggle4 competitions,
leveraging strong augmentations (e.g ., rotations, flips, brightness changes, blur,
and noise).

Following [48], we use a pair of Ventura train images (4573 × 4418 px) for
training or fine-tuning our models. As our goal is to study the effect of decreasing
volumes of real-world data, we crop a random patch from these images, setting
the ratio of patch area to the full image area to be 1, 1/2, 1/4, 1/8, and 1/16.
A non-overlapping pair of Ventura test images (1044 × 1313 px) and a pair of
visually distinct Santa Rosa images (2148×2160 px) are held out for testing. Note
that when testing on Santa Rosa, we do not fine-tune on the same data to test
generalization ability. In all experiments, we preserve the same architectural and
training details as described in Sect. 4.2. We release the code used to implement
and test our models5.

4.5 Results

We present the statistical results of our evaluation in Table 1. As expected, when
training data is present in large volumes (e.g ., using augmentations in strategy
E ), models pre-trained on ImageNet perform well. However, when the volume of
real-world data supplied for fine-tuning decreases (up to 1//16), such strategies
lead to unpredictable results (e.g ., for strategy E on Ventura test images IoU

4 https://www.kaggle.com.
5 https://github.com/mvkolos/siamese-change-detection.

https://www.kaggle.com
https://github.com/mvkolos/siamese-change-detection
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Fig. 9. Qualitative change detection results: (a) ground truth change mask and (b)–
(n): change masks predicted by models A–E, trained on full real-world dataset (upper
row (b)–(h)) and 1/16 of real-world data (lower row (i)–(n)).

measure drops by a factor of 2.3 from 0.724 to 0.317). In contrast, fine-tuning
using our synthetic images helps to retain a significant part of the efficiency and
leads to a more predictable change in the quality of the resulting model (e.g .,
in strategy D-1 we observe a decrease in IoU by 20% only from 0.714 to 0.572).
We note how for Santa Rosa images, the performance of models trained without
synthetic data degrades severely, while fine-tuning using our synthetic images
helps to suffer almost no drop in performance. We plot IoU/F1 vs. volume of
used data in Fig. 10 to visualize this. We also display qualitative change-detection
results in Fig. 9. Note how the output change masks tend to become noisy for
strategies A, C, and E, and less so for D-1 and D-2. Our synthetic data also
leads to faster convergence (see Fig. 11).

Fig. 10. Validation
performance when
fine-tuning with
decreasing volumes
of real-world data.

Fig. 11. Learning progress of our models trained with different
fractions of real-world data. Note that models D-1 and D-2
pre-trained on our synthetic dataset converge faster and remain
robust to train dataset reduction.
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5 Conclusion

We have developed a pipeline for producing realistic synthetic data for the remote
sensing domain. Using our pipeline, we have modeled the emergency mapping
scenario and created 3D scenes and change detection image datasets of two
real-world areas in California, USA. Results of the evaluation of deep learning
models trained on our synthetic datasets indicate that synthetic data can be
efficiently used to improve performance and robustness of data-driven models in
real-world resource-poor remote sensing applications. We could further increase
overall computational efficiency thanks to sparse CNNs [47], detection accuracy
by using approaches to utilizing multi-modal data [14], imbalanced classification
[15,56] and a loss, tailored for change detection in sequences of events [9,16].
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Abstract. In response to the growing importance of geospatial data, its
analysis including semantic segmentation becomes an increasingly pop-
ular task in computer vision today. Convolutional neural networks are
powerful visual models that yield hierarchies of features and practition-
ers widely use them to process remote sensing data. When performing
remote sensing image segmentation, multiple instances of one class with
precisely defined boundaries are often the case, and it is crucial to extract
those boundaries accurately. The accuracy of segments boundaries delin-
eation influences the quality of the whole segmented areas explicitly.
However, widely-used segmentation loss functions such as BCE, IoU loss
or Dice loss do not penalize misalignment of boundaries sufficiently. In
this paper, we propose a novel loss function, namely a differentiable sur-
rogate of a metric accounting accuracy of boundary detection. We can
use the loss function with any neural network for binary segmentation.
We performed validation of our loss function with various modifications
of UNet on a synthetic dataset, as well as using real-world data (ISPRS
Potsdam, INRIA AIL). Trained with the proposed loss function, models
outperform baseline methods in terms of IoU score.

Keywords: Semantic segmentation · Deep learning · Aerial imagery ·
CNN · Loss function · Building detection · Computer vision

1 Introduction

Semantic segmentation of remote sensing images is a critical process in the
workflow of object-based image analysis, which aim is to assign each pixel to
a semantic label [13,20]. It has applications in environmental monitoring, urban
planning, forestry, agriculture, and other geospatial analysis. Although a gen-
eral image segmentation problem is relatively well investigated, we consider a
particular type of this problem related to buildings segmentation.

The common aspect of urban aerial imagery is its high resolution (from 0.05
to 1.0 m). Higher GSD brings a lot of small details and structures, but also
increases intra-class variance and decreases inter-class differences. This applies
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particularly to the class of buildings, including an enormous number of shapes
and patterns. After the stage of segmenting buildings, further analysis could
be done, such as distinct building classification and height estimation, popula-
tion prediction, economic forecasting, etc. For most of the tasks, it is crucial
to separate all buildings and minimize the number of false positive/false nega-
tive instances. Even with high-resolution imagery, it is difficult to segment every
object separately, especially in high-density urban areas, although we get more
accurate information about the boundaries of buildings. Therefore it is necessary
to construct a method that increases the attention of a neural network, used for
semantic segmentation, to borders of closely located objects.

CNNs for semantic segmentation typically use such loss functions as cross-
entropy, dice score and direct IoU optimization while training the network, but
they are not sensitive enough to some misalignment of boundaries. Even being
deviated from the ground truth by 5–10 pixels, predicted boundary does not
significantly contribute to the value of the loss functions, mentioned above, and
scores of common pixel-wise metrics. To better account for boundary pixels we
select BF1 metric (see original work [9] and its extension [12]) to construct a
differentiable surrogate and use it in training. The surrogate is not used alone for
training, but as a weighted sum with IoU loss (from direct IoU optimization). We
found that the impact of the boundary component of the loss function should be
gradually increased during training, and so we proposed a policy for the weight
update. The assumption why this works is that for the first epochs network
learns to label instances as shapeless blobs with very uncertain boundaries, and
after finding an instance we only need to adjust its borders because they define
the whole segments explicitly.

In experiments we also found that network trained with a combination of
IoU and boundary loss converges faster: we increase the confidence of the net-
work in its predictions on the border as fast as for intra-segment pixels; with
other losses, the mask near the borders is very blurred. The next point is that
network better handles edge effects while baseline models tend to miss or dis-
tort masks on the edge of an input image. Besides, if it is highly important
to separate neighboring buildings, methods of instance segmentation are often
applied, which can require extra data preparation from raw masks and they are
commonly multistage. However, binary segmentation with boundary loss is end-
to-end. In experiments on the challenging datasets ISPRS Potsdam and INRIA
AIL, we obtain >93.8% and >74.3% pixel-wise IoU score respectively. There is
also a comparison with another method for accurate delineation of curvilinear
structures [17], which encounters difficulties in remote sensing tasks. Our results
show a consistent increase in the performance for all models on both datasets in
comparison to various loss functions.

The remainder of the paper is organized as follows. Section 2 briefly reviews
related work. The proposed boundary loss, as well as the steps to construct
its surrogate, are presented in Sect. 3. Experiments and results are discussed in
Sect. 4, followed by concluding remarks in Sect. 5.



390 A. Bokhovkin and E. Burnaev

2 Related Work

The subject of our work intersects with two branches of research, which are
Deep Neural Networks (DNNs) and direct optimization of performance mea-
sures or their differentiable versions also called surrogates. Besides, we should
mention methods for accurate boundary delineation, as one of them (see [17])
was compared to our approach.

DNNs and Semantic Segmentation. Semantic segmentation based on DNNs
is a pixel-wise mapping to semantic labels. Since 2012 a lot of neural networks
[26] for solving this task were constructed. The success of AlexNet [15] in Ima-
geNet challenge marked the beginning of neural networks application in com-
puter vision tasks such as classification, object detection, and semantic segmen-
tation. Initially, for the latter problem, they adapted CNNs, used for classifi-
cation. Namely, they remove fully connected layers, and use initial layers as an
encoder to downsample an image and derive features that have stronger seman-
tic information but low spatial resolution. Another part of the network called
decoder obtains a high-resolution mask of labels, which upsamples features into
the resulting mask.

For the last few years, DNNs have shown to be very effective for semantic seg-
mentation task. There are several models now that are regarded as state-of-the-
art. First of all, it is SegNet architecture [2] which fits online video segmentation
very well. DeepLab network [6] uses atrous convolutions and CRFs at postpro-
cessing step to refine small details of the segmentation. The FRRN [22] is an
example of a model with multi-scale processing technique; it is based on two sep-
arate streams of data to better handle the high-level semantic information and
the low-level pixel information simultaneously. Finally, UNet architecture [23] is
very popular nowadays for its enormous flexibility. Among aforementioned mod-
els UNet remains preferable because of the high efficiency of feature extraction
and ability to apply various neural network architectures as backbones. UNet
is an asymmetric FCNN (Fully Convolutional Neural Network) with skip con-
nections between the downsampling and upsampling paths. UNet has shown its
high performance in competitions and research projects, and we use it for all
experiments in the paper.

Performance Measure Optimization. There already exist papers concerning
direct optimization of metrics or their differentiable versions. In various appli-
cations such measures as IoU , F1-score, ROC-area, mAP are widely used. Con-
structing surrogates of these measures is the most tricky part because it can be
very hard or even impossible to replace non-differentiable operations with differ-
entiable ones and keep computational efficiency at the same time. For the task
of segmentation, IoU is usually used to measure the performance of any segmen-
tation approach. As a result, there exists a lot of its surrogates, and the goal is
to minimize the gap between the actual IoU value and its differentiable approx-
imation. In paper [18] they proposed NeuroIoU loss, which approximates naive
IoU -loss with a neural network. Another approach [3] called Lovasz-Softmax
loss, is based on the convex Lovasz extension of submodular losses. A critical
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property for this surrogate is that it effectively captures the absolute minimum
of the original loss.

In this paper, we construct a differentiable version of the metric, presented
in [9]. The motivation is that boundaries of segments explicitly define them and
their extraction is necessary for accurate building segmentation. Authors of [9]
proposed a novel boundary metric BF1 that accounts for accuracy of contour
extraction and overcomes the weaknesses of mainstream performance measures.
For BF1 we will construct a differentiable surrogate and show how it increases
the accuracy of segmenting borders.

Below we provide a list of metrics and loss functions to be used for compar-
ative analysis:

– Direct IoU loss: IoU = TP
FP+TP+FN , LIoU = 1 − IoU ,

– Dice loss: F1 = 2TP
2TP+FN+FP , LF1 = 1 − F1,

– SS loss: SS = λ TN
TN+FP + (1 − λ) TP

TP+FN , LSS = 1 − SS, where λ is a weight
to balance two components,

– V GG loss: implemented in [17].

The terms TP, FP, TN,FN denote pixel sets of true positive, false positive,
true negative, false negative classes on a predicted binary map. For all loss
functions, notations of corresponding metrics or approaches, inducing them, are
provided in a subscript. By LBF1,IoU we denote a weighted sum

wLBF1 + (1 − w)LIoU

for an arbitrary weight w ∈ [0, 1].

Accurate Boundary Delineation. One possible solution to extract borders
accurately is to use CRF (Conditional Random Fields). It works as an extra layer
above the output of the original neural network. CRF is applied to capture addi-
tional contextual information and to produce much more refined prediction [1].
Authors of [21] used CRF together with Bayesian decision theory and proposed
a heuristic to maximize the value of EIoEU . Another approach, a combination
of CRF and superpixels [29], takes advantage of superpixel edge information
and the constraint relationship among different pixels. Proposed algorithm of
boundary optimization made it possible to improve IoU score by 3% on PAS-
CAL VOC 2012 [11] and Cityscapes [8] datasets compared to the performance
of plain FCN.

We compare an approach of [17] to the one, proposed in our paper. Authors
claim that pixel-wise losses alone such as binary cross-entropy are unsuitable
for predicting curvilinear structures. For this problem, they developed a new
loss term based on features extracted with VGG19 network [27]. Conceptually
their approach is similar to ours because we add our surrogate to the weighted
conventional loss function. In contrast to VGG19 features, using our surrogate,
we manually extract boundaries which are features too and encourage a neural
network to draw attention to them much stronger.
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3 Our Method

In this work, we use deep neural network UNet as a base model, because it
is one of the most reliable and universal models. As we already pointed out
in the introduction, there are a lot of different types of encoders and decoders
that we can use as backbones. Of course, this network can be extended to two-
headed version (UNet with two decoders), where the first head predicts whole
segments and the other predicts only their boundaries. However, this approach
requires additional computational resources and data preparation compared to
the original UNet. Our interest is to propose a method that would not increase
implementation and computational complexities. Further, we first introduce BF1

metric from [9] and then describe how to construct its differentiable surrogate.

3.1 Boundary Metric (BF1)

Let Sc
gt, Sc

pd be the binary maps of class c in the ground truth and predicted seg-
mentation respectively, Bc

gt, Bc
pd—the boundaries for these binary maps. Then

the precision and the recall for class c are defined as follows:

P c =
1

|Bc
pd|

∑

x∈Bc
pd

[[d(x,Bc
gt) < θ]], Rc =

1
|Bc

gt|
∑

x∈Bc
gt

[[d(x,Bc
pd) < θ]],

where brackets [[·]] denote indicator function of a logical expression, d(·) is
Euclidean distance measured in pixels, θ - some predefined threshold on a dis-
tance; in all experiments we set θ to 3 or 5. Here distance is calculated from a
point to one of two sets (ground truth or predicted boundary) as the shortest
distance from the point to the point of the boundary. The BF c

1 measure for class
c is defined as:

BF c
1 =

2P cRc

P c + Rc
.

3.2 Surrogate Construction (LBF1)

To construct the differentiable version of the metric BF1, we need to extract the
boundary of any segment somehow. There are several ways to do this. Let us denote
by ypd a binary map for an arbitrary class c for some image I, predicted by a neural
network, ygt a ground truth map for the same class and the same image. We expect
values of the predictedmap tobedistributed in [0, 1], andvalues of the ground truth
map to be in {0, 1}. The boundaries can be defined as

yb
gt = pool(1 − ygt, θ0) − (1 − ygt), yb

pd = pool(1 − ypd, θ0) − (1 − ypd). (1)

Here pool(·, ·) applies a pixel-wise max-pooling operation to the inverted
predicted or ground truth binary map with a sliding window of size θ0 (hyper-
parameter θ0 must be as small as possible to extract vicious boundary; usually
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we set θ0 = 3). Value (1 − ygt,pd) corresponds to inversion of any pixel of the
map. To compute Euclidean distances from pixels to boundaries a supporting
map should be obtained, which is the map of the extended boundary:

yb,ext
gt = pool(yb

gt, θ), yb,ext
pd = pool(yb

pd, θ). (2)

The value of hyperparameter θ can be determined as not greater than the
minimum distance between neighboring segments of the binary ground truth
map. After that precision and recall can be computed as follows:

P c =
sum(yb

pd ◦ yb,ext
gt )

sum(yb
pd)

, Rc =
sum(yb

gt ◦ yb,ext
pd )

sum(yb
gt)

, (3)

where operation ◦ denotes pixel-wise multiplication of two binary maps and oper-
ation sum(·)—pixel-wise summation of a binary map. Finally, the reconstructed
metric and a corresponding loss function are defined as:

BF c
1 =

2P cRc

P c + Rc
, LBF c

1
= 1 − BF c

1 . (4)

All operations above are differentiable in terms of either derivative or sub-
derivative. In Fig. 1 there is an example of how the proposed surrogate works. It
is worth to mention that of course we can use convolutions with edge detection
filters, such as Sobel, but in experiments, we found that this approach is not as
effective as max-pooling. Nevertheless, both methods have their drawbacks. The
disadvantages of both methods are that on the first step we extract boundary
not narrower than 2–3 pixels in width, but with Sobel filters, boundaries are even
wider and more blurred. The main drawback of the used max-pooling operation
is that gradients are passed only in tensor cells with a maximum value within a
current sliding window. Sobel operators do not have this problem and take into
account all pixels of the sliding window.

4 Experiments

4.1 Example on Synthetic Dataset (AICD)

To demonstrate capabilities of the novel boundary loss and test the hypothesis
that LBF1 can assist LIoU a synthetic dataset was used. It consists of 800 images
with one primitive segment in each image. We trained on this dataset without
augmentations and postprocessing a not deep fully convolutional neural network
with four conv layers in the encoder and four conv layers in the decoder to show
that LBF1,IoU outperforms other losses under simple conditions.

First of all, we present a working principle of the new loss in Fig. 1. In the
upper row (see (b), (d) and (f)) we depict ground truth, where (b) is a binary
mask for the ground truth segment, (d) is a binary mask of the gt boundary after
applying (1). Then we compute expanded boundary (f) using pooling operations
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Fig. 1. (a) original orthophoto; (b) ground truth segment (gt); (c) predicted segment
(pred); (d) boundary of gt; (e) boundary of pred; (f) expanded boundary of gt; (g)
expanded boundary of pred; (h) pixel-wise multiplication of masks (d) and (g); (i)
pixel-wise multiplication of masks (e) and (f)

(2). The same pipeline is applied to the predicted mask (color intensity repre-
sents the probability that pixel belongs to a foreground). After that we obtain
Precision map, which represents pixel-wise multiplication of maps correspond-
ing to (d) and (g), and Recall map, which is a multiplication of maps (e) and
(f). Precision and Recall are normalized pixel-wise sums of these maps.

Some examples of how LBF1,IoU loss outperforms LIoU loss are presented
in Fig. 2. It is clear that in comparison with LIoU training with LBF1,IoU helps
better delineate segment borders: they are very similar to ground truth bound-
aries and even meet at the corners in places where they should be. The second
advantage is that the loss better handles edge effects. The third column clearly
explains this kind of a problem when a building is located near the edge of
the image. LIoU loss is unable to segment the building near the edge, however
LBF1,IoU does it accurately. Finally, the boundary loss converges faster on this
synthetic dataset, and such behavior is expected not only for this simple data
distribution. The intuition behind is that network keeps attention mainly on a
boundary, which consists of fewer pixels in comparison with the entire segment.

4.2 INRIA AIL Dataset Segmentation

The dataset [16] consists of 180 tiles (RGB) of 405 km2 area in total with GSD
of 0.3 m. There are only two classes: building and not building.

Training on this dataset is more complex than on AICD. As for preprocess-
ing, very strong augmentations were applied including vertical, horizontal flips,
hue/saturation adjustments, many kinds of noises and blurs. Every orthophoto
was split into patches of size 512 × 512 and UNet with Inception-ResNet-v2 [30]
as backbone was trained on these patches. After that, all predicted masks for
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Fig. 2. (a) original orthophotos; (b) binary maps of ground truth segments; (c) pre-
dicted binary maps of segments (LIoU loss); (d) predicted binary maps of segments
(LBF1,IoU loss)

Fig. 3. Evolution of IoU value during train-
ing for various loss functions (INRIA AIL)

Fig. 4. Evolution of BF1 value dur-
ing training for various loss functions
(INRIA AIL)

every patch were merged into one mask of the whole orthophoto. Also, test-time
augmentation (flips, reflections) was applied during the inference step. As for
the training process, first, the network was trained from ImageNet [10] weights
with a frozen encoder for three epochs, and the learning rate was set to 3e−3.
After that all batch-normalization layers were unfrozen, and the learning rate
was decreased to 1e−3. Then all layers were unfrozen and trained for 100 epochs
with the learning rate of 1e−4. Finally, the network was trained for 60 epochs
with the learning rate of 1e−5. We used Adam optimizer with default Keras
[7] settings. There were several experiments with different loss functions. As for
LIoU , LDice, LSS and LV GG losses, they did not require any adjustments while
training: these losses were trained as a weighted sum with BCE one by one.
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As for LBF1,IoU loss, it requires an additional procedure for mini grid-
search: after the 8th epoch for every 30 epochs and for every weight w ∈
{0.1, 0.3, 0.5, 0.7, 0.9} in equation (BCE + wLBF1 + (1 − w)LIoU ) a network
was trained. Then the best weight is chosen, and the process repeats. In Fig. 3
we see the evolution of IoU metric while training with combinations of BCE
and LIoU , LDice, LSS , LV GG, or LBF1,IoU . BF1 is also a very important metric
for remote sensing image segmentation (see Fig. 4).

Finally, from figures, we see that the final segmentation is better than the
baseline model trained with LIoU in terms of IoU and BF1. Now we want to
understand what is better when training with the boundary loss. Below we
provide an example comparing two segmentations.

In Fig. 5 on the right we see more accurate shapes of edges and corners. The
important feature, which follows from Fig. 6, is that several buildings are stand-
ing in one row with a distance between adjacent constructions about 5 pixels.
In comparison with LIoU , LBF1,IoU our loss managed to separate instances of
buildings much better.

Fig. 5. (a) original orthophoto; (b) pre-
dicted segmentation trained with LIoU ;
(c) predicted segmentation trained with
LBF1,IoU

Fig. 6. (a) original orthophoto; (b)
ground truth segmentation (gt); (c) pre-
dicted segmentation trained with LIoU ;
(d) predicted segmentation trained with
LBF1,IoU
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4.3 ISPRS Potsdam Dataset Segmentation

The dataset [24] contains 38 patches, each consisting of a true orthophoto
extracted from the larger mosaic. There are five channels (RGB+NIR+DSM)
with GSD 0.2 m for each channel. As a model, UNet was trained with very
strong augmentations similar to that used for INRIA AIL. We used test-time
augmentation (flips, reflections), set the learning rate to 1e−3 and divided it by
a factor of 10 if for 10 epochs there was no improvement in validation loss. We
trained a neural network on patches of orthophotos with Adam optimizer.

Fig. 7. Evolution of IoU value dur-
ing training for various loss functions
(ISPRS Potsdam)

Fig. 8. Evolution of BF1 value dur-
ing training for various loss functions
(ISPRS Potsdam)

In Figs. 7 and 8 we see the evolution of IoU and BF1 metric while training
with combinations of BCE and LIoU , LDice, LSS , LV GG, LBF1,IoU . Here we see
slightly faster convergence of IoU for LBF1,IoU , the final segmentation is 1–2%
better than baseline (BCE + LIoU ). Also there is an advantage that training
with LBF1,IoU loss is much less noisy.

Even though IoU value is the best with LBF1,IoU training, boundary metric
converges faster with VGG loss; authors of the original paper mentioned that
this loss function is also efficient for boundaries delineation. In Figs. 9 and 10
there are several examples segmented with LIoU and the boundary loss.

Direct IoU loss (Fig. 9) has poorer performance on edges of segments and
complicated shapes, whereas boundary loss (Fig. 10) on the right retrieved almost
all tricky shapes.

In Tables 1 and 2 we provide final results of different losses in the task of
binary segmentation of buildings for different models and datasets. Backbones
for comparison in these tables are chosen is such way that they showed the best
performance over all we have tried (VGG16, VGG19, ResNet34, DenseNet121,
DenseNet169, Inception-ResNet-v2).

Finally, here are some constraints and recommendations:

1. It is better to use boundary loss only for segments with precise edges and
corners such as buildings, roads etc.

2. Let us discuss the choice of parameters θ0 and θ (1) and (2) respectively. The
best choice for the parameter θ0 is as less as possible, but at the same time it
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Fig. 9. Example of segmentation (loss—LIoU ). Left: original orthophoto, top right:
ground truth segmentation, bottom right: predicted segmentation

Fig. 10. Example of segmentation (loss—LBF1,IoU ). Left: original orthophoto, top
right: ground truth segmentation, bottom right: predicted segmentation

Table 1. IoU values for different datasets and loss functions. ConvNN is a not very
deep neural network with 5 convolutional blocks in both the encoder and the decoder.
For ISPRS dataset UNet model with ResNet34 backbone was used, for INRIA dataset
– UNet with Inception-ResNet-v2 backbone

AICD ISPRS Potsdam INRIA AIL

ConvNN ResNet34 Inc.-ResNet-v2

LBF1,IoU 86.91 93.85 74.30

LIoU 85.66 92.56 71.91

LSS,IoU 61.14 92.47 43.66

LV GG,IoU 85.76 92.53 45.89

LDice,IoU 85.13 92.61 44.90
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Table 2. BF1 values for different datasets and loss functions. For ISPRS dataset UNet
model with ResNet34 backbone was used, for INRIA dataset – UNet with Inception-
ResNet-v2 backbone

AICD ISPRS Potsdam INRIA AIL

ConvNN ResNet34 Inc.-ResNet-v2

LBF1,IoU 71.51 82.48 51.75

LIoU 68.01 81.02 50.75

LSS,IoU 20.74 81.55 29.53

LV GG,IoU 69.41 82.77 40.18

LDice,IoU 70.49 81.86 29.45

must be possible to extract solid boundaries of segments. The next constraint
is that θ0 and θ should be smaller than minimum distance between segments,
otherwise the performance of segmenting current element is affected by other
segments because of overlapped expanded boundaries. Via the trial and error
process we set θ0 to 3 and θ to 5–7 as a proper choice, because theses values
deliver the most accurate boundaries in all experiments.

5 Conclusions

In this work, we introduced a novel loss function to encourage a neural network
better taking into account segment boundaries. As motivation, we applied this
approach to a synthetic dataset of binary segmentation and after that proved its
validity on real-world data. Our experimental results demonstrate that optimiz-
ing IoU assisted by BF1 metric surrogate leads to better performance and more
accurate boundaries delineation compared to using other loss functions. As for
future work, we would like to extend our approach to handle multi-class semantic
segmentation. We are going to elaborate on this approach by increasing its com-
putational capabilities with large scale sparse convolutional neural networks [19],
using a new loss function, specially tailored for imbalanced classification [5,28],
utilizing an approach for combining multi-modal data through CNNs features
aggregation [4] and imposing a confidence measure on top of the segmentation
model based on the non-parametric conformal approach [14,25,31].
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Abstract. Ship detection in remote sensing images is an important and
challenging task in civil fields. However, the various types of ships with
different scale and ratio and the complex scenarios are the main bot-
tlenecks for ship detection and orientation estimation of the ship. In
this paper, we propose a new method based on Mask R-CNN, which
can perform ship segmentation and direction estimation on ships at the
same time by simultaneously output the binary mask and the bow and
sterns keypoints locations. We can achieve keypoints detection of the ship
without significantly losing the accuracy of the mask. Finally, we regress
the coordinates of the ship’s bow and sterns to four quadrants and use
the voting mechanism to determine which quadrant the bow keypoint
locates. Then we combine the quadrant of bow keypoint with the mini-
mum bounding box of the mask to determine the final orientation of the
ship. Experiments on the datasets have achieved effective performance.

Keywords: Remote sensing images · Ship detection ·
Orientation estimation · Mask R-CNN

1 Introduction

Ship detection in remote sensing images has attracted more and more attention
of researchers in recent years because of its vital role in port management, traffic
surveillance, and ship search and rescue [1]. With the development of remote
sensing technology, we can easily obtain high resolution images, which prompts
us to make a finer segmentation of the ship. However, accurately segmenting
ships in remote sensing images is not trivial. Firstly, the size of the ship varies
greatly and the aspect ratio is quite different [2], making the ship detection
become more difficult than other object, such as vehicles [3] or buildings [4].
c© Springer Nature Switzerland AG 2019
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Secondly, the color and texture of the inshore ship is similar to that of land area
such as an anti-wave or residential building which can lead to many false alarms
[5], and the detection of sailing ships is susceptible to fog and waves on the
sea. Thirdly, the ship in remote sensing images is multi-directional, making the
direction estimation of the ship much more difficult than direction estimation of
other objects in the natural scene.

To handle the problems above, researchers have developed a lot of methods
and have achieve amazing results in ship detection in the past few years. Before
CNN-based methods [6], some traditional methods based on sea-land segment are
widely used in ship detection. For example, [7] firstly realized the sea-land sepa-
ration through the difference in characteristics of the texture and color between
ports and sea so that only the sea area named ROI (region of interests) needed
to be processed, and then they used the contrast box algorithm to obtain the
candidates of targets. Finally, through post-processing, the false alarms were
eliminated and the final boxes containing the ship were obtained. It required
pre-process such as sea-land separation, and the detection accuracy was heavily
dependent on the results of sea-land separation. Such kinds of methods perform
well in a special application, but will get poor practicability in complex scenar-
ios. Recently, the deep learning based methods have achieved good results in the
field of object detection. The Faster-RCNN [8], which is one of the representa-
tive models, consists of RPN and Fast-RCNN [9]. It generates region proposals
through the RPN, then executes pooling operation on the feature maps of the
proposals to generate RoIs. The RPN feeds RoIs into the Fast-RCNN, which
classifies the RoIs and outputs the class probability and the regression coordi-
nates of the RoIs. However, Faster-RCNN is a horizontal region detection which
is suitable for natural scene detection but not suitable for satellite remote sens-
ing ship detection [10]. [11] utilized instance segmentation into ship detection
framework via Mask R-CNN to achieve a more thorough segmentation between
the ship and background, they used soft-NMS rather than standard NMS to
improve the robustness of detecting inshore ships. This operation achieved a
certain effect in detecting dense ships which are close to each other. What’s
more, by classifying each pixel of the ship, the accuracy of the object detection
can be improved. And by combining the resolution of the satellite itself with the
number of pixels of the ship in the image, we can learn the actual area, perime-
ter and size of the ship, which are important for ship type recognition. [10]
adopted the rotational region detection framework to detect the dense objects
by outputting rotated boxes rather than horizontal boxes and output the ship
orientation simultaneously. It determined the ship orientation via selecting from
the four sides of the rotated box. The orientation estimation of the ship is a
meaningful job, especially for port management and maritime traffic. But the
method in [10] is simple, and the applicability of ship orientation estimation is
relatively poor in complex situations.

In this paper, we put forward a new proposal for estimating the direction
of the bow. Inspired by the human pose estimation [12], we decide to apply
the human body keypoints detection technology used in human pose estimation
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to that of the bow and stern of the ship. [13] achieves very good results by
using multi-scale features to capture spatial position information of joint points
in the human body. But it can only output the precise pixel-level positions of
the keypoints of a single human, not suitable for keypoints detection of multi-
person or multi-ships. [14] first uses the pedestrian detection algorithm to detect
the pedestrian candidate boxes, then uses the CPN (Cascaded Pyramid Net-
work) to perform coordinate regression of the human body keypoints for each
detected pedestrian candidate box and output the final results. It performs well
in dealing with multi-person keypoints in case of occlusion, invisibility or com-
plex background. But it is a two-stage framework which is time-consuming and
computationally intensive and relies heavily on the accuracy of the pedestrian
detection module. Mask R-CNN [15] can also be used to estimate the pose of
the human body. Since multiple ships do not have mutual occlusion, we incor-
porate ship keypoints detection into the Mask R-CNN basic framework to form
a unified architecture that can simultaneously obtain the ship’s mask and the
three keypoints of ship. The angle of the ship is initially determined by the min-
imum bounding box of the mask. We propose a voting mechanism by combing
the relative positions information between one bow and two sterns to determine
the final orientation of the bow. When the ship is partially detected, we can still
estimate the direction of the ship by the detected individual kepoints, which
improve the robustness of the algorithm.

Fig. 1. Our framework with proposed method.

2 Methodology

The method we use is based on the Mask R-CNN architecture, and the overall
architecture is shown in Fig. 1. Firstly, we use FPN [16] to extract the features
of different scales from the input image. Then RPN generates the proposals on
the feature maps. After performing the ROI Align operation on these proposals,
RPN produces RoIs and feeds them into Fast-RCNN. Fast-RCNN implements
the classification, coordinate regression, binary mask and keypoints output for
each RoI. Our approach consists in adding keypoints prediction to Mask R-CNN
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original architecture and defining three keypoints for a bow and two sterns. By
combining information such as the mask branch and the keypoints branch, we
use a voting mechanism to obtain the orientation of the bow.

2.1 Three-Keypoints Ship Model

Drawing on the human skeleton keypoints model, we propose a ship keypoints
model (named three-keypoints ship model) which consists of three keypoints,
the bow (b1), the first stern (s1) and the second stern (s2). Each key point
has three values: x, y, v, which represent the abscissa, ordinate and visibility of
the keypoint on the image coordinate system respectively. We abstract the ship
into a three-keypoints ship model because the bow and sterns are at the edge
of the ship and are the corner points, which have obvious features. These three
keypoints represent the commonality of most ships like civilian ships which all
have a bow and two sterns so we use them for keypoint detection of the ships.
Our three-keypoints ship model is not limited to three keypoints and can be
extended to more than three keypoints according to the characteristics of the
detected object. The three-keypoints ship model and some samples in application
of our model are shown in Fig. 2.

Fig. 2. Three-keypoints ship model and some samples. (a) three-keypoints ship model.
(b) civilian ship.
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2.2 A Unified Framework

Our method is based on the Mask R-CNN architecture using FPN as backbone.
The idea of FPN is to fuse the adjacent two layers of the feature pyramid from top
to bottom. This operation combines the low-level position information and high-
level semantic information of the neural network and is useful to detect ships of
different scales, especially for particularly small targets. FPN generates feature
maps and sends it to RPN. The RPN generates region proposals and finally
generates regions of interest (RoIs) based on the location of the region proposals
on the feature maps. The RoIs are processed by the ROI Align pooling operation
and sent to Fast-RCNN. The classifier produces the category probability of each
RoI, the regression branch produces the refined bounding box coordinates and
the mask branch encodes the probability each RoI belonging to each class.

Mask R-CNN has achieved good results in the detection of keypoints in the
human body. In theory, the keypoints detection of the ship is feasible since the
ship has some obvious characteristic points, for example, the bow and the stern
are corner points. We define one bow and two sterns as the keypoints of the ship,
and add the keypoint branch to the original Mask R-CNN framework including
ship classification, regression and mask. For each RoI, the output of keypoints
branch is a heatmap encoded by Km2-dimensional array where K means the
number of ship keypoints and m2 is the resolution. By finding the maximum
value on the m2 array, we can determine the position coordinates of the bow
and stern, which is important for estimating the orientation of the ship.

Our framework is built on the Mask R-CNN base framework, so the FPN
and RPN module structures are the same. When RPN generates RoIs, we also
perform ROI Align on the RoIs in our keypoints branch, and the generated
feature maps are up-sampled. We add a deconvolution layer and perform a ReLU
activation on the feature maps to obtain the final heatmaps whose size are four
times the size of the original feature maps. Although we separately perform ROI
Align on the RoIs in the keypoints branch, we share the parameters of the FPN
and RPN modules with the classification, regression and mask branches, which
may reduce the accuracy of the mask branch slightly.

2.3 Orientation Voting Mechanism

The mask branch outputs the probability that each pixel belonging to each
class. The knowledge of the digital image processing is used to binarize the mask
image, find the contour of the mask, and finally obtain the minimum bounding
box of the mask. Firstly, we rotate a horizontal line through the center point
of the minimum bounding box counterclockwise. When the horizontal line first
coincides with the edges of the minimum bounding box, the side is the width side
of the minimum bounding box, and the height side can be obtained naturally.
We define the rotated angle ranging from 0◦ to 180◦ is the angle of the minimum
bounding box, as shown in Fig. 3(a). Secondly, we divide the image coordinate
system into four quadrants defined as q1, q2, q3 and q4 counterclockwise, and
map b1, s1, s2 to the four quadrants according to their coordinates and visibility,
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just as shown in Fig. 3(b). Thirdly, using the prior knowledge that the ship is
narrow and long, we can know that b1 is in the two short sides of the minimum
bounding box. Corresponding to Fig. 4 (the angle of the minimum bounding box
ranges from 0 to 45◦), b1 is in the height sides, not in the width sides, so we
integrate q1 and q2 into the right quadrant, recorded as qr, and integrate q3 and
q4 into the left quadrant, recorded as ql. Thus, we only need to judge whether
the keypoints are in ql or in qr. We vote on the quadrant of each keypoint. The
quadrant of b1 is q2, which belongs to qr, so the votes of qr is increased by 1,
and the quadrant of s1 is q3, according to the assumption that the bow and
stern symmetry about the center of the ship, we can determine reversely that
the b1 corresponding to s1 is in q1. Similarly, the b1 corresponding to s2 is in q2.
Since q1 and q2 belong to qr, qr gets a final votes of three, and ql gets the votes
of zero. Although this reverse judgment is not very accurate, we only consider
weather the keypoints are in ql or in qr, it does not affect the final result that
b1 is exactly in the right height side of the minimum bounding box. When the
angle is between 135 and 180◦, the judgment method is the same.

When the angle of the minimum bounding box is between 45 and 135◦, the
algorithm is similar. We need to integrate q2 and q3 into the top quadrant,
recorded as qt, and integrate q1 and q4 into the bottom quadrant, recorded as
qb, then map b1, s1 and s2 to qt and qb respectively. The detailed method is
shown in Fig. 5.

Fig. 3. (a) The width side of the minimum bounding box is different according to
different angles. (b) Map b1, s1 and s2 to four quadrants.



408 M. Nie et al.

Fig. 4. Map b1, s1 and s2 to ql and qr when the angle is between 0 and 45◦ or between
135 and 180◦.

Fig. 5. Map b1, s1 and s2 to qt and qb when the angle is between 45 and 135◦.

3 Experiments

3.1 Dataset

We have built a ship’s keypoints detection dataset on remote sensing images. The
original images come from the HRSC2016 dataset [17]. The dataset contains
images from seven famous harbors, six of them come from Google Earth in
different years and one comes from Mumansk harbor. The image resolutions
are between 2-m and 0.4-m. The high-resolution images are clipped into smaller
images ranging from 300× 300 to 1500× 900 including 226 sea images and 1445
sea-land images.

In order to label the keypoints of the ship, we removed some images that
did not contain the ship object. For the remaining images, we label b1, s1 and
s2 counterclockwise for each of the ships. After adding annotations to these
samples, we finally get 1464 images with 5258 samples in total. We split the
dataset into training set including 1172 images with 4187 samples and test set
including 292 images with 1071 samples respectively.
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We also created a separate dataset to test the applicability of our model. The
images are part of the training set in the kaggle Airbus Ship Detection Challenge
[18]. The training set has 104168 images whose size are 768× 768. The target of
each image is a merchant or civilian ship with a background in the sea, which
is different from the HRSC2016 dataset where most of the backgrounds are the
port. Since most of the images are background without a target, and labeling
the mask dataset requires time and labor, we only select 122 images containing
the ship from the 104168 images to create a dataset named KASDC2018.

3.2 Evaluation Indicators

Our experiments are mainly to verify the effectiveness of estimating the ship
orientation by combining ship keypoints detection and ship segmentation tech-
niques. To this end, we did a comparative experiment with [11]. Our architecture
is very similar to the method mentioned in [11]. Both the classification, detec-
tion and segmentation of ships are based on the Mask R-CNN architecture. The
difference is that we add the keypoints detection module to the Mask R-CNN
architecture, and the final orientation of the ship is determined by integrating
the mask information and the keypoints information. During the experiment, we
have the same parameter settings for all the same parts of [11], the initial learning
rate is 0.001 and the total number of iterations is 90,000. We adopt AP (aver-
age precision), AP50 and AP75 (average precision rates assessed at 0.5 and 0.75
IoU threshold), as well as AP on small (APS), medium (APM ) and large (APL)
targets as the evaluation indicators of the ship detection and segmentation. The
experimental results in Tables 1 and 2 show that our method can guarantee the
accuracy almost not reduced and output the orientation information of the ship
in addition.

Table 1. Box detection task of our method.

Method AP AP50 AP75 APS APM APL

Method in [11] 0.766 0.927 0.888 0.635 0.723 0.836

Our method 0.756 0.941 0.883 0.720 0.720 0.825

We also validated the validity of the voting mechanism to estimate the ship’s
direction. Referring to [10], we use precision rate and recall rate with four com-
ponents which are true positive (TP), false positive (FP), true negative (TN)
and false negative (FN) as the quantitative indicators of direction estimation.
We define the precision rate and recall rate as:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)
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Table 2. Segmentation task of our method.

Method AP AP50 AP75 APS APM APL

Method in [11] 0.638 0.880 0.774 0.438 0.540 0.740

Our method 0.644 0.888 0.776 0.421 0.534 0.755

Table 3. The precision and recall rate of ship direction estimation.

Method Precision Recall

One-bow method 0.917 0.866

Two-sterns method 0.918 0.867

Three-keypoints method 0.957 0.904

The Precision refers to the ratio of the number of the correct directions in
all detected directions and the Recall means the ratio of the number of correct
directions in all target directions. We compare the segmentation result with
ground truth, and only do the direction statistics for the segmentation results
whose iou with ground truth is greater than 0.7 and whose category confidence
is greater than 0.7. It is meaningless to make a direction estimation based on the
segmentation result when the iou or the category confidence is too low. We have
designed three different methods to estimate the direction of the ship according
to the number of keypoints used, namely one-bow method (only using b1), two-
sterns method (only using s1 and s2) and three-keypoints method (using both
b1, s1 and s2). The experiment results in Table 3 show that the precision and
recall rate of one-bow method and two-sterns method are almost the same, but
much lower than that of three-keypoints method. It may be because one-bow and
two-sterns method only work well in some conditions. Take the one-bow method
as an example, once b1 is not detected (maybe the detection score of b1 is too
low, or b1 is invisible), or falsely detected, it will directly lead to errors in the
direction judgment. Even if the s1 or s2 is detected correctly, one-bow method
chose to ignore it. The same problem also exists in the two-sterns method. If
we use b1, s1 and s2, we can make up for each other’s defects to circumvent
these problems. The precision and recall rate of three-keypoints method are
significantly improved, this is why we use the three-keypoints ship model as it
improves the robustness of our algorithm greatly. The detection result is shown
in Fig. 6.
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Fig. 6. Combining the minimum bounding box of the mask and the keypoints of bow
and sterns to infer the orientation of the ship. Each row represents the mask results,
keypoints results, and final results graph respectively. The red line in the third row
indicates the direction of bow. (Color figure online)

Finally, we performed experiments on the KASDC2018 dataset. The ship
detection, segmentation and direction estimation results are shown in Tables 4,
5, and 6 respectively. The experimental results show that our algorithm has
generalization ability.

Table 4. Box detection task in KASDC2018 dataset.

AP AP50 AP75 APS APM APL

0.756 0.942 0.883 0.720 0.713 0.825
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Table 5. Segmentation task in KASDC2018 dataset.

AP AP50 AP75 APS APM APL

0.644 0.888 0.776 0.421 0.534 0.755

Table 6. The results of ship direction estimation in KASDC2018 dataset.

Precision Recall

0.804 0.765

4 Conclusion

In this paper, we present a new method for estimating ship orientation based on
Mask R-CNN. We integrated the keypoints detection technology into the Mask
R-CNN basic framework and achieved good results on our dataset. We adopted
a voting mechanism to ensure that the ship’s orientation is accurately estimated
when some of the individual keypoints of the ship are not accurately detected,
which improves the robustness of our algorithm. Through the orientation judg-
ment, we realized a more detailed semantic understanding of the ship in the
remote sensing image.
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Abstract. Detecting building changes via aerial images acquired at different
times is important in the urban planning and geographic information updating.
Deep learning solutions have high potential in improving detection performance
as compared with traditional methods. However, existing methods usually carry
out detection for whole images. Non-building interferences involved may result
in an increase of false alarm rate, a decrease in accuracy rate, and a heavy
computational load. In addition, they mostly utilize supervised deep learning
networks dependent highly on massive labeled samples. In this study, we pre-
sent an unsupervised deep learning solution with detection only on segmented
building areas. We first employ a masking technique based on building seg-
mentation to remove non-building interferences. We then use a classification
model combing an unsupervised deep learning network PCANet and linear
SVM to realize building change detection. Experimental results show that our
method achieves 34.96% higher accuracy rate, 45.18% lower missed detection
rate, 37.92% lower false alarm rate, and 50.12% lesser computational time than
the whole-image detection method without building segmentation.

