
Introducing VECMAtk - Verification,
Validation and Uncertainty Quantification

for Multiscale and HPC Simulations

Derek Groen1(B), Robin A. Richardson2, David W. Wright2,
Vytautas Jancauskas10, Robert Sinclair2, Paul Karlshoefer9, Maxime Vassaux2,

Hamid Arabnejad1, Tomasz Piontek5, Piotr Kopta5, Bartosz Bosak5,
Jalal Lakhlili4, Olivier Hoenen4, Diana Suleimenova1, Wouter Edeling6,

Daan Crommelin6,7, Anna Nikishova8, and Peter V. Coveney2,3,8

1 Department of Computer Science, Brunel University London, London, UK
Derek.Groen@brunel.ac.uk

2 Centre for Computational Science, University College London, London, UK
3 Centre for Mathematics and Physics in the Life Sciences and Experimental Biology,

University College London, London, UK
4 Max-Planck Institute for Plasma Physics - Garching, Munich, Germany

5 Poznań Supercomputing and Networking Center, Poznań, Poland
6 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

7 Korteweg-de Vries Institute for Mathematics, Amsterdam, The Netherlands
8 University of Amsterdam, Amsterdam, The Netherlands

9 BULL/ATOS, Paris, France
10 LRZ, Garching, Germany

Abstract. Multiscale simulations are an essential computational
method in a range of research disciplines, and provide unprecedented
levels of scientific insight at a tractable cost in terms of effort and com-
pute resources. To provide this, we need such simulations to produce
results that are both robust and actionable. The VECMA toolkit (VEC-
MAtk), which is officially released in conjunction with the present paper,
establishes a platform to achieve this by exposing patterns for verifica-
tion, validation and uncertainty quantification (VVUQ). These patterns
can be combined to capture complex scenarios, applied to applications
in disparate domains, and used to run multiscale simulations on any
desktop, cluster or supercomputing platform.

Keywords: Multiscale simulations · Verification · Validation ·
Uncertainty quantification

1 Introduction

The overarching goal of computational modeling is to provide insight into ques-
tions that in the past could only be addressed by costly experimentation, if at
all. In order for the results of computational science to impact decision making
c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11539, pp. 479–492, 2019.
https://doi.org/10.1007/978-3-030-22747-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22747-0_36&domain=pdf
https://doi.org/10.1007/978-3-030-22747-0_36


480 D. Groen et al.

outside of basic science, for example in industrial or clinical settings, it is vital
that they are accompanied by a robust understanding of their degree of validity.
In practice, this can be decomposed into checks of whether the codes employed
are solving equations in an accurate manner (verification), solving the correct
equations to begin with (validation), and providing estimates that comprehen-
sively capture uncertainty (uncertainty quantification) [1,2]. These processes,
collectively known as VVUQ, provide the basis for determining our level of trust
in any given model and the results obtained using it [3]. Recent advances in
the scale of computational resources available, and the algorithms designed to
exploit them mean that it is increasingly possible to conduct the additional
sampling required by VVUQ even for highly complex calculations and work-
flows. The goal of the VECMA project (www.vecma.eu) is to provide an open
source toolkit containing a wide range of tools to facilitate the use of VVUQ
techniques in multiscale, multiphysics applications. At this initial stage, these
range from fusion and advanced materials through climate and forced population
displacement, to drug discovery and personalised medicine.

Multiscale computing presents particular difficulties as such applications fre-
quently consist of complex workflows where uncertainty propagates through
highly varied components, some of which may only be executed conditionally.
Additionally, uncertainties may be associated with the process of transforming
the output variables from one scale to another, e.g. coarse to fine scale or vice
versa. Although a wide range of toolkits exist to facilitate multiscale computing
(see the review by Groen et al. [4]), applying rigorous VVUQ is a major chal-
lenge that still needs to be addressed in this domain. The goal of the VECMA
toolkit (VECMAtk) is to provide open source tools which implement VVUQ
approaches that range from those which treat components or workflows as an
immutable ‘black box’ to semi-intrusive methods in which components of the
workflow may be replaced by statistically representative, but cheaper, surrogate
models [5].

