
Scaling the Training of Recurrent Neural
Networks on Sunway TaihuLight

Supercomputer

Ouyi Li1,3, Wenlai Zhao2,3(B), Xuancheng Huang2, Yushu Chen3,
Lin Gan2,3, Hongkun Yu2,3, Jiacheng Zhang2, Yang Liu2,

Haohuan Fu1,3, and Guangwen Yang2,3

1 Ministry of Education Key Laboratory for Earth System Modeling,
Department of Earth System Science, Tsinghua University, Beijing, China

loy16@mails.tsinghua.edu.cn
2 Department of Computer Science and Technology, Tsinghua University,

Beijing, China
zhaowenlai@tsinghua.edu.cn

3 National Supercomputing Center in Wuxi, Wuxi, Jiangsu, China

Abstract. The recurrent neural network (RNN) models require longer
training time with larger datasets and bigger number of parameters.
Distributed training with large mini-batch size is a potential solution to
accelerate the whole training process. This paper proposes a framework
for large-scale training RNN/LSTM on the Sunway TaihuLight (SW)
supercomputer. We take series of architecture-oriented optimizations for
the memory-intensive kernels in RNN models to improve the computing
performance. The lazy communication scheme with improved communi-
cation implementation and the distributed training and testing scheme
are proposed to achieve high scalability for distributed training. Further-
more, we explore the training algorithm with large mini-batch size, in
order to improve convergence speed without losing accuracy. The frame-
work supports training RNN models with large size of parameters with at
most 800 training nodes. The evaluation results show that, compared to
training with single computing node, training based on proposed frame-
work can achieve a 100-fold convergence rate with 8,000 mini-batch size.

Keywords: Neural machine translation · Recurrent neural networks ·
Large-scale training · Many-core architecture ·
Sunway TaihuLight supercomputer

1 Introduction

Deep learning has already proven its efficiency in many different tasks. Recurrent
neural network (RNN) [13] plays an important role in deep learning. Neural
machine translation (NMT) is one of the most successful application examples
of RNN. Training RNN models in NMT task takes a lot of time.
c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11536, pp. 427–440, 2019.
https://doi.org/10.1007/978-3-030-22734-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22734-0_31&domain=pdf
https://doi.org/10.1007/978-3-030-22734-0_31


428 O. Li et al.

It is proved that larger datasets and bigger models lead to improvements
in accuracy for many deep learning tasks. In NMT, as the number of param-
eters increases, the memory space required becomes larger. Taking a specific
parameter setting in [2] as an example, attention based long short-term memory
(LSTM) [7] with 1000 hidden units, 620 dimensional word embeddings and 75
words in a sentence with mini-batch size 40 needs 30 GB memory.

With the rapid development of deep learning, the size of dataset in related
tasks gradually becomes larger. It takes more time to traverse the whole training
dataset as one epoch during training models. For example, the size of NMT
dataset grows from 1,200,000 pairs of sentences in source language (English)
and target language (Chinese) in dataset NIST to 5,800,000 pairs of sentences in
dataset WMT. In order to cope with the increasing size of the dataset, we need
to ensure that the overall training time is controllable by reducing the time of
traversing the dataset during training process.

Scaling the mini-batch size by synchronizing data parallel is a good solu-
tion. In some previous works, a large-scale training on distributed deep learning
frameworks have been explored by [5,15]. They mainly focus on training CNN
models on ImageNet [11]. Correspondingly, we explore the solution of large-scale
training RNN/LSTM in NMT in this paper.

SW provides large number of computing nodes, we can explore training
RNN/LSTM with large size of parameters with large mini-batch size by syn-
chronizing data parallel. If we train attention based LSTM model with 2000
hidden units, 1440 dimensional word embeddings on one computing node, the
allowed mini-batch size is 10. To explore training large models with large mini-
batch size, 800 training workers are needed to reach the mini-batch size 8,000.

