
A Variant of the Simplex Method
for Second-Order Cone Programming

Vitaly Zhadan1,2(B)

1 Dorodnicyn Computing Centre, FRC “Computer Science and Control” of RAS,
40, Vavilova Street, Moscow 119333, Russia

zhadan@ccas.ru
2 Moscow Institute of Physics and Technology (State Research University),

9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russia

Abstract. The linear second-order cone programming problem is con-
sidered. For its solution a variant of the primal simplex-type method is
proposed. This variant is a generalization on the cone programming of
the standard simplex method for linear programming. At each iteration
the dual variable and dual slack are defined, and the move from the given
extreme point to another one is realized. Finite and infinite convergence
of the method to the solution of the problem having a special form is
discussed.
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1 Introduction

Cone programming is more general setting with respect to linear programming
(LP). In cone programming, the requirement that variables must be non-negative
is replaced by belonging them to convex cones. The second-order cone program-
ming (SOCP) is the very important special case of cone programming, in which
the linear goal function is minimized over the intersection of a linear manifold
with direct product of second-order cones [1,2]. Many optimization problems,
including, in particular, quadratically constrained convex quadratic problems,
robust optimization and combinatorial optimization problems, may be formu-
lated as SOCP [2,3].

The most popular methods of solving SOCP are primal-dual interior point
techniques, which were developed for LP and were extended for cone program-
ming [4,5]. The simplex-type algorithms for SOCP are developed essentially
less. There are only a few simplex-type methods for SOCP. This situation with
simplex-type methods is explained by the presence of infinitely many extreme
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points in feasible sets. The general approach for constructing simplex-type meth-
ods for cone programming was proposed in [6]. In [7] the SOCP problem of special
structure with the single second-order cone and other nonnegative variables was
considered and the simplex-type algorithm for its solution was developed. The
other variant of a simplex-type algorithm for the general linear SOCP problem
had been worked out in [8]. This algorithm is based on the reformulation of
the SOCP problem as a linear semi-infinite programme and on the consequent
application of the dual-simplex primal-exchange method from [9] for solving the
reformulated problem. As it is mentioned by authors, their algorithm is more
advantage, when it solves the SOCP problems with similar structure.

In the present paper, the general SOCP problem is considered. For its solu-
tion, a variant of the primal simplex-type method is proposed. This variant can
be treated as the simple extension of the well-known simplex method for LP. In
pivoting procedures all variables, belonging to the second-order cone, are taken
in the form of a single variable. The method can be interpreted as a special way
of solving the system of optimality conditions. The primal feasibility and com-
plementarity between primal variables and dual slack variables are preserved in
the course of iterations. The dual slack variable (dual slack) is estimated at each
iteration in order to define the primal variable, which must enter the list of basic
variables. The similar way of constructing the primal simplex-type method for
solving linear semidefinite programming problems had been used in [10].

The paper is organized as follows. In Sect. 2, the statement of SOCP is given.
Here we also introduce some notions and notations. Among them definitions of
regular and irregular extreme points of the feasible set are rather important. In
Sect. 3, the approach to updating regular extreme points is described. Finally,
in Sect. 4, the partial case of the SOCP problem is considered. It is shown that
the sequence, generated by the proposed algorithm, converges to the solution of
the problem.

2 The Problem Statement and Basic Definitions

Let Kn denote the second-order (Lorentz) cone in IRn. By its definition

Kn =
{
[x0; x̄] ∈ IR × IRn−1 : x0 ≥ ‖x̄‖

}
,

where ‖ · ‖ refers to the standard Euclidean norm and n is the dimension of Kn.
Here and in what follows we use “;” for adjoining vectors or components of a
vector in a column. The cone Kn is self-dual, and it induces a partial order in
IRn, namely: x1 �Kn x2, if x1 − x2 ∈ Kn.