Keywords: Building change detection � Masking �
Unsupervised deep learning network � Non-building interferences

1 Introduction

Detection of building changes plays an important role in the urban planning, geo-
graphic information updating, and land resources management. With the development
of remote sensing and aerial photography, building change is readily detected based on
satellite or aerial images acquired at different times.

The existing change detection methods can be divided into two categories, tradi-
tional methods and newly developed deep learning methods. Compared to the tradi-
tional methods based on such as clustering [1], object-level image analysis [2, 3], and
geographic information systems (GIS) [4], deep learning methods make features
extraction more robust by applying neural networks. Deep learning methods can be
further grouped into three categories, according to the need of labeled samples. They
are supervised, semi-supervised, and unsupervised methods, respectively. Although the
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supervised and semi-supervised methods [5–8] usually have higher accuracy of features
extraction, these methods have a strong dependency on the amount of labeled samples.
In practice, it is not easy to collect a large amount of labeled samples for satellite or
aerial images. Therefore, unsupervised methods are more promising in detection of
changes. Zhang et al. proposed a method applying the Gaussian-Bernoull Deep
Boltzmann Machine (GDBM), which can extract deep features to achieve change
detection [9]. Gao et al. proposed an automatic change detection algorithm; the change
detection for images was realized by utilizing the excellent features extraction ability of
PCANet [10].

However, existing unsupervised deep learning methods such as GDBM usually
carry out detection for the whole image. In the aerial or satellite images, there are not
only buildings, but also non-building environments, such as roads, vehicles and
pedestrians. These inevitably produce different degrees of interference to the change
detection, including the increase of false alarm rate and the computational load. In the
meantime, the accuracy rate is also reduced. As such, we propose to detect building
changes using unsupervised deep learning method together with removal of non-
building interferences. Specifically, we employ masking technique based on building
segmentation to remove non-building interferences, and use a classification model
combing an unsupervised deep learning network PCANet [11] and linear support
vector machine (SVM) to realize change detection. We carry out evaluations of the
proposed method using the aligned aerial images provided by Dalian Geotechnical
Engineering and Mapping Institute CO., LTD.

The remaining of this paper is organized as follows. Section 2 describes details of
the proposed method. Section 3 presents experiments and results. The conclusion is
given in Sect. 4.

2 Proposed Method

Given two aerial images IðxÞði; jÞ 2 R
m�n; x ¼ 1; 2; i ¼ 1; . . .;m; j ¼ 1; . . .; n; m� n

is the size of the images, which are acquired at different times. Figure 1 shows the
framework of the proposed method. There are generally two stages, firstly, segmen-
tation and masking stage, secondly, sample images generation and pixels classification
stage.

In the segmentation and masking stage, the two input images Ið1Þ and Ið2Þ are first
fed into an image segmentation algorithm to extract buildings, the two segmentation
images are used to generate two binary masks and then a merged binary mask. Next,
non-building interferences are removed by masking the original images with the

merged mask, and the denoising images Ið1Þp and Ið2Þp are to be detected for changes.
In the second stage, sample images are generated based on pre-classification results

for pixels in Ið1Þp and Ið2Þp , and utilized for training PCANet and linear SVM. Note pre-
classification results are obtained by the pixel-level operation, which will be described
in detail in Subsect. 2.2. The trained linear SVM classify the intermediate pixels in pre-
classification into changed and unchanged classes. The changed pixels detected by
SVM classification and the pre-classification form the final change map.
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2.1 Masking Technique Based on Building Segmentation

Figure 2 shows the main steps in the segmentation and masking on two input images.
We first use a deep neural network U-Net [12] to realize the segmentation of buildings
in the two input images Ið1Þ and Ið2Þ. Two binary masks are then generated based on the

segmentation images Ið1Þs and Ið2Þs as follows:

Fig. 1. Framework of the proposed method

Fig. 2. Image segmentation and masking
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IðxÞM ði; jÞ ¼ 2B � 1; buildings in IðxÞs ði; jÞ
0; else

�
ð1Þ

where IðxÞM 2 R
m�n, x ¼ 1; 2; denote the binary masks, and B is the color depth of single

channel.

Next, we combine two binary masks IðxÞM to obtain a merging binary mask to cover
whole buildings included in the two images. The merging mask IM 2 R

m�n is gener-
ated as follows:

IMði; jÞ ¼ 2B � 1; Ið1ÞM ði; jÞ ¼ 2B � 1; or Ið2ÞM ði; jÞ ¼ 2B � 1
0; Ið1ÞM ði; jÞ ¼ 0 and Ið2ÞM ði; jÞ ¼ 0

(
ð2Þ

Finally, we use the merging mask IM to remove non-building interferences from the
original images:

IðxÞp ði; jÞ ¼ IðxÞði; jÞ ; IMði; jÞ ¼ 2B � 1
0 ; IMði; jÞ ¼ 0

�
ð3Þ

where IðxÞp 2 R
m�n, x ¼ 1; 2, are the denoising images used for the sequential change

detection.

2.2 Sample Images Generation and Pixels Classification

We use the method proposed in [10] to generate sample images for training PCANet.

A log-ratio image IDði; jÞ ¼ j logðIð1Þp ði; jÞ=Ið2Þp ði; jÞÞj is generated. Pixels in ID are pre-
classified (changed, unchanged, and intermediate classes) and labelled using Gabor
wavelet representation and fuzzy c-means (FCM). Sample images are generated with
centers of labelled pixels which having high probability of being changed or
unchanged, the number of which is Nsum.

Specifically, given a labelled pixel (i, j), we generate image patches p1ij 2 R
k�k and

p2ij 2 R
k�k of size k � k centered at pixel (i, j) from the two denoising images Ið1Þp and

Ið2Þp , and then vertically combine the two image patches to form a sample image
Py 2 R

2k�k. At last, we obtain a set of sample images fPygNsum
y¼1 .

We train PCANet using sample images fPygNsum
y¼1 . The extracted features from

PCANet are fed into linear SVM for training. The classification model is then con-
structed by combining the trained PCANet and SVM. This model is then employed to
classify the pixels belonging to the intermediate class (obtained in pre-classification)
into changed and unchanged classes. Finally, we combine the changed pixels detected
by SVM classification and the pre-classification to output the final change map.
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2.3 Performance Indexes

We use the following four performance indexes to evaluate the detection results,
including accuracy rate ACC, missed detection rate PMD, false alarm rate PFA, and
computational time.

The accuracy rate is defined as:

ACC ¼ ðNTUC þNTCÞ=ðNFUC þNFC þNTUC þNTCÞ � 100% ð4Þ

where NFC denotes the number of unchanged pixels but are detected as changed, while
NTC represents the number of pixels being correctly detected as changed. In a similar
way, NFUC represents the number of changed pixels but are detected as unchanged, and
NTUC is the number of correct detection of unchanged pixels.

The missed detection rate is defined as:

PMD ¼ NFUC=ðNFUC þNTUCÞ � 100% ð5Þ

The false alarm rate is computed by:

PFA ¼ NFC=ðNFC þNTCÞ � 100% ð6Þ

Different from the whole-image detection method, the computational time of the
proposed method include the time consumed by the image segmentation and masking,
in addition to the time for pixels classification.

3 Experiments and Results

3.1 Datasets and Parameters

We tested the proposed method with 105 sets of aerial images collected in 2008 and
2013, respectively, by Dalian Geotechnical Engineering and Mapping Institute CO.,
LTD. The size of the test images is 512� 512 with single channel depth of 8. We
trained U-Net using the dataset collated and released by the CSU-DP laboratory [13].
There is a total of 137 aerial images of size 1500� 1500, and their spatial resolution is
0.22 m. In order to adapt to the network training, we divided each image into nine
small images of size 512� 512, thus generate 1,233 small images. The super-
parameters for training U-Net include a learning rate (a = 10−5) and the number of
epochs (epochs = 19). The test platform is run on an Intel Core i7-4790 processor, with
a 3.6 GHz frequency, 16 GB of memory, and the operating system is Windows 7. The
programming software is Spyder (python 3.5) in the first stage, and MATLAB R2014a
in the second stage.

When using PCANet and SVM to perform classification, the main parameters
include stages of PCA filter convolutions in the PCANet, the number of filters for each
stage, the penalty coefficient C for SVM, and the patch size k � k in the process of
sample images generation. We used 2 stages of PCA filter convolutions for PCANet,
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with 8 PCA filters at each stage, and C = 1 for SVM. As for the patch size k � k, we
test the results of the odd numbers between 3 and 11 for k, and select k = 9 due to its
better performance.

3.2 Experimental Results

Table 1 shows comparison of the proposed method with the whole-image detection
method, in terms of four performance indexes averaged across 105 sets of test images.
It can be observed that the proposed method can improve the accuracy rate, and reduce
the missed detection rate, the false alarm rate, and the computational time. Specifically,
the accuracy rate was improved by 34.96%, the missed detection rate was reduced by
45.18%, the false alarm rate was decreased by 37.92%, and the computational time was
decreased by 50.12%. Note the improvement of the missed detection rate and the false
alarm rate were limited by the performance of image segmentation.

The experimental results of the proposed method for five exampling groups of
aerial images are shown in Fig. 3 and Table 2. Figure 3(a) and (b) display whole
images of the five groups of aerial images, respectively. Figure 3(c) and (d) represent
the corresponding segmented images for buildings. Figures 3(e) and (f) are binary
masks generated using Eq. (1), and Fig. 3(g) illustrates the merging masks obtained
using Eq. (2). With the merging masks, the resulting denoising images are shown in
Fig. 3(h) and (i). The changes detected by the proposed method are shown in Fig. 3(j).
For comparison, we also show ground-truth change maps marked manually in Fig. 3
(k), and results obtained by proposed method without masking of non-building inter-
ferences in Fig. 3(l). We can see that the proposed method achieved much closer results
with the ground-truth, as compared with the whole-image detection method.

Table 2 shows the four performance indexes obtained by the proposed method and
the whole-image detection method. The proposed method improved the accuracy rate
by 26.43%, reduced the false alarm rate by 70.72%, and decreased the computational
time by 47.99%. The missed detection rate was also decreased by 12.29% on average,
but this index was increased for group 4 and group 5 because of the unsatisfying results
of image segmentation.

Table 1. Comparison of the proposed method with the whole-image detection method for
detecting changes in 105 groups of aerial images, in terms of ACC, PMD, PFA, and computational
time. The average values are included, and the better results are shown in bold.

ACC (%) PMD (%) PFA (%) Time (s)

Proposed 83.35 10.86 45.25 3748
Whole-image 61.76 19.81 72.89 7514
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4 Conclusion

We proposed a framework for building change detection based on unsupervised deep
neural network combined with removal of non-building interferences. In contrast to the
whole-image method, our method shows promising results in reducing the false alarm
rate, decreasing the computational time, and improving the accuracy rate. Moreover,
the unsupervised deep neural network does not rely on massive labeled samples.
Therefore, this method is less demanding and more flexible. In the future, we will

Fig. 3. The building change detection results. (a) Aerial images of 2008; (b) Aerial images of
2013; (c) Segmentation images of 2008; (d) Segmentation images of 2013; (e) Binary masks of
2008; (f) Binary masks of 2013; (g) Merging masks; (h) Denoising images of 2008; (i) Denoising
images of 2013 (j) Results by the proposed method; (k) Ground-truth change maps; (l) Results by
whole-image detection method.

Table 2. Comparison of the proposed method with the whole-image detection method for
detecting changes in 5 exampling groups of aerial images, in terms of ACC, PMD, PFA, and
computational time. The better results are shown in bold.

Test ACC (%) PMD (%) PFA (%) Time (s)

1 Proposed 89.50 10.57 10.20 3244
Whole-image 81.91 15.78 29.68 5031

2 Proposed 84.09 13.85 22.36 3459
Whole-image 66.60 18.26 55.06 7311

3 Proposed 91.43 6.54 29.53 3532
Whole-image 75.05 11.78 86.11 7228

4 Proposed 96.25 2.66 15.23 3035
Whole-image 72.24 2.15 75.94 6291

5 Proposed 86.69 16.35 12.37 4185
Whole-image 58.49 8.99 59.63 7766

Average Proposed 89.59 9.99 17.94 3498
Whole-image 70.86 11.39 61.28 6725
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optimize the segmentation approach in an effort to retain full building information and
to reduce both the false alarm rate and missed detection rate. In addition, new methods
can be developed for generating sample images, thus the feature extraction accuracy
can be further improved for the unsupervised deep neural network.
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Abstract. In this paper we consider general scene recognition prob-
lem for analysis of user preferences based on his or her photos on
mobile phone. Special attention is paid to out-of-class detections and
efficient processing using MobileNet-based architectures. We propose the
three stage procedure. At first, pre-trained convolutional neural net-
work (CNN) is used extraction of input image embeddings at one of
the last layers, which are used for training a classifier, e.g., support vec-
tor machine or random forest. Secondly, we fine-tune the pre-trained
network on the given training set and compute the predictions (scores)
at the output of the resulted CNN. Finally, we perform object detection
in the input image, and the resulted sparse vector of detected objects is
classified. The decision is made based on a computation of a weighted
sum of the class posterior probabilities estimated by all three classifiers.
Experimental results with a subset of ImageNet dataset demonstrate
that the proposed approach is up to 5% more accurate when compared
to conventional fine-tuned models.

Keywords: Image recognition · Scene recognition ·
Convolutional neural network (CNN) · Object detection ·
Ensemble of classifiers · Classifier fusion

1 Introduction

Deep understanding of user characteristics by analyzing the photos on a mobile
device is a challenging task due to the extreme variability of visual data gath-
ered in uncontrolled environment [1]. Such user preference prediction engine is
applicable for various personalized services. Unfortunately, the analytics engines
should be preferably run on the embedded system, because most photos contain
private information, for which the user does not permit the remote client-server
processing. As a result, the state-of-the-art very deep convolutional neural net-
works (CNNs) [2] cannot be directly applied due to their enormous inference
time and energy consumption. Hence, it is extremely important to seek the ways
to improve the accuracy of MobileNet-based architectures [3,4].
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In this paper we focus on one of the main parts of visual preference prediction
engine, namely, scene recognition, in order to extract such interests as art and
theater, nightlife, sport, etc. The scene is composed of parts and some of those
parts can be named and correspond to objects [5]. It is known that the object
detection models [6] are used to estimate the scene inconsistencies [7]. The region
proposals with potentially most important objects can be detected with modern
saliency detection methods [8,9]. In this paper we developed the novel approach
to improve the accuracy of scene recognition by using scores and embeddings
from the MobileNets combined in an ensemble with the object detector.

The rest of the paper is organized as follows. In Sect. 2 we introduce the
proposed algorithm. Experimental results for 40 scenes from ImageNet datasets
are presented in Sect. 3. Concluding comments are discussed in Sect. 4.

2 Materials and Methods

In this paper we consider scene recognition as a general image classification
task, in which it is required to assign an input photo X to one of C > 1 cate-
gories (classes). The classes are defined with the aid of N ≥ C reference images
{Xn}, n ∈ {1, ..., N}, and the class label cn ∈ {1, ..., C} of each n-th reference
image is supposed to be given. We assume that the input image and all reference
images are resized in order to have the same width W and height H.

If the training sample is rather small to train a deep CNN from scratch,
the transfer learning or domain adaptation can be applied [2]. In these methods
a large external dataset, e.g. ImageNet-1000 [10], is used to pre-train a deep
CNN. As we pay special attention to offline recognition on mobile devices, it
is reasonable to use such CNNs as MobileNet v1/v2 [3,4]. The final step in
transfer learning is fine-tuning of this neural network using the training set from
the limited sample of instances {Xn}. Hence, this step includes replacement of
the last (logistic regression) layer of the pre-trained CNN to the new layer with
Softmax activations and C outputs. During the classification process, the input
image is fed to the fine-tuned CNN, and the scores (predictions at the last layer)

p = [p1, ..., pC ],
C∑

c=1
pc = 1 are used to make a final decision in favour of the most

probable class c∗ = argmax
c∈{1,...,C}

pc [11].

This procedure can be modified by replacing the logistic regression in the last
layer to more complex classifier. In this case the off-the-shelf features [12] are
extracted using the outputs of one of the last layers of pre-trained or fine-tuned
CNN [13,14]. It is especially suitable for small training samples (N ≈ C) when
the results of the fine-tuning is not too accurate. Namely, the images X and Xn

are fed to the CNN, and the outputs of the one-but-last layer are used as the
D-dimensional feature vectors x = [x1, ..., xD] and xn = [xn;1, ..., xn;D], respec-
tively. Such deep learning-based feature extractors allow training of a general
classifier, e.g., random forest (RF), support vector machine (SVM) or gradient
boosting that performs nearly as well as if a large training dataset of images
from these C classes is available [2].
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In this paper we propose to extend such traditional approach with additional
features. Namely, we use either classification of off-the-shelf CNN features or sim-
ilar approach with classification of the scores (predictions) pn = [pn;1, ..., pn;C ]
from the last layer of the pre-trained CNN. Moreover, we noticed that many
scenes from the one category contains identical objects (e.g., ball in the football),
which can be detected by contemporary CNN-based methods, i.e., SSDLite [4]
or Faster R-CNN [6]. These methods detect the positions of several objects in
the input image and predict the scores of each class from the predefined set of
K > 1 types. We decided to completely ignore bounding boxes and only extract
the sparse vector o = [o1, ..., oK ] of scores for each type. If there are several
objects of the same type, the maximal score is stored in this feature vector.

The complete pipeline is shown in Fig. 1 and the general idea of our approach
is presented in Fig. 2.

Fig. 1. Proposed pipeline of scene recognition

Here we implemented the most powerful classifier fusion technique, which
consists of the features from the pre-trained model, scores from the fine-tuned
CNN and predictions of the Faster R-CNN object detection model trained on
large dataset, e.g. Open Image Dataset. The outputs of individual classifiers are
combined with soft aggregation, i.e., the decision is taken in favor of the class
with the highest weighted sum of outputs of individual classifier [15]. The weights
can be chosen proportionally to the accuracy of individual classifier estimated on
the special validation set [16]. However, if the RF classifier is applied, the out-of-
bag (OOB) error can be used as its weight. As many objects will appear together
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Fig. 2. Example of scene recognition using proposed pipeline

in a variety of scenarios and the object detection may be wrongly prejudged, we
set the weight corresponding to the detector to be much smaller when compared
to the weights of other fused classifiers.

It is important to emphasize that scene recognition usually requires rejection
of all categories by making out-of-class decision. In order to deal with the out-of-
class recognition, it is possible to gather additional training images from other
categories and put them into the training set. This set can be used in various
ways. For example, the new binary classifier can be created for the prediction
vector p to verify that the decision c∗ is reliable. However, we experimentally
noticed that the most efficient approach is to train a separate (negative) class
within basic image classification models rather than work over the output of
models without negative class. Indeed, training such models can be extremely
sophisticated because the positive classes are just a little fraction of the whole
images variety. Hence, in this paper we decided to simply use additional (C +1)-
th “background” category during the training of classifiers and fine-tuning of the
CNNs. It was experimentally found that such approach still suffers from false
negatives, though precision of out-of-class detection is approximately equal to
99%. The qualitative results for MobileNet v2 are shown in Fig. 3.

The proposed approach (Fig. 1) was implemented as a part of special mobile
application for user preference prediction on Android. The application may oper-
ate in offline mode and does not require Internet connections. Several results
of scene recognition together with the bounding boxes of detected objects are
shown in Fig. 4. One can notice here the qualitative reasons for object detection
to improve the scene recognition results. In fact, the detected objects (car/bus,
food/drink/coffee cup and sport equipment) have high correlation with the
scene labels “street” (Fig. 4a), “restaurant” (Fig. 4b) and “football” (Fig. 4c),
respectively.
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Fig. 3. The results of out-of-class detection: (a) True negative; (b) True positive; (c)
False positive (soccer scene is detected as out-of-class sample).

Fig. 4. Results of scene recognition in the mobile demo

3 Experimental Results

We downloaded an imbalanced set of 45 K image from preliminarily chosen
C = 40 preference categories of scenes, which are presented as synsets in the
ImageNet dataset (sport scenes, drugstore, gas station, beauty shop/salon, spa,
department store, bookstore, grocery store, amusement park, gallery, art gallery,
picture gallery, music hall, opera, cinema, alehouse, cabaret, nightclub, night
club, club, nightspot, news magazine, comic book) [10]. Sample images are shown
in Fig. 5. In order to implement the out-of-class detection, new “distractor” cate-
gory with out-of-class images from Caltech101/Caltech-256 datasets was added.

This dataset was split into training/test sets with 85% of data (47983 images)
in the training set and the rest 8490 images in the test set. The training set with
appropriate data augmentation was used to fine-tune several CNNs, namely,
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Fig. 5. Sample images of interest scenes from ImageNet

highly accurate state-of-the-art Inception v3 architecture and fast MobileNet v1
and MobileNet v2 with width multipliers α = 1 and α = 1.4. At first, all the
layers of the pre-trained model were freezed, and the weights of the new fully
connected layer were trained with the Adam optimizer (learning rate 0.001)
during 10 epochs. Next, all weights were optimized during 40 epochs by the
stochastic gradient descent method (learning rate 0.0001) with early stopping.

We examined several classification techniques for inclusion into our final
pipeline. In particular, we focused on classification of: (1) features at the output
of the last by one layer of the CNN, which was pre-trained on the ImageNet-
1000 dataset, which does not intersect with our data; and (2) predictions (scores)
extracted by the fine-tuned CNN. Moreover, we added the classification of object
detection scores (Faster R-CNN trained on the Open Image Dataset v2) into
the final ensemble. The linear SVM (LinearSVC from Scikit-learn library) was
used as a classifier because it obtained the highest accuracy when compared
to other classifiers (RF, SVM with radial basis functions) in our preliminarily
experiments. In addition, we implemented the factorization machines (FM) [17],
which learns the binary classification, i.e., prediction whether the image contains
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particular category or not. The negative examples in the FMs were generated
by selecting the instances with the closest features. The FM is known to be able
to estimate interactions even in problems with huge sparsity where RF or SVM
fail [17]. The accuracy of all classifiers are presented in Table 1.

Table 1. Accuracy (%) of scene recognition models

MobileNet
v1

MobileNet v2,
α = 1

MobileNet v2,
α = 1.4

Inception
v3

Fine-tuned CNN 76.84 78.66 80.02 82.22

Pre-trained features, FM 18.5 21.34 22.76 24.27

Pre-trained features, SVM 78.25 83.6 85.12 86.38

Fine-tuned scores, FM 24.11 27.8 28.92 29.0

Fine-tuned scores, SVM 72.76 76.25 77.9 77.91

Proposed ensemble, FM 48.35 50.8 52.56 53.0

Proposed ensemble, SVM 80.15 85.14 86.39 87.52

Here the SVM classifier for the features of the pre-trained CNN is slightly
more accurate when compared to the complete CNN itself (i.e., with logistic
regression of the same features). The features from the CNN are much more
powerful over classification scores. It is important to emphasize that, in contrast
to such conventional classifiers as SVM or Gradient Boosting, the replacement of
features from the CNN scores to the embeddings from the last average pooling
layer in the FM models decreases the accuracy.

Though single classification of the object detection scores has 56% error rate,
its inclusion into the final ensemble slightly increases the validation accuracy.
The gain is especially noticeable for the FM, which was claimed to be more
appropriate for sparse data. Hence, their usage with sparse scores from object
detection model caused an increase of accuracy up to 24%. Anyway, the classi-
fication scores are much more representative in this task: even SVM for simple
scores extracted from the pre-trained MobileNet v1 achieved 10% higher accu-
racy. The proposed approach up to 5% more accurate when compared to conven-
tional fine-tuned models. However, detection scores for the SVM classifier give
no more than 0.5% to the overall accuracy. As the inference time in the Faster
R-CNN with InceptionResNet backbone is approximately equal to 500 ms even
on GTX1080 Ti GPU, the object detector can be excluded from the ensemble if
the running time is critical. In such case the most appropriate for offline mobile
applications will be the classification of the features extracted by the MobileNet
v2 network [4].
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4 Conclusion and Future Works

In this section we examined several ways to recognize scenes for visual user
preference prediction engine. We experimentally evaluated known techniques
to classify the whole scene. It was found that simple MobileNet v2 with
α = 1.4 is the best choice for offline mobile applications with strict constraints
to the running time. However, the remote processing of public scenes should be
better implemented with the proposed pipeline (Fig. 1) using fusion of classifiers
based on the deep CNN (Inception v3 in our experiments). Our approach was
implemented in a special mobile application (Fig. 4). It is important to highlight
that the factorization machines cannot improve the accuracy when compared to
simple CNN-based scene recognition.

In future research, we are planning to test the proposed approach on other
datasets with large number of scenes, e.g., the Places2 dataset [5]. In addition,
it is important to extend our solution for predicting the user preferences from a
set of photos rather than process each photo independently [18]. If the number
of classes is large, approximate nearest neighbor methods [13] and fast sequen-
tial analysis [11] can be applied. Finally, the object detector speed should be
significantly increase by using either one-shot detectors or appropriate methods
for detecting of salient objects [9].

Acknowledgements. The article was prepared within the framework of the Academic
Fund Program at the National Research University Higher School of Economics (HSE
University) in 2019 (grant No. 19-04-004) and by the Russian Academic Excellence
Project “5–100”.

References

1. Prince, S.J.: Computer Vision: Models Learning and Inference. Cambridge Univer-
sity Press, Cambridge (2012)

2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

3. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017)

4. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals
and linear bottlenecks: mobile networks for classification, detection and segmenta-
tion. arXiv preprint arXiv:1801.04381 (2018)

5. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million
image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell.
40(6), 1452–1464 (2018)

6. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 91–99 (2015)

7. Bayat, A., Do Koh, H., Kumar Nand, A., Pereira, M., Pomplun, M.: Scene grammar
in human and machine recognition of objects and scenes. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
1992–1999 (2018)

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1801.04381


430 A. V. Savchenko and A. G. Rassadin

8. Jian, M., et al.: Saliency detection based on background seeds by object proposals
and extended random walk. J. Vis. Commun. Image Represent. 57, 202–211 (2018)

9. Jian, M., et al.: Assessment of feature fusion strategies in visual attention mech-
anism for saliency detection. Pattern Recogn. Lett. (2018, in press). https://doi.
org/10.1016/j.patrec.2018.08.022

10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: Proceedings of the International Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE (2009)

11. Savchenko, A.V.: Sequential three-way decisions in multi-category image recogni-
tion with deep features based on distance factor. Inf. Sci. 489, 18–36 (2019)

12. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-
shelf: an astounding baseline for recognition. In: Proceedings of the International
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 806–813. IEEE (2014)

13. Savchenko, A.V.: Maximum-likelihood approximate nearest neighbor method in
real-time image recognition. Pattern Recogn. 61, 459–469 (2017)

14. Savchenko, A.V., Belova, N.S.: Unconstrained face identification using maximum
likelihood of distances between deep off-the-shelf features. Expert Syst. Appl. 108,
170–182 (2018)

15. Rassadin, A., Gruzdev, A., Savchenko, A.: Group-level emotion recognition using
transfer learning from face identification. In: Proceedings of the 19th International
Conference on Multimodal Interaction (ICMI), pp. 544–548. ACM (2017)

16. Tarasov, A.V., Savchenko, A.V.: Emotion recognition of a group of people in video
analytics using deep off-the-shelf image embeddings. In: van der Aalst, W.M.P.,
et al. (eds.) AIST 2018. LNCS, vol. 11179, pp. 191–198. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-11027-7 19

17. Rendle, S.: Factorization machines. In: 10th International Conference on Data
Mining (ICDM), pp. 995–1000. IEEE (2010)

18. Savchenko, A.V.: Probabilistic neural network with homogeneity testing in recog-
nition of discrete patterns set. Neural Netw. 46, 227–241 (2013)

https://doi.org/10.1016/j.patrec.2018.08.022
https://doi.org/10.1016/j.patrec.2018.08.022
https://doi.org/10.1007/978-3-030-11027-7_19


Chinese Address Similarity Calculation
Based on Auto Geological Level Tagging

Jing Liu1, Jianbin Wang2(B), Changqing Zhang2, Xiubo Yang2, Jianbo Deng3,
Ruihe Zhu3, Xiaojie Nan2, and Qinghua Chen1(B)

1 School of Systems Science, Beijing Normal University, Beijing 100875, China
qinghuachen@bnu.edu.cn

2 Credit Harmony Research, Building 3 District 3 Hanwei International,
Beijing 100071, China

jianbinwang@creditharmony.cn
3 Swarma Club, 4059 Building 1, 1 Shuangqing Road, Beijing 100085, China

Abstract. How to quickly measure the similarity of addresses has
become an urgent need in various fields including financial anti-fraud.
Traditional string-based similarity calculation methods have not com-
pleted this task perfectly. Taking into account the hierarchical nature of
addresses, we constructed a framework for calculating the similarity of
Chinese addresses. First, the whole address strings are split and anno-
tated with proper level by a LM-LSTM-CRF model, and then sub-string
level similarities are calculated. Last, similarity scores are combining by
BP neural networks. This framework has achieved good results in prac-
tice for financial anti-fraud tasks.

Keywords: Address similarity · Auto geological level tagging ·
LM-LSTM-CRF model

1 Introduction

Internet finance, the new business model, has brought new growth points but
also new challenges to risk management. Among them, group fraud is partic-
ularly prominent [8]. How to quickly measure the similarity of addresses has
become an urgent need in the field of financial anti-fraud, because some inter-
net financial companies in China have found there existing similarities between
addresses of these swindling gang [16]. Besides, such similarity comparison task
also has applications in many fields such as logistics transportation, government
management, etc.

Formally, an address is presented as a string and the similarity of two
addresses should be performed by similarity computation of strings. A quantita-
tive way to determine whether two strings are similar is based on some certain
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similarity functions [7]. In general, it can be classified as string similarity metric
and semantic similarity.

String similarity metric measures the similarity between two strings by
matching or comparison. Levenshtein distance is very commonly used to calcu-
late the similarity between the given two strings by counting the minimum num-
ber of operation needed to transform one string into another one [17]. Besides,
the longest common subsequence (LCS) similarity measures the longest total
length of all the matched substring between two string where this sub-string
appear in the same order as they appear in the other string [9]. Kondrak et al.
showed that edit distance and the length of the longest common subsequence are
special cases of the so-called n-gram distance and similarity, respectively [11].

Semantic similarity, on the other hand, measures the similarity between texts
or documents on the basis of their meaning rather than symbolic matching [1].
It uses the methods of corpus-based and knowledge-based measures [7]. Corpus-
based similarity concerns the similarity between words on the basis of informa-
tion obtained from a large corpus. Knowledge-based similarity sets the degree of
similarity between words by using information derived from semantic networks.
“WordNet” [4] and Natural language Toolkit (NLTK) [15] are popular semantic
networks to measure the knowledge-based similarity between words.

Although these similarity methods are becoming more and more mature and
have achieved good results in many aspects [14], they are not effective in com-
paring the similarity of addresses. Address data is different from general strings
and it is hierarchical. For example, a typical Chinese address can be divided into
provinces, county, city, town, district, village, road etc. and symbols at different
levels cannot be compared directly [2]. Moreover, the contribution of different
levels to the dissimilarity is different. How to integrate different levels of infor-
mation is also an urgent problem to be solved.

In this paper, we propose a novel approach for address similarity calculation.
First, the address strings are split into sub-strings at different levels, and then
substrings are compared by string similarity metric and also in a semantic way.
Finally, we integrate these similarity scores to get a similarity index. In detail, we
apply a so-called LM-LSTM-CRF architecture to annotate addresses and divide
them into different levels. We calculate the similarity belonging to the same level
by word2vec and other methods. Then we synthesize them into a neural network
at last. The remainder of the paper is organized as follows. Section 2 describes
relative works including sequence tagging models used in this paper. Section 3
shows the whole framework and training procedure. Section 4 reports the results
of the experiments. Section 5 discusses and draws conclusions.

2 Related Work

2.1 String Similarity Metric

Levenshtein Distance. Levenshtein distance is a way of quantifying the sim-
ilarity of two strings by counting the minimum number of operations (including
insertion, deletion and substitution) required to transform one string into the
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other [10]. For example, the Levenshtein distance between and
is 2. We define Levenshtein distance of two strings A and B:

Sedit (A,B) = 1 − L (A,B)
max (|A| , |B|) , (1)

where the value of Sedit is constrained to the range of [0, 1]. Here, |A| and |B|
are the length of A and B respectively, and L (A,B) is the Levenshtein distance
between them. max(·) is a function which returns the maximum one.

Pinyin Edit Distance. At present, the input of Chinese characters is mainly
based on pinyin input method, which is often mistaken for homonyms [3].
Although pinyin input methods adopt some automatic error correction tech-
nology, the final results also have some errors especially when one needs to
type quickly at the counter. For example, and are different
provinces in China, but they have the same pinyin “shanxisheng” and there
will be confusion at some points. We can also define the pinyin edit distance as
follows

Spyedit (A,B) = Sedit (PA, PB) = 1 − L (PA, PB)
max (|PA| , |PB |) . (2)

Here PA, PB are pinyin of A and B.

2.2 Semantic Similarity Methods

Word2vec Similarity. Word2vec is a tool based on shallow neural networks
and released by Google in 2013. Through continuous bag-of-words (CBOW) or
continuous skip-gram procedure, words are projected into a high dimensions
space. Words with similar meanings are closer in space. Word2vec provides an
easy comparison in the semantic similarity between words because each word is
represented as a vector [18]. We define word2vec similarity as

Sw2v (A,B) =
XA·XB

‖XA‖ ‖XB‖= cos (XA,XB) . (3)

Here XA and XB are the word vectors in semantic space and ‖ · ‖ donates the
norm of vectors.

3 Methodology

3.1 LM-LSTM-CRF Model

Linguistic sequence labeling is a fundamental framework. It has been applied to
a variety of tasks including part-of-speech (POS) tagging, noun phrase chunking
and named entity recognition (NER) [12].

In the past few years, distributed representations, also known as word embed-
dings, have been broadly applied to natural language processing (NLP) problems
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with great success. Recently, recurrent neural networks (RNN) [6], together with
its variants such as long-short term memory (LSTM) [5] have shown great success
in modeling sequential data. But their performance drops rapidly when models
solely depend on word embeddings [13].

In 2016, Ma etc. first use convolutional neural networks (CNNs) to encode
character-level information of a word into its character-level representation. They
combine character-level and word-level representations and feed them into bi-
directional LSTM (BiLSTM) to model context information of each word and get
significant performance [13]. After that, Liu etc. propose an effective sequence
labeling framework called LM-LSTM-CRF, which leverages both word-level and
character-level knowledge in a more efficient way [12]. In this paper, we will
adapt the LM-LSTM-CRF architecture to make auto tagging.

3.2 Framework

The whole framework used in this paper is present as Fig. 1.

Fig. 1. The framework of our model. Two addresses are labeled by the LM-LSTM-CRF
model.

As shown in this framework plot, after cleaning the address data, word
segmentation is carried out, and the sequentially connected sub-strings are
obtained. Then each sub-string is labeled by the LM-LSTM-CRF model at the
proper address levels. The same level of substrings are compared by some men-
tioned methods including word2vec similarity, edit distance and search similarity.
Finally, we synthesize these comparison results into a similarity index through
BP neural networks.
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Before running, the LM-LSTM-CRF model and BP neural networks need to
be trained respectively.

3.3 Training Procedure

We established the LM-LSTM-CRF model with adaptation of source code
from https://github.com/LiyuanLucasLiu/LM-LSTM-CRF. The procure of the
model is shown in Fig. 2.

Fig. 2. The LM-LSTM-CRF model in our framework. The figure is adapted from [12].

For a sentence with annotations y = (y1, ..., yn), its word-level input is
marked as x = (x1, x2, ..., xn), where xi is the ith word and its character-level
input is recorded as c = (c0, , c1,1, c1,2, ..., c1, , c2,1, ..., cn, ), where ci,j is the j-th
character for word xi and ci, is the space character after xi.

Some necessary adjustments for Chinese address data are made, and then
the following training operations are carried out as follows:

Data Collection and Cleaning. We first collected enough Chinese address
string data, remove extraneous characters and then complete the address string
data through standard address library completion, correction and other normal-
ization processing.

Word Segmentation and Reintegration. Through word segmentation
software and standard operation based on address-preserving words such as
“province”, “city”, “district”, “town” and “road”, we decomposed address
strings into sequentially substrings. Merging operation is also needed after
exceeding constrain.

https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
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Manual Address Level Annotation. The sub-strings of the address string
are labeled according to certain address administrative divisions standards. This
step is to obtain absolutely accurate and reliable data.

Random Grouping and Training. Based on hierarchically labeled address
substring data, immense amounts of the artificial complete sequence of address
strings could be generated by random grouping. Finally we trained our LM-
LSTM-CRF model.

After that, we constructed BP networks with one hidden layer. The number
of input nodes corresponds to the results of similarity computation results. The
last layer of neural networks output the final similarity score.

3.4 Address Levels

Comparing to American address, Chinese address is more complicated. In
https://en.wikipedia.org/wiki/Administrative divisions of China, there are 5-
layered main administrative divisions of China. Some smaller address levels
are discussed in related sources including “Industry standards of the People’s
Republic of China (CJJ/T 106-2010. No. J455-2010)” and literature [19]. Based
on these research, we set the address levels of China shown as in Table 1. General
addresses do not contain all levels, for example, there will be no 5 and 6 levels
in the city address. The well trained LM-LSTM-CRF model will calibrate the
corresponding levels for the input address substrings.

Table 1. Address levels of China.

https://en.wikipedia.org/wiki/Administrative_divisions_of_China
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4 Results

We started with 1337 Chinese address with manual address level annotation.
By random grouping process described in Sect. 3.3, we obtained about 1,400,000
tagged data for training the LM-LSTM-CRF model. Then with the well-trained
LM-LSTM-CRF model, we trained the BP neural networks.

For the task of address similarity calculation, we deployed five servers with
Centos 6.7, 32G RAM and 16 cores 32 threads processor. One of them is respon-
sible for scheduling and four are responsible for calculations. It takes 2.5 h to
complete the similarity calculation of 550 million pairs of address data. We then
obtained the accuracy, recall rate and F1 score on the test set, as shown in
Table 2. Our model has performed well compared to traditional methods such as
word2vec and edit distance. Besides, our framework deployed on the server can
process about 60,000 pairs of address data in one second, which also meets the
requirements in terms of efficiency.

Table 2. Our results for address similarity calculation.

Method Accuracy Recall F1 score

LM-LSTM-CRF + BP 87.42% 98.94% 87.44%

word2vec 72.23% 74.68% 72.91%

edit distance 65.81% 69.29% 66.98%

5 Conclusions and Discussion

Considering the hierarchical nature of Chinese address strings, in this paper we
combined word segmentation, LM-LSTM-CRF model, sub-string level similarity
calculation and BP neural networks to calculate the similarity of two Chinese
address strings. With the well trained model, a large scale calculation can be car-
ried out quickly and the accuracy rate can be guaranteed. Besides, the framework
can be easily extended and we also applied our framework to other tasks such
as recognition of company names. The applications of the model are helpful for
companies and governments in various respects.
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Abstract. Current detectors for saliency detection adopt deep convolu-
tional neural networks to continuously improve accuracy, but the results
are still not satisfactory. We propose Multiple Receptive Field Aggre-
gating Module (MRFAM) that can capture abundant context informa-
tion to enhance feature representation. We assemble it into a novel net-
work to predict saliency maps. Extensive experiments on six benchmark
datasets demonstrate that the module is efficient and our proposed net-
work can accurately capture salient objects with sharp boundaries in
complex scene, performing favorably against the state-of-the-art meth-
ods in term of different evaluation metrics.

Keywords: Saliency detection · Deep learning · Feature representation

1 Introduction

Saliency detection aims to accurately localize the most prominent regions then
separate them from complex scenes, which can be considered as pre-processing
instrument in plenty of computer vision tasks, such as visual tracking [1], scene
classification [2], image retrieval [3] and person re-identification [4].

In this visual task, abundant context information plays a crucial role. Tradi-
tional methods [5,6] design various hand-crafted features which are not robust
enough to detect salient objects when they encounter complex and cluttered
scenes. Because they are derived from the prior knowledge of previous datasets
which can’t be extended to be successfully useful in diverse situations.

Recently, significant accuracy gains in saliency detection have been obtained
through the combination with Fully Convolutional Network (FCN) [7]. Although
these models consist of various structures to extract features, the results are still
far away from being satisfactory. Because most previous FCN-based saliency
detection methods simply stack single-scale convolutions with limited receptive
fields, this operation will result in the learned convolutional features not contain-
ing rich semantic information and texture information to precisely detect salient
targets especially those having small scales, irregular shapes and sporadic loca-
tions. In addition, the receptive fields of these models are several sets of square

c© Springer Nature Switzerland AG 2019
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Fig. 1. Visual comparison of our proposed network and GBMPM [10]. From left to
right: (a) Input images, (b) Ground truth, (c) GBMPM, (d) Our network.

due to the use of regular kernel shape, so the resulting features tend to be less
distinctive when they aim to detect salient targets with complex boundaries such
as flowers and animals (Fig. 1).

In this paper, we propose Multiple Receptive Field Aggregating Module
(MRFAM) that can capture abundant information to enhance feature repre-
sentation. We assemble it into a novel network to predict saliency maps. The
contributions of our research can be summarized as follows:

(1) We propose a multiple receptive field aggregating module to extract abun-
dant context information.

(2) WeassembleMRFAMinto anovel network for saliencydetection.Quantitative
and qualitative experiments on six benchmark datasets demonstrate the effec-
tiveness of the module. In addition, the proposed network performs favorably
against the state-of-the-art algorithms under different evaluation metrics.

2 Related Work

Szegedy [9] launches inception that contains multiple branch CNNs with different
convolutional kernels to extract features from different receptive fields. Yu [13]
proposes dilated convolution which support exponential expansion of the recep-
tive field without loss of resolution or coverage. It applies four parallel dilated
convolutions with different dilated rates to systematically aggregate multi-scale
contextual information. Zhang [10] designs a MCFEM to extract multi-scale con-
textual features by stacking dilated convolutions with different receptive fields.
Xie [8] illustrates that increasing branch is able to improve accuracy and is more
effective than going deeper or wider when we increase the capacity, so it designs a
homogeneous multi-branch architecture to extract feature. Although these FCN-
based models have used different structures to promote accuracy, the effect is
still not optimal. Because the receptive fields of these models are several sets
of square due to the use of regular kernel shape, which is not robust enough to
detect salient objects with small scales, irregular shapes and sporadic locations.
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3 The Proposed Method

Multiple Receptive Field Aggregating Module. We attempt to decompose
a complex object into multiple small parts and then separately detect them which
is shown as Fig. 2. Firstly, we adopt dilated convolutions with rectangle kernel
shape such as 1 × 5, 1 × 7 to captures structural information about object in a
certain direction. Then we adopt dilated convolutions with different dilated rates
to adjust receptive field, followed by a 1 × 1 convolution. The resulting feature
maps are combined by cross-channel concatenation. In this way, we decompose
a region into horizontal and vertical directions. The differences in shape and size
of receptive fields are beneficial to detect complex edge regions. We integrate the
above structure into MCFEM [10], proposing Multi Receptive Field Aggregating
Module (MRFAM) to better extract features. In order to compare MCFEM
and MRFAM fairly, we need to ensure that the feature dimension of output in
MRFAM is the same as MCFEM, so we reduce the feature dimension of MCFEM
in MRFAM to half of the original.

Fig. 2. Left: directional feature extraction. Right: the structure of MRFAM. We inte-
grate directional feature extraction with MCFEM, proposing our MRFAM. The block
with (A×B×C, dilated = D) denotes dilated convolutions with kernel size A×B; C is
the output channel, and D is the dilated rate. Concat denotes cross-channel concate-
nation.

