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Introduction

Angiotensin-(1-7) is a heptapeptide formed from angiotensin I or angiotensin II by 
the action of endo- or carboxypeptidases, especially ACE2, neutral-endopeptidase 
(NEP), prolylendopeptidase (PEP), and thimet oligopeptidase, reviewed in Chappell 
et al. [1] and Santos et al. [2]. This book addresses many aspects of angiotensin 
(1-7). Its history started against a background of a strong dogma: the concept that 
angiotensin II is the only biologically active peptide of the renin-angiotensin system. 
The research on angiotensin-(1-7) was a groundbreaker leading to a considerable 
advance in our understanding of the still enigmatic, renin-angiotensin system. In a 
recent review, we have addressed many aspects of the angiotensin-(1-7) history, 
which is still going on soundly. Table 1 taken from the review summarizes some of 
the landmarks of the evolution of angiotensin-(1-7), from inactive to an important 
biologically active component of the RAS.  We tried to address in the book the 
actions of this heptapeptide in many organs and systems with the collaboration of 
very well-established investigators in the field. As quoted by Kastin and Pan, 
“Schopenhauer realized that discovery frequently undergoes three stages: ridicule, 
opposition, and acceptance as self-evident,” with JBS Haldane adding a fourth 
stage: “I always said so” [3]. After more than 25 years, the research on 
angiotensin-(1-7) is still bouncing between opposition and acceptance with 
predominance of the last. This book may contribute to force it to the last stage.

I hope you enjoy reading.
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The Angiotensin-(1-7) Axis: Formation 
and Metabolism Pathways

Mark C. Chappell

 Introduction

The renin-angiotensin system (RAS) was originally characterized as a circulating 
endocrine system initiated by the protease renin to hydrolyze angiotensinogen to 
the inactive peptide Angiotensin I (Ang I) and the subsequent conversion to Ang 
II by angiotensin-converting enzyme (ACE) (Fig. 1). Ang II recognizes the angio-
tensin type 1 receptor (AT1R) to invoke both peripheral and central mechanisms in 
the regulation of blood pressure. Chronic activation of the ACE-Ang II-AT1R path-
way may also be associated with various pathological responses including fibrosis, 
inflammation, metabolic dysregulation, heart failure, cancer, aging, and diabetic 
injury [1–6]. Although the blockade of the Ang II axis through ACE inhibitors or 
AT1R receptor antagonists are effective therapies for the treatment of cardiovas-
cular disease, there is now abundant evidence for alternative pathways within the 
RAS that may contribute to the beneficial actions of conventional RAS blockade. 
Indeed, our original identification and quantification of the endogenous expression 
of Ang-(1- 7) in the brain, circulation, and peripheral tissues provided a compel-
ling case for a functional non-classical RAS pathway [7]. Subsequent studies in 
both experimental models and humans that ACE inhibition augments the circulating 
levels of Ang-(1-7) further supported the concept that Ang-(1-7) may oppose the 
actions of the Ang II-AT1R pathway [8]. Blockade of the AT1R also increases the 
formation of Ang-(1-7) through ACE2-dependent conversion of Ang II, as well as 
shunts Ang II to the AT2R pathway that shares similar properties to the Ang-(1-7) 
system [9–11]. As the functional actions of the RAS now reflect a far more complex 
array of peptide ligands and distinct receptors than previously envisaged, we present 
a comprehensive review of the enzymatic pathways involved in the formation and 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22696-1_1&domain=pdf
mailto:mchappel@wakehealth.edu
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metabolism of the Ang-(1-7) axis in the circulation, central and peripheral tissues 
as well as cerebrospinal fluid (CSF) and urine. The review includes the roles of 
renin and ACE in regard to the generation of Ang I and Ang II as substrates for the 
subsequent processing to Ang-(1-7), as well as the influence of ACE and dipeptidyl 
peptidase I (DPP3) to metabolize Ang-(1-7). The pathways for the generation of the 
novel analog [Ala1]-Ang-(1-7) (alamandine) whereby the aspartic acid is decarbox-
ylated to alanine and the functional consequences of this substitution are discussed 
in Chap. 2.

 Angiotensin-(1-7) Forming Pathways

 Renin

Renin [EC 3.4.23.15, 35 kDa] belongs to the class of aspartyl-type acid proteases 
but exhibits a more neutral pH optima [6.5–8.0] than other proteases in this group. 
The only known substrate for renin is angiotensinogen and the enzyme hydrolyzes 
the Leu10-Leu11/Val11 bond of the precursor protein to form the inactive peptide Ang 
I. Renin-dependent formation of Ang I is considered the enzymatic initiator of the 
RAS cascade to ultimately generate Ang II (Fig.  1). The enzyme is synthesized 
predominantly in the juxtaglomerular (JG) cells of the kidney and is stored in both 
inactive (pro-renin) and active forms for the regulated release of the protease into 

Angiotensinogen

Ang II

Ang I

Ang-(1-7)
ACE2

ACE

Renin

ACE

NEP,TOP

Ang-(1-5)

DPP3

Ang-(3-7)
Ang-(5-7)

Formation
Degradation 

Ang-(2-7)

AP

Fig. 1 Processing cascade for Angiotensin-(1-7). Renin cleaves angiotensinogen to angiotensin I 
(Ang I), which is further processed to the biologically active peptide Ang II by angiotensin- 
converting enzyme (ACE). Ang II undergoes further processing by the carboxypeptidase ACE2 to 
form Ang-(1-7). Ang-(1-7) is also formed through non-Ang II pathways by the direct processing 
of Ang I by the endopeptidases neprilysin (NEP) and thimet oligopeptidase (TOP). Ang-(1-7) is 
subsequently metabolized by ACE to Ang-(1-5), dipeptidyl peptidase 3 (DPP3) to Ang-(3-7) and 
Ang-(5-7), or by aminopeptidase A (APA) to Ang-(2-7). (Adapted from Chappell [89])

M. C. Chappell
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the circulation. The collecting duct (CD) cells are another source of renin within the 
kidney that primarily secretes the active form of renin into the tubular fluid [12–14]. 
The tubular secretion of renin may contribute to the processing of angiotensinogen 
and subsequent Ang II and Ang-(1-7) formation to influence distal nephron func-
tion. The regulation of JG renin appears to be quite distinct from CD renin; Ang II 
negatively regulates JG renin release through inhibition of cAMP levels that consti-
tutes the short negative feedback loop while CD renin release is stimulated by Ang 
II that may reflect increased protein kinase C (PKC) activity [14].

In regard to the generation of Ang-(1-7), renin is required for the formation of 
the peptide via the processing of Ang I or Ang II. Since renin is typically secreted 
from the kidney and other tissues, the formation of Ang-(1-7) is likely to occur in 
the extracellular compartments including the blood, interstitial fluid, renal tubular 
fluid, and CSF. However, there is evidence for alternative renin isoforms in the kid-
ney, brain, heart, and adrenal gland [15–17]. The renin isoform lacks the pre-pro 
domain of the protein that includes the secretory signal, thus the isoform should 
reside within the cell. Peters and colleagues originally reported that truncated renin 
localized to the mitochondria and that the renin isoform was internalized by the 
mitochondria [18–21]. We recently reported the presence of active renin in a puri-
fied preparation of mitochondria from the sheep renal cortex, as well as evidence 
for mitochondrial Ang II and Ang-(1-7) [50–60 fmol/mg protein] [22]. Moreover, 
the endopeptidases neprilysin and thimet oligopeptidase processed Ang I directly 
to Ang-(1-7) in mitochondria suggesting an Ang I-dependent pathway for the intra-
cellular formation of Ang-(1-7) (see Neprilysin and Thimet Oligopeptidase sec-
tions). In renal NRK-52 epithelial cells, immunocytochemical staining for renin 
with the Inagami antibody was evident in the nucleus of these cells and active 
renin was confirmed by aliskerin-sensitive conversion of angiotensinogen to Ang 
I. Isolated nuclei also contained Ang I, Ang II, and Ang-(1-7) [5–20 fmol/mg pro-
tein]; however, the processing pathways within the nuclear compartment remain to 
be defined [23]. Ishigami et al. reported a truncated renin transcript expressed in 
the proximal tubules of the mouse kidney [17]. Targeted expression of this renin 
isoform within the proximal tubules was associated with a sustained elevation in 
blood pressure, but no change in the circulating levels of renin [17]. Although the 
intracellular localization of the renin isoform or tubular content of angiotensins 
were not determined, overexpression of renin in tubules augmented blood pressure 
that suggests the primary intracellular generation of Ang II rather than Ang-(1-7). 
Indeed, Zhou and colleagues find that the intracellular expression of Ang II in the 
proximal tubules also resulted in a sustained increase in blood pressure [24] that is 
consistent with the demonstration of the intracellular AT1R and a local RAS within 
the kidney [25–28].

Non-renin pathways for the processing of angiotensinogen to Ang I or Ang II 
include tonin, cathepsin G, and cathepsin A; however, the participation of these 
enzymes in the endogenous generation of angiotensins has yet to be firmly estab-
lished [29]. Moreover, it is not known whether there is a direct pathway for the 
formation of Ang-(1-7) from angiotensinogen and whether this contributes to 
the intracellular content of the peptide. Non-renin pathways for the formation of 
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Ang-(1-7) (or Ang II) may also potentially occur through the processing of Ang-
(1- 12), a novel precursor peptide originally identified in rat urine by Nagata and 
colleagues [30]. In this regard, neprilysin converts Ang-(1-12) to Ang-(1-7) in renal 
cortical membranes and by recombinant forms of both human and mouse neprilysin 
by a two-step process that involves Ang I as an intermediate product; however, the 
role of Ang-(1-12) in the generation of endogenous Ang-(1-7) in the circulation and 
tissues is presently unknown [31].

 Endopeptidases

 Neprilysin

Neprilysin (EC 3.4.24.11; 95  kDa) is a metalloendopeptidase of the type II 
membrane- anchored family of enzymes [32]. The peptidase was initially charac-
terized in brain homogenates or membrane preparations to hydrolyze the opiate 
pentapeptide enkephalin which explained its original characterization as an “enkeph-
alinase.” Inhibitors against neprilysin were originally developed to prolong the anal-
gesic actions of the opiate peptides, although neprilysin was subsequently found to be 
expressed in a number of peripheral tissues [32]. Cardiovascular interest in neprilysin 
initially reflected its ability to metabolize the family of natriuretic peptides including 
ANP, BNP, and uroguanylin. Moreover, McKinnie et al. report that neprilysin inacti-
vates apelin, suggesting that beneficial cardiovascular effects of neprilysin inhibition 
may also reflect the protection of endogenous apelin [33]. Neprilysin inhibitors were 
considered a potential therapeutic approach to prolong the natriuretic and vasore-
laxant properties of these peptides; however, Ang II is also a substrate for nepri-
lysin hydrolysis of the Tyr4-Ile5 bond to form Ang-(1-4) and combined inhibitors 
to neprilysin and ACE termed vasopeptidase inhibitors were developed to prevent 
the potential increase in circulating and renal Ang II by neprilysin inhibitors alone 
[34–36]. Although the vasopeptidase inhibitors were potent agents to lower blood 
pressure and reduce cardiac and renal damage, the first clinical agent omapatrilat was 
withdrawn due to a greater incidence of angioedema in patients. Subsequently, a new 
generation of agents have been developed that combine a neprilysin inhibitor and 
an AT1R antagonist to obviate the inhibitory effects on ACE, yet maintain blockade 
of the Ang II-AT1R axis. Indeed, the combined neprilysin/AT1R blockade may be a 
promising therapeutic approach for the treatment of heart failure [37].

Neprilysin is located on the vascular surface of blood vessels and is respon-
sible for the direct conversion of Ang I to Ang-(1-7) in the circulation, particularly 
under conditions of chronic ACE inhibition (Fig.  1) [32]. Neprilysin hydrolyzes 
the Pro7- Phe8 bond of Ang I to generate Ang-(1-7), as well as the Tyr4-Ile5 bond to 
form Ang-(1-4) that is consistent with the enzyme’s preference for aromatic and 
hydrophobic residues [38]. The generation of circulating Ang-(1-7) from infused 
Ang I in ACE-blocked Wistar Kyoto (WKY) and spontaneously hypertensive rats 
(SHR) was abolished by the potent and selective neprilysin inhibitor SCH39370 
[39]. We further demonstrated that administration of another selective neprilysin 

M. C. Chappell
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inhibitor CGS24592 partially attenuated the blood pressure-lowering effects of the 
ACE inhibitor lisinopril in the SHR [40]. The neprilysin inhibitor SCH39370 also 
reduced Ang-(1-7) levels in the rat hindlimb preparation perfused with Krebs buf-
fer containing the ACE inhibitor lisinopril [41]. Finally, Campbell and colleagues 
found that a dual ACE/neprilysin inhibitor lowered circulating levels of Ang-(1-7) 
in the SHR using a combined HPLC-RIA approach to quantify an array of angio-
tensins using an N-terminally directed antibody [42].

Neprilysin is also highly expressed on the apical surface of proximal tubules 
within the kidney [32]. We demonstrated a neprilysin-dependent pathway in isolated 
proximal tubules from sheep kidney and rat cortical membranes for Ang I processing 
to Ang-(1-7) (Fig. 2) [44, 45]. In isolated tubules, we note that neprilysin blockade 
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Fig. 2 Ang I processing to Ang-(1-7) and Ang II in sheep proximal tubules. 125I-Ang I (AI) was 
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identified by HPLC.  Panel a: Quantification of the peptidase activities for 125I-AII metabolism 
from the sheep proximal tubule membranes expressed as the rate of metabolism products formed 
(fmol/mg/min). Conditions: Control (no inhibitors); +AP,CYS,CHM-I (inhibitors for aminopepti-
dase, carboxypeptidase, chymase, cysteine proteases); +NEP-I (addition of neprilysin inhibitor); 
+ACE-I (addition of ACE inhibitor); +ACE2-I (addition of ACE2 inhibitor). Panel b: Metabolism 
pathway for Ang I to Ang-(1-7), Ang II and degradation products in sheep proximal tubules. Data 
shown are mean values; n = 5. (Adapted from Shaltout et al. [43])
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did not abolish the formation of Ang-(1-7) as ACE-dependent generation of Ang II 
contributed to Ang-(1-7) via the ACE2 pathway (Fig. 2). Velez and colleagues applied 
HPLC-MS analysis of Ang I processing in rat glomeruli, isolated mouse podocytes, 
and human glomerular endothelial cells to reveal the predominant conversion of Ang 
I to Ang-(1-7) by neprilysin [46–48]. Poglitsch and colleagues recently show that 
the renal levels of Ang-(1-7) were significantly reduced in mice chronically treated 
with the neprilysin inhibitor LBQ657, but increased in ACE2-deficient mice utiliz-
ing UHPLC-MS to quantify angiotensins in the kidney [43]. Moreover, the nepri-
lysin inhibitor markedly reduced Ang I to Ang-(1-7) conversion in both mouse and 
human kidney homogenates [43]. Indeed, these studies support our earlier findings 
that despite almost complete depletion of renal Ang II in ACE knockout mice, kidney 
levels of Ang-(1-7) were not diminished supporting an ACE (Ang II)-independent 
pathway for the generation of Ang-(1-7) in this tissue [49]. Finally, neprilysin activity 
in isolated mitochondria from the sheep kidney was partially responsible for conver-
sion of Ang I to Ang-(1-7), and was the sole Ang-(1-7) forming activity in a 100,000 
xg membrane fraction consistent with the membrane- anchored form of the peptidase 
[22].

 Thimet Oligopeptidase

Thimet oligopeptidase (EC 3.4.24.15, 80 kDa) is a soluble metalloendopeptidase 
that resides within intracellular compartments of the cell. Similar to neprilysin, thi-
met oligopeptidase is an endopeptidase that prefers aromatic and hydrophobic resi-
dues and cleaves multiple peptide substrates [50]. Thimet oligopeptidase hydrolyzes 
Ang I exclusively at the Pro7-Phe8 bond to form Ang-(1-7) (Fig. 1). In contrast to 
neprilysin, thimet oligopeptidase does not process Ang I to Ang-(1-4), although the 
peptidase does cleave Ang II to Ang-(1-4) (Fig. 1). The current data suggest that 
thimet oligopeptidase may be responsible for the intracellular processing of Ang 
I to Ang-(1-7). Pereira et al. find that thimet oligopeptidase was the primary activ-
ity in tissue homogenates of brain medulla that processed Ang I to Ang-(1-7) [51]. 
Both neprilysin and thimet oligopeptidase contributed to the processing of Ang I 
to Ang-(1-7) within isolated mitochondria, and thimet oligopeptidase was the sole 
Ang-(1- 7) forming activity in the 100,000 xg soluble fraction of renal mitochondria 
[22]. In human proximal tubule HK-2 cells, cytosolic thimet oligopeptidase was the 
primary activity responsible for the generation of Ang-(1-7) from exogenous Ang I 
[52]. Chronic treatment of the HK-2 cells with the cell-permeable metallopeptidase 
inhibitor JMV-390 reduced the intracellular levels of Ang-(1-7) which may reflect 
the inhibition of thimet oligopeptidase, although the JMV inhibitor may target other 
metallopeptidases or cell mechanisms that influence the intracellular expression of 
the peptide [53]. Moreover, thimet oligopeptidase activity in isolated nuclei of NRK-
52 renal epithelial cells processed Ang I exclusively to Ang-(1-7) and this peptidase 
may contribute to the nuclear levels of Ang-(1-7) within the cell [23]. Suski et al. 
reported that Ang I was primarily converted to Ang-(1-7) in vascular smooth muscle 
cells (VSMC) as characterized by HPLC-MS analysis [54]; these data confirm our 
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earlier study that thimet oligopeptidase directly processed Ang I to Ang-(1-7) in rat 
VSMC by HPLC characterization [55]. Although the RAS was originally character-
ized as a classic endocrine or circulating system, there is compelling evidence for 
the intracellular expression of angiotensins and angiotensin receptors that include 
Ang-(1-7) and the MasR [9, 56–61]. The mechanisms for intracellular expression of 
Ang-(1-7) are currently unknown; however, thimet oligopeptidase should be consid-
ered as one candidate processing enzyme in the cellular Ang-(1-7) axis.

 Prolyl Oligopeptidase

Prolyl oligopeptidase (EC 3.4.24.16, 75 kDa), also known as prolyl endopeptidase 
(PEP), is a soluble intracellular serine peptidase that cleaves the Pro7-Phe8 bond of 
both Ang I and Ang II to form Ang-(1-7). Thus, prolyl oligopeptidase may func-
tion as both an endopeptidase and a monocarboxypeptidase in the processing of 
angiotensins, as well as the hydrolysis of other peptides that contain a Pro-XX motif 
including TRH, substance P, oxytocin, bradykinin and vasopressin [62]. Although 
prolyl oligopeptidase is considered a cytosolic peptidase, membrane and nuclear 
forms of the enzyme have been described in both central and peripheral cells sug-
gesting a role for the enzyme in the intracellular expression of peptides [62]. Santos 
et al. report that prolyl oligopeptidase activity was involved in the extracellular con-
version of Ang I to Ang-(1-7) in human aortic endothelial cells, although it remains 
unclear as to whether the peptidase was secreted into the media or that the peptidase 
resides on the plasma membrane of endothelial cells [63]. Domenig et al. found that 
although neprilysin was the predominant Ang-(1-7) forming activity in the kidney, 
prolyl oligopeptidase activity contributed approximately 20% and 10% to Ang-(1-
7) in the mouse and human kidney, respectively, based on the inhibition by Z-prolyl 
prolinal (ZPP) [43]. Prolyl oligopeptidase would appear to be an ideal enzymatic 
candidate for the processing of both Ang I and Ang II to Ang-(1-7); however, treat-
ment approaches with more selective inhibitors against the peptidase have gener-
ally revealed beneficial effects that contrast with the expected actions of Ang-(1-7), 
particularly regarding inflammation [62, 64, 65].

 Carboxypeptidases

 Angiotensin-Converting Enzyme 2

ACE2 is a membrane-bound monocarboxypeptidase (EC 3.4.17.23; 90-120 kDa) 
that converts Ang II directly to Ang-(1-7) (Fig. 1). ACE2 was initially characterized 
as an ACE homolog (~40% homology) that cleaved Ang I to the nonapeptide Ang-
(1- 9), but not directly to Ang II [66]. Subsequent studies found that Ang II exhibits 
far better kinetic values as a substrate for human ACE2 that would favor processing 
of Ang II over that of Ang I [67]. Among a number of peptide substrates (> 100) that 
were screened for human ACE2, Vickers et al. reported that only apelin 13 exhibited 
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comparable kinetic values to that of Ang II [68]. In the murine heart, Ang II was 
primarily converted to Ang-(1-7) by ACE2 and that in the presence of the ACE2 
inhibitor MLN-4760 or in ACE2 null mice there was little metabolism of Ang II 
[68]. In contrast, under identical kinetic conditions, Ang I was primarily converted 
to Ang-(1-9) by carboxypeptidase A and not ACE2 in both the wild-type and ACE2 
knockout mice [68].

In comparison to ACE, the circulating levels of ACE2 are typically quite low and 
the extent this reflects a reduced degree of shedding or simply the lower vascular 
expression of the peptidase is not clear. Rice et al. reported that the molar concen-
tration of ACE in human serum at 7 nM while ACE2 content was >200-fold lower 
at 33 pM and detectable in <10% of their patient population [69]. In comparison, 
circulating neprilysin content (290 pM) was also lower than ACE and evident in 
<30% of these patients [69]. Serum and urinary ACE2 activities are elevated in dia-
betes, heart failure, and hypertension [70–72]. Circulating ACE2 activity increased 
approximately three-fold in the diabetic hypertensive mRen2.Lewis rat; however, 
serum ACE activity also increased in the diabetic rats and may mitigate against the 
elevated levels of ACE2 (Fig. 3) [70]. As measured under identical kinetic condi-
tions, serum ACE activity for Ang I was far higher than ACE2 for Ang II suggesting 
that the capacity to generate Ang II [or metabolize Ang-(1-7)] remains greater than 
the capability to form Ang-(1-7) from Ang II (Fig. 3) [70]. Moreover, the serum 
ACE:ACE2 ratio in both male and female normotensive Lewis and female mRen2.
Leiws essentially reflected the ratio found in human plasma [69, 70]. Serum ACE2 
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activity in the male hypertensive mRen2.Lewis was significantly higher than that in 
the females, despite higher blood pressure and greater circulating levels of Ang II in 
the males [70]. Whether the higher serum levels of ACE2 in the male mRen2.Lewis 
reflect a compensatory effect to reduce hypertension and vascular damage or that 
shedding away from the vascular wall (and attenuated local metabolism of Ang II) 
contributes to the increase in blood pressure is currently not known [70].

ACE2 constitutes a key enzymatic component of the RAS as a single catalytic 
step efficiently metabolizes Ang II to attenuate the Ang II-AT1R pathway, and gener-
ates Ang-(1-7) that would activate the Ang-(1-7)-AT7/MasR axis (Fig. 1). In isolated 
proximal tubules, Ang II is processed to Ang-(1-7), Ang-(1-4), Ang-(1-5), and Ang-
(3-4) (Fig. 4) [44]. The selective neprilysin inhibitor SCH39370 essentially abol-
ished Ang-(1-4) confirming a role for neprilysin to metabolize Ang II. Subsequent 
addition of an ACE inhibitor attenuates Ang-(1-5) and reveals higher levels of Ang-
(1-7) that emphasize the importance of the ACE pathway to metabolize Ang-(1-7) 
in the kidney (Fig. 4a) [44]. Finally, Ang-(1-7) formation is essentially abolished by 
the ACE2 inhibitor MLN4760 (Fig. 4a). We also show that the MLN4760 (MLN) 
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alone significantly attenuates Ang II metabolism by the isolated proximal tubules 
and increases the peptide’s half-life by >2.5-fold, although it clearly does not abol-
ish Ang II metabolism by other peptidases (Fig. 4b) [44]. Moreover, ACE2 protein 
expression and activity (Ang II to Ang-(1-7) conversion) is markedly reduced in the 
renal tubules, circulation, and brain medulla in a sheep model of fetal programming; 
the downregulation of this key peptidase may contribute to an altered ratio of Ang 
II to Ang-(1-7) in these important cardiovascular tissues that reflect fetal program-
ming events [73]. Indeed, our findings are consistent with studies that demonstrate 
an exaggerated response to exogenous Ang II or in conditions of an activated RAS 
in ACE2-deficient animals [72–77]. Overexpression of ACE2 or administration of 
the soluble form of the peptidase which retains full enzymatic activity attenuates 
the Ang II-dependent increase in blood pressure and indices of target organ injury 
[78–86]. The premise of ACE2 supplementation is that sufficiently high levels of 
ACE2 are administered to reduce the Ang II: Ang-(1-7) ratio thereby attenuating 
the actions of Ang II-AT1R axis while amplifying those of the Ang-(1-7)-AT7/MasR 
effects (Fig. 5). Oudit and colleagues find that chronic administration of soluble 
ACE2 attenuated various indices of cardiac and renal injury, inflammation, and 
fibrosis in both type 1 and type 2 diabetic mice [79, 80]. Surprisingly, the adminis-
tration of ACE2 reduced tissue levels of Ang II in the heart and kidney and increased 
the tissue contents of Ang-(1-7) [79]. Scholey and colleagues also report that ACE 
2 given subcutaneously by an osmotic pump attenuated several indices of renal 
damage in the transgenic Col4A3-/- mouse, a model of Alport syndrome, as well as 
tended to lower blood pressure [87]. The renal protective effects of soluble ACE2 
treatment were associated with a marked reduction in the ratio of Ang II: Ang-(1-7) 
in the kidney [87]. However, Wysocki et al. observed that neither the administra-
tion of ACE2 nor the chronic overexpression of the soluble peptidase by minicircle 
DNA conveyed any protective effects against diabetic nephropathy in diabetic mice 
[88]. In this study, plasma angiotensin peptides were quantified by UHPLC-MS 
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with sufficient sensitivity to detect peptides in the low pM range and resolve related 
N-terminal metabolites of Ang I, Ang II, and Ang-(1-7) that include Ang-(2-10), 
Ang-(2-8), Ang-(3-8), Ang-(2-7), and Ang-(3-7), respectively; these metabolites 
are not distinguished by direct RIAs or ELISAs unless coupled to HPLC/UHPLC 
separation prior to immunoassay. This analysis revealed that chronic ACE2 treat-
ment reduced the total plasma ratio of Ang II: Ang-(1-7) approximately four-fold 
in the diabetic mice; however, the effect of ACE2 on renal peptide content was not 
addressed [88]. Moreover, it should be noted that the N-terminal metabolites Ang-
(2-10), Ang-(2-8) or Ang III and Ang-(2-7) were the major components in plasma 
in this study that contrasts with the accepted profile of angiotensins in both the 
circulation and tissues [89].

In regard to the benefits of an activated ACE2 pathway, several compounds have 
been identified that may act as allosteric activators of ACE2 including xanthenone 
(XNT) and diminazene aceturate (DIZE) to promote a higher ratio of Ang-(1-7) 
to Ang II (89) [1]. Chronic treatment with DIZE ameliorated the extent of pul-
monary hypertension and fibrosis, renal tissue injury, and myocardial infarction 
consistent with enhanced levels of Ang-(1-7) and a reduction in Ang II [90–93]. 
Interestingly, DIZE treatment was also associated with increased mRNA levels of 
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ACE2 suggesting that DIZE may exhibit actions apart from the direct activation of 
the peptidase. However, the stimulatory effects of DIZE on either ACE2 activity 
or expression have not been confirmed by others. Haber et al. found no effect of 
DIZE on soluble ACE2 activity or an influence on Ang II-dependent hypertension 
using similar doses of DIZE as previously reported [94]. Velkosa et al. also show 
no direct effect of various concentrations of DIZE on renal ACE2 activity ex vivo, 
as well as no in vivo effect on cardiac ACE2 activity or Ang-(1-7) content in the 5/6 
nephrectomized rat following a 2-week administration of DIZE [95]. Indeed, this 
study reported that DIZE normalized the marked increase in cardiac ACE activity 
and Ang II suggesting that ACE may be a more relevant target than ACE2 to impact 
the cardiac RAS [95]. DIZE also failed to increase ACE2 activity or enhance the 
local vascular actions of Ang-(1-7) in a preparation of isolated pig coronary arter-
ies [96].

Conceptually, the use of ACE2 as a therapeutic agent to chronically alter the bal-
ance of Ang II and Ang-(1-7) is challenging. ACE activity in the circulation and the 
vasculature surface is significant with a very high capacity to generate Ang II. This 
reflects not simply the abundance of ACE but the marked capability of angioten-
sinogen and renin to generate the ACE substrate Ang I. Moreover, reduced Ang II 
levels by exogenous ACE2 should stimulate the generation of Ang II that reflects 
inactivation of negative feedback mechanisms on renin. Therefore, it is difficult 
to conceive that sufficiently high levels of ACE2 can be achieved to chronically 
reduce Ang II and increase Ang-(1-7) except with the possible addition of an ACE 
inhibitor. In this case, supplementation of ACE2 may degrade residual levels of Ang 
II and the circulating levels of Ang-(1-7) may be augmented, particularly as the 
Ang-(1-7)-degrading pathway in the circulation is attenuated by the ACE inhibitor. 
In this regard, it is worth noting that Jin and colleagues have recently developed 
a Fc fusion protein to ACE2 that markedly prolongs the activity of the enzyme 
by reducing its clearance; however, the ACE2-fusion protein was assessed in an 
Ang II-infusion model that has suppressed endogenous Ang II, and other models of 
hypertension need to be examined [97].

It is presently unclear how increased circulating ACE2 augments Ang-(1-7) tis-
sue levels as the intracellular mechanisms for Ang-(1-7) generation are not known. 
One possibility is that administered ACE2 increases circulating levels of Ang-(1-7) 
and the peptide is subsequently internalized by the MasR into a stable or protected 
intracellular compartment. Indeed, Gironacci and colleagues describe internaliza-
tion of the Mas receptor following stimulation by Ang-(1-7); however, the assess-
ment of intracellular Ang-(1-7) was not determined [98]. Alternatively, ACE2 
treatment may alter that intracellular signaling milieu to attenuate oxidative stress 
or inflammation that impacts the local generation of Ang II and Ang-(1-7). Similar 
to neprilysin and ACE, ACE2 is primarily expressed as an ectocellular membrane- 
anchored peptidase that should readily access circulating or interstitial levels of 
Ang II. We observed that isolated nuclei from sheep renal cortex expressed ACE2 
activity that converted Ang II to Ang-(1-7) and that the ACE2 inhibitor MLN4760 
increased the oxidative stress response to Ang II suggesting that intracellular ACE2 
may regulate the cellular balance of Ang II and Ang-(1-7) [99]. Tikellis et al. show 
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that the renal content of Ang-(1-7) was reduced in ACE2-/- mice to a similar extent 
as that following chronic treatment with the potent ACE inhibitor perindopril 
[72]. Lavrentyev and colleagues also found that siRNA treatment against ACE2 
reduced cellular levels of Ang-(1-7) in rat aortic smooth muscle cells [100]. Finally, 
Mompeon et al. recently demonstrate that estradiol increased the cellular levels of 
Ang-(1-7) that was associated with higher levels of both ACE and ACE2 by activa-
tion of the ERα subtype in human umbilical vein endothelial cells [101]. Overall, 
these studies suggest that intracellular expression of Ang-(1-7) is dependent in part 
on the processing of Ang II by ACE2 either intracellularly or extracellular conver-
sion with the subsequent uptake of Ang-(1-7) by the Mas receptor.

 Prolyl Carboxypeptidase

Prolyl carboxypeptidase is a monocarboxypeptidase [EC 3.4.16.2, Angiotensinase 
C, 58 kDa] with specificity for the C-terminal hydrolysis of the Pro-X bond where 
X is a hydrophobic residue [102]. The enzyme is capable of converting Ang II to 
Ang-(1-7), as well as degrading α-MSH, but activating the pre-kallikrein protease. 
In contrast to prolyl oligopeptidase and ACE2, the pH optima for prolyl carboxy-
peptidase is in the more acidic range of pH 4-5. Indeed, Grobe et al. find that pro-
lyl carboxypeptidase was responsible for Ang II to Ang-(1-7) conversion in mouse 
renal cortex and urine at pH < 6.0 while ACE2 was predominant at pH >7.0 [103]. 
Velez et  al. report that the mixed prolyl oligopeptidase/prolyl carboxypeptidase 
inhibitor ZPP partially blocked Ang II to Ang-(1-7) conversion, but had no effect 
on Ang I metabolism and concluded that the Ang-(1-7) forming enzymes from Ang 
II in human glomerular endothelial cells were prolyl carboxypeptidase and ACE2 
[46]. Xu et al. find increased plasma levels of prolyl carboxypeptidase by ELISA in 
a cohort of obese diabetic patients; however, the circulating levels of Ang II or Ang-
(1-7) were not evaluated in this study [104]. Interestingly, prolyl carboxypeptidase 
knockout mice exhibit higher blood pressure, increased oxidative stress, reduced 
vascular eNOS expression, renal damage, and cardiac dysfunction; however, neither 
circulating nor cardiac levels of Ang II and Ang-(1-7) were altered in this transgenic 
mouse as compared to wild-type [105, 106]. Finally, Jeong et al. report the prolyl 
carboxypeptidase knockout mice were protected against the metabolic effects of 
diet-induced obesity which runs counter to the expected effects of a higher Ang 
II: Ang-(1-7) ratio and suggest non- RAS targets of prolyl carboxypeptidase [107].

 Angiotensin-(1-7) Degrading Pathways

 Angiotensin-Converting Enzyme

The predominant pathway of the classical RAS for the conversion of Ang I to the 
bioactive peptide Ang II is catalyzed by the metallopeptidase ACE [EC 3.4.15.1], 
a dipeptidyl carboxypeptidase that cleaves two residues from the carboxy terminus 
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of Ang I (Fig.  1) [108]. The peptidase is a membrane-bound, glycosylated pro-
tein (120–180 kDa) that is expressed in multiple tissues [108]. Soluble forms of 
the enzyme are present in the circulation, CSF, lymph fluid, and urine that retain 
peptidase activity [108]. The soluble form of ACE arises from the hydrolysis of 
the membrane-anchoring or stalk region of the protein that may reflect the process-
ing by A Disintegrin and Metalloproteinase (ADAM) family of metallo-enzymes, 
although the precise role of ACE shedding in cardiovascular disease is presently 
unclear. Somatic ACE is characterized by two active sites termed N and C terminal 
domains that likely arose from the gene duplication of germinal or testicular ACE 
that contains only the single C terminal active site. In addition to forming Ang II, 
ACE degrades a number of other peptides that exhibit cardiovascular actions includ-
ing bradykinin, substance P, and acetyl-SDKP [108]. Indeed, the cardioprotective 
effects of ACE inhibitors may reflect the protection of these peptides from metabo-
lism, as well as the inhibitory effects on Ang II generation. In lieu of the increased 
circulating levels of Ang-(1-7) to ACE inhibitors, we postulated that Ang-(1-7) may 
be an endogenous substrate for ACE and demonstrated that ACE hydrolyzes Ang-
(1-7) at the Ile5-His6 bond to yield the pentapeptide Ang-(1-5) and the dipeptide 
His-Pro (Fig. 1) [109]. Treatment with the potent ACE inhibitor lisinopril markedly 
reduced the clearance of the peptide and addition of the ACE inhibitor was required 
to demonstrate the accumulation of Ang-(1-7) derived from either Ang II or Ang I 
in isolated proximal tubules and following infusion of Ang I in SHR and WKY [44, 
110]. Thus, the reduced metabolism of Ang-(1-7) likely contributes to the eleva-
tion in circulating levels of Ang-(1-7) following the chronic treatment with ACE 
inhibitors in experimental animals and in humans. These data suggest a pivotal role 
for ACE to regulate the balance of Ang II and Ang-(1-7) tone as the two peptides 
exhibit strikingly different actions from one another.

 Dipeptidyl Peptidase 3

ACE clearly plays a role in the metabolism of Ang-(1-7), but there are other poten-
tial pathways that may regulate endogenous levels of the peptide [8]. Marshall 
and colleagues reported that ACE and a second peptidase activity in the sheep 
cerebrospinal fluid (CSF) degraded Ang-(1-7) [111–113]. Interestingly, the non-
ACE degrading activity (subsequently identified as dipeptidyl peptidase 3, DPP3) 
accounted for a greater contribution of the metabolism of Ang-(1-7) than ACE 
[113]. Moreover, this activity was inversely correlated to CSF levels of Ang-(1-7) 
in control and betamethasone-exposed sheep, a model of fetal programming that 
exhibits elevated blood pressure and an attenuated baroreflex (Fig. 6). The Ang-
(1- 7)-degrading activity was also evident in sheep brain and kidney cortex, as well 
as in the human proximal tubule HK-2 cell line [52, 113]. The enzyme activity 
exhibited unusual characteristics as Ang I and other peptides equal to or greater than 
10 residues were not substrates for the peptidase [52, 113]. Moreover, the inhibi-
tor JMV-390, originally developed to block the metallo-endopeptidases neprilysin, 
thimet oligopeptidase and neurolysin, potently inhibited the Ang-(1-7)-degrading 
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activity in the brain and kidney [IC50 < 1 nM]. Conversely, specific inhibitors against 
the three endopeptidases did not attenuate the Ang-(1-7) degrading activity [113]. 
Interestingly, the peptidase activity accounted for the sole degradative pathway in 
the cytosolic fraction and the media of the HK-2 cells while thimet oligopeptidase 
was responsible for intracellular generation of Ang-(1-7) from Ang I [52]. Utilizing 
the HK-2 cells as the source of the Ang-(1-7) degrading activity, we purified the 
peptidase from the cell cytosol by ion exchange and hydrophobic interaction chro-
matography and identified the enzyme as dipeptidyl peptidase 3 (EC 3.4.14.4, 85 
kDa) [53].

DPP 3 belongs to a family of metallo-aminopeptidases that sequentially cleave 
2 residues from the N-terminus of peptides ≤8 residues in length that explains 
our previous results that Ang I, apelin-13 and neurotensin were not substrates 
for the Ang-(1-7)-degrading activity in the CSF and brain [113]. We obtained a 
human recombinant form of DPP 3 that hydrolyzed Ang-(1-7) in two steps [55]. 
DPP 3 initially cleaved Ang-(1-7) at the Arg2-Val3 bond to form Ang-(3-7) and the 
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dipeptide Arg1-Asp2. Ang-(3-7) is then very rapidly cut at Tyr4-Ile5 to form Ang-
(5-7) and Val3-Tyr4. The kinetic analysis of DPP 3 hydrolysis revealed a higher 
efficiency constant [kcat/Km] for Ang-(3-7) than Ang-(1-7) [53]. The preferred 
hydrolysis of Ang-(3-7) by DPP 3 explains the inability to demonstrate the accu-
mulation of Ang-(3-7) following the initial metabolism of Ang-(1-7). In regard to 
an in vivo role for DPP 3 to modulate Ang-(1-7), human HK-2 cells were treated 
with varying doses of the JMV-390 inhibitor and we assessed both the endogenous 
content of Ang-(1-7) and the intracellular DPP-3/Ang-(1-7) degrading activity in 
the cells. Treatment with 20 nM and 200 nM JMV-390 reduced DPP3 activity by 
>30% and > 80%, respectively, as compared to control suggesting that the inhibitor 
effectively penetrates the cells [53]. The lower dose of JMV increased the cellular 
content Ang-(1-7) approximately two-fold, although this did not reach statistical 
significance. The higher dose of JMV, however, significantly reduced the intracel-
lular levels of the peptide [53]. The higher JMV dose may block other peptidases 
including thimet oligopeptidase that may be involved in the intracellular genera-
tion of Ang-(1-7) in the renal cells [53]. Thus, the blockade of Ang-(1-7)-forming 
enzymes by the high-dose JMV may override any protective effects of DPP 3 
inhibition.

 Aminopeptidase A

Both Ang II and Ang-(1-7) share the same N-terminal sequence and are likely 
substrates for N-terminal directed metabolism. Aminopeptidase A [EC 3.4.11.7, 
50 kDa] was characterized as a classic angiotensinase that hydrolyzed the Asp1-
Arg2 bond to Ang II to form Ang-(2-8) or Ang III [114]. Grobe and colleagues 
applied “in situ” MALDI to characterize both renal and cardiac metabolism of 
exogenous Ang II and Ang-(1-7) [115, 116]. Ang-(1-7) was the primary product 
from Ang II in the renal cortex while Ang III was the major metabolite in the medulla 
[115]. In the heart, Ang III and Ang-(1-7) were products of Ang II metabolism 
catalyzed by Aminopeptidase A and ACE2, respectively [116]. These data confirm 
earlier HPLC-based studies on the contribution of ACE2 to Ang-(1-7) formation 
in the mouse and human heart [68, 117]. In mouse podocytes, Aminopeptidase 
A contributed to the metabolism of Ang-(1-7) to Ang-(2-7) and the subsequent 
conversion to Ang-(3-7) by arginine aminopeptidase (EC 3.4.11.6)  – an identi-
cal pathway for the metabolism of Ang II to Ang III and Ang-(3-8) [46, 114]. 
Aminopeptidase A is widely distributed in tissues predominantly in a membrane-
bound form, although soluble forms are present in the circulation, urine, and CSF 
[114]. Aminopeptidase A knockout mice show an increase in blood pressure, an 
enhanced pressor response to Ang II and greater susceptibility to glomeruli injury 
that would be consistent with a role of the peptidase in the metabolism of Ang II; 
however, it is not known the extent that circulating endogenous levels of Ang-(1-7) 
are altered to potentially mitigate against the cardiovascular effects of higher Ang 
II [118, 119].

M. C. Chappell



17

 AGE-Induced Peptidase

The progression of epithelial to mesenchymal transition (EMT) in renal injury is 
an important process that leads to increased fibrosis and loss of epithelial function 
[120–122]. We assessed the role of Ang-(1-7) in EMT of renal epithelial NRK-52e 
cells provoked by either advanced glycation end products (AGEs) or TGF-β [123]. 
Treatment with Ang-(1-7) abolished EMT in the NRK-52e cells by the inhibition of 
the non-canonical ERK 1/2 signaling pathway stimulated by AGE [123]. In addition 
to stimulating EMT, AGE exposure reduced the intracellular levels of Ang-(1-7), but 
not Ang II (Fig. 7a, b, respectively). The intracellular processing of Ang I to Ang-
(1-7) by thimet oligopeptidase tended to be reduced by AGE; however, Ang-(1-7) 
metabolism was significantly increased by AGE exposure (Fig. 7c, d, respectively). 
AGE-induced EMT may reflect lower Ang-(1-7) expression in the renal epithelial 
cells that may be permissive for the progression of EMT and increased fibrosis 
[120]. Although our data suggest that DPP 3 is not responsible for the AGE-induced 
metabolism of Ang-(1-7) in the NRK-52 cells, a distinct endopeptidase activity may 
participate in the cellular metabolism of the peptide [123].
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 Conclusion

Accumulating evidence from multiple laboratories clearly indicates that activation 
of the Ang-(1-7)-AT7/MasR axis appears to be a potentially important therapeutic 
target in the treatment of cardiovascular disease and other pathologies [125]. In lieu 
of the described peptidases that degrade Ang-(1-7) and the apparent reliance on Ang 
II as an endogenous substrate for the generation of the peptide in several tissues, the 
development of selective non-peptide analogs of Ang-(1-7) that target both the Mas 
receptor and the newly described Mas-related receptor D (MRG-D) [125] may be 
of particular benefit in terms of their oral availability, greater resistance to peptidase 
metabolism, improved selectivity, their potential ability to accumulate within the 
cell and to cross the blood-brain barrier.

A functional intracellular AT7/MasR was first identified on isolated nuclei from 
the ovine kidney that was linked to NO generation following exposure to low pM 
doses of Ang-(1-7) [124]. These findings were recently corroborated in the brain 
that revealed evidence of the MasR on nuclei and mitochondria, as well as Ang-
(1-7)-dependent stimulation of NO [126]. Moreover, AT7/MasR binding on renal 
nuclei and the Ang-(1-7)-evoked NO response were attenuated in aged sheep and 
in adult sheep exposed to betamethasone in utero as compared to the younger non-
exposed animals [9, 99]. Conversely, intracellular levels of the AT1R that were 
associated with stimulation of oxidative stress on isolated nuclei were increased 
in the older animals and in the betamethasone-exposed sheep [9, 98]. Abadir 
et al. originally reported an increased ratio of AT1R: AT2R receptors in isolated 
renal mitochondrial of aging mice [127]. Valenzuela et al. also find reduced an 
increased AT1R:AT2R ratio in brain mitochondria of aging mice that may lead to 
higher cellular levels of oxidative stress [128, 129]. Overall, these novel findings 
of nuclear and mitochondrial angiotensin receptors support extensive evidence for 
an intracellular RAS within various tissues although the exact role of an activated 
intracellular RAS to influence cardiovascular disease and other pathologies is not 
resolved and requires further study. Nevertheless, peptidase-resistant and cell-
permeable agonists of the Ang-(1- 7) axis may provide additional cardioprotective 
effects to conventional approaches to block the RAS and may expand the targeted 
therapies required to combat cardiovascular disease.
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 Pharmacological Tools

The main pharmacological tools used to study the ACE2/ANG-(1–7)/MAS axis 
are MAS agonists that stimulate NO production/release [ANG-(1–7), AVE 0991, 
CGEN 861, CGEN 856, CGEN 856S, cyclic ANG-(1–7), NorLeu3-A(1–7)] [1, 2, 9, 
10, 21, 29, 32, 33, 36, 37, 39, 44, 46]. Two antagonists [D-Ala7-ANG-(1–7) (A-779) 
and D-Pro7-ANG-(1–7)] are also available. Interestingly, other MAS ligands, the 
non-peptides AR234960 (agonist) and AR244555 (inverse agonist) and neuropep-
tide FF (NPFF) appear to act through a different signaling pathway in which ANG-
(1–7) is ineffective [20, 47]. This opens the possibility that some of the non-peptide 
or peptidic compounds act as biased MAS agonists [42].