Consider the cone programming problem

min
∑r

i=1〈ci, xi〉,∑r
i=1 Aixi = b, x1 �Kn1 0n1 , . . . , xr �Knr 0nr

.
(1)

Here, ci ∈ IRn
i , 1 ≤ i ≤ r, and b ∈ IRm. Matrices Ai are of dimensions m × ni,

1 ≤ i ≤ r, and 0ni
is a zero vector of dimension ni. The angle brackets denote

the usual Euclidean scalar product in IRni .
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The dual problem to (1) has the following form

max 〈b, u〉,
AT

i u + yi = ci, 1 ≤ i ≤ r; y1 �Kn1 0n1 , . . . , yr �Knr 0nr
,

(2)

in which u ∈ IRm.
Let n = n1 + · · · + nr. Denoting

c = [c1; . . . ; cr] ∈ IRn, x = [x1; . . . ;xr] ∈ IRn; y = [y1; . . . ; yr] ∈ IRn,

and A = [A1, . . . Ar], K = Kn1 × · · · × Knr , it is possible to rewrite the pair of
problems (1) and (2) as

min 〈c, x〉, Ax = b, x �K 0n, (3)

max 〈b, u 〉, ATu + y = c, y �K 0n. (4)

We assume that solutions of both problems (3) and (4) exist. Moreover, we
assume that m < n and rows of the matrix A are linear independent. The
feasible set in problem (3) is denoted by FP . Observe, that LP is a special case
of (3), (4) with the nonnegative orthant IRn

+ as K.
In order that both problems (3) and (4) have solutions it is necessary that

the following system of equalities and inclusions

〈x, y〉 = 0, Ax = b, ATu + y = c, x ∈ K, y ∈ K (5)

be solvable. The simplex-method under consideration is one of the possible ways
for solving this system.

Let x ∈ K. We split all components xi, composed the vector x, onto zero and
nonzero components. In addition, we split nonzero components onto internal
components xi, belonging to interior of the cone Kni , and onto boundary com-
ponents, belonging to the boundary of the cone Kni (more exactly, to a nonzero
face of Kni). From boundary, internal and zero components of the vector x it
is possible to compose three blocks of components: xF , xI , xN . Without loss of
generality, we assume that these blocks are located in the mentioned order, i.e.

x = [xF ;xI ;xN ]. (6)

We suppose also that

xF = [x1; . . . ;xrF ] , xI = [xrF+1; . . . ;xrF+rI ] , xN = [xrF+rI+1; . . . ;xr] .
(7)

Thus, the first block of components xF consists of rF = rF (x) components
xi. Respectively, the second and the third blocks consist of rI = rI(x) and
rN = rN (x) components xi, respectively. Some blocks may be empty, then the
corresponding numbers rF , rI or rN are equal to zero. We have rF +rI +rN = r.

Let Jr = [1 : r]. The following partition of the index set Jr onto three subsets

Jr
F (x) = [1, . . . , rF ], Jr

I (x) = [rF +1, . . . , rF +rI ], Jr
N (x) = [rF +rI+1, . . . , r]
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corresponds to the introduced splitting of x onto blocks. Below we use also
notations:

rB = rB(x) = rF (x) + rI(x), Jr
B(x) = Jr

F (x) ∪ Jr
I (x).

For any nonzero component xi, i ∈ Jr
B(x), the following spectral decomposi-

tion
xi = ηi,1 di,1 + ηi,ni

di,ni
(8)

takes place (see [2]). In (8) the pair {di,1,di,ni
} is the “so-called” Jordan frame.

The frame vectors di,1 and di,ni
have the forms

di,1 =
1√
2

[
1;

x̄i

‖x̄i‖

]
, di,ni

=
1√
2

[
1;− x̄i

‖x̄i‖

]
,

and
ηi,1 =

1√
2

(
x0
i + ‖x̄i‖

)
, ηi,ni

=
1√
2

(
x0
i − ‖x̄i‖

)
.

Both vectors di,1 and di,ni
are unit vectors and are orthogonal with each other.

If xi ∈ Kni , then ηi,1 ≥ 0, ηi,ni
≥ 0.

Introduce in IRni the system of coordinates associated with the current point
xi. For this purpose we set

gi,0 = [1; 0; . . . ; 0] , gi,1 =
[
0;

x̄i

‖x̄i‖

]
.

Both vectors gi,0, gi,1 are unite vectors and

di,1 =
1√
2

(gi,0 + gi,1) , di,ni
=

1√
2

(gi,0 − gi,1) .

The vector gi,0 coincides with the basis vector in IRni corresponding to the
component with zero index. Furthermore, in the subspace

IRni
0 =

{
xi = [x0

i ; x̄i] ∈ IRni : x0
i = 0

}

we take arbitrary unit vectors gi,2, . . . ,gi,ni−1, which are orthogonal to each
others and orthogonal to the vector gi,1 too. Then the vectors gi,j , 1 ≤ j ≤ ni−1,
form the orthonormal basis in IRni

0 , and jointly with gi,0—the orthonormal basis
in IRni .