We propose architecture-oriented optimizations and communication opti-
mizations customized for RNN/LSTM. We propose a distributed RNN/LSTM
training framework based on SunwayCaffe [8,16]. We explore convergence accel-
eration ratio of training process and generalization of models under large-scale
training scenarios. Our specific contributions include:

– We propose architecture-oriented optimizations for the memory-intensive ker-
nels in RNN/LSTM, fully exploring the parallelism in SW26010 many-core
architecture and improving the usage of memory bandwidth.

– We propose improved MPI Allreduce implementation and lazy communica-
tion scheme customized for RNN/LSTM, so as to achieve high communication
efficiency and high scalability for P2P-based distributed training.

– We propose a customized distributed framework design for NMT, which
assigns the computing nodes with different tasks (training, testing and eval-
uating). The proposed framework provides environment for frequently vali-
dating models with little test interval. Training in the framework can overlap
all testing time.

– We provide discussions and analysis of the convergence acceleration ratio of
large-scale training RNN/LSTM and the generalization of models. Further-
more, we show an empirical training strategy, as well as the evaluation results
of RNN/LSTM on a large dataset with up to 800 training nodes.



Scaling the Training of Recurrent Neural Networks 429

The rest of the paper is organized as follow. In Sect. 2, we describe the back-
ground of this paper. In Sect. 3.1, we propose our architecture-oriented optimiza-
tions for the memory-intensive kernels in RNN/LSTM on SW26010 processor. In
Sect. 3.2, we propose our communication optimizations including the improved
MPI Allreduce implementation and lazy communication scheme. In Sect. 3.3,
we describe our distributed framework designed for NMT. In Sect. 4, we explore
large-scale training RNN/LSTM and we provide discussions and analysis of the
convergence acceleration ratio of large-scale training RNN/LSTM and the gen-
eralization of the models. In Sect. 5, we show evaluation of the optimizations in
our framework, and the evaluation results of large RNN/LSTM. In Sect. 6, we
conclude the report and discuss about the future work.

2 Background

2.1 RNN Model and NMT Task

RNN is a class of artificial neural network and add sequential information to
the artificial neural network model. RNN models can use their hidden units to
process sequences of inputs. A finite RNN is a directed acyclic graph that can be
unrolled. When it is unrolled, each layer deals with one element in the sequence.
LSTM cell is a kind of RNN cell, and it adds gates to basic RNN cell to regulate
the flow of information into and out of the cell.

The past several years have witnessed the rapid development of NMT, which
aims to model the translation process using neural networks in an end-to-end
manner. Most of the proposed NMT models belong to a family of encoder-
decoder. The encoder-decoder system consists of an encoder and a decoder for a
language pairs. They are jointly trained to maximize the probability of a correct
translation given a source sentence. All neurons in encoders share their weights
and all neurons in decoders share their weights.

There are three encoder-decoder models mentioned in this paper, the first
model is encoder-decoder (RNNencdec) proposed in [14], the second one is
attention-based encoder-decoder (RNNsearch) proposed in [2], the third one is
attention-based encoder-decoder with twice number of hidden units and dimen-
sional word embeddings of RNNsearch (RNNsearch-H).

We evaluate models on English-Chinese translation. We have two training
datasets, one small dataset consisting of 1.25M pairs of sentences and one large
dataset consisting of 5.8M pairs of sentences. We use the NIST 2002 dataset as
validation dataset for the first training dataset and WMT dataset as validation
dataset for the second one.

Bilingual evaluation understudy (BLEU) is an algorithm for evaluating the
quality of text translated by machine from one natural language to another.
BLEU considers the quality to be the correspondence between a machine’s out-
put and that of a human. It is now the normal standard for evaluating machine
translation results. It is involved in our framework.