Key to VECMA’s approach is an understanding of the growing size and
diversity of available supercomputers as we move to the exascale [6]. For the
first time, the vast number of cores available on modern systems make it con-
ceivable for researchers to execute the ensembles necessary to sample phase space
for VVUQ analyses concurrently for even very computationally intensive simu-
lations. Moreover, the use of ensembles of simulations offers an efficient way to
use large supercomputers. However, effectively running and managing multiscale
workflows composed from components with divergent computational require-
ments (for example with some models capable of exploiting GPUs and others
not) represents a key challenge our tools must address. Nonetheless, advances in
hardware continue to present opportunities that can be exploited. For example,
some intrusive VVUQ methods which make extensive use of machine learn-
ing techniques are able to take advantage of hardware designed to accelerate
these techniques (such as fast SSD storage). The support for compute intensive
applications and workflow management within VVUQ analyses are key factors
motivating the development of the VECMAtk.

http://www.vecma.eu


VECMA Toolkit for Multiscale Simulations 481

The philosophy of VECMAtk is that, as far as possible, we want to be able to
add VVUQ to existing scientific workflows without changing researchers concep-
tion of the problem they are investigating. This goal informs the conception of
the toolkit which is designed (i) to be highly modular, (ii) have minimal instal-
lation requirements and, (iii) provide control over where (locally or on remote
resources) and at what time analysis takes place.

This means that VECMAtk is a collection of elements that can be reused and
recombined in different workflows. Our aim is to define stable interfaces, data
formats and APIs that facilitate VVUQ in the widest range of applications. The
modularity of the toolkit allows us to account for the differing requirements
of VVUQ sampling and analysis and provide tools tailored for the needs of
both steps of the process. Several software packages or libraries are already
available for performing VVUQ (such as OpenTurns [7], UQLab [8], Uncertainpy
[9], Chaospy [10], etc.), but in many cases these are closed source and none of
them provide the separation of concerns needed to allow the analysis of both
small local computations and highly compute intensive kernels (potentially using
many thousands of cores and GPUs on HPC or cloud resources). We aim to
reuse existing tools where appropriate to provide robust and optimised code for
sampling and analysis.

To enable researchers to use the toolkit and derive custom approaches, we
will provide a range of exemplar workflows and documentation. Essential to the
design of these exemplars is the need to lower the barriers to usage and, naturally,
to be transferable to a large range of applications with minimal modification.

2 The VECMA Toolkit

The goal of the toolkit is to facilitate the process of researchers mapping the
requirements of VVUQ to their specific scientific problem and existing work-
flow(s). The main factors that shape the development approach of VECMAtk
are: (a) the need to fit into existing applications with minimal modification effort,
(b) the wide range of target application domains, (c) the flexible and recombin-
able nature of the toolkit itself, (d) the geographically distributed nature of the
users and particularly the developers.

2.1 Development and Prototyping Process

To support these needs and characteristics, we have chosen to adopt an evolu-
tionary prototyping approach. In this approach, a existing application developers
initially establish VVUQ techniques using their own scripts, which they share
with the VECMAtk developers together with additional needs that they have not
been able to easily address themselves. These scripts and requirements, together
with existing libraries, form the base from which the development team devel-
ops initial prototypes. The prototypes are then tested and refined at frequent
intervals, with the user feedback and integration testing guiding further develop-
ments. As a result, some prototypes are reduced in scope, simplified, or removed



482 D. Groen et al.

altogether; and some prototypes are being refined into more advanced, flexible,
scalable and robust tools. Regular development meetings within the project help
to monitor and disseminate progress as well as providing a venue in which we
ensure that all component development teams are following best development
practices (for example making use of version control and continuous integration).
Although we work closely with a group of application developers, both FabSim3
and EasyVVUQ are publicly available, and anyone can independently install,
use and modify these tools to suit their own purposes.

As part of our prototyping process, we identify common workflow patterns
and software elements (for example those needed to encode complex parame-
ter distributions) that can be abstracted for re-use in a wide range of applica-
tion scenarios. We label patterns found in verification and validation contexts
VVPs, and those associated with uncertainty quantification or sensitivity anal-
ysis UQPs. The definition of a VVP or UQP should never require the use of any
specific execution management platform, as the toolkit is envisioned to provide
multiple solutions that facilitate workflows. Examples include diverse sampling
algorithms and job types running on heterogeneous resources. Within VEC-
MAtk, we categorize procedures that treat underlying applications as a black
box (non-intrusive), that account for the coupling mechanisms between sub-
models (semi-intrusive) or the algorithms of the submodels (fully intrusive).

2.2 Key Components

QCG-Broker/Computing: Easy and efficient access to computing power is
crucial when a single run of an application is demanding or a large number of
application replicas has to be executed to guarantee reliable VVUQ. To fulfil
this requirement, VECMAtk uses QCG1 which provides advanced capabilities
for the unified execution of complex jobs across single or multiple computing
clusters. The QCG infrastructure, which is presented in Fig. 1, uses the QCG-
Broker service to manage execution of computational experiments, e.g. through
multi-criteria selection of resources, while several QCG-Computing services offer
unified remote access to underlying resources. The QCG services can be accessed
with numerous user-level tools [11], of which a few examples are provided in the
aforementioned figure.