Chronic administration of ANG-(1–7) has been tested in animals using an inclu-
sion compound, hydroxypropyl-β-cyclodextrin/ANG-(1–7) [HPβCD-ANG-(1–7)]. 
This compound protects ANG-(1–7) from inactivation by digestive tract enzymes 
and permits its oral administration [16, 22]. Since cyclodextrins are metabolized 
by bacteria in the colon [12], only ANG-(1–7) enters the bloodstream. Therefore, 
the inclusion compound can be considered a long-lasting releasing system. This 
approach has led to the description of many beneficial cardiovascular and metabolic 
effects of ANG-(1–7), including antithrombogenesis [14], attenuation of cardiac 
remodeling induced by isoproterenol treatment [25], reduction of the lesion area, 
and attenuation of acute and chronic postinfarction cardiac dysfunction [26]. There 
have also been reports of antihypertensive effects [5] and improvements of erectile 
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dysfunction [15], muscular dystrophy [3, 34], and type II diabetes mellitus [35]. 
Recently, a beneficial effect of this compound was reported in subjects undergoing 
a model of skeletal muscle lesion [4].

In addition to cyclodextrins, cyclic ANG-(1–7) is also undergoing preclinical 
testing (146, 281). It is more resistant to enzymatic hydrolysis than ANG-(1–7). 
Interestingly, the vasorelaxation produced by cyclic ANG-(1–7) in aortic rings 
from Sprague-Dawley rats is only partially blocked by the MAS antagonist A-779 
(281), whereas this effect is completely blocked by the ANG-(1–7) analog D-Pro7- 
ANG-(1–7), an ANG-(1–7)/alamandine antagonist (297). This pharmacological 
profile suggests that cyclic ANG-(1–7) could be a dual MAS/MrgD agonist sharing 
ANG-(1–7) and alamandine characteristics [21].

In addition to MAS agonists, recombinant human ACE2 (hACE2) is cur-
rently being used in recent studies [18]. Another interesting possibility is the 
use of ACE2 activators to alter the balance between the ACE/ANG II/ AT1R 
and the ACE2/ANG-(1–7)/MAS axes. The group of Prof. Raizada identified 
small-molecule ACE2 activators ([19]). The first compound they found was 
the 1-[(2-dimethylamino)ethylamino]-4-(hydroxymethyl)-7-[(4-methylphe-
nyl)sulfonyloxy]-9H-xanthene-9- one, or XNT.  Acute administration of XNT 
induced a dose-dependent hypotensive response in spontaneously hypertensive 
rats (SHR), while long-term treatment with this compound improved cardiac 
function and reversed the cardiac and renal fibrosis in these animals [19]. Oral 
administration of XNT was able to attenuate diabetes- induced heart dysfunction 
[28]. XNT and prevented the increase in right ventricular systolic pressure and 
hypertrophy in a monocrotaline-induced pulmonary hypertension model [11] 
and attenuated thrombus formation in SHR [17]. Numerous protective effects 
have been reported with another putative ACE2 activator, DIZE [6–8, 13, 15, 
23, 24, 27, 30, 31, 40, 41, 43, 45]. It should be pointed out, however, that the 
effects of these small-molecule activators could be ACE2-independent (234). 
Moreover, ACE2 can cleave other substrates (140), a fact which should be taken 
into account when interpreting results obtained with methods involving the gain 
or loss of ACE2 functions.

More recently, oral delivery of ACE2 and ANG-(1–7) bioencapsulated in plant 
cells has been reported to attenuate pulmonary hypertension [38].
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Genetic Models

Natalia Alenina and Michael Bader

 Introduction

Transgenic and knockout animal models are the most effective tools to study cardio-
vascular hormone systems, since they reveal effects of changes in single components 
of these systems on the whole physiology. In particular, studies on the renin-angio-
tensin systems (RAS) have profited from this technology in recent decades [3, 5, 58]. 
Therefore, it was warranted to establish such models also for the novel RAS consist-
ing of ACE2, Ang-(1-7), and Mas (Table 1). Despite that these three components 
comprise a common axis, distinct phenotypes of models with one of the components 
altered are expected since each of the three components has distinct additional func-
tions independent from the two other molecules. ACE2, in particular, is a protein 
with several functions, a carboxypeptidase metabolizing a multitude of peptides, 
such as AngII and apelins, thereby either activating or inactivating them [104], a pro-
tein with a collectrin domain, which is involved in amino acid uptake in the gut [34, 
95], and the receptor for the severe acute respiratory syndrome (SARS) coronavirus 
[45]. Moreover, also Ang-(1-7) may interact with other receptors than Mas and Mas 
may have other ligands or exert ligand- independent effects [4, 86].
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Table 1 Independently generated transgenic and knockout mouse and rat models for the ACE2/
Ang-(1-7)/Mas axis of the RAS

Gene Method Species Promoter
Expressing 
tissue Reference

ACE2 ESC- 
Knockout

Mouse – – [17]

ACE2 ESC- 
Knockout

Mouse – – [31]

ACE2 ESC- 
Knockout

Mouse – – [125]

ACE2 TALEN- 
Knockout

Mouse – – [47]

ACE2 CRISPR- 
Knockout

Mouse – – [47, 129]

ACE2 
S680D

CRISPR- 
Knockin

Mouse – – [47]

ACE2 TALEN- 
Knockout

Rat – – [130]

ACE2 
(mouse)

Transgene, 
stopflox

Mouse Rosa26 Ubiquitous, 
inducible

[75, 107]

ACE2 
(human)

Transgene Mouse ACE2 Ubiquitous [126]

ACE2 
(human)

Transgene Mouse CMV Ubiquitous [102]

ACE2 
(human)

Transgene Mouse Cytokeratin 
18

Airways [53]

ACE2 
(human)

Transgene Mouse Cardiac 
α-MHC

Heart [21]

ACE2 
(human)

Transgene Mouse Nephrin Podocytes [61]

ACE2 
(human)

Transgene Mouse Synapsin Neurons [26]

ACE2 
(human)

Transgene, 
floxed

Mouse Synapsin Neurons [117]

ACE2 
(human)

Transgene Rat SM-MHC Smooth 
muscle

[79]

Mas ESC- 
Knockout

Mouse – – [105]

Mas ESC- 
Knockout

Mouse – – [20, 113]

Mas ZFN- 
Knockout

Rat – – https://rgd.mcw.edu/
rgdweb/report/gene/main.
html?id=3049

Mas (rat) Transgene Mouse Opsin Retina [122]
Ang-(1-7) Transgene Mouse Cardiac 

α-MHC
Heart [54]

Ang-(1-7) Transgene Rat Cardiac 
α-MHC

Heart [27]

Ang-(1-7) Transgene Rat CMV Testis [28]

CMV cytomegalovirus, ESC embryonic stem cell, MHC myosin-heavy chain, SM smooth muscle, 
TALEN transcription activator-like effector nuclease, ZFN zinc-finger nuclease
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 ACE2 Models

 ACE2 Knockout Mice

Since the ACE2 gene is localized on the X-chromosome, male mice with ACE2 
gene deletion (ACE2−/y) are already deficient in the enzyme in the hemizygous state. 
Based on the pleiotropic actions of this protein, mice lacking ACE2 are expected 
to exhibit increased levels of AngII, decreased levels of Ang-(1-7) and tryptophan, 
as well as alterations in other peptide levels, which all may contribute to observed 
phenotypes. ACE2−/y mice and also heterozygous female ACE2+/− mice were more 
susceptible to cardiac injury induced by pressure overload, AngII infusion, or diabe-
tes [69, 109, 115, 125] and ACE2−/y mice developed cardiac abnormalities at older 
age [17] probably due to an increased level of Ang II [68]. However, the spontane-
ous appearance of cardiac alterations could not be confirmed by another group and 
therefore remains controversial [31, 32, 125]. However, obesity-induced epicardial 
inflammation was worsened and caused cardiac dysfunction in ACE2−/y mice [70]. 
Furthermore, in heart and skeletal muscle, ACE2 was involved in training- induced 
physiological hypertrophy [59].

There were also inconsistencies in the reports about hypertension in ACE2−/y mice, 
but it is now accepted that this phenotype is depending on the strain of mice appear-
ing in C57BL/6 and FVB/N but not in 129 mice [32, 38, 77, 101]. ACE2- deficient 
mice on C57BL/6 background even developed a pre-ecclampsia-like syndrome when 
pregnant [8] and placental hypoxia and uterine artery dysfuncion caused fetal growth 
restriction in these animals [124]. In ACE2−/− female mice, estrogen cannot inhibit 
obesity-induced hypertension in contrast to wild-type controls [114]. We and others 
have described AngII-dependent endothelial dysfunction in ACE2-deficient mice [49, 
77], which probably mediated the prohypertensive phenotype. However, an increased 
sympathetic outflow may have also contributed [119]. On the other hand, ACE2 also 
degrades the vasodilator apelin peptides which consequently accumulate in ACE2−/y 
mice and counteract the effects on the RAS [110]. Nevertheless, there were several 
other vascular effects of genetic ACE2- deletion such as a worsening of atheroscle-
rosis and aortic aneurysm in apolipoprotein E (ApoE)- and low-density lipoprotein 
receptor-deficient mice [63, 81, 99, 100] and an increased neointima formation after 
vascular injury [81], to which the endothelial dysfunction was a major contributor.

In double knockout mice for ACE2 and ApoE, also the renal injury induced 
by atherosclerosis was aggravated [38]. Moreover, ACE2−/y mice spontaneously 
developed glomerulosclerosis in older age [67] and were more susceptible to renal 
ischemia/reperfusion injury due to increased cytokine expression, inflammation, 
and oxidative stress [23]. Accordingly, genetic ACE2 deficiency led to accelerated 
nephropathy in streptozotocin (STZ)-induced and Akita diabetic mice [91, 115]. 
Furthermore, knockout mice for ACE2 infused with AngII showed enhanced colla-
gen I deposition in renal glomeruli and expression of genes related to fibrosis, such 
as smooth muscle actin, transforming growth factor β (TGF-β), and procollagen I, 
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probably through activation of ERK1/2 and enhancement of protein kinase C levels 
[133]. ACE2-deficient mice also showed a worse outcome in shock-induced kid-
ney injury [127], chronic hepatic injury [66], liver steatosis [12, 64], and cerulein- 
induced pancreatitis [48].

The lung is a major site of ACE2 expression. Accordingly, ACE2−/y mice exhib-
ited an aggravated pathogenesis of lung injury induced by cigarette smoke, air pollu-
tion, bleomycin, influenza virus or respiratory syncytial virus [30, 36, 46, 80, 134], 
of pulmonary hypertension [129], and of acute respiratory distress syndrome [37]. In 
most of these injury models, the increased oxidative stress observed in kidneys [116], 
livers [12, 64], and vessels [71] of ACE2−/y mice contributed to the exacerbation.

ACE2 in the gut with its collectrin domain is part of the amino acid uptake system 
and, therefore, mice lacking this protein showed reduced tryptophan in the blood, 
an altered gut microflora, and intestinal inflammation [34, 95]. These results were 
recently confirmed in a novel ACE2-deficient mouse model on an outbred genetic 
background generated by transcription-activator-like effector nucleases (TALEN) 
[47]. Whether the collectrin-domain-dependent effects contributed to the metabolic 
alterations shown in ACE2-deficient mice, such as insulin resistance and impaired 
glucose homeostasis [12, 63] in particular under a high-fat diet [15, 50, 90, 92, 123] 
needs still to elucidated [7]. However, in the liver, the carboxypeptidase function of 
ACE2 was more relevant for these metabolic effects since they could be ameliorated 
by Ang-(1-7) infusion [12].

ACE2 in the brain also influences behavior since ACE2-deficient mice showed 
impaired performance in cognition and memory tests [111].

 ACE2 S680D Knockin Mouse

Recently, it was discovered that serine 680 of mouse ACE2 is phosphorylated by 
AMP kinase, leading to increased stability of the protein. When this phosphory-
lation was mimicked (S680D) in knockin mice by CRISPR/Cas9 technology, the 
resulting animals were partially resistant to a pulmonary hypertension model [129].

 ACE2 Knockout Rats

ACE2 knockout rats have recently been established using TALEN technology [130]. 
These animals exhibited cardiac hypertrophy and impaired heart function; however, 
their blood pressure was not reported. Therefore, it remains unclear whether the 
cardiac effects are direct or caused by hypertension.

 Inducible Mouse ACE2 Overexpression in Mouse

In order to allow tissue-specific activation of ACE2 expression, the mouse ACE2 
coding region was knocked into the Rosa26 locus of mice with a Stop-lox cassette 
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in front of it, which inhibits transcription. This cassette can be removed by Cre- 
recombinase expression and then ACE2 gets highly expressed in the cells express-
ing Cre-recombinase. When Cre-recombinase was expressed in the germline, 
ubiquitously ACE2 overexpressing mice resulted, which were protected from post- 
infarction cardiac dysfunction [75] and exhibited less anxiety-related behavior 
[107]. The same behavioral effects were also observed when the gene was only acti-
vated in CRH (corticotropin-releasing hormone) expressing cells using the corre-
sponding Cre-recombinase-expressing mouse for breeding with the ACE2/Rosa26 
animals [108].

 Human ACE2 Overexpression in Mouse

Human ACE2 is hijacked by the SARS virus as a receptor to enter cells. In order to 
create a model for this disease, mice were “humanized” by several groups by inserting 
human ACE2 transgenes in their genome either using the ACE2 promoter itself [126], 
the ubiquitously active cytomegalovirus (CMV) promoter [102, 128], or the airway-
specific cytokeratin 18 promoter [53, 62]. These animals were also suitable for studies 
on the role of ACE2 in other diseases and therefore the first model was tested in a kid-
ney injury model and showed a protected phenotype [127]. Moreover, it was shown to 
be protected from AngII-induced hypertension and myocardial fibrosis [109].

 Human ACE2 Overexpression in Mouse Heart

When human ACE2 was overexpressed in hearts of transgenic mice, surprisingly 
ventricular tachycardia and sudden death was observed accompanied by a dysreg-
ulation of connexin expression [21]. Apelin, which is also a substrate for ACE2 
[104], may in this case be lacking and this deficiency may have caused the cardiac 
dysfunction [41].

 Human ACE2 Overexpression in Mouse Podocytes

When human ACE2 was overexpressed in kidneys of transgenic mice, particu-
larly in podocytes using the nephrin promoter, the animals became protected from 
diabetes- induced renal injury [61]. The authors provided evidence that the relative 
amounts of AngII and Ang-(1-7) are critical for the phenotype by increased AngII 
upregulating TGF-β.

 Human ACE2 Overexpression in Mouse Brain

When human ACE2 was overexpressed in brains of transgenic mice using the 
synapsin promoter, a protective phenotype is observed for several cardiovascular 
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diseases. This included hypertension induced by peripheral infusions of AngII 
[26] and by desoxycorticosterone acetate (DOCA)/salt treatment [118], cardiac 
hypertrophy elicited by AngII [25], coronary ligation-induced chronic heart failure 
[120], and stroke triggered by middle cerebral artery occlusion [14, 132]. In another 
model, the ACE2 transgene was flanked by loxP sites and it could therefore be spe-
cifically deleted in distinct brain regions by the local injection of Cre-recombinase-
expressing adeno-associated viruses to assess the relevance of these areas for the 
blood pressure increase after DOCA/salt treatment. Such experiments revealed the 
paraventricular nucleus of the hypothalamus and the subfornical organ as important 
but not exclusive contributors to hypertension development [117]. The shift in the 
balance between Ang-(1-7) and AngII in brain regions important for cardiovascular 
control modulated local NO and ROS production as well as cyclooxygenase-medi-
ated neuroinflammation [97] and likely caused the beneficial effects of ACE2  in 
the brain. Accordingly, the AngII-dependent deleterious effects on brain tissues 
observed in double transgenic mice expressing human angiotensinogen and human 
renin were mitigated in triple transgenic animals additionally expressing human 
ACE2 [14, 131].

 Human ACE2 Overexpression in Rat Vascular Smooth Muscle

When we overexpressed human ACE2 in vascular smooth muscle of transgenic rats 
of the spontaneously hypertensive stroke-prone (SHRSP) strain using the smooth 
muscle myosin heavy chain promoter, blood pressure was significantly reduced 
[79]. This confirmed a study postulating that reduced ACE2 is an important genetic 
determinant for hypertension in this strain [17]. Reduced blood pressure was accom-
panied by decreased oxidative stress and improved endothelial function [79].

 Mas Models

 Mas Knockout Mice

When we generated Mas-deficient (Mas−/−) mice, it was not yet known that it is 
the receptor for Ang-(1-7) [105]. Therefore, phenotyping concentrated on the brain 
as major Mas-expressing organ. Male (but not female [106]) Mas-deficient mice 
showed increased anxiety-like behavior and long-term potentiation (LTP) in the 
hippocampus [105]. Surprisingly, despite the improved LTP, object recognition 
memory was impaired [43]. However, Mas−/− mice showed delayed extinction of 
fear memory [42] and were protected from cognitive impairments induced by isch-
emia but only in the presence of the AngII AT2 receptor [35] supporting a role of the 
dimerization of both receptors in brain function [44].
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After our discovery that Mas is the receptor for Ang-(1-7) [85], we performed 
comprehensive cardiovascular phenotyping. Mas-deficient mice on the C57BL/6 
background exhibited spontaneous cardiac fibrosis and dysfunction [13, 72, 83, 113]. 
Increased oxidative stress and endothelial dysfunction were observed on all genetic 
backgrounds studied (C57BL/6 and FVB/N) [33, 78, 121], but only resulted in hyper-
tension in FVB/N mice. Possibly, an autonomic dysbalance in Mas−/− mice also con-
tributed to the increased blood pressure [76]. Moreover, regional blood flow and local 
vascular resistance were differentially altered in different tissues of Mas−/− mice [10], 
which may also be the cause for the increased vascular resistance in the corpus caver-
nosum and the resulting erectile dysfunction observed in these mice [29].

Mas−/− mice showed an impaired renal function with increased urinary volume 
and proteinuria [74]. However, Esteban and coworkers found that Mas knockout 
mice presented an attenuation of renal damage in the unilateral ureteral obstruc-
tion and in the renal ischemia/reperfusion model [22]. The authors reported that 
Ang-(1- 7) infusion led to NF-κB activation and inflammation via Mas. In contrast, 
Kim et al. showed protective effects of Ang-(1-7) infusion in the same model [40] 
and no aggravation of renal injury produced by kidney ischemia/reperfusion was 
observed in Mas−/− mice [6]. Moreover, Mas−/− mice were protected from adria-
mycin-induced renal injury, again confirming the protective actions of the ACE2/
Ang-(1-7)/Mas axis of the RAS in the kidney [94]. The discrepancy between the 
studies remained unresolved, but anti-inflammatory and protective actions of Mas 
have repeatedly been described also in other organs: Ang-(1-7) protected from intra-
cranial aneurysm only in wild-type but not in Mas−/− mice [73]. Mas deficiency 
promoted atherosclerosis and autoimmune encephalitis by affecting macrophage 
polarization and migration [33] and by increasing vascular intima proliferation [2]. 
The effects on macrophages and other leukocytes were probably also the reason 
for the higher susceptibility of Mas−/− mice in an endotoxic shock model [65, 96]. 
Moreover, Mas−/− mice presented aggravated inflammatory pain [16] and allergic 
pulmonary inflammation [51].

Mas−/− mice are also a model for metabolic syndrome since they developed meta-
bolic abnormalities, such as type 2 diabetes mellitus and dyslipidemia [88], besides 
their hypertensive phenotype. On the mechanistic level, this was accompanied by 
decreased PPARγ expression in fat tissue [52] and a change in the relative amounts of 
α and β cells in pancreatic islets [24]. Ang-(1-7), mainly via Mas, stimulated insulin 
secretion from β cells [82]. Furthermore, Mas−/− mice developed liver steatosis when 
bred with ApoE-deficient mice [93] and Mas−/− female mice were more susceptible 
to obesity-induced hypertension [113]. Ang-(1-7) and Mas were involved in vascular 
repair, which is deficient in diabetes, and hindlimb ischemia- induced progenitor cell 
mobilization was absent in Mas−/− mice [103].

In skeletal muscle, Ang-(1-7) and Mas protected from atrophy since Mas−/− mice 
were more susceptible to a Duchenne muscular dystrophy model (mdx) [1] and to 
immobilization-induced atrophy [56].
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 Mas Knockout Rats

Mas knockout rats have been established using Zinc-finger nuclease technology 
but their phenotype is only partially reported on the Rat Genome Database website 
(https://rgd.mcw.edu/rgdweb/report/gene/main.html?id=3049).

 Mas Overexpression in Retina

Transgenic mice overexpressing Mas in the retina under the control of the opsin 
promoter developed degeneration of photoreceptors [122]. This surprising pheno-
type may have been caused by the ligand-independent constitutive activity of Mas 
[4] causing proliferative effects in cells when the gene is overexpressed.

 Ang-(1-7) Models

 Transgenic Rats Overexpressing Ang-(1-7)

The group of Timothy Reudelhuber invented a method to express and secrete pep-
tides from an artificial protein without the need of specific proteases in transgenic 
animals [54, 55]. Using this method, Ang-(1-7) was overexpressed in transgenic rats 
(TGR(A1-7)3292) using the CMV promoter [28]. These animals mainly expressed 
the peptide in the testis, which nevertheless significantly increased plasma levels 
of Ang-(1-7). As a consequence, total peripheral resistance was decreased together 
with increases in the blood flow to several organs. Nonetheless, the animals 
remained normotensive, probably since they exhibited an improved pumping func-
tion of the heart [11]. These cardiac effects also protected the heart from pressure 
and ischemia- induced damage [84] as well as from DOCA-induced diastolic dys-
function [19]. A part of these effects may be due to alterations in autonomic regula-
tion observed in these rats [18]. The increased levels of plasma Ang-(1-7) exerted 
antinatriuretic actions in the kidney resulting in reduced urinary flow and increased 
urinary osmolality [28]. Furthermore, TGR(A1-7)3292 rats exhibited metabolic 
improvements such as decreased plasma lipid levels, improved glucose tolerance, 
less fat tissue, decreased lipogenesis, and less cafeteria-diet-induced obesity [9, 57, 
87, 89]. Moreover, these rats presented a reduction in anxiety-like behavior [39] and 
in the response to stress [60].

 Transgenic Mice and Rats Overexpressing Ang-(1-7) in the Heart

We also generated transgenic mice and rats expressing the Ang-(1-7) release protein 
specifically in the heart using the α cardiac myosin heavy chain promoter. Both lines 
showed a slightly improved heart function at baseline and were protected from car-
diac hypertrophy [27, 54], but, interestingly, not from myocardial infarction [112].
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 Conclusions

As summarized in this chapter, several genetically altered rat and mouse models 
have been generated changing the expression of components of the ACE2/Ang-
(1- 7)/Mas axis of the RAS (Table 1). With the help of these models, physiological 
and pathophysiological functions of this axis have been elucidated. Nevertheless, 
novel models are warranted with cell-type-specific deficiency of ACE2 or Mas to 
further delineate their tissue-specific effects. The already collected findings are the 
basis for the development of novel therapeutic strategies for cardiovascular and 
metabolic diseases by targeting ACE2 or Mas [86, 98].
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 Ang-(1-7) Metabolism in the Brain

All components of the renin-angiotensin system (RAS) are present in the brain [47, 
73]. The first evidence that Ang-(1-7) could be generated in areas of the central 
nervous system (CNS) was obtained from studies of the hydrolysis of [125I]-Ang 
I in brain homogenates [109]. In this study, homogenate of micropunctures of 
medullary areas produced Ang-(1-7) from [125I]-Ang I or [125I]-Ang II, both in 
the absence or presence of ACE inhibitor showing that Ang-(1-7) could not be 
just a pathway of Ang II metabolism. Currently, it is accepted that Ang-(1-7) is 
formed from Ang I through cleavage at the Pro7-Phe8 peptide bound by several 
endopeptidases, such as prolyl endopeptidase, thimet oligopeptidase, and neutral 
endopeptidase (neprylisin) [73, 103]. The carboxypeptidase ACE2, which removes 
the carboxyterminal phenylalanine from Ang II [35, 36, 123], seems to be the main 
Ang-(1-7)-forming enzyme. The catalytic efficiency of ACE2 to generate Ang-(1-
7) from Ang II is almost 500-fold greater than that shown for conversion of Ang I 
to Ang-(1–9) and 10- or 600-fold higher than that described for two other Ang-(1-
7)-forming enzymes: prolyl endopeptidase and prolyl carboxypeptidase, respec-
tively [103, 104, 125]. The exact site for the generation of Ang-(1-7) in the brain, 
if intracellular or extracellular, is still uncertain, as well as, it is not known whether 
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the generation of Ang peptides is solely dependent on brain Aogen, ACE, ACE2, 
and renin, taking into account the discrepancies in the location of RAS components 
[17, 56].

 Ang-(1-7) Location in the Brain

Immunostaining for Ang-(1-7) was initially shown mainly in paraventricular (PVN), 
supraoptic (SON), and suprachiasmatic nuclei of hypothalamus, bed nucleus of the 
stria terminalis, substantia innominata, median eminence, and neurohypophysis [15, 
18, 76]. Consistent with this observation, Ang-(1-7) immunoreactivity was reported 
in neurons from hypothalamus, brainstem [83], and PVN [10] of rats. In extracts 
from the rat hypothalamus, approximately equimolar amounts of Ang-(1- 7), Ang 
II, and Ang I were detected [25]. A similar profile was observed in the medulla 
oblongata and amygdala, although the content of these three peptides was 40–70% 
lower than that determined in the hypothalamus [25]. Recently, it has been shown 
that Ang-(1-7) is a preferential peptide formed from Ang I through thimet oligopep-
tidase [98]. Further, increase in thimet oligopeptidase and Ang-(1-7) was observed 
in the hippocampus of epileptic rats [98], which is in agreement with the reported 
increase in Ang-(1-7) in the hippocampus of rats during the acute and silent phases 
of pilocarpine-induced epilepsy [55].

 MAS Location in the Brain

There is still a debate on the true ligand of AT1 receptor in the brain, whether it is 
Ang II or Ang III [48]; however, the effects described for Ang-(1-7) appear to be 
related to MAS receptor (MasR; [111]). Soon after the initial description of biologi-
cal actions of Ang-(1-7), several studies raised the hypothesis of the existence of a 
selective receptor for mediating the physiological effects of Ang-(1-7) in the brain. 
First, Ang-(1-7) was shown to display opposite effect on baroreflex control. Ang-
(1- 7), given ICV, facilitated, while Ang II attenuated the baroreflex control of heart 
rate [20]. Additional studies strengthened this hypothesis by showing that Ang-(1-7) 
did not bind to AT1 or AT2 receptors [11, 105], that Ang-(1-7) presented different 
effects from those induced by Ang II, both centrally and peripherally [110], and, 
finally, the description of a selective antagonist for Ang-(1-7) actions, A779 [108], 
which did not interfere with Ang II at AT1 or AT2 receptor. Other studies using 
PD123319 raised the hypothesis that some of Ang-(1-7) actions could be mediated 
by AT2 receptor [51, 52]. However, PD123319 was recently described as MrgD 
receptor antagonist, which mediates alamandine effects [77]. Alamandine [Ala1- 
DesAsp1- Ang-(1-7)] can be formed endogenously from Ang-(1-7) or Ang A and 
expresses actions at the central nervous system (CNS) [77]. These data together 
with the observation that Ang-(1-7) actions could be blocked by PD123319  in 
AT2KO mice [114] indicate that future studies will have to show whether in fact 
some of Ang-(1-7) actions could be mediated by AT2 in the brain.
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In 2003, with the identification of the G-coupled Mas protein as an Ang-(1-7) 
receptor [111], Mas was identified in different areas of the brain, especially those 
related to cardiovascular control [12]. There was a strong staining in the nucleus 
tractus solitarii (NTS), caudal and rostral ventrolateral medulla (CVLM and 
RVLM), inferior olive, and parvo and magnocellular portions of the PVN, SON, 
and lateral preoptic area (LPA) of normotensive SD rats. However, other areas were 
also stained for Mas, such as the hippocampal nucleus, different subregions of the 
frontal cortex, anterodorsal thalamic nucleus, basomedial and basolateral amygda-
loid nucleus, and hypoglossal nucleus [12, 46]. Recently, Mas immunostaining was 
shown mainly in the soma of neurons and microglia of adult rat cerebral cortex and 
not in astroglia, and to exist in both non-nuclear and nuclear compartments [88, 
101]. Further, MasR protein expression was greater in neurons from hypothalamus 
of spontaneously hypertensive rats (SHR) than from normotensive Wistar-Kyoto 
rats [84].

 Ang-(1-7) Actions in the Brain

Historically, it is important to mention that the first biological actions described 
for Ang-(1-7) were related to the CNS. Schiavone et al. [112] found that Ang-(1-
7) was equipotent to Ang II in stimulating arginine–vasopressin release from rat 
hypothalamo- neurohypophysial preparation in vitro. In the same year, Ang-(1-7)-
immunoreactivity was found in the neurohypophysis and hypothalamic regions [15]. 
Subsequent study showed that Ang-(1-7) was able to induce fall in blood pressure 
after in vivo microinjection into the nucleus tractus solitarii (NTS) [19]. At pres-
ent, we recognize that Ang-(1-7) acts as an important neuromodulator, especially in 
areas related to tonic and reflex control of arterial pressure, in the hypothalamus and 
in the dorsomedial and ventrolateral medulla. At these sites, cardiovascular effects 
induced by Ang-(1-7) are blocked by A-779, which is recognized as a selective 
Mas receptor antagonist [108], suggesting Ang-(1-7) actions in the brain are mainly 
mediated by interaction with MasR.

No alteration in blood pressure or drinking behavior was observed after short- 
term (up to few hours) infusion of Ang-(1-7) into the lateral ventricle [20] or micro-
injection into the PVN [100], which contrasts with the classical stimulatory effect 
mediated by AT1 in the brain [86]. However, when long-term infusion (14–28 days) 
of Ang-(1-7) was performed, an attenuation in high arterial pressure was observed 
in DOCA-salt [58, 138], TGR(mREN2)L-27 hypertensive rats [49, 51, 70, 92] or 
Ang II hypertension [137]. Lowering blood pressure effect of Ang-(1-7) in DOCA- 
salt hypertensive rats was related to improvement in baroreflex bradycardia, resto-
ration of the baroreflex control of renal sympathetic activity, and regaining of the 
balance of cardiac autonomic tone [58, 70]. Enhancement of the baroreflex control 
of the RSNA was also observed after 4 days of ICV infusion of Ang-(1-7) in rab-
bits subjected to chronic heart failure [71]. Similar effects were also observed in 
transgenic mice overexpressing human ACE2 selectively in the brain [32, 40, 118, 
131, 133]. On the other hand, increased ACE2 membrane shedding by ADAM17 in 
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the brain contributes to the high blood pressure of mice subjected to the DOCA-
salt model [132]. Additionally, it was shown that mice lacking MasR presented 
important imbalance in the neural control of blood pressure, with blunted sensitiv-
ity of not only the baroreflex but also the chemo- and Bezold–Jarisch reflexes [31]. 
More recently, studying rats that develop metabolic syndrome after chronic fructose 
intake, it was shown that fructose-fed rats receiving Ang-(1-7) infusion into the lat-
eral ventricle had normalized baseline MAP, baroreflex control of HR, and reduced 
cardiac sympathetic tone [57]. Strikingly, along with these cardiovascular improve-
ments, these rats presented normalized glucose tolerance, glycemia, insulinemia, 
and HOMA score [57]. These data suggest that activation of Ang-(1-7)/Mas path-
way in the brain may play an important beneficial role against cardiovascular and 
metabolic disorders. In agreement, the overexpression of ACE2 selectively in the 
RVLM [139] or PVN [118] induces a significant decrease in blood pressure of SHR 
[139], attenuation of the sympathetic activity, and improvement of the baroreflex 
function in animals with congestive heart failure [71].

 Cardiovascular Effects of Angiotensin-(1-7) at Specific 
Medullary Sites

Among the central actions, the more consistent effects of Ang-(1-7) are related to 
the modulation of the baroreflex, especially improving the bradycardic component 
of the baroreflex control of heart rate in normotensive [20] or hypertensive animals 
[16, 62, 93]. The facilitatory effect of Ang-(1-7) on baroreflex control of heart rate 
is also consistently observed after microinjection into the NTS, a key region in the 
brain stem controlling cardiovascular reflex function. Microinjection of Ang-(1-7) 
induces facilitation, while injection of Ang II produces attenuation of the baroreflex 
bradycardia, whereas A-779 and losartan, the selective Mas and AT1 receptor antag-
onists, blocked the effect of their respective peptide in normotensive or hypertensive 
rats [9, 26, 29, 33, 65, 106, 107].

At the CVLM, inhibitory area of the baroreflex arch, Ang-(1-7) induces Mas- 
related hypotensive responses similar to Ang II [44, 99, 115]. In addition, it was 
shown to release glutamate and decrease taurine [128]. At the RVLM, the main 
relay area for the sympathetic control of the cardiovascular system, microinjec-
tions of Ang-(1-7) induces pressor response [43, 44, 115, 145], an effect accom-
panied by increase in renal sympathetic nerve activity in normotensive [99, 145] 
and renovascular hypertensive animals [43, 44, 79, 82, 91, 116, 145]. Conversely, 
selective blockade of endogenous Ang-(1-7) by A-779 results in a decrease in BP in 
normotensive and hypertensive rats [43, 44, 82, 91, 116, 117, 128, 145]. Ang-(1-7) 
pressor effect at the RVLM is increased after hemorrhage [81] and in hypertensive 
rats [24, 41, 90, 91, 124]. In keeping with the excitatory role of Ang-(1-7) after 
acute injections, A779 or inhibition of ACE2 with the compound DX600 induces 
greater decreases in blood pressure in SHR [91]. Although Ang-(1-7)/Mas at the 
RVLM does not alter baroreflex [6], it increases cardiac sympathetic afferent reflex 
(CSAR), which contributes to sympathetic excitation in hypertension [79, 91, 145]. 
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The facilitation of CSAR seems to be mediated by MasR activation of cAMP-
protein kinase A and increases in NAD(P)H oxidase activity and superoxide anion 
level [79]. Peripheral mechanisms triggered by Ang-(1-7) at the CVLM and RVLM 
involve modulation of sympathetic tonus and a nitroxidergic pathway sensible to 
NOS inhibitors – LNAME and 7-NI [5, 22, 94].

Stress-induced hypertension induces increase in the expression of ACE and 
AT1, along with decrease in ACE2 and hyperresponsiveness of Ang II at the 
RVLM [37]. Moderate physical exercise during SHR development (7–23 weeks 
old) attenuated hypertension, prevented increase in TNFα, IL-1β, ACE, and AT1 
expression in the RVLM, and upregulated IL-10, ACE2, and Mas at this site [1]. 
In addition, these changes were associated with reduced plasma Ang II levels, 
reduced neuronal activity, reduced NADPH-oxidase subunit gp91(phox) and 
inducible NO synthase in trained SHRs, indicating reduced oxidative stress [1]. 
Exercise training rescues ACE2 overexpression in the RVLM of animals sub-
jected to heart failure [72]. A779 induced a pressor response in exercise-trained 
normotensive rats [13], suggesting that endogenous Ang-(1-7) triggers inhibition 
of pressor neurons at the RVLM. Moreover, long-term ACE2 expression in the 
RVLM in SHR produced significant and long-term reduction in blood pressure 
[139], suggesting that increasing RVLM Ang-(1-7) contributes to the anti-hyper-
tensive effect of exercise training.

 Cardiovascular Effects of Angiotensin-(1-7) at Specific 
Hypothalamic Sites

Ang-(1-7)-immunoreactivity is present in different hypothalamic regions, includ-
ing the paraventricular, supraoptic, and suprachiasmatic nuclei and in the median 
eminence [15, 76]. MasR are also present in the parvo and magnocellular portions 
of the paraventricular hypothalamic nucleus (PVN), supraoptic nucleus, and lateral 
preoptic area [12]. Endogenous Ang-(1-7) in the rat hypothalamus is present in con-
centrations comparable to Ang I and Ang II [25]. Microiontophoretic application of 
Ang-(1-7) into the PVN augments the excitability of the neurons in this region [7, 8, 
38], an effect that can be selectively blocked by the specific MasR antagonist A-779 
[8]. Therefore, considering the key contribution of hypothalamic regions in the con-
trol of sympathetic activity [3, 45], a functional role for Ang-(1-7) in specific hypo-
thalamic nuclei in autonomic cardiovascular regulation is very likely. Surprisingly, 
however, this functional aspect was evaluated only in few studies. In anesthetized 
rats, Gomes da Silva et al. [54] found that microinjection of Ang-(1-7) into the PVN 
increased renal sympathetic activity (RSNA) and this effect was mediated by MasR 
stimulation. This finding was confirmed by the fact that microinjection of the MasR 
antagonist A-779 into the PVN reduced RSNA, and this reduction was similar in 
magnitude to the effect observed with muscimol, a powerful neuronal inhibitor [54]. 
Blockade of MasR in the PVN also prevents the increases in arterial pressure associ-
ated to intermittent hypoxia [30]. Evidence also suggests that endogenous Ang-(1-
7) in the PVN facilitates the cardiac sympathetic afferent reflex and the sympathetic 
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outflow in renovascular hypertension [122]. Altogether, these studies indicate a 
sympathoexcitatory action for Ang-(1-7) in the PVN on autonomic cardiovascular 
control, at least in some specific conditions.

ACE2 overexpression in the subfornical organ, on the other hand, inhibits both 
pressor and drinking responses resulting from icv administration of Ang-II and 
this effect is attributed to a decrease in Ang II levels associated to an increase in 
Ang-(1- 7) levels, leading to the activation of MasR [40]. Subfornical organ is a 
brain region known for its involvement in the regulation of autonomic cardiovas-
cular function. Circulating peptide access to hypothalamic regions is likely medi-
ated via subfornical organ [113]. In this regard, adenovirus-induced overexpression 
of ACE2 specifically in the PVN attenuates the hypertensive response evoked by 
peripheral infusion of Ang II [118]. In addition, MasR expression was increased 
while AT1R expression was decreased at the PVN in the presence of ACE2 overex-
pression [118]. Since ACE2 efficiently hydrolyzes AngII to Ang-(1-7), a possible 
counteracting effect of ACE2/Ang-(1-7)/MasR on Ang II/AT1R stimulatory effects 
at the PVN on autonomic cardiovascular control needs to be considered. Evidence 
also suggests that Ang-(1–7) may play a protective role in the anterior hypothalamic 
area in hypertensive conditions. In sinoaortic denervated rats, but not in normoten-
sive rats, injection of Ang-(1-7) into the anterior hypothalamic area decreases blood 
pressure, an effect blocked by A-779 and thus mediated via MasR [63]. In addi-
tion, injections of Ang-(1-7) into the anterior hypothalamic area of SHRs decreases 
blood pressure, an effect mediated by nitric oxide (NO) generation [23]. In fact, 
Ang-(1-7) induced an increase in NOS activity and neuronal NOS expression in 
hypothalami from SHR [23].

 Other Angiotensin-(1-7) Effects in the Brain

Stroke is one of the leading causes of death and impaired quality of life as a 
result of neurological deficit. It has been shown that central administration of 
Ang-(1-7) reduces brain damage and improves neurological outcome in ischemic 
stroke elicited by endothelin1-induced middle cerebral artery occlusion (MCAO) 
[88]. Similar protective effect of Ang-(1-7) has been documented in a rat model 
of permanent MCAO [66, 67]. Supporting these findings, ICV administration of 
the ACE2 activator diminazene aceturate under similar conditions to those used 
for Ang-(1-7) effectively decreased the intracerebral infarct and behavioral defi-
cits resulting from endothelin-1-induced MCAO [88]. These protective actions 
of Ang-(1-7) and diminazene aceturate were abolished by coadministration of 
the MasR blocker, suggesting that is a MasR-mediated effect and supporting the 
involvement of Ang-(1-7) in the protective effects of the ACE2 activator [88, 121]. 
In another model of stroke as in stroke-prone SHR, which is an established ani-
mal model of hypertension-induced hemorrhagic stroke, central administration 
of Ang-(1-7) increases lifespan and improves the neurological status of these rats 
as well as decreases microglial numbers in the striatum, implying attenuation of 
cerebral inflammation [102].
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The beneficial actions of Ang-(1-7) in ischemic stroke were due to anti- 
inflammatory mechanisms. Thus, reductions in inducible nitric oxide synthase 
(NOS) gene expression, in the pro-inflammatory interleukin (IL)-1b and IL-6, and 
in microglial activation were elicited by Ang-(1-7) [101, 121]. In addition, Ang-
(1- 7) decreased the levels of oxidative stress and suppressed NF-kB activity, a 
transcriptional regulator involved in inflammation, which was accompanied by a 
reduction of pro-inflammatory cytokines and cyclooxynease-2 (COX-2) in the peri- 
infarct regions [66]. The beneficial effects of Ang-(1-7) on ischemic stroke were 
reversed by the MasR antagonist but not by the AT2 receptor antagonist, suggest-
ing the involvement of MasR. Neuronal overexpression of ACE2 protects the brain 
from ischemia-induced damage [27], and this effect was greater in older animals 
[144]. Blockade of the MasR pathway in the brain partially abolished the beneficial 
effects of ACE2 overexpression, suggesting that Ang-(1-7) production that results 
from ACE2 overexpression may exert this protective effect [143].

Ang-(1-7) promotes brain angiogenesis. Infusion of Ang-(1-7) for 4 weeks pro-
motes endothelial cell proliferation and increases brain capillary density in rats with 
permanent MCAO, which was accompanied by endothelial nitric oxide synthase 
(eNOS) activation and upregulation of NO. Furthermore, Ang-(1-7)-induced brain 
angiogenesis attenuates the reduction of regional cerebral blood flow during subse-
quent ischemia and leads to the improvement in stroke outcome [67]. Supporting 
the beneficial effects of the depressor arm of the RAS, it has been shown that the 
expression of ACE2, Ang-(1-7), and MasR was upregulated after acute cerebral 
ischemic stroke in rats [85].

It has been shown that Ang-(1-7) exerts a protective role in blood–brain barrier 
damage. In cerebral ischemia reperfusion injury- and hypoxia-induced blood–brain 
barrier damage, Ang-(1-7) promotes the expression of zonula occludens-1 and clau-
din-5, which are proteins associated with tight junction in cerebral endothelial cells 
of the blood–brain barrier [130].

In an attempt to elucidate the cellular target for the protective effect elicited by 
Ang-(1-7) in the brain, we investigated the different cellular types protected by Ang-
(1-7) by transmission electron microscopy in the model of brain damage induced by 
Shiga toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli. Stx2 induced 
neurodegeneration and axon demyelination. Ang-(1-7) prevented neuronal damage 
and hampered the Stx2-induced demyelination through the stimulation of MasR [53].

Evidence suggests that Ang-(1-7) could have a role in the central motor control 
because it is able to affect the dopamine and GABA release in the dorsal striatum 
[120]. This assumption is supported by recent results of Costa-Besada and col-
leagues [28] showing that MasR immunostaining is present in dopaminergic neu-
rons and glial cells in the substantia nigra of rats, monkeys, and humans. In addition, 
these authors reported that the Ang-(1-7)/MasR axis in the dopaminergic system is 
downregulated with aging and this could facilitate the aging-related vulnerability to 
neurodegeneration [28].

Several recent studies demonstrated that ACE2/Ang-(1-7)/MasR interacts cen-
trally with different neurotransmitters, including gamma-aminobutyric acid (GABA), 

Brain



62

dopamine, and norepinephrine (NE) [51, 120, 129]. Therefore, besides autonomic car-
diovascular control, central Ang-(1-7) might be involved in several brain mechanisms, 
from hormone release to cognitive behavior. It has been reported that Ang-(1–7) is 
involved in learning and memory processes that occur in central limbic regions, such as 
the hippocampus [61, 78] and amygdala [2, 119]. Ang-(1-7) has been shown to enhance 
long-term potentiation in the CA1 region of the hippocampus [61] and in the lateral 
amygdala of rats [2]. Long-term potentiation and long-term depression are two forms 
of activity-dependent synaptic plasticity involved in learning and memory. MasR are 
highly expressed in the hippocampus [87], a critical brain structure for memory process-
ing. In addition, Ang-(1-7)/MasR axis has been shown to facilitate object recognition 
memory performance [78]. In diabetic rats, Ang(1-7) treatment upregulates the expres-
sion of glial fibrillary acidic protein (GFAP) and glial cell line-derived neurotrophic 
factor (GDNF), promoting neuron survival in the hippocampus, an effect blocked by 
treatment with A-779 [141]. In addition, Ang-(1-7) improves the cognitive deficits in 
rats subjected to permanent bilateral occlusion of the common carotid arteries [134]. 
Finally, the improvement of cognitive aspects in humans taking captopril has been 
attributed to the higher availability of Ang-(1-7) [126].

