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Abstract. This work presents Direct Numerical Simulation of mass
transfer from buoyancy-driven bubbles rising in a wall-confined verti-
cal channel, through a multiple markers level-set method. The Navier-
Stokes equations and mass transfer equation are discretized using a finite
volume method on a collocated unstructured mesh, whereas a multiple
markers approach is used to avoid the numerical coalescence of bubbles.
This approach is based on a mass conservative level-set method. Fur-
thermore, unstructured flux-limiter schemes are used to discretize the
convective term of momentum equation, level-set advection equations,
and mass transfer equation, to improve the stability of the solver in bub-
bly flows with high Reynolds number and high-density ratio. The level-
set model is used to research the effect of bubble-bubble and bubble-wall
interactions on the mass transfer from a bubble swarm rising in a vertical
channel with a circular cross-section.
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1 Introduction

Mass transfer in bubbly flows is a ubiquitous phenomenon in natural and indus-
trial applications. For example, bubble columns are used in chemical engineer-
ing to promote chemical reactions, as well as to improve heat and mass transfer
rates. Therefore, understanding this phenomenon has both practical and scien-
tific motivations. As a complement to theoretical and experimental approaches,
the development of supercomputers has promoted High-Performance comput-
ing (HPC) and Direct Numerical Simulation (DNS) of Navier-Stokes equa-
tions, as another methodology to design non-invasive and controlled numerical
experiments of bubbly flows. Indeed, during the last decades multiple numer-
ical methods have been introduced for DNS of two-phase flows: volume-of-
fluid (VOF) methods [26], level-set (LS) methods [33,36], conservative level-set
(CLS) methods [4,32], front tracking (FT) methods [42], and hybrid VOF/LS
methods [7,37,39]. Furthermore, some of these numerical approaches have been
extended to include heat transfer or mass transfer phenomenon in two-phase
flows [3,12,14,15,20,21]. On the other hand, few works have reported DNS of
mass transfer in bubble swarms [2,12,29,35]. Although previous publications
have researched mass transfer from bubbles rising on unconfined domains by
using VOF, LS, VOF/LS, and FT methods, there are no previous studies in the
context of wall-confined vertical columns and CLS method. Therefore, this work
aims to present a numerical study of mass transfer from bubbles rising in a verti-
cal pipe, in the framework of a multiple-marker CLS methodology introduced by
[5,9,12]. As further advantages, the CLS method [4,12] was designed for three-
dimensional collocated unstructured meshes, whereas the accumulation of mass
conservation error inherent to standard level-set methods is circumvented. More-
over, unstructured flux-limiters schemes as first introduced in [4,8,12], are used
to discretize convective terms of transport equations, in order to avoid numer-
ical oscillations around discontinuities and to minimize the so-called numerical
diffusion. This numerical approach has demonstrated to improve the numerical
stability of the unstructured multiphase solver [4–8,12] for bubbly flows with
high Reynolds number and high-density ratio.

This paper is organized as follows: The mathematical model and numerical
methods are reviewed in Sect. 2. Numerical experiments are presented in Sect. 3.
Concluding remarks and future work are discussed in Sect. 4.

2 Mathematical Model and Numerical Methods

2.1 Incompressible Two-Phase Flow

The Navier-Stokes equations for the dispersed fluid (Ωd) and continuous fluid
(Ωc) are introduced in the framework of the so-called one-fluid formulation [42],
which includes a singular source term for the surface tension force at the interface
Γ [4,12,42]:

∂

∂t
(ρv) + ∇ · (ρvv) = −∇p + ∇ · μ (∇v) + ∇ · μ(∇v)T + (ρ − ρ0)g + fσ, (1)
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∇ · v = 0, (2)

where v is the fluid velocity, p denotes the pressure field, g is the gravitational
acceleration, ρ is the fluid density, μ is the dynamic viscosity, fσ is the surface
tension force per unit volume concentrated at the interface, subscripts d and c
denote the dispersed phase and continuous phase respectively. Physical proper-
ties are constant at each fluid-phase with a jump discontinuity at Γ :

ρ = ρdHd + ρcHc, μ = μdHd + μcHc. (3)

Here Hc is the Heaviside step function that is one at fluid c (Ωc) and zero
elsewhere, whereas Hd = 1 − Hc. At discretized level a continuous treatment of
physical properties is adopted in order to avoid numerical instabilities around
Γ . The force −ρ0g included in Eq. (1), with ρ0 = V −1

Ω

∫
Ω

(ρdHd + ρcHc) dV ,
avoids the acceleration of the flow field in the downward vertical direction, when
periodic boundary conditions are applied on the y–axis (aligned to g) [5,9,12,22].