FabSim3: The combination of different UQPs and VVPs in one application also
leads to a cognitively complex workflow structure, where different sets of replicas
need to be constructed, organized, executed, analyzed, and actioned upon (i.e.
triggering subsequent execution and/or analysis activities). FabSim3 [12]2 is a
freely available tool that supports the construction, curation and execution of
these complex workflows, and allows users to invoke them on remote resources
using one-liner commands. In contrast to its direct predecessor FabSim, FabSim3
inherently supports the execution of job ensembles, and provides a plug-in system

1 http://www.qoscosgrid.org.
2 https://github.com/djgroen/FabSim3.

http://www.qoscosgrid.org
https://github.com/djgroen/FabSim3


VECMA Toolkit for Multiscale Simulations 483

which allows users to customize the toolkit in a modular and lightweight manner
(e.g., evidenced by the minimalist open-source FabDummy plugin). We provide
an overview of the FabSim3 architecture in Fig. 3. In the context of VECMA
FabSim3 plays a key role in introducing application-specific information in the
Execution Layer, and in conveniently combining different UQPs and VVPs.

QCG Pilot Job: A Pilot Job, is a container for many subjobs that can be
started and managed without having to wait individually for resources to become
available. Once the Pilot Job is submitted, it may service a number of defined
VVUQ subtasks (as defined by e.g. EasyVVUQ or FabSim3). The QCG Pilot
Job mechanism provides two interfaces that may be used interchangeably. The
first one allows to specify a file with the description of sub-jobs and execute
the scenario in a batch-like mode, conveniently supporting static scenarios. The
second interface is offered with the REST API and it can be accessed remotely
in a more dynamic way. It will be used to support scenarios where a number of
replicas and their complexity dynamically changes at application runtime.

EasyVVUQ is a Python library, developed specifically for VECMA, designed
to simplify the implementation of creation of (primarily blackbox) VVUQ work-
flows involving existing applications. The library is designed around a breakdown
of such workflows into four distinct stages; sampling, simulation execution, result
aggregation, and analysis. The execution step is deemed beyond the remit of the
package (it can be handled for instance by FabSim3 or QCG Client), whilst the
other three stages are handled separately. A common data structure, the Cam-
paign, which contains information on the application being analyzed alongside
the runs mandated by the sampling algorithm being employed, is used to trans-
fer information between each stage. The architecture of EasyVVUQ is shown in
Fig. 2.

The user provides a description of the model parameters and how they might
vary in the sampling phase of the VVUQ pattern, for example specifying the
distribution from which they should be drawn and physically acceptable limits
on their value. This is used to define a Sampler which populates the Campaign
with a set of run specifications based on the parameter description provided by
the user. The Sampler may employ one of a range of algorithms such as the
Monte Carlo or Quasi Monte Carlo approaches [13]. At this point all of the
information is generic in the sense that it is not specific to any application or
workflow. The role of the Encoder is to create input files which can be used in
a specific application. Included in the base application is a simple templating
system in which values from the Campaign are substituted into a text input
file. For many applications it is envisioned that specific encoders will be needed
and the framework of EasyVVUQ means that any class derived from a generic
Encoder base class is picked up and may be used. This enables EasyVVUQ to
be easily extended for new applications by experienced users.

The simulation input is then used externally to the library to execute the
simulations. The role of the Decoder is twofold, to record simulation completion
in the Campaign and to extract the output information from the simulation
runs. Similarly to the Encoder the Decoder is designed to be user extendable to



484 D. Groen et al.

Fig. 1. Simplified overview of QCG usage in VECMA. Jobs requested by the toolkit
layer may be farmed out to one or more queues on different computing resources.

Fig. 2. The architecture of EasyVVUQ. The UQ workflow is split into a sampling,
execution and analysis stage, orchestrated via a (persistent) ‘Campaign’ object.

facilitate analysis of a wide range of applications. The Decoder is used in the
collation step to provide a combined and generic expression of the simulation
output for further analysis (for example the default is to bring together output
from all simulation runs in a Pandas dataframe). Following the output collation
we provide a range of analysis algorithms which produce the final output data.
Whilst the library was originally designed for acyclic ‘blackbox’ VVUQ work-
flows, development is ongoing to allow the library to be used in more complex
patterns.