Central Ang-(1-7)/MasR axis is strongly associated with emotional stress and 
anxiety modulation [42]. Ang-(1-7) psychotropic activity was one of the first bio-
logical actions reported for this heptapeptide [64]. Mice lacking the MasR presented 
increased anxiety behavior [127]. It is worth to mention that the later finding was 
published even before the association between Mas protein and Ang-(1-7) [111]. 
Central administration of Ang-(1-7) attenuates the stress-induced tachycardia [80] 
and reduces anxiety [68]. More recently, it was shown that Ang-(1-7) ICV injection 
attenuated anxious-like behavior in two different transgenic rat lines [4, 68, 69]. In 
addition, it was shown, for the first time, that Ang-(1-7) was effective in attenuating 
depression phenotype [4, 68]. Further, it is interesting to observe that hypertensive 
patients who suffer from depression exhibit mood improvement after treatment with 
ACE inhibitor captopril [146], which in turn was shown to increase Ang-(1-7) lev-
els [21, 74]. Recently, it was shown that anxiety-like behavior of hypertensive rats 
was rescued in enalapril-treated animals after MasR blockade, unveiling an anti- 
depressive role for endogenous Ang-(1-7) [4]. Similar findings were found in mice 
by increasing ACE2 activity [129].

Evidence suggests that the amygdala may be a site involved in these ansiolitic 
effects [14, 95, 129]. MasR are robustly expressed in GABAergic neurons in the baso-
lateral amygdala (BLA) and ACE2 overexpression increases the spontaneous post-
synaptic inhibitory currents in this region [129]. Apart from modulating GABAergic 
actions, a direct functional interaction between MasR and the AT1R in the amygdala 
is also a possibility. Halbach and colleagues found that the increase in field potentials 
in the BLA induced by Ang II was reversed in MasR knockout mice, where a decrease 
in field potentials was observed [60]. Another area implicated in the integration of 
emotional behavior and sympathetic drive to the periphery is the periaqueductal gray 
(PAG). Xing et al. [135] showed that Ang-(1-7) interaction with MasR inhibits neu-
ronal activity of dorsolateral PAG by NO-dependent signaling pathway via a MasR 
activation [135], an effect that was impaired in chronic heart failure animals [136].
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 Neuromodulatory Actions of Ang-(1-7)

Ang-(1-7) possesses two main characteristics of a “neuromodulator,” a diffuse site 
of action and the ability to influence the release and the respective effects of certain 
neurotransmitters [75]. NO has been strongly associated as a signaling molecule 
that mediates Ang-(1-7) effects in neurons. NO in the CNS acts as a sympatho- 
inhibitory molecule in meditating sympathetic outflow [96]. Ang-(1-7) is present 
in neurons containing NO synthase [18] and central administration of Ang-(1-7) 
stimulates NO release [142]. In the brain, Ang-(1-7) increases NO levels via acti-
vation of the MasR and the Ang II AT2R [39, 52]. Ang-(1-7) increases neuronal 
NO synthase- derived NO levels, increasing neuronal potassium current in cate-
cholaminergic neurons [140]. In the PAG, Ang-(1–7) plays an inhibitory role via a 
NO-dependent signaling pathway, and spontaneous firing activity of PAG neurons 
is largely reduced in the presence of Ang-(1-7) [135].

Consistent evidences suggest that Ang-(1-7) can modulate GABA actions in 
the brain. GABA is a key neurotransmitter in key regions controlling the sympa-
thetic tone [59, 96]. Ang-(1-7) increases extracellular GABA concentration in the 
rat striatum and this effect is blocked by the NO synthase inhibitor L-NAME, sug-
gesting the participation of NO for the effect of Ang-(1-7) on GABA release [120]. 
MasR mRNA is present in a high percentage of GABAergic neurons in the BLA and 
expression of MasR mRNA is upregulated by ACE2 overexpression [129]. In addi-
tion, ACE2 overexpression increases the frequency of spontaneous inhibitory post-
synaptic currents in the BLA, an effect that is eliminated by central infusion of the 
MasR antagonist. These findings strongly suggest that ACE2 may influence GABA 
neurotransmission within the BLA via MasR activation [129]. Interestingly, the 
BLA is a site of action for Ang-(1-7) in attenuating acute emotional stress responses 
[95]. Curiously, transgenic rats that overexpress Ang-(1-7) are less responsive to 
diazepam (a GABAA receptor-modulating drug) on anxiety behavior modulation 
when compared to controls [89].

Additional evidence suggests that Ang-(1-7) modulates the release of substance P 
in the hypothalamus [34], glutamate and taurine in the caudal ventrolateral medulla 
[128], and dopamine in the hypothalamus [97] and in the basal ganglia [28, 120].

Concerning NE release, Ang-(1-7) exerts a sympathoinhibitory action on sym-
pathetic neurons from hypothalami of normotensive and SHR rats [50]. In neurons 
from hypothalamus and brainstem of normotensive and SHR, Ang-(1-7) leads to 
a decrease in NE levels in the synaptic cleft. This effect results from a decrease 
in neurotransmitter release and synthesis and an increase in its neuronal uptake. 
Thus, Ang-(1-7) through MasR elicits a decrease in NE release in the hypothala-
mus of normotensive and hypertensive rats in a bradykinin/NO-dependent manner 
through the cGMP/PKG pathway, which in turn, maintains low NE outflow [51, 52]. 
Ang-(1-7) also influences NE biosynthesis. The peptide through an AT2R-mediated 
mechanism downregulates tyrosine hydroxylase, the rate-limiting enzyme in cat-
echolamines biosynthesis, by increasing its degradation through stimulation of the 
ubiquitin-proteasome system, reducing in consequence NE biosynthesis in neurons 
from the hypothalamus of normotensive and SHR rats [83].
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NE transporter (NET) regulates the clearance of NE from the synaptic cleft. 
Changes in the activity of NET should have a significant impact on the concentra-
tion and duration of NE present in the synaptic cleft; thus, NET is essential for a 
fine-tuned control of sympathetic activity. Ang-(1-7) induces a long-term stimula-
tory effect on NE neuronal uptake by increasing NET transcription and expression 
[84]. Altogether, these results showed that Ang-(1-7) elicits a negative neuromodu-
latory role on NE neurotransmission, thus contributing to the modulation of NE 
homeostasis and maintaining appropriate synaptic NE levels during hypertensive 
conditions.
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 Introduction

The renin-angiotensin system (RAS) plays a key role in several target organs, such 
as heart and blood vessels, exerting a powerful control in the maintenance of homeo-
stasis [1–4]. In addition to the angiotensin-converting enzyme (ACE)/angiotensin 
(Ang) II/AT1 receptor axis, the RAS has a counter-regulatory axis composed by 
ACE2, Ang-(1-7), and Mas receptor. Ang-(1-7) is a biologically active component 
of the RAS which binds to Mas, inducing many beneficial actions, such as vaso-
dilatation, antifibrosis, antihypertrophic, and antiproliferative effects [5–13]. This 
peptide is produced mainly through the action of ACE2, which has approximately 
400-fold less affinity to Ang I than to Ang II [14–16]; therefore, Ang II is the major 
substrate for Ang-(1-7) synthesis. In fact, the conversion of Ang II to Ang-(1-7) by 
ACE2 is important to regulate the RAS activity since Ang-(1-7) induces opposite 
effects to those elicited by Ang II [7–14]. Additionally, ACE2 can form Ang-(1–7) 
less efficiently through hydrolysis of Ang I to Ang-(1-9) with subsequent Ang-(1-7) 
formation [14].
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The relevance of the RAS is highlighted by the success obtained in therapeutic 
strategies based on the pharmacological inhibition of this system in cardiovascular 
diseases [17–22]. Blockade of the RAS with ACE inhibitors (ACEi) or AT1 receptor 
antagonists (ARBs) improves the outcomes of patients with hypertension, acute myo-
cardial infarction and chronic systolic heart failure [23–25]. Importantly, it has been 
shown that administration of ACEi and ARBs causes substantial increases in plasma 
Ang-(1-7) levels, leading to the assumption that part of their clinical effects might be 
mediated by this heptapeptide [26–28]. Indeed, some effects of ACEi and ARBs can 
be blocked or attenuated by A-779, a Mas antagonist, confirming the role of Ang-(1-7) 
in the actions of these compounds [29]. The beneficial effects of Ang-(1-7), as well as 
its likely participation in the effects of the ACEi and ARBs, represent evidences for 
the potential target of the ACE2/Ang-(1-7)/Mas axis as a therapeutic strategy

 Cardiomyocytes and Coronary Vessels

The heart is one of the most important target for the actions of the ACE2/Ang-(1-7)/
Mas axis. Since the discovery of Ang-(1-7) in the late 1980s [30, 31], several studies 
have demonstrated important effects of this peptide in hearts. The presence of Ang-(1-
7) and its receptor Mas in cardiomyocytes [32, 33], sinoatrial node [34], and coronary 
vessels [35, 36] and the ability of the heart to produce Ang-(1-7) [37, 38] are evidence 
of the role of this peptide in cardiac tissues. Additionally, ACE2 is expressed in myo-
fibroblasts, cardiomyocytes [39–41], as well as in coronary vessels [42, 43]. Classical 
pharmacotherapeutic agents used to treat heart failure, including ACEi, ARBs, and 
aldosterone receptor blockers, increase ACE2 activity and/or expression, indicating its 
importance in the cardiac diseases establishment and progression [44–46].

It has been observed that Ang-(1-7) modulates the inotropism of hearts. 
Overexpression of Ang-(1-7) in the heart using an engineered fusion protein leads 
to an increased left ventricular contractile function [11]. In contrast, Mas-deficient 
mice present an impairment of heart function [33]. However, in rabbit right papil-
lary muscles, Ang-(1-7), through its binding to Mas, induces a negative inotropic 
effect modulated by the endocardial endothelium and nitric oxide, independently of 
AT1 or AT2 receptors activation [47].

Although further elucidations regarding the signaling pathways in cardiomyo-
cytes involving Mas activation are necessary, some mechanisms have been pro-
posed. Transgenic rats harboring an Ang-(1-7)-producing fusion protein in hearts 
show an increased Ca2+ transient amplitude, faster Ca2+ uptake, and increased 
expression of SERCA2 [11]. In keeping with these results, cardiomyocytes from 
Mas-deficient mice present slower [Ca2+]i transients accompanied by a lower Ca2+ 
ATPase expression in the sarcoplasmic reticulum [33, 48]. Strikingly, acute expo-
sure to Ang-(1-7) has no demonstrable effects on Ca2+ transients [48] or on left 
ventricular myocyte L-type Ca2+ current responses [49]. Although acute Ang-(1-7) 
treatment failed to alter Ca2+ handling in ventricular myocytes of rats, these findings 
suggest an important role of Ang-(1-7)/Mas in the long-term maintenance of the 
Ca2+ homeostasis in the heart.
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In addition to the changes in calcium-handling proteins, Ang-(1-7) plays its 
effects in the heart by stimulating the nitric oxide (NO) production. Indeed, Ang-
(1-7) via Mas increases the synthesis of NO through a mechanism involving the 
activation of the endothelial NO synthase (eNOS) and AKT [48]. These effects were 
abolished by A-779 and are absent in cardiomyocytes from Mas-deficient mice [48]. 
In spontaneously hypertensive rats, Ang-(1-7) infusion upregulates cardiac NOS 
expression and activity through an AT2- and bradykinin-dependent mechanism [50].

Also, Gomes et al. [51] found that the treatment of isolated cardiomyocytes of 
rats with Ang-(1-7) efficiently prevents the Ang II-induced hypertrophy by mod-
ulating the calcineurin/NFAT signaling cascade. These effects were blocked by 
NOS inhibition and by guanylyl cyclase inhibitors, indicating that these effects are 
mediated by the NO/cGMP pathway. Also, Ang-(1-7) inhibits serum-stimulated 
mitogen- activated protein kinase (MAPK) activation in cardiac myocytes [52] and 
prevents the Ang II-mediated phosphorylation of ERK1/2 and Rho kinase in hearts 
in a dose- dependent manner [53].

Ang-(1-7)/ACE2/Mas axis is also important in the maintenance of the heart 
structure. Genetic deletion of Mas receptor leads to higher levels of collagen types 
I and III and fibronectin in both right and left ventricles from adult mice [33, 54]. 
Interestingly, neonatal mice presented a similar pattern of ECM protein expression as 
observed in adult mice [54], indicating that the structural disturbances seen in hearts 
of adult mice are not due to chronic adaptative alterations. Mas activation is also 
involved in the development of the gestational cardiac remodeling. Pharmacological 
blockade or genetic deletion of Mas attenuated the pregnancy- induced myocyte 
hypertrophy and increased the collagen type III deposition in left ventricles from 
pregnant normotensive rats [35]. Additionally, exercise training increases Ang-(1-7) 
levels and upregulates Mas receptor in hypertrophied rat hearts [55], suggesting that 
ACE2/Ang-(1-7)/Mas axis plays a role in physiological cardiac hypertrophy.

The vasodilatory action of Ang-(1-7) has been reported in several vascular beds, 
including coronary arteries [5, 6, 13, 56–63]. In fact, early studies have reported the 
endothelium as the major site for generation [64] and metabolism [26] of Ang-(1-
7). In addition to Ang-(1-7), endothelial cells also express ACE2 and Mas [65, 66].

Initially, the coronary vasodilator effect of Ang-(1-7) was observed in coronary 
vessels of dogs [56, 67] and pigs [57, 68]. This effect was abolished by NOS inhibi-
tor and attenuated by bradykinin B2 receptor antagonist. Accordingly, Ang-(1-7) 
potentiates the vasodilator effect of bradykinin in coronary vessels of dogs [56] and 
rat [69]. van Esch et al. [70] demonstrated that Ang-(1-7) blocked the AT1-induced 
vasoconstriction but did not affect the coronary circulation when applied alone at 
nanomolar or micromolar concentrations in isolated rat hearts. However, Ang-(1-7) 
or the Mas agonist, AVE 0991, at picomolar concentrations, induced potent coro-
nary vasodilation in healthy hearts through Mas activation and the NO-guanylate 
cyclase pathway [36, 43]. These effects were absent in pressure overload-induced 
hypertrophic hearts, but the pre-treatment with an AT1 receptor antagonist restored 
the Ang-(1-7)-induced coronary vasodilation in these hearts [43, 71]. Ang-(1-7) also 
evokes coronary vasodilation in isolated perfused mice hearts, through a mechanism 
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involving interaction of its receptor Mas with AT1 and AT2 receptors leading to 
release of prostaglandins and nitric oxide [72]. In addition, isolated perfused hearts 
from Mas-deficient mice presented a higher coronary perfusion pressure [33], which 
confirms the role of Mas in the control of the coronary circulation. Altogether, these 
data show that Ang-(1-7) produces a complex coronary effect, involving NO release 
and interactions among Mas and AT1, AT2, and B2 receptors.
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 Introduction

Thirty years ago, the cardiology field achieved a major step forward with the 
landmark publication of the beneficial effects of angiotensin converting enzyme 
(ACE) inhibition on congestive heart failure (HF) [1, 2]. Those studies showed 
for the first time that the addition of enalapril to conventional therapy was asso-
ciated with reduction in death and improved symptoms in patients with severe 
congestive HF [1]. The same year saw the publication of our first report regard-
ing the biological actions of angiotensin-(1-7) [Ang-(1-7)] [3], which is now 
recognized as the effector hormone that within the renin angiotensin aldoste-
rone system (RAAS) counterbalances the pro-hypertensive and growth-inducing 
actions of angiotensin II (Ang II) [4, 5]. For readers less familiar with the topic 
at hand, our laboratory then linked the antihypertensive actions to ACE inhibition 
to increased circulating Ang-(1-7) levels as vascular endothelial ACE degraded 
Ang-(1-7) into angiotensin-(1-5) [Ang-(1-5)] [6]. This finding led to explore the 
possibility that Ang-(1-7) antihypertensive and cardio-renal protective actions 
in part explained ACE inhibitors’ mechanism of action [7]. Further studies in 
rodents [8–11] and hypertensive patients [7, 12–14] revealed a role of Ang-(1-7) 
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in contributing to the antihypertensive and cardio-renal protective functions by 
ACE inhibition. On the other hand, it has been reported that blockade of ACE 
with ramipril prevented the adverse cardiac effects of high Ang-(1-7) doses in 
rats with sub-total nephrectomy [15].

It was a natural corollary to the learning of Ang-(1-7) biological actions that 
attention was paid to its potential role as a modulator of cardiac function. Earlier 
studies documented an uncoupling of Ang-(1-7) concentrations in canine’s coro-
nary sinus blood during the acute phase of myocardial infarction both before and 
following administration of the ACE inhibitor benazeprilat [16]. A more complete 
study showed selective increased expression of immunoreactive Ang-(1-7) confined 
to cardiac myocytes of the penumbra region of the ischemic myocardium surround-
ing the rat’s left ventricle [17]. Although local Ang-(1-7) generation in the intact 
heart was demonstrated by Santos et al. [16] and Campbell et al. [18], the ques-
tion of whether local cardiac tissue production of Ang-(1-7) is the effector pathway 
opposing adverse myocardial remodeling in patients remains to be fully answered. 
Variances in methodology, experimental conditions, and species differences might 
explain discordant effects of ACE inhibition on Ang-(1-7) across the heart circula-
tion [19–22].

This chapter summarizes what we know about the role of Ang-(1-7) as a modu-
lator of heart function. Review of the literature is based on search of the PubMed 
database, inclusion of the original studies performed by our laboratory, and studies 
examined were restricted to English language reports.

 Angiotensin-(1-7) and Heart Function

This book reviews the role that Ang-(1-7) plays in counterbalancing Ang II mecha-
nisms of action in normal and disease stages [5, 23–27]. A commented list of key 
articles linking Ang-(1–7) actions with heart function in health and disease is pre-
sented in Table 1. Several studies document Ang-(1-7) actions in reversing myo-
cyte hypertrophy [28], exhibiting antiproliferative actions [29–31], counteracting 
inflammatory signals, and expression of radical oxygen species (ROS) [32, 33], 
facilitating nitric oxide (NO) release [34, 35] and inhibiting vascular atherosclerosis 
[36]. Signal transduction pathways in which Ang-(1-7) acts as a ligand are complex, 
engaging not only the Mas receptor [37, 38] but also the binding of the heptapeptide 
to AT2-receptors (AT2-R) and bradykinin B2 receptors [39, 40]. Decarboxylation of 
Ang-(1-7) or cleavage of phenylalanine [8] in angiotensin A [41] yields a peptide 
mirroring Ang-(1-7) mechanisms of action through binding to the Mas-related G 
protein couple receptor D (MrgD) [42–44].

Loot et  al.’s original studies [45] provided the first comprehensive functional 
document of Ang-(1-7) acting as a cardioprotective agent in myocardial infarction 
and HF. In this study [45], the investigators assessed the effect of an 8-week intra-
venous infusion of Ang-(1-7) in left ventricular end-diastolic pressure and dP/dt in 
the progression to HF induced by coronary artery ligation. The improvement in left 
ventricular function was accompanied by maintenance of baseline coronary flow 
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Table 1 Ang-(1-7) and Heart Function

Year Reference Summary of findings
2014 Alghamri 

et al. [48]
Myocardial aminopeptidase degrades Ang-(1-7) into Ang-(2-7).

2009 Al-Maghrebi 
et al. [82]

In streptozotocin-treated SHR, Ang-(1-7) restores left ventricular 
function from 40 min of global ischemia in isolated perfused hearts. 
Treatment with the Ang-(1-7) receptor antagonist A779 recovers 
cardiac function.

2000 Almeida et al. 
[138]

Another study showing potentiation of coronary vasodilator effects of 
bradykinin by Ang-(1-7).

2003 Averill et al. 
[17]

First demonstration of increased Ang-(1-7) immunoreactivity limited 
to cardiac myocytes and ventricular tissue surrounding myocardial 
infarction in Lewis rats.

1996 Brosnihan 
et al. [34]

Ang-(1-7) induces coronary artery vasodilation through stimulation of 
kinin and nitric oxide.

2004 Campbell 
et al. [18]

Ang-(1-7) levels in coronary sinus and arterial blood of HF patients do 
not change following acute administration of an ACE inhibitor.

2005 Castro et al. 
[139]

Ang-(1-7) produces complex effects in isolated, perfused mouse hearts 
leading to the release of prostaglandins and nitric oxide through 
interaction with types 1 and 2 Ang II receptors.

2006 Castro et al. 
[23]

Genetic deletion or pharmacological blockade of Mas receptors in 
mice worsens recovery following ischemia/reperfusion.

2009 Castro et al. 
[140]

In rabbit, right-papillary muscle Ang-(1-7) through its binding to Mas 
receptor induces a negative inotropic effect modulated by the 
endocardial endothelium and NO; this response is independent of AT1 
or AT2 receptors activation.

2016 Chang et al. 
[141]

Ang-(1-7) downregulates hypoxia pro-apoptotic signaling cascade by 
decreasing protein levels of hypoxia-inducible factor 1α (HIF-1α) and 
insulin-like growth factor binding protein-3 (IGFBP3). Ang-(1-7) 
activates the IGF1R/PI3K/Akt signaling pathways. Silencing the Mas 
receptor or exposure to the Ang-(1-7)-antagonist A779 abrogated these 
effects.

2010 Costa et al. 
[142]

Further evidence of Ang-(1-7) ability to stimulate cardiac NOS in 
ventricles from SHR through an AT2 receptor mechanism.

2013 Cunha et al. 
[51]

Oral treatment with AVE 0991 reduces blood pressure and cardiac 
remodeling in 2 K-1C hypertensive rats.

1999 Davie and 
McMurray 
[94]

Report no effects of Ang-(1-7) on forearm blood flow in HF patients.

2013 De Almeida 
et al. [143]

These interesting studies document enhanced Ca++ intracellular 
transients in cardiac myocytes during co-administration of aldosterone 
and Ang-(1-7). The cross-talk may be related to enhanced NO release 
by Ang-(1-7).

2015 De Almeida 
et al. [52]

Ang-(1-7) protective signaling against DOCA-induced diastolic 
dysfunction occurs independently of BP attenuation and is mediated 
by the activation of pathways involved in Ca++ handling, hypertrophy, 
and survival.

2004 De Mello 
[118]

Antiarrhythmic Ang (1-7) actions may be explained by activation of 
the sodium pump which hyperpolarizes the cardiac myocytes and 
re-establishes impulse conduction during ischemia/reperfusion.

2009 De Mello 
[119]

Ang (1-7) has effects on cardiac myocytes cell volume that is 
counteracted by ouabain.
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Table 1 (continued)

Year Reference Summary of findings
2014 De Mello 

[144]
Ang-(1-7) prevents impairment of cell communication and impulse 
propagation in cardiac myocytes obtained from Sprague Dawley rats.

2015 De Mello 
[145]

Ang-(1-7) increases the inward calcium current in cardiomyocytes 
from WKY rats.

2007 De Mello 
et al. [146]

First direct demonstration of Ang-(1-7) cardioprotective actions 
through activation of the sodium pump, hyperpolarization of the cell 
membrane, and increased conduction velocity in cardiomyopathic 
hamsters.

2017 De Moraes 
et al. [128]

Further confirmation of Ang-(1-7) vasodilator actions in the coronary 
circulation.

2008 Dias-Peixoto 
et al. [147]

Extending the seminal studies of De Mello [118], these authors 
showed that chronic Mas-deficiency leads to impaired Ca++ handling in 
cardiomyocytes.

2012 Dias-Peixoto 
et al. [129]

Broad examination of Mas receptor expression by Western blots 
demonstrates downregulation of the protein in isoproterenol-induced 
HF or 21 days post-myocardial infarction.

2016 Diniz et al. 
[130]

Experimental hyperthyroidism that causes cardiac hypertrophy in 
Wistar rats is associated with increased cardiac Ang-(1-7), ACE2, and 
Mas receptor levels.

2012 Dong et al. 
[84]

In a rat model of diabetic cardiomyopathy, 4 weeks after ACE2 gene 
transfer, increased cardiac ACE2 expression is accompanied by 
enhanced matrix metalloproteinase-2 (MMP-2) activity, reduced 
myocardial fibrosis, improved left ventricular (LV) ejection fractions, 
and decreased LV volumes. Authors propose that ACE2 overexpression 
may enhance collagen degradation by MMP-2.

2008 Ebermann 
et al. [85]

AVE0991, a nonpeptide angiotensin-(1-7) receptor agonist, rescues 
cardiac function in rats with streptozotocin-induced diabetes mellitus.

2005 Ferrario et al. 
[148]

Chronic administration of lisinopril or losartan is associated with 
increases in circulating Ang-(1-7) and cardiac ACE2 gene transcripts.

2007 Ferreira et al. 
[73]

AVE-0991, reported as a selective Ang-(1-7) agonist, improves 
contractile variables in isolated hearts and diminishes the worsening of 
cardiac function following coronary artery occlusion. Similar results 
were reported by the same authors in another publication in which 
isoproterenol is used to induce cardiac injury [55].

2010 Ferreira et al. 
[54]

Transgenic (TG) rats expressing an Ang-(1-7)-producing fusion 
protein showed less deposition of cardiac collagen and fibronectin in 
response to isoproterenol-induced HF.

2011 Ferreira et al. 
[149]

An ACE2 activator has cardioprotective actions in SHR associated 
with reduction in ERK phosphorylation and increase in Ang-(1-7).

2008 Filho et al. 
[132]

In SHR exposed to swimming training, Ang-(1-7) levels and Mas 
receptor mRNA are increased in their hypertrophic left ventricles.

2008 Gallagher 
et al. [150]

ANG II reduced ACE2 activity and ACE2 mRNA in rat neonatal 
cardiac myocytes and cardiac fibroblasts, effects blocked by losartan. 
Ang-(1-7) counteracted the downregulation of ACE2 in these rodent 
cells.

2012 Gava et al. 
[151]

Investigated the impact of genetic deletion of the Mas receptor or AT2 
receptors on the expression of specific extracellular matrix (ECM) 
proteins in atria, right ventricles, and atrioventricular (AV) valves of 
neonatal and adult mice. Findings demonstrate Mas receptor 
involvement in the expression of ECM proteins within both the 
ventricular myocardium and AV valve.
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Table 1 (continued)

Year Reference Summary of findings
2007–
2010

Giani et al. 
[133, 
152–154]

A series of studies from these investigators in Argentina elucidate the 
signaling molecules mediating Ang-(1-7) actions. Ang-(1-7) stimulates 
STAT3 and STAT5a/b phosphorylation and stimulates the 
phosphorylation of JACK2, IRS-1 and Akt pathways in the rat heart.

2010 Gomes et al. 
[155]

Transgenic rat with increased levels of circulating Ang-(1-7) 
[TGR[A1-7]3292] are protected from Ang II-induced pathological 
remodeling of ventricular cardiomyocytes. Cardiomyocytes from 
TGR(A1-7)3292 rats infused with Ang II presented increased 
expression levels of neuronal NO synthase and cGMP.

2004 Goulter et al. 
[156]

ACE and ACE2 mRNAs upregulated in human ventricular 
myocardium from donors with idiopathic dilated cardiomyopathy and 
ischemic cardiomyopathy.

2006 Grobe et al. 
[157]

In DOCA-salt-induced hypertensive rats, Ang-(1-7) shows antifibrotic 
actions that are independent of blood pressure or cardiac hypertrophy.

2007 Grobe et al. 
[74]

Prevention of cardiac remodeling and interstitial fibrosis by Ang-(1-7) 
infusion independent of blood pressure.

2012 Guimaraes 
et al. [158]

Assessed the effect of exercise training on collagen deposition and 
RAS components in the heart of FVB/N mice lacking Mas receptor. 
The data confirm a role of Ang-(1-7)/Mas axis in mitigating Ang 
II-mediated cardiac remodeling.

2017 Guo et al. [56] Sirtuin-3-mediated deacetylation of FoxO3a, which triggers SOD2 
expression, participates in the intracellular mechanisms underlying 
Ang-(1-7) actions.

2015 Hao et al. 
[159]

Combination of Ang-(1-7) and the ACE inhibitor perindopril 
counteracts left ventricular remodeling in diabetic rats.

2015 Hao et al. [86] Treatment with ANG-(1-7) prevents diabetes-induced right ventricular 
fibrosis and dysfunction.

2010 He et al. [160] AVE0991 prevents Ang II-inducing myocardial hypertrophy in a 
dose-dependent fashion, a process that may be associated with the 
inhibition of TGF-beta1/Smad2 signaling in neonatal cardiomyocytes.

2017 Hisatake et al. 
[95]

High serum ACE2 concentration associated with lower serum 
Ang-(1-7) levels are present in patients with a diagnosis of acute HF.

2004 Ishiyama et al. 
[161]

First demonstration that Ang II exerts a negative feedback on ACE2 
through AT1 receptors.

2005 Iwata et al. 
[162]

In adult rat cardiac fibroblasts, Ang-(1-7) inhibits collagen synthesis 
and opposes the effects of Ang II on endothelin-1 and leukemia 
inhibitory factor mRNAs.

2018 Jesus et al. 
[163]

Alamandine via MrgD receptors induces AMPK/NO signaling to 
counteract Ang II-induced cardiac hypertrophy in C57BL/6 mice.

2016 Joviano 
Santos et al. 
[121]

Explored anti-arrhythmic Ang-(1-7) actions in a variety of 
experimental setups.

2007 Kozlovski 
et al. [164]

Ang-(1-7) in isolated guinea pig heart induces coronary vasodilation 
mediated by endogenous bradykinin and nitric oxide release through 
endothelial B(2) receptors.

1990 Kumagai et al. 
[165]

Coronary artery vasoconstriction is reported from delivery of high 
doses of Ang-(1-7) (10−5) to isolated heart preparations from Syrian 
hamsters with and without cardiomyopathy.
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Table 1 (continued)

Year Reference Summary of findings
2009 Lei et al. 

[166]
Ang (1-7) and enalaprilat improve left ventricular function of isolated 
rat heart perfused by burn serum.

2017 Lei et al. [87] Exposing H9c2 cells to high glucose enhances leptin and 
phosphorylated (p)-MAPK pathway expressions. Levels of leptin and 
p-p38 MAPK/p-extracellular signal-regulated protein kinase 1/2 
(ERK1/2), but not p-c-Jun N-terminal kinase, were significantly 
suppressed by treatment of the cells with Ang-(1-7).

2009 Li et al. [167] Demonstrates beneficial effect of Ang-(1-7) injection in mice with 5/6 
nephrectomy.

2015 Liang et al. 
[168]

Pressure overload from aortic stenosis in SD rats is accompanied by 
increases in plasma ACE, ACE2, and Ang-(1-7). These changes 
occurred in association with increased myocardial ACE2 
mRNA. Telmisartan reverses these changes in the ACE2/Ang-(1-7) 
axis together with increased cardiac Mas mRNA and protein.

2008 Liao et al. 
[169]

In isolated rat hearts, Ang-(1-7) reverses oxidative stress induced by 
ischemic–reperfusion injury.

2010 Lin et al. 
[170]

Ang-(1-7) upregulates ACE2 expression in human cardiac fibroblasts 
extending original studies of Ishiyama et al. [161] and Gallagher et al. 
[150, 171] showing that Ang II inhibits ACE2 expression.

2010 Lin et al. 
[170]

Human cardiac fibroblasts respond to Ang II by increasing ACE2 
expression through AT1 receptors coupled to activation of ERK-MAP 
signaling pathways. Ang-(1-7) augments ACE2 expression through a 
Mas receptor mechanism, suggesting that the heptapeptide acts as a 
positive feedback loop on ACE2.

2010 Liu et al. 
[172]

Ang-(1-7) reverses atrial fibrillation and associated atrial fibrosis 
induced in canines by chronic rapid pacing.

2011 Liu et al. 
[173]

In chronically paced canine hearts, atrial ionic currents and action 
potential duration correlated with atrial mRNA expression of I(TO) 
Kv4.3 and I(CaL)α1C subunits. Changes induced by the 
arrhythmogenic pacing stimuli were reversed by irbesartan and 
Ang-(1-7) but not enalapril administration.

2012 Liu et al. 
[174]

A rat model of Adriamycin-induced dilated cardiomyopathy shows 
that Ang-(1-7) attenuates left ventricular dysfunction and myocardial 
apoptosis by downregulating caspase-3 and Bax and upregulating 
anti-apoptotic protein B-cell lymphoma-extra-large (Bcl-xL) 
expression.

2002 Loot et al. 
[45]

In this classic study of Ang-(1-7) cardioprotection mechanisms, the 
authors show for the first time a beneficial effect of Ang-(1-7) on HF 
progression due to occlusion of a coronary artery in Sprague Dawley 
rats.

2015 Luo et al. 
[175]

Ang-(1-7) counteracts impairment of cardiac Ca++ in a rat model of HF 
due to coronary artery occlusion.

2011 Marques et al. 
[75]

An oral formulation developed by including Ang-(1-7) in 
hydroxypropyl beta-cyclodextrin (HPbetaCD) in normal, infarcted, 
and isoproterenol-treated rats improves cardiac function.

2013 Martins et al. 
[176]

Ang-(1-7) attenuates air-jet-induced emotional stress tachycardia in 
Sprague Dawley rats.

2012 McCollum 
et al. [177]

Cardiac fibroblasts from neonatal rat hearts reveal reduced 
(3)H-thymidine-leucine and (3)H-thymidine-proline incorporation by 
Ang-(1-7) and Ang II- or ET-1-stimulated increase in phospho-ERK1 
and -ERK2. Authors suggest that Ang-(1-7) upregulated DUSP1 to 
reduce MAP kinase activity and synthesis of mitogenic prostaglandins.
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Table 1 (continued)

Year Reference Summary of findings
2012 McCollum 

et al. [58]
ANG-(1-7) upregulates DUSP-1 to reduce ANG II-stimulated ERK 
activation.

2005 Mendes et al. 
[59]

Cardiac content of Ang II is reduced by chronic Ang-(1-7) infusion.

2014 Meng et al. 
[178]

A779, an Ang-(1-7) antagonist, exacerbates cardiac damage and 
inflammatory response due to chronic Ang II infusion in rats.

2008 Mercure et al. 
[60]

Targeted Ang II or Ang-(1-7) overproduction in the heart of transgenic 
mice does not alter myocardial contractility. However, an eight-fold 
cardiac Ang-(1-7) increase is associated with reduced cardiac 
hypertrophy and fibrosis compared to non-transgenic mice. Cardiac 
Ang(1-7) selectively modulates some of the downstream signaling 
effectors of cardiac remodeling.

2014 Mori et al. 
[88]

Ang-(1-7) treatment ameliorates myocardial hypertrophy and fibrosis 
with normalization of diastolic dysfunction in db/db mice.

1997 Neves et al. 
[122]

These early studies in isolated-perfused hearts show that Ang-(1-7) 
facilitates reperfusion arrhythmias.

2014 Niu et al. 
[179]

Ang-(1-7) inhibits cell proliferation and AVP-stimulated collagen 
production in isolated cardiac fibroblasts from neonatal rats by 
inactivating Mas receptor-calcineurin-NF-κB signaling pathway.

2017 Pachauri et al. 
[180]

Ang-(1-7) improves ischemic preconditioning in rat’s heart.

2008 Pan et al. 
[181]

Transcript expression of matrix metalloproteinase MMP-9 and TIMP-2 
is downregulated by Ang(1-7) in human cardio fibroblasts.

2008 Pan et al. 
[181]

Report that Ang-(1-7)-induced decreased ratios of MMPs to TIMPs 
mRNAs in human cardiac fibroblasts attenuate Ang II-induced cardiac 
remodeling.

2015 Papinska et al. 
[89]

Short-term Ang-(1-7) infusion in db/db mice improves heart function 
as well as bone marrow and blood levels of endothelial and 
mesenchymal stem cells.

2016 Papinska et al. 
[90]

Ang-(1-7) improves heart function and reduces oxidative stress in db/
db mice.

2012 Patel et al. 
[97]

The Ang II receptor antagonist – Irbesartan – and Ang-(1-7) prevented 
cardiac hypertrophy and improved cardiac remodeling in pressure- 
overloaded ACE2-null mice by suppressing NADPH oxidase and 
normalizing pathological signaling pathways.

2015 Patel et al. 
[182]

Treatment of wild-type male C57BL/6 mice with recombining ACE2 
(rhACE2) prevents Ang II-induced cardiac hypertrophy, diastolic 
dysfunction while A779 prevented these beneficial effects and 
precipitated systolic dysfunction. rhACE2 effectively antagonized Ang 
II-mediated myocardial fibrosis, whereas myocardial oxidative stress 
and matrix metalloproteinase 2 activity were further increased by 
Ang-(1-7) inhibition even in the presence of rhACE2. Authors 
concluded that blocking Ang-(1–7) action prevents the therapeutic 
effects of rhACE2 in the setting of elevated Ang II.

2011 Peltonen et al. 
[183]

Decreased expression of Mas-receptor in human aortic valve disease.

1994 Porsti et al. 
[184]

Ang-(1-7) elicited a concentration-dependent dilator response (ED50> 
or = 2 μM) in porcine coronary artery rings markedly attenuated by the 
nitric oxide synthase inhibitor, NG-nitro-L-arginine, and abolished 
after removal of the endothelium.
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Table 1 (continued)

Year Reference Summary of findings
2011 Qi et al. [185] Lentivirus-mediated overexpression of Ang-(1-7) prevents myocardial 

infarct-induced cardiac dysfunction and increased cardiac ACE2 and 
bradykinin B2 mRNAs in Sprague Dawley rats. Parallel investigation 
in neonatal cardiac myocytes showed a beneficial effect of Ang-(1-7) 
on inflammatory cytokines.

2014 Raffai et al. 
[186]

Bradykinin responses potentiated by Ang-(1-7) and captopril not 
affected by the BK1 antagonist SSR240612 and remain augmented in 
the presence of either N-nitro-L-arginine methyl ester hydrochloride 
plus indomethacin or TRAM-34 plus UCL-1684.

1999 Roks et al. 
[110]

ACE activity in human plasma and human atrial tissue inhibited by 
Ang-(1-7) with an IC50 of 3.0 and 4.0 micromol/L. Ang-(1-7) blocks 
Ang II-mediated vasoconstriction in human internal mammary arteries.

2010 Santiago et al. 
[63]

TG rats overexpressing an angiotensin Ang-(1-7)- fusion protein 
leading to increased circulating levels of the heptapeptide are protected 
against cardiac dysfunction and fibrosis and also present an attenuated 
increase in blood pressure after DOCA-salt-induced hypertension.

1990 Santos et al. 
[16]

In this first evaluation of Ang-(1-7) mechanism of action, Ang-(1-7) 
levels across the coronary circulation of the dog do not change in 
response to acute myocardial infarction or delivery of an ACE 
inhibitor.

2006 Santos et al. 
[187]

Extensive functional and molecular variables of genetic deletion of the 
Mas receptor in mice demonstrate a critical role of Ang-(1-7) in heart 
function.

2010 Shah et al. 
[188]

Ang-(1-7) increased ANP secretion at high atrial pacing via the Mas/
PI3K/Akt pathway and the activation of Na(+)/H(+) exchanger-1 and 
CaMKII.

2013 Souza et al. 
[189]

Documents a critical role of the Mas receptor in mediating coronary 
artery vasodilator activity through NO-related AT2 mechanisms.

2005 Tallant et al. 
[28]

Transfection of cultured myocytes with an antisense oligonucleotide to 
the Mas receptor blocked the Ang-(1-7)-mediated inhibition of 
serum-stimulated MAPK activation.

2016 Tanno et al. 
[65]

The AT1 receptor antagonist olmesartan reveals a role of ACE2/
Ang-(1-7)/mas axis and Nox4 expression in mediating cardiac 
hypertrophy in transgenic mice overexpressing renin in the liver.

2017 Teixeira et al. 
[190]

Ang-(1-7) binds to AT1 receptors without activating Gq, but triggering 
beta-arrestins 1 and 2 recruitment and activation. Authors conclude 
that Ang-(1-7) cardioprotective actions are mediated in part by acting 
as an endogenous beta-arrestin biased agonist of type 1 Ang II 
receptors.

2010 Trask et al. 
[191]

Chronic inhibition of ACE2 worsens cardiac remodeling and fibrosis 
in transgenic rats expressing the ren-2 gene ([mRen2]27).

2018 Tyrankiewicz 
et al. [101]

Changes in ACE/ACE2 balance from a panel of nine angiotensins in 
plasma, heart, and aorta of Tgalphaq∗44 mice reveal upregulation of 
the ACE2/Ang-(1-7) pathway during early-stage HF. End-stage HF 
associates with downregulation of ACE2/Ang-(1-7).

2010 Varagic et al. 
[67]

In SHR, deleterious effects of a high salt diet on cardiac function and 
structure are associated with reduced cardiac Ang-(1-7) content and 
ACE2 mRNA.

2011 Velkoska et al. 
[192]

In a rat model of renal impairment induced by subtotal nephrectomy, 
Ang-(1-7) increases cardiac ACE activity and reduces ACE2 activity. 
Authors suggest that in the presence of significant compromise renal 
function, Ang-(1-7) displays deleterious effects.
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Table 1 (continued)

Year Reference Summary of findings
2010 Wang et al. 

[79]
Studies in rats and mice deficient in Mas receptor or overexpressing 
Ang-(1-7) exclusively in the heart provide evidence that the beneficial 
effects may be related to circulating Ang-(1-7) and its stimulation of 
cardiac progenitor cells.

2005 Wang et al. 
[68]

Cardiac hypertrophy and fibrosis attenuated by chronic administration 
of Ang-(1-7) to rats with suprarenal coarctation of the aorta.

2014 Wang et al. 
[193]

Ang-(1-7) attenuates the increased diastolic intracellular Ca++ during 
reperfusion, restores the decreased peak Ca++ transients during 
ischemia, and reverses the decreased amplitude of Ca++ transient 
throughout the ischemia/reperfusion (I/R) periods in isolated rat 
ventricular myocytes. Ang-(1-7) suppresses the reactive oxygen 
species production in I/R, especially during the ischemic phase.

2016 Wang et al. 
[194]

The intermediate-conductance Ca++-activated K+ channel (KCa3.1) is a 
critical target of the ACE2/Ang-(1-7)/mas axis through inhibiting the 
ERK1/2 pathway.

2016 Wang et al. 
[195]

In a comparison of the cardioprotective actions of Ang II receptor 
antagonists in rats with hypertension induced by aortic constriction, 
the ACE2/Ang-(1-7)/mas axis appears to be engaged in the 
antihypertensive mechanisms associated with chronic administration 
of olmesartan, candesartan, and losartan.

2017 Wang et al. 
[78]

Blockade of Ang II receptors with two orally active antagonists 
confirms cardioprotective actions of the ACE2/Ang-(1-7)/mas axis in 
Sprague Dawley rats post-myocardial infarction.

2017 Wang et al. 
[135]

Comparison of responses to obesity-induced hypertension in male and 
female mice demonstrates a role for Mas agonists to provide 
cardioprotective activity.

2010 Wang, Y et al. In mice, Ang-(1-7) cardioprotection after myocardial infarction may be 
secondary to stimulation of cardiac progenitor cells.

2011 Watts et al. 
[196]

Ang-(1-7) protects right ventricular function following pulmonary 
embolism.

2012 Zeng et al. 
[80]

The nonpeptide Ang-(1-7) analog (AVE 0991) improves cardiac 
function in rats post-myocardial infarction.

2017 Zhang et al. 
[102]

Ang-(1-7) increases [Ca++]iT and produces positive inotropic and 
lusitropic effects in the LV and myocytes of isoproterenol-induced 
HF. These effects are mediated by the Mas receptor and involve 
activation of NO/BK pathways.

2015 Zhao et al. 
[197]

A model of hypoxia/reperfusion documents Ang-(1-7) effects on 
preventing mitochondrial dysfunction and induction of Akt 
phosphorylation.

2015 Zhao et al. 
[198]

Ang-(1-7) prevents acute electrical remodeling in dogs with acute 
atrial tachycardia via the PI3K/Akt/NO signaling pathway.

2015 Zhao et al. 
[81]

Cardiac angiogenesis stimulated by Ang-(1-7) occurs via increased 
expression of cardiac VEGF-D and MMP-9.

2016 Zhao et al. 
[199]

The study extends the antiarrhythmic Ang-(1-7) actions in canines by 
demonstrating that the heptapeptide may alleviate atrial structural and 
electrical remodeling in part by atrial natriuretic peptide secretion.

2015 Zhou et al. 
[103]

In rat myocytes collected from isoproterenol-induced HF, Ang-(1-7) 
increases iCa++,L responses.

2003 Zisman et al. 
[21]

Failing human hearts demonstrate increased Ang-(1-7)-forming 
activity from both Ang I and Ang II.
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and restoration of bradykinin-induced maximal coronary flow vasodilation. Loot’s 
et al. [45] original demonstration was in keeping with studies reporting Ang-(1-7) 
release in the coronary sinus blood draining the ischemic heart of canines [16] and 
the presence of robust Ang-(1-7)-specific immunostaining of heart tissue surround-
ing the scar region following myocardial infarction [17]. Over the next 15 years, 
Ang-(1-7) cardioprotective actions have been confirmed and expanded (Table  1) 
through the additional observations of a critical role of angiotensin converting 
enzyme 2 (ACE2) [46] as a component of the counterbalancing axis composed of 
Ang-(1-7) and the Mas receptor axis.

Studies in intact animal models of hypertension [4, 8, 10, 47–69], myocardial 
infarction [17, 45, 48, 70–81], and experimentally induced diabetes [19, 82–87] or 
genetically induced obesity [88–91] report improved cardiac function and reversal 
of cardiac adverse remodeling induced through augmenting the expression or activ-
ity of Ang-(1-7).