2.2 Multiple Marker Level-Set Method and Surface Tension

The conservative level-set method (CLS) introduced by [4,8,12] for interface
capturing on three-dimensional unstructured meshes, is used in this work. Fur-
thermore, the multiple markers approach [5,19] as introduced in [5,8,12] for the
CLS method, is employed to avoid the so-called numerical coalescence inherent
to standard interface capturing methods. In this context, each bubble is repre-
sented by a CLS function [5,8,9,12], whereas the interface of the ith fluid particle
is defined as the 0.5 iso-surface of the CLS function φi, with i = 1, 2, ..., nd and
nd defined as the total number of bubbles in Ωd. Since the incompressibility
constraint (Eq. 2), the ith interface transport equation can be written in conser-
vative form as follows:

∂φi

∂t
+ ∇ · φiv = 0, i = 1, .., nd. (4)

Furthermore, a re-initialization equation is introduced to keep a sharp and con-
stant CLS profile on the interface:

∂φi

∂τ
+ ∇ · φi(1 − φi)n0

i = ∇ · ε∇φi, i = 1, .., nd. (5)

where n0
i denotes ni at τ = 0. This equation is advanced in pseudo-time τ

up to achieve the steady state. It consists of a compressive term, φi(1 − φi)n0
i ,

which forces the CLS function to be compressed onto the interface along the
normal vector ni. Furthermore, the diffusive term, ∇ · ε∇φi, keeps the level-
set profiles with characteristic thickness ε = 0.5h0.9, where h is the grid-size
[4,8,12]. Geometrical information at the interface, such as normal vectors ni

and curvatures κi, are computed from the CLS function:

ni(φi) =
∇φi

‖∇φi‖ , κi(φi) = −∇ · ni, i = 1, .., nd. (6)
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Surface tension forces are calculated by the continuous surface force model [16],
extended to the multiple marker CLS method in [5,8,9,12]:

fσ =
nd∑

i=1

σκi(φi)∇φi. (7)

where σ is the surface tension coefficient. Finally, in order to avoid numerical
instabilities at the interface, fluid properties in Eq. (3) are regularized by using
a global level-set function φ [5,8,12], defined as follows:

φ = min{φ1, ..., φnd
}. (8)

Thus, Heaviside functions presented in Eq. (3) are regularized as Hd = 1−φ and
Hc = φ. In this work 0 < φ ≤ 0.5 for Ωd, and 0.5 < φ ≤ 1 for Ωc. On the other
hand, if 0.5 < φ ≤ 1 for Ωd and 0 < φ ≤ 0.5 for Ωc, then Hd = φ, Hc = 1−φ, and
φ = max{φ1, ..., φnd

} [12]. Further discussions on the regularization of Heaviside
step function and Dirac delta function, as used in the context of the CLS method,
are presented in [12].

2.3 Mass Transfer

This research focuses on the simulation of external mass transfer from bubbles
rising in a vertical channel. Therefore, a convection-diffusion-reaction equation
is used as a mathematical model for the mass transfer of a chemical species in
Ωc, as first introduced in [12]:

∂C

∂t
+ ∇ · (vC) = ∇ · (D∇C) + ṙ(C), (9)

where C is the chemical species concentration, D is the diffusion coefficient or
diffusivity which is equal to Dc in Ωc and Dd elsewhere, ṙ(C) = −k1C denotes
the overall chemical reaction rate with first-order kinetics, and k1 is the reaction
rate constant. In the present model, the concentration inside the bubbles is kept
constant [2,12,20,35], whereas convection, diffusion and reaction of the mass
dissolved from Ωd exists only in Ωc.

As introduced by [12], the concentration (CP ) at the interface cells is com-
puted by linear interpolation, using information of the concentration field from
Ωc (excluding interface cells), and taking into account that the concentration at
the interface CΓ is constant. As a consequence, the concentration at the interface
is imposed like a Dirichlet boundary condition, whereas Eq. (9) is computed in
Ωc.