VECMA Toolkit for Multiscale Simulations 485

Fig. 3. Essential building blocks in the FabSim3 component of VECMAtk, and their
interdependencies. Components in yellow are under development as of June 2019

2.3 How the Components Work Together

The components in VECMAtk (FabSim3, EasyVVUQ, QCG Pilot Job and other
QCG components) can be combined in a variety of ways, enabling users to
combine their added values while retaining a limited deployment footprint. At
time of writing, we are working on the following combinations:

• FabSim3 has been integrated with QCG-Client to enable job submission to
QCG Broker, allowing users to schedule their jobs across multiple remote
(QCG-supporting) machines.

• EasyVVUQ can use FabSim3 to facilitate automated execution. Users can
convert their EasyVVUQ campaigns to FabSim3 ensembles using a one-liner
(campaign2ensemble), and FabSim3 output is ordered such that it can be
directly moved to EasyVVUQ for further decoding and analysis.

• Integration between QCG Pilot Job and FabSim3 is under way, enabling users
to create and manage pilot jobs using FabSim3 automation.

• Integration between QCG Pilot Job and EasyVVUQ is under way, enabling
EasyVVUQ users to execute their tasks directly using pilot jobs.

3 Initial Applications

The following section gives an overview of applications that currently use the
VECMAtk and are guiding the development of new features for the toolkit. We
present a detailed look at a fusion calculation and brief description of climate,
population displacement, materials, force field, and cardiovascular modeling.

3.1 Fusion Example

Heat and particle transport in a fusion device play a major role in the per-
formance of the thermo-nuclear fusion reaction. Current understanding is that
turbulence arising at the micro space and time scales is a key factor for such
transport which has effects on much larger scales. Multiscale simulation are



486 D. Groen et al.

Fig. 4. Schematic view of the targeted fusion application.

developed to bridge such disparate spatiotemporal scales, for instance Luk et
al. [14] couple a gyro-fluid 3D turbulence submodel to a 1D transport solver
that evolves the temperature profiles over the macro scales. The turbulence sub-
model provides heat fluxes from which the transport coefficients are derived,
but its output is inherently “noisy”. Hence, the calculated profiles are exposed
to this noisy signal, and uncertainties will propagate from one submodel to the
next. Additional uncertainties come from external sources and from experimen-
tal measurements against which the simulation could be validated. This leads to
a complex scenario as depicted in Fig. 4.

The goal here is to produce simulated quantities of interest (temperature pro-
file, density, etc.) and their confidence intervals and propagate this additional
information through a complex cyclic workflow that involves several components
with different properties, computational costs and uncertain inputs. The confi-
dence intervals allow for better validation of the interpretative simulation against
experimental results (for existing tokamaks machines), and give insight into the
confidence of predictive simulations.

Following previous work on quantifying the propagation of uncertainty
through a ‘black-box’ model in fusion plasma [15], we started to apply a poly-
nomial chaos expansion method (PCE) to the cheaper single-scale models from
Fig. 4, but taken separately (each one becomes a black-box). The method doesn’t
require changes to the underlying model equations and provides a quantitative
measure for which combinations of inputs have the most important impact on
the results. The PCE coefficients are used to compute statistical metrics that
are essential for the basic descriptions of the output distribution. To compute
those coefficients we use a quadrature scheme which depends on the polynomial
type which itself depends on the probability distribution of uncertain inputs.
As a result, integration rules along each axis can be calculated using a tensor
product.

Even with a limited number of uncertain parameters resulting from the turbu-
lence code (e.g 8 for a fluid code using a flux-tube approximation), and assuming
these parameters are not correlated, this method will necessitate approximately
1.7 millions of runs of Fluxes to Coefficients and Transport codes if we want
to calculate their propagation through these models. As these are the cheapest



VECMA Toolkit for Multiscale Simulations 487

codes in the application, this represents only 512 CPU-hours of an embarrass-
ingly parallel job which remains tractable with traditional means. But when the
complexity of the models and the number of parameters increase, such quantities
of runs with potentially large range of run times becomes very challenging and
will require using advanced capabilities of ‘smart’ pilot-job software.

3.2 Variety of Other Applications

Climate. Computational models for atmospheric and oceanic flows are central
to climate modeling and weather forecasting. As these models have finite reso-
lutions, they employ simplified representations, so-called parameterizations, to
account for the impact of unresolved processes on larger scales. An example is
the treatment of atmospheric convection and cloud processes, which are impor-
tant for the atmospheric circulation and hydrological cycle, but are unresolved
in global atmospheric models. These parameterizations are a source of uncer-
tainties: they have parameters that can be difficult to determine, and even their
structural form can be uncertain.