430 O. Li et al.

2.2 System Setup

One SW26010 many-core processor is composed of four core-groups (CGs), each
CG consists of 65 cores: one management processor element (MPE) and 64
computing processor elements (CPEs). 64 CPEs are organized as a CPE cluster.
Within a cluster, CPEs are connected in an 8 by 8 mesh. The MPE and CPEs are
all based on 64-bit RISC architecture, but have different duties. The MPE sup-
ports the complete interrupt functions, memory management, superscalar and
out-of-order issue/execution. It is good at handling management, task schedule,
and data communications. CPE is designed to maximize the aggregated comput-
ing and minimize the complexity of the micro-architecture. Each of CGs owns
8 GB of DDR3 memory, shared by MPE and CPE cluster through the Memory
Controller (MC). So one node has 32 GB memory. The on-chip network (NoC)
connect the MPE/CPE chip with System Interface (SI).

2.3 Current Situation and Related Work

As for now, most of state-of-art RNN/LSTM in different tasks are trained with
small mini-batch size performed in single-worker multi-GPU mode. In [14], they
train RNNencdec model with mini-batch size 128. The bi-LSTM model has 4
layers with 1000 hidden units, 620 dimensional word embeddings. In [2], they
proposed model RNNsearch, the encoder and decoder of RNNsearch both have
1000 hidden units, with mini-batch size 80, the length of the training sentences
is 50.

To explore training RNN/LSTM with larger number of parameters requiring
more memory space, we choose to train models on SW. Architecture-oriented
optimizations for the memory-intensive kernels in RNN/LSTM are needed to
improve the usage of memory bandwidth and to improve the overall computing
performance.

As the size of dataset increases, the time consumption of training RNN/
LSTM in NMT increases. There are two training datasets mentioned in this
paper. The time consumption of training on WMT dataset for one epoch is five
times of that on NIST dataset. Multi-server distributed training is a solution.
SW provides a large number of computing nodes, we can scale the mini-batch
size in data parallelism method to meet our need.

The support for the existing distributed frameworks of parameter solver (PS)
architecture [12] on SW is not satisfactory. In contrast, open-sourced Caffe [8]
deep learning framework on a single computing node has been well supported on
SW. Our previous work consists of optimized math library SWDNN and Sunway-
Caffe [4,16]. SWDNN mainly optimized the convolutional layer and pooling layer
according to the architecture of SW. SunwayCaffe provides a basic distributed
framework for training CNN models on SW. This paper proposes a framework
based on SunwayCaffe. Because of recurrent structure of RNN/LSTM, the com-
munication mechanism in training process are optimized to achieve high com-
munication efficiency and scalability.



Scaling the Training of Recurrent Neural Networks 431

In terms of large-scale training neural networks, many researchers have
explored ways to reduce the training time under the premise of ensuring the
accuracy. [5] proposed a scheme of large-scale training CNN models. They scale
mini-batch size to 8k in AlexNet and ResNet with decline in testing accuracy.
[15] proposed a layer-wise adaptive optimization algorithm LARS. They scale
the mini-batch size of training ResNet to 32k with no decline in accuracy. As
aspect of RNN/LSTM in NMT task, few people explore large-scale training.

Therefore, in this paper, for large-scale training RNN/LSTM according
to current situation, we propose architecture-oriented optimizations for the
memory-intensive kernels in RNN/LSTM for improving the usage of memory
bandwidth and improving the computing performance. We propose an efficient
implementation of MPI Allreduce and a lazy communication scheme for high
communication efficiency and high scalability. We propose a customized dis-
tributed framework designed for overlapping the testing time. We explore large-
scale training RNN/LSTM and provide discussions and analysis of convergence
acceleration ratio and generalization of models. Finally we show the results of
large-scale training RNNsearch-H with an empirical training strategy.

3 Optimizations

3.1 Architecture-Oriented Optimization

In training process of RNN/LSTM, GEMM (General Matrix Multiply) is the
most computation intensive operation. GEMM performs in the computing of
gates in LSTM neurons, logit layers and attention module. Optimization of
GEMM on SW26010 many-core processor has been discussed in [9,16]. We apply
the implementation in our framework directly.