2.4 Numerical Methods

The transport equations are solved with a finite-volume discretization on a collo-
cated unstructured mesh, as introduced in [4,8,12]. For the sake of completeness,
some points are reviewed in this manuscript. The convective term of momentum
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equation (Eq. (1)), CLS advection equation (Eq. (4)), and mass transfer equation
for chemical species (Eq. (9)), is explicitly computed approximating the fluxes
at cell faces with a Total Variation Diminishing (TVD) Superbee flux-limiter
scheme proposed in [4,12]. Diffusive terms of transport equations are centrally
differenced [12], whereas a distance-weighted linear interpolation is used to find
the cell face values of physical properties and interface normals, unless otherwise
stated. Gradients are computed at cell centroids by means of the least-squares
method using information of the neighbor cells around the vertexes of the current
cell (see Fig. 2 of [4]). For instance at the cell ΩP , the gradient of the variable
ψ = {vj , C, φi, φi(1 − φi), ...} is calculated as follows:

(∇ψ)P = (MTWM)−1MTWY, (10)

M and Y are defined as introduced in [4], W = diag(wP→1, .., wP→n) is the
weighting matrix [28,31], defined as the diagonal matrix with elements wP→k =
{1, ||xP −xk||−1}, k = {1, .., n}, and subindex n is the number of neighbor cells.
The impact of the selected weighting coefficient (wP→k) on the simulations is
evaluated in Sect. 3.1. The compressive term of the re-initialization equation
(Eq. (5)) is discretized by a central-difference scheme [12]. The resolution of
the velocity and pressure fields is achieved by using a fractional-step projection
method [18]. In the first step a predictor velocity (v∗) is computed at cell-
centroids, as follows:

ρv∗ − ρnvn

Δt
= Cn

v + Dn
v + (ρ − ρ0)g +

nd∑

i=1

σκi(φi)∇hφi, (11)

where super-index n denotes the previous time step, Dv(v) = ∇h · μ∇hv+ ∇h ·
μ(∇hv)T , and Cv(ρv) = −∇h · (ρvv). In a second step a corrected velocity (v)
is computed at cell-centroids:

ρv − ρv∗

Δt
= −∇h(p), (12)

Imposing the incompressibility constraint (∇h · v = 0) to Eq. (12) leads to a
Poisson equation for the pressure field at cells, which is computed by using a
preconditioned conjugate gradient method:

∇h ·
(

1
ρ
∇hp

)

=
1

Δt
∇h · (v∗) , e∂Ω · ∇hp|∂Ω = 0. (13)

Here, ∂Ω denotes the boundary of Ω, excluding the periodic boundaries, where
information of the corresponding periodic nodes is employed. Finally, to fullfill
the incompressibility constraint, and to avoid the pressure-velocity decoupling
on collocated meshes [34], a cell-face velocity vf [4,8] is interpolated to advect
momentum (Eq. (1)), CLS functions (Eq. (4)), and concentration (Eq. (9)), as
explained in Appendix B of [8]. Temporal discretization of advection equation
(Eq. (4)) and re-initialization equation (Eq. (5)) is done by using a TVD Runge-
Kutta method [23]. Reinitialization equation (Eq. (5)), is solved for the steady
state, using two iterations per physical time step [4,7,12].
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Special attention is given to the discretization of convective (or compressive)
term of transport equations. The convective term is approximated at ΩP by
(∇h · βψc)P = 1

VP

∑
f βfψfcf · Af , where VP is the volume of the current cell

ΩP , subindex f denotes the cell-faces, Af = ||Af ||êf is the area vector, c =
{v,no

i }, as introduced in [4,12]. Indeed, computation of variables ψ = {φi, φi(1−
φi), vj , C, ...} at the cell faces (ψf ) is performed as the sum of a diffusive upwind
part (ψCp

) plus an anti-diffusive term [4,8,12]:

ψf = ψCp
+

1
2
L(θf )(ψDp

− ψCp
). (14)

where L(θf ) is the flux limiter, θf = (ψCp
−ψUp

)/(ψDp
−ψCp

), Cp is the upwind
point, Up is the far-upwind point, and Dp is the downwind point [12]. Some of
the flux-limiters implemented on the unstructured multiphase solver [4–9,12],
have the forms [40]:

⎧
⎪⎨

⎪⎩

max{0,min{2θf , 1},min{2, θf}} Superbee,
1 CD,

0 Upwind.

(15)

Using TVD Superbee flux-limiter in the convective term of momentum equation
benefits the numerical stability of the unstructured multiphase solver [4–9,12],
especially for bubbly flows with high-density ratio and high Reynolds numbers,
as demonstrated in our previous works [5,9]. Furthermore, (φi)f in the con-
vective term of Eq. (4) is computed using a Superbee flux-limiter (Eq. (15)).
Nevertheless, other flux-limiters, e.g., TVD Van-Leer flux limiter, can be also
employed as demonstrated in [12]. Regarding the variable (φi(1 − φi))f of the
compressive term in Eq.(5), it can be computed by a central-difference limiter
(CD in Eq. 15), or equivalently by linear interpolation as detailed in Appendix A
of [12]. The last approach is used in present simulations. The reader is referred to
[4–6,8,9,12] for additional technical details on the finite-volume discretization of
transport equations on collocated unstructured grids, which are beyond the scope
of the present paper. Numerical methods are implemented in the framework of
the parallel C++/MPI code TermoFluids [41]; whereas the parallel scalability
of the multiple marker level-set solver is presented in [9,12].