Network Architecture. We assemble the MRFAM into a novel network to
predict saliency maps. Our network applies pre-trained VGG16 [12] as the feature
extraction network to produce a set of feature maps with different scales. Since
our network is for pixel-wise dense prediction, we discard all the fully connected
layers as well as the last pooling layer simultaneously. We resize the input image
to 256 × 256. The revised VGG16 provided feature maps from different side
output layers that can be represented as F = {fi, i = 1, 2, 3, 4, 5}. We add the
Multiple Receptive Field Aggregating Module (MRFAM) after each side output
to capture information, obtaining fc

i . Low-level spatial details in shallow layers
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can retain fine-grained object boundaries, while high-level semantic features in
deep layers can locate where the salient objects are [14]. In order to take full
advantages of multi-level features, we adopt a series of operations to combine
different level features. This process can be performed by:

h0
i = Concat(fc

i , Up(fc
i+1)), i = 1, 2, 3, 4 (1)

h1
i = Relu(Conv(h0

i ; θ
1
i )), i = 1, 2, 3, 4 (2)

h2
4 = Relu(Conv(h1

4; θ
2
4)) (3)

h2
i = Relu(Conv(Concat(h1

i , Up(h2
i+1∼4)); θ

2
i )), i = 3, 2, 1. (4)

h3 = Concat(h2
1, Up(h2

2), Up(h2
3), Up(h2

4)) (5)

where Up() is an up-sample operation to adjust the size of feature maps in deep
layers; Concat() denotes cross-channel concatenation and Conv(∗; θ) represents
a 3× 3 convolution with parameter θ = {W, b}; Relu() denotes ReLU activation
function. Finally, as previous methods, we adopt a convolution with kernel size
3× 3 at the end of network to infer saliency maps. The structure of our network
is shown in Fig. 3.

Fig. 3. The structure of our network.

To investigate the effectiveness of MRFAM, we will replace MRFAM with
MCFEM, and then compare their results. The details of the experiment will be
introduced in Sect. 4.2.
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4 Experiments

4.1 Experimental Setup

Experimental setup consist of three parts: datasets, evaluation metrics and
implementation details.

Datasets. We compare the proposed architecture and other previous algo-
rithms on six benchmark datasets: ECSSD, PASCAL-S, HKU-IS, DUTS, DUT-
OMRON and SOD. DUTS consists of two parts, DUTS-TR and DUTS-TE.

Evaluation metrics. Three metrics are utilized to better evaluate the perfor-
mance of our architecture and other 11 state-of-the-art algorithms for salient
object detection, including Precision-Recall (PR) curves, Maximum F-measure
and Mean Absolute Error (MAE). The precision and recall are calculated by
thresholding the predicted map and comparing the binary segmentation with
the ground truth. F-measure represents the overall performance:

Fβ =
(1 + β2) × Precision × Recall

β2 × Precision + Recall
, (6)

where we set β2 to 0.3 as suggested in previous work. Maximum F-measure can
well reflect the performance of the proposed model. The formula of MAE is as
follows:

MAE =
1

W × H

W∑

x=1

H∑

y=1

|S(x, y) − G(x, y)|. (7)

Implementation details. In our proposed model, the parameters of the first 13
convolutional layers are initialized by pre-trained VGG16 net, while the weights
of other convolutional layers are initialized by using truncated normal method.
We utilize the DUTS-TR dataset to train the proposed model. For data aug-
mentation, we extend the training set by horizontal flipping and vertical flipping.
The architecture is trained until its training loss converges, without using valida-
tion. Adam is adopted to train the proposed network. The batch size N and the
initial learning rate are set to 1 and 1e-6 respectively. The proposed architecture
converges after 10 epochs by a NVIDIA TITAN X (Pascal) GPU that is adopted
to accelerate the convergence speed.

4.2 Performance Comparison with State-of-the-art

We will demonstrates the effectiveness of MRFAM and our proposed network
respectively.

(1) To better illustrate the effectiveness of the MRFAM, we replace MRFAM
with MCFEM, doing additional experiment in six benchmark datasets. Com-
parison results are shown in Table 1, which demonstrates the performances
of their results in term of the metrics of Maximum F-measure and MAE.
MRFAM outperform MCFEM across all the datasets under different mea-
surement.
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(2) The proposed architecture is compared with existing 11 state-of-the-art algo-
rithm (PiCANet [15], Amulet [16], GBMPM [10], DCL [17], DHS [18], DSS
[14], ELD [19], NLDF [20], RFCN [21], SRM [22], UCF [23]). In order to
fairly compare the performance between these algorithms, saliency predic-
tion of different algorithms are provided by official source or generated by
running available codes. Table 2 illustrates that our proposed architecture
perform better than other algorithms across nearly all benchmark datasets
in term of Maximum F-measure and MAE. From Fig. 4, it can be observed
that the PR curves of our architecture outperform other algorithms on six
datasets. Some saliency predictions randomly selected from testing set are
listed in Fig. 5, showing that the proposed network can accurately capture
salient objects with sharp boundaries in complex scene.

Table 1. We replace MRFAM with MCFEM in our network, and compare their effec-
tiveness under the metrics of maximum F-measure and MAE.

Modules SOD HKU OMRON PASCAL ECSSD DUTS-TE

Fmax MAE Fmax MAE Fmax MAE Fmax MAE Fmax MAE Fmax MAE

MRFAM 0.857 0.111 0.927 0.035 0.807 0.059 0.867 0.078 0.935 0.041 0.854 0.049

MCFEM 0.852 0.105 0.921 0.037 0.798 0.062 0.857 0.080 0.931 0.042 0.843 0.053

Table 2. The performances of different algorithms in term of the metrics of MAE and
Maximum F-measure.

Methods SOD HKU OMRON PASCAL ECSSD DUTS-TE

Fmax MAE Fmax MAE Fmax MAE Fmax MAE Fmax MAE Fmax MAE

Ours 0.857 0.111 0.927 0.035 0.807 0.059 0.867 0.078 0.935 0.041 0.854 0.048

PiCANet 0.855 0.108 0.921 0.042 0.794 0.068 0.880 0.088 0.931 0.047 0.851 0.054

GBMPM 0.851 0.106 0.920 0.038 0.774 0.063 0.862 0.074 0.928 0.044 0.850 0.049

Amulet 0.808 0.145 0.896 0.052 0.743 0.098 0.858 0.103 0.915 0.059 0.778 0.085

DCL 0.825 0.198 0.885 0.137 0.739 0.157 0.823 0.189 0.901 0.075 0.782 0.150

DHS 0.827 0.133 0.902 0.054 0.758 0.072 0.841 0.111 0.907 0.060 0.829 0.065

DSS 0.846 0.126 0.911 0.040 0.771 0.066 0.846 0.112 0.916 0.053 0.825 0.057

ELD 0.760 0.154 0.839 0.074 0.720 0.088 0.773 0.123 0.867 0.079 0.738 0.093

NLDF 0.837 0.123 0.902 0.048 0.753 0.080 0.845 0.112 0.905 0.063 0.812 0.066

RFCN 0.807 0.166 0.898 0.080 0.738 0.095 0.850 0.132 0.898 0.095 0.783 0.090

SRM 0.845 0.132 0.906 0.046 0.769 0.069 0.847 0.085 0.917 0.054 0.827 0.059

UCF 0.803 0.169 0.886 0.074 0.735 0.132 0.846 0.128 0.911 0.078 0.771 0.117
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Fig. 4. Precision-Recall curves of the proposed network and 11 state-of-the-art algo-
rithms on six benchmark datasets.

Fig. 5. Visual comparisons of the proposed network and previous state-of-the-art algo-
rithms on different scenes.

5 Conclusion

In this paper, we propose Multiple Receptive Field Aggregating Module
(MRFAM) that can capture abundant information to enhance feature represen-
tation. We assemble it into a novel network to predict saliency maps. Extensive
experiments on six benchmark datasets demonstrate that the module is efficient
and our proposed network can accurately capture salient objects with sharp
boundaries in complex scene, performing favorably against other state-of-the-
art algorithms in term of different evaluation metrics.
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Abstract. Given a low-resolution binary document image, we aim to
improve its perceptual quality for enhanced readability. We have proposed
a simple, deep learning basedmodel, that uses convolutionwith transposed
convolution and sub-pixel layers in the best possible way to construct the
high-resolution image. The proposed architecture scales across the three
different scripts tested, namely Tamil, Kannada and Roman. To show that
the reconstructed output has enhanced readability, we have used the objec-
tive criterion of optical character recognizer (OCR) character level accu-
racy. The reported results by our CTCS architecture shows significant
improvement in terms of the subjective criterion of human readability and
objective criterion of OCR character level accuracy.

Keywords: Readability · Binary document image · Super-resolution ·
Deep learning · OCR

1 Introduction

The perceptual quality of binary document images can be ascertained in terms
of the subjective criterion of human readability and the objective criterion of
the character level accuracy (CLA) of an optical character recognizer (OCR). In
this work, our primary goal is to improve the quality of low-resolution, binary
document images for better human readability. OCR character level accuracy is
used as a metric to objectively show that the quality of the document images has
significantly improved. Thus, a secondary objective for the proposed technique
can be as a preprocessing step before feeding a low resolution, document image
as input to an OCR.

The performance of an OCR in terms of character and word level accura-
cies decreases when the documents are of very poor quality and resolution (see
Table 1). Language models can be applied, as a post-processing step, on the text
output by the OCR to correct the recognition errors. Alternately, a new classi-
fier can be designed to operate on the low-resolution character images and still
achieve good accuracy.

In this work, while dealing with our primary goal, we address three differ-
ent tasks: (i) improving the human readability of the documents, (ii) improv-
ing the quality of the input image such that the existing OCRs perform well
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11555, pp. 448–459, 2019.
https://doi.org/10.1007/978-3-030-22808-8_44
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(the character level accuracy of the OCR should be better than that on the
input image), (iii) ensuring that the method works on multiple languages and
resolutions. The advantages of this approach are: (i) low-resolution images stored
on digital libraries are rendered better for direct human readability. (ii) We can
avoid designing a new classifier to operate on such low-resolution document
images. This reduces the burden of changing the design of the existing OCRs by
training the classifier for each language independently, which in turn needs huge
training data from each of these languages.

We have approached to solve the above-mentioned problem using techniques
based on deep learning. Given an LR document image, the challenge is to gener-
ate a HR version of it, which should be perceived by a human as better readable,
than the corresponding input image. Also the OCR should achieve higher CLA
on the reconstructed output. This problem was earlier attempted in [4–7]. In [4],
the authors have shown that the quality of the down-sampled version of the doc-
ument image can be enhanced and brought to that of the input image. In [5], the
authors have proposed an efficient convolutional neural network (CNN) architec-
ture, coupled with bicubic interpolation, to achieve better performance in terms
of OCR accuracy, starting from a down-sampled version of the same image.
In [6], the authors have used the traditional interpolations (bicubic, bilinear and
nearest neighbor), coupled with CNN, to achieve better performance in terms of
WLA, when the input image is directly fed to the model. In [7], the authors have
shown language dependent quality enhancement of document images. Motivated
by these works, that aim to enhance the quality of low-resolution input images
for better OCR recognition, here we propose an architecture which can upscale
any low-resolution document image and improve the perceptual quality so that
humans find it easy to read and also the generated output should have more
recognition accuracy than the input. The architecture developed here is for an
upscaling factor of 2. Our contributions can be summarized as follows:

– We have performed comprehensive experiments on a huge collection of doc-
ument images. We found that the OCR character level accuracies can be
increased by improving the resolution of poor resolution, binary document
images as shown in Table 1.

– We define, formulate and address (to a good extent) this problem of increas-
ing the perceptual quality of binary document images for better human
readability.

– We have used state-of-art deep learning techniques to find the optimal and
judicious combination of transposed convolution [10] and sub-pixel [11] layers
to obtain super-resolution of binary document images.

– We have created a unique dataset that captures maximum possible variations
in the input image space, particularly to address this challenging problem
(details in Sec. 4).

– To our knowledge, this is the first report on the enhancement of the perceptual
quality of document images for better human readability. (see Table 2).

– Our proposed algorithm enhances the quality of low-resolution binary docu-
ment images and improves the OCR (CLA) by a good margin.
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– Our algorithm works independent of the three languages and the resolutions
it has been tested so far.

2 Related Work

Image super-resolution is a well-known problem for natural images. There
are mainly two classes of image super-resolution, namely, single image super-
resolution (SISR) and multi-image super-resolution (MISR). SISR has been the
focus of many important publications [14–19]. The main assumption in all these
papers is that the image in the LR space has the same local geometry as that
of the image in the HR space. The researchers have endeavored to find out the
representation common for both the spaces, using which the HR image can be
formed. In [15], the authors have found out the common representation in the
concatenated feature space of LR and HR dictionaries.

2.1 Traditional Approaches Not Based on Deep Learning

Some traditional approaches that deal with enhancing the quality of document
images for better OCR recognition are mentioned below. Shi et al. [1] deal with
the removal of noise (large blob or clutter noise, salt, and pepper noise) and non-
text objects such as form line or rule lines from handwritten document images.
They describe a region growing algorithm to fix salt and pepper noise. They also
provide an approach to eliminate noisy artifacts that include multiple categories
of degradation.

A non-parametric, unsupervised method is presented in [2] to deal with color
or gray images e.g. camera captured or mobile document images. It Uses con-
trast limited, adaptive histogram equalization separately on HSV color space,
an optimal conversion algorithm to transform the document image to the gray
level and un-sharp masking to sharpen the useful information. The sharpened
image is binarized by Otsu algorithm and fed to the OCR to obtain the final
text.

Kumar et al. [3] have extended the application of sparse coding and dictio-
nary learning techniques. Here, the basis/atoms of the dictionary for the binary
document image are learnt by treating binary document images as distinct from
natural images. They claim that their method restores degradations such as cuts,
merge, blobs and erosion in the document. Besides these, there are reports in
the literature that deal with noise removal from the document images with the
sole aim of improving the OCR accuracy.

All the approaches mentioned above are used to improve the OCR accuracy
for certain kinds of degradation (noise) associated with the input image. How-
ever, none of them deal with the improvement in the resolution of the input image
or aim to enhance the readability of the document images, where, originally, a
lot of missing pixels might have resulted in changes in the shape, structure and
interpretation of the characters.
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2.2 Approaches Based on Deep Learning

Since the advent of deep learning based models like [17], investigators have
learned a multiple layer representation of the input images (called features)
to capture maximum variations in the input image space. Once such a model is
learned, they have used it to construct a HR from a single LR image. However, to
our knowledge, the problem of super-resolution of binary document images has
not been attempted prior to its conception in the recent papers [4–6]. In [4,5],
the authors have shown that the downsampled version of a document image
can be worked upon to reconstruct an image of the original resolution. How-
ever, these techniques fail to generalize, when one inputs a LR binary document
image directly, and not a downsampled version of an existing HR image. The
technique of nonlinear fusion of multiple interpolations (NFMI), proposed in [6],
performs direct upscaling of a Tamil document image scanned at any resolution,
to result in a better word level accuracy. The NFMI method uses multiple inter-
polations, together with a CNN, to learn a mapping function, which takes in a
LR document image and produces the corresponding HR image.

In this work, instead of using interpolations to perform convolution in the
high-resolution space, we have used two recent techniques, famous in the deep
learning community, namely transposed convolution [10] and sub-pixel [11] con-
volution to learn the mapping function. Unlike interpolations, transposed convo-
lution layer learns weights from the training data to upscale the image. Hence, it
can capture more variations in the input images and can be used for improving
the quality, independent of the languages. We have created the training dataset
in such a way that it covers maximum possible variations in the input image
space.

3 Motivation

The issue addressed in this work is an actual industrial problem, where a huge
number of documents have been scanned at a low resolution, and unfortunately,
the original documents have been destroyed and hence, are no longer available for
better scanning. The images are of poor quality, also because they are obtained
from very old newspapers. Since the available regional language OCRs have a
very poor recognition performance on these images, we would like to improve
the quality of such images so that humans find it easy to read. It is very difficult
and laborious to manually type and/or correct such a high volume of documents.
Also, some of the images are so degraded that even native people find it uneasy
to read them. Even if we are able to slightly improve the human readability, it
is immensely useful.

Our studies have shown that documents scanned at a resolution of 100 dpi
result in an average OCR accuracy of less than 50%; when the same documents
are scanned at 200 dpi, the same OCR performs reasonably well and gives CLAs
of 80–98%. Hence, it is sufficient for our task, if we can find an optimal model
to upscale the document by a factor of 2. And our proposed architecture gives
a relative improvement of around 51% in terms of CLA.
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4 Dataset Created

The training dataset has been created from binary scanned images of documents
in three different scripts (languages), capturing the multitude of variations in the
input image space. The LR patches are created in three ways: (i) by taking alter-
nate pixels from the HR patches, (ii) degrading the LR patches by multiplying
them element-wise by random masks of zeros and ones, and (iii) by selecting the
patches directly from images scanned at a LR setting of the scanner. The total
number of LR-HR patch pairs created for training is around fifty million. The
LR patches are of size 16 × 16 and the corresponding ground truth patches
are of size 32 × 32. A patch pair is removed, if the LR patch contains only
background pixels.

5 Architecture Advanced

The convolution-transposed-convolution-subpixel (CTCS) architecture proposed
by us for upscaling a document image by a factor of 2 is illustrated in Fig. 1.
The architecture has a convolution block, followed by an upscaling block. The
upscaling block is formed by a transposed convolution, a convolution, and a
sub-pixel layer. The initial convolution block extracts the relevant features from
the input low resolution, binary image. This block uses 48 filters of size 5 × 5,
followed by another layer of 16 filters of size 5 × 5. The transposed convolution
layer has 16 filters of size 9 × 9 to upscale the feature maps to double their
size. The convolution layer between the transposed convolution and sub-pixel
layers is to reduce the number of features to the desired size. The size of the
extracted feature map is decreased because we have used convolution filters
without padding, to remove the artifacts. This convolution layer provides more
non-linearity in the system. These controlled feature maps are passed on to the
sub-pixel layer for upscaling the features to double their size. The sub-pixel layer
takes in a tensor of size 16 × 16 × 4 and gives an output of size 32 × 32 × 1.

Fig. 1. The convolution-transposed convolution-subpixel (CTCS) architecture for 2X
upscaling of binary document images. It is designed to deal with true LR images,
scanned at a low resolution and not simulated LR images obtained by downsampling
original HR images.
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Fig. 2. (a), (c), (e): Tamil, English and Kannada input images originally scanned at
100 dpi. (b), (d), (f): the corresponding 200 dpi output images created by our CTCS
architecture, with moderately enhanced human readability. It can be seen that the
letter / / that appears in every Tamil word ((a) and (b)) has a clearly improved
perceptual quality. In the English images, the letters, “d, o, o, s, g, s” are better
enhanced.

Fig. 3. (a), (c), (e): English, Tamil and Kannada input images originally scanned at 200
dpi. (b), (d), (f): the corresponding output images created by our CTCS architecture
with increased perceptual quality.

5.1 Transposed Convolution (TC)

To train the model, where the input is in a low resolution space and the output
is in a high resolution space, we need a mechanism to first move to the high
resolution space. In an earlier work [4], interpolation techniques such as bicubic,
bilinear and nearest-neighbor, or their combination have been used to take the
LR images to the HR space. Unlike interpolations, transposed convolution [10]
learns the weights to upscale the size of the feature map. Thus, the learning based
techniques may contribute more than the interpolations in taking the image
from a LR to a HR space. The size of the output obtained from the transposed
convolution layer with stride = 1 and padding = 0 is given by o = i + (fs − 1),
where i, o, and fs are, respectively, the spatial sizes of the input feature map,
output feature map and the filter.
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Fig. 4. (a), (b): Input binary image and the corresponding output images (gray scale)
created by our CTCS architecture. (c): image in (b) after gamma correction [20], dis-
playing significantly improved perceptual quality and enhanced readability.

5.2 Sub-pixel Convolution (SC)

Unlike the TC, the sub-pixel convolution [11] is a technique that only rearranges
the feature maps to increase its size or resolution. Hence it is faster than the TC
and achieves good results, if properly positioned as a layer in the architecture.
So, we avoid the use of multiple TC layers and replace the last layer with SC.

6 Training the CTCS Architecture

Given a low resolution, binary document image our goal is to construct a high
resolution image with enhanced human readability and better quality in terms
of CLA and WLA. Let the training set be {Iil , O

i
h}, 1 ≤ i ≤ N , where N is the

total number of patch pairs. The model weights are initialized by the technique
in [13]. For each input Iil , the model builds a high resolution counterpart image,
Ri

h. If there is an error between the produced output and the corresponding
ground truth Oi

h, the weights of the model are adjusted to minimize the mean
square error loss function.

The CTCS model is first trained with the patch pairs from the Tamil docu-
ment image. The trained model is then further tuned on English, and then on
Kannada. During the process of training, we save the weights at different stages
and perform extensive experiments in order to identify the model that works
best on any input image, scanned at any resolution. The model is trained for
a maximum of 25 epochs. To calculate the gradients required while training,
normal back-propagation is used. For adjusting the weights, Adam optimizer [9]
is used with a learning rate of 0.0001, β1 of 0.9 and β2 of 0.99.

7 Results and Discussion

Figure 2 shows the output images for one sample input image each for three
different languages, namely, Tamil, English and Kannada. In each pair of images,
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the top ones are the inputs scanned at a resolution of 100 dpi and the bottom one
are the outputs obtained from our model. The improvement in the perceptual
quality of the images is evident from observing the letter ‘ ’ that occurs as the
last letter of every word in Fig. 2 (a) and (b). Better enhancement is seen in the
English letters, “d, o, g” and the “s” that occurs in the last two words. Figure 3
shows that our CTCS model works independent of the input resolution, where
the perceptual quality of the outputs generated by our model is significantly
better.

Figure 4 (a) shows a sample, Tamil binary image scanned at 150 dpi. (b) and
(c) show the CTCS-reconstructed and gamma corrected images respectively. The
strokes of the characters have become smoother, while preserving the structure,
thus resulting in better readability.

Table 1. Mean character level accuracy of 150 images from the 3 languages, each
containing around 1k characters scanned at different resolutions (100, 200 and 300
dots per inch).

Scanned at 100 (dpi) Scanned at 200 (dpi) Scanned at (300 dpi)

Average CLA 31.2 90.26 95.06

Fig. 5. (a): Input English image originally scanned at 150 dpi. (b): the corresponding
output images created by our CTCS architecture with increase in perceived quality
and ease of readability. (c): image in (b) after gamma correction [20]

Figures 5 (a) and 6(a) show a sample English and Kannada image each,
scanned in binary mode at a resolution of 100 dpi. (b) and (c) show the CTCS-
generated and gamma corrected respectively. In both cases, almost all the char-
acters are better enhanced and hence the readability improves significantly.

Figure 7 illustrates how the loss of pixels changes the shapes of characters.
The loss of one or two pixels from the character ‘m’ of the word ‘problem’ makes
it appear as two characters i.e. r and n. Similar analysis can be done for the
other characters too. In the characters reconstructed by the CTCS architecture,
the strokes are smooth, not pixelated. Also the gaps are filled, preserving the
structure and the meaning of the characters.
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Fig. 6. (a) Input Kannada image originally scanned at 100 dpi. (b) the correspond-
ing output images created by our CTCS architecture. (c) image in (b) after gamma
correction [20]

Fig. 7. (a), (b), (c): Input English, bicubic interpolated and the corresponding output
images created by our CTCS architecture with increase in perceived quality and ease of
readability. In the word ‘love’ character ‘o’ and in the word ‘problem’ character ‘m’ is
broken in both input and the bicubic interpolated output. But the same is reconstructed
in the CTCS architecture

Fig. 8. (a) Input (b) bicubic (c) CTCS (d) input (e) bicubic (f) CTCS (g) Input (h)
bicubic (i) CTCS: All images are scanned at 200 dpi: Shows our model is resolution
independent.

We performed our initial experiments by scanning the images in binary mode
at resolutions of 100, 200 and 300 dpi. Table 1 lists the OCR character level
accuracy on 150 document images, each containing over 1000 characters.

Table 1 show that the images scanned in binary mode with less than 200 dpi
can be treated as low resolution images. Also, results mentioned in the Table 1
suggest that increasing the resolution help in improving the quality of the input
images, that will eventually leads to better readability and OCR character level
accuracy. As it can be seen that just by increasing the resolution by factor
of 2 the OCR recognition accuracy has significantly improved. But these are
at hardware level (means scanner skipping or taking some pixels randomly).
Suppose in the situation where the documents are originally scanned at low
resolution say at 100 dpi and the original document is destroyed. Can we increase
the resolution such document images that the OCR perform well? The first thing
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that strikes our mind is the interpolation such as bicubic, bilinear or any other
super-resolution algorithm can can be used. Traditional interpolation helps in
increasing the OCR accuracy slightly and marginally the readability. To tackle
this real challenging problem we created the dataset mentioned in Sec. 4 and
proposed the architecture shown in Fig. 1. We obtained the mean opinion score
on the perceptual quality of the input and output images from 10 subjects each,
for each of the three languages. The overall MOS of all the evaluators on all the
language documents are listed in Table 2. The HR images obtained by the CTCS
architecture have been evaluated at a MOS of 7.5, as compared to 4.5 for the
input.

Table 2. Mean opinion score (10 point scale) of the enhancement in the perceptual
quality of the document images scanned at 200 dpi

Input CTCS

Average MOS 4.5 7.5

Table 3. Mean character level accuracies (CLA) on 15 document images, 5 each from
Tamil, Kannada and English, before and after upscaling by our CTCS architecture.
Input images are scanned at 100 dpi.

Input CLA% CTCS%

Average CLA 33.1 49.99

Table 3 shows the average character level accuracies obtained from the images
scanned at 100 dpi, and the outputs created by our CTCS architecture. The
results show significant improvements in CLA. The mean improvements in terms
of CLA relative to input is 51%.

Our model is designed to be independent of these three languages and the
resolution and hence, can be applied on document images of any one of them.
Hence, we do not need to change the design of the OCR for the above men-
tioned performance gain. The results can further be enhanced, if we incorporate
(capture) further possible variations in the input training images.

8 Conclusion

We have created a unique and diverse dataset that captures maximum possible
variations in the input image space from documents of three different languages
(key to the success of our model). After performing extensive experiments, We
have obtained an effective architecture based on deep learning, that is trained
on this diverse dataset. We have shown that the proposed method enhances
the perceptual quality of the input document images in terms of the subjective
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criterion of human readability and the objective criterion of OCR recognition,
independent of the languages and resolutions tested. To our knowledge, this is
the first report on enhancement of document images for better readability. Our
method scales across the three languages tested and works for multiple input
resolutions.
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Abstract. The introduction of convolutional neural network (CNN) in
no-reference image quality assessment (NR-IQA) gains great success in
improving its prediction accuracy, and the performance of CNN relies on
the magnitude of training samples. However, many widely-used existing
image databases cannot provide adequate samples for CNN training. In
this paper, we propose a pair-comparing based convolutional neural net-
work (PC-CNN) for blind image quality assessment. By taking reference
images into consideration, we generate more training samples of patch
pairs by different combinations of distorted images and reference image.
We build a new CNN network which has two inputs for patch pairs
and two outputs predicting the scores of patches. We conduct extensive
experiments to evaluate the performance of our proposed PC-CNN, and
the results show that it outperforms many state-of-the-art methods.

Keywords: No-reference image quality assessment ·
Convolutional neural network · Deep learning · Human visual system

1 Introduction

Image quality assessment (IQA) has become an indispensable part in more and
more image related applications. Objective IQA is the way to assess the quality
of images by computers automatically without the help of humans. A satisfactory
objective IQA method is capable of evaluating the performance of image pro-
cessing techniques like compression, enhancement and so on. Based on the avail-
ability of a reference image during quality predicting process, objective IQA can
be divided into three categories: full-reference IQA (FR-IQA), reduced-reference
IQA (RR-IQA), and no-reference IQA (NR-IQA).

NR-IQA is a more practical but challenging task compared with FR-IQA and
RR-IQA. Because NR-IQA can predict the quality of a distorted image without
the access to its reference image, it is much more convenient and applicable in
practical applications, especially for the scenarios where the reference image is
inaccessible. Although the absence of reference image increases the practicability
of NR-IQA, it makes NR-IQA a challenging task at the same time because it
is usually difficult to measure the distortion level of a distorted image without
accessing to its reference image.
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NR-IQA based on convolutional neural network (CNN) has gained a great
attention in recent years for its improvement on NR-IQA performance. CNN is
a deep neural network and finds its first application in NR-IQA in [3], where
the authors proposed to use CNN to integrate feature extraction and regression
into one process and their method achieves better prediction accuracy than the
previous ones. Later in [1], Bosse et al. considered the visual importance of an
image and proposed to learn patch score and patch weight at the same time.
Kim et al. [4] proposed a NR-IQA method which gives each patch an initial
score by using its reference image and distorted image in training phase. In [6],
a large amount of reliable training data in the form of quality-discriminable
image pairs are obtained automatically and then RankNet is used for learning.
In [2], vector regression and object oriented pooling are used for NR-IQA where
a vector of belief scores for input image is yielded during vector regression phase.

Although the introduction of CNN improves the accuracy of NR-IQA remark-
ably, there are still two issues that should be further explored. First, because the
performance of CNN relies on the magnitude of training samples, a large number
of training data is desired for CNN based NR-IQA. However, many widely-used
existing databases contain a small number of images. Second, most NR-IQA
methods do not consider reference images, but reference images are crucial for the
task of IQA since FR-IQA usually achieves relatively higher prediction accuracy
than NR-IQA. For improving the prediction accuracy, it deserves more atten-
tion to explore how to utilize reference images in CNN based NR-IQA during
training phase.

Motivated by addressing the above issues, we propose a pair-comparing based
convolutional neural network (PC-CNN) for blind image quality assessment. In
our proposed method, we adequately utilize the information of reference images
during training phase for better comparing learning. In order to tackle the prob-
lem of lacking of data for training, we generate more training samples using patch
pairs under different combination strategies. The proposed PC-CNN works as
follows: images are split into non-overlapping and normalized patches during
preprocessing phase, and combination strategies are used for generating patch
pairs. Then, these pairs are fed into the CNN for acquiring an optimal model. In
testing phase, the model receives two same testing patches and its two outputs
are used to calculate the score of this patch. The final image score is the average
of scores of all its patches.

2 Proposed Method

2.1 Framework

Our proposed PC-CNN method contains three parts as shown in Fig. 1. Part
one is the preprocessing work producing locally contrast normalized patches for
subsequent procedures. Part two is responsible for generating training patch
pairs via different combination strategies. Part three uses CNN for patch-wise
regression which takes a patch pair as inputs and outputs two patch scores. Each
part is described in detail in subsequent statements.
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Fig. 1. The framework of our proposed method.

2.2 Preprocessing

The preprocessing work of our method produces sampled patches and applies
local contrast normalization to them. First, inspired by the conclusion in [3] that
image distortions are often locally homogeneous, we divide images into patches
of size 32 × 32 without overlapping in order to expand training data. Then,
similar to [3,7], local contrast normalization is performed to these patches to
make the network robust to the variation of illumination and contrast. In our
implementation, we normalize each patch with the window size of 3.

2.3 Training Data Generation

In order to generate more training data and improve prediction accuracy, we
propose to consider reference images in the training phase. We generate patch
pairs for CNN training by utilizing the information of distorted patch and its
corresponding patch in reference image via different combination strategies.
Specifically, we consider the following four combination strategies of patch pairs:
two same distorted patches, one distorted patch and its corresponding reference
patch, one distorted patch and anther corresponding distorted patch from the
same reference image, and two same reference patches. For example, for a dis-
torted patch P and its corresponding reference patch R, we randomly select
another different distorted patch P ′ of the same reference image, and gener-
ate four patch pairs: (P, P ), (P,R), (P, P ′) and (R,R). After the generation of
training data, all patch pairs are labeled with the score the same as its belonging
image.

2.4 Patch-Wise Regression

In order to compare the patch difference between reference image and distorted
image in training phase, we design our pair-comparing network. As demonstrated
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in Fig. 1, our CNN is composed of seven layers: one convolutional, one pooling,
one concatenated, one subtract and three fully-connected layers which has two
inputs and two outputs. We only choose a seven-layer network because deep-layer
network may lead to overfitting problem if the size of training set is limited.

The input of CNN is a patch pair whose size is 32 × 32 after local contrast
normalization. There are two parallel ways in the following three layers. The
first is a convolutional layer containing 50 kernels of size 7 × 7 with stride of
1 pixel and it produces 50 feature maps with size 26 × 26, following by a pooling
layer extracting the max and average values of each feature map to generate two
tensors with size 1 × 1 × 50. Then the two tensors are concatenated to a 1 × 1
× 100 size tensor for each way. Next, a subtract layer is responsible for acquiring
the difference of the two tensors and flattening them to a vector of size 100. After
that are two fully-connected layers with 800 nodes. The last layer outputs two
scores. We choose rectified linear units (ReLUs) as the activation function for
fully-connected layers in order to prevent none-positive values passing through
the network.

In training phase, we optimize the CNN by minimizing objective function
where each patch is expected to output the score as similar to its label as pos-
sible. For a patch pair (Pi, Pj), let pi and pj denote their ground truth scores
respectively, p̂i and p̂j denote their predicted scores. Then the outputs of CNN
can be formulated as

(p̂i, p̂j) = f(Pi, Pj ;ω) (1)

where f(Pi, Pj ;ω) denotes the outputs of learning process with input (Pi, Pj)
and network weight ω. We define the objective function as follows by the mean
absolute error (MAE), which is a regular evaluation index for regression, between
labeled patch score and predicted patch score.

Loss =
1

Nb

Nb∑

i,j=1

(|p̂i − pi| + |p̂j − pj |) (2)

where Nb denotes the number of all patch pairs in a mini-batch over an epoch. By
minimizing the above objective function, we get the optimal network parameters
ω∗ of CNN

ω∗ = argmin
ω

Loss (3)

In our implementation, we use stochastic gradient decent (SGD) to train the
network for 50 epochs and the nesterov momentum is used in SGD as well, the
value is set to 0.9.

In testing phase, two same distorted patches of a test image are fed into the
CNN. We average the outputs of the CNN to obtain the patch score, and the
final predicted score of test image is the average of all its patches’ scores.

3 Experiments and Results

We conduct extensive experiments to analyze the performance of our proposed
PC-CNN. We compare our proposed PC-CNN not only with several well-known
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FR-IQA methods, but also with many state-of-the-art NR-IQA methods includ-
ing DIIVINE [9], BLIINDS-II [11], BRISQUE [7], CORNIA [14], etc.

3.1 Databases

We use three databases in our experiments: LIVE [12], TID2013 [10] and CSIQ
[5]. The subjective quality of an image is given by mean opinion score (MOS) or
difference mean opinion score (DMOS). LIVE and TID2013 are used to perform
dependent database evaluation. For cross-database evaluation, we train on LIVE
and test on TID2013 and CSIQ respectively; and the MOS in TID2013 and the
DMOS in CSIQ are mapped to the same range of DMOS in LIVE in order to
make comparable measurement. For each database, 80% randomly selected ref-
erence images and their corresponding distorted images are used as the training
samples and the rest 20% are used as testing samples.

3.2 Evaluation Measures

Two mainstream measures are used to evaluate the performance of various IQA
methods: the linear correlation coefficient (LCC) and the Spearman rank order
correlation coefficient (SROCC). LCC measures the linear correlation between
subjective and objective scores, and SROCC judges the monotonic property
of the relationship between subjective and objective scores. A higher LCC or
SROCC value, i.e. a value closer to 1, indicates a better performance of an IQA
method. All LCC and SROCC are the average values of experiments based on
10 random splits of samples.

3.3 Combination Strategies

In Sect. 2.3, we introduce the combination strategy in our proposed PC-CNN to
generate more training data, actually there are some other combination possi-
bilities. Here we validate that different strategies affect the performance of our
method and our chosen strategy is superior to others. We compare the LCC and
SROCC on all images on LIVE using six different strategies. To simplify the
expression, we referred to patch pairs consisted of two same distorted patches as
PP , two same reference patches as RR, one distorted and one reference patches
as PR, two different distorted patches of a same reference image as PP ′. The
six strategies are denoted as (PP, PR,PP ′, RR), (PP, PR,RR), (PP, PP ′, RR),
(PP,RR), (PP, PR), (PP, PP ′). The results are shown in Fig. 2. It can be seen
that the more information of reference images in pairs, the better performance
our method obtains, and our chosen combination strategy (PP, PR,PP ′, RR)
outperforms the others. We also observe from our experiments that the random
selection of two different distorted patches of a same reference image (PP ′) has
negligible impact on experimental results.
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Fig. 2. Performance comparison (LCC and SROCC) of different combination strategies
on LIVE.

3.4 Dependent-Database Experiments

We evaluate the performance of our proposed PC-CNN and other existing IQA
methods in terms of LCC and SROCC on LIVE and TID2013 respectively. The
results on LIVE database are tabulated in Tables 1 and 2. We compare LCC
and SROCC of different IQA methods not only based on the whole images in
the database, but also based on the images of different distortion types. The
best result under each criterion is highlighted in bold. We can see that except
for JPEG distortion, our proposed PC-CNN outperforms other IQA methods.
The results on TID2013 are listed in Table 3, where we train and test on the
whole images in the database. It is clear that our proposed PC-CNN achieves
the highest performance in terms of both LCC and SROCC.

Table 1. Performance comparison (LCC) on LIVE.

Method JP2K JPEG WN GBLUR FF ALL

PSNR 0.873 0.876 0.926 0.779 0.870 0.856

SSIM [13] 0.921 0.955 0.982 0.893 0.939 0.906

FSIM [15] 0.910 0.985 0.976 0.978 0.912 0.960

BRISQUE [7] 0.922 0.973 0.985 0.951 0.903 0.942

NIQE [8] 0.937 0.956 0.977 0.952 0.913 0.915

CORNIA [14] 0.951 0.965 0.987 0.968 0.917 0.935

CNN [3] 0.953 0.981 0.984 0.953 0.933 0.953

BIECON [4] 0.965 0.987 0.970 0.945 0.931 0.962

dipIQ [6] 0.964 0.980 0.983 0.948 - -

VROP [2] 0.957 0.984 0.983 0.959 0.951 0.968

PC-CNN 0.986 0.982 0.993 0.981 0.970 0.972



466 X. Qin et al.

3.5 Cross-Database Experiments

We also conduct cross-database experiments to evaluate the generalization capa-
bility of our proposed method. We train the model using the images in LIVE
database and test the prediction accuracy using the images in TID2013 and
CSIQ databases respectively. The SROCC of different IQA methods are shown
in Table 4. We find that for TID2013, our purposed PC-CNN obtains the second
best performance. While for CSIQ, PC-CNN outperforms all other methods.
The results illustrate a satisfactory generalization capability of our proposed
PC-CNN. Compared with the results on dependent databases, we find that the
results here are generally worse. Because TID2013 and CSIQ databases contain
distortion types that are not in LIVE, the model has little knowledge of them.

Table 2. Performance comparison (SROCC) on LIVE.

Method JP2K JPEG WN GBLUR FF ALL

PSNR 0.870 0.885 0.942 0.763 0.874 0.866

SSIM [13] 0.939 0.946 0.964 0.907 0.941 0.913

FSIM [15] 0.970 0.981 0.967 0.972 0.949 0.964

BRISQUE [7] 0.914 0.965 0.979 0.951 0.877 0.940

NIQE [8] 0.917 0.938 0.967 0.934 0.859 0.914

CORNIA [14] 0.943 0.955 0.976 0.969 0.906 0.942

CNN [3] 0.952 0.977 0.978 0.962 0.908 0.956

BIECON [4] 0.952 0.974 0.980 0.956 0.923 0.961

dipIQ [6] 0.956 0.969 0.975 0.940 - -

VROP [2] 0.963 0.976 0.984 0.956 0.939 0.967

PC-CNN 0.975 0.972 0.988 0.980 0.975 0.969

Table 3. Performance comparison (LCC and SROCC) on TID2013.

Method PSNR SSIM

[13]

FSIM

[15]

DIIVINE

[9]

BLIINDS-II

[11]

BRISQUE

[7]

NIQE

[8]

CORNIA

[14]

PC-CNN

LCC 0.675 0.79 0.877 0.654 0.628 0.651 0.426 0.613 0.788

SROCC 0.687 0.742 0.851 0.549 0.536 0.573 0.317 0.549 0.718

Table 4. Cross-database performance evaluation (SROCC) training on LIVE and test-
ing on TID2013 and CSIQ.

Method DIIVINE [9] BLIINDS-II [11] BRISQUE [7] CORNIA [14] PC-CNN

TID2013 0.355 0.393 0.367 0.429 0.415

CSIQ 0.596 0.577 0.557 0.663 0.665
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4 Conclusion

In this paper, we developed a new blind image quality assessment method by
proposing a pair-comparing based convolutional neural network (PC-CNN). The
network has two inputs for training and testing. In the training, distorted images
and their reference images are used to generate patch pairs under different com-
bination strategies, and these patch pairs are fed into the network for training.
In the testing, only a test image is needed to create patch pairs for network
inputs. Our proposed method not only can increase the number of training sam-
ples based on the existing databases, but also has better prediction accuracy
compared with many state-of-the-art image quality assessment (IQA) methods.
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Abstract. Marine aquaculture plays an important role in marine eco-
nomic, which distributes widely around the coast. Using satellite remote
sensing monitoring, it can achieve large scale dynamic monitoring. As
a classic model of deep learning, stacked sparse autoencoder (SSAE)
has the advantages of simple model and self-learning of features. Non-
local spatial information is utilized to assist SSAE construct NSSAE to
improve the precision in this paper. Experimental results demonstrate
the superiority of nonlocal SSAE methods on marine target recognition.

Keywords: Polarimetric SAR · Remote sensing images ·
Nonlocal spatial information · Stacked sparse autoencoder ·
Classification

1 Introduction

The floating raft aquaculture mainly consists of floating balls located in shallow
seas and intertidal zones. Scallops, oysters and other shellfish are cultured under
hanging cages [1]. The cultured floating rafts are mainly floating balls on the
surface of sea water, which are small in size and sparsely distributed. Therefore,
they cannot be completely detected in optical remote sensing images. Synthetic
aperture radar (SAR) remote sensing images can detect the intensity of floating
ball, which have been successfully applied to their recognition [2,3]. Since the

J. Fan—The work described in the paper was supported by the National Key R&D
Program of China (2017YFC1404902, 2016YFC1401007); National Natural Science
Foundation of China (41706195, 61773087); National High Resolution Special Research
(41-Y30B12-9001-14/16); Key Laboratory of Sea-Area Management Technology Foun-
dation (201701).

c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11555, pp. 469–476, 2019.
https://doi.org/10.1007/978-3-030-22808-8_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_46&domain=pdf
https://doi.org/10.1007/978-3-030-22808-8_46


470 J. Fan et al.

launch of polarimetric synthetic aperture radar (PolSAR) satellite, plenty of fully
polarimetric data have been obtained. Four different polarimetric modes provide
richer information from each channel.

As the amount of PolSAR image data increases exponentially, automatic
learning and extraction of features become the development trend of image
interpretation. In recent years, deep learning has achieved significant success
in pattern recognition and machine vision because it automatically learns rich
and deep features from raw data [4]. As a classic model of deep learning, stacked
sparse autoencoder (SSAE) has the advantages of simple model and self-learning
of features, and has been widely used in SAR image classification [5,6]. With the
number of network layers increases, the potential relationship of data is automat-
ically discovered, so effective features are extracted, which facilitates accurate
identification of subsequent targets.

