
Huchuan Lu
Huajin Tang
Zhanshan Wang (Eds.)

LN
CS

 1
15

54

16th International Symposium on Neural Networks, ISNN 2019
Moscow, Russia, July 10–12, 2019
Proceedings, Part I

Advances in 
Neural Networks – ISNN 2019



Lecture Notes in Computer Science 11554

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Huchuan Lu • Huajin Tang •

Zhanshan Wang (Eds.)

Advances in
Neural Networks – ISNN 2019
16th International Symposium on Neural Networks, ISNN 2019
Moscow, Russia, July 10–12, 2019
Proceedings, Part I

123



Editors
Huchuan Lu
Dalian University of Technology
Dalian, China

Huajin Tang
Sichuan University
Chengdu, China

Zhanshan Wang
Northeastern University
Shenyang, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-22795-1 ISBN 978-3-030-22796-8 (eBook)
https://doi.org/10.1007/978-3-030-22796-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-22796-8


Preface

This volume contains the papers presented at ISNN 2019: the 16th International
Symposium on Neural Networks held during July 10–12, 2019, in Moscow. Located
by the Moskva River, Moscow is the capital and largest city in Russia with a popu-
lation of over 13 million. Thanks to the success of the previous events, ISNN has
become a well-established series of popular and high-quality conferences on the theory
and methodology of neural networks and their applications. ISNN 2019 aimed to
provide a high-level international forum for scientists, engineers, and educators to
present the state of the art of neural network research and applications in related fields.
The symposium also featured plenary speeches given by world renowned scholars,
regular sessions with a broad coverage, and special sessions focusing on popular topics.

This year, the symposium received more submissions than previous years. Each
submission was reviewed by at least two, and on average, 4.5 Program Committee
members. After the rigorous peer reviews, the committee decided to accept 111 papers
for publication in the Lecture Notes in Computer Science (LNCS) proceedings. These
papers cover many topics of neural network-related research including learning system,
graph model, adversarial learning, time series analysis, dynamic prediction, uncertain
estimation, model optimization, clustering, game theory, stability analysis, control
method, industrial application, image recognition, scene understanding, biomedical
engineering, hardware. In addition to the contributed papers, the ISNN 2019 technical
program included three keynotes and plenary speeches by renowned scholars: Prof.
Andrzej Cichocki (IEEE Fellow, Skolkovo Institute of Science and Technology,
Moscow, Russia), Prof. Yaochu Jin (IEEE Fellow, University of Surrey, Guildford,
UK), and Prof. Nikhil R. Pal (IEEE Fellow, Indian Statistical Institute, Calcutta, India).

Many organizations and volunteers made great contributions toward the success of
this symposium. We would like to express our sincere gratitude to Skolkovo Institute of
Science and Technology and City University of Hong Kong for their sponsorship, the
International Neural Network Society, Asian Pacific Neural Network Society, Polish
Neural Network Society, and Russian Neural Network Society for their technical
co-sponsorship. We would also like to sincerely thank all the committee members for
their great efforts in organizing the symposium. Special thanks to the Program
Committee members and reviewers whose insightful reviews and timely feedback
ensured the high quality of the accepted papers and the smooth flow of the symposium.
We would also like to thank Springer for their cooperation in publishing the pro-
ceedings in the prestigious LNCS series. Finally, we would like to thank all the
speakers, authors, and participants for their support.

June 2019 Huchuan Lu
Huajin Tang

Zhanshan Wang
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Abstract. Deep recurrent neural networks (RNN), such as LSTM, have
many advantages over forward networks. However, the LSTM training
method, such as backward propagation through time (BPTT), is really
slow.

In this paper, by separating the LSTM cell into forward and recurrent
substructures, we propose a much simpler and faster training method
than the BPTT. The deep LSTM is modified by combining the deep
RNN with the multilayer perceptron (MLP). The simulation results show
that our fast training method for LSTM is better than BPTT for LSTM.

1 Introduction

For many time series, the current data values depend on their past data, such
as sentences and sound waves. Recurrent neural networks (RNNs) have simi-
lar property. The propagation backwards through time (BPTT) is an effective
training method for RNN. However, BPTT training has many problems, such
as gradient loss and slow convergence. The long-term memory network (LSTM)
in [6] is very popular RNN in recent years. The deep LSTM is one of the most
important deep learning models. By using the gate units, LSTM avoids the
problem of gradient degradation. But LSTM still needs a lot more computing
time.

Deep learning models augment the hidden layers of neural networks instead of
the neuronal nodes, see [5]. This idea can successfully avoid the local minimums
in [12] and the problem of determining the structure in [1]. Deep LSTM has
been widely applied in many areas, especially in time series modeling, including
speech recognition, natural language processing and sequence prediction in [3].
Simplified LSTM, like GRU in [2], is also very effective for modeling time series.

In addition to time series modeling, LSTM can also be applied for modeling
nonlinear systems. In [22], LSTM is the basic sub-model of multiple models for
unknown dynamic systems. In [25], the deep LSTM is regrouped as a dynamic
model. However, these LSTM still use BPTT, they have the problem of slow
learning.

In this paper, the slow training problem of LSTM networks is solved by com-
bining the stable training of RNN with the feedforward NN, as in [13–15]. Each
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 3–10, 2019.
https://doi.org/10.1007/978-3-030-22796-8_1
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Fig. 1. One block of LSTM

block of LSTM includes feedforward and recurrent sub-networks. The training
error is back propagated to all LSTM blocks. The results of the simulation show
that the new LSTM training model proposed is much better than the BPTT
method.

2 LSTM as a Dynamic System

Theoretically, the RNN can model any time series, regardless of how long the
current status depends on their previous information. In practice, it cannot,
because the information between the relevant and place becomes smaller and
smaller. LSTM uses the “gate” technique to let useful information pass. So it
has capable of handling “long-term dependencies”.

In this session, we transform the classical LSTM cell into the form of a
dynamic system. We first re-define the three types of gate of LSTM as follows,
see Fig. 1.

In the forgetting process,

z2 (k) = ϕ (W2 (k) [y (k − 1) , u (k)])

where u (k) is the input, y (k − 1) is the output, ϕ is a sigmoid function, ϕ = 1
represents “keep this”, ϕ = 0 represents “get rid of this” z2 (k) is the input to
the cell state xk−1, W2 (k) is the weight. From the input u (k) to the hidden
layer, the state is

z3 (k) = ϕ (W3 (k) [y (k − 1) , u (k)])
z4 (k) = tanh (W4 (k) [y (k − 1) , u (k)])

where z4 (k) and z3 (k) are inner states. The output needs the cell state as

z1 (k) = ϕ (W1 [y (k − 1) , u (k)])
y (k) = z1 (k) tanh (x (k))

here ϕ select the passing state. For the cell state x (k)

x (k) = z2 (k) x (k − 1) + z3 (k) z4 (k)



Fast Training of Deep LSTM Networks 5

here
x (k) = ϕ (W2 (k) [ŷ (k − 1) , u (k)])x (k − 1)
+ϕ (W3 (k) [ŷ (k − 1) , u (k)]) tanh (W4 (k) [ŷk−1, uk])
ŷ (k) = ϕ (W1 (k) [ŷ (k − 1) , u (k)]) tanh (x (k))

(1)

When we use the peephole connections definition, the LSTM cell model (1)
becomes

z2 (k) = ϕ (W2 (k) [x (k − 1) , y (k − 1) , u (k)])
z3 (k) = ϕ (W3 (k) [x (k − 1) , y (k − 1) , u (k)])
z1 (k) = ϕ (W1 (k) [x (k − 1) , y (k − 1) , u (k)])

where z4 (k) is the same as LSTM. The coupled forget and input gates are used.
Only new values without forgetting are sent to the state x (k)

x (k) = z2 (k) x (k − 1) + (1 − z2 (k)) z4 (k) .

The GRU combines the forget gate and the input gate into a single “update
gate”.

(1) Forget gate:
z2 (k) = ϕ (W2 (k) [y (k − 1) , u (k)]) .

(2) Input gate:
z3 (k) = ϕ (W3 (k) [y (k − 1) , u (k)])
z5 (k) = tanh (W4 (k) [z3 (k) y (k − 1)]) .

The cell state and hidden state are merged as

y (k) = y (k − 1) + z2 (k) [z5 (k) − y (k − 1)] . (2)

The GRU cell (2), shown in Fig. 2 is simpler than LSTM cell (1).

3 Fast Training of LSTM

The dynamic nonlinear system has the following form

d(k) = Ψ [d (k − 1) , d (k − 2) · · · , , u (k) , · · · , u (k − nu)] (3)

where Ψ (·) is an unknown nonlinear difference equation representing the plant
dynamics, u (k) and d (k) are input and output.

To model the plant (3), we use the following neural networks

y(k) = N [y(k − 1), y(k − 2), · · · , u (k) , u (k − 1) , · · · ] (4)

where y(k) is the output of the neural networks. We use the LSTMs shown in
Fig. 4 to model the nonlinear plant (3). The identification error of the last block
is defined as

e (k) = y (k) − d (k)

where e (k) is the identification error.
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Fig. 2. The cell of GRU

Fig. 3. LSTM block separated to FNN and RNN

We first study the fast learning for one block of the GRU. The output of this
block is d (k) = x (k + 1), the input is u (k) . So the dynamic of the GRU (2) is

x (k + 1) = x (k) + ϕ (W2 (k) [x (k) , u (k)])
× [tanh (W4 (k) [ϕ (W3 (k) [x (k) , u (k)])x (k)]) − x (k)]

The GRU block in Fig. 2 can be transformed into Fig. 3. So GRU can be
regarded as a recurrent neural network (RNN) with a feedforward neural net-
works (FNN)

RNN: x (k + 1) = Ax (k) − ϕ [W2x (k) + W2u (k)] z5 (k)
FNN: z5 (k) = φ (W3ϕ [W4x (k)] x (k)) + x (k) (5)

where A = I, z5 (k) is the virtual input from FNN to RNN.
The deep LSTM for the nonlinear system modeling is shown in Fig. 4. There

are p hidden layers, each layer has q LSTM blocks. The last layer is a multilayer
perception (MLP).

To train the whole deep LSTM, we define the index as

J =
1
2
e2 e = y − d
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Fig. 4. Deep LSTM for nonlinear system modeling

Fig. 5. Error back-propagation

Because the last layer is MLP, the weights in this layer are updated by the
gradient descent algorithm

V (k + 1) = V (k) − ηyi,q (k) e (k) (6)

where yi,q, i = 1 · · · p, are the outputs of the last layer, η is the positive learning
rate, V (k) is the weight matrix in the last layer.

The training error should be sent to the output point of each block. If the
error is back propagated from the block n to the block m, as in Fig. 5, the error
in the output of the block m is

em =
∂ϕn

∂t
Wnen (7)

where en is the training error in the output of the block n, ϕn is the total
nonlinae functions of the block n, Wn is the weight matrix of the block n.

All LSTM blocks have the same structure as in Fig. 3, so only discuss how
to train this block. For the block m, the training error is em.

The weights in RNN part are trained as

W2 (k + 1) = W2 (k) − ηkϕ
′ [x (k) , u (k)]T z5 (k) em (k) (8)

where ηk satisfies

ηk =

⎧
⎨

⎩

η

1 + ‖ϕ′x (k) z5 (k)‖2 + ‖ϕ′u (k) z5 (k)‖2 if a ‖em (k + 1)‖ ≥ ‖em (k)‖
0 if a ‖em (k + 1)‖ < ‖em (k)‖

0 < η ≤ 1, a the eigenvalue of A.
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The weights in FNN part are trained by the backpropagation method

W3 (k + 1) = W3 (k) − ηkem (k) W4 (k) x (k)
W4 (k + 1) = W4 (k) − ηkem (k) W3 (k) ϕ′x (k) (9)

where ηk =
η

1 + ‖W4 (k) x (k)‖2 + ‖W3 (k) ϕ′x (k)‖2 , 0 < η ≤ 1.

4 Simulations

We use the deep LSTM networks to model the transonic unsteady aerodynamic
system with the proposed fast training method. The aerodynamic system under
transonic is shown in Fig. 6. This system can be described as

D = F (M∗
∞, α∗

0, h, β)

where D =
[

d1
d2

]

, it has 4 input and 2 output. One flight condition is consid-

ered M and α are fixed, M∗
∞ and α∗

0 are constants, {M∞, α0} are selected 20
conditions. The deep LSTM is

Y = NN (M∗
∞, α∗

0, h, β)

The input is (M∗
∞, α∗

0, h, β), there are 20 groups (M∗
∞, α∗

0, h, β). The output

is Y =
[

y1
y2

]

. The testing results are shown in Fig. 6. To compare with MLP,

we use different p and q for the deep LSTMs, the results are shown in Table 1
(Fig. 7).

Table 1. Squared error of different neural model (×10−3)

Layers ML testing LSTM testing GRU testing

p = 4, q = 4 17.3 9.16 11.22

p = 8, q = 8 14.72 8.32 10.81

p = 4, q = 20 11.14 8.01 8.17

p = 8, q = 40 10.51 7.81 8.01

Fig. 6. Aerodynamic
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Fig. 7. Testing results in different condition

5 Conclusion

In this paper, we propose the deep LSTM, which takes advantages of multilayer
perceptrons and LSTM, for dynamic system modeling when only the test input
u is available. To avoid using the complex training method for recurrent neural
networks, backpropagation through time, we give stable learning algorithm for
LSTM cell. Three nonlinear systems are used to compare with MLP and normal
LSTM. The results show the proposed deep LSTM is better than the other
existed neural models for the simulation mode.
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Abstract. Arrival time is a key aspect of passenger information sys-
tems. Provision of accurate bus arrival information is essential for deliv-
ering an attractive service and necessary to passengers for reducing their
waiting time and bus stops and choosing alternative routes. Recently, the
same information is used in smart-phone trip planners. In this paper, we
explore an LSTM neural network model for bus arrival time prediction.
We take into account heterogeneous information about the transport
situation, directly or indirectly affecting the prediction travel time. We
evaluate the proposed models with bus operation data from Samara,
Russia. Evaluation results show that the proposed model outperforms
some typical prediction algorithms.

Keywords: Arrival time prediction · Artificial neural network ·
Long short-term memory · Intelligent transportation systems

1 Introduction

Public transport is an important part of the transport system. For passengers,
providing accurate real-time information about arrival and departure time of
public transport is a key aspect of intelligent transportation systems. Nowa-
days, widely used electronic boards at bus stops or smart-phone applications are
considered as a standard way to display such information.

Arrival time at stops can be considered as stochastic, since it depends on
many factors, such as travel time of road segments, dwell time at stops and
delays at intersections, which can fluctuate spatially and temporally. In addition,
traffic congestion, incidents, and weather conditions may cause additional delays
in arrival time. Considering these facts, developing a model that can take into
account various space-time factors and predict arrival time at stops with high
accuracy in real time is a difficult task.

In recent years, many research works focused on the arrival time prediction
problem. Despite the popularity of this problem, many papers consider only a
small number of features to describe spatial and temporal characteristics of the
road situation (for example, speed on the current and previous road segments).

c© Springer Nature Switzerland AG 2019
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In addition, the comparison of algorithms is carried out on different data sets,
so, authors cannot conclude, that one model always outperforms to others.

In this paper, we propose to use a recurrent neural network with long short-
term memory units (LSTM network) for short-term bus arrival time prediction
based on heterogeneous information describing the current and historical trans-
port situation.

The rest of the paper is organized as follows: in the next section, we review
related work. In Sect. 3, we present an overview of our approach. Section 4
presents a case study and experimental results of the proposed model with bus
operation data from Samara, Russia. Finally, we conclude our work in Sect. 5.

2 Related Work

In the past decade, bus arrival time prediction and bus link travel time prediction
problems have attracted the interest of many researchers in the transportation
area.

Early approaches for travel time prediction used historical average models
[15]. Such models can only be used when the road situation is stable; the accu-
racy is degraded in the case of traffic congestion or accidents. Linear regression
models [2,11] determine a dependent variable from a set of independent variables.
Regression models assume independence among various factors, which is often
impractical. These models have low prediction accuracy, but still widely used in
the industry because of their simplicity. Recent research uses these models only
for comparison purposes.

In papers [3,14] authors used k-nearest neighbors non-parametric regression
models. However, the requirement of a large sample size imposes a restriction
on the use of these methods in real time. In [17] authors designed a clustering
approach to estimate the distribution of travel time on each link.

Kalman filter based models [4,6] allow estimating the future values based
on a series of stochastic measurements over time, containing statistical noise
and other inaccuracies. However, the models are limited in representing complex
non-linear spatially-temporal relations. Time-series models [21] can also be used
for predicting travel times; however, time lags in the historical traffic patterns
can lead to inaccurate prediction results.

Recently, in different research was shown, that machine learning methods,
such as artificial neural networks (ANN) and support vector machine (SVM),
outperform other algorithms. ANN models [5,12,16] are one of the most com-
monly used models for arrival time prediction. ANN models capable of simulat-
ing a complex nonlinear relationship between the travel times and independent
variables that characterize the traffic situation. In several works [18,20] was
shown that SVM provides a similar prediction accuracy compared to ANN mod-
els, but these models have high computational cost. To improve the prediction
accuracy, some authors propose hybrid models that combine parametric and
non-parametric methods [1,19].

Nowadays, with the progress of machine learning technology, many
researchers focus on deep learning models. LSTM model for highway travel time
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prediction was used in [8,9]. In [13] authors present method for bus travel time
prediction using a convolutional LSTM neural network. However, as input data,
only link travel times was used.

In this paper, we propose an LSTM neural network model that combines
different factors describing the transport situation.

3 Methodology

3.1 Problem Formulation

Let S denotes the set of stops, R denotes the set of bus routes. The bus arrival
time prediction problem can be formulated as follows:

tarrj = tdepi + T travel
ij , (1)

where tarrj denotes the arrival time at stop j ∈ S j ∈ S, tdepi denotes the
departure time from stop i, T travel

ij denotes the travel time between stops i and
j. Then, the prediction of bus arrival time tarrj at a certain stop j is equivalent
to the prediction of bus travel time T travel

ij .

3.2 Input Data

Let the objective bus vehicle run the route r ∈ R. To estimate the travel time
T travel
ij of the route link between stops i and j, the different factors that directly

or indirectly affect the target value can be used. In this paper, we propose to
use the following heterogeneous information describing the transport situation:

(1) The day of the week day and the time of the day time.
(2) The travel speed vi−1,i of the objective bus on the previous route link. This

value can show the road congestion degree on the route link that is close to
the targeted one.

(3) The headway hr between the preceding bus vehicle with the same route r
and the objective bus.

(4) The travel time Tm,r
ij of the preceding bus vehicle m with the same route r.

(5) The weighted travel time T̃ r
ij of preceding bus vehicles with the same route:

T̃ r
ij =

∑
k∈Nr

ω
(
t − tdep,ki

)
T travel,k
ij

∑
k∈Nr

ω
(
t − tdep,ki

) , (2)

where t denotes the current time, tdep,ki denotes the departure time of the
bus vehicle k from the stop i, T travel,k

ij denotes the travel time of the bus
vehicle k between stops i and j, Nr denotes the number of bus vehicles with
the route r, ω(t) = exp (−αt), t ≤ Δmax, is a kernel function, Δmax is a
maximum time interval.
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(6) The headway hany between the preceding bus vehicle with any route and
the objective bus.

(7) The travel time Tm,any
ij of the preceding bus vehicle m with any route.

(8) The weighted travel time T̃ any
ij of preceding bus vehicles with any route.

(9) The historical average travel time Thist
ij (t) of bus vehicles with any route at

time interval t.
(10) The historical average travel time T flow

ij (t) of traffic flow that shows histor-
ical traffic pattern at time interval t.

(11) The number of bus vehicles cij on the targeted route link. A large number of
vehicles on the link can cause an additional dwell time at the nearest stop.

The feature vector, describing a transport situation on the route segment
between stops i and j for the bus vehicle with the route r, has the following:

si,j = (day, time, vi−1,i, h
r, Tm,r

ij , T̃ r
ij , h

any, Tm,any
ij , T̃ any

ij , Thist
ij , T flow, cij

)
(3)

3.3 Proposed Model

To predict the bus travel time of each transport segment to the end of the route,
we propose to use a long short-term memory (LSTM) neural network that is a
special type of recurrent neural network (RNN). LSTM network was proposed
in [10] and in contrast to RNN it is capable to deal with long-term dependencies.
It is achieved by its ability to pass a cell state from previous time step to next
one, and to control the information flow in LSTM cell by three gates: input gate,
forget gate and output gate. The structure of LSTM cell is shown in Fig. 1.

forget gate input gate output gate

x +

x

tanh

tanh x

Ct-1

ht-1

xt

ft it ot

ht

Ct

ht-1 xt ht-1 xt ht-1 xtht-1 xt ht-1 xt

tC

ht

Fig. 1. Structure of LSTM cell

Let at time step t the input is xt, input gate state is it, forget gate state is
ft, output gate state is ot, cell output state is Ct, cell input state is C̃t, and layer
output state is ht. The output state ht computes as follow:
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it = σ(Wixxt + Wihht−1 + bi), ft = σ(Wfxxt + Wfhht−1 + bf ),

ot = σ(Woxxt + Wohht−1 + bo), C̃t = tanh(WCxxt + WChht−1 + bC), (4)

Ct = it ∗ C̃t + ft ∗ Ct−1, ht = ot ∗ tanh(Ct),

where Wix,Wfx,Wox,WCx are weight coefficients connecting xt to three gates
and C̃t; Wih,Wfh,Woh,WCh are weight coefficients connecting ht−1 to three
gates and C̃t; bi, bf , bo, bC are bias values of three gates and C̃t; σ(x) = 1

1+exp(−x) ;

tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x) .

The output states Ct and ht are used as the input data to the next LSTM
cell.

LSTM LSTM LSTMLSTM

...
...

...
...

...

x0,1 x1,2 x2,3 xt-1,t
...

Output layer
( neurons)N-t-1

. . .1, 2
travel
t tT 2, 3

travel
t tT 3, 4

travel
t tT 1,

travel
N NT

Fig. 2. Structure of LSTM network

For travel time prediction purposes, we use an LSTM based neural network,
presented in Fig. 2. Let the analyzed public transport route consist of N stops.
Then there are N −1 route links for selected route and for each of them we build
a separated LSTM network since the size of input and output data is different for
each route link. Each LSTM network predicts the travel time between remaining
bus stops using information related to passed bus stops. For the bus vehicle on
the link i (0 < i < N − 1) the input of corresponding LSTM network is the
historical data (x0,1, x1,2, ..., xi−1,i), and the output is predicted travel times
(T̃ travel

i+1,i+2, · · · , T̃ travel
N−1,N ). One step feature vector xi,i+1 describes observed travel

time between stops i and i + 1 and the transport situation (2) on the whole bus
route at the moment when the bus arrives at stop i+1. This complex description
is used because the LSTM network allows to take into account the impact of the
transport situation on remote route links in the long term forecast. The output
data describes a travel time between each of the remaining bus stops.



16 A. Agafonov and A. Yumaganov

The proposed LSTM networks have been developed with Keras [7], an open
source neural network library. Every LSTM model consists of one LSTM layer
with 64 units. The last time step output is connected with the output layer of a
specific number of neurons. This number differs for each of the models dedicated
to analyzed route and corresponds to the number of remaining bus stops to the
final one. The Adam method was used as the optimizer; the mean absolute error
was used as the loss function.

4 Experiments

The proposed method was evaluated on the dataset with bus operation data from
Samara, Russia. For the experimental analysis, we chose one bus route with 30
route links and a total length of about 17 km. The bus GPS trajectories was
processed and converted into travel times of route links. The dataset consists
of travel time observations in the period of September 2018. The dataset was
grouped by buses runs on the route and all obtained runs were divided into two
parts: training set (80%) and test set (20%).

We compare the proposed model with the artificial neural network model
(one hidden layer, 24 hidden neurons) and the linear regression model.

In order to evaluate the performance of the LSTM neural network and all the
considered baseline algorithms, we use two standard metrics: mean absolute error
(MAE) and mean absolute percentage error (MAPE) that can be formalized as:

MAE =
1
n

n∑

t=1

|T travel − T̃ travel|, (5)

MAPE =
1
n

n∑

t=1

|T travel − T̃ travel|
T travel

× 100%, (6)

where T travel is the true travel time, T̃ travel is the predicted travel time, n is
the total number of test samples.

Table 1 shows the overall performance of the proposed models and baseline
methods.

Table 1. Results of the proposed and the baseline models

MAE (seconds) MAPE (%)

LSTM network 26.25 20.11

ANN 34.186 28.32

Linear regression 42.77 37.52

At the next step, we compare the performance of the LSTM model and
baseline models for the arrival time prediction at all remaining stops on the route.
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Fig. 3. Comparison of the predicted and measured accumulated travel time by the
MAE and MAPE criteria

This is equal to predicting and accumulating the travel time of all route links.
The MAE and MAPE results for the accumulated travel time are illustrated in
Fig. 3.

Experiments show that the proposed method has a higher prediction accuracy
than the baseline models.

Finally, we evaluate the computation time of the proposed model. Since the
prediction method must be run each time, when the vehicle sent its GPS coor-
dinates to the server, the computation time of the method is a critical consid-
eration. Using laptop computer (Intel Core i5-3740 3.20 GHz, 8 GB RAM), the
processing of one vehicle takes 2 ms in average, so, the LSTM model can be used
for arrival time prediction in a large city in real time.

5 Conclusion

This paper proposed a multi-output model for bus arrival time prediction that
uses LSTM (long short-term memory) neural network. The proposed model com-
bines different factors describing the transport situation.

Our experimental results with bus operation data from Samara, Russia,
demonstrate that the proposed model outperforms other baseline methods, such
as artificial neural network or linear regression methods. The proposed model
has a high prediction accuracy and reasonable computation time, sufficient for
real-time prediction.

The possible direction of further research including works on choosing best
neural network topology. Furthermore, we would like to validate the proposed
model on the extended dataset containing records from multiple bus routes.

Acknowledgments. The work was supported by the Ministry of Science and Higher
Education of the Russian Federation (unique project identifier RFMEFI57518X0177).
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Abstract. A method for constructing multilayer neural network approximations
of solutions of differential equations, based on the finite difference method, is
proposed. The advantage of the method is the possibility of obtaining a neural
network model of arbitrarily high accuracy without a time-consuming learning
procedure. The solution is given by an analytical expression, explicitly including
the parameters of the problem. The resulting neural network can, if necessary, be
retrained according to the usual algorithm. The method is illustrated by the
example of solving a particular ordinary second-order differential equation.

Keywords: The differential equation � Multilayer approximate solution �
Neural network model � Deformation � Elastic thread

1 Introduction

All over the world, accidents of various scale, large and small, with and without loss of
human life, occur every day. Collapse of the roofs of buildings and structures, cable
breaks in elevator shafts, plane crashes, avalanches and other typical emergencies often
take human lifes. One of the reasons for such accidents is that it is difficult to predict
the technical condition of a particular object using its model, built on the basis of
general physical laws due to a variety of factors affecting it. For example, the strength
characteristics of various materials used in technology are influenced by such difficult-
to-calculate factors as temperature differences, humidity and environmental aggres-
siveness, accumulated fatigue, type of load application (dynamic or static), and many
others. Experimental study of the influence of such factors on a particular object with
the subsequent refinement of its model in accordance with the data of an experiment or
monitoring can significantly increase the reliability of predicting the behavior of the
state of the studied systems.

To solve this problem, it is tempting to use neural networks because of their
adaptability and resistance to errors in the data [1]. In this case, it is undesirable to
completely abandon the information on the physical laws that describe the operation of
the object. Here we see two possibilities. First, it is possible to construct an approxi-
mate neural network solution of the corresponding differential equation (system of
equations) with boundary conditions, subsequently adapting it to the measurement
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data. Secondly, you can immediately build a neural network solution using all the
available information in the form of differential equations, boundary conditions, data,
etc. Formalization and references are given in the next section.

However, currently used neural network methods have significant drawbacks, such
as a long training procedure and, as a rule, the single-layer nature of the neural network
(with one hidden layer), built on methods similar to FEM [2–19]. This article proposes
our new approach, which allows you to quickly form a fairly accurate multilayer neural
network solution of a differential equation. In contrast to the previous approaches, the
method is not based on FEM, but on the finite difference method. The strength of the
method is the automatic inclusion in the final formula of the parameters of the problem,
which allows it to avoid multiple re-decisions if necessary to investigate the effect of
parameters on the result. The solution obtained in this way is illustrated by a simple
practical example.

The methods presented in this article can be used to model the dynamics and
describe other processes in complex technical objects. This is especially important for
development an individual model of a specific object, taking into account its unique
features.

2 Materials and Methods

In addition to FEM, another basic method used to solve boundary-value problems
(ordinary and partial derivatives) is the finite-difference method. This method consists
in replacing the derivatives by approximating their difference ratios. As a result, the
differential equation turns into a system of ordinary equations. Until recently, it was
assumed that only numerical approximations could be obtained in this way. As one of
the advantages of neural network modeling over the finite-difference method, we
repeatedly noted the fact that the neural network approach allows one to obtain a
solution analytically in the form of an explicit formula [10–17]. However, in [20] we
showed that, using the finite difference method, we can obtain analytically defined
approximations. Let us explain what has been said on the example of ordinary dif-
ferential equations.

Consider the Cauchy problem for a system of ordinary differential equations

y0ðxÞ ¼ fðx; yðxÞÞ;
yðx0Þ ¼ y0

�
ð1Þ

on the interval D ¼ ½x0; x0 þ a�. Here x 2 D � R, y 2 R
d , f : Rdþ 1 ! R

d .
The classic Euler method is to split the interval D into n parts:

x0\x1\. . .\xk\xkþ 1\. . .\xn ¼ x0 þ a, and apply an iterative formula

ykþ 1 ¼ yk þ hkfðxk; ykÞ; ð2Þ

where hk ¼ xkþ 1 � xk; yk – approximation to the exact value of the desired solution
yðxkÞ.
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The estimate of the resulting approximations is known in the form
yðxkÞ � ykk k�C maxðhkÞ where the constant C depends on the estimates of the

function f and its derivatives in the region in which the solution is located [21].
We propose to construct an approximate solution of problem (1) using formula (2)

on an interval ~D ¼ ½x0; x� with a variable upper limit x 2 ½x0; x0 þ a�. In this case
hk ¼ hkðxÞ, yk ¼ ykðxÞ, is determined by the initial conditions y0ðxÞ ¼ y0. As
approximate solution of the Eq. (1) is proposed to use ynðxÞ.

The simplest version of the algorithm is obtained by uniformly partitioning the
interval with the step hkðxÞ ¼ ðx� x0Þ=n. As a result, we obtain a multilayer recurrent
functional formula of the form

ykþ 1ðxÞ ¼ ykðxÞþ
x� x0
n

f x0 þ kðx� x0Þ
n

; ykðxÞ
� �

ð3Þ

wherein y0ðxÞ ¼ y0.
Note that the initial values y0 enter the expression for ynðxÞ as parameters. In

addition, if the function f depends on some parameters, these parameters will be
included in the expression for ynðxÞ.

Note that if the function f in (1) is neural network, then formula (2) allows us to
obtain a multilayer approximation of the solution. If f it is not a neural network, then it
can be brought closer by a neural network from the corresponding class [1] and again
get a multi-layer neural network solution.

It is known that the Euler method has low accuracy. It can be replaced by more
accurate methods, for example, the Runge-Kutta method. The usual assessment of the
accuracy of the original classical methods allow us to present convenient estimation of
the accuracy of the approximations obtained. If the accuracy of the solution obtained in
this way is insufficient, the corresponding neural networks can be extended using
conventional methods [10–19].

The resulting solution in the form of a multilayer neural network function can be
implemented as a neurochip to speed up computations.

3 Calculation

We will demonstrate the proposed methodology on a model task for calculating the
dynamics of a person’s fall with a rescue rope from a height. At the first stage, the body
falls freely, and at the second stage it is braked by a cable with some force Fðx� lÞ. As
a result, the equation of motion in the second stage is

€x ¼ GðxÞ ¼ g� 1
m
Fðx� lÞ: ð4Þ

here l is the length of the cable, m is the body mass, g is the acceleration of free fall.
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On the basis of our experiments [22], it was possible to establish that the load at
which the rupture occurs is practically independent of the sample length and the rate of
increase of the tension force. Using neural network type dependency

FðxÞ ¼ c1th½a1ðx� xc1Þ� þ c2th½a2ðx� xc2Þ� ð5Þ

in [22], it was possible to quite accurately approximate the dependence of the elon-
gation on the load. The weights of the network (5) were sought from the condition of

the minimum of the error functional
Pm
i¼1

F xið Þ � Fið Þ2. Here xi is the experimental

elongation of the sample, and Fi is the corresponding tensile force. The neural network
approximation thus constructed for the dependence of force on elongation was

F xð Þ ¼ 9:54 tanh 0:0064 �280þ xð Þ½ � þ 12:3 tanh 0:015 59þ xð Þ½ �: ð6Þ

This result is consistent with theoretical studies [23–27]. The error of formula (6)
relative to the experimental data was less than 1%.

The dependence (6) is substituted into the equation of motion (4). We obtain a
problem of type (2) with the right part as the output of the neural network. Thus, for its
approximate solution one can use the multilayer recurrent functional approximation
described above (3). It remains only to choose a specific iterative method.

As a starting method, we have considered several options.
This is the classic Euler method and its two improved variations [23]

xkþ 1ðtÞ ¼ xk�1ðtÞþ 2hG xkðtÞð Þ; ð7Þ

xkþ 1ðtÞ ¼ xkðtÞþ h G xkðtÞð Þþ h
2

G
0
x xkðtÞð ÞþG

0
y xkðtÞð ÞG xkðtÞð Þ

� �� �
ð8Þ

In addition, we used a special, more exact for Sturmer [23] method for the type of
equation under consideration, based on the recurrent formula

xkþ 1ðtÞ ¼ 2xkðtÞ � xk�1ðtÞþ h2G xkðtÞð Þ h ¼ t=n: ð9Þ

Note that in all cases, the desired solution xnðtÞ can be considered the output of a
multi-layer neural network of direct propagation with hidden layers [1].

For convenience, we introduce a p-parameter depending on the mass. Then by
replacing Eq. (4) we transform to the form:

€x ¼ p� Fðx� lÞ: ð10Þ

We present some calculation results for the above-mentioned methods for different
values of the number n of layers of an approximate solution in Table 1.

22 T. T. Kaverzneva et al.



Table 1 shows that you can get an approximate solution of sufficient accuracy
without using the neural network training procedure.

The curves exemplifying this approximate solution of the computation problem are
shown on the Fig. 1. Function, based on Störmer method and approximate solution of
equation x2ðtÞ (10) was constructed using the intrinsic function of Mathematica-10 with
the parameters l ¼ 30; p ¼ 10.

Table 1. The results of solving Eq. (10) using formula (3) for different methods and the number
of layers

Characteristics n = 4 n = 6 n = 8 n = 10 n = 12

Eulerian method
Maximum relative error 2.28317 1.54788 1.15885 0.918093 0.744812
Mean square error. 0.692613 0.487335 0.373508 0.298992 0.243284
Computing time 1.064 2.095 8.142 40.125 215.141
Improved Eulerian method
Maximum relative error 1.09217 0.0463169 0.160146 0.0407372 0.0392853
Mean square error. 0.296747 0.0227818 0.0382626 0.0120647 0.00993122
Computing time 0.751 2.313 4.094 12. 45.032
Revised Eulerian method
Maximum relative error 0.205114 0.0794412 0.0293257 - -
Mean square error. 0.0507965 0.0331571 0.0134021 - -
Computing time 2.106 114.393 713.034 - -
Störmer method
Maximum relative error 0.159023 0.0392627 0.0269455 0.0163259 -
Mean square error. 0.0381197 0.00988471 0.00641539 0.00405411 -
Computing time 5.626 57.109 238.187 2692.31 -

Fig. 1. Function, based on Störmer method and approximate solution of equation x2ðtÞ (10),
obtained with Mathematica 10 when l ¼ 30; p ¼ 10;
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From the graphs it is clear that the accuracy of the approximation is insufficient. For
n = 3, we obtain a significantly more accurate approximation (Fig. 2):

As we see from Table 1, with increasing n the accuracy increases.

4 Results and Discussion

The results show the efficiency of suggested method. Well known theorems on the
accuracy of iterative methods, for example, the Störmer method, allow us to obtain an
estimate of the difference between the approximate and exact solution of the Eq. (10)
xnðtÞ � xðtÞj j �C t2

n2.
In spite of the fact that in the considered problem we obtained a rather high

accuracy of the result xnðtÞ, without using additional selection of parameters, in some
cases this may be necessary. For example, formulas with a large number of layers may
be too cumbersome or require a lot of time to calculate.

Thus, the accuracy can be improved by replacing all or certain of the numerical
coefficients in the formula for an approximate solution xnðtÞ with parameters and
selecting them, minimizing the error functional, which for the problem in question has
the following form

XM
j¼1

ð€xðtjÞ � GðxðtjÞÞÞ2 þ dx2ð0Þ: ð11Þ

Here ftjgMj¼1 are test points on the interval [0, T]. If we want to clarify the solution
for a certain range of parameters l1\l\l2; p1\p\p2, then functional (11) must be
replaced by the following

Fig. 2. Function x3ðtÞ, based on Störmer method and approximate solution of Eq. (10), obtained
with Mathematica 10 when l ¼ 30; p ¼ 10;
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XM
j¼1

ð€xðtj; pj; ljÞ � Gðxðtj; pj; ljÞÞÞ2 þ dx2ð0; pj; ljÞ: ð12Þ

Here fpj; ljgMj¼1 are test points from the area of change of parameters of interest. The
regeneration of test points is carried out as described above.

Another direction of the refinement of the solution is obtained by optimizing the
choice of steps hkðtÞ in formulas of type (3).

Of great interest is the comparative testing of methods for constructing neural
networks, given in this paper, and classical teaching methods based on the reverse
propagation of error. There are two main features here. The first is to train the neural
network of the same structure as the one constructed above using the back propagation
method. At the same time, the choice of the initial weights of the network has a strong
influence on the speed and the result of training. We tried to use as initial weights the
numbers that we obtain using the methods we proposed in this paper. This significantly
reduces the training time, but to reduce the error significantly faster simply increase the
number n.

Comparative testing of the methods discussed in the article and other known
methods of forming the structure and determining the weights of the neural network for
different neural network architectures will be more objective, but such a study is
beyond the scope of this work.

In [28–30], examples of problems with real measurements for which the con-
structed models more accurately reflect measurement data than exact solutions of initial
boundary value problems are given.

Using the method of lines, you can solve problems for partial differential equations
in a similar way.

5 Conclusions

The work has taken the first steps in the development of methods for constructing
multilayer neural network solutions of differential equations based on finite difference
methods. We hope that they will soon be developed in many directions and will allow
to solve a wide range of practically interesting problems.

Acknowledgments. The article was prepared on the basis of scientific research carried out with
the financial support of the Russian Science Foundation grant (project No. 18-19-00474).
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Abstract. A new method to design learning laws for neural networks
with continuous dynamics is proposed in this study. The learning method
is based on the so-called double-averaged descendant technique (DAS-
GDT), which is a variant of the gradient-descendant method. The learn-
ing law implements a double averaged algorithm which filters the effect
of uncertainties of the states, which are continuously measurable. The
learning law overcomes the classical assumption on the strict convexity
of the functional with respect to the weights. The photocatalytic ozona-
tion process of a single contaminant is estimated using the learning law
design proposed in this study.

Keywords: Differential neural networks ·
Double-averaged subgradient · Optimization · Projection ·
Ozonation processes

1 Introduction

The problem of designing artificial learning methods (ALM) has received
renewed attention because the increasing number of artificial intelligence applica-
tions [11]. Learning-based models typically have parameters (weights and biases)
as well as a cost functional aimed to evaluate the goodness of a particular set of
parameters. Mainly, the learning problems consist of finding the set of weights
for the model which implies the minimization of the cost functional.

Most of the learning algorithms applies diverse forms of parametric esti-
mation methods. The gradient descent method (GDM) has been the basis of
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many renamed learning algorithms such as the back-propagation, Levenberg-
Marquardt and many others. The application of the GDM implies the propo-
sition of an optimization method, which introduces the feasible cost functional
depending on the identification error. Most of the existing theory on the design of
learning methods consider that such functional is strictly convex with respect to
the parameters in the approximate models. However, this is a strong assumption
which is rarely satisfied a-priori because the multivariable nature of the func-
tional. Sometimes, the application of the projected GDM may help in solving
the parameter identification problem with non-strict convex functional, which
is dimension independent free (a remarkable characteristic when dealing with
function approximation based on artificial neural networks) [7].

This study uses the so-called mirror descent algorithm (MDA) (proposed
by Nemirovsky and Yudin) which may solve convex (non-strict) optimization
problems [9,10]. This method has shown an efficient estimate which is mildly
dependent on the decision variables dimension [2]. Therefore, it is suitable to
solve large scale optimization problems such as the case of estimating the weights
of an artificial neural network. Moreover, this method may produce better rates
of convergence for the optimization problem.

The application of the DASGDT for a special class of functional describing
the quality of approximation (in weak sense) of a neural network with contin-
uous dynamics (usually called differential neural network or DNN) is the main
contribution of this study. Moreover, the introduction of a box-type projection
algorithm allowed to estimate the time-dependent weights of the DNN. The
weights estimation algorithm proved the asymptotic convergence of the weights
to their true values.

This paper is organized as follows. Section 2 introduces the problem formu-
lation where the class of uncertain nonlinear systems approximated by neural
networks, the DNN structure and the main assumptions are detailed. Section 3
formulates the DNN identifier structure and the main result of this study deal-
ing with the application of DASGDT to solve the design of the learning laws for
the DNN identifier. Section 4 presents the numerical example that illustrates the
implementation of the learning law based on the DASGDT. Section 5 closes the
study with some final remarks.

2 Problem Formulation

2.1 Class of Uncertain Systems and Main Assumptions

The class of nonlinear systems with uncertain structure considered in this study
satisfies:

d

dt
x(t) = f(x(t), u(t), t), x(0) = x0, ‖x0‖ < ∞ (1)

In (1), the variable x ∈ R
n is the state vector and let X be such that

x ∈ Int {X} ⊂ R
n (Int {X} means the interior of set X). The system (1)

has bounded trajectories so that ‖x(t)‖ < x+, ∀t ≥ 0, where x+ corresponds to
the maximum radius of set X.
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The bounded and piecewise continuous (with respect to time) signal u ∈ R
m

(m < n) is referred to as the external and given control function that belongs to
the following admissible set

Uadm =
{
u : ‖u‖2 ≤ u0 + u1‖x‖2, u0, u1 ∈ R

+
}

(2)

This admissible set allows to introduce linear feedbacks or bounded as the sliding
mode controllers. The nonlinear uncertain vector function f : Rn × R

m → R
n

describes the system dynamics and satisfies the following inequality.

‖f(x, u, t)‖2Λξ
≤ f0 + f1‖x‖2 , ∀t ≥ 0 γ0, γ1 ∈ R

+ 0 < Λξ = Λ�
ξ ∈ R

n×n

(3)
This inequality justifies the approximation of f by a neural network structure

based on sigmoid functions as proposed by Cybenko [4].

2.2 Dynamic Neural Network Approximation

Taking into account the approximation properties of neural networks, the non-
linear function f(x, u) in (1) always could be presented (based on the Stone-
Weirsstrass and the Kolmogorov theorems [3]) as the composition of a nominal
system f0(x, u | W0) : Rn × R

m → R
n and their corresponding modeling error

term f̃(x, u | W0) : Rn×R
m → R

n. Therefore the following equivalence is always
valid:

f(x(t), u(t)) = f0 (x(t), u(t) | W0) + f̃ (x(t), u(t) | W0) (4)

where W0 is known as the best attainable weights of the approximated neural
network. The so-called nominal dynamics can be freely selected according to a
predefined methodology (in this case, it has been used a neural network with
continuous dynamics). The set of bounded parameters W0 should be adjusted
to obtain the best possible matching between the nominal f0(x, u | W0) and the
nonlinear dynamics f(x, u).

Considering that the nonlinear dynamics f(x, u) is locally-Lipschitz and
under the class of admissible controls u(t), the following upper bound for the
error modeling f̃(x, u | W0) can be obtained:

‖f̃(x, u | W0)‖2Λf
≤ f̃0 + f̃1‖x‖2 f̃0 ∈ R

+, f̃1 ∈ R
+ (5)

According to the DNN theory, [6,13], the nominal dynamics can be selected
as:

f0(x, u | W0) = Ax + W0Ψ(x, u) (6)

where W0 =
[
W0,1 W0,2

]
, Ψ(x, u) =

[
Ψ�
1 (x) (Ψ2(x)u)� ]�. The matrices in

the previous equation are A ∈ R
n×n, W0,1 ∈ R

n×l, W0,2 ∈ R
n×s, Ψ1(·) ∈ R

l and
Ψ2(·) ∈ R

s×m (p = l + s). In general, the weights W0,1 and W0,2 are unknown
but bounded and they may depend on time.

The corresponding activation functions are represented by Ψ1 : Rn → R
l and

Ψ2 : Rn → R
s×m. The components of the activation vector fields Ψ1 and Ψ2 are

Ψ1r(x) = ar

(
1 + bre

(−c�
r x)

)−1

Ψ2r,p(x) = ar,p

(
1 + br,pe

(−c�
r,px)

)−1
(7)



Projectional Learning Laws for Differential Neural Networks 31

The parameters ar, ar,p, br and br,p are positive scalars while cr ∈ R
n and

cr,p ∈ R
n are vectors of gains that shall be selected during the training process.

Certainly, these functions satisfy the following sector conditions:

‖Ψ1(z1) − Ψ1(z2)‖2ΛΨ1
≤ LΨ1‖z1 − z2‖2

‖Ψ2(z1)u − Ψ2(z2)u‖2ΛΨ2
≤ LΨ2‖z1 − z2‖2‖u‖2

(8)

where LΨ1 and LΨ2 are positive constants while ΛΨ1 and ΛΨ2 are positive definite
matrices of appropriate dimensions. Here z1, z2 ∈ X ⊆ R

n and their functions
are globally bounded in R

n, that is ‖Ψ1(z1)‖ ≤ L+
Ψ1

‖Ψ2(z1)u‖ ≤ L+
Ψ2

‖u‖ .

2.3 Problem Formulation

Let consider the equivalent representation of the DNN (6)

f0(x, u | W0) = Ax + Ψ̄(x, u)W0,v (9)

with Ψ̄(x, u) = In ⊗ Ψᵀ(x, u) is the so-called extended activation matrix. Here
the symbol ⊗ represents the Kronecker operator [12]. The symbol In represents
the identity matrix of dimensions n×n. The vector W0,v ∈ R

np is the vectorized
form of the matrix W0 that is

W0,v = vec (W0) (10)

where vec represents the vectorizing operator, i.e.:

W0,v =
[
W ᵀ

0,1 W ᵀ
0,1 W ᵀ

0,3 · · · W ᵀ
0,n

]ᵀ
(11)

Here W0,j is the j-th column of W0.

Definition 1. Commonly, W0,v can be obtained as the solution that minimizes
the distance d(x) (over the set X that introduces the local solution of the approx-
imation). In this study, an averaged distance is proposed as part of the optimiza-
tion problem, that is:

W ∗
0,v(t) = argmin

W0,v∈Rnp

J(t)

J(t,W0,v (t)) =
1

t + ε

t∫

τ=0

‖Δ (τ)‖2 dτ, ε > 0
(12)

where Δ ∈ R
n is the identification error dynamics, that is

Δ(t) = x(t) −
t∫

τ=0

(
Ax (τ) + Ψ̄(x (τ) , u (τ))W0,v (τ)

)
dτ
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The approximate structure proposed in (6) has been tested in [13] to design
adaptive observers and controllers. In (6), the set of parameters W0 is assumed
to be unknown and bounded. Lets consider the following assumptions for the
design of the DNN learning laws:

Assumption 1: The vector x(t) is available (physically measurable) at any time
t ≥ 0;

Assumption 2: The loss functional J(t) is not completely known, convex (not
obligatory, strongly convex), differentiable for almost all x ∈ R

n and ∇J(t)
with respect to W0,v is supposed to be measurable at any point x(t).

Assumption 3: The minimum of the loss functional J(t) with respect to W0,v

exists for each time, namely

W ∗
0,v(t) = argmin

W0,v∈W0,adm⊂Rnp

J(t,W0,v (t))

W0,adm =
{

W0,v = [W0,v,i]i=1,np , W0,v,i ∈ [
W−

i ,W+
i

]}

where W0,v,i is the i-th component of W0,v (The W0,adm defines a box-type
class of restrictions for W0,v), so that J∗(t,W0,v(t)) = min

W0,v∈Rnp
J(t,W0,v (t)) >

−∞ with a fixed t.

3 Identification Problem Based on DNN

Lets try to find the solution of the optimization problem (12) applying the
extended variation of DASGDT. Then, the learning method to adjust the weights
of the DNN structure in (6) is presented as follows

μ (t)
d

dt
Ŵ0,v(t) + W0,v(t) = ς(t), ς ∈ R

np

d

dt
ς(t) = −∇W J(t,W0,v (t)), ς(0) = 0

Ŵ0,v(0) = 0, W0,v(0) = ς(0) − ε
d

dt
Ŵ0,v(0)

(13)

Here Ŵ0,v is the projected vector of weights to the admissible set of weights

W0,adm. The projection algorithm satisfies W
(i)
0,v(t) =

[
Ŵ

(i)
0,v(t)

]W+
i

W −
i

, i =

1, ..., np. In (13) ς is the auxiliary variable inserted in integral form to the learn-
ing algorithm. The time dependent function μ (t) = t+ ε, ε > 0. As usual, ∇W J
represents the gradient with respect to W0,v of J . Notice here that a double
integration process of the identifier error yields the estimation of the associated
weights. This procedure yields to obtain a smooth filtering of the functional
gradient with respect to the DNN weights.

The parameter ∇W J in (13) is a convex, continuously differentiable func-
tional J : R+ × R

np → R
+ having the following conjugate (Legendre-Fenchel

transformation) [9].

H̄(W0,v(t)) = sup
ς∈Rn

{

〈ς,W0,v(t)〉 − ‖ς‖2
2

}

(14)
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Based on the arguments proposed by [9], the algorithm presented in (13) is
called the Method of Inertial Mirror Descent (MIDM). Assume that there exists
a solution W0,v (t), t ≥ 0 to the system of differential equations (13), namely
W ∗

0,v. Then, consider the functional

H(W ∗
0,v(t)) =

‖ς‖2
2

− 〈
ς(t),W ∗

0,v(t)
〉
, ς ∈ R

np

Lets try to prove that a fixed-point for H(W ∗
0,v(t)) at each time exists. The

solution of this problem is gotten by the application of the second stability
method of Lyapunov [5]. Lets take the time-derivative of H(W ∗

0,v(t))

d

dt
H(W ∗

0,v(t)) =
〈

d

dt
ς(t), ς(t)) − W ∗

0,v(t)
〉

(15)

Considering the algorithm proposed in (13),
d

dt
H∗(t) can be calculated as follows

d

dt
H∗(W0,v(t)) =

〈
−∇J(t,W0,v(t)),

(
μ (t)

d

dt
Ŵ0,v(t) + W0,v(t) − W ∗

0,v (t)
)〉

(16)
Based on the convexity of J(t) (non-strict), the expression in (16) satisfies

d

dt
H∗(W0,v(t)) ≤ [

J(t,W ∗
0,v(t)) − J(t,W0,v(t))

] −
μ (t)

d

dt

[
J(t,W0,v(t)) − J(t,W ∗

0,v(t))
] (17)

The integration (by-parts) of (17) on the interval [0, t] with the assumption that
H∗(0) = 0, yields

t∫

τ=0

[
J(τ,W0,v(τ)) − J(τ,W ∗

0,v(τ)
]
dτ ≤ −μ (t)

[
J(t,W0,v (τ)) − J(t,W ∗

0,v)
]t

τ=0
−

H∗(W0,v(t)) +

t∫

τ=0

[
J(t,W0,v (τ)) − J(t,W ∗

0,v)
]
[

d

dt
μ (t)

]
dt

(18)
Considering the expression in (14) we obtain

t∫

τ=0

[
J(τ,W0,v(τ)) − J(τ,W ∗

0,v(τ)
]
dτ ≤ −H∗(W0,v(t))−

μ (t)
[
J(t,W0,v (t)) − J(t,W ∗

0,v)
]
+ μ (0)

[
J(0,W0,v (0)) − J(0,W ∗

0,v)
]
+

sup
s∈[0,t]

[
d

dt
μ (s)

] t∫

τ=0

[
J(τ,W0,v (τ)) − J(τ,W ∗

0,v (τ))
]
dτ
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Since μ̇ (t) = 1 and in view of the relation (14), −H∗(W0,v(t)) ≤ H̄(W ∗
0,v (t)).

In consequence:

J(t,W0,v (t)) − J(t,W ∗
0,v (t)) ≤ H̄(W ∗

0,v (t))
t + ε

Noticing that

H̄(W ∗
0,v (t)) = sup

ς∈Rn

{
〈
ς,W ∗

0,v (t)
〉 − ‖ς‖2

2

}

=
∥
∥W ∗

0,v (t)
∥
∥2

Consider the admissible set for the weights

∥
∥W ∗

0,v (t)
∥
∥2 ≤

np∑

i=1

(
max

{∣
∣W−

i

∣
∣ ,

∣
∣W+

i

∣
∣})2

This inequality implies that

J(t,W0,v (t)) − J(t,W ∗
0,v (t)) ≤

np∑

i=1

(
max

{∣
∣W−

i

∣
∣ ,

∣
∣W+

i

∣
∣})2

(t + ε)

In consequence, lim
t→∞

(
J(t,W0,v (t)) − J(t,W ∗

0,v (t))
)

= 0.

4 Numerical Simulations: Photocatalytic Ozonation
System

The proposed learning method for DNN was tested on a particular class of
system describing the complex interaction between ozone and catalysts that
may be activated by external photons. This system is known as photocatalytic
ozonation, which has been applied for removing a large diversity of toxic, health-
threatening contaminants [14].

Recent environmental concerns have led to the development of new treat-
ment methods such as advanced oxidation processes (AOPs) [8]. The AOPs are
physic-chemical methods capable of changing the chemical structure of the pollu-
tant resulted from the species generation with a high oxidizing power [1]. Among
the AOPs, the photocatalytic ozonation takes the advantages of both processes:
ozonation and photocatalysis. An extension to the classical ozonation mathe-
matical model [14], taking into account the presence of intermediate and final
products, must consider the effect of catalyst with irradiation. The proposed
model has the following mathematical structure:

d

dt
cg
t (t) = − [u1(t) − u2(t)]

Vg
+ ksat(Qmax − Q(t)) − Q(t)

N∑

i=1

kici(t) (19)
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d

dt
Q (t) = ksat(Qmax − Q (t)) − Q (t)

N∑

i=1

kici (t) − kOH,F (t) Q (t) (20)

d

dt
ci (t) = −ki,O3V

−1
liq ci (t)Q (t) − ki,OHci (t) cOH· (t) (21)

d

dt
cOH· (t) = kOH,F (t)V −1

liq cOH−(t)Q(t) −
N∑

i=1

ki,O3ci (t) cOH· (t) (22)

The new variables and parameters included in the model that consider the
intermediates and final products are: cg

0, cg
t are the initial and current ozone

concentrations in the gas phase (mole · L−1), Wg is the gas flow-rate (L · s−1),
Vg is the volume of the gas phase(L), Qt is the current ozone amount in liquid
phase (mole), Vliq is the volume of the liquid phase(L), Qmax is the maximum
amount of ozone in the saturation state of the liquid phase at a fixed temperature
(mole), ksat is the saturation constant of ozone in water (s−1), ci is the contam-
inant concentration in the reactor ([mole · L−1]). The components associated
to the catalytic effect are: cOH· is the concentration of OH radicals formed by
the catalyst activity in the ozonation, kOH,F is the reaction rate constant char-
acterizing the formation of OH · from OH− reacting with the dissolved ozone
and modulated by photons

[
L · mole−1 · s−1

]
; ki,O3 is the reaction rate constant

characterizing the decomposition of compound ci by ozone (
[
L · mole−1 · s−1

]
),

ki,OH is the reaction rate constant characterizing the decomposition of com-
pound ci by OH · (

[
L · mole−1 · s−1

]
). Notice that the photocatalytic effect can

be characterized by the new time-varying reaction rate parameter of the OH ·

formation (kF,OH (t)) as follows

kOH,F (t) = k̃F,OH
e−a(λ(t)−λ0)

2

1 + be−c(I(t)−I0)
,

where k̃F,OH is the reaction rate constant of the OH · formation at λ(t) = λ0 and
I(t) → ∞, λ, is the current wavelength of the light used to stimulate the catalyst
(nm), λ0 is the characteristic wavelength of the catalyst (nm), a is a constant
characterizing the variation of the gain with respect to the wavelength (m−2), I
is the current irradiation of the light applied over the catalyst (E ·m−2 ·s−1), I0 is
the irradiation corresponding to the light saturation of the catalyst (E·m−2·s−1),
b is a characteristic parameter that defines the saturation property of the catalyst
with respect to the light intensity (E−1 · m2 · s1).

The numerical simulations were made in Matlab/Simulink. The integration
algorithm was ODE-4 with fixed integration step of 0.0001 s. For comparison
purposes, a class of Hopfield DNN identified the time variation of the photocat-
alytic ozonation system. The trajectories of the Hopfield network exhibited the
regular oscillatory states which are commonly observed for such networks.



36 I. Chairez et al.

0 20 40 60 80 100
Time (s)

0.5

0.55

0.6

c g (m
ol

e 
L-1

)
(a)

0 20 40 60 80 100
Time (s)

0

0.5

1

Q
 (m

ol
e)

×10-3 (b)

0 20 40 60 80 100
Time (s)

0

0.5

1

1.5

2

c 1 (m
ol

e 
L-1

)

(c)

Regular DNN
DASGDT
Model

0 20 40 60 80 100
Time (s)

0

2

4

6

O
H

 (m
ol

e 
L-1

)

×10-3 (d)

Fig. 1. States comparison of the catalytic model as well as the estimates by the DNN
identifier with the MDA method aimed to estimate the learning law.
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Fig. 2. Weights variations obtained with the MDA method (a) and the performance
index J(t) (b).

Figure 1 shows the time variation of the states included in the photocatalytic
ozonation (19–22). This figure shows the time dependence of the estimated states
obtained by the DNN identifier using the learning laws based on the DASGDT
method. The weights bounds for the projection algorithm were fixed to W+

i =
10000, W−

i = −10000 ∀i ∈ [1, np]. The trajectories produced by the DASGDT
show smaller oscillations during the analyzed period of 100 s. Notice also that
oscillations stop after 1.0 s.
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Figure 2-a demonstrates the variations of some components of the weights
estimated by the algorithm proposed in (13). The oscillations obtained during the
estimation of the states are consequence of the large weights variations observed
in the first 10 s. Figure 2-b depicts the variation of the performance index J . This
variable has the expected variation tending to the zero asymptotically.

5 Conclusions

This study considers the design of a new learning law for DNN based on the
application of a new variant of the GDM named DASGDT. The explicit idea of
how implementing the DASGDT in continuous NN is described, which clarifies
how to define the structure of the DASGDT method. The strict analysis for
obtaining the upper bound of the method and to justify the asymptotic conver-
gence of the performance index. The proposed method opens new researching
opportunity to design new learning laws for a wide diversity of NN, even if
they do not have continuous dynamics or they are not deterministic (stochastic
DASGDT).
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Abstract. Convolutional Neural Network (CNN) has gotten admirable
performance in the domain of image recognition. Nevertheless, the train-
ing of CNN on CPU or GPU is energy-intensive and time-consuming.
Memristor crossbar is an alternative of the specific chip for CNN appli-
cation. But it is hard to tune the memristor to certain conductance
precisely. This work simulates the performance change of memristor-
based CNN when memristor is with stochasticity. The simulation results
demonstrate that stochastic memristor-based CNN performs better on
CIFAR-10 dataset when memristive stochasticity is low. This is an
encouragement for the engineer of memristor crossbar chip and edge
computing application.

Keywords: Stochastic memristor · Convolutional neural network ·
Dataset noise

1 Introduction

In most scenarios, CNN and its variations are the most effective methods for
computer vision applications [1]. However, using current general-purpose com-
puters for training is extremely time-consuming and energy-intensive [2]. Modern
society is developing rapidly, and people are increasingly demanding functions
for electronic products such as cameras, mobile phones, and devices in Internet
of Thing. Therefore, artificial neural network applications are playing an increas-
ingly important role. But for portable devices such as cell phones, the cost of
using neural network applications is very high. This situation may be changed
using new processing devices. Memristor [3,4] is a possible choice.
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Memristors have many advantages such as simple structure, easy for integra-
tion, low power, good compatibility with CMOS [5], and fast state switching [6].
Multilayer Perceptron based on memristors can greatly reduce area and power
consumption [7]. Many CNN architecture is realized by memristors. Zeng et al.
proposed an architecture based on binary memristors for image convolution in
CNN [8]. Liu et al. proposed a 3D CNN based on memristors for classifying the
behaviors of human in video [9]. Yakopcic et al. proposed an extremely parallel
memristor crossbar for CNN [10]. However, the memristive devices’ errors [11,12]
impact the CNN accuracy, which is rarely been studied. Several noise sources
have been presented in [11]. The memristor model will be too complex if we con-
sider all the noise sources. The directly relevant sources mostly can be modeled
by a zero-mean Gaussian distribution. Besides, the distribution of memductance
adjustment errors conforms to a Gaussian distribution in [13]. The effect of the
memristive stochasticity on classification accuracy of CNN is unknown.

In this paper, we study how the stochasticity in memristors impacts the
performance of a CNN. The simulation is on CIFAR-10 dataset [14]. The rest
of this paper is organized as follows. Section 2 introduces the background of
memristor model and network architecture. Section 3 describes the memristive
crossbar implementation of CNN. Simulation results are shown in Sect. 4. Lastly,
the conclusion is presented in Sect. 5.

2 Background

2.1 Memristor

The memristor was postulated by L. O. Chua from symmetry arguments in 1971
[3]. Since it was produced by HP laboratory in 2008 [4], it is regarded as one
of the next generations of computing devices. A voltage-controlled memristive
system, is generally represented by

i(t) = G(w(t))v(t), (1)

ẇ(t) = f(v, w, t), (2)

where i is the current flowing through the memristor, and v is the voltage across
the memristor. G is the conductance of the memristor. w is an internal variable.
A memristor is fabricated in nanometer size and can be easily integrated. The
conductance of memristors can be tuned to a range of continuous value, which
means memristors can be treated as weights in the artificial neural network.
Memristors maintain conductance after power off, which makes memristive neu-
ral network efficient.

2.2 CNN Architecture

The CNN is usually designed to imitate human visual processing. Compared
with fully connected neural networks, CNN has fewer parameters and is easier
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Fig. 1. CNN block diagram. The upper is the name of the operations, and the lower
is the data format.

to escape from vanishing gradients problem [15]. Figure 1 shows the main process
of a CNN application. Input data is at the leftmost part of this figure, which
is resized and augmented before adding to the network. The actions of data
augmentation can be randomly flipping the pictures and randomly cropping the
pictures, which force CNN to learn more essential feature.

The CNN contains three different layers: convolution layer, pooling layer,
and fully connected layer. Convolution layer is the most important layer of a
CNN. This architecture makes network concentrate on low-level features in the
previous layer and assemble low-level feature into high-level features in the lat-
ter layers. The goal of pooling layers is to subsample the feature maps. This
will reduce the computation burden. Convolution and pooling layer is used for
feature exaction. Fully connect layer is used for classification like the situation
in multilayer perceptron.

2.3 Training

To compare with the stochastic-memristor based CNN, the CNN was trained
and tested firstly in software. The dataset used in this paper is CIFAR-10. The
CIFAR-10 dataset contains 60000 32× 32 color images in 10 classes. The classes
in the dataset are airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. Each class has 6000 images. There are 50000 images for training and
10000 images for test.

The training step is 100000. Each step has a batch of 128 images. The loss
minimization is shown in Fig. 2. The training steps update CNN parameters. The
CNN parameters (weights and kernel values) could be programmed into mem-
ristive crossbar after training [10] or updated in memristive crossbar directly [7].
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Fig. 2. Loss curve of the CNN in Fig. 1 implemented on software.

The following work describes the simulation of CNN implemented by stochastic
memristor crossbar.

3 Memristor Crossbar Implementation

3.1 Stochastic Memristor

Memristors are a nanoscale device. Though the conductance of memristors is
continuous, we can not set the conductance to the desired value precisely at one
step. Feedback write scheme is used in [16,17]. In on-line neural network appli-
cations, the feedback write scheme will consume a lot of time in the training
process. This paper simulated the stochastic memristor, which can not be pro-
grammed to desired value precisely, based CNN’s performance. And the resulting
classification accuracy under different dataset noise level is compared with that
of the software approach.

There are many reasons why a memristor cannot be programmed to the
desired value precisely. Feinberg et al. listed lots of them [11]. Mostly, the distri-
bution of noise source, such as shot noise, thermal noise, conforms to Gaussian
distribution. Thus we add a Gaussian variable to the model of the stochastic
memristor, i.e.,

i(t) = G(w(t))(1 + s(t))v(t), (3)

where s(t) is a Gaussian variable with a mean of zero and a standard deviation
of σ. Every time the weights changes, the value of s changes to simulate the
stochasticity of memristors. Note that the random number seed in each memris-
tor model is different.

3.2 Memristive Crossbar Structure

The memristors in crossbar are used to represent weights of neural networks.
Thus the different memristive crossbar structure does not affect the classifica-
tion result of CNN. Several memristive crossbar structures have been proposed,
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Fig. 3. (a) Structure of a single 2T1M and (b) its schematic diagram.

such as fully memristive crossbar [18], two transistors and a memristor crossbar
(2T1M) [7], and so on.

In this paper, the 2T1M structure crossbar is elaborated. A single 2T1M
structure is shown in Fig. 3(a), where ũ is the inverse voltage of u. The e port
controls the states of the two MOSFETs. The upper MOSFET is a P-channel
MOSFET, and the lower one is N-channel MOSFET. For the convenience of the
following description, Fig. 3(a) is simplified as Fig. 3(b).
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Fig. 4. The structure of 2T1M crossbar. The mij cell is a 2T1M structure shown in
Fig. 3(b). ei determines the states of MOSFETs in row i. xj determines the speed of
conductance change in column j. The output currents can be sensed at o.

The structure of memristive crossbar is shown in Fig. 4. mij represents the
2T1M structure in Fig. 3(b) at row i, column j. The amplitude of ei should be
large enough to keep one of the two MOSFETs open. ei controls the states of
MOSFETs in the whole row. That is to say, ei determines whether the conduc-
tance increases or decreases. The column interface converts a number (xj) to
voltage (u and ũ). xj determines the speed of the conductance change at the
j-th column. During the weight update phase, The values of e and x are gotten
using the BackPropagation algorithm. During the feedforward phase, the mem-
ristive conductance should be read to realize the computation of matrix-vector
multiplication. In the read phase, e ports stay positive for a little while, and then
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stays negative for the same amount of time. The time should be long enough
to make sure that the current at port oi is correctly outputted, and not so long
that the conductance changes too much.

The fully connected layer and convolution layer both can be implemented
on memristive crossbar [10]. If we implement the CNN structure in Fig. 1 on
Simulink or SPICE, it costs a lot of computer resources, especially training
CNN online. Since the memristors in crossbar represent the weights in CNN, the
stochasticity of the memristors is equivalent to the stochasticity of the weights
in CNN. Thus we did this simulation on software.

Table 1. CNN parameters in simulation.

Filter of 1st convolution layer [5, 5, 3, 64]

Filter of 2nd convolution layer [5, 5, 64, 64]

Strides of convolution layer [1, 1]

Padding SAME (zero padding)

Activation ReLU

Strides of pooling layer [2, 2]

Fully connected layer size 384 × 192 × 10

In the simulation on software, the hyper-parameters of the CNN is shown
in Table 1. The numbers of convolution layer filter parameters stand for [filter
height, filter width, input channels, output channels], respectively. The activation
for all layers is ReLU. The strides of the two pooling layers are the same. The
CNN structure has three fully connected layers, the number of neurons in these
three layers is 384, 192, 10.

4 Simulation Results

We programmed some tensorflow code to get the results of the CNN shown in
Fig. 1 on CIFAR-10 dataset. In memristive CNN, the conductance of memristors
represents the weights. The stochasticity of memristors can be taken as weights’
noise in the tensorflow model. The value of the random number changes dur-
ing each weight update to simulate the stochasticity in memristive conductance
update.

On the original dataset, the result of different weights’ randomness (σ = [0,
0.1, 0.2, 0.3]) is shown in Table 2. When the memristive stochastic level is 0, the
CNN’s weights are not multiplied by Gaussian variables. When the memristive
stochastic level is lower than 0.3, the classification accuracy is slightly increased.
If the memristive stochastic level is higher, the classification accuracy goes down.

The results of different weights’ randomness (σ = [0, 0.1, 0.2, 0.3]) is got.
At a specific weights’ randomness, the dataset was added with different levels of
Gaussian noise. After the CNN is trained, it predicted the samples in the test set
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Table 2. The classification accuracy on original dataset.

Memristive stochastic level (σ) Classification accuracy

0 86%

0.1 86.4%

0.2 86.5%

0.3 86.4%

0.4 85.9%

0.5 85.6%

Fig. 5. Sample pictures with noise. From left to right, the dataset noise is 0, 0.2, 0.4,
0.6. The label of the pictures in the upper row is the bird. The label of the pictures in
the lower row is the frog.

which has the same level of Gaussian noise in the train set. The effect of adding
different levels of Gaussian noise is shown in Fig. 5. The test process is done ten
times to get a reliable classification accuracy because of the randomness of the
test set.

The results of classification accuracy are shown in Fig. 6. In the box plot, the
x-axis is the value of σ which indicates the randomness of weights. Outliers (red
plus sign) is plotted as individual points. The median accuracy is the horizontal
line in each subplot. The maximum and minimum is the highest value and the
lowest value of the vertical line in each subplot. From Fig. 6, we can know that
the accuracy is higher when weight randomness level is lower than 0.2. When the
weight randomness level is higher than 0.2, the accuracy becomes lower. These
results show that the stochasticity of memristors enhances the performance of
memristive CNN.
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Fig. 6. Classification accuracy when dataset is added different levels of noise.

5 Conclusion

In this paper, we simulates the impact of memristive stochasticity to memristor-
based CNN. It is found that the stochasticity of memristors enhances the CNN
classification accuracy when weight randomness is at a low level (lower than 0.2).
This is a great encouragement to the CNN applications in Internet of things, edge
computing and memristive neural network chips.
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Abstract. In this paper, a novel learning approach to solve unsuper-
vised feature selection in high-dimensional data is proposed, namely
Radial Basis Function Autoencoder feature selection (RAFS). This
method based on autoencoder uses the radial basis function to achieve
mapping instead of the weight. We also consider penalty to give a pow-
erful constraint on redundant features. In extensive experiments, our
method shows its outperformance in fair comparison with several other
methods.

Keywords: Unsupervised · Feature selection · Radial basis function ·
Autoencoder · Penalty

1 Introduction

As an effective preprocessing method of data analysis, dimensionality reduction
plays an indispensable role in many areas such as genetic engineering [1], text
classification [2] and disease diagnosis [3]. It not only makes the learning model
less design and decision-making cost, but also often improves the performance
of the classifier. Often, Dimensionality reduction technology can be divided into
two classes: feature extraction [4,5] and feature selection. Feature extraction
means generating the transformed features which associate the original features.
Feature selection focuses on finding the most informative features to construct
a feature subset, which can preserve the intrinsic structure of the original data
in lower dimension. In addition, as the selected features have clear connections
to the original ones, feature selection has better interpretability than feature
extraction.

According to whether the information of label is used in task or not, feature
selection is categorized mainly as supervised [6,7], semi-supervised [8–10] and
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unsupervised [17,20]. Due to the class labels, supervised and semi-supervised
feature selection, developed to exploit both labeled and unlabeled data simulta-
neously, are much easier to find the optimal objective function of the learning
model and obtain a widely research development [11–14]. However, More high
dimensionality data sets generated in practical problems are part-unlabeld even
all-unlabeled. Accordingly, unsupervised feature selection has more challenge
and practicability. Our paper focuses on it. Without label information, the fun-
damental issue in unsupervised feature selection is how to model the mainfold
geometry structure of the whole feature set and produce a faithful feature sub-
set which preserves the intrinsic structure accurately [15,16]. Several forms to
characterize its structure have been proposed, including but not limited to the
K-nearest neighbor (KNN) graph [17], Locally Linear Embedding [18] and Sam-
mom’s error [19]. On a novel view point, Han et al. [20] proposed a new method
AEFS, based on the autoencoder and the group lasso regulation, demonstrating
excellent performance.

In recent years, radial basis function neural network (RBFNN) has attracted
extensive interests for a wide range of applications [21–24], because of the unusual
property of radial basis function. In RBFNN, Radial basis activation functions
for the units provide the network with the capability of forming more complex
nonlinear mapping in the input space, which allows these data vectors to be
mapped to higher dimensional space. As a result, Linear inseparable problem in
low dimensional space can become linear separable. In our paper, we leveraged
the ability of high-dimensional mapping to evaluate the quality of feature subset.
As the salient features of RBFNN, article [25] pointed out that using simple
properties of the basis functions and it is shown that a neural network with a
single layer of hidden units of Gaussian type is a universal approximator. RBFNN
requires besides less computation time for the learning [26], and a more compact
topology than other neural networks [27]. Under the circumstances, we can utilize
these advantages to deal with unsupervised feature selection problems.

Before the selection, we need to make clear which feature should to selected
prior. Following paper [28], features can be classify into four categories: essential
features, bad features, indifferent features and redundant features. Almost all of
research only notice the first three kinds but skip redundant features and these
are all favorable and dependent on each other. So we just need selected some of
them.

Inspired by what mentioned above, in our paper, we perform AutoEncoder
and RBF simultaneously to select the discriminative features for unsupervised
learning, meanwhile, consider the control of redundant features. Experimental
results that conducted on different datasets show the superiority of the proposed
method.

2 The Proposed Method

In this section, we first summarize some methods that are the foundation of the
new algorithm, including Autoencoder and RBF. Then the network structure for
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unsupervised feature selection is ascertained. Finally, we formulate the objective
function and the optimization problem of our method.

2.1 Theoretical Foundation

Autoencoder is a type of artificial neural network used to learn efficient data
codings in an unsupervised manner. Architecturally, the typical autoencoder
generally is similar to the single layer perceptron. Mapping from input layer to
hidden layer aims to get a lower-dimensional representation of the original data.
This process is called encoding. Then transporting from hidden layer to output
layer wants to copy its input to its output. This process is named decoding.
In general, the network tends to approximate a function to make its output
close to its input. Han et al. [20] further considers weight restrictions based on
autoencoder to achieve unsupervised feature selection.

RBF is a special function whose value depends only on the distance from
the origin, so that Φ(x) = Φ(‖x‖). Usually, the Gaussian function is preferred
among all possible radial basis functions due to the fact that it is factorizable
[29]. Hence

Φ(x) = e− ‖X−c‖2

2σ2 (1)

where c and σ are the center and the width of the Gaussian kernel, respectively.
Through the mapping of RBF, the network can be regarded as synthesizing an

approximation of a set of multidimensional functions, to find a suitable mapping
between a given set of patterns and their corresponding classes.

2.2 Objective Function

Based on the characteristics of Autoencoder and RBF, we combined them to get
a special network structure, named RBFAE, then proposed a novel unsupervised
feature selector (RAFS) to learn the optimal feature subset. RBFAE not only
has the unsupervised learning ability of AutoEncoder, but also has the high-
dimensional mapping power of RBF.

Now, assume that the origin data is X ∈ R
p×n, where xj is the jth column

vector of X, i.e. the jth samples. In RBF, the number of Gaussian kernel is q,
the centers are c = (c1, c2, ..., cq) ∈ R

p×q; the widths are σ = (σ1, σ2, ..., σq). So
the output of the hidden layer is H = (Hij)q×n. Where

Hij = e
−‖xj−ci‖2

2σi
2 (2)

Then the network output is Y = WH and W ∈ R
p×q is the weight applied

to the hidden layer and the output layer. If this is the case, we can use the least
square loss as the error function:

E =
1
2n

n∑

j=1

‖WHj − xj‖2 (3)
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Where Hj is the hidden layer output of the jth samples.
To measure each feature how useful, some methods, based on neural network,

used the Lass or group-Lasso to constrain the weight between the input layer and
the hidden layer. Now we use the Guassian kernel function instead of the weight,
so we adopt another way and associate gate function with each feature in the
input layer, f(β) = (f(β1), f(β2), ..., f(βp))T , βk is called the gate parameter.
So the output of the hidden layer will become

Hij = e
−‖(xj−ci)◦f(β)‖2

2σ2
i (4)

where ◦ represents element-wise product of two vectors. In this paper, our choice
of gate function is

f(βk) = e−β2
k (5)

The vaule of gate function is limited to [0, 1]. When f(βk) = 0, the kth
component of the norm, i.e. (xkj − cki) · f(βk) becomes zero. It means the kth
feature of the jth sample data has no influence on the output of the ith node in
the hidden layer. On the contrary, the computing will be regular when f(βk) = 1.

2.3 Structure Determination

The determination of RBFAE network structure design includes the appropriate
number and location of the centroids c, the widths σ of the Gaussian kernels
and the weights w linking from the hidden layer to the output layer.

Early time, Powell [30] proposed a pure way, assigning all samples data as cen-
ters for strict interpolation in multidimensional space. This way always brings
huge computation and even unpractical in high-dimensional data. Mody [26]
used the input clustering strategy and regarded the cluster centers as the ker-
nel centers by the K-means method which is facile to the unsupervised learning
problems with good performance. So the number of the hidden units(the cen-
ters) is equal to the k value of the K-means method. If the value of k is large
enough, the K-means method can satisfy the other requirement of Cover’s theo-
rem, which means that the dimensionality of the hidden layer is high enough. We
therefore conclude that the K-means algorithm is indeed computationally pow-
erful enough to transform a set of nonlinearly separable patterns into separable
ones in accordance with this theorem [31]. In this paper, we use the K-means
algorithm to confirm the centers location.

Now, we need consider the widths. One choice [32] is that fixing them as
follow:

σk =
dmax√

2q
,∀k = 1, 2, ..., q (6)

dmax = max
i,j≤q

‖ci − cj‖2 (7)

where the dmax is the maximum distance between any two center points. Never-
theless, As for all Gaussian kernels, the same width is not appropriate to describe
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their respective curve characteristics and cover the sample data, which is often
non-uniform distribution in most real-life problems. So it is better to assign a
specific width to each Gaussian kernel. Moody [26] proposed to compute the
width factors σj (the radius of kernel j) by the k-nearest neighbours heuristic:

σj =
1
k

(
k∑

i=1

‖ci − cj‖2
) 1

2

(8)

where k is the adjustable number of the nearest neighbours to the center cj . In
our paper, we set k = 2.

Linear output layer and radial basis hidden layer structure of RBFN provide
the possibility of learning the connection weights efficiently without local minima
problem in a hierarchical procedure so that the linear weights are learned after
determining the centers by a clustering process. The final layer of RBF do not
use activation function and it rather linearly combines the output of the previous
neuron. We exploited the pseudo-inverse method to compute the weights and the
formulation is as follow:

W = X · H−1 (9)

It should be pointed out that the pseudo-inverse method to confirm the
weights maybe have some computational difficulty in ultra-high dimensional
space. The conventional gradient descent method is a good alternative although
it need some extra iteration time. We prefer to focus on the error difference of
network before and after feature selection, not the error minimization in struc-
ture determination stage.

2.4 Optimization Learning

In an attempt to further constrain, the penalty is naturally considered. The first
penalty, also called sparse item, aims to make the gate value of each feature close
to zero or one and avoid too many partially open gates produced. The specific
formula as follow:

PF1 =
1
p

p∑

i=1

e−β2
i (1 − e−β2

i ) (10)

Now to control redundancy, we add anther penalty which can avoid selection
of dependent features. If some features are useful but dependent on each other,
these features can be named redundant features which are not necessary, and
only some are needed to solve the problem.

PF2 =
1

p(p − 1)

p∑

i=1

e−β2
i

∑

j �=i

ρ2ije
−β2

j (11)

In (11), ρij is a measure of dependency between xi and xj . In this paper, we
use the Pearson’s correlation to control linear dependency among features. If it
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is nonlinear, mutual information will be a good choice. According the penalty
function method, we can get the objective function as:

TE = E + μPF1 + νPF2 (12)

where μ and ν are the parameters to control the severity of the penalty.
To begin the learning, the modulators initialization is needed. We set that

the random initial value βi between [1, 1.01] to limit the initial gate function
value of each feature between [0.36, 0.37]. It guarantees that the gates are partly
opened at the beginning of learning and every feature has adequate opportunity
to be selected or not. Then, the iterative optimization of the value of β is done
by a gradient descent technique, using the following equations.

∂E

∂βk
=

f(βk)f ′(βk)
2n

n∑

j=1

[(
xkj − ck

) ◦ 1
σ

]2

· [(
WT xj − WT WHj

) ◦ Hj

]
(13)

∂PF1

∂βk
=

−2βke−β2
k

p
(1 − 2e−β2

k) (14)

∂PF2

∂βk
=

−4βke−β2
k

p(p − 1)

p∑

i=1,i �=k

e−β2
i ρ2ik (15)

∂TE

∂βk
=

∂E

∂βk
+ λ1

∂PF1

∂βk
+ λ2

∂PF2

∂βk
(16)

βnew
k = βold

k − λ ·
∂TE
∂βold

k√
p∑

i=1

( ∂TE
∂βold

i

)2
(17)

It must be noted that ck is the kth row vector of the centers c in (13), and
λ is the learning coefficient in (17).

3 Experiments

The experiments are conducted on 6 classification data sets with very different
dimensionality, as summarized in Table 1. In order to find the internal structure
of data sets, we just used the original data sets and did not normalize.

To validate the effectiveness of our method RAFS, we compare it with these
existing unsupervised feature selection methods.

AllFea: All original features are adopted.
LS: Features are selected using Laplacian score [17].
NDFS: Features are selected using nonnegative spectral analysis which joint

the cluster labels and feature selection matrix [33].
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Algorithm 1. The Optimization Algorithm of RAFS
Input: Dataset:X ∈ R

p×n; Penalty factors:μ,ν; learning coefficient:λ;The number of
selected features:d.

Output: Subset of selected features.

1: Set βk (k = 1, ..., p) = 0, i.e. all features join into the network and no feature
selection.

2: Use K-means algorithm to calculate the centers location c.
3: Calculate the width of each kernel σ by Eq.(8).
4: Calculate the weight W by Eq.(9).
5: Randomly initialize βk between [1, 1.01].
6: if Convergence criterion not satisfied then
7: Compute the total error (TE) by Eq.(3)-(5),(10)-(12).
8: Compute the new values βnew

k by Eq.(13)-(17) and get the new error TEnew

9: while TEnew > TE do
10: λ ← 0.9 × λ
11: recompute βnew

k and TEnew.

12: TE ← TEnew , βk ← βnew
k .

13: Compute the value of gate function f (βk) and sort them in descending order, the
top d ranked features would be selected.

Table 1. Summary of data sets

Data sets Samples Features Classes

warPIE10P 210 2420 10

lung discrete 73 325 7

Isolet 1560 617 26

madlon 2600 500 2

ORL 400 1024 40

JAFFE 213 676 10

RSFS: Which jointly improves the robustness of graph embedding and sparse
spectral regression [34].

AEFS: Which is a embedded feature selection method based on autoencoder
and group lasso penalty [20].

Now, the specify parameter setting for each method need to be given. For
fair comparison, we set the size of the neighbors k = 5 for all data sets. The
number of selected features as 50, 100, 150, ..., 300; As for some personal settings
of each method, we followed the author’s setting in the original papers. In NDFS,
the orthogonality condition parameter is fixed, γ = 108; the parameters are
tuned from {10−6, 10−4, ..., 106}. In AEFS, the activation functions are σ1(X) =
1/(1 + e−X), σ2(X) = X; the number of hidden layer nodes is {27, 28, 29, 210};
the parameters range is {10−3, 10−2, ..., 103}. In RAFS, the size of hidden layer
is {22, 23, 24, 25, 26}, the parameters range is {10−3, 10−2, ..., 103}.
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Table 2. Clustering results (ACC%±std) of different feature selection methods. The
best results are highlighted on bold.

Dataset AllFea LS NDFS RSFS AEFS RAFS

warPIE10P 27.0± 1.9 46.4± 2.0 29.4± 2.0 36.0± 3.1 51.3± 4.8 54.3± 4.5

lung discrete 63.3± 5.4 69.7± 6.1 69.2± 8.6 71.9± 5.7 72.5± 6.3 73.2± 8.0

Isolet 59.4± 2.5 49.3± 2.0 59.4± 2.0 62.4± 3.5 61.4± 3.8 63.1± 4.3

madlon 50.4± 0.1 57.4± 0.1 61.5± 0.0 61.7± 0.0 60.4± 0.8 61.8± 0.1

ORL 50.3± 2.8 48.7± 3.2 52.5± 3.3 53.1± 2.6 53.9± 2.7 63.4± 3.8

JAFFE 72.2± 6.4 74.0± 7.0 80.8± 8.5 63.4± 3.5 74.2± 7.6 81.8± 7.4

Table 3. Clustering results (NMI%±std) of different feature selection methods. The
best results are highlighted on bold.

Dataset AllFea LS NDFS RSFS AEFS RAFS

warPIE10P 28.1± 3.6 49.5± 1.9 27.4± 2.4 37.3± 3.1 55.4± 3.1 57.6± 3.9

lung discrete 62.8± 3.5 66.9± 4.8 68.7± 5.7 71.5± 3.6 68.6± 4.9 72.3± 6.6

Isolet 73.8± 2.3 65.6± 0.7 74.4± 1.5 78.7± 1.2 75.0± 1.7 76.5± 1.4

madlon 1.8± 0.1 1.6± 0.1 3.8± 0.0 4.0± 0.0 3.5± 0.1 4.1± 0.1

ORL 73.7± 1.5 71.1± 1.4 74.0± 1.7 74.2± 1.3 75.1± 1.7 75.8± 1.4

JAFFE 81.0± 4.0 79.0± 2.7 87.9± 5.6 78.7± 1.2 79.9± 3.8 89.3± 3.6

In evaluation metrics of feature subsets, we use Clustering Accuracy (ACC)
and Normalized Mutual Information (NMI) to compare the performance with all
above methods. In both metrics, higher value means more excellent performance.
For the selected features, the K-means algorithm is repeat 20 times with random
initialization and the average value and standard will be recorded.

From the results in Tables 2 and 3, we can observe that feature selection can
get a subset which has less features but more satisfying clustering and classifi-
cation performance. Obviously, the research for unsupervised feature selection is
valuable and effective. We also get that our proposed method RAFS shows its
outperformance in fair comparison with several other methods. For most data
sets, RAFS is better than other methods.

4 Conclusion

In this study, a novel unsupervised feature selection scheme, RAFS has been
proposed. In this method, radial basis function replaces the weight to activate
autoencoder, gate function shows the situation of feature selection and control
redundancy is considered. We give a specific learning process to make RAFS be
applicative for unsupervised feature selection tasks in high-dimensional space.
In the experiment, the efficiency and effectiveness of RAFS is validated by con-
ducting several typical data sets.
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In future work, there remains several facets to be further improved, including
the determination of the kernel centers and the iterative optimization algorithm.
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Abstract. Knowledge distillation aims at transferring knowledge from
a teacher network to a student network. Commonly, the teacher network
has high capacity, while the student network is compact and can be
deployed to embedded systems. However, existing distillation methods
use only one teacher to guide the student network, and there is no guar-
antee that the knowledge is sufficiently transferred to the student net-
work. Thus, we propose a novel framework to improve the performance
of the student network. This framework consists of two teacher networks
trained with different strategies, one is trained strictly to guide the stu-
dent network to learn sophisticated features, and the other is trained
loosely to guide the student network to learn general decision based on
learned features. We perform extensive experiments on two standard
image classification datasets: CIFAR-10 and CIFAR-100. And results
demonstrate that the proposed framework can significantly improve the
classification accuracy of a student network.

Keywords: Knowledge distillation · Convolutional neural networks ·
Adversarial learning · Image classification

1 Introduction

In recent years, deep neural networks (DNN) have achieved impressive success
in image classification [1–3], object detection [4–6], semantic segmentation [7,8],
etc. One of the reasons for DNN’s success is attributed to the increasing depth
and huge amounts of parameters of neural networks. However, heavy computa-
tion and memory cost makes it difficult to deploy these cumbersome models on
resource-constrained platforms like autonomous cars, smart phones, humanoid
robots, etc. Therefore, knowledge distillation [9] is introduced as a method to
compress the knowledge in a cumbersome model into a single small model. But
the small model often has a worse performance when compared with the cum-
bersome model. Thus, great efforts have been made to make the performance
of the small student network comparable to that of the large teacher network,
and it is of great importance when considering the ever increasing demand from
industry that requires neural network models to work in real time.
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To approximate the performance of the high-capacity teacher network, there
have been several attempts in the literature to improve the student network’s
performance via knowledge transfer. Existing approaches can be divided into two
categories according to what knowledge to transfer. One line of research takes
the output probability distribution as knowledge [9,10], therefore the student
network is forced to mimic the output probability distribution of the teacher
network. Despite its simplicity and effectiveness, softmax loss function is a must
for both teacher and student networks, which constrained its application sce-
nario. Another direction takes the intermediate representations as knowledge,
representative works include [11–13]. In [11], the knowledge is defined as the
inner product between features from two layers, and it proved to be effective. In
[12], attention maps of convolutional neural networks are considered as important
knowledge representations. In [13], related experiments suggest that the activa-
tion boundaries formed by hidden neurons are suitable for knowledge transfer.

Recent breakthrough on knowledge distillation can be summarized as follows.
First of all, adversarial learning was introduced to the knowledge distillation [10,
14,15], which greatly boosted the performance of student networks. Then Yang
et al. [16] proposed a new strategy for training the same network in generation,
and the descendant network trained with this strategy incredibly outperformed
its ancestor.

Although recent research on knowledge distillation has significantly improved
the classification accuracy of the student network, there are still some limita-
tions: (1) Adversarial based methods mainly take output probability distribution
[10,14] or coarse high-level feature maps [15] as input for the discriminator, which
can not take full advantage of previous research on intermediate knowledge rep-
resentations; (2) Yang et al. [16] found a more effective training method for the
teacher network to give better output distribution guidance, but for intermedi-
ate representation guidance, its performance has not been generally validated so
far; (3) Furthermore, previous studies employ only one teacher network trained
with specific strategy to give two different kinds of guidance. The simple mode
of processing deserves more careful consideration.

In order to address the aforementioned three problems, this paper proposes a
framework containing two teacher networks trained with different strategies. The
first teacher network is trained with traditional method, which gives intermediate
representation guidance to the student network. Different from other methods
[12,13,17,18] which align intermediate representations between the teacher net-
work and the student network through L2 loss, this paper introduces adversarial
learning to make the alignment, and our experiment results show its superior
performance. The second teacher network gives the output probability distribu-
tion guidance to the student network, and its training follows the strategy of [16].
Similar to other knowledge transfer methods [12,13], the proposed framework is
verified on Wide Residual Network (WRN) [19] with different settings and VGG
network [3], and extensive comparative experiments are conducted on CIFAR-
10 and CIFAR-100 datasets [20]. Experiment results indicate that middle-level
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(intermediate representation) guidance and high-level (output distribution) guid-
ance may need different training strategies for the teacher network.

2 The Proposed Two-Teacher Framework

Inspired by recent progress [10,15,16] on knowledge distillation, a two-teacher
framework is proposed to better transfer knowledge from teacher networks to
the student network. As depicted in Fig. 1, Teacher Network 2 (TN2) can give
better output distribution guidance to the compact student network, but it may
not give good intermediate representation guidance due to its specific objective
function. In order to provide elaborate intermediate representation guidance,
Teacher Network 1 (TN1) is trained in traditional way to ensure the effectiveness
of intermediate representation transferring.

Fig. 1. The architecture of the proposed framework. Layers in every network are
divided into 3 groups. Teacher Network 1 is responsible for knowledge embedded in out-
put distribution, while Teacher Network 2 gives careful guidance to knowledge resided
in intermediate representations.

2.1 Intermediate Representation Guidance

Many intermediate representations are proposed to represent the knowledge
learned by neural networks, such as FSP matrix [11], activation boundaries
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[13], attention maps [12], etc. However almost all intermediate representations
between the teacher network and the student network are aligned by L2 loss:

L2 =
∑

j∈I

∥∥∥∥∥∥
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S∥∥∥Rj
S

∥∥∥
2

− Rj
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∥∥∥
2
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2

, (1)

where Rj
S and Rj

T are respectively the j-th pair of intermediate representation
for student and teacher networks in vectorized form.

In order to better transfer knowledge resided in intermediate representations,
a discriminator is introduced to help to guide the student network. The discrim-
inator aims to distinguish intermediate representations of the student network
from those of the teacher network, while the student network learns to generate
intermediate representations to fool the discriminator. To make the adversarial
training process more stable, we adopt the conditional adversarial network [21]
strategy in [10]. In this case, discriminator not only predicts the source of the
input intermediate representations, but also predicts class labels.