Let Gi, i ∈ Jr
B(x), denote the orthogonal matrix Gi =

[
gi,0, gi,1, . . . ,

gi,ni−1

]
of order ni. For i ∈ Jr

N (x) the intrinsic basis IRni is taken as Gi. Then
for any point xi ∈ IRni , i ∈ Jr, the representation xi = Giνi is valid, where
νi = [νi,0; νi,1; . . . ; νi,ni−1] ∈ IRni and νi = GT

i xi.
Introduce additionally ni × (ni − 1) matrix

Λi =

⎡

⎢
⎢
⎢
⎢
⎣

ν0
i,1 ν0

i,2 . . . ν0
i,ni−1

νi,1 0 . . . 0
0 νi,2 0. . . 0

. . .
0 . . . 0 νi,ni−1

⎤

⎥
⎥
⎥
⎥
⎦

, i ∈ Jr,
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and denote λi,j = Λiei,j ∈ IRni , where ei,j is the jth unit orth in IRni . Then for
components xi, i ∈ Jr

B(x), with representations (8), the following equality

xi = Giλi,1 = ν0
i,1gi,0 + νi,1gi,1, (9)

takes place. Moreover, if i ∈ Jr
F (x), the equality νi,0 = νi,1 = ν0

i,1 = x0
i holds. All

other components λi,j , 2 ≤ j ≤ ni − 1, are zero vectors. For i ∈ Jr
I (x) we have:

ν0
i,1 = x0

i , νi,1 = ‖x̄i‖ and ν0
i,1 > νi,1. If we set

[
ν0
i,1; νi,1

]
= [0; 0], then, formally,

the representation (9) is valid for xi, when i ∈ Jr
N (x).

Denote by G and Λ block diagonal matrices

G = Diag (G1, . . . ,Gr) , Λ = Diag (Λ1, . . . ,Λr) .

Moreover, denote by e1 the n-dimensional vector e1 = [e1,1; e2,1; . . . ; er,1]. Then,
for the vector x = [xF ;xI ;xN ] ∈ FP with components xi, i ∈ Jr we obtain
Ax = AGΛe1 = b, where AG = AG. The matrix AG together with the matrix
A has full rank equal to m.

Consider the sets

Si,j = {xi ∈ IRni : xi = GiΛiei,j} , 1 ≤ j ≤ ni − 1.

By S+
i,j we denote the following subset of the set Si,j :

S+
i,j =

{
xi ∈ IRni : xi = GiΛiei,j , ν0

i,j ≥ |νi,j |
}

, 1 ≤ j ≤ ni − 1.

The set S+
i,j , being a two-dimensional second-order cone, is the section of the

cone Kni .
Let xi,j = Giλi,j ∈ Si,j , 1 ≤ j ≤ ni − 1. The cone Kni is convex, therefore,

xi =
∑ni−1

j=1 xi,j ∈ Kni , if xi,j ∈ S+
i,j , 1 ≤ j ≤ ni − 1. From the other hand,

if x ∈ Kni
2 , then x can be represented as the sum of the vectors xi,j ∈ Si,j ,

1 ≤ j ≤ ni − 1, but at nonunique way.
In what follows, we will need in extreme rays of the cone S+

i,j , which are the
sets

l+i,j =
{
xi = GiΛiei,j ∈ S+

i,j : ν0
i,j = νi,j

}
,

l−i,j =
{
xi = GiΛiei,j ∈ S+

i,j : ν0
i,j = −νi,j

}
.

Both rays l+i,j and l−i,j belong to the boundary of the cone S+
i,j , and, consequently,

belong to the boundary of the cone Kni .

Definition 1. A point xi,j = Giλi,j ∈ S+
i,j is called interior point of the cone

S+
i,j, if the pair [ν0

i,j ; νi,j ] is such, that ν0
i,j > |νi,j |.

Definition 2. A point xi,j = Giλi,j ∈ S+
i,j is called nonzero boundary point of

the cone S+
i,j, if the pair [ν0

i,j ; νi,j ] is such, that ν0
i,j = |νi,j | > 0.

Proposition 1. Let xi =
∑ni−1

j=1 xi,j, where xi,j ∈ S+
i,j, 1 ≤ j ≤ ni − 1. Let

also at least one point xi,j be an interior point of the cone S+
i,j. Then xi is the

interior point of the cone Kni .
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Proposition 2. Let xi = xi,1, where xi,1 is an interior point of the cone S+
i,1.