The spatial resolution of PolSAR images continues to increase, and the actual
object area corresponding to each pixel is continuously reduced, which results in
an increase in the probability of pixels being affected by accidental factors and
increasing the number of noises [7]. However, spatial correlations between pixels
in the image increase, which helps provide more abundant spatial information
and suppress the influence of speckle noise [8]. Bi et al. [9] used Markov random
field and three-dimensional wavelet features to perform PolSAR image classi-
fication. Zhang et al. [10] proposed local spatial information to improve SSAE
classification capability. However, the SSAE network explores the relationship
between features of a single pixel or local neighbour spatial information, while
ignoring the whole (global) spatial correlation between pixels. Therefore, it is
necessary to introduce nonlocal spatial information into the SSAE to improve
the classification accuracy.

The nonlocal Means (NLM) algorithm was originally proposed by Buades
et al. [11] for optical image filtering and aims to remove noise effects using
redundant information present in the image. For any pixel in the image, there
must be a large number of pixels with similar neighborhood structure distributed
in the whole image, and these pixels are weighted and summed to obtain rich
spatial information, which is convenient for subsequent processing. Zhang et al.
[12] presented local and nonlocal spatial information based on Markov random
field method for hyperspectral image analysis. Therefore, in this paper, nonlocal
spatial information are adopted to SSAE model to improve PolSAR marine
aquaculture recognition.

The rest of this paper is organized as follows. Nonlocal spatial information
extraction is presented in Sect. 2. The combined nonlocal stacked sparse autoen-
coder is given in Sect. 3. The experimental results on PolSAR marine aquaculture
recognition based on the proposed algorithm are delineated in Sect. 4. Finally,
concluding remarks are given in Sect. 5.

2 Nonlocal Spatial Information Extraction

In order to directly describe the significance of nonlocal information extraction,
the schematic diagram is shown in Fig. 1, which denotes part of the search win-
dow of pixel a, and there are two categories, colored in red and blue respectively.
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The center pixel a is located at the boundary (yellow line), and its neighborhood
window (black square) contains these two categories. Compared with pixel a, pixel
b and c belong to the same category, while pixel d belongs to another category. Since
all pixels in the black square make up the neighborhood configuration of pixel a, in
its search window, only pixels beside the same boundary, like pixel b, have similar
neighborhood configurations and have larger weights ω. Although pixel c and a
belong to the same category, their neighborhood configurations are partially sim-
ilar, so pixel c cannot have a large weight ωac. Moreover, for pixel d, its neighbor-
hood configuration is also partially similar to pixel a. So, pixel d, even belonging to
the different category, still has a similar weight to pixel c. When calculating non-
local means, pixels beside the boundary are difficult to obtain accurate values and
easily misclassified. To solve this problem, the neighborhood configuration of the
center pixel is adaptively optimized, by picking pixels considered to belong to the
same category as the center pixel in the neighborhood window. It can make full
use of all pixels by assigning pixels belonging to the same category large weights
and reducing weights of pixels with different categories.

d

a

b

c

Fig. 1. Part of the search window of pixel a (Color figure online)

For each pixel i in the image, xi is the value of pixel. Using R × R size
window to search area SR

i , the nonlocal average value is defined as

x̄i =
∑

j∈SR
i

wijxj (1)

here pixel j belong to SR
i , and the weight wij denotes the similarity between

pixel i and j,
∑

j∈SR
i

wij = 1. Using r × r size window for pixel i to construct
the neighbourhood structure Nr

i , all pixels in Nr
i are expressed as

Qij = ‖vi − vj‖22,δ (2)

So Qij is smaller, the similarity between pixel i and j is larger. The corre-
sponding weight wij becomes larger.



472 J. Fan et al.

wij =
1
Zi

e−Qij/g (3)

here Zi is a normalized parameter defined as Zi =
∑

j∈SR
i

e−Qij/g. g is the
filtering parameter that controls the decay rate of the exponential function.

3 Nonlocal Stacked Sparse Autoencoder

Autoencoder (AE) is an unsupervised feature self-learning algorithm. The net-
work structure commonly consists of three layers, namely input layer, hidden
layer and output layer. The calculation process can be regarded as two parts
of encoding and decoding. The input data is encoded by the feature represen-
tation, and then decoded to obtain the output data. The result obtained by
the encoding can be regarded as a different representation of the input data.
However, since feature mapping is common nonlinear, deep neural networks can
describe more complex function sets in a more concise manner, making it eas-
ier to obtain deeper effective features. Stacked Sparse Autoencoder (SSAE) is a
multi-layer neural network model formed by superimposing multiple SAEs. The
feature representation obtained by the previous SAE is used as the input of the
next SAE.

Nonlocal spatial information is adopted in SSAE to perform PolSAR marine
aquaculture classification, and the whole schematic is shown in Fig. 2. The
extracted nonlocal spatial contents are set as one part of the input data feature,
to increase the feature dimension and provide rich and effective information to
gain deep features. On the other hand, they are introduced into the first layer
structure of the NSSAE network, by approximating each other in the objective
function for more robust features.

NSSAE

Classification map
PolSAR image

Nonlocal spatial 
information

Feature vector 
based on pixel

Features from 
covariance matrix

Fig. 2. The model of PolSAR marine aquaculture classification based on NSSAE
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4 Experimental Results

In order to verify the marine recognition capability of NSSAE network, the
Radarsat-2 PolSAR image of the adjacent sea areas are selected in China.
Figure 3 shows the Pauli pseudo-color image. Two regions are selected marked
with two boxes. The yellow box indicates research area 1 containing a densely
distributed floating carp culture target. The red square indicates research area
2, containing a sparsely distributed scorpion breeding target.

Fig. 3. Two test marine aquaculture areas based on Radarsat-2 PolSAR images (Color
figure online)

The Pauli pseudo-color image of the research area 1 and the corresponding
ground truth map are shown in Fig. 4, respectively. The size is 300 × 300. The
NSSAE contains 3 hidden layers with 150 nodes in each layer. And the threshold
parameter is set to 0.001. In order to make comparison with other art-of-state
algorithms, support vector machine (SVM), classical SSAE, nonlocal means fil-
tering with SSAE (NLM-SSAE). Three indexes, the overall accuracy (OA), the
average accuracy (Average Accuracy, AA) and the kappa coefficient, are used
for qualitative evaluation of each algorithm. So classification results are shown
in Fig. 5 with four algorithm, and specifical indexes are tabulated in Table 1. As
the same analysis process, the experiment of area 2 are shown in Figs. 6 and 7,
tabulated in Table 2, respectively.

From these experimental results, NSSAE has the highest precision, and iso-
lated noises in the classification result images are the least. The foreground
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(a) PolSAR original image (b) Ground truth

Fig. 4. Research Area 1

(a) SVM (b) SSAE (c) NLMSSAE (d) NSSAE

Fig. 5. Classification results of Area 1

(a) PolSAR original image (b) Ground truth

Fig. 6. Research Area 2

floating raft targets are completely continuous inside, and the edges are smooth
and clear. According to three indexes in Tables 1 and 2, proposed NSSAE has
the best results. SVM, SSAE and NLM-SSAE are still sensitive to noises. Intro-
duced nonlocal spatial information can effectively assist SSAE reduce isolated
noises, suppress speckle noises and improve the recognition accuracy in the end.
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(a) SVM (b) SSAE (c) NLMSSAE (d) NSSAE

Fig. 7. Classification results of Area 2

Table 1. Area 1 results of four algorithm on PolSAR marine aquaculture recognition

Class SVM SSAE NLM-SSAE NSSAE

Sea water 82.78 88.84 88.48 95.03

Floating raft 92.85 86.99 89.52 93.88

OA% 87.72 87.80 88.96 94.50

AA% 87.54 87.92 89.00 94.45

Kappa 0.7533 0.7537 0.7784 0.8792

Table 2. Area 2 results of four algorithm on PolSAR marine aquaculture recognition

Class SVM SSAE NLM-SSAE NSSAE

Sea water 92.85 95.88 93.59 93.88

Floating raft 87.25 82.41 87.26 95.26

OA% 88.69 90.77 91.59 94.52

AA% 90.05 89.15 90.43 94.57

Kappa 0.7300 0.8014 0.8063 0.8798

5 Conclusions

This proposed NSSAE network for PolSAR classification images can effectively
suppress the influence of speckle noises, and automatically obtain deep, abstract
and divisible features. The adaptive non-local spatial information is input into
the NSSAE network as part of features to greatly reduce isolated noises and
improve the recognition accuracy. The experiment of Radarsat-2 PolSAR images
in the adjacent sea area of Changhai verify the validity and practicability of the
NSSAE network.
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Abstract. Visual tracking has attracted more and more attention in recent
years. In this paper, we proposed a novel tracker that is composed of a feature
network, a dual classifier, a target location module, and a sample collecting and
pooling module. The dual classifier contains two classifiers, called long-term
classifier and short-term classifier, in which the long-term classifier is to
maintain the long-term appearance of the target and the short-term classifier is
for prompt response to the sudden change of the target. The training samples are
divided into positive samples, negative samples, hard positive samples and hard
negative samples and are used to train the two classifiers, respectively. Fur-
thermore, in order to overcome the unreliability in locating the target by highest
score, a density clustering method is introduced into the target locating process.
Experimental results conducted on two benchmark datasets demonstrate the
effectiveness of the proposed tracking method.

Keywords: Visual tracking � Ensemble tracking � Hard samples �
Density clustering

1 Introduction

Visual tracking, as a basic computer vision task, has a wide range of applications, such
as automatic driving, video surveillance, sports analysis, etc. Although remarkable
progress has been made in recent years, there are still many challenges in designing a
robust tracker that can well handle appearance deformations, occlusions, target-alike
object interferences, and many other complex real-world scenarios.

Tracking-by-detection [1] is the current state-of-the-art tracking framework.
A rectangular box is given by the first frame in the video sequence to represent the
tracked target. In the new frame, candidate samples around the previous target are
selected randomly, and a classifier is adopted to distinguish each sample into target
object or background. In the online tracking process, most of the existing tracking
algorithms update the target model slowly on the assumption that the appearance of the
target changes smoothly over time. However, this strategy often fails in tracking the
target in which images of adjacent frames vary dramatically. In addition, this kind of
algorithm does not perform well when occlusion occurs or there are some interferences
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caused by other target-alike objects in the image. It is difficult for a single tracker to
solve all the problems mentioned above. The ensemble tracking has been proved to be
effective in handling such problems [2–4]. Hong et al. [4] employed Integrated Cor-
relation Filter (ICF) for short-term tracking and integrated key point matching-tracking
and RANSAC estimation for long-term tracking. In [2], target appearance models are
managed based on CNNs in a tree structure to learn more persistent models through
smooth updates. Han et al. [3] proposed multiple branches of fully connected layers that
are randomly updated to alleviate lack of model diversity. However, these constructed
trackers are still unable to significantly improve their robustness in anti-occlusion and
against interferences of target-alike objects. For tracking problems, there are few
positive samples available for online training, and although a lot of negative samples
can be obtained, most of them are redundant, which leads to insufficient diversity for
the tracker. And since the importance of the role played by different samples has not
been sufficiently taken into account in the training process, the trackers cannot obtain
enough information to distinguish the true target from the other target-alike objects that
leads to tracking failure in some cases where there have target-alike object interference
or severe occlusion. In addition, the tracking algorithm directly selects the candidate
sample with the highest classification score as the true target. However, the scores
given to the candidate samples by the tracker may not always be reliable enough and
the true target may not always get the highest score in a complex tracking environment.
This is also one of the important reasons that limit the robustness of the tracker.

To address the above mentioned issues, we propose a modified ensemble tracking
method that is more robust in anti-occlusion and against the interference of other target-
alike objects. Our tracker contains two classifiers, called long-term classifier and short-
term classifier, in which the long-term classifier is to maintain the long-term appearance
of the target and the short-term classifier is for prompt response to the sudden change of
the target, respectively, and the two classifiers work collaboratively to cope with the
occlusion and interference problems. Furthermore, in order to overcome the unrelia-
bility of the location by highest score, a density clustering method is introduced into the
target locating process to get the cluster center over the candidate samples with top
scores. The target is then located based on the clustering center instead of basing on the
only sample with the highest score. Experiments conducted in the paper show that
using these methods can prevent the new tracker from taking the false detected sample
as the true target and hence its robustness is enhanced.

Details on the proposed tracking method will be given in Sect. 2. Section 3 pre-
sents the experimental results, and Sect. 4 draws conclusions and points out possible
directions of the work.

2 Method

The overall structure of the proposed target tracking method is illustrated in Fig. 1 that
consists of a feature network, a dual classifier, a target location module, and a sample
collecting and pooling module. In this tracking system, the feature network (i.e., the
Feature Net) is for providing general representations for the candidate samples selected
randomly in the current frame over the target search area. The feature data of all the
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candidate samples are then sent to the Dual classifier and classified into target or non-
target in evaluative scores (with value between 0 and 1) by the Long-term classifier and
the Short-term classifier of the Dual Classifier collaboratively. Based on the scores, a
clustering operation is conducted by the target location module to obtain the cluster
center of the candidate samples that gain high scores from the Dual Classifier, in which
the target is located according to the cluster center, not only according to the sample
with the highest score. After the target in the current frame is located, the training
samples {Sþ , S�, Sþ þ , S��} are updated in the frame by the sample collecting and
pooling module for training the Dual Classifier to work in next frame. Details on the
tracking method will be given in the sequel subsections.

2.1 Feature Net

It has been widely recognized that features extracted by convolution neural network are
more robust than hand-crafted features [11]. Considering the high computational
complexity of existing deep networks, such as the VGG16 [18] and ResNet50 [20], we
use the first three layers of the lighter VGG-M [19] pre-trained on ImageNet [10] as the
feature network. We only employ the network to extract the appearance of the target
and do not fine-tune or retrain the network in the whole tracking process to lighten the
burden of computation.

2.2 Design of Dual Classifiers

The performance of classifier directly affects the quality of tracking results. In order to
make the tracker both able to maintain the long-term appearance of the target and also
able to adapt itself to rapid changing scenarios, we design a dual classifier that consists
of a long-term classifier and a short-term classifier as shown in Fig. 1, in which the two
classifiers have the same network structure of three fully connected layers with two
soft-max output nodes.

Target 
Location
Based On 
Density 

Clustering

Feature Net

S+ and S-

Collabora-
tive scoring

samples 
collecting and 

pooling
positive 

samples S+

negative 
samples S-

hard positive 
samples S++

hard negative  
samples S--

Dual Classifier

short-
term 

classifier

long-
term 

classifier

S++ and S--

Video 
Sequence

...

Fig. 1. Block diagram of the proposed tracking method

Robust Object Tracking Based on Deep Feature and Dual Classifier 479



At first, the two classifiers are initially trained with hand-selected samples in the
first frame, then they are employed to track the target in each incoming frame and
meanwhile are updated in the tracking process. Effective selection of training samples
is very important for the two classifiers to maintain sufficient discriminant ability in a
varying tracking environment. In the proposed tracking method, the obtainment of the
training samples is accomplished by the sample collecting and pooling module under
cooperation of the dual classifier.

Obtainment of Training Samples in Online Tracking

Positive and Negative Samples for Updating the Long-Term Classifier. The positive
samples and negative samples are selected based on the IoU overlap ratios as in TCNN
[2], Branchout [3] and MDNet [11]. In each current frame, after the target is located by
using the dual classifiers trained in previous frame and the density clustering pro-
cessing, the training samples for updating the long-term classifier are drawn around the
target randomly. The samples are then selected and divided into two sets: the positive
set Sþ and the negative set S�, where the samples in Sþ are the ones that their IoU
overlap ratios with the target great than 0.7 and the samples in S� are the ones with
their IoU overlap ratios less than 0.3. The samples in Sþ and S� are labeled with 1 and
0, respectively, and with these labeled data, the long-term classifier is updated in each
current frame by using SGD algorithm.

Hard Positive and Hard Negative Samples for Updating the Short-Term Classifier. It
is observed in our study that the above described long-term classifier performs well in
tracking the target object in the cases where the target appearance changes not sig-
nificantly over time and there are no serious occlusion or target-alike object interfer-
ence. However, it is also observed that the long-term classifier often fails to track the
target while the shape of the target suddenly changes, or when considerable occlusion
and target-alike object interference on the target take place. Since there is only one true
target object and a large number of negative samples in an image, the total number of
positive samples is much smaller than that of negative samples. In addition, for the
positive samples drawn from the same image, they are spatially overlapped, and hence
lack diversity. Therefore, the positive and negative samples selected in the above way
cannot make the long-term classifier to obtain adequate discriminant ability in a more
complicated tracking environment. In order to compensate for this shortcoming, we
propose to collect some special samples that are difficult for the long-term classifier to
identify them correctly. We call these samples the hard positive/negative samples and
shall use them to train a short-term classifier to correctly identify the target in a
complicated image environment.

In the tracking process, some non-target samples that obtain relative high scores are
confusing for the long-term classifier to identify them from the target, which are
regarded as the hard negative samples here. We want to pick this kind of samples out
and exploit them to make the tracker more robust to the image variations.

After the t-th frame is tracked, the sample set Sþ
t and S�t can be obtained and some

extra negative samples S�
0

t around the hard negative samples in the previous frame are
also extracted, the hard negative samples of the t-th frame are selected as follows:
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s ! S��
t ; if f1 sð Þ[ s ð1Þ

where s is negative sample from fS�t ; S�
0

t g, f1 indicates the score obtained by s from the
long-term classifier,S��

t is the set of the hard negative sample in the t-th frame, and s is
the threshold with its value between 0 and 1.

Accordingly, due to occlusion or target-alike object interference, in the tracking
process there are some positive samples may obtain relative low scores, and these
positive samples are called the hard positive samples in the paper. Since the positive
samples extracted around the target in each frame are highly spatially correlated and
lack of diversity as mentioned before, it is not conducive to solve the problem of
occlusion and target-alike object interference by using this kind of positive samples to
train the classifier. In order to overcome this difficulty, we propose to construct hard
positive samples as follows:

As shown in Fig. 2, we divided each training sample into 3 � 3 patches and use the
partial patch of hard negative samples to mask the partial patch of positive samples to
construct the hard positive samples. In addition, the occluded positions are settled in
according to the positional relationship between the positive and negative samples in
synthesizing the hard positive samples. For example, as shown in Fig. 2, if the hard
negative sample is located at the lower left of the positive sample, the left side of the
positive sample may only be occluded by the right side of the hard negative sample,
and the lower side may only be occluded by the upper side of the hard negative sample.
The synthesized positive samples in the t-th frame are then collected together as the
hard positive sample set Sþ þ

t .

Collaborative Scoring. Having both the long-term classifier and the short-term
classifier been updated before each new incoming frame, the two classifiers are used to
evaluate the candidate samples collaboratively in the following way:

f xð Þ ¼ f1 xð Þ; f2 xð Þ[ ss
a � f1 xð Þþ 1� að Þ � f2 xð Þ; f2 xð Þ� ss

�
ð2Þ

where x indicates the candidate sample, f1 is the score for x assigned by the long-term
classifier, f2 is the score assigned by the short-term classifier, ss is the threshold to be
suitably selected with 0 < ss < 1, and a is a parameter with its value between 0 and 1.

11 12 13

232221

31 32 33

11 12 13

232221

31 32 33

Positive Sample

Hard Negative Sample

Replace

11 12 13

232213

23 32 33

Hard Positive Sample

Fig. 2. Construction of hard positive samples
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If f2 is higher than ss, it means that the current target tracking is stable and the score of
long-term classifier is proper. Otherwise, the weighted score of the dual classifier is
taken as the final score.

2.3 Target Location Based on Density Clustering

The existing tracking method based on detection framework usually directly uses the
candidate sample with the highest score as the tracking target. However, there are
always frames in which the scores assigned by the classifiers are unreliable, and
tracking failure often occurs in these frames. In this work we have analyzed the
distribution of samples with high scores when tracking fails in our experiments. When
the surrounding environment of the target is good and the tracking is correct, there is
only one cluster center for these top-scored samples, while the surrounding environ-
ment is complex or the tracking fails, there exist multiple cluster centers for the top-
scored samples as shown in Fig. 3 (a) and (b). In order to effectively handle these
problems, we use the density clustering method DBSCAN proposed by Ester, et al. in
[8] in the target locating process to get the cluster center over the top scored samples
and then locate the target basing on the clustering center instead of basing on the
sample with the highest score.

Let D ¼ p1; p2; . . .; pkf g presents the set of samples in top-k scores that are selected
from the N candidate samples X ¼ x1; x2; . . .; xNf g. We can get the cluster center set
C ¼ C1;C2; . . .;Cmf g using DBSCAN algorithm. The general clustering process can
be divided into two steps. First, we determine all the core objects from the selected
samples according to the spatial relationship. Then we search all density-reachable
samples from a random selected core object. The set of all samples with reachable
densities is considered as a class. The main location operation steps are given in
Algorithm 1. For more details on the clustering method, please refer to [8].

(a) (b)

Fig. 3. Experimental examples of the distribution of samples with high scores in a tracking
process. (a) Distribution of samples with high scores, (b) Red box is groundtruth, green box is the
location based on maximum score, and blue box is the location based on density clustering.
(Color figure online)
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Algorithm 1 Location Based On

Input: Candidate  and scores
Output: Estimated target states 
1: select k for clustering from X based on scores; 
2: get the set of cluster center by using DBSCAN [8]; 
3: if >1 then
4: 
5: else
6: is the candidate with the highest score;
7: return

sample

samples 

samples 

method

 is the clustering center nearest to the target in the previous frame; 

 Density Clustering

3 Experiments

In this section, we first introduce the implementation details, and then report our
experimental results in two benchmark datasets: object tracking benchmark (OTB),
visual object tracking (VOT) benchmark. Finally, some ablation experiments are
conducted to study each part of the proposed tracking system.

3.1 Implementation Details

The proposed tracker is implemented in VS2013 using Caffe toolbox [7] and runs at
around 1fps on an NVIDIA GTX 1080ti GPU platform.

We use lightweight VGG-M to extract features, and use full connection of two
hidden-layer neural network as classifier. In the online tracking process, the 256
candidates selected with Gauss sampling are evaluated by using the dual classifiers.
The location method based on density clustering is used to produce the final location
result. Then the long-term sample pool and the short-term sample pool are updated by
using the training sample collecting method described in Sect. 2.2. The long-term
classifier is updated every 10 frames with positive and negative samples and the
learning rate is 0.0001. The short-term classifier is updated with hard positive samples
and hard negative samples and the learning rate is 0.0005. The experimental parameter
ss; s; a; k are set to 0.5, 0.4, 0.5, 50, respectively.

3.2 Experiments on OTB50 and OTB100

OTB [5] is the main dataset for visual tracking and is widely used at present. OTB100
contains a total of 100 video sequences and OTB50 contains 50 difficult and repre-
sentative sequences selected from OTB100.

Following the protocol of OTB, we evaluate the performance of different tracking
methods with precision plot and success plot in one-pass evaluation (OPE). The pro-
posed method is compared with the state-of-the-art algorithms including MDNet [11],
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MCPF [12], CREST [9], PTAV [13], DSST [14], SINT [15], DeepSRDCF [16] and
SRDCFdecon [17].

Figure 4 illustrates the precision and success plot on OTB50 and OTB100. The
results show that our algorithm is in rank 2 among all the trackers. It is worth noting
that MDNet, ranked first, uses video in VOT database for training and is considered to
be over-fitting since the videos in these two databases are very similar. Our tracker
initializes directly with the weights of VGG-M, and still achieves comparable results.
The performance of our algorithm is much better than that of DSST using traditional
features, which shows that deep feature can effectively cope with various changes of
targets. Our algorithm still have better performance than CREST, DeepSRDCF and
SINT, which uses deep features.

3.3 Experiments on VOT2016

We also use VOT2016 [6] dataset to evaluate the different tracking methods reported in
VOT2016 [6]. VOT has two important technical indexes: accuracy and robustness.
Following the protocol of VOT2016, Ar and Rr represent accuracy and robustness rank
respectively. The expected average overlap (EAO) is the final ranking index.

The proposed tracker is compared with the current advanced algorithms and
Table 1 presents the experiment results. The two best results are highlighted in bold
and italic, respectively. According to the VOT2016 report [6], EAO over 0.251 is

Fig. 4. The result on OTB. (a) Precision and success plots on the OTB50 dataset using one-pass
evaluation. (b) Precision and success plots on the OTB100 dataset using one-pass evaluation.
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considered as an advanced algorithm. Our EAO is 0.3186, lower than CCOT, but far
higher than MDNet [11]. From Table 1 it can be seen that the robustness index of our
method ranks first that shows the outperformance of our tracking approach in
robustness.

3.4 Ablation Studies

To verify the effectiveness of each improvement component in our tracking system, we
implemented and evaluated several different versions. The ablation study is conducted
in 3 implements: use only long-term classifier and target location based on maximum
score (Baseline), use dual classifier and target location based on maximum score
(Baseline + Dual) and use dual classifier and target location based on density clustering
(Baseline + Dual + Cluster). Figure 5 shows the evaluation results on the OTB50.
From Fig. 5, one can see that the tracking performance has been improved by using the
dual classifier and density clustering method proposed in the paper.

Table 1. Performance comparison for state-of-the-art algorithms on the VOT-2016 dataset. The
two best results are highlighted in bold and italic, respectively.

Method EAO Ar Rr

CCOT 0.3310 2.28 2.53
TCNN 0.3253 1.82 2.48
SSAT 0.3232 1.43 2.75
MLDF 0.3106 3.48 2.38
Staple 0.2952 2.43 4.18
EBT 0.2913 4.68 2.67
SRBT 0.2904 3.50 4.03
DeepSRDCF 0.2763 2.70 3.72
MDNet 0.2583 1.95 3.02
Ours 0.3186 2.18 2.05

Fig. 5. The ablation analysis on the OTB50 dataset using one-pass evaluation.
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4 Conclusion

In this paper, we proposed a new tracking method for robust tracking. The proposed
model divides all training samples into positive samples, negative samples, hard pos-
itive samples and hard negative samples, and uses dual classifier to cope with chal-
lenging frames. We also introduce the density clustering method into the target location
process to improve the target positioning reliability and precision. Extensive experi-
ments have been conducted on two commonly-used datasets, and the results validate
the proposed tracking method. Further research of the work to be conducted is to speed
up the algorithm for achieving real-time tracking performance.
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Abstract. The paper discusses two machine learning approaches for
analysis of job text descriptions and extracting some psychological
characteristics which are required from employees. The Holland Codes
(RIASEC model) are used as algorithms target variables. The first app-
roach is based on TF-IDF and WMD. The second approach is based on
a convolutional neural network. The results comparison of the proposed
algorithms is given.
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1 Introduction

The search for talented candidates for employment is a big challenge for any HR
department. Nowadays, methods of artificial intelligence and machine learning
are being used to automate the work of the HR department. “There’s absolutely
nothing efficient about sorting through 30,000 resumes by hand. Recruiters are
spending months evaluating applicants only to have great promising candidates
get lost in the pile.” noted the authors of the startup Riminder [1].

Researchers in the field of machine learning are taking focus on solving the
most resource-intensive problems of recruitment, such as feature extraction from
the plain text of job descriptions and CVs. These features might be used for the
candidate to job matching. One of the important tasks is extracting psychological
characteristics which are required for the job position. Our work is dedicated to
solving this problem.

We have implemented two different approaches to solving them. First is based
on TF-IDF document model and WMD metrics. Second is based on convolu-
tional neural networks.
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2 The Data Source Description

The Holland Codes model [2] is known as the Holland Occupational Themes (or
RIASEC) model and widely used in HR. According to [2] types are labeled as
Realistic (Doers), Investigative (Thinkers), Artistic (Creators), Social (Helpers),
Enterprising (Persuaders), and Conventional (Organizers). Holland codes are
used for vocational guidance of students and for staff recruitment.

O*NET is a database which is used in the USA as an official source of job
descriptions, required skills and psychological properties of employees. O*NET
determines the values of the Holland codes for each profession. It contains 1100
job descriptions, which include tasks that need to be addressed within the pro-
fession, as well as the tools, knowledge, and technologies that are necessary for
it. There are also values of psychological characteristics: a set of Holland codes
preferred for the job. The structure of the used data source is displayed in Fig. 1.

Fig. 1. The structure of the used data source

3 The TF-IDF and WMD Approach

3.1 Common Algorithm Description

Since the O*NET database contains Holland codes for each of the available pro-
fessions, these professions and related codes can be used to search for suitable
professions for a vacancy. After finding the most relevant professions, it is neces-
sary to weigh the psychological attributes related to them in proportion to the
relevance of each of the professions and obtain the final result for the vacancy.
Thus, the algorithm can be divided into two phases:

1. For the given job information, find the most relevant professions in O*NET.
2. Get a breakdown of Holland codes by professions found.

To search for a given job position among professions, we use TF-IDF vector
representation of the position descriptions [3] and next subsequently compare
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vectors using the cosine distance. In addition to the statistical method based
on the frequency of occurrences of words in texts, it is also necessary to take
into account text semantics. The most common methods for converting words
to a semantic vector are word2vec [4] and GloVe [5]. However, basic word2vec
converts only a single word into a vector. We need to convert the entire text for
their comparison. The work [6] offers a way to compare texts in which each word
is converted into a vector. We use the WMD metric for this task. Because of the
computational complexity of the method, we use it only to compare headers of
vacancies and professions.

3.2 Algorithm Flow

1. The job title and description are used as an input.
2. Preprocessing of input.

2.1 Split job title and description into words.
2.2 Remove punctuation and stop-words.
2.3 Transform each word to its normal form if needed.

3. For each profession from the O*NET Database:
3.1 Preprocess title and description texts. This step can be performed once

before executing the algorithm.
3.2 Determine WMD between each O*NET profession and input titles.
3.3 Determine TF-IDF vectors for O*NET profession and input texts.
3.4 Calculate the cosine distance between TF-IDF vectors from the previous

step.
4. Take top-N O*NET professions with the shortest distance to the input job

description (where N is a hyperparameter by default set to 5).
5. For each of N professions determine the Holland codes.
6. Weigh Holland codes proportional to the distances between professions and

the input job. The output result of the algorithm is these codes distribution.

3.3 Searching Profession by the Job Description

First of all, all the descriptions from the O*NET for jobs are collected. For this,
several CSV-tables are joined by the job code field. Since texts of job descriptions
are quite large and reach multiple paragraphs, it is reasonable to use text compar-
ison metrics based on the frequency of word occurrences in texts - TF-IDF.

The dictionary of words is obtained according to the descriptions of all jobs.
The text of the job description is represented by a vector where for each word
we have TF-IDF value, calculated by the following formula:

TF − IDF (t, d,D) =
nt

∑N
k=1 nk

× log
|D|

{di ∈ D|t ∈ di} , (1)

where t – a term in the document, d – the document, D – the documents corpus,
n – the amount of words in the document d, N – the amount of words in the
corpus D.
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Afterwards, these computed vectors are compared using the cosine distance
metric:

S =
(A · B)

||A|| · ||B|| , (2)

where A – 1st document’s vector, B – 2nd document’s vector.
Here by documents A and B, we are mentioning vacancy description (query)

and O*NET job description accordingly.
After comparing the query with all job description we have a list of pairs

distances-description. After sorting that list in ascending order by distance, we
have documents ordered by proximity to the query. The first document is the
most relevant to the query.

3.4 Searching for the Suitable Profession with Accordance to
Semantics

To take semantically similar words into account, we decided to use word2vec
[4] approach. Since it is necessary to compare texts but not single words, Word
Mover’s Distance [6] metric was used.

Previously we have tested WMD based algorithm for solving the problem of
clustering of the textual news stream. Area of application and comparison of
WMD based with other algorithms are described in the paper [7].

In the current case, each text word is represented by a vector according to
the word2vec model, then the normalized bag of words (nBoW) is calculated for
each of the documents. After that, the minimum cost of moving all nBoW values
of the first document with coordinates represented by word2vec to the second
and vice versa is calculated. This task is reduced to the linear programming
problem:

min
T≥0

n∑

i,j=1

Tijc(i, j),

n∑

j=1

Tij = di, i ∈ {1, . . . , n}, (3)

n∑

i=1

Tij = d′
j , j ∈ {1, . . . , n},

where di – the total flow from the i-th word, c(i, j) – the distance between i-th
and j-th words.

As the algorithm’s computation complexity is O(n) = p3log(p), only dis-
tances between the job titles was calculated.

WMD assumes sequential distance calculation, that means maximum value is
not defined and may be greater than 1. It is necessary to transform the distance
metric to the similarity, so the final result should be in the range 0..1. It can be
done after normalizing of these values to the maximum found value.

WMD algorithm was implemented in the Julia language [8].
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3.5 Weighing Codes of Suitable Professions

In order to combine the results of the comparison of cosine similarity between
the documents in the form of TF-IDF vectors and WMD between word2vec
representations of documents, the following steps are performed:

1. Transforming distance to the similarity: s = 1
1+d2 .

2. If among the five most similar professions (in terms of similarity of TF-IDF
vectors and WMD) were the same, weights are increased to get the final
similarity between the documents.

4 Approach Based on Neural Networks

The second approach can be a set of neural networks, where each one predicts the
value for its own Holland code. In fact, the algorithm described in the previous
section can be transferred to the neural network.

O*NET job descriptions are used as a train data set, and codes weights of
the profession description are used as target values. Then the network, learn-
ing from the texts, does something similar to the previous approach: select the
most significant attributes from the given text and find the dependence of these
attributes from the target code value.

Convolutional neural networks (CNN) have shown promising results in the
field of natural language processing. The idea is that kernels size and outputs
are able to detect patterns of words with different length and these patterns are
spotted in the text regardless of their position.

For this approach, the CNN architecture represented in Fig. 2 was used. The
input data was embedded using word2vec that allows us to encounter semantics,
followed by the dropout layer to reduce overfitting, followed by 3 conv1d layers,
flattening and a fully-connected layer of 1 out neuron, which predicts the code
value.

This software service is implemented in Python using TensorFlow and
Keras [9].

5 The Comparison of the Algorithms

Algorithms were evaluated on the dataset from manually labeled Holland codes
for vacancies from indeed.com. As a metric, Mean Absolute Error (MAE) for
each of the codes is used:

MAE =
1
n

n∑

i=1

|pi − ri|, (4)

where pi - predicted value; ri - true value.
The algorithms evaluation results are represented in Table 1.

http://indeed.com
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Fig. 2. The neural network architecture
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Table 1. The algorithms MAE results

Holland code MAE TF-IDF + WMD MAE NN

Realistic 8.93 11.08

Investigative 10.83 14.50

Artistic 7.86 7.83

Social 10.60 4.39

Enterprising 12.94 9.41

Conventional 9.40 15.75

The considered algorithms can be compared by several characteristics. From
the point of view of the speed of work and the subsequent implementation in
the existing software system, the approach based on neural networks wins.

The comparison of the algorithms’ evaluation was based on manually labeled
data.

On the general test sample, the algorithm based on information retrieval has
MAE ≈ 4.7, the algorithm based on the neural network has MAE ≈ 5.9, while
the neural network shows better results in 37.5% of cases.

It is important to note that the results of the algorithm using the profession
search approach can be interpreted and evaluated subjectively. Its results can be
used to determine how well the vacancy corresponds to the selected professions.
The neural network approach is a “black box”, and to get the meaning of selected
features is a rather complex task. The interpretability of the results may be an
important factor, since the values of psychological features may depend on the
subjective assessment of various psychologists.

The example of Holland codes, predicted by both approaches, are represented
in the Fig. 3.

6 Discussion

There is nothing surprising in the fact that currently AI and machine learning
methods are used mainly to solve the most routine and resource-intensive tasks
in the employment process.

The most typical is the task of the candidate to job matching, which is
successfully solved by machine learning methods [10]. The authors of paper [10]
are building text queries and using the LambdaMART ranking algorithm for
accurate result matching. In this approach, the task of identifying psychological
characteristics is not considered by the authors.

In most articles devoted to the extraction from the text of the psychological
characteristics of the employee, the Big Five personality traits model is used
[11,12]. According to [13], the Big Five personality traits, also known as the
five-factor model (FFM) and the OCEAN (Openness to experience, Conscien-
tiousness, Extraversion, Agreeableness, and Neuroticism) model, is a taxonomy
for personality traits.
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(a) Query “School Teacher”

(b) Query “Flight Attendant”

(c) Query “Designer”

Fig. 3. The examples of predicted Holland codes for two algorithms: at left—TF-
IDF + WMD, at right—neural network

In the article [11] the Support Vector Machine (SVM) method is used to
match features extracted form micro-blog texts to five FFM factors. The values
of accuracy estimation were over 84%.

In the article [12] neural network with convolutional layers is used to match
short essay texts to FFM factors. The processing flow in the network com-
prises four main steps: word vectorization, sentence vectorization, document
vectorization and classification from the document vector to the classification
result (yes/no). The network comprises seven layers: input (word vectorization),
convolution (sentence vectorization), max pooling (sentence vectorization), 1-
max pooling (document vectorization), concatenation (document vectorization),
linear with Sigmoid activation (classification), and two-neuron softmax output
(classification). The values of the best accuracy estimation were about 63%.
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Instead of FFM model [13], we use the Holland Codes model [2]. While
the FFM model mainly shows the psychological characteristics of an employee’s
personality, the RIASEC model is more focused on identifying its professional
strengths. Therefore, in our work, we use exactly the RIASEC model.

In contrast to articles [11,12], the problem of code recognition in our work is
posed as a regression, not as a classification problem. Therefore, instead of the
accuracy metric for classification, we use the MAE metric for regression. The
results of our experiments are considered in the corresponding section.

Thus, the task of extracting the psychological characteristics of employees
from texts is far from complete. We hope that we were able to take a small step
towards solving this problem.

7 Conclusions and Future Work

Now researchers in the field of machine learning focus on solving the most
resource-intensive problems of recruitment, such as candidate to job matching.
But the important task of extracting the psychological characteristics of employ-
ees from textual information has less attention.

The Holland Codes (or RIASEC model) may be used as algorithms target
variables for psychological characteristics extraction.

We proposed two algorithms for the extraction of psychological characteris-
tics. The first algorithm is based on TF-IDF and WMD. The second algorithm
is based on a convolutional neural network. From the point of view of the per-
formance and the subsequent implementation in the existing software system,
the neural networks approach wins.

Since we consider the Julia language as a promising platform for the imple-
mentation of our service, the next version of the neural network model is planned
to be implemented using the Julia Flux library [14].

As a continuation of the work, it is planned to conduct further experiments
and improve the quality of the models, taking into account that the service will
be fully implemented in the Julia language.

The task of extracting the psychological characteristics of employees from
texts is far from complete. We hope that we were able to take a small step
towards solving this problem.

References

1. Riminder uses deep learning to better match people to jobs. https://techcrunch.
com/2017/05/15/riminder-uses-deep-learning-to-better-match-people-to-jobs.
Accessed 14 Feb 2019

2. Nauta, M.: The development, evolution, and status of Holland’s theory of voca-
tional personalities: reflections and future directions for counseling psychology. J.
Couns. Psychol. 57(1), 11–22 (2010). https://doi.org/10.1037/a0018213

3. Ramos, J.: Using TF-IDF to determine word relevance in document queries (2003)

https://techcrunch.com/2017/05/15/riminder-uses-deep-learning-to-better-match-people-to-jobs
https://techcrunch.com/2017/05/15/riminder-uses-deep-learning-to-better-match-people-to-jobs
https://doi.org/10.1037/a0018213


500 M. Belyanova et al.

4. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. arXiv preprint arXiv:1301.3781 (2013). http://arxiv.
org/pdf/1301.3781v3

5. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543, Doha, Qatar (2014). https://doi.
org/10.3115/v1/D14-1162

6. Kusner, M.J., Sun, Y., Kolkin, N.I., Weinberger, K.Q.: From word embeddings
to document distances. In: Proceedings of the 32nd International Conference on
International Conference on Machine Learning, vol. 37, pp. 957–966 (2015)

7. Gapanyuk, Yu.E., et al.: Improvements of the algorithm of clustering of the news
stream of text messages. In: Dynamics of Complex Systems – XXI Century, no. 3,
pp. 47–53 (2017)

8. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic lan-
guage for technical computing. arXiv preprint arXiv:1209.5145 (2012). http://
arxiv.org/pdf/1209.5145v1

9. Chollet, F.: Deep Learning with Python. Manning Publications Co, Shelter Island
(2018)

10. Belle, A., Dehling, E., Foster, D.: Improving candidate to job matching
with machine learning. https://dshcmorg.files.wordpress.com/2018/08/dshcm
2018 paper 5 job matching.pdf. Accessed 14 Feb 2019

11. Li, L., Li, A., Hao, B., Guan, Z., Zhu, T.: Predicting active users’ personality based
on micro-blogging behaviors. PloS One 9, e84997 (2014). https://doi.org/10.1371/
journal.pone.0084997

12. Majumder, N., Poria, S., Gelbukh, A., Cambria, E.: Deep learning-based docu-
ment modeling for personality detection from text. IEEE Intell. Syst. 32(2), 74–79
(2017). https://doi.org/10.1109/MIS.2017.23

13. Rothmann, S., Coetzer, E.P.: The big five personality dimensions and job per-
formance. SA J. Ind. Psychol. 29(1), 68–74 (2003). https://doi.org/10.4102/sajip.
v29i1.88

14. The official website of the flux library. https://fluxml.ai/. Accessed 14 Feb 2019

http://arxiv.org/abs/1301.3781
http://arxiv.org/pdf/1301.3781v3
http://arxiv.org/pdf/1301.3781v3
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1209.5145
http://arxiv.org/pdf/1209.5145v1
http://arxiv.org/pdf/1209.5145v1
https://dshcmorg.files.wordpress.com/2018/08/dshcm_2018_paper_5_job_matching.pdf
https://dshcmorg.files.wordpress.com/2018/08/dshcm_2018_paper_5_job_matching.pdf
https://doi.org/10.1371/journal.pone.0084997
https://doi.org/10.1371/journal.pone.0084997
https://doi.org/10.1109/MIS.2017.23
https://doi.org/10.4102/sajip.v29i1.88
https://doi.org/10.4102/sajip.v29i1.88
https://fluxml.ai/


Quasi-Brain-Death EEG Diagnosis
Based on Tensor Train Decomposition

Qipeng Chen1, Longhao Yuan1,2, Yao Miao1, Qibin Zhao2,
Toshihisa Tanaka4, and Jianting Cao1,2,3(&)

1 Saitama Institute of Technology, Saitama, Japan
{n8501chq,cao}@sit.ac.jp

2 RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
3 Hangzhou Dianzi University, Hangzhou, China

4 Tokyo University of Agriculture and Technology, Tokyo, Japan

Abstract. The quasi-brain-death diagnosis based on electroencephalogram
(EEG) signal analysis is of great significance for early detection of quasi-brain-
death patients which can avoid brain death misjudgment. Tensor is the multi-
way array and tensor decomposition is a natural way to analyze high-order data.
In this paper, we apply tensor train (TT) decomposition to EEG-based quasi-
brain-death diagnosis. By reshaping the EEG data from matrix to higher-order
tensor, we use a new algorithm to extract more valuable features from the data.
The support vector machine (SVM) classifier is then used to complete the
classification task of the extracted features. The experimental result shows that
our method is well performed in evaluating the difference between coma patients
and brain-death patients.

Keywords: EEG data � Brain-death diagnosis � Tensor � TT decomposition �
SVM

1 Introduction

Brain death refers to the complete and irreversible loss of the human brain and
brainstem. Brain death is considered to be the end of life, so the diagnosis of brain
death is of great significance. Harvard Medical School of the United States has defined
a new standard of death and established the first brain death criteria. The present brain
death determination procedure is time-consuming and contains some risks [1]. It is
dangerous to remove the patient’s respirator when performing the “self-breathing” test.
The advantage of introducing EEG prediction system is that it can avoid the mis-
judgment of brain death and reduce the burden on doctors and patients [2, 3].
Therefore, it is meaningful to present a simple and safe method to help doctor diagnose
quasi-brain-death patients.