Assume we have N training samples, and (xi ,yi) refers to the i-th instance,
where xi represents the input image, and yi is a one-hot vector, which stands
for the corresponding class label. If the number of classes is K, the output of
discriminator D(·) is a (K + 2)-dimensional vector. For student network, the
objective function involved in adversarial training can be divided into two parts.
The first component Lad is short for the standard adversarial loss in adversar-
ial learning framework, and the second component Lclassification refers to the
ordinary classification loss. Hence, the objective function can be formulated as:

LA = Lad + Lclassification

=
1
N

N∑
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(logD(Rsi)1 + logD(Rti)2)

− 1
N

N∑

i=1

K∑

j=1

(yj
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i logD(Rti)j+2)

, (2)

where Rsi and Rti represent intermediate representations of student network
and teacher network given the i-th training sample, and D(·)j represents the j-
th element of D(·). The first and second elements of D(·) denote the probability
that the input intermediate representation comes from the student network and
the teacher network respectively. Moreover, according to the theory of adversarial
training, the student network aims to learn intermediate representations similar
to the teacher network’s, while the discriminator tries to distinguish these two
kinds of representations. Since the discriminator’s objective is opposite to the
student network’s, its objective function can be defined as:

LDiscriminator = −Lad + Lclassification. (3)
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2.2 Output Distribution Guidance

For image classification problem, the output of neural networks is a probability
distribution q = (q1, ..., qK), which is generated by applying softmax function on
logits z = (z1, ..., zK). Previous study [9] has demonstrated that rich information
resides in logits or output probability distribution, and it is reasonable to use
logits to transfer knowledge.

qi =
ezi/T

∑K
j=1 ezj/T

. (4)

In Eq. 4, temperature T is often set to 1, but a higher temperature leads to
a softer probability distribution over classes. To distill knowledge embedded in
output probability distribution, cross-entropy loss between the teacher network’s
output distribution qt and the student network’s output distribution qs is used
as an extra constraint, denoted as LKD.

LKD = H(qt , qs) = −
K∑

i=1

qti logqsi . (5)

The teacher network is typically trained with the standard cross-entropy
loss, however recent research on training deep neural networks in generations has
demonstrated that a good teacher network should make the knowledge embedded
in output distribution easier to transfer, not just aim to have a high accuracy
for itself. Inspired by this idea, the new training strategy in [16] is introduced to
Teacher Network 2 in our framework, which is responsible for output distribution
guidance. The objective function of this strategy can be expressed as:

LT =
1
N

N∑

i=1

{−λyi
T logft(xi) + (1 − λ)[fe1 − 1

M − 1

M∑

j=2

fej ]}, (6)

where M is a fixed integer not greater than K, ft represents the corresponding
function of the teacher network, and fej is short for the j-th largest element of
ft(x).

2.3 Model Training and Deployment

To combine different guidance from two teacher networks, we obtain the overall
loss function for the student network during knowledge distillation:

LStudent = αLCE + (1 − α)LKD + βL2 + γLA, (7)

where LCE is the standard cross-entropy loss for image classification tasks, and
α, β, γ are hyper-parameters. During training process, two teacher networks
are fixed, and the discriminator and student network are optimized alternatively
based on Eqs. 3 and 7 until the process converges. Once the framework is trained,
it is convenient to obtain the compact student network by simply removing two
teacher networks and the discriminator.
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3 Experiment Results

In this section, we implement our method on two image classification datasets,
CIFAR-10 and CIFAR-100. The CIFAR dataset consists of 50k training and
10k testing color images, and the image size is 32 × 32. CIFAR-10 contains
10 classes, while CIFAR-100 is a fine-grained visual classification dataset with
100 classes. First of all, adequate comparison is made between the proposed
method and two representative distillation methods: knowledge distillation (KD)
and attention transfer (AT) in Sect. 3.1. Then, ablation study is conducted to
verify the necessity of two teacher networks with different training strategies in
Sect. 3.2.

The neural networks employed in our experiment are Wide Residual Net-
work (WRN) [19] and slightly modified VGG [3]. WRN is a variant of the widely
acknowledged Resnet [1]. A specific setting of WRN can be denoted as WRN-x-y,
where x represents the depth, and y is width, which represents the multiplica-
tion factor of channels. VGG’s performance is worse than models like WRN
and Resnet, but it is widely used due to its simple structure and convenient
implementation, thus we also conduct some experiments on it.

3.1 Evaluation of the Proposed Method

Beside teacher-student combinations in [12], the proposed method is also veri-
fied on slightly modified VGG-13 models. To get the teacher network (VGG-T),
we removed the last two convolutional layers of VGG-13, and the student net-
work (VGG-S) only has half of convolutional layers compared with VGG-T. For
knowledge distillation (KD), we set the temperature parameter T in Eq. 4 to 4
like [9,12], and hyper-parameters in Eq. 7 are set α = 0.9, β = 0, and γ = 0, as
in [12]. For attention transfer (AT), the settings of hyper-parameters are α = 1,
β = 1e + 3, and γ = 0. As for our method, we train Teacher Network 1 with
the standard cross-entropy loss, but the objective function for Teacher Network
2 is Eq. 6, where M is set to 5 empirically. Moreover, we set α = 0.9, β = 1e + 3
and γ = 0.1. Our experiments are repeated five times, and the median results
are summarized in Tables 1 and 2.

Table 1. Error rate (%) of various methods on CIFAR-10 dataset. Our goal is to
decrease the error rate of Student, and different algorithms to realize this goal are
compared, including AT, TN1, KD, TN2 and Ours. Note that Ours ia a combination
of TN1 and TN2.

Teacher/student network Teacher Student AT [12] TN1 KD [9] TN2 Ours

VGG-T/VGG-S 7.84 9.87 8.61 8.39 9.50 9.12 8.04

WRN-16-2/WRN-16-1 6.31 8.77 7.93 7.22 7.41 7.42 6.92

WRN-40-1/WRN-16-1 6.58 8.77 8.25 7.72 8.09 7.95 7.44

WRN-40-2/WRN-16-2 5.23 6.31 5.85 5.22 6.08 5.52 5.26
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Table 2. Error rate (%) of various methods on CIFAR-100 dataset. The meaning of
each column is the same as that in Table 1

Teacher/student network Teacher Student AT [12] TN1 KD [9] TN2 Ours

VGG-T/VGG-S 28.13 30.52 29.38 29.23 30.09 29.63 29.19

WRN-16-2/WRN-16-1 27.43 33.29 33.30 32.69 32.29 31.06 30.83

WRN-40-1/WRN-16-1 29.47 33.29 33.30 32.66 32.89 32.58 31.62

WRN-40-2/WRN-16-2 23.95 27.43 27.18 26.49 25.72 25.65 25.40

From the top row of the table, we can see many algorithms for knowledge
transfer, including attention transfer (AT), knowledge distillation (KD) and the
proposed two-teacher framework (Ours) which contains two teacher networks,
TN1 and TN2. As can be seen, our method achieved the best performance when
compared with AT and KD. Notably, from comparison between column AT and
TN1, it is evident that the introduction of adversarial training for intermediate
representations like attention maps can boost the performance. Moreover, quan-
titative results also demonstrated that the novel training strategy can improve
the performance of KD when comparing column KD and TN2.

3.2 Ablation Study

Three experiments are done to validate the necessity of having two teacher net-
works with different training strategies. First of all, the teacher network is trained
with the standard cross-entropy loss function, and it gives both output distri-
bution and intermediate representation guidance to the student network (Strat-
egy1). The second experiment is similar to the first one, but the teacher network
is trained with Eq. 6 (Strategy2). For the last experiment, the teacher network in
experiment1 and experiment2 are utilized to give output distribution and inter-
mediate representation guidance respectively (Our Framework). The comparison
results are shown in Table 3.

Table 3. Error rate(%) for ablation results on CIFAR-10 and CIFAR-100 datasets,
Strategy1 and Strategy2 use only one teacher network to give two different guidance to
the student network, while teacher networks in Our Framework are specially trained
for two different guidance respectively.

Dataset Teacher/student network Strategy1 Strategy2 Our framework

CIFAR-10 WRN-16-2/WRN-16-1 7.24 7.04 6.92

WRN-40-1/WRN-16-1 7.77 7.69 7.44

WRN-40-2/WRN-16-2 5.58 5.32 5.26

CIFAR-100 WRN-16-2/WRN-16-1 31.60 31.25 30.83

WRN-40-1/WRN-16-1 32.09 31.68 31.62

WRN-40-2/WRN-16-2 25.95 25.96 25.40
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Obviously, our two-teacher framework outperforms the first two strategies,
which validates the necessity of two teacher networks. It also indicates that it is
important to choose appropriate training strategy for the teacher network when
it involves different kinds of knowledge to be transferred. Additionally, from
comparison between Strategy2 and Our Framework, we draw the conclusion
that teacher network trained with Strategy2 may not suitable for intermediate
representation guidance.

4 Conclusions

A two-teacher framework has been proposed to distill knowledge to a compact
student network. This framework is orthogonal to previous research on what
knowledge to transfer, hence it can further improve the performance of the com-
pact neural network. To verify the effectiveness of our method, Wide Residual
Network and VGG network are used in our experiment. And all experimental
results on CIFAR-10 and CIFAR-100 datasets demonstrate that our framework
can significantly improve the classification accuracy of the student network. In
addition, the two-teacher framework provide researchers with a new perspective
on how to utilize different knowledge, and the training strategy for the teacher
network may attract more attention.
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Abstract. The article is devoted to the problem of feature extraction in online
learning tasks. In many cases, the proper feature extraction is very time-
consuming. Currently, in some cases, this problem is successfully solved by
deep neural networks. However, deep models are computationally expensive
and so hardly applicable for online learning tasks which require frequent
updating of the model. This paper proposes the lightweight neural net archi-
tecture that can be learned in online mode and doesn’t require complex hand-
crafted features. The small sample processing time distinguishes the proposed
model from more complex deep neural networks. The architecture and learning
process of the proposed model are discussed in detail. The special attention is
paid to fast software implementation. On benchmarks, we show that developed
implementation processes one sample several times faster than implementations
on the base of deep learning frameworks. The conducted experiments on CTR
prediction task show that the proposed neural net with raw features gives the
same performance as the logistic regression model with handcrafted features.
For a clear description of the proposed architecture, we use the metagraph
approach.

Keywords: Feature extraction � Online learning � Sparse neural network �
CTR prediction � Logistic loss � ROC curve � Metagraph

1 Introduction

It is known that feature extraction is the crucial stage of input data processing.
Sometimes the feature extraction task divides into two parts [1]: feature construction
and feature selection. The goal of the first step is to obtain many features from the
described data. On the second step, the most informative features are selected. To select
informative features information gain or chi-squared test are often used [2]. The dis-
advantage of such approaches is that they consider features separately. However, the
feature may be not informative by itself but informative jointly with other features.
Therefore, there are methods to determine relevant feature sets, for example, minimum
redundancy – maximum relevance approach (mRMR) [3]. The common drawback of
such methods is that they require manual work from the researcher. Besides feature
selection task may arise again and again if data rapidly changes over time.

The more modern approach is the representation learning in which deep learning is
succeeded. The essential advantage of deep models is that they form features
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automatically during training. They simplify the work of researchers and give better
result in comparison with algorithms requiring manual feature selection [4].

However, such models are hardly applicable in high loaded systems where response
time requirements are very strict. Also, it is impossible to provide often (for example,
once per hour) update of such models because their retraining is computationally
expensive. In online learning tasks complex models often lose to the simple ones
because simple models can be updated more frequently. But they require manual
features selection that takes a lot of researcher’s time. In this article, we propose the
neural network model which on the one hand is simple enough to be updated regularly
during training and on the other hand is complex enough to implement the feature
selection process automatically.

2 The Problem Definition

For definiteness, we developed a model on the example of CTR prediction task.
However, it can be used for other online regression tasks such as stock movement
prediction, malware prediction, goods recommendations, etc. The advertising system
has many banners. The goal of the system is to show each user the most relevant
banners to maximize proceeds (in most cases money is paid not for banner show but for
active user action such as click, install the mobile app, purchase of goods, etc.).

Firstly, the system determines the set of banners which can be shown to the user (on
the base of targeting and other restrictions). For this set of banners, the model predicts
the probabilities of user actions. The banner with max probability is shown to the user.
This is a predict regime. All features and user reaction on showed banners are written in
the binary log. In the training regime model reads this log and calculate predictions.
Then on the base of the difference between real and predicted values the model is
updated. It is shown schematically in Fig. 1.

The described system is dynamic. Some interests of users may change every day or
even several hours. Also, advertising banners are very volatile: thousands of banners
are created each hour and thousands of banners stop showing. So, we need to train
model in online mode, and we want to do it without manual feature selection.

Machine learning model

Update

Input train data

Input test data

Predict

Output
Right 

output

Fig. 1. Online learning task
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3 The Proposed Architecture

Unlike usual perceptron the proposed neural network is sparse: hidden layer neurons
are connected with one or two inputs responsible for the concrete feature. The schema
of this neural net is presented in Fig. 2.

The input of this neural net is raw features of user and banner, output – probability
that this user clicks (or perform another action) on this banner. Examples of user
features are age, sex, region, list of visited websites last week, etc. Examples of banner
features are image, text, target website or mobile app, etc.

The problem of simple logistic regression is that it is linear and so works poor with
these raw features. To achieve an acceptable result, it is necessary to combine raw
features in groups and hashing it. Determining exactly how to combine features
requires exhaustive search that computationally very expensive (complexity grows
exponentially on the number of features) or intellectual search which wastes the time of
experts of domain area.

The proposed neural network is designed in such a way to consider all two-feature
combinations. During training the weights of hidden layer corresponding relevant
combinations obtain more high values than weights corresponding poorly relevant or
not relevant combinations. So, the model implements feature extraction by itself. It is
possible to use combinations with any number of features, but already addition of three
features combination improves result only a few while significantly increases com-
putational complexity. Addition of combination with a greater number of features only
decreases model performance metrics. So, for CTR prediction task on considered
dataset it is meaningless, but for other tasks, it may be useful.

For fitting the neural network, the logistic loss function is used [5]. The model is
trained with stochastic gradient descent optimization (SGD) algorithm. Also, there can

Fig. 2. The proposed neural network architecture
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be used its modifications such as SGD with Momentum, RMSprop or Adam [6]. The
training procedure of proposed architecture in more details is discussed in [7].

4 The Metagraph Representation of the Proposed
Architecture

For a clear description of the proposed architecture, we use the metagraph approach.
Metagraph is a kind of complex graph model: MG ¼ V ; MV ; Eh i, where MG –

metagraph; V – set of metagraph vertices; MV – set of metagraph metavertices; E – set
of metagraph edges.

It is the metavertex that is the distinguishing feature of the model. The metavertex
may include inner vertices, edges, and metavertices. From the general system theory
point of view, metavertex is a special case of manifestation of emergence principle
which means that metavertex with its private attributes, inner vertices, metavertices,
and edges became whole that cannot be separated into its component parts.

For metagraph transformation, the metagraph agents are proposed. There are two
kinds of metagraph agents: the metagraph function agent (agF) and the metagraph rule
agent (agR).

The metagraph function agent (agF) serves as a function with input and output
parameter in the form of metagraph: agF ¼ MGIN ; MGOUT ; ASTh i, where MGIN –

input parameter metagraph; MGOUT – output parameter metagraph; AST – abstract
syntax tree of metagraph function agent in the form of metagraph.

The metagraph rule agent (agR) uses a rule-based approach:
agR ¼ MG; R; AGST

� �
; R ¼ rif g; ri : MGj ! OPMG, where MG – working meta-

graph, a metagraph on the basis of which the rules of agent are performed; R – set of
rules ri; AG

ST
– start condition (metagraph fragment for start rule check or start rule);

MGj – a metagraph fragment on the basis of which the rule is performed; OPMG
– set of

actions performed on metagraph.
According to our paper [12], we can describe neural network operation using

metagraph rule agents which are shown in Fig. 3.

In order to provide a neural network operation, the following agents are used:

• agMC
– the agent responsible for the creation of the network;

• agMO
– the agent responsible for the modification of the network;

• agMT
– the agent responsible for the training of the network;

• agMR
– the agent responsible for the execution of the network.

The metagraph representation of a neural network

agMC agMR

agMO agMT

Fig. 3. The structure of metagraph rule agents for neural network operation representation
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In Fig. 3 the agents are shown as metavertices by dotted-line ovals.
The network-creating agent (agMC) implements the rules of creating an original

neural network topology. The agent holds both the rules of creating separate neurons
and rules of connecting neurons into a network. In particular, the agent generates
abstract syntactic trees of metagraph function agents.

The network-modification agent (agMO) holds the rules of modification the network
topology in the process of operation. It is especially important for neural networks with
variable topology such as SOINN.

The network-training agent (agMT) implements a particular training algorithm. As a
result of training, the changed weights are written in the metagraph representation of
the neural network. It is possible to implement a few training algorithms by using
different sets of rules for agent agMT.

The network-executing agent (agMR) is responsible for the start and operation of the
trained neural network.

The agents can work separately or jointly which may be especially important in the
case of variable topologies. For example, when a SOINN network is trained, agent
agMT can call the rules of agent agMO to change the network topology in the process of
learning.

In fact, each agent uses its rules to implement a specific program “machine”. The
use of the metagraph approach allows us to implement the “multi-machine” principle: a
few agents having different goals implement different operations on the same data
structure.

In our paper [12] the metagraph representation of perceptron neural network was
proposed. In our paper [13], the metagraph approach was applied to the analysis of
regularization in deep neural networks. Using the results of these papers, the
description of the proposed architecture is very straightforward and represented in
Fig. 4.

In the creation mode, the metagraph representation of a neural network is created
using metagraph agent agMC.

The advantage of the metagraph approach is that according to modeling tasks the
complexity of created neuron structure can be various. In the simplest case, the neuron
may be considered as a node with activation function. In more complex cases the
neuron may be represented as a nested metagraph, which contains metavertices with
complex activation function addressing neuron structure.

The key feature of the proposed neural network architecture is its sparsity which
means the absence of some connections in comparison with the fully connected layer.

agMC

NNInput 
features TM

agMT

agMR

Fig. 4. The metagraph representation of the proposed architecture
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Since the structure of the neural network is generated by the metagraph agent, the input
features are automatically converted into the corresponding sparse fragments of the
neural network.

At the end of the creation mode, the “Neural Network” (NN) structure is created. It
may be a flat graph of nodes (neurons) connected with edges. But also, nodes may be
represented as complex metavertex and neurons of each layer of the network may also
be combined into metavertex.

In the training mode, the “Training Metagraph” (TM) is created. TM structure is
isomorphic to the NN structure. For each node NNn

i in NN, the corresponding
metavertex TMn

i in TM is created. And for each edge NNe
i in NN, the corresponding

edge TMe
i in TM is created. For the TM creation, the agent agMT is used. Agent agMT

implements a particular training algorithm. As a result of training, the changed weights
are written to the TMn

i .
The agent agMR is used for execution of the TM model.
In the proposed case the agMO is not used because it is not necessary to change the

network topology in the process of operation.
Thus, the metagraph approach allows representing the sparse neural network based

on the input feature set.

5 The Software Implementation of the Proposed Architecture

When developing software implementation, special attention was paid to its perfor-
mance. The sparsity of neural network connections may be implemented with deep
learning frameworks but specific implementation optimized under the concrete archi-
tecture allows significantly increase performance as presented on benchmarks below.

The neural net architecture is statically set and stored into a two-dimensional array.
The input data is a set of L features each of which has N different values. So, the input
space is divided into L ranges where each range corresponds to one feature. For this
architecture, the number of hidden layer neurons is L * (L + 1)/2. In the developed
implementation, only nonzero coefficients are stored. Due to fixed architecture, it is
possible to predetermine the size of such a matrix with nonzero coefficients and create
the matrix of neural network connections. In this matrix, the list of affected hidden
layer neurons corresponds to each feature on the input layer.

As a result, for each input layer neuron, we can get the numbers of the connected
hidden layer neurons. Since each neuron of the hidden layer is connected to exactly
L neurons of the hidden layer, weights of the hidden layer neurons can be stored in a
matrix with size N � L � L. In case of a fully connected network of similar size, to
store hidden layer weights L/2 times larger matrix would be required.

The summation for hidden layer neurons is presented in Fig. 5. The key feature of
this process is that it is proceeded by input layer neurons. First, contributions to the
hidden layer neurons are calculated from the first feature, then from the second feature
and etc. Such way of summation allows getting acceleration due to the local location of
the components (weights) in the memory.

We compare the performance of three implementations. The first one has been
described above in details. The second one is based on the Lasagne library [8]. Lasagne
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is a high-level library to build and train neural networks in Theano. Theano supports
different formats of sparse matrices, so it is necessary only to write custom layer with
sparse input. The third implementation was written on the base of the popular Pytorch
library [9]. On the moment of conducting experiments, the last stable version of library
0.4.1 (July 2018) didn’t support the automatic calculation of sparse gradients for
summation or multiplication of matrices. So, implementation on the base of Pytorch
uses dense tensors instead of sparse. The benchmarks are presented in Fig. 6.

By x-axis feature, max size is plotted (all features have the same size). Because
some features have large values (for example, banner id) they are mapped into fixed
size vector using hashing trick. The size of such vector may be different and it is the
variable parameter by the x-axis. By y-axis, the time of predict and update functions for
100 K samples are plotted. The figure shows that developed implementation is 20–30
times faster than implementation on the base of Lasagne. The Pytorch implementation

Fig. 5. Summation for hidden layer neurons

Fig. 6. Benchmarks of different implementations of proposed neural network
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shows exponential growth depending on the feature max size because it uses dense
tensors. Thus, the described implementation is profitable.

6 The Experiments

The experimental analysis has been conducted on the CTR prediction. It is a regression
problem. The model performance is estimated by several metrics. The first one is the
cross-entropy or logistic loss value (logloss). This function has near to zero values if
predicted, and real output differs slightly. So, it characterizes not only ranking quality
but also adjacency of real and output values. The second metric is the area under the
ROC curve. It characterizes only ranking quality. ROC curve allows well estimating
the model quality in the case of unbalanced classes. The CTR prediction is such a case
because the number of clicks is significantly less than the number of shows. Also, the
area under ROC may be interpreted as the fraction of properly ranged pairs, i.e. fraction
of pairs (A, B) with pA [ pB for which p̂A [ p̂B [10].

The first series of experiments is devoted to training models in single pass mode.
Only a single pass by train set was done while model learning. Simple SGD was used
as optimization algorithms. The four models were compared: the logistic regression
model with raw features (lr-simple-features), the logistic regression with handcraft
features (lr-handraft) and neural network models with raw features (with ReLU and
hyperbolic tangent activations – nn-relu and nn-tanh accordingly). The results are
presented in Fig. 7. It is worth noting that logistic loss values are normed on CTR
entropy (1):

norm ¼ CTR � lnðCTRÞþ ð1� CTRÞ � lnð1� CTRÞ ð1Þ

Researchers from Facebook [11] state that such normalization serves to compare
logloss values from different test sets. It is not difficult to see that by metrics values

Fig. 7. Training models in single pass mode
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neural network model has better performance compared to not only logistic regression
with raw features but also to logistic regression with handcrafted features. Also, it is
worth noting that in such mode model isn’t overfit (because the model has only single
pass by data) and it is no need to apply regularization techniques.

In Fig. 8 experiments with multiple passes and early stopping technique are pre-
sented. It this case models were trained until the error value on validation set began to
grow. For validation set, 10% data from train set were taken. Despite the decreasing of
the training set, the result was improved due to preventing overfitting.

It is not difficult to see that with the proper organization of multiple passes by data
the logistic regression improves its performance metrics, unlike the neural network. In
result, it achieves a slightly better performance than the neural network. So, it may
conclude that when training with the vanilla SGD the logistic regression model with
handcrafted features is operated the same way as the proposed neural network with a
simple listing of features. The neural network is trained faster, but the logistic
regression may be trained slightly better with multiple passes. However, even with the
same result, the neural network has a great advantage because it is not needed in
manually selecting configurations of features.

7 Conclusion

So, the main contribution and innovation of the article are the proposed neural net
architecture for solving online learning tasks without handcrafted features and fast
software implementation for this architecture. The proposed neural network and the
logistic regression model with handcrafted features work about equal in performance.
Generally, the main advantage of the proposed model is the automatic feature selection
which simplifies the researcher’s work. Due to optimized custom implementation, the
proposed neural net operates 20–30 times faster than analogous neural net implemented
on the base of deep learning frameworks and only 20–30% slower than simple logistic

Fig. 8. Multiple pass training with early stopping
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regression with handcrafted features. Therefore, we call the proposed architecture
“lightweight”. So, the proposed neural net with custom implementation may be applied
to high loaded real-world problems. The metagraph approach helps to represent the
proposed architecture at a high level of abstraction.
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Graph Convolution and Self Attention
Based Non-maximum Suppression
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Abstract. Non-maximum suppression is an integral and last part of
object detection. Traditional NMS algorithm sorts the detection boxes
according to their class scores. The detection boxes with maximum score
are always selected while all other boxes with a sufficient overlap with
the preserved boxes are discarded. This strategy is simple and effective.
However, there still need some improvements in this process because the
algorithm makes a ‘hard’ decision (accept or reject) for each box. In
this paper, we formulate the non-maximum suppression as a rescoring
process and construct a network called NmsNet which utilizes graph con-
volution and self attention mechanism to predict each box as an object
or redundant one. We evaluate our method on the VOC2007 dataset.
The experimental results show that our method achieves a higher MAP
compared with the traditional greedy NMS and the Soft NMS.

Keywords: Graph convolution · Self attention ·
Non-maximum suppression

1 Introduction

Object detection is a key problem in the field of computer vision and has many
comprehensive applications, such as self-driving car, robotics and video surveil-
lance. Generally, almost all object detectors are consist of three modules: (1)
generating a set of candidate windows. The typical methods include selective
search [1], region proposal network [2] and so on. (2) refining these bounding
boxes using regressor and classifier, (3) removing the accurate but redundant
boxes. The last step is usually called non-maximum suppression (NMS). To
illustrate the importance of NMS, in Table 1, we report the MAP of two detec-
tors, namely, Faster R-CNN [2] and SSD [3], with and without NMS. Note that
the Faster R-CNN was trained on VOC2007 trainval set while the SSD300 was
trained on VOC2007 and 2012. It is clear that the NMS gives a huge improve-
ment to each detector (0.460 for Faster R-CNN and 0.461 for SSD300). This
evaluation reveals that the NMS is indispensable and has a strong impact on the
final result.

Traditional NMS algorithm usually ranks all bounding boxes according to
their class scores and then makes a ‘hard’ decision (accept or reject) for each
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 77–86, 2019.
https://doi.org/10.1007/978-3-030-22796-8_9
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Fig. 1. The pseudo code of traditional NMS algorithm.

Table 1. MAP of faster R-CNN and SSD with and without NMS.

MAP Detector NMS

0.752 Faster R-CNN Yes

0.292 Faster R-CNN No

0.777 SSD300 Yes

0.316 SSD300 No

box using a iou threshold. Figure 1 shows the details of this process. The NMS
algorithm starts with a set of bounding boxes B and their corresponding scores
S and then selects the box M with the maximum score. After that, the algo-
rithm removes the redundant boxes which have a significant iou (higher than the
threshold) with the box M. This process continues until all boxes are selected or
removed. Inspite of the great success of this traditional NMS algorithm, it has
some problems. The major issue is that the algorithm makes a ‘hard’ decision
(accept or reject) for each box which means it sets the score of neighboring detec-
tions to zero. Thus, if an object presents with a high iou (higher than threshold),
it may be removed incorrectly and this would lead to a loss of average preci-
sion. We illustrate this problem in an intuitive fashion in Fig. 2. Furthermore,
it is almost impossible to deal with a variety of situations with only one NMS
threshold. In other words, the value of the threshold is difficult to determine.

In contrast to traditional greedy NMS, some methods [4,5] formulate the non-
maximum suppression as a rescoring process. In these algorithms, the scores of
neighboring boxes are not set to zero but decayed with a iou function which
decreases as the rise of iou. In this paper, we follow these settings and propose
an end-to-end network which is constructed from graph convolution and self
attention to rescore each bounding box. In other words, our network learns how
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Fig. 2. In this case, the detector predicts two confident person detections which are
shown in dashed and solid line. The dashed box (with score 0.8) has a significant overlap
with the solid one (with score 0.9). Thus, the dashed box will be suppressed incorrectly
in the process of traditional NMS algorithm. The better way may be preserving the
dashed box but decaying its score to a lower one such as 0.4.

to suppress redundant boxes. We describe the details of our method in the Sect. 3
and report the evaluation results in Sect. 4. Finally, the conclusion of this paper
can be found in Sect. 5.

2 Related Work

The greedy NMS algorithm has been a integral part of detection tasks for many
years and has been applied to some state-of-art detectors [2,3]. However, as
we described above, this greedy algorithm has some flaws. In terms of these
problems, some improved methods have been proposed in recent years. Here,
we list two representative methods [4,5] (Soft NMS and GossipNet) which have
motivated us to develop our network.

2.1 Soft NMS

The Soft NMS [4] revisits the greedy NMS algorithm in detail and rewrites the
removing step as a rescoring function which is shown in Eq. (1).

si =
{

si, iou(M, bi) < Nt

0, iou(M, bi) ≥ Nt
(1)

Note that the denotation of each element above is similar to the one in Fig. 1.
Therefore, the greedy NMS algorithm sets a hard threshold (N t) to make a
decision (accept or reject) for each neighborhood of M. As we described above,
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decaying the scores of neighboring boxes seems to be a feasible improvements.
Hence, the Soft NMS formulates this rule as follows.

si = sie
− iou(M,bi)

2

σ (2)

The main idea behind this equation is that the algorithm applys a gaussian
penalty function to each box and the higher the iou value, the more penalty will
be applied to the score of box bi. It is worth noting that the Soft NMS is also
a greedy algorithm. It does not find the globally optimal solution and performs
the penalty in a greedy style. More details of Soft NMS can be found in [4].

2.2 GossipNet

Similar to us, the GossipNet [5] also uses a neural network to rescore the detec-
tion boxes. The main components of the net are pair wise computations and
fully connected layers. To get the feature of box bi, the GossipNet collects hand-
crafted features of all neighboring boxes which have a significant overlap (IOU
>0.2) with bi and then performs a global max-pooling over these related fea-
tures. After that, the fully connected layers are used to map these features to a
high level. In contrast to GossipNet, our method does not have any handcrafted
steps. We get the related features of each box by stacking some graph convo-
lutional layers. Furthermore, we also append a self attention module to these
graph convolutional layers to extract more semantic information. We describe
the details of our end-to-end NmsNet in next section.

3 Our NmsNet

After introducing the motivations of our design, this section presents the details
of our NmsNet. The NmsNet is stacked by several identical building blocks and
each block is composed of 4 graph convolutional layers, 1 self attention module
and 1 fully connected layer. Figure 3 illustrates the architecture of our NmsNet.
In our design, each detection box with corresponding score is firstly mapped
to a feature vector by an encoding module. Then, these low level features are
fed to several identical blocks. Note that to accelerate the training procedure,
we perform layer normalization [6] for each minibatch before graph convolution
and self attention. After processing of the base network, we use a matching
module with ground truth boxes to generate training label for each detection
box. Finally, a sigmoid cross entropy loss is computed for the entire network.
We illustrate the main components of our NmsNet as follows.

3.1 Encoding Module

As we analysed above, for each box, the non-maximum suppression is related
to three factors including the position in the entire image, the iou with adja-
cent boxes and the corresponding scores. Based on this analysis, we encode the



Graph Convolution and Self Attention Based Non-maximum Suppression 81

Fig. 3. The architecture of our NmsNet.

detection boxes as following equations.

fi = (
xmini

W
,
ymini

H
,
xmaxi − xmini

W
,
ymaxi − ymini

H
, log(

wi

hi
)) (3)

fij = (
2Δxminij

wi + wj
,
2Δyminij

hi + hj
, log(

wi

wj
), log(

hi

hj
), log(

αi

αj
), iouij) (4)

hi = max{fi1, · · · , fik, · · · , fim|iouij > 0.2} (5)

Fi = concat(fi, hi, si) (6)

In the above equations, xmin, ymin, xmax, ymax indicate the coordinates of
top-left and bottom-right corners, whereas the wi, hi, W , H denote the width
and height of detection boxes and images. In addition, we use Δxminij and
Δyminij to signify the distance of two detection boxes i, j in the directions x
and y. To make this feature more discriminative, we also use an aspect ratio
difference item log( αi

αj
). In short, we present the three factors as we described

above respectively in the Eqs. (3–5). The final feature of each detection box is
made up of three subfeatures fi, hi, si.

3.2 Graph Convolution

To get the related features between each detection boxes, we try to use the con-
volutional neural network. However, the input encoded features are not sequence
data like images and texts. Thus, it is impossible to apply the normal convo-
lutional layer to these features. Inspired by [7], we treat them as graph-based
data whose structure is determined by the iou matrix. For each node (detection
box) in the graph, we select K − 1 neighbors to form the receptive field where
K means the kernel size of convolutional layer. We call this process Graph Nor-
malization and present an example in Fig. 4(b). In this example, we choose a
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Fig. 4. The graph convolution.

convolutional kernel with size 4 and consider a node v which is only adjacent
to 4 boxes (nodes). To construct the receptive field, we rank the adjacent nodes
according to their iou values and then choose the top 3 nodes (The receptive
field includes the node itself). Following this rule, we discard all the extra nodes
(the bottom node in this example). If the adjacent nodes are insufficient, we
pad the zero node to this receptive field. After graph normalization, the shape
of input tensor (B ×Cin ×N) will be reorganized to B × Cin × N × K where
B,N,K denote batch size, number of nodes (detection boxes) and kernel size.
Once we normalize the input tensor successfully, we apply a convolutional layer
with kernel size K × 1 to this reorganized tensor. Thus, the graph convolution
in our NmsNet will not change the shape of input feature. In this paper, we use
4 graph convolutional layers with kernel size 5, 5, 7, 7 in each building block.

3.3 Self Attention

The attention function usually can be formulated as mapping a set of queries,
keys and values to an output vector (In self attention, the queries, keys and
values are derived from the same input). In our NmsNet, we adopt the multi-
head attention mechanism which is introduced in [8,9]. For each node (box),
the multi-head attention computes the weighted sum of all nodes (boxes) based
on the similarity of inputs which is measured by scale dot product function.
Equation (7) illustrates the scale dot product function. In this equation, Q,K, V
denote the queries, keys and values respectively while dk means the dimension
of queries and keys.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (7)

It is worth noting that the multi-head attention does not perform the single
attention function with the input vectors but first linearly projects the features
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Fig. 5. The pseudo code of matching strategy.

h times and then applies the attention function to these features in parallel.
The outputs are concatenated and projected again to get the final results. This
process is interpreted in Eqs. (8–9). In our NmsNet, we first linearly projects the
graph convolutional feature tree times and take these projected feature as the
input of Q,K, V .

MultiHead(Q,K, V ) = Concat(head1, · · · , headh)WO (8)

headi = Attention(QWi
Q,KWi

K , V Wi
V ) (9)

3.4 Detection Matching Module

The detection matching module takes the new scores and the ground truth boxes
as input and generates the training label for each detection box. Revisiting the
evaluation criterion of the benchmark, we found that the evaluation algorithm
typically sorts the detection scores and matches each detection box to ground
truth object. Note that each object can only be matched once. This strategy
prefers the detection box with high iou and ensures that each object only has one
detection result and all other boxes are false positive one. We use this evaluation
strategy in the training phase of our NmsNet. Figure 5 shows the pseudo code of
this algorithm. As we can see, the algorithm sets the box bm negative because
it is not the better one (has higher iou) or the matched object gi is already
selected.

4 Experimental Results

We evaluate our NmsNet on the VOC2007 Dataset. In the next few sections,
we will compare our method with the traditional greedy NMS algorithm and
the recently proposed Soft NMS. As for the evaluation of other detectors and
datasets, we are still in practice.
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4.1 Training Details

The VOC2007 dataset contains 9963 annotated images with 246640 labeled
objects which belongs to 20 classes. In this dataset, about 5012 images are used
to train the object detector. Before training our NmsNet, we first train a Faster
R-CNN detector on the VOC2007 dataset and then generate detection results
for each image in the training set. In this stage, we follow the settings in origi-
nal Faster R-CNN paper [2] which means we set the learning rate 0.001 for the
first 50 K mini-batches, and 0.0001 for the next 30 K iterations. After that, we
train the NmsNet with detection results generated by Faster R-CNN detector,
starting with a learning rate 0.001. Furthermore, We use the SGD (stochastic
gradient descent) algorithm to train the Faster R-CNN whereas optimize the
NmsNet with Adam.

4.2 Comparisons with Other Methods

We compare our NmsNet with the traditional greedy NMS and the recently
proposed Soft NMS. The evaluation results are reported in Table 2. It is clear
that our NmsNet improves the performance in most cases. For example, we get
an improvement of 2.04% and 1.10% over classes bus and aeroplane. In terms
of the metric MAP (mean average precision), our method achieves a significant
promotion of 0.36% compared with Soft NMS, not to mention the greedy NMS.
One may note that our method gets the worse result in some cases, such as
bottle, bird, chair, pottleplant and so on. The reason for this phenomenon may
be that the ground truth objects in these classes are small and thus the encoded
features which are defined in Eqs. (3–6) are not discriminative like features of
other classes. As for the efficiency, our NmsNet takes only 0.04 s to process
detection results of one image whereas the Faster R-CNN needs 0.2 s to detect
objects for each image. This means that the non-maximum suppression takes
much less time than the detection phase (0.04 s vs 0.2 s). Last but not least,
our NmsNet dose not receive any image features but only the information from
detection results.

4.3 Visualize the NmsNet Feature

To figure out what the NmsNet learns, we randomly choose an example which
contains four ground truth objects from the validation set and feed this sample to
the network. After that, we transform the retrieved features with high dimension
(N × 12 for input feature, N × 32 for output feature) to visible features by PCA
(principal component analysis). The visualization result is presented in Fig. 6.
We use the red dot to show the true positive samples while the false positives are
illustrated by blue one. Visualizing the input encoded feature (Fig. 6(a)), we find
that the detection samples are divided into four parts and each part is centered
on a true positive example. In addition, all true positives are overwhelmed by
their neighborhood or in other words, the redundant boxes. This is in line with
our experimental results (In Table 1, the detector without NMS will have poor
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Table 2. Comparisons with greedy nms and soft nms.

Method MAP Aeroplane Bicycle Boat Bottle Bus Car Cat

NMS 0.7516 0.7702 0.7909 0.6402 0.6040 0.8210 0.8555 0.8712

Soft-NMS 0.7623 0.7867 0.8144 0.6680 0.6050 0.8249 0.8619 0.8700

NmsNet (ours) 0.7659 0.7977 0.8273 0.6513 0.5911 0.8453 0.8677 0.8949

Method Diningtable Cow Dog Pottedplant Sofa Tvmonitor Person

NMS 0.6749 0.8385 0.8651 0.5051 0.7427 0.7765 0.7810

Soft-NMS 0.6821 0.8454 0.8682 0.5214 0.7389 0.7791 0.8143

NmsNet (ours) 0.7184 0.8414 0.8880 0.5091 0.7492 0.7734 0.7887

Method Horse Motorbike Bird Chair Sheep Train -

NMS 0.8392 0.7994 0.7754 0.5473 0.7601 0.7733 -

Soft-NMS 0.8473 0.8045 0.7825 0.5469 0.7727 0.8225 -

NmsNet (ours) 0.8546 0.8141 0.7635 0.5335 0.7673 0.8313 -

result on the metric of MAP). In contrast to input encoded feature, the output
NmsNet feature seems to be more discriminative as shown in Fig. 6(b).

(a) (b)

Fig. 6. The visualization of input encoded feature and output NmsNet feature, (a)
input encoded feature, (b) output NmsNet feature.

5 Conclusion

In this paper, we propose a novel network called NmsNet to deal with non-
maximum suppression. Our method is equipped with graph convolution and self
attention mechanism. By doing so, the proposed NmsNet predicts each detec-
tion box as true positive sample or redundant one. The experimental results on
VOC2007 dataset demonstrate the effectiveness of our NmsNet. It is worth not-
ing that our NmsNet takes no image features but only the information extracted
from detection itself. In the future work, it may be interesting to add the ROI
(region of interest) feature to the NmsNet. In conclusion, our proposed NmsNet
is an effective way to perform non-maximum suppression with acceptable time
cost.
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Abstract. Recently, 3D hand pose estimation methods taking point
cloud as input show the most advanced performance. We present a new
3D deep learning hand pose estimation network for an unordered point
cloud. Our approach utilizes EdgeConv layer as the basic element, where
an attention embedding version EdgeConv layer is proposed for feature
extraction in hand pose estimation task. To improve the result, we design
a hand pose improvement network that inputs points whose are in the
neighbor of the estimated fingers and outputs a rectify hand pose. We
evaluate our method on several famous datasets to prove that our method
can get excellent result compared to some most advanced methods.

Keywords: 3D hand pose estimation · Point cloud ·
Attention embedding module

1 Introduction

Recently, 3D hand pose estimation has aroused great concerns because of its
correlative to a broad range of human-computer interaction applications, or
augmented reality applications. Nevertheless, there are still some difficulties in
exploiting a highly accurate hand pose estimation method, due to the quality
of depth images are bad, high flexibility of joints and great variations of hand
posture.

Early studies on hand pose estimation mainly input depth image and regress
hand pose with a simple convolutional neural networks (CNNs) [1,15,31,33],
which cannot make use of spatial structure from depth image. Recently, 3D rep-
resentation data have shown outperformance than depth image based methods.
One method is to transfer 2D depth image to 3D volumetric representation, thus
a 3D CNN can be used to regress hand pose [5,13]. But the voxelized data are
too computationally in data format converting and network complexity. Another
method is to use point cloud as input [2,3,6]. Recently a novel network struc-
ture for unordered point cloud named PointNet, has shown great process in many
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tasks. PointNet utilizes symmetric function to extract global feature from indi-
vidual points which is invariant to the different sequences of the point cloud. Ge
et al. use PointNet [17,18] to estimate hand pose with comparable performance.
PointNet is a highly efficient and effective network while it lacks the ability to
make fully use of local information on the point sets. To better capture the
local information of the point sets, EdgeConv [29] is proposed to generate edge
features which can describe the relationships between a point and its neighbors
while maintaining permutation invariance.

The architecture is shown in Fig. 1, we present a dynamic graph CNN with
attention module network for hand pose estimation task. Using EdgeConv [29]
as the basic element, we present an attention embedding version of EdgeConv
(Att-EdgeConv) to construct a deep network for feature extraction from the
point cloud. Then a hand pose improvement network is used to further improve
the result by taking points whose are in the neighbor of the estimated hand pose
as input. To the best of our knowledge, it is the first time that EdgeConv [29]
is used to regress 3D hand pose from point cloud, which can better utilize 3D
spatial structure of the point cloud and regress hand joints in real time.

Fig. 1. The architecture of our proposed dynamic graph CNN with attention module
network. Our network treats N points as input, calculating edge features for each
point by an Att-EdgeConv layer, and aggregates features within each set to compute
Att-EdgeConv responses for corresponding points. The output features of the last Att-
EdgeConv layer are aggregated globally to form an global descriptor, which is used
to regress hand pose with several fully-connected layers. The hand pose improvement
network can further increase the regression accuracy of hand joints locations.

The contributions of this paper are summarized as below:

• We present a new deep learning based hand pose estimation method for
unordered point cloud. Using EdgeConv as the basic element to handle hand
pose estimation task. Compared with PointNet based methods, our method
can better capture local geometric features of point clouds while still main-
taining permutation invariance.

• We design an attention embedding version of EdgeConv. From a great number
of former layer features, our approach can generate weighted fusion features
of point cloud models, which can capture value information across a large
number of elements of a set of point cloud.
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2 Related Work

Depth-Based Methods. There are normally three categories of approachs
for hand pose estimation: generative approaches, discriminative approaches and
hybrid approaches. Getting a predefined model, generative methods make the
model suitable for observation, i.e. depth data including depth images, 3D point
cloud and so on. Discriminative methods learn a predictive model from a great
quantity of training data which maps input depth data to 3D hand gesture
parameters such as joint coordinates [8,19,24,26]. Hybrid methods aim at com-
bining the advantages of two methods mentioned above [11,20,23,32].

In the following, we concentrate on CNNs-based approachs. CNNs-based 3D
hand pose estimation approach is first presented in [25]. They predict hand
joints locations from 2D heat-maps by CNN. To withstand the negative effect
that it cannot utilize 3D spatial structure in 2D heat-maps, Ge et al. [4] apply a
structure of multi-view projection and fusion to estimate hand pose. Sun et al.
[21] use hand-crafted viewpoint-invariant features to refine hand pose iteratively.
Oberweger et al. [15] introduce a method that embedding constraint priori into
CNNs in low dimensional space, then with some simple methods to increase
accuracy [14]: adding ResNet mechanism, data augmentation, and better initial
hand pose. Ye et al. [32] introduce an attention based structure with an iterative
refinement strategy. Guo et al. [7,28] divide feature maps into several blocks and
group them in a hierarchical way to regress the whole hand pose.

3D Deep Learning. 3D data can make fully use of 3D spatial structure infor-
mation while it usually cannot directly utilize conventional CNN based method
that worked on 2D images. Thus, some methods process the 3D data into 3D
voxel representation and use 3D CNN to extract features [5,13,30]. Another way
is to process the 3D data into 3D point cloud. Qi et al. [17] presented a novel
network named PointNet, which can handle unordered point sets with symmetric
operation. But PointNet [17] cannot make fully use of local information from the
point sets. To solve the problem, some methods are provided. PointNet++ [18]
develops PointNet by a hierarchical way to extract local features with different
levels; Deep Kd-networks [9] directly adopts a Kd-tree structure to handle point
cloud. Self-Organizing Net [10] produces a Self-Organizing Map to represent the
point cloud. Dynamic Graph CNN [29] constructs a local graph structure and
update the edge features of the adjacent points.

3 Methodology

The network we presented inputs a depth image and outputs the locations of
hand joints. To make fully use of the 3D spatial structure on the hand pose,
we firstly convert the depth image into point cloud. The architecture of our
method is shown in Fig. 1. Our method takes N points P ∈ RN×3 from the
3D point cloud and normalizes them into an oriented bounding box. Then an
Att-EdgeConv layer is used as fundamental element that inputs N points from
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the point cloud and extract features of each point in regression task. In the
end, a hand pose improvement network is proposed to improve the result of
hand pose. The details of our proposed method will be described in the next
sections. Section 3.1 introduces the EdgeConv block. Section 3.2 describes the
Att-EdgeConv block. Section 3.3 presents the hand pose improvement network
and implementation details are given in Sect. 3.4.

3.1 EdgeConv

The main limitation of PointNet based method is that it cannot make fully use
of local information from point sets. To make better use of local information
from point sets, we exploit EdgeConv [29] as the basic feature extraction layer
recurrently applied in network for regressing hand pose. From Fig. 2 we can know,
all features are chosen as centroids of local areas; then K -nearest features for each
centroid feature are aggregated as a local area; a multi-layer perceptron layer
and a max pooling operation are used to extract new local edge features of each
centroid feature. After several EdgeConv layers, a global feature is abstracted
from the whole features aggregated within each set of layers by applying a multi-
layer perceptron.

Fig. 2. EdgeConv block: the EdgeConv block inputs point features and computes edge
features by applying a multi-layer perceptron and a max pooling.

3.2 Att-EdgeConv

To further increase the generalization performance of EdgeConv, we introduce
an attention embedding version EdgeConv named Att-EdgeConv. The Att-
EdgeConv encodes a wide range of contextual information into features which
can well describe the relative relationships of different point sets and their con-
tributions to the regress task. As illustrated in Fig. 3, given C -dim features of
point cloud, an EdgeConv layer is employed to generate new local edge features.
In the meanwhile, we also feed features into a multi-layer perceptron layer with
a softmax layer to restrain the output of the attention scores to [0, 1], which
represents the importance of corresponding features. Then the output of atten-
tion score branch and edge feature branch are merged in a residual connection
way. We first combine the attention scores to the edge features by element-wise
multiply operation to get refined features. Then we apply an element-wise sum
operation with edge features and refined features to get the final output.
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Fig. 3. Att-EdgeConv. It takes point cloud features as input, then with a multi-
perception and a softmax to generate attention scores. Next, the scores are applied
to the output features of EdgeConv in a residual way.

3.3 Hand Pose Improvement Network

It is apparently that the adjacent points of joint have a great influence on the
regress result. Thus, we utilize a hand pose improvement network to polish up
the result of hand pose. It inputs M nearest points whose are in the neighbor of
the estimated hand pose and outputs the improved locations of hand pose. As
is illustrated in Fig. 4, the network is highly efficient and effective that we just
use a simple PointNet module.

Fig. 4. Hand pose improvement network. M nearest neighboring points of the esti-
mated hand pose from the point cloud are fed into a simple PointNet and regress an
improved hand pose.

3.4 Implementation Details

Our network takes point cloud as input. We first segment hand from depth
image by using random decision forest (RDF) [25] and expand training data
by cropping different lengths of arm, then transfer the cropped image to point
clouds with the intrinsic parameters of depth camera. After that, we randomly
select 1024 points from 3D point cloud and normalize them into an oriented
bounding box (OBB). For EdgeConv layer, we use KNN to group features and
set K to 25. For hand pose improvement, we set M to 64.

Our work is experimented on a computer with an NVIDIA GTX 2080Ti
GPU. Our network is implemented in the Pytorch framework. In training phase,
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we use Adam optimizer with initial learning rate 0.001 and batch size 32. We
finish the training phase after 60 epochs to avoid overfitting while we divide the
learning rate by 10 after 30 epochs.

4 Experiments

In this section, we introduce three famous datasets and compare our approach
with some advanced methods.

4.1 Datasets

We evaluate our method on three famous datasets: ICVL [22], NYU [25] and
MSRA [21]. In ICVL dataset, there are 22 K training images and 1.6 K testing
images, which each image has 16 labeled hand joints. In NYU dataset, there are
72 K training images and 8 K testing images, which each image has 14 labeled
hand joints. In MSRA dataset, there are 76 K training images from nine different
subjects, which each image has 21 labeled hand joints.

4.2 Self-comparisons

To explore the effect of our method in feature extraction, we experiment our
method with two different feature extraction architectures by using a basic Point-
Net and using a PointNet++ on ICVL [22] dataset. It is observed in Fig. 5 that
the outcome of our method is better than the other methods. The average error
of our method is 7.0 mm, which is 0.4 mm less than the basic PointNet and
0.3 mm less than the PointNet++. It shows the power of our method in hand
pose feature extraction.

Fig. 5. Comparing average joint errors of our method with other structures on
ICVL [22] dataset.
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4.3 Comparisons with Advanced Methods

We evaluate our proposed approach on three famous datasets and compare with
12 advanced methods. The experiment results of the proportion of good frames
over different error thresholds as well as mean error distances for per-joint with
above approachs on three datasets can be seen in Figs. 6 and 7.

On ICVL [22] dataset, our approach performs the best with all these advanced
approachs on the mean error distances. On NYU [25] dataset, our method out-
performs some 3D deep learning methods as well as almost all 2D CNN based
approachs over almost all of the error thresholds when the threshold is under
25 mm, which indicates that our method may not be robust enough with shelter
occlusion. On MSRA [21] dataset, our method achieves comparable performance
with other methods.

Fig. 6. The proportions of good frames on ICVL [22] (left), NYU [25] (middle) and
MSRA [21] (right) datasets with some advanced methods.

Fig. 7. The mean error distances on ICVL [22] (left), NYU [25] (middle) and MSRA
[21] (right) datasets with some advanced methods.

Some qualitative results for ICVL [22], NYU [25] and MSRA [21] datasets
can be seen in Fig. 8.

4.4 Time and Space Complexity

The testing time of our approach is 4.9 ms. The first step takes 1.3 ms to convert
the image into point cloud and randomly select point cloud. Network forwarding
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Fig. 8. Qualitative results for ICVL [22] (left), NYU [25] (middle) and MSRA [21]
(right) datasets.

is the next step, which takes 3.5 ms for hand pose estimation network and 0.1 ms
for hand pose improvement network. So our approach is over 204 fps in real time.
In the meanwhile, the size of our model is 10.3 MB, including 7.5 MB for hand
pose estimation network and 2.8 MB for hand pose improvement network, while
there is nearly 400 MB to 3D CNN [5].

5 Conclusion

Our work aims at exploring a generalized 3D deep learning network to regress
hand joint coordinates. To better make use of the local structures from point
cloud, we use EdgeConv layer as the basic element with an attention embedding
module. Hand pose improvement network can further refine the result by a sim-
ple PointNet. The experimental results show that our approach makes superior
performance on hand pose datasets. This approach makes a technical method
for tracking in the interaction between environment and human.
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Abstract. Semantic segmentation with deep learning has achieved great
progress in classifying the pixels in the image. However, the local location
information is usually ignored in the high-level feature extraction by the
deep learning, which is important for image semantic segmentation. To
avoid this problem, we propose a graph model initialized by a fully convo-
lutional network (FCN) named Graph-FCN for image semantic segmen-
tation. Firstly, the image grid data is extended to graph structure data
by a convolutional network, which transforms the semantic segmentation
problem into a graph node classification problem. Then we apply graph
convolutional network to solve this graph node classification problem.
As far as we know, it is the first time that we apply the graph convo-
lutional network in image semantic segmentation. Our method achieves
competitive performance in mean intersection over union (mIOU) on the
VOC dataset (about 1.34% improvement), compared to the original FCN
model.

Keywords: Graph neural network · Graph convolutional network ·
Semantic segmentation

1 Introduction

The semantic segmentation is an essential issue in the computer vision field,
which is much more complex than the classification and detection task [11].
This is a dense prediction task which needs to predict the category of each pixel,
namely it needs to learn the object outline, object position and object category
from the high-level semantic information and local location information [16].

Deep learning-based semantic segmentation methods, particularly, the convo-
lution neural networks have taken a series of significant progress to this domain.

This work is supported partly by National Key Research and Development Plan under
Grant No. 2017YFC1700106, and No. GJHZ1849 International Partnership Program
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The powerful generalization ability of obtaining the high-level features brings the
outstanding performance of the image classification and detection task [5,19].
But the generalization accompanies the loss of local location information, which
increases difficulties for dense prediction tasks. The high-level semantic infor-
mation with a large receptive field corresponds to a small feature map in the
convolution neural networks, which brings the loss of local location information
at the pixel-level [6,7]. Many deep learning-based methods have made improve-
ments on this problem, such as fully convolutional network (FCN) [16], Segent
[1], Deeplab methods [2–4]. These works use the fully convolutional layer, dilated
convolution, and pyramid structure to lessen the location information loss in
extracting high-level features.

In order to solve this problem, firstly, we establish a graph-based model
for the image semantic segmentation problem. The graph-based methods have
been widely used in segmentation problems [10]. The methods regard the pixels
as the nodes, and the dissimilarity between the nodes as the edges. The best
segmentation is equivalent to the maximum cut in the graph. And combining
the probability and graph theory, the probabilistic graphical model methods,
such as Markov random field and conditional random field, are applied to refine
the semantic segmentation result [13,20]. These methods model the detected
object as the nodes of a graph in the image, and by extracting the relation
between the objects to improve the detection accuracy [15]. Compared with the
grid structure representation of input data in the deep convolution model, the
graph model has a more flexible skip connection, so it can explore a variety of
relationships among the nodes in the graph [9,17,18].

Limited by the amount of calculation, we initialize the graph model by the
FCN. The graph model is established on a small size of the image with the nodes
annotation initialized by FCN [16] and the weights of the edges initialized by
the Gauss kernel function.

Then we use the graph convolutional network (GCN) to solve this graph
model. GCN is one of the state-of-the-art method to deal with graph structure
data [8,12,14]. The node-based GCN uses the message propagation to exchange
information between neighbor nodes. This process can extracts the features in a
large neighborhood of the graph acted the similar role of convolution and pooling
layer in the convolutional network. Because there is no nodes disappear in this
process, the node-based GCN expands the receptive field and avoids the loss of
local location information.

In this paper, a novel model Graph-FCN is proposed to solve the semantic
segmentation problem. We model a graph by the deep convolutional network,
and firstly apply the GCN method to solve the image semantic segmentation
task. The Graph-FCN can enlarge the receptive field and avoid the loss of local
location information. In experiments, the Graph-FCN shows outstanding per-
formance improvement compared to FCN.
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2 Problem Formulation

Semantic segmentation is a pixels classification problem in the image. In 2015,
Jonathan Long et al. used the convolution layer instead of the fully connected
layer to establish the end-to-end FCN for pixels classification. The FCN adopts
the convolutional layer to extract the local feature on the receptive field. Then it
uses the upsampling to restore the feature map to the original size of the image.
The model implements pixels-to-pixels mapping, and all the pixels in a single
image are propagated forward and backward in parallel. The label image can
be obtained by arranging the categories of pixels by pixel position. The input
of the FCN is the image X,X ∈ R3×w×h, the w is the weight of the image
and the h is the height of the image. The output is the predict label image
Y,Y ∈ Rw×h, yi,j ∈ Rw×h. For semantic segmentation task, it is usually uses
the cross-entropy loss function of all the pixels in the label image:

LFCN =
w∑

i=1

h∑

j=1

−p(y∗
i,j) log (p(yi,j)) (1)

where the truth label of the pixel (i, j) of the label image is denoted as y∗
i,j , and

p(y∗
i,j) represents the probability of the y∗

i,j . FCN model can be trained end-to-
end by minimizing the cross-entropy loss LFCN using the SGD algorithm.

For the deep learning methods, generalization facilitates identification of
deformed objects in image classification and recognition tasks. The pool layer
increases the receptive field and decreases the resolution which leads to the loss
of pixel position information [16].

Fig. 1. The structure of FCN.

FCN introduces the skip connection to fuse feature layers of different scales,
as shown in Fig. 1. Considering that the FCN-16s is just under FCN-8s 0.3 %
mean intersection over union(mIOU) and has a more concise structure than
the FCN-8s, we adopt the FCN-16s as the basic model to initialize the node
annotation for the GCN nodes. More details of the nodes describes in Sect. 3.1.
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3 Graph Model in Semantic Segmentation

The GCN is designed for solving the learning problem defined on the graph struc-
ture data set. The graph structure data can respect as a triple tuple G(N,E,U).
N respects the nodes set of the graph, it is a |N | ∗ S matrix, |N | is the number
of the graph nodes, S is the dimension of the node annotation vector. E is the
graph edges set. U respects the graph feature, and we omit the U for it not
involved in our task. Different from the data representation in Euclidean spatial,
the matrix N and edges E are not unique in representation. Matrix N corre-
sponded to E, and they are according to the sequence of the nodes. We train
the model by supervised learning. The node nj means the node set in graph j,
tj is the label set to node set nj . So the graph model in our task can be shown
as the Eq. (2).

min
w

Loss(Fw(G(N,E)), t)

s.t. Gj(N,E) −→ tj , j ε Tr.
(2)

We use the cross entropy function as the loss function in our model. Tr means
the training set.

3.1 Node

In our model, the node annotations are initialized by the FCN-16s. By the end-
to-end training, FCN-16s can get the feature map with a stride of 16 and 32, as
shown in Fig. 2. The feature map with strides 32 can obtain the same size of the
feature map with strides 16 by upsampling with the factor 2. The annotation xj

(to node j) is initialized by the concatenation of the two feature vectors and the
location of each node in the feature map. This annotation contains the extracted
features on the local receptive field. In the training process, we obtain the label
of the node by pooling the raw label image.

Fig. 2. The node annotation initialization process. The node annotation is the con-
catenation of two layers of the FCN-16s. |N | is the number of the nodes and S is the
dimension of node annotations.
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3.2 Edge

In the graph model, the edge is respected by the adjacent matrix. We assume
that each node connects to its nearest l nodes. The connection means that the
nodes annotation can be transferred by the edges in the graph neural network.
We give an instance to describe the receptive field in the graph neural network,
as shown in Fig. 3. For example, l is 4. In the view of the influence of distance on
correlation, we adopt the weight adjacent matrix A by the Gauss kernel function.

Fig. 3. The receptive field of a 2-layer GCN when l is 4, which is different from the
convolutional layer.

3.3 Training with Graph-FCN

We use GCN to classify the nodes of the graph model that we have established.
The GCN is one of the deep learning methods to process graph structure [8,12].
For a graph the normalized Laplacian matrix L has the form in Eq. (3).

L = I − D−1/2AD−1/2, (3)

where matrix D is the diagonal degree matrix, Dii =
∑

j Aij . For the Laplacian
matrix L has the orthogonal decomposition L = UΛUT , the matrix U is orthog-
onal eigenvectors, the matrix Λ is the diagonal matrix of eigenvalues. The graph
fourier transform gθ is defined as

gθ(L) ∗ x = gθ(UΛUT )x = Ugθ(Λ)UT x = Udiag(θ)UT x, (4)

where “*” represents the convolutional operator.
Use the Chebyshev polynomials as an approximation of gθ, we get

gθ ∗ x ≈ θ0x − θ1D
−1/2AD−1/2x. (5)

Due to that θ0 = −θ1 hold in the first order Chebyshev polynomials, we get the
Eq. (6),

gθ ∗ x = θ0(I + D−1/2AD−1/2)x. (6)

In order to ensure convergence, the equation Eq. (7) exactly is one layer operator
in graph convolutional network. This operator takes the role of convolutional
and pool layer in the convolutional newtwork and the features are propagated
between nodes in this process.

Xk+1 = ÂXkΘ, Â = D̂−1/2(I + A)D̂−1/2, (7)
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where D̂ is the degree matrix of I + A.
The GCN is a form of Laplacian smoothing. When the messages propagate

among the neighbor nodes, the neighbor nodes tend to have similar features
[14]. This means that the GCN can not be very deep for the over-smoothing,
so we adopt a 2-layers GCN network. The maximum range of node message the
current node received can be regarded as the receptive field in the graph. For
the instance described in Sect. 3.2, the size of receptive field is 5×32×32, which
is five times than that of FCN-16s. Moreover, there is no nodes disappeared in
this progress which means that there is no loss of local location information.

In the Graph-FCN, the FCN-16s realize the nodes classification and initial-
ization of the graph model in a small feature map. Meanwhile, the 2-layers GCN
gets the classification of the nodes in the graph. We calculate the cross-entropy
loss to the both outputs of these two parts. The same as the FCN-16s model, the
Graph-FCN is also end-to-end training. The network structure shows in Fig. 4.

Fig. 4. The structure of the Graph-FCN. There are two outputs of the model, and
two losses Loss 1 and Loss 2. They share the weights of the feature extracted by
convolutional layer. Loss 1 is calculated by output1 and L2 calculated by the output2.
Through minimizing Loss 1 and Loss 2, the FCN-16s can improve performance.

4 Experiments

In the experiments, we test our model on the VOC2012 dataset and get the
performance improvement than the original FCN model.
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4.1 Implementation

We take a 366 × 500 image in VOC dataset as an instance to describe the input
and output in detail. In the FCN-16s, after the several pool layers we obtain
512 channels feature map f1 and 4096 channels feature map f2 of the image.
By upsampling, the feature map f2 achieves the same size as feature map f1
(4096 × 23 × 32). As described in Sect. 3.1, we get the nodes annotation with
the size of 4096 + 512 + 2.

In experiments, the input images are the raw images of the VOC data with
different size. In order to adapt to the different sizes of the images, we set the
batch size 1. The weights of FCN-16s part are initialized by the pre-trained
weights, the results of the FCN-16s are shown in the Table 1. The GCN part is
initialized randomly. In the first 8,000 iterations, we only adjust the parameters
of the GCN part with the learning rate 0.1. Then set the total learning rate
0.00001 to train the whole model with the weight decay 0.1. In the training, we
adopt Adam as the optimizer.

4.2 Results

The GCN part in the Graph-FCN model can be regarded as a special loss func-
tion. After the model training, the forward output is still the FCN-16s model’s
output. In the test, the forward part of the Graph-FCN has the same structure
as the FCN-16s. But by adding the GCN parts as an additional loss the model
the semantic segmentation mIOU has improved 1.34%.

Table 1. Graph-FCN vs. FCN-16s

Method (%) mIOU ACC f.w.IU

FCN-16s 64.57 90.67 84.19

Graph-FCN 65.91 91.98 85.68

Figure 5 shows some samples predicted by Graph-FCN and FCN. From the
Fig. 5, we can see that the proposed Graph-FCN has much smoother results
compared with FCN-16s. It may be due to that Graph-FCN applies the func-
tion of Laplacian smoothing to smooth the predictions. Moreover, the proposed
method reduces classification error rate. For example, FCN-16s classfies a part
of a sheep as a part of a dog, shown in the second line of Fig. 5. It reflects that
the Graph-FCN can extract the messages from the neighbour nodes which help
the current node classification.
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Fig. 5. The image semantic segmentation results. The second column is the Graph-
FCN results. The third column is the FCN-16s results. The fourth column is the ground
truth.

5 Conclusion

We model a graph network on the image by the FCN-16s, and propose a Graph-
FCN model for semantic segmentation task. The Graph-FCN model can extract
the feature on a larger receptive field than the FCN-16s. In the experiment, for
the same forward structure, the Graph-FCN achieves a higher mIOU than the
FCN-16s, which proves that the Graph-FCN enhance the feature extracting for
the pixel classification.
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Abstract. Neural Architecture Search (NAS) shows the ability to auto-
mate the architecture engineering for specific tasks recently which is
extremely promising. Many published works apply reinforcement learn-
ing or evolutionary algorithm to design the neural architecture for image
classification and achieve state-of-the-art performance. However, using
NAS to perform other challenging tasks, such as inpainting irregular
regions in an image, has not been explored yet. The target of image
inpainting is to generate plausible image regions to fill the missing regions
in the original image. It has been widely used in many applications. In
this paper, we are interested in applying neural architecture search meth-
ods to image inpainting tasks. We propose to use reinforcement learning
to automatically design the network architecture. Our method can effi-
ciently explore new network structure based on existing architecture. The
experiment result demonstrates that the proposed method can design an
efficient and high-quality architecture for image inpainting.

Keywords: Reinforcement learning · Neural architecture search ·
Image inpainting · Partial convolution · AutoML · U-Net

1 Introduction

Neural Architecture Search (NAS) is a subfield of Automating Machine Learn-
ing (AutoML). It has been an impressive and interesting research areas form
decades ago. Most of the research works are based on evolutionary algorithm
(EA) and reinforcement learning (RL) [7,14,16,27,28]. The EA-based methods
can evolve the architecture by selecting better neural architecture generations
with crossover and mutation [18,21]. These methods usually will need a huge
number of computational resources and time. Deep reinforcement learning has
obtained some great successes in many areas. Many RL-based neural architec-
ture search methods have also been proposed for image classification [7,27,28].
These RL-based methods use the evaluation metrics of validation dataset as a
reward and explore the new architecture by a sequence of actions. Both these
methods have shown the ability to find an architecture which can outperform
human designed architecture.
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The existing NAS methods mainly focused on the image classification, which
is a typical image task. There are many other challenging tasks that many
researchers are working on. Researchers need to manually design the architec-
tures for each specific task. The network architectures for different tasks may
be different. In order to reach a better performance, researchers need to spend
much time to try different architectures and fine-tune the hyper-parameters.
The success of NAS on image classification shows a way to let the machine to
automatically design architectures for these tasks.

Image inpainting is an automatic digital inpainting problem. It is more chal-
lenging and complicated than image classification. The architectures for image
inpainting need to focus more on the pixel value in order to fill the missing
regions of an image with the semantically meaningful pixel. Some neural net-
work architectures have been proposed to solve this task, e.g., [3,5,9,13,23].

Two latest state-of-the-art methods, i.e., [24,25], present two new architec-
tures to generate a visually realistic and semantically plausible image. Both of
them apply a U-Net like architecture in their approaches [19]. It was originally
used for the segmentation of neural structures. In U-Net, an upsampling opera-
tion has been proposed to replace the pooling operation in the usual contracting
network. The upsampling operation allows the neural network to propagate the
information from a lower resolution to a higher resolution.

In our paper, we will show how to apply reinforcement learning NAS methods
to automate the exploration of new architectures for image inpainting. We pro-
pose to apply a network transformation architecture search method to search the
network architecture, which can re-use the existing architectures and parame-
ters. This method is time-saving and has high computational efficiency than
other NAS methods. We also propose a new type of actor operation in rein-
forcement learning controller so that the NAS method can generate a U-Net
like architecture. The experiment result shows that our NAS method can create
a competitive architecture. To the best of our knowledge, we are the first one
to apply NAS in image inpainting tasks. This result shows that the automatic
neural architecture search methods can be easily extended and applied to more
challenging tasks other than image classification. It can help us to save a lot of
time to design new architecture manually.

In summary, our contributions are:

– The first one to apply the NAS method to image inpainting task.
– Propose a net reinforcement learning actor in NAS and extend the NAS

method to generate more various architecture, e.g., U-Net like architecture.
– Show the ability of NAS to design architecture for complex tasks.

2 Related Work

2.1 Image Inpainting

Image inpainting [5] is the task to reconstitute the damaged or missing regions
of an image, in order to restore its unity and make it well defined. If the miss-
ing regions, which are also known as holes, is not the regular rectangle shape,
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then they will be called irregular holes. There are many applications of image
inpainting, e.g., fixing the broken image, removing unwanted object, improving
image resolution. The methods that apply to image inpainting can be mainly
divided into non-learning approaches and learning approaches.

The Non-learning approach [4,9,10] usually will propagate the pixel from
near field. This method can obtain a good result when the holes are small and
inpainting regions are not complex. However, if the impainting regions contain
non-repetitive objects, it will create the over smooth and semantically meaning-
less results.

The learning approach is mainly based on deep learning. A number of Learn-
ing approaches have been proposed recently [12,13,23,25]. These methods apply
deep learning to learn the semantic representation of the image. For example,
[25] applied GAN to perform the image impainting task. In their search, they
proposed to add a contextual attention layer, a feed-forward generative network.
The contextual attention layer can learn how to generate the missing regions by
copy or borrow feature image. The neural network in that work contains two
stages. The first stage will rough out the missing content by using the dilated
convolutional network. The second stage is to use the contextual attention layer
to refine the generated patches. This feed-forward neural network can generate
a great inpainting result on different datasets.

There are also a number of state-of-the-art image inpainting approaches are
using U-Net [19] like architecture, e.g., Liu et al. [15] propose to use partial convo-
lutional layers to replace the typical convolutional layers. There is an automatic
mask update step in the partial convolutional layers. This partial convolutional
layer is used to replace the original CNN in the U-Net. The method can handle
the irregular holes efficiently. Yan et al. [24] propose to add a shift-connection
layer, a new type of CNN, to the U-Net. These works have shown that network
architecture for image inpainting has a great difference to the image classification
tasks.

2.2 Architecture Search

Many techniques have been applied on neural architecture search, such as, evo-
lutionary algorithms, reinforcement learning, Bayesian optimization, random
search, etc. Many researchers have started working on NAS decades ago, e.g.,
[1,11,20]. NAS has shown its ability on the automating architecture design.

Recent works of [2,17,26,27] treat NAS as a reinforcement learning problem.
The action of the agent will be considered to generate the structure of a neural
network. The agent will get a reward from the evaluation result from validation
dataset. Zoph and Le [27] use a recurrent neural network (RNN) as a controller
to generate the new structure. The number of filters, filter height, filter width,
etc., can be predicted by the RNN controller.

Most of these architecture search is started from scratch. It will take a
lot of time and computer resources to get an outperformed human designed
architecture. And it sometimes will also fail to get a good architecture espe-
cially when the computer resources is limit. So [6] propose to make use of the
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Fig. 1. Tree structure representation of neural network

existing human designed architecture, which can get a good architecture with
much fewer resources and time. The search is started from an existing net-
work, e.g., DenseNet, ResNet and Inception Net. The reinforcement learning
controller will apply the Net2Net technique [8] to perform the Net2WiderNet and
Net2DeeperNet transformation. Net2WiderNet transformation will replace the
existing layer with a wider layer. Net2DeeperNet will replace the layer with and
deeper layer. Both of these two transformations are function-preserving trans-
formation.

In the work of [7], they proposed to use the path-level transformation to
allow the bidirectional LSTM reinforcement learning meta-controller to explore a
more flexible architecture. It can support multi-branch network architecture, e.g.,
ResNets and DenseNets. The path transform is based on the Net2Net technique
[8]. These path transform operations are function-preserving. The training for
new architecture can be based on previous architecture status, so that training
is much faster. It can achieve competitive results in image classification tasks
with 200 GPU-hours compared to 48,000 GPU-hours in [28]. However, it cannot
generate U-Net like architecture. This search method can be problematic when
applying to image inpainting tasks.

3 Approach

Similar to [15], we will use tree-structured architecture to represent the neural
network. Each node (except leaf nodes) in the tree contains an assign operation
and a merge operation. Each edge in the tree represents the primitive operation,
e.g., pooling, convolution, up-sampling. Figure 1 shows an example of a tree-
structured network architecture. The input will go down from the root node, by
applying the assign operation on each node and edge. Then go up from a leaf,
apply the merge operation to obtain the output.
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Let x be the input, output of a node is T , the output of ith child node is T c
i ,

the edge operation of the ith child is Ei. The number of child node is m, so that
the output of a node can be denoted as:

yi = T c
i (Ei(assign(x, i))), 1 <= i <= m,

T (x) = merge(y1, ..., ym),
(1)

where assign(x, i) is an function that assign the input x to ith child based on
the assign operation, merge(·) denotes merging the output of m children based
on the merge operation, yi is the output of ith child. If the child is a leaf node,
then we do not do any operation. We just return the input x.

The available assign operations are: copy, split and none. The merge opera-
tions are: add, concat and none. When the operation is none, we will do nothing
on the input. We just directly pass to the next operation.

The architecture of RL meta-controller is similar to the one proposed by [15].
We use tree-structured LSTM in our reinforcement learning meta controller [7]
to encode the network architecture. Two kinds of tree-structured LSTM will be
used. The Child-Sum Tree-LSTM will be applied for add merge operation node,
N-ary Tree-LSTM will be applied for concat merge operation [22].

The controller will sample the transform operations and then apply to the
existing architecture iteratively to generate new architectures. The new archi-
tecture will be trained and evaluated. The evaluation result will be used as
a reward to update the controller by policy gradient algorithms. There is an
encoder network in the controller, which is used to encode the network architec-
ture and generate a low-dimensional representation. The transform operations
are decided by softmax classifiers.

The RL meta-controler will automatic design the architecture for image
inpaiting. Most of the image inpaiting methods can only handle rectangular
regions. Liu et al. [15] introduce the partial convolutional layer, which can handle
irregular regions and get a plausible inpainting result. The partial convolutional
layer contains partial convolution operation and mask update operation. The
partial convolution can be defined as:

x′ =

{
WT (X � M) 1

sum(M) + b, if sum(M) > 0

0, otherwise
. (2)

Here, x′ is the partial convolution output per location, W is the convolu-
tion filter weights, X is feature input of current convolution window, M is the
corresponding mask. � denotes element-wise multiplication. The mask can be
updated by

m′ =

{
1, if sum(M) > 0
0, otherwise

, (3)

where m′ is the updated mask per location. This partial convolutional layer
would be used in our approach.
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Fig. 2. Architecture transform. From left to right, (a) adds a child node with an identity
edge, (b) applies an U-Shape transform to the identity edge, (c) use the tree architecture
to represent the network architecture

We also noticed that the network architecture for image inpainting is different
to image classification. Most of the architecture for image inpainting are U-Net
like architecture. In order to generate a U-Net like architecture, except the basic
layers, e.g. partial convolution, identity, etc., we also need a new type of layer,
up-sampling layer. The available layers in the edge are:

– conv 1 × 1
– identity
– partial conv 3 × 3
– partial conv 5 × 5
– partial conv 7 × 7
– up-sampling 2 × 2

The transform operations are similar to [7], except the U-Shape transform.
The U-Shape transform will add a new branch to the network. The new branch
contains a copy operation, a pooling layer, a convolutional layer, an upsampling
layer and a concat operation. The available actors in our reinforcement learning
meta-controller are:

– Choose one child node, decide which assign operation (copy, split, none) and
merge operation (add, concat, nont) will be applied, how many child nodes
should be added

– Choose leaf node and decide whether expand it by an identity edge
– Select an identity edge to replace with one available layer type
– Select an identity edge and decide whether apply an U-Shape transform

Figure 2 shows an example of network architecture transform. The network
starts from a simple convolutional architecture. By applying the add identity
edge actor, U-Shape transformation actor, it will become a U-Net like archi-
tecture. This kind of network architecture can be easily represented by a tree
structure.
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(a) The inpainting result generated by Patch Match

(b) The inpainting result generated by the best model after 150 hours

Fig. 3. Inpainting comparison

Fig. 4. Mask data sample

When we start the neural network architecture search. We can also use an
existing well know architecture to initialize the parent architecture for the rein-
forcement learning meta-controller. Half of the actors are function-preserving,
so that after transforming to the new architecture, many parameters can be
re-used. This will greatly speed-up our training and architecture search.

We also accelerate the architecture search by parallel training. The meta-
controller will generate multiple new architectures and distributed to multiple
machines to do the training. When the training for each architecture is finished,
the evaluation result will be collected.

We use the loss functions introduced by [15]. These loss functions will evaluate
both composition and per-pixel reconstruction accuracy.

4 Experiments

We evaluate our NAS model on one of the most challenging Places2. There are
more than 10 million images with 400+ sense categories in this dataset. We use
the irregular mask dataset which provided by [15] to generate the irregular hole.
There are 55,116 masks in training set and 24,866 masks in the testing set. All
the mask size for both training and testing set is 512 × 512. The mask will be
randomly selected and combine with the image to generate a new image with an
irregular hole (Fig. 4).
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(a) The sample images before inpainting

(b) The ground truth images

Fig. 5. Sample experiment images

It will take a long time to train each architecture generated by the meta-
controller. To speed up the training process, we distribute the generated multiple
machines to do parallel training. We use four worker machines to do training.
The meta-controller will put all new architecture to the network pool. Once
the worker machine is available, it will select one untrained architecture to do
training. When the training is finished, it will send the loss of the architecture
to the meta-controller. Each worker machine contains four NVIDIA TITAN X
GPUs (12 GB).

We train three epochs for each generated network architecture. We select
the best network architecture after 150 h and fine-tuning it by training another
epoch. Figure 5(a) is the several sample images before inpainting. Figure 3(a)
shows the image that generated Patch Match [4]. Figure 3(b) shows the generated
images by that model. We can see the model can fill the missing regions with
plausible content. It is competitive to the state-of-the-art approaches.

We also do the quantitative comparisons of the methods. We compare Patch-
Match and our method by total variation (TV) loss and peak signal-to-noise ratio
(PSNR).

Table 1. Comparison of the PatchMatch and the best model reported by our method
after 150 h

Method TV loss PSNR

PatchMatch 28.5% 20.30

Our method 28.4% 25.28

From Table 1, we can see that our NAS generated architecture can get a
better result than PatchMatch. These evaluation metrics are not perfect since
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there are many different solutions fill the missing regions to the original image,
but it still reflects the reality of the generated image in some aspects.

5 Discussion

Some NAS works have shown that the auto-generated neural network can out-
perform the human design network. However, most of these works only focus
on several specific tasks. The method or search space of these works can only
work on the specific task. In this paper, we extend the method to another task,
image inpainting. We found that we need to put a lot of effort to extend the
existing methods to this new task. In order to let the NAS work on other more
general tasks naturally, we may need to re-design the search method and extend
the search space. The NAS process is time-consuming. We also need to pay
attention to the efficiency. In our future work, we will consider modifying the
tree-structured representation. Let it cover more network architectures. And we
might add a meta-learning process, which can identify what task it is working
on and suggest the candidate initial architectures, to our NAS method.
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Abstract. The capsule network is considered as the latest technology in
the field of computer vision. However, it needs a large amount of storage
space due to the large amount of parameters. In this paper, we have
adopted two methods to solve this problem. First, a method of sharing
the parameters of capsule layer is proposed to solve the problem of too
many parameters in capsule layer, which can decrease by 18% parameters
compared with the previous. Second, we redesigned the structure of the
reconstructed network to replace the original, reducing the network’s
parameters by 16%. Moreover, we combine the two methods to further
reduce the parameters, which can decrease by 34%. Finally, we use the
improved capsule network for MNIST handwritten digit recognition, the
result is almost the same as or even slightly higher than the original
capsule network, and the reconstructed images also can smooth the noise.
This article provides new ideas for the future optimization methods of
various capsule networks.

Keywords: Capsule network · Shared parameters ·
Reconstructed network

1 Introduction

In 2012, the CNN structure-AlexNet won the championship of ILSVRC in image
classification competition [1]. From then on, CNN began to receive widespread
academic attention, resulting in the famous CNN structure of ZFNet [2],
VGGNet [3], GoogleNet [4] and ResNet [5]. These structures are widely used
in the fields of image classification [1–5], object detection and segmentation [6–
10], text detection and recognition [11] and greatly promote the development of
artificial intelligence.
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Although CNN made rapid breakthroughs in recent years, there are also some
shortcomings. It requires many training datas, and cannot handle the image
ambiguously expressed. Because of many pooling layers in CNN, some informa-
tion would be lose. Its scalar output also cannot well reflect the transformation
of the spatial location. In response to these deficiencies of CNN, Hinton proposed
a capsule network structure [12] whose output is a vector that can well represent
the attitude information of an object, such as direction, position, thickness, etc.,
and the length of a vector is used to represent the probability of existence of an
object. Moreover, the capsule network can well complete the network training
when only needs much less data than CNN.

Hinton’s capsule network has significantly reduced the amount of parameters
compared to the baseline CNN, but its parameters in capsule and reconstruction
layer are still quite large and the reconstruction layer uses a three-layer fully con-
nected network that will cause gradient disappear and other issues in training
process. Therefore, in this paper, a method of parameter sharing is proposed
for the capsule layer of capsule network to further reduce the parameters of the
capsule layer and reduce the training complexity. Moreover, we redesigned the
structure of reconstruction layer of capsule network, using the form of decon-
volution network, adding Batch Normalization optimization technology to fur-
ther simplify the reconstruction layer structure, greatly reducing the amount of
parameters.

2 Related Work

In 2011, Hinton proposed for the first time that neural network can output an
overall instantiation vector to represent the learned features and validated that a
change to the input vector on Transforming Auto-encoders can cause the output
change accordingly [13]. This is called equivariance. In 2017, Hinton proposed a
capsule network which expressed the attitude of the object in the direction of the
vector, the probability of the existence of the entity in terms of the length of the
vector, and proposed a routing-by-agreement algorithm which was successfully
applied to the task of handwritten digit recognition [12].

In this paper, we try to reduce the parameters of the capsule network while
keeping the recognition accuracy, and further reduce the network complexity.
We mainly use the deconvolution network and Batch Normalization optimiza-
tion techniques to redesign the structure of the reconstruction layer. In pixel-wise
prediction such as image segmentation [14] and image generation [15], because
of the need to do the original image size space prediction, and the convolution
tend to reduce the size of the image, so often need to upsample to restore the
original picture size, deconvolution acting as an upsampling role. The deconvo-
lution network used in this article is similar to the usage of upsampling. Batch
Normalization optimization technology was proposed in 2015 [16], and now it
has been widely used in the field of deep learning. This article applies it to the
design of the reconstruction layer to maintain the stability of the network.
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3 Proposed Method

A three-layer capsule network with new reconstructed network structure is shown
in Fig. 1. The first layer is an ordinary convolutional layer, using 256, 9 × 9
convolution kernel with stride of 1 and ReLU activation function. The second
layer is the primary capsule layer, which consists of 6 × 6 × 32 capsules, each
with 8 vectors. In this case, each capsule in this layer obtained from the feature
map of the first layer using a 9 × 9 convolution kernel and taking a stride of two.
The third layer is a digit capsule layer that outputs 10 capsules, each with 16
vectors. In this case, the output of each capsule in this layer connected with all
the capsules in the second layer, i.e. the two capsule layers are fully connected.
Calculate the length of the 10 capsule vectors to represent the output. Then
connect the correct vector to reconstructed network.

Fig. 1. Three-layer capsule network with new reconstructed network structure

3.1 Shared Parameters

The second layer of the primary capsule layer has 32 × 6 × 6 capsules. In the
original Hinton’s paper, each capsule between the second layer and the third layer
have an 8 × 16 weight matrix connection, the number of weight parameters is 32
× 6 × 6 × 10 × 8 × 16 = 1,474,560, and the number is very large. Therefore, in
the research of this paper, a method of sharing weight parameters is proposed.
As shown in Fig. 2, the capsules that the primary capsule layer are arranged in
a column and only the weights between the front n capsules and all the capsules
in the latter layer are trained. The following capsules of (32 × 6 × 6/n − 1)
replicate the previous weight. With this method of sharing weight, the number
of parameters can be reduced to n × 10 × 8 × 16. We take different n for
experiments and the specific experimental results are shown in the fourth part.
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Fig. 2. Shared the weights from the primary capsule layer to the digital capsule layer

3.2 Reconstructed Network

At Hinton’s work [12], he used three fully connected layers to reconstruct the
image, in order to motivate the digit capsule layer’s output vector to better
represent the characteristics of the input image. The total number of neurons
in the three fully connected layer is 512, 1024,784 and the input is 16, so the
number of parameters in the reconstruction layer is 1,337,616. The parameters in
these three fully connected layers are quite large, and excessive numbers of fully
connected layers may cause problems such as the disappearance of the gradi-
ent in the training process. Therefore, this paper redesigned the reconstruction
layer of capsule network, using deconvolution network instead of the original
multi-layer fully connected network, can not only greatly reduce the number of
parameters but also slightly improve the accuracy on the task of handwritten
digit recognition.

Reconstructed network structure, detail chart as shown in Figs. 1 and 3. First,
we masked out the incorrect output vectors of the digit capsule layer, leaving
only the correct output of a capsule corresponding to the 16 vectors. Therefore,
the input of reconstructed network is 16, and after a full-connected layer, and
then using the optimization method of batch normalization, the 14 × 14 × 16
feature maps are obtained through ReLU activation function. Then we used a 5
× 5 kernel for deconvolution, resulting in a reconstructed 28 × 28 × 1 output
picture.
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Fig. 3. Detail chart of reconstructed network

4 Experiments and Results

4.1 Training Process

The experiment uses MNIST handwritten digital data set [17]. The framework
uses Mxnet [18], the optimizer uses Adam optimizer [19], the initial learning rate
is 0.0005, and the decaying learning rate is 0.99. The routing between the two
capsule layers is 3 and trained for 200 epochs. All other parameters are designed
in accordance with Hinton’s capsule network.

4.2 Experimental Results

First, we validate the method of sharing the weight parameters between capsule
layers proposed in this paper. The experimental results are shown in Fig. 4(a). We
take the value of n for 96, 48, and 36 respectively. As you can see, the accuracy of
training the first epoch is higher than the original when taking different values of
n. When n is taken as 96 or 48, the accuracy is higher than the original one after
convergence of the training. When n is 36, the final convergence’s accuracy is
about the same as the original one, and the parameters between the two capsule
layers decrease to 1/32 of the original network, the total number of network
parameters decreased by 1.5M, as shown in Table 1.

Next, we verify the validity of the newly designed reconstruction network.
The experimental results are shown in Fig. 4(b). It can be seen that the accuracy
obtained when the reconstructed layer is converged is higher than the original one
and the amount of parameters is reduced to 1/26 of the original reconstructed
layer, which greatly reduces the complexity of the network. In this case, the total
number of network parameters are decreased by 1.3M, as shown in Table 1.

Moreover, we combine the newly designed reconstruction network with the
method of sharing the weight parameters between capsule layers. The experimen-
tal results are shown in Fig. 4(c). It can be seen that the accuracy of training
the first epoch is higher than that of the original when n takes different values.
The accuracy of convergence is slightly lower than that of the network without
shared parameters, but when n takes 36, the parameters of the whole network
are only 5.4M, compared with the original network’s 8.2M parameters, it has
greatly reduced, as shown in Table 1.

Finally, we present the reconstruction images that compared with the original
images. As shown in Fig. 5, the first column is the original images, the second
column is the reconstructed images of the previous capsule network, the middle
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Fig. 4. The experimental results. (a) Recognition accuracy when takes different values
of n (b) Results of improved reconstructed network compared with the original (c)
Results of reconstruction network with and without the method of sharing the weight
parameters

Table 1. Total number of parameters of improved network parameters with the original
network

Previous 8.2M

Shared n = 36 6.7M

New reconstruction network 6.9M

New reconstruction network and shared n= 36 5.4M

column is the reconstructed images when only sharing parameters, the fourth
column is the reconstructed images when using newly designed reconstructed
network, the last column is the reconstructed images when using newly designed
reconstructed network with the method of sharing parameters. Compared the
three rightmost columns with the first column, we can see that our improved
capsule network also preserves many of the details while smoothing the noise.
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Fig. 5. Sample MNIST test reconstruction of various experiments

5 Conclusion

Based on Hinton’s capsule network, in this paper, we proposed a method to share
the parameters between capsule layers in order to reduce the parameters between
capsule layers and reduce the complexity of network training. In addition, we also
redesigned the structure of the reconstruction layer of the capsule network, using
the deconvolution network combined with the optimization method of Batch
normalization, compared to the previous reconstruction layer consisting of three-
layer fully connected network, greatly simplify the network structure, and to a
greater extent reduce the number of parameters. We use the improved network
structure for MNIST handwritten digit recognition tasks, and the accuracy is
not greatly reduced compared with the original one, and sometimes even higher
than the original results. Is there any useless capsule exists? We will continue
to delve deeper into these issues later, and will use the improved network for
verification on some of the larger datasets.
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Abstract. Relation classification is an important part in natural language pro-
cessing (NLP) field. The main task of relation classification is extracting the
relations between target entities. In recent years, there are many methods for
relation classification and some of them have achieved quite good results, but
these methods have not given enough attention to the target words, and the
semantic information of words is also lack of utilization. In order to make good
use of the contextual information in the sentences as much as possible, we adopt
the bidirectional gated recurrent unit networks (BGRU). On this basis, in order
to focus on the computing process of target entities and target sentences, we add
the multiple attention mechanism. Meanwhile, other semantic information such
as the named entity and part of speech information of the word are also added as
input data so as to make full use of the words’ information in the corpus. We
have conducted some experiments on the widely used datasets, and we got up to
3% improvement in the F1 value compared to previous optimal method.

Keywords: Relation extraction � Attention mechanism � Bidirectional GRU

1 Introduction

The essence of the relation extraction task is to find the semantic relation of the words
in the sentences, which plays a big role in many natural language processing appli-
cations, such as “Question-answer System [1]”, “Knowledge Graph [2]”.

The relation extraction is actually a multi-category process. According to the
methods, relation extraction method can be roughly divided into two types: traditional
and deep learning based. Traditional methods include the kernel function-based
approach, SVM, logistic regression and so on [3–5].

In recent years, the widely used deep learning models are CNN, RNN, LSTM, etc.
On the basis of CNN, some researchers use methods such as attention mechanism to
improve the experimental results [6–9]. Compared with CNN, the advantage of RNN
lies in the extraction of the relationship between words that are far apart [10]. In 1997,
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Hochreiter et al. proposed the long short-term memory network which is more suitable
for the processing of long text [11]. Later, a variety of LSTM-based relationship
extraction models emerged [12–14].

The main contributions of this paper are:

1. We added sentence-level and word-level attention mechanism on the basis of
variant of long short-term memory network (LSTM). In order to use the corpus
effectively and reduce the noise impact.

2. We added semantic information as input, enrich the characteristic information of the
sentences. Combine with multiple attention mechanisms to reduce the negative
impact of semantic information.

3. We have made multiple sets of comparative experiments on different datasets,
verified the effects of multiple-level attention mechanism and semantic descriptions
on extract results.

2 Gated Recurrent Unit

Our model is based on the variant of the long-short term memory network(LSTM).
LSTM is similar to a variant of RNN, which is a chain structure with repeating units.
LSTM can solve the vanishing gradient problem by determining whether information is
useful and “forgetting” useless information.

There are many variants of LSTM since its creation. We use the gated recurrent unit
(GRU) [15]. This variant is simpler and more efficient, with fewer parameters than
LSTM.

As shown in Fig. 1, there are only two gates in the GRU model: “reset gate” and
“update gate”, and remove the cell status in LSTM. GRU controls whether to retain the
information of the original hidden state through the reset gate, but no longer restricts
the incoming of current information. The formulas are as follows:

Ct-1

xt

Ct+1

Ct

S S
T

SigmoidSigmoid

Tanh

reset gate

update gate

Fig. 1. GRU memory block.
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zt ¼ rðWz½ht�1; xt�Þ ð1Þ
rt ¼ rðWr½ht�1; xt�Þ ð2Þ

~ht ¼ tanh W rt � ht�1; xt½ �ð Þ ð3Þ

ht ¼ 1� ztð Þ � ht�1 þ zi � ~ht ð4Þ

zt represents the update gate, rt represents the reset gate, W is the weight matrix, h is
the cell status information, x represents the input information.

The original GRU model is one-way, and information can only be transferred in
one direction. We use a two-way GRU model, which can better combine context
information and process sentence corpus more accurately through such forward and
backward propagation. In this paper, we perform element summation on the forward
and backward generated word feature vectors to obtain the final vector.

3 Methodology

The content of this chapter is mainly to introduce the specific solutions proposed in this
paper, including the following parts: input layer, multiple attention mechanism and
classification operation.

3.1 Input

We use the skip-gram method in word2vec proposed by Mikolov to vectorize the
corpus [16], and introduce the position vector of the word as a supplement [8]. Each
word has a two-dimensional position vector, indicating the distance of the current word
from the target word. This distance is determined in a similar way to the coordinate
system using the current word as the origin.