Failure of the cardiac pump to maintain adequate tissue perfusion pressure is a 
complex process engaging activation of neuro-hormonal mechanisms via enhanced 
release of norepinephrine by sympathetic nerve endings and tissue Ang II levels. 
Table 1 includes an extensive number of preclinical studies supporting a role for 
Ang-(1-7) as counteracting HF mechanisms [45, 73, 90, 92–104]. A recent study 
showed high Ang-(1-7) circulating levels in hypertensive patients with HF and pre-
served ejection fraction [105]. Reported Ang-(1-7) actions in inducing vasodilator 
responses in part mediated by potentiating the actions of bradykinin, NO, and pros-
taglandins may explain the benefit of the heptapeptide in halting heart failure pro-
gression [106, 107]. Extending early original studies by Benter et al. [49], Brosnihan 
et al. [35], and Iyers et al. [11], Paul et al. [108] confirmed an interaction between 
Ang-(1-7) and bradykinin in mediating the vasodilator actions of the heptapeptide. 
As reviewed by Lee et  al. [106] and Schindler et  al. [109], confirmation of the 
beneficial effects of Ang-(1-7) in preclinical studies to HF patients remains limited. 
While studies confirm Ang-(1-7) vasodilator actions in human forearm and internal 
mammary artery [110, 111], there is a dearth of direct investigative approaches 
in which Ang-(1-7) is evaluated as preventing or counteracting HF evolution in 
human subjects. Both Zisman et al. [21] and Campbell et al. [18] report increased 
Ang-(1- 7) in HF patients receiving ACE inhibitors, while a preliminary study pre-
sented in abstract form suggests increased myocardial Mas receptor expression 
during the remodeling stage [112]. The development of orally active compounds 
with Ang-(1- 7) activity included in hydroxy-propyl-beta-cyclodextrin (HPB-CD) 
[113] provides a potential avenue for the assessment of Ang-(1-7) cardioprotection 

Table 1 (continued)

Year Reference Summary of findings
2003 Zisman et al. 

[22]
Ang-(1-7) is formed in the heart of transplantation recipients. Values 
of Ang-(1-7) in human coronary sinus correlate with cardiac Ang II 
levels.

2011 Zong et al. 
[104]

Protective actions of telmisartan and losartan in Adriamycin-induced 
HF in rats linked to circulating Ang-(1-7).
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in randomized clinical trials. Shenoy et al. [114, 115] bioencapsulation of ACE2 is 
another strategy that could be used in HF patients.

Progression of hypertensive stages associated with adverse cardiac remodeling 
augments the risk for developing atrial fibrillation [116, 117]. Since our original 
observation showing that Ang-(1-7) enhanced the electrogenic sodium pump [118], 
antiarrhythmic Ang-(1-7) actions have been extended and confirmed in additional 
studies [118–122].

The initial observation that Ang-(1-7) mechanism of action could not be 
explained by the coupling of the ligand to known AT1 or AT2 receptors [123] led 
Santos and collaborators in Brazil to explore the nature of the receptor responsible 
for Ang-(1-7) actions. This effort led to the identification of the orphaned Mas onco-
gene receptor as the protein accounting for Ang-(1-7) cellular actions [37, 124]. The 
direct involvement of the Mas receptor in mediating cardiac myocyte growth was 
then documented by Tallant et al. [28]. To date, numerous studies confirm the role of 
the Mas receptor in mediating Ang-(1-7) cardiovascular actions (Table 1 and refer-
ences [64, 112, 125–135]). Altogether activation of the Mas receptor includes NO 
production by phosphoinositide 3-kinase (PI3K)-dependent Akt phosphorylation 
of NO synthase [136] and inhibition of mitogen-activated protein kinase (MAPK) 
phosphorylation [137] leading to release of arachidonic acid as well as prostacyclin-
mediated production of cyclic adenosine monophosphate (cAMP) and of cAMP-
dependent protein kinase activation [27].

Newer studies document that Ang-(1-7) restores myocyte L-type calcium cur-
rent (ICa,L) fluxes in experimentally induced HF through a Mas receptor signaling 
mechanism involving activation of NO/bradykinin pathways. Ang-(1-7)-provoked 
increases in [Ca++] transients induce positive inotropic and lusitropic effects in left 
ventricular function and myocyte harvested from isolated failing hearts contractility 
in HF [103].

 Summary

After almost two decades of skepticism as to whether Ang-(1-7) was anything other 
than an inert metabolite of Ang II [18, 94], the existence of a counterbalancing 
arm opposing Ang II mechanisms of actions is no longer denied. The modulatory 
antifibrotic and anti-hypertropic actions of Ang-(1-7) are well documented in mul-
tiple experimental conditions and species. Synthesis and expression of Ang-(1-7) 
in human hearts is documented, but clinical translation of these findings to thera-
pies counteracting the adverse cardiac remodeling associated with heart disease 
remains to be fully achieved. The development of therapeutic orally active formula-
tions involving prolonging Ang-(1-7) half-life and oral absorption and comparative 
efforts based on ACE2 should facilitate the design of randomized clinical trials to 
test the effectiveness of augmenting the activity of the ACE2/Ang-(1-7)/mas axis in 
the evolution of atrial fibrillation, cardiac recovery post-myocardial infarction, and 
HF progression.
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Ang-(1-7) and Vessels

Walyria O. Sampaio and Rhian M. Touyz

 Ang-(1-7), Vasodilation and Hemodynamics Effects

Vasodilation is the first described and most well-known vascular action of Ang-(1-
7) [1]. These effects are evident in various vascular beds, including peripheral, con-
duit, coronary, renal, and cerebral arteries. Ang-(1-7)-induced vasorelaxation has 
been observed in aortic rings of Sprague–Dawley [2] and mRen-2 transgenic rats [3], 
canine [4] and porcine coronary arteries [5], canine middle cerebral artery [6], piglet 
pial arterioles [7], and feline systemic vasculature [7], rabbit renal afferent arterioles 
[8], and mesenteric microvessels of normotensive, and hypertensive rats [9, 10]. Ang-
(1-7) also has a synergistic effect on bradykinin-mediated vasodilation, as observed in 
rat (de coronary vessels [11], rat and human kidney vessels [12, 13], mesenteric arter-
ies of normal and salt-fed rats [14, 15], and pancreatic microcirculation [16]. Ang-(1-
7) also potentiates the dose-dependent relaxing effects of ghrelin in pulmonary artery 
rings of rats [17]. In diabetic rats, chronic administration of Ang-(1-7) contributes to 
reduce the carotid resistance and to increase blood flow [18] (Fig. 1).

The specific local modulation of vascular tone and blood flow distribution is 
an essential effect of Ang-(1-7) on hemodynamics control. This specificity is well 
described by blood flow distribution studies with microspheres [19, 20]. Interestingly, 
simultaneous actions on blood flow distribution and cardiac output were observed, 
significantly impacting blood pressure regulation. Ang-(1-7) increases vascular 
conductance in the mesenteric, cerebral, cutaneous, and renal territories, decreasing 
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total peripheral resistance (TPR) by 26%. Additionally, Ang-(1-7) increases cardiac 
output (CO) by 30% thereby improving hemodynamic status and blood pressure 
regulation [19]. Likewise, these regional actions are found in transgenic rats with a 
lifetime increase in circulating Ang- (1-7)-(TGRL-3292) [20]. This model is char-
acterized by an increase in vascular conductance in the kidneys, lungs, adrenals, 
spleen, brain, testis, and brown fat tissue [20]. Further studies using Mas-deficient 
mice confirmed the important participation of Ang-(1-7) on flow distribution. As 
opposed to TGRL-3292 rats, Mas-deficient mice exhibit increased vascular resis-
tance of various territories such as kidney, lung, adrenal gland, mesentery, spleen, 
and brown adipose tissue, which leads to increased total peripheral resistance. On 
the other hand, the lack of Mas-receptor decreased cardiac index [21].

Although several studies confirm the vasodilatory action of Ang-(1-7) in animal 
models and isolated vessels, this effect is not so clear in the human vasculature 
and further studies are still warranted. Nevertheless, recent studies strongly indicate 
the participation of Ang-(1-7)/Mas cascade in human hemodynamics, especially in 
pathological conditions. Patients with acute heart failure have higher serum ACE2 
concentrations, lower serum Ang-(1-7) levels, and lower serum ACE activity and 
plasma aldosterone concentrations than healthy volunteers [22]. Van Twist et al. [23] 
observed a significant dose-dependent increase in blood flow to the kidney during 
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Fig. 1 Diagram demonstrating major vascular effects of Ang-(1-7). In general, Ang-(1-7) opposes 
actions of Ang II
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intrarenal infusion of Ang-(1-7) in hypertensive patients. These authors [23] also 
demonstrated that the effect of Ang-(1-7) infusion in renal blood flow was reduced 
in stenotic kidneys. This effect on renal blood flow was weakened in patients on a 
low-salt diet, probably due to the fact that low-salt diet leads to an increase in circu-
lating angiotensin peptides, including Ang-(1-7) [24]. Interestingly, similar finding 
was reported in rat renal vessels [25]. Mendonça et al. [26] demonstrated that Ang-
(1-7) significantly attenuates Ang II-induced vasoconstriction in human mammary 
arteries from patients undergoing coronary revascularization probably through a 
direct effect on vascular smooth muscle cells (VSMCs), since this action was not 
abolished by A-779, PD123177 or endothelium removal.

Conflicting data in humans regarding the pathophysiological role of Ang-(1-7) 
may relate to methodological discrepancies or vascular territory selectivity to Ang-
(1-7). Initially, it was demonstrated that the infusion of Ang-(1-7) in patients chroni-
cally treated with ACE inhibitors (ACEi) had no effect on forearm blood flow, while 
the infusion of bradykinin caused vasodilation [27]. This finding suggested that 
Ang-(1-7) had no participation in the hemodynamic actions of ACEi. However, in 
that study, effects of ACE inhibition-induced increases in circulating levels of Ang-
(1-7) were not considered. Thus, during ACE blockade, the use of a Mas receptor 
antagonist A-779 would have been more appropriate to evaluate the vasodilatory 
effects mediated through the Ang-(1-7)/Mas axis. Similarly, no effect was found 
in the forearm blood flow of normotensive patients, in which Ang-(1-7) did not 
alter vasodilation produced by bradykinin infusion [28]. Sasaki et al. [29] obtained 
divergent results and demonstrated a dose-dependent vasodilation in forearm cir-
culation of normotensive subjects and patients with essential hypertension. Ueda 
et al. [30] also reported a dose-dependent potentiation of bradykinin vasodilation by 
Ang-(1- 7) in forearm resistance vessels of normotensive healthy men, confirming 
the bradykinin-potentiating effect of Ang-(1-7) described in animal models [9, 10, 
31]. In the forearm of normotensive patients as well as in mammary arteries in vitro 
Ang-(1-7) attenuates the vasoconstrictor effect of Ang II, but not noradrenaline [29, 
30]. Ang-(1-7) also modulates Ang II in renal vessels in vitro, but does not appear 
to have a pronounced effect in normal physiological regulation of renal vascular 
function in vivo [32].

 Antiproliferative Effects

In the vasculature, Ang-(1-7) has antiproliferative effects that oppose the mitogenic 
actions of Ang II. In VSMCs, Ang-(1-7) induces release of prostaglandins (PGI2 and 
PGE2) and decreases Ang II–stimulated activation of MAP kinases (ERK1/2)2 [33, 
34]. Ang-(1-7), through Mas receptor, also attenuates Ang II-induced proliferation, 
migration, and inflammation of VSMCs. These effects are mediated through pro-
cesses that inactivate ROS-induced PI3K/Akt and MAPK/ERK signaling [35]. Ang-
(1-7)/Mas receptor also inhibits transactivation of epidermal growth factor receptor 
tyrosine kinases (ErbB2, ErbB3, and ErbB4) mediated by high-glucose, Ang II 
and norepinephrine. This results in decreased activation of downstream signaling 
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pathways (ROCK, p38MAP kinase, ERK1/2, eNOS, and IkB-α) involved in diabetic 
vasculopathy [36]. Mas agonist inhibition with AVE0991 has comparable effects 
in attenuating Ang II-induced VSMCs proliferation as Ang-(1-7). This action was 
associated with Mas-mediated inhibition of heme oxygenase (HO-1)/p38MAPK 
signaling pathway [37]. After vascular injury, Ang-(1-7) is also able to reduce neo-
intimal formation [38]. Similar effects were observed in a rat stenting model, where 
Ang-(1-7) treatment produced a significant reduction in neointimal thickness, neo-
intimal area, and percentage stenosis [39]. These effects are further evidenced with 
Mas receptor deletion, which causes marked increase in aortic intima and in intimal 
thickening, indicating the importance of Ang-(1-7)/Mas vasoprotection in athero-
sclerosis [40]. Through this mechanism, a synergistic anti- atherosclerotic action of 
Ang-(1-7) and losartan was demonstrated in ApoE−/− mice, a model of atheroscle-
rosis; Ang-(1-7) and losartan treatment improved endothelial function, attenuated 
macrophage infiltration, and inhibited VSMCs proliferation and migration [41]. 
In addition, direct effects of Ang-(1-7) on vessel wall smooth muscle restored the 
decreased expression of lineage markers, including smooth muscle (SM) α-actin, 
SM22α, calponin, and smoothelin, in VSMCs and retarded the osteogenic transition 
of these cells by reducing the expression of bone- associated proteins in rats with 
vascular calcification [42]. Similar antiproliferative characteristics have also been 
observed in cardiac fibroblasts [43] and tumor cells [44, 45] suggesting that Ang-
(1-7) has anti-fibrotic and antitumor actions. Moreover, Ang-(1-7) has been sug-
gested to be anti-angiogenic [46]. Together, these findings suggest that targeting the 
Ang-(1-7)/Mas pathway may be an effective anti-cancer approach. Clinical studies 
testing this notion have already been initiated.

 Antithrombotic Effects

Activation of the Ang-(1-7)/Mas axis also has significant antithrombotic effects, 
as evidenced in studies in Mas knockout mice. The deletion of Mas receptor 
increased venous thrombus size and shortened the bleeding time in these ani-
mals [47]. Additionally, an orally active form of Ang-(1-7), where Ang-(1-7) was 
incorporated in cyclodextrin (Ang-(1-7)-CyD), caused an increase in the plasma 
concentration of Ang-(1-7) accompanied by antithrombotic actions in spontane-
ously hypertensive rats (SHR) [48]. Interestingly, the anticoagulant effect was 
observed at doses of 10 or 30 μg/kg of Ang-(1-7), while higher doses of Ang-(1-
7)-CyD [100 μg/kg of Ang-(1- 7)] did not inhibit thrombus formation. Both acute 
and chronic treatment had antithrombotic actions (60% and 67% thrombus weight 
inhibition for acute and chronic administration, respectively). This antithrombotic 
effect of Ang-(1-7)-CyD was not observed in Mas−/− mice [47, 49]. Moreover, the 
Mas antagonist, A-779, reduced the time to arterial thrombosis and tail bleeding 
time in Bradykinin B2 receptor-deleted mice (Bdkrb2−/−). NO and prostacyclin 
release in platelets, stimulated via Ang-(1-7)/Mas, probably mediated the anti-
thrombogenic [50].
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 Ang-(1-7), Progenitor Cells and Vascular Repair

In addition to protecting the vasculature through its anti-Ang II effects, Ang-(1-
7) may promote vascular repair by directly influencing reparative stem/progenitor 
cells, particularly CD34+ cells. These cells, when exposed to ischemic or hypoxic 
stress, proliferate and migrate to the injured areas and accelerate vascular repair 
thereby preventing tissue damage [51]. CD34+ cells express ACE2 and Mas recep-
tor and are responsive to Ang-(1-7) [52]. Recent studies in human CD34+ cells 
demonstrated that Ang-(1-7) or its analogue NorLeu3-Ang-(1-7), through Mas 
receptor, stimulate migration and proliferation, which are the features of vasore-
parative potential [53].

In experimental models of diabetes, activation of the Ang-(1-7)/Mas pathway 
increased levels of circulating pro-repair bone marrow progenitor cells (Lineage−Sca- 
1+c-Kit+(LSK) cells), processes that involve Rho kinase [54]. Genetic ablation of 
MasR prevented ischemia-induced mobilization of LSK cells and impaired blood 
flow recovery, which was associated with decreased proliferation and migration of 
LSK cells [54]. Together, these results suggest that Ang-(1-7)/MasR is functionally 
active in progenitor cells and may have therapeutic potential in vascular disease.

 Signaling Underlying Ang-(1-7) Vascular Actions

Most of the Ang-(1-7)/Mas vasoprotective effects occur via nitric oxide (NO) and 
prostaglandin release, important mediators in vasodilation. Moreover, Ang-(1-
7) directly counterregulates the intracellular signaling pathways elicited by Ang 
II.  Figure  2 summarizes the main signaling pathways through which Ang-(1-7) 
induces its cellular actions.

 NO Release

Ang-(1-7) binding to its Mas receptor induces phosphorylation of Akt through a 
wortmannin-sensitive manner, which in turn, regulates phosphorylation/dephos-
phorylation of Ser1177/Thr495 eNOS in human endothelial cells [55]. In resting 
conditions, eNOS is phosphorylated on Thr495 and only weakly phosphorylated 
on Ser1177. The simultaneous phosphorylation of Ser1177 and Thr495 modulates 
the active state of eNOS in endothelial cells and increases NO production [56]. 
Similarly, Ang-(1-7) stimulates NO release via Akt in Mas-transfected Chinese 
hamster ovary cells [55]. Ang-(1-7) also induces activation of downstream com-
ponents such as Forkhead box protein O1(FOXO1) transcription factor, an impor-
tant negative modulator of Akt signaling [57]. These results highlight the complex 
modulatory effect of Ang-(1-7), which likely coordinates negative feedback loops 
through finely tuned feedback loops.

Ang-(1-7)-mediated (PI3K)/AKT activation has been shown to counteract the 
negative effects of Ang II on insulin signaling in endothelial cells and is involved 
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in the survival and proliferation of CD34(+) cells from diabetic individuals [52, 
58]. In fructose-fed rats, this pathway seems to mediate the improvement in insulin 
sensitivity induced by Ang-(1-7) in liver, skeletal muscle, and adipose tissue [59].

 Prostaglandin Release

Early studies performed in rabbit isolated vas deferens [60], astrocytes [61], glio-
mas cells [62], and porcine aortic endothelial cells [63] demonstrated that Ang-(1-7) 
selectivity increases prostaglandin synthesis. The release of prostaglandins seems to 
be involved in renal function, including sodium transport [64] and natriuresis [65]. 
Chronic infusion of Ang-(1-7) in SHR increased urinary excretion of prostaglandin 
E2 and 6-keto-prostaglandin F1α, and induced diuresis, natriuresis, and a drop in 
blood pressure [66]. Prostaglandins also participate in antihypertensive effects of 
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Fig. 2 Signaling pathways stimulated by Ang-(1-7) in the vessels - Ang-(1-7) induces nitric oxide 
(NO) release, via post-translational regulation of endothelial nitric oxide synthase (eNOS) by Akt, 
which phosphorylates eNOS Ser 1177. Paradoxically, Ang-(1-7) also activates the transcription 
factor FOXO1, dephosphorylating FOXO1 Ser256. Furthermore, Ang-(1-7) inhibits several path-
ways induced by Ang II, including the Src-mediated NAD(P)H oxidase, MAPKs (ERK1/2, p38, 
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and MAPKs by Ang-(1-7) involves SHP2 and DUSP1 phosphatases, respectively. In addition to 
these protective intracellular actions, Ang-(1-7) activates stem/progenitor cells CD34+ prolifera-
tion and migration, promoting vascular repair
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Ang-(1-7) during treatment with angiotensin-converting enzyme (ACE) inhibitors. 
In rabbit VSMCs, the augmentation of prostacyclin was also found in Ang-(1-7)-
stimulated cells. This effect seemed to be mediated via CaM kinase II/ MAP kinase 
activation, enhancing cPLA2 activity and release of arachidonic acid (AA) for pros-
tacyclin formation [67]. The prostacyclin release also mediates antiproliferative 
actions of Ang-(1-7) in VSMCs [33].

Cyclooxygenase-related products are also involved in potentiation of bradykinin- 
induced vasodilation by Ang-(1-7) in coronary [68] and mesentery arteries [69, 70].

Despite effects of Ang-1-7 on cyclooxygenase-2 (Cox-2) expression, the func-
tional effect seems to depend on the inflammatory and oxidative status. In cardiac 
fibroblast, Ang-(1-7) blocked the ET-1-induced COX2 and prostaglandin synthase, 
improving the balance between proliferative and anti-proliferative prostaglandins 
[43] in cerebral arteries. On the other hand, Ang-(1-7) treatment increases the 
expression of COX2 and decreases expression of matrix metalloproteinase-9 (MPP- 
9), reducing formation and rupture of intracranial aneurysms in elastase and Ang 
II-infused mice [71].

 Counterregulation of Ang II Oxidative and Inflammatory 
Signaling

Ang II is a potent vasoconstrictor, pro-oxidative, pro-inflammatory, and pro- 
proliferative peptide in the vasculature. Ang-(1-7) counterregulates these effects by 
negatively modulating the intracellular signaling pathways underlying these del-
eterious Ang II-mediated effects. In human endothelial cells, Ang-(1-7) opposes 
Ang II-stimulated pro-oxidative and proliferative signaling, and reduces phosphor-
ylation of c-Src and activation of NAD(P)H oxidase. This effect is mediated by 
phosphorylation of SHP-2, preventing Ang II–induced SHP-2 dephosphorylation 
and promoting interaction between SHP-2 and c-Src, which leads to c-Src inhi-
bition. The Ang-(1-7) antagonist, A-779, inhibited these actions, demonstrating 
that these effects are mediated through receptor Mas [72]. Similar results were 
obtained in human brain microvascular endothelial cells, where Ang-(1-7)/MasR 
axis reduced Ang II-induced oxidative stress and cell dysfunction, via blockage of 
Nox2/ROS and activation of PI3K/NO [73]. In human umbilical vein endothelial 
cells (HUVECs) simulated with Ang II and insulin, Ang-(1-7) restored the insulin- 
induced Akt/eNOS/NO production as well as inhibited the serine phosphorylation 
of IRS1 induced by Ang II [58]. The inhibition of Ang II signaling was also demon-
strated in cremaster microvessels, where Ang-(1-7) raised DUSP1 to decrease MAP 
kinase/Smad/CTGF signaling, decreasing Ang II-stimulated fibrosis in these resis-
tance arterioles [74]. The effect of Ang-(1-7) on ERK1/2 inhibition via DUSP-1 
activation was also observed in cardiac fibroblasts. (McCollum). Ang-(1-7) also 
blocked Ang II-induced proliferation, migration, and inflammation of VSMCs 
by inactivating ROS-mediated PI3K/Akt and MAPK/ERK signaling [75]. On the 
other hand, a proteomic study comparing Ang II and Ang-(1-7) signaling in rat 
microvascular endothelial cells indicated that activation of ERK1/2 and p38MAPK 
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is a convergent pathway of Ang II/AT1R and Ang-(1-7) to control angiogenesis. 
Regarding inflammation control, Ang-(1-7) attenuates Ang II-induced ICAM-1, 
VCAM-1, and MCP-1 expression by suppressing p38MAPK signaling and translo-
cation of NF-kappaB in HUVEC [75, 76].

Several in  vivo studies in various experimental models also showed the 
importance of the counterrregulatory actions of Ang-(1-7) in vascular func-
tion. In Mas- deficient mice from two different genetic backgrounds, C57Bl/6 
and FVB/N, endothelial function was impaired [77, 78]. Furthermore, worsening 
of 2 kidney–1 clip Goldblatt hypertension was observed in Mas knockout mice 
[79]. Conversely, short-term infusion of Ang-(1-7) improves endothelial function 
and increases the hypotensive effect of intra-arterial acetylcholine administration 
in normotensive rats [80]. In diet-induced obese mice, chronic treatment with 
Ang 1-7 induced a significant improvement in endothelial function and reversed 
the elevated aortic expression of NAD(P)H oxidase subunits (p22(phox) and 
p47(phox))and plasma TBARS [81]. Similar results were also observed in dia-
betic rats, in which carotid blood flow was restored by chronic treatment with 
Ang-(1-7) probably through Mas-mediated antioxidant effects opposing AT1R-
activated NAD(P)H oxidase [18].

 Conclusion

Ang-(1-7) is a biologically active peptide derived from Ang II, and functions, in large 
part, in opposition to Ang II. In the vasculature, Ang-(1-7), through Mas receptor, 
promotes vasodilation and is anti-proliferative, anti-fibrotic, and anti- inflammatory, 
thereby maintaining vascular integrity and promoting vascular health. These effects 
are mediated through multiple pathways, including activation of Akt, increased NO 
generation, decreased ROS generation, and inhibition of Ang II-stimulated signal-
ing pathways. Ang-(1-7) also influences vascular repair by activating CD34+ cells 
and other progenitor/stem cells involved in tissue repair. While experimental and 
pre-clinical studies strongly support a vasoprotective role for Ang-(1-7), this has yet 
to be translated to the clinic [82].
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 Introduction

Over the past two decades, considerable advances have been made in our under-
standing of the renin–angiotensin system (RAS) [1, 2]. Besides the classical RAS 
axis formed by angiotensin converting enzyme (ACE), Angiotensin (Ang) II, and 
Ang type 1 receptor (AT1), the biological relevance of another Ang fragment, the 
heptapeptide Ang-(1-7), has been widely recognized [1–3]. Ang-(1-7) acts through a 
specific G-protein-coupled receptor, the Mas receptor [4], and is mainly formed by 
the action of the ACE homolog enzyme, ACE2, which converts Ang II into Ang-(1-
7) [5, 6]. In general, this named alternative RAS axis formed by ACE2, Ang-(1- 7), 
and Mas receptor antagonizes the actions of ACE/Ang II/AT1 axis in several organs 
and systems. Therefore, the RAS is generally conceived as a dual function system in 
which the final effects are the consequence of the balance between both RAS axes.

However, the complexity of this system has increased even more in very recent 
years by the discovery of novel RAS mediators such as Ang-(1-9) [7, 8] and 
Alamandine [9, 10], a second receptor for Ang-(1-7) [11] and by the identification 
of a role for the enzyme neprylisin (NEP) [12]. NEP forms Ang-(1-7) in murine 
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and human kidney [12]. Ang-(1-9) is formed from Ang I hydrolysis by the action 
of ACE2 [13]. Ang-(1-9) can also be cleaved by ACE resulting in Ang-(1-7) [13]. 
The interaction of Ang-(1- 9) with the AT2 receptor reduces blood pressure (BP) 
and reverses/ameliorates cardiovascular injury in animal models of hypertension 
[7, 14]. Some authors proposed that the activation of both counter-regulatory RAS 
axes,  ACE2/Ang-(1-7)/Mas and ACE2/Ang-(1-9)/AT2, can oppose the effects of 
ACE/Ang II/AT1 axis and prevent or reverse organ damage in experimental mod-
els of renal and heart diseases [8]. Alamandine or Ala1-Ang-(1-7) was isolated 
from human plasma and rat and mouse heart [9, 10]. Alamandine is a product of 
decarboxylation of the N-terminal Asp residue of Ang II to form Ala1-Ang II or 
Angiotensin A, which is subsequently converted into Ala1-Ang-(1-7) or Almandine 
by ACE2 [9]. The only difference in chemical structure of Alamandine and Ang-(1-
7) is the substitution of the N-terminal Asp residue by Ala. Alamandine binds to an 
specific receptor, the Mas-related G-protein-coupled receptor, member D (MrgD), 
and exerts antihypertensive, antifibrotic, and cardiovascular actions comparable to 
Ang-(1-7) [9, 10]. In regard to MrgD receptor, Tetzner et  al. [11] identified this 
receptor also as a second receptor for Ang-(1-7). Ang-(1-7) failed to increase cAMP 
concentration in primary mesangial cells with genetic deficiency of both Mas and 
MrgD receptors [11]. Knockout mice for MrgD showed an impaired hemodynamic 
response to Ang-(1-7) administration. Moreover, the Ang type 2 (AT2) receptor 
blocker, the compound PD123319, was able to block both Mas and MrgD receptors 
[11]. The assessment of angiotensin metabolism in kidney homogenates resulted in 
the identification of NEP as a major source of renal Ang-(1-7) in mice and humans 
[12]. These findings were supported by matrix-assisted laser desorption ionization 
imaging technique, showing NEP-mediated Ang-(1-7) formation in whole mice 
kidney [12]. In addition, pharmacological inhibition of NEP led to a strong decrease 
in Ang-(1-7) levels in murine kidneys. Further studies are necessary to clarify the 
precise meaning of these new discoveries in human physiology.

In the present chapter, we focus on recent findings related to the role of the 
ACE2/Ang-(1-7)/Mas axis in regulating renal function and in the physiopathology 
of renal diseases in experimental models and in patients.

 ACE2/Ang-(1-7)/Mas Receptor Axis in Renal Physiology

Many studies have addressed the complexity of renal actions of Ang-(1-7) [15–34]. 
In vitro studies reported a diuretic/natriuretic action of Ang-(1-7) [16–23]. This 
effect was also observed in experimental models, mostly by inhibition of sodium 
reabsorption at proximal tubule [16, 17, 19, 20]. Ang-(1-7) inhibited Na-K-ATPase 
activity in renal cortex [19] and in isolated convoluted proximal tubules [20]. In 
renal tubular epithelial cells, Ang-(1-7) activated phospholipase A2 leading to inhi-
bition of transcellular transport of sodium [16]. In vitro studies also indicated that 
Ang-(1-7) modulates the stimulatory effect of Ang II on the Na-ATPase activity in 
proximal tubule through an A779-sensitive receptor [23]. Conversely, several stud-
ies showed an antidiuretic/antinatriuretic effect induced by Ang-(1-7), especially 
in water-loaded animals [24–34]. The administration of Ang-(1-7) and of the oral 
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Mas receptor agonist, AVE0991, exerted potent antidiuretic effect in water-loaded 
rats [25, 27–29] and mice [32] via Mas receptor activation [4]. In vitro, Ang-(1-7) 
increased water transport in inner medullary collecting duct by means of the interac-
tion between Mas and vasopressin type 2 receptors [31]. In line with these findings, 
the administration of Mas receptor antagonists, A-779 and D-Pro7, elicited diuretic 
effects due to elevation of glomerular filtration rate and water excretion [27, 30, 33]. 
Despite divergent data concerning tubular actions of Ang-(1-7), the studies support 
its role in the regulation of glomerular filtration, water, and sodium handling. In this 
regard, Castelo-Branco et al. [35] recently reported that high intratubular concentra-
tions (10−6 M) of Ang-(1-7) inhibit the Na+-H+ exchanger 3 (NHE3) in the proximal 
tubules of hypertensive rats, whereas low doses stimulate it. Because this protein 
is a Na+-H+ exchanger that mediates the proximal renal reabsorption of fluid and 
plays an important role in the maintenance of systemic extracellular volume, blood 
pressure, and pH, intratubular Ang-(1-7) at high concentrations (10−6 M) seems to 
be able to control, at least in part, hypertension caused by high plasma level of 
Ang II in hypertensive animals [35]. This effect was mediated by Mas and AT2 
receptors [35]. In another recent study, O’Neil et al. [36] showed that the enhanced 
urinary excretion of sodium observed in animals on a low-sodium diet during intra-
renal Ang-(1-7) infusion is associated with increased intrarenal Ang-(1-7) levels 
at the beginning of experimental protocol. This association suggests that the natri-
uretic response to exogenous Ang-(1-7) in the surroundings of a stimulated RAS 
was increased because the endogenous Ang-(1-7) concentration in the kidney was 
higher in these conditions [36]. The authors also detected that Ang-(1-7)-induced 
natriuresis and diuresis are inhibited by both AT1 and Mas receptor blockade [36]. 
The precise mechanism by which both receptors mediate natriuretic effect of Ang-
(1-7) remains unclear. To sum up, differences between species, local, and systemic 
concentrations of Ang-(1-7), nephron segment, level of RAS activation, and sodium 
and water status can be responsible for variable results in regard to renal effects of 
Ang-(1-7) [37].

Close to important tubular actions, Ang-(1-7) also takes part in renal hemody-
namic regulation, mostly by facing the effects of Ang II. When the RAS is exces-
sively stimulated, the increased production of Ang II at renal tissue, acting on AT1 
receptors, may result in both systemic and glomerular capillary hypertension, which 
in turn contributes hemodynamic injury to the vascular endothelium and glomerulus 
[38–40]. In contrast, Ren et al. [41] detected that Ang-(1-7) induces dilatation of 
preconstricted renal afferent arterioles in rabbits and Sampaio et al. [42] observed 
that the infusion of Ang-(1-7) at low concentrations increases renal blood flow in 
rats. Ang-(1-7) also blunted the effects of Ang II, including vasoconstriction and 
stimulation of noradrenaline release in rat-isolated kidney [43]. More recently, 
Youssif et al. (2017) showed that Ang-(1-7) exhibits potent vasorelaxant action in 
isolated renal artery and this effect depends on an intact endothelium and on the 
stimulation of nitric oxide (NO) and guanylate cyclase pathways [44]. The authors 
also verified that Ang-(1-7)-dependent vasorelaxation was sensitive to antagonists 
against Mas, AT1, AT2, and Bradykinin type 2 (B2) receptors [44].

The mechanisms by which Ang-(1-7) counteracts the renal effects of Ang II 
are not fully elucidated. Some mechanisms are the competition for the binding of 
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Ang II to AT1 receptors, modulation of signaling transduction, and interference 
with the synthesis of AT1 receptors [45–50]. In this regard, Kostenis et  al. [51] 
reported that Mas receptor hetero-oligomerizes with AT1 receptor and inhibits the 
intracellular Ca+2 mobilization effect of Ang II [51]. In addition, prior exposure to 
Ang-(1-7) caused a mild decrease in the number of AT1 receptors in the cortical 
tubulo- interstitial area of the kidney [50]. Another important mechanism that may 
play a role in physiological effects of Ang-(1-7) is the intra-mitochondrial RAS, 
which also includes ACE2/Ang-(1-7)/Mas receptor axis [52]. Renal actions of an 
intramitochondrial ACE2/Ang-(1-7)/Mas receptor axis may encompass the release 
of NO, activation of anti-apoptotic pathways, and/or the reduction of oxidative 
stress [52]. Furthermore, the loss of Ang-(1-7) tone within the kidney may acceler-
ate deleterious mitochondrial pathways that increase oxidative stress and enhance 
apoptosis under pathological conditions [52].

Figure 1 shows the effects of Ang-(1-7) in renal physiology.
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Fig. 1 Effects of Angiotensin-(1-7) [Ang-(1-7)] in renal physiology. (Ang angiotensin, AT1 Ang 
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 Physiopathological Role of ACE2/Ang-(1-7)/Mas in Renal 
Diseases

 Experimental Studies

Experimental models of renal diseases showed a protective role for Ang-(1-7) 
[53–61]. The infusion of Ang-(1-7) reduced glomerulosclerosis by opposing Ang II 
effects in experimental glomerulonephritis [54]. In adriamycin-induced nephropa-
thy, the oral administration of the Mas agonist, the compound AVE 0991, improved 
renal function parameters, reduced urinary protein loss, and attenuated histological 
changes [59]. The administration of AVE 0991 had renoprotective effects in experi-
mental acute renal injury, as seen by improvement of function, decreased tissue 
injury, prevention of local and remote leukocyte infiltration, and reduced release 
of the chemokine CXCL1 [56]. By employing an experimental model of chronic 
intermittent hypoxia, Lu et al. [61] showed that Ang-(1-7) infusion reduces blood 
pressure and protects the kidneys against tissue injury. These effects seem to be 
mediated, at least in part, by reducing inflammation, oxidative stress, and fibrosis 
[61]. The administration of Ang-(1-7) for 12 weeks in 5/6 nephrectomized male 
C57Bl/6 mice reduced blood pressure, attenuated elevations in plasma urea and 
creatinine, and preserved cardiac function [62]. On the other hand, despite reducing 
blood pressure to the same extent as Ang-(1-7), the antihypertensive agent, hydrala-
zine, was not able to improve renal function and to avoid cardiac changes, thereby 
suggesting that renoprotection obtained with Ang-(1-7) was not mediated merely 
by the control of hypertension [62]. The infusion with Ang-(1-7) also prevented 
renal lesion in a model of unilateral ureteral obstruction by suppressing renal apop-
tosis and fibrosis, possibly through the inhibition of TGF-β1/Smad signaling and 
recovery of G2/M cell cycle arrest, and the subsequent suppression of AT1 recep-
tor expression [60]. Moreover, exogenous Ang-(1-7) increased ACE2 expression, 
which could potentially mediate an increase in endogenous Ang-(1-7) in a positive 
feedback mechanism via Mas receptor.

Ang-(1-7) also produced beneficial effects in experimental diabetes nephropathy 
by reducing urinary protein excretion without affecting blood pressure in male adult 
STZ diabetic rats compared with untreated diabetic animals [63]. The same research 
group treated diabetic spontaneous hypertensive rats with identical dose of Ang-(1- 7) 
and obtained for a second time a significant reduction in urinary protein excretion 
with no changes in mean arterial pressure [64]. Furthermore, Ang-(1-7) normal-
ized the vascular responses to vasoconstrictors and prevented renal NOX- induced 
oxidative stress [64]. In an experimental model of type 2 diabetes, the KK-Ay/Ta 
mouse, the treatment with Ang-(1-7) opposed the Ang II-induced glomerular injury 
by reducing mesangial expansion, TGF-β and fibronectin mRNA, and NOX activity 
[65]. In Zucker diabetic fatty rats, Ang-(1-7) diminished triglyceridemia, proteinuria, 
and systolic blood pressure together with restoration of creatinine clearance [66]. 
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Additionally, Ang-(1-7) reduced renal fibrosis, attenuated renal oxidative stress, and 
decreased renal immunostaining of inflammatory markers to values similar to those 
displayed by control animals [66]. Mori et  al. [67] reported that Ang-(1-7) treat-
ment exerts renoprotective effects on diabetic nephropathy, associated with reduction 
of oxidative stress, inflammation, fibrosis, and lipotoxicity. Another mechanism of 
renoprotection attributed to Ang-(1-7) in diabetic nephropathy was the inhibition of 
mitochondrial fission in high-glucose-induced podocytes by upregulation of micro-
RNA-30a and downregulation of the apoptosis proteins Drp1 and p53 [68]. More 
recently, Zhao et al. [69] investigated the interactions of ACE2/Ang-(1-7)/Mas recep-
tor axis and nuclear factor erythroid 2-related factor 2 (Nrf2) in renal proximal tubule 
cells and in the development of systemic hypertension and kidney injury in diabetic 
Akita mice. Genetic deletion of Nrf2 or pharmacological inhibition of this factor 
in Akita mice attenuated hypertension, renal injury, tubulointerstitial fibrosis, and 
urinary albumin/creatinine ratio. These renoprotective effects were associated with 
increased expression of ACE2 and Mas receptor in renal proximal tubule cells, ele-
vated urinary levels of Ang-(1-7), and downregulated expression of angiotensinogen, 
ACE, and profibrotic genes in Akita mice [69].

Acquired or genetic ACE2 deficiency exacerbated renal damage and albuminuria 
in experimental models, possibly facilitating the damaging effects of Ang II [70–75]. 
Chronic administration of MLN-4760, an ACE2 inhibitor, produced albuminuria 
and matrix protein deposition in control or diabetic mice [73]. Renal expression of 
ACE2 was reduced in the renal cortex of mice that underwent subtotal nephrectomy 
and in a rat model of renal ischemia/reperfusion [75, 76]. In a model of unilateral 
ureteral obstruction, the deletion of ACE2 gene resulted in a fourfold increase in 
the ratio of intrarenal Ang II/Ang-(1-7) and these changes were associated with the 
development of progressive tubulointerstitial fibrosis and inflammation with high 
levels of TNF-α, IL-1β, and MCP-1 [57]. Enhanced renal fibrosis and inflammation 
were attributed to marked increase in intrarenal Ang II signaling (AT1/ERK1/2), 
TGF-β1/Smad2/3, and NF-κB signaling pathways [57]. Dual RAS blockade nor-
malized ACE2 expression and prevented hypertension, albuminuria, tubuloint-
ersticial fibrosis, and tubular apoptosis in Akita angiotensinogen-transgenic mice 
[77]. Genetic deficiency of ACE2 activity in mice fosters oxidative stress via AT1-
dependent effect in the kidney [78]. Accordingly, daily treatment with recombinant 
ACE2 ameliorated renal fibrosis in apolipoprotein E-deficient mice via modula-
tion of mTOR/ERK signaling and via augmentation of Ang-(1-7)/Ang II ratio [79]. 
Taken together, these studies suggested that ACE2/Ang-(1-7)/Mas axis modulates 
oxidative stress, inflammation, apoptosis, and fibrosis at renal tissue.

The interactions between Ang II receptors, AT1 and AT2, and Mas receptor in 
renal tissue are very complex. AT1 and Mas receptors were codistributed in renal 
mesangial cells of rats and Ang-(1-7), through the binding to Mas, counteracted 
the stimulatory effects of Ang II on ERK1/2 and TGF-β1 pathways mediated by 
AT1 receptors [58]. Moreover, Ng et al. [80] showed that Mas receptor expression 
is reduced in the kidneys of rats with chronic kidney disease (CKD), and in cul-
tured human proximal tubular cells, indoxyl sulfate, a uremic toxin, downregulated 
renal expression of Mas receptor and upregulated TGF-β1. Ma et al. [68] evaluated 
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the renal expression of various RAS components and examined the renal injury 
after placing mice with genetic deletion of AT2 receptor gene on high fat diet for 
16 weeks. The authors found that AT2 knockout mice have decreased cortical ACE2 
activity, Mas expression, and Ang-(1-7) levels in renal tissue [68]. These animals 
also exhibited increased expression of ACE and AT1 receptor in renal cortex and 
higher levels of Ang II [68]. These changes in RAS components were accompanied 
by increased systolic blood pressure, higher indices of kidney injury, mesangial 
matrix expansion score, and microalbuminuria [68]. More recently, Patel et al. [81] 
investigated whether renal AT2 and Mas receptor physically interact and are inter-
dependent to stimulate cell signaling and promote natriuresis in obese rats. The 
study showed that AT2 and Mas receptor are colocalized in kidney sections of obese 
Zucker rats and in human proximal tubule epithelial cells [81]. In addition, both 
receptors are functionally interdependent in terms of stimulating NO and promoting 
diuretic/natriuretic response [81].

On the other hand, few reports have suggested that Ang-(1-7) may exacerbate 
renal injury paradoxically in certain experimental conditions, suggesting that dose 
or route of administration, state of activation of the local RAS, cell-specific signal-
ing, or non-Mas-mediated pathways may contribute to these deleterious responses 
[37]. Esteban et  al. [82] reported that renal deficiency of Mas diminished renal 
damage in unilateral ureteral obstruction and in ischemia/reperfusion injury, and 
that the infusion of Ang-(1-7) to wild-type mice elicited an inflammatory response. 
Velkoska et al. [83] verified that a 10-day infusion of Ang-(1-7) in rats with subtotal 
nephrectomy was associated with deleterious effects on blood pressure and heart 
function. The same research group recently reported that the combined administra-
tion of ramipril and Ang-(1-7) prevents the increase blood pressure and cardiac 
fibrosis produced by the isolate infusion of Ang-(1-7) in rats submitted to subtotal 
nephrectomy [84]. Cell-specific signaling pathways associated with Ang-(1-7) in the 
kidney could play a role in the variable response. For instance, Ang-(1-7) displays 
growth inhibitory properties and antagonizes the effects of Ang II in the proximal 
tubule [85], whereas, in human mesangial cells, the heptapeptide seems to stimulate 
cell growth pathways by increasing arachidonic acid release and by MAPK phos-
phorylation [86]. Results obtained in rat mesangial cells are also divergent. While 
Liu et al. [87] reported that Ang-(1-7) stimulates ERK1/2 phosphorylation via Mas 
activation, Oudit et al. [88] showed that Ang-(1-7), acting via Mas receptor, inhibits 
high glucose-stimulated NOX activation. In addition, in primary cultures of mouse 
mesangial cells, Moon et al. [65] showed that Ang-(1-7) attenuated Ang II-induced 
MAPK phosphorylation and expression of TGF-β1, fibronectin, and collagen IV. It 
must be said, however, that majority of studies suggest an overall renoprotective 
effect of administering Ang-(1-7) in vivo.

 Clinical Studies

Ang-(1-7) can be measured by diverse methods in plasma and urine samples 
from healthy subjects and patients with several clinical conditions [89–98]. The 
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concentration of Ang-(1-7) may differ in plasma and urine samples of the same 
subject, since untreated adults with primary hypertension exhibited lower urinary 
levels of Ang-(1-7) than normotensive controls [90]. Significant differences in cir-
culating levels of Ang II and Ang-(1-7) were detected in pediatric hypertensive 
patients [92]. Children with renovascular disease had plasma Ang II levels higher 
than plasma Ang-(1-7), whereas patients with primary hypertension had a selec-
tive elevation of plasma Ang-(1-7) [92]. In pediatric patients with chronic kidney 
disease (CKD), higher levels of Ang-(1-7) and Ang II were also detected in hyper-
tensive patients when compared to normotensives at the same CKD stage [93]. 
Patients at end-stage renal disease presented an even more pronounced elevation 
of Ang-(1-7) levels, suggesting a deviation in RAS metabolism toward Ang-(1-
7) synthesis [93]. Whether the elevation in plasma Ang-(1-7) provides a counter-
regulatory mechanism against Ang II-mediated vasoconstriction or patients with 
primary hypertension and CKD may have disturbances of Mas receptor signaling 
remains to be determined. In line with these findings, Rocha et al. [98] recently 
showed that fetuses with posterior ureteral valves (PUV) had higher urinary con-
centrations of ACE2 and of Ang-(1-7) than healthy neonates, whereas ACE levels 
were lower in the urine of PUV fetuses than in the urine of healthy neonates. The 
increase of components of the protective RAS axis may represent a regulatory 
response to the intense inflammatory process triggered by PUV [99]. Another pos-
sible explanation for the elevation of ACE2 and Ang-(1-7) in the urine of fetuses 
with PUV could be a dysfunction or reduced expression of the Mas receptor at 
kidney tissue in PUV fetuses. In this regard, Ng et al. [80] reported that Mas recep-
tor expression is reduced in the kidneys of CKD rats and the administration of the 
uremic toxin indoxyl sulfate induced downregulation of Mas receptor probably via 
upregulation of TGF- β1 in proximal tubules.