A computationally very expensive approach to improve parameterizations
and reduce uncertainty is by locally replacing the parameterization with a high-
resolution simulation. In [16] this is applied regionally, by nesting the Dutch
Atmospheric Large-Eddy Simulation (DALES) model in a selected number
of global model columns, replacing the convection parameterization in these
columns. The local DALES models run independently from each other and only
exchange mean profiles with the global model. While this set-up allows for the
use of massively parallel computer systems, running a cloud-resolving simula-
tion in every single model column of a global model remains computationally
unfeasible.

Within VECMA we are therefore developing tools for surrogate modeling.
More specifically, we aim for statistically representative, data-driven surrogate
models that account for the uncertainties in subgrid-scale responses due to their
internal nonlinear and possibly chaotic dynamics. The surrogates are to be con-
structed from a (limited) set of reference data, with the goal of accurately repro-
ducing long-term statistics, in line with the approach from [17,18].

Forced Displacement. Accurate predictions of forced population displacement
can help governments and NGO’s in making decisions as to how to help refugees,
and efficiently allocate humanitarian resources to overcome unintended conse-
quences [19]. We enable these simulations by establishing an automated agent-
based modeling approach, FabFlee, which is a plugin to FabSim3 that uses the
Flee agent-based simulation code. Flee forecasts the distribution of incoming
refugees across destination camps [20], while FabFlee provides an environment
to run and analyze simulation ensembles under various policy constraints, such
as forced redirections, camp and border closures [21]. At time of writing, we
are combining FabFlee with EasyVVUQ to more efficiently perform sensitivity
analysis for varying agent awareness levels and speed limits of refugee move-
ments [22].



488 D. Groen et al.

Materials Modeling. Prediction of nanocomposite material properties requires
multiscale workflows that capture mechanisms at every characteristic scale of
the material, from chemical specificity to engineering testing conditions. For
nanocomposite systems, the characteristic time and length of its nanostructure
and macrostructure are so far apart, their respective dynamics can be simulated
separately. We use DealLAMMPS [23,24], a new program that simulates the
nanoscale with LAMMPS molecular dynamics, and the macroscale is simulated
using deal.II, a finite element solver. Boundary information is passed from the
FEM model to the LAMMPS simulations, the stresses arising from these changes
are used to propagate the macroscale model. This workflow creates a vast num-
ber of short nanoscale, unpredictable at runtime, simulations at each macroscale
timestep. Handling the execution of these task requires automation and coordi-
nation between several resources. As just the nanoscale errors due to uncertainty
in the boundary condition and even the stress measured for a boundary change
are correlated, complex and expensive to calculate. Over several iterations, errors
can proliferate and careful consideration and understanding of these is needed
from tools that VECMAtk can provide.

Molecular Dynamics Force Fields. Molecular dynamics calculations are used
not only in materials modeling but in a wide range of other fields. Choices made
in the design of these calculations such as the parameterization of the force field
describing chemical components within the system and cut-offs used for long
range interactions can have a profound effect on the results obtained and their
variability. One field in which this of particular interest in free energy calcula-
tions which are increasingly widely used in modern drug design and refinement
workflows. The binding affinity calculator (BAC) [25] we have developed auto-
mates this class of calculation, from model building through simulations and
analysis. In order to understand the impact of forcefield parameter decisions
on calculations performed using the BAC we are creating new workflows which
incorporate sensitivity analysis through EasyVVUQ. The use of protocols based
on ensemble simulations (known as TIES and ESMACS [26]) will give us the
ability to adjust the simulation duration and ensemble size in order to robustly
determine the uncertainty of results for comparison. This effort builds on previ-
ous work which uses Pilot Job manager to handle the execution of ensembles of
multiple runs to enable bootstrap error statistics to be applied to calculations
for individual protein-ligand pairs.