On this basis, we also introduce the semantic information to enrich the input data,
such as part-of-speech (POS), named entity recognition (NER), dependency feature
(Dep), hyponymy (HP), relative-dependency feature (RDF). We obtain the above
semantic information through the existing open source NLP tool, convert it into one-
hot vector and then perform embedding operation. Combine the generated vector into
the input vector.

3.2 Multiple Attentions

In deep learning, the attention mechanism means providing more computing power and
resources for the key data to obtain more accurate results.

In this paper, the application of attention mechanism is divided into two layers,
which are the word-layer attention mechanism and the sentence-layer attention
mechanism. The multiple attention model is shown in Fig. 2:
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Word-layer Attention
Each sentence has target words that need to be treated with emphasis. In the process of
generating sentence vectors, we introduce a word-layer attention mechanism. As shown
in Fig. 2, W represents the original word vector, S represents the sentence vector
generated by word-layer GRU, and a are the word-layer weights.

Suppose there are N words in the sentence, we use h to represent the sentence
vector generated by the GRU hidden layer. The formula for the attention mechanism of
the word layer is as follows:

hw ¼ tanhðWwhw þ bÞ ð5Þ

xw ¼ softmaxðhwÞ ð6Þ

m ¼ SxT
w ð7Þ

Where x denotes a weight matrix with attention added, and m represents the sen-
tence feature vector matrix after the introduction of the attention mechanism. The
weight measures the relation between each word and the target word. Words that have a
greater effect on the extraction of target words’ relation will be given higher weights.

Sentence-layer Attention
In the case of insufficient labeling, we generally think that the sentence containing the
target word can represent the relation of the target word. But there are exceptions, such
as these two sentences:

• Los Angeles is a city in California;
• In 1850, Los Angeles was officially established. In the same year, California

became the 31st state in the United States.

Bi-GRU layer

S1

Bi-GRU layer

STS2

Bi-GRU layer

VS

1 T
2

Sentence-
Layer 

Word-
Layer 

Fig. 2. Multiple attentions.
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Both sentences contain these two place names: “Los Angeles” and “California”, but
only the first sentence clearly indicates the “contain” relation between them. We
introduce an attention mechanism at the sentence layer, in order to increase the weight
of effective sentences and reduce the influence of noise.

The method we use is similar to the attention mechanism of the word layer. We
treat the sentences that contain the same target words as a collection, and input the
sentences from the same collection to the GRU, get the weight of each sentence.
Finally, each collection gets a weighted sentence vector for classification. As shown in
Fig. 2, V represents the vector of the “Collection”, and b represents the weight in
sentence-layer.

The formula for the attention mechanism of the sentence layer is similar to the word
layer attention mechanism:

hs ¼ tanhðWshs þ bÞ ð8Þ

xs ¼ softmaxðhsÞ ð9Þ

m ¼ SxT
s ð10Þ

Sentence-layer attention take the sentence vectors as input, the weights of all
sentences are combined into the weight matrix of the collection: xs.

3.3 Classifying

This paper used the softmax classifier to predict the relationship labels of corpus feature
vectors from the set of labels. Taking the feature vector o 2 Rno containing the weight
corpus as input, the conditional probability that the corpus represents the relationship ri is:

p rijC; hð Þ ¼ expðoiÞPn0
j¼1 expðojÞ

ð11Þ

h denotes all parameters and C represents a “Collection”.
Then we used cross entropy to define the objective function as follows:

J hð Þ ¼
XN

i¼1
logp rijC; hð Þ ð12Þ

In the experiments, we used the dropout strategy [17] to alleviate the problem of
overfitting.

4 Experiments

Our experiments mainly aimed to prove the improvement brought by semantic infor-
mation of the words and multiple attention mechanisms. Meanwhile we compared our
model with other neural network models.
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4.1 Datasets and Evaluation Metrics

We used two widely used datasets, first is the SemiEval-2010 task 8 dataset. This
dataset has nine relation types and one Other type, means sentences that do not rep-
resent any relation in the 9 types. This dataset contains 8000 training sentences and
2717 testing sentences. The second dataset we used is NYT10 dataset. It has 19 relation
types and 522611 training sentences, 172448 testing sentences.

In order to facilitate comparison with experiments of other models, we used
accuracy/recall rate and F1 value as evaluation criteria.

4.2 Experiments Setting

We used skip-gram model to vectorize the words, and obtained the position vector of
the words. We used the existing NLP tools to obtain the semantic information of the
words, and used the skip-gram to obtain the semantic information embeddings. Then,
we combined the word embeddings and semantic information embeddings as the input
vectors of the model.

Through experimental measurement, we’ve set the dimension of the word
embedding is 50, the dimension of PF is 2*5, the dimension of each kind of semantic
information embedding is 20, the mini-batch size is 10, and the dropout rate is 0.5.

We used GPU (GTX1080Ti) to run the experiments. The computer memory size is
32G.

4.3 Experimental Results and Analysis

Firstly, we compared the GRU model with the word-layer attention to the best-
performing CNN model. And based on this, we did the comparative experiments on
semantic information. These experiments used the SemEval-2010 task 8 dataset.

As can be seen from Table 1, the bidirectional GRU has at least 1% advantage over
the traditional CNN in F1 value when only the word embeddings and the PF are used as
inputs; The introduction of the word layer attention mechanism can increase the F1
value by about 1.7% compared to the bidirectional GRU network that does not have a
single layer attention mechanism; Adding semantic information to bidirectional GRU
+ATT model can increase the result by more than 2%. From the experimental results, it
can be concluded that both word-layer attention and semantic can significantly improve
the results of relation extraction.

Then we added the sentence-layer attention and chosen some classic methods to
conducted comparative experiments without semantic information. These experiments
used the NYT10 datasets.

From Fig. 3, we can see that after the curve is stable, the effect of the bidirectional
GRU combined with the multiple attention is slightly better than the best model before:
PCNN+ATT. However, in the case of high recall rate, the accuracy of BGRU+2ATT
drops faster, even slight lower than PCNN+ATT. The performance of the model needs
to be improved in the case of high retrieval rate, but the overall effect is better than
other models.
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Finally, we added semantic information based on BGRU+2ATT and compared it
with other models (Table 2).

Since the NYT10 dataset has a lot of unlabeled corpus, the overall effect is not as
good as the SemEval-2010 task 8 dataset. But by comparison, it can be seen that the
GRU-based model still has a slight advantage over the CNN-based model. In the case

Table 1. Comparison test of single-layer attention mechanism plus semantic description model.

Model Feature set F1

CNN [6] Only word
Add PF WordNet

69.7
80.6

BLSTM [18] Only word
Add PF POS NER etc.

81.6
83.5

Att-BLSTM[14] Only word+PF 84.0
BGRU+ATT Only word

Add PF POS NER etc.
82.2
84.5

Fig. 3. PR curves for BGRU+2ATT and other classic models.

Table 2. Comparison between BGRU+2ATT combining semantic information and previously
published results.

Model Feature set F1

PCNN+ATT [9] Only word 72.2
APCNNs [19] Only word

Add Entity Descriptions.
72.0
74.0

BGRU+ATT Only word
Add PF POS NER etc.

73.1
74.8

BGRU+2ATT Only word
Add PF POS NER etc.

78.6
80.8
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where only the word embeddings are used as the input vector and the model has only a
single layer attention mechanism, the effect of BGRU is about 1% higher than that of
CNN. But the effect of BGRU+ATT model with semantic information is only 0.8%
higher than the CNN model with entity descriptions. In fact, in the experimental results
of TOP100, the BGRU+ATT model is even slightly lower than the CNN model. By
analyzing the experimental data, we believe that the entity description used by Ji [19].
is different from the semantic description we use. They use the background information
of the word, in simple terms, the model is trained by reducing the difference between
the word vector and the background information vector. The problem with this
approach is that the background information for most of the words is not easily
accessible and is prone to generate noise data. But after introducing the sentence-layer
attention, the effect of the BGRU+2ATT model will exceed the CNN model. The
advantage can even reach nearly 5%. Compared with the experimental data on the
SemEval-2010 task 8 dataset, the BGRU+2ATT model has a more significant
improvement than the BGRU model with only word-layer attention. Therefore, we
believe that the sentence-layer attention mechanism plays a larger role in the case of
incomplete corpus annotation.

5 Conclusion

On the basis of the bidirectional GRU model, we combine the word-layer attention
mechanism and the sentence-layer attention mechanism, and at the same time we add
the semantic information of the word as a supplement to the input vector, and get better
results than other models. Especially after the introduction of the sentence-layer
attention mechanism, the effect of the model is obviously improved when the corpus is
not fully marked. In the comparative experiments, the entity description used by Ji [19]
caught our attention, we envision whether the introduction of semantic descriptions can
be stripped from the model and calculated separately. Replacing the background
information of words with semantic information can also avoid the problem that
background information is difficult to obtain. We hope to make progress in this area in
the future.
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Abstract. The features of recurrent neural networks with controlled elements
are considered. The functions of these networks for controlled associative
processing of signals are refined. A number of the space-time structures of such
networks are analyzed. Among them, the neural networks with one-, two-, and
three-level structures of layers are investigated. The results of studies on the
stability of the associative processing of distorted signals by these networks are
reflected. Based on the simulation results, recommendations are formulated to
expand the possibilities of associative signal processing in recurrent neural
networks with controlled elements.

Keywords: Recurrent neural network � Logical structure �
Associative signal processing � Control

1 Introduction

In recent years, artificial recurrent neural networks have received significant develop-
ment with regard to intelligent processing of various signal flows. Among the tasks of
such processing are: the purification of signals from possible defects, recognition of
speech and dynamic images, prediction of events, control of the behavior of robots and
others. In the interests of this, a number of widely known recurrent neural networks
(RNNs) are applicable [1, 2]. These include RNNs on the basis of the perceptron,
associative neural network structures, networks with long-term and short-term memory.

Representatives of the RNNs based on the perceptron are the recurrent multi-layer
perceptron, the Elman network, the real-time recurrent network [1]. These RNNs allow
for quick, but not deep signal processing.

Among associative neural network structures Hopfield, Hamming networks, bidi-
rectional associative memory, and others are used [1–6]. The capabilities of these
associative structures in the depth of signal processing are significantly higher than the
characteristics of the RNNs based on the perceptron, however, they in many respects
do not meet the requirements of real time. In addition, these RNNs do not provide the
control the signal associative processing.

The RNNs with controlled elements were proposed in [7, 8] and were developed
further in [9–12]. Potentially, these RNNs can provide, not only operational, but also

© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 133–140, 2019.
https://doi.org/10.1007/978-3-030-22796-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22796-8_15&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22796-8_15&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22796-8_15&amp;domain=pdf
https://doi.org/10.1007/978-3-030-22796-8_15


deep associative processing of signal flows. Such networks can be endowed with
different logical structures due to the realization of spatial shifts of signals during
transmission from one layer to another.

The RNNs also provide the control of the associative interaction of the signals.
They extend the possibilities for space-time signal binding and solving intellectual
problems. In a sense, the RNNs with controlled elements can be called streaming
recurrent neural networks with deep signal associative processing. The ability of the
RNNs to solve creative problems largely depends on the perfection of their space-time
structures and the stability of signal associative processing.

The latest results of the studies performed in this part are reflected in [12]. The
linear and spiral structures of the RNNs with controlled elements have been studied.
The aspects of building multilevel recurrent neural networks are partially affected.
A number of local tasks to ensure the sustainability of the functioning of these RNNs
have been solved. However, the results require further study. In particular, it is nec-
essary to search for new space-time structures of the RNNs with enhanced capabilities
and a deeper study of issues related to the stability of these networks.

The article clarifies the features of the RNNs with controlled elements, analyzes a
number of the space-time structures of these networks. The results of studies on the
stability of their associative processing of distorted signals are reflected.

2 Functional Features of RNNs with Controlled Elements

A generalized scheme of the RNNs is shown in Fig. 1. The essential difference of the
RNNs from other neural networks is the presence of the control of network elements
and new methods of processing information. At the input of the RNN, various signal
streams (speech, music, video, and others) can be supplied only after preliminary direct
conversion. In the general case, signals must be decomposed into spatial- frequency
components before being fed into the RNN. Then each component is transformed into a
sequence of single pulses with a frequency and a phase, as functions of the amplitude
and phase of the component, respectively.

In discrete time the signals, which are supplied to the RNN, can be considered as
sequences of sets of single pulses (SSP). After processing in the RNN, the sequences of
the SSP at its output should be transformed by inverse transformation into the corre-
sponding original signals. In this network, the matching of entry and exit is ensured by
prioritizing short connections between interacting neurons. In the RNN, each pulsed
neuron of one layer is associated in the general case with all the neurons of the other
layer. Connections between neurons in the layers of the network are absent. Neurons
can be in three states: waiting, excitation and refractory state. Each excited neuron
generates a pulse and goes into a state of refractoriness. The generated pulse after a
single delay enters the synapses. Passing through synapses, the impulse reads infor-
mation about previous effects and leaves a “trace” through the change of weights
(conductivities) of synapses. The delay time of each pulse in the formed bilayer circuits
of this RNN does not exceed the neuron refractory time after excitation. With this in
mind and the desire to minimize conflicts between neurons in the RNN, spatial shifts of
signals are realized when they are transferred from layer to layer.
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The presence of the control unit in the RNN, in addition to ensuring spatial shifts,
allows control the associative interaction of the processed signals through changing the
parameters of synapses and neurons, to ensure the stable operation of the network.

The weights (conductivities) wij(t) of artificial synapses in this RNN are defined as
[8, 12],

wijðtÞ ¼ kijðtÞ � bijðtÞ � gijðtÞ;

where kij(t) is the weighting coefficient of the synapse connecting the ith neuron of one
layer with the jth neuron of the other layer; bij(t) – function of attenuation of diverging
signals from the ith neuron; ηij(t) – function of attenuation of converging signals to the
jth neuron. As the basic functions bij(t) и ηij(t) the known radial functions [1] can be
taken. In the particular case when the distance between the interacting layers of a neural
network tends to zero bij(t) can be specified as:

bijðrijðtÞÞ ¼ 1=ð1þ a � ðrijðtÞÞ1=hÞ;

where a is the positive coefficient; h – the degree of root. The value rij(t) in this
expression is measured in the units of neurons and depending on the realized spatial
shifts of SSPs along the layers is defined as:

rijðtÞ ¼ ððDxijðtÞþ nijðtÞdÞ2 þðDyijðtÞþmijðtÞqÞ2Þ1=2;
nijðtÞ ¼ � 0; 1; . . .;D� 1;mijðtÞ ¼ � 0; 1; . . .;B� 1:

Here Δxij(t), Δyij(t) are the projections of the connection of the jth neuron with the
ith neuron on the X, Y axes without taking into account the spatial shifts; d, q are the

Fig. 1. Scheme of a recurrent neural network with controlled elements
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values of unit shifts in X, Y coordinates respectively; D and B are the numbers of
columns and rows respectively each layer of the neural network is being divided by
shifts.

Conductivities (weights) wij(t) can be considered as the functions of the charges
transferred through artificial synapses. In some cases they can be defined as:

wijðtÞ ¼ 1=ðRONijðtÞþ ðROFFijðtÞ � RONijðtÞÞ � expð�A � ðqijðt � DtÞþ qijðDtÞÞÞÞ;
RONijðtÞ ¼ RON=wijðtÞ; ROFFijðtÞ ¼ ROFF=wijðtÞ; wijðtÞ ¼ bijðtÞ � gijðtÞ;

RONijðtÞ;ROFFijðtÞ are the smallest and the largest resistances of the ijth synapse; A –

the coefficient with dimension 1/Q; qij(t−Δt) is the charge transferred through the ijth
synapse up to the time moment t−Δt; qij(Δt) – the charge carried over the time interval
Δt. There are other models available for wij(t) [1, 2, 12].

The amount of charge transferred through the synapse to the input of a single
neuron also depends on the charges transferred from the other neurons. Note that in this
case the values of qij(Δt) can be either positive or negative. In the case of a negative
charge transferred through the synapse the effect of a partial erasure of the previously
memorized information is manifested.

All these circumstances can explain not only the spatial shifts of the signals along
the layers, but also changes in the shapes and directionality of the cross sections of the
pulses diverging and converging in space.

3 Logical Structures of RNNs

An example of endowing the RNN with a logical structure due to the spatial shifts of
the processed signals is shown in Fig. 2, where 1 are lines of splitting the network
layers into logical fields due to signal shifts during transmission from one layer to
another; 2 is the direction of movement of SSPs along the layers of the network; 3 are
neurons of the network; 4 - the directions of signal transmission from layer to layer.

Fig. 2. Recurrent neural network with a three-
level structure of layers

Fig. 3. The structure of the RNN at the
level of neural network channels
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According to Fig. 2 the signals as SSPs are fed to the input logic field of the first
layer of the RNN, and are removed from the output field of the second layer. In Fig. 2
layers of the RNN are endowed with space-time interconnected semi-coil and linear
structures. Each such structure has its own neural network channels of promoting and
associative signal interaction in the network. With this in mind, the RNN (Fig. 2) at the
level of such channels can be represented as Fig. 3, where 1 is the designation of the
processes of associative interaction of the SSPs advancing through neural network
channels; 2 – the control processes of associative signal interactions in a network; 3 –

the neural network channels. In order to simplify the display of neural network
channels in Fig. 3 lines breaking them into logical fields, not shown.

The peculiarity of this structure is that it is possible to control the associative inter-
actions between neural network channels. When processing signals in the RNN, they are
not blurred. This is ensured by prioritizing short connections between neurons of the
network. Due to the inherent mechanisms, these RNNs can be endowed with various
logical structures with different capabilities of associative information processing
(Fig. 4).

(a) Linear structure of the RNN with 
memory based on time delays

(b) Linear structure of the RNN with 
associative memory and memory 
based on time delays

(c) Structure of the RNN with counter-
advancing signals

(d) Structure the RNN in the form of a 
semi-coil

(e) Spiral Structure of the RNN (f) Structure of the RNN in the form of 
a loop

(g) Structure of the RNN in form of a 
double spiral

(h) Multi-level RNN structure

Fig. 4. Possible variants of logical structures of RNNs at the level of neural network channels
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The memorization of information in these structures is feasible both in the neural
network channels themselves and in inter-channel connections. According to the
information storage capabilities, neural network channels can be divided into two
types. The first type is neural network channels with memory based on the time delays
in changing the states of neurons in the network. The second type of channels is
characterized additionally by associative memory at synapses. Inter-channel synaptic
connections carry the main load of memorization signals in the studied RNNs.

The experiments conducted by the authors showed that by controlling the asso-
ciative signal interactions in the RNNs with the structures in Figs. 4b, c, d. e, f, g and h
can significantly expand the possibilities of associative intellectual processing.

By controlling associations in neural network channels (Fig. 4b), it is possible to
make priority calls to previous or subsequent events. In the RNNs with the structures
shown in Figs. 4d, e, f, and g in addition to the consistent associative interaction of
signals, the organization of controlled cycles is possible. In the RNNs with multilevel
structures (Figs. 3 and 4h), controlled interaction between different neural network
channels is feasible. These RNNs are the most promising with regard to providing
broad intellectual capabilities.

4 Parameters and Stability of RNNs

In the interests of determining the capabilities of the RNNs under study for stable
associative processing of distorted signals, special modeling was performed. At first,
the limits of successful elimination of possible defects in the signal flows were
investigated. These defects are false and missed signal elements. Experiments were
implemented on the RNNs with the structures shown in Figs. 4b and d. The number of
neurons in each layer did not exceed 960 units. Each layer was divided into logical
fields of 5 � 6 neurons. The RNNs were processing sequences of images. Each image
represented a distortion of one of the four patterns.

The possibilities for eliminating seven different defects were estimated for different
values of L - learning cycles (epochs) of RNNs, at different values of Thr - excitation
threshold of neurons and scaling factor a of distances between neurons. The number of
threshold values was J, and the number of distance scale values was I. The evaluation
was carried out for the number Q (L) of successful defect elimination options as

QðLÞ ¼
XI

i¼1

XJ

j¼1

qijðai; Thrj; LÞ;

where qij(ai, Thrj, L) is the function of eliminating defects in the ijth version of the
study after L cycles (epochs) of learning. This function for the case of complete
elimination of defects is equal to 1, in other cases - 0.

Results are shown in Fig. 5. According to these dependencies, the RNN with the
semi-coil structure is more stable than the linear RNN.

It should be noted that the obtained borders for the elimination of the defects of the
first and second types are not wide. This is due to the fact that there is an objective
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contradiction. In the RNNs, false elements in signals are easily eliminated at elevated
thresholds of neuron excitation. The missing elements, on the contrary, are successfully
restored at lower thresholds of neuron excitation.

With this in mind, it was proposed to train the RNNs under study and eliminate
false elements in the processed signals at high thresholds. After elimination of defects
of this type, it is recommended to reduce the thresholds of neuron excitation and
strengthen the associative call of signals from the network memory. The experiments
on such processing on the RNNs with structures of the type of Figs. 4d, e and f, by
2016 neurons in each layer showed that the studied borders can be significantly
extended.

5 Conclusion

The research develops the ideas outlined in [12], refines the functions for controlled
associative processing of signals and reveals new features of the RNNs with controlled
elements. The considered features of the RNNs with controlled elements indicate a
significant potential of these networks for intelligent signal processing. In a logical
sense, such networks are transparent. Endowing the RNNs with various single-channel
and multi-channel interconnected structures allows to significantly diversify the
working and long-term memory of networks, and to expand the set of operations on the
processed signals.

RNNs realize controlled binding of signals and their transmission channels. This
makes it possible to organize cycles, signal swaps, to form other signals from the

40
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1197531

Q(L) for linear
network

Q(L) for semi-coil
network

L – number of
epochs

Q – relative stability

Fig. 5. Dependence of relative stability from the number of epochs
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support structures, to increase the depth of signal associative processing while main-
taining the possibility of operational responses to input influences. Controlling signal
associations in the RNNs is possible through changing the parameters of synapses and
neurons.

As shown by the results of the performed simulation, due to such control, the
boundaries of stable associative processing of distorted signals are significantly
extended. The capabilities of the RNNs with controlled elements for intelligent signal
processing depend directly on the sizes of the networks. The more neurons and
synaptic connections in the RNN, the higher the possibilities of endowing network with
intelligent logical structures and functions. For the implementation of large RNNs with
the considered properties, it is advisable to use modern memristive technologies.

Recurrent neural networks with controlled elements can be used to create promising
autonomous cognitive self-learning robots.

Acknowledgement. This research is partially supported by the RFBR foundation grant No 16-
29-09482.
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Abstract. The lack of training data is an obstacle to build satisfactory
multimodal emotion recognition models. Generative adversarial network
(GAN) has recently shown great successes in generating realistic-like
data. In this paper, we propose a GAN-based data augmentation method
for enhancing the performance of multimodal emotion recognition mod-
els. We adopt conditional Boundary Equilibrium GAN (cBEGAN) to
generate artificial differential entropy features of electroencephalography
signal, eye movement data and their direct concatenations. The main
advantage of cBEGAN is that it can overcome the instability of conven-
tional GAN and has very quick converge speed. We evaluate our pro-
posed method on two multimodal emotion datasets. The experimental
results demonstrate that our proposed method achieves 4.6% and 8.9%
improvements of mean accuracies on classifying three and five emotions,
respectively.

Keywords: EEG · Eye movement · Emotion recognition ·
Generative adversarial network · Data augmentation

1 Introduction

Affective computing [12], which aims to equip machines with the ability to recog-
nize, interpret, process, and simulate human affects, has drawn increasing atten-
tion in recent years. In the framework of affective computing, emotion recogni-
tion is the first critical phase since machines can never process human moods
without precise emotion recognition. Researchers have made great progress in
recognizing emotions from different signals, such as facial expressions, speeches,
and some physiologoical signals including EEG and eye movement signals.
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 141–150, 2019.
https://doi.org/10.1007/978-3-030-22796-8_16
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In recent years, researchers focused on studying multimodal emotion recog-
nition methods to leverage the complementary property among different kinds
of signals. Lu et al. introduced a multimodal emotion recognition framework
for three emotions by combining EEG and eye movement signals [9]. By tak-
ing advantages of the deep neural networks, Liu et al. further improved the
performance of multimodal framework [7]. Zhao et al. also adopted multimodal
framework and extended it for recognizing five emotions [15]. Although these
studies have developed various promising approaches for multimodal emotion
recognition, the performance of emotion recognition models is unsatisfactory
due to the lack of training data.

The popular multimodal emotion datasets contain physiological signals such
as EEG and eye movement signals, which are difficult to collect. The high prices
of EEG and eye movement acquisition devices and the high cost of performing
multimodal emotion experiments limit the scale of the datasets. As a result,
the training set is very small in size in comparison with image dataset such as
ImageNet.

Data augmentation is a promising approach to dealing with the problem
of lack of training data mentioned above. It enlarges the dataset by applying
a transformation to the real data and generating realistic-like data [3]. Lotte
generated artificial EEG data by relevant combinations and distortions of the
original trials [8], and this approach increased the recognition accuracy when the
training set is small. Krell et al. proposed to generate EEG data by rotational
distortions [6]. Wang et al. improved the performance of the emotion recognition
models by adding Gaussian noise to EEG features to generate artificial data [14].
However, the basic idea behind these methods is to generate more data by using
geometric transformation and it is difficult to capture the deep information inside
data.

By taking advantages of deep neural networks and adversarial training, GAN
could learn information about data probability distribution and generate artifi-
cial data from real data distribution. In the field of computer vision, GAN has
demonstrated its ability of generating realistic-like images by playing a zero-sum
non-cooperative game [4,13]. Inspired by GAN, Hartmann et al. proposed EEG-
GAN to generate EEG signals [5]. However, they did not use the generated data
for classification. Luo and Lu generated EEG data in DE feature form by adopt-
ing cWGAN and enlarged the training dataset [10]. Their experimental results
indicated that the accuracies of EEG-based emotion recognition models could
be improved by adding training data generated by cWGAN.

In this paper, we propose a GAN-based data augmentation method for
enhancing the performance of multimodel emotion recognition models. Since the
original GAN suffers from instability and non-convergence problems, we imple-
ment cBEGAN to generate training data [1]. The main advantage of cBEGAN
is that it has quick convergence speed and has an indicator for the training pro-
cess. Meanwhile, we can control the category of the generated data by adding
auxiliary conditional label information [11]. In this paper, we generate EEG sig-
nals and eye movement data in DE (differential entropy) feature form instead of
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raw data, because our previous studies have shown that the DE features of EEG
and eye movement data are more effective for emotion recognition [2,9]. The
multimodal data, which is the direct concatenation of EEG and eye movement
data, are also generated in DE feature form with cBEGAN and cWGAN.

We evaluate our method on three-category and five-category multimodal
emotion datasets. To the best of our knowledge, this is the first research work
regarding GAN-based data augmentation for multimodal emotion recognition.
Our experimental results demonstrate that cBEGAN has a better performance
than cWGAN and significantly improves the accuracies of multimodal emotion
recognition models.

2 Methods

2.1 GAN

A standard GAN consists of two competing parts which are both parameterized
as deep neural networks. A generator G produces synthetic data given a noise
variable input while a discriminator D tries to identify whether a sample comes
from the real data distribution Xr or the generated data distribution Xg. In
other words, the discriminator is trained to estimate the probability of a given
sample coming from the real data distribution. And the generator is optimized
to trick the discriminator to offer a high probability for the generated data.
The two parts are optimized simultaneously to find a Nash equilibrium. More
formally, the procedure can be expressed as a minimax function:

min
θG

max
θD

L(Xr,Xg) = Exr∼Xr
[log(D(xr))] + Ez∼Z [log(1 − D(G(z)))]

= Exr∼Xr
[log(D(xr))] + Exg∼Xg

[log(1 − D(xg))]
(1)

where θg and θd represent the parameters of generator and discriminator, respec-
tively, and Z can be a Uniform noise distribution or a Gaussian noise distribu-
tion.

This function is optimized in two steps; (i) maximize it by fixing G and Xg,
and get the optimum of D; and (ii) minimize the function by the optional D,
and then it equals to minimizing the Jensen-Shannon divergence between Xr

and Xg. The game will achieve equilibrium if and only if Xr = Xg.
Although GAN has shown great successes in realistic data generation, it

suffers from some major problems such as non-convergence, mode collapse and
diminished gradient. Researchers believed that the Jensen-Shannon divergence
could lead to vanishing gradients, which was the main reason of the GAN’s
instability. In real world tasks such as image generation, the distribution of
real images always lies in low dimensional manifolds, and the distribution of
generated images also rests in low dimensional manifolds. The two distributions
are almost certainly disjoint and have no overlaps. In this situation, Jensen-
Shannon divergence between the two distributions is a fixed number, which can
not provide useful gradients for the GAN’s training.
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Enc Dec

D

Wasserstein
distance

Fig. 1. Illustration of cBEGAN. cBEGAN adopts the auto-encoder to handle the dif-
ference between two reconstruction losses distributions. Here, G, D, Enc, Dec, Rlr and
Rlg represent generator, discriminator, encoder, decoder and the two reconstruction
losses, respectively.

2.2 cBEGAN

The discriminator in BEGAN adopts an auto-encoder which uses an encoder to
extract the latent features from the input data and applies a decoder to recon-
struct the data from the latent representations as shown in Fig. 1. And now the
discriminator aims to matching the reconstruction loss distribution of real data
and generated data. Berthelot et al. believe that matching auto-encoder loss
could lead to the matching of the data distribution of real data and generated
data directly [1], which is adopted in typical GANs. In other words, the gener-
ated data will have the similar data distribution when their reconstruction loss
distributions are similar. In this way, BEGAN avoids the instability problem of
conventional GAN.

BEGAN chooses Wasserstein distance to measure the difference between the
two reconstruction loss distributions. The Wasserstein distance is also called
Earth Mover’s distance (EM distance). The distance formula for continuous
probability domain is:

W (Xr,Xg) = inf
γ∼Π(Xr,Xg)

E(xr,xg)∼γ [||xr − xg||] (2)

where Π(Xr,Xg) is the set of all possible joint probability distributions between
Xr and Xg. The reconstruction loss is defined as the pixel-wise L1 or L2 distance
between input data and reconstructed data, which can be formulated as:

Lr(x) = |x − D(x)|η (3)

where D is the discriminator (auto-encoder) function, and η ∈ 1, 2, and x can
be a sample of real data distribution or generated data distribution.

Let μrr and μrg be the real and generated reconstruction loss distributions,
respectively, and let mrr,mrg ∈ R be their respective means, and Π(μrr, μrg) is
the set of all possible joint probability distributions between two distributions.
By using Jensens inequality, the formula can be expressed as:

W (μrr, μrg) = inf
γ∼Π(μrr,μrg)

E(xrr,xrg)∼γ [||xrr − xrg||]

≥ inf |E[xrr − xrg]| = |mrr − mrg|
(4)
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so now we are aiming to optimize a lower bound of the Wasserstein distance
between the two reconstruction losses. Then the loss of BEGAN is:

min
θG

max
θD

L(Xr,Xg) = − Exr∼Xr
[(Lr(xr)] + Ez∼Z [Lr(G(z))]

= − Exr∼Xr
[(Lr(xr)] + Exg∼Xg

[Lr(xg)]
(5)

where θG and θD represent the respective parameters of the generator and the
discriminator in BEGAN.

In BEGAN, the discriminator has two goals: auto-encode real data and
discriminate real data from generated ones. In order to maintain the balance
between the generator and discriminator losses, we can apply a hyper-parameter
γ ∈ [0, 1] defined as:

γ =
E[Lr(G(z))]
E[Lr(xr)]

(6)

To maintain the equilibrium E[Lr(G(z))] = γE[Lr(xr)], we use Proportional
Control Theory by adopting an extra variable kt ∈ [0, 1] to control the proportion
of Lr(G(z)) during gradient descent. Similar with cWGAN, we add an extra label
information to control the generated categories. The cBEGAN can be formulated
as:

max
θD

L(Xr,Xg, Yr) =

− Exr∼Xr,yr∼Yr
[(Lr(xr|yr)] + ktExg∼Xg,yr∼Yr

[Lr(xg|yr)]
(7)

min
θG

L(Xg, Yr) = Exg∼Xg,yr∼Yr
[Lr(xg|yr)] (8)

kt+1 = kt + λk(γLr(xr) − L(G(z))) (9)

where Yr is the label distribution. We initialize k0 = 0 and set λk = 0.001, γ =
0.75 in this paper. Now we can define a convergence measure as:

Mglobal = Lr(xr) + |γLr(xr) − Lr(G(z)| (10)

Mglobal can be used as an indicator for the convergence of the network.
In this paper, we also extend cWGAN, used in our previous work [10], to mul-

timodal emotion recognition. For cWGAN and cBEGAN, the losses of generator
and discriminator are optimized in an alternating procedure. The distribution
of the generated data is similar with the real data when the networks converge.

3 Experiment Settings

3.1 EEG Datasets

We evaluate our proposed method on two multimodal emotion datasets SEED
1 [16] and SEED-V.
1 http://bcmi.sjtu.edu.cn/∼seed/index.html.

http://bcmi.sjtu.edu.cn/{~}seed/index.html
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SEED dataset contains 62-channel EEG signals and eye movement signals
of three different emotions (happy, sad, and neutral). The original EEG signals
were recorded at a sampling rate of 1000 Hz with ESI NeuroScan System and the
eye movement signals were collected with SMI ETG eye tracking glass, which
contained information about blink, saccade, fixation and so on. In this dataset, 15
participants watched 15 emotional film clips for 3 times. In this work, 9 subjects’
data (27 experiments) are used because they have completed multimodal data.

SEED-V dataset were also formed with 62-channel EEG signals and eye
movement signals. 16 participants watched 15 emotional film clips to elicit five
emotions: happy, sad, neutral, fear, and disgust. They took part in the experi-
ments for three times, so there were totally 48 experiments. The EEG and eye
movement signals were collected by the same device used in SEED.

3.2 Feature Extraction

We use a band pass filter (1–50 Hz) to eliminate low-frequency noise and high-
frequency noise in the EEG signals. Then we extract DE features by adopting a
4s-length non-overlapping Hanning window for five frequency bands: δ: 1–3 Hz,
θ: 4–7 Hz, α: 8–13 Hz, β: 14–30 Hz, and γ: 31–50 Hz. In order to eliminate the
rapid changes of the DE features, we also adopt a linear dynamic system. Each
EEG sample has 310 dimensions since there are 62 channels for each band.

As for eye movement signals, we extracted the same features as in [9,15]. The
features include blink, saccade, fixation and so on. Notably, each eye movement
sample has 41 dimensions in SEED dataset and it has 33 dimensions in SEED-V
dataset since we simplify the eye movement features in SEED-V.

3.3 Evaluation Details

In order to demonstrate the effectiveness of the proposed method, we conduct
cross validation on both datasets. Since, each experiment of the two datasets has
15 trials, so there are 5 trials for each emotion category in SEED dataset and
3 trails for each emotion category in SEED-V dataset. As for SEED dataset,
we use 5-fold cross validation for each experiment. And as for SEED-V dataset,
we adopt 3-fold cross validation for each experiment to make sure each fold has
5 emotion categories. We normalize both DE and eye movement features by
min-max normalization before feeding them to the networks.

We perform grid search on the number of network layers and hidden nodes
to optimize the network structure of cWGAN and cBEGAN. The numbers of
layers are searched from 2 to 4 for both generator and discriminator. The input
dimension is decided by the dimension of the corresponding input feature and
the dimension of auxiliary label is 3 for SEED and 5 for SEED-V. The output
dimension of cWGAN’s discriminator is 1 while the output dimension is the
same with its input for cBEGAN’s discriminator.

The numbers of hidden nodes for each layer are randomly searched from 50
to 600. For cBEGAN, the hidden nodes of encoder and decoder are the same.
The outputs of the two generators have the same dimension as the input data.
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And ReLU activation function is used for all hidden layers. The batch size is
set to 128. Adam with initial learning rate 0.0001 is used as the optimizer. The
noises are sampled from a uniform distribution U [−1, 1].

As for the classifier, we apply an SVM with linear kernel. The parameter c
is searched from 2−10 ∼ 210 to find the optimal value.

Iteration

      (a)       (b) 
Iteration

Fig. 2. Dloss for cWGAN (a), and Mglobal for cBEGAN (b) tendency along with
training steps of SEED dataset.

4 Experimental Results

To evaluate the performance of the proposed method, we generate different fea-
tures for both datasets. We generate DE features of EEG signals and eye move-
ment data. As for multimodal data augmentation, we directly concatenate DE
features of EEG signals and DE features of eye movement data, and generate
realistic-like multimodal feature from the concatenated features. The number of
the generated features for each emotion category is the same. In this section, we
will first compare the convergence speed between cBEGAN and cWGAN, then
discuss the performance of data augmentation for the two datasets.

4.1 Convergence Performance

As mentioned above, cWGAN and cBEGAN can overcome the instability prob-
lem of conventional GANs and both of them have an indicator for training
procedure. Figure 2(a) shows the convergence curve of cWGAN. Dloss rises to
−2 after 1000 iterations, which indicates the network have a good convergence
performance. Besides, as the Wasserstein distance between real data distribu-
tion and generated data distribution, Dloss converging to a small value means
the two data distributions are similar. As shown in Fig. 2(b), Mglobal decreases
to about 0.6 and also has a stable convergence trend. cBEGAN has a better
convergence performance since it converges after 500 iterations.
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Table 1. Mean accuracies and standard deviations of the models trained on SEED
dataset and appending datasets generated by cBEGAN and cWGAN

No. of appended
training data

EEG Eye movement Multimodal

cWGAN cBEGAN cWGAN cBEGAN cWGAN cBEGAN

0 0.8190 0.8190 0.7715 0.7715 0.8573 0.8573

0.1074 0.1074 0.1327 0.1327 0.0879 0.0879

50 0.8331 0.8423 0.7881 0.7938 0.8606 0.8814

0.1014 0.1020 0.1241 0.1202 0.0864 0.0906

200 0.8392 0.8557 0.7924 0.8043 0.8621 0.8878

0.1028 0.0941 0.1249 0.1262 0.0877 0.0888

600 0.8372 0.8601 0.7956 0.8100 0.8539 0.9021

0.1045 0.0876 0.1225 0.1228 0.0913 0.0858

700 0.8373 0.8641 0.7907 0.8063 0.8589 0.9033

0.1086 0.0894 0.1262 0.1241 0.0883 0.0837

800 0.8377 0.8651 0.7929 0.8093 0.8558 0.9033

0.1084 0.0914 0.1213 0.1139 0.0887 0.0837

2000 0.8338 0.8756 0.7958 0.8160 0.8586 0.9000

0.1030 0.0852 0.1276 0.1042 0.0874 0.0776

4.2 SEED Results

For SEED dataset, the number of samples for each experiment is 842. And we
generate 50, 200, 600, 700, 800, and 2000 artificial samples of the three features
and add them to their respective original training datasets. Table 1 illustrates the
performance at different number of augmented training data. 0 means the model
is trained by original training dataset. As for single modality, cBEGAN achieves
the best mean accuracies of 87.56% and 81.60% when we add 2000 samples
of generated EEG and eye movement data, respectively. For multimodal data
augmentation, cBEGAN reaches the best mean accuracy of 90.33% when adding
700 generated multimodal data.

4.3 SEED-V Results

For each subject, the number of sample for each experiment is 681, 541 and
601 since they watched different movie clips for each time. Considering these
numbers are approximate, we neglect the difference and generate 50, 200, 400,
500, 1000 and 2000 samples of the three data and enlarge their respective original
dataset for each experiment. As shown in Table 2, cBEGAN achieves the best
mean accuracies of 62.87%, 60.19%, and 68.32% when we add 2000, 2000 and
1000 samples to the training datasets of EEG, eye movement and multimodal
data.
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Table 2. Mean accuracies and standard deviations of the models trained on SEED-V
dataset and appending datasets generated by cBEGAN and cWGAN

No. of appended
training data

EEG Eye movement Multimodal

cWGAN cBEGAN cWGAN cBEGAN cWGAN cBEGAN

0 0.5434 0.5434 0.4862 0.4862 0.5946 0.5946

0.1525 0.1525 0.1432 0.1432 0.1603 0.1603

50 0.5793 0.6064 0.5207 0.5533 0.6260 0.6485

0.1534 0.1655 0.1381 0.1388 0.1599 0.1595

100 0.5846 0.6124 0.5336 0.5555 0.6279 0.6568

0.1546 0.1616 0.1345 0.1382 0.1626 0.1559

200 0.5901 0.6181 0.5457 0.5609 0.6294 0.6674

0.1536 0.1592 0.1437 0.1369 0.1594 0.1598

400 0.5946 0.6207 0.5446 0.5816 0.6366 0.6775

0.1580 0.1558 0.1417 0.1434 0.1582 0.1584

500 0.5954 0.6225 0.5349 0.5815 0.6330 0.6810

0.1571 0.1544 0.1400 0.1430 0.1606 0.1548

1000 0.5965 0.6287 0.5486 0.5892 0.6326 0.6832

0.1594 0.1526 0.1456 0.1388 0.1590 0.1549

2000 0.5912 0.6278 0.5518 0.6019 0.6325 0.6831

0.1593 0.1442 0.1470 0.1399 0.1620 0.1504

Compared with cWGAN, cBEGAN has higher accuracies for single and mul-
timodal data augmentation on the two datasets. Besides, cBEGAN also has a bet-
ter convergence performance. By measuring the difference between the two recon-
struction loss distributions instead of two data distributions, cBEGAN can cap-
ture deeper information of the real data distribution than cWGAN, and generate
artificial samples with rich information and diverse distribution, which leads bet-
ter margins for the recognition models. Although cWGAN-based data augmen-
tation has a poorer performance in terms of accuracy than cBEGAN-based data
augmentation, the mean accuracies also has improvements on the two datasets,
which demonstrates the multimodal emotion recognition models are more robust
when adopting the proposed GAN-based data augmentation method.

5 Conclusion and Future Work

In this paper, we have proposed a GAN-based data augmentation method for
improving the accuracy of multimodal emotion recognition models. We have
generated realistic-like EEG, eye movement and their direct concentration data
with cBEGAN and cWGAN. Our experimental results on two multimodal emo-
tion datasets indicate the effectiveness of the proposed method and cBEGAN
achieves the biggest improvements of mean accuracies on classifying three and
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five emotions with a better convergence speed. In the future, we will evaluate
our method on more multimodal emotion recognition tasks and employ recur-
rent neural networks to consider temporal information of EEG and eye movement
signals.
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Abstract. Recently, the performance of single image super-resolution
has been significantly improved by convolution neural networks (CNN).
However, most of these networks are trained with paired images and
take the bicubic-downsampled images as inputs. It’s impractical if we
want to super-resolve low-resolution images in the real world, since
there is no ground truth high-resolution images corresponding to the
low-resolution images. To tackle this challenge, a Feature-Guided Super-
Resolution Generative Adversarial Network (FG-SRGAN) for unpaired
image super-resolution is proposed in this paper. A guidance module is
introduced in FG-SRGAN, which is utilized to reduce the space of pos-
sible mapping functions and help to learn the correct mapping function
from low-resolution domain to high-resolution domain. Furthermore, we
treat the outputs of guidance module as fake examples, which can be
leveraged using another adversarial loss. This is beneficial for the main
task as it forces FG-SRGAN to learn valid representations for super-
resolution. When applied to super-resolve low-resolution face images in
the real world, FG-SRGAN is able to achieve satisfactory performance
both qualitatively and quantitatively.

Keywords: Image super-resolution · Unsupervised learning · GAN

1 Introduction

Single image super-resolution (SISR) is a fundamental low-level vision task aim-
ing to estimate a high-resolution image from its low-resolution counterpart.
With the success of deep convolutional neural networks (CNN) in computer
vision, many super-resolution models were proposed, such as the pioneer work of
SRCNN [3] and various other networks [4,6,8,10–15,17,18,20,21,23,26], which
continuously improved the SR performance.
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Fig. 1. Overall architecture of FG-SRGAN.

However, most of these networks are trained with paired images and take
bicubic-downsampled images as inputs. It’s impractical when we want to super-
resolve low-resolution images in the real world, since there is no ground truth
high-resolution images corresponding to the low-resolution images. Although
methods mentioned above have achieved good performance in terms of the
Peak Signal-to-Noise Ratio (PSNR), their ability to super-resolve low-resolution
images is limited since degradation model in the real world doesn’t fit their
assumption. To tackle these challenges, we propose a Feature-Guided Super-
Resolution Generative Adversarial Network (FG-SRGAN), which aims at solv-
ing SISR problem of unpaired images. Since GAN is hard to train and tends to
suffer from mode dropping, it is necessary to exploit extra information to help
learn the correct mapping function from low-resolution domain to high-resolution
domain. Although general SISR models are not suitable for SISR problem of
unpaired images, they can provide us with basic guidance to generate correct
high-resolution images. Therefore, we choose ESRGAN [23] to help us accom-
plish this goal since it achieves state-of-the-art performance in SISR problem of
paired images. More concretely, ESRGAN takes the same inputs as the genera-
tor in FG-SRGAN, and the results of ESRGAN are encouraged to share specific
content features with the outputs of generator in FG-SRGAN. The specific con-
tent features of the two super-resolution networks are both extracted by VGG
[19], and we check the consistence of them by l1 loss. Since we use ESRGAN’s
results as guidance of our method, there is a risk of generating the same images
as ESRGAN’s results. To avoid this situation, we treat the outputs of ESRGAN
as fake high-resolution images when we train adversarial network in FG-SRGAN.
Our overall network architecture is shown in Fig. 1 and our contributions can be
summarized as follows:
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• We propose a Feature-Guided Super-Resolution Generative Adversarial Net-
work (FG-SRGAN) that effectively learns the mapping function from low-
resolution to high-resolution image manifold in the real world. To the best
of our knowledge, this is the first approach that tackles SISR problem of
unpaired images through training a single GAN. And we propose a guid-
ance module in FG-SRGAN, which is utilized to reduce the space of possible
mapping functions.

• We propose a new loss function in FG-SRGAN. In the generator network,
we restrain the generator by conditioning it with intermediate supervision
of ESRGAN. In the discriminator network, we treat outputs of ESRGAN as
fake samples, which can be leveraged using another adversarial loss. The new
formulation of loss function is beneficial for learning valid representations for
super-resolution.

• Experiments on real-world face images show that our approach has achieved
satisfactory super-resolution results visually. Furthermore, quantitative com-
parisons with other super-resolution models illustrate improvements obtained
by the proposed method.

2 Related Work

Due to the superior performance of CNN on SISR problem, we mainly introduce
the progress of CNN-based super-resolution approaches, and we refer readers to
[16] for a complete survey of super-resolution. As a pioneer work, Dong et al.
proposed SRCNN to learn the mapping from low-resolution to high-resolution
images and achieved superior performance against previous works. Later on,
various networks [10,11,20,21,26] designed for SISR were proposed and they
were all trained end-to-end. Specifically, Lim et al. [14] proposed EDSR model
by removing unnecessary BN layers in its architecture and expanding the model
size, which achieved significant improvement on SISR. Zhang et al. [26] proposed
to use effective residual dense block in its model, and they further explored a
deeper network with channel attention [25] which achieved a satisfactory per-
formance on SISR. However, all these approaches tend to output over-smoothed
results without sufficient high-frequency details because loss functions of their
models are based on pixel space. To improve the visual quality of super-resolution
results, perceptual loss [9] was proposed to optimize super-resolution models and
it was defined in a feature space instead of pixel space. To make super-resolution
results realistic, it is beneficial coupling perceptual loss with adversarial loss
defined in GAN framework [5], since adversarial loss forces models to learn valid
mapping for super-resolution by adversarial training. To accomplish this goal,
SRGAN [13] applied GAN to SISR for the first time and significantly improved
the visual quality of super-resolution results. To further reduce the differences
between SRGAN results and the ground-truth images, ESRGAN [23] redesigned
the architecture of SRGAN and achieved more visually pleasing performance.

All methods mentioned above take bicubic-downsampled images as inputs
and belong to supervised super-resolution approach. However, it’s impractical
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when we apply these methods to super-resolve low-resolution images in the real
world, because there are no corresponding high-resolution images for training
these networks. Moreover, the super-resolution results are poor since the degra-
dation model in the real world doesn’t fit their assumption. As for unsupervised
approaches, Cycle-GAN [27] has achieved good performance using the concept
of cycle consistence. However, parameters of Cycle-GAN are twice the number
of single GAN since there are two GANs in it. To make a tradeoff between model
size and super-resolution performance on unpaired images, we propose a GAN-
based approach named Feature-Guided Super-Resolution Generative Adversar-
ial Network (FG-SRGAN). Moreover, we train FG-SRGAN using unpaired low-
resolution and high-resolution images.

3 Network Architectures

GAN-based networks using paired images for training have achieved impres-
sive results in image super-solution, such as ESRGAN. However, it’s impractical
to obtain corresponding high-resolution images when processing low-resolution
images in the real world. What’s more, using two sets of unlabeled and unpaired
images directly to learn a super-resolution mapping function is also difficult,
since GAN tends to suffer from mode dropping. Aiming to tackle this challenge,
FG-SRGAN is proposed in this paper, see Fig. 1 for an overview. ESRGAN is
utilized to produce roughly high-resolution images, and these images are encour-
aged to share specific content features with the outputs of generator. The guided
features of the ESRGAN’s outputs are extracted by VGG network. By condi-
tioning the generator on this intermediate supervision, it is possible to guide
image super-resolution and map low-resolution images to corresponding high-
resolution images. While in adversarial training, we treat the results of ESRGAN
as fake high-resolution images which contributes to the main task as it forces
FG-SRGAN to learn valid representations for super-resolution. We describe the
detail of our network architecture in Sect. 3.1. Two loss functions proposed in
this paper are presented in Sect. 3.2.

3.1 FG-SRGAN

There are three main modules in FG-SRGAN, including generator G, guidance
module and discriminator D as illustrated in Fig. 1.

The generator network G is used to map low-resolution images into cor-
responding high-resolution images. G begins with two convolution layers each
followed by one instance normalization layer, and useful low-level features are
extracted in this stage. In the following stage, we employ twelve residual blocks,
each with identical layout, and one upsampling block to enlarge resolution two
times. Afterwards, three similar residual blocks are used to enlarge resolution
another two times. Finally, images of high resolution are obtained by two con-
volution blocks. It is worth noting that we employ the residual block proposed
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in [14], where the balance between calculation speed and the performance is
guaranteed by this design.

As for guidance module of FG-SRGAN, we employ it to help achieve one-
to-one mapping from the input to the output. There are two parts in guidance
module, one is a pre-trained model ESRGAN which is trained with paired images
and the other is pre-trained VGG network. First, ESRGAN takes low-resolution
images as inputs and generates rough high-resolution images. And these images
are encouraged to share specific content features with the outputs of FG-SRGAN
even though there may be some slight differences. The specific content features
of the two super-resolution networks are both extracted by VGG and checked by
l1 loss. By conditioning the generator on this intermediate supervision, we can
train FG-SRGAN more easily because it further reduces the space of possible
mapping functions.

Complementary to the generator and guidance module of FG-SRGAN, the
discriminator network D is used to judge whether the input is a real high-
resolution image. There are two main differences from common discriminators
where one is the discriminator follows shallow fully convolutional structure as
used in [27], and the other is the discriminator takes more fake samples as
inputs. More concretely, despite the outputs of G, the discriminator also takes
super-resolution results from ESRGAN as fake samples. This is beneficial for the
main task as it forces the generator to learn correct representations for super-
resolution.

3.2 Loss Function

In this section, we describe the proposed loss function. Let L be the loss func-
tion, G∗ and D∗ be the optimum generator and discriminator respectively. Our
objective is to solve the min-max problem:

(G∗,D∗) = arg min
G

max
D

L(G,D) . (1)

The loss function L(G,D) consists of two parts, including feature-guidance
loss Lfg(G,D) and adversarial loss Ladv(G,D). We use a simple additive form
for the loss function:

L(G,D) = Lfg(G,D) + ωLadv(G,D) . (2)

Where ω shows the emphasis paid on adversarial loss. Larger ω leads to
produce more realistic high-resolution images and can prevent generating images
the same as the outputs of ESRGAN. We describe Lfg(G,D) in detail and
present the detail of Ladv(G,D) in the following parts of this section.

In addition to transform images from low-resolution domain to high-
resolution domain, the first thing we should consider is to ensure the outputs
of generator retain the same semantic content with the inputs. We accomplish
this goal with the help of a pre-trained model ESRGAN and VGG. ESRGAN
has the same inputs as generator in FG-SRGAN, afterwards we employ VGG
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to extract high level feature maps of both ESRGAN’s outputs and generator’s
outputs. Finally, l1 loss is used to measure the similarity between their feature
maps. Accordingly, we define the feature-guidance loss as:

Lfg(G,D) = Epi∼sdata(lr)||V GGl(G(pi)) − V GGl(ESRGAN(pi))||1 . (3)

Where l refers to the feature maps of a specific VGG layer. In our experi-
ment, we use the feature maps in the layer ‘Conv3-2’ of VGG to achieve a good
performance.

The adversarial loss is applied to both generator and discriminator, which
helps to produce high-resolution images of high quality. In common GAN frame-
works, the task of discriminator is to figure out whether the input image is real
or synthesized from the generator. However, in FG-SRGAN, it is not sufficient
for generating high quality images. The generator G tends to produce images
similar to the ESRGAN’s outputs since we use ESRGAN’s results as guidance
of our method. To circumvent this problem, we propose a new formulation of
adversarial loss. We treat the results of ESRGAN as fake high-resolution samples
while in adversarial training. For each image l in the low-resolution domain, the
generator G outputs a fake high-resolution image G(l) and the pre-trained model
ESRGAN outputs another fake high-resolution image E(l). In FG-SRGAN, the
discriminator is used to assign correct labels to the input images, including
G(l)∼ sdata(g1), E(l)∼ sdata(g2) and real high-resolution images R∼ sdata(r), so
that the generator G can be guided correctly and transform the low-resolution
images to the corresponding high-resolution images. Therefore, we define the
adversarial loss in FG-SRGAN as:

Ladv (G,D) =Eri∼sdata(r)

[
(D(ri) − 1)2

]

+Egj∼sdata(g1)

[
(D(gj))2

]

+Egk∼sdata(g2)

[
(D(gk))2

]
. (4)

4 Experiments

4.1 Experimental Settings

Methods Compared. We compare our method against four related works
both numerically and qualitatively: one image deblurring work named SRN [22],
and three image super-resolution works named SRGAN [13], ESRGAN [23] and
RCAN [25]. All of these methods are tested on a computer with Intel Core i7
CPU, 32 GB of RAM and an NVIDIA GTX1080 GPU.

Datasets. Following [2], we select 50,000 high-resolution face images and 50,000
low-resolution face images as training set. For testing, we randomly select 3,000
low-resolution images from the Widerface dataset [24] as evaluation set.
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Evaluation Metrics. Since there are no corresponding ground-truth high-
resolution images of the evaluation set, we numerically assess the super-
resolution results using the Fréchet Inception Distance (FID) [7]. Furthermore,
we provide PSNR results on 1,000 test images from the LS3D-W [1] dataset.
The same as the standard super-resolution experimental setting, all methods
take bicubic-downsampled images as inputs when calculating PSNR.

4.2 Super-Resolution Results

To explore the effectiveness of guidance module proposed in this paper, we evalu-
ate the performance of our method with or without guidance module. As shown
in Fig. 2, super-resolution results are of poor quality and have no correlation
with the inputs when we remove guidance module. However, FG-SRGAN yields
satisfactory high-resolution images. The results in Fig. 2 demonstrate the effec-
tiveness of our proposed guidance module.

Fig. 2. Experiments on evaluating the effectiveness of guidance module.

Table 1. FID results on evaluation set and PSNR results on test set from LS3D-W.

Method FID PSNR

LR test set LS3D-W

SRN [22] 231.59 23.11

RCAN [25] 166.35 25.52

SRGAN [13] 143.17 23.19

ESRGAN [23] 167.98 25.70

Ours 25.81 22.74

We compare our method with the other four models quantitatively and qual-
itatively. Table 1 shows FID and PSNR results of methods mentioned above. We
provide visual results for several images in Fig. 3. It can be observed that our
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method is able to achieve satisfactory performance in terms of FID while out-
performs all the other four methods, and visual quality of our proposed method
is better than the other four methods. For instance, FG-SRGAN can produce
sharper and more natural faces than the other four methods, which tend to
generate blurry results. Furthermore, FG-SRGAN is capable of generating clear
and distinct facial organs while other methods tend to yield face images of bad
quality.

Fig. 3. Qualitative results on evaluation set from Widerface. The methods compared
are described in Sect. 4.1.

In addition, with regard to our experiment on LS3D-W, our method achieves
competitive results compared to four related state-of-the-art methods including
ESRGAN, SRGAN, SRN and RCAN. It is worth noting that we trained FG-
SRGAN with unpaired images, however, the other four methods were trained on
pair of bicubic-downsampled and original high-resolution images.

Fig. 4. Examples of failure cases. (a) Failures caused by large pose. (b) Failures caused
by heavily degraded inputs.
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4.3 Failure Cases

Although our method can achieve satisfactory results in solving unpaired super-
resolution problems in many cases, it has unsatisfactory performance in some
samples as illustrated in Fig. 4. For most of these failure cases, we note that the
input face images are either degraded significantly or of large pose, and both
factors have negative impacts on the performance of our method.

5 Conclusion

In this paper, we propose a Feature-Guided Super-Resolution Generative Adver-
sarial Network for unpaired image super-resolution and it is worth noting that
our method does not assume the low-resolution images as bicubic-downsampled
images. We introduce a guidance module in the proposed method, which is uti-
lized to reduce the space of possible mapping functions and help learn the correct
mapping funtion from low-resolution domain to high-resolution domain. Fur-
thermore, we treat the outputs of guidance module as fake examples, and this
is beneficial for the main task as it forces the generator to learn valid represen-
tations for super-resolution. When applied to super-resolve low-resolution face
images in the real world, our method is able to achieve satisfactory performance
in terms of FID and visual quality.
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Abstract. Realized volatility (RV) is defined as the sum of the squares
of logarithmic returns on high-frequency sampling grid and aggregated
over a certain time interval, typically a trading day in finance. It is not a
priori clear what the aggregation period should be in case of continuously
traded cryptocurrencies at online exchanges. In this work, we aggregate
RV values using minute-sampled Bitcoin returns over 3-h intervals. Next,
using the RV time series, we predict the future values based on the past
samples using a plethora of machine learning methods, ANN (MLP,
GRU, LSTM), SVM, and Ridge Regression, which are compared to
the Heterogeneous Auto-Regressive Realized Volatility (HARRV) model
with optimized lag parameters. It is shown that Ridge Regression per-
forms the best, which supports the auto-regressive dynamics postulated
by HARRV model. Mean Squared Error values by the neural-network
based methods closely follow, whereas the SVM shows the worst perfor-
mance. The present benchmarks can be used for dynamic risk hedging
in algorithmic trading at cryptocurrency markets.

Keywords: ANN · MLP · LSTM · GRU · CNN · SVM · HARRV ·
Ridge regression · Realized volatility

1 Introduction

Uncertainty modeling in financial markets in econometrics has traditionally been
based on the notion of volatility inferred indirectly from daily time series data,
an approach which has extended to high frequency data since the pioneering
work on realized volatility (RV) by Andersen et al. [1]. The quantity is defined
on aggregation period between t and t + T sampled N times as

RV (t) =
N∑

i=1

R2
i , Ri = log (Pi/Pi−1) Pi ≡ P (t + iT/N). (1)

There has been a recent surge in the the number of work related to deep
learning (DL) algorithm for market prediction [3,4] including lately cryptocur-
rency markets [5–7], however, the applications of machine learning (ML) to RV
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 165–172, 2019.
https://doi.org/10.1007/978-3-030-22796-8_18
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Fig. 1. Candlestick diagram for monthly Bitcoin prices in USD (aggregated from
minute data at the Bitstamp exchange). The body of each box ranges between open
and close prices, with low and high values indicated by vertical lines. Green color codes
price increase and red color price decrease. The volume series in the bottom are counted
in units of 10 thousand Bitcoin. (Color figure online)

Fig. 2. BTCUSD daily-aggregated close price in logarithmic scale. Time period ranges
from 2012-01-01 to 2018-11-11 contains 2507 days. Source data from [2].

of digital currencies have not appeared yet. It is the purpose of this work to
explore Bitcoin time series data depicted in Figs. 1 and 2 (source: [2]) and pro-
vide a benchmark study of modern ML algorithms to RV prediction. The paper
is organized as follows. The next section sums up empirical properties of data
and lists the ML/DL models applied. Results are given and discussed in Sect. 3,
followed by a brief conclusion.
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2 Data and Models

Figures 3 and 4 show the distribution of the log returns, from which volatility
clustering and a fat-tail distribution may be observed.

Fig. 3. BTCUSD minute log returns. After removal of missing prices and non-adjacent
returns, there are 1,804,479 values. Source data fom [2].

Fig. 4. Distribution of log returns of BTCUSD price on minute-sampling scale.

The distribution in Fig. 4 is practically symmetric, and the absolute values of the
log return can be fitted with power law as shown in Fig. 5. One-lag correlations
are shown in Fig. 6. Realized volatility distribution is shown in Fig. 7(a), along
with a log-value differencing transform in Fig. 7(b). Figure 8 shows the autocor-
relation function (ACF) values for the first 20 lags. Correlations between RV and
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Fig. 5. Power-law distirbution of the fat-tail of BTCUSD minute log returns and the
fitted exponent.

Fig. 6. Distirbution patterns of adjacent minute returns. Note the line structure on the
reverse diagonal of II and IV quadrant, which corresponds to negative autocorrelation
for lag 1.

intraday variance, defined as 2(H −L)/(H +L), where H stands for the highest
and L for the lowest price within each 3-h bin interval, are shown in Fig. 9(a).
Approximate relation between RV and aggregated trading volume is depicted in
Fig. 9(b). The methods of analysis are the heterogenous auto-regressive model
of realized volatility (HARRV) [1] with 3 lags, multi-layer perceptron (MLP,
dense layer neural network) [8], convolutional neural network (CNN) [9], long
short-term memory (LSTM) [10] (cf. Fig. 10), gated recurrent unit (GRU) [11],
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Fig. 7. Realized Volatility distributions: (a) Sum of the squared log returns on minute
scale aggregated over 180min, (b) log returns taken from adjacent values of RV in (a).

Fig. 8. Autocorrelation function (a) Left: correlation of log returns: notice the negative
value for lag 1, and the significant yet small values for lags 2 and 3; (b) Right: persistent
correlations of RV time series.

support vector machine (SVM) [12] and ridge regression [13]. In addition, we
implemented Dropout mechanism to LSTM, GRU, and Batch Normalisation
(BN) to MLP and CNN.
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Fig. 9. 2D Histograms in the form of heatmap diagram: (a) Correlation of RV and
intraday variance (see text for definition) (b) Right: correlation of RV and trading
volume (time scale of 3 h).

σ σ Tanh σ

× +

× ×

Tanh

c t−1

Cell

h t−1

Hidden

x tInput

c t

Cell

h t

Hidden

h tOutput

Fig. 10. Long short-term memory unit operation following notation in Ref. [10].

3 Results

Table 1 shows the results for several models referenced above, with model con-
figuration listed in the first column. The models were validated with 10-fold
cross validation (CV) for time series using 100 runs, and benchmark on the test
set, using 30 random weight initializations. Optimized parameters (length of
sequence used for prediction) are shown in column 2, and the statistical char-
acteristics of the mean squared error (MSE) and the rooted MSE (RMSE) are
listed. Result variances are also displayed where applicable. The best performing
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method on the validation data set is the GRU 1 layer + 2 dense layer result;
however, it does not generalize well on the test data set, where the ridge regres-
sion method benchmarks as the most superior method with penalty parameter
0.6951.

Table 1. Resuts of machine learning models trained with cross validation and bench-
marked on the test set.

Model Sequence

length

CV MSE CV RMSE Test MSE Test RMSE

HARRV 1, 6, 16 3.1617e-04 1.7781e-02 4.8442e-06 2.2010e-03

MLP 4 layers with dropout 10 2.9613e-04 1.7209e-02 4.8704e-06

(var

1.3311e-14)

2.2067e-03 (var

6.8202e-10)

MLP 4 layers with BN 10 3.0151e-04 1.7364e-02 4.8212e-06

(var

4.9997e-14)

2.1952e-03 (var

2.5325e-09)

LSTM 2 layers + 1 Dense 12 2.9845e-04 1.7276e-02 4.8233e-06

(var

2.0082e-14)

2.1960e-03 (var

1.0293e-09)

GRU 1 layer + 2 Dense 5 2.9607e-04 1.7207e-02 4.7433e-06

(var

8.8148e-15)

2.1778e-03 (var

4.5781e-10)

CNN 2 layers + 1 Dense 6 3.0608e-04 1.7495e-02 4.7605e-06

(var

1.2904e-14)

2.1817e-03 (var

6.7603e-10)

SVM 7 3.2120e-04 1.7922e-02 4.3463e-05 6.5293e-03

Ridge Regression 6 3.0615e-04 1.7497e-02 4.6667e-06 2.1603e-03

4 Conclusion

We have analyzed high-frequency Bitcoin time series sampled on minute scale
using statistical method and machine learning algorithms. First, the auto-
covariance function of the minute-based log return values not only shows a nega-
tive significant value at lag 1, but also small positive values distinct from zero at
lags 2, 3 and 4. Since cryptocurrency exchanges continue trading with customers
all over the globe, 24 h a day, there is no a priori reason to sample the realized
volatility at daily scale. Given the length of the data set (about 6 years) and the
data-savvy machine learning algorithms, we decided to aggregate the RV values
using 3-h long intervals. The RV values show a weak correlation with relative val-
ues of the 3-h interval based high-low price extent. This work has focused solely
on the heterogeneous autoregressive dynamics. We have found that albeit at the
validation data set level neural network algorithms provide good fits of the RV
dynamics, this does not carry over to the test set benchmarks. In particular, the
best performing method is the ridge regression, in which past RV values are used
as predictors. The optimized lags were 1, 6, and 16. We remark, nevertheless,
that the assumptions of heterogenous time scales for the auto-regressive process
is not necessary valid at crypto-currency exchanges, which have their specific
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dynamics. For instance, it may be possible to use differenced log values of real-
ized volatility to model the increment process. Future work along these lines will
include predicting the RV values from a broader set of indicators, in additiion to
the past RV data, especially the minute-scale time series of logarithmic returns,
and transaction volume series.
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Abstract. A relevant problem on data science is to define an efficient
and reliable algorithm for finding specific patterns in a given signal. This
type of problems often appears in medical applications, biophysical sys-
tems, complex systems, financial analysis, and several other domains.
Here, we introduce a new model based in the ability of Recurrent Neu-
ral Networks (RNNs) for modelling time series. The technique encodes
temporal information of the reference signal and the given query in a
feature space. This encoding is done using a RNN. In the feature space,
we apply similarity techniques for analysing differences among the pro-
jected points. The proposed method presents advantages with respect of
state of art, it can produce good results using less computational costs.
We discuss the proposal over three benchmark datasets.

Keywords: Recurrent Neural Networks · Reservoir Computing ·
Time series matching · Similarity · Echo State Property

1 Introduction

During the last decades, Neural Networks (NNs) have been successfully applied
for solving machine learning problems, time series forecasting and modelling
data [22]. In particular, a NN with a recurrent topology is a very powerful
computational model for analyzing and predicting sequential data [15]. In this
work, we analyze an approach based in the power of recurrent NN for memorizing
sequential data. Given a specific pattern (query), which can be a noisy segment
of a reference time series, the goal is to identify if the given pattern belongs to
the reference time series. The problem has provoked a lot of attention, and there
are already several employed techniques [5,13]. A common approach is to apply
a sequential scanning of the query and the reference segments. Other approaches
are based in comparing features from the query and the reference signal [19].

In this work, we discuss a new approach based in the literature introduced
in the area of Reservoir Computing [15]. The proposed method encodes the
reference signal in a feature space, the encoding is done using a Recurrent Neu-
ral Network (RNN). The same encoding algorithm is performed to the query.
Then, we analyze two variations. In one case, we study the simularity of the
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 173–183, 2019.
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projected reference signal and the projected query on the projected space (lat-
tice of points projected by a RNN). Another variation analyzed in this study
consists of applying a dimensionality reduction technique of the points in the
feature map. Once the redundant information is reduced, we apply similarity
techniques among points in a lower dimensional space. Our presented technique
is an attempt of analyzing similarities between the dynamics generator of the
reference time series and the dynamics generator of the query.

In this preliminary study, we describe the proposed technique and we present
results over three benchmark datasets. The rest of the article contains an
overview of RNNs that includes a description of Reservoir Computing models.
Section 3 introduces the specification of the problem and the proposed pattern
matching approach. Section 4 presents the experiments and discuss the results.
Finally, the article ends with a brief conclusion.

2 Overview on Recurrent Neural Network

Conceptually a standard NN is a parallel distributed processing system, which
is composed by interconnected simple processing units known as neurons [21].
Both processing units and the interconnection among them are mathematical
abstractions of the biological nervous system [22]. The model design depends on
two independent factors: (i) defining the schedule of time-dependent interactions
among the elements, that can be single neurons or group of neurons; and (ii)
in its architecture. The system architecture is characterized by several factors
such as: the selection of the activation functions, the pattern of connectivity of
the network, the weight connections, as well as the protocol of communication
among the neurons with the environment (how to provide information to the
networks and how to extract the results) [21]. Often the NN field is catego-
rized into two major types: Feedforward Neural Network (FNN) and Recurrent
Neural Network (RNN). A FNN is a parametric function where the signals are
traveling through the network from the input to the output neurons [11]. Last
ten years, deep multi-layer FNNs has became especially popular on the area of
ML. Among the most significant results are the ones produced by the research
groups of LeCun, Bengio [3], and Hinton [27]. By contrary, a RNN has at least
one cyclic synaptic connection that enables neurons to feed their output signals
back to the system. Using the graph terminology, a RNN has at least a circuit in
the network topology. The recurrent topology of the graph makes a significant
difference between FNN and RNN, while a FNN is a parametric function, the
RNN model is a dynamical system [10]. The recurrent network topology ensures
that a transformation of the input history can be stored in internal states. Fur-
thermore, an important property of the RNN model is its computational power,
at the early 90s, it was shown that a RNN with a finite number of units and
sigmoidal activation functions are universal Turing machines [6,23].
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2.1 Formal Specification

We formulate the targeting problem in terms of a discrete time system with
an input u(t), an output y(t) and a hidden state x(t). A standard RNN is a
dynamical defined system as follows:

x(t) = φh(θh,u(t),x(t − 1)), (1)

and
y(t) = φout(θout,x(t)), (2)

where φh(·) and φout(·) are two pre-defined coordinate-wise functions, and θh and
θout are adjustable control variables. A numerical optimization problem appears
when a NN is applied for solving supervised Machine Learning problems, which
consists in finding the optimal set of parameters θh and θout such that a distance
between the matching target and the network output is minimized [18].

2.2 Reservoir Computing Methods

In spite of the computational power of the RNN model, in many real-world
problems with real-time constraints and computational restrictions is a hard
challenge to find the optimal network topology [26]. At the beginning of 2000s,
a new computational concept for designing and training NNs was introduced
with the names of Liquid State Machine (LSM) [16] and Echo State Network
(ESN) [10]. Since 2007 the approach has become popular under the name of
Reservoir Computing (RC) [24]. The RC model performs a convolution of at least
two operations. In the first operation is performed a dynamical system (so-called
reservoir), which has the double role of memorizing the sequence of input data
and to enhance the linear separability of the data. The reservoir function acts as a
temporal kernel method projecting the data in a feature space [15]. The second
operation is a simple supervised learning mapping between the feature map
(projected data by the reservoir) and the output space (so-called readout). Most
often this mapping is a simple linear regression. A distinguishing characteristic
of a RC technique is that the model has two types of parameters, the ones in
the reservoir are randomly assigned and the parameters in the readout structure
are adjusted according to the training data [26]. As a consequence, the training
algorithm is robust and fast.

In the following we define the canonical ESN model [10]. Let Nu be the
dimension of the input space (number of input neurons), Nx denotes the number
of neurons in the reservoir and Ny is the number of output neurons. The network
weights are collected in three matrices. The input-reservoir weight matrix θin

with dimensions Nx×Nu, the Nx squared matrix θh with hidden-hidden weights,
and the readout matrix θout collecting weights from the projected space to the
output space of dimensions Ny × Nx. For the sake of notation simplicity, we
omit the bias term in these matrices. The reservoir state is characterised by the
following recurrence:

x(t) = φh(θinu(t) + θhx(t − 1)), (3)
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where φh(·) is a predefined Lipschitz function. The model prediction is computed
by a linear regression:

ŷ(t) = φout(θoutx(t)), (4)

where φout(·) is a predefined coordinate-wise functions.
The model performance depends on the initialization of several global param-

eters [15]:

– Dimension of the projected space: the dimension of the feature space is given
by the reservoir size. To increase the number of neurons in the reservoir may
improve the linear separability of the data.

– Input scaling factor: note that expression (3) contains the input pattern, then
how to scale and pre-process the input sequence can impact in expression (3).

– Density of the reservoir matrix: it is suggested to use around a 20% of non-zero
values on the reservoir matrix [15].

– Network controllability: there are several studied about the stability of the
recurrent expression (3). In the next section, we discuss with more details the
technical issues of the reservoir dynamics.

The family of RC models is very large. Other variations of the original ESN
and LSM methods have been introduced during the last years. We can classify the
proposed variations in two types: the family of methods that modifies the reser-
voir projection and the family that modifies the readout model. The projection
can change according to the network topology and according to the reservoir
activation function. A type of cascade of reservoir projections was presented
in [8], particular topologies composed by regular cycles was analyzed in [20].
Another variation of the reservoir projection consists in using different neural
activation functions. For example: hyperbolic tangent and linear neurons were
studied in [4,15], leaky neurons were presented in [12], neurons inspired from
self-organization were studied in [14], and random spiking neurons in station-
ary state were developed in [2]. Another variation of the RC models developed
in the community is related to the supervised learning structure (readout) [7].
Actually, any type of supervised learning can be used, such as Support Vector
Machine (SVM), FNN, CART, and so on.

3 Proposed Approach

A time-series data is a sequence of events obtained over repeated measure-
ments of time. Most commonly, the arrival event at time t may impact on the
arrival event at time t + k (k > 0), i.e. the sequence of events are dependent
of each of other. The problem specification is as follows. Given a reference time
series U = {u(−T ), . . . , u(t), u(t + 1), . . .}, then we are interested in matching
a given sequential pattern Q (often called query) in U [13]. We consider that
Q matches a segment S (S ⊂ U) iff dist(Q,S) < ε, where ε is an arbitrary
threshold and dist(·) is a selected distance function.

Our proposal consists in projecting the reference time series in a feature
space. The projection is done using a classic reservoir. On other words, the
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reservoir captures the data dependency and encodes the temporal information of
the input data in a spatial space (feature map). Instead of using time windows
and to compare the query with sliding segments directly in U , we realise the
similarity analysis in the feature space. On other words, we compare the dynamic
generator of the query and the dynamic generator of the reference segment. Note
that the reservoir projections should be stable and able of memorizing the input
time series. For this reason, the projection should be done with a reservoir that
satisfies the Echo State Property (ESP) [1,15,17,25,28].

Roughly speaking, the ESP defines conditions of reservoir matrix in order to
guarantee stability in the dynamical system of expression 3. In addition, if the
system satisfies the ESP, then the initial conditions of the dynamical system do
not impact in the forecasting of the time series. This aspect is very important in
our proposal because the query projection and segments can’t be sensitive to the
reservoir initial state. More formal, the ESP was defined as follows [10]: given a
recurrent network without feedback connections, input sequences belong to the
input space A, and the network states x(t) are in a compact set S; the dynamical
system (3) satisfies the ESP if x(t) is uniquely determined by any left-infinite
input sequence {u(t − k) : k ∈ N} [25,29]. Let ρ(θh) be the spectral radius
of the hidden-hidden weight matrix θh, and let η(θh) be the largest singular
values of θh. A necessary condition of the ESP is that ρ(θh) ≤ 1, and a sufficient
condition of the ESP is that η(θh) < 1. However, the ESP can be preserved in
the situation of ρ(θh) > 1 with the additional condition that A doesn’t contain
the zero input sequence [17,29].

We apply the same input and reservoir matrices for projecting the query and
the reference data. The reservoir matrix is scaled for satisfying the ESP [17].
Once the projection is done, we analyze the results using two variations (Proposal
A and Proposal B). In one variation, we apply dimensionality reduction, in
another one we directly compare the reservoir states of the projected query and
projected time series.

Proposal A: In this first presentation of our proposal, we reduce the feature
map dimensionality using Principal Component Analysis (PCA). However, there
are several techniques in the literature for dimensionality reduction that may also
be applied. Figure 1 illustrates the proposal A. Let yu(t) be the projection of
the reference data, and let yq(t) be the projected vector of the query. Note that,
the distance between yu(t) and yq(t) is computed for all t in the query, and
the cumulated distance is compared with a threshold. The goal is to define a
rule for deciding if the subset {yu(t),yu(t + 1), . . . ,yu(t + k)} is close enough
to {yq(t),yq(t + 1), . . . ,yq(t + k)}. Note that, k can be lower than the query
size. This is due to the fact that the reservoir is able to memorize the temporal
information, then k (number of projected points to be compared) can be smaller
than the query size. This is an advantage with respect of the sliding windows
using the data in the original space.



178 S. Basterrech

Fig. 1. Proposed method using Reservoir projection and PCA.

Proposal B: In this variation, we avoid the application of the dimensionality
reduction technique. The analysis of similarity is done directly in the feature
map (lattice of points created by the reservoir). Therefore, we analyze if the
distance between two sequences {xu(t),xu(t + 1), . . . ,xu(t + k)} is close enough
to {xq(t),xq(t+1), . . . ,xq(t+k)}. However, the main characteristic of a RNN is
its ability to encode the temporal dependences, therefore the state x(t) already
contains information of the previous states x(t−1),x(t−2), . . .. As a consequence,
in order of reducing the computational costs is possible to compare the last few
points of the projected query. We also analyze the results when is compared only
the last projected time-step of the query with the projection of the reference
segment.

4 Experimental Results

4.1 Data Description

We evaluate the proposal A and B over three datasets. The Noisy Multiple
Superimposed Oscillator (MSO), Rossler time series, and a financial data exam-
ple. The noisy MSO is a sequential dataset generated for two sine waves and a
gaussian noise. The dynamics are created following the system

u(t) = sin(0.2t) + sin(0.311t) + z,

where t = 1, 2, . . ., and z is a Gaussian random variable with distribution
N (0, 0.01). Rossler attractor is a well-analyzed time series generated for the
following dynamics

∂x

∂t
= −z − y,

∂y

∂t
= x + ry,

∂z

∂t
= b + z(x − c),

where the parameters values are r = 0.15, b = 0.20, c = 10.0. The last benchmark
dataset is a financial time series available in the repository [9].

4.2 Results

For each benchmark problem, we study three types of queries. The query can
perfectly match a segment in the reference data. The query has a white noise,
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then the segment and query exactly match each other. Finally, also we discuss
examples where the query doesn’t belong to the reference time series. The last
example it was made just for analyzing eventual mistakes produced by the reser-
voir projections. We present results using a reservoir of 100 neurons, hyperbolic
tangent and the spectral radius of the reservoir matrix equal to 0.5. In this pre-
liminary work, we don’t analyze the impact of the reservoir global parameters in
the proposed approach. Figure 2 illustrates the results when the reference data is
the MSO time series. The figure has two graphics, in the left side is presented the
problem when the target query fits perfectly with the reference time series. This
problem can be easily solved using other methods based on sliding windows.
However, here we wanted to visualize the impact of the reservoir projections
that were randomly generated. The figure shows the reservoir state projected in
one dimension using the PCA (proposal A), the red curve is the projection of
the query. The graphic in the right side shows the errors computed using sliding
windows. In this example the query has a size of 50 time steps. Then, in the time
800 is shown the cumulated distance point by point between yu(t) and yq(t) for
t ∈ [800, 850]. The minimum error is presented at the time 800. In Figure 3 is
shown the original signal and two errors according to the different methods.
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Fig. 2. Pattern matching example in the MSO benchmark problem.

Figure 4 shows an example computed on the Rossler time series. The goal was
to match a noisy query, the figure contains three graphics. The first one presents
the projected signals, the last two presents the analysis of similarities. Figure 4
shows another example where the query doesn’t fit with any segment in the
reference time series. The figure in the graphic at the top shows in blue colour the
reference signal and in red colour the query signal. In the graphics on the bottom,
it is shown the projected reservoir state in one dimension. The figure illustrates
that the distance among the curves is large enough for discarding a similarity.
Figure 5 presents two graphics regarding the financial time series problem. In
the left side, the figure presents results when we analyze a noisy query and the
analysis of similarity was done using sliding windows of the projected reservoir
states using the PCA. In the right side, we shows results when the error was
computed only with the difference between {xu(t),xu(t + 1), . . . ,xu(t + k)} and



180 S. Basterrech

{xq(t),xq(t + 1), . . . ,xq(t + k)}, with k = 50 (last 50 reservoir states). It is
possible to see that the minimum errors are produced between the segment 1000–
1100, also depending of the selected threshold the query matches the reference
signal between the values 2300–2500.
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Fig. 3. Pattern matching example in the Rossler benchmark problem with a noisy
query.
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5 Conclusions and Future Work

In this work, we introduce a new technique for finding specific patterns in a time
series. The approach is based in the ability of a RNN for memorizing the input
data. Instead of comparing the reference signal with the given pattern, we use
a recurrent network for encoding temporal information and for projecting the
data in a feature space. Once the data is transformed in a new space, we apply
analysis of similarity among the projected points. We presented two variations
of our approach. In one variation we use PCA in the analysis of similarities. In
another one, we applied distance comparisons among large vectors in the feature
map. The technique presents an important advantage with respect of state of
art based in sliding widows of segments and comparisons with the query. The
sequence of projected points by the RNN encodes temporal information from
the past, therefore it is possible to compare the last time-step of the projected
query with the projected reference signal. This reduces the computational costs
and it is possible to store less data.

This is a preliminary study that can open several research avenues. In the near
future we expect to analyze different temporal encoding techniques. Besides, it is
necessary to study the minimum required size of the query in order of vanishing
the impact of the initial reservoir state. Furthermore, we would like to apply the
method on video frames.
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Abstract. Landslide is a complex geological natural disaster that brings
harm or damage to human beings and their living environment. By
strengthening landslide monitoring and forecasting technology, people
can avoid or reduce the impact of disasters more reasonably. At present,
the single step prediction of landslide displacement time series mainly
uses t time to predict the data of t+1 moment, which obviously makes
it difficult for people to take appropriate measures to deal with land-
slide changes. In this paper, a time reverse recursive algorithm based
on extended Kalman filter (EKF)and Back propagation trough time
(BPTT) method, is used to predict landslide displacement in order
to extend the time width of landslide prediction. The EKF is firstly
used to optimize the BPTT weights, and then the network parameters
are adjusted in real time to improve the reliability of the prediction.
Finally, the landslide displacement data of Liangshuijing (LSJ) in the
three Gorges Reservoir area is used as experimental samples to verify
the feasibility and practicability of EKF-BPTT.

Keywords: Landslide · Time series · Prediction · EKF-BPTT

1 Introduction

China is one of the countries with the most landslide disasters and serious losses,
because of its large land area and complicated geological conditions. According
to the national geological hazard notification data published annually by the
State Geological Survey (see [1]), geological disasters such as landslides in the
past five years (2012–2016) have caused great human and economic losses in
China (See Fig. 1).

Landslide is a geological phenomenon in which a soft shear surface appears in
the interior of a natural slope or a man-made slope under the combined action
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 184–193, 2019.
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Fig. 1. Statistics on losses caused by geological hazards (2012–2016).

of various factors (see [1–4]), and the slope rock and soil gradually slip along
this surface. The three Gorges Reservoir area in Hubei Province is a region
with extremely complicated geology and steep topography. Since the storage of
water in 2003, landslide disasters and landslides have occurred frequently in the
reservoir area, which greatly intensifies ecological destruction, resource damage,
waste and depletion, and also has a destructive impact on economic and social
development (see [5]). The development of a series of new technologies based on
landslide prediction and prevention to improve the ability of landslide emergency
treatment and ensure the safety of resources has always been a hot spot in the
engineering field (see [6–8]).

Some scholars have begun to study the induced factors of landslide and under-
stand the process of landslide deformation and evolution (see [9,10]). Generally,
rainfall is regarded as the main factor to induce landslide (see [11]). Lin Xiaosong
and Huang Runqiu have studied the relationship between rainfall and landslide,
and established the relative stability evaluation system (see [12,13]). By estab-
lishing a regression model of exponential function, Jiancong et al. revealed the
law of correlation between landslide displacement and rainfall (see [14]). At the
same time, many other scholars all over the world, such as the angle of land-
slide monitoring, the displacement response and deformation principle between
rainfall intensity and landslide (see [15,16]). Yao wei and Liancheng established
dynamic models of landslide displacement prediction using improved ESN and
ultimate learning machine, respectively (see [17,18]).

Based on the above researchs, ANNs have the disadvantage of slow con-
vergence rate and local minimum trap in landslide prediction. In this paper, a
new algorithm EKF-BPTT is used, which mainly uses BPTT recurrent neural
network to predict landslide displacement in multi-step, and EKF is used to opti-
mize the weight of BPTT. The data of LSJ landslide displacement in the Three
Gorges reservoir area are used as experimental samples to verify the feasibility
and practicability of EKF-BPTT.

2 Preliminary Data

2.1 EKF

Kalman Filter (KF) is an algorithm used to find the optimal state estimation by
means of the state equation of the linear system and the external representation
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of the input and output data. Apollo’s navigation computer has used this filter.
The application of KF requires several assumptions: the probability distribution
of the current state must be a linear function of the previous state and the
control quantity to be performed, and then a Gaussian noise is superimposed.
The EKF is the KF for nonlinear systems.

Considering a simple and special example of a discrete time system with
added value without observing noise:

x(n + 1) = f(x(n)) + q(n) (1)

y(n) = h(x(n)) + v(n) (2)

where x(n) is state matrix, f(∗) is state update function, q(n) is external input
for system (uncorrelated Gaussian noise process, can also be regarded as process
noise). y(n) is output for system, h(∗) is a time-varying observation function
(based on the original linear Kalman filter). At time n = 0, the state of the
system x(0) is obtained by the multidimensional normal distribution of the mean
and covariance matrices. Until the moment n, the systematic observations are
obtained by y(0), y(1), · · · , y(n).

2.2 BPTT

BPTT is an improved algorithm for the well-known Back-propagation (BP) algo-
rithm of feedforward networks. It uses stacked recurrent neural network (RNN)
with the same replicas and reconnects the connections between subsequent repli-
cas in the network to “expand” the recursive network in time, as shown in Fig. 2,
where A represents the original RNN and B represents the feedforward network
acquired through A.

Fig. 2. Basic schematic diagram of BPTT.

The weights between cell layers are equal in or between replicas. Sample set
data now includes a single input-output time series:

u(n) = (u1(n), · · · , uK(n))
′
,d(n) = (d1(n), · · · , dL(n))

′
(3)

where n = 1, · · · , T .
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3 Application of EKF-BPTT in Multi-step Prediction
of Landslide Displacement Time Series

3.1 Thought of Model Design

EKF is used to update the weights of BPTT neural network and avoid local min-
imal problems caused by gradient descent algorithm, and new effective informa-
tion is used reasonably to improve the convergence speed of learning algorithm.
The learning network can not only learn autonomously, but also have the optimal
estimation performance of fading filtering.

3.2 Model Implementation Process

According to the design idea of the model, the design and implementation process
is as follows:

Firstly, a training set containing input and output is generated by BPTT:

u(n) = (u1(n), ..., uK(n))t, n = 1, ..., T (4)

d(n) = (d1(n), ..., dK(n))t, n = 1, ..., T (5)

where the weights of input layer, middle layer, output layer and back projection
connection layer are related as follows:

W in = (ωin
ij ),W in = (ωij),W out = (ωout

ij ),W back = (ωback
ij ) (6)

Secondly, instead of subdividing the weights of each level, we use a weight
matrix w to describe them and EKF to optimize the weights of BPTT. The
output variable d(n) of BPTT is an equation about weight h and input variable
n:

d(n) = h(w, u(0), ..., u(n)) (7)

The transient state of the initial network state has disappeared, and the input
and output variables make it change with time. Assuming that the network needs
to update some noise including process, we add some Gaussian noise q(n). The
dynamic behavior of BPTT is described as follows:

w(n + 1) = w(n) + q(n), d(n) = hn(w(n)) (8)

EKF is a sub-optimal solution algorithm. For non-linear Gauss, it expands
the non-linear part by Taylor expansion. Considering the single-input and single-
output neural networks, there are no intermediate elements.
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4 Case Study

4.1 LSJ Landslide

The mechanism of landslide formation is very complicated, and there are many
factors affecting landslide. We choose LSJ landslide as a case study, which is the
center of the Three Gorges Dam. It is located in Shuirang Village on the South
Bank of the Yangtze River, Guling Town, Yunyang County, Chongqing City,
northeastern China as shown (a) in Fig. 3. There are 24 GPS monitoring points
on the surface of the landslide. We select the measured data on the monitoring
point ZJG24 as the input data of the prediction model in this paper.

(a) LSJ landslide (b) Displacement.

(c) Reservoir Level. (d) Rainfall.

Fig. 3. LSJ landslide and its Displacement, Reservoir Level and Rainfall Time Series
of ZJG24.

(b) and (c) in Fig. 3 depict the time series of displacement and reservoir
water level from April 6, 2009 to May 25, 2011. For the acquired data, we use
the data of the sixth, sixteenth and twenty-six days of each month. The total
length of the data is 106, which is divided into two parts. The first part takes
the first 71 data as training set to build the prediction model, and the remaining
35 data as test set. (d) in Fig. 3 depicts the rainfall time series curve from April
6, 2009 to June 16, 2010. The total non-zero data length is 43, while the rest of
the non-rainfall data is 0.

4.2 Correlation and Stability Analysis of Time Series

MI and PCC can be used to identify the linear and nonlinear statistical depen-
dence between a set of candidate input and output variables (see [19]). For
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calculating PCC and MI between displacement, reservoir level and rainfall of
LSJ landslide, we first need to normalize all data by using the following formula,
that is, to transform all data into [−1, 1]:

x
(new)
i =

x
(old)
i − min(xi)

max(xi) − min(xi)
, (9)

x
(old)
i = x

(new)
i (max(xi) − min(xi)) + min(xi). (10)

where x
(old)
i and x

(new)
i are input variables and output variables, min(xi) and

max(xi) represent the maximum and minimum input variables in this interval,
respectively.

Table 1. PCC and MI.

Parameter Disa vs ResLb Dis vs Rainfall ResL vs Rainfall

PCC 0.9338 0.1100 0.0091

MI 0.7236 −0.0063 0.1367
a Displacement,b Reservoir Level

It can be seen from the Table 1 that the PCC (MI) between the displacement
and reservoir level is larger, which reflects the close relationship between them.
Then, the variables of displacement and reservoir level are choosed inputs for
our forecast model.

4.3 Analysis and Results

The total length of LSJ landslide displacement and reservoir water level is 106
in Fig. 3. We use 70% data as the test set and 30% data as the prediction set.
But here we use multi-step algorithm. If the step size is different each time, the
corresponding data length will change correspondingly. Here we mainly use two-
step, four-step and six-step prediction in advance. At the same time, we use two
kinds of recurrent neural network RTRL and BPTT methods to do comparative
experiments, using four common evaluation and prediction Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Relative Error (RE) and PCC (R)
to evaluate.

Figures 4, 5 and 6 show multi-step predicted displacement values, which
are two-step, four-step and six-step predicted displacement values, respectively.
Among them, blue represents the original data and red represents the prediction
data.
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Fig. 4. EKF-BPTT two-step prediction of displacement.
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Fig. 5. EKF-BPTT four-step prediction of displacement.

0 5 10 15 20 25 30
700

800

900

1000

1100

Month

D
is

p
la

c
e
m

e
n
t

0 5 10 15 20 25 30
700

800

900

1000

1100

Month

D
is

p
la

c
e
m

e
n
t

predicted data
actual data

actual data
predicted data

0 5 10 15 20 25 30
700

800

900

1000

1100

Month

D
is

p
la

c
e
m

e
n
t

0 5 10 15 20 25 30
700

800

900

1000

1100

Month

D
is

p
la

c
e
m

e
n
t

actual data
predicted data

predicted data
actual data

0 5 10 15 20 25 30
700

800

900

1000

1100

Month

D
is

p
la

c
e
m

e
n
t

0 5 10 15 20 25 30
700

800

900

1000

1100

Month

D
is

p
la

c
e
m

e
n
t

predicted data
actual data

actual data
predicted data

Fig. 6. EKF-BPTT six-step prediction of displacement.

Table 2 shows the characteristics of calculating the RE value of EKF-BPTT
and extracting the RE value. It is also mainly considered from three aspects:
maximum, minimum and mean. From the calculated data, it can be seen that
the minimum RE value is 0.0006 and the maximum RE value is 0.3709.
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Table 2. RE statistics.

VARIABLE MIN MAX MEAN

Two-step variable1 0.0006 0.3709 0.2126

Two-step variable2 0.0240 0.3212 0.2066

Four-step variable1 0.0091 0.3192 0.1296

Four-step variable2 0.0053 0.3324 0.2366

Four-step variable3 0.0035 0.3265 0.1258

Four-step variable4 0.0011 0.2655 0.1176

Six-step variable1 0.0058 0.3449 0.1482

Six-step variable2 0.0003 0.3450 0.1430

Six-step variable3 0.0087 0.2956 0.1127

Six-step variable4 0.0016 0.2637 0.1186

Six-step variable5 0.0105 0.2837 0.1197

Six-step variable6 0.1197 0.2470 0.1145

Table 3. Two-step prediction comparison between RTRL, BPTT and EKF-BPTT.