Mizuiri et  al. [100] demonstrated that renal biopsies from patients with IgA 
nephropathy had significantly reduced glomerular and tubulointerstitial immunos-
taining for ACE2 compared with healthy controls. On the other hand, glomerular 
ACE staining was increased. These findings raise the possibility that an upward 
shift in the intrarenal ACE/ACE2 ratio favoring increased synthesis of Ang II and 
reduced Ang-(1-7) might lead to progressive nephron loss in this condition [100]. 
Circulating ACE2 activity was measured in kidney transplant patients and posi-
tively correlated with age, serum creatinine, and gama-glutamyl transferase levels 
[101]. Accordingly, Anguiano et al. [96] showed in adult patients with CKD, with-
out previous history of cardiovascular disease, that plasma ACE2 activity directly 
correlated with classical cardiovascular risk factors including older age, diabetes, 
and male gender. The authors hypothesized that circulating ACE2 is altered in CKD 
patients at risk for cardiovascular event [96]. Angiotensin peptides [Ang I, Ang II, 
Ang-(1-7), Ang-(1-5), Ang-(2-8), Ang-(3-8)], renin, and aldosterone were measured 
in 12 hemodialysis patients, who received a kidney transplant and had excellent 
graft function 6–12 months thereafter [97]. Peptides were simultaneously measured 
by a mass spectrometry-based method. After kidney transplant, patients increased 
the positive correlation between renin and Ang II levels. However, plasma Ang-
(1- 7) was undetectable in hemodialysis and in transplanted patients [97].
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It has also been suggested that the beneficial effects of ACE inhibitors and of 
Ang receptor blockers may be due, at least in part, to an activation of  ACE2/Ang-
(1-7)/Mas axis, since the chronic treatment with these drugs increases plasma con-
centrations of Ang-(1-7) [91, 93, 102]. Kocks et al. [102] showed that during ACE 
inhibition, administration of a low sodium diet did not affect plasma levels of Ang 
II but induced a significant elevation in Ang-(1-7) concentration. Furthermore, 
in a murine model of adriamycin-induced nephropathy, renoprotective effects of 
Losartan were blunted in mice with genetic deletion of Mas receptor, indicating 
that Mas receptor activation is essential for renal actions of AT1 receptor antago-
nism [59]. In this regard, Iwanami et  al. [103] showed that the hypotensive and 
anti- hypertrophic effects of the AT1 receptor blocker, azilsartan, may also involve 
activation of the ACE2/Ang-(1-7)/Mas axis. Another relevant aspect is the complex 
interaction between Mas and AT1 receptor. Kostenis et al. [51] showed that Mas can 
hetero-oligomerize with AT1 and, by so doing, inhibits the actions of Ang II. Thus, 
Mas may act as a physiological antagonist of AT1 receptor signaling.

 Concluding Remarks

Experimental models of renal diseases suggest that the activation of the ACE2/Ang-
(1-7)/Mas axis has a protective role. The few data provided by human studies also 
indicate a beneficial role for the activation of this alternative RAS axis. In addition, 
it has been hypothesized that the beneficial effects of ACEi and ARBs might involve, 
at least in part, the elevation of plasma Ang-(1-7) levels. Further studies are clearly 
needed to elucidate the mechanisms by which both RAS axes modulate renal function 
and take part in the physiopathology of renal diseases. Nevertheless, current knowl-
edge supports the possibility that drugs which mimic or enhance the function of the 
ACE2/Ang-(1-7)/Mas axis may be beneficial for the treatment of renal diseases.
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 Renin-Angiotensin System Components in the Lungs

There is a considerable body of evidence for the existence of local, tissue-based, 
renin-angiotensin system (RAS) in which angiotensin (Ang) peptides production is 
independent of circulating precursors [13, 56]. Expression of angiotensinogen, the 
type 1 (AT1) and type 2 (AT2) Ang II receptors in rat and human lung tissue support 
local generation of Ang II [56]. Membrane angiotensin-converting enzyme (ACE), 
primarily responsible for conversion of Ang I to Ang II in the circulation, is abun-
dantly expressed in vascular endothelium of pulmonary circulation.

Ang II can modulate inflammatory response promoting cytokine production, 
expression of endothelial adhesion molecules, inflammatory cell migration, epithe-
lial cell apoptosis, oxidative stress, lung fibroblast growth and fibrosis [56]. The 
majority of these actions are mediated through the AT1 receptor involving complex 
intracellular signaling pathways [38]. AT1 receptor, coupled to Gaq/11 protein, can 
stimulate multiple signaling pathways including MAPK/ERK, Rho/ROCK kinase, 
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PLCb/IP3/diacylglycerol, tyrosine kinases, and NF-kB [3]. ACE/Ang II/AT1 recep-
tor axis is involved in many lung diseases.

ACE2, an ACE homologous enzyme, has emerged as a potent negative regulator 
of the RAS. ACE2 regulates RAS signaling, reducing Ang II/AT1 receptor signaling 
and activating the counterregulatory angiotensin-(1-7) [Ang-(1-7)]/Mas receptor 
pathway. ACE2 protein is expressed in the lungs, mainly in the vascular endothe-
lium, Clara cells, type I and type II alveolar epithelial cells [26, 27, 48], as well as 
in smooth muscle of small and medium vessels in the mouse lung [92]. Mas recep-
tor, a functional receptor for Ang-(1-7) [76], is present in thin areas of the bronchial 
epithelium and smooth muscle [52]. ACE2/Ang-(1-7)/Mas receptor pathway often 
serves to counterregulate the pro- inflammatory, pro-proliferative, and pro-fibrotic 
effects of the ACE/Ang II/AT1 receptor pathway [77].

 Ang-(1-7) and Pulmonary Arterial Hypertension

Pulmonary hypertension (PH) is a disorder characterized by an increase in mean 
pulmonary arterial pressure (PAP) ≥25 mmHg at rest as assessed by right heart 
catheterization (RHC) [32]. The term pulmonary arterial hypertension (PAH) 
describes a group of PH patients characterized hemodynamically by the presence 
of pre-capillary PH, defined by a pulmonary artery wedge pressure (PAWP) 
≤15 mmHg and a pulmonary vascular resistance (PVR) >3 Wood units (WU) in 
the absence of other causes of pre-capillary PH, such as PH due to lung diseases, 
chronic thromboembolic pulmonary hypertension (CTEPH), or other rare dis-
eases [32]. A hallmark of PAH is a vascular remodeling process that increases 
PVR and subsequent right ventricular hypertrophy and premature death [78]. 
Regardless of the underlying disease, chronic cor pulmonale is associated with 
progressive clinical deterioration and a poor prognosis in most cases. Incidence 
and prevalence of PAH is very similar in USA (2.0 and 10.6 cases of PAH per 
million inhabitants, respectively) and in UK (1.1 and 6.6 cases of PAH per million 
inhabitants, respectively) [49, 62].

Clinical classification of PH categorizes multiple clinical conditions into five 
groups, according to their similar clinical presentation, pathological findings, hemo-
dynamic characteristics, and treatment strategy [20].

Diagnosis of PH is based on clinical suspicion established by symptoms, typi-
cally induced by exertion (shortness of breath, fatigue, weakness, angina, and syn-
cope). Symptoms at rest occur only in advanced circumstances. Abdominal 
distension and ankle edema will develop with progressing right ventricle (RV) fail-
ure. Diseases that cause or are associated with PH as well as other concurrent dis-
eases can modify the presentation of PH [20].

Advances in basic and clinical research into PAH have led to improved under-
standing of disease pathogenesis and identification of novel therapeutic targets [42]. 
The aim of specific therapies for PH is to reduce PVR and thereby improve RV 
function. Currently, five classes of drugs have been applied for PAH: endothelin 
receptor antagonists (ERAs), prostanoids, phosphodiesterase type 5 inhibitors, sol-
uble guanylate cyclase stimulators, and selective prostacyclin receptor agonists  
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[89]. Despite improvement in patient symptoms and well-being with these agents, 
mortality rates remain high (~65% survival at 5 years). New therapies are needed 
targeting alternative pathways that can reverse pulmonary vascular remodeling, 
inhibit disease progression, and improve survival [23]. The RAS is being inten-
sively studied as an alternative therapeutic target [90].

A large number of studies have shown that the RAS is importantly involved in 
PAH pathophysiology [12, 38, 86]. Lungs of patients with PAH express high levels 
of ACE in the intra-acinar arteries, suggesting that locally increased production of 
Ang II, a potent pulmonary vasoconstrictor with mitogenic actions, may contribute 
to the process of pulmonary vascular remodeling [69]. Ang II is also capable of 
inducing an inflammatory response in the vascular wall. Ang II, via the type 1 (AT1) 
receptors, enhances the production of reactive oxygen species (ROS) through stimu-
lation of NAD(P)H oxidase in the vascular wall, leading to endothelial dysfunction 
and vascular inflammation by stimulating the redox-sensitive transcription factors 
(NF-kB) and by upregulating adhesion molecules, cytokines, and chemokines [9]. 
De Man et al. [12] demonstrated increased serum levels of renin, Ang I, and Ang II 
and correlations with disease progression and mortality in patients with idiopathic 
PAH. Taken together, these findings indicate an active role for RAS in the pulmo-
nary hypertensive process.

There is a body of evidence suggesting that ACE2, either by itself or through its 
catalytic product Ang-(1-7), opposes the proliferative, hypertrophic, and fibrotic 
effects of Ang II in many organs, including the lungs, pointing for a plausible pro-
tective role against PAH. Ang II appears to be the main substrate for ACE2, and is 
effectively hydrolyzed to Ang-(1-7). ACE2 protein is expressed in various human 
organs and in the lungs, it is expressed mainly on the vascular endothelium, and 
type I and type II alveolar epithelial cells [26, 27].

Studies demonstrate that serum ACE2 was decreased in patients with PAH due to 
congenital heart disease, and mean PAP was negatively correlated with serum levels 
of ACE2 [11]. Similar results were found for Ang-(1-7), suggesting the decrease in 
Ang-(1-7) shifts the balance of the RAS toward the ACE/Ang II/AT1 receptor axis, 
resulting in increases in vascular remodeling, fibrosis and PAH in congenital heart 
disease patients [10]. Consistent with these findings, several ACE2 activators such 
as diminazene aceturate (DIZE) [84], xanthenone (XNT, e 1-[(2-dimethylamino) 
ethylamino]-4-(hydroxymethyl)-7-[(4-methylphenyl) sulfonyloxy]-9H-xanthene- 
9-one) [31], resorcinolnaphthalein [44, 45], and NCP-2454 [24] have been reported 
in various preclinical models of PAH.

In a recent trial, Hemnes et al. [30] assessed the mechanism, safety, and efficacy of 
ACE2 (single IV infusion of GSK2586881) in the treatment of patients with idio-
pathic and heritable PAH (18 years) with functional class I-III. PAH patients had a 
significant decrease in ACE2 activity as reflected by the increased Ang II/Ang-(1-7) 
ratio in PAH patients compared with controls. After treatment, PAH patients had a 
decrease in Ang II/Ang-(1-7) ratio, suggesting increased activity of ACE2. In addi-
tion, levels of superoxide dismutase (SOD2) protein were approximately 25% lower 
in PAH plasma compared with controls. After treatment, there was significant induc-
tion of plasma SOD2 protein levels by 2 weeks suggesting induction in the enzymatic 
activity by GSK2586881. Compared with control, patients with PAH had increased 
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levels of cytokines (IL-10, IL-1β, TNF-α, IL-13, IL-8, and IL-4). After GSK2586881 
administration, there was suppression of IL-10, IL-1β, IL-2, and TNF-α that could be 
detected as early as 2 hours after drug administration and was associated with sus-
tained anti-inflammatory effects with reduced levels of IL-1β, IL-6, IL-8, and TNF-α 
at 2 weeks [30]. Taken together, these data showed that treatment with ACE2 reduced 
the markers of oxidant and inflammatory mediators and improved the balance between 
ACE/Ang II/AT1 receptor and ACE2/Ang-(1-7)/Mas receptor axis.

Ang-(1-7) promotes the release of prostanoids from endothelial cells (EC) and 
smooth muscle cells (SMC) and the release of nitric oxide (NO). In addition, Ang-(1-
7) inhibits proliferation of vascular SMC and EC in vitro and in vivo and opposes the 
mitogenic effects of Ang II [77]. Drugs that inhibit the synthesis of Ang II (ACE 
inhibitors) or that antagonize AT1 receptors (Ang II receptor blockers – ARBs) have 
been shown to decrease right ventricular hypertrophy, decrease medial thickening 
and peripheral muscularization of small pulmonary arteries in hypoxic animals [65]. 
In addition, ACE2 [17, 94] or Ang-(1-7) itself, by targeted gene transfer, protects the 
lungs in a model of pulmonary hypertension [82]. The effects of Ang-(1-7) appear to 
be associated with upregulation of endothelial nitric oxide synthase (eNOS) activa-
tion via AKT pathway [7]. Recently, Zhang et al. [96] showed that phosphorylation 
of ACE2 by AMPK enhanced the stability of ACE2, which increased Ang-(1-7) and 
nitric oxide synthase (eNOS)-derived NO bioavailability in endothelial cells.

Shenoy et al. [85] developed a plant-based oral delivery of ACE2 or Ang-(1-7) to 
protect against gastric enzymatic degradation and facilitates long-term storage at 
room temperature. Further, fusion to a transmucosal carrier helped effective sys-
temic absorption from the intestine on oral delivery. Rats fed with bioencapsulated 
ACE2 or Ang-(1-7) presented attenuation in the development of monocrotaline- 
induced PH and improvement of cardiopulmonary pathophysiology. Furthermore, 
in the reversal protocol, oral ACE2 or Ang-(1-7) treatment significantly arrested 
disease progression, along with improvement in right heart function, and decrease 
in pulmonary vessel wall thickness. In addition, a combination therapy with ACE2 
and Ang-(1-7) augmented the beneficial effects against monocrotaline-induced lung 
injury. According to the authors, these results provided proof-of-concept for a novel 
low-cost oral ACE2 or Ang-(1-7) delivery system using transplastomic technology 
for pulmonary disease therapeutics.

Microvesicles derived from mesenchymal stem cells (MSCs) improve the out-
come of PAH [43]. Recently, Liu et  al. [50] investigated whether the effect of 
MSC- derived microvesicles on PAH induced by monocrotaline was correlated 
with RAS. Animals treated with microvesicles from MSCs notably attenuated the 
pulmonary artery pressure, reversed the RV hypertrophy and pulmonary vessel 
remodeling, the inflammation score and the collagen fiber volume fraction. In 
addition, ACE2 mRNA in the lung tissues and plasma levels of Ang-(1-7) were 
both upregulated in animals treated with MSC microvesicles. These protective 
effects were diminished by the use of A-779, a selective inhibitor of the Mas 
receptor (Fig. 1).

G. S. Magalhães et al.



135

 Ang-(1-7) in Acute Respiratory Distress Syndrome

Acute respiratory distress syndrome (ARDS) is a life-threatening form of respira-
tory failure, that globally accounts for 10% of intensive care unit admissions, repre-
senting more than three million patients with ARDS annually [16]. Its first 
description dates 50 years ago [2]. Since then, ARDS has been redefined several 
times to ameliorate the accuracy of clinical diagnosis [4, 66, 73]. The last one was 
the Berlin definition [73] that proposed three categories of ARDS based on the 
severity of hypoxemia, timing of acute onset, origin of edema, and the chest radio-
graph or computed tomographic (CT) findings.

ARDS results from a wide spectrum of different risk factors, which can be 
either local or systemic (Table 1). According to the origin of the inflammatory 
insult, ARDS can be classified in pulmonary ARDS (ARDSp), as local or direct 
lung insult and extrapulmonary ARDS (ARDSexp), as systemic or indirect lung 
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arteries in hypoxic animals

Pulmonary hypertension

ACE 
Angiotensin II 
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-Decreases superoxide dismutase (SOD2) 
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Fig. 1 Effects triggered by treatment with angiotensin-converting enzyme 2 (ACE2), ACE inhibi-
tors and angiotensin II receptor blockers in pulmonary hypertension

Table 1 Origin of the inflammatory insult in ARDS

Pulmonary ARDS Extrapulmonary ARDS
Pneumonia (bacterial, viral, fungal) Sepsis syndrome
Aspiration of gastric contents Non-thoracic trauma
Lung contusion Transfusion
Inhalation injury Cardiopulmonary bypass
Near-drowning Pancreatitis
Fat emboli Drug overdose
Reperfusion injury Burn injury
Mechanical ventilation (barotrauma, volutrauma)
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injury [21]. There are important clinical differences between ARDSp and 
ARDSexp in pathology, radiography, respiratory mechanics, response to treat-
ment, and outcomes [21, 80].

ARDS remains a serious clinical problem with the main treatment being sup-
portive in the form of mechanical ventilation. However, if the mechanical ventila-
tion is used improperly, it can exacerbate the tissue damage caused by ARDS, 
known as ventilator-induced lung injury (VILI). To date, the only intervention dem-
onstrated to improve clinical outcomes in ARDS is the use of a protective ventila-
tory strategy that uses low tidal volumes (VT) of 6 mL/kg predicted body weight 
compared with traditionally applied VT of 12 mL/kg [5].

Different animal models of experimental lung injury have been used to investigate 
mechanisms of lung injury [1]. In 2011, a committee assembled by the American 
Thoracic Society (ATS) published a workshop report determining the main features 
that characterize ARDS in animals and then identifying the most relevant measure-
ments to assess these features. Important traits include (1) histological evidence of 
tissue injury, (2) alteration of the alveolar capillary barrier, (3) the presence of an 
inflammatory response, and (4) evidence of physiological dysfunction [59].

A body of evidence demonstrates that the RAS is involved in the pathogenesis of 
ARDS. In addition to its cardiovascular functions, Ang II is involved in inflamma-
tory and fibrogenic processes in the lung [18, 25, 55]. Association between ACE 
polymorphism and susceptibility, progression, and outcome in ARDS has been 
demonstrated [36, 57]. Moreover, several studies have shown that inhibition of 
ARDS by AT1 receptor blockade or inhibition of Ang II formation by ACE has a 
protective effect on ARDS [34, 72, 81].

Protective effect of losartan has been tested on different models of 
ARDS.  Losartan delayed the onset of ARDS in Wistar rats challenged by i.t. 
instillation of Bordetella bronchiseptica, prevented progressive deterioration of 
gas exchange and delayed the mortality of infected rats [72]. The signs of inflam-
mation, thickened alveolar septae, and a marked increase in cellularity dominated 
by polymorphonuclear leukocytes were much less evident in losartan-treated rats. 
Although this effect was associated with a significant inhibition of lung-neutro-
phil recruitment, lung bacterial clearance was not impaired but rather, it was sig-
nificantly improved. Similar results were found with irbesartan. Differently, 
neither the ACE inhibitor captopril, nor the nonselective peptide inhibitor of Ang 
II receptors, saralasin, reproduced these effects. The protective effects of losartan 
on ARDS were attributed, at least in part, to NF-kB and MAPK mechanisms. In a 
sepsis-induced ARDS using cecal ligation and puncture (CLP), Shen et al. [81] 
demonstrated that losartan treatment significantly led to inhibition of lung tissue 
NF-kB activation, attenuated degradation of IkB-alpha, and inhibited phosphory-
lation of p38MAPK, extracellular signal-regulated kinase 1/2, and c-Jun 
N-terminal kinase, critical pathways for cytokine release. Similarly, results of 
Raiden et al. [72] showed that losartan delays the onset of ARDS triggered by a 
bacterial infection, prevents blood gas deterioration and histopathologic appear-
ance of ARDS, and significantly improved survival after sepsis.
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The effects of captopril and losartan have also been tested in fat embolism (FE) 
and the consequent fat embolism syndrome (FES) that occurs after trauma or sur-
gery and can lead to serious pulmonary injury, including ARDS and death [63]. 
There was a reduction in pulmonary inflammation, along with a significant decrease 
in interseptal edema and hemorrhage. Pathologic changes induced by FE in the 
lumen patency were also diminished with RAS inhibitors. Extending the evidence 
for the involvement of the RAS in this syndrome, Fletcher et al. [18] demonstrated 
that aliskiren, a renin inhibitor, protects rat lungs from the histopathological effects 
of fat embolism.

ACE inhibition or blockade of AT1 receptor favors an increase in Ang-(1- 7) lev-
els [77]. In ARDS, an ACE/ACE2 imbalance occurs in favor of increased ACE 
activity and correlates with lung injury. Previous studies have found that ACE2 
mRNA, protein, and enzymatic activity were severely downregulated in human and 
experimental lung tissue injuries [34, 41]. The decrease in ACE2 expression was 
importantly involved in severe acute respiratory syndrome (SARS), in which the 
pathogen, coronavirus (SARS-CoV), triggers severe pneumonia and acute, often 
lethal, lung failure. Kuba et al. [41] demonstrated that ACE2 is a crucial SARS-CoV 
receptor in vivo, and both SARS-CoV infections and the Spike protein of the SARS-
CoV reduced ACE2 expression, contributing to the severity of lung pathology. In 
addition, the injection of SARS-CoV Spike into mice worsens acute lung failure 
in vivo. This effect was associated with an increase in Ang II in the lung and it was 
attenuated by blocking AT1 [41].

In 2005, Imai et al. reported that lack of ACE2 expression (ACE2KO animals) 
precipitated ARDS, suggesting that ACE2 could present an important role in the 
prevention of ARDS. ARDS resulted in reduced ACE2 expression and increased 
Ang II production in ACE2+/+ animals as a result of insults. Elastance of the 
respiratory system, as well as pulmonary edema, was significantly higher in sep-
sis groups, mainly in ACE2−/− mice. In addition, it was observed thickening of 
the alveolar wall, edema and pulmonary congestion, infiltration of inflammatory 
cells and hyaline membrane in sepsis-induced ACE2−/− mice. After 6 hours of 
observation, all animals in the ACE2+/+ group were alive and only 2 of the 10 
animals in the ACE−/− group survived. Moreover, intraperitoneal injection of 
recombinant human ACE2 protein (rhuACE2) in ARDS induced in ACE2−/− mice 
prevented the increase in elastance of the respiratory system and formation of 
pulmonary edema. In contrast to ACE2−/− mice, mice with genetic deletion of 
ACE (ACE−/−) are protected against acid aspiration-induced ARDS and inactiva-
tion of ACE in ACE2−/− animals attenuates ARDS. Likewise, pharmacological 
inhibition or genetic deletion of AT1a (AgTr1a−/−) receptors significantly attenu-
ated lung function and edema formation. On the other hand, inactivation of AT2 
receptors aggravated acute lung injury (ALI) [34].

Recently, bone marrow-derived mesenchymal stem cells (MSCs) overexpress-
ing ACE2 served as a vehicle for gene therapy in lipopolysaccharide (LPS)-
induced ARDS mice [28]. MSCs were transduced with ACE2 gene (MSC-ACE2) 
by a lentiviral vector and then infused into wild-type (WT) and ACE2 knockout 
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(ACE2−/y) mice following an LPS-induced intratracheal lung injury. MSC-ACE2 
improved the lung histopathology, inflammation (decreased the neutrophil counts 
in the BALF, downregulated the expression of IL-1β and IL-6, and upregulated 
IL-10 in the lung). Additionally, MSC-ACE2 significantly reduced lung edema, in 
part by improving lung endothelial permeability, and normalized lung eNOS 
expression. Increased activity of ACE2 decreased the Ang II and increased the 
Ang-(1-7) in the lung, thereby inhibiting the detrimental effects of accumulating 
Ang II.

Protective mechanisms of ACE2 on experimental ARDS are not fully under-
stood. ACE2 regulates RAS signaling, reducing Ang II/AT1 receptor signaling and 
activating the counterregulatory Ang-(1-7)/Mas receptor pathway. Treatment with 
lentiviral packaged ACE2 cDNA reduced and ACE2 shRNA increased Ang II/Ang-
(1-7) ratio in the bronchoalveolar lavage, LPS- induced lung injury and inflamma-
tory response. These responses were associated with alteration in the phosphorylation 
of MAPK and were all abolished by A779, a Mas receptor antagonist, suggesting 
these effects were mediated by Ang-(1-7) [47]. These data indicate that ACE2 pro-
tects lung injury via an increase in Ang-(1-7), which in turn stimulates Mas-mediated 
signaling to inhibit ERK1/2 and NF-κB activation [46, 47]. A recent study indicates 
that early initiation of therapy after experimental ALI induced by oleic acid and 
continuous drug delivery are most beneficial for optimal therapeutic efficiency of 
Ang-(1-7) treatment [88].

The cornerstone of ARDS management remains mechanical ventilation. 
However, mechanical ventilation with high tidal volumes causes lung hemorrhage 
and edema and activates inflammatory pathways, process referred as ventilator- 
induced lung injury (VILI). Jiang et al. [37] demonstrated an increase in lung Ang 
II levels induced by VILI. Deleterious effects were attenuated by captopril, an ACE 
inhibitor. These results suggested that local tissue angiotensin mediates these harm-
ful events in VILI. Using the same VILI model of high tidal volumes, Jerng et al. 
[35] demonstrated that the lung injury score, bronchoalveolar lavage fluid protein 
concentration, pro-inflammatory cytokines, and NF-kB activities were significantly 
increased in the high-volume group compared with controls. In addition, the lung 
Ang II and mRNA levels of angiotensinogen and AT1 and AT2 receptors were also 
significantly increased in the high-volume group. Pretreatment with captopril or 
concomitant infusion with losartan or PD123319 in the high-volume group attenu-
ated the lung injury and inflammation. Losartan and a protease-resistant, cyclic 
form of Ang-(1-7), showed similar lung protective effects, but losartan caused a 
significant decrease in blood pressure in the LPS-exposed ventilated animals [93].

Intravenous effect of Ang-(1-7) or its non-peptide agonist, AVE0991, was eval-
uated in ARDS induced by intravenous injection of oleic acid [40]. Ang-(1-7) or 
AVE0991 infusion 30 minutes after oleic acid administration reversed lung edema, 
and attenuated increased myeloperoxidase activity, which reflects neutrophil inva-
sion. In addition, administration of Ang-(1-7) or AVE0991 restored arterial pres-
sure and kept throughout experimental protocol (4  h), which falls rapidly by 
approximately 40% in untreated animals. Ang-(1-7) or its analog AVE0991 also 
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prevented a decrease in pulmonary vascular resistance, characteristic for the acute 
phase of ARDS. Further, Ang-(1-7) or AVE0991 blocked the increase in TNF-α 
concentration in bronchoalveolar (BALF).  These effects were antagonized by 
A779 and D-Pro7-Ang-(1-7) [40]. Corroborating with the results of Imai et  al. 
[34], treatment with ibesartan, an AT1 blocker, normalized systemic blood arterial 
pressure, pulmonary arterial resistance, wet-to-dry lung weight ratio, BALF pro-
tein concentration, and myeloperoxidase activity in lung tissue. The beneficial 
effect of ibesartan was prevented by co- treatment with either A779 or d-Pro7-
Ang-(1-7) on systemic and pulmonary hemodynamics. Thus, the protective effect 
of recombinant ACE2 or AT1 antagonization in ALI may be related at least in part 
to increased formation of Ang-(1-7) and stimulation of its specific receptor signal-
ing pathways [40]. In this same study, the effect of Ang-(1-7) was tested in two 
murine ARDS models, ventilator-induced lung and acid aspiration injury. Ang-(1-
7) reversed the effects in both models [40].

Ang-(1-7) has a antiremodeling role in pulmonary fibrosis that occours after 
ARDS [8]. Recently, Zambelli et al. [95] evaluated the potential for Ang-(1-7) to 
attenuate ARDS severity and lung fibrosis in a preclinical ARDS model. These 
authors evaluated if Ang-(1-7) would reduce the severity of early ARDS induced 
by the combined ‘insults’ induced by unilateral acid aspiration model followed 
by high stretch mechanical ventilation. Ang-(1-7) acute infusion showed a sig-
nificant improvement of arterial oxygenation and inflammatory response (in 
terms of polymorphonuclear recruitment into alveoli) in acute ARDS. In other 
protocol, two weeks of Ang-(1-7) infusion increased blood oxygen saturation 
and the right lung from treated rats showed a significant reduction in collagen 
deposition. Thus, the inhibitory effect of Ang-(1-7) on inflammatory cells recruit-
ment seen in the acute phase may be related to the reduction of fibrosis in the 
later phase. The beneficial effects observed by Jiang et al. [37] and Jerng et al. 
[35] may be related to the formation of Ang-(1-7) from the use of captopril and/
or losartan.

More recently, Khan et al. [39] reported results of a phase II trial examining the 
safety and efficacy of using GSK2586881, a recombinant human ACE2 (rhACE2), 
in 18 and 80 years old patients with ARDS, which had been mechanically venti-
lated for less than 72 h. The use of twice-daily doses of GSK2586881 infusion 
(0.4 mg/kg) for 3 days resulted in a decrease in plasma Ang II associated with an 
increase in Ang-(1-7) and Ang-(1-5) that remained elevated for 48 h. There was 
also a trend to decrease in IL-6. Although no episodes of hypotension were associ-
ated with infusion of GSK2586881, no significant improvement in oxygenation 
was observed in patients (ratio of partial pressure of arterial oxygen to fraction of 
inspired oxygen-PaO/FIO2, oxygenation index), or Sequential Organ Failure 
Assessment-SOFA score between treated and placebo groups was observed, which 
the authors attributed to numerous factors that were not adequately controlled for 
in this trial [39]. However, this study reinforces the need for further evaluation of 
the impact of RAS modulation on pulmonary hemodynamics and markers of pul-
monary injury (Fig. 2).
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 Ang-(1-7) in Asthma

Epidemiological studies show that asthma is currently the most common chronic 
disease in children, being the major cause of missed days at school and, in adults, 
loss of working days. In addition, asthma is associated with a significant rate of 
mortality [74]. The large increase in incidence of asthma is becoming a major global 
health problem and has encouraged studies aimed at increasing the knowledge of 
the pathophysiology of asthma, as well as development of new treatments to improve 
clinical management of the disease, mainly to meet asthma patients who do not 
respond well to current therapies [51].

Asthma is defined as a reversible airway obstructive disease, caused by airway 
mucosal edema, inflammation, increased mucus secretion, smooth muscle contrac-
tion, and airway hyperreactivity and remodeling [83]. Multiple cells and multiple 
mediators play a crucial pathophysiological role. The inflammatory response in 
allergic asthma is characterized by excess production of IgE, mast cell degranula-
tion, and the infiltration of eosinophils and lymphocytes [22, 83]. However, the 
recruitment and activation of these cells depend on the expression and release of 
several classes of proteins, such as cytokines, particularly Th2-derived. Inflammatory 
mediators that increase influx of leukocytes, activity, and survival of eosinophils are 
positively correlated with asthma severity [14, 19]. Failure to resolve the inflamma-
tory process causes a persistent inflammation with consequent tissue destruction 
and loss of pulmonary function [14].

There is experimental and clinical evidence indicating that activation of the 
pulmonary RAS is involved in the pathophysiology of allergic pulmonary disease, 
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especially through an inappropriate increase in angiotensin II (Ang II) [67, 68]. 
However, the Ang-(1-7)/Mas receptor axis, recognized as a counterregulatory 
peptide system within the RAS, exhibits anti- inflammatory effects and prevents 
inappropriate remodeling in different pathophysiological states, such as asthma. 
Here, we show the effects of treatment with Ang-(1-7) on the three main changes 
observed in chronic asthma: inflammation, pulmonary remodeling, and bronchial 
hyperesponsiveness.

Experimental studies try to clear up aspects of the pathophysiology of asthma 
mimicking human disease. They classically include two phases: sensitization and 
challenge. Sensitization is traditionally performed by intraperitoneal and subcuta-
neous routes, and the challenges with allergens are performed through aerosol, 
intranasal, or intratracheal instillation. Sensibilization increases IgE levels in the 
circulation, but does not induce signs of inflammation or pulmonary remodeling. 
IgE binds to receptors in eosinophils, mast cells, and basophils. When the challenge 
occurs with the same allergen, the allergen provokes an antigenic-antibody reaction 
that induces the degranulation of these cells. Degranulation releases inflammatory 
mediators that initiate and propagate the process. Ovalbumin (OVA) is a widely 
used allergen, because promote to an intense allergic lung inflammation. In addi-
tion, the most common species studied in the last two decades is mice, particularly 
BALB/c [15, 52].

In an experimental model of acute asthma (BALB/c mice), Ang-(1-7) treat-
ment resulted in inhibition of the OVA-induced increase in total cell counts, eosin-
ophils, lymphocytes, and neutrophils. Ang-(1-7) also significantly reduced the 
OVA- induced perivascular and peribronchial inflammation (Fig. 3). Moreover, 
Ang-(1-7) attenuated OVA-induced increase in the phosphorylation of IκB-α and 
ERK 1/2, suggesting that Ang-(1-7) could mediate an anti-inflammatory pathway 
in allergic asthma [15]. In chronic allergic lung inflammation that administration 
of Ang-(1-7) or a synthetic analog, AVE 0991 (Mas receptor agonist), decreased 
inflammatory cell infiltrate in the peribronchial, perivascular, and alveolar regions 
of the lung [52, 75]. Furthermore, Ang-(1-7) treatment decreased chemokines 
(CCL2 and CCL5), cytokines (IL-4, IL-5 and GM-CSF), IgE, and two signaling 
pathways associated with asthma, the ERK1/2, and possibly the JNK pathways. 
Altogether, these results suggest that Ang-(1-7) treatment decreases chemokines 
and cytokines essential for the initiation and maintenance of the inflammatory 
process, as well as those important for the migration of eosinophils to the site of 
injury and reduction of their apoptosis. These effects were associated with the 
inhibition of ERK1/2 pathway [52].

It has been demonstrated that genetic Mas deficiency increased chronic aller-
gic pulmonary inflammation. FVB/N mice with genetic deletion of the Mas 
receptor subjected to a model of chronic allergic lung inflammation presented a 
significant increase in the number of eosinophils in BALF and inflammatory cell 
infiltrate in the lung [53]. Furthermore, there was an increase in ERK1/2 phos-
phorylation and proinflammatory cytokine (IL-13) and chemokines (CCL2/
MCP-1 and CCL5/RANTES) in the lungs of mice asthmatic with genetic dele-
tion of the Mas receptor [53]. Thus, Mas receptor-induced effects are important 
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counterbalancing mechanisms of the RAS for attenuating the inflammatory pro-
cess in asthma. Moreover, impairment of the Ang-(1-7)/Mas receptor pathway 
may lead to the deterioration of the pathophysiology of asthma.

Defective apoptosis of eosinophils, the main leukocyte in the pathogenesis of 
asthma, and delay in its removal lead to lung damage and loss of pulmonary function 
due to failure in the resolution of inflammation [14, 19]. Recently, we demonstrated 
a novel action of Ang-(1-7), resolution of allergic lung inflammation [54]. Balb/c 
mice were sensitized and challenged with OVA and treated with Ang-(1-7) at the 
peak of the inflammatory process. Treatment with Ang-(1-7) reduced the accumula-
tion of eosinophils in the lung by inducing apoptosis. In addition, Ang-(1-7) treat-
ment reduced the phosphorylation of intracellular signaling pathway, associated with 
cytokine production and leukocyte survival, the NF-κB. Increase in apoptosis of leu-
kocytes and their clearance by macrophages are essential events to promote resolu-
tion of inflammation [70]. Ang-(1-7) treatment increased the clearance of the 
apoptotic cells by macrophages [54]. This result added important criteria to establish 
Ang-(1-7) as an endogenous pro-resolutive mediator.

Unregulated or prolonged inflammatory responses in the lungs can lead to tissue 
damage, pulmonary remodeling, and consequently compromised lung function 
[33]. There is evidence that lung inflammation and remodelling in both asthmatic 
patients and in experimental models of asthma are not restricted to the airway and 
extend into the parenchyma and pulmonary vessels [33]. In addition to leukocytes 
migrating to the lung, structural cells, airway epithelium and smooth muscle cells 
secreting a variety of inflammatory mediators and extracellular matrix proteins, can 
participate in immunomodulation and airway remodelling in asthma [91]. In a 
model of chronically OVA-sensitized and challenged mice, there was an increase in 

a b

Fig. 3 Representative histological images of lung sections stained with H&E from OVA-sensitized 
and challenged mice and treated with Ang-(1-7). The OVA produced a pronounced increase in the 
density of inflammatory cell infiltrate around the airways and blood vessels and alveolar paren-
chyma (a). Treatment with Ang-(1-7) attenuated the inflammatory infiltrate in the peribronchial, 
perivascular and alveolar regions of the lung (b). In addition, OVA mice exhibited significantly 
greater thickening and inflammation of the alveolar wall and bronchial wall thickness. Ang-(1-7) 
presented reduced inflammation in the interalveolar space with normal appearance of the alveolar 
lumen [52]
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the deposition of collagen fibres in the airway wall, an increase in the expression of 
collagen I and III in the lung, along with thickening of the alveolar wall and smooth 
muscle of the arterioles. In addition, the OVA-mice showed right ventricular hyper-
trophy, probably due to a functional and structural adaptation in response to chronic 
pulmonary artery pressure overload [52]

Lung sections from mice that were challenged intranasally with OVA (four con-
secutive days, with 20  μg OVA) showed severe perivascular and peribronchial 
fibrosis and marked goblet cell hyper/metaplasia suggesting airway remodeling. In 
contrast, lung sections from OVA-challenged mice treated with Ang-(1-7) 
decreased in the perivascular and peribronchial fibrosis and goblet cell hyper/meta-
plasia [15].

In other studies, mice were sensitized and challenged with OVA three times per 
week (for four weeks). OVA mice exhibited significantly greater thickening and 
inflammation of the alveolar wall. The epithelial thickness and collagen deposition 
in airways and lung parenchyma were increased. In addition, OVA induced an 
increase in the mRNA expression of collagen I and collagen III. However, OVA- 
sensitized and challenged animals treated with Ang-(1-7) or AVE0991 presented 
reduced inflammation in the interalveolar space with normal appearance of alveolar 
lumen and reduce epithelial thickness [52, 75]. Furthermore, OVA-sensitized and 
challenged mice treated with Ang-(1-7) presented a marked reduction in collagen 
deposition in airway walls, lung parenchyma, and mRNA expression of collagen I 
and III (Fig. 4. [52]).

The model of chronic asthma in mice with lack of the Mas receptor induces an 
intense degree of lung inflammation and remodeling in a mice strain (FVB/N) less 
sensitive to an experimental model of asthma. Indeed, FVB/N-WT (wild-type) mice 
presented an attenuated response to OVA challenge compared with the response 
observed in Balb/C mice subjected to the same protocol. However, deletion of Mas 
receptor induces worsening of the development of chronic allergic lung inflamma-
tion in mice. These data show that impairment of the Ang-(1-7)/Mas receptor path-
way may lead to the deterioration of the pathophysiology of asthma [53].

A recent study, showed that treatment with Ang-(1-7) at the peak of the inflam-
matory process induced resolution of eosinophilic inflammation in an experimental 
model of asthma. Balb/c mice were sensitized and challenged with ovalbumin and 
treated with Ang-(1-7), 24 h after the last OVA challenge. The inclusion of Ang-
(1- 7) into an oligosaccharide HPβCD cavity protects the peptide during its passage 
through the gastrointestinal tract. Resolution of inflammation is an active process 
that allows cessation of inflammation and re-establishment of tissue homeostasis. 
Therefore, oral treatment with Ang-(1-7) promoted prevention of excessive traffick-
ing of eosinophil to the lung, shutdown intracellular signaling molecules associated 
with cytokine production and eosinophil survival, apoptosis of recruited eosinophil, 
and promotion of clearance of apoptotic leukocytes, i.e., efferocytosis. These effects 
induced the return of pulmonary homeostasis through a decrease in extracellular 
matrix accumulation and a great reduction in collagen I and III genes expression in 
the lung [54].
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These data will accelerate the research efforts for the development of new Ang-
(1-7)-based pharmacological strategies to control, prevent, and treat chronic 
inflammation- related diseases, such as asthma. Thus, the observation that Ang-(1-7) 
is effective through oral route can provide clinical benefits for treatment of allergic 
asthma, as it can be better tolerated than nebulization or than standard drugs, and it 
can act sistemically reducing overall inflammation and optimizing health of patients

 Ang-(1-7) in Pulmonary Fibrosis

Pulmonary fibrosis (PF) is a fatal lung disease of unknown cause. The disease is 
characterized by progressive scarring of the lung tissue accompanied by fibroblast 
proliferation, the sudden onset of lung parenchyma, with thickening of the alveolar 
septa, hyperplasia of type II pneumocytes (PII), and myofibroblasts, causing nar-
rowing of airways, all leading to a loss of lung function and decreased quality of life 

a b

c d

Fig. 4 Representative histological images of lung sections stained with Gomori’s trichrome from 
OVA-sensitized and challenged mice (a) and treated with Ang-(1-7) (b). OVA-challenged mice 
presented marked peribronchial and perivascular fibrosis (a-asterisks), which was prevented by 
Ang-(1-7) treatment (b). (c and d) Representative histological images of lung sections stained with 
periodic acid schiff (PAS) from OVA-sensitized and challenged mice and treated with Ang-(1-7). 
The OVA-challenged mice presented increased mucus deposition in airways (c-arrows). In addi-
tion, the treatment with Ang-(1-7) decreased mucus deposition in airways in mice with allergic 
pulmonary inflammation (d) [52]
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[79]. The estimated prevalence of PF is around 30 cases per 100,000 people, reach-
ing more than 100 individuals per 100,000 people aged 75  years or more [71]. 
Treatment for PF with anti-inflammatory, immunosuppressive, and antifibrotic 
agents has not shown promising results to abate the progression of the disease or to 
improve the quality of life [71]. Therefore, it becomes essential to better understand 
the disease pathophysiology and to identify novel therapeutic targets/agents for the 
treatment of PF.

Bleomycin (BLM), used and described method to cause PF in rodents, is a che-
motherapeutic used in the treatment of several neoplasias. Challenged with BLM in 
intratracheal administration causes some lung lesions such as parenchyma inflam-
mation, lesion of the alveolar epithelial cells with reactive hyperplasia, activation 
and fibroblast to myofibroblast differentiation and pulmonary fibrosis [64]. In addi-
tion, the presence of PH secondary to fibrotic lung diseases, called cor pulmonale, 
indicates poor prognosis with a compromised cardiac function.

Studies demonstrate that Ang II/AT1 receptor is required for the pathogenesis of 
experimental lung fibrosis. Ang II has a number of profibrotic effects on lung 
parenchymal, such as induction of growth factors for mesenchymal cells, extracel-
lular matrix deposition, production of cytokines, and increased motility of lung 
fibroblasts [55, 58]. Recent evidence shows that the counterregulatory molecule 
Ang-(1-7), the product of the ACE2 acts as an antifibrotic pulmonary survival fac-
tor [87].

Shenoy et al. [82] showed that endotracheal instillation of bleomycin evoked a 
severe fibrotic response, characterized by the accumulation of interstitial lung col-
lagen. In addition, increased lung mRNA levels of an important cytokine that plays 
a key role in fibrogenesis, the transforming growth factor-β (TGF-β), were also 
observed. Collagen deposition and TGF-β were significantly decreased by overex-
pression of ACE2 or Ang-(1-7). Furthermore, this study did detect pulmonary 
hypertension (PH) and right ventricular hypertrophy (RVH) after bleomycin admin-
istration. However, treatment with Ang-(1-7) prevented the development of both PH 
and RVH. The treatment with Ang-(1-7) or overexpression of ACE2 presented simi-
lar beneficial effects, possibly mediated via generation of Ang-(1-7). It is conceiv-
able that the protective effects of ACE2 and Ang-(1-7) on the heart may be secondary 
to the reduction in the lung fibrosis.

Meng et al. [60] investigated whether the upregulation of the ACE2/Ang-(1-7)/
Mas axis protects against BLM-induced pulmonary fibrosis by inhibiting the mito-
gen-activated protein kinase (MAPK)/NF-κB pathway. In this experimental proto-
col, male Wistar rats were submitted the PF by BLM and/or AngII. The results 
showed that Ang-(1-7) regulates the balance of the RAS from the ACE/AngII/AT1R 
axis toward the ACE2/Ang-(1-7)/Mas axis. The BLM-treated animals presented 
characteristic histological changes in lung tissue, including areas of inflammatory 
infiltration, thickening of the alveolar walls, increased interstitial collagen deposi-
tion, and a fibroblastic appearance. Chronic infusion with Ang-(1-7) resulted in a 
protective effect against lung fibrosis. Furthermore, treatment with Ang-(1-7) and 
lenti-ACE2 protect against BLM- or AngII-induced inflammation and extracellular 
matrix (ECM) accumulation by inhibiting the MAPK/NF-κB and NF-κB signaling 
pathways. These results suggest that treatment with Ang-(1-7) decreased activation 
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of MAPKs pathways (ERK1/2, p38, JNK) and NF-κB, which are crucial for lung 
fibrogenesis [60].

Study in vitro shows that human fetal lung-1 cells were pretreated with com-
pounds that block the activities of AT1 receptor, Mas (A-779), and MAPKs before 
exposure to Ang II or Ang-(1-7). The human fetal lung-1 cells were infected with 
lentivirus-mediated ACE2 before exposure to Ang II.  Ang-(1-7) and lentivirus- 
mediated ACE2 inhibited the Ang II-induced MAPK/NF-κB pathway, thereby 
attenuating inflammation and α-collagen I production, which could be reversed by 
A-779, Mas receptor antagonist. Ang-(1-7) inhibited Ang II-induced lung fibroblast 
apoptotic resistance via inhibition of the MAPK/NF-κB pathway and activation of 
the mitochondrial apoptotic pathway [60].