Let, in addition, Δxi =
∑ni−1

j=1 Δxi,j, where Δxi,j ∈ Si,j, 1 ≤ j ≤ ni − 1. Then
there is α∗ > 0, such that xi + αΔxi ∈ Kni for any 0 ≤ α ≤ α∗.

Denote by Fmin(x|K) the minimal face of the cone K, containing the point
x ∈ K. Denote also by N (A) the null space of the matrix A. According to [6]
the vector x ∈ FP is an extreme point of the set FP , if

lin (Fmin(x | K)) ∩ N (A) = {0n},

where lin (Fmin(x|K)) is a linear hull of the face Fmin(x|K). Moreover, the fol-
lowing inequality dimFmin(x | K) ≤ m must hold.

We have

dim Fmin(xi |Kni) =
{

1, i ∈ Jr
F (x),

ni, i ∈ Jr
I (x).

Hence, for the dimension of a minimal face, containing the extreme point x, the
inequality dimFmin(x | FP ) ≤ m is fulfilled, where

dim Fmin(x | FP ) = rF + nI , nI = nI(x) =
∑

i∈Jr
I (x)

ni.

We call an extreme point x ∈ FP regular, if dimFmin(x | FP ) = m. In the case,
where dim Fmin(x | FP ) < m, we call an extreme point x ∈ FP irregular.

3 Updating of Regular Extreme Point

Let x be a regular extreme point of the feasible set FP . We want to move from
x to another extreme point x̂ ∈ FP next to it. Moreover, we want to make this
move in such a manner, that the value of the objective function at the updated
point x̂ is less than at x. To this end, we will determine at first the slack dual
variable y ∈ IRn, satisfying to all equalities from (5). In addition, we require that
these equalities be reserved during the move from x to x̂.

As a preliminary, we determine the dual vector u ∈ IRm in order to determine
y. Assume that the extreme point x ∈ FP is regular.

Partition (6) of the vector x onto components xF , xI and xN generates the
partition of the vector y onto corresponding components yF , yI and yN , where

yF = [y1; . . . ; yrF ] , yI = [yrF+1; . . . ; yrB ] , yN = [yrB+1; . . . ; yrB+rN ] .

By analogy with x each component yi, i ∈ Jr, may be represented as yi =
Giσi with σi = [σi,0;σi,1; . . . ;σi,ni−1] ∈ IRni . Moreover, for any vector y =
[y1; . . . ; yr] ∈ IRn the equality y = Gσ is valid, where σ = [σ1; . . . ; σr] ∈ IRn.
Thus, σ = GT y.

The complementary condition 〈x, y〉 = 0 from (5) may be rewritten as

〈x, y〉 =
∑

i∈Jr
B(x)

〈xi, yi〉 = 0.
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It follows from here that this condition is fulfilled, if the following equalities

〈xi, yi〉 = 0, i ∈ Jr
B(x), (10)

hold. In the case, where i ∈ Jr
I (x), equality (10) is fulfilled, if, for example,

yi = 0ni
. For i ∈ Jr

F (x), i.e. when xi = ηi,1di,1 is a boundary point of Kni , we
may take yi = di,ni

. Since di,1 ⊥ di,ni
, the equality (10) is also fulfilled in this

case.
Take into account that yi = ci − AT

i u. Then conditions yi = 0ni
, i ∈ Jr

I (x),
may be written as the system of linear equations with respect to the dual variable
u, that is: (

AGi
i

)T

u = cGi
i , i ∈ Jr

I (x). (11)

Here and in what follows, AGi
i = AiGi, cGi

i = GT
i ci.

Consider now the case, where i ∈ Jr
F (x). In this case xi = ηi,1di,1 and

ηi,1 =
√

2x0
i . From here we have

νi = GT
i xi = ηi,1GT

i di,1 = x0
iG

T
i (gi,0 + gi,1) = x0

i [1; 1; 0; . . . ; 0] .

Hence, for yi = di,ni
we obtain

σi = GT
i yi =

1√
2
GT

i (gi,0 − gi,1) =
1√
2

[1;−1; 0; . . . ; 0] .

Thus, it is sufficient to require σi,0 = −σi,1 in order to satisfy the equality
〈xi, yi〉 = 0.

Let i ∈ Jr
F (x). Denote by cGi

i,0 and cGi
i,1 the zero and the first components

of the vector cGi
i , respectively. Denote also by AGi

i,0 and AGi
i,1 the zero and the

first columns of the matrix AGi
i . We set c̃Gi

i,1 = cGi
i,0 + cGi

i,1 , ÃGi
i,1 = AGi

i,0 + AGi
i,1 .