Cardiovascular Simulation. Haemodynamic simulations provide a non-
invasive means of estimating flow rates, pressures and wall shear stresses in
the human vasculature. Through MRI and CT scans, patient specific models
may be used, with clinical applications such as predicting aneurysm rupture or
treatment. We use a 3D lattice-Boltzmann solver, HemeLB [27], to simulate the
continuum dynamics of bloodflow through large and highly sparse vascular sys-
tems efficiently [28]. A recent validation study focused on HemeLB simulations of
a real patient Middle Cerebral Artery (MCA), using transcranial Doppler mea-
surements of the blood velocity profile for comparison, as well as exploring the
effects of a change in rheology model or inlet flow rate on the results [29]. We are



VECMA Toolkit for Multiscale Simulations 489

now running full 3D simulations of the entire human arterial tree, with an aim
of also integrating the venous tree and a cyclic coupling to state-of-the-art heart
models. This necessarily introduces an even greater number of input parameters
which, when combined with the great computational expense of the submodels,
presents a real challenge for validation and verification of our application, and
particularly with regards to a computationally feasible sensitivity analysis and
uncertainty quantification within such a system.

Biomedical Model. Coronary artery stenosis is a cardiovascular disease of
narrowing of the coronary artery due to clustering of fatty plaque. A common
treatment is to dent the fatty plaque into the artery wall and to deploy a stent
in order to keep the artery open. However, up to 10% cases end up in the re-
narrowing of the artery due to an excessive healing response, which is called
in-stent restenosis (ISR) [30]. The multiscale in-stent restenosis model simulates
this process at different time scales [31].

In [32], uncertainty of the response of the two-dimensional ISR model on the
cross-sectional lumen area was estimated and analyzed. Uncertainty quantifica-
tion showed up to 15% aleatory and about 25% total uncertainty in the model
predictions. Additionally, sensitivity analysis identified the endothelium regen-
eration time as the most influential parameter on the model response. In [33],
the semi-intrusive multiscale metamodeling uncertainty quantification method
was applied to improve the performance of the uncertainty analysis. Depending
on the surrogate used, the simulation time of the semi-intrusive method was
up to five times faster than of a Monte Carlo method. In future work, the semi-
intrusive metamodeling method will be applied to the three dimensional version
of the ISR model employing the VECMAtk, since a black-box approach is not
feasible for this application due to high computational demand [34].

4 Roadmap and Release Strategy

For the VECMA toolkit we have adopted a release schedule with two release
types: Minor releases are tagged every 3 months, advertised within the project,
made public without dedicated advertising, and with a limited amount of addi-
tional documentation and examples. Major releases will be made in June 2019,
June 2020 and December 2020, and are public and fully advertised. They are
accompanied with extensive documentation, examples, training events and ded-
icated uptake activities. We are at present able to guarantee formal support
for the VECMA toolkit up to June 2021, and can future-proof VECMAtk at
least until 6 months after the final planned release of the toolkit. The June
2019 VECMAtk release contains FabSim3, EasyVVUQ, and several functional-
ities provided by QCG. Later releases will likely feature additional components.
In-between releases, users will be able to access the latest code for FabSim3 and
EasyVVUQ, as we are maintaining an open development environment.

Containerization of VECMAtk. Containerization [35] is a method that allow
us to create a virtual machine (VM) in more easily compared to the traditional



490 D. Groen et al.

virtualization approach. These type of VMs, called containers, share the operat-
ing system kernel, as well as resources such as storage and networking. Contain-
ers matter because they enhance reproducibility: every run using them is guar-
anteed to have the same settings and configurations. Additionally, containers
provide application platform portability, as they can be migrated to other com-
puting environments without requiring code changes. Each container includes
the run-time components – such as files, environment variables and libraries
– necessary to run the desired software on a single control host, accessing a
single kernel. Among the implementations available, we choose to use Docker
(docs.docker.com).

In this work, we set up the FabSim GitHub repository with Travis-CI. After
each successful test executed by Travis, a docker image is configured and built,
and pushed into Docker Hub. For this work, A Docker image is provided as
well through the Docker Hub3. And, the docker bundle for easy deployment is
available in Docker Hub via: docker pull vecmafabsim3/fabsimdocker.

However, although Docker is one of most popular container technologies for
software reproducibility, it has low adoption in the HPC world since it requires
users with root access to run Docker and execute a containerized applications.
To support high performance computing use cases, where users should only have
access to their own data, Singularity4 can be used as a solution for container
system in HPC environment. Singularity containers differ from Docker containers
in several important ways, including the handling of namespaces, user privileges,
and the images themselves. A singularity image, alongside docker image for this
toolkit, is available via: https://singularity-hub.org/collections/2536.

5 Conclusions

In this paper we have outlined the design and development process used in
the creation of the VECMA toolkit for validation, verification and uncertainty
quantification (VVUQ) of multiscale HPC applications. A number of exemplar
applications from a diverse range of scientific domains (fusion, climate, popula-
tion displacement, materials, drug binding affinity, and cardiovascular modeling)
are being used to test and guide the development of new features for the toolkit.
Through this work we aim to make VVUQ certification of complex, multiscale
workflows on high end computing facilities a standard practice.