It is well known that in addition to MAPK and NF-κB activation, the reactive 
oxygen species (ROS) generated by NADPH oxidase-4 (NOX4) initiates lung fibro-
sis. ROS generation plays a relevant role in lung fibrosis, and recent studies suggest 
that NADPH oxidases (NOXs) are key sources of ROS in the fibrotic lung [6]. The 
NOX4 in mediating fibroblast functions during the lung fibrosis process has been 
stressed. In addition, mice with genetic deletion of NOX4 are protected against 
BLM-induced pulmonary fibrosis [29]. Meng et  al. [61] showed that NOX4-
dependent ROS caused by the activation of the ACE/Ang II/AT1 receptor axis con-
tributes to the development of AngII- or BLM-induced lung fibrosis by fibroblast 
migration and α-collagen I synthesis. Ang(1-7) and lentiACE2 treatment protect 
against BLM-induced pulmonary fibrosis by shifting the balance of the RAS toward 
the ACE2/Ang(1-7)/Mas axis and by inhibiting the generation of ROS. In addition, 
Ang-(1-7) and llentiACE2 protected against BLM- or Ang II-induced lung fibro-
blast migration and ECM accumulation by inhibiting the NOX4-derived. These 
results suggest that the ACE2/Ang(1-7)/Mas axis could be a novel pharmacological 
antioxidant target for lung fibrosis induced by Ang II-mediated ROS [61].
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 Introduction

The renin-angiotensin system (RAS) is one of the most important endocrine sys-
tems in maintaining body homeostasis by integrating the systemic effects and also 
locally adjusting organs functions with important role in modulating energy balance 
[1–3]. Body catabolism and anabolism are regulated by many endocrine compo-
nents present in different tissues and also in the circulation. In the last decade, the 
renin-angiotensin system gained an important visibility with the characterization of 
Angiotensin-(1-7) [Ang-(1-7)] metabolic and endocrine effects [3].

The RAS starts with angiotensinogen (AGT) expression in different tissues and 
cell types. Nevertheless, the hepatic cells are regarded as the primary circulating 
source of AGT in normal homeostasis [4]. Renin enzyme coverts AGT into Ang I, 
which is rapidly hydrolyzed by angiotensin-converting enzyme (ACE) to the octa-
peptide, Ang II. Ang II is the oldest and most studied RAS peptide, with potent 
vasoconstrictive and proliferative effects and broadly elevated in different metabolic 
diseases such as diabetes, obesity, metabolic syndrome, and liver steatosis [3]. 
Several other angiotensin peptides are formed from AGT; however, the main one 
and better described is the Ang-(1-7), that largely opposes Ang II actions thought 
the Mas receptor [5]. The Ang-(1-7) peptide is also mainly produced as a product 
from the Ang II degradation by ACE-homologue enzyme (ACE2) [4].

The Ang-(1-7) has been well established as a key hormonal peptide in the last two 
decades with numerous research findings of new biological effects and therapeutic 
strategies as described [6]. Currently, it is also well established that ACE2/Ang-(1-7)/
Mas axis is implicated in counteracting different deleterious effects produced by high-
level activation of the ACE/Ang II/AT1 axis [7]. Ang-(1-7) and Ang II have been 
implicated in regulating several hormones and metabolic tissues. Considering the pan-
creas and energy metabolic endogenous components, the Ang-(1-7) demonstrated to 
be crucial for regulating insulin resistance, glucagon effects, and energy storage.

Preceding results showed that elevated levels of Ang II by acting through type 1 
(AT1) receptors, produce dyslipidemia, glucose intolerance, endothelial dysfunc-
tion, atherosclerosis, and several other metabolic disturbances which lead to cardio-
vascular damage and metabolic disorders [8]. Indeed, Ang-(1-7) broadly opposes 
these metabolic alterations by activating, mainly, the G-coupled Mas receptor [6]. 
Besides, Ang-(1-7) interacts with and regulates several local and circulating endo-
crine effects such as gonadal hormones and adipokines secretion. In recent years, an 
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important cross-modulation of sirtuins (enzymes that regulates metabolism) [9] was 
demonstrated with Ang-(1-7), improving together the type 2 diabetes. Recently, 
Muñoz et al. and Santos et al. showed that Mas receptor is an essential component 
of the insulin receptor-signaling pathway [10, 11]. Altogether, these data indicate 
that improving Ang-(1-7) signaling and reducing Ang II effects appears to be an 
important way to treat metabolic abnormalities and open new perspectives for 
understanding RAS metabolic and hormonal role.

 Ang-(1-7) and Pancreatic Hormones

The ACE2/Ang-(1-7)/Mas axis improves pancreatic hormones activities, especially 
in disease conditions, such as type 2 diabetes. There are several pathways associated 
with the Ang-(1-7) action mechanisms on regulating insulin and glucagon. A pos-
sible mechanism to oppose Ang II effects includes the Ang-(1-7)s ability to increase 
the phosphorylation of insulin-associated proteins (e.g., Akt, AS160, and GSK-3B). 
In addition, Ang-(1-7) seems to reduce IRS-1 serine phosphorylation and mamma-
lian target of rapamycin (mTOR)/ JUN N-Terminal Kinase (JNK) activation, while 
activating ERK1/2 and protein kinase C (PKC), thus improving insulin responsive-
ness [12]. Ang-(1-7) is also shown to act neurologically in energy metabolism 
improving insulin sensitivity. It was reported that Ang-(1-7) may potentiate insu-
lin’s anorectic actions, regulating energy balance and thus interfering in the patho-
physiology of metabolic diseases [13].

Additionally, Ang-(1-7) is shown to cause arterial dilation and microvascular 
recruitment, which increase muscle insulin delivery and glucose disposal, thus 
improving whole-body insulin resistance. Insulin delivery to peripheral tissues con-
stitutes an important part of this hormone’s actions [14]. Moreover, a study per-
formed using ACE2 knock out (KO) animals, which presents decreased Ang-(1-7) 
production, evidenced reduced first-phase insulin secretion in response to glucose 
infusion [15] while ACE2 overexpression was shown to improve first-phase insulin 
secretion [16]. Additionally, the ACE2/Ang-(1-7)/Mas axis seems to exert a poten-
tial beneficial effect in the pancreas via β-cell function improvement [16, 17] while 
Ang-(1-7) increases insulin metabolism in the pancreas by reducing β-cell oxidative 
stress and apoptosis [18–20] (possibly modifying the B-cell lymphoma 2 (Bcl-2) 
family and augmenting pancreatic microcirculation). These results point to the Ang-
(1-7) effects ameliorating insulin secretion in addition to previous reported effects 
on insulin sensitivity.

The Ang-(1-7) effects on glucagon activity are also reported, but remain scarce 
and controversial in the literature. It was shown that Ang-(1-7) main receptor 
(Mas receptor) ablation was correlated with increased α-cells/glucagon levels and 
decreased β-cells, associated with increased fasting glucose levels [21]. The 
ACE2/Ang-(1-7)/Mas axis is also reported to regulate pancreatic development in 
mouse with decreased β-cells and increased α-cells, along with observations of 
impaired insulin secretion and reduced glucose tolerance after prenatal treatment 
with Mas receptor antagonist [22]. It is discussed that Ang-(1-7) may modulate 
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endocrine cell differentiation via reactive oxygen species (ROS) [23], possibly via 
mitogen- activated protein kinase (MAPK) signaling pathway and reduced induc-
ible nitric oxide synthase (iNOS) expression [20]. These findings are important to 
delineate potential therapeutic alternatives to restore pancreatic islets function 
and thus recover glucose metabolism [22]. However, the literature also reports 
that Ang-(1-7) is not able to influence glucagon release by the α-cells nor systemic 
glucagon levels [24, 25], thus requiring further studies to elucidate possible inter-
actions (Fig. 1).

 Angiotensin-(1-7) and Liver

The liver is the main source of circulating angiotensinogen (AGT) and several other 
important hormones in healthy organisms [2, 3]. Currently, it is well described that 
imbalance in RAS components produces increased AGT secretion, which is directly 
associated with augmented Ang II local and systemic levels and several diseases 
such as insulin resistance, liver steatosis (fatty liver disease), hypertension, and obe-
sity. As previously described, increased Ang II production leads to profibrotic, pro-
inflammatory and prooxidant effects modifying several steps of cellular signaling, 
specially acting through AT1 receptor, interfering in liver diseases such as steatosis, 
hepatitis and cirrhosis [26, 27]. On the other hand, ACE2/Ang-(1-7)/Mas axis also 
plays a pivotal protective role in liver disorders [28].

Increase

Ang(1-7)

Ang(1-7)

Pancreas Ang(1-7)

Ang(1-7)

IR

MasR

Ang(1-7)

β-cells

α-cells
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Glucagon
Insulin
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ERK1/2
PKC
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GSK-3B

NAPDH oxidase
MAPK
mTOR/JNK

Vasodilation and
microvascular recruitment

Fig. 1 Ang-(1-7) increases insulin secretion. 2 – Ang-(1-7) induces activation of insulin- associated 
proteins (IRS-1, ERK1/2, PKC, AS160 and GSK-3B). 3 – Ang-(1-7) decreases NAPDH oxidase, 
MAPK, and mTOR/JNK activity. 4 – Ang-(1-7) increases vasodilation, which leads to improved 
insulin delivery and glucose disposal. 5  – Ang-(1-7) decreases α-cells and increases β-cells 
percentage
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The Ang-(1-7) produces several beneficial effects in liver conditions by reducing 
inflammation and liver fibrosis [29–31] and regulating liver metabolic function [25]. 
Using animal models of obesity, Ang-(1-7) oral administration prevented hepatic 
inflammation by inhibiting resistin/toll-like receptor 4 (TLR4)/MAPK/NF-κB sig-
naling pathway [32]. Bilman et al, showed that an increased circulating Ang-(1-7) 
is associated with decreased gluconeogenesis in rats [25]. The beneficial effects of 
augmented ACE2/Ang-(1-7) axis activity is corroborated by data indicating that 
relative ACE2 deficiency leads to Ang II impaired degradation and accumulation 
contributing to augmented fibrosis and inflammatory process [33, 34].

Liver steatosis, characterized by excessive lipid accumulation in hepatocytes, is 
one of the most common hepatic diseases currently, and is regularly associated with 
obesity, type 2 diabetes mellitus/insulin resistance and dyslipidemia [28, 35, 36]. 
Rats overexpressing Ang-(1-7) for a lifetime presented decreased concentration of 
liver triacylglycerol which may result from increased activity of cytosolic lipases 
and decreased fatty acid uptake in adipose tissue [37]. Supporting this data, ACE2 
deletion in mice [reduced Ang-(1-7)] aggravates liver steatosis, which is correlated 
with increased lipogenic genes expression and decreased fatty acid oxidation- 
related genes expression in the liver. On the contrary, ACE2 overexpression 
improved fatty liver disease in db/db mice by enhancing Akt signaling pathway 
[38]. The Ang-(1-7) pharmacological potential was improved by the production of 
a new oral formulation characterized by a protected Ang-(1-7) molecule included in 
acyclic-oligosaccharides (cyclodextrin), which permits an efficient oral treatment, 
which already showed ability to improve liver steatosis by reducing fat accumula-
tion, lobular inflammation, and fibrosis in rats [39].

In conclusion, the increased ACE2/Ang-(1-7)/Mas activation is able to improve 
hepatic disorders and reduce Ang II/AT1 deleterious effects. Thus, new approaches 
aiming to increase Ang-(1-7)/Mas effects could be a novel tool for the treatment and 
prevention of liver diseases (Fig. 2).

 Ang-(1-7) and Adipose Tissue

The adipose tissue is an important endocrine and paracrine organ. The adipocytes 
exert a significant role in the synthesis and secretion of proinflammatory factors 
such as cytokines, chemotactic agents, chemoattractants, acute phase proteins, eico-
sanoids, prostaglandins, hormones, and anti-inflammatory effectors, all called adi-
pokines [40]. Adiponectin and leptin are adipokines and hormones with local and 
systemic biological effects modulating insulin sensitivity and metabolic syndrome 
development [41]. The adiponectin is mainly involved in the glycemic control, and 
high levels of this hormone are associated with reduced insulin resistance, type 2 
diabetes, and obesity [42–44]. In addition, leptin showed to be important on energy 
homeostasis and regulating satiety [45, 46].

As well as adiponectin and leptin, the renin-angiotensin system was also 
described as an important regulator of the metabolic homeostasis. Some authors 
suggest a possible interaction among the ACE2/Ang-(1-7)/Mas axis, adiponectin 
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and leptin [47–50]. Mas receptor knockout mice (Mas−/−) present decreased meta-
bolic efficiency, insulin resistance, dyslipidemia, hyperleptinemia and reduced adi-
ponectin and Glucose transporter type 4 (GLUT4) expression in the adipose tissue 
[48]. Similarly, it was demonstrated that transgenic rats with increased Ang-(1-7) 
levels presented increased glucose tolerance, improved insulin sensitivity, and 
increased adiponectin levels [49].

Recently, the Ang-(1-7) effects on oxidative stress were reported. The reactive 
oxygen species activity via nicotinamide adenine dinucleotide phosphate (NAPDH) 
oxidase attenuation was reduced in db/db mice (Leptin receptor deficient mice) with 
nephropathy after Ang-(1-7) administration [51]. The Ang-(1-7) protective effect 
against oxidative stress was associated with increased adiponectin levels [47].

Subsequent studies suggested that Ang-(1-7) reduces cardiac dysfunction associ-
ated with obesity mainly via attenuation of adiponectin expression and epicardial 
fat inflammation [52]. ACE2 knockout obese mice presented increased epicardial 
adipose tissue inflammation, worsened myocardial insulin resistance and conse-
quently impairing cardiac metabolism via increased lipotoxicity and oxidative 
stress. Ang-(1-7) administration attenuated the deleterious alterations observed in 
ACE2 knockout mice, especially via maintaining cardiac function [53]. The Ang-
(1-7) anti-inflammatory effects were associated with increased myocardial adipo-
nectin levels [52].

The interaction between RAS and leptin levels was described in Mas-KO mice 
[48] and mice fed a high-sucrose diet [50]. Both models presented increased fat 
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Fig. 2 Ang-(1-7) beneficial effects in hepatic conditions. 1 – Ang-(1-7) reduces hepatic inflamma-
tion and fibrosis via resistin/TLR4/MAPK/NF-κB signaling pathway. 2 – Increased circulating 
Ang- (1-7) is associated with decreased gluconeogenesis. 3 – ACE2 overexpression improves Fatty 
liver disease via AKT signaling pathway
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mass, insulin, leptin plasma levels and glucose intolerance. Corroborating these 
data, transgenic mice with increased Ang-(1-7) levels presented reduced leptin 
serum levels [54]. The Ang-(1-7)/Mas axis was also recently described as an impor-
tant modulator of the renal function, exerting renoprotective effects, by decreasing 
leptin levels synthesized by the perirenal adipose tissue [55].

Ang-(1-7) treatment improved cardiac hypertrophy, myocardial fibrosis, and 
reduced lipotoxicity by decreasing triglycerides accumulation in the cardiac muscle 
in db/db mice, which could contribute to improve diastolic dysfunction [56, 57]. 
These alterations were associated with inhibition of pathological signaling pathway, 
as mediated by PKC. Erk1/2 phosphorylation was reduced, due to the decreased 
leptin capacity to stimulate mitogen kinase protein phosphorylation [58]. Ang-(1-7) 
treatment prevented Erk1/2 loss of phosphorylation, which is cardioprotective [59]. 
In diabetic cardiomyopathy, leptin was also associated with heart hypertrophy by 
increasing cardiomyocytes glucose concentration [60]. More recently, it was dem-
onstrated that Ang-(1-7) may reverse this condition via reduced ROS, leptin, p38, 
and Erk1/2 expression [61]. These findings suggest an important interaction among 
RAS, adiponectin and leptin and the use of drugs aiming to modulate these mole-
cules, which might compose an efficient alternative to be used on treating metabolic 
disorders associated with increased body adiposity (Fig. 3).

Renoprotective
effect

Kidney

Muscle

Adipose tissue

Heart

Adipokines

Liver

Adiponection
Leptin

Glucose tolerance
and insulin sensitivity

Oxidative stress
Ang-(1-7)

Epicardial adipose
tissue inflammation

Cardioprotective
effect

Fig. 3 Ang-(1-7) increases adiponectin and reduces leptin. 1  – Ang-(1-7) has renoprotective 
effects via attenuation of adipokines produced by the perirenal adipose tissue. 2  – Ang-(1-7) 
induces glucose and insulin sensitivity improvement. 3 – Ang-(1-7) has cardioprotective effects 
and reduces inflammation mediated by the epicardial adipose tissue
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 Ang-(1-7) and Gonadal Hormones

The literature chronologically reports the main RAS components in the female and 
male reproductive organs in several mammals’ species, including rodents and 
humans [62–66]. The angiotensin-converting enzyme (ACE) has been identified in 
rat ovaries, in the germinal epithelium adjacent to the corpus luteum, granulosa 
cells, blood vessels, and stroma [66]. The male reproductive system and testicles 
also express the RAS classical components that modulates steroidogenesis in 
Leydig cells and have effects in epididymal and sperm cells function [67]. Some 
other studies demonstrated that the Mas receptor is present in mice, rats, and humans 
testicles [68–70] evidencing that Ang-(1-7) is important on female and male repro-
ductive system, as well as on the gonadal hormones effects.

 Ang-(1-7) Modulating the Gonadal Effects: Ovary

In the ovary, several studies have reported the involvement of Ang-(1-7) peptide on 
functions such as folliculogenesis, follicular atresia, ovulation and corpus luteum 
formation, thus influencing the reproduction biotechnologies efficiency [71–74].

High levels of Ang-(1-7) were found in the rats ovarian (phases: proestrous and 
estrous) as well as in impubertal rats treated with equine chorionic gonadotropin 
(eCG), especially in theca cells [74]. This finding indicates the involvement of this 
peptide in pre- and post-ovulatory events [72]. Reis et al. (2009) reported the Ang-
(1-7) presence in rabbit ovaries via immunohistochemistry techniques and found 
immunoreactivity of this peptide in interstitial cells and oocytes [75–77]. They also 
observed immunoreactivity for Ang-(1-7) in theca and granulosa cells of preovula-
tory follicles in pretreated rabbits with equine chorionic gonadotropin (eCG) and in 
luteal bodies of covered rabbits.

Ang-(1-7) was also detected in women ovarian follicles – primordial, primary, 
secondary, and antral – stroma, and corpus luteum [78]. Evidence regarding a spe-
cific Ang-(1-7) receptor was raised especially after the synthesis of specific antago-
nist for this peptide [A-779 or D-Ala7-Ang-(1-7)] [79]. In another study, the 
specific Mas receptor antagonist, A-779, inhibited the germinative vesicle induced 
by Ang-(1-7) and reduced the oocyte maturation stimulated by the luteinizing hor-
mone (LH) [77]. The Mas receptor presence was also evidenced in a study that 
added Ang-(1-7) in ovary perfusion medium of rats in vitro, stimulating the estra-
diol production [72]. Evidence of an Ang-(1-7) specific receptor in rats was also 
reported [80].

ACE participates in Ang-(1-7) metabolism, as its inhibition might reduce Ang-
(1-7) degradation and reduce its conversion into Ang-(1-5) while increasing its bio-
availability [81]. Furthermore, ACE inhibitors may also increase Ang I availability, 
providing higher Ang-(1-7) production via the prolyl-endopeptidase pathway. The 
cCG treatment in impubertal rats increased the Mas receptor and ACE2 expression, 
promoting increased Ang-(1-7) immunoreactivity in theca and interstitial cells. 
These findings support the hypothesis that the ovarian ACE2/Ang-(1-7)/Mas axis is 
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expressed in rats ovarian and is regulated by gonadotropic hormones [77, 82]. The 
Mas receptor is also involved in vessel relaxation dependent on nitric oxide, induced 
by the estrogen hormone that induces nitric oxide (NO) production and vasodilation 
via mechanisms that require Mas receptor activation [83, 84].

Generally, ovarian steroids are not necessary to induce Ang-(1-7) and Mas 
receptor endometrial expression in rats, as they remain highly expressed in 
ovariectomized animals. However, estrogen and progestin may modulate the 
endometrial distribution pattern of this peptide, especially in the glandular com-
partment [85].

Current evidence also suggests that, in part, the female protective phenotype 
against hypertension might be due to the ACE2 activity incident within cardiovas-
cular regulatory regions of the brain, potentially mediated by estrogen. Increasing 
evidence suggests the importance of a central renin-angiotensin pathway, although 
its localization and mechanisms involved in its expression and regulation still need 
to be further clarified [86].

 Ang (1-7) Modulating the Gonadal Effects: Testicles

The male reproductive structures also express all the RAS components and the 
gonadotropins regulate the components activity. Of great interest is the expression 
of the angiotensin-converting enzyme (ACE) in testicles germ cells.

Regarding Ang-(1-7) and MasR, the mRNA expression and distribution for the 
Mas proto-oncogene were studied by hybridization with marked cDNA probes in 
mice brain, and its presence was observed in several brain areas [87]. The Mas 
expression was also described in rats testicles [68], and its expression in mice started 
only after 18 days of age and increased until the sixth month [69]. Santos et  al. 
(2003), showed for the first time the Ang-(1-7) functional receptor, Mas receptor, 
localized in mice kidney [88]. In mice and rats testicles, the MasR was evidenced 
several weeks after birth, coinciding with the puberty period. In mice aging 
3 months, the MasR is expressed and localized in Leydig and Sertoli cells, despite 
highest amounts were observed only in Leydig cells [69, 70]; although Mas 
Knockout mice did not present fertility alterations [89], the Mas receptor presence 
in the puberty phase in the testicles, especially in testosterone modulation, suggests 
that Ang-(1-7) might participate in the testosterone production and thus in the repro-
ductive system.

The human testicle also presents Ang-(1-7), which is more abundant in the 
Leydig cytoplasm. In the seminiferous tubules, the Ang-(1-7) expression is lower 
when compared to the interstitial compartment and is predominant in external lay-
ers, particularly in Sertoli cells cytoplasm and primary sperm [70].

In order to verify the Ang-(1-7) effects on testicular steroidogenesis, a perfusion 
system model of isolated organ or incubation system with the peptide was used. In 
the perfusion model with rats testicles, increased testosterone was observed in the 
perfusate [90], while in the human testicles incubation, Ang-(1-7) decreased testos-
terone production [91]. However, even with the in vitro results already reported, this 
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peptide systemic effect on steroidogenesis was not yet verified. In order to verify the 
metabolism modulation in these effects, Ang-(1-7) was included in polysaccharide 
cyclodextrin, protecting the peptide against digestive enzymes, allowing its oral 
administration. Thus, it was possible to verify the Ang-(1-7) effects in reproductive 
organs, from plasma samples [62].

In this sense, a consistent amount of evidence produced in the last few years sug-
gests that the Ang-(1-7)/Mas pathway is active and demonstrates an important role 
in female and male reproductive systems (Fig. 4).

 Remarks and Perspectives

Recent studies suggest that ACE/Ang-(1-7)/Mas axis modulation may improve met-
abolic diseases by modulating different signaling pathways involved in the synthe-
sis and secretion of several hormones produced in different sites such as: pancreas, 
liver, adipose tissue and reproductive system.

Ang-(1-7) showed to be effective on improving type 2 diabetes and obesity in 
murine models. The Ang-(1-7) or its synthetic analog (AVE-0991) prevented abnor-
mal vascular alterations induced by hyperglycemia in the mesenteric bed, isolated 
carotid and renal arteries from diabetic rats. Furthermore, treatment with AVE-0991 
was capable of restoring cardiac function in diabetogenic conditions, via arterial 
pressure and contractility parameters normalization [92].

Progesterone Ang 1-7

Corpus Iuteum

Mas

Mas

Ang I

Testosterone

ACE II

Fig. 4 RAS components and Ang-(1-7) action via Mas Receptor in the reproductive systems. 1 – 
Ovary: Ang-(1-7) effects on folliculogenesis, ovulation, formation of the corpus luteum responsi-
ble for the secretion of progesterone that maintains the ovarian cycle and pregnancy balance. 2 – In 
the testicles: greater expression of MasR in the Leydig cells responsible for the testosterone secre-
tion that has action in the reproductive tissues (testicles and prostate) and secondary male 
characteristics
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In the liver, Ang-(1-7) showed an essential role improving and treating hepatic 
diseases by modulating inflammation and fibrosis [29–31] and regulating hepatic 
metabolic function [92]. The resistin/TLR4/MAPK/NF-κB axis is an important 
Ang-(1-7) target [32]. Furthermore, the relative ACE2 deficiency leads to Ang II 
impaired degradation and consequently accumulation of this peptide, contributing 
to increased fibrosis and inflammation [33, 34].

In the metabolic homeostasis control, adiponectin, leptin, and Ang-(1-7) exert 
important influence [49]. Ang-(1-7) produced renoprotective effects in experimental 
models of diabetic nephropathy associated with reduced inflammation, fibrosis, oxi-
dative stress, and lipotoxicity [66–69]. In diabetic cardiomyopathy, leptin was associ-
ated with cardiac hypertrophy via increased glucose concentrations in cardiomyocytes 
[60]. More recently, it was demonstrated that Ang-(1-7) may improve cardiovascular 
diseases by reducing ROS, leptin, p38 and Erk1/2 expression [61].

In the ovary, several studies reported the Ang-(1-7) involvement in functions 
such as folliculogenesis, follicular atresia, ovulation and corpus luteum formation, 
influencing the reproductive biotechnologies efficiency [71–74]. The treatment with 
eCG in impubertal rats increased Mas receptor and ACE2 expression and Ang-(1-7) 
imunoreactivity in theca and interstitial cells. These findings support the hypothesis 
that the ovarian ACE2/Ang-(1-7)/Mas axis is regulated by gonadotrophic hormones 
[77, 82]. In the testicles, the Mas receptor presence in the pubertal phase suggests 
that Ang-(1-7) may participate in the testosterone production and thus in the repro-
ductive system [70].

Altogether, these findings are important to delineate potential therapeutic alter-
natives to restore the metabolic organs and improve metabolism [22], especially 
considering the pandemic healthcare problem of obesity and diabetes (associated 
with pancreas disorders) [24, 25]. The increased ACE2/Ang-(1-7)/Mas axis activa-
tion is also capable of improving hepatic disorders and reducing the AngII/AT1 
deleterious effects. In the adipose tissue, adiponectin and leptin are described as 
important metabolic regulators [47–50], along with Ang-(1-7) that interferes in 
obesity-associated signaling pathways. Yet, the Ang-(1-7)/MasR signaling is active 
and demonstrates an important role in female and male reproductive systems. Thus, 
new approaches aiming to increase Ang-(1-7) levels might be new important tools 
for treating and preventing endocrine diseases.
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MasR Mas receptor
NMJ Neuromuscular junctions
RAS Renin-angiotensin system
SM Skeletal muscle
TGF-β Transforming growth factor type-β

 Skeletal Muscle Overview

Skeletal muscle (SM) is the most abundant tissue spread through the entire body, 
plays critical role in keeping the postural control, has a vital function for making 
movements, both voluntary and nonvoluntary; and is also involved in the balance of 
energy metabolism.

SM is composed of muscle fibers that are long multinucleated cells surrounded 
by a specialized form of connective tissue the endomysium, and the fibers are orga-
nized as bundles of fibers called fascicles that are surrounded by the perimysium, 
and groups of fascicles are forming the muscles that are surrounded by the epimy-
sium. Within the muscle fibers, capillaries that are oxygenating and nurturing the 
tissue are found, and each fiber is innervated by a motor neuron at the neuromuscu-
lar junction (NMJ), where the fibers are connected with the peripheral nervous sys-
tem for the control of the muscle contraction. The quality of the skeletal muscle 
fibers is strongly influenced by the nerve. Another component of SM are the satellite 
cells that lie under the fibers basal lamina, these cells are stem cells committed to 
the muscle lineage. Other cell types present in SM are the fibroadipogenic progeni-
tors (FAPs) and some monocytes residents in the muscle [1–5]. These cell types 
play important roles in the regeneration of SM. Figure 1 shows a schematic repre-
sentation of SM architecture.

 RAS Components in Skeletal Muscle (SM)

There is increasing evidence that the renin-angiotensin system (RAS) plays a 
direct role in different tissues and the SM does not seem to be an exception. 
Several works have shown that components of both arms of the RAS are present 
in this tissue. Among the components of the classic RAS axis, it has been 
described that there is angiotensin- converting enzyme (ACE) expression and 
activity [6–8] and immunohistochemical analyses show that (ACE) is present in 
the endothelium and in the neuromuscular junction [8, 9] and its levels are 
increased in SM from Duchenne muscular dystrophy (DMD) patients [9], a 
myopathy that occurs by the lack of the dystrophin protein and is characterized 
by muscle weakness and fibrosis [10].

ACE exerts a key role in SM metabolism; in humans, there is a polymorphism on 
ACE gene, ACE I and D (insertion or deletion of a sequence in intron 16 of the ACE 
gene), and the ACE I polymorphism is characterized by reduction of ACE levels 
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[11]. This brings more resistance to exercise performance because it can influence 
the blood flow and increase the oxidative metabolism in the SM [12].

The angiotensin type 1 (AT1) receptors are expressed in the vasculature of skel-
etal muscle of normal adult tissue [13] and its levels are increased in muscle byop-
sies obtained from DMD patients and AT1 can be found in the degenerating muscle 
fibers and fibroblasts as well [9]. AT1 receptors are also present in the SM satellite 
cells and its activation by angiotensin-II (Ang-II) reduces satellite cells proliferation 
and reduced regeneration after cardiotoxin (CTX) injury [14].

Angiotensin type 2 receptor (AT2) transcripts are detected in human fetal skele-
tal muscle tissues, but not in adult human skeletal muscle [13]; on the other hand, in 
mice, AT2 is detected in SM and shown to be increased by transforming growth 
factor beta (TGF-β1) injection in wild-type and in the mdx mice (the DMD murine 
model) [15]. AT2 receptor is increased in the regenerating muscle after CTX injury, 
and is necessary for proper satellite cell differentiation [16]. With regard to the 
opposite RAS axis, ACE2/angiotensin-(1-7)/Mas receptor (ACE2/Ang-(1-7)/Mas), 
there is evidence for ACE2 and Mas receptor presence in the SM [17–22].

ACE2 activity was present in mice SM, and it was localized in the sarcolemma and 
connective tissue of SM and was increased in the dystrophic muscle [18]. ACE2 is also 
playing an important role in the muscle metabolism, since its deletion leads to a reduced 
exercise performance [17]. Mas receptor is also found in mice SM and reported to 
increase in different muscle wasting conditions [20]. Interestingly, in mdx mice its 
expression was increased compared to wild-type mice (Fig. 1), which indicates that its 
levels are induced in this muscle pathology. At the cellular level, Mas receptor 
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Fig. 1 Left: Schematic representation of skeletal muscle tissue, showing the basic components of 
SM. Right: Upper panel shows a transversal cross-section from gastrocnemius of wild-type mice 
stained with hematoxylin/eosin. Lower panel shows an immunofluorescence for CD31 that is pres-
ent in capillaries and laminin that marks the basal lamina delineating the muscle fiber; note that 
there are several capillaries surrounding one fiber (photograph taken and donated by Dr. Daniela 
Rebolledo)
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expression was found in myoblast and myotubes and also in SM-derived fibroblasts 
[23]. Mas receptor is downregulated by TGF-β1 in fibroblasts but not in myoblast or 
myotubes, suggesting differential regulation in the different SM cell types; interestingly, 
Mas expression was not modulated by Ang-II or connective tissue growth factor (CTGF/
CCN2) [23]. Taken together, all these evidences support that the RAS is present and is 
an active player with critical and complex functions in the pathophysiology of SM.

 RAS and SM Disease and Regeneration: Angiotensin-(1-7) 
Protective Role

 Muscular Dystrophies

The classic arm of the RAS is related to skeletal muscle pathologies. In muscular dys-
trophies such as DMD, there are continuing cycles of progressive damage and regenera-
tion of the fibers leading to a chronic inflammatory response that ultimately leads to the 
replacement of the fibers by fibrotic tissue. The main pro-fibrotic molecules in SM are 
(transforming growth factor type-beta) TGF-β [24–26], connective tissue growth factor 
(CTGF/CCN2) [26–29], and classic RAS components ACE/Ang-II/AT1 [25, 26].

Several studies have indicated that Ang-II plays an important role in the muscle 
fibrosis, since treatment with angiotensin type 1 receptor blockers (ARBs) and 
angiotensin-converting enzyme inhibitors (ACEi) general outcome is a reduction in 
the damage and fibrosis [30–33]. Losartan reduces TGF-β expression levels and 
smad-dependent signaling, an intracellular canonical branch activated upon TGF-β 
binding to its receptor [30, 31]. Both losartan and enalapril treatment reduce CTGF 
levels in mdx mice, and reduce the fibrotic response induced by CTGF overexpres-
sion [31, 32]. Ang-II through AT1 receptor leads to fibrosis by increasing TGF-β 
levels via activation of NAD(P)H oxidase-induced ROS and p38 phosphorylation 
that results in increased CTGF levels, increased extracellular matrix (ECM) pro-
teins such as fibronectin, and collagen III [34, 35]; interestingly, the activation of 
NAD(P)H oxidase is PKC- dependent [35].

In muscular dystrophy, Ang-(1-7) systemic infusion by osmotic pumps or deliv-
ered orally by the formulation, cyclodextrin-conjugated Ang-(1-7) (CD-Ang-(1-7)), 
plays a protective role, reducing the damage, fibrosis, and restoring muscle strength 
in the mdx mice [21]; also in the model of sarcoglican-δ null muscular dystrophy, 
CD-Ang-(1-7) improves function and reduces the oxidative stress [36]. The mecha-
nisms mediating the beneficial effects on dystrophy involve the reduction in TGF-β 
levels and smad-dependent signaling, observed by the reduction in phosphorylated 
smad3, decrease in the fibrotic miR-21, resulting in a reduction of TCF-4 positive 
fibroblasts. The Ang-(1-7) effects are mediated by the Mas receptor signaling since 
treatment with the Mas antagonist A-779 or the genetic deletion of Mas receptor in 
the mdx mice model results in a worse dystrophic phenotype, dramatically increas-
ing damage, fibrosis, and smad3 signaling and reducing skeletal muscle strength 
[21], resembling the SM phenotype observed in DMD.

Another mechanism for the reduction of damage and fibrosis mediated by Ang-
(1-7) in dystrophic muscle is by the decrease in CTGF levels (Fig. 3). Interestingly, 
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Ang-(1-7) can also reduce muscle fibrosis in a model of radiation-induced fibrosis 
by reducing TGF-β and CTGF [37].

Overall, Ang-(1-7) protects muscle from damage and fibrosis, and since the mdx 
KO Mas mice had a worse phenotype [21], it seems that the endogenous Ang-(1-7) 
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Ang-(1-7) treatment. The 
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protects from further damage, maybe by compensatory mechanisms, because ACE2 
and MasR are increased in the mdx mice. It would be interesting to measure ACE2/
Ang-(1-7)/MasR in DMD patient’s samples. Interestingly, in the sarcoglican-δ null 
mice, there is a reduction of MasR levels compared with wild type that are restored 
by CD-Ang-(1-7) infusion [36], suggesting that the reduction in Ang-(1-7) receptor 
could lead to damage in this model.

 Atrophy and Muscle Wasting Conditions

Muscle wasting, a condition observed in disuse, immobilization, aging, and some neu-
romuscular diseases, occurs by the increase of the catabolic pathways and reduction of 
the anabolic pathways. The muscle catabolic pathways upregulation is the result of 
increased activity of growth factors such as myostatin, which leads to protein degrada-
tion, and also of the induction of transcription factors such as NF-κB and FoxO3, which 
results in the expression of E3 ligases MuRF-1 and atrogin1 (also known as MAFbx) 
with consequent protein degradation by the ubiquitin proteasome pathway (UPS ubiq-
uitin proteasome system) [38–41]. On the other hand, there is a reduction of anabolic 
pathways such as IGF-1 and its downstream signaling cascade PI3K/AKT/mTOR, 
leading to decreased protein synthesis and cell growth [39, 41, 43], the reduction of 
IGF-1 also activates the FoxO 1/3 transcription factors that induce atrogin1 [38, 42] 
tilting the balance toward the catabolic pathways, finally resulting in a decrease of SM 
mass.

Ang-II drives the muscle wasting by inducing the catabolism and inhibiting 
IGF-1 signaling [44]; it induces NF-κB, which in turns induces Atrogin1. Ang-II 
drives muscle wasting by increasing oxidative pathways [45, 46], leading to activa-
tion of catabolic pathways [47, 48]. Also by inducing protein phosphatase 2C alpha 
(PP2Cα), Ang-II reduces AMPK signaling also leading to muscle wasting [49]. 
Interestingly, the knockdown of PP2Cα reduces Ang-II-mediated atrophy by a 
mechanism involving mitochondrial recycling [50].

Cabello–Verrugio’s group has studied Ang-(1-7) effects in several models of 
muscle atrophy. In a model of atrophy induced by Ang-II, the treatment with Ang-
(1-7) prevented the reduction in fiber size, the reduction in strength, and main-
tained the levels of myosin heavy chain; these effects were dependent on Mas 
receptor since, in the presence of A-779 (the Mas receptor antagonist), the protec-
tive Ang-(1-7) effects were lost [51]. Ang-(1-7) prevented the increase of the 
expression of atrogin1 and MuRF1. Also, it was found that Ang-(1-7) induces the 
phosphorylation of AKT in a Mas-dependent fashion. In vitro, the inhibition of 
AKT inhibited the anti-atrophic effects of Ang-(1-7) [51]. Further experiments 
showed that Ang-(1-7) reduces the myonuclear apoptosis induced by Ang-II, as 
observed by the reduction in the apoptotic nuclei, reduction in the caspases 8 and 
9, and reduction in the activity of caspase 3 and the Bax/Bcl-2 ratio. These effects 
were Mas-dependent because A-779 prevented Ang-(1-7) protection [52]. In a 
model of atrophy induced by limb immobilization, Ang-(1-7) also prevented the 
wasting effects, such as the reduction of fiber size decreased MHC levels, and 
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reduced the E3 Ligases Atrogin-1 and MuRF-1 protein levels, by a mechanism 
that involved the phosphorylation of the IGF-1 receptor, AKT, and p70S6K result-
ing in the inhibition of FoxO3. The activation of IGF receptor (IGF-R) was neces-
sary for the anti-atrophic effects of Ang-(1-7). Importantly, all these anti-atrophic 
effects of Ang-(1-7) were lost in the KO Mas mice [53]. Interestingly, a dendrimer 
carrying Ang-(1-7) (PAMAM-OH- Ang-(1-7)) that can encapsulate two molecules 
of Ang-(1-7) was administered intraperitoneally to mice, and also prevented the 
inmobilization-induced atrophy [54].

In a model of atrophy induced by the endotoxin lipopolysaccharide (LPS), 
Ang-(1-7) treatment prevented the atrophy induced by LPS, as seen by the 
maintenance of fiber size and MHC levels and the prevention in the reduction 
muscle force. Ang-(1-7) reduced the levels of atrogin-1 and MuRF-1 induced 
by LPS, and these effects were Mas receptor-dependent since A-779 inhibited 
the Ang-(1-7) effects. Interestingly, Ang-(1-7) reduced the p38 phosphoryla-
tion mediated by LPS and this was necessary for the anti-atrophic effects of 
Ang-(1-7) [55].

Ang-(1-7) through Mas receptor, also prevented the atrophy induced by TGF-β 
in vivo and in vitro, as observed by maintenance of fiber size, MHC levels, and a 
reduction in the MuRF-1 levels. Interestingly, Ang-(1-7) reduced ROS production 
induced by TGF-β preventing its atrophic effects [56].

 Skeletal Muscle Regeneration

Muscle regeneration occurs after muscle injury or damage, and is a regulated 
process: different cell types participate in the regeneration – first, there is an 
acute inflammatory response that in turns activates the resident fibroblasts and 
FAPS that start producing ECM molecules to seal the injury site, then this ECM 
is degraded and fibroblasts die by apoptosis. During this process, the satellite 
cells begin to proliferate and ultimately differentiate to form new muscle fibers 
[2, 57]. Ang-II impairs muscle regeneration by reducing satellite cell prolifera-
tion and differentiation capacity [14]. Losartan treatment showed an improved 
regeneration capacity in CTX injury in a fibrilin-1 deficient mice, mdx mice, and 
in old mice with sarcopenia by a mechanism that involve TGF-β signaling 
reduction [30, 58].

The potential role of Ang-(1-7) participating in muscle regeneration has not 
been fully elucidated, since there are no reports to our knowledge. Nevertheless, 
this issue is being studied by us and so far we have found that systemic infusion 
with Ang-(1-7) accelerates the regeneration by modulating macrophages popula-
tion and increasing satellite cells number, by a mechanism dependent of iNOS 
activation (Ramirez et al., ms in preparation)). Interestingly, in a model of chronic 
injury, by repeated cycles of BaCl2 injection there are increased levels and activity 
of ACE2 [18], suggesting that Ang-(1-7) is present in the chronic damage mice 
model. What is the function played by Ang-(1-7) in skeletal muscle regeneration is 
still an open question.
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 Future Directions

There are still open questions about Ang-(1-7) role in skeletal muscle biology and dis-
ease. For example, we still don’t know the mechanisms by which Ang-(1-7) has a pro-
tective role in SM disease downstream Mas receptor activation, we know that there are 
some signaling pathways involved like IGF-1 and AKT in the prevention of atrophy [51, 
53], but it is still unclear if the same pathways are activated in the protection of damage 
and fibrosis in DMD. In regeneration, Ang-(1-7) induces iNOS but we do not know if it 
occurs directly or indirectly by activating another route. Recently, the Kallikrein Kinin 
system (KKS), a hypotensor and anti-fibrotic system [59], has been involved in DMD 
[60], so it would be interesting to elucidate if Ang-(1-7) could also be synergizing with 
Bradykinin, the main product of the KKS, to exert a beneficial effect.

Ang-(1-7) in SM has the opposite actions to Ang-II, and can reduce TGF-β and its 
signaling molecules, so it would be of interest to search what is the effect of Ang-(1-7) 
in other neuro- muscular diseases that have increased levels of TGF-β, such as ALS 
[61] or Marfan Syndrome [30]. Since Ang-(1-7) has anti-atrophic effects, there is also 
an interesting question if this peptide has any effect on sarcopenia or aged muscles.

There are efforts being made to test Ang-(1-7) analogs or Mas receptor agonists or 
different ways to deliver Ang-(1-7), that are less prone to degradation, since it could 
have a therapeutic potential; in this regard, cyclodextrin-delivered Ang-(1-7) has been 
proved and could be a good candidate [21, 36]; other way of delivering Ang-(1-7) was 
tested in a model of atrophy by the use of PAMAM-OH with promising results [54]. 
There are analogs, such as A-1317, being tested together with Robson Santo’s group 
in DMD mice model to see if the same beneficial effects as for Ang-(1-7) can be 
achieved using this molecule. Other candidate to prove could be the cyclic Ang-(1-7) 
that has been tested in mice model of cardiac infarction [62]. AVE0991 a Mas agonist 
that has been tested in different pathologies such as heart failure, arthritis, gastric 
ulcers, and asthma [63–67] could also be tested in SM diseases.

 Physical Exercise and ACE2/Angiotensin-(1-7)/Mas Axis

Physical exercise represents an important nonpharmacological tool for prevention 
and treatment of cardiovascular and metabolic disease. Skeletal muscle is the main 
organ affected by acute and chronic exercise and can act as an endocrine organ pro-
ducing and secreting myokines [68]. The skeletal muscle contraction is a potent 
stimulus to induce exercise adaptations in many other organs such as brain, heart, 
lung, kidney, and liver. Here, we will describe:

• Angiotensin-(1-7) effects in trained animals.
• Modulation of ACE2/Ang-(1-7)/MAS axis in response to physical exercise.
• Angiotensin-(1-7) activation (treatment) or inactivation (Mas-deficiency) and 

exercise training.
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 Angiotensin-(1-7) Effects in Trained Animals

The angiotensin-(1-7) effects in trained and sedentary brains and vessels have 
shown the role of this peptide in response to aerobic training exercise. These stud-
ies demonstrated that chronic exercise affects the acute actions of Ang-(1-7) 
(hemodynamic and vascular responses). In some pathological conditions as in 
hypertensive rats (SHR), these effects are more evident.

 Brain

The first study showing the effects of angiotensin-(1-7) associated with exercise was 
published in 2005 by Becker et  al. The authors demonstrated an involvement of 
Ang-(1-7) in physical exercise adaptations [69]. In this study, the rats performed 20 
swimming exercise sessions, 1 hour per day, 5 days a week. After 4 weeks of train-
ing, cardiovascular effects produced by microinjections in rostroventrolateral 
medulla (RVLM) of the angiotensin peptides, Ang-II and Ang-(1-7) were evaluated 
in trained and sedentary animals. The exercise training enhanced Ang-II and attenu-
ated Ang-(1-7) pressor effect (Fig. 4).

The spontaneous hypertensive rats (SHR) presented altered renin-angiotensin 
system in the RLVM and the effects of 12 weeks of running training (5 days per 
week; 60 min per day at 15–20 m/min) were evaluated by Ren et al. [70]. Aerobic 
training significantly reduced sarthan (antagonist of Ang-II) or increased A-779 
(antagonist of Ang-(1-7)) cardiovascular responses to central application of each 
antagonist, respectively. The protein expression of MasR in the RVLM was signifi-
cantly elevated in SHR following aerobic training. These results suggest that the 
central effect in the pressor response for Ang-(1-7) is modulated by physical exer-
cise and future research needs to be made to understand the mechanisms involved in 
this modulation.
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 Vessels

The vascular effects of Ang-(1-7) in trained animals (8-weeks of overload 5% of the 
body weight swimming training) were investigated in the aorta of SHR-trained ani-
mals [71]. Untrained SHR had an impaired vasodilator response to Ang-(1-7) and 
exercise training could reverse this response (Fig.  5). The Ang-(1-7) vasodilator 
effect was abrogated by A-779 and d-Pro(7)-Ang-(1-7) (selective Ang-(1-7) recep-
tor antagonists) and by removal of the endothelium.