A tensor is a multi-dimensional array, and it can represent high-dimensional data
accurately and even simplify the processing and calculation of large amounts of data. In
recent years, research on tensor becomes more and more important [4–6]. It has also
become one of the most popular research issues because of its natural representation of
high-order data. Therefore, it is meaningful to try to apply tensor methods to analyze
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the EEG. Several studies have applied tensor decompositions in neuroscience. Martí-
nez-Montes [7, 8] applies Candecomp/Parafac decomposition (CP) to a time-varying
EEG spectrum arranged as a three-order array with modes corresponding to time,
frequency and channel. Recently, tensor train (TT) decomposition [9] and tensor ring
decomposition [10] has been proposed and have attracted the researchers’ attention.
They own super linear compression ability and data interpretability.

TT-decomposition is a good method to analyze EEG data because it is naturally a
high-order tensor. In this paper, we are the first to diagnose quasi-brain-death patients
with TT decomposition. By transforming the EEG data into higher-order tensor and
extracting more valuable features by TT decomposition, we obtain better results in
evaluating the quasi-brain-death diagnosis.

2 Method of Data Analysis

2.1 Traditional Tensor Decompositions

Tensor is natural multi-dimensional generalization of matrices and have attracted
tremendous interest in recent years. Multilinear algebra, tensor analysis, and the theory
of tensor approximation plays increasingly important roles in computational mathe-
matics and numerical analysis.

CP decomposition is a commonly useful method at present [11]. The CP decom-
position factorizes a tensor into a sum of component rank-one tensors. For example,
given a third-order tensor X 2 R

I�J�K , it can be expressed as

X � k;A 1ð Þ;A 2ð Þ; � � �;A Nð Þ
h i

¼
XR

r¼1
kra 1ð Þ

r � a 2ð Þ
r � � � � � a Nð Þ

r ð1Þ

Where R is named tensor rank, which is a positive integer, � is the out product
operation, ar 2 R

I , Br 2 R
J , and ar 2 R

K , for r = 1, … , R. CP decomposition is a
good method but there is no straightforward algorithm to determine the rank of a given
tensor, it is an NP-hard problem and the approximation of the optimal tensor rank is an
ill-posed problem, which makes it difficult to apply CP decomposition to mathematical
calculation [12].

Tucker decomposition is a form of higher-order principal component analysis
(PCA). It decomposes a tensor into a core tensor multiplied by a matrix along each
mode. Thus, in the 3rd-order case where X 2 R

I�J�K , we have

X � G�1A�2B�3C ¼
XP

p¼1

XQ

q¼1

XR

r¼1
gpqrap � bq � cr ¼ G;A;B;C½ � ð2Þ

Where A 2 R
I�P, B 2 R

J�Q, C 2 R
K�R are the factor matrices (which are usually

orthogonal) and can be thought as the principal components for each mode. The tensor
G 2 R

I�Q�P is called core tensor and its entries can show the level of interaction
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between the different components. The Tucker model can be generalized to N-th order
tensors as

X � G�1A
1ð Þ
�2
A 2ð Þ � � ��N A

Nð Þ ¼ G;A 1ð Þ;A 2ð Þ; � � �;A Nð Þ
h i

ð3Þ

The matricized version of (3) is

X nð Þ � A nð ÞG nð ÞðA Nð Þ � � � � � A nþ 1ð Þ � A n�1ð Þ � � � � � A 1ð ÞÞ ð4Þ

The Tucker decomposition has good stability but it is not suitable for the decom-
position of large-scale and high-order tensors [13].

2.2 TT Decomposition

In recent years, TT decomposition has been proposed. Compared with traditional CP
decomposition and Tucker decomposition, TT decomposition has good calculation
convenience. For an element in the order-N tensor A 2 R

I1�����IN which is termed as
A i1; i2; � � �; iNð Þ, if it satisfies

A i1; i2; � � �; idð Þ ¼ G1 i1ð ÞG2 i2ð Þ � � � GN iNð Þ ð5Þ

Where Gk ikð Þ is an rk � rk�1 matrix, ik 2 1; 2; . . .; Ikf g, for k = 1; 2; . . .;N, and
r0 ¼ rd ¼ 1, then we can define the tensor has tensor train (TT) structure. Furthermore,
if ‘r’ is the minimum number in the TT format and the preceding d − 1 matrices satisfy
the left orthogonality

LT Gkð Þ � L Gkð Þ ¼ I 2 R
rk�rk ; 8k ¼ 1; 2; � � �;N � 1: ð6Þ

The rank rk is called compression ranks or TT-ranks, and Gk is defined as the core
of the TT-decomposition. In the index form, the decomposition can be written as

A i1; i2; � � �; iNð Þ ¼
X

a0;����;aN G1 a0; i1; a1ð ÞG2 a1; i2; a2ð ÞGN aN�1; iN ; aNð Þ ð7Þ

Since r0 ¼ rd ¼ 1, this decomposition can also be represented graphically by a
linear tensor network, which is presented in Fig. 1

Fig. 1. Tensor train network
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This picture looks like a train with carriages and links between them, and that
justifies the name tensor train decomposition, or simply TT decomposition. The most
effective method to calculate TT decomposition is to apply TT-SVD algorithm [14],
which only needs one iteration which includes multiple matrix singular value
decomposition (SVD) operation.

2.3 SVM Classifier

Support vector machine (SVM) is one of the most effective supervised learning algo-
rithms. The basic idea of SVM comes from the linear discriminant optimal classification,
which means not only separates the two sample planes accurately but also maximizes
the classification margin. The partition classification line can be expressed as

wT � xþ b ¼ 0; ð8Þ

Where w is the normal vector of H, b is the offset of the H which makes the data
points on both sides as far as possible from the classification line to make sure 2

wk k is
maximal (Fig. 2).

It can be transformed into a constrained optimization problem as

max
w;b

2
wk k

s:t: yi wtxi þ bð Þ	 1; i ¼ 1; 2; � � �;m
ð9Þ

It can also be expressed as

min
w;b

wk k2
2

s:t: yi wtxi þ bð Þ	 1 i ¼ 1; 2; � � �;m
ð10Þ

Fig. 2. The optimal classification line of SVM
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2.4 Collection of EEG Data

The data used in this paper are obtained from the intensive care unit (ICU) in a hospital
in Shanghai. The type of recording instrument is NEUROSCAN ESI-32 system.
During the data acquisition, seven electrodes which named Fp1, Fp2, F3, F4, F7, F8
were placed on the forehead of comatose patients, and the GND, A1, A2 are reference
electrodes on the ear (Fig. 4). The sampling frequency of the EEG signal is 1000 Hz
and the impedance of electrodes is less than 8000 Ω (Fig. 3).

From June 2004 to March 2006, 91 groups of EEG signals were collected from 33
patients. According to the health status of these patients, different EEG signals were
recorded. These patients include 22 coma patients and 11 brain-dead patients according
to the diagnosis of the doctors. Next, we apply the proposed method and SVM clas-
sifier to determine brain death.

2.5 Computation Procedure and Flow Chart

We propose a novel method which is based on TT decomposition to analyze the quasi-
brain-death EEG data. The purpose of our algorithm is to find more features that hide
inside the EEG data by changing the order of data. The whole procedure of our method is

Step 1: Input the data to Matlab toolbox named “EEGlab” and obtain data from
channel Fp1, Fp2, F3, F4, F7, F8.
Step 2: Set the sampling rate for 1000 points per second and set time for 30 s and
then we obtain a matrix of size 6� 30000.
Step 3: Reshape the 6� 30000 matrix to a 4th-order tenor of size
6� 100� 60� 5:
Step 4: Apply TT-SVD decomposition algorithm to decompose the tensor.
Step 5: Compute the Frobenius norms of the obtained TT cores and consider them
as the extracted features.

A1A2

GND

Fp2 Fp1
F7F8

F4 F3

Fig. 3. The location of the electrodes
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Step 6: Compute the singular values of all the unfolding of the TT approximated
tensor and also consider them as the features.
Step 7: Choose the obtained Frobenius norms and singular values to constitute a
50� 6 matrix in which the last column is formed by ‘0’ and ‘1’ to represent dead
patient and coma patient respectively.
Step 8: Apply SVM to classify the extracted features. Choose column 5 as response
and column 1–4 as predictors. Set cross-validation fold as 5 folds and plot the result.

3 Experiment and Result

We select a small part of EEG data and plot them to analyze the variation of brain
wave. Figures 5 and 6 show the EEG signals of two suspected brain-death patients
respectively. Comparing the two graphs, we can find that they have different rules of
change. Though it seems that the graph of quasi-brain-death and coma states have
different forms and coma data is more active, we cannot tell the common difference
between them through the observation of the graphs. Nowadays, there are many
applications of tensor decomposition to extract features for the classification task. But
we are the first to attempt to apply TT decomposition to classify the two different kinds
of EEG data. The major work is extracting valuable features and then uses them to
classify coma patients and quasi-brain-death patients.

91 groups of 
EEG data with 

labels

reshape EEG 
data to 4rd 

tensor

TT-svd 
decomposition

feature matrix

feature valuesclassifier

coma patient brain-death 
patient

Obtian EEG 
data form 

patient

reshape EEG 
data to 4rd 

tensor

TT-svd 
decomposition

Fig. 4. Flow chart
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We import 91 groups of EEG data into the Matlab software and tensorize the data
into higher-order. Then, the tensor is decomposed by the TT-SVD algorithm [14] and
the decomposed tensor in TT-format is the cores G1;G2; . . .;Gd . We choose the
Frobenius norm of the cores and the singular values of the TT approximated tensor as
latent features. Frobenius norm is a very important evaluation index for tensor which is
often utilized to define the amount of data. If the Frobenius norm is small, it can be
explained that each element is small relatively. Singular values often correspond to the
important information implied in the tensor, so we choose the largest singular value of
each unfolding as the selected feature. Table 1 enumerates some results of the selected
features.

Column 1 shows the Frobenius norms of the TT cores and column 2–3 is the
maximum singular values of the unfoldings of the TT approximated tensor. State
means the condition of the patients diagnosed by the doctors. From Table 1 we notice
that the Frobenius norm of the dead patient is lower than coma patient obviously. The
average Frobenius norm of two different patients was 50980 and 4227. Lower
Frobenius norm explicates that there are not too many large values, but many relatively
small values inside of the tensor. From the results, we predict that there is less infor-
mation in the EEG data of the brain-death patient. Similarly, by comparing the singular
values, we can also find that there are great differences between them. Significant
differences in singular values indicate that the waveforms of two different patients are
distinct and there is more energy in the brain waves of coma patients (Fig. 8).

Table 1. Characteristic factors of different patients

Frobenius norm Singular values 1 Singular values 2 Singular values 3 State

31798 14139 14017 11155 1
31442 14009 13915 10024 1
6212.9 2244.9 2184.7 2383.8 0
5613 2390.3 2407 2409.6 0

..

. ..
. ..

. ..
. ..

.

0 1 2 3 4 5

Fp1

Fp2

F3

F4

C3

C4
T3

Fig. 5. The EEG of coma patient

0 1 2 3 4 5

Fp2

F3

C3

T3
C4

F4

Fp1

Fig. 6. The EEG of brain-death patient
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From Fig. 7 we can find that the brain-death EEG data concentrates on a small area
and coma EEG data scatters in the figure. This indicates that the coma data has much
more information compared with brain-death EEG data and coma patient has much
more brain activity. From the ROC curve, we can find that the curve is near the upper
left corner and it shows that the diagnostic accuracy is very high. AUC value is equal to
1 indicates that the diagnosis is effective. Figure 9 indicates that the classification result
is satisfactory and the classification result is precise.
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Fig. 9. The result confusion matrix
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Fig. 7. The scatter plot of two different patients
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From Parallel Coordinates Plot 1 (Fig. 10), it can be concluded that on the same
extracted feature attribute, the same color polylines are concentrated, and different
colors have certain separation distance. It shows that this attribute is helpful for pre-
dicting label categories and each extracted feature is valuable for label classification.
We get rid of the patients who have relatively active EEG data and Fig. 11 is obtained.
From Fig. 11 we can find a clear gap between blue line and orange line which indicates
the effectiveness of SVM classifier.

Column_1 Column_2

mean

+1.0 std

+0.5 std

+1.5 std

+2.0 std
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Fig. 12. Parallel Coordinates of matrix-SVD decomposition
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At last we use SVD-decomposition to process original matrix and extract two
features to diagnose the quasi-brain-death patients. From Fig. 12 we can find that some
polylines is misplaced in column 2 and that indicates this attribute is not good as
another attribute for predicting label categories. It is concluded that tensor is good
method to diagnose quasi-brain-death patients and it has better reliability compared
with matrix.

4 Conclusions

We apply a novel method that transforms the EEG data into higher-order, then tensor is
first introduced to the diagnosis of quasi-brain-death. We employ TT decomposition to
extract more valuable features from the tensor data to diagnose the quasi-brain-death
patients. The result shows that EEG data of brain-death patients and coma patients are
effectively classified by our method to diagnose quasi-brain-death patients. Most of all,
our method can be a good reference to doctors which can reduce the risks and save
valuable time for patients.

In this paper, we use tensor method to diagnose the quasi-brain-death patients, and
the result is satisfying. In our future work, we aim to use tensor methods to diagnose
more brain-related diseases. Also, we are going to apply more effective tensor
decomposition model to extract more valuable features from EEG data to improve the
performance of our method.
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Abstract. The analysis of electroencephalogram (EEG) signals is becoming
more important because of the time-consuming and large bias of traditional
visual detection technology, especially in diagnosis of epilepsy. Based on the
nonlinear and non-stationary of the EEGs, empirical mode decomposition
(EMD) is applied to decompose the original signals into intrinsic mode func-
tions (IMFs). In this paper, after getting the IMFs, the fluctuation index and
variation coefficient are calculated to analyze the amplitude change of IMFs. In
order to better reflect the information of EEG signals, Hilbert transform is
applied to obtain the instantaneous frequency for each IMF. Then, the novel
feature named fluctuation index and variation coefficient of instantaneous fre-
quency for IMFs are calculated. Furthermore, feature based on sample entropy
of the first order difference is extracted. Finally, both of the calculated features
will put together as a fusion feature into SVM for classification. The proposed
method is evaluated using the Boon epileptic dataset and the highest average
classification accuracy is 99.59%, showing a powerful method to detect seizure.

Keywords: Epileptic seizure � EMD � Multi-feature fusion � Hilbert transform

1 Introduction

Epilepsy is one of a most common disease and the mortality of epileptic patients is 2–3
times higher than normal people [1]. The electroencephalogram (EEG) is an indis-
pensable auxiliary tool in the detection of epilepsy. Due to the time-consuming and
strong subjectivity of the traditional method, exploring the feasible epileptic seizure
detection method which can get more information about the EEGs to give a more
accurate diagnosis and more appropriate treatment options is necessary.

Recently, to diagnose epilepsy, many automated detection methods have been
proposed which can be summarized as the time domain, the frequency domain, time-
frequency domain, nonlinear dynamical and methods based on graph theory and so on.
Chandaka et al. proposed a method based on cross-correlation to analysis healthy and
ictal EEG signals [2]. As for frequency domain analysis, most of them used Fourier
spectral analysis to transform time-domain signals into frequency domain [3].
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However, the aforementioned methods can only respect the characteristics in time
domain or frequency domain and they are based on the assumption that the signals are
stationary. Hence, to analyze the EEG signals which are typically non-stationary, time-
frequency estimation methods such as discrete wavelet transform (DWT) [4], short time
Fourier transform (STFT) [5] are used. Furthermore, in [6] a graph theory based on
key-point local binary pattern was proposed and in [7] Kumar et al. achieved the
automatic detection of epileptic seizure by using multi-level local patterns (MLP).

Additionally, empirical mode decomposition (EMD) is a practical method to ana-
lyze non-stationary and nonlinear signals [8]. It has been reported that when analyzing
biological signals EMD has a better expression [9, 10]. Compared with the other
methods like Fourier transform and wavelet transform, EMD method decomposes the
signal based on the time scale characteristics of the data itself, so it is adaptive.
By EMD, EEG signal is composed into a collection of intrinsic mode functions (IMFs).

In this paper, a novel multi-feature fusion method in the EMD domain to diagnose
epileptic EEG signals is proposed. First of all, the EMD is applied on the raw EEG
signal to divide it into several IMFs. Then multi-features are extracted. Fluctuation
index and variation coefficient of the IMFs obtained by EMD are calculated to analyze
the amplitude change. In order to get the frequency information of the signals for better
describing, Hilbert transform is applied to obtain the instantaneous frequency of the
IMFs. Then according to this, this paper proposed a novel feature which is to calculate
the fluctuation index and variation coefficient of instantaneous frequency. Furthermore,
only the linear features may omit some information so an improved feature, sample
entropy of first order difference, is calculated. Finally, these features getting from the
IMFs are combined together as a fusion feature to increase the classification accuracy.
The novelty of this paper is to propose a new method of multi-feature fusion, com-
bining traditional linear feature, Hilbert transform and the nonlinear features. And the
proposed method reaches a higher classification performance in diagnosis of seizure
and seizure-free EEG signals.

2 Method

Figure 1 shows the flowchart of the proposed automatic seizure detection framework.

2.1 Empirical Mode Decomposition

Generally, EEG signals have obvious non-stationarity. Empirical mode decomposition
(EMD) is an adaptive signal time-frequency processing method which is especially
suitable for the analysis of non-stationary signals. The purpose of EMD is to

Fig. 1. Flowchart of the automatic seizure detection framework.
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decompose a non-stationary signal into multiple single component functions named
intrinsic mode functions (IMFs). Each IMF should meet the following two conditions.
Firstly, within the entire time range, the number of local extreme and zero crossings
must be equal to, or at most diff one. Secondly, there must be a zero mean between the
envelope of the local maximum and the envelope of the local minimum. Here is the
IMFs extraction process:

(1) Find the local extreme of the raw signal x(t), t = 1, 2, …, N. the maximum and
minimum of the signal are respectively interpolated by the cubic spline line, then
the upper envelop (emax) and the lower envelop (emin) are formed.

(2) Calculate the mean of the upper envelop and the lower envelop:

m1 ¼ emax þ emin

2
ð1Þ

(3) Set h1 = x(t) − m1, if h1 satisfies the two conditions of IMFs, then the first com-
ponent can be designated as c1 = h1, otherwise, regard h1 as a new x(t) and return
to (1) until get the first IMF.

(4) Regarding the residue r1 as:

r1 ¼ xðtÞ � c1 ð2Þ

(5) r1 will be taking as a new signal and the sifting process (1)–(4) will go on to get the
other IMFs until the residue becomes a monotone function. The original signal
x(t) can be represented as:

xðtÞ ¼
X

m

i¼1

ci þ r ð3Þ

where ci is the ith intrinsic mode function (IMF), r is the final residue.

2.2 Fluctuation Index and Variation Coefficient of Amplitude

Fluctuation index and variation coefficient are two indicators to describe the changes in
time series. We calculate the fluctuation index and variation coefficient for the IMF
component c(t) to analyze the amplitude change of signals. The fluctuation index (Fa)
in each IMF is:

Fa ¼ 1
N

X

N�1

t¼1

ðcðtþ 1Þ � cðtÞÞ ð4Þ

Additionally, variation coefficient (Va) in this paper is defined as:

Va ¼ d
l
; l ¼ 1

N

X

N

t¼1

jcðtÞj; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

N

t¼1

ðjcðtÞj � lÞ2
v

u

u

t ð5Þ
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In Eq. (5), we first get the absolute value of the signal c(t) and then calculate the
mean (l) and standard deviation (d) of the absolute value signal jcðtÞj.

2.3 Fluctuation Index and Variation Coefficient of Instantaneous
Frequency

Solely extracted features in time domain to analysis the information from amplitude
may cause the omission of important frequency information. Considering that each
intrinsic mode function contains only one frequency component at each time, Hilbert
transform [12], a generally used method is applied here to analyze the instantaneous
features of signals. The process of instantaneous frequency calculation is as follows:

(1) The Hilbert transform of x(t) can be obtained by:

yðtÞ ¼ xðtÞ � 1
pt

¼ 1
p

Z 1

�1

xðsÞ
t � s

ds
ð6Þ

(2) Let z(t) be the analytic signal of x(t):

zðtÞ ¼ xðtÞþ jyðtÞ
¼ aðtÞejhðtÞ ð7Þ

where aðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2ðtÞþ y2ðtÞp

represents the amplitude of the analytic signal z(t) and
hðtÞ ¼ arctanðyðtÞ=xðtÞÞ is the instantaneous phase representation.

(3) The instantaneous frequency of the signal x(t) can be solved by:

xðtÞ ¼ dhðtÞ
dðtÞ ¼ y0ðtÞxðtÞ � x0ðtÞyðtÞ

x2ðtÞþ y2ðtÞ ð8Þ

In this paper, Hilbert transform is applied on the IMFs to get the instantaneous
frequency xðtÞ. In this work, according to Hilbert transform and abovementioned two
features, we proposed a novel feature extraction method which is to calculate the
fluctuation index (Fx) and variation coefficient (Vx) of instantaneous frequency.

Fx ¼ 1
N

X

N�1

t¼1

ðxðtþ 1Þ � xðtÞÞ ð9Þ

Vx ¼ d
l
; l ¼ 1

N

X

N

t¼1

jxðtÞj; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

N

t¼1

ðjxðtÞj � lÞ2
v

u

u

t ð10Þ
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2.4 Sample Entropy of First Order Difference

The EEG signals are extremely complex nonlinear and non-stationary signals, so if
only the linear features are extracted to analysis the signals, the results will be limited.
Hence, sample entropy (SampEn) of first order difference, a nonlinear measure, is used
to make the analysis of EEGs more comprehensive and credible [13]. The difference
operation reflects a change in the discrete quantity, which can be used for error cor-
rection and data stabilization. In this paper, we combined the SampEn algorithm and
the first order difference. The sample entropy of first order difference is proposed as:

(1) Compute the first order difference sequence x0 nð Þ of the signal x(n), x(n) = [x(1),
x(2), …, x(T)], and the length of x0 nð Þ is N = T − 1.

(2) For the series x0 nð Þ of N points, form a set of vectors with m data points

Xi
m ¼ ½x0ðiÞ; x0ðiþ 1Þ; . . .x0ðiþm� 1Þ�; fij1� i�N � mþ 1g ð11Þ

(3) The distance between two vectors like this is defined as the maximum difference of
the corresponding data between them:

d½Xi
m;X

j
m� ¼ maxðjx0ðiþ kÞ � x0ðjþ kÞjÞ; 0� k�m� 1 ð12Þ

(4) Let Bi be the number of d½Xi
m;X

j
m� within r (a threshold given advanced), and define

Bm as:

Bm ¼ 1
N � m

X

N�m

i¼1

Bi

N � m� 1
ð13Þ

(5) Let m plus one, repeat the process (2)–(4) to obtain the vectors Xi
mþ 1 and Am,

finally, the sample entropy of first order difference is:

SampEnðm; rÞ ¼ limN!1½� ln
Am

Bm
� ð14Þ

(6) while N is a finite value, it can be expressed as:

SampEnðm; r;NÞ ¼ � ln
Am

Bm
ð15Þ

In the paper, we applied the sample entropy of first order difference on the IMFs.
Usually, the sample entropy of first order difference in normal EEG signals is higher
than ictal EEG signals.

2.5 Multi-feature Fusion Method

Given a EEG signal x(t) = [x(1), x(2), …, x(T)], using empirical mode decomposition
to compose the signal into a series intrinsic mode functions, ci(t) represents the ith
intrinsic mode function. Extract features from IMFs. First, according to (4) and (5)
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calculate the fluctuation index and variation coefficient of amplitude which we denote
as Ci

a ¼ ½Fi
a;V

i
a�. Next, according to (6)–(10), the fluctuation index and variation

coefficient of instantaneous frequency can be extracted as Ci
x ¼ ½Fi

x;V
i
x�. Then extract

the SampEn of first order difference Ci
s. Finally, a new fusion feature space ½Ci

a;C
i
x;C

i
s�

which represents the ith IMF is constructed.

2.6 Classification

Support vector machine (SVM) [14], is a well-known supervised algorithm based on
the theory of VC dimension. The principle of minimum structural risk that SVM
follows makes a good generalization ability, while traditional classifiers which based
on the principle of error minimization may cause the risk of over-fitting when the
sample size is small. Therefore, the features calculated earlier are fed into the SVM to
find a decision boundary. In this paper, we selected a RBF-based SVM to evaluate the
effectiveness of the features.

3 Experimental Results

3.1 Dataset

The EEG signals used in this work are the records which are from the epilepsy labo-
ratory of Boon, Germany [11]. There are five subsets in this dataset, which are known as
Z, O, N, F and S. Sets Z and O are the EEG signals extracted from five healthy persons,
respectively measured with eyes open and closed while the remaining three sets are
records from epileptic patients. Sets N and F are the EEGs during the seizure-free
intervals respectively taken from hippocampus and the epileptogenic zone, and the set S
contains ictal signals from focal zone. Each of the five sets contains 100 single-channel
EEG epochs whose sampling frequency is 173.61 Hz and time duration is 23.6 s (each
epoch has 4097 points). In our work, all of the five subsets are used and each signal is
divided into four parts with 1024 points, hence there are 400 segments in each class.

3.2 EMD and Feature Extraction

For the Boon dataset, the EEG signals from Z, O, N, F and S are all processed by EMD
first. For comparison, the original signal and the IMFs are shown in Fig. 2, the samples
are respectively from set F and set S. The first five IMFs are chosen by analyzing the
spectrum. After EMD, EEG signal features are calculated via the method mentioned
above. Thus, there are 5 features in total for each IMF of an EEG signal. Eight cases we
considered in this work are shown in Table 1.

Table 1. Different classification cases.

Case 1 2 3 4 5 6 7 8

Group 1 Z O N F NF ZNF ONF ZONF
Group 2 S S S S S S S S
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N-fold cross-validation is a statistical method used to verify the performance of
classifiers. The input dataset is randomly grouped into N subsets of the same size, let
each of the N subset be the test set respectively and the remaining N − 1 subsets be the
training set. Then N models will be built during this procedure, regarding the average
accuracy of the N models as the final classification accuracy. In this work, both 4 and
10-fold cross-validation are performed to evaluate the performance of the proposed
method.

In order to verify the effectiveness of the proposed feature fusion method, several
experiments were carried out, Table 2 shows the results in case 4. According to
Table 2, it can find that the feature SampEn of first order difference has a better
performance than the original SampEn. It can be reported that the classification
accuracy used EMD especially the first two IMFs is better than the raw EEG signals,
which may due to the more information that the IMFs contain. And the fusion feature
has the improved classification performance compared with the single feature.

Fig. 2. Different components of IMFs taken from the original EEG signal. (a) an interictal signal
from set F, (b) an ictal signal from set S.

Table 2. Classification accuracy of 4-fold CV for different features in case 4.

Component EEG IMF1 IMF2 IMF3 IMF4 IMF5

SampEn 76 74.375 74.25 72.375 67.125 66
SampEn of first order difference 92 82.875 93.75 78.75 71.875 68.25
Fa;Va½ � 96.5 97.25 95.125 85.25 77.625 67.875
Fx;Vx½ � 88.875 95.875 93.25 84.375 70.625 63.5
Fusion feature 97.875 98.625 98 92.875 85 78.375
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3.3 Classification Results

It is a very challenging problem when it comes to correctly identify ictal EEG signals
from healthy and interictal records, therefore, it is very necessary to achieve the auto-
matic epilepsy detection method with good classification effect. In this work, we use the
above-mentioned database to evaluate the proposed framework. In order to get a higher
performance of the classifier, features from different IMF components are fused to form
a new feature vector. From Table 3, results of 4-fold and 10-fold CV based on the fusion
feature are shown. It can be observed that the average classification by combining
different IMF components is higher than only used the first IMF in almost all the 8 cases,
and the average accuracy between the 8 cases can be up to 99.59% (10-fold) and 99.48%
(4-fold). The ROC curves of case 4 and case 5 are shown in Fig. 3.

Table 3. Classification accuracy of 4-fold and 10-fold CV for fusion features.

Case IMF1 IMF1–2 IMF1–3 IMF1–4 IMF1–5
4-fold 10-

fold
4-fold 10-

fold
4-fold 10-

fold
4-fold 10-

fold
4-fold 10-

fold

1 99.875 99.75 100 99.875 99.875 99.875 100 100 100 100
2 97.125 97 99.75 99.625 100 99.875 100 100 100 99.875
3 99.25 99.25 100 99.75 100 99.75 100 99.875 99.75 99.625
4 98.625 98.75 98.375 99 98.25 98.625 98.25 98.875 98.125 98.5
5 99.25 99.167 99.333 99.25 99 99.167 99 99.25 98.833 98.917
6 99.375 99.438 99.5 99.5 99.625 99.375 99.563 99.563 99.313 99.375
7 98.188 98.25 99.438 99.438 99.625 99.375 99.563 99.563 99.375 99.375
8 98.4 98.55 99.35 99.5 99.45 99.45 99.5 99.6 99.3 99.5
Average 98.76 98.77 99.47 99.49 99.48 99.44 99.48 99.59 99.34 99.40

Fig. 3. (a) ROC curve of case 4, (b) ROC curve of case 5.
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Table 4 shows the comparison of classification accuracy for the same dataset
according to different methods. The results of our proposed method in Table 4 are
average accuracy of 10-fold CV. It can be seen from Table 4 that the proposed multi-
feature fusion method in EMD domain has a higher accuracy in both the 8 cases
compared with the other methods.

4 Discussion and Conclusions

In this work we aim to perform an efficient automated detection method for diagnosing
seizure and non-seizure EEG signals. In this paper, a multi-feature fusion method based
on EMD was proposed. First, by EMD the intrinsic mode functions (IMFs) contain
more information of the time series. In the proposed work, based on fluctuation index
and variation coefficient of amplitude, Hilbert transform is combined with them to
obtain a new feature named fluctuation index and variation coefficient of instantaneous
frequency. And the improved feature sample entropy of first order difference is used to
extract nonlinear dynamic information. Then features mentioned above are fused to
obtain more information about the EEG signals and fed into SVM. The average
classification accuracy of this proposed method is 99.48% (4-fold CV) and 99.59%
(10-fold CV). The result shows that the method has a well classification performance.

Table 4. Comparison from different methods

Authors Methods Cases Accuracy (%)

Zhu et al. [16] Degree + strength of HVG + K-NN Z-S 100
F-S 93.0
ZONF-S 95.4

Kumar et al. [7] MLP + NN NF-S 98.33
Song et al. [13] MS-SE-FF + ELM F-S 97.53
Kumar et al. [15] Fuzzy approximate entropy + SVM Z-S 100

O-S 100
N-S 99.6
F-S 95.85
ZNF-S 98.15
ONF-S 98.22
ZONF-S 97.38

Proposed method Multi-feature fusion + SVM Z-S 100
O-S 100
N-S 99.875
F-S 99
NF-S 99.25
ZNF-S 99.5
ONF-S 99.563
ZONF-S 99.6
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The performance of the proposed method has been evaluated by comparing with the
other methods. It can be concluded that the proposed method has a higher recognition
rate, showing its potential for seizure detection.
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Abstract. People sometimes gain insight into an innovative solution of problem.
In the visual domain, one-shot learning in hidden figures is a prominent instance of
suchEurekamoments.However, the natureof conscious experience accompanying
the visual one-shot learning has not been well studied. Here we show the phe-
nomenology of visual one-shot learning scrutinized through an experiment con-
sideringmore diverging aspects of subjective feelings. Correlation and exploratory
factor analysis were performed on the participants’ recognition time, accuracy, and
subjective judgments of hidden figure recognition in morphing gradual change
paradigm. As a result, two salient factors were found, which were interpreted as
“Aha!” experience and task difficulty. Furthermore, the “Aha!” experience consists
of affective and cognitive components of insight. The results suggested that insight
can be characterized by multidimensional factors in the case of visual one-shot
learning as in common with other problem domains and modalities.

Keywords: One-shot learning � Visual object recognition � Hidden figures �
“Aha!” experience � Insight � Affective � Cognitive � Phenomenology

1 Introduction

Visual object recognition is one of the routine cognitive processes of our daily life. In
the dim light, the visual system tries to collect information out of the scarce context.
Similarly, hidden figures, such as a Cow [1] and a Dalmatian [2], do not have visually
rich context. Hidden figures seem to have no definite interpretation at first; once the
viewer realizes the image hidden in the blurred picture, there is no going back. This
special type of abrupt perceptual learning is called one-shot learning [3–5]. The subject
typically experiences an insightful sensation (“Aha!” experience) at the moment of
perceptual learning [6, 7]. When and how this Eureka moment of learning happens is
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not well known, partly because this type of experience typically happens just once in a
special condition.

A new method to analyze this insightful experience with morphing pictures was
introduced [4]. This method was contrived with applying black and white two-tone
(“Mooney”) images [8, 9] gradually changing in gray scale. Behavioral characteristics
and quality of subjective experiences were not fully examined in the previous study,
because only the reaction time (RT) and the confidence rating were recorded [4]. Some
recent research has addressed multi-dimensional features of insight and revealed the
phenomenology of “Aha!” experience by using multifaceted scoring method [10–13].

By modifying these new methodologies to be applied to visual one-shot learning,
here we report experiments in which the subjects viewed morphing hidden figures on
the screen. After each trial, the subjects were asked to provide subjective ratings in six-
point scale about ten aspects (Table 1): Suddenness, Confidence, Vividness, Three-
dimensional perception, Fun (gratifying), Delight, Surprise, misperception (false alarm,
FA), tip-of-the-tongue (TOT) phenomena (a state in which only the name does not
come out although it is understood), and willingness to recommend (WTR).

The reasons why these subjective assessments were adopted are as follows. There
are four prominent features that typically occur at the time of the “Aha!” experience
accompanying insight: (i) noticing the answer suddenly, (ii) understanding quickly and
easily when it is the correct answer, (iii) experiencing positive emotions, (iv) being
convinced that it is the correct answer [7, 14]. We selected the items that are expected
to reflect the prominent features. Surprise and Suddenness are related to (i), 3D-
perception and Vividness which may be grounds for judging as answer are in relation
to (ii), FA or misrecognition of distractor which inhibits correct recognition, sharing the
same experiences with others (WTR), Fun (enjoyment) or Delight of understanding
something are related to (iii), while the TOT phenomenon and Confidence of clearly
understanding are related to (iv).

We assumed that some of these rating scores might be related to the “Aha!”
experiences. There are several other possible options. As the number of questions is

Table 1. Subjective assessment questionnaire

#item Description

1. How suddenly did you find the perceived picture? (Suddenness/Sudden)
2. How much are you convinced about your answer? (Confidence/Sure)
3. How vividly did you see the answer picture? (Vividness/Vivid)
4. How sterically did you feel about the picture? (Stereoscopicity/Sterical/3D)
5. How interesting did you feel about the picture? (Fun)
6. How pleased were you when you got the right answer? (Delight)
7. How surprised did you feel at the answer? (Surprise)
8. How long were you having a wrong figure before you got the right answer? (FA)
9. How much did you feel the-tip-of-the-tongue state? (TOT)
10. How much do you prefer to show this picture to your friends? (WTR)
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increased too much, the cognitive load will be too high or the impression will fade
during the answer, so we narrowed the questions down to just ten items. Also, as
objective indexes, the RT was measured and the correct answer rate (accuracy) was
calculated. For these subjective and objective variables, we investigated the underlying
factor structure by exploratory factor analysis (EFA) to verify whether the hypothesis
that insight can be best described by multidimensional perspectives [10–13] is also true
in the visual one-shot learning of hidden figures.

2 Methods

2.1 Participants

Twenty-four undergraduate/graduate students (12 females and 12 males; mean ± SD
age: 24 ± 7 years old) took part in this experiment. All participants had normal or
corrected-to-normal vision and all but one were right-handed by self-report. All pro-
cedures were performed with the participants’ informed written consent and in
accordance with the protocols approved by the Ethics Committee of National Institute
of Informatics.

2.2 Stimuli

Twenty-four grayscale pictures (300 � 300 pixels) with familiar objects [15] were
blurred and binarized to be unrecognizable. The resultant black and white ambiguous
images are called Mooney objects [8, 9]. By morphing each Mooney object and its
blurred original grayscale counterpart, intermediate images between them with various
ambiguity levels were made [4]. By connecting these series of morphing images
together, we got hidden movies with 101 frames gradually changing from original
blending ratio 0% to 100% in increments of 1% (Fig. 1).

Presentation time of each frame was 500 ms, and thus each movie length was
50.5 s. The stimuli (12.5° � 12.5°) were presented against middle gray background on
the 17-in. Tobii T60 display (Tobii Technology, Stockholm, Sweden).

2.3 Procedure

The participants’ task was to detect and recognize hidden object in stimulus as soon as
possible. After right-clicking the mouse button to indicate recognition or reaching the
video end (time out) and answering the object name verbally, ten types of subjective
rating (Table 1) in 6-point (options: 0–5) scale were asked in pseudo-random order. We
did not give a linguistic description using adjectives and adverbs expressing each
option. Instead, the participants were asked to judge the extent a particular feeling is
true by the magnitude of the numerical value from 0 to 5. The order of stimulus videos
was counterbalanced among the participants. Since the total number of stimuli was
small, we analyzed the data from the practice and experiment sessions without dis-
tinguishing them.
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Fig. 1. Typical example frames of morphing hidden movies (The answer: Screw, Owl, and
Telephone from top to down). The grayscale images before degradation were adapted from http://
www.freeimages.com/

The condition for judging that the subjects correctly recognized hidden objects was
whether or not a synonym of object name was included in the answer. Verbal reports of
object name using different words across the participants such as “high heels”, “heels of
shoes”, or “pumps”, for example, were all regarded as correct answers.

3 Results

On average (±SD), 91.7 ± 8.2% (22.0 ± 1.97 movies) of all the stimuli were cor-
rectly recognized. RT was 36.0 ± 4.3 s in correct trials and 32.3 ± 9.0 s in incorrect
trials including no response. In comparison between correct and incorrect/time out
trials, all subjective ratings were higher in correct trials than in incorrect trials (all
ps < 1.0e−5, two-tailed t-tests), except for WTR (p = 0.34), FA (p = 0.95), and TOT
(p = 0.25) (Fig. 2).

Because the number of error trials were not sufficient for further analysis, hence-
forth, only data in correct trials were analyzed. We performed the Pearson correlation
analysis between the 10-item subjective ratings and two task performance measures,
i.e., RT and accuracy (correct rate, abbreviated as Correct in Figures and Tables)
calculated for each stimulus.

There were many combinations showing positive correlations among them, while
negative correlations were observed only in four combinations: (i) RT and confidence,
(ii) RT and 3D, (iii) RT and accuracy, and (iv) confidence and TOT. Only one variable
showed a positive correlation with RT was FA (Table 2).
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In order to reveal latent structures behind observed variables, EFA was carried out.
For the first step, it was necessary to infer the number of factors. According to the Scree
plot (Fig. 3), in which the eigenvalues were arranged in order of magnitude, variance of
the first factor was accounted for more than twice of the variance of the other factors.
The Scree test to estimate factor numbers from location of “elbow” in the graph shape
suggested that there existed an underling three factor structure.

There is another rule of thumb, called the Kaiser–Guttman (KG) criterion,
proposing that the number of eigenvalues equal to or larger than 1.0 is regarded as the
factor number. In light of this KG criterion, the estimated number of factors was 3.
Therefore, it was reasonable to conclude that a three-factor model was most likely.

The factor loadings (ML1, ML2, ML3, corresponding to the first, second, and third
factors, respectively) and the commonality (h2) were estimated (Table 3) through
maximum likelihood method with the Promax rotation.

Fig. 2. Comparison between correct and incorrect answers for each subjective assessment.
Mean (+), median (thick line in the box). ***p < 1.0e−5, n.s.: not significant

Table 2. Pearson correlations between subjective evaluations and objective performances

# p < 0.05, p < 0.01, p < 0.001 
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Next, to investigate whether there was a substructure in the biggest factor, nine
variables strongly related to the first factor were selected and further analyzed. Results
of the Scree test and the KG criterion (Fig. 4) consistently suggested that there might
be two sub-factors (ml1 and ml2) in the original main factor (Table 4).

Fig. 3. Scree plot to estimate factor number. Three-factor structure is plausible

Table 3. Factor loadings and commonalities in three-factor structure

Fig. 4. Scree plot to estimate sub-factor number. Two-factor structure is plausible
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4 Discussion

In seven out of ten items in the subjective ratings, rated scores were significantly higher
in correct answer trials than in incorrect ones, suggesting that the participants had
stronger feelings when they reached the correct answers: they were surprised and
convinced to find suddenly a vivid 3D object in the stimulus and pleased to have such a
fun experience. There was, however, no difference in the WTR, FA (e.g., mental
fixation) and TOT phenomenon ratings between correct and incorrect conditions.

The WTR judgment could be regarded as an indicator of word-of-mouth. In
marketing research, it is known that there is a U-shaped relationship between product
satisfaction level and frequencies of word-of-mouth generation. When the product is
very satisfactory or otherwise not very satisfactory for customers, the word-of-mouth
reactions are most likely to be induced [16]. If the correct answer gives a sense of
satisfaction and, on the other hand, incorrect/unsolved (or at least not fully achieved
disambiguation) case provides a feeling of dissatisfaction, it would be a natural con-
sequence that the urge to spread word-of-mouth or willingness to recommend becomes
high in either case.

In the debriefing after experiment, some of the participants wanted to know the
answers and the results of the problems and they also wanted to know whether others
could solve them. According to the cognitive dissonance theory [17], in the case when
the participants cannot solve the problems, they tend to rationalize that it is not a lack of
ability of themselves but because these problems are so much difficult that nobody can
solve them.

The factors obtained by EFA can be interpreted as follows. Variable group of the
major factor (ML1) with the highest factor load (mainly appearing on the right-hand
side in Fig. 5) can be interpreted as an axis of “Aha!” experience, because this axis has
relevant features characterizing the “Aha!” experience, such as feelings of suddenness,
confidence and positive emotions, with other several insight problem domains [7, 14].
On the other hand, variables constituting the second factor (ML2) can be interpreted as
an axis of Task difficulty, since this direction has positive correlations with RT and FA,
and negative correlations with confidence and accuracy. The first “Aha!” experience
axis is a factor related to the state of the subjective experience that occurs at the
moment, and the second Task difficulty axis is a factor related to the state until the

Table 4. Factor loadings and commonalities in two sub-factor structure
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answer is known. The third small factor (ML3) consisting of the TOT phenomenon is
rather independent from the other factors. Moreover, as a substructure of the first factor,
there were two sub-factors. The first sub-factor (ml1) is considered to reflect the more
affective aspect of “Aha!” experiences, while the second sub-factor (ml2) reflects more
objective judgment on perception and (re)cognition, which is consistent with [11, 13].

In summary, we found two salient factors describing both subjective and objective
features of visual one-shot learning in morphed hidden figures, which were interpreted
as “Aha!” experience and Task difficulty. Furthermore, the “Aha!” experience consists
of two sub components: Affective and Cognitive components of insight. The fact that
WTR is a strong indicator of the “Aha!” experience, particularly its Affective com-
ponents, is, to our best knowledge, a novel finding. The results suggested that insight
can be characterized by multidimensional factors in the case of visual one-shot
learning, as in common with other problem domains and modalities. In conclusion, we
characterized the phenomenology of “Aha!” experience in the visual one-shot learning
for further creative journey.
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Abstract. As protein types continue to increase, there are more and more
methods for predicting protein structure. In this paper, a feature extraction
method based on multiscale coarse-grained time series recurrence quantification
analysis and horizontal visibility graph is proposed. First, the chaos game rep-
resentation is used to map the protein secondary structure sequence into two time
series. Multiscale coarse granulation time series. Then feature extraction by
combining recurrence quantification analysis and horizontal visibility graph.
Thereby a 30-D feature vector is obtained. This paper uses support vector
machine to predict protein tertiary structure. In this paper, the prediction results
of the two low homologous protein datasets were 95.33% and 93%, respectively.

Keywords: Protein structure prediction �
Multiscale coarse-grained time series � Recurrence quantification analysis �
Horizontal visibility graph

1 Introduction

Protein tertiary structure prediction is an important research topic in Bioinformatics.
Different types of proteins have different patterns of existence and according to their
patterns, proteins can be classified as all-a, all-b, a/b and a + b. The all-a and all-b
indicate that they are mainly composed of a-helix and b-strands, respectively [1].

