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Abstract. Helices appear in nature at many scales, ranging from
molecules to tendrils in plants. Organisms take advantage of the heli-
cal shape to fold, propel and assemble. For this reason, several applica-
tions in micro and nanorobotics, drug delivery and soft-electronics have
been suggested. On the other hand, biomolecules can form complex ter-
tiary structures made with helices to accomplish many different func-
tions. A particular well-known case takes place during cell division when
DNA, a double helix, is packaged into a super-helix—i.e., a helix made
of helices—to prevent DNA entanglement. DNA super-helix formation
requires auxiliary histone molecules, around which DNA is wrapped, in
a “beads on a string” structure. The idea of creating superstructures
from simple elastic filaments served as the inspiration to this work. Here
we report a method to produce filaments with complex shapes by peri-
odically creating strains along the ribbons. Filaments can gain helical
shapes, and their helicity is ruled by the asymmetric contraction along
the main axis. If the direction of the intrinsic curvature is locally changed,
then a tertiary structure can result, similar to the DNA wrapped struc-
ture. In this process, auxiliary structures are not required and therefore
new methodologies to shape filaments, of interest to nanotechnology and
biomolecular science, are proposed.

Keywords: Tendril perversions · DNA folding · Design ·
Synthesis and processing

1 Introduction

In nature, a variety of ingenious mechanisms have been developed to fold, propel
and assemble. Many of them use the ability to shape their structure in helical
configurations [17]. For instance, Erodium, a flowering plant, uses a particular
mechanism for disseminating its seeds. First, after flowering, the plant stores
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enough elastic energy in the fruits by creating a tension between awns and a
surrounding tissue. After a given threshold, the tissue snaps and seeds are flung
away from the plant. After reaching the ground, awns start a cycle of winding or
unwinding depending on humidity, coiling when drying and straightening when
wetting. These movements help seeds to move on the surface until finding a
position to open a hole into the soil [6,21].

In biochemistry, the helical shape is very common and can be arranged in
very different structures to accomplish different functions. For instance, DNA is
made of two intertwined helices, and collagen, of three intertwined helices [14,16].
Furthermore, single, double and triple helices can also gain different shapes, cre-
ating super-helices—helices built with helices [13]. Their different shapes are
critical to healthy functioning. For instance, chromosome segregation during cel-
lular division requires considerable packaging to avoid DNA entanglement, while
during transcription a more stretched fold must give access to RNA polymerase
enzymes.

These are certainly only two simple examples that show how controlling the
helical shape of filaments can be of great importance at very different length
scales and for different purposes. Controlling the shape of artificial elastic fil-
aments should also be highly desirable given the broad potential applications
in soft-electronics [5,10], micro and nanorobotics [9,11], healthcare [1,23], and
explains surging recent interest and technical developments in this field [4].

Two main mechanisms have been proposed for producing helices. Snir and
Kamien suggested that entropic forces could be responsible for the helical folding
of molecular chains [20]. The main idea is that the helix shape creates an excluded
volume to solute molecules. In crowded environments, this creates an asymmetry
which renders the helical configuration more stable. This type of mechanism can
play an important role in the cellular packed environments explaining aggrega-
tion, orientation and organisation of co-linear similar molecules or structures.

The former mechanism of helical formation requires the existence of a
crowded environment. This is not always available, as happens when helices
appear in the macroscopic world, as in the curling behaviour observed in ten-
drils. In this case, helices are formed when changes in the material produce
asymmetric internal stresses which create a variety of deformations, as combi-
nations of stretching, bending and torsion [7]. This phenomenon can be easily
illustrated when one side of a ribbon is run over with a blade, stretching one
side of the ribbon relatively to the other. This modification creates an intrinsic
curvature, whose intensity is related to the final number of loops. If instead of
ribbons, this type of asymmetric stresses occur in linear filaments, then buckling
instabilities can generate a spontaneous instability that turns the filament into
a helical shape [8,12].

The way the asymmetric stresses are created in a filament can vary. For
instance, a stretched elastic band can be glued upon a relaxed band of the same
material [12]. In micro and nanotechnology, the strategy consists in modulating
the concentration and the crosslinking density of temperature-responsive poly-
mers [18,19,24]. In nature, stresses originate from asymmetric cellular organisa-
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tions. These can even evolve in time, depending on factors such as cellular and
water concentration or cellular composition [2].

In this work, we were inspired by the complex tertiary structures observed in
biomolecules. In particular, we were attracted by the creation of helices made of
helices—called superhelices—and by the peculiar shape of chromatin that takes
place when DNA is packed during cell division.

We will show how it is possible to use computational modelling and simu-
lation to design structures with shapes similar to those found in DNA. It will
also be shown that these computational approaches can serve multiple purposes,
since they can provide insights for experimental exploration and discovery, and
they can also work as validation for the explanation of experimental results.