This study also showed that only in SHR-trained animals, the aorta MasR protein 
expression was substantially increased and correlated with the Ang-(1-7) effect (Fig. 6).

The cardioprotective effects promoted by exercise training could implicate the 
activation of ACE2/Ang-(1-7)/Mas axis, especially in pathological conditions such 
arterial hypertension.
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 Modulation of ACE2/ANG-(1-7)/MAS Axis in Response 
to Physical Exercise

The effects of physical exercise on ACE2/Ang-(1-7) /Mas activation in different 
pathologies/organs will be discussed in the following sections.

 Heart, Hypertension, and Heart Failure

Aerobic exercise training induces several cardiac effects that culminate in an aerobic 
capacity improvement due in part to the increased ventricular stroke volume, cardiac 
output, and left ventricle hypertrophy [72]. The left-ventricle hypertrophy is depen-
dent on volume training; therefore, Fernandes et al. investigated the modulation of 
ACE2 and Ang-(1-7) in rats following distinct swimming training protocols [73]:

• Low-intensity, moderate-volume exercise: 60-minute per session, 5 days a week, 
for 10 weeks

• Low-intensity, high-volume exercise: the same swimming training protocol 
described until the end of the eighth week and on the ninth week, rats were 
trained twice a day (60  min per session and an interval of 4  hours between 
sessions).

All exercise session was carried out with caudal dumbbells weighing 5% of ani-
mal body weight. ACE2, Ang-(1-7), and the ratio Ang-(1-7) in left ventricle increase 
significantly in both exercise protocols and involve regulatory MicroRNAs (miR-
27a, miR-27b, and miR-143).

Physical training effect on MasR expression in hearts under different physiolog-
ical and pathological conditions has been evaluated by Dias-Peixoto et  al. [74]. 
The physiological stimulus was the swimming training performed 40–60 min per 
day, 5 days per week over 10 weeks. No changes in MasR expression in the trained-
left ventricle Sprague–Dawley (SD) rats were observed. However, in some patho-
logical conditions such as isoproterenol treatment and infarction, MasR 
downregulated responses have been evidenced. Since in hypertensive rats (SHR), 
the role of Ang-(1-7) mediating cardioprotective effects has been consistently 
demonstrated (please see Actions of Angiotensin-(1-7): Heart), the reduction of 
MasR expression showed by Dias-Peixoto et al. could explain in part the cardiac 
damage in these model.

The cardiac effects of 8 weeks period of 5% overload swimming training (1 hour 
per day, 5 days a week) and the role of Ang-(1-7) in normotensive (Wistar) and 
hypertensive (SHR) rats were evaluated by Filho et al. [75]. Interestingly, the plasma 
levels of Ang II reduced in both trained groups but only SHR-trained had a signifi-
cant increase in left ventricle levels of Ang-(1-7). Cardiac (left ventricle) gene 
expression of MasR was significantly increased in trained SHR, but not in trained 
Wistar rats (Fig. 7).
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Additionally, it has been described that heart failure reduction of ACE and ACE2 
levels in the brain can be normalized through chronic running exercise (30 min per 
day, 6 days a week for 3 weeks) [76].

Recently, Tyrankiewicz et al. analyzed systemic (plasma) and local (heart/aorta) 
changes in ACE/ACE-2 balance in Tgαq∗44 mice in course of heart failure (HF) 
[77]. Tgαq∗44 mice present cardiomyocyte 38 specific Gαq overexpression and 
develop late onset of HF. The HF development in this animal model is associated 
with systemic and local activation of ACE/Ang-II axis and this effect is counterbal-
anced by an important ACE2/Ang-(1-7) activation. In this study, they also evaluated 
voluntary wheels running performance in young and aged animals, but only in 
12-month-old Tgαq∗44 mice, the mean distance and time were significantly 
decreased. However, running wheels is not the best “model” to assess cardiovascu-
lar performance considering that neurotransmitter systems are involved in wheel- 
running behavior. In this line, running-wheel training in a ACE2-deficiency mice 
affects physical performance and impairs cardiac and skeletal muscle adaptations to 
exercise [17].

LV Ang-(1-7) SHR
n = 14

***

n = 16

SSHR

A
ng

-(
1-

7)
(p

g/
m

g 
pr

ot
ei

n)

0

1

2

3

4

TSHR

R
at

io
 o

f M
as

 to
 β

-a
ct

in

SSHR

n = 4

n = 5
*

0

5

10

15

TSHR

SWR

Basal LV Ang-(1-7)

n = 14
n = 16

A
ng

-(
1-

7)
(p

g/
m

g 
pr

ot
ei

n)

0

1

2

3

4

SSHR

SWR

n = 4 n = 5

R
at

io
 o

f M
as

 to
 β

-a
ct

in

0

5

10

15

TWR

Fig. 7 Left ventricle Ang(1-7) levels in sedentary and trained Wistar rats and SHR (upper 
panel) and relative levels of MasR mRNA in left ventricle assessed by semi-quantitative 
RT-PCR (lower panel), ∗∗∗p < 0.001 compared with sedentary rats, ∗p < 0.01 compared with 
sedentary SHR.  SWR sedentary Wistar, SSHR sedentary SHR, TSHR trained-SHR, TWR 
trained-Wistar

M. J. Acuña et al.



181

Another effect of ACE2 could involve tryptophan that was recently shown to 
stimulate the expression of myogenic genes [78]. The muscle strength in ACE2- 
knockout mice could be impaired by the reduction of tryptophan action, considering 
that ACE2 has an important effect on tryptophan uptake [79].

Moderate-intensity running training for 12 weeks modulates RAS axis by reduc-
ing AngII and increasing Ang-(1-7) in aorta of trained SHR [80]. Confirming the 
role of Ang-(1-7) promoting vasoprotective effect induced by physical exercise, 
Ang-(1-7) and ACE2 protein levels were normalized (Fig. 8).

The effects of running aerobic exercise training (60 min at 60% of peak VO2, 
5 days a week for 8 week) in a ischemic model of cardiac heart failure (CHF) con-
firm that exercise training causes a shift in the Ang-(1-7)/Mas axis in skeletal mus-
cle of CHF rats [81]. CHF (left coronary artery ligation) reduced ACE2 serum 
activity; however, exercise training restored and increased the Ang-(1-7)/Ang-II 
ratio. Skeletal muscle ACE and ACE2 activity and protein did not change, but Ang-
(1-7) in plantaris and MasR in the soleus of CHF mice significantly increased. It is 
important to note that the local RAS (skeletal muscle) is not directly affected by 
circulation levels of angiotensin peptides.

Another elegant study using SHR provides strong evidence that low-intensity 
aerobic training downregulates RAS not only in vessels but also in the kidney and 
plasma of normotensive and hypertensive rats [82].

 Preeclampsia and Estrogen Deficiency

Exercise training can attenuate/prevent preeclampsia and these protective effects 
could be associated with RAS modulation [83]. In a previous study on preeclampsia 
mouse model (overexpressing human angiotensinogen and human renin), it was 
demonstrated that voluntary running is effective in attenuating blood pressure 
increase [84]. Preeclamptic mice presented lower MasR protein expression in aorta 

0

20

40

A
C

E
2 

pr
ot

ei
n 

ex
pr

es
si

on
(%

 o
f W

K
Y

)

60

80

100

120

140

*

†

300

250

200

150

100

50

0

A
or

tic
 A

N
G

-(
1-

7)
(p

m
ol

/g
 ti

ss
ue

)

WKY WKY+EX SHR

*

†

SHR+EX

Fig. 8 Effects of exercise training on aortic Ang-(1-7) content and ACE2 expression in 
SHR.  Values are represented as mean  ±  S.D. ∗p  <  0.05 versus WKY; †p  <  0.05 versus SHR; 
n = 10–12 in each group

Skeletal Muscle System



182

and placenta compared to normotensive, and the voluntary running is able to “nor-
malize” the MasR expression.

In estrogen deficiency and hypertensive conditions, some RAS components are 
altered. Endlich et al. demonstrated that ovariectomized spontaneously hyperten-
sive trained rats (60 min per day, 5 days a week, lasted 8 weeks) increased con-
strictor responses to Ang-II and decreased dilatory responses to Ang-(1-7) 
independently of estrogen therapy [85]. A significant increase in Ang-(1-7) aorta 
was found in exercise trained-groups and in the estrogen therapy group. This 
study has demonstrated that in a model of menopause in rodents, the estrogen 
therapy and swimming training are able to decrease systolic blood pressure and 
increase Ang-(1-7) (Fig. 9).

 Diabetes and Obesity

It is quite well established the protective metabolic effects of Ang-(1-7) in diabetes 
and obesity. However, little is known about the involvement of this heptapeptide in 
metabolic protective responses induced by chronic exercise. Somineni et al. investi-
gated whether exercise training and/or metformin improve glucose homeostasis and 
downregulate renal ADAM17 and ACE2 shedding in db/db mice [86]. The training 
consisted 10 weeks of aerobic training and daily exercise (1 hour per day of forced 
exercise on walking wheel). Exercise training alone and in combination with met-
formin prevented shedding of renal ACE2 by decreasing ADAM17 protein, and this 
may partially contribute to renal protection.

The exercise training (8 weeks of training, 50–75% of maximal running speed, 
60  min per day and 4  days a week) normalizes (prevents the increase) 
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angiotensin- converting enzyme, ACE (activity and protein) and Ang-II in hepatic 
tissue in fructose overloaded rats [87]. In addition, ACE2, Ang(1-7), and Mas recep-
tor increase in the liver leading to ACE/ACE2, Ang-II/Ang(1-7), and AT1R/Mas 
receptor ratios towards normal values. Interestingly, no changes in the systemic 
RAS components were detected.

The effects of High Intensity Interval Training (HIIT) mice fed high-fat or high- 
fructose in RAS components were recently evaluated [88]. The exercise training 
consisted of HIIT protocol: 2 min of high-intensity 45 m/min (90% VO2) running 
and 1 min of low intensity at 15 m/min (30% VO2) running 3 days a week on alter-
nate days over 12 weeks. The authors showed that the exercise training enhanced 
the insulin sensitivity and these results could be related to reduced levels of the clas-
sic RAS components and increase in ACE2 and MasR in the HIIT mice compared 
with the nontrained group.

 Asthma

Unpublished data suggested that the protective effects of chronic aerobic exercise in 
asthma involves the activation of MasR in a model of chronic asthma. In their study, 
Gregório et al. (2016), induced asthma through OVA albumin challenge and submit-
ted the animals to running exercise (1 hour per day, 5 days a week, during 6 weeks). 
The IgG circulating levels in “asthmatic” animals were significantly elevated but 
running training was able to abolish this increase. If physical exercise is associated 
with MasR blockade (A-779 antagonist), the levels of IgG are significantly higher 
compared to asthmatic animals even when associated with exercise training. These 
results suggested that the beneficial effects of exercise could be missing when MasR 
actions were blocked.

 Angiotensin-(1-7) Activation (Treatment) or Inactivation 
(Mas-Deficiency) and Exercise Training

Some studies investigated the additive effects of Ang-(1-7) treatment associated 
with physical training and the effects of exercise training in Mas-deficiency animals 
(Mas−/−) [89, 90]. Additionally, the protective effects induced by exercise training 
appear to be MasR-dependent. The Mas−/− mice did not decrease blood pressure 
and improve body composition (observed in Mas+/+ mice) when submitted to vol-
untary running through 6 weeks (Motta-Santos, unpublished data).

The Ang-(1-7) infusion effects associated or not to swimming training was eval-
uated in hypertensive rats (2K1C) [91]. Exercise training consisted of swimming 
training performed 1 hour per day, 5 days a week through 4 weeks. Intriguing, Ang-
(1-7) treatment attenuated hypertension and cardiac hypertrophy only 2K1C- trained 
rats and MasR was upregulated only in the left-ventricles of trained 2K1C rats. 
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These results suggest that the beneficial effect of Ang-(1-7) is potentiated by physi-
cal performance.

The treatment with orally active Ang-(1-7) included in hydroxy-propyl-beta- 
cyclodextrin produces several cardioprotective effects (see Heart Chapter) and its 
effects combined or not to physical training in spontaneously hypertensive rats 
(SHR) were investigated by Bertagnolli et al. [90]. The SHR were divided in control 
(tap water) or treated with HPβ-CD/Ang-(1-7) with or without running exercise 
training (1 hour per day, 5 days per week, 10 weeks). Similar beneficial effects to 
the ones produced by exercise training were observed in HPβ-CD/Ang-(1-7) non-
trained SHR. These effects include decreased arterial blood pressure (BP) and heart 
rate, improved left ventricular (LV) end-diastolic pressure, restored the maximum 
and minimum derivatives (dP/dT), and decreased cardiac hypertrophy index. 
Additionally, an improvement in autonomic control by attenuating sympathetic 
modulation on heart and vessels and the SAP variability, as well as increasing para-
sympathetic modulation and HR variability were observed in trained and Ang-(1- 
7)-treated SHR animals.

While activation of Ang-(1-7)/MAS promotes effects similar to those seen in 
trained animals, on the other hand, the MasR deficiency (Mas−/−) abolishes some 
benefits of the physical exercise.
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Mas−/− mice presented heart and skeletal muscle remodeling alterations (please 
see Heart and Skeletal muscle chapter). Since Ang-(1-7) could be involved in the 
physiological cardiac remodeling induced by exercise training, Guimaraes et  al. 
aimed to investigate the cardiac physical exercise effects in Mas−/− [89]. Six weeks 
of swimming training (5 days per week, once a day for 1 hour with an 80% of maxi-
mal load workload attached to the tail) induced similar increase (∼10%) in cardio-
myocyte diameter in Mas−/− and Wild-Type (WT) animals. However, in sedentary 
groups, circulating levels of Ang-(1-7) were significantly lower in Mas−/− as com-
pared to WT. Also, Ang-II levels in blood and LV increase only in the Mas-KO- 
trained (Fig. 10). Additionally, to a null increase in the cardiac Ang-(1-7) levels of 
Mas−/−trained group, they presented a higher collagen I and II gene expression 
compared to WT (Fig. 11). The authors concluded that exercise training was able to 
induce an increase in the Ang II/Ang-(1-7) blood ratio only in Mas-deficiency- 
trained, suggesting strong imbalance in circulating RAS with a predominance of 
Ang-II in Mas−/−.

The physical performance associated with asthma model in Mas−/− mice also 
suggests that the asthmatic Mas−/− animals presented a worse performance in a test 
of maximum physical exercise compared with WT asthmatic group [92].
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 Human Studies

A series of human studies have been conducted to verify the effects of acute and 
chronic exercise in Ang-(1-7) peptides levels. The preliminary and unpublished 
results suggest that Ang-(1-7) plasmatic levels after exercise (acute and chronic) is 
dependent of duration, intensity, and mode (resistance, aerobic, and combined exer-
cise). The status of training is another point that can interfere in the systemic RAS 
modulation.

Acute eccentric physical exercise can promote some microlesions, inflammation, 
and pain (DOMS) in skeletal muscle but after a chronic period important adapta-
tions can be reached. This include strength gain, power increase, and remodeling 
(hypertrophy). The effects of Ang-(1-7) oral compound associated with eccentric 
exercise induced muscle damage (squat exercise) was recently tested in young 
healthy subjects. Surprisingly, the Ang-(1-7)-treated group presented less pain and 
higher strength compared to placebo group [93]. The inflammatory marker responses 
suggest that the Ang-(1-7) can attenuate inflammation or maybe accelerate the 
recovery following eccentric exercise protocol. Further studies can elucidate the 
mechanism involved in this effect including local analysis directly to skeletal 
muscle.
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Liver
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 Introduction

Over the past decades, significant advances in the understanding of the renin–angio-
tensin system (RAS), especially regarding the local expression of RAS in several 
organs and tissues, including the kidney, brain, and liver, have hampered the classi-
cal view of RAS as a merely circulating hormonal system [1]. Particurlaly relevant 
for the reconceptualization of the RAS was the identification of the heptapeptide 
Ang-(1-7) [2], the ACE homolog enzyme responsible for the conversion of Ang II 
into Ang-(1-7), ACE2 [3, 4], and the Mas receptor, a G-protein coupled receptor, 
which mediates the main effects of Ang-(1-7) [5]. In this scenario, RAS is currently 
viewed as a system composed by two opposing axis: the classical one, including 
angiotensin converting enzyme (ACE)-Angiotensin (Ang) II-Ang type 1 (AT1) 
receptor and the alternative one, comprising ACE2-Ang-(1-7)-Mas receptor [6].

It has also been often postulated that the classical arm mediates pro- 
inflammatory, pro-thrombotic, and pro-fibrotic processes, mainly through the 
activation of AT1 receptors [6], whereas the alternative axis seems to play a pro-
tective role by frequently opposing Ang II actions via Mas receptors stimulation 
[7, 8]. An imbalance in the RAS classical and alternative axis components have 
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been implicated in the pathogenesis of a wide range of conditions including liver 
diseases [7–9]. Accordingly, therapeutic strategies have often been designed in 
order to inhibit ACE-Ang II-AT1 receptor and to stimulate ACE2-Ang-(1-7)-Mas 
receptor activities [7, 9].

The involvement of both axes of the RAS in the pathogenesis of liver diseases 
has been supported by experimental and clinical studies [9, 10]. Herein, we will 
discuss current evidence regarding the role of RAS, mainly focusing on ACE2-Ang-
(1-7)-Mas receptor arm, in liver physiological and clinical conditions as well as 
potential therapeutic role of RAS in liver diseases.

 ACE2-ANG-(1-7)-MAS Receptor Axis Role in Liver Physiology

The local RAS concept opens the road for the hypothesis that RAS components 
activity might be tissue/organ specific and function-oriented [1]. Specifically, 
regarding the liver, the local hepatic RAS is not well defined, although studies about 
RAS involvement in hepatic diseases have supported a role for this system in liver 
function [11].

The liver, under physiological conditions, plays a pivotal role in metabolic 
homeostasis, by regulating glucose and lipid metabolisms [12, 13]. A great body of 
evidence has pointed out the RAS components as crucial regulators of hepatic- 
associated metabolic functions [12, 14–17]. For instance, the genetic deletion of the 
Mas receptor in FVB/N mice leads to a metabolic syndrome-like state characterized 
by dyslipidemia, increased abdominal fat mass, enhanced muscle triglycerides, glu-
cose intolerance, and reduced insulin sensitivity, as well as a decrease in insulin- 
stimulated glucose uptake by adipocytes [16, 17]. In line with these findings, the 
absence of ACE2 expression in mice also increases liver insulin resistance and 
expression of hepatic lipogenic genes, and decreases the expression of fatty acid 
oxidation-related genes. These changes in hepatic metabolic activity were associ-
ated with enhanced liver oxidative stress and inflammation, all of which supporting 
the idea that ACE2 ameliorates hepatic insulin resistance, improves insulin signal-
ing, and is involved in protection against oxidative stress in the liver [14, 15].

An in vitro approach also reinforced the protection of ACE2-Ang-(1-7)-Mas 
receptor arm in liver metabolic function. The exposure of HepG2 hepatocytes cells 
to the Ang-(1-7) increased liver glucose uptake and intracellular glycogen synthesis. 
The amelioration of insulin resistance in the liver was associated with the activation 
of the Akt/ PI3K/IRS-1/JNK insulin-signaling pathway. Importantly, the protective 
effect of Ang-(1-7) was partially blocked by the Mas receptor antagonist, A779, 
indicating that the beneficial effects of the alternative RAS arm are dependent of 
Mas receptor activation [15]. The same authors further demonstrated, by employing 
the same in vitro approach, that the activation of the ACE2-Ang-(1-7)-Mas receptor 
axis decreased liver oxidative stress, inflammation, and lipid accumulation partly by 
regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling path-
way [14]. A more recent study provided in vivo evidence of significant effects of 
Ang-(1-7) on metabolic pathways involved in lipid homeostasis. A transgenic rat 
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overexpressing Ang-(1-7) presented a decrease in adiposity index along with a 
reduction in lipogenesis, suggesting a direct effect of Ang-(1-7) on adipose tissue 
lipid metabolism, independent of the stimulatory effect of insulin. Moreover, spe-
cifically in the liver, overexpression of Ang-(1-7) decreased the concentration of 
triacylglycerol and inhibited fatty acid synthase (FAS) and fatty acid transport pro-
tein (FATP) expression in the liver, suggesting a decrease in de novo fatty acid 
synthesis and fatty acid uptake [12]. Interestingly, exercise training prevented meta-
bolic syndrome and nonalcoholic fatty liver disease (NAFLD) in fructose-fed rats 
by increasing hepatic ACE2-Ang-(1-7)-Mas receptor axis activity [18]. Of note, 
NAFLD is one of the most common chronic liver diseases worldwide and an impor-
tant risk factor for nonalcoholic steatohepatitis, type 2 diabetes, and cardiovascular 
diseases [19, 20]. There is evidence that the activation of the counter-regulatory arm 
(ACE2-Ang-(1-7)-Mas) is beneficial in NAFLD and metabolic-associated syn-
dromes [14, 15, 21–23].

Taken together, these studies provided strong evidence of the physiological role 
of RAS locally expressed in the liver in glycemic and lipid metabolisms, paving the 
road for the investigation of the ACE2-Ang-(1-7)-Mas receptor arm as a promising 
therapeutic strategy in liver diseases associated with metabolic dysfunctions.

 ACE2-ANG-(1-7)-MAS Receptor Axis Role 
in the Pathophysiology of Liver Diseases

Liver diseases are major causes of morbidity and mortality worldwide. The leading 
causes of liver failure are hepatitis B and hepatitis C virus infections, alcohol use, 
and steatohepatitis related to obesity. Without proper treatment, all types of chronic 
hepatitis will progress to end-stage liver diseases, including cirrhosis, liver failure, 
and hepatocellular carcinoma, which ultimately lead to death [24, 25]. It is esti-
mated that liver diseases account for a significant increase in the incidence of cir-
rhosis and for the death of at least 800,000 people worldwide annually [26].

Although the specific mechanisms underlying hepatic fibrosis pathophysiology 
remain to be fully revealed, some pathological characteristics of chronic liver dis-
eases might include enhanced fibrosis, oxidative stress, and inflammatory markers 
[24, 27]. All together, these events lead to significant changes in hepatic perfusion, 
enhanced portal blood flow resistance as well as liver dysfunction. The end stage of 
progressive hepatic fibrosis, widely known as cirrhosis, culminates in liver architec-
ture disruption due to fibrous scars and development of regenerating tissue, which, 
in turn, aggravates liver failure [28, 29].

Emerging evidence has supported the involvement of RAS components in 
hepatic fibrosis and cirrhosis. Particularly, an upregulation of classical RAS arm 
components, including angiotensinogen, renin, ACE, Ang II and AT1 receptors has 
been reported in experimental and clinical liver injury studies [30–34]. Accordingly, 
inhibition of RAS including the blockade of Ang II activity by lisinopril and capto-
pril (ACE inhibitors) or losartan (AT1 receptor antagonist) prevented RAS pro- 
fibrogenic effects and restored liver function [30, 35–39].
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It is worth mentioning that liver fibrosis and hepatic cirrhosis seem to depend on 
the balance between the classical (ACE-Ang II-AT1 receptor) and the counter- 
regulatory (ACE2-Ang-(1-7)–Mas receptor) RAS axes [10, 40, 41]. Indeed, based 
on the concept that the RAS counter-regulatory axis opposes the classical arm 
actions, presenting anti-inflammatory, anti-oxidative, and anti-fibrotic effects, it is 
quite reasonable to expect a protective role for ACE2-Ang-(1-7)–Mas receptor axis 
in liver diseases [7, 8]. Moreover, considering that cirrhosis might be potentially 
reversible, particularly in a compensated stage [27], the ACE2-Ang-(1-7)–Mas 
receptor axis might represent a promise drug target in liver failure.

 Insights from Preclinical Studies

Numerous studies have investigated the role of the counter-regulatory RAS arm as 
well as the mechanisms underlying its protective effects on liver function by 
employing different models of liver fibrosis, including bile duct ligation, carbon 
tetrachloride (CCl4) treatment or continuous Ang-(1-7) infusion [42–49]. For 
instance, an increase in ACE2 expression in the liver parenchyma of rats submitted 
to bile duct ligation provided the first evidence of a potential role of the counter- 
regulatory RAS axis in chronic liver disease [47]. Similar findings were found with 
the progression of liver fibrosis induced by CCl4 administration in rats. In this 
model, inhibition of ACE upregulated the mRNA expression of ACE2 and Mas 
receptor, contributing to liver protection [44]. It is worth noticing that ACE2 activity 
seems to be important as an endogenous negative regulator of RAS in chronic, but 
not acute, liver injury, primarily by promoting the conversion of Ang II into Ang 
(1-7). This statement is supported by the fact that ACE2 knockout mice only pre-
sented increased hepatic fibrosis 21 days after bile duct ligation or following chronic 
administration of CCl4. On the other hand, no differences were found between 
ACE2 knockout mice and wild-type littermates when animals were subjected to 
acute liver injury. Moreover, genetic ablation of ACE2 in one-year-old mice resulted 
in spontaneous inflammatory cell infiltration and mild liver fibrosis [46].

The hepatic protection exerted by increased expression of ACE2 might rely on 
the fact that this enzyme catalyzes the pro-fibrotic peptide Ang II in the anti-fibrotic 
peptide Ang-(1-7). Thus, its catalytic action makes ACE2 a very interesting thera-
peutic target for liver fibrosis [44, 46]. In line with this hypothesis, an earlier study 
demonstrated, by employing a liver-specific adeno-associated viral genome 2 sero-
type 8 vector (rAAV2/8-ACE2) with a liver-specific promoter in bile duct ligation 
and CCL4 administration models, that the long-term therapeutic effect of recombi-
nant ACE2 rapidly upregulated hepatic ACE2 and attenuated liver fibrosis. In paral-
lel, the recombinant ACE therapy reduced hepatic Ang II levels concomitantly with 
an increase of Ang-(1-7) concentrations in liver tissue. This study also showed 
reductions in NADPH oxidase activity, oxidative stress, ERK1/2, and p38 phos-
phorylation, without unwanted systemic effects [45].

An even more attractive idea was to investigate the anti-fibrotic therapeutic capa-
bility of Ang-(1-7)–Mas receptor signaling in chronic liver disease models. 
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Accordingly, infusion of Ang-(1-7) markedly attenuated hepatic fibrosis in bile 
duct-ligated rats, decreased hydroxyproline content, and downregulated key genes 
involved in liver fibrosis and angiogenesis such as collagen 1A1, α-SMA (smooth 
muscle actin), VEGF (vascular endothelial growth factor), and CTGF (connective 
tissue growth factor) [43]. On the other hand, the pharmacological blockage of Mas 
receptors with the antagonist A-779, following a bile duct ligation in rats, induced 
an elevation in hepatic hydroxyproline and TGF-β1 concentrations, aggravating 
liver fibrosis [48]. There is evidence that Ang-(1-7) might exert its anti-fibrotic 
effects in liver tissue induced by bile duct ligation by means of the regulation of 
NLRP3 inflammasome/IL-1β/Smad pathway activation induced by Ang II-mediated 
reactive oxygen species (ROS) via redox balance modulation [42, 49]. A more 
recent study showed that the microRNA-21 (mir-21) mediates Ang-II-induced 
NLRP3 inflammasome activation via the Spry1/ERK/NF-κB, Smad7/Smad2/3/
NOX4 pathways contributing to liver fibrosis. The administration of Ang-(1-7) 
downregulated mir-21 expression, and protected against bile duct ligation and 
Ang-II infusion-induced hepatic fibrosis [50].

The protective role of Ang (1-7) in the liver has been also investigated in a murine 
model of hepatocellular carcinoma. The administration of Ang-(1-7) to H22 
hepatoma- bearing mice prevented tumor growth by arresting tumor proliferation, 
promoting tumor apoptosis and inhibiting tumor angiogenesis. Interestingly, the 
treatment with Ang-(1-7) decreased AT1 receptor mRNA expression, upregulated 
mRNA levels of AT2 and Mas receptors, and suppressed H22 cell-endothelial cell 
communication. These findings suggest that benefits of Ang-(1-7) in hepatocellular 
carcinoma depend on the complex interaction between AT1, AT2, and Mas recep-
tors [51]. A more recent study, by employing the same hepatocellular carcinoma 
model, investigated the long-term effects of adeno-associated virus (AAV) serotype- 
8- mediated Ang-(1-7) overexpression. The anti-tumoral activity of Ang-(1-7) was 
indicated by a persistent inhibition of the tumor growth and downregulation of 
angiogenesis along with a decrease in the levels of the proangiogenic factors 
phosphatidylinositol- glycan biosynthesis class F protein (PIGF) and VEGF [52]. 
Taken together, these studies reinforce the role of Ang-(1-7) as a promising drug 
target for liver diseases.

In vitro approaches also provided valuable evidence regarding the role of the coun-
ter-regulatory RAS axis in liver dysfunction. Culture hepatic stellate cells treated with 
Ang-(1-7) or the Mas receptor agonist, AVE 0991, expressed less α-SMA and 
hydroxyproline, while treatment with the Mas receptor antagonist, A779, induced 
opposite effects [53]. Accordingly, Ang-(1-7) through Mas receptor activation, in cul-
tured hepatic stellate cells, inhibited Ang II-induced phosphorylation of extracellular 
signal-regulated kinase (ERK)1/2, a classical pathway of tissue fibrosis [46]. Ang-(1-
7) also decreases Ang II-induced NLRP3 inflammasome/IL-1β/Smad pathway activa-
tion in hepatic stellate cells, thus preventing α-collagen I (Col1A1) accumulation. 
This finding suggests a novel potential mechanism by which Ang-(1-7) exerts its anti-
fibrotic activity in liver tissue [42, 49]. Moreover, Ang-(1-7) seems to inhibit Ang 
II-induced NLRP3 inflammasome/IL-1β/Smad pathway activation in primary hepatic 
stellate cells also by suppressing mir-21 expression [50].
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 Insights from Clinical Studies

Data from experimental studies have broadened our knowledge regarding the 
involvement of ACE2-Ang-(1-7)–Mas receptor axis in liver physiology and patho-
physiology. However, a translational approach to human studies seems to become 
a real challenge. Up to date, there is little evidence provided by clinical studies. A 
pivotal study first demonstrated widespread parenchymal expression of ACE2 in 
the liver of hepatitis C cirrhotic patients. The authors also reported increased lev-
els of ACE2 in cultured human hepatocytes exposed to hypoxia [47]. In line with 
these findings, patients with cirrhosis induced by hepatitis C and mild-to-moder-
ate liver disease presented enhanced circulating levels of Ang-(1-7), possibly as 
an attempt to counteract ACE-Ang II-AT1 receptor arm pro-fibrotic effects [40, 
53]. A more recent study investigated the role of counter-regulatory RAS arm 
components in liver failure progression from fibrosis to cirrhosis to hepatocellular 
carcinoma. The concentrations of Ang II, Ang-(1-7), and VEGF were higher in the 
serum of patients compared with healthy subjects, and increased with the disease 
progression. Conversely, the liver mRNA expression of ACE2 gradually decreased 
with the increasing grade of disease severity. Importantly, higher liver expression 
of ACE2 was associated with patient’s longer survival time, indicating that low 
expression of ACE2 may be a useful indicator of poor prognosis in hepatocellular 
carcinoma [54]. The evidence of ACE2-Ang-(1-7)–Mas receptor axis involvement 
in human liver diseases is scarce as well as its potential role as predictive bio-
markers or drug targets. Further studies are necessary in order to better address 
this issue.

 Concluding Remarks

The counter-regulatory RAS axis exerts anti-inflammatory, anti-oxidative, and 
anti- fibrotic effects in liver tissue. In general, ACE2-Ang-(1-7)-Mas axis opposes 
ACE- Ang II-AT1 receptor arm actions. The balance between both RAS axes may 
influence clinical and histopathological expression of liver diseases. Most data 
regarding ACE2-Ang-(1-7)-Mas axis role in hepatic pathophysiology as well as 
its therapeutic potential in liver diseases were generated from preclinical studies. 
To date, clinical research focused on the investigation of circulating and local 
concentrations of ACE2 and Ang-(1-7). Evidence regarding the interaction of 
AT1, AT2, and Mas receptor is still missing. Moreover, further studies that address 
the role of counter- regulatory RAS axis molecules as biomarkers of liver fibrosis 
and/or of disease prognosis as well as potential therapeutic targets are urgently 
necessary. The design of molecular or genetic methods to increase the expression 
of ACE2 and increased tissue levels of Ang-(1-7) and/or activation of the Mas 
receptor may, in turn, result in the development of new pharmacological 
approaches.
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Introduction

Inflammation is a physiological response of tissues to noxious stimulation of infec-
tious nature or not. The immune system senses noxious stimuli and initiates an 
inflammatory process that ultimately aims to remove the threat and restore tissue 
structure and function homeostasis. Both processes, i.e., the initiation of the 
response and its resolution, are actively mediated by release of mediators of inflam-
mation and recruitment and function of leukocytes and other cell types, including 
endothelial cells and tissue structural cells such as fibroblast [13, 32].

Acute inflammation has rapid onset and short duration. It is characterized ini-
tially by exudation of fluid and plasm proteins. During acute inflammation, cells 
from the innate immune system recognize damage or pathogen-associated molecu-
lar patterns. Recognition of these molecules by receptors on the surface of innate 
immune cells triggers several cellular responses, which result in the production of 
pro-inflammatory mediators (cytokines and chemokines) and consequent leukocyte 
recruitment to the site of injury, where they are able to deal with the inciting stimu-
lus and initiate the repair of tissue damage. During acute inflammation, leukocyte 
accumulation is characterized predominantly by neutrophils [16].

Acute inflammation is induced and controlled by mediators produced by the host 
cells. These mediators act in the blood vessel to induce reversible changes, such as 
increased blood flow into the affected tissue, vessel dilatation, increased adhesive-
ness of leukocyte to the endothelial line, and increased permeability of capillaries 
and venules to plasm protein and fluid. All these changes are responsible for the 
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cardinal signs of inflammation, as described by Celsus in the first century: Calor 
(heat), rubor (redness), tumor (swelling), dolor (pain). In the nineteenth century, 
Rudolf Virchow added the last cardinal sign: fuctio laesa (loss of function) [32].

In most cases, the acute inflammatory response is controlled in intensity, self-
limited and accompanied by full restoration of tissue architecture and function. 
Once the stimulus that triggers inflammation is eliminated, activated cells and medi-
ators are removed and degraded. This is normal resolution of inflammation. If the 
inciting stimulus is not properly eliminated or tissue injury is prolonged or exces-
sive, the result can be the chronification of inflammation with serious consequences. 
Chronic inflammation is characterized by influx of lymphocytes and macrophages 
associated with vascular proliferation and fibrosis, and is seen in diseases such as 
rheumatoid arthritis, atherosclerosis and asthma [58]. During resolution of inflam-
mation, biosynthesis of active mediators promotes the return to homeostasis by act-
ing on specific targets to inhibit the neutrophil recruitment to the site of inflammation 
and promote the activation of apoptosis (programmed cell death in the recruited 
effector leukocytes), efferocytosis (clearance of apoptotic cell by macrophage), and 
reprogramming of macrophages from a pro-inflammatory to a resolutive phenotype. 
[46]. There has been much recent interest in the discovery of novel mediators of 
resolution of inflammation, as it is appreciated that there is much to be understood 
in the biology of resolution.

One of the endogenous mediators that has been studied in the context of inflam-
mation is Angiotensin 1-7 (Ang-(1-7)). Ang-(1-7) is a biologically active peptide 
synthetized from the action of ACE2 on Angiotensin I (Angio I) and Angiotensin II 
(Angio II). It binds to a 7-transmembrane G-protein-coupled receptor, MAS, and 
exerts many beneficial actions in the context of acute inflammation. In this chapter, 
we will summarize the relevance of Ang-(1-7) and its MAS receptor in the context 
of inflammation, highlighting the advances and potential clinical use of this system 
for the treatment of inflammatory diseases.

The Evidence for the Anti-Inflammatory Actions of Angio-(1-7)

The renin-angiotensin system (RAS) is a very complex and dynamic system, com-
posed of a cascade of enzymes and peptides that are believed to play an important 
role in many physiological processes such as blood pressure regulation and water 
balance [54]. The RAS has been described to participate in two opposite axes: one 
acting on AT1 receptors mediating pro-inflammatory effects and another one acting 
on Mas receptors mediating anti-inflammatory effects [35]. Angiotensin II (AngII) 
has pro-inflammatory and pro-fibrotic effects caused by the activation of its 
AT1receptor. On the other hand, AngI and AngII can be cleaved by Neprilysin and 
angiotensin converting enzyme 2 (ACE2), respectively, generating Angiotensin-(1-7) 
[Ang-(1-7)]. Ang-(1-7) binds to its Mas receptor activating anti-inflammatory and 
anti-fibrotic processes [11, 33]. AngI can also undergo the action of the ACE 2 to 
produce Ang-(1-9) which binds on AT2 receptor and exerts anti-inflammatory actions 
[40]. Ang-(1-9) may form Angi-(1-7) through ACE in a less efficient way ([12, 61] 
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(Fig. 1). Other recently found end-products of RAS system besides Ang-(1-7) and 
Ang-(1-9) include Ang-(1-5), Ang A, Ang III, Ang IV and alamandine [3].

There is much evidence to link the function of the renin-angiotensin system 
(RAS) and that of the immune system. Much initial work was focused on the ACE/
AngII/AT1 axis until we suggested that the ACE2/Ang-(1-7)/Mas receptor axis 
could also play a role in the context of inflammation [51, 52]. While the action of 
the ACE/AngII/AT1 axis is mostly pro-inflammatory and pro-fibrotic, the action of 
the ACE2/Ang-(1-7)/Mas receptor axis is mostly anti-inflammatory and anti-fibro-
genic [54].

The effects of Ang-(1-7) have been studied in several disease models in which 
there is an inflammatory component [7, 14, 27, 28, 43, 44, 56]. These data are sum-
marized in Table 1.

In an Arthritis model, the treatment with Ang-(1-7) decreased neutrophils recruit-
ment and increased efferocytosis of apoptotic human neutrophils by macrophages 
[4]. In a DSS-induced colitis model, Ang-(1-7) was able to reduce inflammation by 
modulating plasma levels of cytokines and chemokines such as IL-1α, TNF-α, IL-5, 
IL-6, IL-13, GM-CSF, M-CSF, C5/C5a, MCP-5, and MIP-1. Daily treatment with 
Ang-(1-7) previously improved the severity of colitis, showed a significant reduc-
tion in the circulating levels of several cytokines and chemokines, and recruitment 
of neutrophils into the colon tissue [20].

In acute lung injury (ALI) model, Ang-(1-7) reduced lung edema, myeloperoxi-
dase activity, histological lung injury score, and pulmonary vascular resistance [21]. 
Besides that, Ang-(1-7) reduced the release of pro-inflammatory cytokine and 
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Table 1 Studies evaluating the relevance of Ang-(1-7) and its MAS receptor in the context of 
inflammation

Organ/model
Compounds or strategy 
used Effects References

Hepatic fibrosis A779 ↑  Levels of OH-proline and 
TGF-β

[44]

Ischemia/reperfusion 
injury

Expression of ACE2/
Ang-(l-7)/Mas receptor 
axis

↓  Levels of mRNA of 
Ang-(l-7) and ACE2  ↑ ↑ 
Expression of Mas 
receptor

[53]

Lung fibrosis and 
pulmonary 
hypertension

Lentivirus (Lenti-ACE2 
or Lenti-Ang-(l-7)

↓ Lung fibrosis
↓ Levels of TGF-β
↓  Levels of TNFα, IL-6 and 

IL-1β

[49]

Arthritis Ang-(l-7), AVE0991 and 
Mas receptor null mice

↓  Neutrophils accumulation
↓  Levels of TNFα, CXCLl, 

and IL-1β
↓ Histological parameters
↑  Levels of TNF-α, CXCLl, 

and neutrophils 
accumulation

[53]

Asthma Ang-(l-7) and A779 ↓  Recruitment of 
neutrophils, lymphocytes, 
eosinophils, and 
macrophage

↓  Fibrosis
Prevented the improvement 
caused by Ang-(l-7) 
treatment

[12]

Renal ischemia/
reperfusion (l/R)

AVE0991 and Mas 
receptor null mice

↓ Levels of CXCL1
↓ MP0
↓ Tissue damage
 No effect in l/R model

[9]

Atherosclerosis AVE0991 ↓  CD86, CD80, CD40 in 
macrophage  and dendritic 
cells

↓  CD69 expression in CD4+ 
T cells

[18]

Hyperalgesia model Ang-(1-7) ↓ Nociception [10]
High-fat diet 
(HFD)-induced 
hepatic steatosis

Ang-(1-7) ↓ Levels of IL-6 and TNF-α [14]

Acute lung injury 
model

Ang-(l-7) ↓ Lung edema
↓ MPO
↓ Histological score
↓  Pulmonary vascular 

resistance

[21]

Asthma AVE0991 ↓ Levels of IL-5
↑ Levels of IL-10

[48]

Intracranial 
aneurysms

Ang-(l-7) ↓ Levels of MMP-9 and 
TNF-α
↑ Levels of HGF and COX-2

[43]
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Table 1 (continued)

(continued)

Organ/model
Compounds or strategy 
used Effects References

Ehrlich’s ascites 
carcinoma (EAC)

Ang-(1-7) ↓  Tumor weight and levels 
of IGF-I and VEGF

[1]

Lung Fibrosis Ang-(1-7) ↓ Lung fibrosis
↓  Levels of CTGF and 

collagen I
↓ Levels of TNF-α and IL-6

[34]

Type 2 diabetes (db/
db)

Ang-(l-7) ↓ Renal fibrosis
↓ Reactive oxygen species
↓ Macrophage infiltration

[38]

Lung fibrosis Ang-(l-7) and lentivirus 
(Lenti-ACE-2)

↓ Collagen deposition
↓  Production of NOX4 

protein and H2O2
↓  Production of NOX4 and 

H202
↓ Levels of ACE and AT1R

[33]

Intracranial 
aneurysms

Ang-(l-7) ↓  Levels of IL-1β and 
TNF-α

[50]

Hyperalgesia model Ang-(l-7) ↓ Peripheral nociception [8]
Chronic allergic lung 
inflammation

Ang-(1-7) ↓ Levels of IgE
↓ Total number of cells
↓  Levels of IL-4, IL-5, 

GM-CSF, CCL5, and 
CCL2

↓  Histology score of 
inflammation

↓ Collagen deposition
↓  Pulmonary vascular 

hyperplasia/hypertrophy

[31]

Acute respiratory 
distress syndrome

Ang-(l-7) ↓  Recruitment of leukocytes
↓ Collagen deposition

[68]

Autoimmune 
encephalomyelitis 
(EAE)

Mas receptor deficiency 
and AVE0991

↑  M(LPS/INFɣ) profile 
genes

↓  M(IL-4/IL-13) gene 
expression

↑ T cells proliferation
↓ M(LPS/INFɣ) expression
↑ M(IL-4/IL-l3) expression

[17]

Chronic allergic 
pulmonary 
inflammation

Mas receptor deficiency ↑ Total cells
↑  Levels of eosinophils and 

mononuclear cells
↑  Histology score of 

inflammatory cells 
infiltrate

↑  IL-13TNF-α, CCL2/
MCP-1, and CCL5/
RANTES

↑  Deposition of airway 
extracellular matrix

[29]
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Organ/model
Compounds or strategy 
used Effects References

Type 2 diabetes (db/
db)

Ang-(l-7) ↓ Fibrosis
↓ IL-lβ
↓  Macrophage infiltration in 

the lungs
↓ Oxidative stress

[42]

Atherosclerosis AVE0991 ↓  Macrophage, T cells and 
NK cells recruitment

↓  CCL2, CCL5, CXCL10, 
TNF-α and IL-6

↓ M1 population

[55]

High salt (HS) diet Expression of ACE2/
Ang-(l-7)/Mas receptor 
axis and on the expression 
of ACE/Angll/ATIR axis

Expression of ACE2 and 
Mas receptor
↑  Expression of Angll and 

AT1R

[7]

Antenatal 
corticosteroid 
(ANCS) treatment

Expression of Angll and 
Ang-(l-7)

↑ Urinary Angll
↑ Urinary Angll/Ang-(l-7)
↑ Plasma Ang-(l-7)

[56]

Renal injury Ang-(l-7) ↓Oxidative stress
↓  Extracellular matrix 

proteins
↓  Levels of CTGF and 

TGF-β
↓ Fibrosis
↓ IL-6 and TNF-α

[27]

Cardiomyopathy Adenovirus carrying the 
murine ACE2 (Ad-ACE2)

↑ Survival rate
↑ Expression of ACE2
↓  Recruitment of 

inflammatory cells,  loss of 
myofibrils, and 
disorganization

↓ Cell death
↑  pAMPK(Thrl72)/AMPK, 

pP13K/P13K, and pAKT/
AKT radio

↓ c-caspase3/caspase3 ratio
↓  VCAM, TNF-α, and 

ICAM-1
↓  p-ERK, NOX2, P47, and 

iNOX
↓  Collagen deposition and 

TGF-β
↑ MMP-9

[28]

Diabetic 
cardiomyopathy

AT1 inhibition 
(Azilsartan)

↑  Expression of ACE2 and 
Mas receptor

↓  Oxidative stress 
cardioprotection

[59]

Table 1 (continued)
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Organ/model
Compounds or strategy 
used Effects References

Arthritis Ang-(l-7) and A779 ↑ Apoptosis of neutrophils
↓ NFκB activation
↑  Efferocytosis of apoptotic 

neutrophils blocked the 
effects of Ang-(l-7) 
treatment

[4]

Arthritis Expression of ACE2 and 
Ang-(l-7)

↓  Levels of cardiac and 
kidney ACE2 and 
Ang-(l-7)

NSAIDs restored the levels 
of cardiac Ang-(l-7)

[2]

Asthma Ang-(l-7) ↓ Levels of eosinophils
↓ EPO activity
↓ Apoptosis eosinophils
↑ Efferocytosis is PMN cells
↓ Levels of NFκB
↓  ERK1/2, IκB-α, and 

GATA3
↓  Extracellular matrix 

deposition
↓  Collagen 1 and collagen 

III mRNA

[30]

Legend: A779 antagonist of Mas receptor, Ang I angiotensin I, Ang II angiotensin II, Ang(1-7) 
angiotensin 1-7, ACE angiotensin converting enzyme, ACE2 angiotensin converting enzyme 2, 
AT1 angiotensin receptor type 1, AVE0991 nonpeptide agonist of Mas receptor, MAS Mas receptor, 
MMP9 matrix metallopeptidase, EPO eosinophilic peroxidase, TGF-β transforming growth factor 
beta, TNF-α tumor necrosis factor alfa, IL interleukin, CXCL chemokine, MMP-9 matrix metal-
lopeptidase 9, HGF hepatocyte growth factor, COX-2 cyclooxygenase 2, IGF-1 insulin growth 
factor 1, VEGF vascular endothelial growth factor, CTGF connective tissue growth factor, AT1R 
angiotensin II receptor type 1, GM-CSF granulocyte-macrophage colony-stimulating factor, LPS 
lipopolysaccharides, INF-ɣ interferon gamma, c-caspase 3 cleaved caspase 3, VCAM vascular cell 
adhesion protein 1, ICAM1 intercellular adhesion molecule 1, MMP-9 matrix metallopeptidase 9, 
NFκB factor nuclear kappa B, NSAIDs nonsteroidal anti-inflammatory drugs

Table 1 (continued)

suppressed the expression of Nox4 and its subunits in the lungs in a model of 
hypoxia [26]. In a model of pulmonary fibrosis, treatment with Ang-(1-7) decreased 
lung fibrosis, the production of type I collagen, and the production of connective 
tissue growth factor (CTGF). In addition, it decreased the levels of TNF-α and IL-6 
[34].