Besides the computation intensive kernels, the optimizations of the mem-
ory intensive kernels are also very important from the perspective of the overall
performance. Gradient-based optimization algorithms (e.g. square root opera-
tion) adopt element-wise vector operations, for which performance is limited by
memory bound. These layers can be efficiently implemented by DMA for large
continuous data blocks and perform computation in CPE cluster.

Particularly, two kernels are major considerations in this paper: the expo-
nential layer and the softmax layer.

Exponential Layer Optimization. In neural networks, activation layers are
used to perform a nonlinear transformation of data. In RNN/LSTM, activation
layers are mainly sigmoid layers and tanH layers, which both utilize nonlinear
property of exponential function. In addition to activation layers, exponential
function is also in the implementation of softmax layer.

On SW, the underlying implementation of the exponential function is
included in SW basic math library. the specific implementation of the exponen-
tial function is method of look-up table with interpolation. The look-up table
of exponential function is stored in memory of MPE, both computing in MPE



432 O. Li et al.

and CPEs need to access data from main memory when exponential function is
called. Data access from main memory takes more than 100 CPU cycles. Instead
of SW basic math library, we implement the exponential function by Taylor
Expansion using a small amount of LDM in CPEs. Our implementation avoids
discrete data access from main memory. Efficiency of the operation is greatly
improved while ensuring the precision.

Softmax Layer Optimization. In the decoding phase of NMT, models pass
data through softmax layer at each time step, and the number of neurons in
softmax layer is equal to the size of vocabulary, usually 50,000 or more. In
ImageNet, the number of neurons in softmax layer is equal to the number of
categories 1000. The categories of NMT is more than 50 times that of ImageNet,
and the length of sentences in NMT is always 50 to 100. Therefore, in an training
iteration, the amount of computation of softmax in NMT is 2500 to 5000 times
that in ImageNet. The large number of neurons in softmax layer and the high
occurrences make softmax layer a bottleneck in NMT when training on SW.

The softmax function is described as Eq. 1. K is the number of neurons in
softmax layer. It maps the output value of j-th neuron to a new value in interval
(0, 1), which can be thought as the probability of the category represented by
the output.

α(x)j =
exp(xj)

K∑

k=1

exp(xk)

for j = 1 to K (1)

As the output of exponential function increases fast as x grows, the input of
exponential function of each neuron in softmax layer must keep small while the

Algorithm 1. Implementation of softmax
Input
1: Vector<Data*> A; Batch size: B; Data count in one batch: N ; Core group id:

cg id; CPE id: cpe id;
output
2: Probability of each data of all batches: Vector<Data*> S
3: function Parallel Softmax(Vector<Data*> A, INT B, INT N)
4: Sync 4cg();
5: start index = B/4 ∗ cg id + B/(4 ∗ 64) ∗ cpe id;
6: local count = B/(4 ∗ 64);
7: dma(local A, start index, local count) from A;
8: for each d in local Acg id,cpe id do
9: M = max(d);

10: d = exp(d-M);
11: SUM =

∑
d;

12: local S = d ÷ SUM ;
13: end for
14: return ;
15: end function



Scaling the Training of Recurrent Neural Networks 433

output of softmax layer unchanged. Max value of all neurons is subtracted from
value of each neuron first. This trick can be applied to make sure that none of
the exponentials overflows [8].

According to Algorithm 1, the implementation of softmax layer on SW26010
mainly contains four parts of computations. Two parts in Line 10 and Line
12 are both element-wise operation, and their implementations are mentioned
previously. Other two parts of computations are MAX operation in Line 9 and
SUM operation in Line 11. We do data parallelism in batch level, each CPE
computes max (summation) of vector data in different mini-batches. For the
same data, two operations in Line 10 and Line 11 can be completed after one
DMA operation according to the index of CPE in CGs. Through the above
implementations on SW, we can accelerate the training process on SW26010
processor.