This paper is organised as follows. In the next section, we will discuss the
main mechanisms that will be used to shape structures. Afterwards, we will
describe two computational experiments. In the first case, the idea was to explain
how superhelices could be generated. In the second case, we used the same
strategy to experimentally shape a polymeric fibre. In practice, many factors can
contribute to the final shape of the filament. Through computational/theoretical
modelling it is possible to explain how the final shape is actually obtained.

2 Theory and Computational Methodology

Coiling linear filaments or ribbons has been achieved by several groups by cre-
ating an asymmetry along the main axis (longitudinal direction) of the fila-
ment [18,22]. For instance, setting up a bi-layered strip with different initial
strains produces a mismatch between the two layers [12]. Upon release, one layer
contracts more than the other, creating an intrinsic curvature and forming an
arc. The curvature can increase by increasing the layers mismatch and forming
a ring. The higher the curvature the higher the number of loops and smaller the
radius. These helical structures are twistless helices and would collapse in a ring
upon release and only if they are held a distance apart, they can have a pitch.

Helical curves can be described by using the Frenet-Serret (FS) frame, Q =
[T,N,B], where T and N are tangent and normal vectors and B is the binormal
vector given by the cross product of T and N. The evolution of the FS frame
can be written in terms of the Darboux vector, Ω, by the set of continuous
differential equations:

Q′
i = Ω × Qi, (1)

where Ω = κB± τT, κ is the curvature and τ is the torsion. Here the curvature
to torsion ratio is constant, a necessary and sufficient condition to define a helix,
according to Lancrets theorem. Left- (L) and right-handed (R) helices differ by
having opposite signs in the torsion factor.

The evolution of the FS frame is only discontinuous at inversion points (per-
versions). From a previous analysis [18], the equation for the evolution of the FS
frame can be modified to hold the changes introduced by different types of per-
versions. With the application of three transformations at the perversion point,
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Eq. 1 can be rewritten as:

Q′
i = (SΩ) × (RΩ,αRN,−2θQi). (2)

where S changes the handedness of the helix, SΩ = S(κB + τT) = κB − τT,
RN,−2θ expresses a rotation of the FS frame around the normal, θ is the angle
between the tangent and the twisting vector, and RΩ,α adds further twisting to
the perversion. α = 0 corresponds to the description of symmetric perversions as
commonly found in plant tendrils and gift ribbons. Both helices have the same
centre line. By contrast, when α = π the antisymmetric perversion causes centre
lines to be apart by twice of the helical radius.

In this work, we will use only α = π perversions to shape fibres. This is
because these perversions can occur at well defined (engineered) positions,
whereas symmetric perversions occur spontaneously at positions that can depend
on the boundary conditions, but also on the unwinding process, being more dif-
ficult to control.

The way we will produce structures with different shapes (our tertiary struc-
tures) consists on connecting helices with opposite handedness through anti-
symmetric perversions. Therefore, left (L) and right (R) helical segments—our
building blocks—are juxtaposed. It will be assumed that all L (or R) segments
have the same length, but the length of L segments is different from the length
of R segments. Different shapes can be obtained because antisymmetric per-
versions introduce a turning angle, which relates to the helix length helix by,
L = Θ

√
(a2 + b2). Here Θ is the total turning angle, a the helical radius and b

the height of the helix. In this work, for simplicity, a and b for all helical seg-
ments and, therefore, all segments have the same κ and τ . Different shapes can
be obtained by changing the length of the two types of helical segments, and in
this way by changing Θ.

In the next section we will show results obtained by running simulations using
the molecular dynamics simulator LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) [3,15]. Filaments are modelled by a set of beads
arranged in a simple cubic lattice and connected to first and second neighbours
by harmonic potentials, Vx1,x2 = kh/2(l−l0,n), where kh is the elastic constant, l
is the distance between beads x1 and x2 and l0,n is the equilibrium bond distances
(l0,1 = σ, for firsts neighbors and l0,2 =

√
2 σ, for second neighbors). An intrinsic

curvature is created by changing the equilibrium bond distances in one side of
the rod. Then the pre-strain of the rod is becomes χ = (l′0,1−l0,1)/l′0,1, where l′0,1

is the modified equilibrium bond distance. Our simulations used a deterministic
integration of the equations of motion using a NVE integrator (Verlet/Leap-frog
method) to update beads positions and velocities on each time step (step size of
1 × 10−3 τ).

3 Computer Simulations and Experimental Validation

To analyse how antisymmetric perversions can be used to modulate the shape of
linear structures, two studies were performed. In a first study, the analysis uses
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a theoretical description of curves with perversions using Eqs. (1) and (2). Then
computer simulations with LAAMPS were performed, which allow us to suggest
that filaments with these types of shapes should be capable of being produced
in practice. This is confirmed in our second study. There the same strategy to
shape filaments is used on a polymeric fibre experimentally engineered to acquire
a three-dimensional shape similar to those obtained in the previous study. In
practice, the fibre obtained has a more complex shape, given the difficulties
in controlling all experimental parameters, such as constant fibre thickness or
equal building block lengths. Therefore, in a second stage of the study, we use
the theoretical model to match the intrinsic curvature observed in the real fibre.
This allows us to compare with the equivalent computer simulation.