VARIABLE MAE RMSE R

RTRL two-step variable1 151.5080 174.5301 0.9319

RTRL two-step variable2 173.8630 202.8133 0.8122

BPTT two-step variable1 155.2981 177.4132 0.9103

BPTT two-step variable2 166.3599 189.3157 0.9176

EKF-BPTT two-step variable1 146.1874 165.3521 0.9152

EKF-BPTT two-step variable2 166.7754 190.7905 0.9203

Tables 3 and 4 represent the MAE, RMSE and R values calculated by three
algorithms in multi-step prediction. Among them, the smaller the values of MAE
and RMSE, the better, while R is the opposite. Due to space limitation, the table
represent the MAE, RMSE and R values calculated by three algorithms in six-
step is omitted, and experimental results show that the maximum MAE, RMSE
and minimum R between RTRL, BPTT and EKF-BPTT are 116.9876, 136.2621
and 0.7162 respectively, all for BPTT six-step variable 1. And the minimum
MAE, RMSE and maximum R are 78.2898 for EKF-BPTT six-step variable
3, 82.5877 for EKF-BPTT six-step variable 6 and 0.9647 for EKF-BPTT six-
step variable 3 respectively. In summary, the experimental results in this set
of landslide data show that the EKF-BPTT algorithm has the best prediction
effect in two, four and six steps. This result shows EKF-BPTT algorithm is more
reasonable in weight adjustment.
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Table 4. Four-step prediction comparison between RTRL, BPTT and EKF-BPTT.

VARIABLE MAE RMSE R

RTRL four-step variable1 113.0197 126.1280 0.8901

RTRL four-step variable2 112.8539 124.6291 0.8938

RTRL four-step variable3 100.3440 110.5544 0.9171

RTRL four-step variable4 97.3896 107.4008 0.9261

BPTT four-step variable1 113.4523 132.5690 0.8156

BPTT four-step variable2 117.8957 132.8315 0.8615

BPTT four-step variable3 104.5090 121.6359 0.8906

BPTT four-step variable4 109.7865 125.6540 0.5892

EKF-BPTT four-step variable1 96.6189 97.6799 0.9817

EKF-BPTT four-step variable2 102.6799 98.7399 0.9712

EKF-BPTT four-step variable3 95.4461 94.4792 0.9592

EKF-BPTT four-step variable4 93.2015 98.0521 0.9366

5 Concluding Remarks

A landslide displacement forecast approach has been proposed in this paper. And
the causes of landslides are very complex and the harm is very great. In order to
avoid these crises as far as possible, we need to try different methods to predict
and deal with the changes of landslides. There are many methods to deal with
the time series prediction of landslide displacement from different perspectives,
such as one-step prediction, interval prediction and probability prediction. In
this paper, RNNs and its improved EKF-BPTT learning algorithm are used
for multi-step prediction. Using EKF to optimize RNs can not only accurately
predict displacement, but also have some advantages compared with BPTT and
RTRL. How to reasonably link control with prediction can be regarded as an
important and difficult problem for future research.
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Noise Filtering in Cellular Neural Networks
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Abstract. A cellular neural network (CNN) with a bipolar stepwise activation
function is considered. A comparative analysis of CNN learning algorithms on a
given set of binary reference images for various degrees of noise (inversion of
randomly selected pixels) and various cell neighborhood sizes is performed.
For CNN training a local projection method, which provides much higher noisy
images quality filtering than the classical local perceptron learning algorithm, is
proposed.

Keywords: Cellular neural network � Noise filtering �
Perceptron training algorithm � Local projection method � Noisy images �
Cell neighborhood

1 Introduction

The main drawback of Hopfield networks [1–4] is a huge interneuron connections
(complete graph) number which hampers their hardware implementation. As shown in
[5], the connections number can be reduced by an order of magnitude due to the
weights matrix reduction when training the Hopfield network according to Hebb, but
the number of connections is still large. A possible way out of this difficult situation is
the use of cellular neural networks [6–11], which makes this work relevant.

Cellular neural networks (CNN) were introduced in [6]. A CNN consists of a large
number of simple processing elements (cells) usually located in nodes of an orthogonal
or hexagonal grid, where each cell is connected to many nearest neighbors. The con-
nections between the cells are weighed and each cell calculates a nonlinear function of
its internal state which is modified depending on the sum of cell neighbor weighed
outputs.

All cells calculate their next states in parallel and synchronously. Calculations
begin when all cells are established in the initial state and are completed in a steady
state when all the cells no longer change their states. For learning CNN, the perceptron
algorithm is usually used. A classical version of this algorithm was proposed in [12]. In
[7] this algorithm is adapted to CNN.

An orthogonal CNN example is presented in Fig. 1. A cell Cij corresponds to the
states pattern Xij of its neighborhood and the pattern of weights Wij of the cell con-
nections with its neighbors.
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For the neighborhood with the cell number Ne ¼ ð2rþ 1Þ � ð2rþ 1Þ; r ¼ 1 we
have

Xij ¼
xi�1;j�1 xi�1;j xi�1;jþ 1

xi;j�1 xij xi;jþ 1

xiþ 1;j�1 xiþ 1;j xiþ 1;jþ 1

2
4

3
5 and Wij ¼

wi�1;j�1 wi�1;j wi�1;jþ 1

wi;j�1 wij wi;jþ 1

wiþ 1;j�1 wiþ 1;j wiþ 1;jþ 1

2
4

3
5:

We introduce the notation Xij �Wij ¼
Piþ r

k¼i�r

Pjþ r

l¼j�r
xklwkl; r� 1.

Then the cell Cij functioning is described by the expression:

xij ¼ sgnðXij �WijÞ

where

sgnðaÞ ¼ 1; a[ 0
�1; a� 0

�

is a bipolar stepwise activation function.

2 Methods of Learning Cellular Neural Networks

2.1 Hebb Method

Hopfield networks [1–4] can be considered as a CNN in which any cell is adjacent to
all the others. When entering training vectors xt; t ¼ 1; . . .; p, weights wij are calcu-
lated according to the generalized Hebb rule

wij ¼ 1
N

Xp
k¼1

xki x
k
j ;

Fig. 1. Example of cellular neural network (Ne ¼ 3� 3)
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where N is the number of cells (neurons).

2.2 Projection Method

The Hopfield network projection learning method [3, 4] has the iterative weight matrix
W dependence on the learning vector sequence xt; t ¼ 1; . . .; p:

yt ¼ ðWt�1 � EÞ � xt;

Wt ¼ Wt�1 þ yt � ytT
ytT � yt

under the initial conditions W0 ¼ 0 (E is the identity matrix). As the vectors presen-
tation result, the network weight matrix takes on a value W ¼ Wp.

2.3 Cellular Version of the Perceptron Learning Algorithm

A cellular version of the perceptron learning algorithm can be represented by the
formula [7]

Wtþ 1
ij ¼ Wt

ij; if xtij � ðXt
ij �Wt

ijÞ[ 0;
Wtþ 1

ij ; otherwise:

�

Here, index t indicates the states of cells and their interconnection weights at time t.

2.4 Cellular Version of the Hebb Method

As an alternative to the perceptron learning algorithm, this paper considers the cellular
version of the Hebb algorithm, which is described by the formula

Wij ¼ 1
Ne

Xp
t¼1

xtijX
t
ij;

where Ne is the number of cells in neighborhood e.

2.5 Cellular Version of the Projection Method

In this paper, we propose to use the following local version of the projection method
for learning CNN:

ytij ¼
Xiþ r

j¼i�r

Xiþ r

k¼i�r

ðwjk � 1Þ � xtjk; r� 1:

Wt
ij ¼ Wt�1

ij þ ytij � Yt
ij

Ne
; t ¼ 1; 2; . . .; p; W0

ij ¼ 0:
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3 Noise Filtering

As reference vectors (matrices) xt; t ¼ 1; 2; . . .; p; p ¼ 10, the binary images of digits
(Fig. 2) sized N ¼ 16� 16 and N ¼ 32� 32 are used.

To the input of the CNN trained by the above algorithms, the noisy versions of the
reference vectors are fed. The noise is introduced by inverting randomly selected
pixels. The noise level is set as a fraction of the pixels image total number. The
filtration result is compared to the reference vector and the number of the corre-
sponding mismatched components (Hamming distance) is recorded. This result is
averaged over all reference patterns.

Experiments show that the global learning methods (Hebb method and projection
method), traditionally used in Hopfield networks, generate a high-level noise (tens of
percent) at the CNN output even if the input noise is absent.

In Figs. 3, 4, 5, 6, 7, 8 are the Hamming distance (residual noise) dependences on
the percentage of the component inversions in the reference images for different sizes
Ne ¼ ð2rþ 1Þ � ð2rþ 1Þ, r ¼ 1; 2; 3 of the cell neighborhood, for the local Hebb
method, the perceptron algorithm, and the local projection method. These dependences
show that:

Fig. 2. Reference patterns
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Fig. 3. CNN output noise level dependence on the input noise level, N ¼ 16� 16; Ne ¼ 3� 3.
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Fig. 4. CNN output noise level dependence on the input noise level, N ¼ 32� 32; Ne ¼ 3� 3.
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Fig. 5. CNN output noise level dependence on the input noise level, N ¼ 16� 16; Ne ¼ 5� 5.
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Fig. 6. CNN output noise level dependence on the input noise level, N ¼ 32� 32; Ne ¼ 5� 5.
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1. The perceptron method ideally reproduces reference images only in the absence of
distortion. In other cases, it loses, almost everywhere, to the local projection method
in terms of residual noise.

2. The local Hebb method works better than the other two methods only with mini-
mum neighborhood size Ne ¼ 3� 3 and high noise levels (at least 70%) in the input
signal.

3. The local projection method almost perfectly reproduces reference images in the
absence of input noise (the output noise level does not exceed 1.56% with N ¼
16� 16 and 0.14% with N ¼ 32� 32) and works better than the other two methods
with small input noise levels (up to 60%).

For the local projection method, the residual noise level dependences on the input
noise level are presented in Fig. 9 for the cell neighborhood sizes
Ne ¼ ð2rþ 1Þ � ð2rþ 1Þ, r ¼ 1; 2; 3, and the cells number N ¼ 16� 16 (Fig. 9a) and
N ¼ 32� 32 (Fig. 9b). It follows from Fig. 9 that the residual noise increase slows
down when the neighborhood size Ne increases.
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Fig. 7. CNN output noise level dependence on the input noise level, N ¼ 16� 16; Ne ¼ 7� 7.

0
10
20
30
40
50
60
70
80

0 20 40 60 80 100
Input noise

O
ut

pu
tn

oi
se

Local Hebb
Perceptron
Local projection

Fig. 8. CNN output noise level dependence on the input noise level, N ¼ 32� 32; Ne ¼ 7� 7.
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4 Conclusion

A cellular neural network (CNN) with a bipolar stepwise activation function is con-
sidered. A comparative analysis of learning algorithms for a CNN on a given set of
binary reference images is performed.

A local projection method, which provides much higher quality filtering of noisy
images than the classical local perceptron learning algorithm, is proposed.

The trained CNN versions are tested with different noise (inversion of randomly
selected pixels) degrees in the input reference images and various cell neighborhood
sizes. Determined that:

1. Global learning methods (Hebb method and projection method), traditionally used
in Hopfield networks, in cellular networks generate a high level noise (tens of
percent) at the CNN output even in the absence of input noise.

2. The perceptron training method ideally reproduces reference patterns only in the
absence of distortion. In other cases, it loses, almost everywhere, to the local
projection method in terms of residual noise.

3. The local Hebb method works better than the other two methods only with mini-
mum neighborhood 3 � 3 and high noise levels (at least 70%) of the input signal.

4. The local projection method almost perfectly reproduces the reference patterns in
the absence of input noise (the output noise level does not exceed 1.56% for images
sized 16 � 16 and 0.14% for images sized 32 � 32) and works better than other
methods at a low level input noise (up to 60%).
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Fig. 9. CNN output noise level dependence on the input noise level for the local projection
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Abstract. Among the many variants of RL, an important class of prob-
lems is where the state and action spaces are continuous—autonomous
robots, autonomous vehicles, optimal control are all examples of such
problems that can lend themselves naturally to reinforcement based algo-
rithms, and have continuous state and action spaces. In this paper,
we introduce a prioritized form of a combination of state-of-the-art
approaches such as Deep Q-learning (DQN) and Deep Deterministic Pol-
icy Gradient (DDPG) to outperform the earlier results for continuous
state and action space problems. Our experiments also involve the use of
parameter noise during training resulting in more robust deep RL models
outperforming the earlier results significantly. We believe these results
are a valuable addition for continuous state and action space problems.

Keywords: Reinforcement learning · Policy search ·
Prioritized learning · Parameter noise · RL · Deep learning · Mujoco ·
Policy gradient · DDPG

1 Introduction

Reinforcement learning (RL) is about an agent learning an optimal way to con-
trol and/or navigate through an environment that requires sequential decision
making by the agent. The agent does this by trying to maximize a numerical
performance measure that expresses a long-term objective, by trial-and-error.
RL arises naturally in a wide range of domains including autonomous control,
gaming, natural language processing & dialogue management, etc. [1].

1.1 RL in Continuous State and Action Space

Many interesting real-world control tasks, such as driving a car or riding a snow-
board, require smooth continuous actions taken in response to high-dimensional,
real-valued sensory inputs. In applying RL to continuous problems, the predom-
inant approach in the past involved discretizing the state and action spaces and
then applying an RL algorithm for a discrete stochastic system [2]. However
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 202–212, 2019.
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the drawbacks of discretization are, they do not scale, do not allow fine-grained
smooth control characteristic of continuous space-action systems, and are too
sensitive to the (arbitrary) choice of the granularity with which the discretiza-
tion is carried out.

Hence, the formulation of the reinforcement learning problem with continuous
state and action space holds great value in solving more real-world problems.

1.2 Deep Reinforcement Learning

The advent of deep learning has had a significant impact in many areas in
machine learning, dramatically improving the state-of-the-art tasks such as
object detection, speech recognition and language translation [3]. Deep Neural
Networks are very powerful function approximators and can be trained to auto-
matically find low-dimensional representations of high-dimensional data. This
enables deep learning to scale to problems which were previously intractable
including reinforcement learning problems with high dimensional, continuous
state and action spaces [4].

Few of the current state of the art methods in the area of Deep RL are:

– Deep Q-learning Networks (DQN) - introduced novel concepts which helped
in using neural networks as function approximators for reinforcement learning
algorithms (for continuous state space) [5].

– Prioritized Experience Replay (PER) - builds upon DQN with some newer
approaches to outperform DQN (for continuous state space) [6].

– Deep Deterministic Policy Gradients (DDPG) - follows a different paradigm
as compared to the above methods. It uses DQN as the function approximator
while building on the seminal work of [7] (for both continuous state and action
space) on deterministic policy gradients.

1.3 Prioritized Experience Replay in DDPG ( PDDPG)

We propose a new algorithm, Prioritized DDPG using the ideas proposed in
DQN, prioritized experience replay and DDPG such that it outperforms the
DDPG in the continuous state and action space. Prioritized DDPG uses the
concept of prioritized sampling in the function approximator of DDPG. Our
results show that prioritized DDPG outperforms DDPG in a majority of the
continuous action space environments. We then use the concept of parameter
space noise for exploration and show that this further improves the rewards
achieved.

2 Previous Work

2.1 Critic Methods of RL

Critic methods rely exclusively on a value or Q-function approximation and aim
at learning a “good” approximation of the value/Q-function [8]. We survey a
few of the recent best-known critic methods in RL.



204 R. Mangannavar and G. Srinivasaraghavan

Deep Q-Learning Networks. As in any value function-based approach, DQN
method tries to find the optimal value function for any given state/state-action-
pair. The novelty of their approach is that they efficiently use a non-linear func-
tion approximator to learn the function. Prior to their work, though the potential
for using non-linear function approximators was recognized, there was no tangi-
ble demonstration of their use in practice in an efficient manner.

The challenge in using function approximators was that the Monte-Carlo
sampling typically used for collecting experience in the form of state-action-
rewards by generating episodes did not guarantee i.i.d data that most machine
learning algorithms assume for training the models from. To overcome this draw-
back, the novel ideas that were proposed which made it possible to use non-linear
function approximators for reinforcement learning are the following:

– Experience Replay Buffer: In this technique, the neural network is trained
from random samples from a large buffer of stored observations.

– Periodic Target Network Updates: Two sets of parameters are maintained for
the same neural network — one for generating behaviour from (possibly using
an ε-greedy strategy) and the other (the target network) for the value function
estimation. The target network parameters are used in the loss computation
and are updated by the behaviour network parameters periodically.

Prioritized Experience Replay. The prioritized experience replay algorithm
is a further improvement on the deep Q-learning methods and can be applied
to both DQN and Double DQN. The idea proposed by the authors is as follows:
instead of selecting the observations at random from the replay buffer, they can
be chosen based on some criteria which will help in making the learning faster.
Intuitively the selection criterion from the replay buffer is biased towards the
‘more useful observations’ and less on the ‘stale’ ones. To select these more useful
observations, the criteria they use is the error of that particular observation.

This criterion helps select those observations which provide the highest learn-
ing opportunity for the agent. The problem with this approach is that greedy
prioritization focuses on a small subset of the experience and this lack of diver-
sity may lead to over-fitting. Hence, the authors introduce a stochastic sampling
method that interpolates between pure greedy and uniform random prioritiza-
tion. Hence, the new probability of sampling a transition i is

P (j) =
pα

j∑
k pα

k

(1)

where pi is the priority of transition i and α determines how much prioritization
is used. The approach, while it improves the results has a problem of changing
the distribution of the expectation. This is resolved by the authors by using
Importance Sampling (IS) weights

wi =
(

1
N

· 1
P (i)

)β

(2)

where if β = 1, the non-uniform probabilities P (i) are fully compensated ([6]).
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2.2 Actor Methods in RL

Actor methods work with a parameterized family of policies. The gradient of
the performance, with respect to the actor parameters, is directly estimated by
simulation, and the parameters are updated in the direction of improvement
([8]).

Deterministic Policy Gradients (DPG). The most popular policy gradient
method is the deterministic policy gradient (DPG) method and in this approach,
instead of having a stochastic policy, the authors make the policy deterministic
and then determine the policy gradient.

The deterministic policy gradient is the expected gradient of the action-value
function, which integrates over the state space, whereas in the stochastic case,
the policy gradient integrates over both state and action spaces. What this leads
to is that the deterministic policy gradient can be estimated more efficiently
than the stochastic policy gradient.

The DPG algorithm, presented by [7] maintains a parameterized actor func-
tion μ(s|θμ) which is the current deterministic policy that maps a state to a
particular action. The authors use the Bellman equation to update the critic
Q(s, a). They then go on to prove that the derivative expected return with
respect to actor parameters is the gradient of the policy’s performance.

2.3 Actor-Critic Methods

Actor-critic models (ACM) are a class of RL models that separate the policy
from the value approximation process by parameterizing the policy separately.
The parameterization of the value function is called the critic and the param-
eterization of the policy is called the actor. The actor is updated based on the
critic which can be done in many ways, while the critic is update based on the
current policy provided by the actor ([8,9]).

Deep Deterministic Policy Gradients (DDPG). The DDPG algorithm
tries to solve the reinforcement learning problem in continuous action and state
space setting. The authors of this approach extend the idea of deterministic
policy gradients. What they add to the DPG approach is the use of a non-linear
function approximator ([10]).

While using a deterministic policy, the action value function reduces from

Qπ(st, at) = Ert,st+1∼E [r(st, at) + γEat+1∼π[Qπ(st+1, at+1)]] (3)

to
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Qμ(st, at) = Ert,st+1∼E [r(st, at) + γQμ(st+1, μ(st+1))] (4)

as the inner expectation is no longer required. Here, γ ∈ [0, 1] is the discounting
factor. What this also tells us is that the expectation depends only on the envi-
ronment and nothing else. Hence, we can learn off-policy, that is, we can train
our reinforcement learning agent by using the observations made by some other
agent. The authors use this as well as the novel concepts used in DQN to con-
struct their function approximator. These concepts cannot be applied directly
to continuous action space, as there is an optimization over the action space at
every step which is in-feasible when there is a continuous action space [10].

Once we have both the actor and the critic networks with their respective
gradients, we can then use the DQN concepts - replay buffer and target net-
works to train these two networks. They apply the replay buffer directly without
any modifications but make small changes in the way target networks are used.
Instead of directly copying the values from the temporary network to the target
network, they use soft updates to the target networks.

Parameter Space Noise for Exploration. There is no best exploration strat-
egy in RL. For some algorithms, random exploration works better and for some
greedy exploration. But whichever strategy is used, the important requirement
is that the agent has explored enough about the environment and learns the best
policy. Plappert et al. [11] in their paper explore the idea of adding noise to the
agent’s parameters instead of adding noise in the action space. In their paper
Parameter Space Noise For Exploration, they explore and compare the effects
of four different kinds of noises

– Uncorrelated additive action space noise
– Correlated additive Gaussian action space noise
– Adaptive-param space noise
– No noise

They show that adding parameter noise vastly outperforms existing algo-
rithms or at least is just as good on a majority of the environments for DDPG
as well as other popular algorithms such as Trust Region Policy Optimization
([12]).

3 Prioritized Deep Deterministic Policy Gradients

The proposed algorithm is primarily an adaptation of DQN and DDPG with
ideas from the work of Schaul et al. [6] on continuous control with deep rein-
forcement learning to design an RL scheme that improves on DDPG signifi-
cantly. The intuition behind the idea is as follows: The DDPG algorithm uses
the DQN method as a sub-algorithm and any improvement over the DQN algo-
rithm should ideally result in the improvement of the DDPG algorithm. But
from the above-described methods, not all algorithms which improve DQN can
be used to improve DDPG. That is because some of them need the environ-
ment to have discrete action spaces. So, for our work, we will consider only the
prioritized experience replay method which does not have this constraint.
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3.1 Prioritized DDPG Algorithm

Now, the improvement to the DQN algorithm, the prioritized action replay
method can be integrated into the DDPG algorithm in a very simple way. Instead
of using just DQN as the function approximator, we can use DQN with priori-
tized action replay. That is, in the DDPG algorithm, instead of selecting observa-
tions randomly, we select the observations using the stochastic sampling method
as defined in Eq. 1. The pseudo-code for the prioritized action replay is given in
Algorithm 1. The algorithm runs in a for loop M times where M is the number
of episodes we want to train the agent for.

Algorithm 1 PDDPG algorithm

Randomly initialize critic network Q(s, a|θQ) and actor μ(s|θμ)
with weights θQ and θμ.
Initialize target network Q′ and μ′ with weights θQ′ ← θQ,θμ′ ←
θμ

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select action at = μ(st|θμ) + Nt using to the current policy
Execute action at and observe reward rt and new state st+1

Store transition (st, at, rt, st+1) in R � Storing to the replay
buffer

Sample a mini-batch of N transitions (si, ai, ri, si+1) from R
from R each such that - iP (i) = pα

i /Σip
α
i � Stochastic sampling

Set yi = ri + γQ
′
(si+1, μ

′
(si+1|θμ

′
)|θQ

′
)

Update critic by minimizing the loss: L = 1
N

∑
i(yi −

Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient

∇θµJ ≈ 1
N

∑
i ∇aQ(s, a|θQ)|s=si,a=μ(si)∇θµμ(s|θμ)|si

Update the target networks:

θQ
′

← τθQ + (1 − τ)θQ
′

θμ
′

← τθμ + (1 − τ)θμ
′

Update the transition priorities for the entire batch
based on the error

end for
end for

This algorithm is quite similar to the original DDPG algorithm with the only
changes being the way the observations are selected for training and the transi-
tion probabilities are being updated. The first change ensures we are selecting
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the better set of observations which help in learning faster and the second change
helps in avoiding over-fitting as it ensures all the observations have a non-zero
probability of being selected to train the network and only a few high error
observations are not used multiple times to train the network.

4 PDDPG with Parameter Noise

As introducing parameter noise improved the results obtained by DDPG, we
introduce the parameter noise with PDDPG in the same way. The noise is added
such we can achieve structured exploration by applying the noises to the param-
eter of the current policy. Also, the policy on which we have applied our noise
is sampled at the beginning of each episode.

The noise we add to the parameter are the ones discussed before -

– Uncorrelated additive action space noise
– Correlated additive Gaussian action space noise
– Adaptive-param space noise

We also have a result without adding any noise (original PDDPG) for com-
parison.

5 Results

The proposed, prioritized DDPG algorithm was tested on many of the standard
RL simulation environments that have been used in the past for benchmarking
the earlier algorithms. The environments are available as part of the Mujoco
platform ([13]).

5.1 Mujoco Platform

Mujoco is a physics environment which was created to facilitate research and
development in robotics and similar areas, where fast simulation is an important
component.

This set of environments provide a varied set of challenges for the agent as
environments have continuous action as well as state space. All the environments
contain stick figures with some joints trying to perform some basic task by
performing actions like moving a joint in a particular direction or applying some
force using one of the joints.

5.2 Empirical Evaluation

The implementation used for making the comparison was the implementation
of DDPG in baselines ([14]). The prioritized DDPG algorithm was implemented
by extending the existing code in baselines.
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Results for PDDPG. The following are the results of the prioritized DDPG
agent as compared DDPG agent ([10]). The overall reward - that is the average
of the reward across all epochs until that point and reward history - the average
of the last 100 epochs on four environments are plotted. The y-axis represents
the reward the agent has received from the environment and the x-axis is the
number of epochs with each epoch corresponding to 2000 time steps.

Fig. 1. Prioritized DDPG vs DDPG

As seen in Fig. 1, the Prioritized DDPG algorithm reaches the reward of the
DDPG algorithm in less than 300 epochs for the HalfCheetah environment. This
shows that the prioritized DDPG algorithm is much faster in learning.

The same trend can be observed in Fig. 1 for HumanoidStandup, Hopper and
Ant environments. That is, the prioritized DDPG agent learns and gets the same
reward as DDPG much faster. This helps is in reducing overall training time.
Prioritized DDPG algorithm can also help in achieving results which might not
be achieved by DDPG even after a large number of epochs. This can be seen in
the case of the Ant environment. Figure 1 shows that DDPG rewards are actually
declining with more training. On the other hand, Prioritized DDPG has already
achieved a reward much higher and is more stable.

One a few environments such as the Reacher, InvertedDoublePendulum and
Walker2d, it can be seen from Fig. 1 the prioritized DDPG only, marginally
outperforms the DDPG algorithm.

Results for PDDPG with Parameter Noise. The PDDPG algorithm with
parameter noise was run on the same set of environments as the PDDPG algo-
rithm - the Mujoco environments. The empirical results are as follows.

We can see from Fig. 2 that noise improves the overall reward obtained only
some of the environment. This is because the idea behind adding noise is for
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Fig. 2. Prioritized DDPG across all noi ses - adaptive-param, uncorrelated, co related
and with no noise

Fig. 3. Prioritized DDPG with noise vs DDPG
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better exploration and PDDPG explores and learns much faster as seen in 1.
In environments such as Inverted Pendulum or inverted double pendulum where
lesser exploration is required, the addition of noise does not improve the rewards
achieved, but in environments such as Humanoid-Stand up or Walker-2d, where a
lot of exploration is required, the noise does improve the overall reward achieved.

Overall, with the proposed changes, prioritization with the addition of noise,
the proposed algorithm outperforms DDPG on eight of the ten environments as
seen in Fig. 3 and does reasonably well in the others.

6 Conclusions

To summarize, this paper discusses the state of the art methods in reinforcement
learning with our improvements that have led to RL algorithms in continuous
state and action spaces that outperform the existing ones.

The proposed algorithm combines the concept of prioritized action replay
with deep deterministic policy gradients. As it has been shown, on a majority of
the mujoco environments this algorithm vastly outperforms the DDPG algorithm
both in terms of overall reward achieved and the average reward for any hundred
epochs over the thousand epochs over which both were run.

The proposed algorithm seems to learn much faster than the DDPG algo-
rithm. Also after 2000 iterations, as the graphs above show, the proposed algo-
rithm had accumulated significantly more rewards than DDPG while still retain-
ing a positive slope compared to the flattened curve for DDPG. This indicates
that it is unlikely for the DDPG algorithm to surpass the results of the proposed
algorithm on a majority of the environments. Also, certain kinds of noises further
improve PDDPG to help attain higher rewards. One other important conclusion
is that different kinds of noises work better for different environments which is
evident in how drastically the results changed based on the parameter noise.

The presented algorithm can also be extended and improved further by find-
ing more concepts in value based methods, which can be used in policy-based
methods. The overall improvements in the area of continuous space and action
state space can help in making reinforcement learning more applicable in real-
world scenarios. These methods can potentially be extended to safety-critical
systems, by incorporating the notion of safety during the training of an RL algo-
rithm. This is currently a big challenge because of the necessary unrestricted
exploration process of a typical RL algorithm.
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Abstract. Build-to-order (BTO) supply chains have become common-
place in industries such as electronics, automotive and fashion. They
enable building products based on individual requirements with a short
lead time and minimum inventory and production costs. Due to their
nature, they differ significantly from traditional supply chains. However,
there have not been studies dedicated to demand forecasting methods
for this type of setting. This work makes two contributions. First, it
presents a new and unique data set from a manufacturer in the BTO
sector. Second, it proposes a novel data transformation technique for
demand forecasting of BTO products. Results from thirteen forecasting
methods show that the approach compares well to the state-of-the-art
while being easy to implement and to explain to decision-makers.

Keywords: Demand forecasting · Supply chain modelling · Kernels ·
Neural networks

1 Introduction

Supply chain management (SCM) represents the managerial backbone of the
logistics and production sector. Due to its relevance, new methodologies appear
regularly in the literature. One of them is Build-To-Order Supply Chain Manage-
ment (BTO-SCM). This technique has seen significant adoption. Motivated by
the lack of work in the demand forecasting literature on BTO-SCM problems,
this research develops and presents Diagonal Feeding, a data transformation
technique, specially tailored for this setting together with a relevant and novel
data set from an electronics manufacturer. Data set and implementations of all
methods are available for download1.
1 https://github.com/rodrigorivera/isnn19.
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An accurate demand forecasting is essential for the global economy with
stockpiled or in-transit inventories representing 17% of the world’s Gross Domes-
tic Product (GDP), [8]. Yet, imprecise demand planning is still pervasive with
forecast errors of up to 44-53% for new products, [17,18]. As a result, retailers
experience out-of-stock (OOS) events with rates amounting to 8.3% worldwide,
[14]. BTO-SCM helps address the uncertainty that arises from variability in
demand.

The aims and backgrounds of this research is to present a technique for data
pre-processing accessible to non-technical business experts. Traditional forecast-
ing methods are still being used primarily by over 40% of demand planners in
the industry, [10], and the use of novel machine learning methods is a promising
area with little academic research and insufficient efforts to expose practitioners
to them, [24,25].

The significance of developing demand forecasting methods that can be easily
adopted by demand planners is evident. For discrepancies as low as 2%, it is
worth improving the accuracy of a forecast, [12], and a 10% reduction in OOS
can increase retailers’ revenue by up to 0.5%, [19]. Yet, companies struggle hiring
the adequate personnel to address these tasks. For example by 2020, Vietnam
is expected to face a shortage of over 500,000 employees with data science and
analytic skills and over 80% of the local workforce is unsuited to fill this gap,
[23]. In Europe, over 70% of surveyed businesses struggle hiring data science
personnel and over 60% are resorting to internal training to upgrade the skills
of existing business analysts, [1]. This work seeks to alleviate this situation by
presenting a feature engineering technique well-suited for demand forecasting in
manufacturing that is both accurate as well as easy to communicate to decision-
makers.

The research goal is to propose a method for time series forecast of BTO
products that can be adopted by practitioners. For this purpose, the study
poses the questions: (1) What is the state of the art in academic research in
demand forecasting for BTO products? (2) How does Diagonal Feeding support
the BTO supply chain? To achieve the research goal, two objectives have been
assigned: (a) To review the existing theory on time series prediction, specially
on demand forecasting; (b) To make a performance comparison of the proposed
technique. The object of research is the balance between accessibility and preci-
sion of methods for time series in an industry setting. The subject of the research
is forecasting product demand for BTO-SCM.

2 Literature Review

BTO-SCM can be defined according to [15] as “the system that produces goods
and services based on individual customer requirements in a timely and cost
competitive manner by leveraging global outsourcing, the application of infor-
mation technology and through the standardization of components and delayed
product differentiation strategies”. Proponents of BTO supply chains such as
[27] argue that they promote sales, reduce costs and increase customer satisfac-
tion. For example, [11] mentions that 74% of US car buyers would purchase a
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customized vehicle if the delivery time is less than three weeks. As an example of
costs reduction, it is claimed that Nissan, a car manufacturer, could save up to
3600 USD per vehicle, if they were to transition their supply chain completely to
BTO. In the technology industry, Dell, a computer maker, has generated up to
a 160% return on its invested capital by implementing a BTO supply chain for
its e-commerce website, [28].

Demand forecasting has commanded attention from different communities
due to its importance in the supply chain management, [7]. A comprehensive
treatment can be found in the works of [10] and [13]. Formally, it can be stated
as predicting future values xt+h, given a time series xt−w+1, . . . , xt−1, xt, where
w is the length of the window on the time series and h is called the predic-
tion horizon, [22]. To obtain these predictions, quantitative methods such as
ARIMA, exponential smoothing models and alike are often used. Yet, [2] argues
that there have been few large scale comparison studies of machine learning mod-
els for regression or time series aimed at forecasting problems. For the electronics
manufacturing industry, [30] introduced SVM regression to the supply chain of
various producers. They concluded that it yields good results compared to other
forecasting methods. Although SVM regression is a popular method for forecast-
ing, not everyone has identified it as the most effective method. For example, [21]
used multivariate adaptive regression splines (MARS) to construct sales forecast-
ing models for computer wholesalers. Similarly, [31] proposed a Bayesian model
for demand forecasting of computer parts and compared it against exponential
smoothing and a judgment-based method.

3 Dataset

The data consists of three data sets of observations from an electronics manu-
facturer representing a subset of their total inventory. Each of them contains the
demand of 854 different items, totaling 2562 items, with up to 45 periods of data.
The items can be requested for delivery either for the same month or up to three
months later. In addition, two hierarchical dependencies are provided in the form

Fig. 1. Number of NaNs (zero orders) per item for each of the three data sets. First
and second data set (left), third data set (right). X-axis: Item’s ID, Y-axis: number of
zeroes
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of categories and parent-child relationships. These items have varying amounts
of required quantities, with many of them being requested only sporadically, as
seen in Fig. 1, and few of them being requested in large quantities. Noticeable,
a significant percentage of products lacks a continuous demand. There are no
periods in all three data sets where all 854 products are requested. The demand
for items both in variety as well as quantity is significantly higher for the delivery
date 0 (same month). From Fig. 2, it can be appreciated that quantities for all
periods are consistently higher on delivery date 0 versus others. In the case of
delivery date 3, the requested quantities for all periods are significantly smaller.
Similarly, the amounts required in the third data set are much higher and they
peak out, whereas the first and second data sets have an increasing demand
pattern.

Fig. 2. Aggregated quantity by delivery date. First and second data set (left), third
data set (right). X-axis: period, Y-axis: quantity. Blue line: same month delivery. (Color
figure online)

4 Diagonal Feeding

This work introduces the practitioner to Diagonal Feeding, a data transforma-
tion technique well-suited for multi-step structured forecasting from anticipatory
data. As its main benefit, it levers the anticipatory nature of pre-orders’ time
series data and makes forecasting the pre-order structure more streamlined. As
a result, the accuracy of a regression model is improved. This is made pos-
sible due to the data set containing information not only about the current
demand, but also on the volumes of pre-orders made in advance. Advance pre-
orders are expectation-driven, naturally forward-looking and known beforehand,
as they reflect planning and some anticipation of the market at the end of the
period, when the order is to be fulfilled. This information is leveraged for pre-
dicting the pre-order structure in the future by also taking into account the
cross-correlations between the pre-orders.
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Representation. Let qht be the total quantity of some item requested by the end
of period t through h period advance pre-orders. Those made from the end of
t−h−1 until the end of t−h. The key property of the data set is that for every
item the value qht is effectively known and available for use at period t − h, i.e.
well before t. For example, q1t−1 is known at the end of t − 2 and corresponds to
the quantity requested at the end of t − 1 accumulated via pre-orders made by
the end of t−2. In the definition of the data set structure the index t corresponds
to the “period” field, whereas h is the “delivery date” and qht is the value in the
“quantity” field. The “item code” key is intentionally omitted in order to simplify
the explanation of the key aspects of the Diagonal Feeding representation. Prior
discussion implies that the h-period advance pre-order to be fulfilled at the end of
period t seems to reflect certain beliefs about the market environment in period
t. Therefore, the time series qh+1

t of the volume of period-t pre-orders made h+1
periods in advance can be considered to be anticipatory in relation to the time
series qht . For example, q2t+1 is known with certainty at t − 1, represents the
total demanded quantity by the end of t + 1 accumulated between the end of
t − 2 and the end of t − 1, and effectively reflects information 2 periods ahead
forward-looking on q0t+1. In order to be able to utilize the anticipatory nature
of time series with different “delivery dates” and at the same time to be able to
forecast the pre-order structure, the data set in the Diagonal Feeding (t-frontier)
representation is represented as following:

⎛
⎜⎜⎜⎜⎝

q0t+0 q1t+0 q2t+0 q3t+0

q0t+1 q1t+1 q2t+1 q3t+1

q0t+2 q1t+2 q2t+2 q3t+2

q0t+3 q1t+3 q2t+3 q3t+3

q0t+4 q1t+4 q2t+4 q3t+4

⎞
⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎝

xt0 xt1 xt2 xt3

yt0 xt4 xt5 xt6

yt1 yt2 xt7 xt8

yt3 yt4 yt5 xt9

yt6 yt7 yt8 yt9

⎞
⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎝

z00 z01 z02 z03
z10 z11 z12 z13
z20 z21 z22 z23
z30 z31 z32 z33
z40 z41 z42 z43

⎞
⎟⎟⎟⎟⎠

(1)

In Eq. 1, the target yt is the output. Its final representation is the lower diagonal
z. Thus, yt represents the pre-order structure for the next 3 periods beginning
with t + 1. The objective is to predict the lower diagonal of the matrix by trian-
gularly reshaping the multivariate time series for each “item” and introducing
some redundancy that localizes relevant anticipatory features. Since the quan-
tity qht is known at time t − h, each diagonal (qht+s+h)h≥0 in the scheme above
is known at t + s, s ∈ Z. This representation allows the value qfs (the volume of
period-s pre-orders made f periods in advance) to be used for forecasting the
value qht , whenever t − h > s − f , i.e. the moment s − f , when qfs is revealed,
is strictly earlier than the moment t − h, when qht becomes known. Therefore,
the aim is to predict yt = cat

(
q:ht+h

)
h≥0

, the pre-order structure for the next 4
periods from t + 1, based on the preorders xt = cat

(
qh:t+h

)
h≥0

and their history,

known by t, where cat stands for concatenation of vectors and q:fs = (qjs)
f−1
j=0 ;

further, q:0t is empty. The values in the target yt that seem to be most relevant
for practical demand forecasting are on its main diagonal zpj with p = j + 1,
since they are the earliest future volumes.



218 R. Rivera-Castro et al.

Correlation Analysis. The demand volume data set contains time series for each
items with many of them having sparse volume records due absent periods. They
represent zero-volume orders. Thus, the multivariate time series for each item
and “delivery date” were rebuilt from the data set by explicitly setting the vol-
ume to zero at absent periods. To test the viability of the proposed representa-
tion, only items with at least 60% periods with actual non-zero recorded volume
were kept. After filling the missing periods on the time series of each item i
respectively with zeroes, they were transformed into the diagonal representation
(xt

i, yt
i)t∈periodi

and then pooled into one sample (xs, ys). The pre-processed
data set was split into development and holdout set, with the latter containing
the last 8 periods available for each item (134–148 depending on the particular
item).

Results. The Spearman Rank correlation2 was computed on the development
sub-sample to estimate the “informativeness”; it is invariant under monotonic
transformations of the data and thus insensitive to scale. It was applied to the
total demand data set qht for the selected subset of the items. A table containing
the triangular grouping of the values is obtained, which the Diagonal feeding
is built upon. Each value (pr, ij) (left-right, top-bottom) in the table is the
rank correlation between qit+p and qjt+r computed across all periods t and items.
For instance, it shows that the most significant correlation (≥0.9) is between
x11 = q1t+1 with y10 = q0t+1 computed over pooled sample of different items and
periods. Since the values along the “delivery date” axis of the data set qht are in
fact cumulative (gross), the correlation analysis is applied to the first differences
δht = qht −qh+1

t . Making this difference allows for measuring the pure anticipatory
information content of xt in the target yt in the Diagonal Feeding representation
of δht . The correlations of this differenced data (net monthly orders) confirms
that much of the observed correlation was due to the accumulated (integrated)
nature of the qht data. The dramatic drop in the correlation between x11 and z10
shows that the orders δ0t of the net current periods are poorly predictable by the
1-period ahead net pre-orders δ1t meaning that they are likely to have different
drivers. Nevertheless, the relatively small change in values within the sample
Spearman rank correlation on the qht data and its counterpart on the δht data
demonstrates that the 1 period ahead net pre-orders δ1t and lagged net current
period orders δ0t−1 have generally a little more predictive content for the future
pre-order structure than the pre-orders made more than 1 period in advance.

4.1 Experimental Results

The Diagonal Feeding transforms the demand forecasting problem from a time
series analysis setting, where the goal is to model qht ∼ gh

(
(qfs )s−f<t−h

)
simultaneously for every h = 0, . . . , 3, to a supervised multi-output regres-
sion problem, where it seeks to learn yt ∼ g

(
xt, xt−1, . . .

)
. Extensive numerical

experiments were conducted using various common regression models involving

2 http://bit.ly/2zLvNNf.

http://bit.ly/2zLvNNf
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cross-validated grid search over the hyper-parameters. Besides the described pre-
process, no further data-engineering was carried out. The best estimator in each
model class was picked via 10-fold cross-validation on the development set (the
first 38 observed periods of each selected item). The final test scores were com-
puted on the held out data set using by averaging SMAPE across periods and
items:

sj =
1

|items|
∑

i∈items

sji , sji =
1

|test i|
∑

t∈testi

sjit , sjit =
2|yi

tj − ŷi
tj |

|yi
tj | + |ŷi

tj |
,

where ŷi
tj is the forecast integer volume of the j-th element in the advance

preorder structure of item i in the forecast starting with the future period t.
An assessment of the SMAPE scores of the best models across all the targets
in the diagonal representation zpj for p > j reveals that the best model is a
collection of 10 independent large ensembles of the gradient boosted regression
trees with 500 estimators in each ensemble. The next best model with generally
lower scores is the 2-layer dense ReLu network with (80, 20) hidden units each.
A histograms of the computed sji for each j in the structure of the gradient
boosted ensemble will depict that most accurate predictions are for the next
periods’s gross order volume (q0t+1). However, the best prediction accuracy drops
dramatically when the full grid search experiment repeated for the differenced qht
data (δht ). An evaluation of the holdout SMAPE scores for the best models on the
δht reveals that even the best model, k-nearest neighbor regression, completely
fails to predict the net volume for the next period.

5 Experiments

To validate Diagonal Feeding, this study carried out an assessment of vari-
ous methods for demand forecasting. In total, thirteen different methods were
assessed. For conciseness, this work focuses on the third data set seen in
Fig. 1 and on its delivery date 0 (same period). The evaluated methods are
(1) Adaboost, (2) ARIMAX, (3) ARIMA, (4) Bayesian Structural Time Series
(BSTS), (5) Bayesian Structural Time Series with a Bayesian Classifier (BSTS
Classifier), (6) Ensemble of Gradient Boosting (Ensemble), (7) Ridge regression
(Ridge), (8) Kernel regression (Kernel), (9) Lasso, (10) Neural Network (NN),
(11) Poisson regression (Poisson), (12) Random Forest (RF), (13) Support Vec-
tor Regression (SVR).

Each of them had as a target value three different options: (a) Quantity (non-
transformed), (b) Log-transformed quantity, (c) Min-Max transformed quantity.
Additionally, Diagonal Feeding, presented in Sect. 4, was evaluated for regression
methods. Thus, three settings were considered: (a) No Diagonal Feeding, (b)
Diagonal Feeding with an item by item training (One by One). In this case,
a vector containing the input of a specific item is fed individually to a model,
(c) Diagonal Feeding fitting the model on the full data set (All Items). Here, a
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matrix with the input from all items is used. In all three cases, an individual
vector corresponding to a given item is obtained as an output. For (a), extensive
feature engineering was conducted and 360 features were generated. The specific
features are documented in the code base provided. The training set consisted
of 37 periods and the test set of 8. To evaluate the performance of the models,
the Symmetric Mean Absolute Percent Error (SMAPE) is used. It is defined as
SMAPE = 200%

n

∑n
t=1

|Ft−At|
|At|+|Ft| with Ft being the forecasted value and At the

actual value at time t respectively. The results reveal that the median SMAPE
for all methods is 0,42 and for methods with Diagonal Feeding is 0,43. The best
Top 10 models had a median SMAPE of 0,31 and the Top 10 for those using
Diagonal Feeding exclusively was 0,37.

6 Discussion

Diagonal Feeding. The key insight from the analysis of the data set is that the
next period’s gross total demand volume q0t+1 is mostly determined by the cur-
rently known one-period ahead pre-orders for the period (q1t+1). The correlation
analysis and the results of the grid search experiment confirm the observation
that the net next period’s volume δ0t+1 is the difference between q0t+1 and q1t+1.
Viewed through Diagonal Feeding, it is mostly independent of the history of net
pre-orders for the period t+1 and is thus less predictable from advance pre-order
data, as indicated by a correlation analysis and results from a grid search exper-
iment. The success of forecasting the q0t+1, especially in contrast to the other
next period’s pre-order volumes qjt+1+j for j ∈ {1, 2, 3}, might be attributed to
the observed high correlation of the one-period ahead pre-order volume q1t+1.
Further, Diagonal Feeding delivers results comparable to those obtained doing
extensive feature engineering; in this case, more than 300 features were gener-
ated. Along these lines, exploring different transformations of the target value
is essential. For some models using log-transform or min-max delivered good
results. For example, a Neural Network without a transformed quantity fitted
on the full data set had a SMAPE of 1,13, with a log transformation, it was 0,38.

Experiments. The best model was Adaboost with an SMAPE of 0,17. It was
followed by the Ensemble of Random Forests with 0,18. Yet, it is important to
remember that these models had extensive feature engineering with over 300
features generated. For Diagonal Feeding, the best method was a random forest
with log transform and fitted on the full data set. It obtained 0,34. This was
significantly better than the average of methods trained on the data set with
feature engineering, which obtained a significantly higher SMAPE of 0,42.

7 Conclusion

This work introduced Diagonal Feeding, a technique specially useful for fore-
casting Build-To-Order products. It helps improving accuracy whenever future
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delivery dates are known. This approach does not require domain knowledge,
extensive feature engineering or advanced technical skills. The results from mul-
tiple experiments show that there is no go-to technique for time series prediction.
In addition, this research made available a highly-relevant and novel data set.
A challenge in developing methods for demand forecasting of BTO products is
the lack of public data sets. As a further line of work, it is worth exploring the
impact on Diagonal Feeding of transforming the target variable, as it was shown,
certain transformations perform better than others. From an algorithmic point
of view the approach can be strengthened with non-parametric pre-processing
techniques to filter out anomalies such as in [3,16,26,29], including multichan-
nel anomaly detection, [9], performing online aggregation of different forecast-
ing models via long-term aggregation strategies, [20], along with approaches to
model quasi-periodic data, [6], and extraction of trends in the presence of non-
stationary noise with long tails, [4,5]. Given the potential of BTO supply chains,
it is expected that an increasing number of researchers will direct their attention
to this area and add additional entries to the literature.
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Abstract. The missing value is a common phenomenon in real-world
datasets, which makes the analysis of incomplete data become an active
research area. In this paper, a correlation-enhanced auto-associative neu-
ral network (CE-AANN) is proposed for imputations of missing values.
We design correlation-enhanced hidden neurons and combine them with
traditional hidden neurons organically, thereby constructing CE-AANN.
Compared with the traditional auto-associative neural network (AANN),
the improved architecture can mine cross-correlations among attributes
more effectively. The introduction of correlation-enhanced hidden neu-
rons keeps the network from learning a meaningless identity mapping.
Moreover, a training scheme named MVPT is used for network training.
Missing values are regarded as variables of the loss function and adjusted
dynamically based on optimization algorithms. The dynamic processing
mechanism takes account of the incompleteness of data during train-
ing, which makes the imputation accuracy increase as the training goes
further. Experiments validate the effectiveness of the proposed method.

Keywords: Incomplete data · Missing value imputation ·
Auto-associative neural network · Dynamic processing mechanism

1 Introduction

Real-world datasets in the industrial, medical, and financial fields are susceptible
to missing values. The presence of missing values reduces the quality of data and
further affects the accuracy of analysis results. As an active research area, neural
networks provide effective solutions for missing value imputation [1,2].
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The auto-associative neural network (AANN) learns relationships among
attributes by a multi-layer perceptron whose numbers of nodes in the input
and output layers equal to the dimension of attributes, then imputes missing
values based on these relationships. The imputation method based on AANN
can be regarded as a two-stage method composed of training stage and impu-
tation stage [3]. It trains the network by only complete records, then inputs
the pre-processed incomplete records into the trained network and uses the cor-
responding network outputs to impute missing values. In the imputation stage,
mean imputation and K-means imputation are usually adopted to pre-fill missing
values since incomplete records cannot be taken as the network inputs directly.
Considering that there may exist a certain estimation error between pre-filled
values and real values, [4] inputs the incomplete records into the trained network
and treats missing values as variables of the loss function, then works out the
optimal results through the genetic algorithm. Subsequently, several researchers
made improvements based on the above idea [5,6].

Nowadays, the family of AANN architectures has obtained great achieve-
ments in the field of missing value imputation. Researchers construct several
variations of AANN based on radial basis function neural network [4], general
regression neural network [7], and counter-propagation neural network [8], etc.,
and they have achieved ideal performance of imputation.

Since in AANN, the network output has a certain dependence on its cor-
responding input. In order to avoid learning a meaningless identity mapping,
the number of hidden neurons and the capacity of the network are always lim-
ited. In this paper, we design the correlation-enhanced hidden neuron and com-
bine improved neurons and traditional neurons organically in the hidden layer,
thereby building a correlation-enhanced auto-associative neural network (CE-
AANN). The architecture uses the correlation among attributes to constrain
the excessive dependence of network output on its corresponding input, which
reduces the constraint of network architecture effectively. Moreover, a train-
ing scheme MVPT is used for maximizing the use of present values, in which
the whole incomplete dataset is allowed to participate in network training, and
missing values are regarded as variables adjusted dynamically by optimization
algorithms.

The rest of this paper is organized as follows. Section 2 introduces the tra-
ditional AANN. Section 3 presents the architecture CE-AANN and the training
scheme MVPT in detail. Section 4 discusses the imputation performance of the
proposed method. Finally, conclusions are presented in Sect. 5.

2 The Auto-Associative Neural Network

AANN is a specific type of feed-forward neural networks where the output
attempts to reconstruct its corresponding input, and the structure is shown
in Fig. 1(a). The dimension of the input space s is 5; x = [x1, x2, ..., x5]T is the
network input; y = [y1, y2, ..., y5]T is the network output. The number of hidden
neurons is usually smaller than those of the input and output neurons, which
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makes the network a bottleneck structure. The loss function of AANN is defined
by

L(W ) =
1
2
‖x − f(x,W )‖2, (1)

where W is the set of network parameters; x ∈ �s, representing the s -
dimensional input vector; f(·) : �s → �s, representing the mapping from input
to output.

Considering the case in Fig. 1(b) where the dimension of the hidden layer is
larger than that of the input layer, the input node and the corresponding output
node are connected directly if the weights of red lines tend to 1 and those of black
lines tend to 0. As a result, AANN can achieve the reconstruction simply through
an identity mapping, which may not mine the real association within data. And
the above situation is more frequent when the network is over-fitted [9].
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Fig. 1. The auto-associative neural network.

The training process of AANN involves a compromise between two forces.
First, the network should reconstruct the inputs approximately. Second, archi-
tectural constraints such as limiting the dimension of hidden layer should be
satisfied, which avoids learning an identity mapping [10]. Considering these two
forces, we design the correlation-enhanced hidden neuron which can constrain
the copy ability of the model output to its corresponding input by enhancing
cross-correlations among attributes. Then, we combine the traditional hidden
neurons and the improved neurons together, thus to improve the reconstitution
capacity of the model while weakening the restriction on hidden layers.

3 CE-AANN-Based Imputation Scheme

3.1 Correlation-Enhanced Hidden Neuron

The hidden neurons are presented in Fig. 2, in which 0 < i < n, with n being the
number of records in a dataset; 0 < j < s, with s being the dimension of records;
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Fig. 2. Two types of hidden neurons.

xi=[xi1, xi2, ..., xis]T is the ith s-dimensional record; yi=[yi1, yi2, ..., yis]T is the
network output; wjk is the weight of connection from the jth input neuron to
the kth hidden neuron; ak is the threshold of the kth hidden neuron; vkj is the
weight of connection from the kth hidden neuron to the jth output neuron; hkj

is the output of the kth hidden neuron with respect to the jth output neuron.
In the traditional hidden neuron, hkj is defined by

hkj = σ(
s∑

l=1

wlkxil+ak), (2)

where σ(·) is the activation function of hidden neurons.
The red cross in Fig. 2 indicates that the connection from the input neuron

to the hidden neuron is disabled when calculating the output hkj of the neuron.
It means that the improved neuron performs different summation operations
for different output neurons, and then passes these values into the activation
function for calculating hkj . Hence, hkj in the improved neuron is defined by

hkj = σ(
s∑

l=1,l �=j

wlkxil+ak). (3)

It can be seen from (3), we remove the dependence of yij on xij , which
avoids the direct connection from the output neuron to its corresponding input
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Fig. 3. The correlation-enhanced auto-associative neural network.

neuron when the dimension of hidden layer is larger than that of input layer.
The improved neuron can be regarded as a multi-task learning structure which
learns the correlation between each attribute and the other attributes in parallel,
thereby avoiding the over-fitting of a single task.

3.2 The Architecture of CE-AANN

The architecture of CE-AANN is shown in Fig. 3. It can be seen that the net-
work has three layers, and the hidden layer contains two types of neurons: m1

traditional neurons and m2 improved neurons. yi=[yi1, yi2, ..., yis]T is the net-
work output calculated by only traditional neurons; ri =[ri1, ri2, ..., ris]T is the
reference output calculated by only improved neurons.

The network output yij is

yij = θ(
m1∑

k=1

hkjvkj + bj), (4)

where θ(·) is the activation function of output neurons; bj is the threshold of the
jth output neuron. Besides, the corresponding reference output rij is

rij = θ(
m1+m2∑

k=m1+1

hkjvkj + bj). (5)
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3.3 The Training Scheme MVPT

In this paper, we take the entire incomplete dataset as the training set and treat
missing values as variables of the loss function. Let Ei be the error between the
input xi and the output yi, which is defined as

Ei =
∑

xij∈XP

1
2

[
(yij − xij)

2 + (yij − rij)
2
]
+

∑

xij∈XM

1
2

[
(yij − x̂ij)

2 + (yij − rij)
2
]
,

(6)
in which XP is the set of present values; XM is the set of missing values; x̂ij

is the dynamic estimate of a missing value xij . When adopting the gradient
descent algorithm, we need to calculate derivatives of model parameters and
missing values with respect to the loss function, as shown in (7)–(11).

∂Ei

∂bj
=(2yij −rij −Iij ·xij −(1−Iij)·x̂ij)

∂yij

∂bj
+(rij −yij)

∂rij

∂bj
, (7)

where Iij=

{
1, xij ∈ XP

0, xij ∈ XM

. ∂yij

∂bj
, ∂rij

∂bj
are determined by the activation function θ(·)

in (4). Since it is set as the linear function in this paper, ∂yij

∂bj
= 1, and ∂rij

∂bj
= 1.

∂Ei

∂vkj
=

⎧⎪⎪⎨
⎪⎪⎩

(2yij−rij−Iij ·xij −(1−Iij) ·x̂ij)· ∂yij

∂bj
·hkj , 0< k≤ m1

(rij−yij)· ∂rij
∂bj

·hkj , m1 < k≤ m1+m2

. (8)

∂Ei

∂ak
=

s∑
l=1

(
∂Ei

∂vkl
·vkl · ∂hkl

∂ak

/
hkl

)
, (9)

where ∂hkl

∂ak
is determined by the activation function σ(·) shown in (2). Since it

is set as the sigmoid function, thus ∂hkl

∂ak
= hkl · (1 − hkl).

∂Ei

∂wjk
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Ei

∂ak
(Iij · xij + (1 − Iij) · x̂ij) , 0 < k ≤ m1

s∑
l=1,l�=j

(
∂Ei

∂vkl
·vkl · ∂hkl

∂ak

/
hkl

)
, m1 < k ≤ m1 + m2

. (10)

∂Ei

∂x̂ij
=

m1+m2∑
k=1

(
∂Ei

∂ak
· wjk

)
− (rij − yij) · ∂rij

∂bj
·

m1+m2∑
k=m1+1

(
vkj

∂hkj

∂ak
wjk

)
− (yij − x̂ij) .

(11)
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4 Results and Analyses

4.1 The Design of Experiments

The compared methods include (1) Mean imputation (Mean), (2) Mean
pre-filling based AANN imputation (Mean+AANN), (3) Genetic algorithm-
based AANN imputation (AANN+GA) [4], (4) MVPT-based AANN impu-
tation (AANN+MVPT), and (5) MVPT-based CE-AANN imputation (CE-
AANN+MVPT). We take four datasets from the UCI machine learningreposi-
tory, as shown in Table 1. Incomplete datasets are generated manually based on
complete datasets, and missing rates are set as 5%, 10%, 20%, 30%, 40%, and
50%.

Table 1. The description of the datasets.

Dataset Record Attribute Dataset Record Attribute

Glass identification (glass) 214 9 Iris 150 4

Concrete slump test (slump) 103 10 Seeds 210 7

The imputation performance is measured by Mean Absolute Error (MAE):

MAE =
1

nmiss

∑
xij∈XM

∣∣∣∣x̂ij−tij

∣∣∣∣, (12)

where nmiss is the number of missing values; x̂ij is the estimate of missing value;
tij is the corresponding true value. We set ranges of hyperparameters, as listed
in Table 2, and select the optimal hyperparameters by 10-fold cross validation.

Table 2. The ranges of the hyperparameters.

Parameters Ranges

Learning rate for 0.01 to 1.0, in 0.01 steps

Momentum factor for 0.1 to 1.0, in 0.1 steps

The dimension of hidden nodes m1, m2 5, 10, 15, 20, 25, 30

The number of training epochs e 30000

4.2 The Analyses of Results

The results are shown in Fig. 4. Compared with MAE values obtained from CE-
AANN+MVPT and the other methods, we can find that CE-AANN+MVPT
has the best imputation performance under different missing rates.
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Fig. 4. The experimental results obtained from five imputation methods.

It can be seen that when the missing rate is lower than 40%, AANN+MVPT
is obviously superior to the other three methods except CE-AANN+MVPT.
It indicates that the dynamic processing mechanism of missing values takes
account of the incompleteness of data, which improves the imputation accuracy
effectively. However, when the missing rate gets large, AANN is prone to over-
fitting, thus further affecting the imputation performance.

According to results obtained from CE-AANN+MVPT and AANN+MVPT,
the imputation accuracy of CE-AANN+MVPT is better than AANN+MVPT
when adopting the same training scheme. CE-AANN uses the correlations among
attributes to constraint theexcessive dependence of the network output to its
corresponding input, which helps to improve the imputation performance.

5 Conclusions

In this paper, an improved architecture CE-AANN trained by the scheme MVPT
is proposed for imputation of missing values. Experiments show that the pro-
posed method has an ideal performance of imputation. The main reasons are as
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follows. First, the introduction of correlation-enhanced hidden neurons into CE-
AANN reduces the constraint on the dimension of hidden layers. Meanwhile,
it improves the capacity of the network to mine the cross-correlation among
attributes. Second, the scheme MVPT where missing values are treated as vari-
ables makes full consideration of the incompleteness of data during training. The
imputation accuracy increases gradually as the training goes further.
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China (2018YFB1700200).
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Abstract. In this work, we explore the use of a Broad Learning Sys-
tem (BLS) as a way to replace deep learning architectures for traffic
flow prediction. BLS is shown to not only outperforms standard learning
algorithms (Least absolute shrinkage and selection operator (LASSO),
shallow and deep neural networks, stacked autoencoders) in terms of
training time, but also in terms of testing accuracy.

Keywords: Broad Learning System · Traffic flow prediction ·
Flat network · Fast least-square methods

1 Introduction

Traffic congestion is becoming a serious problem due to the constantly increasing
urban traffic volumes and incomplete transportation management system. It has
been shown that precise real-time (15–40 min) traffic flow prediction (also called
short-term traffic flow prediction) can help the travelers plan the better path in
advance [21].

Traffic flow prediction is a complex process since it is affected by many dif-
ferent factors, such as traffic volumes, weather conditions, seasonal and weekly
variability. In recent years, machine learning methods have been widely adopted
to address such complexity, such as support vector machine (SVM) [7], LASSO
[22], neural networks (NN) [2], etc. Among these methods, neural networks are
considered to be the most popular. However, neural networks with shallow struc-
tures show deficiencies in capturing complex rules hidden traffic data [13].
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In order to overcome the problems associated with shallow architectures,
many researchers focused on the study of deep architectures (also called deep
learning architectures or deep neural networks) [6,10,12,13,15,20]. Lv et al. pre-
sented a stacked autoencoder considering the spatial and temporal correlations
to learn traffic flow features [13]. Polson and Sokolov developed a deep learning
architecture able to capture special features of traffic flows under special events
[15]. Koesdwiady et al. combined deep belief networks and data fusion decision-
level to improve the traffic flow prediction accuracy [12]. Huang et al. combined
deep belief network to obtain the effective traffic flow features and multitask
regression for supervised prediction [10]. Yang et al. proposed a stacked autoen-
coder Levenberg-Marquardt model with optimized structure [19].

Although deep architectures have been shown to be effective, it is widely
recognized that deep learning requires a time-consuming training process because
of a large number of connecting parameters in filters and layers. In order to solve
these time-consuming issues, a wide variety of methods have been proposed, such
as exploiting sparsity and data structure [3,8,16]. However, with the growth of
data size such methods may not sustain the original good performance any more.

Broad learning system (BLS) [4] is an emerging approach for effectively and
efficiently modelling of complex systems. As compared to deep learning, where
learning is improved by deepening the architecture of the neural network, in
broad learning the learning is improved by extending the structure in the wide
direction (or in the broad direction), i.e. by increasing the number of features
and enhancement nodes [5].

In this paper, we explore the use of broad learning systems for short-term
spatial and temporal traffic flow prediction. As compared to the deep learning
structures used for traffic flow prediction, we are able to exploit fast least-square
methods. To the best of the authors knowledge, this is the first time that BLS
is applied to predict spatial and temporal traffic flow.

The rest of the paper is organized as follows. Section 2 recalls the broad
learning model and gives the problem formulation, Sect. 3 discusses the traffic
flow prediction test case and simulations, and Sect. 4 concludes the work.

2 One Shot Broad Learning System

In this section, first, the details of one shot structure of BLS (without incremental
learning) are given [4]. BLS is constructed on the random vector functional-
link neural networks (RVFLNN) [11,14]. Figure 1 illustrates the main idea: the
network comprises features nodes (nonlinear transformations of the input data)
and enhancement nodes (nonlinear transformations of the feature node data).
Both feature and enhancement nodes are used to approximate the output data.

Let X ∈ RSnum×M represents the input training data, Y ∈ RSnum×N repre-
sents the target training data, where Snum is the number of samples, M,N are
the dimensions of the input and output respectively. At this point we can define
ϕi(XWei + bei) as the ith mapped featuresZi,

Zi = ϕi(XWei + bei), i = 1, ..., n (1)
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Fig. 1. Illustration of a Broad Learning System (BLS).

where ϕi denotes the activation function. It is important to note that the
weights Wei and bias bei of the activation functions are randomly chosen
(as typical in functional networks). After putting each Zi in row, we obtain
Zn = [Z1, Z2, · · · , Zn], which denotes the whole set of feature nodes. At this
point, Zn becomes the input to the enhancement nodes. Define the jth group
enhancement nodes as

Hj = ζj(ZnWhj
+ bhj

), j = 1, 2 · · · ,m (2)

where ζj is the activation function, whose weights Whj
and bias bhj

are also
randomly generated with proper dimensions. Similarly to what done before,
connect all the jth group enhancement nodes in one row, so as to obtain Hm =
[H1,H2, · · · ,Hm]. Then the one-shot broad learning system can be described as
follows

Y = [Z1, · · · , Zn|ζ(ZnWh1 + bh1), · · · , ζ(ZnWhm
+ bhm

)]Wm

= [Z1, · · · , Zn|H1, · · · ,Hm]Wm
n

= [Zn|Hm]Wm
n

(3)

After defining Am
n = [Zn|Hm], Wm

n can be obtained through pseudoinverse
of a partitioned matrix [1,4,5,9,18]

Wm
n = [(Am

n )TAm
n + λI]

−1
(Am

n )TY (4)

where λ is a positive constant representing the weight on the sum of squares. It
is important to notice that the use of pseudoinverse or ridge regression repre-
sents a much faster way of training the network, as compared to gradient based
algorithms. This is because the flat structure of the network allows for the use
least-square based methods, which is not allowed in multilayer deep NN. The
following algorithm summarized the training of a BLS.
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Algorithm 1. Broad learning: one shot structure
1: input training data X(k) and target matrix Y (k)
2: input testing data Xt(k) and target matrix Yt(k)
3: for i = 1, i ≤ n

Randomly initialize Wei ,bei
ComputeZi = ϕi(XWei + bei), i = 1, ..., n
Obtain the feature mapping group

Zn = [Z1, Z2, · · · , Zn]

4: for j = 1, j ≤ m
Randomly initialize Whj ,bhj

Compute Hj = ζj(Z
nWhj + bhj ), j = 1, 2 · · · , m

Obtain the enhancement nodes group

Hm = [H1, H2, · · · , Hm]

5: Take Am
n = [Zn|Hm], compute (Am

n )+

6: Output

Wm
n = [(Am

n )TAm
n + λI]

−1
(Am

n )TY

7: Testing
8: for i = 1, i ≤ n

ComputeZt,i = ϕi(XtWei + bei), i = 1, ..., n
Obtain the feature mapping group

Zn
t = [Zt,1, Zt,2, · · · , Zt,n]

9: for j = 1, j ≤ m
Compute Ht,j = ζj(Z

n
t Whj + bhj ), j = 1, 2 · · · , m

Obtain the enhancement nodes group

Hm
t = [Ht,1, Ht,2, · · · , Ht,m]

10: Take Am
t,n = [Zn

t |Hm
t ], compute Ŷt = Am

t,nWm
n

3 Traffic Flow Prediction with BLS

3.1 Test Case

The Peformance Measurement System (PeMS) Data Source is one of the most
popular datasets in the traffic field. The dataset is managed and updated by the
California Department of Transportation (Caltrans). Data obtained from the
Caltrans PeMS are collected in real-time from nearly 40, 000 individual detectors
spanning the freeway system across all major metropolitan areas of the State of
California.

The dataset under consideration in this work is consistent with the one in
[17]. It contains the flow, speed and occupancy rate at 33 different locations
in I405 freeway (North-bound Interstate 405). The data are aggregated every
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5 min, resulting in 30000 data samples for training and 10000 data samples for
testing. Three different short term predictions are considered:

– Predicting the traffic flow 15 min ahead in time
– Predicting the traffic flow 30 min ahead in time
– Predicting the traffic flow 45 min ahead in time

The term ‘Predicting the traffic flow’ encompass predicting flow, speed and
occupancy in all 33 locations: therefore it is not only a temporal prediction, but
also a spatial one. As a comparison measure, we compare BLS against the 4
following standard prediction methods

(1) Backpropagation Neural Network (BPNN): train a shallow neural network
(feedforward network with one hidden layer with 10 neurons), using the
default Matlab options1.

(2) Deep Neural Network (DNN): similar to the previous algorithm, but increas-
ing the number of hidden layers (three hidden layers, with 5, 3, 2 neurons
respectively).

(3) Regularized least-squares regression (LASSO): using cross-validated fits (10-
fold cross-validation with labeled predictor variables) and the elastic net
method with Alpha = 0.752.

(4) Stacked Autoencoders (SAE): Training a stacked autoencoder (training
the first autoencoder with hidden size of 10, training the second autoen-
coder with hidden size of 5, training the final softmax layer, forming the
stacked neural network, perform backpropagation on the whole multilayer
network)3.

3.2 Comparison Results

The comparisons are provided in the following Tables 1, 2 and 3. As far as train-
ing time is concerned, it can be seen that the SAE method is the slowest (because
it requires several training step), followed by the LASSO method and the BPNN.
The DNN is faster than BPNN due to the relatively small structure. The BL-one
shot is more than one order of magnitude faster.

The accuracy is measured according to the mean absolute error (MAE),
calculated as

MAE = 1 − 1
Snum

Snum∑

i=1

|yi − xi|
max {|yi| , 0.01} (5)

1 According to the documentation in https://www.mathworks.com/help/
deeplearning/ref/train.html.

2 Implemented in Matlab according to the documentation in https://www.mathworks.
com/help/stats/lasso.html.

3 The documentation for training a stacked autoencoder can be found in https://
www.mathworks.com/help/deeplearning/examples/train-stacked-autoencoders-for-
image-classification.html.

https://www.mathworks.com/help/deeplearning/ref/train.html
https://www.mathworks.com/help/deeplearning/ref/train.html
https://www.mathworks.com/help/stats/lasso.html
https://www.mathworks.com/help/stats/lasso.html
https://www.mathworks.com/help/deeplearning/examples/train-stacked-autoencoders-for-image-classification.html
https://www.mathworks.com/help/deeplearning/examples/train-stacked-autoencoders-for-image-classification.html
https://www.mathworks.com/help/deeplearning/examples/train-stacked-autoencoders-for-image-classification.html
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Table 1. Prediction accuracy comparisons for future 15 min prediction

Method Training time (s) Training accuracy (%) Test accuracy (%)

BPNN 1852.3 91.11 86.05

DNN 615.17 91.24 86.78

LASSO 6188.7 89.86 84.28

SAE 7967.6 90.12 87.01

BL-one shot 29.37 91.24 87.43

Table 2. Prediction accuracy comparisons for future 30 min prediction

Method Training time (s) Training accuracy (%) Test accuracy (%)

BPNN 1600.00 89.55 83.00

DNN 671.51 89.32 83.61

LASSO 6577.14 86.10 78.25

SAE 7766.74 87.53 83.66

BL-one shot 29.37 88.64 84.35

Table 3. Prediction accuracy comparisons for future 45 min prediction

Method Training time (s) Training accuracy (%) Test accuracy (%)

BPNN 1779.70 87.70 79.46

DNN 734.36 87.54 80.84

LASSO 7660.45 82.00 72.34

SAE 7591.28 84.91 80.79

BL-one shot 30.77 86.01 81.70

where the max operator is used to avoid division by zero. Such performance
measure can be calculated for both the training and the testing data.

As far as the training accuracy is concerned, the results are mixed: for the
15 min prediction, BLS and DNN have the same performance, whereas for 30 and
45 min BPNN provides the best performance. However, what clearly matters is
the performance for the testing data. From here it can be clearly seen that BL-
one shot outperforms all other methods, often by more than 1%. The other best
performing algorithms are SAE and DNN.

4 Conclusions

In this work we have explored a Broad Learning System (BLS) as a way to
replace deep learning architectures for traffic flow prediction. BLS not only out-
performs standard learning algorithms (LASSO, shallow and deep neural net-
works, stacked autoencoders) in terms of training time, but also in terms of
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testing accuracy. Future work will focus on further improving accuracy by includ-
ing weather factors or spatial/temporal features (such as seasonal and weekly
variability).
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Abstract. To ensure the safe operation of a power system, it is nec-
essary to conduct its state estimation continuously. In this paper, a
novel quantum genetic algorithm (QGA) is combined with unscented
Kalman filter (UKF) for dynamic state estimation of power systems.
Firstly, an innovation matrix is used to improve the estimation accuracy
by constructing an adaptive correction factor for correcting the predic-
tion covariance matrix in real time. The prediction error of constant
Holt’s two-parameter model is then analysed for adaptive optimization,
and QGA is employed to adjust the parameters dynamically. Finally,
simulation tests are carried out on IEEE 30 bus system and the results
indicate that the proposed approach, namely QGA-UKF, has good esti-
mation accuracy and stability that are higher than GA-UKF and UKF.

Keywords: Power system · Dynamic state estimation ·
Unscented Kalman filter · Quantum genetic algorithm

1 Introduction

State estimation can ensure the safe operation of a power system, which is clas-
sified as static state estimation and dynamic ones [1]. More specifically, static
state estimation mainly uses the currently measured information to estimate
the operating state of the grid. In contrast, dynamic state estimation (DSE)
uses multi-stage measured information to estimate the grid state [2]. Extended
Kalman Filter (EKF) was widely used in dynamic state estimation, which how-
ever has the truncation error caused by its non-linear function approximation.
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On the other hand, UKF used in dynamic state estimation does not require the
non-linear function approximation and Jacobian matrix calculation, achieving
accurate state estimation [3].

Zhao and Mili developed a new UKF by deriving a batch-mode regression
form and minimizing a convex Huber cost function [4], which can suppress obser-
vation and innovation outliers and filter out non-Gaussian process and measure-
ment noise, achieving satisfactory results. Ahmad, et al. proposed an improved
UKF based dynamic state estimation algorithm for an electric power distribution
systems, which can deal with the presence of load variations and noisy data [5].
Sun, et al. used an adaptive factor in UKF for the state estimation of distribu-
tion networks [6]. Zhong and Hong deployed genetic algorithm (GA) to optimize
the parameters of self-adaptive Kalman filter for the dynamic state estimation
on power System [7]. The approaches mentioned above require the parameters
to be selected by experience and cannot adjust them according to the real-time
measurement information.

To address this issue, this paper develops a novel QGA-UKF algorithm to
conduct the dynamic state estimation of power system. The contribution is
focused on constructing adaptive correction factor and optimizing Holt’s two-
parameter model. More specifically, an innovation matrix is created to construct
the adaptive correction factor used for the online correction of the prediction
covariance matrix. The QGA is adopted to adjust the parameter of Holt’s two-
parameter model adaptively. Simulation is conducted on IEEE 30 bus system to
verify the feasibility of the adaptive correction factor. The results show that the
proposed method can achieve good estimation accuracy and adaptive optimiza-
tion.

The rest of the paper is organized as follows. UKF Principle is briefly intro-
duced in Sect. 2. Section 3 develops the proposed QGA-UKF algorithm. Simu-
lation tests are conducted in Sect. 4 to verify the feasibility and performance of
the proposed approach. Finally, a brief conclusion and future work are given in
Sect. 5.

2 UKF Principle

The state distribution in EKF is propagated analytically through the first-order
linearization of the nonlinear system. In contrast, the UKF is a derivative-free
alternative to EKF by using a deterministic sampling approach [8]. Like EKF,
UKF consists of the same two steps: model prediction and data assimilation,
except for another preceded step for the selection of sigma points.

2.1 UT

The unscented transformation (UT) calculates the statistical value of random
variables based on the sigma point sampling strategy through non-linear trans-
formation means [9]. In this paper, the proportional symmetric sampling strategy
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is selected. For the n-dimensional system, the initialization of the state variable
x0 and the error covariance matrix p0 are as follow

x̂0 = E (x0) . (1)

p0 = E [(xo − x̂0)]
[
(x0 − x̂0)

T
]
. (2)

Then, the position and corresponding weight of 2n + 1 Sigma points are
calculated at time k − 1,

χi
k−1 = x̂k−1, i = 0. (3)

χi
k−1 = x̂k−1 + (

√
(n + k) Pk−1)i. (4)

χi
k−1 = x̂k−1 − (

√
(n + k) Pk−1)i. (5)

W
(m)
i =

λ

n + λ
, i = 0. (6)

W
(c)
i =

λ

n + λ
+

(
1 − α2 + β

)
, i = 0. (7)

W
(m)
i = W

(c)
i =

1
2 (n + λ)

, i = 1, 2, ..., 2n. (8)

where x̂k−1 =
[
x̂1
k−1, x̂

2
k−1, ..., x̂

n
k−1

]T , and λ = α2 (n + k)−n is the scale factor,
which determines the distribution state of the sampling points; β is the param-
eter related to the high-order term, which is taken β = 2 under the Gaussian
distribution; W

(m)
i is the mean weighted value, W

(c)
i is the covariance weighted

value,
(√

(n + λ) Pk−1

)
i
indicates the i column of the square root of the matrix.

2.2 UKF Implementation Process

The mathematical model of general state equation and measurement equation
are as follow

xk+1 = f (xk) + wk. (9)

yk = h (xk) + vk. (10)

where xk and yk denote as the system state variable and measurement vector at
time k respectively, the state transition function f and the measurement function
h are both nonlinear. Moreover, process excitation noise wk, and observation
noise vk , which are independent of each other and white noise with normal
distribution, here, E

[
wkw

T
k

]
= Q, and E

[
vkv

T
k

]
= R.

For general dynamic system model, the UKF consists of prediction step and
data assimilation step. The prediction step includes state quantity prediction
value and observation quantity prediction value, wherein the state quantity pre-
diction value is obtained by infinite transformation and Holt’s two-parameter
exponential smoothing method. Then the observation measurement prediction
value is obtained according to the measurement equation. After the filter gain is
obtained during the data assimilation step, the measured value is corrected to
update the state variable. The specific implementation steps are as follow.
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(1) Prediction step

χi
k|k−1 = f

(
χi
k−1

)
. (11)

where χi
k|k−1 is a n × (2n + 1) dimensional matrix, and the sigma point is

weighted to obtain the predicted value x̂−
k|k−1 and the prediction error covariance

matrix P−
x,k|k−1 .

x̂−
k|k−1 =

2n∑
i=0

W
(m)
i χi

k|k−1| (12)

P−
x,k|k−1 =

2n∑
i=0

W
(c)
i

[
χi
k|k−1| − x̂−

k

] [
χi
k|k−1| − x̂−

k

]T
+ Qk−1. (13)

The state transition function f is replaced by Holt’s two-parameter expo-
nential smoothing method. The sigma point of the measured prediction value
γi
k|k−1 and the predicted value of the measurement quantity ŷ−

k|k−1 are obtained
according to the nonlinear transformation.

γi
k|k−1 = h

(
χi
k|k−1

)
. (14)

ŷ−
k|k−1 =

2n∑
i=0

W
(m)
i γi

k|k−1 . (15)

(2) Data assimilation step

Then, the weighted summation is used to calculate the covariance matrix
Py,k and Pxy,k of the measurement quantity prediction value, as well as the
state quantity prediction value.

Py,k =
2n∑
i=0

W
(c)
i

[
γi
k|k−1 − ŷ−

k

] [
γi
k|k−1 − ŷ−

k

]T
+ Rk. (16)

Pxy,k =
2n∑
i=0

W
(c)
i

[
χi
k|k−1 − x̂−

k

] [
γi
k|k−1 − ŷ−

k

]T
. (17)

Thus, the filter gain matrix K, the state estimate x̂k, and the state estimate
covariance matrix P k are updated as follow

K = Pxy,kP
−1
y,k . (18)

x̂k = x̂−
k|k−1 + K

(
yk|k−1 − ŷ−

k|k−1

)
. (19)

Pk = Pk|k−1 − KPy,kK
T . (20)

The UKF does not require the calculation of the Jacobian matrix in the
prediction and the data assimilation step, and only involve the simple function
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calculation. However, Holt’s two-parameter is constant in its prediction step,
which may increase prediction error and affect the data assimilation effect. As
the filter gain matrix K affects estimation accuracy of UKF, we adopt an adaptive
correction factor.

3 A Novel QGA-UKF for DSE

3.1 Adaptive Factor Construction

Define the innovation vector zk = yk − ŷ−
k|k−1 and the innovation matrix zkz

T
k .

Through measuring the trace of prediction variance matrix Py,k and innovation
matrix, we construct an adaptive correction factor ωk [10]

ωk =

{
1 tr

(
zkz

T
k

) ≤ tr (Py,k)
tr(Py,k)

tr(zkzT
k ) tr

(
zkz

T
k

)
> tr (Py,k)

(21)

where tr
(
zkz

T
k

)
and tr (Py,k) are indicated the trace of the innovation matrix

and the measurement quantity prediction variance matrix respectively.
When the trace of the innovation matrix is less than or equal to the trace of

the measurement quantity prediction variance matrix, the adaptive correction
factor takes value of 1, which means the values of Py,k and Pxy,k are not changed;
Conversely, They are changed, which indicates that the operating state of the
system changes. At this time, the prediction error is large, and the values of Py,k

and Pxy,k need to be corrected online to obtain a new one. The new equations
are as follows

`Py,k =
1
ωk

2n∑
i=0

W
(c)
i

[
γi
k|k−1 − ŷ−

k

] [
γi
k|k−1 − ŷ−

k

]T
+ Rk. (22)

`Pxy,k =
1
ωk

2n∑
i=0

W
(c)
i

[
χi
k|k−1 − x̂−

k

] [
γi
k|k−1 − ŷ−

k

]T
. (23)

3.2 Holt’s Two-Parameter Method Optimized by QGA

In the traditional UKF, Holt’s two-parameter exponential smoothing method
[11] is used instead of the state transfer function. The basic idea is to use histor-
ical data for prediction and estimation. The parameters α, β are constant and
will reduce the prediction accuracy of the algorithm. Therefore, this paper uses
quantum genetic algorithm to optimize its parameters.

Genetic Algorithm (GA) is an adaptive search algorithm that simulates bio-
logical evolution. It is based on the principle of survival of the fittest in nature.
The GA optimization GA starts from the initial population. New individuals
are generated by using three operators: selection, intersection and mutation,
which will be more adaptable to the environment. Finally, the best individual is
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selected, and the corresponding solution is the optimal solution of the objective
function.

In contrast, Quantum Genetic Algorithm (QGA) is a combination of GA
and quantum computing. QGA introduces the quantum state vector expression
into the genetic coding, realizes the superposition of multiple states of a chro-
mosome, and uses the quantum revolving gate to perform chromosome update.
Due to the superposition of quantum information, the gene expressed contains
all possible information. So that the objective function optimization solution is
more accurate.

The operation of quantum revolving door is defined as

U (θi) =
[

cos (θi) − sin (θi)
sin (θi) cos (θi)

]
. (24)

where θi is the rotation angle. The update process by
[

ϕ̀i

ϕ̀i

]
= U (θi)

[
ϕi

ϕi

]
=

[
cos (θi) − sin (θi)
sin (θi) cos (θi)

] [
ϕi

ϕi

]
. (25)

where |φ|2 + |ϕ|2 = 1, (φi, ϕi)
T and

(
φ̀i, ϕ̀i

)
are expressed as the probabil-

ity amplitude before and after the update of the i qubit revolving gate of the
chromosome respectively.

QGA is used to optimize the parameters of Holt’s two-parameter method
and submitted to the following settings. The values of the two independent
variables are both in [0, 1], the solution is accurate to 4 decimal places, 213 <
104 < 214, so the quantum bit code length is 14, and the population size is
30. The fixed rotation angle strategy is adopted, and all population genes are
initialized as

(
1√
2
, 1√

2

)
. The minimum error between state filter value and state

prediction value is selected as FitnessV alue = min
{
x̂k+1 − x̂−

k+1

}
[12]. Then,

the new optimized prediction model is given by

xk = Fk−1xk−1 + uk−1. (26)

ak−1 = αkxk−1 + (1 − αk) xk−1|k−2 . (27)

bk−1 = βk (ak−1 − ak−2) + (1 − βk) bk−2. (28)

Fk−1 = αk (1 + βk) I. (29)

uk−1 = (1 + βk) (1 − αk) xk−1|k−2 − βkak−2 + (1 − βk) bk−2. (30)

where α, β ∈ [0, 1].
According to the optimization result, the QGA-UKF state filter is performed,

and the measurement quantity yk+1 is performed to obtain the state value x̂k+1

of filter.
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4 Case Analysis

4.1 Simulation Overview

For the IEEE 30 bus system, the UKF, GA-UKF and QGA-UKF, are simulated.
In order to analyze their dynamic estimation effect, the following indicators are
used to evaluate the prediction state quantity and the estimated state quantity
in the algorithm.

(1) average relative error of predicted state quantity

ζk =
1
n

n∑
j=1

∣∣∣∣
x̂−
k (j) − xk (j)

xk (j)

∣∣∣∣. (31)

(2) average relative error of estimated state quantity

ζs =
1
n

n∑
j=1

∣∣∣∣
x̂k (j) − xk (j)

xk (j)

∣∣∣∣. (32)

(3) algorithm filter indicator

ηk =

m∑
i=1

|ŷk (i) − yk (i)|
m∑
i=1

∣∣ŷ−
k (i) − yk (i)

∣∣
. (33)

where x̂−
k (j), xk (j) and x̂k (j) are expressed as the predicted value, the true

value and the estimated value of the j state quantity at time k respectively;
ŷk (i), yk (i) and ŷ−

k (i) are expressed as the estimated value, the true value and
the measured value of the i quantity measurement at time k respectively.

4.2 Analysis of Simulation Results

The parameter settings of IEEE 30 bus system are mentioned in [13]. The quan-
tity measurement is obtained by adding a normal distribution random noise with
a mean of zero and a standard deviation of 2% on the basis of the power flow
calculation.

Figure 1 shows true value, estimate value of three filters of voltage amplitude
and phase angle with bus 2 under IEEE 30 bus system. It can be seen that the
estimate value of three algorithms fluctuate around true value, which indicate
that the proposed method is effective in the dynamic state estimation of the
power system.

Figure 2 shows the estimated value error ζk and predicted value error ζs of
UKF, GA-UKF and QGA-UKF respectively under IEEE 30 bus system. It can
be seen from the figure that the maximum value of estimated error and prediction
error of three algorithms is all smaller than 4 × 10−3. The fluctuation range of
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Fig. 1. Estimation of voltage amplitude and phase angle of node 2.
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Fig. 2. UKF, GA-UKF, QGA-UKF estimation error and prediction error.

estimated value error and predicted value error of QGA-UKF are smaller than
UKF and GA-UKF, which indicates QGA-UKF is with good stability.

Figure 3 shows the data assimilation performance index of three filters
under IEEE 30 bus system, and the data assimilation performance index of all
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Fig. 3. UKF, GA-UKF, QGA-UKF data assimilation performance indicator.

fluctuates around 0.45. Especially the QGA-UKF fluctuates more slowly, which
further indicates that it is feasible and effective of QGA-UKF in DSE of power
system.

Table 1 shows the three performance indicators of three filters. In comparison
to UKF and GA-UKF, the average value of estimation error, prediction error and
data assimilation index of QGA-UKF are lower. The minimum and maximum
data assimilation index value of QGA-UKF are higher than both of them, which
indicates that there is a deviation between the predicted values and estimated
values of QGA-UKF at a few sampling moments. The data assimilation indexes
of three algorithms are less than 1, especially the indicators of QGA-UKF are
best among of them, which indicates that the proposed QGA-UKF can effectively
improve the data assimilation precision of UKF and reduce prediction error.

Table 1. Performance indicators of three methods in IEEE 30 bus system

Methods ζk ζs ηk

Min Avg Max Min Avg Max Min Avg Max

UKF 0.0010 0.0040 0.0059 1.2511e−11 0.0045 0.0066 0.3123 0.4767 0.5850

GA − UKF 6.43634e−04 0.0023 0.0034 1.2206e−11 0.0028 0.0041 0.3542 0.5030 0.6103

QGA − UKF 4.6764e−04 0.0020 0.0027 1.2206e−11 0.0025 0.0039 0.3622 0.4736 0.5968
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5 Conclusion

Unlike constant parameters of Holt’s two-parameter model used in the UKF
prediction step, this paper proposed a novel QGA-UKF approach to optimize the
parameters dynamically. The adaptive correction factor was created to reduce
the prediction error and achieve the adaptive optimization of dynamic state
estimation of a power system. Simulation tests were conducted by using IEEE
30 bus system and the results indicated that the proposed QGA-UKF has good
estimation accuracy and system stability.

Our future work will be focused on how to improve its performance without
affecting the convergence speed of dynamic state estimation of power systems.

Acknowledgments. This work was supported by the Natural Science Foundation of
China under Grant 61633016 and Project 111 under Grant D18003.
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Abstract. In this paper, a new state estimator with integral term is
proposed for studying the H∞ performance of static neural networks
with time-varying delay. Firstly, some integral inequalities are given to
handle the derivative of Lyapunov functional. Secondly, a delay depen-
dent criterion is derived for the estimation error system. Thirdly, in order
to guarantee the H∞ performance, the gain matrices can be obtained by
the linear matrix inequalities. Finally, an example is used to verify the
effectiveness of our proposed method.

Keywords: H∞ performance · Time-varying delay ·
Static neural networks · Linear matrix inequalities.

1 Introduction

Since more and more applications of neural networks have been found in a large
number of fields, neural networks have begun to be taken seriously in recent
years. As a result, many papers about neural networks have been reported [1–
3]. In fact, neural networks are classified into two kinds. One is static neural
networks and the other is local field neural networks. Generally speaking, the
two kinds of neural networks are different. But the two kinds of neural networks
are equivalent only when they satisfy some critical conditions [4,5]. The recurrent
results mainly focus on local field neural networks [6–8]. It is obvious that the
static neural networks under some assumption can be taken to solve some control
problems such as H∞ performance.

In the past decades, the state estimation problem of static time-varying
delayed neural networks has been found attracting many scholars and making
great achievements, such as classification, pattern recognition, static imagine
processing, as well as combinatorial optimization. In fact, due to expensive cost
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and little information obtained from neuron state [9], especially external dis-
turbance is imposed to neural networks, it’s very important to carry out the
study of neuron state estimation based on available information. As a result,
some practical performance can be achieved based on the successful application
of neural networks. It is noted the proposed new state estimator is similar to
the state estimator in [10] such that it can make a good performance. Thus, this
kind of estimator can be applied in the practical state estimation.

In the study of recurrent neural networks, time delay will be inevitably
encountered. Time delay is one of the main reasons leading to the neural sys-
tem instability, so stability analysis of time delay was extensively studied. In
recent years, the study of state estimation has achieved a good result [11–15]. In
addition, some sufficient conditions of state estimator are presented. Therefore,
less conservative criteria [16,17], time-varying state estimation issues begin to
attract a large number of scholars. As discussed before, the static neural net-
works and local field neural networks are different, the criteria in many papers
or books may connot be directly applied to the delayed static neural networks.
Therefore, it should be considered that the practical significance of criteria is of
importance. Many scholars made their efforts in designing state estimation. The
traditional estimation is Luenberger state estimator [14] and Arcak’s observer
[18]. Recently, in [10], another type of observer was presented, in this estima-
tor, the integral term is considered. However, in this paper, e−t is added to the
integral term such that our state estimator accelerates the convergence rate.
Therefore, our state estimator can estimate the system state more accurately.

This paper is concerned with the problem of H∞ state estimation for static
neural networks with time-varying delay. A new state estimator, which is con-
structed to deal with the H∞ performance problem together with some integral
inequalities. By choosing a suitable Lyapunov functional, and employing some
integral inequalities such that the error system is globally asymptotically stable.
Finally, an example is utilized to illustrate the advantage of our method.

2 Problem Description

The static neural network with time-varying delay is depicted by
⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = −Ax(t) + f(Wx(t − τ(t)) + J) + B1ω(t)
y(t) = Cx(t) + Dx(t − τ(t)) + B2ω(t)
z(t) = H1x(t) + H2x(t − τ(t))
x(t) = φ(t), t ∈ [−τ, 0]

(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)] ∈ R
n is the neuron state vector with n

neurons, y ∈ R
m is the network measurement vector, z(t) ∈ R

p is the linear
combination of the states to be estimated, ω(t) ∈ R

q is the noise disturbance
vector belonging to L2[0,∞]. A is a diagonal and positive definite matrix, W is
a delayed connection weight matrix, B1, B2, C, D, H1, and H2 are real matrices
with appropriate dimensions. f(x) = [f1(x1), f2(x2), . . . , fn(xn)]T is the con-
tinuous neuron activation function, J = [J1, J2, . . . , Jn]T is an external input



An Improved Result on H∞ Performance State Estimation of DSNN 253

vector, τ(t) and φ(t) are the time-varying delay and the initial condition defined
on [−τ, 0].

Assumption 1. The neural activation function fi(·) satisfies

0 ≤ fi(a) − fi(b)
a − b

≤ li, a �= b ∈ R (2)

Assumption 2. There exist scalars τ > 0 and μ ∈ R such that

0 ≤ τ(t) ≤ τ, 0 ≤ τ̇(t) ≤ μ (3)

where τ , μ are real constants. In this paper, a new state estimator is designed
as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x(t) = − Ax̂(t) + f(Wx̂(t − τ(t)) + K1(y(t) − ŷ(t)) + J)

+ K2(y(t) − ŷ(t)) + K3e
−tξ

ξ̇(t) =y(t) − ŷ(t)
ŷ(t) =Cx̂(t) + Dx̂(t − τ(t))
ẑ(t) =H1x̂(t) + H2x̂(t − τ(t))
x̂(t) =0, t ∈ [−τ, 0]

(4)

where x̂(t) ∈ R
n, ẑ(t) ∈ R

p, ξ(t) ∈ R
m, K1, K2, and K3 are the gain matrices

to be determined.