3.2 Communication Optimization

Communication Architecture. Parameter Server (PS) and P2P communica-
tion are two mainstream communication architecture for distributed deep learn-
ing [12]. PS follows a client-server scheme and can be easily scaled up on a
distributed cluster, tolerating the imbalanced performance, unstable network
bandwidth and unexpectable faults of the workers. However, for a supercom-
puter system, the sustaining performance and the stability of the computing
nodes can be guaranteed, as well as the network condition. Therefore, a P2P
communication architecture is more suitable.

We adopt two optimization methods to further improve the communication
efficiency, including an improved MPI Allreduce design and a lazy communica-
tion strategy for distributed RNN/LSTM training.

Improved Allreduce. The network topology of SW is a two-level fat tree,
which consists of an intra super-node level and an inter super-node level. At the
intro super-node level, 256 computing nodes are fully connected via a customized
super-node network switch. At the inter super-node level, a central switching
network is designed for the communication between different super-nodes. Gen-
erally, the intro super-node communication has a higher bandwidth and a lower
latency than the inter super-nodes communication.

To improve the overall communication efficiency, we implement a kind of
hierarchical Allreduce. [6] An improved Allreduce design is proposed with four
stages, which include: (1) an inter super-node reduce stage; (2) an intra super-
node reduce stage; (3) an intra super-node broadcast stage; (4) and an inter
super-node broadcast stage. Compared with the original MPI Allreduce opera-
tion, the improved Allreduce contains as less inter super-node communication
requests as possible.

Besides, in the improved Allreduce operation, the computation operations
(usually SUM operation is used to aggregate gradients) is accelerated using the
CPEs, while it is handled only by MPE in the standard MPI Allreduce imple-
mentation. With the optimizations on both computation and communication,



434 O. Li et al.

the improved Allreduce operation can achieve about 20 times higher efficiency
on average than the standard MPI Allreduce operation.

Lazy Communication. In a training iteration, each layer invokes an Allreduce
communication for the gradients, so that the number of communication requests
is usually large for deep neural networks. In modern RNN/LSTM, the number
of parameters in each RNN/LSTM layer is related to the length of the word
vector. Usually if the size of hidden states is 1000, which is relatively large, there
are about 1 million (1000 × 1000) parameters in a layer, and then the data size
of the gradients involved in one Allreduce operation is about 4 MB. Hence we
can see that, there are numerous communication requests with small data size,
which is the main feature of the communication pattern in a distributed NMT
training framework, and is not efficient in large-scale training tasks.

To address the above issue, we propose a lazy communication scheme in our
framework. The basic design idea is that instead of executing the communication
requests immediately, we remember them temporarily until the unsent data size
is greater than a given MAXSIZE, which is set to 100 MB empirically in our
framework.

The lazy communication design can merge multiple small-data-size commu-
nication into a large-data-size communication, which can improve the overall
efficiency by lowering the launch cost and increasing the utilization rate of net-
work bandwidth.

3.3 Framework Optimization

Considering the load balance and the overall training efficiency, we propose a
new distributed framework design for large-scale training RNN/LSTM.

Fig. 1. The overview of distributed training and testing scheme

The training process in NMT contains three modules: training module, test-
ing module and evaluating module. A training model and a testing model are
involved in the training process. The model in training module and the model



Scaling the Training of Recurrent Neural Networks 435

in testing module share all parameters, but not absolutely the same. There is
clear relationship between three modules. Evaluating module runs after testing
module, training module and testing module run in parallel.

In fact, except sharing parameters at beginning of training iteration and
testing iteration, training module and testing module don’t rely on each other.
We propose a distributed training and testing scheme as shown in Fig. 1. A
testing interval is set that testing process is performed after every testing interval
of training iterations.

In NMT, even after a few training iterations, BLEU value changes quite a
lot. So frequent validation help find the highest BLEU value. The model with
the highest BLEU value on validation dataset is always the model with the
best generalization in theory. Distributed training and testing scheme leads to
complete overlap of testing process and evaluating process, we can save extra
testing time. The scheme greatly improves efficiency of entire training process
and also provides an opportunity to find the model with the best generalization.