3 Numerical Experiments

Validations, applications and extensions of the unstructured CLS method [4] are
reported in our previous works, for instance: dam-break problem [4], buoyancy-
driven motion of single bubbles on unconfined domains [4,6,7], binary droplet
collision with bouncing outcome [5], drop collision against a fluid interface with-
out coalescence [5], bubbly flows in vertical channels [9,11], falling droplets [10],
energy budgets on the binary droplet collision with topological changes [1], Tay-
lor bubbles [24,25], gas-liquid jets [38], thermocapillary migration of deformable
droplets [7,13], and mass transfer from bubbles rising on unconfined domains
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Fig. 1. Mass transfer from a single bubble, Eo = 3.125, Mo = 1×10−6, ηρ = ημ = 100,
Sc = 20, Da = 0 and α ≈ 0%. Grid size h = {d/35(−), d/30(−−), d/25(−·)}.
(a) Time evolution of Reynolds number (Re), normalized surface of the bubble
(A∗(t)), Sherwood number (Sh(t)), and mass conservation error (Eφ =

∫
Ω

(φ(x, t) −
φ(x, 0))dV/

∫
Ω

φ(x, 0)dV ). Gradients evaluation (Eq.(10)) with wP→k = 1 (red
lines) and wP→k = ||xP − xk||−1 (black lines). (b) Sherwood number for Sc =
{20(−), 10(−−), 5(−·), 1(··)} with a figure of mass concentration contours for Sc = 1,
and comparison of present results against correlations [30,43]. (Color figure online)

[12]. Furthermore, a comparison of the unstructured CLS method [4] and coupled
volume-of-fluid/level-set method [7] is reported in [10]. Therefore, this research
can be considered as a further step for simulating mass transfer from buoyancy-
driven bubbly flows in a wall confined vertical channel.

The hydrodynamics of bubbly flows in a vertical channel can be characterized
by the following dimensionless numbers [17]:

Mo =
gμ4

cΔρ

ρ2cσ
3

, Eo =
gd2Δρ

σ
, Rei =

ρcUT id

μc
,

ηρ =
ρc

ρd
, ημ =

μc

μd
, Cr =

DΩ

d
, α =

Vd

VΩ
, (16)

where, ηρ is the density ratio, ημ is the viscosity ratio, Mo is the Morton number,
Eo is the Eötvös number, Re is the Reynolds number, d is the initial bubble
diameter, Δρ = |ρc − ρd| is the density difference between the fluid phases,
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subscript d denotes the dispersed fluid phase, subscript c denotes the continuous
fluid phase, α is the bubble volume fraction, Cr is the confinement ratio, DΩ

is the diameter of the circular channel, Vd is the volume of bubbles (Ωd), VΩ is
the volume of Ω, and t∗ = t

√
g/d is the dimensionless time. Numerical results

will be reported in terms of the so-called drift velocity [12,22], UT i(t) = (vi(t)−
vΩ(t)) · êy, which can be interpreted as the bubble velocity with respect to a
stationary container, vi(t) is the velocity of the ith bubble, vΩ(t) is the spatial
averaged velocity in Ω.

Mass transfer with chemical reaction (first-order kinetics ṙ(C) = −k1C) can
be characterized by the Sherwood number (Sh), Schmidt number (Sc) or Peclet
number (Pe), and the Damköler (Da) number, defined in Ωc as follows:

Sh =
kcd

Dc
, Sc =

μc

ρcDc
, P e =

UT d

Dc
= ReSc, Da =

k1d
2

Dc
. (17)

where kc is the mass transfer coefficient at the continuous fluid side.

