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Abstract. Cross-modal retrieval has attracted increasing attention in
recent years. Deep supervised hashing methods have been widely used
for cross-modal similarity retrieval on large-scale datasets, because the
deep architectures can generate more discriminative feature representa-
tions. Traditional hash methods adopt a symmetric way to learn the
hash function for both query points and database points. However, those
methods take an immense amount of work and time for model training,
which is inefficient with the explosive growth of data volume. To solve
this issue, an Asymmetric Deep Cross-modal Hashing (ADCH) method
is proposed to perform more effective hash learning by simultaneously
preserving the semantic similarity and the underlying data structures.
More specifically, ADCH treats the query points and database points in
an asymmetric way. Furthermore, to provide more similarity information,
a detailed definition for cross-modal similarity matrix is also proposed.
The training of ADCH takes less time than traditional symmetric deep
supervised hashing methods. Extensive experiments on two widely used
datasets show that the proposed approach achieves the state-of-the-art
performance in cross-modal retrieval.
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1 Introduction

A tremendous amount of data in heterogeneous modalities are being gener-
ated every day on the Internet, including image, text, audio, etc. Multimedia
retrieval has been an essential technique in many applications. However, essen-
tial retrieval methods mainly focus on single-modal scenarios [1,2]. For example,
image retrieval or text retrieval are homogeneous-modal, in which the query and
result are from the same modality. These methods cannot directly measure the
similarity between different modalities. Thus, effective retrieval of such massive
amounts of media data from heterogeneous sources poses a great challenge.
Retrieval across multimedia data [3] is a relatively new paradigm. Recently,
deep hashing methods [5] have been used in cross-modal retrieval. Hashing meth-
ods map high-dimensional representations in the original space to short binary
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codes in the Hamming space, which can bridge the “heterogeneity gap” between
multimedia. For example, deep cross-modal hashing (DCMH) [7] integrates fea-
ture learning and hash-code learning into the same framework. Besides, collective
deep quantization for efficient cross-modal retrieval (CDQ) [8] introduces quan-
tization in end-to-end deep architecture for cross-modal retrieval.

However, the related previous methods adopt a symmetric strategy to learn
deep hash function for both query points and database points. On one hand, the
training of these symmetric deep hashing methods are typically time-consuming.
The storage and computation of these data cost even more time. To make the
training feasible, most deep hashing methods choose simple small datasets or
subsets of a large dataset, which make it difficult to utilize the information ade-
quately. On the other hand, these traditional supervised deep hashing methods
measure the similarity of image-text using the semantic-level labels and define
the similarity in a certain way. However, such similarity definition cannot reflect
the similarity in detail on multiple labels datasets.

To solve these problems, an Asymmetric Deep Cross-modal Hashing (ADCH)
method is proposed which treats the query points and database points in an
asymmetric way. The binary hash codes of query points can be obtained from a
deep hash function which is learned in this method, while the binary hash codes
of database points are directly learned. The training of ADCH takes less time
than traditional symmetric deep supervised hashing methods, because the train-
ing points are only query points that are much fewer than all of the databases
points. Hence, the whole set of database points can be used for training even if
the database is large. Furthermore, a detailed definition is proposed that the sim-
ilarities between points are quantified into a percentage, which can provide more
label information. In this paper, the main contributions of ADCH are outlined
as follows:

(1) A novel method ADCH is proposed which learns cross-modal hash codes
in an asymmetric way. ADCH generates hash codes for database points
directly, while hash functions are only for query points. Therefore, it takes
less training time than symmetric deep supervised hash methods.

(2) A detailed definition is proposed for cross-modal similarity matrix to make
ADCH use more similarity information. The detailed definition of similar-
ity matrix quantifies the similarity into a percentage with the normalized
semantic labels, which provide more fine-grained information of labels in the
loss function. Thus, it can improve the retrieval accuracy.

(3) ADCH takes less time and achieves high accuracy than the traditional sym-
metric deep supervised hashing methods. Experiments on two large-scale
datasets show that ADCH can achieve the state-of-the-art performance.

2 Related Work

There are many traditional hashing methods [9,11] in cross-modal retrieval,
which do not use deep networks. However, deep learning has shown its strength
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in modeling nonlinear correlation, and has achieved state-of-the-art performance
in single-modal scenarios. Therefore, cross-modal hashing with deep methods has
been proposed to meet retrieval demands in large-scale cross-modal databases.