4 Convergence and Generalization

4.1 Model Convergence Optimization Algorithm

The stochastic gradient based optimization algorithm applied in our training
experiments is Adaptive Moment Estimation (Adam). Adam applies momen-
tum on a per-parameter basis and automatically adapts step size subject to a
user-specified maximum learning rate [10]. Adam’s convergence speed and gen-
eralization made it a popular choice for NMT [1,3].

Learning Rate. Under large-scale training scenarios, when RNNsearch model
is trained with Adam with same mini-batch size (100 nodes, 8000 mini-batch size
and 50 nodes, 4000 mini-batch size) on NIST dataset, the convergence speed at
different learning rates are shown in Fig. 2(a) and (b). Under large-scale training
scenarios, although the learning rate can be adaptively adjusted with the first
moment and the second moment in Adam, setting a higher or lower learning
rate will result in a slower convergence speed. When learning rate is set too high
(0.003 or more), the model does not converge.

Fig. 2. Loss vs. learning rate



436 O. Li et al.

Parameter Setting. Under large-scale training scenarios, Adam is applied
with momentum 0.9 and momentum2 0.999. The learning rate is 0.001. The
length of sentences is set to 50 on dataset NIST and 75 on dataset WMT. When
training models on single node, mini-batch size for RNNencdec model training
on dataset NIST is 80, mini-batch size for RNNsearch model is 80 on NIST and
40 on WMT, mini-batch size for RNNsearch-H model training on dataset WMT
is 10.

Exploring Large-Scale Training. The evaluation of models contains two
parts. The first one is loss function, used to measure the degree of fit on training
dataset. The second one is BLEU value of the models on the testing dataset in
the training process, which represents the generalization of the trained models.
We explore tradeoff between mini-batch size, accuracy and training convergence
time.

We evaluate RNNsearch on dataset NIST. The convergence speed on training
dataset is shown in Fig. 3(a) and (b). In Fig. 3(a), models trained with different
mini-batch size fit the dataset very close after enough epochs. The increase of
mini-batch size would not lead to a no-converge situation. As shown in Fig. 3(b),
assessing on iterations, the model converge faster with the increase of mini-batch
size. Large-scale training has a great advantage on the convergence speed for our
framework provides a good scalability.

As shown in Fig. 3(c), training under large-scale training scenarios on WMT
dataset, the trend of convergence speed is consistent with that on NIST dataset.
Figure 3(d) shows that as mini-batch size increases, BLEU value increases faster.
Under large-scale scenarios, the generalization of models increases faster when
fitting faster on training dataset.

In terms of generalization of models trained with different mini-batch size,
BLEU of RNNsearch on NIST assessing on epochs is shown in Fig. 3(e), with
increase of mini-batch size, BLEU value increases slower assessing on epochs.
From the perspective of training time, the convergence speed assessing on iter-
ations is important. As shown in Fig. 3(f), assessing on iterations, when mini-
batch size is above 32k (400 training nodes), the convergence speed of BLEU
value does not increases. The convergence speed even decreases when mini-batch
size reaches 64k (800 training nodes).

The highest BLEU results in Fig. 3(e) are shown in Table 1. Scaling mini-
batch size to 4k leads no generalization gap. Scaling mini-batch size to 16k,
leads 0.77 generalization gap, which is about 2.5% lose of BLEU value. As mini-
batch size reaching 64k, we get 2.1 generalization gap, about 10% lose of BLEU
value.

Training RNNsearch with 100 training nodes has an acceptable 0.3% lose of
BLEU compared with the baseline of training with 10 training nodes. Training
with 100 training nodes has a near convergence speed to the baseline assessing
on epochs and converge quite faster than baseline assessing on iterations. So we
select the mini-batch size of 8k as the scheme for training RNN/LSTM with large
mini-batch size. Training with mini-batch size 8k can bring a 100-fold
convergence rate of training with a single node.