At present, there are more and more methods of protein structure prediction, which
mainly focus on two aspects of feature extraction and classification algorithm. There are
many methods for feature extraction, such as pseudo-amino acid composition (PseAAC)
[2], polypeptide composition [3]. Although these methods can predict protein structure
and produce certain effects, when they encounter low homologous proteins, the predic-
tive efficiency becomes very low. The chaos game representation (CGR) method was
originally used to predict secondary structure types of proteins [13], but the limitation of
this approach is that it does not apply to short protein sequences. In order to solve this
problem, recurrence quantification analysis (RQA) was introduced to solve the problems
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caused by different protein sequence lengths [9]. In recent years, the concept of complex
network theory has been applied in various fields. In [12], RQA is combined with
complex network to improve the prediction accuracy of protein structure to a new level.
Then, a feature extractionmethod based on horizontal visibility graph was proposed [11],
which further proves the feasibility of complex network in the field of protein structure
prediction. After feature extraction, different classifiers are used to classify features.

In this paper, we have a structural prediction of two low homologous proteins
25PDB and 1189 based on the protein secondary structure. The secondary structure
sequence is mapped into two time series according to CGR. In this paper, multiscale
coarse granulation of time series is used to obtain a new time series. And this paper
combines RQA and horizontal visibility graph to extract a 30-D feature. The feature
vector is input to the SVM for classification. The jackknife test on two low homology
datasets showed that the method was effective.

2 Methods

2.1 Secondary Structure Prediction

We predict each amino acid in the protein sequence to be one of the three elements of
the secondary structure of the protein: C (coil), E (strand) and H (helix). There are
many computational methods to predict the secondary structure of proteins. In this
study, PSIPRED [8] was used to predict the secondary structure of proteins.

2.2 Chaos Game Representation

The chaos game representation (CGR) method is a technique that can transform a one-
dimensional sequence into two dimensions. It is able to visualize the sequence while
preserving the sequence structure. This method has often been used for prediction in
recent years. A sequence of protein secondary structures is represented in a unit
equilateral triangle. Its three vertices correspond to three letters H, C, and E, respec-
tively. The first point in the figure is at the midpoint of the vertices corresponding to the
first letter of the protein sequence in the center of the triangle; the i-th point in the figure
is at the midpoint of the vertices corresponding to the (i − 1)th point and the i-th point.
Thus, a CGR graph is obtained, as shown in Fig. 1.

Fig. 1. CGR of 1A1W predicted secondary structure protein1A1W.
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We decompose the CGR graph into two time series, that is, each point in the CGR
graph is determined by the coordinates of x and y. The two time series shown in Fig. 2
correspond to the points in Fig. 1, which are CGRX and CGRY, respectively.

2.3 Multiscale Coarse-Grained Time Series

In this paper, we adopt the method of multiscale coarse-grained time series to further
process the converted time series [15]. This method is an order pattern in a time scale
range. It considers the spatial proximity of the phase space of time series. Given the
time series fx1; x2; . . .; xng, a new time series is obtained according to Eq. (1).

zsj ¼
1
s

Xjþ s�1

i¼j
xi; 1� j� j� sþ 1 ð1Þ

Where s is time scale, and zsj is new time series. The length of the new time series is
N – s + 1.

The multiscale coarse-grained time series extend the time scale range of mea-
surement and can capture more abundant information than before. Different time scales
have different effects on protein structure prediction. The effects of different time scales
will be mentioned later.

2.4 Recurrence Quantification Analysis

Recurrence plot (RP) [10] uses phase space reconstruction technology to map one
dimensional time series to high dimensional space. It can represent the dynamic
behavior of the original time series. For one time series fx1; x2; . . .; xng with length N,
its time series point in the phase space is Xi ¼ ðxi; xiþ s; . . .; xiþðm�1ÞsÞ for i = 1, 2 …
Nm and Nm ¼ N� ðm� 1Þs, where m and s denote the embedding dimension and
time delay, respectively [14]. Calculates the Euclidean distance between all vector pairs
in the reconstructed phase space. Select the appropriate threshold e so that the recur-
rence matrix is defined as follows.

Fig. 2. Two time series related to Fig. 1.
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R ¼ h e� xi
!� yj

!�� ��� �
; i; j ¼ 1; . . .;Nm ð2Þ

where h(.) is the Heaviside function and :k k is a norm. If R = 1, the recurrence point
exists, expressed in black dots; if R = 0, the recurrence point does not exist, without the
black dot representation.

RQA is a nonlinear index quantization method developed on the basis of RP, which
is used to analyze the dynamic characteristics of recurrence points. Here, we mainly
apply the following 8 recurrence variables [13]:

The first recurrence variable is the recurrence rate (RR), which describes the ratio of
recurrence points in the RP to the total number:

RR ¼ 1
N2

XN

i;j¼1
Ri;j ð3Þ

Where Ri;j is the recurrence points, N is the length of time series.
The second recurrence variable is determinism (DET), which describes the pro-

portion of diagonal lines of different lengths:

DET ¼
XN

l¼lmin
lPðlÞ=

XN

i;j¼1
Ri;j ð4Þ

Where l is the diagonal length. P(l) is the probability of a diagonal structure of length l.
The third recurrence variable is the longest diagonal

Lmax ¼ maxðfligNl
i¼1Þ ð5Þ

The fourth recurrence variable is entropy (ENTR), which describes the Shannon
entropy of the diagonal length distribution. The larger the Shannon entropy value is, the
stronger the complexity of the time series is. The minimum value of lmin is usually 2.

ENTR ¼ �
XN

l¼lmin
PðlÞ lnPðlÞ ð6Þ

The fifth recurrence variable is the average diagonal length

Lmean ¼
XN

l¼lmin
lPðlÞ=

XN

l¼lmin
PðlÞ ð7Þ

The sixth recurrence variable is the laminarity (LAM), which refers to the pro-
portion of line segments in the form of vertical lines to recursive points

LAM ¼
XN

v¼vmin
vPðvÞ=

XN

i;j¼1
Ri;j ð8Þ

Where the v is the length of vertical lines, and the P(v) is the is probability of a vertical
lines of length v.
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The seventh variable, trapping time (TT), is the average length of vertical lines. The
eighth recurrence variable is maximal length of the vertical lines in RP ðVmaxÞ, which is
similar to Lmax.

2.5 Horizontal Visibility Graph

In recent years, complex networks have been introduced to analyze biological prob-
lems, and the method of graph is used to analyze time series [18]. In this paper, we use
the horizontal visibility graph to study the protein sequence. The construction method
of horizontal visibility graph is shown in Fig. 3. The construction of horizontal visi-
bility graph mainly lies in the establishment of nodes and the connection of edges.
Suppose the time series fx1; x2; . . .; xng with a length of N, and each sample point as a
node ni of graph G. If the node ni and the node nj satisfy the Eq. (9), there is an edge
connection between the two nodes.

nk\min ni; nj
� �

; 8k; i\k\j ð9Þ

Based on the graph, we extract the following features to represent the protein
sequence:

The first features is degree k. The degree of any node i is shown in Eq. (10). This
paper uses the maximum value (kmax) of degree as our feature.

ki ¼
X

j
aij ð10Þ

The second and third features are the average shortest path (L) and diameter (D) be-
tween the nodes, respectively. The definition is as follows. The diameter defines as the
maximum value of all the shortest path in a network. It is a measure of the compactness
in a network.

L ¼ 1
NðN � 1Þ

X
i6¼j

dij ð11Þ

Fig. 3. Sample points of 20 data and its associated horizontal visibility graph
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The clustering coefficient (C) gives the probability that two neighbors of any node are
also neighbors.

C ¼ 3ND

N3
ð12Þ

The energy (E) and the Laplacian Energy (LE) [11] is defined as follows. Where li
denotes the eigenvalue of the adjacency matrix.

E ¼
Xn

i¼1
lij j ð13Þ

LE ¼
Xn

i¼1
li �

2m
n

����
���� ð14Þ

From each time series, 6 features were extracted. They are the maximum value
(kmax), the average shortest path length (L), the network diameter (D), the clustering
coefficient (C), the energy (E), and the Laplace energy (LE).

2.6 Prediction of Protein Structure Class

Each secondary structure sequence of protein is mapped to two time series CGRX and
CGRY by CGR, and the average values of �x and �y are obtained. The multiscale coarse-
grained time series are obtained by coarse-graining. The next step is to construct the
recurrence matrix and horizontal graph respectively. The total number of features
extracted for each multiscale coarse-grained time series is 14, among which 8 feature
vectors come from recurrence quantization analysis and the others come from hori-
zontal graph. Plus the average of �x and �y, there’s 14 � 2 + 2 features.

In this paper, we adopt SVM as classifier. SVM is a supervised machine learning
algorithm based on statistical learning theory proposed by Vapnik et al. [5]. In our
study, we choose Gaussian kernel function. We select the initial parameter range is
c ¼ 2�10 � 210; g ¼ 2�10 � 210. Then we use genetic algorithm to optimize the initial
parameters, and select the optimal SVM parameters c and g. As protein structural class
prediction is a multi-class classification problem, SVM usually adopts One-Versus-One
(OVO) or One-Versus-Rest (OVR) strategy to solve multi-class problems. This paper
used LIBSVM software developed by Chang and Lin [6].

3 Experimental Results

3.1 Dataset

In this paper, in order to compare with the existing methods, two commonly used low
homologous proteins were selected as the benchmark datasets, namely 25PDB and
1189 datasets. The 25PDB dataset consists of 1,673 proteins with a similarity of
approximately 25%. This dataset has 443 class all-a proteins, 443 class all-b proteins,
346 class a/b proteins, and 441 class a + b proteins. The 1189 dataset consists of 1092
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proteins with similarity of less than 40%, with 223 class all-a proteins, 294 class all-b
proteins, 334 class a/b proteins, and 241 class a + b proteins [4].

3.2 Evaluation

Among many other methods, the jackknife test is an effective evaluation index.
Therefore, the jackknife test is still adopted in this paper. In jackknife test, each protein
sequence in the dataset is selected as a test sample, and the predictor is trained by the
remaining protein sequences. Then we calculate the overall accuracy (OA) of each data
set and select Sensitivity (Sens), Specificity (Spec) and Mathew’s Correlation Coeffi-
cient (MCC) [7] as our standard performance measures.

Sens ¼ TP
TPþFN

ð15Þ

Spec ¼ TN
FPþ TN

ð16Þ

MCC ¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþFPÞðTPþFNÞðTN þFPÞðTN þFNÞp ð17Þ

OA ¼ TPþ TN
TPþFNþFPþ TN

ð18Þ

The experimental results are shown in Table 1. In addition to the OA, the results of
MCC, Sens and Spec of each structural class are also shown in the table.

This paper has multiscale coarse-grained processing of time series, so different time
scales have different prediction results. Through experimental comparison, for the
25PDB dataset, we choose the time scale s = 9 to have the best prediction effect, and
the overall accuracy rate is 95.33%. For the 1189 dataset, we choose the best time scale

Table 1. The predicted quality results of our method on two datasets

Dataset Class Sens (%) Spec (%) MCC

25PDB All-a 99.03 98.08 0.9458
All-b 1 97.62 0.9323
a/b 81.56 1 0.9835
a + b 95.25 98.09 0.9456
OA 95.33

1189 All-a 99.46 95.79 88.75
All-b 80.73 99.59 85.15
a/b 1 97.92 96.55
a + b 97.36 97.79 93.24
OA 93.0
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s = 6, the overall accuracy rate is 93%. Therefore, the further processing of the time
series greatly improves the prediction of protein structure.

3.3 Comparison with Existing Methods

In this part, we compare the methods used in other literatures, and the results are shown
in Table 2. According to Table 2, the proposed method in this paper is feasible for
datasets 25PDB and 1189, with the overall prediction accuracy reaching 95.33% and
93%, respectively. Compared with RQA [9] and horizontal visibility graph, respec-
tively [11], the results show that the combination of RQA and weighted horizontal
visibility graph is better.

4 Conclusion

This paper predicts the tertiary structure of proteins based on recurrence quantification
analysis of multiscale coarse-grained time series and complex networks. In this paper,
multiscale coarse granulation is performed on the time series mapped by CGR, which
makes the new time series content more abundant. Combines RQA with complex
networks. Each resulting eigenvector representing a protein is input into the SVM
algorithm to predict the protein structure class. The experimental results show that the
proposed method has higher overall prediction accuracy and MCC for the 25PDB and
1189 datasets.
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Abstract. Deep learning has contributed greatly to functional magnetic reso-
nance imaging (fMRI) analysis, however, spatial maps derived from fMRI data
by independent component analysis (ICA), as promising biomarkers, have rarely
been directly used to perform individualized diagnosis. As such, this study
proposes a novel framework combining ICA and convolutional neural network
(CNN) for classifying schizophrenia patients (SZs) and healthy controls (HCs).
ICA is first used to obtain components of interest which have been previously
implicated in schizophrenia. Functionally informative slices of these compo-
nents are then selected and labelled. CNN is finally employed to learn hierar-
chical diagnostic features from the slices and classify SZs and HCs. We use
complex-valued fMRI data instead of magnitude fMRI data, in order to obtain
more contiguous spatial activations. Spatial maps estimated by ICA with mul-
tiple model orders are employed for data argumentation to enhance the training
process. Evaluations are performed using 82 resting-state complex-valued fMRI
datasets including 42 SZs and 40 HCs. The proposed method shows an average
accuracy of 72.65% in the default mode network and 78.34% in the auditory
cortex for slice-level classification. When performing subject-level classification
based on majority voting, the result shows 91.32% and 98.75% average accuracy,
highlighting the potential of the proposed method for diagnosis of schizophrenia
and other neurological diseases.
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1 Introduction

Deep neural networks recently have exhibited great superiority in the investigation of
neurological disorders [1–4]. Resting-state functional magnetic resonance imaging
(rs-fMRI) is able to provide non-invasive measures for brain function and abnormalities
[5]. Several deep learning methods have been applied to rs-fMRI data analysis,
including deep auto-encoders (DAE) [6], deep belief networks (DBN) [7] and convo-
lutional neural networks (CNN) [8, 9]. Recently, CNN has exhibited promising appli-
cations by virtue of its ability to leverage information from adjacent voxels [8, 9].

There are some problems in existing CNN frameworks for fMRI-based disease
diagnosis. For example, Sarraf and Tofighi successfully classified Alzheimer’s subjects
from normal controls using observed fMRI data, and achieved an accuracy of 96.85%
by the LeNet-5 architecture [8]. However, the observed fMRI data contains not only
components related to brain activity, but also physiological noise which may con-
taminate the results. Kam et al. took advantage of brain functional networks to build a
deep learning framework for accurate diagnosis of early mild cognitive impairment
(eMCI) [9]. This framework combined group-information-guided ICA (GIG-ICA) with
3D CNN. The use of brain functional networks reduced the training cost of the net-
work, nevertheless, the limited fMRI data may cause overfitting since the 3D CNN
model contains a large amount of parameters. Moreover, to the best of our knowledge,
a CNN framework for classification of schizophrenia patients (SZs) and healthy con-
trols (HCs) using fMRI data has not been reported.

In this study, we propose a new framework combining ICA and CNN to classify
SZs from HCs. Complex-valued fMRI data is employed to obtain more contiguous
spatial maps using ICA than magnitude fMRI data [10]. We select and label func-
tionally informative slices from components of interest which have been previously
implicated in SZs. These slices are fed into 2D CNN for feature learning and classi-
fication, which mitigates the interference of physiological noise involved in observed
fMRI data. To enhance the training, we leverage the ICA results for multiple model
orders to perform data argumentation.

The rest of this paper is organized as follows. Section 2 describes materials and
preprocessing. Section 3 presents the proposed method, including ICA, component
selection, and CNN feature learning and classification. Section 4 consists of experi-
ments and results. Section 5 is the conclusion.

2 Materials and Preprocessing

The fMRI datasets used in this study have been described in [11]. Resting-state
complex-valued fMRI data were collected from 82 subjects, including 40 HCs and 42
SZs. Data preprocessing was performed using the SPM software package1. Following
motion correction and spatial normalization, the data was slightly sub-sampled to
3 � 3 � 3 mm3, resulting in 53 � 63 � 46 voxels. Both magnitude and phase images

1 available at http://www.fil.ion.ucl.ac.uk/spm.
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were spatially smoothed with an 8 � 8 � 8 mm3 full width half-maximum Gaussian
kernel. A total of 146 scans per subject were entered into the ICA analysis.

3 Proposed Method

Figure 1 shows the framework of the proposed method for classification of SZs and
HCs. We first perform ICA, component selection, phase de-ambiguity and denoising to
obtain spatial maps of components of interest. Informative slices of these selected
components are then fed into CNN to learn features and perform classification.

3.1 ICA and Component Selection

Given the observed complex-valued fMRI data, we adopt multiple runs of entropy
bound minimization (EBM) [12], an efficient and flexible complex-valued ICA algo-
rithm, for component separation. Due to the relatively small number of subjects, ICA
with multiple models orders is performed for data argumentation. Components of
interest are then identified for each individual based on their spatial references. Spatial
maps of these complex-valued components are denoised using phase de-ambiguity and
phase denoising proposed in [10]. The best spatial map estimates for each component
across all runs are selected based on combining cross-run averaging and a one-sample
t-test [11]. Then the magnitude of complex-valued spatial map estimates is used for
sequential feature learning and classification.

3.2 CNN Feature Learning and Classification

For each component, the magnitude of 3D spatial maps is concatenated along the z axes
and converted to a stack of 2D slices. We remove slices with no functional information
and normalize the range of the remaining slices to [0, 1], respectively. By adding a
label of HC or SZ for binary classification, we generate a sample {xi, yi} for the i

th slice,
where xi is a normalized slice, yi is its corresponding label (0 for HC and 1 for SZ).

Fig. 1. The proposed framework for schizophrenia classification.
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The training (60%), validation (20%) and testing (20%) samples are randomly selected
by shuffling subjects. In other words, none of training, validation and testing samples is
selected from the same subject. We perform five-fold cross validation, in order to
enhance the robustness and reproducibility of our proposed method.

We propose to use 2D CNN to learn high-level features from each slice. The
network structure used in this paper consists of two convolutional layers with a kernel
size of 3 � 3, two max-pooling layers with a kernel size of 2 � 2, one fully connected
layer with 64 nodes, and one output layer with two nodes, as shown in Fig. 1. The non-
linear activation function used in the fully connected layer is rectified linear unit
(ReLU). The two nodes in the output layer represent labels for the HC or SZ groups,
and binary classification is determined by the softmax function. We select the cross-
entropy as the loss function. An L2-norm regularization is used in each convolutional
layer and fully-connected layer to reduce overfitting; the parameter k for regularization
is set to be 0.1. Thus, the loss can be calculated as:

LðW; bÞ ¼ 1
M

ð
XM

i¼1

ð�yi lnHw;bðxiÞ � ð1� yiÞ lnð1� Hw;bðxiÞÞÞþ k
2

Wk k2Þ; ð1Þ

where W and b are parameters for the network; M is the number of samples; Hw;bð�Þ is
the function learned by the network, and Hw;bðxiÞ devotes the output of the network
given the input xi. We also add a batch normalization layer followed each convolu-
tional layer and fully-connected layer.

The model is adjusted for 50 epochs with batch size of 64 and optimized by the
Adam algorithm [13]. Diagnostic performance is computed by the accuracy, sensitivity,
and specificity:

ACC ¼ TPþTN
TPþTNþ FPþ FN

; ð2Þ

SEN ¼ TP
TPþ FN

; ð3Þ

SPEC ¼ TN
TNþ FP

; ð4Þ

where TP, TN, FP and FN denote true positive, true negative, false positive and false
negative, respectively. We finally select the model showing the best accuracy given in
Eq. (2) on the validation set. During testing, the binary output of model is the result of
slice-level classification of SZ and HC. For subject-level classification, the final
decision is based on majority voting of slices. Specifically, for each subject, the
numbers of slices classified as HC and SZ are compared, and the class (HC or SZ) with
more slices is regarded as the result for the subject.
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4 Experiments and Results

4.1 Slice-Level Classification vs. Subject-Level Classification

We repeated ICA with 13 different model orders (from N = 20 to N = 140, with an
interval of 10) 10 times. Two components of interest, the default mode network
(DMN) and auditory cortex (AUD) were selected via spatial references [14, 15], since
these two components are high-level cognitive function-related networks that have
been previously implicated in schizophrenia. Figure 2 shows the spatial references for
two selected components. After phase de-ambiguity, phase denoising, and slice
removal, 25 slices of spatial maps were obtained for DMN and AUD at the best run,
respectively, as shown in Fig. 3. In summary, a total of 82 � 13 � 25 = 26650
samples with size of 53 � 63 were generated, including 13000 HCs’ and 13650 SZs’
samples.

Table 1 shows the comparison of mean accuracy, sensitivity, and specificity
defined in Eqs. (2)–(4) of five-fold cross validation for the proposed method and rel-
evant methods proposed in [9]. For slice-level classification, the proposed method
shows an average accuracy of 72.65% in the DMN and 78.34% in the AUD, both are
higher than the best accuracy (71.13%) of 3D CNN obtained from a single network, i.e.
SB-CNN in [9]. The proposed method also demonstrates better specificity in the DMN
(80.75% vs. 68.75%) and higher sensitivity and specificity in the AUD (SEN: 79.11%
vs. 73.47%; SPEC: 77.25% vs. 68.75%). Furthermore, the results of AUD can even

Fig. 2. Spatial references of two selected components for classifying SZs and HCs: (a) default
model network (DMN), (b) auditory cortex (AUD).

Fig. 3. Slices from the (a) default model network (DMN) and (b) auditory cortex (AUD) for
classification of schizophrenia.
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compete with the merged networks based on multiple networks, i.e. MB-CNN in [9]
(ACC: 78.34% vs. 74.23%; SEN: 79.11% vs. 75.51%; SPEC: 77.25% vs. 72.92%). We
analyzed the samples that were classified wrongly and found they were mostly from
slices located at the edge of the network. In other words, errors in these samples may be
due to less feature information contained in the less spatial activations, which is natural
and reasonable. For subject-level classification, accuracy, sensitivity, and specificity
were further improved, as shown in Table 1. Compared to DMN, AUD reaches much
better performance, i.e., an accuracy of 98.75%, sensitivity of 100%, and specificity
of 97.50%.

4.2 Effects of Multiple Model Orders for Data Argumentation

As mentioned above, we performed 13 different model orders (from N = 20 to
N = 140, with an interval of 10). To analyze effects of multiple model orders for data
argumentation, we changed the interval of model orders, thus changed the number of
samples. Specifically, we had three cases: (1) l = 1 (N = 120), the number of samples
was 82 � 1 � 25 = 2050; (2) l = 7 (from N = 20 to N = 140, with an interval of 20),
the number of samples was 82 � 7 � 25 = 14350; (3) l = 13 (from N = 20 to
N = 140, with an interval of 10), the number of samples was 82 � 13 � 25 = 26650.
Mean results of five-fold cross validation are shown in Fig. 4. It is observed that the
accuracy, sensitivity, and specificity of the proposed method increased with an increase
in l, both for slice-subject classification and subject-level classification. It is reasonable
to predict that the performance of our proposed method could be better as the amount
of data increase. On the other hand, when using the largest amount of data, i.e., l = 13,
the standard deviations of accuracy, sensitivity, and specificity were the smallest,
indicating the model was more stable when trained by more model orders.

Table 1. Comparison of mean accuracy, sensitivity, and specificity of five-fold cross validation
for the proposed method and relevant methods proposed in [9] (FPN1 and FPN2 are two
frontoparietal networks, AN1 and AN2 are two attention networks, and ECN is an executive
control network).

Method Networks ACC (%) SEN (%) SPEC (%)

SB-CNN in [9] DMN 70.10 71.43 68.75
FPN1 71.13 73.47 68.75
FPN2 70.10 73.47 66.67
AN1 68.04 71.43 64.58
AN2 67.01 69.39 64.58
ECN 67.01 67.35 66.67

MB-CNN in [9] All of above 74.23 75.51 72.92
Proposed method (slice-level) DMN 72.65 64.51 80.75

AUD 78.34 79.11 77.25
Proposed method (subject-level) DMN 91.32 85.00 97.50

AUD 98.75 100.00 97.50
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5 Conclusion

In this paper, we proposed a novel ICA-CNN framework for classifying SZs and HCs.
To our best knowledge, this is the first spatial network-based 2D CNN framework for
disease classification. Compared to the 3D CNN, 2D CNN improved the accuracy of
classification while reducing training parameters. In contrast to the most existing CNN
methods using the observed fMRI data, our method using spatial maps with sparse but
informative activations also significantly reduced training loads. In addition, we con-
firmed the effectiveness of multiple model orders for data augmentation, which enables
us to solve the difficulty of obtaining large quantities of fMRI data. In the future, we
will enhance our framework for merging multiple components of interest and apply it
to fMRI phase data.
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Abstract. ATP is an important nucleotide that provides energy for biological
activities in cells. Correctly identifying the protein-ATP binding site is helpful
for protein function annotations and new drug development. With the innovation
of machine learning, more and more researchers start to predict the binding sites
from protein sequences instead of using biochemical experiment methods. Since
the number of non-binding residues is far from the number of binding residues, a
popular method to deal with the ATP-binding dataset is to apply the under-
sampling to construct training subset which will inevitably lose the negative
samples. However, a lot of valuable information for ATP binding properties is
hidden in negative samples which should be carefully considered. In this study,
the dataset which contains full negative samples are applied in training process.
In order to avoid biased in prediction result, the decision tree classification
algorithm which shows stable performance in imbalanced data is applied. The
prediction performance on five-fold cross validation has demonstrated that our
proposed method improves the performance compared with using under-
sampled data.

Keywords: ATP-binding site � Protein primary sequence � Decision tree �
Binary classification

1 Introduction

Adenosine-5’-triphosphate (ATP) as an important molecule has been found to play a
significant role in many biological processes such as energy metabolism, membrane
transportation, signaling and replication and transcription of DNA [1]. However, ATP
needs to interact with proteins to accomplish its functions. By the time of January,
2019, 6520 structures in the Protein Data Bank have been detected binding with ATP,
which occupy about 4.4% in known protein structures [2]. Besides, the ATP binding
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sites have significant potential to be developed as drug targets for antibacterial or anti-
cancer chemotherapy [3]. Therefore, identifying the binding sites of ATP in protein
sequences and structures is of great value.

Traditional methods for binding sites detection utilize the biochemical experiments
such as X-ray crystallography and nuclear magnetic resonance (NMR). However, these
methods come with huge time-consuming and money-consumption which make it
difficult for wide application. With the development of machine learning and artificial
intelligence, an increasing number of researches start using computational methods to
predict the binding sites in proteins and make assists for experimental approaches. In
the field of ATP-binding site prediction, Raghava et al. created ATPint [4] to predict
the ATP-binding sites in protein sequences based on Position Specific Scoring Matrix
(PSSM) and support vector machines (SVM) which makes the pioneering contribution.
The results in their dataset have shown that ATPint is capable of accurately predicting
the ATP interacting residues based on protein sequential information. Later on, Kurgan
et al. developed two prediction methods named ATPsite [5] and NsitePred [6] which
applied the SVM and PSSM with the combination of several predicted structural
information. However, the number of ATP interacting residues are much less than the
non-interacting residues in protein sequences. Therefore, in the prediction methods
mentioned above, they made the under-sampling on their datasets which means they
randomly keep the same number of non-interacting residues as the binding residues and
combine them with the binding residues to construct new training subsets. This process
can provide relatively balanced data for SVM and reduce the time consumption during
training process. However, a lot of valuable information of ATP binding properties is
contained in the non-interacting residues, losing them may cause the training process
incomplete and the classifier is not sensitive enough for non-interacting residues.

Based on this background, in our study, a prediction method is developed based on
the full training information. The decision tree is selected as classification algorithm
which is less sensitive for imbalanced data than SVM. The five-fold cross validation
results have shown that the performance of full training data is superior to the per-
formance with under-sampling technique.

2 Dataset

In the present study, the ATP168 which was constructed by Raghava et al. is adopted.
The dataset was extracted from SuperSite encyclopedia [7] and then reduced the
sequence identity below 40% using the program CD-HIT [8]. After removing the non-
ATP-interacting proteins by the software Ligand Protein Contact (LPC) [9], 168 non-
redundant ATP protein chains are collected which are available at [10].

In order to show the effectiveness of our proposed method, the five-fold cross
validation is utilized where the protein sequences are randomly divided into five parts.
Four parts are used for training the model and the remaining one part is used to
examine the prediction performance. This process is repeated for five times which
makes sure that each protein sequence has been predicted. The final performance is
calculated by averaging the performance of all five parts.
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3 Feature Extraction

The proposed method utilizes both sequential and predicted structural information as
inputs. The sliding window technique is also applied to take consideration of the
adjacent residues. The window will be labelled as ATP binding if the central residue is
the ATP binding site. In this study, the window size is set to 15 by experimental
attempts. The features involved include:

• Position specific scoring matrix

The PSSM profile is generated by running PSI-BLAST [11] against Swiss-Prot [12]
database with default parameters. For each residue in the sequence, the PSSM profile
provides 20 values to reflect the evolutionary conservation corresponding to 20 types
common amino acids. We normalize these values to the range between 0 and 1 by
formula (1) where Si;r represents the original value of the ith residue at rth column in

PSSM, SðNÞi;r is the normalized value.

SðNÞi;r ¼ 1
1þ e�Si;r

ð1Þ

For the window size of 15, we collect 15 * 20 = 300 dimensional vectors to rep-
resent the evolutionary conservation from protein sequences.

• Predicted secondary structure

Previous studies have proved that the secondary structure is relevant to ATP binding
sites. Therefore, appropriately adding the secondary structure into the feature vector is
valuable to improve the prediction performance. In this study, PSIPRED [13] is applied
to predict the protein secondary structure based on protein sequences. The output of
PSIPRED including three probabilities which represent the residue belonging to three
secondary structure classes: Coil (C), Helix (H) and Strand (E). Thus, for a sliding
window of size 15, the dimension of predicted secondary structure is 15 * 3 = 45.

• Amino acid physicochemical properties

Based on the dipoles and volumes of the side chain of amino acids, the 20 types of
amino acids are divided into seven groups [14] including class a = {Ala, Gly, Val},
class b = {Ile, Leu, Phe, Pro}, class c = {His, Asn, Gln, Trp}, class d = {Tyr, Met,
Thr, Ser}, class e = {Arg, Lys}, class f = {Asp, Glu}, class g = {Cys}. As a result, a
seven-dimensional vector using one-hot key encoding technique is applied to reveal the
class that the residue belongs to. In the sliding window, the physicochemical properties
are 7 * 15 = 105 dimensional features.

After feature extraction, for each residue in protein sequences, 30 dimensional
vectors are extracted including 20 for PSSM, 3 for predicted secondary structure and 7
for physicochemical properties.
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4 Architecture of Proposed Method

The decision tree is a predictive machine learning model. It predicts the label based on
known various feature values from available data and is commonly used for sample
classification [15]. A classical decision tree consists of many leaves and branches,
where leaves represent classification and branches represent conjunctions of features
that lead to the classification. The advantages of decision tree over SVM can be
reflected from two aspects: firstly, the decision tree shows better performance than
SVM in imbalanced data prediction; secondly, for high-throughput data, the decision
tree has faster training and prediction process which efficiently reduces the time con-
sumption of proposed method. In this study, the decision tree is introduced from Scikit-
learn package, and the grid-search algorithm is applied to collect the best parameters
for the classifier. The architecture of proposed method is shown in Fig. 1.

5 Results and Discussion

5.1 Evaluation Criterion

In order to access the prediction performance of our proposed method, a series of
evaluation indexes are applied in present study including the overall accuracy (ACC),
the sensitivity, the specificity and the Matthews Correlation Coefficient (MCC). Among
them, the MCC value is a comprehensive evaluation criterion for binary classification
and can be regarded as powerful standard to reflect the overall performance. The range
of MCC value is between −1 and +1, where −1 represents the prediction results are
totally opposite to the true label, 0 means the prediction results are almost random and
+1 means the prediction results are identical to the true label. These evaluation indexes
can be calculated as follows:

ACC ¼ TPþ TN
TPþ TNþFPþFN

ð2Þ

Fig. 1. The architecture of proposed method
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Sensitivity ¼ TP
TPþFN

ð3Þ

Specificity ¼ TN
TN þFP

ð4Þ

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TN þFPð Þ TN þFNð Þp ð5Þ

Where TP, TN, FP and FN represent the number of true positive sample, true negative
sample, false positive sample and false negative sample in prediction results
respectively.

5.2 Effectiveness of Applying Full Training Data

Previous works often utilize under-sampling technique to construct training subset
which contains same number of positive samples and negative samples for classifiers.
However, the negative samples are same valuable and indispensable for identifying
ATP binding sites since the negative samples contain key binding properties as the
positive samples. Therefore, applying under-sampling has the potential of losing that
important information. Taking advantage of decision tree classifier, we can fully use
the training data instead of cutting off the majority of negative samples or worry about
the time consumption when applying the large scale of training data.

In order to show the improvement of using full training information, we apply the
under-sampling technique to our dataset to construct training subset which is similar to
previous studies. The new training subset is then sent into the decision tree classifier
and five-fold cross validation is utilized to show the prediction performance. The
performance is shown in Table 1 and we make comparison with the performance of
using full training information.

It can be observed that with the increase of training data, two main evaluation
indexes ACC and MCC have greatly improved. The ACC climbs from 0.673 with
under-sampled data to 0.947 with full training data. The MCC rises from 0.160 of
under-sampled data to 0.295 of full training data. The improvement of prediction
performance has demonstrated that valuable information of ATP binding is hidden in
the negative samples. Our proposed method which takes fully consideration of them is
an efficient way to improve the prediction performance of ATP binding sites.

Table 1. Performance comparison between using under-sampled training data and full training
data with five-fold cross validation

Training data involved ACC Sensitivity Specificity MCC

Under-sampling 0.673 0.677 0.672 0.160
Full training data 0.947 0.240 0.984 0.295
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5.3 Comparison with Existing Method

The ATPint [5] is designed for predicting protein-ATP binding sites from protein
primary sequence. The ATPint is developed based on PSSM-based features and SVM
classifier to accomplish the prediction on the same dataset. To fairly compare the
performance of ATPint and our proposed method, the five-fold cross validation is
applied on both methods. Table 2 shows the prediction performance of two methods on
ATP168 dataset with five-fold cross validation.

From Table 2, our proposed method shows better performance than ATPint with
0.046 higher in MCC and 0.196 in overall accuracy. Note that higher MCC value often
indicates that the classifier shows better identifying ability for both positive samples
and negative samples. Therefore, the improvements have shown that in prediction of
protein-ATP binding site, our proposed method which applies full training data with
decision tree classifier achieves better performance than ATPint using under-sampled
data with SVM classifier. The improvement is mainly from two aspects: firstly, we take
fully use of the training data which makes the classifier collects as much information as
possible including important properties hidden in negative samples; secondly, the
decision tree classifier shows more stable performance under imbalanced data than
SVM classifier.

5.4 Case Study

In order to better explain the improvement of prediction performance with full training
data, we select ID of 1G3I_A from Protein Data Bank (PDB) to show the improvement
of prediction performance in 3D structure. The protein 1G3I_A shares the sequence
identity less than 40% with proteins in ATP168 dataset which can be regarded as
independent data. The 3D structure of protein is generated by Pymol [16] software.
Figure 2(a) and (b) display the prediction performance of classifiers on 1G3I_A based
on under-sampled data and full training data respectively.

In Fig. 2, the green color, blue color and cyan color represent the true positive
samples (TP), false negative samples (FN) and false positive samples (FP) respectively
in prediction result. Others are true negative samples (TN). It can be obviously
observed that the number of false positive (FP) samples is greatly reduced in the
prediction result of classifier based on full training data. The reduction of FP samples in
actual application can greatly improve the accuracy for positive samples and reduce the
time-consuming for further experimental identification which is a main shortcoming for
previous works. For negative samples in the dataset, we can find that the number of FN

Table 2. Performance comparison of ATPint and our proposed method on ATP168 with five-
fold cross validation

Method ACC Sensitivity Specificity MCC

ATPint 0.751 0.744 0.758 0.249
Proposed method 0.947 0.240 0.984 0.295
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samples doesn’t greatly increase which means applying full training data will not lead
to biased prediction result for negative samples. The improvements of prediction results
can be explained that the classifier obtains better ability to recognize both positive and
negative samples because of its larger scale of training data. Among 16 ATP-binding
sites in 1G3I_A’s sequence, the classifier of full training data correctly predicts 10 of
them with 1 false positive sample, whereas the classifier of under-sampled data cor-
rectly predicts 9 of them with 87 false positive samples which demonstrate that
applying full training data is helpful to improve the performance in ATP-binding site
prediction. It’s worth mentioning that the difference of prediction performance on
1G3I_A is similar to the difference during five-fold cross validation.

6 Conclusion

In this study, we develop a sequence-based prediction method for protein-ATP binding
site. All the negative samples are applied during training process instead of using
under-sampling to construct a training subset which was utilized in previous studies.
With the combination of decision tree classification algorithm, our proposed method
achieves better performance than ATPint with the overall accuracy of 0.947 and MCC
value of 0.295. In order to show the improvement on prediction performance of using
full training data more vividly, the 3D structure of query protein is displayed. The
improvement has demonstrated that utilizing full training data and decision tree clas-
sifier can accurately predict the ATP binding sites in protein sequences and provide
assistance to biological researchers.

Acknowledgement. This work was supported by The National Natural Science Foundation of
China (Project No. 61662057, 61672301) and Higher Educational Scientific Research Projects of
Inner Mongolia Autonomous Region (Project No. NJZC17198).

(a)                                                           (b) 

Fig. 2. Prediction results on 1G3I_A of classifiers based on under-sampled data and full training
data (Color figure online)
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Abstract. Memristor is a nano-scale component with information storage
capability and binary characteristics. The memristive logic circuit composed of
the structure is simple in structure and complete in logic function, and can be
applied to logic operation and storage. However, the existing memristive logic
circuit has a single function, the component size is too large, and the delay step
is too much, so that the circuit efficiency is low. This paper proposes a novel
memristor-CMOS hybrid full adder. Compared with MAD Gates, IMPLY logic
circuit significantly reduces the operation steps, the circuit has no time delay,
and optimizes the requirements of circuit components. Based on the proposed
circuit, a novel N-bit subtractor is designed, which can be combined with the
full-adder to implement composite logic operations.

Keywords: Memristor � Hybrid-CMOS � Full-adder � Subtractor

1 Introduction

In 1971, Chua proposed the fourth basic circuit component in addition to capacitance,
inductance, and resistance according to the theory of circuit completeness. It is called a
memristor [1], which theoretically defines a memristor and describes its physical
properties. However, the physical material of the memristor has not been developed, so
it has not caused too much attention from researchers. In 2008, HP Labs’ researchers
announced the development of the world’s first memristor physical device [2, 3], which
immediately attracted widespread attention from researchers and industry. Because of
its memory characteristics, it can store the calculation results by its own advantages.
A large number of scholars have begun to study the potential of such basic circuit
components with memory characteristics in the design of modern circuit systems, and
the enormous application potential in the fields of information storage and logic
computing. Some researchers have proposed the SPICE simulation model of memristor
[4, 5]. Shaarawy et al. combined the memristor with the diode and proposed a 1T2M,
2T2M memory structure to replace the original random memory cell composed of 6
diodes [6, 7]. Luo et al. analyzed the performance of the memristor for different series-
parallel connections [8]. Duan et al. used memristors to form a random resistive
memory for information storage [9–11]. Researchers such as Zhang used memristors to
form the basic logic gates, and based on this, built 4M1M memory cells for information
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storage [12, 13]. Sarwar et al. combined memristors with CMOS devices to form a
3T2M hybrid structure for non-volatile random storage [14]. Kvatinsky et al. designed
a full-adder circuit based on memristive logic [15, 16]. Guckert combines resistors with
memristors, proposes a memristor-drived gate (MAD Gates) logic circuit, implements a
half adder and a full adder [17].

However, most of the existing memristive logic circuits have their own drawbacks.
For example, MAD Gates, whose logic circuits contain large-sized components such as
switches and resistors, are not conducive to large-scale integration, and due to the
structure of the circuit itself, the logic response has a two-step delay, greatly increasing
the circuit response time.

Most of the above studies use memristors for information storages or logic oper-
ations only, ignoring the memory characteristics of memristors. In this paper, mem-
ristors are combined with traditional FETs to propose a new full-adder circuit, which
overcomes the problem that the traditional memristor memory circuit or the memristor
logic operation circuit has relatively simple functions, and combines logic operation
and storage to realize logic operation and storage in the same circuit. The circuit is
opposite to the memristor-drived gate logic circuit (MAD Gates). The circuit proposed
in this paper is composed only of memristor and field effect transistor, and the circuit
size is greatly reduced, which is convenient for large-scale integration. Moreover, the
proposed full-adder circuit is applied to the subtraction circuit and a novel subtractor is
designed, which can combine subtraction and addition operations to achieve composite
logic operations.

2 Memristor-CMOS Hybrid Full-Adder

Since the memristor has a resistive property, a different voltage is applied across it, and
the resistance value varies. Different logical values are represented.

The existing full-added circuit logic expression is:

VSum ¼ VA XORVB XORVCin ð1Þ

VCout ¼ VA ANDVBð Þ OR VB ANDVCinð Þ OR VA ANDVCinð Þ ð2Þ

Where VA and VB are two inputs and VCin is the carry signal of the previous bit.
After simplifying the logical expression of the full-add logic, the following relationship
can be obtained:

When VCin ¼ 0 (‘0’ means low voltage VLow):

VSum ¼ VA XORVB ð3Þ

VCout ¼ VA ANDVB ð4Þ
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When VCin ¼ 1 (‘1’ means high voltage VHigh):

VSum ¼ VA NXORVB ð5Þ
VCout ¼ VA ORVB ð6Þ

According to the simplified logical expression, a memristor-CMOS hybrid full-
adder circuit is designed.

2.1 Proposed Full-Adder Circuits

Compared with the half adder, the full adder has an initial carry signal, which is a three-
input and two-output circuit. The input is the initial carry signal VCin, the initial voltage
VA and VB. The output is the carry signal VCout and the resulting voltage signal VSum.
According to the logical expressions (3)–(6), a new full-adder circuit is proposed, as
shown in Fig. 1.

The full-adder circuit proposed in this paper is composed of XOR logical circuit, a
NXOR logical circuit and two inverters. The XOR logical circuit and the NXOR logical
circuit are composed of four memristors and one inverter. The circuit has four inverters
and ten memristors, among which eight memristors realize the gate function, and the
other two memristors RSum and RCout are respectively connected to the output terminals
VSum and VCout to realize the output voltage storage function. The initial carry signal
VCin is the input voltage of the inverters No. 2 and No. 3, The output voltage of the

Fig. 1. CMOS-Memristor hybrid full adder
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XOR gate circuit is connected to the upper port of the inverter No. 3, and the output of
the same OR circuit is connected to the lower port of the inverter No. 3. The output of
inverter No. 2 is the carry output signal VCout. The output of inverter No. 3 is the
resulting voltage signal VSum.

According to the truth table of full-adder, when VCin ¼ 0 (‘0’ means low voltage
VLow). Both inverters No. 2 and No. 3 controlled by the carry input signal are turned on
at the upper port. At this point, the circuit response has the following four cases:

1. The two input voltage VA ¼ 0, VB ¼ 0, therefore the output voltages of the AND
gates and OR gates are low voltage VLow. The upper ports of the inverter No. 1 and
No. 4 are turned on. The output of full-adder circuits VSum and VCout are low voltage
VLow. The output memristors are high resistance, where RSum ¼ Roff , RCout ¼ Roff .