3.1 Validation and Sensitivity to Gradients Evaluation

In our previous work [12], extensive validation of the level-set model for mass
transfer in bubbly flows has been presented. Here, the sensitivity of numeri-
cal simulations respect to gradients evaluation is researched, by simulating the
mass transfer from a single buoyancy-driven bubble on an unconfined domain.
Ω is a cylinder with height HΩ = 10d and diameter DΩ = 8d, where d is
the initial bubble diameter. Ω is discretized by three unstructured meshes with
{4.33 × 106(M1), 3.65 × 106(M2), 1.5 × 106(M3)} triangular-prisms control vol-
umes, distributed on 192 CPU-cores. Meshes are concentrated around the sym-
metry axis y, in order to maximize the bubble resolution, whereas the grid size
in this region corresponds to h = {d/35(M1), d/30(M2), d/25(M3)}. Neumann
boundary-condition is applied at lateral, top and bottom walls. The initial bub-
ble position is (x, y, z) = (0, 1.5d, 0), on the symmetry axis y, whereas both fluids
are initially quiescent.

Mass transfer coefficient (kc) in single rising bubbles is calculated from a
mass-balance for the chemical species in Ωc, as follows [12]:

kc(t) =
Vc

Ad(CΓ,c − C∞)
dCc

dt
, (18)

where Cc = V −1
c

∫
Ωc

C(x, t)dV , Ad =
∫

Ω
||∇φ||dV is the interfacial surface of

the bubble, Vc is the volume of Ωc, CΓ,c is the constant concentration on the
bubble interface from the side of Ωc, and C∞ = 0 is the reference concentration.
Dimensionless parameters are Eo = 3.125, Mo = 1 × 10−6, Da = 0, Sc =
{1, 5, 10, 20}, ηρ = 100 and ημ = 100.

Figure 1a shows the time evolution of Reynolds number (Re), normalized
interfacial surface (A∗(t)), Sherwood number (Sh(t)), and mass conservation
error (Eφ), The grid-independence study shows that h = d/35 is enough to
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Fig. 2. Mass transfer from a bubble swarm (16 bubbles) in a periodic channel with
circular cross-section, Eo = 3.125, Mo = 5 × 10−6, ηρ = ημ = 100, Sc = 1, Da = 7.97,
α = 13.4%. Vorticity (ωz = ez · ∇ × v) and concentration (C) on the plane x–y at (a)
t∗ = tg1/2d−1/2 = 6.3, (b) t∗ = 12.5, (c) t∗ = 37.6.

perform accurate predictions of hydrodynamics and mass transfer from sin-
gle bubbles. Furthermore, the effect of gradients evaluation (Eq. (10)) on
the simulations, is depicted for weighting factors wP→k = 1 (red lines) and
wP→k = ||xP − xk||−1 (black lines). It is observed that numerical results are
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Fig. 3. Mass transfer from a bubble swarm (16 bubbles) in a periodic channel with
circular cross-section, Eo = 3.125, Mo = 5 × 10−6, ηρ = ημ = 100, Sc = 1,
α = 11.8%. Time evolution of Reynolds number (Re) for each bubble (black lines),
averaged Reynolds number (bold continuous line), time-averaged Reynolds number
(red discontinuous line), normalized bubble surface A∗

i (t), total interfacial surface of
bubbles A∗(t) =

∑nd
i=1 A∗

i (t), spatial averaged concentration Cc = V −1
c

∫
Ωc

CdV , and

Sherwood number Sh(t). (Color figure online)

very close, whereas the numerical stability is maintained independently of the
selected weighting factor. In what follows wP→k = ||xP −xk||−1 will be employed.
Figure 1b depicts the effect of Schmidt number on the Sherwood number, as well
as a comparison of present results against empirical correlations from literature
[30,43]. These results also give a further validation of the model for mass transfer
coupled to hydrodynamics in buoyancy-driven bubbles.

3.2 Mass Transfer from a Bubble Swarm Rising in a Vertical
Channel

As a further step and with the confidence that the CLS model has been validated
[12], the mass transfer from a bubble swarm rising in a vertical pipe, is computed.
The saturation of concentration in Ωc is avoided by the chemical reaction term
in Eq. (9) [12,35]. On the other hand, the mass transfer coefficient (kc) in Ωc

is computed by using a mass balance of the chemical species at steady state
(dCc/dt = 0), as follows [12]:
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Fig. 4. Mass transfer from a bubble swarm (16 bubbles) in a periodic channel with
circular cross-section, Eo = 3.125, Mo = 5 × 10−6, ηρ = ημ = 100, Sc = 1, α = 11.8%.
(a) 3D bubble trajectories. (b) Projection of bubble trajectories on the plane x–z. (c)
Projection of bubble trajectories on the plane x–y and z–y. Here RΩ = 0.5DΩ is the
radius of the cylindrical channel, (x∗, y∗, z∗) = (x/RΩ , y/RΩ , z/RΩ).