Deep cross-modal hashing methods can be further divided into the following
two categories: unsupervised and supervised hashing. Unsupervised cross-modal
hashing methods map unlabeled input data into hash codes by learning a hash
function. Zhang et al. make full use of Generative Adversarial Networks for
unsupervised representation learning to exploit the underlying manifold struc-
ture of cross-modal data [4]. Even though unsupervised methods can get good
performance, they still cannot satisfy the demanded accuracy of image retrieval.
Therefore, lots of supervised methods were proposed to improve retrieval accu-
racy. Specifically, supervised cross-modal deep hashing methods [5,23] learn the
hash function with supervised information.

The deep supervised architectures mainly include two ways in cross-modal
retrieval. The first way is that inputs of different modal types pass through the
same shared layer [12,13] to extract a unified representation that fuses modalities
together, while the second way is that each modal passes through a sub-network
and the output of these sub-networks are coupled by correlation constraints at
the code layers [14,15]. For example, Cao et al. propose deep visual semantic
hashing (DSVH) [6] model that generates compact hash codes of images and
sentences in an end-to-end deep learning architecture, which captures the intrin-
sic cross-modal correspondences between visual data and a natural language.
Wang [5] proposed an online learning method to learn the similarity function
between heterogeneous modalities by preserving the relative similarity in the
training data, which is modeled as a set of bidirectional hinge loss constraints
on the cross-modal training triplets.

However, the related previous methods adopt a symmetric strategy to learn
deep hash functions for both query points and database points. It is time-
consuming to train data using these methods. Thus, most deep hashing methods
choose simple small datasets or subsets of a large dataset. Unlike previous work,
ADCH method is proposed which treats the query points and database points
in an asymmetric way. It takes less time and achieves a better accuracy than the
traditional symmetric deep supervised hashing methods.

3 Asymmetric Deep Cross-modal Hashing

3.1 Problem Definition

Although ADCH can be used in more than two modalities, we only focus on
image and text for simplicity. Each point in the dataset has two feature modali-
ties. Assume there is a query set image-text data-pair P = {(z;, y;)}™, in which
m is the number of query data points, and a database set D = {(,y;)}}—1,
in which n is the number of database points. In addition, we give a cross-modal
similarity matrix S and it would be written as S = [S;;] next. If S;; = 1,
{(zi,y;)} € P and {(z;,y;)} € D are similar; otherwise normally S;; = 0, they
are not similar. The matrix S is defined by semantic information such as class
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labels. For example, if image x; and text y; have the same label, then they are
similar. Otherwise, they are dissimilar.

The goal of cross-modal hashing is to learn hash codes for both image and
text. The hash codes preserve the semantic information of image and text. We
learn two hash functions for query points: f(z;) for the image modality and g(y;)
for the text modality. Additionally, U = {(u¥,u?)}™, € {—1,41}™*¢ denotes
the binary hash codes of query points, generating from f(x;) and g(y;). m is the
number of query set, and c¢ is the binary hash codes length. V = {(v}”, v;’) j=1€
{—=1,+1}"*¢ denotes the directly learned binary hash codes of database. n is the
number of database points. U and V are used to compute the similarity between
the query points and the database points. The Hamming distance should be small
if S;; = 1, while the Hamming distance should be large if S;; = 0.

In practice, there may be only database points D = {(z;,y;)}}-, without
query points. Hence, we randomly sample m points from the database as the
query set. Set P = (D)%, where (D)% denotes the database points indexed by 2.
Here the indices of all the database points are denoted by I' = {1, 2, ..., n} and the
indices of the sampled query points are denoted by 2 = {41, iz, ..., 4, } C I'. Since
2 C I',if a pair of points (z;,y;) belongs to {2, then the points also belong to I".
Accordingly, setting S = S*°, the supervised information (similarity) between
pairs of all database points are denoted by S € {0,1}"*". §¥ ¢ {0,1}m*x"
denotes the submatrix formed by the rows of S indexed by 2. The goal of
asymmetric cross-modal hashing is that query set P is learned from the image
and text modalities. And database set D is learned directly by loss function.