2. VA ¼ 0, VB ¼ 1, it means input VA is low voltage VLow; VB is high voltage VHigh.
Therefore the output voltages of AND gates are low voltage VLow, and the output
voltages of OR gates are high voltage VHigh. The upper port of inverter No. 1 is
turned on, and the output is high voltage. The lower port of inverter No. 4 is turned
on, and the output is high voltage. The outputs of full-adder circuits can be
obtained: VSum ¼ VHigh, VCout ¼ VLow. The output memristor RSum ¼ Ron,
RCout ¼ Roff .

3. VA ¼ 1, VB ¼ 0, it means input VA is low voltage VHigh; VB is high voltage VLow. It’s
the same to case 2. The outputs of the circuit is the same to the case 2, VSum ¼ VHigh,
VCout ¼ VLow. The output memristor RSum ¼ Ron, RCout ¼ Roff .

The two input voltages VA ¼ 1, VB ¼ 1, both are high voltage VHigh. Therefore the
output voltages of the AND gates and OR gates are low voltage VHigh. The output of
inverter No. 1 is low voltage because of its lower port is turned on. The output of
inverter No. 4 is high voltage because of its lower port is turned on. We can know the
outputs of full-adder circuit: VSum ¼ VLow, VCout ¼ VHigh. The output memristor
RSum ¼ Roff , RCout ¼ Ron.

2.2 Simulation Results of Proposed Full-Adder Circuits

The SPICE model of the HP memristor is used in this paper. According to the CMOS
and memristor hybrid circuit schematic, the SPICE circuit simulation software is used
to build the simulation circuit. Let 0.1 V–0.6 V be low voltage and 4 V–5 V be high
voltage (Fig. 2).
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2.3 Comparison of Proposed Full-Adder Circuit

By comparing the above Fig. 3, it is found that the IMPLY logic addition circuit has
the most operation delay, and the CMOS circuit has the following addition circuit
compared with the previous circuit, and has no response step delay, which greatly
optimizes the response of the circuit (Table 1).
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Fig. 2. Simulation results of Memristor-CMOS hybrid full-adder when VCin ¼ VLow
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Fig. 3. Simulation results of Memristor-CMOS hybrid full-adder when VCin ¼ VHigh
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Again, note the area of the proposed memristor-CMOS hybrid circuit is also sig-
nificantly reduce the number of components. The proposed circuit requires only 10N
memristors, 2N + 1 drivers, and 8N MOSFETs as compared with 34N MOSFETs for
the traditional CMOS full adder. The proposed circuits dose not require resistors or
switches, which are large size components compared the MAD Gates and IMPLY
logic.

Energy comparisons are not given because prior work do not report energy con-
sumption for the full adder.

3 Subtractor Based on Full-Adder Circuit

3.1 One-Bit Subtractor

According to the subtractor algorithm in digital circuit, we design a subtractive circuit
based on memristor, as shown in the Fig. 4:

As can be seen from the Fig. 4, the proposed subtractor is composed of two full-
adder. Where VA and VB are the subtracted and subtraction respectively, and VH is high
voltage (representing a logical “1”). In the subtractor, the complement of the sub-
traction is obtained by the full-adder FA-1, and the complement of the subtraction and
the subtracted is added in the full-adder FA-2, whereby the entire circuit can implement
the subtraction operation. For the one-bit subtractor, we only consider the case where
the subtracted number is greater than the subtraction:

Table 1. Number of components and delay comparison of the proposed circuits and versus prior
work for N-bit adder

MAD gates
logic

MRL logic IMPLY Proposed full-
adder

Delay N + 1 2N + 4 2N + 19 0
Number of
components

8N memristor
2N + 3 drivers
9N resistor
14N switches

34N
MOSFETs

7N + 1
memristors
7N drivers
N resistors
8N − 1
switches

10N memristors
2N + 1 drivers
8N MOSFETs

VAVH
VB

c1

s1 s2

c2

Fig. 4. Proposed one-bit subtractor
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1. VA ¼ 1, VB ¼ 1. At this time, the inverse of VB can be obtained as logic “0”. The
inverse of VB and VH are the two inputs of full-adder FA-1, and output s1 is the
complement of VB. VA and the complement of VB are the inputs of full-adder FA-2.
The output s2 of FA-2 is logic “0”, which is the operation result of a one-bit
subtractor.

2. VA ¼ 1, VB ¼ 0. At this time, the inverse of VB can be obtained as logic “1”. The
inverse of VB and VH are the two inputs of full-adder FA-1, and output s1 is the
complement of VB. VA and the complement of VB are the inputs of full-adder FA-2.
The output s2 of FA-2 is logic “1”, which is the operation result of a one-bit
subtractor.

3. VA ¼ 0, VB ¼ 0. At this time, the inverse of VB can be obtained as logic “1”. The
inverse of VB and VH are the two inputs of full-adder FA-1, and output s1 is the
complement of VB. VA and the complement of VB are the inputs of full-adder FA-2.
The output s2 of FA-2 is logic “0”, which is the operation result of a one-bit
subtractor.

According to the circuit diagram, we performed circuit simulation in SPICE. The
simulation results are shown in the Fig. 5:

3.2 N-Bit Subtractor

Based on the one-bit subtractor, we extended the circuit and designed a N-bit subtractor
as shown in Fig. 6.

Where VA1;VA2;VA3; . . .. . .;VAn are the subtracted number of N-bit subtractor and
VB1;VB2;VB3; . . .. . .;VBn are the subtraction. Full adder FA-11, FA-12, FA-13… FA-1n
constitutes a serial adder. The obtained result is added to the subtracted number to
obtain the result of the subtraction circuit.

V
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)

Time(ns)

V
ol
ta
ge

(V
)

Time(ns)

Vout

VA
VB

Vout

VA

VB

Fig. 5. The simulation of proposed subtractor
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4 Conclusions

Firstly, based on the memristor Boolean logic circuit, a memristor-CMOS hybrid full-
adder is designed. The feasibility of the proposed addition circuit is verified from the
perspective of theory and experimental simulation. Compared with MAD Gates and
MRL logic, it has obvious advantages: the circuit uses the non-volatile nature of the
memristor, combining computation and storage, requiring fewer components, and the
circuit only contains CMOS devices and memristors. The circuit has no time delay and
can realize real-time circuit. Secondly, an n-bit subtraction circuit is constructed based
on the proposed full-adder, which provides a solution for the combination of addition
and subtraction.
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Abstract. We propose a tensorial method for target localization based
on multi-static-multi-pulse MIMO radar, which consists of multiple
widely separated transmitting and receiving arrays. We show how a set
of tensors, which admits a coupled multilinear (ML) rank-(L, L, 1) block
term decomposition (BTD), can be constructed from the output sig-
nals of different receiving arrays. As such, we compute the coupled ML
rank-(L, L, 1) BTD of these tensors to obtain factor matrices. The target
locations are then able to be determined from the latent DOA param-
eters in these factor matrices. The proposed method neither requires
prior knowledge, nor assumes orthogonality between probing signals. In
addition, by exploiting the coupling, different receiving array outputs are
jointly processed, yielding improved performance than uncoupled BTD
based methods. Simulation results are provided to illustrate the perfor-
mance of the proposed method.

Keywords: MIMO radar · Tensor · Block Term Decomposition ·
Multilinear rank-(L, L, 1) · Direction of arrival of arrival

1 Introduction

Recently, multistatic MIMO radar has attracted wide attention [1–5]. In compar-
ison with monostatic MIMO radar [6] and bistatic MIMO radar [7], multistatic
MIMO radar consists of multiple widely separated transmitting and receiving
arrays, as seen in Fig. 1. As such, by exploiting the rich spatial diversity of the
multistatic MIMO radar, the target locations can be determined more accurately.

Traditional methods are mainly matrix-based [1–7], which ignore the poten-
tial multilinear structure of the output signal. In the recent several years, there
are tensor-based methods for MIMO radar application [8,9]. More precisely, [8]
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11555, pp. 565–574, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22808-8_56&domain=pdf
https://doi.org/10.1007/978-3-030-22808-8_56


566 J.-X. Yang et al.

Fig. 1. Diagram of a 2 × 2 MSMP-MIMO radar and the angle definitions

proposed a method based on the canonical polyadic decomposition of the out-
put signal of a bistatic MIMO radar. This method, however, assumes that the
probing signals are orthogonal to one another and are known a priori. In [9], the
multi-static-multi-pulse MIMO (MSMP-MIMO) radar is considered and a mul-
tilinear (ML) rank-(L,M, ·) block term decomposition (BTD) [10] based method
was proposed. Nevertheless, this method does not (at least not explicitly) exploit
the coupling among different array signals.

In this paper, we address the problem of target localization in MSMP-MIMO
radar from a coupled tensor decomposition perspective. We construct multiple
tensors from the observed signals of different receiving arrays, each admitting
a ML rank-(L,L, 1) BTD [11]. It turns out that these tensors together admit a
coupled ML rank-(L,L, 1) BTD. We perform two coupled ML rank-(L,L, 1) BTD
methods to jointly decompose these coupled tensors, yielding factor matrices that
carry DOA parameters of each target with regard to different receiving arrays.
There parameters can be integrated to localize the targets. In our method we
neither require prior knowledge of the probing signals, nor assume orthogonality
between them due to the exploitation of coupling.

Notation: we use uppercase boldface, lowercase boldface and uppercase cal-
ligraphic letters to denote vectors, matrices and tensors, respectively. We use
‘�’ and ‘�c’ to denote the partition-wise Khatri-Rao product and the column-
wise Khatri-Rao product: A � B = [A1 ⊗ B1, · · · ,AR ⊗ BR] and A �c B =
[a1 ⊗ b1, · · · ,aR ⊗ bR], respectively, where ⊗ is the Kronecker product. We use
‘⊗’ to denote the outer product: (a⊗b⊗c)i,j.k = aibjck. We suppose that A and
B consists of R sub-matrices in the partition-wise Khatri-Rao product while
R vectors in the column-wise Khatri-Rao product. We use ‘�’ to denote the
estimate of a parameter, e.g., Ã denotes the estimate of A.

Symbols ‘(·)T’, ‘(·)H’, ‘(·)∗’, ‘(·)†’, and ‘|| · ||2F’ are used to denote transpose,
conjugated transpose, conjugate, Moore-Penrose pseudo-inverse, and Frobenius
norm, respectively. We define vec(A) = [aT

1 , ...,aT
J ]T to denote the column-

wise vectorization of A = [a1, ...,aJ ]. Matlab notation is adopted to rep-
resent submatrices of a tensor. For example, we use T (:,:,k) to represent
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the kth frontal slice of a third-order tensor T . We use T1, T2, and T3 to
denote the mode-1, mode-2, and mode-3 matricization of T , respectively:
(T1)((j−1)K+k,i) = (T2)((i−1)K+k,j) = (T3)((i−1)J+j,k) = T (i,j,k). A decompo-
sition of T ∈ C

I×J×K in a sum of ML rank-(L,L, 1) terms is a decomposi-
tion of the form: T =

∑R
r=1(ArB

T
r ) ⊗ cr, r = 1, ..., R, where Ar ∈ C

I×L

and Br ∈ C
J×L are rank-L matrices, and cr ∈ C

K×1 is non-zero. Let
A � [A1, ...,AR], B � [B1, ...,BR], and C � [c1, ..., cR]. The three matrix
representations of T can be written as: T1 = (B � C)AT, T2 = (C � A)BT,
and T3 = [(A1 �c B1)1L, ..., (AR �c BR)1L]CT, respectively.

2 Problem Formulation

An illustration of a MSMP-MIMO radar is in Fig. 1. We make several assump-
tions: (i) the probing signal transmitted from each transmitting array to each
target can be regarded as a far-field point source to each target, and so can the
signal reflected by each target to each receiving array; (ii) the probing signals are
linearly independent, and that the steering vectors are constant during P pulses;
(iii) the target reflection coefficients vary from pulse to pulse (swerling II).

For mathematical tractability, we set up the parameters of the system in
Table 1. We denote transmitting steering vector from the lth transmitting array
to some target as a[l](γ, η) and receiving steering vector from some target to the
mth receiving array as b[m](θ, φ), which are associated with DOD parameters
(γ, η) and DOA parameters (θ, φ) (see Fig. 1), respectively, defined as follows:

a[l](γ, η) = exp(
2πi

λ
[k[l]T

1 v(γ, η), ...,k[l]T

I[l] v(γ, η)]T),

b[m](θ, φ) = exp(
2πi

λ
[h[m]T

1 v(θ, φ), ...,h[m]T

J [M]v(θ, φ)]T),
(1)

where v(γ, η) = [cosγsinη, sinγsinη, cosη] denotes the Poynting vector associ-
ated with the angle parameters (γ, η), and v(θ, φ) = [cosθsinφ, sinθsinφ, cosφ] is
defined analogously. The vectors k

[l]
i ∈ R

3 and h
[m]
j ∈ R

3 hold the coordinates
of the ith sensor in the lth transmitting array and the jth sensor in the mth
transmitting array, respectively. The symbol λ denotes the wavelength of the
probing signal.

We write the DOD parameter from the lth transmitting array to the rth
target and the DOA parameter from the rth target to the mth receiving array as
(γ[l]

r , η
[l]
r ) and (θ[m]

r , φ
[m]
r ), respectively. For convenience, we denote a[l](γ[l]

r , η
[l]
r )

and b[m](θ[m]
r , φ

[m]
r ) as a[l]

r and b
[m]
r , respectively. Then the output signal X [m]

p ∈
C

J [m]×T of the mth receiving array during the pth pulse can be expressed as:

X [m]
p =

∑L

l=1

∑R

r=1
b[m]

r (�[l,m]
r )pa

[l]T
r S[l]T, (2)

with l = 1, ..., L, m = 1, ...,M , r = 1, ..., R, p = 1, ..., P , S[l] ∈ C
T×I[l]

. We
stack X

[m]
p with fixed m and varying p along the third mode into a third-order
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Table 1. Parameters for MSMP-MIMO radar

Parameter Definition

L Number of transmitting arrays

M Number of receiving arrays

I [l] Number of antennas in the lth transmitting array

J [m] Number of antennas in the mth receiving array

P Number of pulses

R Number of targets

T Number of time samples in each pulse

(�
[l,m]
r,p ) Reflection coefficient of the rth target in the pth pulse, with regard

to the lth transmitting array and the mth receiving array

a
[l]
r Transmitting steering vector from the lth transmitting array to the

rth target

b
[m]
r Receiving steering vector from the rth target to the mth receiving

array

S [l] Signal matrix that holds in its columns the probing signals from
different antennas in the lth transmitting array within one pulse
period

tensor X ′[m]
(:,:,p) = X

[m]
p . By denoting f

[l,m]
p � [(�[l,m]

r,1 ), ..., (�[l,m]
r,P )]T ∈ C

P and

c
[l]
r � S[l]a

[l]
r ∈ C

T , we write X ′[m] as follows:

X ′[m] =
∑L

l=1

∑R

r=1
b[m]

r
⊗ c[l]r

⊗ f [l,m]
r . (3)

We permute the first and third indices of X ′[m] to obtain the data tensor,
expressed as:

X [m] =
∑R

r=1
(
∑L

l=1
f [l,m]

r
⊗ c[l]r ) ⊗ b[m]

r , (4)

where X [m] ∈ C
P×T×J [m]

. We further denote F
[m]
r � [f [1]

r , ...,f
[L]
r ] ∈ C

P×L and
Cr � [c[1]r , ..., c

[L]
r ] ∈ C

T×L. Then X [m] can be rewritten as:

X [m] =
∑R

r=1
(F [m]

r CT
r ) ⊗ b[m]

r . (5)

It is shown in (5) that for a fixed m the tensor X [m] admits a ML rank-
(L,L, 1) BTD. For varying m, there is a common factor matrix C among the set
of tensors {X [m],m = 1, ...,M}. We say that these tensors together admit a cou-
pled ML rank-(L,L, 1) BTD. We define F [m] � [F [m]

1 , ...,F
[m]
R ], C � [Cr, ...,Cr],

and B[m] � [b[m]
1 , ..., b

[m]
R ] as the three factor matrices of X [m]. It is clear that all

the tensors are coupled in the second mode by the factor matrix C. Therefore,
we can use coupled ML rank-(L,L, 1) BTD algorithms to identify the factor
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matrices, in which the DOA parameters can be computed. The mode-2 matrix
representation of tensor X [m] can be written as:

X [m] = (B[m] � F [m])CT, (6)

There exist some trivial indeterminacies for coupled ML rank-(L,L, 1) BTD
(5): (i) permutation ambiguity, i.e., one can arbitrarily permute terms if it is
done for all coupled tensors consistently: (ii) rotation ambiguity, i.e., one can
simultaneously post-multiply F

[m]
r by any non-singular matrix ΛΛΛr ∈ C

L×L and
pre-multiply C

[m]T
r by ΛΛΛ†

r in the rth term of every tensor X [m]; (iii) scaling
ambiguity, i.e., one can not distinguish F

[m]
r CT

r and b
[m]
r from w

[m]
r F

[m]
r CT

r and
1/w

[m]
r (b[m]

r ) for any non-zero value of w
[m]
r , and F

[m]
r CT

r and b
[m]
r can be arbi-

trarily scaled if their whole product is not changed. We say that the coupled ML
rank-(L,L, 1) BTD is unique if factor matrices F [m], C, and B[m] are uniquely
identified subject to the above three indeterminacies.

3 Proposed Method

We assume that the shared factor matrix has full-column rank. This assumption
holds in the generic sense if the number of samples for one pulse period T ≥ RL.
Roughly speaking, it is required that the pulse period and the sampling rate are
sufficiently large. We additionally assume that the uniqueness conditions of ML
rank-(L,L, 1) BTD hold for at least one of these coupled tensors. We refer to
[11] for details of the uniqueness conditions of a ML rank-(L,L, 1) BTD.

3.1 Identify the Common Factor via Uncoupled BTD

In our method, we first choose a tensor for which ML rank-(L,L, 1) BTD unique-
ness conditions hold, and then apply ML rank-(L,L, 1) BTD to this tensor. For
example, we can check the generic uniqueness results, as given in [11], to select
tensors for which the ML rank-(L,L, 1) BTD uniqueness conditions are expected
to hold, and then choose the one for which the decomposition yields the best fit.
For convenience, we assume, without loss of generality, that X [1] is the chosen
tensor. By performing ML rank-(L,L, 1) BTD based algorithms to X [1], we can
obtain the shared factor matrix C and factor matrices F [1] and B[1].

We note that there are several options available for the implementation of a
ML rank-(L,L, 1) BTD. For instance, we can use the alternating least squares
(ALS) based algorithm [12]. This algorithm alternately updates each factor
matrix to reduce the LS based cost function. During each step, the updated
factor matrix is regarded as unknown while the other factor matrices are fixed.
ALS monotonically decreases the cost function along the updating process, but
it does not guarantee to converge to a stationary point. We can also implement
a quasi-Newton (QN) or nonlinear least squares (NLS) based ML rank-(L,L, 1)
BTD via ‘ll1 minf.m’ or ‘ll1 nls.m’ functions in Tensorlab 3.0 [13], respectively.
We note that NLS approach is of low per-iteration cost and close to quadratic
convergence near a (local) optimum.
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3.2 Identify the Remaining Factor Matrices by Making Use
of the Common Factor and Coupling Structure

Now that we have obtained the common factor matrix, the remaining factor
matrices can be identified by making use of the coupling factor and the ML
rank-(L,L, 1) structure of each tensor. For each tensor X [m], m = 1, ...,M , we
post-multiply its matrix representation (6) by (CT)†, as follows:

B[m] � F [m] = X [m](CT)†, m = 2, ...,M, (7)

in which B[m]�F [m] = [b[m]
1 ⊗F

[m]
1 , ..., b

[m]
R ⊗F

[m]
R ]. We write the rth sub-matrix

b
[m]
r ⊗ F

[m]
r as:

b[m]
r ⊗ F [m]

r =

⎡

⎢
⎢
⎣

G
[m]
1,r
...

G
[m]

J [m],r

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

(b[m]
r )1F

[m]
r

...
(b[m]

r )J [m]F
[m]
r

⎤

⎥
⎥
⎦ , (8)

where G
[m]
j,r = (b[m]

r )jF
[m]
r ∈ C

P×L, 1 ≤ j ≤ J [m], with (b[m]
r )j being the jth

element of b[m]
r . Hence, we can compute a matrix P

[m]
r from G

[m]
j,r with fixed r,

m and varying j:

P [m]
r = [vec(G[m]

1,r ), ..., vec(G[m]

J [m],r
)]T = b[m]

r
⊗ vec(F [m]

r ). (9)

As shown in (9), P [m]
r is a rank-1 matrix in the exact case. Hence, we can

compute b
[m]
r and F

[m]
r as the vectors that span the column and row space

of P
[m]
r , respectively. In the noisy case, we perform rank-1 approximation on

P
[m]
r to identify b

[m]
r and F

[m]
r , which usually can be done via singular value

decomposition (SVD). By varying m and r, we will obtain all factor matrices
B[m] and F [m].

3.3 Localize Targets from the Estimates of Factor Matrices

Up to now, {B[m],m = 1, ...,M}, {F [m],m = 1, ...,M}, and C have been iden-
tified by the coupled ML rank-(L,L, 1) BTD. Next we explain how to localize
targets from {B̃[m],m = 1, ...,M}. In (1), we have the prior knowledge of the
pattern of each receiving array. One thus can use some angle-searching method
to obtain the DOA estimates: (θ̃[m]

r , φ̃
[m]
r ). For example, (θ̃[m]

r , φ̃
[m]
r ) can be cal-

culated as those that realize the minimal angle between b[m](θ, φ) and b̃
[m]
r :

{θ̃[m]
r , φ̃[m]

r } = argmax
(θ,φ)

b̃
[m]H
r b[m](θ, φ)

∥
∥b̃

[m]
r

∥
∥2

F
· ∥
∥b[m](θ, φ)

∥
∥2

F

. (10)

After the pair (θ̃[m]
r , φ̃

[m]
r ) is determined, we obtain a line in space that points

from the mth receiving array to the rth target. By fixing r and varying m, we
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can compute M such vectors, and with any two of them we are able to determine
the location of the rth target as the intersection point of the two corresponding
lines. In the noisy case, there exist errors in the obtained M Poyntine vectors
and we can compute the location of each target as the point that is closest to
the corresponding M lines in the least squares sense.

4 Experiments

In this section, we provide experiment results to demonstrate the performance of
the proposed method. The coupled ML rank-(L,L, 1) BTD is implemented via
ALS and NLS, which we denote as C-LL1-ALS and C-LL1-NLS, respectively.

In the experiment, we set L = 3, M = 2, R = 3, P = 500,
T = 512, I [1] = I [2] = I [3] = 7, and J [1] = J [2] = 7. The carrier
frequency is fixed to 1 GHz. Transmitting and receiving arrays are all L-
shaped. For each transmitting/receiving array the inter-sensor spacing is set
to half the wavelength of the impinging signal. The coordinates of transmitting
arrays, receiving arrays and targets are {(0, 8, 0), (±8, 8, 0)}, {(±4, 8, 0)}, and
{(−5, 20, 0), (−5, 0, 0), (10, 0, 0)}, respectively. For convenience, without loss of
generality, we assume that the transmitting arrays, receiving arrays, and the
targets are in the z = 0 plane. As such, the elevation angles for the probing
signals, {η

[l]
r , r = 1, ..., R, l = 1, ..., L}, as well as those for the reflected signals,

{φ
[m]
r , r = 1, ..., R,m = 1, ...,M}, are fixed to 90◦. We draw the real and imagi-

nary part of each entry of the probing signal S[m] and the reflection coefficient
matrix F [m] from the normal distribution for m = 1, ...,M . Under above set-
tings, we can generate the noise-free data tensors {Xm,m = 1, ...,M} according
to (5). We add the white Gaussian noise term N [m] ∈ C

P×T×J [m]
to X [m] to

generate the noisy output signals:

Y [m] = σsX [m]
/∥
∥X [m]

∥
∥2

F
+ σnN [m]

/∥
∥N [m]

∥
∥2

F
, (11)

where σs and σn denote the signal and noise level, respectively. The signal-to-
noise ratio is defined as SNR= 20 log10 (σs/σn).

We include two uncoupled ML rank-(L,L, 1) BTD methods in the compari-
son, based on ALS and NLS and denoted as LL1-ALS and LL1-NLS, respectively.
The ML rank-(L,L, 1) BTD algorithms are applied to each tensor separately to
calculate the factor matrices. For the all compared algorithms, the maximal
number of iterations is set to 5000 and the tolerance is set to 0.0001.

First we verify the validity of the proposed approach. We fix SNR=5 dB and
implement 20 Monte-Carlo runs. The estimated target locations obtained via C-
LL1-ALS and C-LL1-NLS are plotted in Fig. 2(a) and (b), respectively, showing
that both algorithms can localize the three targets.

Then we consider the accuracy of the compared algorithms vs. SNR varying
from −15 dB to 15 dB. We adopt joint mean square error (JMSE) to measure
the accuracy of C̃, defined as follows:

ξ � M−1
∑M

m=1

∥
∥C − C̃ [m]ΠΠΠ †ΛΛΛ

∥
∥2

F

/‖C‖2F, (12)
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(b) C-LL1-NLS

Fig. 2. Position distribution of the three targets estimated via C-LL1-ALS and C-LL1-
NLS in 20 runs (SNR= 5 dB)
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Fig. 3. Comparison of ALS, coupled rank-(L, L, 1) BTD based ALS, NLS, and coupled
rank-(L, L, 1) BTD based NLS (m = 1, ..., M)

where ΠΠΠ is a column block permutation matrix that is common for all the
estimates C [m], and ΛΛΛ is a block-diagonal matrix holding ΛΛΛr as the rth diagonal
submatrix. The matrix C̃ [m] is the estimate of C̃ obtained from the output of
the mth receiving array. Obviously, for the coupled decomposition, C̃ [m] remains
unchanged with m varying, due to the exploitation of the coupling. However, for
the ordinary ML rank-(L,L, 1) BTD, C̃ [m] with different m may be different. In
addition, we note by (12) that JMSE does not only measure the accuracy of the
estimates, but also indicates if the permutation is aligned for estimates obtained
from different datasets. That is to say, a small JMSE only appears when the
estimation is accurate and the permutation is aligned among different datasets.
Analogously, JMSE also can be applied to evaluate {B̃[m],m = 1, ...,M}.

We perform 100 Monte-Carlo runs for each algorithm to calculate the root
mean squared value of JMSE for both the estimates of {B[m],m = 1, ...,M}
and C. The results are provided in Fig. 3(a) and (b), respectively. It is clearly
shown that both C-LL1-ALS and C-LL1-NLS provide correct results while
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LL1-ALS and LL1-NLS fail. The above observations clearly show the interests
in the proposed methods in a MSMP-MIMO radar application.

5 Conclusions

In this paper, we propose a coupled ML rank-(L,L, 1) BTD based method
for target localization in the MSMP-MIMO radar. The output signals from
each receiving array can be stacked into a third-order tensor that admits ML
rank-(L,L, 1) BTD and these stacked tensors together admit coupled ML rank-
(L,L, 1) BTD. Using coupled ML rank-(L,L, 1) BTD based method is able to
extract the aligned factor matrices, which contains DOA parameters associated
with the position of each target. The method does not require orthogonal probing
signals, nor their waveform patterns. Simulation results have shown the valid-
ity of the proposed approach, as well as its superiority over the uncoupled ML
rank-(L,L, 1) based method.
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dation of China (Grant No. 61331019, 61379012, and 61601079); (2) Natural science
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Abstract. We consider the joint estimation of direction-of-arrival
(DOA) and polarization of constant modulus (CM) signals based on a
polarization sensitive array. We propose an algebraic algorithm for canon-
ical polyadic decomposition (CPD) with CM constraint. The proposed
algorithm first uses the analytic CM factorization algorithm to calculate
the source matrix, and then exploits the CPD structure of the data ten-
sor to compute the remaining factor matrices, from which the DOA and
polarization parameters can finally be obtained. Due to the algebraic
nature, the proposed algorithm can be used to effectively initialize the
optimization based algorithms. We have shown that the proposed algo-
rithm has more relaxed uniqueness conditions from simulation results.
We provide simulation results to illustrate the performance of the pro-
posed algorithm.

Keywords: Direction-of-arrival · Polarization · Tensor ·
Canonical polyadic decomposition · Constant modulus

1 Introduction

A polarization sensitive sensor comprises 2−6 electromagnetic (EM) sensors that
provide complete or partial measurements of the EM fields induced by the inci-
dent sources [1,2]. A polarization sensitive array consists of multiple polarization
sensitive sensors, arranged into a certain spatial configuration, e.g. linear, circu-
lar, L-shaped. Compared with the conventional scalar sensor array, the polar-
ization sensitive array is polarization sensitive. As such, during the past sev-
eral decades, there have been enormous efforts devoted to the development of
direction-of-arrival (DOA) and polarization estimation techniques based on the
polarization sensitive array [3–7]. These works have revealed the advantages of
the polarization sensitive array over scalar sensor array, with regard to parameter
estimation accuracy and identifiability.

c© Springer Nature Switzerland AG 2019
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As mentioned above, the polarization sensitive array output signal admits a
multi-dimensional (MD) structure in the time-space-polarization domain. How-
ever, the early methods, such as multiple signal classification (MUSIC) [3,4] and
estimation of signal parameters via rotational invariance techniques (ESPRIT)
[5–7], do not fully exploit this MD structure. Tensor based methods for array
processing were proposed in the past decades. In [8–11], the canonical polyadic
decomposition (CPD) of third order tensor is used for DOA estimation based on
a multi-invariance array. Third-order and fourth-order CPDs is widely adopted in
a number of polarization sensitive array processing techniques, which are shown
to have better performance than the matrix based approaches.

The above methods are mainly based on unconstrained tensor decomposi-
tions. In practice, however, prior knowledge of either the source signal or the
sensor array is often available. Imposing these priors in tensor decomposition as
certain structure or constraint may result in better performance with regard to
both accuracy and identifiability.

In this study, we consider DOA and polarization estimation of CM signals
based on a polarization sensitive array, using CM constrained CPD. By applying
the analytic CM factorization algorithm (ACMA) [14] and imposing the CPD
structure, we propose an algebraic CPD algorithm with CM constraint. The
proposed algorithm is algebraic. Therefore, It is computationally efficient and
stable, and can be used to effectively initialize the optimization based algorithms
(e.g., the structured data fusion (SDF) implementation of a CPD with CM
constraints). In addition, through simulations we have found that the proposed
algorithm can generate correct results even in case where the unconstrained CPD
is not unique. This implies that the proposed CPD algorithm with CM constraint
has more relaxed uniqueness conditions than the unconstrained CPD.

Notation: Scalars, vectors, matrices and tensors are denoted by italic lower-
case, lowercase boldface, uppercase boldface and uppercase calligraphic letters,
respectively. The rth column vector and the (i, j)th entry of X are denoted by
xr and xi,j , respectively. The identity matrix and all-zero vectors are denoted
by IM ∈ R

M×M and 0M ∈ R
M×M , respectively. The null space of a matrix

X is denoted as ker (X). The dimensionality of a vector space � is denoted
as dim (�). Transpose, conjugate, conjugated transpose, Moore-Penrose pseudo-
inverse, Frobenius norm and matrix determinant are denoted as (·)T , (·)∗, (·)H ,
(·)†, ‖·‖F , and |·|, respectively.

The symbols ‘⊗’, ‘�’ and ‘⊗’ denote Kronecker product, Khatri-Rao product,
and outer product, respectively. The symbol ‘∠’ denotes the phase angle of a
complex number, and ‘im(·)’ denotes the imaginary part of its entry. The letter
‘i’ denotes the imaginary unit.

A polyadic decomposition (PD) of X expresses X as the sum of rank-1 terms:

X =
R∑

r=1

ar ⊗ br ⊗ cr = [[A,B,C]]R, (1)
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where A Δ= [a1, · · · ,aR] ∈ C
I×R, B Δ= [b1, · · · ,bR] ∈ C

J×R, and C Δ=
[c1, · · · , cR] ∈ C

K×R. We call Eq. (1) a canonical PD (CPD) if R is minimal.
For a matrix A ∈ C

I1×I2 , vec (A) ∈ C
I1I2 denotes the vector representation

of A: [vec (A)]̃i
Δ= ai1,i2 , with ĩ = (i1 − 1) I1 + i2, while unvec (·) performs the

inverse. The matrix representation1 of X ∈ C
I×J×K is denoted as X ∈ C

IJ×K ,
and defined by X((i−1)J+j,k) = X(i,j,k).

We define Ten (X, [I, J,K]) = X as the operation to reshape an IJ × K
matrix X into a third-order X of size I ×J ×K, such that xi,j,k = X((i−1)J+j,k).
We denote the estimate of a variable a as ã.

2 Data Model and Problem Formulation

2.1 Data Model

We assume that (θ, ϕ) is the azimuth-elevation 2D DOA of a narrowband planar
EM signal, and that (γ, η) is the polarization state of the incident signal, 0 ≤
θ < 2π, 0 ≤ ϕ < π, 0 ≤ γ < π/2, −π ≤ η < π. The response of a cocentered
polarization sensitive sensor can be written as [2]:

bθ,ϕ,γ,η
Δ= L

[
eθ,ϕ,γ,η

hθ,ϕ,γ,η

]
, (2)

where [
eθ,ϕ,γ,η

hθ,ϕ,γ,η

]
=

[
v(θ+π/2,0),−v(θ,ϕ−π/2)

v(θ,ϕ−π/2),v(θ+π/2,0)

] [
cos γ
sin γeiη

]
, (3)

where eθ,ϕ,γ,η ∈ C
3 and hθ,ϕ,γ,η ∈ C

3 are vectors holding the electric field com-
ponents and magnetic field components of the incident EM waves, respectively.
We denote the vector v(θ,ϕ)

Δ= [cos θ sinϕ, sin θ sinϕ, cos ϕ]T as the Poynting vec-
tor. By definition, v(θ,ϕ), v(θ+π/2,0), v(θ,ϕ−π/2) constitute a mutually orthogonal
triad. The vector bθ,ϕ,γ,η can be denoted as the angular-polarization steering
vector.

The binary matrix L ∈ R
K×6 is a selection matrix. It chooses a subset

of the complete EM field components according to the type of the employed
polarization sensitive sensor. For example, if we use the tripole antenna, then
L = [I3,03] and bθ,ϕ,γ,η = eθ,ϕ,γ,η.

Now the data model of a polarization sensitive array which comprises N sen-
sors is introduced. We encapsulate the position coordinates of the nth polariza-
tion sensitive sensor in a vector kn ∈ R

3, n = 1, . . . , N . The different polarization
sensitive sensors can collect the phase delays of the signals. The phase delays
can be represented by the so-called spatial steering vector defined as follows:

aθ,ϕ
Δ=exp

(
i2πλ−1

[
k1

Tv(θ,ϕ),. . .,kN
Tv(θ,ϕ)

]T
)

, (4)

1 Note that there are various types of matrix representation of a third-order tensor,
and that the one defined here is indeed the mode-3 matrix representation. In this
paper we only consider this type of matrix representation.
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where λ is the wavelength of the incident signal. Therefore, we can write the
polarization array response to a single incident signal with DOA-polarization
parameters (θ, ϕ, γ, η) as:

X(θ,ϕ,γ,η)(n, k, t) = a(θ,ϕ)(n) · b(θ,ϕ,γ,η)(k) · s(t), (5)

where s ∈ C
T is the source vector, it contains the complex envelop collected at

T time samples. We can know the response of the polarization sensitive array
to a single signal from Eq. (5) is a third-order rank-1 tensor of size N × K × T :
X(θ,ϕ,γ,η) = a(θ,ϕ) ⊗ b(θ,ϕ,γ,η) ⊗ s. We assume that there are R incident signals,
then can denote Xr = X(θr,ϕr,γr,ηr), ar = a(θr,ϕr),br = b(θr,ϕr,γr,ηr), where sr

is the rth source vector. We can write the output of the polarization sensitive
array as:

X =
R∑

r

Xr =
R∑

r

ar ⊗ br ⊗ sr = [[A,B,S]]R, (6)

where A Δ= [a1, . . . ,aR] ,B Δ= [b1, . . . ,bR] ,S Δ= [s1, . . . , sR] denote the spatial
steering matrix, the angular-polarization steering matrix, and the source signal
matrix, respectively. For convenience, we have ignored the noise term in the
above model. We can see that the polarization sensitive array signal shown in
Eq. (6) admits a CPD. Therefore, the matrix representation of Eq. (6) can be
written as:

X = (A � B)ST , (7)

where X denotes matrix representation of tensor X .

2.2 Problem Formulation

We want to estimate the DOA and polarization parameters from the observed
tensor X , and we can do it via a CPD based approach. Briefly speaking, we
can compute the CPD of X to obtain the factor matrices A and B, and then
estimate DOA and polarization parameters from B.

In this paper, we consider all source are CM signals, and we incorporate this
prior knowledge as a constraint into the CPD decomposition.

We formulate the problem as CPD with CM constraint:
{
Ã, B̃, S̃

}
= arg min

{A,B,S}

∥∥X − (A � B)ST
∥∥2

F
,

s.t. |st,r| = c, r = 1, · · · , R, t = 1, · · · , T,
(8)

where c denotes the modulus of the source signals.
The proposed algorithm mainly makes use of the well-known analytical con-

stant modulus factorization algorithm (ACMA) [14] and the inherent rank-1
structure of the matrix representation of each column of (A � B). To facilitate
the use of ACMA, we have the additional assumption: (A � B) has full column
rank.
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3 Proposed Algorithm

3.1 Review of ACMA

A brief summary of the ACMA is introduced at first. The readers can find more
detains in [14]. The signal model can be written as

Y = MST , (9)

where X ∈ C
M×T , M ∈ C

M×R, and S ∈ C
T×R denote the observe signal, the

mixing matrix, and the source matrix, respectively. We assume that S has CM
constraint. We denote W ∈ C

R×R as the demixing matrix.
The key steps of ACMA are as Table 1:

Table 1. The ACMA (analytic CM factorization algorithm).

1. Estimate the row space of Y: {v1, · · · ,vR}
2. Construct matrix P̂ ∈ C

(T−1)×R2
, estimate ker

(
P̂

)
: {z1, · · · , zR}

3. Obtain a tensor from {z1, · · · , zR}: Z Δ= Ten ([z1, · · · , zR] ,R,R,R) = [[W,W∗,F]]R
4. Compute the overdetermined CPD Z to obtain W

5. Obtain the signal sources matrix: ST = WY.

3.2 Algebraic CPD with CM Constraint

In this subsection, we propose an algebraic CPD algorithm with CM constraint.
The algorithm mainly contains two steps as follow:

(i) Use ACMA to recognize the CM source signals.
We denote M Δ= A � B and rewrite Eq. (7) as X = MST . Because (A � B)

has full column rank, we can recognize the CM source signals S̃ via ACMA.
(ii) Use rank-1 approximation to compute factor matrices Ã and B̃.
We have estimated the signal sources matrix S̃, therefore, we can calculate

the other factor matrices of the CPD Eq. (6), Ã and B̃, by using the Kronecker-
product structure of each column of the matricized columns of [15]:

Ã � B̃ = X
(
S̃T

)†
. (10)

In fact, if we ignore the noise term, each column of M̃=Ã� B̃ is a vectorized
rank-1 matrix:

unvec (m̃r) = ãrb̃T
r , r = 1, · · · , R. (11)

If we consider the noise term, Eq. (11) holds approximately, and ãr and b̃r

can be computed via the rank-1 approximation of unvec (m̃r).
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3.3 DOA-Polarization Estimation

Now we give the method to compute DOA and polarization parameters via the
estimates Ã and B̃.

For convenience, we use the tripole antenna to receive the source signals.
Therefore, the angular-polarization steering vector can be written as bθ,ϕ,γ,η =
eθ,ϕ,γ,η. According to [16], we can get a result as follow:

eθ,ϕ,γ,η × e∗
θ,ϕ,γ,η = 2i sin η sin γv(θ,ϕ), (12)

where the Poynting vector v(θ,ϕ) represents the DOA of the incident signal. Then
the polarization parameters can be obtained from bθ,ϕ,γ,η. For example, we first
construct a vector:

ρ =
[

ex

ez
,

ey

ez

]T

=
[

bx
bz

,
by
bz

]T

=

[
− cot ϕ cos θ + cot γ sin θ

sinϕ cos η − i cot γ sin θ
sinϕ sin η

− cot ϕ sin θ − cot γ cos θ
sinϕ cos η+i cot γ cos θ

sinϕ sin η

]
.

(13)

Then we can obtain (γ, η) from:
{

η = −∠bx sin θ − by cos θ

γ = arccot
(

im(by sinϕ)
cos θ sin η

)
. (14)

As such, for each column b̃r of matrix B̃, we can exploit cross-product
Eq. (12) to estimate the DOA of each signal and exploit Eqs. (13) and (14) to
estimate the polarization parameters of each incident signal.

We note that the triple which consists of three sensors is used in the above
derivation. For the polarization sensitive sensors with four to six sensors, the
above derivation also applies.

4 Simulation Results

Now we provide simulations to demonstrate the performance of the proposed
algebraic CPD algorithm, in comparison with the optimization based algorithm,
and unconstrained CPD.

For convenience, the following abbreviations can be used:

– CPD-CM-ALG: the proposed algebraic CPD-CM algorithm.
– CPD-CM-QN (ALG): the quasi-Newton CPD-CM algorithm, initialized with

the result of CPD-CM-ALG.
– CPD-CM-QN (RAND): the quasi-Newton CPD-CM algorithm with random

initialization.
– CPD: unconstrained canonical polyadic decomposition, initialized with alge-

braic CPD.
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We implement CPD-CM-QN (ALG) and CPD-CM-QN (RAND) with the
‘sdf minf’ function, where the CM constraint is incorporated as a regularization
term via the use of domain specific language. The tolerance on the relative
function value, relative step size and maximum number iterations for ‘sdf minf’
are set to TolFun = 10−10, TolX = 10−8 and MaxIter = 2000, respectively. In
the implementation of CPD, the tolerance on the relative function value and
relative step size in the stopping criteria of ‘cpd nls’ are set to TolFun = 10−12

and TolX = 10−8, respectively.
We assume that R far-field, narrowband signals with identical carrying fre-

quency are impinging upon an L-shaped array of triple antennas. The spac-
ing between adjacent antennas is d = 6λ. The number of snapshots is set to
T = 1000. Therefore, the array output signals is a third-order tensor X of size
3 × 3 × 1000, admitting a CPD of rank R. In simulations, we mainly consider
the case R > 3. In this case, the first two dimensions of X are smaller than R,
and CPD is usually labelled as “underdetermined”. In addition, the noise term
is generated as white Gaussian noise. The signal-to-noise ratio (SNR) is defined
as follows:

SNR
Δ= 20log10 (Ps/Pn) . (15)

where Ps and Pn denote the signal and noise levels, respectively. We use the
Root Mean Squared Error (RMSE) to measure the accuracy of DOA and
polarization estimation for each signal, which is defined as follows:

RMSE =

√√√√
M∑

m=1

(α̃m − α)2

M
, (16)

where α ∈ {θ, ϕ, γ, η} denotes one of the to-be-estimated parameters, α̃m denotes
the estimate of α in the mth Monte Carlo experiment, and M denotes the
number of Monte Carlo runs, which is set to M = 200 in all simulations. For the
evaluation of the overall accuracy, we further use the Overall RMSE, which is
defined as the mean RMSE values of all the signals.

We consider DOA and polarization estimation under CM constraint in the
following two settings: (i) a slightly underdetermined case R = 4; (ii) a highly
underdetermined case R = 6;. The corresponding parameter settings are listed
in Tables 2 and 3, respectively.

Table 2. Simulation setting of DOA and polarization parameters in the slightly under-
determined case: N = K = 3, R = 4.