Scaling the Training of Recurrent Neural Networks 437

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. (a) Loss vs. Node Size on Epochs of RNNsearch on NIST (b) Loss vs. Node
Size on Iterations of RNNsearch on NIST (c) Loss vs. Node Size on Iterations
of RNNsearch on WMT (d) BLEU vs. Node Size on Iterations of RNNsearch on
WMT (e) BLEU vs. Node Size on Epochs of RNNsearch on NIST (f) BLEU vs.
Node Size on Iterations of RNNsearch on NIST (g) Loss of RNNsearch-H with 800
Nodes (h) BLEU of RNNsearch-H with 800 Nodes

Table 1. Results of top BLEU of RNNsearch on NIST

Node size 10 50 100 200 400 600 800

Batch size 800 4000 8000 16000 32000 48000 64000

BLEU 30.04 30.31 29.93 29.27 29.12 28.81 27.95



438 O. Li et al.

5 Evaluation

In this section, we evaluate the performance of our framework in two ways firstly.
One is to evaluate the computing performance of training on single worker and to
compare the computing performance versus GPU. The other one is to evaluate
the scalability of the framework. Secondly, we show the loss function and BLEU
value both assessing on iterations of training model RNNsearch-H.

5.1 Performance

SW26010 vs. GPU. In terms of computing performance of single-worker train-
ing, we compare the performance of SW26010 with the performance of NVIDIA
TITAN X. The single-precision computing capability of NVIDIA TITAN X is
11 TFlops, and the memory bandwidth of NVIDIA TITAN X is 505 GB/s. The
double-precision computing capability of SW26010 is 3 TFlops. Compared with
the double-precision computing capability, single-precision computing capabil-
ity can reach 60% of double-precision computing capability [16], the memory
bandwidth of SW26010 is 128 GB/s. As a result of the gap between NVIDIA
TITAN X and SW26010, for one iteration training of RNNencdec, the average
computing time on NVIDIA TITAN X is 0.71 s, the average computing time on
SW26010 is 8.32 s. Actually, SW has a computing power of only 1/6 of NVIDIA
TITAN X and 1/4 memory bandwidth of NVIDIA TITAN X, we can achieve
1/12 computing performance of NVIDIA TITAN X.

Table 2. Module time before and after architecture-oriented optimizations

Module Time before Percentage before Time now Percentage now

Total 66.765 s 100.0% 8.326 s 100.0%

Softmax 26.317 s 39.4% 0.583 s 7.00%

Activation function 34.363 s 51.4% 1.658 s 19.9%

The performance of training on SW is shown in Table 2. Data parallel opti-
mization are operated on exponential layer. Optimizations described in Sect. 3.1
is operated on exponential layer and softmax layer. Training time in one iteration
has decreases from 66.765 s to 8.326 s in RNNencdec after architecture-Oriented
optimizations.

Scalability. After communication optimizations mentioned in Sect. 3.2, our
framework provides high communication efficiency. When training RNNencdec
under large-scale scenarios, scaling the size of training workers to 800 achieves
580x speedup, and parallel efficiency is 72.5%. When training RNNsearch under
large-scale scenarios, scaling the size of training workers to 800 achieves 692x
speedup, with parallel efficiency of 86.5%.



Scaling the Training of Recurrent Neural Networks 439

5.2 Experimental Results

As mentioned in Sect. 2, RNNsearch-H is with twice the size of hidden states and
dimensional word embeddings of RNNsearch, the size of parameters is four times
of RNNsearch, which needs about 30 GB memory space with mini-batch size 10.
As mentioned in Sect. 4, we need 800 training nodes to reach the suitable mini-
batch size 8k on SW. Training RNNsearch-H model under large-scale training
scenarios on GPUs is unbearable for the memory bound and the limitation of
the size of server cluster.