3.2 Model Formulation

The whole ADCH model is shown in Fig. 1, which contains the following three
components: the image feature learning part, the text feature learning part and
the asymmetric function part. In the image feature learning part, an appropriate
image feature representation for image binary hash codes learning is extracted
by using a deep convolutional neural network. Analogously, the text feature
representation is extracted for the text binary hash codes learning in the text
feature learning part. In the asymmetric loss part, an asymmetric loss function
is proposed to train the end-to-end model.

Unlike previous methods, the query points and database points are treated
in an asymmetric way in ADCH. Feature learning is only used to learn hash
function for query points and not for database points, then the hash function of
ADCH generates hash codes for query points; database points learn binary hash
codes directly which is as a variable in the asymmetric loss. Because the training
points are only query points, ADCH takes less time than traditional methods.

3.3 Feature Learning

In the ADCH model, feature learning contains the following two parts: image
feature learning and text feature learning.
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Fig. 1. The architecture of ADCH. The image feature learning part extracts image
feature representations and the text feature part extracts text feature representations.
The loss function preserves the similarity between query points and database points.

In the image feature learning part, the deep neural network is a convolutional
neural network (CNN) model from CNN-F [16] model. In this model, there are
eight layers in total, five of which are fully connected convolutional layers. The
last layer of the CNN-F model is used to project the output of the first seven
layers into R° space, which represents the learned image features. The details of
CNN-F can be found in [16].

In the text feature learning part, the text alternates into bag-of-words (BOW)
representation. And the bag-of-words vectors are the input of a deep neural
network with two fully-connected layers. The activation function of first layer
is a ReLLU and the identity function is used for second layers. Then the text
representation can be obtained from the last layer of the deep neural network.

3.4 Asymmetric Loss

The hash codes of query points are generated from hash function, while the hash
codes of database points are learned directly. Since the hash codes of query points
and database points are generated in different manners, they are asymmetric.
The basic idea of asymmetric cross-modal hash codes learning is to make the
query point and the database point with the same labels as close as possible. In
other words, the image-text pair of query points and database points are similar.

Firstly, to obtain the hashing functions u? = f(x;), u! = g(y;) and directly
learned hashing codes v}, v?, we propose the J; loss. There are four kinds of
relative similarity, i.e., the relative similarity query image to a database text,
query text to a database text, query image to a database image, and query text
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to a database image. The object is to minimize the loss between the similarity

and inner product of query-database binary codes pairs. It can be written as
follows:

Jo= 3" (wd) g — e8i5)? + ((uf) vy — eSij)?

7

st.eel, yeT (1)

— CSij)z + ((Uy)T’U;J - CSij)z]

I is an image set and T is a text set. u¥ and u! are difficult to learn,
because they are discrete data. Thus it sets u? = f(x;) = tanh(F(x;,0;))
and u! = g(y;) = tanh(G(y;, ©,)), which are used to optimize the formulation
(1). F(x;,0;) € R° denotes the learned image feature for point i, which is the
output of the CNN-F model. Furthermore, G(y;,0,) € R denotes the learned
text feature for point 4, which is the output of the deep neural network for text
modality. @, is the parameter of CNN-F model for image datasets, and O, is
the parameter of the deep neural network for text datasets.

Secondly, because the query point and database point are treated as asym-
metrically, the hash codes of query points and database points in the same
data-pair should be same. Thus, we propose J,. There are two kinds of relative
similarity, i.e., the relative similarity query image to a database image, and query
text to a database text. Then Jy can be defined as:

Ja ZWZ[vg”—uf]2+'yZ[vf-’—uf}2 (2)

1€82 1€

where 7 is a hyper-parameter.

Finally, the hash codes of image and text are from different neural networks,
but they hold the same semantic information. So the hash codes should be
correspondent. Thus, J3 which can be defined as:

J3=n Z[uf —u?]? (3)

i€ q2

where 7 is a hyper-parameter.