Acknowledgements. We are grateful to the VECMA consortium, Scientific Advisory
Board and the VECMAtk alpha users for their constructive discussions and input
around this work. We acknowledge funding support from the European Union’s Horizon
2020 research and innovation programme under grant agreement 800925 (VECMA
project, www.vecma.eu), and the UK Consortium on Mesoscale Engineering Sciences
(UKCOMES) under the UK EPSRC Grant No. EP/L00030X/1.

3 https://hub.docker.com/r/vecmafabsim3/fabsimdocker.
4 https://singularity.lbl.gov.

http://docs.docker.com
https://singularity-hub.org/collections/2536
www.vecma.eu
https://hub.docker.com/r/vecmafabsim3/fabsimdocker
https://singularity.lbl.gov


VECMA Toolkit for Multiscale Simulations 491

References

1. Oberkampf, W.L., DeLand, S.M., Rutherford, B.M., Diegert, K.V., Alvin, K.F.:
Error and uncertainty in modeling and simulation. Reliab. Eng. Syst. Saf. 75(3),
333–357 (2002)

2. Oberkampf, W.L., Roy, C.J.: Verification and Validation in Scientific Computing.
Cambridge University Press, Cambridge (2010)

3. Roy, C.J., Oberkampf, W.L.: A comprehensive framework for verification, vali-
dation, and uncertainty quantification in scientific computing. Comput. Methods
Appl. Mech. Eng. 200(25), 2131–2144 (2011)

4. Groen, D., Knap, J., Neumann, P., Suleimenova, D., Veen, L., Leiter, K.: Mastering
the scales: a survey on the benefits of multiscale computing software. Philos. Trans.
Roy. Soc. A 377(2142), 20180147 (2019)

5. Nikishova, A., Hoekstra, A.G.: Semi-intrusive uncertainty quantification for mul-
tiscale models. arXiv preprint arXiv:1806.09341 (2018)

6. Alowayyed, S., Groen, D., Coveney, P.V., Hoekstra, A.G.: Multiscale computing
in the exascale era. J. Comput. Sci. 22, 15–25 (2017)

7. Baudin, M., Dutfoy, A., Iooss, B., Popelin, A.-L.: OpenTURNS: an industrial
software for uncertainty quantification in simulation. In: Ghanem, R., Higdon,
D., Owhadi, H. (eds.) Handbook of Uncertainty Quantification, pp. 2001–2038.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-12385-1 64

8. Marelli, S., Sudret, B.: UQLab: a framework for uncertainty quantification in Mat-
lab. In: Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Man-
agement, pp. 2554–2563 (2014)

9. Tennøe, S., Halnes, G., Einevoll, G.T.: Uncertainpy: a Python toolbox for
uncertainty quantification and sensitivity analysis in computational neuroscience.
bioRxiv (2018). https://doi.org/10.1101/274779

10. Feinberg, J., Langtangen, H.P.: Chaospy: an open source tool for designing methods
of uncertainty quantification. J. Comput. Sci. 11, 46–57 (2015)

11. Piontek, T., et al.: Development of science gateways using QCG – lessons learned
from the deployment on large scale distributed and HPC infrastructures. J. Grid
Comput. 14(4), 559–573 (2016)

12. Groen, D., Bhati, A.P., Suter, J., Hetherington, J., Zasada, S.J., Coveney, P.V.:
FabSim: facilitating computational research through automation on large-scale and
distributed e-infrastructures. Comput. Phys. Commun. 207, 375–385 (2016)

13. Sobol, I.: On Quasi-Monte Carlo integrations. Math. Comput. Simul. 47(2), 103–
112 (1998)

14. Luk, O., Hoenen, O., Bottino, A., Scott, B., Coster, D.: ComPat framework for
multiscale simulations applied to fusion plasmas. Comput. Phys. Commun. 239,
126–133 (2019)

15. Preuss, R., von Toussaint, U.: Uncertainty quantification in ion–solid interaction
simulations. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater.
Atoms 393, 26–28 (2017)

16. Jansson, F., van den Oord, G., Pelupessy, I., Grönqvist, J., Siebesma, A., Crom-
melin, D.: Regional superparameterization in a global circulation model using large
eddy simulations (2018, in press)

17. Verheul, N., Crommelin, D.: Data-driven stochastic representations of unresolved
features in multiscale models. Commun. Math. Sci 14(5), 1213–1236 (2016)