Remark 1. In this paper, a new state estimator with e−t is presented. The
Luenberger state estimator is a special case of the proposed new state estimator
when K3 = 0. Due to our adding integral term, the proposed new state estimator
will estimate neuron state more accurately.

Define e(t) = x(t) − x̂(t), z̃(t) = z(t) − ẑ(t), and ξ̄(t) = e−tξ(t), then the error
system is obtained with (1) and (4) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ė(t) = − (A + K2C)e(t) + g(t) − K2De(t − τ(t))
+ (B1 − K2B2)ω(t) − K3ξ̄(t)

ξ̇(t) =Ce(t) + De(t − τ(t)) + B2ω(t)
z̃(t) =H1e(t) + H2e(t − τ(t))

(5)

where g(t) = f(Wx(t− τ(t))+J)− f(Wx̂(t− τ(t))+K1(y(t)− ŷ(t))+J). From
(2), it’s easy to get that the following inequality holds

0 ≤ − 2gT (t)Λg(t) + 2gT (t)ΛL[−K1Ce(t)
+ (W − K1D)e(t − τ(t)) − K1B2ω(t)] (6)

where Λ = diag(λ1, λ2, . . . , λn) > 0, L = diag(l1, l2, . . . , ln). li is defined in (2).
The problem of an H∞ state estimation is stated as follows:
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For a prescribed γ > 0, it’s better to find a suitable state estimator (4) such
that the estimation error system (5) with ω(t) = 0 is globally asymptotically
stable under the condition that

‖z̃(t)‖2 < γ‖ω(t)‖2. (7)

The following Lemmas will be used in this paper.

Lemma 1 [13]. For real matrices T > 0 and Z with appropriate dimensions,
and any vector function ζ(t), the following inequality holds

−
∫ 0

−τ

∫ t

t+θ

ėT (s)T ė(s)dsdθ ≤ 1
2
τ2ζT (t)ZT T−1Zζ(t)

+2ζT (t)ZT [τe(t) −
∫ t

t−τ

e(s)ds] (8)

Lemma 2 [14]. Let π(t) = [eT (t − τ(t)) − eT (t − τ), eT (t) − eT (t − τ(t))]T . If

the matrix
[
S V
∗ S

]

≥ 0, then

−τ

∫ t

t−τ

ėT (s)Sė(s)ds ≤ −πT (t)
[
S V
∗ S

]

π(t) (9)

3 Main Result

In this section, we have the following theorem.

Theorem 1. For given scalars τ > 0, μ > 0, γ > 0, the problem of the H∞
performance state estimation is solvable if there exist real matrices P1 > 0, P2 >
0, Q1 > 0, Q2 > 0, R > 0, S > 0, T > 0, ζi(i = 1, 2, . . . , 7), V,Gi(i = 1, 2, 3) and
Λ = diag(λ1, λ2, . . . , λn) > 0 such that the LMIs (10) and (11) are satisfied:

[
S V
∗ S

]

≥ 0 (10)
⎡

⎣
Φ1 τΦT

2 τΦT
3

∗ −2T 0
∗ ∗ Φ4

⎤

⎦ < 0 (11)

where

Φ1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ11 Φ12 Φ13 Φ14 Φ15 Φ16 Φ17

∗ Φ22 Φ23 −ζT
2 Φ25 0 DT P2

∗ ∗ Φ33 −ζT
3 0 0 0

∗ ∗ ∗ Φ44 −ζ5 −ζ6 −ζ7
∗ ∗ ∗ ∗ −2Λ −G1B2 0
∗ ∗ ∗ ∗ ∗ −γ2I BT

2 P2

∗ ∗ ∗ ∗ ∗ ∗ Φ77

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Φ2 = [ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7]
Φ3 = [−P1A − G2C − G2D 0 0 P1 P1B1 − G2B2 − G3]

Φ4 = − 2P1 + S +
T

2
Φ11 = − AT P1 − P1A − CT GT

2 − G2C + Q1 + Q2

+ τ2R + HT
1 H1 − S + τζ1 + τζT

1

Φ12 = − G2D − V T + S + τζ2 + HT
1 H2

Φ13 = V T + τζ3

Φ14 = τζ4 − ζT
1

Φ15 = P1 + τζ5 − CT GT
1

Φ16 = P1B1 − G2B2 + τζ6

Φ17 = CT P2 − G3 + τζ7

Φ22 = − (1 − μ)Q1 + HT
2 H2 − 2S + V + V T

Φ23 = S − V T

Φ25 = WT LΛ − DT G1

Φ33 = − Q2 − S

Φ44 = − R − ζ4 − ζT
4

Φ77 = − P2.

Furthermore, the gain matrices K1, K2 and K3 can be designed as

K1 = (ΛL)−1G1, K2 = P−1
1 G2, K3 = P−1

1 G3.

Proof. It is shown that (7) holds for all nonzero ω(t) when the condition (10) and
(11) are satisfied under zero-initial conditions. We design a Lyapunov functional
candidate as

V (t) =
4∑

i=1

Vi(t) (12)

and

V1(t) =eT (t)P1e(t) + e−tξT (t)P2ξ(t)

V2(t) =
∫ t

t−τ(t)

eT (s)Q1e(s)ds +
∫ t

t−τ

eT (s)Q2e(s)ds

V3(t) =τ

∫ 0

−τ

∫ t

t+θ

eT (s)Re(s)dsdθ + τ

∫ 0

−τ

∫ t

t+θ

ėT (s)Sė(s)dsdθ

V4(t) =
∫ 0

−τ

∫ t

t+θ

(s − t − θ)ėT (s)T ė(s)dsdθ.



256 G. Tan et al.

Now, we take the derivative of V (t) along the trajectories of (5) yield

V̇1(t) ≤eT (t)(−AT P1 − P1A − CT KT
2 P1 − P1K2C)e(t) − 2eT (t)P1K2De(t − τ(t))

+ 2eT (t)P1g(t) + 2eT (t)(P1B1 − P1K2B2)ω(t) − 2eT (t)P1K3ξ̄(t)

− ξ̄T (t)P2ξ̄(t) + 2eT (t)CT P2ξ̄(t) + 2eT (t − τ(t))DT P2ξ̄(t)

+ 2ωT (t)BT
2 P2ξ̄(t) (13)

V̇2(t) ≤eT (t)(Q1 + Q2)e(t) − eT (t − τ)Q2e(t − τ)

− (1 − μ)eT (t − τ(t))Q1e(t − τ(t)) (14)

V̇3(t) =τ2eT (t)Re(t) + τ2ėT (t)Sė(t) − τ

∫ t

t−τ

eT (s)Re(s)ds

− τ

∫ t

t−τ

ėT (s)Sė(s)ds (15)

V̇4(t) =
τ2

2
ėT T ė(t) −

∫ 0

−τ

∫ t

t+θ

ėT (s)T ė(s)dsdθ. (16)

It is known from (13) that V (t)|t=0 = 0 and for t > 0 V (t) ≥ 0 under the
zero-initial conditions. Now, we define

J =
∫ ∞

0

[z̃T (t)z̃(t) − γ2ωT (t)ω(t)]dt. (17)

Then, we have the following inequality

J ≤
∫ ∞

0

[z̃T (t)z̃(t) − γ2ωT (t)ω(t)]dt + V (t)|t→∞ − V (t)|t=0

=
∫ ∞

0

[z̃T (t)z̃(t) − γ2ωT (t)ω(t) + V̇ (t)]dt. (18)

Let ρ(t) = [eT (t), eT (t − τ(t)), eT (t − τ),
∫ t

t−τ
eT (s)ds, gT (t), ω(t), ξ̄(t)]T . Then

taking the derivative of V (t) along the trajectories of (5) and employing Lem-
mas 1 and 2 yield

z̃T (t)z̃(t) − γ2ωT (t)ω(t) + V̇ (t)

≤ ρT (t)[Φ̄1 +
τ2

2
ΦT
2 T−1Φ2 + Φ̄T

3 (τ2S +
τ2

2
T )Φ̄3]ρ(t) (19)

where Φ̄1, Φ̄3 are obtained from Φ1, Φ3 by replacing G1 with ΛLK1, G2 with
P1K2, G3 with P1K3. Noting −P (S + T/2)−1P ≤ −2P + S + T/2, by (11), the
following matrix inequality holds

⎡

⎣
Φ1 τΦT

2 τΦT
3

∗ −2T 0
∗ ∗ −P (S + T

2 )−1P

⎤

⎦ < 0. (20)

Then, pre- and postmultiplying (20) by diag{I, I, (S+ T
2 )P−1} and its transpose,

and noting K1 = (ΛL)−1G1,K2 = P−1
1 G2, and K3 = P−1

1 G3, the following
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matrix inequality holds
⎡

⎣
Φ̄1 τΦT

2 τΦ̄3(S + T
2 )

∗ −2T 0
∗ ∗ −S − T

2

⎤

⎦ < 0 (21)

By Schur complement, the matrix inequality (21) is equivalent to

Φ̄1 +
τ2

2
ΦT
2 T−1Φ2 + Φ̄T

3 (τ2S +
τ2

2
T )Φ̄3 < 0 (22)

Then, for any ρ(t) �= 0

ρT (t)[Φ̄1 +
τ2

2
ΦT
2 T−1Φ2 + Φ̄T

3 (τ2S +
τ2

2
T )Φ̄3]ρ(t) < 0. (23)

Noting (17), (18), (19), and (23), one has

J ≤
∫ ∞

0

[z̃T (t)z̃(t) − γ2ωT (t)ω(t) + V̇ (t)]dt < 0. (24)

Therefore, ‖z̃(t)‖2 < γ‖ω(t)‖2. According to Lyapunov stability theory, the error
system (5) is globally asymptotically stable. This completes the proof.

Remark 2. It can be seen from our result that the H∞ performance state
estimation of delayed static neural networks is guaranteed. There are three gain
matrices to adjust the parameters of (4). It is obvious that much better H∞
performance can be achieved by our method.

Remark 3. In this paper, our new state estimator has more accurate effect than
[13] and [14] because of our adding integral term K3ξ̄(t). It can be shown from
the following simulation. The significance of adding e−t to the integral term of
our new estimator (4) is that when we deal with e−tξT (t)P2ξ(t) of Lyapunov
functional, the derivative of it is −e−tξT (t)P2ξ(t) + e−tξT (t)P2ξ̇(t), which is no
greater than −e−tξT (t)P2ξ(t)e−t + e−tξT (t)P2ξ̇(t). Thus, (11) is solvable.

4 Numerical Example

In this section, we will take an example from [13] and [14] to show the effec-
tiveness of the presented method. Consider the system (1) with the following
parameters:

A = diag{1.06, 1.42, 0.88}, H2 = 0,

H1 =

⎡

⎣
1 0 0.5
1 0 1
0 −1 1

⎤

⎦ ,W =

⎡

⎣
−0.32 0.85 −1.36
1.1 0.41 −0.5
0.42 0.82 −0.95

⎤

⎦ ,

C =
[
1 0.5 0
0 −0.5 0.6

]

,D =
[
0 1 0.2
0 0 0.5

]

,

B1 = [0.2 0.2 0.2]T , B2 = [0.4 − 0.3]T .
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Table 1. Comparison of the H∞ performance index γmin for different L.

Methods I 1.1I 1.2I 1.3I 1.4I 1.5I

Theorem 1 in [13] 0.3868 0.5446 0.8220 1.5311 6.4813 -

Theorem 1 in [14] 0.3822 0.4923 0.6536 0.9805 2.2387 -

Theorem 1 0.3529 0.4270 0.4986 0.6014 0.7588 1.0305

It is supposed that L = λI(λ > 0) and τ = 0.8, μ = 0.6. Thus, the H∞
performance index γmin can be obtained by our method for different values of λ.
The results are listed in Table 1. It is obvious that the γmin is increasing when
λ is from 1 to 1.5. Due to our adding integral term in the new estimator, it is
clear from the Table 1 that the H∞ indices are much better than the ones in [13]
and [14]. However, the H∞ performance index can be calculated until L = 1.7I,
when L = 1.5I, the three gain matrices are calculated as

K1 =

⎡

⎣
−0.0523 −0.4464
0.2217 −0.0813
0.2020 −0.7930

⎤

⎦ ,K2 =

⎡

⎣
10.8202 14.5750
0.1259 −9.4775
16.0261 35.9349

⎤

⎦ , K̄3 =

⎡

⎣
0.0759 0.0845
0.2522 0.2762
0.1563 0.1721

⎤

⎦ ,

019876543210

time(s)

-5

-4

-3

-2

-1

0

1

2

3

4

5

e
(t
)

e1(t)
e2(t)
e3(t)

Fig. 1. Error system: e1(t), e2(t), e3(t).

where K3 = 10−5K̄3. It is seen from Table 1 that the H∞ performance index
γmin=1.0305. Then, for our simulation, we choose the time-varying delay as
τ(t) = 0.4 + 1.6cos(5t/6). Figure 1 is the response of error system (5). It is
clear that Theorem 1 can guarantee the H∞ performance state estimation of
time-varying delayed static neural networks.
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5 Conclusion

In this paper, a new state estimator is constructed to deal with the problem of
H∞ performance state estimation of static neural networks with time-varying
delay. By designing a appropriate Lyapunov functional, a delay criterion is
derived. As a result, the error system is globally asymptotically stable. In addi-
tion, the gain matrices and H∞ performance index are obtained. It is obviously
that much better performance has been gained by our method. An example is
given to show the effectiveness of our method.
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Abstract. In this work, we investigate Batch Normalization technique
and propose its probabilistic interpretation. We propose a probabilistic
model and show that Batch Normalization maximizes the lower bound
of its marginal log-likelihood. Then, according to the new probabilistic
model, we design an algorithm which acts consistently during train and
test. However, inference becomes computationally inefficient. To reduce
memory and computational cost, we propose Stochastic Batch Normal-
ization – an efficient approximation of proper inference procedure. This
method provides us with a scalable uncertainty estimation technique. We
demonstrate the performance of Stochastic Batch Normalization on pop-
ular architectures (including deep convolutional architectures: VGG-like
and ResNets) for MNIST and CIFAR-10 datasets.

Keywords: Uncertainty estimation · Deep Learning ·
Batch Normalization

1 Introduction

Deep Neural Networks have demonstrated state-of-the-art performance on many
problems and are successfully integrated in real-life scenarios: semantic segmen-
tation, object detection and scene recognition, to name but a few. Usually the
quality of a model is measured in terms of accuracy, however, accurate uncer-
tainty estimation is also crucial for real-life decision-making applications, such as
self-driving systems and medical diagnostic. Despite high accuracy rate, DNNs
are prone to overconfidence even on out-of-domain data.

The Bayesian framework lends itself well to uncertainty estimation [8], but
exact Bayesian inference is intractable for large models such as DNNs. To address
this issue, a number of approximation inference techniques have been proposed
recently [3,11]. It has been shown that Dropout, a well-known regularization
technique [10], can be treated as a special case of stochastic variational inference
[5,9]. Also [1] showed that stochasticity induced by Dropout can provide well-
calibrated uncertainty estimation for DNNs. Multiplicative Normalizing Flows
c© Springer Nature Switzerland AG 2019
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[7] is another approximation technique that produces great uncertainty estima-
tion. However, such complex method is hard to scale to very deep convolutional
architectures. Moreover, recently proposed Residual Network [2] with more than
a hundred layers does not have any noise inducing layers such as Dropout. This
type of layer leads to a significant accuracy degradation [2]. This problem can
be addressed by non-Bayesian Deep Ensembles method [6], which provides com-
petitive uncertainty estimation, but it requires to store several separate models
and perform forward passes through all of them to make prediction.

Batch Normalization [4] is an essential part of very deep convolutional archi-
tectures. In our work, we treat Batch Normalization as a stochastic layer and
propose a way to ensemble batch-normalized networks. The straightforward
technique, however, ends up with high memory and computational cost. We,
therefore, propose Stochastic Batch Normalization (SBN)—an efficient and scal-
able approximation technique. We show the performance of our method on out-
of-domain uncertainty estimation problem for deep convolutional architectures
including VGG-like, ResNet and LeNet-5 on MNIST and CIFAR10 datasets. We
also demonstrate that SBN successfully extends Dropout and Deep Ensembles
methods.

2 Method

We consider a supervised learning problem, with a dataset D = {(xi, yi)}N
i=1. The

goal is to train the parameters θ of the predictive likelihood pθ(y |x), modelled
by a neural network. To solve this problem stochastic optimization methods with
a mini-batch gradient estimator usually are used.

Batch Normalization. Batch Normalization attempts to preserve activations
of all layers with zero mean and unit variance. In order to do that it uses the mean
μ(B) and variance σ2(B) over the mini-batch B during training and accumulated
statistics on the inference phase:

BNtrain
γ,β (xi) =

xi − μ(B)
√

σ2(B) + ε
· γ + β BNtest

γ,β (xi) =
xi − μ̂√
σ̂2 + ε

· γ + β (1)

where γ, β are the trainable Batch Normalization parameters (scale and shift)
and ε is a small constant, needed for numerical stability. Note that during train-
ing mean and variance are computed over a randomly picked batch (μ(B), σ(B)),
while during testing the exponentially smoothed statistics (μ̂, σ̂2) are used. We
further address this inconsistency by proposed probabilistic model.

Batch Normalization: Probabilistic View. Note from (1) that forward pass
through the batch-normalized network depends not only on xi but on the entire
batch B as well. This dependency can be reinterpreted in terms of mini-batch
statistics μ(B), σ(B):

pθ(yi |xi,B\i) = pθ(yi|xi, μ(B), σ(B)), (2)
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where B\i is a batch without xi. Due to the stochastic choice of mini-batches dur-
ing training, for a fixed xi B\i is a random variable, so mini-batch statistics can
be treated as a random variables. The conditional distribution pθ(μ, σ |xi,B\i)
is the product of two Dirac delta functions, centered at μ(B) and σ(B), since
statistics are deterministic functions of the mini-batch, and the distribution of
mean and variance given xi is an expectation over mini-batch distribution. Dur-
ing inference we average the distribution pθ(y|x, μ, σ2) over the normalization
statistics:

pθ(μ, σ|xi) = EB\i
δμ(B)(μ)δσ(B)(σ) pθ(y|x) = Epθ(μ,σ|x)p(y|x, μ, σ) (3)

Connection to Batch Normalization. In Sect. 3 we show that during training
Batch Normalization (1) performs the unbiased one-sample MC estimation of a
gradient of a lower bound to the marginal likelihood (3). Thus, such probabilistic
model corresponds to Batch Normalization during training. However, on test
phase Batch Normalization uses exponentially smoothed statistics Eμ ≈ μ̂,Eσ ≈
σ̂, which can be seen as a biased approximation of (3):

Epθ(μ,σ|xi)p(yi|xi, μ, σ) ≈ pθ(y|x,Eμ,Eσ)

Straightforward MC averaging can be used for better unbiased estimation of
(3), however, it is inefficient in practice. Indeed, to draw one sample from the
distribution over statistics (3) we need to pass an entire mini-batch through the
network. So, to make MC averaging for single test object, we need to perform
several forward passes with different mini-batches sampled from the training
data. To address this drawback we propose Stochastic Batch Normalization.

Stochastic Batch Normalization. To address memory and computational
cost of straightforward MC estimation, we propose to approximate the distribu-
tion of Batch Normalization statistics pθ(μ, σ |xi) with a fully-factorized para-
metric approximation pθ(μ, σ |xi) ≈ r(μ)r(σ). We parameterize r(μ) and r(σ)
in the following way:

r(μ) = N (μ|mμ, s2μ) r(σ) = LogN (σ|mσ, s2σ) (4)

Such approximation works well in practice. In Sect. 4 we show that it accu-
rately fits the real marginals. Since approximation no longer depends on the
training data, samples for each layer can be computed without passing the entire
batch through the network and it is possible to make prediction in an efficient
way.

To adjust parameters {mμ, sμ,mσ, sσ} we minimize the KL-divergence
between distribution induced by Batch Normalization (3) and our approximation
r(μ)r(σ) for each object:

DKL

(
1/N

∑N
i=1pθ(μ, σ |xi)

∣∣∣∣ r(μ)r(σ)
)

−→ min
mμ,sμ,mσ,sσ

Since r belongs to the exponential family, this minimization problem is equal
to moment matching and does not require gradients computation. In our imple-
mentation we simply use exponential smoothing to approximate the sufficient
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statistics of mean and variance distributions. It can be done for any pre-trained
batch-normalized network.

3 Lower Bound on Marginal Log-Likelihood

In Sect. 2 we propose the probabilistic view on Batch Normalization which mod-
els marginal likelihood pθ(y|x). In this section we show that conventional Batch
Normalization actually optimizes a lower bound on marginal log-likelihood in
such probabilistic model. So the goal is to train the model parameters θ given
training dataset D = {(xi, yi)}N

i=1. Using Maximum Likelihood approach we
need to maximize the following objective L(θ):

L(θ) =
N∑

i=1

log pθ(yi|xi) =
N∑

i=1

logEμ,σ∼pθ(μ,σ|xi) pθ(yi|xi, μ, σ) (5)

However, the term logEμ,σ pθ(yi|xi, μ, σ) is intractable due to the expectation
over statistics. We, therefore, construct a lower bound of L(θ) using the Jensen-
Shannon inequality:

LBN(θ) =
N∑

i=1

Eμ,σ log pθ(yi|xi, μ, σ) ≤
N∑

i=1

logEμ,σ pθ(yi|xi, μ, σ) = L(θ) (6)

To use gradient-based optimization methods we need to compute gradient
of LBN(θ) w.r.t. parameters θ. Unfortunately, distribution over μ, σ depends
on θ and, therefore, we cannot propagate gradient through the expectation.
However, we can use the definition of pθ(μ, σ|xi) from Eq. (3) and reparametrize
expectation in terms of mini-batch distribution:

Eμ,σ log pθ(yi|xi, μ, σ) =

∫
pθ(μ, σ|xi) log pθ(yi|xi, μ, σ)dμdσ

=

∫ (∫
δμ(B)(μ)δσ(B)(σ)p(B\i)dB\i

)
log pθ(yi|xi, μ, σ)dμdσ

=

∫ (∫
δμ(B)(μ)δσ(B)(σ) log pθ(yi|xi, μ, σ)dμdσ

)
p(B\i)dB\i

=

∫
log pθ(yi|xi, μ(B), σ(B))p(B\i)dB\i

= EB\i
log pθ(yi|xi, μ(B), σ(B))

Since distribution over mini-batches does not depend on θ, we now can prop-
agate the gradient through the expectation and use MC approximation for an
unbiased estimation. During training Batch Normalization draws mini-batch B
of size M and approximate the full gradient ∇LBN(θ) in the following way:

∇L̂BN(θ) =
N

M

M∑

i=1

∇ log pθ(yi|xi, μ(B))
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Note that Batch Normalization uses the same mini-batch B to calculate
statistics as for gradient estimation. Taking an expectation over mini-batch B,
we can actually see that such procedure performs an unbiased estimation of
∇L(θ):

EB∇L̂BN(θ) =
N

M

M∑

i=1

∇EB log pθ(yi|xi, μ(B))

= N · ∇EB log pθ(yi|xi, μ(B), σ(B))
= N · ∇Exi

EB\i
log pθ(yi|xi, μ(B), σ(B))

= ∇
N∑

i=1

EB\i
log pθ(yi|xi, μ(B), σ(B))

= ∇LBN(θ)

So Batch Normalization produces an unbiased gradient estimation of ∇L(θ)
during training and can be seen as an approximation for inference in proposed
probabilistic model.

4 Statistics Distribution Approximation

(a) Distributions for LeNet-5 conv1 (b) Distributions for LeNet-5 conv2

Fig. 1. The empirical marginal distribution over statistics (blue) for convolutional
LeNet-5 layers and proposed approximation (green). Top row for mean distribution
and bottom for variance. (Color figure online)

For computational and memory efficiency we propose the following approx-
imation for the real distribution over the batch statistics, induced by Batch
Normalization:

r(μ) = N (μ|mμ, s2μ) r(σ) = LogN (σ|mσ, s2σ) (7)

According to our observation, the real distributions are unimodal Fig. 1. Also
the Central Limit Theorem implies that the means converge in distributions to
Gaussians, therefore we model this distribution using a fully-factorized Gaussian.
While the common choice for the variance is Gamma distribution, we choose the
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Fig. 2. The empirical marginal distribution over statistics (blue) for fully-connected
LeNet-5 layer and the proposed approximation (green). Top row corresponds to the
means, and the bottom row corresponds to the variances. (Color figure online)

log-normal distribution, as it allows for a more tractable moment-matching. Also
as we show in Figs. 1 and 2, the log-normal distribution fits the data well.

To verify the right choice of parametric family we estimate an empirical
marginal distributions over μ and σ2 for LeNet-5 architecture on MNIST dataset.
To sample statistics from the real distribution we pass different mini-batches
from training data through the network. We use Kernel Density Estimation to
plot the empirical distribution. The results for convolutional and fully-connected
layers of LeNet-5 can be seen in Figs. 1 and 2. It can be seen that the approxi-
mation (7) fits the real marginal distributions over μ, σ accurately.

5 Experiments

Table 1. Test errors (%) and NLL scores for known classes. MNIST for LeNet-5 and
CIFAR5 for VGG-11 and ResNet-18. SBN column correspond to methods with all
Batch Normalization layers replaced by ours SBN.

Network Method Error% NLL

No SBN SBN No SBN SBN

LeNet-5 MNIST SBN — 0.53 ± 0.05 — 0.025 ± 0.003

Deep ensembles 0.43 ± 0.00 0.43 ± 0.00 0.015 ± 0.001 0.014 ± 0.001

Dropout 0.51 ± 0.00 0.49 ± 0.00 0.016 ± 0.000 0.015 ± 0.000

VGG-11 CIFAR5 SBN — 5.76 ± 0.00 — 0.302 ± 0.002

Deep ensembles 5.18 ± 0.00 5.23 ± 0.00 0.177 ± 0.004 0.154 ± 0.002

Dropout 5.32 ± 0.00 5.38 ± 0.00 0.155 ± 0.001 0.149 ± 0.001

ResNet-18 CIFAR5 SBN — 4.35 ± 0.17 — 0.255 ± 0.018

Deep ensembles 3.37 ± 0.00 3.34 ± 0.00 0.138 ± 0.005 0.110 ± 0.004

We evaluate uncertainties on MNIST and CIFAR10 datasets using convolu-
tional architectures. In order to apply Stochastic Batch Normalization to existing
architectures we only need to update parameters of our approximation r(μ), r(σ)
(4), which does not affect the training process at all. We show that SBN improves
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both Dropout and Deep Ensembles techniques in terms of out-of-domain uncer-
tainty and test Negative Log-Likelihood (NLL), and maintains the same level of
accuracy.

Experimental Setup. We compare our method with Dropout and Deep
Ensembles. Since [2] showed that ResNet does not perform well with any Dropout
layer and suffers from instability, we did not include this method into consider-
ation for ResNet architecture. For Deep Ensembles we trained 6 models for all
architectures and did not use adversarial training (as suggested by [6]) since this
technique results in lower accuracy.

Fig. 3. Results for LeNet-5 on notMNIST. Empirical CDF of entropy for out-of-domain
data. SBN corresponds to model with all Batch Normalization layers replaced by
Stochastic Batch Normalization. The more to the right and the lower, the better.

Uncertainty Estimation on notMNIST. For this experiment we trained
LeNet-5 model on MNIST and evaluated the entropy of the predictive distri-
bution on notMNIST, which is out-of-domain data for MNIST, and plot the
empirical CDF on Fig. 3. We also report the test set accuracy and NLL scores,
the results can be seen at Table 1.

Uncertainty Estimation on CIFAR10. To show that our method scales to
deep convolutional architectures well, we perform experiments on VGG-like and
ResNet architectures. We split CIFAR10 dataset into two datasets (CIFAR5),
and plot the empirical CDF in Fig. 4. We trained networks on randomly chosen
5 classes and evaluated predictive uncertainty on the remaining.
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(a) Results for VGG-11

(b) Results for ResNet-18

Fig. 4. Empirical CDF of entropy for out-of-domain data. (a) VGG-11 and (b) ResNet-
18 on five classes of CIFAR10, hidden during training. SBN corresponds to model with
all Batch Normalization layers replaced by Stochastic Batch Normalization. The more
to the right and the lower, the better.

We observed that Stochastic Batch Normalization improves both Dropout
and Deep Ensembles in terms of out-of-domain uncertainties and NLL score on
test data (from the same domain) at the same level of accuracy. However, SBN
itself ends up with the more overconfident predictive distribution in comparison
to baselines Dropout and Deep Ensembles.
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6 Conclusion

In this paper, we propose a probabilistic interpretation of Batch Normalization
technique. We study a probabilistic point of view and design a new algorithm
that behaves consistently during training and test stages. We compare the per-
formance of the proposed algorithm with concurrent techniques on image clas-
sification and uncertainty estimation tasks.
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Abstract. In this paper, we consider a microgrid framework consist-
ing of four power generation units, such as gas turbine, fuel cell, diesel
generator and photovoltaic power generation. We focus on the minimum
power generation cost under the lowest environmental pollution, com-
bining with particle swarm optimization (PSO) and projection neural
network. In this framework, we consider the two objectives simultane-
ously, both economic cost and pollution emission. The projection neural
network is used to find the local optimal value, and then the PSO algo-
rithm is used to update the weight to increase the solution diversify and
seek global optimization. The convergence and stability of the projection
neural network algorithm are reflected in the simulation.

Keywords: Multi-objective optimization ·
Particle swarm optimization · Microgrid · Projection neural network

1 Introduction

A microgrid, which refers to a small power distribution system consisting of
distributed power supply (micro-turbines, PV), energy storage device(fuel cells),
load and so on [1]. At present, the scheduling strategy of the microgrid is divided
into fixed strategy and optimization strategy. Since dynamic optimization con-
siders the coordination between multi-period equipment operations, the opti-
mization effect is better for microgrids that usually contain time-coupled char-
acteristic components such as energy storage and generators [2]. How to calculate
the lowest economic cost under multiple power generation units and consider the
minimum environmental pollution emissions is the primary problem of micro-
grid economic benefits. In the multi-objective microgrid, to achieve maximum
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economic benefits of microgrid is to find the optimal solution under multiple
objectives [3].

Multi-objective optimization, is an algorithm that optimizing two or more
objective with a number of constraints, and aims to find the best pareto point in
multi-objective problems, which has been widely used in various fields, such
as civil, commercial, and military [4]. There are many methods for solving
multi-objective optimization problems, such as weight sum method, NSGA-II,
MOEA/D and indicator-based selection. In this paper, we combine the weighted
Chebyshev method with the microgrid model to calculate some practical opti-
mization problems. Based on the above proposed, the method is used to sacalar-
ize multi-objective to single objective, and the projection neural network is used
to find individual best solutions for PSO. Meanwhile, PSO is employed to reini-
tialization and optimize weight vectors [5].

The remainder of this paper is organized as follows. In Sect. 2, the modeling
and problem formulation of microgrid is given. In Sect. 3, the method about
goal conversion and the algorithm based on projection neural network and PSO
is proposed. Section 4 presents the simulation example to verify the proposed
hybrid system. The conclusions is given in Sect. 5.

2 Problem Formulation and Model Description

2.1 Electricity Cost Function

Fuel Generator Function. Fuel power generation is the most basic and tradi-
tional part of electrical energy. The whole fuel generator cost in terms of micro-
grid model is described as follows:

FMT (PMT ) = Q · PMT · Δt/ (ηMT · C) (1)

where Q represents the natural gas prices, Δt indicates generator running time,
C is natural gas calorific value, PMT and ηMT is the fuel generator power and
power generation efficiency, respectively.

Fuel Cell Function. Fuel cells are also an important part of the microgrid. As
an energy storage unit, it also plays an important role. The real fuel cell cost is
described as follows:

FFC (PFC) = ρ · 1
ς

· PFC

ηFC
(2)

where ρ represents actual price parameter and ς denotes gas calorific value. PFC

and ηFC is the fuel cell power and power generation efficiency, respectively.

Diesel Generators Function. Diesel generator as a supplemental unit of
smart grid, the cost function is described as follows:

FDE (PDE) = ν · P 2
DE + τ · PDE + ι (3)

where ν, τ and ι are the generator specifications, PDE is the diesel generators
power and assume that the efficiency of the diesel generator is 80%.
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Photovoltaic (PV) Function. Photovoltaic power generation as the cleanest
source of energy has been increasingly used in people’s daily lives. The microgrid
power output of PV is described as follows:

FPV (PPV ) = 	 · PPV · Δt − kPV · PPV · Δt (4)

where kPV is the operation and maintenance costs of PV, PPV is the PV power
and 	 is the photovoltaic unit parameter. In summary, the problem above the
total cost function can be expressed as follows:

Min Fc = FMT + FFC + FDE + FPV (5)

2.2 Emission Function

Industrial production is always accompanied by this pollutant discharge, and
the common industrial pollutants are Sox, NOx, CO2, etc. Their emissions have
a mathematical relationship with power generation. The pollutant emissions of
the entire microgrid can be expressed by the following function:

Min E (Pout,q)

=
N∑

q=1

(
αq + βq · Pout,q + γq · P 2

out,q + δq · exp (dq · pq)
) (6)

where Pout,q are the power of fuel generator, fuel cell, diesel generators, PV units
(q = 1, 2, 3, 4), respectively. αq, βq and γq are the emission parameters of qth

generator unit and dq and pq are the exponential parameters of qth generator
unit.

2.3 Constraints

4∑

q=1

(Pout,q) = PL (7)

Pout,q,min � Pout,q � Pout,q,max (8)

where Pout,q represents qth power generation unit, P denotes the total load,
and Pout,q,min, Pout,q,max means the maximum and the minimum output power,
respectively.

2.4 Multi-objective Problem Model

In this section, we focus two important goals of power generation cost and pollu-
tant emission in the microgrid, simultaneously. Then, the multi-objective prob-
lem is described as follows:

Min [Fc, E] (9)

subject to the constraints (7)–(8).
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3 Algorithm Analysis

In this section, we consider using the weighted Chebyshev method [6] to trans-
form the multi-objective problem into two single objective problem. Projective
neural network is adopted to solve the local best point of the single objective.
Figure 1 shows the iterative process of the algorithm. If the obtained solution
satisfies the stopping criterion, then the algorithm will converge to the optimal
output solutions.

Fig. 1. Overview of the proposed hybrid projection neural network algorithm for seek-
ing pareto optimal solution.

3.1 Problem Transformation of Multi-objective

This Chebyshev method considers an group ideal parameter r∗ = (r∗
1 , r

∗
2)

T ,
r∗
1 < min (Fc (Pout,q) |Pout,q ∈ Ω), r∗

2 < min (E (Pout,q) |Pout,q ∈ Ω) and where
Ω = {Pout,q|li � Pout,q � ui, i = 1,...,n}, li and ui are maximum and minimum
point respectively, j = 1, 2. The transformation equation is described as follows:

Min f (x|λi)

=Min max
1�j�2

{
λi
1|Fc (Pout,q) − r∗

1 |, λi
2|E (Pout,q) − r∗

2 |
}

(10)

where i = 1, 2, ...,M , λi
j > 0 and

∑m
j=1 λi

j = 1, j denotes the jth objective
function.

3.2 Projection Neural Network

In general, for a single-objective problem, it will contain a single target and an
inequality constraint [7]. Combined with the Chebyshev method we discussed in
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the previous section, the problem can be transformed into two separate goals:
electricity cost and emission. In this way, projection neural networks are used
to solve these subproblems [8]. The electricity cost derivation equation can be
expressed as follows:

dPout,q

dt
= −Pout,q + H (Pout,q − ∇Fc (Pout,q) + λ)

dλ

dt
=

N∑

q=1

(Pout,q) − PL

(11)

and the emission derivation equation is described as follows:

dPout,q

dt
= −Pout,q + H (Pout,q − ∇E (Pout,q) + λ)

dλ

dt
=

N∑

q=1

(Pout,q) − PL

(12)

where Pout,q represents qth power generation unit; H indicates projection oper-
ator; ∇Fc, ∇E are the gradients of Fc and E, respectively.

H (x) =

⎧
⎪⎨

⎪⎩

u, x > u

x, l � x � u

l, x < l

(13)

3.3 Particle Swarm Optimization

In this section, PSO is used to accomplish following goals. The first one is
to obtain global optimal solution, and the secondary goal is update initial
value and weight vector. Let the position and velocity of ith particle denote
as P i

out,q =
(
P i
out,1, P

i
out,2, ..., P

i
out,n

)T and vi =
(
vi
1,v

i
2, ..., v

i
n

)T , respectively.
Basis on iteration of the particle change, its velocity and position are redefined
according to

{
vq ← ωvq + c1r1

(
P̃ i
out,q − P i

out,q

)
+ c2r2

(
P̂out,q − P i

out,q

)

P i
out,q ← P i

out,q + vi
(14)

where ω denotes inertia weight, its value range is 0.8 to 0.2; c1 and c2 are the
individual optimal weight value and global optimal weight value; the parameter
value of r1 and r2 are generally taken as 0.1 to 0.8; P̃ i

out,q and P̂out,q are the
Individual optimal point and global optimal point of the ith particle. c1 and c2
are generally set to 1.0 to 2.0 or controlled adaptively.

3.4 Hybrid Neurodynamic Optimization Algorithm

According to the weighted Chebyshev scalarization mentioned before, the multi-
objective based on microgrid is transformed into multiple single-objective opti-
mization problems to solve. However, for ith subproblem, the projection neural
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network algorithm [9] is considered. The ith projection neural network with
weighted Chebyshev is described as follows:

dP i
out,q

dt
= −P i

out,q + H
(
P i
out,q − ∇F

(
zi

)
+ λi

)

dλi

dt
=

N∑

q=1

(
zi

) − PL

(15)

where P i
out,q is the current value of the ith projective neural network; F =

{Fc,E}; λi is hidden state vector; zi =
(
P i
out,q, δ

)
; δ = Fc

(
zi

)
. When the projec-

tion neural network converges to stopping condition: ||P̂out (t) − P̂out (t − 1) || �
ε1, the procedures end. The value of ε1 is a positive number close to zero.

3.5 Weight Update Method

In the scalarization approach, the distribution of the multi-objective solution
largely depends on the selection of the weight vector. In this section, PSO is
adopted to update the weight value. The updated method of PSO λj is

{
ϕj ← ωϕj + c1r1

(
λ̃j − λj

)
+ c2r2

(
λ̂l − λj

)

λj ← λj + ϕj
(16)

where ϕj denotes velocity information; λ̃j represents individual optimal value;
λ̂l is the global optimal value, and before an iteration update is completed(16),
we select the nearest weight vector

{
λ̂1, λ̂2, ..., λ̂M

}
as the assignment of index

l, λj ∈ Rm and j = 1,...,M · p, p represents the number of groups of λ̃, and
M represents the number of λ̃ in each group. The weight vector converges:
||λ (k) − λ (k − 1) || � ε3, ε3 is a positive number close to zero. Algorithm starts
from execution to meet conditional termination (i.e., S (A) � ε2, where A is the
solution set obtained by the above method, and ε2 is a positive number close
to zero) [10]. When the value in the solution set A satisfies the well-distributed,
the algorithm terminates and the result is the final solutions of the algorithm.

4 Simulation Result

By simulating the above problem, the results are presented to illustrate the fea-
sibility of the hybrid projection neural network algorithm. Two goals of electric-
ity cost and environmental cost are considered in simulation to find the optimal
value and verify the stability of the algorithm. Figure 2 shows bi-objective pareto
solutions via projection neural network algorithm. We consider the actual sit-
uation two cost function that involve power balance constraint and generation
capacity limit. If we take more group weight, dots in the graph will be more
densely distributed, we can obtain more Pareto-optimal solutions.
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In order to verify the convergence and stability of the hybrid neurodynamic
algorithm, we recorded the iteration process of each variable in the objective
function in Fig. 3. The four lines represent the power of four generators. The
curve tends to stabilize after several iterations. We obtained the desired result
by simulation experiment.
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Fig. 3. Variable convergence chart.

5 Conclusions

In this paper, a hybrid projection neural network algorithm is used to solve
microgrid multi-objective optimization. Two important issues of power gener-
ation cost and pollution emission in the microgrid are considered. Simulation
result shows the hybrid neruodynamic algorithm has high stability and conver-
gence speed, and the diversity of solutions is guaranteed based on PSO algo-
rithm. Future works may focus on extending to more objectives optimization in
microgrid, reducing the complexity and improving stability and accuracy of the
algorithm.
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Simulation of a Chaos-Like Irregular Neural
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Abstract. In this paper, the deterministic Chay model was improved consid-
ering the generation mechanism of an action potential, with special relevance to
the opening of potassium channel after depolarization. Then a chaos-like
irregular non-periodic neural firing pattern, which was lying between period n
and period (n + 1) bursting in a period-adding bifurcation and composed of
alternating period n and period (n + 1) bursts, was also simulated by this
improved Chay model. The nonlinear time series analysis results suggest this
pattern display both deterministic and stochastic dynamic characteristics, as
same as those results in the previous studies. This pattern was always simulated
by stochastic neuron models and considered to be coherence resonance near the
bifurcation points induced by the inner noise. However, there was no noise in
this improved deterministic Chay model. This present paper attempted to discuss
and preliminarily explain the generation mechanism of this firing pattern from
the standpoint of the unification of certainty and randomness.

Keywords: Neural discharge activity � Deterministic Chay model �
Action potential � Chaos-like � Neural firing pattern

1 Introduction

The biological nervous system shows strong non-linearity from a nerve unit to a neural
network such as the brain. As the main content of neurodynamics, using the mathe-
matical model to simulate the real neural discharge activity, and using the nonlinear
theory to analyze the dynamic features under simulation and experimental data, can
deepen our understanding to some phenomena of the nervous system [1–4].

As the basic unit of nervous system, related research on a neuron is the foundation
of complex biomechanical of neural activities at different disciplines and levels [5]. The
information encoding mode of neuron is to change the time and rate of action potential
(AP) [6]. The transmembrane ionic current, which is caused by the opening and closing
of ion channels, is the material basis to the generation and change of the AP, as shown
in Fig. 1 [7]. Then, the correct description, reasonable assumption and simplicity for
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the ion channel behavior at the AP level have been very important for the construction
and improvement of neuron models [6].

With the in-depth research, the viewpoint that the neural information is coded by
not only frequency but also rhythm is gradually and widely accepted [8, 9]. By analysis
on interspike intervals (ISIs) only for one neuron, abundant complex discharge rhythms
and transitions patterns display nonlinear phenomena, such as periodic, chaotic firing
patterns, period adding bifurcation, and so on [10–12]. The underlying unification
between confirmation and randomicity from these rhythms is presented, especially in
multimodal neural firing patterns, like chaotic discharge, integer multiple firing pattern
and so forth. Chaos has been attracting a great deal of attention and identified as the
typical deterministic firing pattern with some stochastic characteristics by a series of
mature dynamical analysis methods developed in the past few decades [10]. Others like
on-off firing and integer multiple firing were once considered as the deterministic
chaos, which seemed to be better explained via the introduction of stochastic resonance
(SR) mechanisms [13, 14]. However, the newly observed chaos-like irregular neural
firing patterns in both model simulation and biological experiment, such like the pat-
terns lying between periodic patterns in period adding bifurcation, still face how to be
effectively identified [15, 16].

This present paper dealt with the chaos-like irregular patterns simulated by the
improved Chay model, which was added a peak constraint term without noise
according to the reasonable assumption for the AP. Then a preliminary explanation was
tried to give to the analysis results. By the work done in this paper, we hope to enrich
the theoretical connotation for the research of nonlinear dynamics and neuroscience,
and provide some practical methods.

Fig. 1. The transmembrane ionic current in different phases of AP [7]
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2 Theoretical Chay Model

Chay model [17] is a typical realistic model which describes the firing behavior of
neurons based on the dynamic behavior of ion channels. It can simulate abundant
discharging behavior observed in the real experiment, not only rest and discharge, but
also complex rhythms, such as periodic rhythms and chaotic rhythm, as well as dou-
bling period of rhythm and period-adding bifurcation (PAB). It can also well simulate
and explain transitions between different complex rhythms [11, 16].

Deterministic Chay model (DCM) is formulated as follows:

dV
dt

¼ gIm3
1h1 VI � Vð Þþ gK;Vn4 VK � Vð Þþ gK;C

C
1þC

VK � Vð Þþ gL VL � Vð Þ ð1Þ

dn
dt

¼ n1 � n
sn

ð2Þ

dC
dt

¼ q m3
1h1 VC � Vð Þ � KCC

� � ð3Þ

V, n and C represent cell membrane potential, K+ channel activation probability,
intracellular Ca2+ concentration, respectively. sn is relaxation time. Vc is the equilib-
rium potential of Ca2+ channel. In many previous researches, a noise term was always
joined in the first formula to make up the stochastic Chay model (SCM), which was
used to study the influence of noise in neural activities.

Here, we made a reasonable hypothesis considering the mechanism of AP gener-
ation. When the voltage of AP reaches the spike peak, that is the joint point between
phase 2 and 3 in Fig. 1, the K+ channel will open instantaneously and completely
accompanied by the end of depolarization and the beginning of repolarization. Con-
sistent with the physiological process, a coefficient wK was joined in the Eq. (2), as
Eq. (4).

dn
dt

¼ wK
n1 � n

sn
ð4Þ

When the opening probability of K+ channel opens instantaneously and completely
at the spike peak (the junction of phase 3 and phase 4 in Fig. 1), the value of the second
formula of the Chay model should be 1. At this time, the value of wK should be sn/
(n∞ − n). This constraint does not work except at the peak, where wK ¼ 1. Thus,
Eq. (4) and Eqs. (1), (3) formed the improved Chay model based on peak constraints. It
should be noted that this improved model was an deterministic neuron model without
any noise, here named improved DCM in this paper. The parameter settings in this
paper can be referred to in [15].
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3 Time Series Analysis Methods

As mentioned above, the dynamical features are supposed to be implied in neural
discharge rhythms. Thus, the ISI time series transformed from the spike trains are
usually used for further analysis. The time series analysis methods in this paper
included nonlinear analysis methods based on phase space reconstruction theory, such
as first return map (FRM), nonlinear prediction (NPE), approximate entropy (ApEn).
Others as complexity, surrogate data (SD) and autocorrelation coefficient (ACC) anal-
ysis were also covered. All the methods were as same as those described in [16].

4 Numerical Simulation Results and Analysis

A series of results suggested that the improved DCM could well numerically simulate
abundant neural firing patterns and bifurcations as same as those in previous studies.
All these similar activities will be particularly introduced in another article.

Here, much more attention will be paid to a kind of chaos-like irregular firing
pattern lying at the bifurcation points in the PAB. This cannot be described in the DCM
according to references results [16], which was also confirmed in this paper. In the
DCM, when kn = 240 with Vc decreased from 486 mV to 162 mV, the rhythm is PAB
scenarios illustrated in Fig. 2(a) from period 1 to period 5 bursting, and there is no
other rhythm near the bifurcation points.

However, the results were quite different in the improved DCM. The irregular firing
between period n and period (n + 1) bursting (n = 1, 2, 3, 4) in PAB was numerically
simulated, which illustrated in Fig. 2(b). This pattern could be considered as the
transitions between period n and period (n + 1) bursts (n = 1, 2, 3, 4), which illustrated
in Fig. 3. It was intuitively different from chaos because of no other bursts. Obvious
single burst was indicated by oblique arrows.

From the generated location and the composition of spike trains, this irregular non-
periodic pattern imitated by the improved DCM is similar to the stochastic multimodal
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Fig. 2. (a) PAB without any other non-periodic patterns in the DCM (kn = 240). (b) PAB with
irregular firing patterns among neighbouring burstings in the improved DCM (kn = 240)
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firing imitated by the SCM reported before. However, the analysis of ISI shows that it
has definite properties like chaos.

The firing mode among period 1 and period 2 bursting when kn = 240, Vc =
438 mV in the improved DCM was taken for example. It has 3 types of ISIs, the
smallest of which is the main ISI shared by period 1 and 2 bursting, illustrated in Fig. 4
(a) and (b). The FRM of ISI has a deterministic structure, which is different from the
SD of the ISI, which illustrated in Fig. 4(c) and (d), respectively. The ACC of the ISI
with one step lag was −0.8370, then vibrated and decreased slowly from 1 while the lag
was within 12, while only vibrating around between −0.1 and 0.1 by with the lag
extended, which illustrated in Fig. 4(e). The comparison of NPE between ISI and its
SD suggested it can be predicted in a short step while not in a long step, which
illustrated in Fig. 4(f), indicating the chaos-like features for the pattern. ApEn and
complexity was 0.315213 and 0.325043 respectively, which shows that the model has
lower complexity and higher orderliness.

The above results suggested that the non-periodic had similar dynamical features, at
least about the chaos-like features, to the stochastic multimodal firing simulated
through the SCM and observed in pacemaker experiment. To further investigate the
randomness of the patterns, a detailed analysis on “event” dynamics is carried out
according to the methods described before [15]. Since there were only two alternating
bursts in this pattern, each burst could be defined as an event, and the time interval
among two consecutive events could be defined inter-event intervals (IEI), which

Fig. 3. Spike trains of irregular non-periodic bursting among period n and period (n + 1) in the
improved DCM (kn = 240), the interval among two vertical arrows indicates IEI. (a) n = 1,
Vc = 438 mV. (b) n = 2, Vc = 259 mV. (c) n = 2, Vc = 182 mV
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illustrated in Fig. 3. In the above example, period 2 burst is considered the event. Thus,
the analysis on period 2 IEI was shown in Fig. 5.

The analysis results of IEI exhibited typical features of the integer multiple patterns
with ApEn 0.688489 and complexity 0.858858 respectively. That was, the chaos-like
irregular firing patterns simulated through the improved DCM indeed had character-
istics of randomness, which was reflected by the stochastic transition among period 1
and 2 bursts. Analysis on other bursting between period n and period (n + 1) bursting
(n = 2, 3, 4) got similar results.
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Fig. 4. Time series analysis on ISI in the improved DCM (a) ISI series. (b) ISI histogram.
(c) FRM. (d) FRM of SD of ISI. (e) ACC. (f) NPE (circle—raw data, triangle—SD)
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5 Discussion and Conclusion

In this paper, the improved DCM was established considering the K+ channel opening
probability during the generation of AP, and had a powerful simulation capability
compared to the original model. The improvement with the coefficient wK adding was
carried on mainly for two key reasons as follow.

Firstly, as known, original DCM is a continuous dynamical system as similar to HH
model. This is the one reason that the two models could simulate closely to the
experiments [18]. But the introduction of wK turn the improved DCM into discrete with
significant sensitive to the K+ channel opening situation. Meanwhile, another factor
about the sensory systems of higher animals is that it is very important to define the
sensitive intensity of self-perceived information. However, there is no individual
coding element that can encode the whole range of sensitive organisms [19]. Maybe, it
is obviously useful to use discrete variable in a smaller range to construct an invariant
representation in a larger intensity range, such as the intervention of wK .
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Fig. 5. Time series analysis on the IEI series in the improved DCM. (a) IEI series. (b) IEI
histogram. (c) FRM. (d) FRM of SD of IEI. (e) ACC. (f) NPE
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Secondly, despite it is important for each neuron to encode information through
changing the time and rate of its AP, mechanisms that how to control the time and rate
of AP are not completely understood. Meanwhile, spiking of individual neuron,
especially for the cortical neurons, is given little information. One possible solution for
neurons adjust the rate of information transmission through varying membrane
potential, so as to adapt to the continuous discharge activities [6, 7]. The improvement
to the original Chay model in this paper was also a rewarding attempt in this respect.

The outstanding and interesting work in this paper was that a chaos-like irregular
non-periodic firing was simulated through the improved DCM, which was only able to
be simulated through the SCM and identified as the stochastic multimodal neural firing
before. This pattern was explained using the SR mechanism caused by the noise in the
PAB. However, noise plays a role in the corresponding interval. The size of noise and
the interval of control parameters need to be controlled artificially. The operation of
parameter adjustment is time-consuming and labor-consuming, and it is easy to omit
intervals. The improved DCM can be seen that when the noise is not artificially added,
it can be simulated. This part has been added to the discussion for explanation. Thus,
generated by a deterministic model but with the same dynamic and bifurcation as that
in a stochastic model, how should this pattern be understand? We might try to get it
from the standpoint of inner dynamics in the nonlinear system.

As same as other biological phenomena, neural discharge activities is caused by the
influence of internal dynamics and random forces of organisms, which are random
volatility caused by external inputs or other effects [20]. Chaos is the typical phe-
nomenon with deterministic and stochastic features simultaneously, which was
observed and validated in both real neural experiment and neuron model. In fact, with
typical fractal structure, a neuron itself is a nonlinear system reflecting the unification
between confirmation and randomicity, also order and disorder, the unification of
certainty and randomness was also reflected in both the firing patterns simulated
through the improved DCM and the stochastic multimodal patterns studied before.

Indeed, an important feature of real neuron system is to extract meaningful internal
and external signals under various qualifications, in order to successfully catch prey,
avoid predators and so on. After a long period of evolution, this capability of picking
up related information systematically under exceeding variable environment are called
robust, even in the face of fragment information or signal degradation [21]. A typical
example is integer multiple firing pattern encodes different signal information in dif-
ferent animals. So, to the chaos-like irregular non-periodic firing pattern here, it may be
a special pattern for organism to perceive, encode and process a large class of special
information as same as the stochastic multimodal neural firing pattern. This form of
information processing is irrelevant to whether noise affect the system, at least partly.
Certainly, the hypothesis mentioned above still needs further experimental, stimulation
and analytical verification.
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Abstract. In this paper, a new complex hyper-chaotic system is proposed.
Through the separation of real and imaginary parts, the basic dynamics such as
symmetry, dissipation, equilibrium stability, Lyapunov exponent spectrum and
power spectrum are studied. Then, according to the Lyapunov stability theory,
using the error feedback synchronization method, we design a complex feed-
back controller to realize the chaotic synchronization of the proposed chaotic
system with both parameters and external disturbances. Theoretical analysis
shows that the controller can make the synchronization error gradually towards
zero point. In addition, the numerical simulation of the complex chaotic syn-
chronization system is carried out. The simulation results further verify the
effectiveness of the proposed method.

Keywords: Complex hyper-chaotic system � Parameter perturbation �
External disturbance � Feedback synchronization

1 Introduction

In the past few decades, chaos control and synchronization have flourished. In 1990,
scientists at the University of Maryland in the United States, Ott, Grebogi and Yorke,
first proposed a method for implementing chaotic control using two-dimensional dis-
crete mapping [1]. In a broad sense, chaotic synchronization belongs to the category of
chaos control, and chaotic synchronization is a specific chaos control. In 1990, two
scientists from the US Naval Laboratory, Pecora and Carrol, proposed a chaotic self-
synchronization method [2]. They first used the drive-response method to synchronize
the two chaotic systems. Since then, chaotic synchronization has caused a wide range
of interests and an in-depth study of this [3].

Complex chaotic systems have more complex dynamic behaviors than real chaotic
systems, such as complex Chen systems [4], complex Lu systems [5], complex Lorenz
systems [6], and other complex systems [7]. With the development of complex sys-
tems, the research on synchronization of complex systems has gradually been widely
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carried out. In 2004, Mahmoud and Bountis studied the dynamic behavior of a complex
nonlinear oscillator for the first time [8]. Since then, the results of synchronization of
complex systems have been constantly emerging. In 2008, Zhu and Zhang designed
controllers based on passive control principle to achieve complete synchronization of
complex chaotic systems [9]; In 2009, Mahmoud and others proposed complete syn-
chronization of chaotic complex Chen system and chaotic complex Lü system [10]. In
2013, Zhang and Zhao proposed the modified function projective synchronization of
different complex chaotic systems [11], and realized the modified function projective
synchronization of two different complex chaotic systems. In 2014, Skardal et al.
studied the optimal synchronization of complex networks [12]. It is noteworthy that the
influence of disturbance on the system is not taken into account in the research work of
these literatures. In fact, complex systems do not exist in isolation, especially external
disturbances of complex systems. Therefore, the study of synchronization of complex
systems with disturbances has theoretical and practical significance.

In Sect. 2, a new complex chaotic system is proposed. Separate real part and
imaginary part, and two real systems are derived. A hyper-chaotic attractor is obtained
by adjusting the parameters. Subsequently, Sect. 3 analyses its dynamic characteristics
in detail. In Sect. 4, based on Lyapunov stability theory and error feedback synchro-
nization method, a complex feedback controller is designed to realize chaotic syn-
chronization when the parameters and external of the complex hyper-chaotic system are
disturbed. Section 5 is a conclusion.

2 A New Complex Hyper-chaotic System

2.1 A Subsection Sample

In this paper, a new complex hyper-chaotic system is proposed. The dynamic equation
is as follows.

_x ¼ ax� xþ yz;
_y ¼ �xzþ yz� bx;
_z ¼ c� 1

2 ð�xyþ x�yÞ;
ð1Þ

Where, x ¼ x1 þ ix2; y ¼ x3 þ ix4 are complex variables, the ‘�’ represents com-
plex conjugate variable, z ¼ x5; i ¼

ffiffiffiffiffiffiffi�1
p

. In view of the fact that complex variables
have real and imaginary parts, we separated the system with complex variables into two
real systems, imaginary part system and real part system, combined into a new real
system. The combined real system has the same chaotic characteristics as the complex
system. The mathematical form of the complex hyper-chaotic system is obtained as
follows,
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_x1 ¼ ax1 � x1 þ x3x5;
_x2 ¼ ax2 � x2 þ x4x5;
_x3 ¼ �x5x1 þ x3x5 � bx1;
_x4 ¼ �x5x2 þ x4x5 � bx2;
_x5 ¼ c� x1x3 � x2x4;

ð2Þ

When the system parameters a = 0.5, b = 0.8, c = 20, the Lyapunov exponents of
the system are L1 = 0.325, L2 = 0, L3 = 0.007, L4 = −0.068, L5 = −0.402 respectively.
There exist two positive Lyapunov exponents, and the sum of Lyapunov exponents is
less than zero, which indicates that the system is in hyper-chaotic state. The Lyapunov
exponent spectrum of the system is shown in Fig. 1. It can be seen that the five
Lyapunov exponents of the system tend to a fixed constant over time. On this basis, the
dimension of Lyapunov exponent of the new system can be produced.

DL ¼ kþ Sk
Lkj j ¼ 3þ L1 þ L2 þ L3

L4 þ L5j j ¼ 0:325þ 0þ 0:007
�0:068� 0:402j j ¼ 3:706 ð3Þ

Observing the result of formula (3), DL is exactly not an integer, which further
determined that the complex system with hyper-chaotic characteristics. The hyper-
chaotic attractor of the system is vividly shown in Fig. 2.

Fig. 1. Lyapunov exponents of the system (2).
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3 Dynamic Analysis

3.1 Initial Sensitivity and Power Spectrum Characteristics

Set the initial values of x1, x2, x3, x4 and x5 to be −0.1, change x3 only with the
difference of 0.00001, and get the sequence diagram of variables as shown in Fig. 3.

It can be seen that the initial value of the system changes very little, the time-
domain waveforms are completely different, and there is no overlapping trend. On the

x
1

x 3

x3

x 5

x2

x 5

x
1

x
3

x 5

Fig. 2. The hyper-chaotic attractors of the system (2): (a) x1 − x3, (b) x3 − x5, (c) x2 − x5,
(d) x1 − x3 − x5.

Fig. 3. Sensitivity of variable x3 to initial
value.

Fig. 4. Sensitivity of variable x3 to initial
value.
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contrary, the difference is disorderly, which indicates that the system is very sensitive to
the initial value. In addition, the power spectrum of the system (2) is continuous, as
shown in Fig. 4. There are no obvious peaks in the drawing, and the spectrum of the
sequence is very wide, which also shows that the system (2) satisfies hyper-chaotic
characteristics.

3.2 Symmetry and Dissipation

Replaced (x1, x2, x3, x4, x5) with (−x1, −x2, −x3, −x4, x5), the system has not changed, so
it is axisymmetric about x5. Replaced (x1, x2, x3, x4, x5) with (−x1, −x2, x3, x4, −x5), the
system has not changed, so it is axisymmetric about x3, x4.

rV ¼ @ _x1
@x1

þ @ _x2
@x2

þ @ _x3
@x3

þ @ _x4
@x4

þ @ _x5
@x5

¼ 2a� 2\0 ð4Þ

From Eq. (4), it is clear that the system is a dissipative system. It converges
exponentially to a set of zero measures, dVdt ¼ e�2ð1�aÞ, that is VðtÞ ¼ V0e�2ð1�aÞt, where
V0 is the initial value of the system volume. This is a necessary feature for the existence
of chaotic or hyper-chaotic attractors.

3.3 Equilibrium Point and Stability Analysis

Let the right side of the nonlinear Eq. (2) be equal to zero, Two equilibrium points of the
system can be calculated by solving the problem, which are S0 = [−0.3, 0.167 + 5.785i,
0.2, 0.1 − 3.471i, 0], S1 = [−0.3, 0.167 − 5.785i, 0.2, 0.1 + 3.471i, 0]. At the equi-
librium point S0 = [−0.3, 0.167 + 5.785i, 0.2, 0.1 − 3.471i, 0], the Jacobian matrix of
the system can be obtained by linearizing the system.

J ¼

a� 1 0 0 0 x3
0 a� 1 0 x5 x4

�x5 � b 0 x5 0 �x1 þ x3
0 �x5 � b 0 x5 �x2 þ x4

�xð3Þ �xð4Þ �xð1Þ �xð2Þ 0

2
66664

3
77775 ð5Þ

Through kI � Jj j ¼ 0, the eigenvalues appears k1 ¼ 0:084þ 6:450i,
k2 ¼ �0:324� 6:457i, k3 ¼ �0:5, k4 ¼ �0:01, k5 ¼ �0:260þ 0:007i. According to
Routh-Hurwitz condition, it can be concluded that the equilibrium point S0 is an
unstable saddle point. Similarly, the corresponding eigenvalues of S1 equilibrium point
can be obtained. k1k2k3k4k5 ¼ 0:084� 6:450i;�0:324þ 6:457i;�0:5;�0:01;�0:260
�0:007i.

Obviously, at least one real part of the eigenvalue corresponding to each equilib-
rium point is positive and at least one real part is negative, so all the equilibrium points
of the system are unstable saddle focus.
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4 Feedback Synchronization of Complex Hyper-chaotic
Systems with Perturbations

4.1 Theoretical Derivation

The above-proposed system with perturbation is used as the driving system.

_x1 ¼ ðaþ naÞx1 � x1 þ x2x3 þ d1;
_x2 ¼ �x1x3 þ x2x3 � ðbþ nbÞx1 þ d2;
_x3 ¼ cþ nc � 1

2 ð�x1x2 þ x1�x2Þþ d3;
ð6Þ

The response system is as follows,

_y1 ¼ ðaþ n0aÞy1 � y1 þ y2y3 þ d01 � k1ðy1 � x1Þ;
_y2 ¼ �y1y3 þ y2y3 � ðbþ n0bÞy1 þ d02 � k2ðy2 � x2Þ;
_y3 ¼ cþ n0c � 1

2 ð�y1y2 þ y1�y2Þþ d03 � k3ðy3 � x3Þ;
ð7Þ

Among them, nanbncn
0
an

0
bn

0
c are parameter perturbations, d1d2d3d01d

0
2d

0
3 are external

perturbations and k1k2k3 are feedback intensity coefficients. x1 ¼ u11 þ iu21,
x2 ¼ u31 þ iu41, x3 ¼ u51, y1 ¼ u12 þ iu22, y2 ¼ u32 þ iu42, y3 ¼ u52. The synchro-
nization error between drive system (6) and response system (7) is e1 ¼ y1 � x1,
e2 ¼ y2 � x2, e3 ¼ y3 � x3. Error dynamics equation is _e1 ¼ _y1 � _x1, _e2 ¼ _y2 � _x2,
_e3 ¼ _y3 � _x3 and e1 ¼ eu1 þ ieu2; e2 ¼ eu3 þ ieu4; e3 ¼ eu5.

By introducing the variables of Formula (6) and (7) into the error dynamics
equation, the following forms of it can be described:

_e1 ¼ _eu1 þ i _eu2 ¼ ½ða� 1Þeu1 þ n0au12 � nau11 þ u52eu1 þ u31eu5 � k1eu1 þ d01
�d1 � k1eu1� þ i½ða� 1Þeu2 þ n0au22 � nau21 þ u52eu2 þ u41eu5 � k1eu2�
_e2 ¼ _eu3 þ i _eu4 ¼ ½�u52eu1 � eu5u11 þ u52eu3 þ eu5u31 � beu1 � n0bu12 þ nbu11 þ d02 � d2
�k2eu3� þ i½�beu2 � u52eu2 þ nbu21 � eu5u21 þ u52eu4 � k2eu4 þ eu5u41 � n0bu22�
_e3 ¼ _eu5 ¼ �ðu32eu1 þ u42eu2 þ u11eu3 þ u21eu4Þþ n0c � nc þ d03 � d3 � k3eu5

ð8Þ

According to Formula (8), it can be obtained.

_eu1eu1 �ða� 1Þe2u1 þ u52j je2u1 � k1e2u1 þ u31j j
2 ðe2u5 þ e2u1Þþ l1e2u1

_eu2eu2 �ða� 1Þe2u2 þ u52j je2u2 � k1e2u2 þ u41j j
2 ðe2u5 þ e2u2Þþ l2e2u2

_eu3eu3 � u52j j þ bj j
2 ðe2u1 þ e2u3Þþ u11j j

2 ðe2u3 þ e2u5Þ
þ e2u3ðu52 � k2Þþ u31j j

2 ðe2u3 þ e2u5Þþ l3e2u3
_eu4eu4 � u52j j þ bj j

2 ðe2u2 þ e2u4Þþ u21j j
2 ðe2u4 þ e2u5Þ

þ e2u4ðu52 � k2Þþ u41j j
2 ðe2u4 þ e2u5Þþ l4e2u4

_eu5eu5 � u32j j
2 ðe2u1 þ e2u5Þþ u42j j

2 ðe2u2 þ e2u5Þþ
u11j j
2 ðe2u3 þ e2u5Þþ u21j j

2 ðe2u4 þ e2u5Þþ l5e2u5 � k3e2u5

ð9Þ
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Where
l1 ¼ 1

c
u12j j n0a

�� ��þ u11j j naj j þ d01
�� ��þ d1j j� �

l2 ¼ 1
c

u22j j n0a
�� ��þ u21j j naj j� �

l3 ¼ 1
c

u12j j n0b
�� ��þ u11j j nbj j þ d02

�� ��þ d2j j� �

l4 ¼ 1
c

u22j j n0b
�� ��þ u21j j nbj j� �

l5 ¼ 1
c

ncj j þ n0c
�� ��þ d03

�� ��þ d3j j� �

Construction of Lyapunov function

VðtÞ ¼ 1
2
ðe2u1 þ e2u2 þ e2u3 þ e2u4 þ e2u5Þ ð10Þ

Bring Formula (9) into Formula (10), through inequality transformation, get:

_VðtÞ� ða� 1Þþ u52j j � k1 þ u31j j
2

þ u52j j
2

þ bj j
2

þ u32j j
2

þ l1

� �
e2u1

þ ða� 1Þþ u52j j � k1 þ u41j j
2

þ u52j j
2

þ bj j
2

þ u42j j
2

þ l2

� �
e2u2

þ u52j j þ bj j
2

þ u11j j
2

þ u52j j � k2 þ u31j j
2

þ u11j j
2

þ l3

� �
e2u3

þ u52j j þ bj j
2

þ u21j j
2

þ u52j j � k2 þ u41j j
2

þ u21j j
2

þ l4

� �
e2u4

þ u32j j
2

þ u42j j
2

þ u11j j þ u21j j þ u31j j þ u41j j þ l5 � k3

� �
e2u5

ð11Þ

k1 [max
ða� 1Þþ u52j j þ u31j j

2
þ u52j j

2
þ bj j

2
þ u32j j

2
þ l1;

ða� 1Þþ u52j j þ u41j j
2

þ u52j j
2

þ bj j
2

þ u42j j
2

þ l2

8>><
>>:

9>>=
>>;

k2 [max

u52j j þ bj j
2

þ u11j j
2

þ u52j j þ u31j j
2

þ u11j j
2

þ l3;

u52j j þ bj j
2

þ u21j j
2

þ u52j j þ u41j j
2

þ u21j j
2

þ l4

8>><
>>:

9>>=
>>;

k3 [
u32j j
2

þ u42j j
2

þ u11j j þ u21j j þ u31j j þ u41j j þ l5

ð12Þ
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According to formula (11), if the above formula (12) are satisfied, _VðtÞ\0, which
indicates error dynamics system (8) is asymptotically stable. Let all perturbation values
be less than 0.5, c = 0.1, and bring in formulas (12). Observe the maximum absolute
value in the range of each variable, we can get, k1 [ 237:5; k2 [ 233; k3 [ 170.

4.2 Simulation Experiment

Here we choose na = nb = nc = n0a = n0b = n0c = sinðtÞ and d1d2d3d01d
0
2d

0
3 for 0.1. In the

simulation experiment, Range-Kutta method is chosen to decouple the drive system (6)
and the response system (7), and the time step is chosen as s = 0.001 (s). Arbitrary
selection of a set of initial conditions to verify the correctness of theoretical derivation.
The selection of variable initial values for ð1; 6; 5; 2; 3Þ ð6; 1; 3; 5; 0Þ to get the error
initial value for ðeu1; eu2; eu3; eu4; eu5Þ = (5,−5,−2, 3,−3). Then, Fig. 5 shows the
synchronization error curve when the driving system (6) and the response system (7)
select the initial values mentioned. It can be seen from the graph that when the time
tends to infinity, the synchronization error gradually approaches zero and stabilizes at
zero.

5 Conclusion

The state variables of complex chaos, in the complex domain, are more complex than
real chaotic systems. Complex variables not only increase the content of transmitted
information but also improve the security. At present, complex chaos has been widely
used in many disciplines such as communication, finance, biology and so on. In this
paper, a new complex chaotic system is proposed, and its abundant dynamic charac-
teristics are verified by a comprehensive analysis method. Based on Lyapunov stability

Fig. 5. Synchronization error curve of the set of initial values.
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theory and error feedback synchronization method, a complex feedback controller is
designed to realize chaotic synchronization when the parameters of complex chaos and
external disturbances are disturbed. The theory proves that the controller can make the
synchronization error of complex system gradually tend to zero and stabilize to zero.
The numerical simulation results show that the method is simple, easy to operate and
has good control effect. The speed of convergence is fast and has wide application
value in practical engineering.
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Abstract. Large-scale global optimization (LSGO) problems are one of
most difficult optimization problems and many works have been done
for this kind of problems. However, the existing algorithms are usu-
ally not efficient enough for difficult LSGO problems. In this paper, we
propose a new adaptive hybrid algorithm (NAHA) for LSGO problems,
which integrates the global search, local search and grouping search and
greatly improves the search efficiency. At the same time, we design an
automatic resource allocation strategy which can allocate resources to
different optimization strategies automatically and adaptively according
to their performance and different stages. Furthermore, we propose a
self-learning parameter adjustment scheme for the parameters in local
search and grouping search, which can automatically adjust parameters.
Finally, the experiments are conducted on CEC 2013 LSGO competition
benchmark test suite and the proposed algorithm is compared with sev-
eral state-of-the-art algorithms. The experimental results indicate that
the proposed algorithm is pretty effective and competitive.

Keywords: Large scale global optimization ·
Parameter automatical adjustment · Global search · Local search ·
Grouping search · Resource allocation · Self-learning

1 Introduction

Many real world problems in the areas of biology, physics, military and engi-
neering applications can be modeled as large scale global optimization problems,
which are quite difficult. There are two main reasons for this difficulty. One is
that the search space is huge, and the other is that there are a lot of local optimal
solutions. For LSGO problems, one of the most effective algorithms is the coop-
erative co-evolution algorithms, which decompose the high-dimensional problem
into several low dimensional problems, and then uses evolutionary algorithm
to optimize these problems. In general, cooperative co-evolution algorithms are
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quite effective for separable and partially separable functions. However, for fully
nonseparable functions, the effectiveness and efficiency will decrease greatly. To
enhance the effectiveness and efficiency of this kind of algorithms, we design
effective local search, global search, grouping search strategies and cooperative
mechanism, and combine these strategies and mechanism to propose a new adap-
tive hybrid algorithm. We also design an effective scheme to automatically allo-
cate the resources (the proper number of function evaluations) to local search
strategy, global search strategy, and grouping search strategy based on not only
the characteristics of different functions, but also the performance of different
strategies in different stages. This scheme ensures that resources are highly uti-
lized during the search process. Besides, the parameters in the local search and
the grouping search are also dynamically adjusted. In this way, the proposed
algorithm has strong learning ability and can adapt to different scenarios.

The remainder of this paper is organized as follows. Section 2 briefly summa-
rizes the related works on large-scale global optimization problems. In the Sect. 3,
we describe in details of the proposed algorithm. Section 4 gives the experimen-
tal results of the proposed algorithm on CEC 2013 competition benchmarks and
compares the proposed algorithm with several state-of-the-art algorithms. At
last, we give the conclusion in Sect. 5.

2 Related Work

The framework of cooperative co-evolution algorithm was first proposed by Pot-
ter and De Jong in [1]. Its basic idea is to decompose an n-dimensional prob-
lem into n one-dimensional problems. Then these one-dimensional problems are
solved cooperatively by an evolutionary algorithm. However, the variables in a
problem are often interactive (or correlated). The work [2] shows that the corre-
lation of variables can greatly affect the performance of such algorithms. So it is
very important to take the correlation of variables into account. Some researchers
have conducted the research on this direction and proposed some grouping meth-
ods which classify the variables into several groups. In each group, the variables
are interacted and the variables in two different groups are independent. By
using group method, a cooperative evolutionary algorithm is designed by Yang,
Tang, and Yao in [3]. And it uses fixed group size and adaptive weights in the
evolution process. In addition, Van den Bergh and Engelbrecht also combine
random grouping with particle swarm optimization [4]. This simple grouping
method effectively improves the performance of the above algorithm for high-
dimensional problems. Later, Yang, Tang, and Yao make some improvements
on their previous work and treat the size of the group as a parameter to adap-
tively determine it according to the historical performance in [5]. This practice
is more realistic and more reasonable, and the flexibility and performance of
the algorithm has been improved. However, literature [6] points out that the
more variables there are, the more difficult the random grouping is to group
related variables together. To overcome the disadvantages of random grouping,
Omidvar, Li, Mei, and Yao propose a cooperative co-evolution with differential
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grouping [7]. This differential grouping method greatly improves the accuracy of
random grouping. But it still does not recognize the correlation between some
variables. To overcome the shortcoming, a global differential grouping method is
proposed in [8]. In addition, Omidvar, Yang, Mei, Li, and Yao introduce a new
faster and more accurate differential grouping in [9]. In recent years, Sun, Kirley
and Halgamuge introduce a recursive differential decomposition method in [10].
These methods have effectively improved the performance of differential group-
ing. Furthermore, a formula-based variable grouping method is proposed in [11]
by Wang, Liu, Wei, Zong and Li. Unlike differential grouping which is for black
box problems, it is for white box problems and uses expressions of functions to
automatically identify correlations between variables. These works have greatly
enhance cooperative co-evolution algorithms.

Another important technique is hybrid algorithms which combine global
search and local search efficiently. Antonio LaTorre MUELAS S and PENA J-M
propose a MOS-based hybrid algorithm in [12]. This algorithm combines three
individual algorithms whose function evaluations are assigned to each individ-
ual algorithm dynamically in the process of optimization. In [13], Wang and Li
design a two-stage based ensemble optimization algorithm. In the first stage,
the search tries to enter the potential area as quickly as possible. And in the
second stage, the search tries to focus on a limited area to find as good solution
as possible. Recently, a two phase hybrid algorithm with a new decomposition
method [14] is proposed by Liu, Wang, Liu and Li. It uses different strategies to
optimize fully separable functions, partially separable functions, and completely
nonseparable functions in two phases. The experimental results have indicated
the performance has been further improved compared to the original two-stage
algorithm. Moreover, an algorithm based on local search chains is proposed in
[15] by Molina, Lozano, and Herrera. The algorithm uses global search and local
search in turn, and provides corresponding parameters for the local search algo-
rithm through local search chains. What is more, Brest, Zamuda, Fister, et al.
introduce a self-adaptive differential evolution algorithm in [16] for large-scale
global optimization problems. This algorithm utilizes four differential evolution
strategies combined with population size selection mechanisms. And Molina and
Herrera propose an iterative hybridization of differential evolution with local
search in [17]. These attempts have made a great contribution to the LSGO
problem solving. However, the existing algorithms still face many challenges for
the large-scale global optimization problems, and more research works are nec-
essary.

3 Proposed Algorithm

In this section, we shall propose a new adaptive hybrid algorithm (briefly NAHA)
which combines global search, local search and grouping search properly so that
the exploration and the exploitation can be well balanced. Most importantly, we
design a mechanism to adjust these three types of searches adaptively during
the search process. Also, we integrate three individual algorithms automatically
to be suitable to different situations.
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3.1 NAHA

Algorithm 1. New adaptive hybrid algorithm(NAHA)
1: First, we use recursive differential grouping to group variables.
2: Randomly generate a population (population size is NP).
3: Initialize parameter:gen, itsr, iter, neva, keva, geva, peva.
4: while termination condition is not satisfied do

5:Use the DE to optimize the population for one cycle, thengen = gen+1.
6:if mod(gen, itsr)=0 then

7:Randomly select an individual vec from the population, and apply
local search algorithm (Solis Wets algorithm [18]) to vec with neva
function evaluations to get vec*. Finally, substitute vec with vec* ;

end
8:if mod(gen, iter)=iter/3 then

9:Apply overall local search to bestvec with keva function evaluations
to get bestvec* and replace bestvec with bestvec* ;

end
10:if mod(gen, iter)=2iter/3 then

11:Select some potential dimensions Dim, and use grouping search to
Dim of bestvec with geva function evaluations to get bestvec* ;

end
12:if mod(gen, iter)=0 then

13:Use one-dimensional search (MTS-LS1 [19]) to bestvec with peva
function evaluations to get bestvec* and substitute bestvec with
bestvec* ;
14:According to the performance of the above steps in the previous
round, Reassign itsr, iter, neva, keva, geva and peva;
15:gen=0;

end

end

Because large-scale global optimization (LSGO) problems are quite complex
and their characteristics vary greatly from one problem to another problem,
a single search strategy will have significant limitations to different problems.
Without knowing the characteristics of the problem considered, it is hard to
know which kind of search strategies is effective in advance. It is better for an
algorithm to automatically explore the potential area and to adaptively adjust
search strategy. Based on this consideration, a new adaptive hybrid algorithm
(NAHA) is designed. In this algorithm, on the one hand, the global search and
the local search cooperate with each other. On the other hand, overall search,
grouping search and one-dimensional search also work together. The framework
of the algorithm is given in Algorithm 1.

It is worth noting that steps 12–14 are very critical and have a great impact on
the performance of the algorithm. When the algorithm make the function value
decrease faster, we do not change the parameters iter, itsr, neva. Otherwise,
we will increase iter, itsr, neva accordingly to push the search to enter a more
promising area. In addition, the values of keva, geva and peva are taken in the
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following way. Assume that the total number of function evaluations for the
three strategies is fixed and denoted as totalnum. Here, we assign the number
of function evaluations to each strategy in the next round search based on the
contribution of each strategy. Suppose that before the i -th strategy search, the
best individual’s fitness is exefit i, after the search, it is houfit i. Suppose that
the number of function evaluations by the i -th strategy in the previous round is
exevai. The number of function evaluations is arranged for the i-th strategy in
the next generation as [ri ∗ totalnum], where [ri ∗ totalnum] is the integer part of
ri ∗ totalnum and ri is computed by

coni =
exefiti − houfiti

exefiti
(i = 1, 2, 3) (1)

ri = σ +
coni/exevai + η

∑s
i=1(coni/exevai) + sη

(1 − sσ) (i = 1, 2, 3) (2)

where σ is a threshold and σ = 0.1 in the experiments. The chosen method
on three search strategies in the algorithm is in step 9, step 11 and step 13.
In order to avoid the case where the denominator is zero, we also add a small
threshold η to the numerator and denominator. In our experiment η is assigned
a value of 1e−20. The number of function evaluations for strategies 1, 2, and 3,
denoted by keva, geva and peva, respectively, are equal to totalnum multiplied
by corresponding r i (i = 1, 2, 3). Moreover, in the local search algorithm, it is
generally required to pass the search range sr. In order to solve this problem,
we design three ways to set the search range. These three ways consider many
possibilities and can be suitable to different situations. The first one defines the
search range of the current individual x by [x−std(x), x+std(x)], where std(x) is
the standard deviation of x in the current population. The second one defines the
search range of the current individual x by [x−abd(x), x+abd(x)], where abd(x)
is the absolute difference between the updated individual of x and x in the two
adjacent generations. The third one is to generate a random vector by using the
standard Gaussian distribution with mean zero and variance one first, and then
compute the absolute value of each component of the vector and use the absolute
values as the components of a new vector abG(x). The search range is defined
by [x − abG(x), x + abG(x)]. Since we do not know which way is appropriate in
advance, So we want to design a simple scheme to realize this. For the i-th way,
record gumi by setting gumi = startval initially for (i = 1, 2, 3), where startval
is a parameter. In our experiments, startval is set to 3. When the coni is below
our preset threshold, gumi will be decremented by 1, that is, gumi = gumi −1.
On the contrary, When coni is higher than our preset threshold, gumi will be
increased by 1, that is, gumi = gumi+1. In next round, we choose one way among
three ways according to the probability proi (i = 1, 2, 3). That is, the probability
that the i -th way is selected is proi.

proi =
max(gumi, 1)

∑3
i=1 max(gumi, 1)

(i = 1, 2, 3) (3)

In this way, the more appropriate way to determine the search range will have
the greater probability to be selected in subsequent iterations. Note that from
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formula (3), using max (gumi,1) instead of gumi is mainly to avoid completely
losing the chance of being selected of the i-th way to determine the search range.

Finally, Let us explain step 11 in Algorithm 1 in detail. In step 11, we ran-
domly select one of the groups based on the result in the first step. If the problem
is completely non-separable or fully separable, we will use random grouping to
pick a set of variables. Then we use algorithm SaNSDE [20] to optimize this set
of variables. Other variables are fixed to the same values of the corresponding
variables of the current best individual bestvec. Through this we hope the search
can reach a promising area. Then we apply local search (Solis Wets algorithm)
on the solution obtained by SaNSDE to optimize this sub-problem. In this round
of optimization, we will record the variables of the group and the corresponding
coni. In the next round of optimization, we will first compare coni in the previ-
ous round with the threshold we set. When coni is less than the threshold we set,
then another sub-problem (another group of variables) is optimized, otherwise,
this set of variables is continued to be optimized.

4 Experimental Results and Analysis

In order to identify the efficiency of our algorithm, we conduct the experiments
on the CEC 2013 benchmark problems and compare the proposed algorithm
NAHA with three state-of-the-art algorithms MOS, CMAESCC-RDG and MA-
SW-Chains. CEC 2013 benchmark suite is designed specifically for large-scale
global optimization problems. It includes the fully separable functions, partially
separable functions, and completely nonseparable functions. Many functions
have a lot of local optimal solutions. Furthermore, it takes into account many
situations which might happen in real world problems. This benchmark suite is
very difficult and challenging enough to test the performance of algorithms. For
a detailed description of this benchmark suite, please refer to [21].

In the experiments, we conducted the proposed algorithm on each test prob-
lem in 25 independent runs, and recorded the mean and median values in 25
runs. In addition, We also recorded the standard deviation of these test values
in 25 runs. Finally, all these results are shown in Table 1.

In order to illustrate the statistical difference between our algorithm and each
of compared algorithms, we did a hypothesis testing. Our null hypothesis is that
there is no difference between them. The results of the hypothesis test are given
in Table 2, where A represents acceptance of the null hypothesis and R indicates
rejection of the null hypothesis.

Moreover, we use the scoring criteria in [22] to make an overall evaluation for
these four algorithms. Let SR denote the sum of the ranks defined as follows.

SR =
N∑

i=1

ranki (4)

where N represents the total number of functions, and rank i means the rank of
the performance of the algorithm on the i -th function. The final score and rank
are shown in Table 3.
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Table 1. The result of the NAHA, MOS, CMAESCC-RDG and MA-SW-Chains algo-
rithms applied to the CEC 2013 benchmark suite. The best performing results are
marked in bold.

Function Stats NAHA MOS CMAESCC-RDG MA-SW-Chians

f1 Median 0.00e+00 0.00e+00 2.84e+05 7.12e−13

Mean 0.00e+00 0.00e+00 2.89e+05 1.34e−12

Std 0.00e+00 0.00e+00 3.27e+04 2.45e−12

f2 Median 4.01e+00 8.36e+02 4.66e+03 1.24e+03

Mean 3.66e+00 8.32e+02 4.68e+03 1.25e+03

Std 1.53e+00 4.48e+01 1.77e+02 1.05e+02

f3 Median 2.00e+01 9.10e−13 2.03e+01 6.83e−13

Mean 2.00e+01 9.17e−13 2.03e+01 6.85e−13

Std 9.16e−05 5.12e−14 4.96e−02 2.12e−13

f4 Median 6.33e+07 1.56e+08 5.83e+06 2.75e+09

Mean 5.53e+07 1.74e+08 5.90e+06 3.81e+09

Std 3.09e+07 7.87e+07 6.56e+05 2.73e+09

f5 Median 4.84e+06 6.79e+06 2.19e+06 2.03e+06

Mean 4.58e+06 6.94e+06 2.20e+06 2.25e+06

Std 5.03e+05 8.85e+05 3.76e+05 1.30e+06

f6 Median 1.03e+06 1.39e+05 9.95e+05 6.33e+02

Mean 1.03e+06 1.48e+05 9.95e+05 1.86e+04

Std 6.31e+03 6.43e+04 2.88e+01 2.54e+04

f7 Median 5.78e−03 1.62e+04 2.94e−20 4.03e+06

Mean 1.17e−02 1.62e+04 8.12e−17 3.85e+06

Std 1.40e−02 9.10e+03 2.17e−16 6.34e+05

f8 Median 5.81e+10 8.08e+12 8.71e+06 4.60e+13

Mean 4.84e+10 8.00e+12 9.74e+06 4.62e+13

Std 3.19e+10 3.07e+12 5.83e+06 9.02e+12

f9 Median 2.85e+08 3.87e+08 1.57e+08 1.42e+08

Mean 2.90e+08 3.83e+08 1.65e+08 1.44e+08

Std 3.11e+07 6.29e+07 4.16e+07 1.55e+07

f10 Median 9.13e+07 1.18e+06 9.04e+07 3.34e+02

Mean 9.12e+07 9.02e+05 9.12e+07 3.72e+04

Std 7.03e+05 5.07e+05 1.53e+06 6.25e+04

f11 Median 3.76e+06 4.48e+07 1.64e+07 2.10e+08

Mean 3.23e+06 5.22e+07 1.62e+07 2.10e+08

Std 1.70e+06 2.05e+07 6.11e+05 2.35e+07

f12 Median 1.13e+03 2.46e+02 1.01e+03 1.25e+03

Mean 1.21e+03 2.47e+02 9.81e+02 1.24e+03

Std 3.55e+02 2.54e+02 7.30e+01 8.33e+01

f13 Median 2.18e+06 3.30e+06 2.49e+06 1.91e+07

Mean 2.21e+06 3.40e+06 2.47e+06 3.58e+07

Std 6.21e+05 1.06e+06 3.83e+05 4.30e+07

f14 Median 8.66e+06 2.42e+07 2.74e+07 1.43e+08

Mean 8.85e+06 2.56e+07 2.76e+07 1.45e+08

Std 2.45e+06 7.94e+06 1.49e+06 1.60e+07

f15 Median 4.44e+06 2.38e+06 2.18e+06 5.80e+06

Mean 4.64e+06 2.35e+06 2.19e+06 5.98e+06

Std 1.23e+06 1.94e+05 2.28e+05 1.42e+06

Now let’s compare the overall performance of four compared algorithms.
From Table 3 we can see that the total score of our NAHA algorithm on all test
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Table 2. Results obtained by hypothesis testing

Function MOS CMAESCC-RDG MA-SW-Chains

f1 1.00e+00, A 1.66e−24, R 1.15e−02, R

f2 3.80e−32, R 7.27e−36, R 1.49e−27, R

f3 7.1e−130, R 1.27e−20, R 7.1e−130, R

f4 2.94e−07, R 3.21e−08, R 4.12e−07, R

f5 2.54e−11, R 6.07e−16, R 1.44e−08, R

f6 5.30e−29, R 9.63e−20, R 7.96e−40, R

f7 4.53e−09, R 3.35e−04, R 1.16e−20, R

f8 2.54e−12, R 8.00e−08, R 6.28e−19, R

f9 7.44e−07, R 1.18e−11, R 5.85e−17, R

f10 3.69e−50, R 1.00e+00, A 2.12e−52, R

f11 1.47e−11, R 2.26e−22, R 1.96e−24, R

f12 6.99e−11, R 4.20e−02, A 6.84e−02, A

f13 6.18e−05, R 8.74e−02, A 6.68e−04, R

f14 4.21e−10, R 2.04e−21, R 5.37e−24, R

f15 2.46e−09, R 7.39e−10, R 1.60e−02, R

Table 3. Total score and ranking

Algorithm SR Place

NAHA 34 1

MOS 38 3

CMAESCC-RDG 34.5 2

MA-SW-Chains 43.5 4

algorithms is best and the total rank of NAHA is the first. This indicates that the
proposed NAHA performs best among four compared algorithms. CMAESCC-
RDG gets the second best total score and the total rank is second. This means
that CMAESCC-RDG performs worse than NAHA, but performs better than
MOS and MA-SW-Chains. Also, MOS gets the third best score and rank, Thus,
MOS performs worse than NAHA and CMAESCC-RDG, but performs better
than MA-SW-Chains. The overall performance of MA-SW-Chains is the worst.
It can be seen from the t-test results in Table 2 that for most test functions
the performance difference between NAHA and any other compared algorithm
is obvious. This conclusion and the results in Table 3 mean that the overall
performance of NAHA is the best and really better than that of any compared
algorithm.

In the experiment we found that NAHA can make the functions decrease
very fast in the early stage, but quite slowly in the later stage. This indicates



A New Adaptive Hybrid Algorithm for Large-Scale Global Optimization 307

the ability of jumping out the local optima of NAHA is not enough in the
late stage. In addition, CMAESCC-RDG and NAHA have difficulty to find the
optimal solution on Ackley functions f3, f6 and f10. This indicates CMAESCC-
RDG and NAHA are ineffective to Ackley functions. Thus, it is necessary to
further improve NAHA by avoiding it to trap into local optima.

5 Conclusion

The proposed algorithm NAHA effectively combines the local search, group-
ing search and global search together and fully make use of the advantages of
the three strategies. It also can automatically adjust parameters during the opti-
mization process. This greatly expands its application fields and improves search
efficiency. Experimental results have shown that NAHA performs well on fully
separable, partially separable and completely nonseparable functions. However,
the proposed algorithm still has a lot of rooms for improvement. In the future,
we will improve resource allocation scheme, enhance the grouping search, local
search and global search and avoid trapping into local optima.
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Abstract. Finding the optimal connection weights in a neural network
is one of the most challenging tasks in machine learning and pattern
recognition. The main disadvantage of conventionally used algorithms
such as back-propagation is that they show a tendency of getting trapped
in local rather than global optima. To address this, population-based
metaheuristic algorithms can be employed. In this paper, we propose a
novel approach to optimise the weights of a neural network. Our method
integrates an imperialist competitive algorithm, a powerful metaheuristic
algorithm, with chaos theory and back-propagation for neural network
learning. Experimental results on the three-bit parity problem and sev-
eral function approximation tasks confirm that our proposed algorithm
significantly outperforms several state-of-the-art methods for neural net-
work weight optimisation.

Keywords: Machine learning · Neural networks ·
Weight optimisation · Imperialist competitive algorithm ·
Chaos theory · Back-propagation

1 Introduction

Artificial neural networks (ANNs) are mathematical models that have been
extensively used for applications such as speech processing [5], pattern recog-
nition [12], and image processing [6]. Useful characteristics of ANNs include
adaptability, learning capability, and generalisation ability [2]. One of the most
widely used ANN architectures is the multi-layer perceptron (MLP), a feed-
forward neural network that consists of simple neurons called perceptrons.

Learning in ANNs means finding connection weights between nodes so as
to minimise the prediction error. Generally, learning algorithms can be divided
into two groups: gradient-based algorithms and stochastic search algorithms.
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Gradient-based methods such as back-propagation (BP) are traditional algo-
rithms for neural network training but suffer from drawbacks such as high
dependency on initial values and local optima entrapment [3]. To overcome
these limitations, stochastic search algorithms such as metaheuristic algorithms
can be employed. In recent years, these algorithms have been extensively used
for neural network learning and have been shown to outperform gradient-based
approaches [3,7].

The imperialist competitive algorithm (ICA) [4] is a metaheuristic algorithm
based on socio-political evolution that has advantages over traditional optimisa-
tion algorithms in not needing to calculate the gradient and reducing the prob-
ability of getting stuck in local minima. It has been shown to yield competitive
performance for various applications [9]. The main ICA strategies supporting
this efficacy are imperialist competition and assimilation.