By combining the above, we can get an asymmetric loss to perform deep hash-
ing from similarity data by jointly preserving similarity between query points and
database points. The asymmetric loss is designed as follows:

g,iGJ(Q»V) =Ji+Ja+J3
2 2
= DD (@) vy —eSiy) + () vl — eSy)

i€Qjer
+ (@) T0? = eSiy) + ()oY = eSiy)]
+ Yo @ 2 S o — )

i€ 1€
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+ 0y [(uf) = (uf)?
i€
st.xel, yeT,V={v],v/}7_, € {-1,+1}"*°  (4)

3.5 Detailed Definition of Similarity Matrix

The similarity matrix S is usually defined as S;; = 1 if P; and D; have the same
semantic label, and S;; = 0 if P; and D; do not share any semantic label. This
definition does not take the multi-label information into account, and leads to
the loss of semantic similarity information.

Therefore, to relax the constraint of S;;, we propose a detailed definition for
cross-modal similarity matrix S;;. The detailed definition of similarity matrix
quantifies the similarity into a percentage with the normalized semantic labels,
which provide more fine-grained information of labels in the loss function. The
similarity of text and image can be passed into the following three cases: com-
pletely similar, partially similar, and dissimilar. Completely similar is that all
the labels are the same in the compared points, partially similar is that some of
the labels are same and the similarity is in percentages, and dissimilar is that
all the labels are different. Thus, the detailed definition of similarity matrix can
improve the retrieval accuracy. So the similarity matrix S is defined as:

{pcij if P; and Dj share some class labels
Sij = .
0 otherwise

where pc;; is the cosine distance of pairwise label vectors, which is formulated as:

pes = < liT,lj >
MR

where [; and [; denote the semantic label vector of text and image P; and Dy,
respectively, and < [;7, l; > calculates the inner product.

In the query procedure, we can use the functions f(z;) = sign(F(x;, 0,))
and g(y;) = sign(G(y;,Oy)) to generate binary hash codes. Then we can use
hamming distance to compute the distance between query point and database
point.

3.6 Learning Algorithm

We adopt an alternating learning strategy to learn ©,,0,, Vand VY. That
is, in each iteration, one parameter is learned, and other parameters are fixed.
Then, after several iterations, the training procedure finishes. In this paper, we
repeat the learning for several times, and each time, we can sample a query set
from (2. The detailed derivation will be introduced in the following content of
this subsection.
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Learn the Parameter of Image Modality. When ©,, V* and VY are
fixed, we learn the CNN-F parameter ©, of the image modality by using a
back-propagation (BP) algorithm. More specifically, we sample a mini-batch
of the query points and update the parameter ©,. To simplify the formula,
27 = F(4,0y), 2! = G(y;,0y), and ® denotes the dot product. We compute
the derivative of the cost function with respect to 2.

2;[(( MY — eSyj) o]
gzé‘: 2 2 [()To] = eSi) o] o (1-u?) (5)

+ 29 (uf — o) + 20 (uff —u)

Then we ¢

algorithm to update the parameter @;.

Learn the Parameter of Text Modality. When ©,, V¥ and VY are fixed,
we also learn the parameter @, of the text modality with a back-propagation
(BP) algorlthm As mmpliﬁed as above, we compute the gradient of z/. We can
compute W wit

Y
using the same method as calculating ©,.

Learn the Binary Codes of Image Database. When 6,, ©, and V¥ are
fixed, we rewrite the problem (4). U* = [u%,u%,...,u%, |T € [—1,+1]m>c,

U m

UY = [uf,uy,...,u? ]T € [-1,+1]™*¢, and (VOE = [vF,0%,...,v% ]T.

(V®)$ represents the binary codes for the database which is in set 2.
min J(V) = [ U(V)" =S [z + | UY(V")T =S |I%

+ [ (V)P -U" |3+ L

= U (V)T |F + | U (VAT |5 —2etr((VF)TSTU?)

— 2ctr((VH)TSTUY) — 29tr((VH)4(U")T) + L (6)
where L is a constant independent of V*. We define U* = {u =1, where the

definition is as follows:

u .
J 0 otherwise

o {uf if jen
Then we can rewrite the problem (6) as follows:
min J(V7) = || VIO 7 + (| V(U |IE + L