18. Verheul, N., Viebahn, J., Crommelin, D.: Covariate-based stochastic parameter-
ization of baroclinic ocean eddies. Math. Clim. Weather Forecast. 3(1), 90–117
(2017)

http://arxiv.org/abs/1806.09341
https://doi.org/10.1007/978-3-319-12385-1_64
https://doi.org/10.1101/274779


492 D. Groen et al.

19. Groen, D.: Simulating refugee movements: where would you go? Procedia Comput.
Sci. 80, 2251–2255 (2016)

20. Suleimenova, D., Bell, D., Groen, D.: A generalized simulation development app-
roach for predicting refugee destinations. Sci. Rep. 7, 13377 (2017)

21. Suleimenova, D., Bell, D., Groen, D.: Towards an automated framework for
agent-based simulation of refugee movements. In: Chan, W.K.V., DAmbrogio, A.,
Zacharewicz, G., Mustafee, N., Wainer, G., Page, E., (eds.): Proceedings of the 2017
Winter Simulation Conference, Las Vegas, Nevada, IEEE, pp. 1240–1251 (2017)

22. Suleimenova, D., Groen, D.: How policy decisions affect refugee journeys in South
Sudan: a study using automated ensemble simulations. J. Artif. Soc. and Soc.
Simul. (2019, submitted)

23. Vassaux, M., Richardson, R.A., Coveney, P.V.: The heterogeneous multiscale
method applied to inelastic polymer mechanics. Philos. Trans. Roy. Soc. A 377,
20180150 (2019)

24. Vassaux, M., Sinclair, R.C., Richardson, R.A., Suter, J.L., Coveney, P.V.: The role
of graphene in enhancing the mechanical properties of epoxy resins. Adv. Theory
Simul. 2, 1800168 (2019)

25. Sadiq, S.K., Wright, D., Watson, S.J., Zasada, S.J., Stoica, I., Coveney, P.V.: Auto-
mated molecular simulation based binding affinity calculator for ligand-bound HIV-
1 proteases. J. Chem. Inf. Model. 48(9), 1909–1919 (2008). PMID: 18710212

26. Wan, S., et al.: Rapid and reliable binding affinity prediction of bromodomain
inhibitors: a computational study. J. Chem. Theory Comput. 13(2), 784–795
(2017). PMID: 28005370

27. Mazzeo, M.D., Coveney, P.V.: HemeLB: a high performance parallel lattice-
Boltzmann code for large scale fluid flow in complex geometries. Comput. Phys.
Commun. 178(12), 894–914 (2008)

28. Patronis, A., Richardson, R.A., Schmieschek, S., Wylie, B.J., Nash, R.W., Coveney,
P.V.: Modelling patient-specific magnetic drug targeting within the intracranial
vasculature. Front. Physiol. 9, 331 (2018)

29. Groen, D., et al.: Validation of patient-specific cerebral blood flow simulation using
transcranial Doppler measurements. Front. Physiol. 9, 721 (2018)

30. Fernández-Ruiz, I.: Interventional cardiology: drug-eluting or bare-metal stents?
Nat. Rev. Cardiol. 13(11), 631–631 (2016)

31. Caiazzo, A., et al.: A complex automata approach for in-stent restenosis: two-
dimensional multiscale modelling and simulations. J. Comput. Sci. 2(1), 9–17
(2011)

32. Nikishova, A., Veen, L., Zun, P., Hoekstra, A.G.: Uncertainty quantification of a
multiscale model for in-stent restenosis. Cardiovasc. Eng. Technol. 9(4), 761–774
(2018)

33. Nikishova, A., Veen, L., Zun, P., Hoekstra, A.G.: Semi-intrusive multiscale meta-
modeling uncertainty quantification with application to a model of in-stent resteno-
sis. Philos. Trans. A 377(2142), 20180154 (2018)

34. Zun, P.S., Anikina, T., Svitenkov, A., Hoekstra, A.G.: A comparison of fully-
coupled 3D in-stent restenosis simulations to in-vivo data. Front. Physiol. 8, 284
(2017)

35. Docker: Docker for the Virtualization Admin. eBook (2016)


	Introducing VECMAtk - Verification, Validation and Uncertainty Quantification for Multiscale and HPC Simulations
	1 Introduction
	2 The VECMA Toolkit
	2.1 Development and Prototyping Process
	2.2 Key Components
	2.3 How the Components Work Together

	3 Initial Applications
	3.1 Fusion Example
	3.2 Variety of Other Applications

	4 Roadmap and Release Strategy
	5 Conclusions
	References