When developing metaheuristic algorithms, two contradictory criteria need
to be balanced: exploration, which refers to identifying promising regions in
search space, and exploitation, which is the ability to search around a solution
with the aim of improving it.

Chaos is related to the study of chaotic dynamical systems. One of the main
characteristic here is the sensitivity to initial conditions. To improve both explo-
ration and exploitation [13], random numbers in a chaotic-based metaheuristic
algorithms can be created using chaotic sequences instead of random variables.

In this paper, we propose an enhanced ICA incorporating chaos theory and
BP for enhanced neural network learning. The proposed method integrates the
global search strategy of ICA with the local search ability of the BP algorithm
and uses chaotic maps to maintain the diversity of the population. Experimental
results on the three-bit parity problem and several function approximation tasks
confirm that our proposed algorithm significantly outperforms state-of-the-art
methods for neural network weight optimisation.

The remainder of the paper is organised as follows: Sect. 2 briefly explains
the ICA, while Sect. 3 introduces our proposed algorithm. Experimental results
are given in Sect. 4, and Sect. 5 concludes the paper.

2 Imperialist Competitive Algorithm

The imperialist competitive algorithm (ICA) is a population-based metaheuristic
algorithm that has been shown to yield good performance to solve various global
optimisation problems [4]. Inspired by colonial competition among countries,
each candidate solution in ICA is a country. Some of the superior countries
are imperialist, while the remaining countries are their colonies. Colonies are
distributed among imperialists according to their power.

After the formation of the initial empires, colonies move towards their empire
by

Positioni+1 = Positioni + γ × δ ⊕ d, (1)
where Positioni is the colony’s position in the i-th iteration, γ is the assimilation
coefficient, δ is a random vector normally distributed in [0; 1], and d is the
distance between colony and its imperialist.
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Revolution is a sudden change in the position of colonies in search space and
is employed to improve the exploration capability of ICA.

The total power of an empire depends on both the power of the imperialist
country and of its colonies, i.e.

TCn = Cost(imperialistn) + ξmean{Cost(Colonies of empires)}, (2)

where TCn is the total cost of the n-th empire and ξ is a positive number.
In imperialist competition, all empires try to take possession of colonies of

other empires to increase their own power while decreasing the power of others.
This is modelled by selecting some of the weakest colonies of the weakest empires
and having the remaining empires compete for them. Eventually, all empires
except the most powerful one will annihilate, and all colonies will converge to
the same position.

3 Proposed Algorithm

In this paper, we propose a novel ICA-based algorithm for neural network learn-
ing. In particular, we improve the ICA algorithm for neural network learning
using chaos theory and back-propagation. In the following, we explain our algo-
rithm in detail.

3.1 Representation and Objective Function

In our proposed algorithm, each country consists of three parts: the connec-
tion weights between input layer and hidden layer wi,j , the connection weights
between hidden layers and output layer ϕi,j , and the bias weights βi,j . The
resulting representation of a country is illustrated in Fig. 1.

Fig. 1. Representation of a country. n is the number of inputs and m the number of
neurons in the hidden layer.

As objective function we employ, as is commonly done, the mean squared
error (MSE) defined as

MSE =
1
P

P∑

i=1

(di − oi)2, (3)
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where di = (di,1, di,2, ..., di,k) is the desired output vector and oi =
(oi,1, oi,2, ..., oi,k) is the actual output. The aim of the learning process is to
find optimal values of x (the connection weights and biases) so as to minimise
the difference between d and o.

3.2 Chaos-Enhanced ICA

An important requirement for a metaheuristic algorithm is the generation of
random numbers with a sensible uniformity. Chaos is a pseudo-random process
in non-linear dynamics that can be used as a source of randomness [1]. Using
randomness characteristics of chaos, a candidate solution moves in a chaotic way
enabling it to escape from a local optima. In our approach, we use a sinusoidal
chaotic map to generate random numbers. It generates chaotic sequences in the
range [0; 1] by

xn+1 = ax2
nsin(π.xn), (4)

which simplifies to
xn+1 = sin(π.xn) (5)

when a = 2.3 and x0 = 0.7.
Chaotic sequences are applied in two ways: generating the initial empires and

during the assimilation process. To this end, initial countries are generated by
iterating the sinusoidal chaos map, while during assimilation δ is substituted,
leading to

Positioni+1 = Positioni + γ × cm ⊕ d, (6)

where cm is a vector generated from the sinusoidal chaotic map.

3.3 Back-Propagation

Gradient descent back-propagation (GDBP) is a classic algorithm to train an
MLP by modifying the weights in the direction corresponding to the negative
gradient of an error function. In our algorithm, we adopt GDBP in each iteration
as a local search operator to improve the best found solutions.

GDBP proceeds in three stages:

1. Forward propagation: input values pass from hidden layers to generate the
outputs;

2. Backward propagation: the error in the layers of the MLP is back-propagated;
3. Weight update: finally, weights are updated in a direction that corresponds

to the negative gradient of the error function.

The process ends when a stopping condition has been satisfied.
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4 Experimental Results

We have evaluated the performance of our proposed algorithm on two types of
problems: the three-bit parity problem and three function approximation prob-
lems. Lower and upper bounds of all weights are −1 and +1, the maximal iter-
ation number was set to 500, the numbers of countries to 40, the number of
imperialists to 5, and revolution rate to 0.1.

To put our obtained results into context, we compare our algorithm with the
basic ICA algorithm and with GDBP, and with several state-of-the-art optimi-
sation algorithms [10,11], namely genetic algorithm (GA), particle swarm opti-
misation (PSO), ant colony optimisation (ACO), evolutionary strategy (ES),
population-based incremental learning (PBIL), biogeography-based optimisation
(BBO), and grey wolf optimiser (GWO). For all algorithms, we report statistical
results in terms of average MSE and its standard deviation on the test dataset.

4.1 Three-Bit Parity Problem

An important way to evaluate neural network training algorithms is the parity
problem [8]. A well-known non-linear benchmark, it is a mapping problem defined
on distinct binary vectors with a result of 1 if the number of 1s in the vector is
odd, and 0 otherwise. As we trained MLPs with structure 3-7-1 to solve a 3-bit
parity problem, 36 variables must be optimised.

The results for all algorithms are given in Table 1. From there, we can see
that our proposed algorithm clearly achieves the lowest MSE confirming it has
the best ability to avoid local minima. It also gives a very low standard deviation
which shows that the method is robust.

Table 1. Results on three-bit parity problem

Algorithm Avg. MSE Std. dev. MSE

ICA 1.68E−02 5.42E−04

GDBP 9.87E−04 3.63E−03

GA 1.81E−04 4.13E−04

PSO 8.41E−02 3.59E−02

ACO 1.80E−01 2.53E−02

ES 1.19E−01 1.16E−02

PBIL 3.02E−02 3.97E−02

BBO 3.65E−07 0

GWO 9.41E−03 2.95E−02

Proposed algorithm 3.14E−08 5.83E−08
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4.2 Function Approximations

We used three popular function approximation datasets, given in Table 2, to eval-
uate our proposed algorithm. We trained MLPs of structure 1-15-1 to approxi-
mate these functions.

Table 2. Function approximation datasets.

Function Training samples Test samples

Sigmoid 61: x ∈ [−3:0.1:3] 121: x ∈ [−3:0.05:3]

Cosine 31: x ∈ [1.25:0.05:2.75] 38: x ∈ [1.25:0.04:2.75]

Sine 105: x ∈ [0:0.03:π] 153: x ∈ [0.1:0.2:π]

Sigmoid Function. The sigmoid function, y = 1/1(1 + e−x), is the simplest
function applied in the experiments. Figure 2 shows that our proposed algorithm
is able to very accurately estimate the real curve. This is further confirmed in
Table 3 which shows results for all tested algorithms. From there, it is evident
that our algorithm yields superior results compared to all other approaches.

Fig. 2. Approximated curves for sigmoid function. Left: ICA, right: proposed
algorithm.

Cosine Function. This dataset, based on y = cos(xπ/2), is more challenging
than the sigmoid function. Figure 3 shows the approximated curves for ICA and
the proposed algorithm and demonstrates the efficacy of our approach. Table 4
compares our method with other algorithms and confirms that it outperforms
all other approaches.
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Table 3. Results on sigmoid function.

Algorithm Avg. MSE Std. dev. MSE

ICA 5.53E−04 1.55E−04

GDBP 2.75E−01 2.32E−03

GA 1.09E−03 9.16E−04

PSO 2.30E−02 9.43E−03

ACO 2.35E−02 1.00E−02

ES 7.56E−02 1.64E−02

PBIL 4.05E−03 2.74E−17

BBO 1.33E−05 3.57E−04

GWO 2.03E−04 2.26E−04

Proposed algorithm 1.60E−11 2.00E−11

Fig. 3. Approximated curves for cosine function. Left: ICA, right: proposed algorithm.

Table 4. Results on cosine function.

Algorithm Avg. MSE Std. dev. MSE

ICA 4.23E−02 4.83E−03

GDBP 1.75E−01 6.56E−02

GA 1.09E−02 6.32E−03

PSO 5.90E−02 2.10E−02

ACO 5.09E−02 1.08E−02

ES 8.66E−02 2.22E−02

PBIL 9.43E−02 1.85E−02

BBO 1.37E−02 1.83E−18

GWO 3.11E−03 2.16E−03

Proposed algorithm 1.02E−09 3.26E−10
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Sine Function. This dataset, based on y = sin(2x), is the most difficult one.
Nevertheless, as can be see from Fig. 4, once again our approach yields a very
close function approximation, while Table 5 again impressively shows the supe-
riority of our algorithm compared to all other methods.

Fig. 4. Approximated curves for sine function. Left: ICA, right: proposed algorithm.

Table 5. Results on sine function.

Algorithm Avg. MSE Std. dev. MSE

ICA 4.72E−01 1.42E−03

GDBP 1.2 1.11E−01

GA 4.21E−01 6.12E−02

PSO 5.27E−01 7.29E−02

ACO 5.30E−01 5.33E−02

ES 7.07E−01 7.74E−02

PBIL 4.83E−01 7.94E−03

BBO 1.03E−01 0

GWO 2.62E−01 1.15E−01

Proposed algorithm 1.06E−08 3.48E−09

5 Conclusions

Effective learning is crucial for successful application of neural networks. Since
conventional algorithms based on gradient descent methods suffer from a ten-
dency to get trapped in local optima, metaheuristic algorithms can be used
to tackle this problem. The imperialist competitive algorithm (ICA) is a
population-based metaheuristic algorithm inspired by imperialist competition.
In this paper, we have proposed an improved ICA for neural network train-
ing where a sinusoidal chaotic map is used to maintain the diversity of the
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population, while back-propagation is employed to enhance exploitation of the
algorithm. The proposed algorithm has been evaluated on the three-bit par-
ity and several function approximation problems and has been demonstrated
to provide excellent results, significantly outperforming existing state-of-the-art
metaheuristics. In future, we plan to extend our approach to other uses of neural
networks such as classification tasks.

Acknowledgements. The paper is published due to the financial support of the
Ministry of Science and Higher Education of Russia, contract 14.575.21.0152, signed
26/09/2017, unique identifier RFMEFI57517X0152.
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Abstract. In this paper, a collaborative neurodynamic optimization
approach is applied for bicriteria portfolio selection in the Markowitz
mean-variance framework. The bicriteria portfolio selection problem con-
sists of two objectives (risk and return) which are scalarized using a
weighted Chebyshev function. Multiple neurodynamic optimization mod-
els are used to generate a set of Pareto-optimal solutions. Particle swarm
optimization is used to diversify the Pareto-optimal solutions by optimiz-
ing the weights of the scalarized objective functions. Experimental results
show the superiority of the applied approach.

Keywords: Portfolio selection · Multiobjective optimization ·
Neurodynamic optimization approach

1 Introduction

Since the pioneering work by Markowitz [1], portfolio selection has received great
attention from academic and economic points of view. After that, a substan-
tial amount of research works were investigated (e.g., [2–4]). The Markowitz
mean-variance (M-V) model is formulated as a bicriteria optimization problem
which considers maximizing the expected return while minimizing the risk of a
portfolio. A set of Pareto-optimal (PO) solutions is obtained by optimizing the
problem. The set of solutions is called an Pareto frontier.

Multiobjective optimization involves optimizing problems with at least two
objective functions simultaneously, under a set of constraints. A set of non-
dominated solutions is aimed to be generated. A non-dominated solution has

This work was supported in part by the Research Grants Council of the Hong Kong
Special Administrative Region of China, under Grants 11208517 and 11202318, in part
by the National Natural Science Foundation of China under Grant 61673330 and in
part by International Partnership Program of Chinese Academy of Sciences under
Grant GJHZ1849.

c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 318–327, 2019.
https://doi.org/10.1007/978-3-030-22796-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22796-8_34&domain=pdf
https://doi.org/10.1007/978-3-030-22796-8_34


Neurodynamic Optimization Approach to Bicriteria Portfolio Selection 319

the property that none of its objective values can be improved further without
worsening its other objective values. The non-dominated solution is regarded as
a PO solution if no other solution dominates it within the feasible region. One
main advantage of considering portfolio selection as a bicriteria optimization
problem is portfolio managers or investors can choose one optimal asset alloca-
tion strategy based on different risk aversion [5]. For example, [6] formulates the
portfolio selection as a multiobjective linear programming model.

Neurodynamic optimization is a brain-like approach based on neural net-
works by Hopfield and Tank [7]. Various neural network models are proposed
for solving various optimization problems with different properties (e.g., [8–29]).
Recently, neurodynamic approaches are proposed to solve multiobjective opti-
mization problems [30,31].

Based on the above discussions, a collaborative neurodynamic optimization
approach is applied for portfolio optimization. A set of scarlarized optimization
problems is generated using weighted Chebyshev technique. Multiple recurrent
neural networks are used to search for PO solutions. Besides, particle swarm
optimization is used to diversify the solutions by optimizing the weights of the
scalarized objective functions. Experimental results show the effectiveness of the
applied algorithm.

2 Preliminaries

2.1 Bicriteria Portfolio Optimization

A typical bicriteria portfolio selection problem is formulated as:

min

{
f1(x) =

∑n
i=1

∑n
j=1 σijxixj

f2(x) = −∑n
i=1 xiri

s.t.

{∑n
i=1 xi = 1

0 ≤ xi ≤ 1
(1)

where r = (r1, r2, . . . , rn)T and x = (x1, x2, . . . , xn)T are the expected returns
and allocations of a portfolio respectively; n is the number of invested assets, σij

is the covariance matrix between assets i and j,
∑n

i=1 xi = 1 is the budget con-
straint and xi ≥ 0 implies no short sell is allowed. The term

∑n
i=1

∑n
j=1 σijxixj

measures the portfolio risk (variance) and it should be minimized; the term∑n
i=1 xiri models the expected return to be maximized.
Suppose that there exists two solutions x′ and x′′, x′ dominates x′′ if and

only if fk(x′) ≤ fk(x′′), k = 1, 2. A solution is called Pareto-optimal (denoted
by x∗) if no solution dominates it. The PO solutions form a Pareto frontier.

Weighted Chebyshev scalarization [32] is popular for multiobjective optimiza-
tion. It formulates as a set of scalarized optimization problems (subproblems)
with various weights. A set of PO solutions is obtained by optimizing the sub-
problems. Let f∗ = (f∗

1 , f∗
2 )T , where f∗

k = min{fk(x)|∑n
i=1 xi = 1, 0 ≤ xi ≤ 1},

k = 1, 2. The weighted Chebyshev function for a bicriteria optimization problem
is defined as:

min
x

max {λ(f1(x) − f∗
1 ), (1 − λ)(f2(x) − f∗

2 )} . (2)

where 0 ≤ λ ≤ 1.
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In view that (2) is non-smooth, it is reformulated as a constrained optimiza-
tion problem: let ζ = max {λ(f1(x) − f∗

1 ), (1 − λ)(f2(x) − f∗
2 )}, the optimization

problem (1) is reformulated as:

min ζ

s.t. f1(x) − f∗
1 − ζ ≤ 0, f2(x) − f∗

2 − ζ ≤ 0,
n∑

i=1

xi = 1 and 0 ≤ xi ≤ 1.

(3)

2.2 Particle Swarm Optimization

Particle swarm optimization (PSO) [33] is a metaheuristic method for solving
optimization problems. Members in PSO search for the global optimum of an
optimization problem. Each of the members moves according to its past experi-
ence and a global best leader. The leader is regarded as the final output when the
termination condition is reached. The velocity λ and position v of each member
is updated as: {

v ← ψv + c1r1(λ̃ − λ) + c2r2(λ̂ − λ)
λ ← λ + v

(4)

where ψ is an inertia weight; r1 and r2 are random variables within the range of
0.0 and 1.0; c1 and c2 are learning factors; λ̃ is the past best of each member; λ̂
is the global best leader.

2.3 Performance Measures

Spacing is a popular indicator to measure the distribution of the solutions in
multiobjective optimization [34]:

S(A) =
1
d̄

√√√√ 1
|A|

|A|∑
i=1

(di − d̄)2 (5)

where d̄ is the mean value over di; A denotes a set of PO solutions, |A| is the
cardinality of A; di is the Euclidean distance between it and its nearest member
in A. A smaller value of the indicator indicates the more equally spaced of the
solutions (i.e., the better).

Hypervolume is another popular indicator which measures the precision and
distribution of the solutions [35]. For the bicriteria case, let f ′ = (f ′

1, f
′
2)

T be a
reference vector dominated by a set of PO solutions. The HV value of (A) is the
non-overlapping region of all the hypercubes formed by f ′ and member a in A:

HV(A, f ′) = L

( ⋃
a∈A

[f1(a), f ′
1] × [f2(a), f ′

2]
)

(6)

where L is the Lebesgue measure. Larger value of the indicator means the better
set of the solutions.
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3 Collaborative Neurodynamics

The main goal of solving a bicriteria portfolio optimization problem is to generate
a set of well-distributed PO solutions. To ensure optimality of the solutions, Neu-
rodynamic approach is used to solve the subproblems scalarized by the weighted
Chebyshev approach. For each of the subproblems, a projection neural network
is used to search for the PO solution and the solution is stored in an external
archive. As a result, the solutions of the subproblems constitute a Pareto front.
The projection neural network [36] for optimization problem (3) is described as:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε
dy

dt
= −y + g[y − en+1 − ∇h(y)z − ∇p(y)]

ε
dz

dt
= −z + [z + h(y)]+

ε
du

dt
= −p(y)

(7)

where ε is a positive time constant, y = (xT , ζ)T ∈ R
n+1 is the state vector,

z ∈ R
2 and u ∈ R are hidden state vectors, en+1 = (0, 0, . . . , 0, 1)T ∈ R

n+1,
h(x, ζ) = (f1(x)−f∗

1 −ζ, f2(x)−f∗
2 −ζ)T , p(x) =

∑n
i=1 xi−1, g(·) is a piecewise-

linear activation function defined as follows:

g(y) =

⎧⎪⎨
⎪⎩

1, y > 1
y, 0 ≤ y ≤ 1
0, y < 0

Fig. 1. Diagram of the collaborative neurodynamic approach.

The distribution of the solutions generated by the projection neural networks
is associated with the values of the weights. To generate a set of well-distributed
solutions, PSO weight optimization is used [37] by optimizing the metric stated
in (6). Note that the global best leader λ̂ is selected randomly to enhance tur-
bulence. The weight optimization terminates until the S metric of the external
archive is smaller than a threshold (i.e., S(A) ≤ ε, where ε is a sufficiently
small positive number). Figure 1 and Procedure 1 show the diagram and pseudo
codes of the collaborative neurodynamic approach (CNA) to bicriteria portfolio
optimization.
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Procedure 1
1: Initialization:

a) Set ε > 0;
b) Set A = ∅;
c) Initialize ym randomly in [0, 1]n+1, m = 1, 2, . . . , M ;
d) Generate λm for all m uniformly;

2: for m = 1, 2, . . . , M do
3: Compute steady states ȳm using (7);
4: end for
5: Update external archive A;
6: if S(A) ≤ ε then
7: exit;
8: else
9: for m = 1, 2, . . . , M do

10: Determine global best weight vector λ̂;
11: Determine personal best weight vectors λ̃m;
12: Update weight λm using (4);
13: end for
14: go to 2;
15: end if

4 Experimental Results

Four datasets are constructed based on four major stock markets around the
world: DAX, FTSE, HSI and S&P. The datasets are derived from weekly adjusted

Fig. 2. Transient state x in neurodynamic model (7) based on DAX (top-left subplot),
FTSE (top-right subplot), HSI (bottom-left subplot) and S&P (bottom-right subplot)
datasets.
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closing prices of the stocks from January 2000 to January 2018. Suspended and
newly enlisted stocks within the period are excluded [38]. The number of stocks
are 48, 58, 90 and 384 respectively. Figure 2 shows the transient behaviors of
the state vectors corresponding to the portfolio of each dataset with maximum
portfolio return.

Two state-of-the-art multiobjective evolutionary algorithms are used to com-
pare the performance with CNA. They are NSGAII [39] and MOEA/D [40]. The
population size of each approach is set to 20. Figure 3 shows the Pareto frontiers
generated by the compared approaches, where the horizontal axis is variance and
the vertical axis is portfolio return. It can be seen that the generated solutions
by CNA are more evenly distributed.

Table 1. Performance comparison of the compared approaches in terms of mean HV

NSGAII MOEA/D CNA

DAX 9.9978e−1 (2.96e−5) 9.9929e−1 (1.16e−4) 9.9981e−1 (3.60e−5)

FTSE 9.9838e−1 (1.48e−4) 9.9786e−1 (1.54e−4) 9.9845e−1 (8.59e−5)

HSI 9.9782e−1 (1.95e−4) 9.9723e−1 (2.30e−4) 9.9846e−1 (1.07e−4)

S&P 9.9846e−1 (1.26e−4) 9.9799e−1 (1.29e−4) 9.9864e−1 (1.64e−4)

Fig. 3. Pareto frontiers generated by the compared approaches based on DAX (top-left
subplot), FTSE (top-right subplot), HSI (bottom-left subplot) and S&P (bottom-right
subplot) datasets.
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Fig. 4. Cumulative log returns of different portfolios based on DAX (the first sub-
plot), FTSE (the second subplot), HSI (the third subplot) and S&P (the last subplot)
datasets.
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Table 1 tabulates the mean HV values of the solutions obtained by the com-
pared approaches with 50 independent runs, and the standard deviations are
in round brackets. The best mean HV value is in bold. It can be seen that
CNA outperforms NSGAII and MOEA/D for all the test instances in terms of
HV. Figure 4 shows the cumulative log returns of portfolios based on the four
datasets from year 2000 to 2018. CNA (max) and CNA (min) denote respec-
tively the optimal portfolios by the collaborative neurodynamic approach with
the maximum and minimum annualized returns, NSGAII (max) and NSGAII
(min) denote respectively the optimal portfolios by NSGAII with the maximum
and minimum annualized returns, and MOEA/D (max) and MOEA/D (min)
denote respectively the optimal portfolios by MOEA/D with the maximum and
minimum annualized returns. It can be seen that CNA (max) outperforms others
in all the cases.

5 Concluding Remarks

A collaborative neurodynamic optimization approach is applied for bicriteria
portfolio optimization in this paper. By using multiple projection neural net-
works with different weights, PO solutions are generated and also optimized by
using PSO. Experimental results show that the approach outperforms the com-
pared approaches. Further investigations focus on neurodynamic approaches to
portfolio selection with various problem formulations and the use of alternative
risk measures.
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Abstract. This paper introduces a novel data-driven approach based on
subjective constraints and feature learning for training perceptual mod-
els of preference. Fuzzy evaluation is applied to describe the subjective
opinions from a large set of data collected from user study. Combined
with the objective attributes of the training models and the subjective
preferences, an optimization method is developed successfully for training
and learning perceptual models. Two applications are given in details for
the selection of “best” viewpoint of 3D objects and the optimized direc-
tion of 3D printing, which verify the effectiveness of our approach. This
work also demonstrate a good human-computer interaction practice that
draws supporting knowledge from both the machine side and the human
side.

Keywords: Perceptual model · Feature learning ·
Viewpoint selection · 3D printing direction

1 Introduction

Recently, it is really prevailing of learning algorithms on the study of classifi-
cation and identification of patterns, signals, and other objective information
[17,24]. However, the preference, opinions and views from the human side are
also essential in decision making and reasoning [1]. The questions of what are
good views, which one looks better, why it is more popular have been addressed
in wide areas, such as art, media, literature appreciation and architecture design.

A highly reliable and effective performance evaluation rule is essential in han-
dling cases like subjectivity and imprecise information [4,9]. Fuzzy set theory
that was first introduced by Zadeh [30] is a suitable tool to evaluate the prefer-
ence from the human side. The theory of fuzzy set has been applied in different
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evaluation systems for many daily applications [3], such as pattern classification
[11], shipping performance evaluation [5], feature extraction [25] and personnel
selection [8], etc. As classical logic only permits conclusions which are either
true or false, fuzzy degree between black and white was proposed to describe the
expression of partial truth, tall, small etc. However, as the presence of impre-
cision, vagueness and subjectivity in fuzzy set theory, it is always necessary to
further train and fine-tune a fuzzy model to improve its veracity.

Past decades have witnessed the development of numerous learning meth-
ods, such as support vector machines [7], echo state networks [12,32], convo-
lutional deep neural networks [15], and deep Boltzmann machines [19]. These
techniques mainly depend on a huge number of figures to learn the features
and have shown the effectiveness in classification tasks. With respect to those
preference related problems, it is always difficult to collect a large set of data
for training. In addition, because of the bias and imprecision of personal pref-
erence, generalization ability is of great importance for such kind of problem.
Extreme learning machine (ELM) proposed by [10] has shown very good gener-
alization ability and robustness performance. Recently, as feature selection has
drawn increasingly attentions [28], some extreme learning machine approaches
with auto-encoders for multi-layer perception have been developed [22]. The
architecture composes of self-taught feature extraction and supervised feature
classification, which are bridged by random hidden weights. Multi-layer ELM is
able to achieve more compact and meaningful feature representations compared
to shallow ELM. Nowadays, ELM has been applied in a wider range of areas,
such as vigilance estimation [21] and time sequence classification [16]. Especially,
some ELM approaches have been successfully employed in the graphics area for
classification and optimization [27,29,31]. An ELM classifier was trained in [29]
for 3D shape segmentation. Unlike most works focusing on learning features, a
shallow ELM for optimization has been applied for finding the “best” 3D printing
direction [31].

In this paper, we proposed a fuzzy ELM approach for perceptual models of
preference. The proposed approach is able to solve the evaluation problem by
combing both the subjective knowledge and the objective evaluation. Fuzzy set
theory is applied for dealing with subjective preference information, and multi-
layer ELM is used to extract good features without supervised labels. This app-
roach has been tested in practical applications to substantiate its effectiveness.
Two applications of perception models in computer graphics area are introduced
in this paper. Zhang et al. [31] optimized the printing direction based on four
metrics. However, the trained model may be less effective when it is applied to
3D models with different size and style. Similarly, Secord et al. [20] proposed
a data-driven approach for viewpoint preference. However, their model exists
multicollinearity in different attributes, which will lead to instability caused by
coupled parameters. To overcome the shortcomings of the existing methods, we
propose a novel fuzzy extreme learning approach to improve the results of these
two applications. Our method combines the advantages of fuzzy theory, fea-
ture extraction and ELM. Furthermore, the method can be easily modified to



330 J. Mei et al.

optimize its performance in different applications. Experiment results show that
the perceptual models learned by our method of fuzzy ELM are effective and
easy-to-implement.

The rest of this paper is organized as follows. Section 2 introduces the pre-
liminary work, including the fundamental concepts and the theories of ELM and
fuzzy model. Section 3 describes the proposed framework for preference learning
problems. Section 4 optimizes the performance of 3D printed models through
the orientation selection. Section 5 presents the optimization results of percep-
tual models of viewpoint preference of 3D models. Simulations and experiments
have been conducted to verify the effectiveness of our method. Finally, our paper
ends with the conclusion in Sect. 6.

2 Preliminaries

2.1 Extreme Learning Machine

Unlike the traditional function approximation theories which require to adjust
input weights and the hidden layer biases, the input weights and hidden layer
biases of Extreme Learning Machine (ELM) can be randomly assigned if only
the activation function is infinitely differentiable. A basic ELM neural network
is composed of one input layer, one hidden layer and one output layer. The input
nodes depend on the input data. In the hidden layer, all the nodes are randomly
generated and independent of training data. In the output layer, all the weights
βi are problem-based and could be adjusted to solve problems such as feature
learning, clustering, regression and classification.

Consider there are N input-output samples (xi, ti) ∈ �n × �m for training,
where xi is an input vector with dimension n and ti is a target vector with
dimension m. The output of an single layer feedforward neural network with L
hidden nodes can be represented by

fL(x) =
L∑

i=1

βihi(ai, bi, x) = h(x)β, (1)

where ai and bi are learning parameters of hidden nodes and βi is the weight
connecting the ith hidden node to the output node. hi(ai, bi, x) is the output of
the ith hidden node with respect to the input x. β = [β1, ..., βL]T is the vector
of the output weights between the hidden layer of L nodes and the output node,
and h(x) = [h1(x), ..., hL(x)] is the output (row) vector of the hidden layer
with respect to the input x. hi(ai, bi, x) could be composed of additive hidden
nodes with different activation functions, such as sigmoid functions, hardlimit
functions, gaussian functions, wavelet, hyperbolic functions, etc.

For a multiclass classifier or a regression problem, we assume there are m
output nodes. If the original class label is p, the expected output vector of the
m output nodes is ti = [0, ..., 0, 1p, 0, ..., 0]T . In this case, only the pth element of
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ti = [ti,1, ..., ti,m] is one, while the rest elements are set to zero. The optimization
problem for ELM with multi-output nodes can be formulated as

min
1
2
‖β‖2 +

1
2
λ

N∑

i=1

‖ξi‖2

s.t. h(xi)β = tTi − ξTi , i = 1, ..., N (2)

where ξi = [ξi,1, ..., ξi,m]T is the training error vector of the m output nodes with
respect to the training sample xi.

After the hidden nodes’ parameters are chosen randomly, ELM neural net-
work can be considered as a linear system and the output weights can be opti-
mized according to the optimization procedure (2). The universal approxima-
tion capability has been analyzed in [10] that ELM neural network with ran-
domly generated additive and a wide range of activation functions can univer-
sally approximate any continuous target functions in any compact subset of the
Euclidean space. There are two phases in the training process of ELM: (1) fea-
ture mapping and (2) output weights solving. As solving the output weight is
based on the optimization problem, we can design different feature mapping
approaches to improve the ELM algorithm.

2.2 Fuzzy Model for Pairwise Comparison

For some preference and decision-making problems, it is very difficult to collect
the opinions such as “which one is the best?” or “What is the optimal solution?”.
However, it is possible to collect the information for pairwise comparison, such
as “which one is better, A or B?”. People are more likely to answer these 2-
Alternative Forced Choice (2AFC) questions. In this paper, pairwise comparison
information is assumed to be collected randomly, consistently and with a roughly
uniform distribution.

According to the study of pairwise comparisons in [18], the value sij is
assigned of the comparison pair of i and j, which represents a relative pref-
erence of i over j . If the element i is preferred to j then sij > 1. Let us consider
a prioritisation problem with N unknown priorities, then the reciprocal prop-
erty sji = 1/sij for i, j = 1, 2, ..., N always holds. A positive reciprocal matrix
of pairwise comparisons S = {sij} ∈ �N×N is constructed through N(N − 1)/2
judgements. Then a priority vector v = (v1, v2, ..., vN )T may be derived from the
matrix. Moreover, we can make them satisfy the partition-of-unity as

v1 + v2 + · · · + vN = 1, vi ≥ 0, i = 1, 2, ..., N (3)

When all elements sij have perfect values, then

sij = vi/vj , sij = sikskj , i, j, k = 1, 2, .., N (4)

However, the evaluations, {sij}, are usually not perfect – i.e., they only approx-
imately estimate the exact ratios vi/vj . In addition, the comparisons are not
complete for all the judgements when N is very large.
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A fuzzy approach to priorities derivation is then derived for dealing the imper-
fect pairwise comparisons based on inexact and incomplete judgments. In fuzzy
set theory, the membership function of a fuzzy set (with a range covering the
interval (0, 1)) represents the degree of truth as an extension of valuation. The
values between 0 and 1 characterize fuzzy members, which belong to the fuzzy
set only partially [13]. Fuzzy membership function thus becomes a suitable app-
roach to evaluate perceptual models of preference. A normal fuzzy set s̃ is a
triangular fuzzy number, defined by three real numbers l ≤ m ≤ u, and has a
linear piecewise continuous membership function μs̃(·) with the following char-
acteristics [14]:

– μs̃(·) is a continuous mapping from � to the closed interval [0, 1]
– For all x ∈ [−∞, l] and x ∈ [u,∞], μs̃(x) = 0.
– μs̃(x) is strictly linearly increasing on [l,m] and strictly linearly decreasing

on [m,u].
– For x = m, μs̃(x) = 1.

Let the pairwise comparison judgements {sij} be represented by fuzzy num-
bers sij = (lij ,mij , uij), and consider a set of m (m < N(N − 1)/2) incomplete
pairwise comparisons. If the judgements are inconsistent, there is no priority
vector that satisfies all interval judgements simultaneously. However, it is rea-
sonable to try and find a vector that satisfies all judgements “as well as possible”.
This implies that a solution vector has to satisfy all interval judgements approx-
imately in order to become “good enough”.

3 Model Description

The proposed fuzzy extreme learning machine model combines convolutional
ELM and fuzzy pairwise learning as optimization constraints, as shown in
Fig. 1. The training procedure consists of two phases: feature mapping and
optimization.

3.1 ELM Feature Mapping

Convolution is the process of multiplying each element of the image with its
local neighbors, weighted by the kernel. Different kinds of kernels can cause a
wide range of effects, such as blurring, sharpening, embossing, edge detection,
and more. Convolution have been widely used to find the features, especially on
images. Inspired by these prior works, the procedure of ELM feature mapping
can be described as follows:

– First, choose kernels randomly to obtain convolutional feature maps with
input data and kernels.

– Second, pooling operation is performed to maintain rotation invariance and
minimize data size.

– Then, generating random and sparse weights from convoluted and pooled
data.

– Finally, feature map have been prepared for the exaction and optimization in
the next phase.
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Fig. 1. Block diagram of fuzzy extreme learning machine

3.2 ELM Optimization

Based on the preliminaries about the extreme learning machine and fuzzy con-
straints, the optimization procedure of fuzzy extreme learning machine will be
formulated in this subsection. Assume v is the feature mapping of input data.
Denote H as the feature mapping operator from input data to hidden layer
output H : {xi} �→ {zi}.

zi = H(xi), i = 1, 2, 3, ..., N. (5)

According to (2), the optimization problem for fuzzy ELM can be formulated as
follows:

min
1
2
‖β‖2 +

1
2
λ‖H(x)β − v‖2 +

1
2
ρ‖μ‖2

s.t.Rv − dμ ≤ 0, 0 ≤ μ ≤ 1,

N∑

i=1

vi = 1, vi > 0, i = 1, 2, ..., N. (6)

where d = [d1, d2, ..., dm]T is a tolerance parameter vector, λ and ρ are multi-
pliers satisfying λ > 0 and ρ > 0. As the optimization problem (6) is a convex
quadratic problem with linear equality and inequality constraints, common tool-
box is applicable to work it out in a very short time [2].

To conclude, a fuzzy extreme learning machine procedure for preference opti-
mization can be concluded as follows:

– Given a training set {xi}, and m pairwise comparisons {sij} within the train-
ing set {xi}, i, j = 1, 2, ..., N .
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– Define triangular membership functions (lij ,mij , uij) for all the pairwise com-
parisons.

– Denote hidden node number as L and randomly generate kernels for convo-
lution.

– Using convolution and pooling for feature mapping and consider the feature
mapping relationship as H : {xi} �→ {zi}.

– Add fuzzy constraints when minimization the mismatching and solve the
convex optimization problem (6)

– Calculate the output weight β.
– Find the ranking priority result as {vi}.
– Obtain the best choice of training set satisfying vi∗ = max(vi).

4 Perceptual Model for 3D Printing Orientations

Additive manufacturing methods often require robust branching support struc-
tures to prevent material collapse at overhangs, resulting in unsightly surface
artifacts after the supports have been removed. Figure 2 shows the 3D printed
model containing artifacts from different support structures when printing a 3D
model along different directions. Improper support will damage the small fea-
tures of the model and have influence on visual artifacts. This section improves
the perceptual model for determining 3D printing orientations already discussed
in [31]. Four metrics including contact area, visual saliency, viewpoint prefer-
ence, and smoothness entropy were considered. Despite the effectiveness of the
proposed method in [31], the algorithm still had some drawbacks. First, these
metrics have different kinds of dimensions. But the evaluation function is not
dimension invariant (i.e., F (d) 
= F (10d)), the model should be normalized before
training. Second, metrics in [31] cannot be proved to be ergodic. There possi-
bly exist some other metrics undetected. Thirdly, graphics computation is really
time consuming. For some complex models, it may cause several hours for cal-
culating the metrics. In order to overcome these shortages, we propose a fuzzy
ELM approach in this section to improve the algorithm.

Fig. 2. 3D printed model from different support structure placement.
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4.1 Collecting Human Preferences

The service of Amazon Mechanical Turk (AMT) is applied to collect human pref-
erences. Pairwise comparisons are conducted through investigation on Amazon
Mechanical Turk to select between two printing directions. Several models are
employed to generate tasks as follows. We uniformly sample the Gauss sphere
to obtain 1448 possible printing directions. For each model, 500 pairs of printing
directions are randomly picked. Each pair was shown to 8 people. Among them,
16 random pairs of each model occur more than once for testing the reliability.
For each picked pair sij , let’s assume that the direction i was picked pi times,
and j was chosen pj times for all comparisons between directions i and j for all
i, j = 1, 2, 3..., N . For some comparisons, if pi = pj means the preference on i
and j is very contradictive, the uncertainty of sij is comparatively large. How-
ever, when pi = 0 the direction i is preferred definitely; vice versa for pj = 0.
Moreover, as pi and pj increase, the vagueness of preference will decrease. Based
on the above facts, the pairwise comparison judgements {sij} can be represented
by fuzzy numbers sij = (lij ,mij , uij). Then, we can evaluate human preferences
and apply these information to train the perceptual model.

4.2 Input Representation

Given a set of 3D shapes, in OBJ (or .OBJ) format or STL (STereoLithog-
raphy) format. Both formats are widely used for rapid prototyping, 3D print-
ing and computer-aided manufacturing [6]. STL files describe only the surface
geometry of a three-dimensional object without any representation of color, tex-
ture or other common CAD model attributes. OBJ (or .OBJ) is also a univer-
sally accepted geometry definition file format representing 3D geometry alone—
namely, the position of each vertex, and the faces that make each polygon defined
as a list of vertices.

In order to find the “best” 3D printing results of models, some information
should be added to the 3D model itself. Distribution of contact area (f1) should
be first considered. For different printing orientations, the surface area of regions
connecting to supporting structures is determined by considering overhangs as
well as potential connections at the base of supports. According to the graphics
study in [23], surface regions need support only if the angle between its tangent
plane and the printing direction is larger than the critical angle α. Faces with
angle less than α are self-supported. In this section, set α = 25◦ according to
[26]. A distribution of contact area f1 then can be computed and visualized as
one of the important features.

In addition, subjective preference is also very important. For example, we
prefer there are no supports on eyes and faces. For some man-made models,
we prefer there’s no defect in working plane. An interactive tool is developed
to incorporate the subjective preference into a model. Denote distribution of
subjective important feature as f2. Select one of important directions da1, a
Harmonic field H1(d) is computed as
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∇2H(d) = 0
s.t. H(da1) = 1,H(−da1) = 0, (7)

Similarly, select one least important direction (e.g., base) as da2, a Harmonic
field H2(d) can be similarly calculated. The distribution of subjective importance
feature can be emerged as

f1 = min(H1,H2, ...) (8)

Moreover, the geometry feature, such as coordinates and relationship between
vertexes, also should be considered. Denote geometry feature as f3. As a result,
the input data for perceptual 3D printing model, which is a combination of
contacted area distribution feature(f1), subjective importance feature(f2), and
structure geometry feature (f3).

5 Perceptual Models of Viewpoint Preference

In this section, we will demonstrate the better performance on three perceptual
models for 3D printing orientations by placing fewer support structures at visu-
ally important regions. Our results are also compared with Autodesk MeshMixer
obtained by considering only a single factor.

Using the proposed approach, Fig. 3 show the “optimal”, “default”, and “mesh-
mixer” printing directions results for “Kitten”. Figures 4 and 5 show the “optimal”
and “default” printing directions results for “Bunny” and “Armadillo”, respec-
tively, which further substantiate the effectiveness of proposed method. We can
see the additive support is limited and no support is added on the regions that are
important for viewpoint preference. Therefore, the negative influence caused by
supporting structures can be reduced as much as possible.

Fig. 3. “Optimal”, “default” and “Meshmixer” printing directions for “Kitten”.
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Fig. 4. “Optimal”and “default” printing directions for “Bunny”.

Fig. 5. “Optimal”and “default” printing directions for “Armadillo”.

6 Conclusion

This paper introduces a fuzzy extreme learning machine approach for train-
ing perceptual models of preference. A novel fuzzy extreme learning machine
approach was presented for obtaining preference priority from a set of inconsis-
tency pairwise comparisons. Our approach combines the advantage of feature
mapping, ELM optimization, and fuzzy membership formulation. Two applica-
tions are given in details for the selection of “best” viewpoint of 3D objects and
the optimization of 3D printing direction. Compare to the previous results, our
approach has better robustness and generalization capabilities as the input com-
parisons are inaccurate and inconsistency. Moreover, our model can be improved
if more models has been trained. Not only in graphics area, our approach can
be applied in a wide range of area such as parametric design for clothing pat-
terns, mechanical structure optimization, etc. Our approach demonstrates a good
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human-computer interaction practice. Future work will focus on improving our
algorithm for better performance and extend our approach for more applications.
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Abstract. The article proposes an extended version of the principle of
minimizing the empirical risk for training neural networks that is stable
with respect to a large number of outliers in the training data. It is based
on the use of -averaging and -averaging functions instead of arithmetic
mean for estimating empirical risk. An iteratively re-weighted scheme is
proposed for minimizing differentiable resistant estimates of mean loss
functions. This schema allows to use weighted version of traditional back-
propagation algorithms for neural networks learning in presence of large
number of outliers.

Keywords: Neural networks · Robust estimation ·

Resistant averaging function

1 Introduction

This article is devoted to the problem of approximation of functions of several
variables using multilayer neural networks (NN), which is resistant to a large
number of outliers in the training data. NNs are known as universal approxi-
mators [1], which can approximate any continuous functions of many variables,
which is also confirmed when solving applied problems. The data in applied
problems, as a rule, are distorted or erroneous. The first type of data distortion
is noise. It is effectively eliminated with the help of modern methods of approx-
imation of continuous functions (including NN), based on minimization of the
sum of squares of errors between observed and predicted values. The second
type of distortion is emissions—significant deviations associated with both large
errors in the data and the fact that the data may reflect a mixture of differ-
ent processes. Usually such distortions can cover from 1% to 10% of the data,
but can also cover up to 40–50%. In order to properly restore the functional
dependencies of the data, it is advisable to identify and remove the outliers from
the data that are used for the approximation. However, this approach is not
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always possible. In such cases, it is difficult to do without a prior attempt to
bring the desired functional relationship closer, which would ensure the detec-
tion of outliers in accordance with the distribution of errors or losses or other
criteria. Approximation methods based on minimizing arithmetic mean or sum
of squares of errors are not resistant to outliers. Outliers can cause such a sig-
nificant shift in the desired parameters that their detection by the distribution
of errors becomes impossible. This problem is well studied in the case of linear
regression, when a relatively small amount of emissions can significantly distort
the coefficients [2–4].

To overcome this problem, a number of linear regression recovery methods
have been developed that are resistant to a relatively large number of errors.
Among them, the most popular are LMedS (Least Median of Squares) and LTS
(Least Trimmed Squares) [5]. They provide resistant (stable) results in the pres-
ence of up to 50% of outliers. Such results are virtually impossible with M-
estimator methods [6]. This is possible because the median and the truncated
average can be considered as reliable estimates for the mean. Nonlinear regres-
sion has also been studied in the presence of outliers based on the M-regression
method [7]. NN training based on the M-regression approach has also been stud-
ied in [9–11]. NN training based on LTS is considered in [12,13]. LMedS based
NN training is considered in [14]. An interesting PCLTS algorithm is proposed
in [15].

LMedS and LMedA methods are individual cases for solving a regression prob-
lem via minimizing the functional

Q(w) = med
{
�(r1(w)), . . . , �(r1(w))

}
,

where �(r) is the nonnegative quasi-convex function, rk(w) = f (xk,w) − yk ,
{x1, . . . , xN } ⊂ R

n and {y1, . . . , yN } ⊂ R are given input vectors and expected
output, f (x,w) is the transformation function of the parametrized model for the
restored dependence. LTS and LTA estimators are individual cases for solving a
regression problem based on minimizing the functional

Q(w) =
1

N − p

N−p∑

k=1

�(r
(k)(w)),

where r
(1), . . . , r(N )

is the sequence r1, . . . , rN in ascending order, p > N/2. For
LMedS and LTS estimators �(r) = r2, and for LMedA and LTA �(r) = |r |.

Robust non-linear regression recovery with a large number of outliers in the
data (up to 40–50%) is an important task in cases where the detection of outliers
is very difficult. However, if you remove the outliers in the source data, and the
remaining amount of data is enough to restore the dependency, then resistant
regression methods can be effective. They will allow us, at least, to find such an
approximation of the desired dependence, so that by the distribution of errors, it
will be possible to detect outliers, and at best, to restore the desired relationship,
despite outliers.

This paper proposes generalized approach that covers LMedS and LMedA,
LTS and LTA estimations. It is based on minimizing robust and differentiable
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M-averaged and WM-averages. Thus, we can employ gradient minimization and
algorithms similar to IRLS (Iteratively Re-weighted Least Squares) [8] to search
for optimal values for dependence parameters in linear regression model. The
main idea is to employ robust, but smooth estimating functions instead of robust
and non-smooth versions of the latter. Minimizing robust mean or sum estimates
is more preferable, since, it is the instability of mean (as a rule, the arithmetic
average) or the sum estimation methods in relation with outliers is the main rea-
son why the required parameters shift in the problem of minimizing the approx-
imate functional dependencies employing empirical risk minimization principle.

2 Classical Empirical Risk Minimization Principle
and Robust Learning

Regression and classification problems are often formulated as empirical risk
minimization problem:

w∗ = arg min
w

Q(w)

where

Q(w) =
1
N

N∑

k=1

�(rk(w)). (1)

The problem of outliers arises when the empirical distribution of losses z1 =

�(r1(w)), ..., zN = �(rN (w)) contains outliers. They cause distortion of the values
of the desired parameters. First robust approaches to suppress outliers are based
on a choice of the function �(r), which grows slower than r2, i.e. |�′(r)| � 1.
However, this approach does not always able to suppress the influence of outliers.
In order to explain let’s consider the sum:

S{r1, . . . , rN } = �(r1) + · · · + �(rN ).

The following equality

|S{r1, . . . , rN + Δ} − S{r1, . . . , rN }| = �
′

(r̃)Δ,

where r̃ ∈ [rN, rN + Δ], can explain the reason: when Δ is large or the number
of outliers is large the distortion of S become large too. So minimization of the
distorted function Q(w) usually led to distortion of the desired parameters w∗.

The alternative is based on using functions of summing or averaging, which
are resistant to outliers. Well-known examples are median and quantile. But
they are not continuously differentiable. Therefore, gradient based approaches
to training are not possible. However differentiable averaging functions, which
are resistant to outliers can be defined and constructed.
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3 Differentiable M-averages

Thus, for estimating the average we propose to use the M-averages, which are
defined as follows:

Mρ{z1, . . . , zN } = arg min
u

N∑

k=1

ρ(zk − u),

where ρ(r) is the strictly convex and twice continuously differentiable function.
Well known averages are examples of M-averages:

– arithmetical mean: ρ(r) = r2;
– median: ρ(r) = |r |;

– α-quantile: ρ(r) =

{
αr, if r � 0
(α − 1)r, if r < 0,

where α ∈ (0, 1).

In the cases when ρ′ and ρ′′ are exist the Mρ is differentiable:

∂Mρ

∂zk
=

ρ′′(zk − z̄ρ)

ρ′′(z1 − z̄ρ) + · · · + ρ′′(zN − z̄ρ)
,

where z̄ρ = Mρ{z1, . . . , zN }. Wherein ∂Mρ

∂zk
� 0 and

N∑

k=1

∂Mρ

∂zk
= 1.

4 Learning via Minimizing M-averages of Losses

So now we able to formulate the problem of searching of the optimal parameter
values w∗ as a problem of minimization of the following function

Q(w) = Mρ

{
�1(w), . . . , �N (w)

}
,

where �k(w) = �(rk(w)). It can be solved numerically using gradient descent
method and it’s variants. Gradient ofQ(w) has the following form:

∇Q(w) =
N∑

k=1

vk(w)∇�k(w)

where

vk(w) =
∂Mρ{�1(w), . . . , �N (w)}

∂zk
.

In order to minimize the overhead of calculation of averaging value an iteratively
re-weighted schema is applied. The averaging value is calculated iteratively:

wt+1 ← arg min
w

N∑

k=1

vk�k(w),
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where with zk = �k(w)

vk =
ρ′′(zk − z̄t )

ρ′′(z1 − z̄t ) + · · · + ρ′′(zN − z̄t )
.

So, to minimize the functional, we can apply the IR-ERM learning algorithm
(Iteratively Re-weighted Empirical Risk Minimization) [16] which in pseudocode
language can be expressed as:

procedure IR-ERM(w0)
t ← 0
repeat

z1 = �1(wt ), . . . , zN = �N (wt )

z̄t = Mρ{z1, . . . , zN }
for k = 1, . . . , N do

vk =
ρ′′(zk − z̄t )

ρ′′(z1 − z̄t ) + · · · + ρ′′(zN − z̄t )
end

wt+1 ← arg min
w

N∑

k=1
vk�k(w)

t ← t + 1
until { z̄t } and {wt } are stabilized.

end

5 Resistant Differentiable M-averages

We give examples of differentiable averages, to be used as an adequate replace-
ment for the median:

1. ρsqrt,ε(r) =
√

ε2 + r2 − ε;
2. ρln,ε(r) = |r | − ε ln(ε + |r |) − ε ln ε;
3. ρarctan,ε(r) = r arctan r

ε −

1
2ε ln[1 +

(
r
ε

)2
].

In order to define differentiable replacements for quantiles let’s define

ρα(r) =

{
αρ(r), if r � 0
(1 − α)ρ(r), if r < 0,

where ρ(r) is a function for the definition of the replacement for the median (for
example, ρsqrt,ε, ρln,ε , ρarctan,ε).

The key to understanding the empirical mean resistance to outliers can be
the following inequality:

|Mρ{r1, . . . , rN + Δ} −Mρ{r1, . . . , rN }| = �
′′

(r̃ − ur̃ )Δ,

where ρ(r) is the convex function, ρ′′(r) is the continuous function, Δ > 0 is the
distortion value, r̃ ∈ [rN, rN + Δ], ur̃ = Mρ{r1, . . . , rN }.

We give the following estimates for ρ′′(r)Δ:
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(1) ρ′′sqrt,ε(r) =
ε2

(ε2+r2)3/2
, ρ′′sqrt,ε(r)Δ <

ε2Δ
r3

;

(2) ρ′′ln,ε(r) =
ε

(ε+ |r |)2
, ρ′′ln,ε(r)Δ <

ε2Δ
r2

;
(3) ρ′′arctan,ε(r) =

ε
ε2+r2

, ρ′′arctan,ε(r)Δ <
εΔ
r2

.

It is easy to see that for the sufficiently small ε the M-averages with ρsqrt,ε , ρln,ε,
ρarctan,ε and can be resistant to relatively high number of outliers:

|Mρ{r1, . . . , rN + Δ} −Mρ{r1, . . . , rN }| < ε.

6 Learning via WM-averages Minimizing

Along with the LTS and LTA, we can also employ LWS (Least Winsorized
Squares) and LWA (Least Winsorized Absolutes) estimations, which are based
on Winsorized Mean (WM) method:

WMρ{z1, . . . , zN } =
1
N

N∑

k=1

min{zk, z̄ρ}. (2)

To generalize this method of robust estimation of the mean, we introduce a
differentiable function σ(z, u), which satisfies the following conditions:

(1) lim
z→+∞

σ(z, u) = u;

(2) lim
z→−∞

σ(z, u)/z = 1.

So

WMρ{z1, . . . , zN } =
1
N

N∑

k=1

σ(zk, z̄ρ).

Partial derivatives of WMρ can be written as follows:

∂WMρ

∂zk
=

1
N
σ′

z(zk, z̄ρ) +
1
N

∂Mρ

∂zk

N∑

l=1

σ′

u(zl, z̄ρ).

In the case of (2)
∂WMρ

∂zk
=

{
1
N + m

N

∂Mρ

∂zk
, if zk � z̄ρ

m
N

∂Mρ

∂zk
, if zk > z̄ρ,

where m = |{zk : zk > z̄ρ}|.
For example, there is also smooth variant of min{z, u}:

σ(z, u) =
1
2
(z + u − ρ(z − u)), (3)

where ρ is a function, which is used for construction M-average as replacement
of median (for example, ρsqrt,ε , ρln,ε , ρarctan,ε). In this case

∂WMρ

∂zk
=

1
2N

(1 − ρ′(zk − z̄ρ)) +
1
2
∂Mρ

∂zk
.



346 Z. M. Shibzukhov

It can be easily shown that
N∑

k=1

∂WMρ

∂zk
= 1. So that WMρ-averaging has the

same property as the M-averaging.
We can further generalize this approach by the way of using an arbitrary M-

average instead of the arithmetic mean. Let’s Mϕ is an M-averaging function for
replacement of the arithmetic mean. Then we can define the following averaging
function:

WMϕρ{z1, . . . , zN } = Mϕ{σ(z1, z̄ρ), . . . , σ(zN, z̄ρ)}.

Partial derivatives of WMϕρ can be calculated according to following formula:

∂WMρ

∂zk
=
∂Mϕ

∂vk
σ′

z(zk, z̄ρ) +
∂Mρ

∂zk

N∑

l=1

∂Mϕ

∂vl
σ′

u(zl, z̄ρ).

The search for the optimal values of the parameters w∗ that minimize the
function

Q(w) = Mρ

{
�1(w), . . . , �N (w)

}

can be preformed using the IR-WERM learning algorithm (Iteratively Reweighted
Winsorized Empirical Risk Minimization):

procedure IR-ERM(w0)
t ← 0
repeat

z1 = �1(wt ), . . . , zN = �N (wt )

z̄t = Mρ{z1, . . . , zN }
for k = 1, . . . , N do

vk =
∂Mϕ

∂vk
σ′

z(zk, z̄ρ) +
∂Mρ

∂zk

N∑

l=1

∂Mϕ

∂vl
σ′

u(zl, z̄ρ).

end

wt+1 ← arg min
w

N∑

k=1
vk�k(w)

t ← t + 1
until { z̄t } and {wt } are stabilized.

end

7 Results and Discussion

Here we present some examples of using the IR-WERM algorithm for teaching
NN with one, two, and three hidden layers, using two sets of data for training
that contain outliers (25% and 45%, respectively). We considered NN, which
are represent functions F : R2

→ R. All NN have two inputs x1, x2. Each layer
of the NN contains sigmoidal neurons with the following transformation model:
v = arctan(w0 +w1u1 + · · ·+wnun), where u1, . . . , un are the inputs of the layer, v
is the output, arctan(s) is the activation function. On the top of last layer there
is a linear function y = w0 + w1v1 + · · · + wmvm. It calculates the output value of
the NN.
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Fig. 1. Y-Y plots for NN with one hidden layer (7 neurons), 25% and 45% of outliers
in the training data.

In order to generate dataset for learning we randomly generate weights of
the original NN and calculates it’s values of the grid X2

⊂ R
2, where X = {−2 +

0.08t : t = 0, . . . , 50} (totally 2500 data points). Then a noise with the amplitude
0.1 is added. Two datasets was then constructed by adding the outliers: 25%
and 45% of data points of the original dataset are chosen, correspondently, and
for each chosen data point (x1, x2) the value y is increased by 10|y |.

These examples are used to demonstrate the ability to reduce the absolute
value of a large number of errors and the resistance to large number of the
outliers. First, the NN learns to reduce the sum of squared errors. Next, NN is
trained by minimizing (1) with �(r) =

√

1 + r2 using BP. Third, NN learns to
reduce the sum of squared errors. Next, NN is trained by minimizing (1) with
�(r) = ln(1 + r2) using BP. And finally, NN trained using IR-WERM with ρα,ε ,
where ρε(r) =

√

ε2 + r2 − ε, α = 0.9, ε = 0.001. Each figure (Y-Y plot) shows
the distribution of target value pairs: the predicted value (along the Y axis) and
the known value (along the X axis). It demonstrates the ability of the proposed
approach and the IR-WERM learning algorithm to reduce the absolute errors on
training data and the resistance to large portion of the outliers in the training
data.

One Hidden Layer. This NN has one hidden layer, which is contains 7 neurons.
Y-Y plots are presented on the Fig. 1. BP algorithm for minimization of (1) with
�(r) = r2, �(r) =

√

1 + r2 and �(r) = ln(1 + r2) show poor results. Only IR-
WERM algorithm for minimization (2) demonstrates resistance to large number
of outliers.

Two Hidden Layers. This NN has two hidden layers: first layer contains 7
neurons, second layer contains 3 neurons. Y-Y plots are presented on the Fig. 2.
BP algorithm for minimization of (1) with �(r) = r2, �(r) =

√

1 + r2 shows poor
results. For �(r) = ln(1 + r2) it shows good result for 25%, not good result for
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Fig. 2. Y-Y plots for NN with two hidden layers (7, 3 neurons), 25% and 45% of outliers
in the training data.

Fig. 3. Y-Y plots for NN with three hidden layers (7, 7, 3 neurons), 25% and 45% of
outliers in the training data.

45%. Only IR-WERM algorithm for minimization (2) demonstrates resistance to
large number of outliers.

Three Hidden Layers. This NN has three hidden layers: first layer contains
7 neurons, second layer contains 7 neurons, third layer contains 3 neurons. Y-Y
plots are presented on the Fig. 3. BP algorithm for minimization of (1) with
�(r) = r2, �(r) =

√

1 + r2 show poor results. For �(r) = ln(1 + r2) it shows good
result for 25% and poor result for 45%. IR-WERM algorithm for minimization
(2) demonstrates good resistance property to large number of outliers.
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Algorithm IR-WERM was used from the project mlgrad1. The examples con-
sidered above are represented in the Jupyter2 notebooks (see /examples folder
in the project mlgrad).

8 Conclusion

The paper considers a new approach to improving the reliability of learning
neural networks for training data that contain a significant amount of outliers.
It’s based on minimization of differentiable analogues of median, quantiles and
winsorized means of loss functions. The above techniques are more desirable in
cases where gradient-based minimization algorithms are preferable. For example,
these methods allow the use of a series of weighted variants of back-propagation
algorithms for training NN, resistant to a large number of outliers. In particular,
a kind of iteratively re-weighted least squares (IRLS) procedures can be used. In
these procedures, a weighted version of the back-propagation algorithm is used
for each step. The examples presented above have clearly shown the resistance
property to a large number of outliers.
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Abstract. Ant colony algorithm is an intelligent bionic optimization algorithm.
Its self-organization and intelligence provide guiding for studying the global
path planning problem. Based on this, an improved ant colony algorithm is
proposed to solve the problem of robotic path planning and improved the
convergence speed. The environment model is established by grid method and
the traditional ant colony algorithm is improved. The heuristic factor and
pheromone updating strategy of the algorithm are improved to enhance the
precision of the algorithm and the ability of later convergence. Simulation
experiments show that the improved algorithm has a faster convergence speed to
achieve the optimal path compared with other algorithms. It shows that the
improved algorithm is effective and reliable.

Keywords: Ant colony algorithm � Path planning � Pheromone � Mobile robot

1 Introduction

Path planning means that in an unknown or known environment, mobile robots need to
find a path that safely bypasses obstacles from the starting point to the target point and
does not collide. At present, mobile robot path planning is a research hotpot in the field
of robots. The traditional mobile robot path planning methods include Dijkstra [1],
Artificial potential field method [2], A* algorithm [3] etc. There are some intelligent
optimization algorithms such as genetic algorithms, particle swarm optimization
algorithms, and ant colony algorithms. Dijkstra is a classical shortest path search
algorithm with the advantage of being able to get the shortest path. The disadvantage is
that the computational complexity is higher and the efficiency is lower. The artificial
potential field method has the characteristic of high efficiency, but it is easy to generate
oscillations in front of obstacles and fall into local optima. So it is difficult for mobile
robots to reach the target point. A* is a heuristic algorithm. Because the heuristic
function is difficult to determine, it is easy to fall into the dead cycle and result in
unsatisfactory planning path.

Ant colony algorithm is a bionic algorithm designed to simulate the behavior of the
ant searching for food at the shortest path. Ant colony algorithm has certain advantages
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in solving discrete problems and sensitivity to path. The traditional ant colony algo-
rithm is mainly to solve the travelling salesman problem. In recent years, researchers
have also achieved good results in the path planning using ant colony algorithms. The
paper [2] introduces the barrier exclusion weight and the new heuristic factor into the
path selection probability to improve the quality of global search ability. The improved
A * algorithm based on two-dimensional grid map is proposed in paper [3], which
introduces direction vector and parallel search, so that robot path search has both
directionality and parallelism. Paper [4] removes some “useless” obstacles in the
viewable method, and selects the direction of the path planning through the principle of
the shortest line between two points. The aim is reducing the complexity of the path
planning and the operation time, and increasing the scope of application of the visual
graph method.

Because the traditional ant colony algorithm has certain defects, this paper proposes
an improved ant colony algorithm to plan the mobile robot path, which can get the
global optimal path under different complexity circumstance. The efficiency of the path
search is improved, and the convergence speed of the algorithm is accelerated. Finally,
the feasibility of the algorithm is verified by the simulation results.

2 Problem Description and Modeling

Video graphic method [4], topological method [5], Free Space Law [6], grid method [8]
are methods for environmental modeling. The grid method is simple in structure and
easy to practice. Therefore, this paper will use the grid method to construct the envi-
ronment space. According to the knowing robot environment information, the robot in
reality is converted into plane understandable data by extracting and analyzing. It
effectively reduces the trouble in the path search process. The conditions for this study
are:

(1) All locations of the obstacle are known and the height of the obstacle is ignored.
(2) The starting and ending positions of the robot are known.

The grid model is from left to right, from top to bottom, and the black part
represents the barrier grid. When the obstacle is smaller than a grid, it is treated
according to a grid that occupies a grid. The white part is a grid that does not have
obstacles. The side length of a grid is the length of the robot’s movement step, which is
a unit length. The grids are numbered from the left lower corner. The corresponding
relationship between the serial number and the coordinates are as follows:

xi ¼ mod
Ni

N

� �
� 0:5 ð1Þ

yi ¼ N � ceil
Ni

N

� �
þ 0:5 ð2Þ

Where mod means modular, ceil means ceiling, Ni represents the number of the
grid, and N represents the number of grids in each column.
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3 Ant Colony Algorithm

The ant colony algorithm is a typical path planning algorithm. Each ant leaves pher-
omones in the process of finding food, and can perceive pheromones within a certain
range to guide its own movement. Therefore, the ant colony will exhibit a positive
feedback phenomenon. The more ants pass through this path, the more pheromones
there will be on this path. Then, the path is selected according to the amount of
pheromones. The food will be found.

In the initial state, when the ant begins to forage, the amount of pheromone on each
path is equal. From the grid located in the node i, the ant selects the next node j based
on the node’s pheromone concentration and heuristic information. The transfer prob-
ability formula is shown in Eq. (3):

Pk
ij tð Þ ¼

saij tð Þgbij tð ÞP
s2Q saij tð Þgbij tð Þ j 2 Q

0 other

8<
: ð3Þ

Where gij tð Þ represents the heuristic information at the moment t on path ij.
gij tð Þ ¼ 1

dij
. a represents the pheromone enhancement coefficient, and the larger the

value, the deeper influence on the initial random pheromone. b is the expected heuristic
factor, which reflects the importance of the heuristic information in the ant’s path
selection process. Pk

ij is the probability that ant k is transferred from node i to node j at
moment t. saij tð Þ is the pheromone concentration at moment t on the path from node i to
node j.

The pheromone update principle on each path is updated by local pheromones (4)
from node i to j.

sij tð Þ ¼ 1� kð Þsij tð Þþ ks0; k 2 0; 1ð Þ ð4Þ

Where k is the rate at which the local pheromone is evaporated, and s0 is a small
positive real number.

When all ants reach the target grid, an iteration search completes. The global
pheromone is updated according to the formula (5).

sij tþ 1ð Þ ¼ 1� qð Þsij tð Þþ qDsij tð Þ ð5Þ

Where q is the rate at which the global pheromone evaporated. DsijðtÞ is the change
of global pheromone concentration, as shown in formula (6).

DsijðtÞ ¼
Q
Lk ; ðij 2ÞLk
0; other

�
ð6Þ

Where Q is constant and greater than 0, Lk is the shortest path established by ant K.
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4 Improved Ant Colony Algorithms

4.1 Adjust the Heuristic Function

In the traditional ant colony algorithm, the heuristic function is the reciprocal of the
Euclidean distance between two nodes. Due to the requirements of search time, this
paper uses improved strategies to heuristic functions according to literature [8]:

gij ¼ ð 1
dij þ djG

Þ2 ð7Þ

Using formula 7 as an heuristic function increases the effectiveness of the algorithm
and reduces the convergence time. At the same time, it ensures that the search will
toward to the target point at a faster speed.

4.2 Strategy for Updating Pheromones

In the traditional ant colony algorithm, only the pheromone on the better path is
updated, which cause the pheromone adjustment to be delayed. So the ant cannot
immediately find the optimal path and may lead to the wrong path from the beginning.
Therefore, in iteration, find the local best solution Lbest and the local worst solution
Lworst. It increases the amount of pheromone releasing on the best path, and reduces the
amount of pheromone release on the worst path. The solution will not fall into local
optimization for convergence faster. The pheromone will be updated according to the
following formula [9].

skij tþDtð Þ ¼ 1� qð Þ � sij tð ÞþDsij tð Þþ Q
Lbest

� Q
Lworst

ð8Þ

The Lbest represents the optimal path length in this iteration, and Lworst represents
the worst path length in this iteration.

4.3 Range of Pheromones

In the pre-search period, if the pheromone on a certain path grows too fast, all ants may
search only one path from beginning to end, which is not the optimal path. To avoid
this, set a range for pheromones smin; smax½ �. The value of the initial pheromones of the
traditional ant colony algorithm is 0, and the search path is limited. After given a range,
the pheromone diversity on different paths can be reduced [10].

4.4 Algorithm Flow

The heuristic function (7) and pheromone updating strategy (8) are introduced to the
ant colony algorithm simultaneously. The proposed algorithm is applied to the path
planning. The algorithm steps are as follows:
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Step 1: Initializes the parameters, generates obstacles in a known environment, sets
the starting point and the target point, and calculates the distance between the two
nodes.
Step 2: Puts M ants at the starting point, establishes a TABU table, and then looks
for the next feasible node according to (3).
Step 3: Determines whether the ant has reached its destination. If there is a dead-
lock, terminate the search and set the current path length to infinity until all ants
reach the end, save the path and path length that the ant has passed.
Step 4: Updates the pheromones for the first time according to the update rules (7)
and (8).
Step 5: Judges whether the maximum number of iterations is reached. If the
maximum number of iterations is reached, the current shortest path is output and the
process ends. Otherwise, go to step 2.

5 Simulation Results and Analysis

In this paper, Matlab 2016a is used to simulate the feasibility and validity of this
algorithm. Through the same parameters and environment, the traditional and improved
ant colony algorithms are compared. Experimental parameters are as follows: m ¼ 50,
a ¼ 1, b ¼ 7, q ¼ 0:3, Q ¼ 12.

Figure 1 show the optimal path of traditional ant colony algorithm on 20� 20
grids. Figure 2(a) and (b) show the convergence curve of traditional and improved ant
colony algorithm on 20� 20 grids respectively. The optimal path can be obtained by
traditional ant colony algorithm is 29.21. It can be obtained at 16 iterations. Since the
target node is introduced into the heuristic function in this paper, the directionality of
the search is increased. Table 1 compares the optimal path length and the number of
iterations on 20� 20 grids for three algorithms. From the Fig. 2(b), it can be seen that
the improved algorithm can converge faster than the traditional ant colony algorithm.
The search efficiency of the algorithm is improved effectively.

Fig. 1. Optimal path of traditional ant colony algorithm on 20� 20 grids
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The experiment conducts on a 30 � 30 grid environment. Figure 3 is the optimal
path of the improved ant colony algorithm. Figure 4(a) and (b) are the convergence
curve of the traditional and improved ant colony algorithm respectively. Table 2
compares the optimal path length and the number of iterations on 30� 30 grids for
three algorithms. By comparing with the traditional ant colony algorithm, the same path
is obtained. Under the same circumstance, the improved algorithm achieves the optimal
path 43.36 only need 11 iterations.

(a) (b)

Fig. 2. Convergence curve of traditional (a) and improved (b) ant colony algorithm on 20� 20
grids

Table 1. Comparasion of optimal path length and number of iterations on 20� 20 grids

Algorithm Optimal path length Number of iterations

Ant colony algorithm 29.21 18
Improved ant colony algorithm 29.21 8
Literature [10] 29.21 14

Fig. 3. Optimal path of improved algorithm on 30� 30 grids
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Therefore, from the above simulation results, it can be seen that the improved
algorithm in this paper reaches the shortest path length as the traditional ant colony
algorithm. However the convergence speed is higher than the traditional algorithm.
Theses indicate that the proposed algorithm has some certain advantages.

6 Conclusions

In this paper, we improve the traditional ant colony algorithm in the path planning
problem of mobile robot. The distance between nodes, the adjustment of the heuristic
function, and the updating mode of pheromones are improved simultaneously. The
experiment is carried out under the same environment. Through experiments, the
algorithm proposed in this paper can find the optimal path through less iteration, and the
search efficiency is improved. The rational path can be obtained by experiments on
different scales. The feasibility and validity of the proposed algorithm are demonstrated.

Acknowledgement. This work was supported by The National Natural Science Foundation of
China (Project No. 61662057, 61672301) and Higher Educational Scientific Research Projects of
Inner Mongolia Autonomous Region (Project No. NJZC17198).

(a)    (b)

Fig. 4. Convergence curve of traditional (a) and improved (b) ant colony algorithm on 30� 30
grids

Table 2. Comparasion of optimal path length and number of iterations on 30� 30 grids

Algorithm Optimal path length Number of iterations

Ant colony algorithm 43.36 19
Improved ant colony algorithm 43.36 8
Literature [10] 43.36 16
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Abstract. The prices of products belonging to the basic family basket are an
important component in the income of producers and consumer spending; its
excessive variations constitute a source of uncertainty and risk that affects
producers, since it prevents the realization of long-term investment plans, and
can refuse lenders to grant them credit. His study to identify these variations, as
well as to detect their sources, is then of great importance. The analysis of the
variations of the prices of the basic products over time, include seasonal pat-
terns, annual fluctuations, trends, cycles and volatility. Because of the advance
in technology, applications have been developed based on Artificial Neural
Networks (ANN) which have helped the development of massive sales forecast
on consumer products, improving the accuracy of traditional forecasting sys-
tems. This research uses the RNA to develop an early warning system for facing
the increase in basic agricultural products, considering seasonal factors.

Keywords: Support vector machines � Cyclic variation � Predictive model �
Multilayer perceptron � Multiple Input Multiple Output � Forecast

1 Introduction

In the markets of agricultural products, the quantities offered and demanded in each
period (month or week) are disparate, which causes variations in prices. During the
harvest periods, a large quantity of the product is offered in the markets, greater than
the amount that is usually demanded for consumption. In these cases, the prices
determined by the market, through supply and demand, are relatively low, lower than
the average price of the year. Conversely, during periods when there is no harvest and
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therefore supply is low, less than the quantity normally demanded, market prices are
high, reflecting the relative scarcity of the product [1–3].

To measure the price fluctuations in the different months of the year, it is very
useful to build seasonality indexes [4]. If you take the average annual price of a
product, it is obvious that the prices of some months would be higher than this average,
while prices in other months will be lower. Percentage, the price average in relation to
itself will be equal to the unit; prices above the average, in relation to this average, will
result in coefficients greater than 1; and prices below the annual average will result in
coefficients less than 1 [5].

On the other hand in terms of predictions, there are probabilistic, deterministic, and
hybrids, such as [4, 5]: Simple Moving Average, Weighted Moving Average, Expo-
nential Smoothing, Regression Analysis, Box-Jenkins method (ARIMA), trend pro-
jections, etc., which have been used to generate forecasts, providing certain advantages
and disadvantages compared to the others. However, these models are still unable to
offer good results in an environment of high uncertainty and constant changes. To this
end, new paradigms based on numeric modeling of nonlinear systems are necessary,
such as the Artificial Neural Networks (ANN), and the Support Vector Regression
(SVR) [7].

The present study proposes to Multi-Layer Perceptron with Multiple-Input
Multiple-Output (MLP and MIMO) as a model for the prediction of prices of the
products that belong to the family basket from Colombian State as the warning level
criterion. Due to the nature of the products, the seasonal factor is integrated.

2 Theoretical Review

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) can learn from data and can be used to construct
reasonable input-output mapping, with no prior assumptions are made on the statistical
model of the input data [6]. ANNs have nonlinear modeling capability with a data-
driven approach so that the model is adaptively formed based on the features presented
from the data [7].

An introduction to ANNs model specifications and implementation and their
approximation properties has been provided from an econometric perspective [8].
Numerous studies have shown that ANNs can solve a variety of challenging compu-
tational problems, such as pattern classification, clustering or categorization, function
approximation, prediction or forecasting, optimization (travelling salesman problem),
retrieval by content, and control [9].

Some studies of ANN application related to financial early warning models have
been conducted by [10] as well as [11] who used ANN as a classifier with a categorical
output. Other authors used ANNs as financial forecasting models with continuous value.
Some of them are [12] as well as [13], who implemented ANNs with a single-step
prediction output. A previous study on ANNs forecasting model was also proposed by
[14] for a multi-step prediction with a direct strategy, so the number of models is equal to
the number of the prediction horizon. In the context of basic commodities price, the need
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for prediction is not limited to one-step forward but could be extended to include multi-
step ahead predictions. Three strategies to tackle the multi-step forecasting problem can
be considered, namely recursive, direct, and multiple output strategies [15]. The Mul-
tiple Input Multiple Output (MIMO) techniques train a single prediction model f that
produces vector outputs of future prediction values [16].

The present study proposes to Multi-Layer Perceptron with Multiple Input and
Multiple Output (MLP-MIMO) as to agricultural products price prediction model
coupled with the coefficient of variation from the Colombian state price reference to the
criteria of warning level.

2.2 Garson’s Algorithm to Determine the Level of Importance

Garson’s algorithm was developed to determine the degree or level of importance of an
entry indicator in an ANN. In many cases related to the measurement of the variables,
the weights in the hidden layer and their interactions in the output network are con-
sidered. A measure proposed by Garson [17] consists of dividing the weights of the
hidden layer into components associated with each input node and then assigning each
of them a percentage of the total weights.

Several studies show the effectiveness of the Garson algorithm to evaluate the
importance of an entry in the RNA [18–20]. The certainty of the algorithm of Garson
was experimentally determined, concluding that the measure is applied successfully
under a wide variety of conditions. As a result of this analysis, the Garson’s algorithm,
on a scale from 0 to 1, determines a unique value for each explanatory variable that
describes the relationship with the response variable in the model.

3 Materials and Methods

3.1 Data

In this study, the data were obtained from the National Administrative Department of
Statistics of Colombia (DANE - National Administrative Department of Statistics),
which provided a sales database of 1054 distributors of products of the basic basket from
the main regions of Colombia in the time period from 2016 to 2018 [21]. The macroe-
conomic variables considered in this study range from food inflation, GDP, employment
rate, minimum wage to commercial balance and capital flow of the nation [22]. Internal
factors such as demand, and substitute and complementary products were also analyzed.
Seasonal factors were incorporated to adjust the predictions obtained [23].

3.2 Methods

The early warning model consists of three main components, namely preprocessing,
predictive model, and post-processing, as depicted in Fig. 1 [24].

Preprocessing: Before all raw data about commodity prices are presented to the
predictive model, the preprocessing operations are applied on the data. The price
surveys were conducted by local government at working days, so the commodity price
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data represent a daily basis with missing values in weekends and holidays. The data are
therefore added to weekly data with the mean function to reduce the volume of the data
for computational efficiency [24].

Predictive models: The predictive models are built from the trained final MLP-
MIMO models obtained from the parameter tuning. Every single commodity in every
city has its own model parameter structure. The weights after training are stored in a
weight database so the model can be reloaded at any time [7].

Post-processing: The output of the predictive model is a normalized price predic-
tion for eight weeks ahead. The post-processing is responsible for denormalizing the
predicted price and determining early warning status based on the maximum predicted
price according to Section ‘Price Spike and Early Warning Status Leveling’. An alert
will be sent to the stakeholders when the price is above a given threshold (on status
‘watch’ or ‘monitoring’) by an email service [10].

Finally, the Garson’s algorithm for determining the level of importance was
developed to determine the degree or level of importance of an input indicator in ANN.
In many cases related to the measurement of the variables, the weights in the hidden
layer and their interactions in the output network are considered. A measure proposed
by [25] consists of dividing the weights of the hidden layer into components linked to
each input node and then assigning each of them a percentage of the total weights.

3.3 Seasonality and Unitary Seasonal Roots

When working with time series, one of the most important questions that the researcher
should ask about is: what is the data generating process (DGP, in English, Data
Generating Process) from which the studied sample comes? The conventional approach
is to try to detect the different components of the DGP. Typically, 4 components are
considered: the trend (stochastic or not), the cyclical part, the purely random compo-
nent and the seasonal component. Precisely, the seasonal component can be of a
different nature: deterministic or stochastic. The most common ways of modeling
seasonality involve: using dummy variables, seasonal autoregressive models (ARMA)

Fig. 1. Model of the early warning system [24].
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(SARMA) or seasonal integration, and later modeling with a SARMA or ARMA
model [10, 13, 20].

If the DGP implies that the stationary behavior of the series is purely deterministic,
then it can be expressed as follows (Ec. 1) [26]:

yr ¼ lþ
X11

i¼1

aiDi;t þ et ð1Þ

Where et is a Gaussian white noise error term, and Di,t is a dummy variable that
takes the value of 1 if the observation corresponds to month i, and 0 otherwise.

Now, if the stationary behavior is stochastic, it is possible that it is stationary or not.
In other words, the behavior can be such that in the event of disturbances in the series,
the system tends to return to its seasonal but non-deterministic behavior (stationary
stochastic seasonality) or that such disturbances, on the contrary, imply a permanent
change in seasonal behavior (non-stationary stochastic seasonality) [10].

The case of stationary seasonal behavior can be represented with SARMA (p,
q) � (P, Q) s models that take the following structure (Ec. 2) [27]:

UðLSÞ/ðLÞyt ¼ HðLSÞhðLÞet ð2Þ

where L represents the lag operator and U(�), u(�), H(�) and h(�) represent polynomials
in the lag operator.

4 Results and Discussion

4.1 Product Selection

According to the United Nations Organization for Agriculture and Food (FAO) the
basic products are divided into [2]:

• Food and non-alcoholic beverages
• Alcohol and tobacco
• Restaurants and hotels
• Dress and shoes
• Rental housing
• Housing services
• Furniture, home equipment
• Health
• Transport
• Communications
• Recreation and culture
• Personal care
• Educational services
• Financial services
• Others
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Taking into account these categories, it is easy to identify each month how much
the value of products and services increases and if inflation remains stable. For the
purposes of the following investigation, the group of foods belonging to the perishable
category will be assumed [10].

Perishable foods are those that are likely to spoil, break down or become unsafe to
consume. They should be stored refrigerated at 40 °F (4.4 °C) or less to remain safe or
prolong the time they will remain healthy because refrigeration slows bacterial growth.
There are two completely different families of bacteria that can be found in food:
“pathogenic bacteria”, the class that causes food poisoning disease, and “spoilage
bacteria”, the class of bacteria that causes food spoilage and develops odors, unpleasant
flavors and textures. Examples of foods that should be kept refrigerated for safety
include meats, poultry, fish, dairy products, soft cheeses, cheesecake, most cakes, all
cooked leftovers and any foods purchased refrigerated or labeled “keep refrigerated”
(“keep refrigerated”). Very few fresh fruits and vegetables will remain safe at room
temperature for a long time, so most should be stored in the refrigerator to prevent
spoilage or mold growth. Some condiments that are safe at room temperature (such as
ketchup, mustard, and soy sauce) can be kept chilled to preserve texture or flavor, but it
is not necessary [7, 9, 20].

To select the products on which the forecasts were made, the f1-score criterion is
used [24]. The ordering by this factor considered both the quantity and the value of
sales for the selection of the most important products. Table 1 presents the values of the
f1-score factor for each selected product.

4.2 Model of the Early Warning System

According to [16], the increase in the price is considered normal when it is below a
certain threshold. The threshold is derived from the government reference price
established by the Ministry of Commerce and the variation coefficient noted (CVtar-
get). There are four degrees of warning status: normal, advisory, monitoring, and
warning, whose criteria are presented in Table 2.

Table 1. Prioritization and selection of products

Code Product Quantity F1-SCORE

P1 Dairy products 815 145879.957
P2 Vegetables 1025 68264.5132
P3 Fruits 1254 67848.756
P4 Condiments 626 81443.7233
P5 Red meats 458 58743.3935
P6 White meats 1478 58489.3872
P7 Fish 325 32722.393
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Table 3 shows the descriptive statistics for this market in each of the months. It can
be deduced from this table that the distributions of the prices in all the months present
an asymmetry towards the right, besides that the distribution in all the months is
leptocurtic. Moreover, the descriptive statistics show an apparently different behavior
in both the average and volatility in each of the months.

Given the above, it is necessary to determine the characteristics of the DGP of each
of the series. For this purpose, the existence or not of seasonal unitary roots in the series
must be identified. For this, as mentioned above, the HEGY seasonal unit root test of
[12] for the monthly series.

Following [21], the need to consider dummy variables that capture the non-
stochastic seasonality in the series is initially taken into account. Therefore, the test
must be performed together with these dummy variables. The results of the test for the
series of prices of the sample under study are presented in Table 4.

The seasonal dichotomous variables are not significant, so they are excluded to
perform the unit root test.

To determine if the non-stochastic seasonality detected contributes to forecast the
price of the sample, 3 ARIMA models will be used to generate price forecasts and
compare them with the real values. In particular, after integrating the series to find

Table 2. Levels of warning status and their criteria.

Level Status Interval price increase related to the reference price

I Normal � 1.85CVtarget
II Advisory (1.85CVtarget, 2CVtarget]
III Monitoring (2CVtarget, 3.14CVtarget]
IV Warning >3.14CVtarget

Table 3. Descriptive statistics for the price of the products under study

Month Min Max Average Variance Standard
error

Coefficient
asymmetry

Kurtosis

January 111,35 443,78 210,2227 4983,6393 70,5949 1,6387 6,6491
February 112,6 577,95 225,2414 9455,707 97,2405 2,2091 8,9857
March 95,45 451,52 206,8382 5273,9794 72,6222 1,6627 6,9786
April 108,01 538,88 224,37 8820,5716 93,9179 1,7576 6,8356
May 93,34 444,99 203,8559 5609,5177 74,8967 1,4112 6,0556
June 112,78 474,36 230,9486 7859,2319 88,6523 1,0148 3,8402
July 111,48 434,4 209,1532 5387,7657 73,4014 1,2029 5,0726
August 105,58 532,06 230,8282 9129,2901 95,5473 1,4682 5,6772
September 113,92 356,33 202,5277 3189,4362 56,4751 0,6726 3,6953
October 105,07 567,6 230,7041 9843,1243 99,2125 1,8015 7,1485
November 114,3 489,76 213,6318 5959,7064 77,1991 2,094 8,6065
December 111,26 621,72 222,0477 11843,8742 108,8296 2,3321 9,3665
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stationary processes and perform a control for possible problems of heteroskedasticity
and autocorrelation of the series, we proceed to model these filtered series (stationary
series) in 2 different ways: with an ARMA model and a model SARMA. On the other
hand, a SARIMA model is estimated for the unfiltered series; that is, without taking
into account the non-stationary seasonality [15]. The best models for each case are
reported in Table 5.

Finally, Table 6 shows the monthly seasonality indices of real prices. The period of
increase in prices began between the months of April-May-June and ended in
November. For the males of 1 and 11/4 of the year, prices reached increases of up to
5% and 3.5% in the month of August and decreased to −6.7 and −4.6% points in
February. For males aged 11/2 and 13/4, the high price season began in April and May
with price increases of up to 3% and 2% in the month of June, respectively. In the low
price season real prices fell to −4% in the month of February.

The reference price of each product and the threshold for each warning status used
in this study are presented in Table 7, according to [16] together with DANE [21].

According to the Garzon’s coefficient, the most relevant internal variables are the
price and year, while in the macroeconomic policies are the foreign investment and the
range of corruption, due to that both destabilize the price of the dollar.

Table 4. Test of Hylleberg, Engle, Granger and Yoo for the future of the sample

Null hypothesis Test statistic

p1 = 0 (non-seasonal unit root) −0,866
p2 = 0 (bi-monthly root) −1,194
p3 = p4 = 0 (unit root for periods of 4 months) 692,315 ***
p5 = p6 = 0 (unit root quarterly) 421,117 ***
p7 = p8 = 0 (semi-annual unit root) 608,359 ***
p9 = p10 = 0 (unit root at the frequency 5p/6) 145,757 ***
p11 = p12 = 0 (annual unit root) 406,645 ***
p2 = p3 = ��� = 0 (all the unit roots are present seasonal) 454,508 ***
p1 = p3 = ��� = 0 (all unit roots are present, seasonal and non-seasonal) 419,209 ***

Note: rejects Ho with a level of significance of: 10% (*), 5% (**), 1% (***).

Table 5. Estimated models

Filtered series Best model SARIMA Best ARIMA model

Crude sugar SARIMA (9,0,2) (0,0,1) with mean 0 ARIMA (10,0,2) with mean 0
Refined sugar SARIMA (2,0,2) (3,0,0) with mean 0 ARIMA (10,0,2) with mean 0
Unfiltered series Best model SARIMA

Crude sugar SARIMA (4,1,2) (2,0,1) with mean 0
Refined sugar SARIMA (1,1,1) (2,0,0) with mean 0
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5 Conclusions

Using monthly data corresponding to the sale of perishable products of the family
basket during the 2016–2018 period, it is found that there is no deterministic seasonal
pattern in the series. However, this study finds the existence of seasonal unitary roots.
In other words, a “summer” can turn into a “winter” due to unforeseen shocks. This
result is used to generate forecasts outside the sample for the 12 months of each year.
Said forecasts with models with filtered series that take into account the non-stationary
stochastic seasonality behave better in terms of measures such as the Mean Absolute
Error, the Mean Absolute Percentage Error and the Root Mean Square Error. That is,
the finding of the existence of non-stationary stochastic seasonality allows us to
improve the performance of forecast models.

Thus, the results imply that although there is seasonality, this is not deterministic.
In this order of ideas, the proposed model presents an improvement over others

Table 6. Seasonality of real monthly prices

Months P1 P2 P3 P4 P5 P6 P7

January 0,957 0,977 0,982 0,995 0,852 0,745 0,794
February 0,933 0,954 0,964 0,961 0,8584 0,847 0,876
March 0,963 0,966 0,967 0,971 0,741 0,725 0,723
April 0,986 0,986 0,995 1,002 0,8154 0,832 0,812
May 0,999 0,999 1,009 1,017 0,9584 0,921 0,941
June 1,041 1,035 1,030 1,019 1,1124 1,190 1,190
July 1,027 1,026 1,020 1,010 1,312 1,3412 1,306
August 1,050 1,035 1,020 1,010 1,214 1,257 1,268
September 1,034 1,023 1,019 1,013 1,154 1,178 1,137
October 1,022 1,014 1,013 1,008 1,175 1,199 1,188
November 1,004 1,010 1,002 1,004 1,185 1,124 1,163
December 0,987 0,989 0,981 0,991 0,851 0,812 0,840

Table 7. Reference price, interval price increase, and the levels of early warning status.

Commodity Interval percentage of price increase relative
to reference price
Normal Advisory Watch Warning

P1 � 5% (5%, 10%] (10%, 15%] >15%
P2 � 25% (25%, 50%] (50%, 75%] >75%
P3 � 10% (10%, 20%] (20%, 30%] >30%
P4 � 5% (5%, 10%] (5%, 10%] >15%
P5 � 5% (5%, 10%] (10%, 15%] >15%
P6 � 25% (25%, 50%] (50%, 75%] >75%
P7 � 25% (25%, 50%] (50%, 75%] >75%
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available in the literature that do not take into account the “stochastic” seasonality due
to the presence of seasonal roots.
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Abstract. Neural networks encounter serious catastrophic forgetting when
information is learned sequentially. Although simply replaying all previous data
alleviates the problem, it may require large memory to store all previous training
examples. Even with enough memory, joint training can be infeasible if access
to past data is limited. We developed generative methods for preventing
catastrophic forgetting that do not require the presence of previously used data.
Developed methods are based on activation maximization of output neurons and
on sampling of posterior probability of data distribution. The methods can work
for regular feedforward networks. The proof of concept experiments were per-
formed on publicly available datasets.

Keywords: Catastrophic interference � Feedforward neural network �
Generative replay

1 Introduction

When an artificial neural network (ANN) is trained on one set of data and then later is
introduced to another set of examples, catastrophic forgetting (or catastrophic inter-
ference) may occur [1]. Catastrophic interference (CI) can be very harmful if one wants
to build truly intelligent systems, as with CI ANNs can solve only isolated problems
[2]. With respect to this, intensive research is devoted to the development of methods
for preventing CI. In spite of some progress, the problem of catastrophic forgetting is
still a big challenge for the Artificial Intelligence community [3].

One of the simplest ways to overcome CI in ANNs is to interleave new training
patterns with rehearsal of previously learned ones [4, 5]. However, storing all
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previously used data may require huge amount of memory. Also, in some cases of
continuous learning, the previously used data may be no longer available. This may
require developing methods that do not rely on the presence of formerly used training
patterns.

Catastrophic interference can be prevented if one defines a different sub-network
for each task to be learned. One way to do this is by differently regularizing the
network’s parameters during training on each new task. In particular, it was suggested
that regularization methods such as dropout and L2 regularization help to reduce the
interference of new learning [5]. More recent examples of this approach, Elastic Weight
Consolidation [6] and Synaptic Intelligence [7], estimate the importance of ANN’s
weights for the previously learned tasks and slow down the changes of important
weights during learning. The shortcoming of regularization approaches is that they
usually require larger network than normally needed. Also, the information about the
importance of the weights (such as Fisher information matrix [6]) should be stored
separately and may occupy a significant amount of memory. Calculation of Fisher
information matrix is required also in another recent approach for overcoming CI by
matching the moment of the posterior distribution of the neural network trained on
consecutive tasks [8].

One another set of methods is based on generation of missing training data. The
newly generated examples can be jointly used with training samples of new tasks. With
recent development of generative ANNs, these methods become more and more
popular. The following section describes the generative methods in more details.

2 Related Work

One of the methods to prevent CI is to create artificial data and to use them for
subsequent training. In early implementation of this strategy, pseudo-data were con-
structed from a noise signal in a method called pseudo-rehearsal [9–11]. A pseudo-
sample in this method is constructed by generating random input vector and passing it
forward through the network in a standard way; the corresponding output vector
becomes the associated target output [9]. The technique of pseudo-rehearsal was used
successfully on simple ANNs [10, 11]. However, pseudo-rehearsal did not demonstrate
scalability to deeper networks due to the difficulty of generating meaningful pseudo-
inputs without supervision.

Recently, novel approaches based on generative models were suggested to prevent
catastrophic interference. The generative models differ from pseudo-rehearsal tech-
niques in that the virtual inputs are generated from learned past input distribution.
Mocanu et al. [12] employed generative capabilities of Restricted Boltzmann Machines
to implement online learning of ANN without forgetting. In deep generative replay
framework suggested by Shin et al. [13], the authors train a generative adversarial
network (GAN) to mimic past data. In yet another approach, the generative model was
integrated into the main model by equipping it with generative feedback connections
using the concept of Variational Auto-Encoder (VAE) [14]. The virtual samples gen-
erated by VAE or GAN were shown to help in preventing catastrophic interference on a
number of tasks.

Overcoming Catastrophic Interference with Bayesian Learning 371



On the contrary to the above generative approaches, in this paper, we suggest
several methods that do not require additional generative sub-network and can be used
for regular feedforward ANNs. One method uses maximization of output activity to
produce artificial samples. Another method uses Markov chain Monte Carlo (MCMC)
approach to sample the probability distribution of input data. The generation of new
samples is performed through a process well-known in physics – Brownian motion.
The details of these methods are discussed in the following sections.