The loss function and BLEU value are shown in Figs. 3(g) and (h). As
shown in Fig. 3(g), RNNsearch-H can converge to about the same level as model
RNNsearch. RNNsearch-H can fit well on the training dataset. As shown in
Fig. 3(g), BLEU value of RNNsearch-H can get to the same level as RNNsearch,
after training enough time, the model can have a good generalization.

6 Conclusion

In this paper, we propose architecture-oriented optimizations for memory-
intensive kernels in RNN/LSTM, exploring the parallelism in SW26010 many-
core architecture. We propose a lazy communication scheme with improved
MPI Allreduce to achieve high communication efficiency and high scalability.
We provide a distributed framework for large-scale NMT training to overlap
all of testing time for frequently validation. At last, we provide discussions and
analysis on convergence speed and generalization quality under different training
mini-batch size and get a 100-fold convergence rate with 100 training nodes, 8k
mini-batch size. We show an empirically training strategy, as well as the conver-
gence and evaluation results, of training RNNsearch-H on a large dataset with
800 training nodes, 8k mini-batch size.

Acknowledgement. This work is supported in part by the National Key R&D Pro-
gram of China (Grant No. 2017YFB0202204, 2017YFA0604500, 2016YFA0602200), by
National Natural Science Foundation of China (Grant No. 91530323, 5171101179), and
by the China Postdoctoral Science Foundation (Grant No. 2018M641359).

References

1. Arthur, P., Neubig, G., Nakamura, S.: Incorporating discrete translation lexicons
into neural machine translation. arXiv preprint arXiv:1606.02006 (2016)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

3. Britz, D., Goldie, A., Luong, T., Le, Q.: Massive exploration of neural machine
translation architectures. arXiv preprint arXiv:1703.03906 (2017)

4. Fang, J., Fu, H., Zhao, W., Chen, B., Zheng, W., Yang, G.: swDNN: a library
for accelerating deep learning applications on Sunway TaihuLight. In: 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 615–
624. IEEE (2017)

http://arxiv.org/abs/1606.02006
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1703.03906


440 O. Li et al.

5. Goyal, P., et al.: Accurate, large minibatch SGD: training imageNet in 1 hour.
arXiv preprint arXiv:1706.02677 (2017)

6. Hasanov, K., Lastovetsky, A.: Hierarchical optimization of MPI reduce algorithms.
In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 21–34. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21909-7 3

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–
678. ACM (2014)

9. Jiang, L., et al.: Towards highly efficient DGEMM on the emerging SW26010
many-core processor. In: 2017 46th International Conference on Parallel Processing
(ICPP), pp. 422–431. IEEE (2017)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: International Conference on Neural Information
Processing Systems, pp. 1097–1105 (2012)

12. Li, M., et al.: Scaling distributed machine learning with the parameter server. In:
OSDI, vol. 14, pp. 583–598 (2014)

13. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533 (1986)

14. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

15. You, Y., Gitman, I., Ginsburg, B.: Scaling SGD batch size to 32K for imagenet
training. arXiv preprint arXiv:1708.03888 (2017)

16. Zhao, W., Fu, H., Fang, J., Zheng, W., Gan, L., Yang, G.: Optimizing convolutional
neural networks on the sunway taihulight supercomputer. ACM Trans. Arch. Code
Optim. (TACO) 15(1), 13 (2018)

http://arxiv.org/abs/1706.02677
https://doi.org/10.1007/978-3-319-21909-7_3
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1708.03888

	Scaling the Training of Recurrent Neural Networks on Sunway TaihuLight Supercomputer
	1 Introduction
	2 Background
	2.1 RNN Model and NMT Task
	2.2 System Setup
	2.3 Current Situation and Related Work

	3 Optimizations
	3.1 Architecture-Oriented Optimization
	3.2 Communication Optimization
	3.3 Framework Optimization

	4 Convergence and Generalization
	4.1 Model Convergence Optimization Algorithm

	5 Evaluation
	5.1 Performance
	5.2 Experimental Results

	6 Conclusion
	References