— 26r(V*[e(U)TS + ¢(UY)T'S + 7 (T)7))
=[ VU E + [ VU F +r(VHQIDT) + L (7)
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We set Q% = —2(cSTU* 4 ¢STUY + ~(U?)). Every time we update one col-
umn of V* when other columns are fixed. V7, denotes the k-th column of V¥,
V# denotes the matrix of V¥ excluding V7. We set Q% to denote the k-th col-
umn of Q. Let U7, denotes the k-th column of U” and ﬁﬁ denotes the matrix
of U” excluding U%,. Vi, € {—1,+1}¢. UY, denotes the k-th column of UY,

and ﬂz denotes the matrix of UY excluding the k-th column. To optimize V¥,
we can obtain the problem as follows:

J(VE) =l VEUIT (5 + | VEU)T E +er(VHQ™)T) + L
= tr(VE[2(02) TR (V)T +2(U2) OV +(QL) ) + L (8)
Then, we must minimize J(VY}), so we obtain the problem (9) as follows:
Rin J(Vie) = (Vi 2(05)TOR (V)T +2(00) OV + (Qu™)']) + L
(9)

Then, an optimal solution of problem (10) can be get as follows:
J(VE,) = —sign(2(U%,) "OF (VD))" +2(0%)T0L(V)T +(Q.5")  (10)

Learn the Binary Codes of Text Database. As the same as J(V7,), we
can get J(V?Y,) as follows:

J(Vip) = —sign(2(UL)TORV)T +2(0L)T OV +(Qu)") (1)

VY, denotes the k-th column of VY, and V¥ denotes the matrix of V¥ exclud-
ing VY, , QY denotes the k-th column of QY, UY, denotes the k-th column of
UY and UY denotes the matrix of UY excluding UY,.

Using the above method, we can get the image and text hash functions and
database hash codes. The hash functions are used to generate the hash codes of
query points, and database hash codes are used to index by query points.

4 Experiment

4.1 Datasets

In the experiments, we carry out cross-modal hashing on two widely-used
datasets: MIRFLICKR-25K [17] and NUS-WIDE [18]. The MIRFLICKR-25K
dataset consists of 25,000 images. Following the prior work (DCMH [11]), we
only select the image-text pairs that have at least 20 textual tags. We randomly
select 2000 points as test set and the remaining points as database set. The
NUS-WIDE is a public web image dataset which contains 260648 images. There
are 81 concept labels in the dataset and one or multiple labels in each point. We
select 195834 image-text pairs that belong to the 21 most frequent concepts. We
randomly select 2100 points as test set and the remaining points as database set.
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4.2 Evaluation Protocol and Baselines

To evaluate ADCH, we choose three metric methods. Firstly, the mean average
precision (MAP) is a widely used metric to measure the accuracy of the Ham-
ming ranking protocol. Secondly, we can compute the precision and recall for
the returned points given any Hamming radius. Finally, in this paper, we also
compare the training time between hashing methods.

We compare our ADCH with eight state-of-the-art methods, including several
shallow-structure-based methods (CCA [9], CMFH [22], STMH [20], SCM [21],
SePH [19]) and several deep-structure-based methods (DCMH [9], CHN [10],
SSAH [22]). These methods are all symmetric models.

For ADCH, in dataset MIRFLICKR-25K we set v = 200, Ty,; = 50, T, = 3
and 2 = 2000 and in dataset NUS-WIDE we set v = 200, T,,: = 50, T, = 3,
2 = 2100. T;, is the iteration number of randomly generating index set {2 from
I', and T,,; is the total iteration number. For ADCH, the number of query
points m will be much fewer than n. We use the CNN-F network pretrained on
the ImageNet dataset to initialize the image modality.

Table 1. The MAP results of baselines and ADCH on MIRFLICKE-25K and NUS-
WIDE datasets.