#1 #2 #3 #4

θ π/16 25π/48 47π/48 23π/16

ϕ π/16 3π/16 5π/16 7π/16

γ π/16 3π/16 5π/16 7π/16

η π/16 3π/16 5π/16 7π/16



582 J.-W. Yang et al.

We let SNR vary from 0 dB to 40 dB. The Overall RMSE curves versus SNR
for the above two settings are plotted in Figs. 1 and 2, respectively.

From Fig. 1, we have observed that the proposed CPD-CM-ALG algorithm
and unconstrained CPD all yield accurate DOA and polarization estimates in
slightly underdetermined case. We also observe that the optimization based
CPD-CM-QN algorithm provides correct results when it is initialized by the
results of CPD-CM-ALG, while the optimization based CPD-CM-QN algorithm
dose not yield accurate results when it is initialized by random value.

Table 3. Simulation setting of DOA and polarization parameters in the highly under-
determined case: N = K = 3, R = 6.

#1 #2 #3 #4 #5 #6

θ π/24 3π/8 17π/24 25π/24 11π/6 41π/24

ϕ π/24 π/8 5π/24 7π/24 3π/8 11π/24

γ π/24 π/8 5π/24 7π/24 3π/8 11π/24

η π/24 π/8 5π/24 7π/24 3π/8 11π/24
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Fig. 1. Overall RMSE of θ, ϕ, γ, and η versus SNR in the slightly underdetermined
case with CM constraint: N =K = 3, R= 4, T = 1000.
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Fig. 2. Overall RMSE of θ, ϕ, γ, and η versus SNR in the highly underdetermined case
with CM constraint: N = 3, K = 3, R= 6, T = 1000.

From Fig. 2, we have observed that the proposed CPD-CM-ALG algorithm
yields correct results in highly underdetermined case, if SNR is sufficiently high,
while unconstrained CPD does not provide correct results. We also observe that
the optimization based CPD-CM-QN algorithm provides correct results when it is
initialized by the results of CPD-CM-ALG. The optimization based CPD-CM-QN
algorithm improves the results ofCPD-CM-ALG.However,CPD-CM-QNdosenot
yield reasonable estimates when it is randomly initialized. The above observation
has clearly shown the interests in the proposed CPD-CM-ALG algorithm.

In the above simulations, we observe that the proposed algorithm is faster
than the unconstrained CPD.

5 Conclusion

In this study, we have proposed an algebraic algorithm for CPD with CM con-
straint: CPD-CM-ALG. The proposed algorithm first exploits the analytic CM
algorithm to compute the sources matrix, and then uses the CPD structure to
calculate the rest factor matrices, form which we can obtain the DOA and polar-
ization parameters. We have shown, through simulations, that the proposed algo-
rithm has more relaxed uniqueness conditions than unconstrained CPD. In com-
parison with the optimization based quasi-Newton algorithm, which is shown to
be unstable and sensitive to initialization, the proposed algorithm is faster and
stable, and can be used to effectively initialize the optimization based algorithms.
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Abstract. We propose an algorithm for direction of arrival (DOA) esti-
mation of wideband array signals based on spatial decimation and cou-
pled canonical polyadic decomposition. First, the wide-band array out
is converted to several frequency bins. Second, we choose the bins that
have exponential relationship to do spatial decimation. Finally, we use
the coupled canonical polyadic decomposition to identify the steering
vector and calculate the DOA. The proposed algorithm makes use of
the coupled structures between frequency bins and is the deterministic
method, which do not depend on statistical properties. We have com-
pared the proposed algorithm with existing wideband DOA estimation
algorithms. The numerical results are provided to demonstrate the per-
formance of the proposed algorithm.

Keywords: Array signal processing · Direction of arrival estimation ·
Spatial decimation · Coupled canonical polyadic decomposition

1 Introduction

Direction of arrival (DOA) estimation is a central problem in array signal pro-
cessing, in particular for radar, sonar, telecommunications, astronomy and seis-
mology. The array consists of multiple sensors placed at different position in
space and receives source signals from different directions [1,2]. Some array pro-
cessing techniques perform an exhaustive search of the angular range, such as
beamforming and multiple signal classification (MUSIC) [3], whereas others rely
on algebraic solutions, such as root-MUSIC [4] and ESPRIT [5]. The signal-
subspace processing embodied by MUSIC and ESPRIT exploits the algebraic
property of the spatial covariance matrix that the eigenvectors corresponding to
the largest eigenvalues span the same subspace as the source direction vectors.

For wideband signals, signal-subspaces are different at different frequency
bins, and the mentioned narrowband algorithms above need to be adapted to
deal with this diversity. The ISM [6] is one of the earliest algorithms for wideband
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11555, pp. 585–594, 2019.
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DOA estimation. The wideband signal is decomposed into multiple narrowband
components in frequency domain. Then the method does the spectral decompo-
sition in each frequency bin and computes the average of all frequency bins. The
ISM only deals with each individual frequency bin and does not make use of
the relationship between frequency bins. The CSM [7] makes use of the relation-
ship between frequencies but needs a prior estimate of DOA to form focusing
matrices. In this letter, our main contribution is to handle the frequency point
data that has a particular frequency relationship as a multidata set signal, which
is essentially a method of multi-set data-fusion or joint blind source separation
(J-BSS).

J-BSS of multi-set signals has been considered in a number of applica-
tions such as multi-subject/multi-model biomedical data fusion and BSS of
transformed signals at multiple frequency bins for convolutive mixtures. These
approaches usually assume dependence across datasets (inter-set dependence)
and independence of latent sources within a dataset (intra-set independence),
aiming at BSS of each individual dataset as well as indication of correspon-
dences among decomposed components. A number of J-BSS algorithms have
been proposed, e.g. joint and parallel independent component analysis (ICA) [8],
independent vector analysis (IVA) [9–11], algebraic methods such as multi-set
canonical correlation analysis (M-CCA) [12–14] and generalized joint diagonal-
ization (GJD) [15–18]. Specially, the algorithm for wideband signal based on dec-
imation and coupled canonical polyadic decomposition (DC-CPD) [19] depends
on statistical properties between datasets. DC-CPD is not available while the
source signals do not meet the assumptions about the statistical properties.

Therefore, our goal is to develop a method for wideband direction finding,
that could take advantage of multi-set and does the joint processing without
needing prior DOA estimation nor requiring statistical properties. The proposed
method could deal with large aperture uniform lines for statistically dependent
source signals and only requires a few sampling points.

1.1 Notation

Vectors, matrices and tensors are denoted by lower case boldface, uppercase
boldface and uppercase calligraphic letters, respectively. The rth column vector
and the (i, j)th entry of A are denoted by ar and ai,j , respectively. The symbol
◦ denotes tensor outer product, defined as follows:

(a ◦ b ◦ c)i,j,k
Δ= aibjck.

Transpose of matrix A is denoted as AT. MATLAB notation will be used to
denote submatrices of a tensor, e.g., T(:,:,k) denotes the frontal slice of tensor T
obtained by fixing the third index to k. A polyadic decomposition (PD) of T
expresses T as a sum of rank-1 terms:

T = [[A,B,C]]R
Δ=

∑R

r=1
ar ◦ br ◦ cr ∈ C

I×J×K , (1)
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where A Δ= [a1, ...,aR] ∈ C
I×R, B Δ= [b1, ...,bR] ∈ C

J×R, and C Δ= [c1, ..., cR] ∈
C

K×R. We call (1) a canonical PD (CPD) if R is minimal.

2 Data Model

We assume an uniform linear array (ULA) of N antennas which receive R far-
field wide-band signals. Differential travel time from the reference sensor (n = 1)
to the nth element of the array is given by τn = (bT

nu)/c, where bn is the position
of the nth antenna, u is the unit steering vector and c is the propagation speed
of electromagnetic waves. For an ULA, it becomes:

τn(ϕr) =
d

c
(n − 1)sinϕr, (2)

where d is the interspacing between two adjacent antennas and ϕr is the direction
of arrival (DOA) of the rth signal. In the presence of noise, the model for the
nth antenna’s wide-band array out is expressed by:

xn(t) =
R∑

r=1

sr(t − τn(ϕr)) + nn(t), (3)

where sr(t) is the rth source signal and nn(t) is noise.
The wide-band array out (3) is transformed into M narrow-band frequency

bins by using the Fourier Transform. In each frequency bin, the array signal
admins the narrow-band signal model, as follow:

X(m) =
R∑

r=1

d(m)
r s(m)T

r , (4)

where X(m) ∈ C
N×T is the array observation in the mth frequency bin, and

s(m)
r ∈ C

T , d(m)
r ∈ C

N are the narrow-band component of the rth source and its
associated array steering vector in the mth frequency bin, respectively. T is the
number of temporal samples of the array signal in the mth frequency bin (also
for all the other frequency bins). For notational convenience, we omit the noise
term. The steering vector d(m)

r is formulated as:

d(m)
r =

[
1, e(−i2πd/c)mfd sin(ϕr), . . . , e(−i2πd/c)mfd sin(ϕr)(N−1)

]T
, (5)

where fd is the bandwidth of each narrow-band component where fd=fs/M . As
such, mfd is the actual frequency of the mth narrow-band component.

For convenience, we denote zr
Δ= e(−iπ)fd sin(ϕr) and then d(m)

r is briefly

written as: d(m)
r =

[
1, zm

r , . . . , z
m(N−1)
r

]T

. Then (4) can be rewritten as:

X(m) =

⎡

⎢⎢⎢⎣

1 1 · · · 1
zm
1 zm

2 · · · zm
R

...
...

. . .
...

z
m(N−1)
1 z

m(N−1)
2 · · · z

m(N−1)
R

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

s(m)
1

s(m)
2
...

s(m)
R

⎤

⎥⎥⎥⎥⎦

T

, (6)

where mixing matrix X(m) has the Vandermonde structure.
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3 Proposed Algorithm

In this section, we propose a wideband DOA estimation method based on spatial
decimation and coupled canonical polyadic decomposition (C-CPD). We first
show how to formulate a C-CPD via spatial decimation of signals at selected
frequency bins. Then we introduce algorithms for the computation of C-CPD.

3.1 Spatial Decimation

The traditional method such as MUSIC is a non-unique matrix factorization
problem, while unique solutions can be obtained by imposing additional assump-
tions such as statistical independence. By mapping the matrix data to a tensor
and by using tensor decompositions afterwards, uniqueness is ensured under cer-
tain conditions. Hankelization has be discussed in [20] which explains the matrix
to tensor step and present tensorization as an important concept on itself, illus-
trated by a number of stochastic and deterministic tensorization techniques.

Consider an exponential signal f(k) = azk arranged in a Hankel matrix H.
The matrix appears to have rank one:

H =

⎡

⎢⎢⎢⎣

f(0) f(1) f(2) · · ·
f(1) f(2) f(3) · · ·
f(2) f(3) f(4) · · ·

...
...

...

⎤

⎥⎥⎥⎦ = a

⎡

⎢⎢⎢⎣

1
z
z2

...

⎤

⎥⎥⎥⎦
[
1 z z2 · · ·

]
. (7)

These simple exponential functions can be generalized to exponential poly-
nomials, which are functions that can be written as sums and/or products of
exponentials, sinusoids and/or polynomials.

Because of the Vandermonde structure of steering vector, we could choose the
specific frequency bins and do the decimation in the frequency domain, which
different from the method in [20] that is in the time domain. The method we
use that is named spatial decimation.

3.2 C-CPD Formulation via Spatial Decimation

We denote the spatial decimation of X(m) as which is defined as follows:

(
Hn,I,J

(
X(m)

))
:,:,t

=

⎡

⎢⎢⎣

(
X(m)

)
1,t

· · ·
(
X(m)

)
J,t

...
. . .

...(
X(m)

)
1+(I−1)n,t

· · ·
(
X(m)

)
J+(I−1)n,t

⎤

⎥⎥⎦

=
R∑

r=1

⎡

⎢⎢⎢⎣

1
zmn
r
...

z
mn(I−1)
r

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
a
(mn)
r

◦

⎡

⎢⎢⎢⎣

1
zm
r
...

z
m(J−1)
r

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
b
(m)
r

·s(m)
r (t)

, (8)
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where n denotes the factor of spatial decimation, it represents the rate of deci-
mative sampling along the spatial mode. For instance, (X(m))i,j means (i, j)th
element of the matrix X(m). I,J are the dimensionalities of the first and second
modes of the above tensor. (8) is a CPD, thanks to the Vandermonde structure
of the mixing matrix in (6):

T (mn,m,m) Δ= Hn,I,J

(
X(m)

)
=

[[
A(mn),B(m),S(m)

]]

R
, (9)

where A(mn) Δ=
[
a(mn)
1 , . . . ,a(mn)

R

]
∈ C

I×R, B(m) Δ=
[
b(m)
1 , . . . ,b(m)

R

]
∈ C

J×R,

S(m) Δ=
[
s(m)
1 , . . . , s(m)

R

]
∈ C

T×R. In order to acquire enough sample points, the
parameters I and J are selected such as:

n (I − 1) < N
J ≤ N − (J − 1) n

. (10)

By using the requirement (10) is used to check if there are enough spatial
samples N for organizing the array observation in the mth frequency bin into a
tensor by spatial decimation. However, it does not guarantee the identifiability of
the CPD (9). We note that the classical Hankelization operation is a particular
case with n = 1.

To illustrate the main idea of using C-CPD for wideband ULA processing, we
first give an example. We choose N = 50 and 2 frequency bins, where choosing
more frequency bins is in the same way.

We regroup the signals in 2 frequency bins as follows:

Υ (1) =
{
X(1),X(2)

}

Υ (2) =
{
X(2)

} . (11)

The set Υ (1) contains array observation matrices X(l),X(2l), ..., of which the
superscript indices are integer times of l.

For Υ (1), we perform the following:

T (1,1,1) Δ= H1,I,J

(
X(1)

)
=

[[
A(1),B(1),S(1)

]]
R

T (2,1,1) Δ= H2,I,J

(
X(1)

)
=

[[
A(2),B(1),S(1)

]]
R

T (3,1,1) Δ= H3,I,J

(
X(1)

)
=

[[
A(3),B(1),S(1)

]]
R

T (4,1,1) Δ= H4,I,J

(
X(1)

)
=

[[
A(4),B(1),S(1)

]]
R

T (2,2,2) Δ= H1,I,J

(
X(2)

)
=

[[
A(2),B(2),S(2)

]]
R

. (12)

For Υ (2), we perform the following:

T (2,2,2) Δ= H1,I,J

(
X(2)

)
=

[[
A(2),B(2),S(2)

]]
R

T (4,2,2) Δ= H2,I,J

(
X(2)

)
=

[[
A(4),B(2),S(2)

]]
R

. (13)

In (12) and (13), we let all the tensors have first-mode dimensionality equal
to I, and second mode dimensionality equal to J . I and J are selected so that
(10) is satisfied all n = 1, · · · , 4. For example we make I=10, J=10.
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With (12) and (13) we have obtained eight third-order tensors, with triple
coupling structures in all the three modes. More precisely, T (1,1,1), T (2,1,1),
T (3,1,1) and T (4,1,1) are coupled in both the second and third modes by B(1)

and S(1), respectively. T (2,2,2) and T (4,2,2) are coupled in both the second and
third modes by B(2) and S(2), respectively. In addition, T (2,1,1) is coupled with
T (2,2,2) in the first mode by A(2), T (4,2,2) and T (4,4,4) are coupled in the first
mode by A(4).

3.3 Computation of C-CPD

In this section, we introduce an algebraic C-CPD algorithm that can solve the
problem where there is coupling between frequency bins and individual fre-
quency bins themselves. To compare with ESPRIT [21], the algorithm that will
be explained next does not need a prior estimate DOA and requires less sam-
pling points, which only need to be greater than or equal to source number.
To compare with the CPD algorithm in [22], the method explained that makes
better use of the coupled structures in this letter can get more precise results.

If the tensor is overdetermined, we can use the GEVD [23] or GJD [16] to do
the tensor decomposition.

If the tensor is underdetermined, by using rank-1 detection mapping [24], we
can convert a possibly underdetermined (coupled) CPD into an overdetermined
CPD. For more details, the reader is referred to [24]. The rank-1 detection map-
ping Φ(R1) : (X,Y) ∈ C

I×J × C
I×J → Φ(R1) : (X,Y) ∈ C

I×I×J×J is defined
as: [

Φ(R1)(X,Y)
]

i,j,g,h

Δ= xi,gyj,h + yi,gxj,h − xi,hyj,g − yi,hxj,g. (14)

For instance, T (2,1,1) Δ=
[[
A(2),B(1),S(1)

]]
R

∈ C
I×J×T is coupled with

T (2,2,2) Δ=
[[
A(2),B(2),S(2)

]]
R

∈ C
I×J×T in the first mode by A(2), by using

the rank-1 detection mapping, we can get an overdetermined CPD

M
(1,2,(

2, 1, 1
2, 2, 2

))
Δ=

⎡

⎢⎣

⎡

⎢⎣S(1)−T ,S(2)−T ,F
(
2, 1, 1
2, 2, 2

)

⎤

⎥⎦

⎤

⎥⎦

R

∈ C
R×R×R. (15)

For this wide-band model, there are two kinds of coupling. In the same mth
frequency bin, because of the different factor of spatial decimation n, the coupled
tensors are as follows:

T (mn1,m,m)=
[[
A(mn1),B(m),S(m)

]]
R

T (mn2,m,m)=
[[
A(mn2),B(m),S(m)

]]
R

...
T (mnk,m,m)=

[[
A(mnk),B(m),S(m)

]]
R

, (16)
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where tensors have the same second dimension and the third dimension, we can
merge them into one tensor:

T

⎛
⎜⎜⎜⎜⎝

m,m,(

mn1,m,m
...

mnk,m,m

)

⎞
⎟⎟⎟⎟⎠

=

⎡

⎢⎢⎢⎣

⎡

⎢⎢⎢⎣

⎡

⎢⎢⎢⎣

A(mn1)

A(mn2)

...
A(mnk)

⎤

⎥⎥⎥⎦ ,B(m),S(m)

⎤

⎥⎥⎥⎦

⎤

⎥⎥⎥⎦

R

, (17)

then (17) can do the rank-1 detection mapping with itself. Between the different
frequency bins, when the factor of spatial decimation n and frequency bin m
satisfy the condition m1n1 = m2n2, the coupled tensors are as follows:

T (m1n1,m1,m1)=
[[
A(m1n1),B(m1),S(m1)

]]
R

T (m2n2,m2,m2)=
[[
A(m2n2),B(m2),S(m2)

]]
R

. (18)

By using the rank-1 detection mapping, we can get the overdetermined CPD such
as (15). After the transformation of these two forms, we get some overdetermined
tensors which also have coupled structures. Then we can use the C-CPD that
has be explained in [19] to estimate the DOA.

4 Simulation Results

We provide simulation results to illustrate the performance of the proposed
algorithm. We use the uniform linear array that contains 50 omnidirectional
sensors with equal inter-element spacing d = c/2f0 is used, where f0 is the mid-
band frequency and c is the velocity of propagation. We consider the 4 far-field
wide-band signals. We choose 2 specific frequency bins in the following. The
DOA parameters are (θ1, θ2, θ3, θ4) = (10◦, 30◦, 45◦, 60◦). The white Gaussian
noise is added. The signal-to-noise ratio (SNR) is defined as:

SNR Δ= 20log10(Ps/Pn), (19)

where Ps and Pn are the signal and noise levels, respectively. We use the algo-
rithm addressed in Sect. 3 to calculate the DOA and calculate the root mean
squared error (RMSE), ε is used to evaluate the algorithm, which is defined as:

ε =

√
N−1

∑N

n=1
(α̃n − α)2, (20)

where N denotes the number of Monte-Carlo runs, which is set to 500 in the
simulation, α denotes one of the to-be-estimated parameters and α̃n is its esti-
mate in the nth Monte-Carlo run. We fix the number of snapshots T = 200,
and let SNR vary from 0 dB to 20 dB. Then we fixed SNR to 10 dB, and let the
number of snapshots vary from 50 to 450 with equal interelement spacing 100.
The RMSE in both the two above settings are plotted in Figs. 1 and 2.
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Fig. 1. The RMSE versus SNR. The number of snapshots is fixed to 200
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Fig. 2. The RMSE versus the number of snapshots.

The results have shown that, with the increase of SNR for fixed number of
snapshots or with the increase of the number of snapshots for fixed SNR, the
RMSE is to be less. This verifies the performance of the proposed algorithm.

5 Conclusion

In this paper, we proposed an algorithm for wideband direction finding via spatial
decimation and C-CPD. This method makes full use of the complex coupled
structures that exist between different frequency bins and in each frequency bin
itself. The algorithm does not need a prior DOA estimation and only requires
tiny sampling points compared with tradition algorithms and simulation results
are given to illustrate the performance of DOA estimator.
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Abstract. Focused ultrasound-basedmethods are widely used in various areas of
medicine for vascular damage coagulation in limbs and internal organs, venous
obliteration, and ablation of breast and thyroid tumors. To plan heat exposure and
control its effectiveness, it is necessary tomonitor temperature during the treatment
procedure. The article proposes two technologies for such monitoring, namely
infrared thermography and ultrasound thermometry using neural network
methods.
The proposed method of temperature recovery inside the material from sur-

face temperature measurements enhances the potential of infrared thermography
and improves the calibration accuracy of ultrasound thermometry.
The proposed method for determining the ultrasound signal shift has not been

previously used for ultrasound thermometry. While maintaining acceptable
accuracy, it can significantly reduce the computation time, whichmakes it possible
to use it in real time.

Keywords: RBF network � HIFU � Infrared thermography �
Ultrasound thermometry � Tissue-mimicking phantom

1 Introduction

Wide application of therapeutic devices which use high-intensity focused ultrasound
(HIFU) for tissue heating in clinical practice is difficult due to the fact that they require
the assessment of heat exposure in real time. Insufficient exposure can lead to recur-
rence and even accelerated growth of tumors. Excessive exposure may cause damage to
surrounding healthy tissues [1].

The magnetic resonance method is generally used to assess heat exposure. How-
ever, its equipment is very expensive and large. Over the last decades, other nonin-
vasive methods, such as infrared thermography and ultrasound thermometry (UST),
have been actively developed to assess thermal exposure during HIFU-therapy. Both
samples of biological tissues and tissue-mimicking materials (TMM) are used for their
development and testing [2].

Calibration of ultrasound thermometry near the surface with infrared thermography
[3] has errors due to the ultrasound reflection from the air-TMM interface. Signals are
generally processed in ultrasound thermometry using cross-correlation methods [4],
which requires significant computational resources.
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The article outlines a method for restoring the temperature field inside a tissue-
mimicking material, which was applied for the first time during its HIFU heating by
recording the distribution of material surface temperature with an infrared camera, and a
method for measuring it using the results of ultrasound scanning in the plane perpen-
dicular to the axis of the focused ultrasound transducer. The original method is used for
the first time to process the signal in ultrasound thermometry with HIFU-heating [5].
The results of both methods are compared with the results of direct temperature mea-
surements with thermal sensors. Graphite-filled agar-agar, which simulates the physical
properties of biological tissues, was used as a TMM of the phantom.

2 Methods

According to [6], the temperature field in the tissues satisfies the equation

@T
@t

¼ aDT � bT þ Sðt; xÞ ð1Þ

Here T is the temperature field, a is the coefficient of thermal diffusivity, b is the
coefficient reflecting heat transfer by blood, and Sðt; xÞ is the ultrasonic heat source.
The objective is to restore the 3D temperature field using the surface temperature
measurements with infrared thermography, which will be discussed later.

Source Sðt; xÞ might be restored from the phantom surface temperature measure-
ments using methods [7–15], but they require quite long computations and are difficult
to implement in real time. We use a new method based on neural network decompo-
sition of the source of ultrasonic radiation, which made it possible to reduce signal
processing time. In this case, the solution is decomposed by new basis functions
corresponding to differential equation under consideration (1). Due to the linearity of
Eq. (1), it is logical to form the required temperature field as a result of the total effect
of elementary sources, which has the form of an RBF network:

Sðt; xÞ ¼
X

n

i¼1

ciSiðt; x� x0iÞ ð2Þ

In this case, in accordance with [6], it is possible to use Si as a radial basis function,
which in the cylindrical coordinate system has the following form:

Siðt; xÞ ¼ QiðtÞ exp½�r2=brðiÞ� exp½�z2=bzðiÞ� ð3Þ

As a result, solution of Eq. (1) takes the following form:

Tðt; xÞ ¼
X

n

i¼1

ciTiðt; xÞ ð4Þ

where Ti is the solution of Eq. (1) for Sðt; xÞ ¼ Siðt; xÞ.
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For HIFU heating near the surface of the tissue-mimicking material, we will solve
Eq. (1) in half-space. By replacing Tðt; xÞ ¼ uðt; xÞ exp½�bt�, Eq. (1) is reduced to

@u
@t

¼ aDuþPðt; xÞ ð5Þ

where Pðt; xÞ ¼ Sðt; xÞ exp½bt�.
We will solve Eq. (5) in half-space �1� x\þ1;�1\y\þ1; 0\z\þ1

and consider x0i ¼ ð0; 0; z0Þ. Due to the fact that the thermal conductivity of air is 25–
30 times less than that of the tissue-mimicking material, we take @u

@z ¼ 0 as the boundary
condition at z ¼ 0. Then, according to [16]

uðt; x; y; zÞ ¼
Z

t

0

Z

þ1

�1

Z

þ1

�1

Z

þ1

0

Pðs; n; g; fÞGðt � s; x; y; z; n; g; fÞdsdndgdf ð6Þ

where

Gðt; x; y; z; n; g; fÞ ¼ exp½� ðz�fÞ2
4at � þ exp½� ðzþ fÞ2

4at �
8ðpatÞ3=2

exp½� ðx� nÞ2 þðy� gÞ2
4at

�

For ultrasonic heat source (3) we get uðt; x; y; zÞ ¼

br
ffiffiffiffiffi

bz
p

2

Z

t

0

exp½bs�QðsÞ
br þ 4aðt � sÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bz þ 4aðt � sÞp exp½� x2 þ y2

br þ 4aðt � sÞ�

ðexp½ �ðz� z0Þ2
bz þ 4aðt � sÞ�erfc½

zbz þ 4aðt � sÞz0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bzaðt � sÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bz þ 4aðt � sÞp �

þ exp½ �ðzþ z0Þ2
bz þ 4aðt � sÞ�erfc½

�zbz þ 4aðt � sÞz0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bzaðt � sÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bz þ 4aðt � sÞp �Þds

ð7Þ

Using the least squares method, we can reconstruct coefficients br; bz; a; b and z0
from infrared thermographic measurements.

The second application of RBF networks is associated with ultrasound thermometry,
which is based on the speed of sound change due to increasing temperature. It causes a
time shift of the backscatter ultrasound signal from the heated material relative to the
reference one from the unheated material. To determine the shift, let us approximate

both signals with RBF network y ¼ P

m

j¼1
wj expð�ajðt � tjÞ2Þ. The shift of one signal

relative to another one will be determined by the difference of the corresponding tj. In
this case, the usual training of the neural network, even with the help of fast algorithms
of type [17], turned out to be too resource-intensive to be used in real time. So for the
measurement of tj we used the weighted average method. It operates with each indi-
vidual half-wave curve, calculating its weighted average by the following formula:
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tj ¼

P

Nj

k¼Nj�1 þ 1
ykt0k

P

Nj

k¼Nj�1 þ 1
yk

ð8Þ

where t0k is the time instance to which the measurement corresponds, yk is the signal
amplitude at this instance, and index k runs through the points for which the sign is
preserved with respect to the average level of the signal. This level remains practically
unchanged from wave to wave and is calculated as the average of the half sum of
maxima and minima on every wave. The shift itself is calculated as the difference
between the weighted average of the corresponding oscillations.

The temperature increase at any depth can be calculated from the calculation of the
derivative of the magnitude of the shift in depth e ¼ d

dx Ddð Þ using the following for-
mula: DT ¼ Ke, where K is the coefficient of ultrasound signal thermal strain. K -
factor is a property of the material and is to be determined.

3 The Results of the Experiment and Calculations

The proposed original methods were tested for effectiveness on an experimental setup
with HIFU-heated TMM (Fig. 1). In the setup the focused ultrasound spherical
transducer is located at the bottom of a cylindrical sample of the TMM. The heating

Fig. 1. A setup with the HIFU-heated tissue-mimicking material for testing of the infrared
thermography and ultrasonic thermometry techniques: 1 – HIFU transducer, 2 – ultrasound
probe, 3 – tissue-mimicking phantom, 4 - temperature sensor, 5 – infrared camera
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Fig. 2. An infrared image of the HIFU-heated tissue-mimicking material surface

Fig. 3. The shift of the backscatter ultrasound signal from the heated material (1) relative to the
backscatter signal from the unheated material (2)
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focus area is located inside the material at a depth of 1 mm from the surface (Fig. 1).
An infrared camera is installed above the surface of the TMM and records the infrared
video image of the material surface during heating and cooling. It also records tem-
perature distribution along the line passing through the heating center (Fig. 2). The
scanning plane of the ultrasound probe is perpendicular to the axis of the HIFU
transducer. The ultrasound signal is recorded before HIFU heating is turned on and
after it is turned off (Fig. 3). A thermistor sensor, which records the temperature change
during heating and cooling, is installed at a distance of 3 mm from the focus and at the
same depth as the ultrasound probe scanning plane.

The duration of the HIFU heating was 10 s and the cooling time was 50 s.
According to the results of the thermographic visualization of the TMM surface, a 3D
temperature field was restored near the material heating region using to the proposed
method. According to the results of the backscatter ultrasound signals processing by the
proposed ultrasound thermometry program, a 2D temperature field was calculated in
the ultrasound probe scanning plane passing through the center of focus.

According to the results of the calculations by two above mentioned methods, the
temperature increase time curve was built at a depth of 4 mm and a distance of 3 mm
from the center of focus in comparison with the results of temperature sensor mea-
surements (Fig. 4). The difference in the temperature increase restored by

Fig. 4. Temperature decrease in the tissue-mimicking material (at a depth of 4 mm) near the
focus of HIFU heating (at a distance of 3 mm): 1 - obtained with ultrasound thermometry, 2 -
recovered by infrared thermography, 3 - measurements by a thermal sensor
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thermographic imaging from the one measured with the thermal sensor does not exceed
1 °C. And the difference in the temperature increase calculated using the ultrasound
thermography program with the thermal sensor does not exceed 5 °C at the beginning
of cooling and 1 °C after 25 s.

4 Conclusion

The verification of the proposed methods of infrared thermography and ultrasound
thermometry using an example of the material heating with focused ultrasound showed
their effectiveness by improving the accuracy of ultrasound thermometry calibration by
infrared thermography and reducing the time of the ultrasound thermometry signal
processing by the new program. In the future, the methods are intended to be tested at
different depths and in different biological tissues.

Acknowledgements. The study was carried out in the framework of Project
No. RFMEFI57818X0263 supported by the Education and Science Ministry of the Russian
Federation for 2018–2019.
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Abstract. Associative memory networks have been extensively studied
to imitate the biological associative learning. The control circuits of most
associative memory circuits are more complicated. Using the memristor
with forgetting effect as a synapse can significantly reduce the complex-
ity of the circuit. In this paper, an associative memory circuit based on a
forgetting memristor is proposed to implement full-function Pavlov asso-
ciative memory. The learning process and forgetting process in the Pavlov
experiment, including forgetting under ringing stimuli, forgetting under
food stimuli, and forgetting over time, can be achieved by the proposed
circuit. The PSPICE simulation results demonstrate the effectiveness of
the proposed circuit.

Keywords: The forgetting memristor · Memristive neural network ·
Associative memory circuit · Pavlov associative memory

1 Introduction

The memristor was proposed by Chua in 1971 according to the completeness
theory of the circuit [1], which is defined as the differential of the magnetic
flux to the charge. Then in 1976, the concept of memristor was extended to the
memristive system [2], a nonlinear dynamic system. Until 2008, HP Labs made a
TiO2-based memristor [3], providing an experimental and technical basis for the
study of memristor. Memristor is a nanoscale passive device, and its resistance
can change with the applied voltage, which makes it a natural synapse in artificial
neural networks [4]. Its excellent characteristics, such as nonlinearity, low power
consumption and good scalability, make it applicable to different fields such as
logic operation, neuromorphic system, artificial neural network and so on [5–7].
This also promotes the study of the memristor model. In the past few decades,
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many memristor models with different characteristics have been proposed, such
as VTEAM memristor with threshold characteristic [8], WOx memristor with
forgetting effect [9] and migration diffusion memristor model [10].

Pavlov associative memory is a classic experiment showing biological asso-
ciative learning, whose circuit implementation has been extensively studied. A
circuit based on memristor and microcontroller was first designed to imple-
ment Pavlov associative memory [11]. Subsequently, organic transistors were
used as synapses to achieve associative memory [12]. Various rules, such as MIF
(Maximum Input Feedback) [13], AIF (Average Input Feedback) [14] and WIF
(Weighted Input Feedback) [15], were proposed for the implementation of asso-
ciative memory. Logic gates were used to control the input signal to achieve a
more complete associative memory function [16–18]. The emotional associative
memory model was also implemented using a memristor with forgetting effect
as a synapse [19]. These papers have made important contributions to the devel-
opment of memristive associative memory networks, but there are also some
problems. The function of learning and memory is not perfect, or the peripheral
control circuit is too complicated.

Based on this, in this paper, an associative memory circuit based on the
forgetting memristor is proposed to realize the Pavlov associative memory. The
learning process, the forgetting process under ring stimuli, the forgetting pro-
cess under food stimuli, and the forgetting process over time are realized. The
forgetting performance of the forgetting memristor can reduce the complexity of
peripheral circuits. The proposed circuit achieves a balance of circuit complexity
and associative memory function.

The organization of the paper is as follows. The second part briefly introduces
the forgetting memristor. The third part shows the proposed forgetting mem-
ristive neural network for full-function Pavlov associative memory. The fourth
part presents the simulation results of the proposed circuit in PSPICE. The
conclusion is given in the fifth part.

2 The Forgetting Memristor

A drift-diffusion memristor model with threshold characteristic and forgetting
effect was proposed in [10]. Its mathematical expression is as follows:

M (x) = Ronx + Roff (1 − x) , x =
w

D
∈ (0, 1), (1)

v(t) = M(x)i(t), (2)

dx

dt
= (l − ω (x − ε)) k (i, x) , l =

μνRon

D2
i (t) stp (abs (v) − vt) , (3)

k (i, x) =

⎧
⎨

⎩

α, if x = 1 and l − ω (x − ε) < 0
α, if x = 0 and l − ω (x − ε) > 0
f (x) , otherwise,

(4)

dε

dt
= σlf (x) (5)
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where M is the memristance of the memristor, Ron is the minimum memristance,
Roff is the maximum memristance, w is the thickness of the doping region, D is
the thickness of the memristor, and μν is the drift rate of oxygen holes. In
addition to these general parameters, there are two state parameters x and ε,
both of which are in the range [0, 1]. As shown in Eq. (3), x is determined by
the drift term and the diffusion term. The drift term l indicates the effect of ion
drift. The threshold characteristic is included and vt is the threshold voltage.
When the magnitude of the applied voltage exceeds vt, the drift term has a value,
otherwise it is zero. The diffusion term −ω (x − ε) indicates the effect of Fick
diffusion and Soret diffusion on the state variable x, where ω is the attenuation
coefficient. k (x) is a piecewise function that is used to limit the range of x. f (x)
is a window function. α and σ are parameters. And the state variables ε is only
determined by the drift term.

Time
0s 2.0s 4.0s

0Ω 

50KΩ 

100KΩ 
-2.0V

0V

2.0V

V
M

Fig. 1. The characteristic curve of forgetting memristor

Let Ron = 1kΩ, Roff = 100 kΩ, D = 10nm, μν = 10−14 m2s−1V−1, M(0) =
75 kΩ, ε(0) = 0.2, vt = 0.9V, ω = 0.6, α = 0.01 and σ = 0.09. When a voltage
is applied to the memristor, the corresponding characteristic curve is shown in
Fig. 1. It can be seen from the figure that at the beginning, the applied positive
voltage is less than the threshold, and the resistance of the memristor does not
change. Then when the voltage is greater than the threshold, the memristance
decreases. When it is less than the threshold, the resistance increases. Under
a negative voltage, when the absolute value of the applied voltage is greater
than the threshold, the resistance increases faster. And when it is less than the
threshold, the resistance slowly rises. The threshold characteristic and forgetting
effect of the forgetting memristor can be clearly seen from Fig. 1.
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3 The Proposed Associative Memory Circuit

Pavlov associative memory is a classic experiment that demonstrates the ability
of biology to learn and forget. At the beginning, when the dog sees the food, it
will secrete saliva. This reaction is unconditional reflex in instinct, and the food
is unconditional stimulation. When the dog hears the ring, it does not secrete
saliva. After a period of study, that is, the ring and the food appear together
for a while, the dog can also secrete saliva when only the ring is heard. This
is a conditional reflex, and the ring is a conditional stimulation. Then after the
dog gets the conditioned reflex, if only the food stimulus or the ring stimulus is
given, or even no stimulus is given, the forgetting phenomenon will occur, and
the conditioned reflex will gradually disappear. After a period of time, the dog
will not secrete saliva when hearing the ring. This is the process of learning and
forgetting in Pavlov associative memory.

According to the above process, only when food and ring stimuli appear at
the same time, the ring weight increases, which is the learning process. After
learning, the forgetting processes happen, and the ring weight decreases. Based
on the circuit in [19], the feedback control term is added to realize the learning
and forgetting process in Pavlov associative memory. The circuit diagram is
shown in Fig. 2.

R1Vi1

M1
A1

R2 R3 R4

R9 R8 R7 R5

R6 Vi2

Vth1

Vth2
A2

A3

A4

A5A6

VO

T1

Fig. 2. The proposed associative memory circuit

In Fig. 2, Vi1 and Vi2 are the inputs of the network, representing the food
stimulus and the ring stimulus, respectively. Vo is the output of the network,
which indicates whether saliva is secreted. Since the food is unconditioned stim-
ulus, the food weight does not change throughout the learning and forgetting
process. So the resistor R1 is used as the food synapse. And a conditioned reflex
can be formed between the ring neuron and the saliva neuron after learning.
The ring weight changes during the process, so the forgetting memristor is used
as the ring synapse. Operational amplifiers A1 and A2 form a co-directional
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adder. A3 and A4 are comparators. T1 is an NMOS transistor. A5 and A6 form
a co-directional adder.

There are three stages before the learning process. When the dog does not
receive any stimulation, it will not secrete saliva. This process corresponds to the
situation that both Vi1 and Vi2 are zero in the circuit. At this time, the voltages
on R1 and M1 are both zero. The output voltage of A2 is 0, which is less than
Vth1, so the output of A3 is 0. The output of the circuit is 0, indicating that
the dog does not secrete saliva. When the dog receives the food stimulus, it will
secrete saliva. This process corresponds to Vi1 having an input and Vi2 being
0. At this time, the output of A2 is greater than Vth1, and Vo has an output
indicating that the dog secretes saliva. The value is less than Vth2, the output of
A4 is 0, and T1 is off. When the dog receives the ring stimuli, it will not secrete
saliva. This process corresponds to the circuit in which Vi1 is 0 and Vi2 has an
input. At this time, the output of A2 is less than Vth1, and Vo is 0, indicating
that the dog does not secrete saliva. The value is less than Vth2, the output of
A4 is 0, and T1 is off.

During the learning process, the dog receives both food and ringing stimuli.
Both Vi1 and Vi2 have inputs in the circuit. The output of A2 is greater than
Vth1 and Vth2, and T1 is turned on. During this process, the voltage applied on
M1 is greater than the threshold of the forgetting memristor, the resistance of
the memristor is reduced, and the synaptic weight between the ring neuron and
saliva neuron is increased.

After studying, there are three stages of forgetting. The F1 forgetting process
is only applying the ring stimuli, the F2 forgetting process is only applying the
food stimuli, and the F3 forgetting process is not applying any stimulation. In
all three forgetting processes, the output of A2 is less than Vth2, T1 is off, the
voltage applied on memristor M1 is less than the threshold, and the resistance
of memristor is increased. The synaptic weight between the ring neuron and the
saliva neuron is reduced.

4 Simulation Results

The associative memory circuit is simulated in PSPICE. Let R1 = 22 kΩ, R2 =
20 kΩ, and R8 = 100 kΩ. The value of remaining resistances is 10 kΩ. The initial
value of the memristor is set to 80 kΩ, the threshold voltage is 0.9 V, and the
remaining parameters are the same in the second chapter. The results are shown
in Fig. 3.

0–3 s is the initial testing phase and shows the responses of the network to
individual stimuli. In 0–1 s, both Vi1 and Vi2 are 0, the network has no input,
and the output is 0, indicating that the dog does not secrete saliva when there
is no stimulation. In 1–2 s, Vi1 is a 0.5 V pulse, and Vo outputs a 0.5 V pulse,
indicating that the food stimulation leads to salivation. In 2–3 s, Vi2 is a 0.5 V
pulse. Since there is no learning process before, the ring weight is small, and the
network has no output, indicating that the ring stimulation can not cause saliva
secretion.
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Fig. 3. The results of the associative memory circuit

3–6 s is a demonstration of the learning process. Both Vi1 and Vi2 are 0.5 V
pulses, and Vo has an output. In this process, the voltage on the memristor is
1 V, which exceeds its threshold. The memristor value is decreased, and the ring
weight is increased, so that the network can have an output under Vi2. This
stage indicates that the simultaneous occurrence of food and ring stimuli gives
the dog the ability to salivate when only the ring stimuli are given.

6–10 s is the forgetting process under the ring stimuli. Vi2 is a 0.5 V pulse,
the voltage on the memristor is less than its threshold, and the memristor value
is increased with time. At the beginning, Vo has an output, indicating that after
the previous learning stage, the ring stimuli can cause the secretion of saliva.
After a period of time, Vo no longer has an output, indicating that after a period
of forgetting under the ring stimuli, the ring stimuli cannot cause saliva secretion
any more.

10–12 s is the process of re-learning. While applying the food and ring stimuli
simultaneously, the memristor value is decreased again, and the ring synaptic
weight is increased. Compared to the first learning process, the memristor value
drops faster. This stage shows that the time required to establish the relationship
between the ring neuron and the saliva neuron is shorter in re-learning process
than that in the first learning.

12–16 s is the forgetting process under the food stimuli. After the re-learning
process, when Vi2 is a 0.5 V pulse, Vo has an output. Then Vi1 is a 0.5 V pulse,
the voltage applied to the memristor is 0 V, the memristance be increased, and
the ring synapse weight is decreased. After a period of time, Vo has no output
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under Vi2. This process suggests that after the forgetting process under the food
stimuli, the ring stimuli can not result in the secretion of saliva.

16–18 s is the third learning process. Both Vi1 and Vi2 are 0.5 V pulses, and
Vo has an output. Similar to the re-learning process, the ring weight is increased,
and the network gradually has the ability to associate saliva secretion with the
ring stimulus.

18–25 s is the forgetting process over time. At the beginning, Vi2 is a 0.5 V
pulse and Vo has an output. After that, both Vi1 and Vi2 are 0, the voltage
applied on the memristor is 0 V, the memristor value is increased, and the ring
weight is decreased. After a period of forgetting, Vo is 0 when Vi2 is a 0.5 V pulse.
This stage indicates that ring stimuli can no longer cause salivation through the
forgetting process over time without any stimulation.

The experimental results show that the proposed circuit can realize the learn-
ing and three forgetting processes in the Pavlov associative memory.

5 Conclusion

Based on the memristor with threshold characteristic and forgetting effect, an
associative memory circuit was proposed to implement Pavlov associative mem-
ory. Using the forgetting memristor as the synapse, the forgetting property of
the memristor can be used to realize the weight decay process, which reduces the
complexity of the control circuit and realizes a relatively complete associative
memory process. The learning process, the forgetting process under ring stim-
uli, the forgetting process under food stimuli, and forgetting over time can be
achieved by the proposed circuit. The PSPICE simulation results demonstrate
the effectiveness of the proposed circuit.
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