In asthma models, Ang-(1-7) reduces the production of pro-inflammatory cyto-
kines and the activation of downstream pathways. For example, the treatment of 
Ang-(1-7) decreased immune cells recruitment and fibrosis [12]; decreased the lev-
els of erythropoietin (EPO) activity in the lung; increased apoptotic eosinophils and 
its efferocytosis; induced resolution of inflammation by the down-expression of 
ERK1/2, IκB-α and GATA3 [30]. The treatment with Ang-(1-7) prevented the 
increase of plasma IgE and pro-inflammatory cytokines such as IL-4, IL-5, GM-CSF, 
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CCL5 and CCL2 in lungs of OVA-challenged mice. These effects were associated 
with reduced levels of p-ERK1/2 and p-JNK in lungs [31].

In a mouse model of type 2 diabetes (db/db), treatment with Ang-(1-7) reduced 
the levels of circulating pro-inflammatory cytokines, decreased lung fibrosis, oxida-
tive stress and macrophage infiltration in the lungs [42]. Mori et al., [38] suggested 
that Ang-(1-7) represents a promising therapy for diabetic nephropathy by exerting 
renoprotective effects associated with reduction of oxidative stress, inflammation 
and fibrosis. Similar results were observed by Lu et al., [27], where the treatment 
with Ang-(1-7) reduced oxidative stress, extracellular matrix proteins, pro-inflam-
matory cytokines and fibrosis in a renal injury model. Ang-(1-7) also induced neu-
roprotection by reduction of TNF-α and IL-1β levels, attenuation of oxidative stress 
and reduction of phosphorylation of IκB and NFκB p65 subunit [19].

Further studies are needed to elucidate the mechanisms by which Ang-1-7 coop-
erates with other mediators to modulate inflammation. Nevertheless, current knowl-
edge do support the possibility that drugs which mimic or enhance the function of 
the ACE2/Ang-(1-7)/Mas axis may be beneficial for the treatment of inflammatory 
diseases [54].

Further evidence for the relevance of the ACE2/Ang-(1-7)/Mas receptor axis in 
the control of inflammatory response derives from studies using the compound AVE 
0991, a nonpeptide Mas receptor agonist [47]. It has been demonstrated that 
AVE0991 treatment decreased neutrophil accumulation and pro-inflammatory cyto-
kines production in a model of arthritis [53]. During renal ischemia and reperfusion, 
the administration of AVE 0991 promoted renoprotective effects, such as decrease 
of tissue injury, leukocyte infiltration and release of CXCL1 [9].

Treatment with AVE 0991 significantly reduced disease incidence and slightly 
ameliorated the clinical course of experimental autoimmune encephalomyelitis 
(EAE) [17]. In a model of spontaneous atherosclerosis, the use of a nonpeptide Ang-
(1-7), AVE 0991, inhibited perivascular inflammation by reducing chemokine 
expression and monocyte/macrophage activation [55] and also reduced the expres-
sion of co-stimulatory molecules in macrophage and dendritic cells, consequently 
reducing T-cell activation [18]. The use of AVE0991 in a murine model of asthma 
reversed the increased airway wall and pulmonary vasculature thickness, reduced 
IL-5 and increased IL-10 levels [48].

Moreover, there is evidence to suggest that that Ang-(1-7) has anti-nociceptive 
effects by Mas receptor activation. Besides the blockage of hypernociception in 
arthritis [53], Ang-(1-7) attenuated cancer-induced bone pain [15]. Inhibition of 
Mas receptor improved neuropathic pain [70] and the absence of Mas receptor 
reduced hyperalgesia induced by carrageenan and prostaglandin E2 [10]. Other 
studies also demonstrated that Ang-(1-7) has an anti-nociceptive role via Mas recep-
tor activation [8, 10].

In contrast to the overall anti-inflammatory effects of the ACE2/Ang-(1-7)/Mas 
receptor axis, the ACE/AngII/AT1 axis is, in general, associated with pro-inflamma-
tory and pro-fibrotic responses [54]. In this regard, blockade of the ACE/AngII/AT1 
axis is expected to have anti-inflammatory effects. The activation of AT1 can be 
inhibited through specific and competitive angiotensin II receptor blockers (ARBs) 
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called sartans. Sartans, together with inhibitors of ACE, are efficient inhibitors of 
the ACE/AngII/AT1 axis [60]. Interestingly, some of the anti-inflammatory effects 
observed after treatment with losartan were dependent on Ang-(1-7)/Mas receptor. 
The long-term administration of losartan exerts an antithrombotic effect mediated 
by Ang-(1-7) [22] and treatment with telmisartan and losartan effectively increased 
the plasma levels of Ang-(1-7) [71]. In a model of Adriamycin-induced renal injury, 
the protective effects of losartan were ablated in Mas receptor-deficient mice ([51] 
PLOS one), whereas the effects of this compound were Mas receptor-independent 
in a model of antigen-induced arthritis [51, 52]. These studies clearly show that 
blockade of the ACE/AngII/AT1 axis may decrease inflammation by facilitating the 
release of An-(1-7) and activation of Mas receptors.

In addition to the biological effects of Ang-(1-7) in the context of different ani-
mal models of human diseases, several studies have now shown that Ang-(1-7) 
through its MAS receptor may modify the function of cells associated with the 
inflammatory response (Table 2). Akin to the in vivo data, most studies in cell types 

(continued)

Table 2 Studies of Ang-(1-7) effects on MAS receptor in different cell types associated with 
inflammation

Cell type
Compounds or 
strategy used Effects References

Human lung 
adenocarcinoma cells 
(AS49)

Ang-(l-7) ↓ Cell migration
↓  MMP-2 mRNA expression. ↓ 

P13K/Akt, JNK1/2 and 
p38MAPK phosphorylation

[39]

Peritoneal macrophage Ang-(l-7) ↓ IL-6 and TNF-α mRNA levels
↓ Src kinases activity

[57]

Astrocytes Ang-(l-7) ↓ IL-1β and IL-6mRNA.
↓  COX-2 and GFAP protein 

expression
↑ DUSP1

[36]

Skeletal muscle cells Ang-(l-7) ↓ Angll-induced TGF-β1
↓  Angll-induced ROS and NOX 

subunit p47/phox protein 
levels

↓  Angll-induced p38, and 
smad-2 phosphorylation, and 
smad-4 nuclear translocation

[37]

Rat pancreatic acinar AR42J 
cells

Ang-(l-7)and 
A779

↑ Levels of IL-10
↓ IL-6 and IL-8.
↑  Levels of IL-6 and IL-8 P13K/

AKT pathway and eNOS

[63]

Human brain vascular 
smooth muscle cells 
(HBVSMC)

Ang-(l-7) and 
A779

↓ NFκB
↑ IκBα
↓ TNF-α, MCP1, IL-8
 Blocked Ang-(l-7) effects

[5]

Umbilical vein endothelial 
cells (HUVECs)

Ang-(l-7) and 
A779

↓ ICAM-1, VCAM-1, and 
MCP-1 expression and secretion
↓ NFκB and p38 activation
 Blocked Ang-(l-7) effects

[24]
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Table 2 (continued)

Cell type
Compounds or 
strategy used Effects References

Human vascular smooth 
muscle cells

Ang-(l-7) and 
A779

↓  iNOS elicited by IL-lβ, and this 
effect was blocked by A779

↓  NF-κB activation
- blocked Ang-(l-7) effects

[62]

Vascular smooth muscle 
cells (VSMCs)

Ang-(l-7) and 
A779

↓  IVSMC proliferation induced 
by Ang II

↓  Angll-induced Akt and 
ERK1/2 phosphorylation

 Blocked Ang-(l-7) effects

[69]

Bone marrow-derived 
macrophage (BMDM)

AVE 0991 ↑  Alternative activated 
macrophage

↓  T cell activation mediated by 
macrophage

[17]

Microglia Ang-(l-7) ↓ IL-lβ and TNF-α mRNA levels
↑ IL-10 mRNA levels
↓ Expression of NF-κB subunits

[25]

Human peripheral blood 
isolated neutrophils

Ang-(l-7) ↑ Apoptosis
↓ NFκB activation

[4]

Bone marrow-derived 
neutrophil and spleen-
derived mononuclear cells

Ang-(l-7) and 
A779

↑  Neutrophil and mononuclear 
cells apoptosis

↓  Neutrophil chemotactic 
migration

↓  Superoxide release by 
neutrophils

  Blocked Ang-(l-7) effects

[20]

THP-1 Monocyte/
macrophage

AVE 0991 ↓  TNF-α, IL-1β, CCL2, and 
CXCL-l0mRNA

↓  Monocyte/macrophage 
activation and migration

↓  Differentiation in M1 
phenotype

[55]

Human aortic endothelial 
cells (HAECs)

Ang-(l-7) ↓  Monocyte/macrophage 
adhesion and migration

↓  Reactive oxygen species 
(ROS)

[41]

Mouse pancreatic acinar 
cancer (MPC-83)

Ang-(l-7) and 
A779

↓ TNF-α, IL-6, and IL-8
↑ Levels of IL-10
↓  p38 MAPK and NFκB 

signaling pathway
 Blocked Ang-(l-7) effects

[67]

Rat pancreatic acinar AR42J 
cells

Ang-(1-7) ↓  TLR4/NF-κB signaling 
pathway

↓  TNF-α, IL-6, and IL-8 mRNA 
levels

↓ IL-10 mRNA levels

[64]

Legend: A779 antagonist of Mas receptor, Ang II angiotensin II, Ang (1-7) Angiotensin 1-7, 
AVE0991 nonpeptide agonist of Mas receptor, MAS Mas receptor, MMP-2 matrix metallopeptidase 
2, IL interleukin, TNF-α tumor necrosis factor alfa, TGF-β transforming growth factor beta, ROS 
reactive oxygen species, eNOS endothelial nitric oxide synthase, NFκB factor nuclear kappa B, 
MCP-1 monocyte chemoattractant protein-1, ICAM-1 intercellular adhesion molecule 1, VCAM-1 
vascular cell adhesion protein 1, iNOS inducible nitric oxide synthase, TLR-4 Toll-like receptor 4, 
WKYMV fMLP-like peptide
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suggest that the overarching effects of Ang-(1-7) is to decrease cell functions asso-
ciated with active pro-inflammatory responses. For example, in neutrophils, Ang-
(1-7) reduced survival and induced apoptosis, and reduced recruitment and NFκB 
activation [4, 20].

The treatment of Ang-(1-7) or AVE0991 in macrophage attenuated the expres-
sion of TNF-α, IL-6, IL-1β, CCL2 and CXCL10 pro-inflammatory cytokines, and 
reduced Src kinase activity [55, 57], M1 polarization, and the number of proliferat-
ing T cells [17, 55]. Ang-(1-7) has also shown anti-proliferative effects in human 
peripheral blood mononuclear cells (HPBMC) [12].

In cultured hypothalamic microglia, treatment with Ang-(1-7) decreased the 
basal levels of mRNA for the pro-inflammatory cytokines such as IL-1β and TNF-α 
and increased in basal levels the anti-inflammatory cytokine IL-10 [25].

In human lung adenocarcinoma epithelial cells (A549), Ang-(1-7) reduced 
migration and phosphorylation of PI3K/AKT, JNK1/2, and p38 MAPK signaling 
pathways [39]. Ang-(1-7) decreases the activation of oxidative stress in epithelial 
cells [33]. It was also demonstrated in pancreatic cells that the treatment with Ang-
(1-7) reduced pro-inflammatory cytokine release, increased IL-10 levels and 
reduced pro-survival signaling pathways including PI3K/AKT [63], TLR4/NFκB 
[65] and p38 MAPK [67].

It was demonstrated that pre-treatment with Ang-(1-7) in human aortic endothe-
lial cells (HAECs) prevented monocyte adhesion and migration impairment induced 
by thrombin via downregulation of reactive oxygen species (ROS) production [41]. 
Similar effects were observed in Umbilical vein endothelial cells (HUVECs). The 
treatment with Ang-(1-7) reduced cell adhesion molecule expression and NFκB and 
p38 activation [24]. Ang-(1-7) could counteract the pro-inflammatory effects of Ang 
II in skeletal muscle cells [23, 37]. Ang-(1-7) attenuated the induction of iNOS 
through its binding to Mas receptor [62].

Resolution of Inflammation and Ang-(1-7)

During inflammation, leukocytes interact with the endothelial cells, scanning the tis-
sue for molecular cues for migration, a process called rolling and this is dependent on 
a group of adhesion molecules named selectins. Once these leukocytes find a che-
moattractant molecule to which they bind, integrins on their surface switch into an 
active conformation state. The activation of integrins allows firm adhesion to endothe-
lial cells and consequent migration into tissues [45]. There is now much interest in 
understanding not only the mechanisms by which cells migrate into tissues, but also 
the understanding of the mechanisms responsible for keeping cells there or clearing 
them from tissue. There is a feeling that novel therapies may be derived from the 
knowledge of the mechanisms that resolve inflammation. The resolution of acute 
inflammation is an active process, which is characterized by active biosynthesis pro-
resolving mediators that limit the duration of inflammatory response and induce the 
return to homeostasis [6]. Therefore, different from anti-inflammatory therapy, pro-
resolving strategies should balance the inflammatory response to reach homeostasis.

The key steps for the induction of resolution of inflammation include reduction 
or blockade of neutrophil recruitment to the site of inflammation, induction of 
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neutrophil apoptosis, increase expression of find-me and eat-me signals, induction 
of phagocytosis of apoptotic neutrophil by macrophages (efferocytosis), a non-
phlogistic recruitment of monocytes, reprogramming of macrophages from classi-
cally activated to alternative activated, instructs the adaptive immune system and 
induction of repair and regeneration [46, 58].

Pro-resolving mediators initiate resolution programs by acting on specific cell 
surface G-protein-coupled receptor to drive cellular response to restore the homeo-
stasis [46]. Of note, the Mas receptor is a G-protein-coupled receptor [66]. As dis-
cussed above, there is much evidence to suggest that Ang-(1-7) and its Mas receptor 
have potent anti-inflammatory effects. More recently, we have shown that this mol-
ecule also has relevant pro-resolving activity. Indeed, Ang-(1-7) induced apoptosis 
of neutrophils and increased their clearance by macrophage, therefore enhancing 
efferocytosis. The resolution of neutrophilic inflammation was associated with a 
decrease of NFκB phosphorylation [4]. The same was observed for in a model of 
eosinophilic inflammation. Ang-(1-7) increased the number of apoptotic eosinophil, 
which was associated with decreased NFκB, ERK1/2 and GATA3 expression [30]. 
The treatment with Ang-(1-7) also significantly improved apoptosis of immune 
cells, and reduced neutrophil chemotaxis and superoxide release in vitro [20].

Altogether, these studies suggest that Ang-(1-7) has a role in the resolution of 
inflammation by fulfilling some fundamental criteria: limitation of neutrophil recruit-
ment, counter regulation of chemokine and cytokines, induction of apoptosis of neutro-
phils and their subsequently efferocytosis and reprogramming of macrophages. 
Molecules that fulfil these criteria are qualified as pro-resolving mediators [58] (Fig. 2).
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Fig. 2 Ang-(1-7) effects in different type of cells
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Concluding Remarks

In the last decade, many insights of renin-angiotensin system (RAS) axis have been 
revealed. An important advance in the understanding of RAS was the recognition of 
Ang-(1-7) as a biologically active peptide produced from the cleavage of Ang-II by 
the angiotensin converting enzyme type 2 (ECA2) and acts through a receptor cou-
pled to the specific G-protein, the Mas receptor. Identification of the Mas and MrgD 
protein as the Ang-(1-7) receptor provided an important molecular basis for the 
biological significance of this peptide, although there is no evidence of the down-
stream signaling.

Ang-(1-7) has been demonstrated to have many beneficial actions in the context 
of inflammatory response. In most studies, Ang-(1-7) reduced leukocyte recruit-
ment, and the production and expression of chemokines, cytokines and adhesion 
molecules. Moreover, there was downregulation of signaling pathways, such as 
PI3K/Akt, p38 MAPK and NFκB, usually associated with an active inflammatory 
response. In addition to preventing crucial aspects of the productive phase of the 
inflammatory response, the binding of Ang-(1-7) to Mas receptor increases neutro-
phil apoptosis, efferocytosis and macrophage reprogramming from classically 
active to alternatively activated. All these functions appear to contribute to the 
capacity of this molecule to induce the resolution of inflammation in various animal 
models of inflammation.

It is unclear and further studies are needed to elucidate the downstream events 
triggered by Ang-(1-7)/Mas receptor and that modulate inflammation. In addition, 
further studies are needed to evaluate the role and relevance of Ang-(1-7) in the 
context of adaptive immunity and T cell function.

Understanding the ACE2/Ang-(1-7)/Mas receptor pathway may represent a 
valuable pharmacological opportunity to reveal new strategies to attenuate the pro-
inflammatory environment that promotes and sustains the development of various 
chronic diseases. Activation of this pathway may not only attenuate pro-inflamma-
tory responses but may also improve the resolution of inflammation and minimize 
inflammatory tissue damage and disease.
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 Introduction

One of the first indirect evidence for the role of Angiotensin-(1-7) [Ang-(1-7)] in 
cancer was that hypertensive patients treated with angiotensin-converting enzyme 
(ACE) inhibitors have a decreased risk of cancer [1] and ACE inhibitors cause a 
significant elevation in both tissue and circulating Ang-(1-7) [2–4]. Considering that 
Ang-(1-7) inhibits the growth of several cell lines [5–9], it has been suggested that 
the heptapeptide may also reduce the proliferation of cancer cells and tumors.

However, the direct role of Ang-(1-7) in tumor process was first described by 
Rodgers and coworkers [10, 11]. These authors showed that treatment with Ang-
(1- 7) accelerates hematopoietic recovery by increasing both the number of white 
blood cells and myeloid progenitors in the peripheral blood and bone marrow after 
chemotherapy [10, 11]. Soon after, Gallagher and Tallant [12] reported that Ang-
(1- 7) inhibits lung cancer cell growth through the activation of Mas receptor.

In this chapter, we summarize studies on the role of Ang-(1-7) in different types 
of cancer.
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 Angiotensin-(1-7) in Lung Cancer

Lung cancer is one of the most frequent types of cancer in humans and a leading 
cause of death [13]. The high mortality rates have been associated with late diag-
nosis, which results in elevated frequency of metastasis [13]. Therefore, despite 
all developments in therapeutic approach, the investigation of novel treatments 
that control neoplastic cell migration, proliferation and metastasis is urgently 
needed.

In this regard, Ang-(1-7) has emerged as a potential therapeutic target [14]. The 
first evidence was provided by an in vitro study. Three lung cancer cell lines includ-
ing human adenocarcinoma SK-LU-1 and A549 cells and non-small cell lung can-
cer SK-MES-1 cells were incubated with Ang-(1-7) to determine the effect of the 
heptapeptide on cell growth [12]. Ang-(1-7) potently inhibited the growth of all cell 
lines of lung cancer at subnanomolar concentrations [12]. The antiproliferative 
effect of Ang-(1-7) was associated with reduction in serum-stimulated phosphoryla-
tion of the MAP kinases ERK1/2 [12]. In addition, the inhibitory effect of Ang-(1-7) 
was mediated by Mas receptor, since it was blocked by the Mas receptor antagonist 
D-Ala7-Ang-(1-7) (A-779) and not affected by AT1 or AT2 [12]. In vivo evidence 
was obtained by the intravenous administration of Ang-(1-7) in mice with A549 
human lung tumors [15]. Ang-(1-7) infusion was very well tolerated by the mice 
and resulted in a reduction of tumor volume by 30% compared to the size prior to 
treatment [15]. These findings were associated with a decrease in the proliferation 
marker Ki67 [15].

Two other mechanisms that may contribute to antitumor effect of Ang-(1-7) in 
lung cancer are cyclooxygenase 2 (COX-2) inhibition and antiangiogenic activity. 
COX-2 is overexpressed in 70–90% of adenocarcinomas [16]. Clinical trials with 
nonselective inhibitors of COX-2 decreased the risk for lung cancer, suggesting that 
a reduction in COX-2 is associated with inhibition of lung tumor growth [17, 18]. 
Ang-(1-7) significantly reduced COX-2 mRNA and protein in both A549 tumor 
xenografts and A549 cells in culture [15]. It should be pointed that Ang-(1-7) has 
significant advantages over the administration of nonselective and selective COX-2 
inhibitors for lung cancer since the heptapeptide-mediated reduction in COX-2 is 
associated with antithrombotic and antiinflammatory activities without the side 
effects related to COX-2 inhibitors [19]. In regard to antiangiogenic activity, athy-
mic mice with A549 lung tumors were injected daily with 1000 μg/kg of Ang-(1-7) 
for 5 days, followed by a 2-day drug-free, and sacrificed after 42 days [20]. Ang-
(1- 7) markedly decreased vascular endothelial growth factor (VEGF) protein and 
mRNA, vessel density and A549 lung tumor growth [20]. The antiangiogenic effect 
of Ang-(1-7) was also mediated by Mas receptor [20].

More recently, the expression pattern of microRNAs (miRNAs) in lung tumor 
cells has been investigated to elucidate the mechanisms by which Ang-(1-7) con-
trols tumor migratory processes [21, 22]. It was found that miRNA-149-3p plays 
a role in cellular migration processes [21] and miRNA-513a-3p controls the pro-
tein level and molecular function of integrin-β8, thus reducing cell migration and 
inflammation [22]. Another recent line of investigation is the use viral vectors to 
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deliver Ang-(1-7). Chen and coworkers [23] constructed a mutant adeno-associ-
ated viral vector AAV8 (Y733F) that produced stable and highly efficient Ang-(1-
7) expression in a xenograft tumor model. AAV8-mediated Ang-(1-7) 
overexpression inhibited tumor growth in vivo by downregulating Cdc6 and anti-
angiogenesis. These findings provide useful information for future investigations 
on drug development.

 Angiotensin-(1-7) in Breast Cancer

Among all the malignant diseases, breast cancer is considered as one of the most 
important causes of death in postmenopausal women, accounting for 23% of all 
cancer deaths [24]. There are three major types of breast cancer: estrogen receptor- 
positive (ER-positive) breast cancer, which can be treated with selective estrogen 
receptor modifiers (SERMs) or aromatase inhibitors; human epidermal growth fac-
tor receptor 2 (HER2)-overexpressing breast cancer, which can be treated with an 
antibody to the HER2 receptor; and triple-negative breast cancers, which lack both 
estrogen and progesterone receptors and also do not overexpress HER2, very fre-
quently being refractory to conventional treatments [24]. In spite of targeted treat-
ments for ER-positive and HER2-overexpressing breast cancers, there is still need 
for novel therapies for both primary and metastatic diseases.

The effect of Ang-(1-7) was first investigated in human ZR-75-1 ER-positive and 
BT474 ER-positive/HER2-overexpressing breast tumors [25]. Ang-(1-7) signifi-
cantly reduced tumor volume and weight in both ZR-75-1 and BT474 breast tumors 
[25]. In addition, treatment with Ang-(1-7) markedly decreased fibroblast growth, 
interstitial fibrosis within the tumors and perivascular fibrosis surrounding tumor 
vessels, in association with a decrease in immunoreactive collagen I deposition 
[25]. The antifibrotic effect of Ang-(1-7) was associated with increase in MAP 
kinase phosphatase and reductions in phosphorylated ERK1/2 and in the production 
of transforming growth factor-beta (TGF-β) [25]. These findings indicate that Ang-
(1-7) inhibits cancer-associated fibroblasts growth and tumor fibrosis in breast 
cancer.

The role of ACE2/Ang-(1-7)/MAS receptor axis was also investigated in the 
metastasis of breast cancer [26]. Yu and coworkers [26] detected that ACE2 protein 
level is negatively associated with the metastatic ability of breast cancer cells and 
breast tumor grade. Furthermore, stimulation of the ACE2/Ang-(1-7)/Mas receptor 
axis reduced breast cancer cell migration and invasion in vivo and in vitro by means 
of the inhibition of store-operated calcium entry and PAK1/NF-κB/Snail1 path-
ways, and the induction of E-cadherin expression [26].

The counterregulatory role of Ang-(1-7) against deleterious actions of Ang II 
was also observed in breast cancer. In this regard, Cambados and coworkers [27] 
have investigated the effect of Ang-(1-7) on Ang II-induced protumorigenic features 
on normal murine mammary epithelial cells NMuMG and on breast cancer cells 
MDA-MB-231. Ang II stimulated PI3K/AKT pathway leading to epithelial- 
mesenchymal transition in NMuMG cells via AT1 receptor activation [27]. 
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Simultaneous administration of Ang II and Ang-(1-7) abolished the effects of Ang 
II in NMuMG cells. In addition, Ang-(1-7) annulled Ang II-induced migration and 
invasion of the MDA-MB-231 cells and inhibited proangiogenic process by reduc-
ing VEGF expression [27].

 Angiotensin-(1-7) in Prostate Cancer

Prostate cancer is the second most important cause of cancer deaths in men [28]. 
Treatment options for localized prostate cancer include surgery, radiation therapy, 
and hormone ablation therapy. Although treatment is encouraging for primary 
prostate cancer, metastatic prostate cancer, predominantly to the bone, is often 
fatal [28].

Ang-(1-7) was administered for 54 days to athymic mice with human LNCaP 
prostate cancer cells injected into the flank [29]. Ang-(1-7) treatment significantly 
reduced the volume and weight of LNCaP xenograft tumors [29]. Histological anal-
ysis of the tumor showed that Ang-(1-7) decreased Ki67 immunoreactivity, ERK1/2 
activities and vessel density. The reduced angiogenesis was associated with less 
concentration of VEGF and of PlGF and increased levels of the soluble fraction of 
VEGF receptor 1 (sFlt-1). sFlt-1 acts as a decoy receptor that catches VEGF and 
PlGF, making the ligands unavailable to membrane-bound VEGF receptors and pre-
venting activation of proangiogenic signaling [29].

In order to investigate the effect of Ang-(1-7) on metastatic prostate cancer to the 
bone, human PC3 prostate cancer cells were injected into the aortic arch of mice 
pretreated with Ang-(1-7) or into the tibia of athymic mice, subsequently adminis-
tered with Ang-(1-7) for 5 weeks beginning 2 weeks after cancer cells injection 
[30]. When PC3 cells were injected, the mice developed tumors in the submandibu-
lar bone, the spinal column, or the long bone of the leg. In sharp contrast, pretreat-
ment with Ang-(1-7) prevented metastatic tumor formation. Ang-(1-7) administered 
2  weeks after human PC3 prostate cancer cells also attenuated intratibial tumor 
growth. In addition, bone marrow cells were extruded from the long bone of 
untreated mice, differentiated to induce osteoclastogenesis and treated with Ang-
(1- 7). The heptapeptide reduced by 50% osteoclastogenesis in bone marrow cells, 
suggesting that Ang-(1-7) treatment impedes the formation of osteolytic lesions to 
reduce tumor survival in the bone microenvironment [30].

 Angiotensin-(1-7) in Hepatocellular Cancer

The effects of Ang-(1-7) were also investigated in hepatocellular carcinoma [31, 
32]. For this purpose, H22 hepatoma-bearing mice were randomly divided into five 
groups: vehicle-treated group, mice receiving low-dose of Ang-(1-7), high-dose of 
Ang-(1-7), high-dose of Ang-(1-7) plus A779, and high-dose of Ang-(1-7) plus 
PD123319. Ang-(1-7) inhibited tumor growth in a time- and dose-dependentl man-
ner [31]. The antitumoral mechanisms elicited by Ang-(1-7) include reduction of 
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cell proliferation and of angiogenesis as well as induction of tumor cell apoptosis. 
The effects of Ang-(1-7) on tumor cell proliferation and apoptosis were reversed by 
coadministration with A779 or PD123319, whereas the effects on tumor angiogen-
esis were completely blocked by A779 but not by PD123319. Moreover, Ang-(1-7) 
downregulated mRNA for AT1 receptor, upregulated mRNA for AT2 and Mas recep-
tors [31].

As previously described for lung cancer, the use viral vectors to deliver Ang-
(1- 7) was also employed in hepatocellular carcinoma also. Thus, the effects of 
Adeno-associated virus serotype-8 (AAV8)-mediated Ang-(1-7) overexpression 
were investigated in hepatocellular carcinoma [32]. The authors first generated 
three different mutants of AAV8 (Y447F, Y703F, Y708F) and evaluated in  vivo 
transduction efficiencies. The antitumor effects of Ang-(1-7) delivered by Y703F, 
the most efficient vector, was evaluated in H22 hepatoma-bearing mice. AAV- 
Ang-(1-7) persistently inhibited angiogenesis and the growth of hepatocellular car-
cinoma [32].

 Angiotensin-(1-7) in Glioblastoma

Glioblastoma multiforme (GBM) is the most primary brain tumor, specially char-
acterized with the damage of blood–brain barrier [33]. Ang-(1-7) inhibited the 
growth and invasiveness of GBM [34]. To investigate the mechanisms beyond 
antitumor effect of Ang-(1-7) in GBM, Liu and coworkers evaluated the crosstalk 
between Podocalyxin (PODX) and Ang-(1-7)/Mas receptor signaling in GBM 
cells, and examined its effect on GBM cell invasion and proliferation [35]. It has 
been previously reported that PODX enhances invasion in many human cancers 
including GBM. The authors found a significant negative correlation between the 
expression of PODX and Mas in GBM tumor tissues from 10 patients (r = −0.768, 
p < 0.01) [35]. The stable overexpression of PODX in LN-229 and U-118 MG 
human GBM cells decreased the mRNA and protein expression of Mas receptor, 
resulting in low density of Ang-(1-7)-binding Mas on the cell membrane. 
Overexpression and knockdown of PODX respectively reversed and enhanced the 
inhibitory effects of Ang-(1-7) on the expression/activity of matrix metallopro-
teinase-9 and cell invasion and proliferation in GBM cells. PODX inhibited Ang-
(1-7)/Mas signaling by downregulating the expression of Mas through a 
PI3K-dependent mechanism in GBM cells. This effect increased GBM cell inva-
sion and proliferation [35].

Besides the inhibitory effect of Ang-(1-7) on GBM growth, the heptapeptide 
significantly relieved the damage of blood–brain barrier in rats with intracranial 
U87 gliomas [36]. Furthermore, treatment with Ang-(1-7) restored the function of 
blood–brain barrier and avoided edema formation. Similarly, Ang-(1-7) also 
decreased U87 glioma cells barrier permeability in vitro. The protective effect of 
Ang-(1-7) on blood–brain barrier was associated with inhibition of JNK pathway 
and a consequent return of tight junction protein (claudin-5 and ZO-1) expression to 
normal levels both in rats and in U87 glioma cells [36].

The Role of Angiotensin–(1-7) in Cancer



224

 Angiotensin-(1-7) in Other Cancers

Basal and interleukin (IL)-1β-stimulated expression of components of ACE2/
Ang(1-7)/Mas receptor axis were evaluated in U-2 OS and MNNG-HOS osteosar-
coma cells analyzed as well as the effect of Mas receptor on proliferation and/or 
migration of these cells [37]. The two cell lines expressed Ang-(1-7)-generating 
peptidases, including ACE2, neutral endopeptidase 24.11 and prolyl-endopeptidase 
together with Mas receptor. IL-1β stimulated mRNA and protein expression for 
Mas receptor, which was associated with a reduction of proliferation and migration. 
On the other hand, RNA-mediated knockdown of Mas expression led to increased 
cell proliferation, supporting a beneficial role of ACE2/Ang(1-7)/Mas receptor axis 
in the treatment of osteosarcoma [37].

The treatment of nasopharyngeal carcinoma (NPC) has been associated with sev-
eral side effects [38]. Therefore, the investigation on novel treatment modalities for 
NPC is of utmost importance. It was found that Mas receptor in significantly upregu-
lated in NPC specimens and NPC cell lines [39]. Viral vector-mediated expression of 
Ang-(1-7) markedly inhibited NPC cell proliferation and migration in vitro. These 
effects were mediated by Mas receptor since they were completely blocked by A-779 
[39]. In addition, Ang-(1-7) significantly reduced the growth and the vessel density 
of human nasopharyngeal xenografts [39]. Mechanistic investigations revealed that, 
also in this tumor, Ang-(1-7) inhibited the expression of the proangiogenic factors 
VEGF and PlGF. The effects and signaling pathways involved in the Ang-(1-7)/Mas 
receptor axis in NPC were further investigated both in vitro and in vivo [40]. Ang-(1-
7) inhibited cell proliferation, migration, and invasion in NPC-TW01 cells. Ang-(1-
7) induced autophagy by increasing the levels of the autophagy marker LC3-II and 
by enhancing p62 degradation via activation of the Beclin-1/Bcl-2 signaling pathway 
with participation of the PI3K/Akt/mTOR and p38 pathways [40]. Pretreatment with 
Ang-(1-7) also inhibited tumor growth in NPC xenografts by stimulating autophagy, 
while no autophagy was observed following Ang-(1-7) posttreatment [40]. To sum 
up, Ang-(1-7) plays a role in autophagy downstream signaling pathways in NPC, 
supporting its therapeutic potential for reducing the incidence of primary NPC 
tumors and for preventing recurrent disease [40].

A beneficial role of Ang-(1-7) was also reported in head and neck squamous cell 
carcinoma (HNSCC) [41]. Hinsley and coworkers showed that Ang II promotes the 
invasion and migration of HNSCC cells both in an autocrine manner. The effects of 
Ang II were mediated by AT1 receptors and inhibited by Ang-(1-7) [41].

 Angiotensin-(1-7) for Cancer Pain and Side Effects 
of the Treatment

Besides antitumor actions, Ang-(1-7) may also be useful to control cancer pain [42] 
and side effects secondary to radiation therapy [43].

Several solid tumors metastasize to the bone and induce intense pain. Cancer- 
induced bone pain is often severe due to accentuated inflammation, rapid bone 
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degradation, and disease progression [44]. Opioids are recommended to manage 
this pain, but these medications may enhance bone loss and increase tumor prolif-
eration [44]. The antinociceptive effect of Ang-(1-7) was investigated in a murine 
model of breast cancer-induced bone pain. Breast cancer cells were implanted into 
the femur of BALB/c mice [42]. Spontaneous and evoked pain behaviors were 
examined before and after acute and chronic administration of Ang-(1-7). Cancer 
inoculation increased spontaneous pain behaviors by day 7. Both single injection 
and sustained administration of Ang-(1-7) significantly reduced pain. 
Preadministration of A-779 impeded this reduction, while pretreatment with an AT2 
receptor antagonist had no effect. However, the use of an AT1 antagonist potentiated 
the antinociceptive effect of Ang-(1-7). Ang-(1-7) via Mas receptor activation sig-
nificantly attenuated pain without the side effects seen with opioids [42].

Radiation-induced fibrosis of musculoskeletal tissue is a common complication 
of radiation therapy for extremity soft-tissue sarcoma, without a strategy for preven-
tion and treatment [45]. In this regard, Ang-(1-7) was tested as a radioprotectant 
agent for radiation-induced fibrosis and stiffening of irradiated muscles [43]. Male 
CD-1 mice were randomized to three treatment groups: control, simulated sarcoma 
radiation therapy to the gastrocnemius and soleus muscles, or radiation therapy 
along with continuous Ang-(1-7) infusion initiated 3 days before radiation therapy. 
Ang-(1-7) attenuated radiation-induced fibrosis, stiffening, and reduced the produc-
tion of profibrotic cytokines that were elevated in mouse skeletal muscles after 
radiation therapy [43].

 Clinical Trials with Ang-(1-7) or TXA127

A total of nine clinical trials with Ang-(1-7) or TXA127 are registered in NIH (3 
completed, 3 withdrawn, 2 active and 1 terminated). TXA127 is a pharmaceutical 
grade formulation of the naturally occurring peptide Ang-(1-7), which Tarix 
Pharmaceuticals is developing for the treatment of a number of diseases.

The first trial registered was a phase I study that treated patients with metastatic 
or unresectable solid tumors with Ang-(1-7) [46]. Eighteen patients were enrolled in 
this trial. Dose-limiting toxicities found at the 700 microg/kg included stroke (grade 
4) and reversible cranial neuropathy (grade 3). Other side effects were generally 
mild. One patient developed a 19% reduction in tumor measurements. Three addi-
tional patients showed clinical benefit with stabilization of disease lasting more than 
3 months. Ang-(1-7) administration reduced circulating levels of plasma placental 
growth factor (PlGF) levels in patients with clinical improvement, but not in patients 
without clinical benefit [46]. Further results of this trial were not reported or pub-
lished (ClinicalTrials.gov identifier: NCT00471562).

The second completed clinical trial is a phase II study on the role of Ang-(1-7) as 
second-line therapy or third-line therapy in treating patients with metastatic sar-
coma that cannot be removed by surgery (ClinicalTrials.gov Identifier: 
NCT01553539). This study enrolled 20 adult patients with different types of sar-
coma. Patients received Ang-(1-7) subcutaneous once daily in the absence of 
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disease progression or unacceptable toxicity. Results revealed low rate of significant 
adverse effects and slight reduction in the concentrations of VEGF and PIGF at day 
22 after the beginning of the treatment with Ang-(1-7).

The third completed clinical trial is a phase IIb, multicenter, randomized, double- 
blind, placebo-controlled study comparing safety and efficacy of two dose levels of 
TXA127 when administered during 6 cycles of combination gemcitabine and platinum- 
based chemotherapy (ClinicalTrials.gov Identifier: NCT00771810). This study intends 
to investigate the effectiveness of TXA127 for the mitigation of severity and/or inci-
dence of thrombocytopenia, as well as safety when administered as a self-injected, 
subcutaneous solution. TXA127 was administered to patients with breast cancer in the 
adjuvant setting to determine the effect of Ang-(1-7) on cytopenia [47]. No dose-limit-
ing toxicities were reported, and Ang-(1-7) reduced thrombocytopenia and lymphope-
nia [47]. Patients with ovarian, Fallopian tube, or peritoneal carcinoma receiving 
gemcitabine and carboplatin or cisplatin were also treated with TXA127. Once more, 
Ang-(1-7) reduced thrombocytopenia following gemcitabine and platinum chemother-
apy [48]. These data suggest that Ang-(1-7) may be beneficial in attenuating multilin-
eage cytopenias following bone marrow- toxic chemotherapy.

The three withdrawn clinical trials were phase II studies and had the objective to 
investigate the role of Ang-(1-7) or TXA127 in hematologic malignancies. The first 
registered study aimed to examine the safety and the efficacy of TXA127 to enhance 
engraftment in pediatric patients undergoing single or double umbilical cord blood 
transplantation (ClinicalTrials.gov identifier: NCT01554254). The second study 
aimed to evaluate the efficacy of TXA127 to reduce the incidence (Grade II-IV) of 
acute Graft-versus-Host Disease (aGVHD) in adult subjects undergoing double 
umbilical cord blood transplantation (ClinicalTrials.gov identifier: NCT01882374). 
The third study had the purpose to evaluate the efficacy of TXA127 to reduce the 
incidence (Grade II-IV) of aGVHD in adult subjects undergoing allogeneic periph-
eral blood stem cell transplantation (ClinicalTrials.gov identifier: NCT01882387). 
In these three studies, no results were reported, and the studies were withdrawn 
before participants were enrolled.

The two active clinical trials are investigating the role of TXA127 in hematologic 
malignancies. The first registered is a randomized, double-blind, placebo-controlled 
study phase II with the purpose to determine the safety and effectiveness of 
TXA127 in accelerating the time it takes for patients to recover their platelet counts 
following an Autologous Peripheral Blood Stem Cell transplant (ClinicalTrials.gov 
identifier: NCT01121120). The second is a phase I study with the aim to examine 
the safety and efficiency of TXA127 (two injected doses: 300 or 1000 mcg/kg/day 
for 28 days) in enhancement of engraftment in adult double cord blood transplanta-
tion for the treatment of a variety of hematologic malignancies for whom there is no 
available therapy with substantive antidisease effect (ClinicalTrials.gov identifier: 
NCT01300611). No results are posted for both studies.

The single terminated clinical trial was a phase 1 study that aimed to determine 
safety and tolerability of TXA127 (300, 600, or 900 μg/kg daily by subcutaneous injec-
tion) in thrombocytopenic subjects with low or Intermediate-1 risk myelodysplastic 
syndrome (ClinicalTrials.gov identifier: NCT01362036). No results were reported.
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 Concluding Remarks

Studies in  vitro and in  vivo experimental models showed that Ang-(1-7) reduced 
proliferation of human cancer cells and xenograft tumors. The antitumor effect of 
Ang-(1-7) was due to reduction of angiogenesis, cancer-associated fibrosis, osteo-
clastogenesis, tumor-induced inflammation, and metastasis, as well as inhibition of 
cancer cell growth and proliferation. In clinical trials, Ang-(1-7) was well tolerated 
with limited toxic or quality-of-life side effects and showed clinical benefit in cancer 
patients with solid tumors. In conclusion, these findings so far suggest that Ang-(1-7) 
may act as chemotherapeutic agent, reducing cancer growth and metastases by pleio-
tropic mechanisms as well as targeting the tumor microenvironment. Further clinical 
trials are needed to confirm safety, and to determine doses and clinical indications.
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Concluding Remarks

Robson Augusto Souza Santos

As illustrated in many chapters of this book, angiotensin-(1-7) is now well estab-
lished and considered an important player of the renin–angiotensin system (RAS). 
Due to its pleiotropic aspect and consequent beneficial effects in the body, this pep-
tide is a target for developing new medications aimed to treat cardiovascular, renal, 
and metabolic diseases. The use of Ang-(1-7) by itself as a drug has been hampered 
by the naive concept that since it has a short half-life in plasma, it cannot be used as 
a drug. However, the action of a peptide in the body is not proportional to its half- 
life in the blood as the traditional allopathic drugs. For example, the signaling cas-
cade activated by a peptide acting on its receptor may have a kinetics completely 
different from the half-life of the free peptide in the blood. Likewise, the receptor- 
bound peptide does not follow the classical linear relationship expected from evalu-
ations using conventional pharmacokinetics models. Actually, as illustrated in 
different chapters, there are many publications showing that a single daily oral 
administration of the inclusion compound Ang-(1-7)/HPB-cyclodextrin is capable 
of producing beneficial effects in rodents [1–13, 15–18], including improved heart 
function after myocardial infarction and reduction in blood pressure in SHR) More 
recently the same formulation was tested in humans and a significant improvement 
of recovery from a supramaximal physical exercise was observed [4]. These data 
did not fit with a half-life of seconds for the peptide. The potential role of clinical 
use of the stimulation of the Ang-(1-7) receptor Mas was recently emphasized by an 
outstanding publication of a Mayo Clinics’ group. In their manuscript, a single 
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polypeptide comprising a fragment of BNP associated with the angiotensin-(1-7) 
sequence was demonstrated to behave as a Mas agonist and more important, to have 
a dramatic gain in the efficacy on the blood pressure and other parameters. The 
effect of the polypeptide was blocked by the Mas antagonist A-779 [14]. This manu-
script opens new venues to explore the potential of Mas agonists as beneficial drugs 
in the cardiovascular field. In addition to these exciting new findings, the rather 
recent discovery of the angiotensin derivative alamandine by our research group 
[11] adds new possibilities to explore the physiology and pharmacological potential 
of the protecting arm of the RAS.
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