Task | Method | MIRFLICKE-25K NUS-WIDE

16 bits | 24 bits | 32 bits | 16 bits | 24 bits | 32 bits
I—-T |CCAt |0.5719 |0.5693 |0.5672 |0.3604 |0.3485 |0.3390
CMFH{t|0.6377 |0.6418 |0.6451 |0.4900 | 0.5053 |0.5095
SCMt [0.6851 |0.6921 | 0.7003 | 0.5409 | 0.5485 |0.5553
STMH{ | 0.6132 |0.6219 | 0.6274 | 0.4710 | 0.4864 |0.4942
SePHt [0.7123 |0.7194 | 0.7232 | 0.6037 |0.6136 |0.6211
DCMH | 0.7510 |0.7425 |0.7471 |0.5922 | 0.6125 |0.6108
CHN 0.7531 |0.7673 |0.7721 | 0.6045 |0.6187 |0.6321
SSAH [0.7732 |0.7894 |0.8045 |0.6494 |0.6312 |0.6488
ADCH 0.8878|0.9011 | 0.9041 | 0.8197  0.8192 | 0.8196
T —1|CCAt [0.5742 |0.5713 [0.5691 |0.3614 |0.3494 |0.3395
CMFH{t|0.6365 | 0.6399 |0.6429 |0.5031 |0.5187 |0.5225
SCMt [0.6939 |0.7012 | 0.7060 | 0.5344 |0.5412 |0.5484
STMH{ | 0.6074 |0.6153 | 0.6217 | 0.4471 | 0.4677 |0.4780
SePHt [0.7216 |0.7261 | 0.7319 | 0.5983 | 0.6025 |0.6109
DCMH | 0.7727 |0.7800 |0.7832 |0.6139 |0.6611 |0.6671
CHN 0.7739 |0.7847 |0.7956 | 0.6182 |0.6479 |0.6455
SSAH [0.7921 |0.7942 |0.8067 |0.6790 | 0.6655 |0.679
ADCH 0.8796|0.8864 | 0.8864 | 0.8034 | 0.8022 | 0.8036
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Table 2. The MAP Comparison of ADCH Variants on MIRFLICKE-25K and NUS-
WIDE datasets.

Task |Method | MIRFLICKE-25K NUS-WIDE

16 bits |24 bits | 32 bits | 16 bits | 24 bits | 32 bits
I—T |ADCH-b|0.8710 |0.8965 |0.8885 |0.8103 |0.8131 |0.8193
ADCH |0.8878|0.9011 |0.9041 0.8197 0.8192|0.8196
T —1 |ADCH-b|0.8610 |0.8765 |0.8785 |0.7903 |0.7931 |0.8003
ADCH |0.8796|0.8864 | 0.8864 0.8034 0.8022 | 0.8036

4.3 Accuracy

This experiment is to investigate the performance of the ADCH method on cross-
modal retrieval on given datasets. The MAP results are presented in Table 1.
We compare our ADCH with eight cross-modal methods with the output dimen-
sions of 16 bits, 24 bits and 32 bits. We can find that ADCH significantly out-
performs all the other baselines, including deep hashing baselines. DCMH is a
well-known method, having a good performance in cross-modal retrieval. From
the experimental results, the MAP of ADCH is higher than that of DCMH by
approximately fifteen percent in MIRFLICKR-25K and twenty-five percent in
NUS-WIDE. I — T denotes that the query is image and the database is text,
and T — I denotes that the query is text and the database is image. 1 denotes
the result cited from [7]. The best results for MAP are shown in bold.

MIRFLICKE25K |->T MIRFLICKE25K T->I

precision
precision

0.0 02 04 06 08 1.0
recall

(b)
NUS-WIDE |->T
1.0
0.9 i
0.8 e
50.7 o oo §0.7 = oo
aﬂj 0.6 § 0.6
505 505
0.4 0.4
0.3 0.3
0%0 02 04 06 08 10 0%0 02 04 06 08 10
recall recall
(c) (d)

Fig. 2. The Precision-Recall curves on MIRFLICKR-25K and NUS-WIDE with 16 Bits
Hash Code.
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To go deeper with the effectiveness of ADCH, we design a variant of the
proposed approach: ADCH-b is the ADCH variant that utilizes the cross-modal
similarity matrix S with value 0 or 1. In Table 2, by introducing adaptive sim-
ilarity matrix S into loss the detailed similarity is quantified into percentages,
ADCH outperforms ADCH-b. The results show that the detailed definition of
similarity matrix .S;; can provide more information of semantic similarity.

We report precision-recall curve in Fig.2. According to the increasing of
recall, the precision of ADCH is higher than other baselines. Our ADCH can
also achieve the best performance on other cases with different values of codes

length, such as 32 bits and 64 bits. Precision = W data, and

Recall = %. With the same recall, precision of ADCH is higher
than other methods.

When the precision is high, there are a large number of true positive data
retrieved, and a small number of true positive data left in the database. To
increase recall, we need more true positive data, so more retrieval data should
be obtained. The number of retrieval data increase dramatically, but the true

positive data show a slow growth. So the ADCH precision drops quickly.