3 Method

3.1 Activation Maximization

One of the disadvantages of using random noise for pseudo-samples is that some output
neurons are activated with very low probability. For a target activation of a desired
output neuron, one can use activation maximization method [15–17]. This method
gained popularity both in machine learning and neuroscience as a mean to study
internal representations of neural networks. The corresponding patterns can be found
by backpropagation starting from arbitrary random initial pattern. The algorithm for
generating such ‘creations’ was first proposed by Lewis [18]. Recently, the original
idea of Ref. [18] acquired larger popularity with respect to ‘dreams synthesis’ for deep
convolutional networks. For example, Erhan et al. [16] visualized deep models by
finding an input image which maximizes the neuron activity of interest by carrying out
an optimization using gradient ascent in the image space. In present work, the pro-
cedure of dreams synthesis has different purpose. Namely, ‘dreams’ are used as virtual
dataset that contains the information about previous tasks.

3.2 Reconstruction of Probability Distribution of Input Data

Previous method finds input patterns corresponding to the maximum activity of the
specific output neuron. However, for proper generalization in ANNs, one needs not
only the samples corresponding to the maximum activity, but also all other input
patterns that can be referred to the same class. In other words, one needs to reconstruct
a posteriori probability function pðxjy ¼ t; hÞ, where x corresponds to the input feature,
y is the output vector, h are the parameters (weights) of the neural network, and t is the
target vector usually represented in one-hot encoding. In general, the calculation of this
prability is an infeasible task. The common current approach is to sample pðxjy; hÞ
using Bayes’ rule and MCMC techniques. According to Bayes’ rule,

p xjy; hð Þ / p yjx; hð Þp xð Þ;

where p yjx; hð Þ is the probability of a given input pattern x to belong to a certain class,
p xð Þ is the a priori probability of input data that can be chosen to have diagonal normal
distribution. Probabilities p yjx; hð Þ are obtained at the output of ANNs using softmax
activation function.

One of the possible methods for sampling p yjx; hð Þ came from physics and uses
stochastic Langevin dynamics that describes Brownian motion in input data space [19].
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Probability p yjx; hð Þ can be matched with “potential energy” U ¼ � ln p yjx; hð Þ, which
coincides with common cross-entropy loss function. Brownian motion in potential
energy landscapes is being intensively studied both theoretically and experimentally in
different physical models [20]. Here we employ the random walk of Brownian motion
to generate artificial input data. It is well-known that following the Langevin dynamics,
the trajectory of the parameters converges to the probability distribution p yjx; hð Þ,
which solves the problem in question.

For a Brownian motion in overdamped regime in an external field, the random walk
is determined by the following Langevin equation [19]:

_x ¼ �rU xð Þþr ln pðxÞþ n; ð1Þ

where n / Nð0; 2I�Þ is the Gaussian noise corresponding to the time step (learning
rate) �, I is the identity matrix. Numerical solution of Eq. (1) can be performed with
predictor-corrector algorithm [21]:

�x ¼ xn þ �F xnð Þþ n; ð2Þ

xnþ 1 ¼ xn þ �

2
F xnð ÞþFð�xÞ½ � þ n; ð3Þ

where F ¼ �rUðxÞþr ln pðxÞ includes the gradient of the loss function and L2
regularization term and serves as a “force” acting on a Brownian particle, xn, xnþ 1 are
two consecutive generated samples.

One shortcoming of the method based on Brownian motion is that it may produce
highly correlated consecutive samples xn, xnþ 1 (slow mixing). Also, it may take
indefinitely long to sample multimodal distributions as the sampler may get stuck in a
local minimum for a long time. Also, strictly speaking, one needs to collect not all the
samples, but only part of them that result in correct target class. In other words, we
need not the whole pðyjx; hÞ, but only the part of it satisfying the condition
argmaxy ¼ argmaxt. For certain shapes of multidimensional surface UðxÞ, the
majority of generated samples may produce very low activity on a target output neuron.
All these shortcomings should be addressed in generative algorithm.

3.3 Restricted Brownian Motion

To overcome the problems of Brownian sampler described in previous section, ideally,
one needs another sampling strategy with fine sampling occurring only near the local
minima of the loss function with very coarse sampling in other areas. Such explorative
behavior is known in nature and is called Levy flight [22]. However, the development
of corresponding sampling methods requires further research. Instead, to improve the
classification result in current paper, we use an approach that combines the activation
maximization and Langevin dynamics. The proposed algorithm consists of the fol-
lowing steps:

1. Activation maximization corresponding to a particular target output t is performed
towards local minimum of the loss function starting from random input pattern.
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2. Brownian motion in the local minimum is performed with only those random steps
allowed that maintain the condition argmax y ¼ argmax t.

3. The steps 1 and 2 are repeated several times starting from different random input
samples for every target vector t.

The limitation of the proposed method is that this restricted Brownian motion
cannot sample the whole space UðxÞ. Instead, the algorithm should be restarted several
times in a hope that all essential minima of the loss function will be found. The number
of restarts becomes the new hyperparameter that should be fine-tuned in experiments.

4 Experiment

Three-layer fully connected feedforward network was sequentially trained on three sets
(A, B, C) of permuted MNIST data [23] of hand-written digits. Permuted MNIST
datasets became a standard for testing of CI prevention algorithms [5, 6]. The input
features were normalized to be within the interval [0, 1]. The MNIST dataset was
divided into 50000 training samples and 10000 validation samples. The neural network
had the following parameters: 784 neurons in input layer corresponding to the number of
pixels in MNIST images, 400 neurons in each of two hidden layers, and 10 neurons in
output layer corresponding to the number of classes (digits). ReLU activation function
was used for hidden layers. The output layer had softmax activation function. Softmax
activation transformed the output of the last hidden layer into probabilities pðyjx; hÞ. The
cross-entropy was used as a loss function. The training was performed with stochastic
gradient descend using learning rate 0.001 and batches of size 32. L2 regularization with
coefficient 10−4 was used during training. The code was implemented in Keras with
TensorFlow backend. The network was first trained for 20 epochs on dataset A, then for
20 epochs on dataset B and, finally, another 20 epochs on dataset C.

In joint training, new training data (B and C) were added while keeping previous
training data (A). With joint training, the network constantly improved its classification
accuracy on test data (Fig. 1a). When network is trained on new data with old training
data thrown away, the catastrophic interference occurs even with L2 regularization
(Fig. 1a). These two cases correspond to two extremes (upper and lower bounds) of
possible learning outcomes. All the methods aimed at prevention of catastrophic for-
getting should have their outcomes in between those extremes.

One of the simplest methods to prevent catastrophic interference is pseudo-
rehearsal. This method uses noise samples together with samples from new dataset for
the subsequent training. In experiment, 50000 random samples were used. The result of
using pseudo-rehearsal is depicted in Fig. 1b. As one can see, pseudo-rehearsal par-
tially helps in overcoming catastrophic interference. However, at the end of training
process, the test accuracy for dataset A still drops below 90% (see Table 1). The reason
of this modest performance is unpredictability of random samples, which do not
activate all the output neurons. For example, no samples with argmaxy ¼ 1 were
generated in our experiments.

In the next experiment we generated artificial samples (dreams) with activation
maximization method. To generate the dreams, the original network was supplemented
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by additional layer with 784 neurons and sigmoid activation function (Fig. 2). This
layer had an input from a single node and output of the layer was fed into the original
network. The constant value of 1 was supplied as an input of this modified network
(Fig. 2). The modification of ANN has a dual purpose: (1) the sigmoid function
effectively restricts all generated values xif g to the range (0, 1) required by original
normalization; (2) additional layer converts the problem of input samples generation
into a standard problem of Bayesian learning of weights W [19] (Fig. 2).

All the weights of the original network were frozen. The weights W of modified
ANN were initialized randomly from a normal distribution with zero mean and vari-
ance 2. The modified network (Fig. 2) was trained with stochastic gradient descent
using 0.01 learning rate and L2 ¼ 0:01 regularization coefficient. The learning stopped
when the change of the loss function during one training epoch was less than 0.0003.
The artificial pattern (dream) was reconstructed from W by applying sigmoid function
r: xi ¼ rðWÞ. The procedure was repeated several times starting from random ini-
tialization of W for every class (every target vector t). The examples of generated
dreams are shown in Fig. 3. The generated patterns do not show the resemblance to the
images of digits, but nevertheless induce high activity of a corresponding output
neuron.
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Fig. 1. Average test accuracy of the network when learning with different approaches. (a) The
upper and lower bounds are determined by joint training (solid line) and by training without
retaining previous datasets (dashed line). (b) The results of training with different methods for
overcoming catastrophic interference: pseudo-rehearsal (dotted line), sampling with activation
maximization (dashed line), a posteriori function sampling over restricted regions (solid line)

Table 1. Average test accuracy of classification on permuted MNIST datasets after 60 epochs of
training. Each experiment was performed 10 times. Reported is the mean (±standard deviation).

Methods Dataset A Dataset B

Catastrophic forgetting – lower bound 0.855 (±0.026) 0.905 (±0.015)
Pseudo-rehearsal 0.885 (±0.010) 0.917 (±0.006)
Activation maximization 0.894 (±0.008) 0.919 (±0.004)
Restricted Brownian motion 0.906 (±0.006) 0.921 (±0.006)
Joint training – upper bound 0.956 (±0.001) 0.953 (±0.002)
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Totally, 2000 dreams were generated per class. The experiments have shown that
further increasing the number of dreams does not improve the classification accuracy.
The evolution of classification accuracy with this method is shown in Fig. 1b. One can
see that activation maximization method does not perform significantly better than
pseudo-rehearsal method.

Finally, we tested the generative method based on restricted Brownian motion. The
same architecture of the network as in previous experiment (Fig. 2) was used for
samples generation. Following the procedure indicated in Sect. 3.3, first, local mini-
mum was found following activation maximization method. Next, artificial samples in
the vicinity of this minimum were collected following Brownian random walk: after
one step of gradient descend, noise n was added to the weightsW according to Eqs. (2)

784 neurons
400 neurons 400 neurons

10 neurons

.

.

.

.
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.

.
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.
1

Fig. 2. Modification of neural network for samples generation with Bayesian learning. The
initial networks with weights represented as solid lines is supplemented with additional weights
W represented with dashed lines.
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Fig. 3. Artificial input samples (dreams) corresponding to original MNIST dataset are obtained
by activation maximization approach.
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and (3). Learning rate � used in Langevin dynamics (2) and (3) was set to be � ¼ 0:1,
L2 regularization coefficient was chosen to be 0.01. L2 regularization in this case
accounts for the prior distribution of learned weights W. To decrease the correlations
between collected samples, only every 10-th sample was saved; 50 restarts from dif-
ferent random locations were performed for each target class and 100 samples were
collected in the vicinity of every local minima. One can see from Fig. 1b and Table 1
that current method much better helps in preventing the catastrophic interference on
dataset A. One reason that method is still not ideal is that the sampled loss function
could have large number of local minima that may not correspond to the original data.
One can observe this situation in Fig. 3 where generated samples do not resemble
original MNIST images. Searching for proper local minima may be one the future
methods for improvement of the current method.

5 Conclusion

In this paper we propose and test generative methods aimed at overcoming catastrophic
interference during consecutive training. These generative methods do not require
separate storage of previous training data, do not need separate generative parts inside
ANNs, and can be used for regular feedforward networks. Proof of concept experi-
ments were performed with fully connected ANNs on dataset of hand-written digits
MNIST. The generalization of this method for deep convolutional networks is also
straightforward. The method based on generation of artificial training samples with
activation maximization did not demonstrate the performance significantly better that
the method based on random samples. The MCMC sampling of posterior probability
using restricted Brownian motion and predictor-corrector algorithm demonstrated
superior performance as compared to pseudo-rehearsal and activation maximization
methods.
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Abstract. Non-dominated sorting genetic algorithm II (NSGA-II) obtains a
great success for solving multi-objective optimization problems (MOPs). It uses
a tournament selection operator (TSO) to select the suitable individuals for the
next generation. However, TSO selects individuals based on the non-dominated
rank and the crowding distance of each individual, which exhausts a lot of
computational burden. In order to relieve the heavy computational burden, this
paper proposes an improved selection operator (ISO) that is based on two
selection schemes, i.e., a rank-based selection (S-Rank) and a random-based
selection (S-Rand). S-Rank is a scheme that selects individuals based on its non-
dominated ranks, in which if the individuals have the different non-dominated
ranks, the individuals with lower (better) ranks will be selected for the next
generation. On the contrary, if the individuals have the same rank, we first select
an objective randomly from all objectives, and then select the individual with the
better fitness on this objective to enter the next generation. This is the S-Rand
scheme that can increase the diversity of individuals (solutions) due to the
random selection of objective. The proposed ISO only calculates the crowding
distance of the last (selected) rank individual, and avoids the calculation of the
crowding distance of all individuals. The performance of ISO is tested on two
different benchmark sets: the ZDT test set and the UF test set. Experimental
results show that ISO effectively reduces the computational burden and enhance
the selection diversity by the aid of S-Rank and S-Rand.
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1 Introduction

Many real-world problems have multiple objectives, but they often conflict with each
other and need to be optimized simultaneously, which are called multi-objective
optimization problems (MOPs) and have attracted a lot of attentions in the past several
years [1–4]. There are three mainly methods to deal with MOPs. The first is to
transform the MOPs into a single objective optimization problem by means of
weighting technique [5]. The second is to use multiple populations to deal with mul-
tiple objectives (MPMO) [6, 7]. The third is to use Pareto dominance relation to obtain
a group of solutions that are not dominated by each other [8]. The first method needs to
set the weight vector of each objective in advance, which has a great impact on the final
result. Moreover, with weight changes, the algorithm needs to be rerun. In practice,
most of the weights are unpredictable. Therefore, the second and the third methods are
generally adopted at present.

Non-dominated sorting genetic algorithm (NSGA-II) [8] is one of the most famous
MOEA variant that uses Pareto dominance relation to solve MOPs. Since objectives in
MOPs often conflict with each other, it is difficult to select better solutions to enter the
next generation during evolution. NSGA-II uses a fast non-dominated sorting (FNDS)
with crowded comparison method (CCM), and a tournament selection operator
(TSO) to deal with this difficulty. After generating a new population Qt, NSGA-II
combines the original population Pt and the new generated population Qt together,
forming the merged population Rt = Pt [ Qt. Then, NSGA-II divides the combined
individuals (solutions) into a set of non-dominated ranks according to FNDS. At last,
NAGA-II conducts the population Pt+1 by adding the individuals from lower (better)
rank to higher rank, until the population reaches the population size NP. Note that the
FNDS is with the CCM, so that not only the rank information of each individual is
obtained, but also its crowding distance. Therefore, if the number of the last rank that
entering the population exceeds the population size, NSGA-II uses the crowding dis-
tance information to select the still needed individuals. After the population Pt+1 forms,
NSGA-II adopts TSO on the population Pt+1 to select individuals for the next gener-
ation, forming the population Qt+1. That is, for a pair of individuals selected from
population Pt+1, the individual with lower (better) rank will be selected to enter the next
generation. In contrast, if the individuals have the same rank, the individual with less
crowed (i.e., larger crowding distance means better) is selected to enter the next
generation. The TSO selects individuals according to the rank and the crowding dis-
tance of each individual to enter the next generation. After the TSO selecting indi-
viduals to form the population Qt+1, the Qt+1 is further undergone the crossover and
mutation operations to form the final offspring population Qt+1.

Therefore, the TSO in NSGA-II can be regarded as rank-based and crowded-based.
However, the operations may take a large computational burden because FNDS not
only calculates the rank information of all individuals in the population, but also their
crowding distance information. In fact, it is not necessary to calculate the crowding
distance of individuals at the ranks before Fl (the last selected non-dominated rank) in
NSGA-II, because all the individuals at these ranks will be added into the next
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generation. We can only calculate the crowding distance of individuals on the rank Fl

to select the NP individuals for the next generation.
In order to reduce the computational burden, we propose an improved selection

operator (ISO) for NSGA-II in this paper to reduce the computational burden, resulting
in the NSGA-II-ISO algorithm. The proposed ISO utilizes a rank-based selection (S-
Rank) and a randomness-based selection (S-Rand) to select the individuals for the next
generation. In S-Rank, if the selected individuals have different ranks, the individuals
have a lower (better) rank will be selected to enter the next generation. In S-Rand, if the
selected individuals have same ranks, we can first randomly select an objective, and then
the better fitness individual of this objective can be selected to enter the next generation.

The difference of NSGA-II and NSGA-II-ISO is shown in Fig. 1. In Fig. 1, Rt is
merged by the parent population Pt and the offspring population Qt in the tth generation
evaluation. In Fig. 1(a), NP individuals are selected from the population Rt to enter the
next generation Pt+1 by FNDS and CCM. Then, the TSO is performed on the popu-
lation Pt+1 to generate Qt+1. In TSO, i and j are two individuals that are randomly
selected from the population Pt+1, irank and jrank are the non-dominated ranks of i and
j that calculated by FNDS, idistance and jdistance are the crowding distance of i and j that
calculated by CCM. The process of TSO can be divided into the following two situ-
ations: (i) If irank is less than jrank, the i

th individual is selected to enter Qt+1; if jrank is
less than irank, the j

th individual is selected to enter Qt+1. (ii) If irank is equal to jrank, the
crowding distance of i and j (idistance and jdistance) should be compared. That is, if
idistance is greater than jdistance, the ith individual is selected to enter Qt+1; if jdistance is
greater than idistance, the jth individual is selected to enter Qt+1. In conclusion, the
NSGA-II need to calculate the crowding distance of each individual in Pt+1. The main
process of NSGA-II-ISO is shown in Fig. 1(b). Similar to NSGA-II, firstly, NP indi-
viduals are selected from the population Rt to enter the next generation Pt+1 by FNDS
and CCM*. The difference between CCM* in NSGA-II-ISO and CCM in NSGA-II is
that CCM* only needs to calculate the crowding distance of the individuals at the rank
Fl while CCM calculate the crowding distance of all the individuals at all ranks. Then,
the TSO is replaced by the ISO in NSGA-II-ISO. The ISO also can be divided into two
situations, the first situation is the same as the TSO (i); and the second situation is that
when irank is equal to jrank, the fitness value of i and j on the m

th objective are compared,
where m is an objective that randomly select from all the objectives. fi(m) and fj(m) are
the fitness values of i and j on the mth objective. The individual with better (smaller)
fitness value will be selected to enter Qt+1. That is, the crowding distance of the
individuals before the rank Fl are not needed to calculated, and so the ISO reduce the
computational burden of NSGA-II.

NSGA-II

FNDS and CCM

TSO

i, irank<jrank

i, irank =jrank and 
distance>jdistance

F

i

i
i

NSGA-II-ISO

FNDS and CCM*

ISO

i, irank<jrank

i, irank=jrank and 
i(m)< fj(m)

,i

,i
f

(a) NSGA-II (b) NSGA-II-ISO

Fig. 1. The difference between NSGA-II and NSGA-II-ISO. (a) NSGA-II. (b) NSGA-II-ISO.
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The following parts of this paper are organized as follows. Related works of MOPs
are introduced in Sect. 2. Section 3 elaborates on NSGA-II-ISO. Experimental results
are shown in Sect. 4. Finally, Sect. 5 introduced the conclusions and future works.

2 Related Works of MOPs

There are many researches on MOPs. According to their different features, they can be
divided into the following groups. Some researchers focus on the aggregation approach
to solve MOPs [5, 9]. Parsopoulos et al. [5] utilized a weighted aggregation technique
to help the PSO searching the PFs. That is, MOPs are transformed into a single
objective optimization problem by using weights of objectives. However, the weight of
each objective is hard to determine, and they have an impact on the performance of
MOPs. To solve this problem, Zhang et al. [9] proposed a new decomposition-based
method to determine the weight of each objective, namely, the multi-objective evo-
lutionary algorithm based on decomposition (MOEA/D). MOEA/D decomposes the
MOPs into several sub-problems, and optimizes the sub-problems simultaneously,
which has low computational complexity during evolution.

One of the most significant researches about MOPs is the MPMO proposed by
Zhan et al. [6]. In recently years, the MPMO framework has been widely studied by
researchers to extend to many-objective optimization [7], differential evolution [11],
group search [12], invasive weed optimization [13], and multi-objective cloud system
[14]. Using the concept of Pareto dominance to deal with MOPs is very popular. Deb
et al. [8] proposed NSGA-II that selected the next generation according to the ranking
of each individual with PF. Subsequently, a many-objective optimization method
(NSGA-III) [10] based on NSGA-II is proposed by Deb and Jain to solve problems
with box constraints. NSGA-II has been used to the real-world problems, such as
single-objective transmission planning [15], optimal feature selection [16], and mul-
tiobjective beampattern optimization [17].

3 NSGA-II-ISO

3.1 ISO

According to NSGA-II, TSO has two aspects to improve: (i) It takes a lot of compu-
tational burden due to the calculation process of the crowding distance of each indi-
vidual. (ii) It may select many repetitive individuals and so that the diversity of
population (solutions) is reduced. Correspondingly, in the processing of forming pop-
ulation Pt+1 from the population Rt, TSO can be improved from two aspects. On the one
hand, if the rank Fl is the last non-dominated rank to be added into the population Pt+1,
the crowding distance of the individuals at ranks before Fl are not necessary to be
calculated, since all of them can be added into Pt+1. It should be noticed that the
crowding distance of individuals in Fl should be calculated to make sure NP individuals
in Pt+1. Therefore, the CCM can be only performed on the individuals at rank Fl.
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Based on the above considerations, the detail of ISO is shown in Algorithm 1.
Firstly, Qt+1 is initialized to empty (Step 1). Then, when |Qt+1| is smaller than NP (Step
2), we randomly select two individuals i and j from Pt+1 (Step 3), and compare their
ranks (irank and jrank) (Step 4). If irank is not equal to jrank, the lower (better) rank
individual will be selected to add into Qt+1 (Step 5). Otherwise, the individual with a
better fitness value for a random objective m (m is selected from all the objectives) will
be selected to add into Qt+1 to ensure the diversity of selection (Step 7–Step 8).
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3.2 Implementation of ISO Based NSGA-II

The pseudocode of NSGA-II-ISO is shown in Algorithm 2. In Algorithm 2, t denotes
the current evolutionary generation, tmax denotes the maximum evolutionary genera-
tions. Pt is the parent population of the tth generation while Qt is the offspring popu-
lation at the tth generation. F stores all the different ranks formed by FNDS, with Fi

denoting the ith rank. In initialization process, a parent population Pt with NP indi-
viduals is randomly generated, and t is initially set to 0 (Step 1). The NSGA-II-ISO not
stopped until the generation equals to tmax (Step 3). The Rt stores the merged popu-
lation by combining Pt and Qt, whose size is 2NP (Step 4). Then, FNDS is performed
on the merged population Rt to obtain the non-dominated ranks of individuals in Rt,
whose ranks are stored in the set F (Step 5). Next, the individuals with lower (better)
ranks will be firstly selected to enter the next generation, until there are NP individuals
in the population. Particularly, NSGA-II-ISO uses the CCM* to select the individuals
at the last non-dominated rank to enter the next generation (Step 6–Step 11). Finally,
the ISO, crossover, and mutation operators are performed on Pt+1 (Step 12–Step 13).
The whole evolutionary process not stops until tmax generations is satisfied.

4 Experiments and Results

4.1 Experiments Setup

The experiments are conducted on 12 functions to test the effectiveness of ISO. These
functions consist of two groups. The first group is selected from the ZDT test sets [18],
i.e., ZDT1-ZDT4, and ZDT6. The second group is the UF test sets selected from
CEC’2009 [19], which includes two-objective unconstrained problems UF1-UF7.

To verify the advantages of ISO, we consider other two section operators in NSGA-
II as comparisons: (i) The original selection operator in NSGA-II, i.e., the TSO.
(ii) The IND operator, that is, when the selected individuals have the same rank, we
randomly select an individual to enter the next generation, resulting in NSGA-II-IND.
The relevant parameters are set as follows. NP is set to be 100 for all the algorithms on
all the test problems. The maximum number of function evolutions is 25000 (referring
to tmax= 250). The crossover probability pc is set to be 0.9. The mutation probability pm
is set to be 1/D, where D is the dimensions of the problem. The distribution indexes for
crossover and mutation operators are ηc= 20 and ηm= 20, respectively. Each algorithm
runs 30 times independently.

4.2 Results Comparisons

(1) The comparison of IGD results
Table 1 shows the mean and standard variance of the inverted generation distance
(IGD) obtained by the algorithms (NSGA-II, NSGA-II-ISO, and NSGA-II-IND) with
30 independent runs on ZDT test sets and UF test sets. The best results of each
algorithm are signed with boldface. The results show that NSGA-II-ISO outperforms
NSGA-II and NSGA-II-IND in dealing with ZDT and UF test sets. For ZDT1 and
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ZDT2 whose objectives are all unimodal, NSGA-II-ISO still performs better than
NSGA-II and NSGA-II-IND. It indicates that NSGA-II-ISO performs better on the
MOPs with simple objectives. Meanwhile, NSGA-II-ISO also obtained the best results
on ZDT3, ZDT4, and ZDT6.

The Pareto optimal fronts of UF test sets are complicated. Table 1 demonstrates
that NSGA-II-ISO takes the first place in dealing with the UF test sets, especially on
UF1, UF3, and UF7 test set. For UF2, UF4, UF5, and UF6, NSGA-II-ISO shows its
competitive performance.

(2) The non-dominated solutions of the final evolution
To further investigate the effectiveness of NSGA-II-ISO, we investigate the non-
dominated solutions of ZDT test sets and UF test sets in the last generation, respec-
tively shown in Figs. 2 and 3. As shown in Fig. 2, although all the algorithms can
obtain the non-dominated solutions, NSGA-II-ISO provides the best solutions that
approximating the true PFs and has the better diversity to spread along the PF.

Table 1. The mean and standard deviation value of IGD with 30 Times

Functions NSGA-II-ISO NSGA-II-IND NSGA-II Func NSGA-II-ISO NSGA-II-IND NSGA-II

ZDT1 Mean 3.08e−03 9.98e−03 9.96e−03 UF2 2.42e−02 3.53e−02 2.93e−02

Std 2.97e−06 3.08e−05 3.09e−05 3.49e−04 3.45e−04 2.74e−04

ZDT2 Mean 3.04e−03 9.44e−03 9.56e−03 UF3 3.76e−03 2.74e−02 1.71e−01

Std 2.79e−06 2.80e−05 2.83e−05 3.54e−04 2.22e−04 9.06e−03

ZDT3 Mean 8.16e−01 2.73e+ 00 2.75e+00 UF4 5.72e−02 9.54e−02 9.71e−02

Std 2.08e−01 2.31e+00 2.35e+00 2.34e−03 2.83e−03 2.94e−03

ZDT4 Mean 7.12e−03 3.67e−02 2.66e−02 UF5 2.99e+00 5.25e+00 9.77e+00

Std 1.79e−05 1.10e−03 2.11e−04 1.10e+01 8.12e+00 3.28e+01

ZDT6 Mean 1.50e−02 5.63e−02 3.17e−02 UF6 1.32e−02 2.10e−02 8.45e−02

Std 7.83e−05 1.02e−03 3.19e−04 1.12e−04 2.43e−04 1.90e−03

UF1 Mean 1.05e−03 6.70e−03 1.22e−02 UF7 5.75e−03 7.82e−03 1.18e−02

Std 1.76e−05 2.43e−05 3.61e−05 1.59e−05 1.97e−05 5.16e−05
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Fig. 2. Final non-dominated solutions of the ZDT problems in all the 30 runs. (a) ZDT1.
(b) ZDT2. (c) ZDT3. (d) ZDT4.
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Figure 3 shows the final non-dominated solutions obtained by different algorithms
by averaging over 30 independent runs in dealing with UF test sets. From Fig. 3(a), (c),
and (e), we find that the number of no-dominated solutions obtained by NSGA-II-ISO
and the two comparison algorithms are few or far from the true PF values in optimizing
UF1, UF3, and UF5. In this case, NSGA-II-ISO still provides better non-dominated
solutions which are more approximate to the true PFs than other algorithms. For UF2,
UF4, UF6, and UF7 test sets, both the NSGA-II-ISO and NSGA-II obtain promising
solutions. In contrast, NSGA-II-IND obtains worse solutions than NSGA-II-ISO and
NSGA-II.

(3) The average time of CPU used by each algorithm
To test the algorithm efficiency, we compare the average elapsed time of the algorithms
running for 30 times, with the time unit represented by milliseconds (ms). The best
results with minimum expenditure of time are signed in boldface. Results are shown in
Table 2.

From the table, we find both NSGA-II-ISO and NSGA-II take more time than
NSGA-II-IND. The elapsed time of NSGA-II-ISO is second to NSGA-II-IND. For
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Fig. 3. Final non-dominated solutions of the UF problems in all the 30 runs. (a) UF1. (b) UF2.
(c) UF3. (d) UF4. (e) UF5. (f) UF6. (g) UF7.

Table 2. The mean and time of CPU used by different algorithms runs 30 times

Time (ms) NSGA-II NSGA-II-ISO NSGA-II-IND Time (ms) NSGA-II NSGA-II-ISO NSGA-II-IND

ZDT1 2.77e+02 2.65e+02 2.55e+02 UF1 2.39e+02 2.23e+02 2.28e+02

ZDT2 2.68e+02 2.57e+02 2.47e+02 UF2 2.79e+02 2.72e+02 2.66e+02
ZDT3 2.66e+02 2.54e+02 2.60e+02 UF3 2.77e+02 2.55e+02 2.51e+02

ZDT4 1.56e+02 1.40e+02 1.40e+02 UF4 2.78e+02 2.62e+02 2.62e+02
ZDT6 2.79e+02 2.63e+02 2.36e+02 UF5 2.47e+02 2.45e+02 2.45e+02
UF1 2.39e+02 2.30e+02 2.25e+02 UF6 2.50e+02 2.31e+02 2.26e+02

UF2 2.79e+02 2.72e+02 2.66e+02 UF7 2.48e+02 2.43e+02 2.38e+02
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some test problems, NSGA-II-ISO performs best in all the compared algorithms, such
as ZDT3 and UF1. But for ZDT4, UF4 and UF5, the runtime of NSGA-II-ISO and
NSGA-II-IND is the same. This verifies the effectiveness of ISO in reducing the
computational burden than the original selection operator in NSGA-II.

5 Conclusion

An improved selection operation (ISO) is introduced in this paper to help NSGA-II
efficiently solve MOPs. Based on the dominance relationship of the selected individ-
uals, ISO combines S-Rank with S-Rand to reduce computational burdens and improve
algorithm efficiency. Meanwhile, ISO can maintain the diversity of population by
randomly selecting an objective to calculate the fitness value of individuals. We
compare the performance of NSGA-II and NSGA-II-ISO on 12 test functions.
Experimental results verify the effectiveness of ISO. In the future, we will consider a
decision-making solution method to further improve the performance of NSGA-II-ISO
in solving MOPs.
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Abstract. Liquid State Machines (LSMs) are a computational model
of spiking neural networks with recurrent connections in a reservoir.
Although they are believed to be biologically more plausible, LSMs have
not yet been as successful as other artificial neural networks in solving
real world learning problems mainly due to their highly sensitive learn-
ing performance to different types of stimuli. To address this issue, a
covariance matrix adaptation evolution strategy has been adopted in
this paper to optimize the topology and parameters of the LSM, thereby
sparing the arduous task of fine tuning the parameters of the LSM for
different tasks. The performance of the evolved LSM is demonstrated on
three complex real-world pattern classification problems including image
recognition and spatio-temporal classification.

Keywords: Liquid State Machine · Evolution strategy · CMA-ES ·
Pattern recognition

1 Introduction

The human brain is a complex system which has the capabilities to learn mul-
tiple types of knowledge in dynamical scenarios. Although artificial neural net-
works and deep learning have recently made significant progresses in accomplish-
ing many human-level cognitive tasks [8], their efficiency and flexibility remain
weaker than the human brain. Most deep neural network models are based on
the simplified and highly abstract neural model containing only matrix opera-
tions and non-linear activation functions, and the learning algorithm they use
relies on error back-propagation through the feedforward structure. Therefore,
there are still gaps need to be filled between the capability of artificial neural
networks and human cognitive systems [10].
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As a biologically more plausible framework based on spiking neurons [3],
Liquid State Machines (LSMs) were proposed to mimic actual neural activations
in brain [9]. An LSM contains random and sparse recurrent connections in the
reservoir to convert spatio-temporal properties into high-dimensional states and
hence provides linear separability for classification, which could highly enhance
the computational capabilities and flexibility [9]. LSMs are believed to be more
easily trained than feedforward spiking neural networks since only the read-out
weights need to be trained [9].

Although the topology as well as the weights in the reservoir of the original
LSM is randomly generated and fixed, increasing efforts have been paid to opti-
mize the topology and the weight of the reservoir using both unsupervised and
supervised learning. Most unsupervised methods are inspired by the Hebbian
learning rules [12], in particular spike time depends plasticity (STDP) rules [15].
Although the STDP has been widely used in training spiking neural network,
such Hebbian learning rules are still not very efficient and their performance
is sensitive to input encoding and feature extraction. Among various issues, it
has been found that there is strong interference in learning the structures in
the sensory input using plasticity rules [2], which means that the previously
learned structure information will be overwritten when learning a new pattern.
Meanwhile, synaptic plasticity can only adjust the strength of synapses while
the structure is fixed in the initialization, which limited the learning capabilities
of those learning rules.

In addition to supervised and unsupervised learning methods, evolutionary
computation has also been adopted to improve the performance of spiking neu-
ral network (SNN). For example, a multi-objective evolutionary algorithm was
used to optimize the complexity and parameters of a feedforward spiking neural
network [5]. A genetic algorithm is employed to optimize a SNN [1] and has
showed considerable performance enhancement in pattern learning accelerated
using graphics processing units. The evolving spiking neural network (eSNN) is
also one popular framework of neuroevolution in spiking neural network. The
architecture of eSNN is to learn input pattern by creating output neurons, each
of them being labelled with a certain class label [13]. However, the eSNN is
only used for training the readout layer in eSNN, denoted reSNN [6]. A covari-
ance matrix adaptation evolution strategy (CMA-ES) was used to optimize a
gene regulatory network that regulates the parameters of a BCM plasticity rule,
named GRN-BCM, to tune the structure of an SNN [11].

This paper proposes a framework for optimization of the topology and param-
eters of the LSM using the CMA-ES to generate an initial LSM before learning
starts. Here, the structure of the LSM is described by a probability distribu-
tion, whose parameters are subject to optimization. The CMA-ES is adopted in
this work as it has been shown to be efficient and effective for optimization of
continuous, non-linear and non-convex problems [4]. We show that by avoiding
fine tuning of the structure and the synaptic strength of the LSM, the proposed
framework is able to achieve robust and high learning performance on complex
real-world classification problems.
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2 Liquid State Machines

2.1 Spike Train Encoding

Different from conventional neural networks, information processing between
neurons is in the form of spike trains in SNNs, which consist of spikes with
various intervals. Thus, depending on different scenarios, the data of sensory
input needs to be transformed from continuous variables into discrete temporal
spike times or spike rates. An appropriate encoding method is therefore signifi-
cant for pattern recognition, which converts continuous signals into spike trains.
Typical encoding schemes include rate coding, count coding, binary coding, tim-
ing coding, and rank order coding [3]. In this work, an efficient timing coding
method, named square cosine encoding [17], and a differential encoding method
for spatial-temporal data [2] are adopted.

The square cosine encoding utilizes several cosine encoding neurons to encode
continuous input variables into spike times. Each real value will be converted into
several values with limited range, and these values will determine when spikes
appear in the spike train. The parameters of cosine are uniformly distributed so
that the spike times generated by the encoding neurons are different.

For spatial-temporal data, the difference between two time-adjacent data is
the most significant feature. Therefore, the encoding method in [2] is employed,
where the data in each sequence will be processed according to Eqs. (1) and (2).

M = ||[Δ(D1,D2), ...,Δ(DN−1,DN )]|| (1)

Δ(Dn−1,Dn) =
{

1 ifΔ(Dn−1,Dn) ≥ threshold · max(M(·))
0 else

(2)

where M represents a sequence and Dn represents an individual data in that
sequence. If the difference is greater than a threshold, the encoding neuron will
fire at that moment, otherwise, it will keep silent.

2.2 Network Topology

The topology of the LSM consists of three main components as shown in Fig. 1,
which are the input layer with encoding neurons introduced above, a reservoir of
spiking neurons and a readout layer that extracts liquid states from the reservoir.
The encoding layer only contains excitatory neurons that convert the input data
into the spike trains. The number of encoding neurons depends on the dimension
of the input and the encoding strategy. The reservoir is a kind of recurrent neural
network, where the synapses are randomly generated and the neurons are either
excitatory or inhibitory. The reservoir contains NE = 400 excitatory neurons
and NI = 100 inhibitory neurons, following the 4:1 ratio between excitatory
and inhibitory neurons [9]. The readout layer also contains the same number
of neurons as the reservoir, with each neuron receiving projections from only
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Fig. 1. The network topology of the LSM.

one specific neuron in the reservoir without a time delay. Therefore, the readout
layer is composed of Nread = 500 readout neurons.

The synapses between the encoding layer and the reservoir are Sen−E and
Sen−I , representing the synapses of the encoding neurons to excitatory and
inhibitory neurons, respectively. Both Sen−E and Sen−I only randomly choose
30% excitatory and inhibitory neurons in the reservoir as post-synaptic neurons,
and the connection probability is Pen−E = 0.01 and Pen−I = 0.01, respectively.
Note that the delay of Sen−E and Sen−I are both 0 ms.

There are four types of synapses in the reservoir according to pre- and post-
synaptic neuron types, which are SEE , SEI , SIE and SII . The synapses in the
reservoir are recurrent and randomly generated in the initialisation and remain
unchanged throughout the simulations. The connectivity of the reservoir adopted
in this work is the model introduced in [9], which randomly allocates the neurons
in a ‘column’ (5 × 5 × 10). The connection probability of two neurons is depen-
dent on the Euclidean distance of each two neurons, and the policy is described
in the following:

Pij = C · e−(D(i,j)/λ)2 (3)

where D(a, b) is the Euclidean distance between two neurons, λ = 2 is a impor-
tant parameter that can control the density of the connection. The value of C
for each type of synapses are set as CEE = 0.3, CEI = 0.2, CIE = 0.4, and
CII = 0.1.

The initial strength of each synapse will be set by picking values randomly
from the gamma distribution after all synapses are generated. This work uses
the original setting, the mean of the gamma distribution is set to AEE = 30 mA,
AEI = 60 mA, AIE = −19 mA and AII = −19 mA. For the input synapses,
parameter Aen−E = 18 mA for a projection onto an excitatory neuron and
Aen−I = 9 mA for a projection onto an inhibitory neuron. The variance of the
gamma distribution is set to the same to its mean. In this work, a scaling param-
eter f = 1 has been added to all synapses to generally adjust strength in the
initialisation. Additionally, delays also exist when the spikes transmit through
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synapses in the reservoir, which is tdelay−E = 0.8 ms for SEE and SEI , and
tdelay−I = 1.5 ms for others. To simplify the readout process, no delay exists
between the reservoir and the readout layer.

2.3 Neurons and Synapses

This work employs I&F neural model [3] in the reservoir. The dynamics of the
post-synaptic neuron is described as in Eq. (4)

τn
dui(t)

dt
= urest − ui +

∑
j

Iij(t) · R (4)

where ui is the trajectory of the membrane potential, urest is resting potential, τn

is membrane time constant, R = 1Ω is the impedance. The term Iij(t) describes
the synaptic model and the synaptic dynamics is given in Eq. (5)

Iij(t) =
∑

f

wij · e(−
t

τs
) · δij(t − t

(f)
j ) + I0 (5)

where δij(t− t
(f)
j ) is the Dirac function of post-synaptic neuron i to pre-synaptic

neuron j, t
(f)
j is the firing time of the pre-synaptic neuron, τs is decay time

constant and I0 is the inherent injection to the pre-synaptic neuron.
The post-synaptic neuron fires a spike when ui reaches the threshold uth,

and then ui is reset to urest. After a spike is fired, the post-synaptic neuron will
keep silent in the refractory period tref .

In the following experiments, the initial parameters for the neurons and
synapses are ui = 13.5 mv, τn = 30 ms, uth = 15 mv, Iij = 0 mA, I0 = 13.5 mA
and tref = 3 ms, τs = 3 ms for the excitatory neurons, tref = 2 ms, τs = 6 ms for
inhibitory neurons, respectively. Besides, Euler integration with a time step of
1 ms is adopted.

2.4 State Extraction

The reservoir converts spatio-temporal properties into high dimensional states,
and the readout layer extracts the states from the reservoir for linear classifi-
cation. Each readout neuron extracts the state from a specific neuron in the
reservoir, the model of readout neurons is also I&F but it only calculates the
membrane potential without firing spikes and without a threshold. The mem-
brane time constant of the readout neurons is τread = 30 ms and the membrane
potential is uread = 0 mv.

Each readout neuron receives spikes from a single neuron (excitatory or
inhibitory), thus the membrane potential only reflects the spike counts and spike
time of per-synaptic neurons. The state defined in this work is the membrane
potential of readout neurons at the end of each spike train converted from the
spatio-temporal data injected into the network, then the membrane potential is
set to the initial value.
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After all sequences are injected into the network and states are obtained,
a linear classifier (Softmax) is employed in this work to evaluate the score of
pattern recognition.

3 Parameter Optimization with CMA-ES

3.1 CMA-ES

It has been found that the final classification performance of the LSM heavily
depends on the parameter settings of the neurons and the reservoir connectiv-
ity. Optimization of the LSM parameters can be regarded as a non-linear and
non-convex optimization function. It is computationally prohibitive to obtain
the global minimum of the problem, we therefore aim to get an approximate
minimum using a derivative-free optimization method instead. In this work,
the covariance matrix adaptation evolution strategy (CMA-ES) is employed to
search for the optimal initial parameters of the LSM.

In the CMA-ES, a population of offspring individuals is generated by sam-
pling from a multivariate normal distribution [4]. The offspring s

(g+1)
k is gener-

ated as follows:

s
(g+1)
k ∼ m(g) + σ(g)N (0,C(g)) for k = 1, . . . , η (6)

where g = 0, 1, 2... is the generation number, η is the population size. The
multivariate normal distribution of the next generation will be recalculated by
updating the mean m(g), the covariance matrix C(g) and the step-size σ(g). Only
the best individuals out of the offspring population will be selected as the parent
for the next generation, where γ < η is the number of the parent population size,
and typically γ ≈ η/2.

A small offspring size can lead to fast adaptation of C(g) and reliable distribu-
tion for CMA-ES. Therefore, CMA-ES is more suited for parameter optimization
of computationally expensive problems.

3.2 Parameter Selection

There are many parameters in the LSM but only some of them are very sensitive
to the input signals. The feature of spike trains encoded from various input
sequences needs a unique density of connections to map the data set onto a high-
dimensional space with a good linear separability. According to the connection
rule, λ is a parameter controlling the density of connections and the number
of synapses in the reservoir, which directly affect the response intensity of the
reservoir to the stimuli. Additionally, the synaptic strength should be adjusted
synchronously to adapt density of connections. In this work, all distribution of
the synaptic strength is fixed, thus the distribution of the synaptic strength can
be decided by the factor of f . Thus, λ and f will be subject to evolutionary
optimization.
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As to the neuron level, the fluctuating intervals between two spikes may lead
to different membrane potentials in post-synaptic neurons. However, whether
these differences can be captured depends on the membrane time constant. A
too short membrane time constant may miss some important information, but
a too long membrane time constant may record too much noise. Therefore, the
membrane time constant τn, a scale of the neuron to dispose of temporal infor-
mation between spikes is also to be optimized.

Thus, only three most critical parameters (λ, τn and f) are to be optimized by
the CMA-ES to reduce the computational cost and the parameters are initialized
empirically. The objective function of CMA-ES is the test accuracy in each
pattern recognition task. The dimension of the search space is thus n = 3 and
the η = 4 + �3 × log(n)� = 7 and γ = �η

2 � = 3 are selected by default as
recommended in [4]. Finally, the boundary condition is set such that all inputs
are positive.

4 Pattern Recognition Results

The performance of the proposed framework is investigated with image recogni-
tion, speaker recognition and human motion recognition tasks. The simulation
tools used in this work is Brian2 [16]. Three independent runs are performed for
the CMA-ES. The proposed method is compared with a grid search and some
existing LSM models. The range of the grid search is empirically determined and
the grids are uniformly distributed with 10 steps in each dimension.

Table 1. Comparative results of pattern recognition tasks.

Architectures MNIST Jv KTH

1 Softmax regression 92.6% - -

2 LSM with STDP [2] - 90.8% 66.7%

3 GRN-BCM [11] - - 88.15%

4 LSM with grid search 86.4% 90.2% 98.42%

5 LSM with CMA-ES 88.5% 94.8% 98.55%

Feed-forward SNNs have been used for classification tasks, especially for the
data without temporal properties such as image data [18]. However, little work
has been reported on the application of the LSM image data classification. The
image data used in this work is MNIST dataset, which contains 60000 training
data and 10000 testing data, where each data is a 28 × 28 matrix. In this work,
the 28×28 matrix is converted to 784 dimensional input. The training data and
testing used for parameters searching are 3000 and 500 randomly selected from
training data and testing data, respectively. Each dimension is encoded by the
square cosine encoding with one encoding neuron and the duration of encoding
is 30 ms. The initial parameters are λ = 0.9, τn = 0.5, f = 1.2, and σ = 0.1 for
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CMA-ES. The range of the grid search for image recognition is τn ⊆ (10, 100),
λ ⊆ (0.25, 2.5), f ⊆ (0.15, 1.5).

The dataset adopted for speaker recognition task is taken from [7], which
contains 9 male speakers uttered two Japanese vowels (Jv) /ae/ successively.
Each utterance produced by a speaker forms sequences and each sequence is
composed of 12 features. The number of the sequences is 640 in total including
one set of 270 sequences for training and the other set of 370 sequences for testing.
Each feature input is encoded by 3 encoding neurons and the duration of each
data in the sequences is 10 ms for this classification task. The initial parameters
of CMA-ES are λ = 0.5, τn = 0.5, f = 0.5, and σ = 0.5. The range of parameters
for speaker recognition is τn ⊆ (30, 300), λ ⊆ (0.2, 1) and f ⊆ (0.5, 1).

The human motion recognition needs a high dimensional spatial-temporal
video data. For example, the KTH [14] is a data set consisting of 2391 video
files. There are six actions including boxing, clapping, walking, waving, and
jogging. Each video contains 160 × 120 pixels with a length of four seconds in
average and is taken by a static camera with 25fps frame rate. For this task,
the encoding method is based on Eqs. (1) and (2). To reduce the computational
complexity, each frame of the video is downsampled to 32 × 24 with the 5 × 5
max pooling operation. The firing threshold of encoding neuron is 0.2. The initial
parameters of CMA-ES are λ = 0.5, τn = 0.5, f = 0.5, and σ = 0.5. Meanwhile,
the parameters of the grid search for human motion recognition are in the range
of τn ⊆ (30, 300), λ ⊆ (0.2, 2) and f ⊆ (0.1, 1).
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Fig. 2. (a) (b) (c) Average classification accuracy of the LSM over the generations. (d)
(e) (f) average parameter values of τ , λ and f over the generations.

Table 1 presents the pattern recognition results obtained by the five algo-
rithms under comparison in test data. The first algorithm is a softmax regres-
sion, which is the most common algorithm for multi-class classification. The
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softmax regression directly uses 784 dimensional data of MNIST as the input
without any hidden layer. The results of the LSM with the STDP are taken from
[2], where the STDP used to train the synapses between the excitatory neurons
in the reservoir. Recall that GRN-BCM [11] is a feed-forward framework reg-
ulated by the BCM plasticity whose parameters are optimized by a CMA-ES.
The performance of the proposed framework is better in Jv and KTH but not
good enough for MNIST. The reason could be the recurrent connections provide
feeble feature extraction on the data without spatio-temporal information.

Figure 2(a) (b) (c) presents the average accuracy, while Fig. 2(d) (e) (f) shows
the average evolution paths of τ , λ and f . The best solution for image recognition
appears at about the 20-th generation but the performance heavily fluctuates
during the optimization. These results indicate that only a small number of
generations are required to find the optimal solutions and the performance of
image recognition is definitively sensitive to the selected parameters. To our best
knowledge, this is the first work reporting that an LSM is able to achieve similar
performance to conventional neural networks without convolution, demonstrat-
ing effectiveness to optimize the topology of the LSM and the critical parameter
in the neurons. The experiment for speaker recognition dataset runs 50 genera-
tions in total, although an acceptable solution appears around the 25-th gener-
ation. The evolution path of τ shows a larger variation range, indicating that τ
has a strong relationship with the spatio-temporal information of Jv. Finally, we
can see that the convergence process is more stable than that for image recogni-
tion. The convergence of evolution progress for human motion recognition is the
most stable and the best solution is obtained within approximately 10 genera-
tions. Parameter λ is larger than that of the other tasks in the evolution path,
which means more connections is required to deal with the spatial-temporal
information.

5 Conclusion and Discussion

This work aims to optimize three critical parameters in the LSM using an evolu-
tion strategy, two specifying the connectivity of the reservoir and one parameter
in the spiking neurons. Our empirical results on three complex classification
tasks demonstrate the proposed method is computationally acceptable and has
enabled the LSM to perform robustly on complex tasks and achieve competitive
performance. Our results clearly indicate that the LSM optimized using CMA-ES
has achieved better performance on spatio-temporal data than the state-of-the-
art LSM models, in particular on the human motion recognition task. Note,
however, the performance of the LSM on the image recognition task is not yet
as good as that of other learning models. This could be attributed to the fact
that recurrent connections do not provide advantages over other feed-forward
models on the data without spatio-temporal information.

This connectivity of the reservoir is described globally by one probability
distribution. In the future, we are going to exploit the possibility of generating
more complex connectivity structures for the reservoir to further improve the
learning performance of the LSM.
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Abstract. In this work, we propose an algebraic algorithm called cou-
pled exact joint block decomposition (CE-JBD) for joint independent
subspace analysis (JISA), an extension to joint blind source separation.
In JISA, tensors admitting coupled rank-(Lm, Ln, ·) Block Term Decom-
position (BTD) can be constructed using second order statistics of non-
stationary signals. And the loading matrices to be estimated will be
computed from these tensors via coupled rank-(Lm, Ln, ·) BTD based
algorithms. However, most of the existing algorithms resort to itera-
tive techniques. They heavily rely on a good starting point. Capable of
providing such a point, our proposed CE-JBD, based on coupled rank-
(Lm, Ln, ·) BTD, achieves JISA only by employing generalized eigenvalue
decomposition followed by a clustering step and singular value decompo-
sition. To validate its efficacy, as well as its ability to serve its iterative
counterparts, we present some experiment results in the end.

Keywords: Coupled rank-(Lm, Ln, ·) block term decomposition ·
Second order statistics · Joint independent subspace analysis ·
Coupled exact joint block decomposition

1 Introduction

In the past decade, joint blind source separation (JBSS) has been applied to a
wide variety of fields, e.g., transformed signals in multiple frequency bins [1],
multi-subject functional magnetic resonance imaging [2–4], and multi-subject
electrocardiography-hyperscanning [5]. The JBSS is developed from blind source
separation (BSS) that traditionally is used to identify the latent statistically-
independent sources and loading matrix from an instantaneous mixture. Theo-
retically, JBSS resolves several BSS problems by exploiting the potential depen-
dence of the one-dimensional sources across different datasets. It turns out that
JBSS aligns the corresponding source estimates across datasets [2], which nev-
ertheless is not guaranteed by individual applying BSS.

However, JBSS methods, e.g., generalized non-orthgonal joint diagonaliza-
tion [6] and double coupled canonical polyadic decomposition [7], fail to handle
the inter-dependent datasets where multidimensional sources are within each
c© Springer Nature Switzerland AG 2019
H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 399–408, 2019.
https://doi.org/10.1007/978-3-030-22796-8_42
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mixture, e.g., the mixtures in [8]. To solve, joint independent subspace analysis
(JISA), as a generalization of JBSS, is recently proposed by Lahat et al. in [9].
The JISA identifies independent multidimensional sources within each dataset
while keeping their correspondence across different datasets. So far, works for
JISA are mainly divided into two groups. The first is about matrix-based meth-
ods. In [9], a relative gradient algorithm is proposed to realize JBSS of Gaussian
multidimensional components. In [10], the author uses a quasi-Newton algo-
rithm to achieve asymptotically minimal mean square error to identify all of the
estimates of loading matrices. In [13], the author presents some sufficient and
necessary conditions for the uniqueness and identifiability of JISA and matrix-
based coupled block diagonalization algorithms. The second is based on coupled
tensor decomposition. In [11], a structured data fusion (SDF) method capable
of achieving JISA is studied for coupled and/or structured decompositions of
tensors. In [12], two coupled rank-(Lm, Ln, ·) block term decomposition (BTD)
based algorithms, both based on simultaneous generalized schur decomposition
scheme, are proposed.

Coupled tensor decomposition based algorithms are effective for JISA
because the tensors able to be constructed within together admit coupled rank-
(Lm, Ln, ·) BTD, a concept first mentioned and described in [12]. As an emerging
member of tensor decomposition, coupled rank-(Lm, Ln, ·) BTD is developed on
the basis of rank-(Lm, Ln, ·) BTD [14]. In comparison to the latter, it decom-
poses multiple tensors from the perspective of multi-set fusion, making accuracy
improvement and identifiability relaxation (see [12] and the references therein).
Nevertheless, it is still hard to find an algebraic candidate achieving coupled
rank-(Lm, Ln, ·) BTD among open literatures.

In this paper, we propose an algebraic algorithm named coupled exact joint
block decomposition (CE-JBD), which is on the basis of coupled rank-(Lm, Ln, ·)
BTD. It evolves from exact joint block decomposition (E-JBD) proposed in [15],
which, however, is only applied to ordinary rank-(Lm, Ln, ·) BTD. The CE-JBD
relies on generalized eigenvalue decomposition (GEVD) [16] followed by a clus-
tering step and singular value decomposition (SVD) to compute all unknown
loading matrices, as well as other interesting components (if needed). For com-
parison, we also implement another two coupled rank-(Lm, Ln, ·) BTD based
iterative algorithms. The involved algorithms are tested on the coupled tensors
constructed by second order statistics (SOS) of the short-time non-stationary
binary phase shift key (BPSK) signals.

Notations: we represent vector, matrix and tensor as uppercase boldface let-
ter, lowercase boldface letter, and uppercase calligraphic letter, respectively. By
denoting the Khatri-Rao product as ‘⊗’, we represent the partition-wise Khatri-
Rao product, the column-wise Khatri-Rao product, and the mode-n product as
‘�’, ‘�c’, and ‘×n’, respectively: A � B � [a1 ⊗ b1, · · · ,aR ⊗ bR], A �c B �
[A1⊗B1, · · · ,AR⊗BR], and (T ×nF )i1,...,in−1,j,in+1,...iN �

∑M
in=1 ti1,...,iNFj,in ,

where we suppose that A = [A1, . . . ,AR] and B = [B1, . . . ,BR] in the partition-
wise Khatri-Rao product and A = [a1, . . . ,aR] and B = [b1, . . . , bR] in the
Khatri-Rao product. We use Ã to denote the estimate of A. We use symbols
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‘(·)T’,‘(·)H’,‘(·)∗’,‘(·)†’, ‘E(·)’, and ‘|| · ||2F’ to represent transpose, conjugated
transpose, conjugate, pseudo-inverse, mathematical expectation, and Forbenius
norm, respectively. We use Matlab notation T (:,:,k) to represent the k-th frontal
slice of a third-order tensor T . For a tensor T ∈ C

I×J×K , (T )1, (T )2, and (T )3
are used to denote its mode-1, mode-2, and mode-3 matrix expressions, respec-
tively: (T )1((j−1)K+k,i) = (T )2((i−1)K+k,j) = (T )3((i−1)J+j,k) = T (i,j,k).

Definition: A decomposition of T ∈ C
I×J×K in a sum of rank-(Lm, Ln, ·) terms

[14] is a decomposition of the following: T =
∑R

r=1 Sr ×1Ar ×2Br, r = 1, ..., R,
where Sr ∈ C

Lm×Ln×K has mode-1 rank and mode-2 rank equivalent to Lm

and Ln, respectively. Both Ar ∈ C
J×Lm and Br ∈ C

J×Ln have full column
rank. Note that A � [A1, ...,AR] and B � [B1, ...,BR] are defined as two factor
matrices of T . The three matrix representations of T are written as: (T )1 =
[(S1 ×2 B1)1, ..., (SR ×2 BR)1]AT, (T )2 = [(S1 ×1 B1)2, ..., (SR ×1 BR)2]BT

and (T )3 = (A � B)((S1)T3 , ..., (SR)T3 )T, respectively.

2 Problem Formulation

2.1 Data Model

Consider a latent signal model where the received x(m)(t) of size I(m) × 1 is an
instantaneous linear mixture as follows:

x(m)(t) = A(m)s(m)(t), 1 ≤ t ≤ T, 1 ≤ m ≤ M, (1)

where T and M represent the number of snapshots and the number of datasets,
respectively. Matrix A(m) ∈ C

I(m)×L(m)
is an invertible matrix. The source vec-

tor s(m)(t) ∈ C
L(m)×1 consists of R multidimensional sources, with its rth com-

ponent s
(m)
r (t) ∈ C

Lm×1 (L(m) = RLm). We assume that s
(m)
r1 and s

(m)
r2 are

statistically independent for 1 ≤ r1 �= r2 ≤ R, and that s
(m)
r and s

(n)
r are

statically dependent for 1 ≤ m �= n ≤ M , as illustrated in Fig. 1.
Given the partition pattern of s(m)(t), we likewise divide A(m) into R sub-

matrices, i.e., A(m) = [A(m)
1 , . . . ,A

(m)
R ], with A

(m)
r being size of I(m) × Lm. For

any invertible B of size Lm×Lm, it is unlikely to discriminate (A(m)
r , s

(m)
r ) from

(A(m)
r B−1,Bs

(m)
r ). In practice, JISA aims at estimating the column space of

A
(m)
r , namely span(A(m)

r ). The data model will become that of a standard JBSS
when only one-dimensional sources are within each dataset. For convenience, we
stack x(m)(t) as follows:

⎡

⎢
⎣

x(1)(t)
...

x(M)(t)

⎤

⎥
⎦ =

⎡

⎢
⎣

A(1) 0 0

0
. . . 0

0 0 A(M)

⎤

⎥
⎦

⎡

⎢
⎣

s(1)(t)
...

s(M)(t)

⎤

⎥
⎦ . (2)

It is clear that Eq. (2) can be written in a more compact form:

x(t) = As(t). (3)
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Fig. 1. Diagram of the JISA data model. Terms with the same subscript have statistical
dependence, while those with different subscripts does not.

In (3), x(t) = [x(1)T(t), . . . ,x(M)T (t)]T and s(t) = [s(1)T(t), . . . , s(M)T(t)]T

are of size
∑M

m=1 I(m)×1 and
∑M

m=1 L(m)×1 , respectively. The A is a block diag-
onal matrix holding A(m) as its mth block-diagonal sub-matrix. Subsequently,
we focus on the SOS of x(t) and E(x(t)xH(t)) can be written as:

E{x(t)xH(t)} =AE{s(t)sH(t)}AH, (4)

in which E{s(t)sH(t)} can be similarly represented as follows:

E{s(t)sH(t)} =

⎡

⎢
⎣

D(1,1) · · · D(1,M)

...
. . .

...
D(M,1) · · · D(M,M)

⎤

⎥
⎦ , (5)

where D(m,n) = 1/T
∑T

t=1 s
(m)(t)s(n)H(t), 1 ≤ m,n ≤ M . In light of the

aforementioned statistical properties, each D(m,n) is a block-diagonal matrix,
with its rth diagonal sub-matrix being 1/T

∑T
t=1 s

(m)
r (t)sH(n)r (t). Let X(m,n) =

A(m)D(m,n)AH(n), such that (4) can be further formulated as:

E{x(t)xH(t)} =

⎡

⎢
⎣

X(1,1) · · · X(1,M)

...
. . .

...
X(M,1) · · · X(M,M)

⎤

⎥
⎦ . (6)

In (6), E{x(t)xH(t)} comprises M × M sub-matrices, where the (m,n)th is
written as X(m,n). After the pattern of E{x(t)xH(t)} is derived, it is convenient
for us to relate it with coupled rank-(Lm, Ln, ·) BTD in the following.

2.2 JISA via Coupled Rank-(Lm,Ln, ·) BTD

Besides the two mentioned assumptions, coupled rank-(Lm, Ln, ·) BTD based
algorithms additionally require the sources to be temporally non-stationary to
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Fig. 2. Diagram of 2 × 2 sub-tensors admitting coupled rank-(Lm, Ln, ·) BTD.

capture the time diversity. We control the time-frame of the received x(t) so
that K sample blocks are generated. Then, we stack SOS of these frames into
a third-order tensor X along its third mode, i.e., X (:,:,k) = E{xk(t)xH

k (t)} with
1 ≤ k ≤ K. Clearly, X consists of M × M sub-tensors, with the (m,n)th
denoted as X (m,n). Each sub-tensor X (m,n) (also claimed as tensor X (m,n) in
the following context) admits rank-(Lm, Ln, ·) BTD [14] and can be written as
the sum of a set of rank-(Lm, Ln, ·) terms:

X (m,n) =
∑R

r=1
S(m,n)

r ×1 A
(m)
r ×2 A

(n)∗
r , (7)

in which S(m,n)
r is of size Lm × Ln × K and its kth frontal slice (S(m,n)

r )(:,:,k) =
E(s(m)

r (t)sH(m)
r (t))k. Note that the mode-1 rank and mode-2 rank of (S(m,n)

r )
equal to Lm and Ln, respectively. Each X (m,n) follows rank-(Lm, Ln, ·) BTD
[14]. Meanwhile, {X (m,n), n = 1, ...,M} share A(m) in the first mode, and
{X (m,n),m = 1, ...,M} share A(n) in the second mode. Therefore, we say that
{X (m,n),m, n = 1, ...,M} admit coupled rank-(Lm, Ln, ·) BTD (see Fig. 2).

There are some trivial indeterminacies for coupled rank-(Lm, Ln, ·) BTD: (i)
permutation ambiguity, i.e., the terms in X (m,n) can be arbitrarily permuted if it
is done to all of the other tensors, (ii)rotation ambiguity, i.e., for any invertible

Z
(m)
r and Z

(n)
r , it is unlikely to discriminate S̃(m,n)

r = S(m,n)
r ×1 Z

(m)−1
r ×2

Z
(n)−1
r , Ã(m) = A

(m)
r Z

(m)
r , and Ã(n) = A

(n)
r Z

(n)
r from Sr, A

(m)
r , and A

(n)
r .

We say that coupled rank-(Lm, Ln, ·) BTD identifies all of the loading matrices
uniquely up to the two ambiguities.

3 Proposed Algorithm

The primary step of CE-JBD is to perform E-JBD [15] individually on each
tensor X (m,m) to find a relatively accurate loading matrix. Let us first construct
X

(m)
k1k2

as follows:
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X
(m)
k1k2

= X (m,m)
(:,:,k1)

X (m,m)†
(:,:,k2)

= A(m)S(m,m)
(:,:,k1)

S(m,m)†
(:,:,k2)

A(m)†, (8)

In (8), X (m,m)
(:,:,k1)

and X (m,m)
(:,:,k2)

are two significant frontal slice of X (m,m). We

perform GEVD of X
(m)
k1k2

and the derived L eigenvectors, associated to the L

most significant eigenvalues, constitute span(A(m)). We represent span(A(m))
as V (m), such that A(m) can be further written as:

A(m) = V (m)P (m), (9)

where P (m) is a permutation matrix of size L(m) × L(m), clustering the eigen-
value vectors into corresponding subspaces. We pre-multiply and post-multiply
X

(m,m)
(:,:,k) by V (m)† and (V (m)H)†, respectively, and the result is written as:

W
(m)
k = V (m)†X (m,m)

(:,:,k) (V (m)H)† = P (m)S(m,m)
(:,:,k) P

(m)†, (10)

in which W
(m)
k is a matrix with non-zero elements being placed symmetrically.

Let W (m) = 1/K
∑K

k=1 W
(m)
k such that P (m) can be identified via the positions

of the most significant Lm values at each row of W (m). Here we refer the readers
to [15] for more detailed information about E-JBD.

Although all A
(m)
k can be identified via E-JBD, their subspaces are not

aligned due to its ignoring the latent inter-dependence across different sets.
Rather, we select the most accurate loading matrix using the fitting error:

ξ(m) =
∥
∥(X (m,m) − X̃ (m,m)

)
∥
∥2

F

/∥
∥(X (m,m))

∥
∥2

F, (11)

where a lower ξ(m) means a more accurate estimation. For convenience, without
loss of generality, we assume that Ã(1) is the selected loading matrix in that
exchanging indices will not make any difference.

Now that Ã(1) is obtained, the next step is to use SVD to identify the remain-
ing mixing matrices. It is worth noting that identifying the mth mixing matrix
requires the estimates of {A(1), ...,A(m−1)} to be computed and the involvement
of {X (m,n),X (n,m), n = 1, ...,m − 1}. Specifically, we write the mode-2 matrix
expression [14] of X (m,n) as:

(X (m,n))2 = [(S(m,n)
1 ×1 A

(m)
1 )2, ..., (S(m,n)

R ×1 A
(m)
R )2]A(n)H, (12)

and the mode-1 matrix expression [14] of X (n,m) as:

(X (n,m))1 = [(S(n,m)
1 ×2 A

(m)∗
1 )1, ..., (S(n,m)

R ×2 A
(m)∗
R )1]A(n)T. (13)

In (12) and (13), (S(m,n)
r ×1 A

(m)
r )2 and (S(n,m)∗

r ×2 A
(m)
r )1 are the rth

sub-matrices of (X (m,n))2(A(n)H)−1 and (X (n,m)∗)1(A(n)H)−1, respectively. We
post-multiply (12) by (A(n)H)−1 such that

(X (m,n))2(A(n)H)−1 = [(S(m,n)
1 ×1 A

(m)
1 )2, ..., (S(m,n)

R ×1 A
(m)
R )2]. (14)
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We post-multiply (13) by (A(n)T )−1 and impose conjugate on its both sides.
Consequently, (14) can be further expressed as:

(X (n,m)∗)1(A(n)H)−1 = [(S(n,m)∗
1 ×2 A

(m)
1 )1, ..., (S(n,m)∗

R ×2 A
(m)
R )1]. (15)

Given the three matrix expressions of a sub-tensor, to bare A
(m)
r , we con-

vert (S(m,n)
r ×1 A

(m)
r )2 and (S(m,n)

r ×1 A
(m)
r )1 into (S(n,m)∗

r ×2 A
(m)
r )1 and

(S(n,m)∗
r ×2 A

(m)
r )2, respectively. Equivalently, we write the transformed results

as (S(m,n)
r )1×A

(m)T
r and (S(n,m)∗

r )2×A
(m)T
r , respectively. We then concatenate

{(S(m,n)
r )1 × A

(m)T
r , (S(n,m)∗

r )2 × A
(m)T
r , n = 1, ...,m − 1} as follows:

G(m)
r =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(S(m,1)
r )1 × A

(m)T
r

...
(S(m,n)

r )1 × A
(m)T
r

(S(1,m)∗
r )2 × A

(m)T
r

...
(S(n,m)∗

r )2 × A
(m)T
r

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(S(m,1)
r )1

...
(S(m,n)

r )1
(S(1,m)∗

r )2
...

(S(n,m)∗
r )2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

× A(m)T
r , (16)

where G(m)
r is of size

∑m−1
n=1 2KLn×I(m). The subspace of A(m)

r can be obtained
via SVD of G(m)

r , consisting of the first Lm right singular vectors. Varying r and
m, we finally identify all subspaces of {A(m)

r , r = 1, ..., R,m = 2, ...,M}.

4 Experiment Results

The experimental setup is as follows: M = 2, I(m) = 10 ∀m, R = 2, T = 160000,
and L

(m)
r = 2 ∀r,m. We generate the source signal S(m) = [S(m)T

1 , ...,S
(m)T
R ]T

of size L(m) × T using the short-time non-stationary BPSK signals, whose value
at instant t is chosen from either 1 + i or 1 − i with identical possibility. The
correlation can be introduced as:

Sr(t) = Hr[S(1)T
r , ...,S(M)T

r ]T, 1 ≤ r ≤ R, (17)

in which Hr ∈ C

∑M
m=1 Lm×∑M

m=1 Lm is an invertible matrix following Gaussian
normal distribution with zero mean and unit variance. We fix overlapping rate
λ and time-frame to 0.5 and 16000, respectively. The real and imaginary parts
of the mixing matrices are drawn from Gaussian normal distribution with zero
mean and unit variance. As such, noise-free coupled tensors {X (m,n),m, n =
1, ...,M} can be generated via Eq. (4)–(7). We add Gaussian noise term N (m,n)

to each X (m,n) as follows:

T (m,n) = σsX (m,n)
/∥
∥X (m,n)

∥
∥2

F + σnN (m,n)
/∥
∥N (m,n)

∥
∥2

F, (18)

where σs and σn denote the signal and noise level, respectively. The signal-to-
noise ratio is defined as SNR= 20 log10 (σs/σn).
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Fig. 3. Comparison of CE-JBD, CLLD-ALS, CLLD-SDF, CE-JBD-CLLD-ALS, and
CE-JBD-CLLD-SDF for SNR varying from 0 dB to 50 dB.

There are three involved algorithms, CE-JBD, CLLD-ALS (of which the
details will be presented in our future works), and CLLD-SDF [11]. The latter
two are iterative algorithms. For CLLD-ALS, it alternately updates each A(m)

and S(m,n), randomly generated at the beginning, to decrease the fitting error:

ξ =
∑M

m,n=1
(
∥
∥T (m,n) − T̃ (m,n)∥∥2

F

/∥
∥T (m,n)

∥
∥2

F)/M
2, (19)

where ξ indicates the accuracy of obtained estimates, and a lower ξ means a
more successful estimation. During each update, the updating factor matrix is
regarded as unknown, denoted as (·)new, but the others are fixed, denoted as
(·)old. In the ith iteration, CLLD-ALS sends {(A(n))old, 1 ≤ n �= m ≤ M} and
{X(m,n),X(n,m), 1 ≤ n �= m ≤ M} into (12) and (13), respectively, and uses the
same technique as (16) to compute (A(m))new. We terminate CLLD-ALS when
either |ξnew − ξold)|/ξold ≤ 10−8 or the maximum iteration number N = 1000 is
satisfied. For CLLD-SDF, we set the tolerance parameters TolFun and TolX in
the ‘SDF NLS ’ function of Tensorlab [17] to 0.01 and 10−5, respectively.

We do 200 independent runs of CE-JBD, CLLD-ALS and CLLD-SDF. For
comparison, we also initialize CLLD-ALS and CE-JBD with CE-JBD (CE-JBD-
CLLD-ALS and CE-JBD-CLLD-SDF), and independently run them for 200
times. The average results of accuracy and CPU running time against SNR are
shown in 3(a) and (b), respectively. We can see that if SNR values is sufficiently
high, all of the involved algorithms will accomplish JISA, and that in the whole
range of SNR from 0dB to 50dB, CE-JBD is faster than CLLD-ALS and CLLD-
SDF. In addition, CE-JBD-CLLD-ALS and CE-JBD-CLLD-SDF have improved
accuracy and reduced running time compared to CLLD-ALS and CLLD-SDF,
respectively. This signifies that CE-JBD is capable of providing a good starting
point for its iterative counterparts.
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5 Conclusion

In this paper, we propose an algebraic algorithm CE-JBD for JISA. The algo-
rithm performs coupled rank-(Lm, Ln, ·) BTD on the constructed tensors, of
which the pattern is shown in Subsect. 2.2. More precisely, to compute all load-
ing matrices from the coupled tensors, it first finds a relatively accurate one
via GEVD followed by a clustering step, and then resorts to SVD to derive the
remaining ones. Experiment results demonstrate that CE-JBD is effective for
JISA, and that it can provide a good starting point for its iterative counter-
parts, causing accuracy improvement and running time reduction.
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Abstract. One of the core problems in variational inference is a choice
of approximate posterior distribution. It is crucial to trade-off between
efficient inference with simple families as mean-field models and accuracy
of inference. We propose a variant of a greedy approximation of the pos-
terior distribution with tractable base learners. Using Max-Entropy app-
roach, we obtain a well-defined optimization problem. We demonstrate
the ability of the method to capture complex multimodal posterior via
continual learning setting for neural networks.

Keywords: Variational inference · Deep learning ·
Maximum Entropy · Bayesian Inference

1 Introduction

The posterior distribution evaluation is the primary challenge in Bayesian model
construction. Calculating the exact posterior distribution is intractable, and
methods like MCMC while being flexible can also be unacceptably expensive.
In turn, the variational inference is a method to approximate complicated prob-
ability distributions with the simpler ones. Now variational inference is used
in semi-supervised classification, drives the most realistic generative models of
images, and is a useful tool for analysis of any dynamical system. Inference
requires that intractable posterior distributions be approximated by a class of
known probability distributions, over which we search for the best representative
of the chosen family.

We study the problem of the posterior approximation by a sequentially fit-
ting composition of simple distributions given that one can turn the considered
problem to the tractable optimization problem. The structure of the resulting
model makes the work with the posterior approximation efficient.

The rest of the paper is organized in the following way. In Sect. 2, we review
the variation inference framework. In Sect. 3, we derive the stochastic optimiza-
tion algorithm for sequential approximation of posterior distribution, named
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H. Lu et al. (Eds.): ISNN 2019, LNCS 11554, pp. 409–417, 2019.
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MaxEntropy Pursuit Variational Inference. In Sect. 4, we apply the proposed
approach to incremental learning of neural networks. In Sect. 5, we discuss the
obtained results and future work.

Notations. We denote: the differential entropy of distribution h by H[h] :=
− ∫

h log hdθ; the inner product between two Lebesgue integrable functions by
〈f1, f2〉 :=

∫
f1f2dθ; the full likelihood of the probabilistic model over the dataset

X by L(θ) := p(X|θ)p(θ); the posterior distribution by p(θ|X) ∝ L(θ).

2 Variational Inference

We consider the posterior distribution of latent variables θ given observations
X:

p(θ|X) =
p(X, θ)

∫
p(X, θ)dθ

.

The integral in the denominator is high dimensional, so the normalization is
intractable.

The idea of the Variational Inference is to introduce some variational distribu-
tion qλ(θ), and instead of computing the normalization constant we approximate
the posterior with the simpler distribution q, parametrized by the variational
parameter λ to get the best matching with p.

One of the most common approaches to evaluate proximity between p and q
is to use KL-divergence (also known as relative entropy or information gain):

DKL(q(θ)||p(θ)) = −
∫

q(θ) log
p(θ)
q(θ)

dθ.

KL-divergence is asymmetric (DKL(q||p) �= DKL(p||q)), non-negative and equals
to zero iff q(θ) = p(θ).

KL-divergence asymmetry provides two different approximation methods:
variational inference and expectation propagation (not reviewed in this paper).

Reducing KL-divergence to zero leads to exact matching of distributions, but
usually, the variational family q ∈ Q is not flexible enough for this.

We can formulate minimization of KL-divergence in another way:

log p(X) = log
∫

p(X, θ)dθ = log
∫

p(X, θ)qλ(θ)
qλ(θ)

dθ

= logEqλ(θ)

[
p(X, θ)
qλ(θ)

]

≥ Eqλ(θ)

[

log
p(X, θ)
qλ(θ)

]

= F [q] =: ELBO.

ELBO (Evidence Lower Bound) with the KL divergence between the variational
distribution and the posterior form the true log marginal probability of the data:

log p(X) = F(λ) + DKL(qλ(θ)||p(X, θ)),

so the minimization of KL-divergence is equivalent to the maximization of ELBO.
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However, optimizing over a parametric variational family of distributions and
getting the optimal solution q∗ = arg max

Qλ

F [q] still leads to the approximation

gap [9], equal to log p(X) − F [q∗]. Many papers showed that the choice of the
variational family Qλ is important for quality of the variational approximation
[1,23,25].

There are a number of approaches for reducing the approximation gap. Some
of them propose to increase the flexibility of the approximation family, e.g. nor-
malizing flows [22] or hierarchical variational models [21]. The other research
direction explores the idea of incrementally expanding variational family by the
additive mixture of tractable base learners [11,18]. In [17] they investigate the
theoretical justification of such approach from an optimization perspective. In
general, the both approaches are able to capture the multimodality and nonstan-
dard posterior shapes. However, it seems that the incremental learning of the
posterior approximation is more promising from the applied point of view, as the
additive mixture composes the approximation using simple and easy-to-evaluate
building blocks.

Here we address several problems with this approach. Firstly, starting from
the Maximum Entropy principle [8], we obtain a natural regularized optimization
problem, instead of the ad-hoc regularization, proposed in other works. This
leads to interesting connections with other fields and allows to use stochastic
optimization approaches in contrast to the original boosting approach [11]. We
show the ability of the proposed approach to approximate complex posteriors
by using Bayesian Neural Networks, which is a data-intensive and challenging
task [28].

3 Max Entropy Pursuit Variational Inference

In this section we derive algorithm in which problem of the posterior distribution
is solved by additive mixture. Each component is obtained sequentially. Each
step consists of the two optimization problems: for new component h and for the
corresponding mixture weight α.

3.1 Optimization over New Component h

Consider that we given some approximation of the posterior distribution qt. Our
goal is to improve accuracy of the approximation in terms of the KL-divergence
DKL[qt(θ)||p(θ|X)] by using the additive mixture:

qt+1 = (1 − α)qt + αh, α ∈ (0; 1), h ∈ Q.

Hence, using Maximum Entropy Approach [8] we can state the following
optimization problem:

max
h∈Q

H[h], s.t.

F [qt+1] − F [qt] > 0.
(1)
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As the optimization problem in Eq. (1) is highly non-linear, we propose to
follow the framework based on the Frank-Wolfe algorithm [17,26] and consider
the constraint as a functional perturbation.

Expanding the F [qt+1] term, we get

F [qt+1] =
∫

[qt + α(h − qt)]
(

log
L(θ)
qt

− log
(

1 + α
h − qt

qt

))

dθ

=
∫

qt log
L(θ)
qt

dθ

︸ ︷︷ ︸
F [qt]

+α

∫
(h − qt)

(

log
L(θ)
qt

− log
[

1 + α
h − qt

qt

])

dθ

−
∫

qt log
(

1 + α
h − qt

qt

)

dθ.

Using Taylor expansion, we obtain the constraint in the following form:

F [qt+1] − F [qt] = α

〈

h − qt, log
L(θ)
qt

〉

− α2

∫
(h − qt)2

qt
dθ + o

(
α

∥
∥
∥h−qt

qt

∥
∥
∥
2

)
.

Considering the first order terms, we get the following optimization problem:

max
h∈Q

H[h] + λ

〈

h, log
L(θ)
qt

〉

. (2)

We can perform scalable optimization by the doubly stochastic gradient
descent [14,24]. The λ > 0 is the corresponding Lagrange multiplier of the
constraint. Exact solution of the dual problem for the optimal λ is intractable.
Below we provide some analysis of how the solution depends on λ. It allows us
to propose practically useful heuristic to select a value of λ.

Note, that retaining only the first order terms corresponds to the “functional
gradient” of the KL-divergence [11]. However, MaxEntropy approach allows
obtaining the natural regularization term. Further, we show that it is critical
to obtain a data scalable algorithm and interpret the parameter λ. Also, in
Sect. 4 we discuss whether the first order terms expansion is enough for high
dimensional problems.

3.2 Analysis of Optimization Problem for h

To provide the heuristic rule of choosing the λ, we optimize in Eq. (2) not over
some parametric family Q of base learners h, but over all probability densities.
As the objective is concave over h, we can derive the global optimal of the
maximization problem from the first-order conditions:

δ

δh

[

H[h] + λ

〈

h, log
L(θ)
qt

〉]

+ γ

(∫
hdθ − 1

)

= 0,

h∗ =
[
L(θ)
qt

]λ

exp(γ − 1).
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Hence, the optimal new component has the following form:

h∗ =
1

Z(λ)

[
L(θ)
qt

]λ

. (3)

The solution h∗ is intractable, as finding the normalization constant Z =
∫ [

L(θ)
qt

]λ

dθ has the same complexity as solving the original problem. Still, as
the global optimum is known, instead of the optimization problem in Eq. (2) we
can consider another optimization problem:

min
h∈Q

DKL

(

h
∣
∣
∣
∣
∣
∣

1
Z(λ)

[
L(θ)
qt

]λ
)

. (4)

The problem (4) is a well-known optimization problem for which there are a
lot of black-box variational inference (BBVI) solvers, see e.g. [10,20]. Hence, any
practitioner can benefit from our approach without additional significant costs
of implementing or reformulating the initial statistical problem. Moreover, we
could provide intuition for selecting λ by establishing a connection with Renyi
divergence [16] thanks to the analyses of the form of (3). Namely, we consider a
parametric mapping in the probability density space:

Tλ : p → pλ(θ)
∫

pλ(θ)dθ
, λ > 0. (5)

Consider a pair of a uniform distribution U and p : H[p] > H[U ]. We can
easily prove that

DKL(U ||p) > DKL(U ||Tλp), for λ > 1,

DKL(U ||p) < DKL(U ||Tλp), for λ < 1.
(6)

Hence, we can state that for λ > 1 we obtain a mode-seeking solution and
for λ < 1 we get a mass covering solution. Interestingly, in case of the Renyi
divergence optimization in [19] they describe the same behavior for different
values of α. Hence, we can refer to λ as the temperature and select some annealing
schedule for each step of the optimization process to tune λ.

Let us consider the corner case, i.e. λ = 1. Then we can rewrite the objective
in (2):

arg max
h∈Q

H[h] +
〈

h, log
L(θ)
qt

〉

= arg max
h∈Q

∫
h log

L(θ)
h

dθ

︸ ︷︷ ︸
term (1)

−
∫

h log qtdθ

︸ ︷︷ ︸
term (2)

.

(7)
Hence, the term 1 in (7) corresponds to the standard optimization objective

in case of variational inference [12]. At the same time the term 2 in (7) plays a
role of a penalty for the similarity with the current solution qt.
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3.3 Optimization over Mixture Weight α Corresponding to h

After we obtain the new mixture component h for the current variational approx-
imation qt, we should select the mixture weight α to obtain a new variational
approximation as a convex combination:

qt+1(θ) = (1 − α)qt(θ) + αh(θ).

Hence, let us state the optimization problem over α ∈ (0; 1):

min
α∈(0;1)

DKL((1 − α)qt(θ) + αh(θ)||p(θ|X)). (8)

Using Taylor expansion we can get the approximation for any f -divergence
[27] by the Pearson Chi-squared divergence:

Df (q||p) ≈ f ′′(1)χ2(q||p).

Hence, we can re-formulate the approximation problem:

min
α∈(0;1)

∫
1

p(θ|X)
[qt + α(h − qt)]2dθ. (9)

Consider the gradient and the hessian of the objective in (9) w.r.t. α:

∇α

∫
1
p
[qt + α(h − qt)]2dθ = 2

∫
1

p(θ|X)
[qt + α(h − qt)](h − qt)dθ,

∇2
α

∫
1

p(θ|X)
[qt + α(h − qt)]2dθ = 2

∫
(h − qt)2

p(θ|X)
> 0.

.
As the objective (9) is convex, we can obtain the solution of the optimization

problem (9) from the first order condition:

α∗ = −
∫

1
p(θ|X)qt(h − qt)dθ

∫
1

p(θ|X) (h − qt)2dθ
= −

∫
1

L(θ)qt(h − qt)dθ
∫

1
L(θ) (h − qt)2dθ

. (10)

In practice such estimator has high variance. Estimation for each sample
requires the forward pass through the whole dataset, hence the variance can
not be reduced by averaging efficiently. Therefore we propose to use the exact
solution (10) in case of middle-size datasets and use the stochastic gradient
approach with a projection for the objective from Eq. (8) in case of large-scale
datasets.

4 Neural Network Incremental Learning via Bayesian
Inference

Deep neural networks provide the state-of-art solution for the image classification
problems. However, as a network is trained to do a specific classification task, it
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is problematic to incrementally learn any new task. This situation was described
as the catastrophically forgetting behaviour of neural networks. However, intu-
itively we expect the other situation: performance should similar to that when
training over the whole dataset in the offline mode [13]. In this section, we show
how our approach helps to overcome this limitation.

Fig. 1. Mean test accuracy for a sequence of models, trained on a sequence of tasks
(subsets of the training set). Each next task is equal to a previous task plus some new
subset of the initial training data.

Experimental Setup. We perform the incremental class learning experiment
using the MNIST dataset with the LeNet-5 Convolutional Neural Network
(CNN) [15]. The dataset contains grey scale images belonging to 10 classes.
We split the dataset in 5 tasks, the first task containing digits ‘0’ and ‘1’, the
second task containing digits ‘2’ and ‘3’, and so on. For each task, we perform
10 epoch of training. We compare our incremental posterior approximation of
the neural network parameters with a baseline naive continual neural network
learning. The size of the test dataset is 104 samples, the total train size for all
tasks is 5 × 104. As the prior distribution on the neural network parameters we
use the fully factorized standard normal distribution. The predictive distribution
of the model is approximated by an ensemble of the weights sampled from the
variational approximation.

Results. As result, we find our incremental posterior distribution approximation
to maintain higher test accuracy through the whole sequence of tasks, almost
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matching the performance of a network trained simultaneously on all observed
data. Figure 1 shows the test accuracy as new tasks are observed. We conclude
from our results that the incremental posterior approximation leads to a drastic
increase in performance for incremental learning tasks.

5 Conclusion

In this work, we developed an efficient approach for learning complex multimodal
posteriors by constructing an additive mixture of simple densities. Following the
MaxEntropy approach, we state well defined and tractable optimization problem.
Additive mixture allows us to control the complexity of the posterior by simply
increasing or decreasing the number of components.

An important avenue of future research is to develop approaches for modeling
covariance structure that accurately account for different characteristics of the
posterior and that still allow for efficient computations in case of deep neural
networks.

Also, we plan to consider various applications of the proposed approxima-
tion scheme including uncertainty quantification [2–4] and Bayesian parameter
estimation for Gaussian Processes regression [5–7].

Acknowledgements. The work was supported by the Russian Science Foundation
under Grant 19-41-04109.
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Abstract. In this chapter, the information set theory is extended with
a moderator’s information about the elements of the information set.
The role of moderator is to provide a second opinion about the validity
of the information values comprising the information set. The properties
of the proposed moderator information sets (MIS) are also investigated.
Many illustrative examples are included to show the usefulness of MIS
in the real world decision-making.

Keywords: Information set · Moderator · Vagueness ·
Multi attribute decision-making

1 Introduction

A fuzzy set [1] represents in-exactness, ill-definedness in an information source
value. However, it has its own difficulties [2]. Foremost among them is the inter-
pretation difficulties involved with a membership function. That is, the inter-
pretation of a membership grade is specific to the onlooker agent. For instance,
a membership grade of 0.8 in the fuzzy set very tall conveys little information
about the actual height of the person. Also, it means a different value for each
interpreting agent. Inspired by these drawbacks of a membership function, the
information set is proposed in [2]. It basically gives a set of perceived values
specific to the agent, which can be seen as a combination of the information
source value and its evaluation by the agent.

The perceived values are in fact the entropy values that are referred to as
information value. These entropy values are easier to interpret and deal with,
as shown in [2]. Since, an information source value is looked upon differently
by different agents, a function to represent the same should be general enough
to represent multiple forms, a few of which could be Gaussian, triangular, or
trapezoidal etc.

Besides, it is especially useful in representing vague or subjective assess-
ment of the decision-maker (DM), in multi criteria decision making (MCDM).
However, when the values are ill-defined (or vague), the agent inevitably faces
confusion. That is, often (s)he may have multiple possible perceptions for an
information source value. This difficulty is addressed in [5], where information
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set has been extended as hesitant information set (HIS), inspired by the concept
of hesitant fuzzy set. A HIS comprises all the perceived values that an agent
may have for an information source value.

HIS provides an excellent data structure to take into consideration the hesi-
tancy of the agent in the representation of the perceived values, also referred to as
the information values. However, hesitancy is a feature of one’s own perception,
and it is not uncommon to have the actual information misinterpreted during
its presentation. This might happen because of the limited domain knowledge
of the agent or due to the lack of the standard terminologies. For instance, a
patient may try to convey his/her severity of symptoms in different ways, and
the interpreted severity may be different from that intended to be conveyed.
This is sought to be corrected by the proposed work.

In this chapter, we intend to validate the information values of an infor-
mation set through a second opinion about them. We accomplish this objec-
tive by taking a moderator’s opinion in the form of a partial degree that (par-
tially/fully) endorses the original information values provided by the agent. The
partial degree indicates the extent of the moderator’s agreement with the infor-
mation values provided by the agent. We term the proposed data structure as
the moderated information set (MIS).

The framework of MIS has the moderator’s input indicating the credibility of
the information values in an information set. The moderator’s information thus
provides a kind of check-point for an agent to relook at the original information
values of the information set. If the degree given by the moderator is greater than
0.5, it indicates that the information values are reasonably credible depending
on how close the moderator’s degree is to 1. In contrast, this degree less than
0.5 indicates a level of disagreement between the moderator and the agent.

The proposed MIS attempts to minimize the possibility of potential errors
(due to the agent’s lack of judgment) by taking account of the moderator’s
opinion on the same. For example, a patient may tend to misrepresent the actual
severity of the symptoms, due to which the agent (the specialist doctor) with
limited time and going by the patient’s severity values may arrive at an incorrect
diagnosis. It may be more judicious to have a junior doctor as the moderator to
moderate the severity of the symptoms.

With this motivation, we extend the concept of information set with another
parameter to represent the degree of the moderator’s agreement with the infor-
mation values provided by the agent. The data structure, so formed, is termed
as moderated information set. The rest of the chapter is organized as follows.
Section 2 gives the background for the study. In Sect. 3, we introduce the concept
of moderated information set. Section 4 gives the conclusions.

2 Background

2.1 Information Set

In multi attribute decision making (MADM), it is the perceived value that is
more at play rather than the actual attribute value. In this regard, the con-
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cept of information set provides an interesting formalism to model the perceived
values. An information set is a set of entropy values, each of is an information
value as perceived by the agent. These perceived values correspond to the given
information source values for a particular entity, and are computed through the
Hanman-Anirban entropy function [4].

In the context of MADM, let us consider a set of objects U = {u1, . . . , um}
that we call as the reference set. Each of the uis is described by multiple
attributes, denoted by E. An information source value Ie(ui) denotes the value
that attribute e ∈ E takes for ui. The collection of these information source
values is shown as:

Ie = {Ie(ui) | ∀ui ∈ U}, (1)

Ie in (1) is an information function Ie : U → Ie(ui). For the ease of interpreta-
tion, we consider Ie(ui) to be the normalized in the interval [0, 1].

The set of normalized information source values, when put together attribute-
wise, generates “soft” classes (concepts). Each of these soft classes corresponds
to an attribute e, and is denoted as Ie. With this reference, an information
set could be seen as a soft class, giving a collection of the agent’s perceived
information values.

Though the attribute values (information source values) are real crisp val-
ues, but they induce have different interpretations for as many individuals. For
instance, in the case of MADM, the various values that an attribute takes for
the given alternative (option) in the choice set are the information source values.
These values for a particular attribute e are denoted by Ie. The information set
formalism helps to modify such an actual information source value in light of
the agent’s specific evaluation of the same to give an information value. This
evaluation is determined by the Hanman-Anirban entropic gain function [4],
performing the role of an agent. This gain function is, henceforth, referred to
as the agent1. The perceived value or the information value is nothing but the
Hanman-Anirban entropy value.

The information gain function is given as:

ge(ui) = e−(ae(Ie(ui))
3+be(Ie(ui))

2+ce(Ie(ui))+de)αe

(2)

where ae, be, ce, de and αe are the adjustable parameters, unique to the given
choice set and the attribute e, i.e. {Ie(ui)},∀ui ∈ U . These parameters help
generate several evaluation functions ge(·). In this regard, the DM’s specific
evaluation scheme for a particular attribute is uniquely portrayed by a combi-
nation of these parameters. The two moments of distribution of the information
source values, i.e. mean and/or standard deviation, could also be one set of
the of these parameters. For instance, if we take these parameter set values as:
ae = 0, be = 0, ce = 1

σX
, de = −me

σe
(where me refers to the mean of the values

of all the values that e takes for the given choice set, i.e. 1
n

∑
i Ie(ui); and σe

refers to the standard deviation of the values in Ie.), then we obtain ge(·) as a

1 A human agent too perceives his/her environment differently in his/her own way.
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generalized Gaussian function, shown as:

ge(ui) = e
−

(
Ie(ui)−me

σe

)αe

(3)

where, αe uniquely determines the DM’s evaluation pattern for the attribute e.
Different shapes of agent, i.e. ge(·) are obtained for different values of α. A few of
these shapes obtained with αe = 0.5, 1, . . . , 5 are shown in Fig. 1. For instance,
at αe = 2, a Gaussian function is generated.

Fig. 1. Information gain values of the form ge(ui), obtained with the information gain
function given in (3).

The uncertainty in the information source values {Ie(ui)},∀ui ∈ U , as eval-
uated by ge(.), can be quantified as:

Qe =
∑

i

Ie(ui)ge(ui) (4)
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where Ie(ui)ge(ui) gives the agent’s information value, i.e. the perceived value
for Ie(ui). For example, a particular value of an attribute, say height, evokes
different conceptual perceptions for different agents. For instance, an agent from
a geographical region with tall people would have his/her conceptual perceptions
about a height value as per his/her own background. If this height value is found
to be lesser than his definition of normal, then (s)he may perceive this height as
low. Similarly a person from a region of short people (like Congo in Africa) may
perceive this height to be very tall.