kc =
Vck1Cc

(CΓ,c − Cc)
∑nd

i=1 Ai

(19)

where Ai =
∫

Ω
||∇φi||dV is the surface of the ith bubble, and Cc = V −1

c

∫
Ωc

CdV .
Ω is a periodic cylindrical channel, with height HΩ = 4d and diameter DΩ =
4.45d, as depicted in Fig. 2. Ω is discretized by 9.3 × 106 triangular-prisms con-
trol volumes, with grid size h = d/40, distributed on 960 CPU-cores. Periodic
boundary conditions are used on the x−z boundary planes. On the wall, no-slip
boundary condition for velocity, Dirichlet boundary condition for CLS markers
(φi = 1), and Neumann boundary condition for C. Bubbles are initially dis-
tributed in Ω following a random pattern, whereas fluids are quiescent. Since
fluids are incompressible and bubble coalescence is not allowed, the void fraction
(α = Vd/VΩ) and number of bubbles are constant throughout the simulation.

Dimensionless parameters are Eo = 3.125, Mo = 5 × 10−6, Sc = 1,
Da = 7.97, ηρ = 100, ημ = 100, α = 13.4% and Cr = 4.45, which corre-
sponds to a bubbly flow with 16 bubbles distributed in Ω. Figure 2 illustrates
the mass transfer from a swarm of 16 bubbles at t∗ = {6.26, 37.6}. Concentra-
tion contours (C), and vorticity contours (ωz = êz · ∇ × v) are shown on the
plane x − y. Figure 3 depicts the time evolution of Reynolds number for each
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bubble and the time-averaged Reynolds number (discontinuous line), normalized
bubble surface A∗

i (t), total surface of bubbles A∗(t) =
∑nd

i=1 A∗
i (t), spatial aver-

aged chemical species concentration (Cc) in Ωc, and Sherwood number Sh(t)
at steady state (dCc/dt = 0). Figure 3 shows that Rei(t) presents fluctuations,
due to oscillations in the bubble shapes (see Ai(t)), and bubble-bubble interac-
tions such as bouncing interaction, and the so called drafting, kissing and tum-
bling processes [5,9,10]. On the other hand, the Reynold number of the bubble
swarm, R̄e = n−1

d

∑nd

i=1 Rei(t), achieves the steady-state. The spatial averaged
concentration (Cc) tend to the steady-state after a short transient, indicating
an equilibrium between mass transfer from the bubbles and chemical reaction
in Ωc. Furthermore, the mass transfer coefficient (Sh) achieves the steady-state,
once dCc/dt = 0. Finally, Fig. 4 depict bubble trajectories, which indicate a
bubble-wall repulsion effect.

4 Conclusions

DNS of mass transfer from buoyancy-driven bubbles rising in a vertical chan-
nel has been performed using a parallel multiple marker CLS method [5,9,12].
These numerical experiments demonstrate the capabilities of the present app-
roach, as a reliable method for simulating bubbly flows with mass transfer and
chemical reaction in vertical channels, taking into account bubble-bubble and
bubble-wall interactions in long time simulation of bubbly flows. The method
avoids the numerical merging of bubble interfaces, which is an issue inher-
ent to standard interface capturing methods. Interactions of bubbles include
a repulsion effect when these are horizontally aligned or when bubbles inter-
act with the wall, whereas two bubbles vertically aligned tend to follow the
so-called drafting-kissing-tumbling mechanism observed also in solid particles.
These bubble-bubble and bubble-wall interactions lead to a fluctuating velocity
field, analogous to that observed in turbulence. Nevertheless, the time aver-
aged Reynolds number (Re) and mass transfer coefficient (Sh) tend to the
steady-state. Turbulence induced by agitation of bubbles promote the mixing
of chemical species in the continuous phase, whereas the spatial averaged chemi-
cal species concentration tends to the steady-state, indicating a balance between
chemical reaction in Ωc and mass transfer from bubbles. These results demon-
strate that the multiple marker CLS approach [12] is a predictive method to
compute Sh = Sh(Eo,Re,Da, α,Cr) in bubbly flows rising in a vertical chan-
nel. Future work includes the extension of this model to multicomponent mass
transfer and complex chemical reaction kinetics, as well as parametric studies of
Sh = Sh(Eo,Re,Da, α,Cr) to develop closure relations for models based on the
averaged flow (e.g., two-fluid models [27]).
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