3.1 Superhelices from Helical Blocks ΘR = 2π + δ and ΘL = 2π

The simplest (trivial) case considers R and L helical segments with the same
length, i.e., with the same total turning angle, ΘR = ΘL. This case is shown
in Fig. 1(a) n = 0, for ΘR = ΘL = 2π. Then each segment completes a full
turn (2π), but as R and L helices - represented in red and black in Fig. 1(a) -
have opposite handedness, every time one helix turns for one side, the following
turns in the opposite direction. As a result, the full segment appears as it was
made of two tied helices, united at the perversion points. The top view has the
appearance .

(a)

(b)
n = 0 1 2 3 4 5 6 7 8

Fig. 1. Filaments obtained from the juxtaposition of 20 R and 20L helix
segments (a) Shapes predicted with the theoretical model describing the evolution
of the centre line according to Eqs.(1) and (2) for helical segments with ΘR = 2π + δ
(represented in black) and ΘL = 2π (in red), and δ = 2πn/40. (b) Computer simulations
of filaments where the compression stresses (represented in red) act alternately on either
side of the filament creating helices with antisymmetric perversions of LR = (40+n) σ

and with LL = 40 σ. (Color figure online)
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Keeping L helix blocks with exactly one loop, ΘL = 2π, and slightly increas-
ing the length of R helix blocks by δ, with δ = 2πn/40 and n = 1 to 8, it can
be observed that the red (L) helix blocks start to revolve around of the black
(R) helix blocks. Also, in these particular cases, where one block (red) has an
integer number of loops, all other blocks (black) are aligned. The alignment
occurs because only helix segment always completes a 2π turn, while the other
revolves slightly more. Increasing n, increases the number of loops of the superhe-
lix until δ = π. Then, the black helix block have two side-by-side red helix blocks
(top view: ). For δ > π the number of loops of the superhelix decreases
until reaching an integer number of loops.

All these constructions were simulated for realistic elastic filaments by adjust-
ing the curvature of one block with L = 40σ to match one complete turn. Then,
twenty R helix blocks with LR = (40+n) σ alternated with twenty L helix blocks
with LL = 40 σ. When n = 0, the configuration matches the pattern
predicted in Fig. 1(a) (n = 0).

For increasing n, rods develop a superhelix structure with an increasing num-
ber of turns. However, R helix blocks, which were aligned in Fig. 1(a), are now
misaligned. This can be due to the fact that Eq. (2) describes the effect of the
perversion in a simplified way, reducing its extent to a single point. In practice,
perversions have an extension in which they deform the filament in a non-trivial
way.

In any case, there is a good agreement in both approaches and, most impor-
tantly, in both approaches show that filaments with complex tertiary structures
can be constructed using this simple strategy.

Fig. 2. Filaments with seven L and six R helix blocks with 1:9 ratio. (a) Pre-
strained polymeric fibre in a black cardboard mask before irradiation with UV light,
in which different sides alternately cover the fibre with different region lengths. (b)
Upon release, the polymeric fibre displays a superhelix shape. (c) Matching theoretical
filament by adjusting with the experimental result. (d) Rod obtained by computer
simulations of the theoretical model quantities.
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3.2 Designing Polymeric Superhelices

The former analysis instigated us to produce experimentally a superhelix with
a real polymeric fibre. A 4 cm long fibre was pre-strained to 9.15 cm and, then,
irradiated for 5 h, on both sides with ultraviolet (UV) and using the mask shown
in Fig. 2(a). The fibre obtained upon release is shown in Fig. 2(b). The fibre
displayed loops in a clear helical disposition and with different handedness.

Afterwards, we used the theoretical model to match the polymeric fibre,
Fig. 2(c). Gravity forces altered the total height of the polymeric fibre. The
torsion of the theoretical helix was adjusted to match with the experimental
fibre, despite the later having no intrinsic torsion.

Then, using the adjusted quantities of the theoretical model, a rod with seven
L helix blocks of length LL = 15σ alternated with six R helix blocks of length
LL = 135σ, Fig. 2(d) and pre-strain χ = 0.23. One end of the rod was kept fix
and an additional gravity-like force was used in all atoms, in such a way that
all are under the influence of the same force. Overall, by visual comparison of
Fig. 2(b) and (d), rod and polymeric fibre have a similar design.

4 Conclusions

A new method for designing filaments with complex tertiary structures resem-
bling those of DNA, was presented. Interestingly, the creation of these structures
does not require auxiliary structures to build up, as happens with histones in
DNA. In this work, we also showed how a combination of analysis, in which com-
putational and theoretical descriptions take an important part, help to build a
thesis on how to design strategy to shape filament in effective ways. In partic-
ular, computational approaches offer a powerful tool to rapidly preview a given
design.
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