The perceived height is computed as Ie(ui)ge(ui) through the information set
formalism, where e refers to height as the attribute, and Ie(ui) is the specified
temperature value.

Information set Se consists of these information values of the form shown as:

Se = {Ie(ui)ge(ui)}, ∀ui ∈ U (5)

Each element of Se is expressed as:

Se(ui) = Ie(ui)ge(ui), (6)

which is nothing but the value of the entropy function. The exponential gain func-
tion (agent) ge(.) helps generate several evaluation patterns (agents) through a
combination of the parameters. Besides, information set formalism helps to con-
nect the information source values with the corresponding evaluations, specific
to the agent. In contrast to this these remain delinked in a fuzzy set.

3 Moderated Information Set

The information set is extended as a moderated information set (MIS) by taking
the moderator’s assessment of the information values provided by the agent.
The moderated information values hold a key in representing the information
source values in the conceptual framework. Without moderation, the original
evaluation remains uncertified in the conventional framework. In this section,
we present MIS along with illustrative examples. The properties of MIS are also
investigated.

A moderated information set M over soft universe (U,C), is defined by a
mapping � : C → S × R, and M : C → R. The moderated information set so
formed is expressed as:

M =
{(

�(ei) | M(�(ei))
)}

, ∀ei ∈ C (7)

where M (�(ei)) indicates the moderator’s degree of agreement with the infor-
mation values provided by the agent for an alternative from a set of alter-
natives, denoted by C ei, and M = {M (�(ei))},∀ei ∈ C; �(ei) ∈ P (U);
M(�(ei)) ∈ [0, 1]. We denote each element of the proposed MIS as:

(ei) =
(

�(ei) | M(�(ei))
)

(8)
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Each element of the proposed MIS is a tuple of the agent’s perceived value
along with the moderator’s evaluation about the same. This makes it potentially
useful in MCDM to take into consideration a second opinion (of the moderator)
about the agent’s evaluation in terms of the information values.

Example 3.1. Let U = {u1, u2, u3, u4} be a set of patients and the set of symp-
toms be denoted by E = {fever (e1), loss-of-appetite (e2)}. The conventional
information set is then shown as:

Si = {Si1, Si2}, (9)

where Sij denotes the information value giving the perception of the patient ui

about his/her symptom ej. Let the partial degree given by the moderator about
the patient’s information values be M(e1) = (0.8), M(e2) = (0.3). Then the
corresponding moderated information set is:

M = {(S1| 0.8) , (S2| 0.3)} (10)

The moderator’s values are indicated in the bold, and are reflected in the
final decision outcome. The main operations on the proposed MIS are given as
follows:

Definition 3.1 (Subset). Let M 1 and M 2 be two MISs defined over (U,C).
Then M 1 is a subset of M 2, i.e. M 1 ⊆ M 2 iff

i. M(�1(ei)) ≤ M(�2(ei)), ∀ei ∈ C
ii. �

1(ei) ⊆ �
2(ei), ∀ei ∈ C.

Example 3.2. Let us relook at M of Example 3.1. Let M 1 be another MIS.
Determine if one of these is a subset of the other. The two MISs are shown as:

M = {(S1 | 0.8) , (S2 | 0.3)}
M 1 = {(S1 | 0.1) , (S2 | 0.2)}

Since, M(�1(e1)) ≤ M(�(e1)), and M(�1(e3)) ≤ M(�(e3)); and also �
1(e1) ⊆

�(e1), and �
1(e3) ⊆ �(e3), therefore M 1 is a subset of M .

Definition 3.2 (Complement). Let the complement of M be denoted by M ,
then the complement is defined as

M =
{(

Si | M i = 1 − Mi

)}
, ∀ei ∈ C (11)

The complement of a MIS is thus just opposite to that of the given MIS.

Example 3.3. We reconsider the MIS given in Example 3.1. Its complement is
shown as:

M = {(S1| 0.2) , (S2| 0.7)} (12)
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Definition 3.3 (Union). The union of M 1 and M 2 , denoted by M 1 ∪ M 2,
is defined as

M 1 ∪ M 2 =
{(

S1
i ∪ S2

i | M1
i ∪ M2

i

)}
,∀ei ∈ C (13)

Definition 3.4 (Intersection). The intersection of M 1 and M 2 is given as
following:

M 1 ∩ M 2 =
{(

S1
i ∩ S2

i | M1
i ∩ M2

i

)}
,∀ei ∈ C (14)

Example 3.4. The union and intersection of MISs M and M 1, as shown in
Example 3.2 are presented as following:

M ∪ M 1 =
{(

S1 ∪ S1
1 | 0.8)

,
(
S2 ∪ S1

2 | 0.3)}

M ∩ M 1 =
{(

S1 ∩ S1
1 | 0.1)

,
(
S2 ∩ S1

2 | 0.2)}

Definition 3.5 (Null Moderated Information Set). The null moderated
information set defined over (U,C), and denoted as M0, has all the moderator’s
assessments for its elements as 0, i.e.:

Mi = 0, ∀ei ∈ C

Example 3.5. The corresponding null moderated information set for MIS con-
sidered in Example 3.1 is shown as:

M0 = {(S1, S2 | 0.0)}
Definition 3.6 (Absolute Confidence Information Set). The absolute
moderated information set is denoted by M1, and has the maximum, i.e. 1,
moderator’s assessments for its elements. It is as following:

Mi = 1, ∀ei ∈ C

Example 3.6. The corresponding absolute moderated information set for the
MIS in Example 3.1 is given as:

M1 = {(S1, S2 | 1.0)}
Definition 3.7. (Empty Moderated Information Set). A moderated infor-
mation set defined over (U,C) is said to be empty if S = φ, and M = 1. It is
denoted by MΦ, and is shown as:

MΦ = {({} | 1.0)} (15)

3.1 Properties

Let M be a MIS defined over (U,C), then

(i) M ⊆ (M ∪ M )
(ii) (M ∩ M ) ⊆ M
(iii) M ∪ M0 = M ∩ M0 = M0

(iv) M ∪ M1 = M ∩ M1 = M
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4 Conclusions

This chapter extends the concept of the recent information set to the moderated
information set by introducing a moderator’s assessment of the first-hand infor-
mation values. The usefulness of MIS is demonstrated through several examples.
As a future work, the structure of the moderator’s input can be tailored to tackle
specific decision making problems in different domains. Suitable methods can be
thought of to improve upon the original evaluations by the agent, in light of the
moderator’s inputs. The refined evaluations, so obtained, would be much more
useful for arriving at an accurate decision.
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Abstract. Neural topic models aim to predict the words of a document
given the document itself. In such models perplexity is used as a training
criterion, whereas the final quality measure is topic coherence. In this
work we introduce a coherence regularization loss that penalizes inco-
herent topics during training of the model. We analyze our approach
using coherence and an additional metric - exclusivity, responsible for
the uniqueness of the terms in topics. We argue that this combination
of metrics is an adequate indicator of the model quality. Our results
indicate the effectiveness of our loss and the potential to be used in the
future neural topic models.

Keywords: Topic modeling · Neural networks · NPMI ·
Topic coherence

1 Introduction

Topic Modeling is an established area of text mining focused on discovering
topics in a collection of documents. Generative models like Latent Dirichlet
Allocation (LDA) [1] have been long used as a standard in Topic Modeling.
With the popularization of the Neural Networks and Deep Learning, several
neural topic models have been suggested [2,3], implementing the same genera-
tive principles: generating a document given the same document, through the
topic/word and document/topic distributions. The advantages of neural topic
models include better resource management through the flexibility of training,
and natural use of embeddings, a highly effective type of word representation, as
opposed to bag-of-words model, traditionally used in LDA. Neural topic models,
being unsupervised, use a metric like perplexity as a training criterion, to control
the ability of the model to generate documents. However, perplexity does not
reflect the human judgment [4] of the topic quality, unlike coherence, commonly
used in evaluation of topic models. Therefore, such models cannot guarantee the
best quality of the final output. Furthermore, coherence cannot be regarded as
a single defining quality metric: being an average between all topics, the final
coherence will favor repeating topics, coherent but containing the same words.
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In this work we present a new regularization loss for a neural topic model,
inspired by the coherence measure. Our contributions are the following: (i) we
propose a simple and straightforward regularization function for a neural topic
model, aimed to control the coherence of the intermediate topics, generated dur-
ing training; (ii) we propose the usage of a new (to the best of our knowledge)
composite metric, combining coherence and a uniqueness measure - exclusivity
[15], thus solving the coherence’s bottleneck of repeating topics; (iii) we introduce
new multi-criteria training procedure – a combination of perplexity and afore-
mentioned composite metric, to better control the topic model quality during
training.

The paper is organized as follows: in Sect. 2 we outline the related work
that has influenced our approach; Sect. 3 details the proposed regularization
technique; implementation and experiments are described in Sect. 4, and their
results are listed and analyzed in Sect. 5. Finally, Sect. 6 finalizes our findings
and sets up a plan for the future work.

2 Related Work

In this section we outline the previous research that have shaped up our work.

2.1 Regularization for Standard Topic Models

Regularization of topic models is not a novel concept. [5] proposed to modify the
LDA model by building a structured prior over words using a covariance matrix,
enforcing co-occurring words to appear in the same topics. Another regularizer
in form of a Markov Random Field, was presented in [6], with the same idea of
incorporating word correlation knowledge into LDA. [7] offered a more efficient
method called Sparse Constrained LDA. All of the aforementioned models carry
the same idea of adding word co-occurrence information to the LDA algorithm.
This concept is transferred to neural topic models in our work.

2.2 Neural Topic Models

The success of Neural Networks and Deep Learning in many NLP tasks has lead
to the research in Neural Topic Modeling. The early methods use autoencoders
[8], a Restricted Boltzmann Machine [9], autoregressive models [10] and Deep
Boltzmann Machine [11]. [2] proposed a straightforward way to represent the
topic model with a Neural Network. Their model uses word embeddings, which
enables the input consisting of ngrams instead of single words. Topically Driven
Neural Language Model (TDLM) [3] adopts a topic model to improve the lan-
guage model. The authors report a state of the art coherence for several datasets,
outperforming [2] and in most cases LDA. For this reason, TDLM serves in our
work as the baseline and base model, where our regularization loss is applied.
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2.3 Topic Quality Measures

Topic quality measures have been evolving in the recent years: from using per-
plexity [12] to various metrics for topic coherence [13]. Normalized Point-wise
Mutual Information (NPMI) coherence is one of the most well performing and
popular with researchers [13]. Whereas coherence is well-informative, it does not
measure redundancy [1], e.g. a model containing N coherent, but identical topics
would get a high score, despite being low quality. For this reason, many works
conduct a qualitative analysis of the topics. The other way to handle redun-
dancy problem is to add another metric, such as inter-topic similarity from [1],
or generality in [14]. In this work we follow the latter approach and employ the
exclusivity metric [15] for measuring the “uniqueness” of the topics. We then
introduce a new metric – a combination of coherence and exclusivity, in order
to give better quantitative assessment of the model quality.

3 Coherence Loss

Traditionally, in neural models dropout is used for regularization, to prevent
overfitting. For neural topic models, other types of regularizers, besides dropout,
are necessary to improve the coherence of the resulting topics. The main loss
function of a neural topic model, such as [2,3], is designed for an autoencoder,
where the training is led by metrics like perplexity, which, as we know, does
not correlate with coherence [4]. From the need to explicitly control the coher-
ence of the topics we have drawn the idea of adding a coherence loss as a new
regularization technique.

In this work we use NPMI coherence in the evaluation, the reason being
its popularity and superior performance. The definition for NPMI coherence is
inferred from the framework by [13]:

CNPMI = σa
t=1...N (σa

i,j∈(Nt
2 )(NPMI(wi, wj))) (1)

where σa is an arithmetic mean [13], N is the number of topics, wi, wj ∈ Wt –
the set of top Nt terms of each topic and

NPMI(wi, wj) =
log P (wi,wj)+ε

P (wi)·P (wj)

− log P (wi, wj) + ε
(2)

NPMI values lie in [−1; 1] interval. Probabilities P are estimated based on
the word occurrence and co-occurrence matrices. It is assumed that the more the
terms of a topic appear together in a corpus, the better they are related, which
makes the topic more coherent. The co-occurrence matrix can be built on any
corpus, including the training one, though the coherence calculated on a large
external corpus (like Wikipedia) is known to perform better [16]. Our proposed
coherence loss is inspired by the CNPMI coherence formula (1) and defined as:

LNPMI = α ∗ σa
t=1...N (σa

i,j∈(Nt
2 )(φt,i,j ∗ (1 − NPMI(wi, wj)))), (3)
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where α is the loss coefficient, to be decided empirically. The loss definition differs
from the coherence formula in two aspects: firstly, we use (1 − NPMI(wi, wj))
instead of NPMI(wi, wj), to represent the coherence penalty, and secondly, we
add a topic-specific coefficient φt,i,j , calculated from topic/word distribution φ
of words wi, wj : φt,i,j = φt,i ∗ φt,j . The value of φt,i,j can be considered as the
“importance” of an individual coherence loss, since it depends on the position
of terms in the topic descriptor: the higher pair of terms in the list will be given
more weight for its coherence penalty, while the last words in the descriptor are
allowed to be slightly less coherent. We apply a softmax over the top Nt φ
values for each topic to avoid very small numbers in loss calculation.

Each step of the training process, our coherence cost is computed and added
to the main cost, e.g. cross-entropy for [3], with a coefficient α.

4 Experiments

Seeing that our goal in this work is to improve coherence, we have chosen the
state of the art neural topic model as both our baseline and base model: TDLM
from [3], with a straightforward and elegant topic model neural representation.
For our experiments we exclude the language model part of TDLM and focus
only on the topic model, which also significantly accelerates the training time.

4.1 Implementation

For testing the proposed coherence loss, we have used the open-source tensor-
flow implementation1 from [3], where we have disabled the language model part,
leaving only the topic model. Occurrence and co-occurrence matrices for datasets
were computed once and saved. For the lack of sufficient resources, we calculated
the matrices based on the training data, instead of using an external bigger cor-
pus. Since the goal is to demonstrate the work of the coherence loss in comparison
with the base model, “local” co-occurrence information suits the task well. The
α coefficient in (3) is a hyperparameter, of which several values were tested. In
our results we report the best performing values.

4.2 Datasets

For the sake of comparison, three datasets from [3] have been chosen: IMDB
reviews from [17], APNEWS2 - collection of news from Associated Press, and
British National Corpus (BNC)3 [18]. The training and validation sets were taken
directly from the open-source TDLM project, along with the default parameters.
Due to difference in model and evaluation, TDLM’s coherence values reported
in [3] could not be used for comparison, thus all metrics were recalculated.

1 https://github.com/jhlau/topically-driven-language-model.
2 https://www.ap.org/en-gb/.
3 http://www.natcorp.ox.ac.uk/.

https://github.com/jhlau/topically-driven-language-model
https://www.ap.org/en-gb/
http://www.natcorp.ox.ac.uk/
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4.3 Evaluation

As mention in the previous sections, using perplexity as a training criterion does
not guarantee best coherence. Therefore, we modified the training and evaluation
procedures in three different aspects, described below.

Quality Measures. We added a new metric, called exclusivity : excl = |Wu|
|W | ,

where |Wu| is the number of unique terms and |W | is the total number of terms
in topic descriptors. It has been used in [15] as complimentary measure for coher-
ence, to cover the problem of redundancy. Exclusivity is a simple and straight-
forward variation of the metrics offered by [1,14], and takes values from interval
(0; 1]. The latter property allows to view exclusivity as a measure of “quality of
coherence”. Naturally, some redundancy is unavoidable in a topic model, yet,
the less redundant model is the more coherent one [1]. Therefore, both metrics
should be considered for evaluation. In this work we propose a composite mea-
sure Q = CNPMI ∗excl, that captures both coherence and exclusivity, providing
a fair assessment of the topics. This formula is only used with positive coherence
values, as negative coherence already indicates low quality model. Eventually,
more complex formulas may be used, depending on the importance of both mea-
sures, but for this work we focus on the basic definition.

Multi-criteria Training. After each epoch, we compute a tuple of metrics,
consisting of validation perplexity ppl and Q. It is then checked in the following
manner: if none of the metrics are improving compared to the previous epochs,
the epoch is considered failed and the parameters are restored to the previous
epoch, as in [3]. Otherwise, the training continues without changes. This way
we make sure that good quality epochs do not get restarted because of worse
perplexity.

Final Evaluation. We run the model for 20 epochs and average the results
from several runs for each epoch. The best coherence and Q values may not be
the final ones, therefore per-epoch analysis is performed. We compare three types
of values: best coherence, best exclusivity, and finally best Q among epochs.

5 Results

We ran the experiments on IMDB, APNEWS and BNC for N = 50, 100, 150
topics. For each combination of dataset/N we found the value of α empirically.
Table 1 shows the obtained results (with superior values in bold). Comparison
of coherence indicates that the regularized version improves the metric in the
majority of cases, while exclusivity values decrease, to different extents. This
observation is justified, since our regularization is based on average coherence.
An exclusivity regularizer may be beneficial, which we leave for the future work.
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Table 1. Topic quality results, maximum values from 20 epochs

Dataset IMDB APNEWS BNC

CNPMI

N (α) 50 (1) 100 (1) 150 (1) 50 (1) 100 (2) 150 (2) 50 (2) 100 (2) 150 (2)

Baseline 0.026 0.044 0.043 0.150 0.162 0.160 0.145 0.140 0.137

Regularized 0.035 0.045 0.041 0.151 0.155 0.163 0.143 0.142 0.137

excl

Baseline 0.634 0.422 0.366 0.868 0.659 0.531 0.885 0.656 0.510

Regularized 0.620 0.409 0.361 0.869 0.674 0.504 0.905 0.620 0.504

Q = CNPMI ∗ excl

Baseline 0.016 0.018 0.014 0.129 0.105 0.082 0.128 0.092 0.067

Regularized 0.021 0.018 0.014 0.130 0.103 0.082 0.129 0.088 0.069

The analysis of the composite metric Q concludes that our regularization
loss is mostly beneficial for smaller number of topics. The difference is especially
significant with IMDB, our smallest dataset, where regularized model gained
a big difference in CNPMI and Q, without adding much redundancy to the
topics. This indicates that the coherence loss is particularly useful for small and
noisy corpora, where it is harder to obtain coherent topics. For a more detailed
analysis, Fig. 1 shows the trends of the metrics for IMDB N = 50, α = 1.0. It
is evident that our proposed loss have improved the coherence at each iteration
while only slightly decreasing the exclusivity. This trend is persistent through
the training process. Moreover, the best quality topics do not correspond to the
final epoch, which justifies our per-epoch analysis. It is also worth noticing that
loss in perplexity for our regularized model is considerably small, compared to
the gain in coherence.

Fig. 1. Metrics per epoch of IMDB corpus for 50 topics (from epoch 6)
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Other tests show the increase in coherence, but bigger decrease in exclusivity,
which results in the trade-off Q metric being equal or (in two cases) worse than
the baseline TDLM. We can account that on the resource limitations that allowed
us to only test several values of the parameter α for large number of topics. We
believe that more extensive experiments will reveal better values, with possible
addition of an exclusivity regularization.

Based on the obtained results, we can observe that the proposed coherence
loss does indeed improve the topic coherence metric. Moreover, our new compos-
ite quality metric Q proved to be a necessary addition to the evaluation process,
showing that a better coherence value does not always indicate better model
quality, as it may add much redundancy to the topics. Our new quality metric
allows to estimate the trade-off between gain in coherence and loss in exclusivity,
thus simplifying and improving the comparative analysis of the models.

6 Conclusion

In this work we presented new coherence loss, intended as a regularization loss
for neural topic models. We have tested our loss on the state of the art model
TDLM [3] and demonstrated its ability to increase the coherence of the topics
(in most cases), and the overall quality of the topics (in few cases). Our regular-
ization technique is flexible: the loss can be applied to any neural topic model,
where a topic/word distribution can be computed during training. Moreover, we
introduced a composite metric for the topic quality evaluation, representing the
trade-off between topic coherence and the level of redundancy in topics (exclu-
sivity). Finally, we proposed a multi-criteria training procedure, which allowed
us to control both perplexity and topic quality metrics during training.

Future Work. Testing of our proposed loss revealed the need to add an exclu-
sivity regularization to control the redundancy in topics. This can be achieved by
adding an entropy-based loss that would ensure that each word in the vocabulary
is assigned to maximum one topic. This addition we leave for the future work.
Furthermore, the coherence loss should be tested on other neural topic models,
such as NTM [2], where the main loss differs from TDLM. Additionally, future
work will include testing more hyperparameter values for large topic numbers,
with co-occurence matrices computed on a reference corpus.

Acknowledgements. The elaboration of this scientific paper was supported by the
Ministry of Economy, Industry, Research, Innovation, IT, Employment and Education
of the Region of Wallonia (Belgium), through the funding of the industrial research
project Jericho (convention no. 7717).
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Abstract. This paper introduces a two-player zero-sum differential
game with imperfect state information, focusing on the situation with
linear system, quadratic cost functional and state measurement contains
white Gaussian noise. A solution is put forward in view of a special sit-
uation where one controller has available noise-corrupted measurement
and the other has only one priori information. In addition, Kalman filter
is used for state estimation. In subsequent section, a simulation based on
a linear differential game problem is proposed, which is a well corrobo-
rate of the theoretical part. Finally concludes the research work on this
paper, and points out the need to further expand in the future.

Keywords: Differential game · Imperfect state information ·
Noise-corrupted measurement · Kalman filter

1 Introduction

The study of differential games has already caused considerable concern [1–3]. Its
origins can be traced back to the literature published by Von Neumann and Mor-
genston [4] in 1944. Subsequently, Rufus [5], an American game theorist, made
an intensive study of this field and appeared the first monograph on differential
games in the world in 1965, which laid the foundation for further research work.
Most of the research in this field is focused on deterministic differential games
with complete information, in which players or controllers clearly know the state
of the system at any time. But the practical application is often not so ideal.
Hereafter researchers commence the study of nondeterministic differential games
that noise (usually zero-mean white Gaussian noise) occurs in system state or
state measurement. Y. C. Ho proposes a solution to a class of this problem used
variational technique in reference [6] where one player controls the state, and the
other can only measure the state with incomplete or noisy measurements. After
that, Haurie and Başar [7] consider another kind of problem, where one player
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has complete information and the other has only noisy measurement of system
state. In addition, many researchers [8–10] have used different methods to give
various arguments for differential games under various conditions.

When differential game theory was established, it was naturally associated
with the optimal control theory [11]. But gradually, it was found that the opti-
mal control method could not be simply applied to differential games [12–14].
Essentially, differential game is a multifaceted optimal control problem, and the
optimal control problem can be regarded as a special type of differential game.
There are further discussions on this issue in the literature [15]. In recent decades,
the theory of differential games has made great progress with the deepening of
the research, and the problem of differential games also presents a variety of
types, such as deterministic differential game, stochastic differential game [16],
pursuit-evasion game, zero-sum game [17], multi-person cooperative differen-
tial game [18], non-cooperative differential game [19], leader-follower differential
game [20] and other dynamic game types.

In this paper, we assume a nondeterministic differential game in which players
can only have available noise-corrupted measurements of system state. Further,
attention mainly points to the special case of a linear system, a quadratic cost
function and an independent zero-mean white Gaussian noises occurring in state
measurement. From the formula of Sect. 2, we can see how they are described.
The formal solution to this type of problem in special cases under the premise of
Nash equilibrium is given in Sect. 3. Furthermore, the validity of Kalman filter
for state estimation in this special case is proved by establishing two propositions
in Sect. 4. In the Sect. 5, a simulation is given to verify the theoretical part of the
paper. Finally, get a summary of the theoretical study and practical research.

2 Problem Statement

The two-player zero-sum differential game problem of imperfect information
involving a linear system, a quadratic cost function and an independent zero-
mean white Gaussian noises occurring in state measurement. Our purpose here
is to give an optimal differential strategy to this problem. Consider a continuous-
time linear system described by the vector differential equation

ẋ = Ax + Bu (t) + Dv (t) (1)

where the n-dimensional vector x (t) is the system state; The control vectors u (t)
and v (t) are p-dimension and q-dimension, respectively; A, B, D are matrices
of appropriate dimension. In addition, assuming that the system is stabilizable.
Consider also a quadratic cost functional or payoff to this problem

Jt (u, v) =
∫ tf

t

r (x, u, v, t) dt + L (x (tf )) (2)

where r (x, u, v, t) = uT R1(t)u + vT R2(t)v, L (x (tf )) = xT (tf )Pfx(tf ), and
t0 ≤ t ≤ tf , tf is the fixed termination time. Note that R1(t) is a symmet-
ric positive definite matrix and R2(t) is a symmetric negative definite matrix;
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Pf is a positive semidefinite matrix. Here, controlling u and v select their own
actions to maximize or minimize the expectations of the payment function J .
Controller 1, controlling u, has available noise-corrupted measurements of the
form

z1 (t) = H1 (t)x (t) + w1 (t) (3)

while Controller 2, controlling v, has no available measurements and, yet, has
only one priori information to use

z2 (t) = H2 (t) x (t) + w2 (t) ,H2 (t) ≡ 0 (4)

where H1 (t), H2 (t) are matrices of appropriate dimension. Suppose w1 and w2

are zero-mean white Gaussian noise with covariances

cov (wi(t), wi(τ)) = Wi(t)δ(t − τ), i = 1, 2 (5)

where δ is a unit impulse function, and Wi(t) is symmetric nonnegative positive
definite matrix. Suppose that both controllers regard the initial state x(t0) as a
Gaussian random vector unrelated with w1(t), w2(t), and has mean x̄0, moreover
cov (x(t0), x(t0)) = M0.

Zi is defined as the measurement set of controller i, i = 1, 2 on interval [t0, t)

Zi(t) = {(zi(s), s)|s ∈ [t0, t)} . (6)

For controller 2, H2 (t) ≡ 0 and Z2(t) ≡ Z2(t0) for all t. Both controllers must
choose their own control variables on the basis of their respective measurements.

3 The Solution

This two-player zero-sum differential game consists of the optimization of (2)
subject to (1), with controller 1 having available noise-corrupted measurements
of the state x(t) and controller 2 having only one priori information of the form
given in (4). The optimal closed-loop control laws (uo, vo) is obtained when the
condition

Jt(uo, v) ≤ Jt(uo, vo) ≤ Jt(u, vo). (7)

is satisfied for all admissible strategies. Then, if (7) is established, there is a
saddle point for Jt(u, v), and uo, vo are called the optimal strategy [21]. We
introduce the estimate of x(t)

x̂i(t|t) = E {x(t)|Yi(t)} , i = 1, 2 (8)

and x̃i(t|t) = x(t) − x̂i(t|t), i = 1, 2. Known from the previous, both state x(t)
and measurements zi(t) are Gaussian random vectors in this paper, also, x̂i(t|t)
is the minimal mean square error estimate of x(t) under given condition Yi(t).
For the closed-loop control laws (u, v), define the value function [22] as

V (x(t), x̃2(t|t), t)
= xT (t)P (t)x(t) − x̃2(t|t)T N(t)x̃2(t|t) + b(t)

= xT (t)P (t)x(t) − (x(t) − x̂2(t|t))T
N(t) (x(t) − x̂2(t|t)) + b(t).

(9)
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We can also define this two-player zero-sum differential game as

V o = Jt(uo, vo) = min
u

max
v

Jt(u, v)

where J is defined in (2) and V o is the optimal value function. This differential
game has a unique solution if either saddle point exists or the Nash condition
[23]

V o = min
u

max
v

J(u, v) = max
v

min
u

J(u, v)

is satisfied. Note that V (x(t), x̃2(t|t), t) = Jt(u, v). The Hamilton function is
defined as follows

H (x, x̃2, u, v, t)

= Vt (x, x̃2, t) + Vx (x, x̃2, t) ẋ + Vx̃2 (x, x̃2, t) ˙̃x2 + r (x, u, v, t) = 0
(10)

where i = 1, 2, Vt = ∂V
∂t , Vx = ∂V

∂x , Vx̃2 = ∂V
∂x̃2

. Note that controlling u and
controlling v can only be obtained from their respective measurements. Rewriting
system equation (1) as follows

ẋ = Ax + BE {u|Y1} + DE {v|Y2} . (11)

Refer to Eqs. (8) and (11)

˙̂x2 = E {ẋ|Y2} = E {Ax + BE {u|Y1} + DE {v|Y2}|Y2}
= Ax̂2 + BE {u|Y2} + DE {v|Y2} (12)

˙̃x2 = ẋ − ˙̂x2

= Ax + BE {u|Y1} + DE {v|Y2} − (Ax̂2 + BE {u|Y2} + DE {v|Y2}). (13)

Note that the external expectation of the last term is based on Y2, mean-
while, the internal expectation based on Y1 is also valid, since Y2(t) = Y2(t0)
(a priori information available to both controller) is a subset of Y1(t), so
E {E {•|Y1} |Y2} = E {•|Y2} . Thus, substitution of (9), (11), and (12) into
Eq. (10) gives

H (x, x̃2, u, v, t) = xT Ṗ x − x̃T
2 Ṅ x̃2 + ḃ + uT R1u + vT R2v

+ 2xT P (Ax + BE {u|Y1} + DE {v|Y2})

− 2x̃T
2 N [(Ax + BE {u|Y1} + DE {v|Y2})

− (Ax̂2 + BE {u|Y2} + DE {v|Y2})]

(14)

3.1 The Form of Optimal Strategy

According to Bellman’s optimal principle [24], the optimal strategy can be
obtained as follows
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uo = arg min
u

E {H (x, x̃2, u, v, t) |Y1 (t)}

= −1
2
R−1

1 BT E {Px − Nx̃2|Y1 (t)} = −R−1
1 BT (P x̂1 − N (x̂1 − x̂2)) , (15)

vo = arg max
v

E {H2 (x, u, v, t) |Y2 (t)}

= −1
2
R−1

2 DT E {Px − Nx̃2|Y2 (t)} = −R−1
2 DT P x̂2. (16)

We can also get

E {u|Y2} = arg min
u

E {H (x, x̃2, u, v, t) |Y2 (t)}
= −R−1

1 BT E{Px − N (x − x̂2) |Y2 (t)} = −R−1
1 BT P x̂2.

(17)

Substitution of (15), (16) and (17) into (14) then gives, after some algebra,

H (x, x̃2, u
o, vo, t) = xT (Ṗ + PA + AT P − PBR1

−1BT P

− PDR2
−1DT P )x − x̃T

2 (Ṅ + NA − AT N

− P
(
BR1

−1BT + DR2
−1DT

)
P )x̃2

+ x̃T
2 (P − N) BR1

−1BT (P − N) x̃2

+ E
{
x1

T (P − N) BR1
−1BT (P − N) x̃1|Y1

}
+ ḃ = 0

(18)

It then follows immediately that the symmetric matrix P (t) satisfies the Riccati
equation

Ṗ + PA + AT P − PBR1
−1BT P − PDR2

−1DT P = 0, (19)

while the symmetric matrix N(t) satisfies the differential equation

Ṅ + NA − AT N − P
(
BR1

−1BT + DR2
−1DT

)
P

+ (P − N) BR1
−1BT (P − N) = 0

(20)

with the boundary condition N(T ) = 0. The penultimate term with the expec-
tation based on Y1 of (18) is

tr
[
E

{
x̃1x̃

T
1 |Y1

}
(P − N) BR1

−1BT (P − N)
]

=tr
[
M (P − N) BR1

−1BT (P − N)
]
,

(21)

where the symmetric matrix M is defined as

M(t) = E
{

x̃1(t|t)x̃1(t|t)T |Y1(t)
}

, (22)

and from Sect. 2, we know the boundary condition M(t0) = cov (x(t0), x(t0)) =
M0. The scalar b(t) can be solved by the differential equation

ḃ = −tr[M(t) (P (t) − N(t)) · B(t)R1
−1BT (t) (P (t) − N(t))], (23)

with boundary condition b(T ) = 0.
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3.2 State Estimation Using Kalman Filter

Combined with (12), (15), (16) and (17), the optimal state estimation of con-
troller 2 , given only one priori information, without available the measurements,
is given by

˙̂x2 = Ax̂2 + BE {u|Y2} + DE {v|Y2}
= Ax̂2 − BR−1

1 BT P x̂2 − DR−1
2 DT P x̂2

(24)

with initial condition ˙̂x2 (t0|t0) = x̄0.
For controller 1, the measurement and state estimate are independent of

controller 2, thus the optimal estimate based on measurement set Y1(t) is carried
out by kalman filter theory [25], and is designed by a linear dynamical system
as follows

˙̂x1 (t|t) = Ax̂1 (t|t) + Bu (t) + Dv (t) + K (t) z̃ (t) (25)
z̃1 (t) = z1 (t) − H1 (t) x̂1 (t|t) (26)

with initial state ˙̂x1 (t0|t0) = x̄0. The fundamental purpose of using kalman filter
is to estimate the real state of the system as accurately as possible. This requires
that the filtering process be stable, which indicates that the state estimation is
effective. Next, we will prove the boundedness and convergence of error estimates.

Boundedness of the Estimated Error. If the estimation error x̃ is accept-
able, that is, there is no divergence, then the process of state estimation is stable.
Note that it has been assumed in (8) that x̂1 is the minimum mean square error
of x given Y1(t).

Theorem 1. If x̂1(t|t) is the minimal mean square error estimate of x(t) given
Y1(t), then the estimation error x̃1(t|t) is certainly bounded and the process of
state estimation is certainly stable.

Proof. For any t ∈ [t0, tf ], x̂1(t|t) is the minimal mean square error estimate
of x given Y1(t), so for any estimator x∗

1, E{x̂1(t|t) − x(t)}2 ≤ E{x∗
1 − x(t)}2

is valid. Clearly, we can find an admissible ε that makes E{x̂1(t|t) − x(t)}2 ≤
E{x∗

1 − x(t)}2 ≤‖ ε ‖2 permanent established. According to the nature of norm
‖ x̃1(t|t) ‖2=‖ E{x̂1(t|t) − x(t)} ‖2≤‖ E{x∗

1 − x(t)} ‖2≤‖ ε ‖2 . That is to
say, the estimation error x̃1(t|t) is bounded, which indicates that the process of
state estimation is stable. But this stability does not guarantee the convergence
directly. Inspired by the definition in (22), to prove that x̃1(t|t) convergence only
needs to prove M(t) convergence.

According to (1), (3), (25) and (26), we can get, after some algebra, ˙̃x1 =
Ax̂1 − K(H1x̃1 + w1). Using kalman optimal filtering theory [25], the optimal
gain can be displayed as K = MHT

1 W−1
1 . Thus we can get immediately that

˙̃x1 = Ax̃1 − MHT
1 W−1

1 (H1x̃1 + w1). The remaining unknown matrix M is a
solution of the differential equation

Ṁ = AM + MAT − MHT
1 (t)W−1

1 (t)H1(t)M (27)

of the Riccati type with the boundary condition M(t0) = M0 (recall (22)).
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Convergence of Solutions to the Differential Equations. If (27) given a
fixed initial time t0 and a nonnegative matrix M0 satisfies a Lipschitz condition,
it follows at once that there exist a unique solution M(t) = Ψ(t|M0, t0). Here,
Theorem 2 contained two sufficient conditions is given to conclude M(t) exists
for all t.

Theorem 2. The solution lim
t→∞ Ψ(t|M0, t0) = M∗(t) of (27) exists for all t if

either

I. the system equation (1) is uniformly asymptotically stable;
II the system equation (1) is completely observable for all t.

Proof. Theorem 2 is proved in [26]. Since M(t) has been proved to be convergent,
refer to (22), we can easily get the error estimate x̃1 is also convergent.

4 Simulations

In order to verify the correctness of the solution presented above, the following
second-order continuous time linear system is considered [27]

ẋ =
[

0 1
−1 −3

]
x +

[
0

0.6

]
u +

[
1
4

]
v, (28)

where x is the system state; u and v are control vectors with appropri-
ate dimensions. Before the simulation, we select the following weighting term
R1 = 1, R2 = −1,H1 = [1, 0] ,W1 = 2. First, solve the Eq. (27), where M is
a symmetric matrix in the form of M =

[
m11,m12;m12,m22

]
, and assume its

initial matrix is M0 =
[
1, 0; 0, 1

]
, iterative interval is t ∈ [0, 20]. Using the

Runge-Kutta algorithm, we can see the convergence process of M as shown in
the following Fig. 1.
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Fig. 1. Convergence process of M , W1 = 2.

At the end of the iteration, we can get M = 0, which indicates that
the estimation error ẋ1 converges to zero. Therefore, we continue to solve
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Fig. 2. Convergence of P , W1 = 2.
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Fig. 3. Convergence of N , W1 = 2.

Eqs. (19) and (20). Assuming that the form of the symmetric matrix P is P =[
p11, p12; p12, p22

]
and has an initial value P0 =

[
1, 0; 0, 2

]
, the iteration pro-

cess of P on interval [0, 20] can be obtained as shown in the Fig. 2. Analogously,
assuming that the form of the symmetric matrix N is N =

[
n11, n12;n12, n22

]
and has an initial value N0 =

[
1, 1; 1, 1

]
, the iteration process of N on inter-

val [0, 30] can be obtained as shown in the Fig. 3. Thus, we can get the

solutions of symmetric matrices P and N as P =
[

0.1222 0.02199
0.02199 0.3648

]
, N =[

0.1222 0.02205
0.02205 0.3643

]
.

Next, according to (15) and (16), the optimal control strategy (uo, vo) of the
differential game can be obtained, since other matrices are already known. Note
that the estimates of x̂1 and x̂2 can be obtained in (24) and (25). Further, if
only the value of W1 is changed while other conditions stay the same, the results
shown in Figs. 2 and 3 can be obtained. From these two graphs, we can see that
W1 still converges to steady state when it changes. This means that the Kalman
filter used in this paper can remove different levels of noise (Figs. 4 and 5).
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Fig. 4. Convergence of M , W1 = 4.
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Fig. 5. Convergence of M , W1 = 20.
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5 Conclusions and Next Work

In this paper, we propose an approximate optimal control method for differential
games with incomplete information, especially when one controller has noise-
corrupted measurement and the other only has a prior experience. Firstly, the
formal solution of the optimal control laws (uo, vo) is obtained by constructing
Hamilton function and value function and using the optimal control theory.
Secondly, the effectiveness of state estimation using Kalman filter is analyzed.
Finally, the simulation results have demonstrated the validity of the proposed
optimal control laws. In this paper, we only give the solution of a special case
of nondeterministic two-person differential games. In the next step, it can be
considered that noise occurs in two controllers or that noise exists simultaneously
in the system state equation.
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ACPJS: An Anti-noise Concept Drift
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Abstract. Concept drift involving noise is an important research in the field of
data mining. Many concept drift detection models are proposed to promote the
research of traditional concept drift detection. In this paper, we propose an anti-
noise concept drift processing algorithm based on entropy of information,
named ACPJS. In ACPJS, the JS-divergence and Hoeffding Bounds are used to
set double threshold for concept drift detection and subsequently a horizontal
integrated model will be constructed for anti-noise concept drift processing. In
the comparison experiments of multiple data sets, the presented algorithm has
shown good performance in concept drift detection, anti-noise performance and
classification accuracy.

Keywords: Concept drift � JS-divergence � Horizontal integrated model

1 Introduction

Nowadays, we face with a tremendous number of data from sensor networks, social
networks, Web applications, scientific experiments and financial activities, etc. [1].
Therefore, an efficient processing method for a large amount of data has become an
urgent need. In the related research, data processing is usually in a dynamic environ-
ment, one of the most important challenges in learning from data streams is reacting to
concept drift [2]. Due to the environments are often nonstationary, the variables to be
predicted may change over time in a processing, called concept drift. Most of the
current concept drift detection algorithms are only for specific types of concept drift.
Especially in the noise-containing data stream, they perform poorly. In order to ensure
the classification accuracy and improve the anti-noise performance of the models, this
paper proposes an anti-noise concept drift processing algorithm based on JS-divergence
(ACPJS). When the ACPJS detects the concept drift on training sets, the noise
detection is added at the same time, which can reduce the interference of the noise data
to the classification model and improve the robustness of the classification model. The
main contributions of this paper as follows:

© Springer Nature Switzerland AG 2019
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1. This paper proposes a method based on Hoeffding Bounds and JS-divergence to set
double threshold in the detection of noise data and concept drift. The detection
performance of this method is better than other methods.

2. The paper proposes a horizontal integration model based on decision tree classifi-
cation algorithm in the noisy concept drift processing stage. The model can reuse
the buffer information, and the concept drift classification score is the dynamic
weighted average score of each base classifier. Therefore, the model has higher
accuracy and fault tolerance.

3. The paper integrates the detection phase of concept drift and the classification
processing phase to form a complete anti-noise concept drift processing model.

The remainder of this paper is organized as follows: Sect. 2 presents related works.
In Sect. 3, we elaborate the extraction of noise data, horizontal integration processing
framework and concept drift detection process of ACPJS algorithm. Finally, in Sects. 4
and 5, the analysis of experimental results and conclusions are carried out, respectively.

2 Related Works

In recent years, with the rapid development of information technology, the amount of
data generated in various related fields have also been on the rise. Meanwhile, the
speed of data generation is also accelerating. Consequently, the management and
mining of real-time data are becoming more and more important. Since Schlimmer
et al. [3]. proposed “concept drift” in 1986, many scholars have made tremendous
contributions. Since the 1990s, the research on concept drift detection in the field of
data stream mining has become a hot topic, and the research results obtained have been
widely used [4]. In Reference [5], KL-divergence is used to measure the difference
between two probability distributions. However, there are still three limitations:

– It needs to discretize the data to calculate the probability density;
– It can only deal with the concept of drift between the two categories and many

categories can only be based on the results of two classes to decide;
– Guided and discrete processes can be time consuming.

Therefore, the improved KL-divergence algorithm, JS-divergence, is used in this
paper, which effectively avoids the limitation of the existence of KL-divergence. In
Reference [6, 7], two classical concept drift detection algorithms CVFDT and DDM are
proposed. The CVFDT introduces a sliding window based on the VFDT [8] algorithm,
which effectively improves the problem that the concept drift detection is not good only
by using the Heoffding tree. The DDM algorithm achieves better performance in
conceptual drift detection by setting two thresholds, warning and drift for the error rate.
Both CVFDT and DDM are existing classical algorithms. Many scholars conduct
research on them. This paper will compare these two algorithms to explore the
improvement of concept drift detection performance. In the research of anti-noise
algorithms for data streams, the main methods are integration technology [9, 10],
random forests [11–13], unsupervised learning [14–16] and decision trees [17, 18], etc.
In order to highlight the performance improvement of the algorithm in the anti-noise
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performance, this paper will compare with many classic concept drift algorithms using
different technologies, such as the algorithms using integrated technology (OzaBoost
[19], OzaBag [20], Weighted-bagging [21], ASHT-bagging [22]), the algorithms using
decision tree technology, MSRT [23] and the algorithm using the sliding window
setting technique, DWSCD [24]. Although there are many new research methods and
ideas in the research of concept drift detection in data stream, how to quickly and
accurately detect and process concept drift is still a research hotspot in the field of data
stream mining. Research still faces many challenges and needs to be explored in greater
depth.

3 An Anti-noise Concept Drift Processing Algorithm Based
on JS-Divergence

3.1 ACPJS Algorithm Concept Drift Detection Process

Extraction of Noise Data
The existence of noise will cause huge interference to the judgment of concept drift,
which makes it difficult for the system to distinguish whether there is a concept drift
phenomenon or noise data. Therefore, it is necessary to distinguish between the two by
certain means. In this paper, the ACPJS uses the Hoeffding Bounds inequality theory to
realize the ex-traction of noise data. The theory of Hoeffding Bounds inequality is
defined as assuming that r is a real number random variable, its maximum value is R,
and the mean value of d independent observation for random variable r is �r, then the
probability of r;s real average value at least �r � e is 1� d, that is:

Pðr��r � eÞ ¼ 1� d; e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2Inð1=dÞ=2d

p
ð1Þ

In formula (1), d is the number of data blocks. Hoeffding Bounds inequality reflects the
closeness between random variables and their means, to classify the data stream of each
data block in the integrated classifier classification accuracy e as a random variable, in
the ideal case, the value of the random variable is equal to the average.

Pfje� �ej � eg ¼ 1� d ð2Þ

When e can not satisfy Eq. (2), then it proves that there is a concept drift or noise
interference. In order to verify whether a concept drift or just noise interference is
generated, the algorithm sets two thresholds Tl ¼ c1e and Th ¼ c2e (c1, c2 are constants
and satisfy c1\c2). Now suppose e is the misclassification rate on the different data
block integration classifiers, the detection process is following:

• The integrated classifier is used to classify the samples in each data block and
record the misclassification rate ei of each data block, and finally calculate the
average misclassification rate �e.
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• Calculate De by De ¼ jei � �ej, if De� Tl, there is no concept drift occurs, if
De� Th, indicated that the concept drift may occur and need to use JS-divergence
for further judgment.

• Update ei for the next detection and repeat the above steps until the end of the
training.

Concept Drift Detection Based on JS-divergence
Before using JS-divergence for concept drift detection, the KDQ tree is used to divide
the data, which is beneficial to the uniform distribution of data in the feature space. In
concept drift detection, the JS-divergence is used to calculate the data distribution
distance between two data blocks. JS-divergence solves the asymmetry problem of KL-
divergence with respect to entropy, and can well represent the relationship between two
data segments. The formula for JS-divergence is as follows:

JSDðPjjQÞ ¼
X

x2X ðpðxÞ log
2pðxÞ

pðxÞþ qðxÞ þ qðxÞ log 2qðxÞ
pðxÞþ qðxÞÞ ð3Þ

Supposed that P and Q in formula (3) are two contiguous blocks of data. When the
calculation result is less than the set threshold s, it is proved that the concept drift is not
detected, and conversely, the concept drift is generated. In order to determine the size
of the threshold s, the ACPJS uses the BootStrap to perform multiple trials in the form
of put back sampling, and uses JS-divergence to calculate the results each time. Finally,
sort from small to large and select top 95% as the confidence interval to find the
appropriate threshold.

3.2 Concept Drift Processing of ACPJS Algorithm

The ACPJS uses the C4.5 decision tree algorithm to learn the n data blocks in the
buffer, and finally uses the obtained n base classifiers to form a horizontal integrated
classifier, as shown in Fig. 1. The main technical contributions of this integrated
classifier are as follows:

Fig. 1. Horizontal integration framework
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• The classifier based on decision tree shows certain friendliness for continuous data,
discrete data and high dimensional data.

• By using a plurality of base classifiers to integrate the classification model, it is
possible to adapt to the instability of the data flow distribution. Moreover, the final
processing result is the dynamic weighted average score of each base classifier, and
the processing result is more accurate.

• The data in the buffer can be used repeatedly, reducing the running time of the
subsequent test data stream block.

The integration model is integrated using dynamic weighting, and the update of
C weigh tj is updated by Eqs. (4) and (5).

MSEr ¼
X

c
pðcÞð1� pðcÞÞ2 ð4Þ

C weigh tj ¼ MSEr � C errj ð5Þ

MSEr represents the predicted mean square error of the classifier, which is related to
the distribution of the category in the data block Sn + 1. C errj represents the error rate
of each base classifier. pðcÞ is the proportion of each category in Snþ 1.

3.3 Implementation Process of ACPJS Algorithm

The ACPJS mainly includes the construction of integrated models, the detection of
concept drift, the detection of noise data and the integration of model updates.

• Integrated classifier stage: The data needs to be divided into n blocks before the data
enters the classifier, and then the n base classifiers are trained with the C4.5 decision
tree. Finally, the n base classifiers are combined into an integrated classifier.

• The detection of noise data stage: Import data into integrated classifier and detect
conceptual drift or noise data interference according to the methods in Sect. 3.1.

• The detection of concept drift stage: In the case where it is not possible to determine
whether a concept drift occurs in the detection of noise data stage, the methods of
Sect. 3.2 is used to perform the 2nd detection of the concept drift.

• Integration of model updates stage: Update the integration model by used the
methods mentioned in Sect. 3.2.

4 Experimental Results and Analysis

4.1 Experimental Environment and Parameter Setting

The computer system is Windows 7, the CPU is 2.67 Hz and the memory size is 4G.
The test platform of the algorithm is a large-scale online analysis open source platform
(massive online analysis, MOA). The basic parameter settings are shown in Table 1.
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Experiment of Concept Drift Detection

Data Set
In the experimental evaluation of concept drift detection ability of ACPJS, we chose
SEA data set, HyperPlane data set and KDD99 data set for experiments, and compare
the experimental results with the classical concept drift detection algorithm CVFDT
and DDM. In the experiment, the SEA size is 300k, including 10% noise data and 5
concept drifts. The HyperPlane size is 500k, including 10% noise data and 20 concept
drifts; the KDD99 size is 490k and contains 48 concept drifts.

Experimental Results and Analysis
As shown in Table 2, on the SEA, the ACPJS proposed in this paper accurately detects
all the concept drift phenomena, and there is no missed or false detection. In contrast,
CVFDT and DDM do not detect all concept drift, and there are certain missed
detections. On the KDD99, although the ACPJS has missed detection and misdetec-
tion, it has better performance than the other two methods as a whole. On the
HyperPlance, a special phenomenon has appeared. Although the ACPJS performs well
in the number of false detections and the number of errors, it is not superior to the
CVFDT algorithm and the DDM algorithm in the number of missed detections. Two
reasonable explanations for this phenomenon as follows:

Table 1. Experimental parameter setting

Parameters Meaning Value

n Number of base classifiers 10
s JS-divergence threshold 0.25
d Degree of confidence 0.03
c1 Lower bound coefficient of noise 2
c2 Upper bound coefficient of noise 3

Table 2. Concept drift detection results

Data set Algorithm Number of
detection

Number of
false positives

Number of
omission

SEA ACPJS 278 0 0
CVFDT 247 2 0
DDM 261 1 0

HyperPlane ACPJS 477 2 2
CVFDT 452 6 2
DDM 465 7 1

KDD99 ACPJS 508 2 2
CVFDT 439 3 4
DDM 472 3 3

ACPJS: An Anti-noise Concept Drift Processing Algorithm 449



• In order to ensure the performance of noise monitoring on various data sets, the
ACPJS uses the noise detection threshold with the best average detection effect, so
it cannot be fully applied to the HyperPlance data environment;

• The size of the window is a fixed value. When the window is too small, there may
be insufficient detection information, which may affect the experimental results.

In view of the above analysis, the ACPJS proposed in this paper shows better
performance in the experimental results of concept drift detection. At the same time, it
also finds the shortcomings of the proposed ACPJS and the direction of further research
in the future.

4.2 Experiment of Anti-noise Detection

Data Set
The anti-noise performance test evaluates the anti-noise performance of the ACPJS in
different noisy environments. There are two main data sets used in the experiment:
HyperPlane data set with continuous data type and the LED-drift data set with discrete
data type. On these two data sets (noise range is 5% –30%), we compare ACPJS with
other classic concept drift data stream classification algorithms (including OzaBag,
ASHT-bagging, weighted-bagging, OzaBoost, DWCDS and MSRT).

Experimental Results and Analysis
On the HyperPlane, the comparison of classification accuracy and noise rate of the
algorithm is shown in Fig. 2. When the noise ratio is 5%, the classification accuracy of
ACPJS is 0.7% lower than the ASHT-bagging. However, when the noise rate is
increased to 10%, the classification accuracy of the ACPJS is 1% higher than the
highest ASHT-bagging. Finally, the classification accuracy is 6% higher than the
ASHT-bagging when the noise rate is increased to 30%. As shown in Fig. 3, On the
LED-drift, ACPJS has been significantly better than others from the range of 5% to
30%. In summary, with the increase of noise content, ACPJS can effectively distin-
guish noise data and concept drift, so that the data stream mining model maintains high
classification accuracy, and the model has better anti-noise performance.

Fig. 2. Relationship between classification accuracy and noise rate in HyperPlane
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4.3 Experiment of Validity Test of Multi-data Set Algorithm

Data Set
In order to further verify the validity of ACPJS for concept drift detection, this paper
compares the ACPJS with the classical OzaBag, OzaBoost, MSRTH and ASHT-
bagging algorithms on the multi-objective concept data set. The data set used is 10%
noise, the training set size is 400 K and the test set size is 200 k. The two data sets used
are as follows:

• The Waveform-drift (WF-drift) dataset is a Waveform dataset with noisy data. The
data type of the data set is discrete and the size is 21 dimensions, wherein the 20-
dimensional has a concept drift attribute;

• SEA contains four target concepts, namely SEA-1, SEA-2, SEA-3 and SEA-4.

Experimental Results and Analysis
As shown in Table 3, on the four conceptual SEA datasets, several classical algorithms
maintain similar classification accuracy, but ACPJS classification accuracy is higher.
On the Waveform-drift (WF-drift), the ACPJS has higher classification accuracy than
the other three classical algorithms (OzaBag, OzaBoost and MSRT), and is almost
identical to the classification accuracy of ASHT-bagging. In summary, the ACPJS can

Fig. 3. Relationship between classification accuracy and noise rate of LED-drift.

Table 3. Comparison of classification accuracy with other algorithms

Data set ACPJS OzaBag OzaBoost MSRT ASHT-
bagging

WF-drift 0.843 0.797 0.801 0.337 0.845
LED-drift 0.751 0.425 0.740 0.675 0.742
SEA-1 0.896 0.874 0.855 0.768 0.865
SEA-2 0.865 0.855 0.862 0.732 0.824
SEA-3 0.867 0.838 0.837 0.710 0.857
SEA-4 0.831 0.818 0.820 0.718 0.795
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effectively detect the occurrence of concept drift on multi-class data sets with noises
and reconstruct the data mining classification model, so that the system maintains a
high classification accuracy and the applicability of the algorithm is better.

5 Conclusions

This paper proposes an anti-noise concept drift detection algorithm based on JS-
divergence for concept drift data stream mining problem with noisy data. The
Heoffding Bounds algorithm and JS-divergence are used to detect noise data and
concept drift, and the concept drift is processed by using a dynamically weighted
horizontal integrated classifier. The ACPJS effectively reduces the false detection rate
of the concept drift detection and improves the classification accuracy of the algorithm.
At the same time, the algorithm updates the base classifier dynamically, avoiding the
waste of resources caused by continuous passive updating. The experimental results
show that compared with the existing concept drift detection algorithm, the proposed
algorithm has better anti-noise performance, and has a great improvement in concept
drift detection rate and classification accuracy.
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Abstract. In this paper, a collaborative neurodynamic approach is pro-
posed for sparse coding. As the formulated sparse coding optimization
problem with l0-norm objective function is NP-hard, it is reformulated as
a global optimization problem based on an inverted Gaussian function.
A group of neurodynamic optimization models is employed to solve the
reformulated problem by gradually decreasing the value of the parame-
ter of the inverted Gaussian function. The experimental results show the
superior performance of the proposed approach.
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1 Introduction

Sparse coding is to find sparse representations or solutions of a given problem. It
has various applications such as sparse channel estimation [1], hierarchical data
aggregation [27], face recognition [20], medical image processing [17], directions-
of-arrival estimation [3], just to name a few. The sparsification of underdeter-
mined systems of linear equations can be formulated as the following constrained
l0-minimization problem:

min ‖x‖0 s.t. Ax = b, (1)
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where x ∈ �n, A ∈ �m×n with m < n, ‖x‖0 is defined as the number of non-zero
components of x. If ‖x‖0 = k, then x is called k−sparse. In [2], it is proven that
if A satisfies the restricted isometry property and x is k−sparse, then x can be
reconstructed by solving problem (1).

As the l0-norm objective function, problem (1) is NP-hard and computation-
ally intractable. Therefore, many alternative functions are used to replace the
l0-norm function. In [12,25,32], ‖x‖1 is used to replace ‖x‖0, then problem (1) is
solved by convex optimization approach. In [7], lq-norm is used as the objective
function where 0 < q ≤ 1. In [36], the difference of ‖x‖1 and ‖x‖2 is used as the
objective function, and the proposed algorithm DCAL1−2 is proven to be almost
sure convergent to the global minima of the formulated optimization problem.

In [8,10], the sum of inverted Gaussian functions shows well approximation to
l0 norm. In [22], it is proven that the solution is sparse under the RIP condition.
Unfortunately, the sum of inverted Gaussian functions is nonconvex which makes
the reformulated problem (1) as a global optimization problem.

In recent years, various neurodynamic models are proposed for constrained
optimizations such as nonsmooth optimization [15,19], nonconvex optimization
[16], variational inequalities and related optimization [18], bilevel optimization
[11,24], minimax optimization [13], multiobjective optimization [14,35], dis-
tributed optimization [21,33,34], just to name a few. As most single-model neu-
rodynamic approaches would be stuck into local minima at global optimization
problems, in [4,5,28,31], collaborative neurodynammic optimization approach
(CNO) is proposed for global optimization by employing a group of neurody-
namic models with particle swarm optimization (PSO) to reinitialize the neu-
ronal states iteratively. CNO is proven to be almost sure convergent to the global
optima [28]. In addition, CNO is applied in model predictive control [29,30], non-
negative matrix factorization [6] and emission dispatch [26].

In this paper, problem (1) is formulated as a global optimization problem
by using the sum of inverted Gaussian functions to approximate the l0 norm.
Collaborative neuroydnamic optimization approach is proposed for solving the
reformulated problem. In each model, the value of parameter σ is designed to
decrease over time until the required sparsification is achieved. The paper is
organized as follows. In Sect. 2, preliminaries are reviewed. In Sect. 3, collabora-
tive neurodynamic optimization is described. In Sect. 4, experimental results are
discussed. The conclusions are made in Sect. 5.

2 Preliminaries

2.1 Problem Formulation

According to the definition of l0 norm, ‖x‖0 can be equivalently expressed as
follows [8]:

‖x‖0 = n −
n∑

i=1

δ(xi), (2)
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where δ(xi) denotes the unit impulse function defined as

δ(xi) =
{

1, xi = 0;
0, xi �= 0.

(3)

To approximate the l0-norm function of (1), following inverted Gaussian func-
tion is introduced [10]:

g(xi) = 1 − e−x2
i /σ2

, (4)

where σ is a positive parameter. Figure 1 shows that the larger value of σ makes
g(xi) smoother, but the worse approximation to l0 norm. Conversely, the smaller
value of σ makes g(xi) better approximation. For |xi| � σ, g(xi) ≈ 0, and for

|xi| 	 σ, g(xi) ≈ 1. Note that lim
σ→0

g(xi) = 1 − δ(xi) and lim
σ→0

n∑
i=1

g(xi) = ‖x‖0.
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Fig. 1. Inverted Gaussian function with various values of σ.

Let fσ(x) = n −
n∑

i=1

e−x2
i /σ2

, problem (1) is reformulated approximately as

the following global optimization problem:

min fσ(x) s.t. Ax = b. (5)

2.2 Existing Neurodynamic Model

In this section, a one-layer neurodynamic model [9] is introduced for sparsifica-
tion:

ε
dx

dt
= −Px − (I − P )∇f(x) + q (6)

where ε is a time constant, x is the state vector, I is the identity matrix, P =
AT (AAT )−1A, q = AT (AAT )−1b, and ∇f(x) = (∂f(x)/∂x1, ..., ∂f(x)/∂xn)T is
the gradient of the objective function.
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3 Collaborative Neurodynamic Optimization Approach

As the minimization of the sum of inverted Gaussian functions is depended on
the value of σ, decreasing σ over time is a reasonable strategy to have a sparse
solution. Neurodynamic model (6) with an additional variable is described as
follows:

ε1
dx

dt
= −Px − (I − P )∇fσ(x) + q

ε2
dσ

dt
= −(1 − k/‖x‖0)σ,

(7)

where ε1 < ε2. σ stops decreasing until ‖x‖0 = k.
Let N neurodynamic optimization models be employed. The collaborative

neurodynamic optimization approach for solving (5) is described as follows:

– Initialization: Initialize neuronal states xi(0) randomly where i = 1, ..., N .
Set the individual solution xp

i (0) = xi(0) and the group best solution xg(0) =
arg min

xi

(f(xi(0))). Set the error tolerance ε and the time constants ε1, ε2.

– Main loop:
1. Reinitialize the neuronal states based on PSO.
2. Compute equilibrium points x̄i(j) based on (9).
3. Update individual solution xp

i (j) if f(x̄i(j)) < f(xp
i (j − 1)).

4. Update group best solution xg(j) if f(xp
i (j)) < f(xg(j − 1)).

5. j = j + 1.
– Termination: Terminate the iteration process if ‖xg(j) − xg(j − r)‖2 < ε

where r is a given positive integer.

4 Experimental Results

In the experiment, let N = 3, ε1 = 10−4 and ε2 = 10−2. The matrix A and the
k−sparse signal x are generated as follows:

1. Each signal x is randomly generated from [−10, 10]n where n−k components
are randomly chosen and set to 0.

2. A is generated from standard normal distribution N (0, 1).
3. b = Ax.

To measure the reconstruction quality, the relative error is defined as follows:
√√√√√√√

n∑
i=1

|xi − x̂i|2
n∑

i=1

|xi|2
(8)

where x̂ is the recovered signal. A signal is considered to be recovered successfully
if the relative error is smaller than 10−2 [8].
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Fig. 3. A snapshot of the transient behavior of σ.

Figure 2 shows a snapshot of the transient behaviors of states where k = 50,
m = 90, n = 128. It shows that most of states are convergent to zero. Figures 3
and 4 show respectively a snapshot of transient behavior of σ and a snapshot of
the transient behavior of ‖x‖0 where k = 50, m = 90, n = 128. It shows that the
value of σ decreases until ‖x‖0 achieves required sparsification. Figure 5 shows
the transient behaviors of the group best solution where N = 1, 2, 3, 4. It shows
that the proposed approach with more neurodynamic optimization models needs
less iterations to achieve the required sparsification.



A Collaborative Neurodynamic Approach to Sparse Coding 459

0 1 2 3 4 5 6 7
Time ×10-3

50

60

70

80

90

100

110

120

130

||x
|| 0

Fig. 4. A snapshot of the transient behavior of ‖x‖0.

0 2 4 6 8 10 12 14
Iteration (j)

50

60

70

80

90

100

110

120

130

f
(x

g
)

N=1
N=2
N=3
N=4

Fig. 5. Transient behaviors of the group best solution where N = 1, 2, 3, 4.

Furthermore, the proposed approach is used to compare with eight existing
sparse signal reconstruction methods including OMP [25], l1-LS [12], CoSaMP
[23], lq [7], SL0 [22], YALL1 [32], DCAL1−2 [36] and RNNgy [8]. For each pair
(k,m), nine methods are run in 100 trials, Fig. 6 shows that the percentage of
achieving sparsification of the proposed approach increases faster than other
methods with the increase of measurement under the sparsity level k = 50.
Figure 7 shows that the percentage of achieving sparsification of the proposed
approach decreases slower than other methods with the increase of sparsity level
under measurement m = 80.
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Fig. 6. The percentage of recovered signal with relative error smaller than 10−2 for
various m with fixed sparsity level k = 50 in 100 trials.
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Fig. 7. The percentage of recovered signal with relative error smaller than 10−2 for
various k with fixed measurement m = 80 in 100 trials.

5 Conclusions

The constrained l0-minimization optimization problem is reformulated as a
global optimization problem by minimizing an inverted Gaussian function with a
tunable parameter. Initialized by using particle swarm optimization repeatedly,
a group of neurodynamic models is employed for solving the reformulated prob-
lem. The experimental results show the superiority of the proposed approach.
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Abstract. In this paper, the KFCM algorithm selects the Gaussian kernel
function, maps the data into the high-dimensional feature space for clustering,
and uses the optimal clustering center of the firefly algorithm as the initial value
of KFCM, and then processes it through KFCM. Based on class analysis, a
kernel fuzzy C-means clustering algorithm based on firefly algorithm (FA-
KFCM) is proposed. Numerical experiments results show that FA-KFCM is
superior to other algorithms in clustering accuracy and time efficiency.

Keywords: Firefly algorithm � Clustering � Kernel fuzzy C-means clustering �
The classical UCI data set

1 Introduction

The kernel fuzzy C-means clustering algorithm introduces the idea of kernel in the
traditional FCM algorithm, solves the problem of linear indivisibility, and realizes
effective clustering of various data structures. Currently, it has been widely applied in
many fields, but there are still many problems, such as sensitivity to the initial clus-
tering center, long calculation time, diversity of kernel functions and parameter
selection. [1] Therefore, we can use the kernel method to improve the accuracy of
clustering.

A new swarm intelligence algorithm, the firefly algorithm (FA) [2], was proposed
by Yang in 2008. FA is an interdisciplinary research achievement using swarm
intelligence and stochastic algorithms, and it is strong and fast. The firefly algorithm
has become an increasingly important tool of Swarm Intelligence that has been applied
in almost all areas of optimization, as well as engineering practice.

FA has been used in several fields, for example, for solving minimizing the
makespan for the permutation flow shop scheduling problem [3], solving the task graph
scheduling problem [4] and solving the Job shop scheduling problem [5]. This study
applies The FA-KFCM algorithm overcomes the FCM algorithm trapped local opti-
mum and being sensitive to initial value effectively, and enhances the capacity of local
search of firefly algorithm. And the validity of the algorithm is verified by Iris, Cmc,
Wine and Zoo data in the public dataset.
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2 FA-KFCM Algorithm

In this section, we first describe the firefly algorithm and kernel fuzzy C-means. Then,
we combine the firefly algorithm kernel fuzzy C-means with mechanism obtain our FA-
KFCM algorithm.

2.1 FA Algorithm

Firefly algorithm is based on a physical formula of light intensity I hat decreases with
the increase of the square of the distance r2. However, as the distance from the light
source increases, the light absorption causes that light becomes weaker and weaker.
These phenomena can be associated with the objective function to be optimized.

(1) All fireflies are unisex.
(2) Their attractiveness is proportional to their light intensity.
(3) The light intensity of a firefly is affected or determined by the landscape of the

fitness function.

In the standard firefly algorithm, the light intensity I of a firefly representing the
solution s is proportional to the value of fitness function IðxÞ / f ðxÞ, whilst the light
intensity IðrÞ varies according to the following equation: [6]

IðrÞ ¼ I0 � e�cr2 ð1Þ

The attractiveness b0 of fireflies is proportional to their light intensities IðrÞ. The
attraction b can be described by Eq. (1)

bðrÞ ¼ b0 � e�cr2 ð2Þ

Where b0 is the attractiveness at r ¼ 0. The light intensity I and attractiveness b are
in some way synonymous.

The distance between any two fireflies xi and xj in the basic firefly algorithm is
calculated from the Euclidean distance:

rij ¼ jjxi � xjjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k¼1

ðxi;k � xj;kÞ2
s

ð3Þ

Firefly i is moved by the attraction of its bright firefly j, The position of the
movement can be expressed as:

xi ¼ xi þ b0 � e�cr2ij � ðxj � xiÞþ aðrand � 0:5Þ ð4Þ

Where xi, xj are the positions of fireflies i and j in the solution space; is the step
factor, which is the constant on the interval [0, 1]; rand is the random factor, which
obeys the interval [0, 1] Evenly distributed.
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2.2 KFCM Algorithm

The kernel function clustering method has a much better performance than the classical
clustering algorithm. The kernel clustering method performs better clustering of sam-
ples by non-linear mapping of samples of the input space.

If the sets Y ¼ yjjj ¼ 1; 2; . . .;M
� �

, the objective function of fuzzy C-means is as
shown in formula (5)

JbðU;VÞ ¼
XM

j¼1

XC

i¼1

umji yj � vi
�� ��2 ð5Þ

Where uji is

8j;
XC

i¼1

uji ¼ 1; 8j; i; lji 2 ½0; 1�; 8i;
XM

j¼1

lji [ 0 ð6Þ

Using Lagrange multiplier method:

�JðU;V ; dÞ ¼ JbðU;VÞþ
XM

j¼1

djð
XC

i¼1

lji � 1Þ ð7Þ

Introducing nonlinear mapping here u : y ! uðyÞ

jjuðyjÞ � uðviÞjj ¼ KFCMðxj; xjÞþKFCMðvi; viÞ � 2KFCMðyj; viÞ ð8Þ

The objective function of KFCM is:

Ju ¼
XM

j¼1

Jj ¼
XM

j¼1

XC

i¼1

lbjijjuðyjÞ � uðyiÞjj2 ð9Þ

Here the kernel function selects the Gaussian function as:

KFCMðy; xÞ ¼ exp½�ðy� xÞ2=r2� ð10Þ

Substituting Eq. (10) into Eq. (8), then Eq. (9) is:

Ju ¼ 2
XM

j¼1

XC

i¼1

lbji½1� KFCMðyj; viÞ� ð11Þ

For Ju, the partial derivatives of u and v are separately obtained as partial
derivatives
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vj ¼

PM

j¼1
lbjiKFCMðyj; viÞyj

PM

j¼1
lbjiKFCMðyj; viÞ

ð12Þ

lji ¼
ð1� KFCMðxj; viÞÞ�1=ðb�1Þ

PC

i¼1
ð1� KFCMðxj; viÞÞ�1=ðb�1Þ

ð13Þ

Kernel fuzzy C-means first calculates the kernel function by the formula (10), and
updates the membership matrix according to the formulas (12) and (13) until the
optimal cluster center is found, and then the final clustering result is obtained.

2.3 The Proposed FA-KFCM Algorithm

In the FA-KFCM algorithm, the position of each firefly represents a clustering center,
expressed in terms of vector V ¼ v1; v2; � � �; vCf g, where vi is the i th cluster center.
The light intensity of the firefly is determined by the objective function of the fuzzy
clustering. According to the characteristics of the firefly algorithm, the light intensity
function of the firefly can be defined as:

IðVÞ ¼ 1
1þ JuðU;VÞ ð14Þ

The specific algorithm steps of the KFCM algorithm based on the FA are:

Step 1: Initialize the light absorption coefficient c, randomized parameter a, Max-
imum number of iterations Tmax, Maximum attraction b0, C and b.
Step 2: Initialize the position of the firefly V1;V2; � � �;VN .
Step 3: Calculate the KFCMðyj; viÞ.
Step 4: For each firefly, calculate the U according to Eq. (12), calculate the light
intensity of each firefly IðVjÞ according to Eq. (14).
Step 5: Compare the light intensity of fireflies. If IðViÞ[ IðVjÞ, it means that firefly j
is in a good position, attract fireflies i to move to itself, and calculate the attraction
and update position according to formula (2) and formula (4).
Step 6: According to (12), update the membership matrix of the fireflies.
Step 7: According to (14), recalculate the light intensity of the fireflies.
Step 8: Repeats steps (5) to (7), until the finds out the number of iterations is found.
Step 9: Output result.

2.4 Experimental Evaluation

This article uses MATLAB7.0 as a tool for programming under the Windows 8
operating system. The experiments used Iris, Cmc, Wine and Zoo public dataset in the
UCI dataset to test the clustering accuracy and time efficiency of the FA-KFCM
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algorithm proposed in this paper, and compares it with the references [7] and [8]. The
results are shown in Table 1.

In this paper, the number of clusters is 3, fuzzy index b ¼ 2, maximum iteration
number Tmax ¼ 100, light absorption coefficient c ¼ 0:9, Maximum attraction b0 ¼ 1,
randomized parameter a ¼ 0:1. After running the current algorithm 50 times, the
results are shown in Table 2.

Table 1. Data experiment sample dataset.

Dataset Class Dimension Number of samples

IRIS 3 4 180
CMC 3 9 1800
WINE 3 13 150
ZOO 3 8 110

Table 2. Comparison of clustering results of three algorithms on dataset.

Algorithm Average number of
iterations

The maximum
number of iterations

Mean fitness value

Iris Cmc Wine Zoo Iris Cmc Wine Zoo Iris Cmc Wine Zoo

Ref [7] 100 100 100 100 32 37 41 36 89.4 5545 16487 3531
Ref [8] 100 100 100 100 26 29 34 22 86.6 5378 15799 3269
FA-KFCM 100 100 100 100 21 20 25 19 85.1 5217 15541 3120

Fig. 1. Comparison of clustering precision of three algorithms.
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From the comparison results of Table 2, the results obtained by FA-KFCM are
obviously better than those of other algorithms and the clustering quality of FA-KFCM
is better. For four datasets, the Average number of iterations and the maximum number
of iterations obtained by the algorithm in this paper are all the minimum of several
clustering algorithms, which further shows that the clustering quality of the algorithm is
better.

It could be learned from Fig. 1 that when clustering four data samples, Iris, Cmc,
Wine and Zoo, the average clustering accuracy of the FA-KFCM algorithm is better
than that of the other two algorithms.

3 Conclusion

In this paper, the FA algorithm and KFCM algorithm are analyzed in detail, and the
FA-KFCM algorithm is proposed. The algorithm uses the optimal clustering center of
the firefly algorithm as the initial value of KFCM, and then processes the clustering
analysis through KFCM. In order to verify the validity of the new algorithm, the author
used Iris, Cmc, Wine and Zoo data for numerical experiments and compared with the
literature algorithm. The experimental results show that the proposed algorithm has
better performance and good clustering results.

Acknowledgments. This work was supported by Inner Mongolia University for Nationalities
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Abstract. There is an increasing interest for multi-view clustering due
to its ability to manage data from several sources. The majority of multi-
view clustering algorithms are suitable to analyse vector data, but much
less attention has been given for the analysis of relational data. This
paper provides a fuzzy clustering algorithm with multi-medoids for multi-
view relational data (MFMMdd). Experiments with real multi-view data
sets show the good performance of the MFMMdd in comparison with
previous multi-view clustering algorithms for relational data, concerning
the quality of the partitions provided by these algorithms.

Keywords: Multi-view clustering · Multi-medoids · Relational data

1 Introduction

The popularity of multi-view clustering is mainly due to its ability to manage
data from several sources [1]. For example, in tumor studies one needs to take
into account simultaneously genomic, epigenomic, and proteomic data [2]. The
main approaches to cluster multi-view data are concatenation or data fusion, dis-
tributed approaches and centralized approaches [3]. In concatenation approaches,
the views are previously merged in a single data table, before the application of
a classical clustering algorithm. In the distributed approach, classical clustering
algorithms are previously applied on the views and the multi-view algorithm
provides a consensus partition from the partitions obtained with each individual
view. Finally, the centralized approach is able to take into account simultane-
ously all views aiming to provide a single partition of the data.

The most part of the multi-view clustering algorithms are suitable to
analyse vector data, but less attention has been given for analyse relational
data described by multiple dissimilarity matrices, expressing the relationships
between the samples according to each view [4]. Relational data are needed
when the views are not easily described as vector data, as when the views are
text or links of a web page. Relational data can be also very useful for confi-
dentiality reasons or when a particular dissimilarity function is suitable for a
particular problem.
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This paper proposes MFMMdd, a multi-view version of the fuzzy clustering
algorithm with multi-medoids (FMMdd). In FMMdd, the representative or pro-
totype weight allows each cluster to be represented by multiple objects, which
are weighted based on their importance in a cluster [5]. MFMMdd applies a cen-
tralized approach and minimizes a suitable objective function aiming to provide
a fuzzy partition in a fixed number of clusters, cluster representatives as vectors
of prototype weights and a vector of relevance weight whose components provide
the importance of each dissimilarity matrix in the clustering task. In comparison
with FW4M algorithm [6], a previous multi-view fuzzy clustering algorithm with
multi-medoids, MFMMdd has one less parameter to be tuned.

The paper is organized as follows. Section 2 presents the multi-view cluster-
ing algorithm MFMMdd. In Sect. 3, experiments with data sets mainly from the
UCI machine learning repository shows the good performance of the MFMMdd
in comparison with previous multi-view fuzzy clustering algorithms for rela-
tional data [4,6,7], concerning the quality of the partitions provided by these
algorithms. Section 4 gives the final remarks of the paper.

2 Multi-view Relational Fuzzy Clustering Algorithm
with Multi-medoids

Let E = {e1, . . . , eN} be a set of N objects and let P dissimilarity matrices
Rp = (r(p)ij ) (1 ≤ p ≤ P ), where r

(p)
ij is the dissimilarity between objects ei and

ej (1 ≤ i, j ≤ N) on dissimilarity matrix Rp.
The Fuzzy Clustering Algorithm With Multi-Medoids for Multi-View Rela-

tional Data (hereafter named MFMMdd) aims to provide:

– A fuzzy partition represented by the matrix U = (uci) (1 ≤ c ≤ K; 1 ≤ i ≤
N), where uci denotes the membership of object ei in cluster c;

– A matrix V = (vcj) (1 ≤ c ≤ K; 1 ≤ j ≤ N) of prototype weights of the
objects with respect to the clusters [5], where vc = (vc1, . . . , vcN ) is the
vector of prototype weights of the objects with respect to cluster c, and vcj
is the prototype weight of object ej with respect to cluster c;

– A vector λ = (λ1, . . . , λP ), where λp is the relevance weight of dissimilari-
tymatrix Rp. The larger λp is, the more important dissmilarity matrix Rp

is.

Starting from an initial solution, the matrix of memberships U, the matrix of
prototype weights V, and the vector of relevance weights λ are obtained inter-
actively in three steps (assignment, representation, and weighting) though the
minimization of a proper objective function, here-after named as JMFMMdd, that
computes the heterogeneity of the fuzzy partition as the sum of the heterogeneity
in each fuzzy cluster:

JMFMMdd(U,V,λ) =
K∑

c=1

N∑

i=1

(uci)mdλ(ei,vc) (1)
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subject to: (i)
∑K

c=1 uci = 1,∀i and uci ≥ 0, ∀c and i; (ii)
∑N

j=1 vcj = 1,∀c and
vcj ≥ 0, ∀c and j; (iii)

∏P
p=1 λp = 1 and λp > 0, ∀p; and where

dλ(ei,vc) =
P∑

p=1

λp d(ei,vc) =
P∑

p=1

λp

⎡

⎣
N∑

j=1

(vcj)nr
(p)
ij

⎤

⎦ (2)

is the adaptive dissimilarity between object ei and cluster prototype vc param-
eterized by the vector of relevance weights λ = (λ1, . . . , λP ). Moreover, m is the
traditional parameter that controls the fuzziness of memberships, and according
to Ref. [5] the parameter n controls the level of smoothness of the distribution of
prototype weights among all the objects in each of the clusters. Still according to
Ref. [5], the prototype weight allows each cluster to be represented by multiple
objects, which are weighted based on their importance in a cluster.

The minimization of the objective function JMFMMdd aiming to provide the
optimal solution for U, V, and λ is achieved by using the method of Lagrange
multipliers. The Lagrangian function is as follows:

LMFMMdd(U,V,λ) = JMFMMdd(U,V,λ) −
N∑

i=1

αi

(
K∑

c=1

uci − 1

)

−
K∑

c=1

βc

⎛

⎝
N∑

j=1

vcj − 1

⎞

⎠ − γ

(
P∏

p=1

λp

)
(3)

where αi, βc and γ are the Lagrange multipliers.
During the assignment step, the matrix V of prototype weights and the

vector λ of relevance weights are kept fixed. The objective function JMFMMdd

is optimized with respect to the memberships. Taking the partial derivatives of
LMFMMdd w.r.t uci and αi, and setting them to zero, we obtain:

uci =

⎡

⎣
K∑

f=1

(
dλ(ei,vc)
dλ(ei,vf )

) 1
m−1

⎤

⎦
−1

=

⎡

⎣
K∑

f=1

( ∑N
j=1(vcj)

n
∑P

p=1 λpr
(p)
ij

∑N
j=1(vfj)n

∑P
p=1 λpr

(p)
ij

) 1
m−1

⎤

⎦

−1

(4)

During the representation step, the matrix U of memberships and the vector
λ of weights of relevance are kept fixed. The objective function JMFMMdd is
optimized with respect to the prototype weights. Taking the partial derivatives
of LMFMMdd w.r.t vcj and βc, and by setting the partial derivatives to zero, and
after some algebra we obtain:

vcj =

⎡

⎣
N∑

h=1

(∑N
i=1

∑P
p=1(uci)m(λp)r

(p)
ij

∑N
i=1

∑P
p=1(uci)m(λp)r

(p)
ih

) 1
n−1

⎤

⎦

−1

(5)
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During the weighting step, the matrix U of memberships and the matrix
V of prototype weights are kept fixed. The objective function JMFMMdd is
optimized with respect to the weights of relevance. Taking the partial derivatives
of LMFMMdd w.r.t λp and γ, and setting them to zero, we obtain:

λp =

{∏P
h=1

[∑K
c=1

∑N
i=1(uci)m

∑N
j=1(vcj)

nr
(h)
ij

]} 1
P

∑K
c=1

∑N
i=1(uci)m

∑N
j=1(vcj)nr

(p)
ij

(6)

These three steps are repeated until the convergence of MFMMdd. Algo-
rithm1 summarize these steps.

Algorithm 1. MFMMdd algorithm
1: Input
2: D = {R1, . . . ,RP } (the data set); K (the number of clusters); T (maximum

number of iterations); ε (threshold parameter);
3: Output
4: U: the matrix of memberships;
5: V: the matrix of prototype weights;
6: λ: the vector of relevance weights of the dissimilarity matrices.
7: Initialization
8: t = 0;
9: Set λ(t) = (1, . . . , 1);

10: Randomly initialize the matrix U(t) = (u
(t)
ci ) (1 ≤ c ≤ K; 1 ≤ i ≤ N) such that

∑K
c=1 u

(t)
ci = 1 ∀i and u

(t)
ci ≥ 0 ∀c, i;

11: Compute the components v
(t)
cj (1 ≤ c ≤ K; 1 ≤ j ≤ N) of the the matrix V(t)

according to Eq. (5);

12: Compute JMFMMdd(U
(t),V(t), λ(t)) according to Eq. (1);

13: repeat
14: t = t + 1;
15: Step 1: assignment.

16: Compute the components u
(t)
ci (1 ≤ c ≤ K; 1 ≤ i ≤ N) of the the matrix U(t)

according to Eq. (4);
17: Step 2: representation

18: Compute the components v
(t)
cj (1 ≤ c ≤ K; 1 ≤ j ≤ N) of the the matrix V(t)

according to Eq. (5);
19: Step 3: weighting

20: Compute the components λ
(t)
p (1 ≤ p ≤ P of the the matrix of relevance

weights λ(t) according to Eq. (6).

21: Compute JMFMMdd(U
(t),V(t), λ(t)) according to Eq. (1);

22: until
23: |JMFMMdd(U

(t),V(t), λ(t))−JMFMMdd(U
(t−1),V(t−1), λ(t−1))| < ε or t > T ;

Remark. The objective function of the FW4M algorithm of Ref. [6] is as follows:

JFW4M (U,V,λ) =
K∑

c=1

N∑

i=1

N∑

j=1

P∑

p=1

(uci)m(vcj)n(λp)sr
(p)
ij (7)
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subject to: (i)
∑K

c=1 uci = 1,∀i and uci ≥ 0, ∀c and i; (ii)
∑N

j=1 vcj = 1,∀c and
vcj ≥ 0, ∀c and j; (iii)

∑P
p=1 λp = 1 and λp ≥ 0, ∀p. According to Ref. [6], the

additional parameter s controls the level of smoothness of vector’s weights.

3 Empirical Results

This section provides a performance comparison between the proposed MFM-
Mdd algorithm with CARD-R [4] (a multi-view version of NERF [8]), FW4M
[6], and MFCMdd-RWG-P [7] (a multi-view version of FCMdd [9]), state of the
art prototype based fuzzy clustering algorithms for multi-view relational data
sets.

Six datasets from the UCI Machine learning Repository, and Phonema
dataset (http://www.math.univ-toulouse.fr/staph/npfda/npfda-datasets.html),
were considered in this study. Table 1, in which N is the number of objects, C
is the number of ta priori classes, nvar is the number of variables and nV is the
number of views, summarizes these data sets. In can be observed that each vari-
able corresponds to a single view in data sets Glass, Iris, Seeds, Wine. Moreover,
in these data sets (except Phonema data set) each view corresponds to a dissimi-
larity matrix computed with the Euclidean distance. The algorithms were imple-
mented in the C language and performed on the same machine (OS: Windows
10 64-bits, Memory: 12GB, Processor: Intel Core i7-4790 CPU @ 3.60GHz).

To compare the time trajectories described by Phonema data set a “cross-
sectional longitudinal” dissimilarity [10] was considered. This dissimilarity com-
bines the comparison of the position of each pair of trajectories, and two longi-
tudinal dissimilarities, based on the concepts of velocity and acceleration.

Table 1. Summary of the data sets

Datasets N C nV ar nV

Glass 214 6 9 9

Image segmentation 2310 6 19 2

Iris 150 3 4 4

Multiple features 2000 10 649 6

Phonema 2000 5 447 3

Seeds 210 3 7 7

Wine 178 3 13 13

MFMMdd, FW4M, CARD-R and MFCMdd-RWG-P were run on these data
sets 100 times, with K (the number of clusters) equal to C (the number of a
priori classes). Table 2 shows the parameters used with these algorithms. They
were fixed in a unsupervised way, without the use of the labels provided by the
a priori partition through a grid search such that the suitable combination of

http://www.math.univ-toulouse.fr/staph/npfda/npfda-datasets.html
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parameters has as values those for which the minimum distance between a couple
of representatives falls <0.1 [11]. Parameters T and ε were set, respectively, to
100 and 10−10.

Table 2. Selected parameters used on the algorithms

Datasets Algorithms

MFMMdd CARD-R MFCMdd-RWG-P FW4M

Glass m = 1.1 m = 1.3 m = 1.1 m = 1.1

n = 1.1 q = 1.5 q = 3 n = 1.5 and s = 1.1

Image segmentation m = 1.1 m = 1.1 m = 1.1 m = 1.1

n = 1.3 q = 1.5 q = 3 n = 1.1 and s = 1.1

Iris m = 1.1 m = 1.1 m = 1.1 m = 1.1

n = 1.1 q = 1.5 q = 5 n = 1.1 and s = 1.5

Multiple features m = 1.1 m = 1.1 m = 1.1 m = 1.1

n = 1.1 q = 1.1 q = 3 n = 1.1 and s = 1.3

Phonema m = 1.05 m = 1.05 m = 1.1 m = 1.05

n = 1.05 q = 1.05 q = 5 n = 1.05 and s = 1.1

Seeds m = 1.1 m = 1.1 m = 1.1 m = 1.1

n = 1.1 q = 2.0 q = 5 n = 1.1 and s = 1.3

Wine m = 1.1 m = 1.1 m = 1.1 m = 1.1

n = 1.1 q = 1.3 q = 3 n = 1.1 and s = 1.3

The quality of the fuzzy partitions given by these algorithms was assessed
with the Rand index for a fuzzy partition (Rand-F) [4] and the Hullemeyer index
(HUL) [12] Rand-F and HUL indexes are suitable to the comparison between
the a priori partitions of the datasets and the fuzzy partitions given by the
algorithms. They take their values on the interval [0, 1], where 1 means total
agreement between partitions.

Table 3 shows the average and standard deviation of the Rand-F and HUL
indexes provided by the algorithms on data sets of Table 1.

It can be observed that MFMMdd presented the best performance and was
the most robust according to Rand-F index in 5 out 7 data sets. CARD-R and
MFCMdd-RWG-P were the worse each in 3 out 7 data sets. MFCMdd-RWG-P
was the less robust in 4 out 7 data sets. Moreover, MVRFMMd and FW4M were
the best according to HULL index in 3 out 7 data sets. MFMMdd was also the
most robust according to HULL index in 5 out 7 data sets. MFCMdd-RWG-P
was the worse (in 3 out 7 data sets) and the less robust (in 5 out 7 data sets).

From the fuzzy partitionU it is obtained a crisp partition Q = (Q1, . . . , QM ),
where the cluster Qm(m = 1, . . . , M) is defined as: Qm = {ei ∈ E : uim =
K

max
h=1

uih}. To evaluate the quality of the crisp partitions given by the algorithms,

the F-measure [13], and the overall error rate of classification (OER) [14] were
considered. F-measure and OER indexes are useful to provide a comparison
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Table 3. Performance of the algorithms: fuzzy partitions

Data sets Rand-F HUL

MFMMdd FW4M CARD-R MFCMdd-

RWG-P

MFMMdd FW4M CARD-R MFCMdd-

RWG-P

Glass 0.7130

(10−7)

0.6515

(0.0066)

0.4827

(10−5)

0.6827

(0.0299)

0.5188

(10−6)

0.5038

(0.0090)

0.2684

(0.0001)

0.5116

(0.0321)

Image seg-

mentation

0.8504

(0.0057)

0.8383

(0.0221)

0.8190

(0.0346)

0.8176

(0.0324)

0.7493

(0.0070)

0.7590

(0.0347)

0.7349

(0.0510)

0.7106

(0.0527)

Iris 0.9330

(0.0021)

0.9481

(10−6)

0.9443

(0.0201)

0.8893

(0.0008)

0.8983

(0.0304)

0.9220

(10−6)

0.9199

(0.0284)

0.8370

(0.1182)

mFeat 0.9077

(0.0054)

0.8699

(0.0013)

0.8591

(0.0028)

0.9074

(0.0102)

0.7192

(0.0091)

0.7961

(0.0012)

0.7901

(0.0033)

0.7421

(0.0278)

Phonema 0.8203

(0.0026)

0.9001

(0.0152)

0.9046

(0.0277)

0.7777

(0.0108)

0.5550

(0.0119)

0.8312

(0.0237)

0.8506

(0.0408)

0.4518

(0.0310)

Seeds 0.8521

(10−7)

0.8401

(0.0004)

0.8468

(10−6)

0.8471

(0.0544)

0.7834

(10−7)

0.7679

(10−6)

0.7794

(10−6)

0.7770

(0070)

Wine 0.9047

(10−7)

0.8007

(10−5)

0.7913

(0.0791)

0.8822

(0.0553)

0.8565

(10−7)

0.7084

(10−5)

0.7028

(0.1161)

0.8219

(0.0865)

between the a priori partitions of the datasets and the crisp partitions. F-measure
index has its values on the interval [0, 1], where 1 indicates perfect agreement
between partitions. OERC index has its values on the interval [0, 1], it aims
to measure the ability of a clustering algorithm to find out the a priori classes
present in a data set.

Table 4 shows the average and standard deviation of the F-measure and OER
indexes provided by the algorithms on data sets of Table 1.

Table 4. Performance of the algorithms: crisp partition

Data sets F-measure OER

MFMMdd FW4M CARD-R MFCMdd-

RWG-P

MFMMdd FW4M CARD-R MFCMdd-

RWG-P

Glass 0.5496

(0.3494)

0.4917

(0.0164)

0.3458

(0.0013)

0.5134

(0.0432)

0.3318

(10−7)

0.5234

(0.0052)

0.6301

(0.0032)

0.4223

(0.0460)

Image seg-

mentation

0.6472

(0.2226)

0.6044

(0.0441)

0.5701

(0.0595)

0.5725

(0.0645)

0.3827

(0.1823)

0.4199

(0.0397)

0.4435

(0.0482)

0.4495

(0.0610)

Iris 0.9508

(0.0252)

0.9600

(10−7)

0.9512

(0.0212)

0.8965

(0.1004)

0.0495

(0.0285)

0.0400

(10−9)

0.0496

(0.0291)

0.1081

(0.1102)

mFeat 0.7675

(0.0284)

0.4696

(0.0042)

0.4483

(0.0041)

0.7272

(0.0505)

0.2476

(0.0380)

0.5500

(0.0140)

0.5718

(0.0079)

0.2770

(0.0535)

Phonema 0.8343

(0.0292)

0.8398

(0.0334)

0.8418

(0.0506)

0.7847

(0.0565)

0.1661

(0.0375)

0.1659

(0.0403)

0.1678

(0.0586)

0.2251

(0.0006)

Seeds 0.8747

(10−9)

0.8654

(10−7)

0.8656

(10−7)

0.8654

(0.0002)

0.1238

(10−8)

0.1333

(10−8)

0.1333

(10−8)

0.1333

(10−8)

Wine 0.9545

(10−9)

0.8331

(10−7)

0.8039

(0.0954)

0.9199

(0.0769)

0.0449

(10−9)

0.1629

(10−7)

0.1921

(0.0930)

0.0793

(0.0773)

It can be observed that MFMMdd presented the best performance according
to F-measure and OER indexes in 5 out 7 data sets. It was also the most robust
according to F-measure and OER indexes in 3 out 7 data sets. Moreover, CARD-
R was the worse according to F-measure in 3 out 7 data sets, and MFCMdd-
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RWG-P was the less robust according to F-measure in 4 out 7 data sets. Besides,
CARD-R and MFCMdd-RWG-P were the worse and the less robust according
to OER index in 3 out of 7 data sets.

4 Final Remarks and Conclusions

This paper presented MFMMdd, a multi-view version of the fuzzy clustering
algorithm with multi-medoids (FMMdd). MFMMdd minimizes a suitable objec-
tive function aiming to provide a fuzzy partition in a fixed number of clusters,
cluster representatives as vectors of prototype weights and a vector of relevance
weights of each dissimilarity matrix in the clustering task.

Experiments with multi-view data sets showed the performance of the pro-
posed algorithm. In the majority of the data sets considered, MFMMdd pro-
vided fuzzy and crisp partitions of better quality than previous fuzzy clustering
algorithms for multi-view relational data. MFMMdd was also the most robust.
Finally, a significant practical advantage of MFMMdd regarding FW4M is that
the former algorithm has one less parameter to be tuned. This is because the
restriction of type product to one is used in MFMMdd to calculate the weights
of the importance of the dissimilarity matrices.
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