4.4 Time Complexity

We compare ADCH with DCMH on the dataset MIRFLICKE-25K in Fig. 3.
Y-axis is MAP of I — T, and X-axis is training time. The length of hash codes
is 16 bits, 24 bits, and 32 bits. We can see ADCH outperforms DCMH. With the
increase of the length of hash codes, the training time increases gradually. The
training time of DCMH is approximately six times than that of ADCH, and the
ADCH training time is approximately one minute in dataset MIRFLICKE-25K.
Hence, ADCH uses less training time.

The reasons of the training time of ADCH is much less than that of DCMH
come into two aspects: Firstly, the training of deep neural networks is typically
time-consuming, because they have to scan number of n database points. The
computational cost of the traditional symmetric deep supervised hashing method
is at least O(n2), if all database points are used for training. T,.¢, T;» and ¢ are

MIRFLICKE25K |->T MIRFLICKE25K T->I
0.95 =@~ ADCH 16bits 0.95 =@~ ADCH 16bits
=p— DCMH 16bit: =»— DCMH 16bit:
090 ADCH ZAbiL: 090 v, ADCH 24b\‘tss
DCMH 24bits F DCMH 24bits
0.85 [| == ADCH 32bits 0.85 ! == ADCH 32bits
% 0 80 [ | —<& DCMH 32bits % 0 80 ‘\ =4~ DCMH 32bits
= ¥ = b
0.75 0.75
0.70 /'/ f 0.70
0'650 1 2 3 4 5 6 7 8 0'650 1 2 3 4 5 6 7 8
Training time (in hours) Training time (in hours)
(2) (b)

Fig. 3. Training time on MIRFLICKE-25K dataset with output dimensions 16 bits, 24
bits and 32 bits.
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slightly relative to the number of database points n. Hence, the computational
cost of ADCH is O(n). Secondly, ADCH uses not only a direct hash code learning
approach but also an asymmetric approach with the query and database points.
The training time of ADCH is only the training time for the query points. Thus,
the training time of ADCH is much less than that of DCMH.

In this paper, we only compare ADCH with DCMH on training time. Because
the training time of directly learned hash codes methods are efficient than the
methods of generating hash codes from hash function [2]. Thus, we do not com-
pare ADCH with CHN and SSAH on training time.

4.5 Sensitivity to Parameters

As shown in Fig.4a, the number of query points of ADCH effects the retrieval
accuracy. With an increase in the number of query points on MIRFLICKE25K,
the retrieval accuracy improves. When m > 2000, the MAP of I — T becomes
gradually stable.

Figure 4b and c show the effect of the hyper-parameters v and 7 on the MAP
I — T result, and the binary codes lengths include 16 bits, 24 bits and 32 bits.
We can see that the change in the hyper-parameters v and 7 is not sensitive
when 100 < v < 500 or 100 < 17 < 500. In our experiments, we choose m = 2000,
n =y = 200, to get a stable and high MAP.

. MIRFLICKE25K I->T - MIRFLICKE25K . MIRFLICKE25K I->T
0.90 0.85 0.85 — —
0.85 0.80 0.80
-9 a -9
<E( 0.80 <z( 0.75 <E( 0.75
0.75 —e— 16bits 0.70 16bits 0.70 —e— 16bits
0.70 —+— 24bits 24bits 0.65 —+— 24bits
—=— 32bits 0.65 32bits —=— 32bits
0.65 0.60
0 1000 2000 3000 4000 500¢  0.60-F 160 560 1000 1 100 500 1000
m n
r
(a) (b) (c)

Fig. 4. The accuracy on MIRFLICKE25K of query number m, v and 7.

5 Conclusion

Effective retrieval of massive amounts of media data from heterogeneous sources
is a great challenge. In this paper, we propose ADCH as a novel cross-modal deep
supervised hashing method for cross-modal retrieval. ADCH uses two deep neural
networks to extract image and text feature representations, and learns hash codes
of query points and database points in an asymmetric way. Further, we propose a
detailed definition of similarity matrix S;; to improve the performance. Through
experiments on real-word datasets, the results show that ADCH takes less time
and achieves more accurate than traditional symmetric deep supervised hashing
methods.
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