Since σi = GT
i yi = cGi

i −
(
AGi

i

)T

u, we derive from here and (11) the following
system of linear equations

(
ÃGi

i,1

)T

u = c̃Gi
i,1 , i ∈ Jr

F (x);
(
AGi

i

)T

u = cGi
i , i ∈ Jr

I (x). (12)

At the regular point x ∈ FP the system (12) consists of m equations, the number
of variables (components of the vector u) is also equal m.

Denoting by AG
B the square matrix of the order m

AG
B =

[
ÃGi

1,1, . . . , ÃGi
rF ,1, A

GrF +1

rF+1 , . . . , A
GrF +rI
rF+rI

]
,

and denoting by cGB the m-dimensional vector

cGB =
[
c̃Gi
1,1; . . . ; c̃Gi

rF ,1; c
GrF +1

rF+1 ; . . . ; c
GrF +rI
rF+rI

]
,

rewrite the system of equations (12) as
(
AG

B

)T
u = cGB . (13)
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If the matrix of this system is nonsingular, then, solving (13), we obtain

u =
(
AG

B

)−T
cGB .

Here and in what follows the notation M−T is used instead of (MT )−1.
Let us give the definition of the non-degenerate point x ∈ FP from [2].

Definition 3. The point x ∈ FP is called non-degenerate, if TK(x)+NA = IRn,
where TK(x) is the tangent space to the cone K at x, and NA is the null-space
of the matrix A.

Denote by ĀGi
i , i ∈ Jr

F (x), the matrix

ĀGi
i =

[
AGi

i,0 + AGi
i,1 , AGi

i,2 , . . . , AGi
i,ni−1

]
,

and by ĀG
B—the matrix

ĀG
B =

[
ĀG1

1 , . . . , Ā
GrF
rF , A

GrF +1

rF+1 , . . . , A
GrF +rI
rF+rI

]
.

The matrix ĀG
B has the dimension m × (nB − rF ), where nB = nB(x) =∑

i∈Jr
B(x) ni.

Proposition 3 (Non-degeneracy criterion). The point x = [xF ;xI ;xN ] ∈
FP is non-degenerate if and only if the rows of the matrix ĀG

B are linear inde-
pendent.

According to Proposition 3, the inequality m + rF ≤ nB must hold at the
non-degenerate point x ∈ FP .

Now, let us give the criterion of extreme point x ∈ FP (see [6]).

Proposition 4 (Criterion of an extreme point). The point x ∈ FP is an
extreme point of the set FP , if and only if columns of the matrix AG

B are linear
independent.

By Proposition 4 the inequality rF +nI ≤ m must hold at any extreme point
of FP .

Proposition 5. Let x ∈ FP be a regular extreme point. Then x is a non-
degenerate point.

Proof. Since all columns of the matrix AG
B are contained in the matrix ĀG

B , and
since the row rank of the matrix ĀG

B coincides with its column rank, all m rows
of ĀG

B are linear independent. Taking into account Proposition 3, we come to
conclusion, that any regular extreme point x ∈ FP is a non-degenerate point. 
�

Theorem 1. Let x be a regular extreme point of FP . Then the matrix AG
B is

non-singular.
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Proof. The matrix AG
B consists of m columns. But the extreme point x is regu-

lar. Hence, according to the assertion of Proposition 4 these columns are linear
independent. We obtain that the square matrix AG

B is nonsingular. 
�

By Theorem 1, columns of the matrix AG
B are linear independent, and we

may regard AG
B as the matrix of basis at the regular extreme point x ∈ FP . In

addition, we may regard xi, i ∈ Jr
B(x), as basic variables, and we may regard xi,

i ∈ Jr
N (x), as non-basic variables. What is more, we call the basic variables xi,

i ∈ Jr
F (x), by facet basic variables, and we call the basic variables xi, i ∈ Jr

I (x),
by interior basic variables.

Further, we take the obtained dual variable u and define the dual slack

y = c − ATu = c − AT
(
AG

B

)−T
cGB .

For the vector of coefficients σ = [σ1; . . . ;σr] ∈ IRn, we obtain respectively

σ = [σ1; . . . ;σr] = cG − (AG)T
(
AG

B

)−T
cGB .

In the case, where y ∈ K, the point x is a solution of problem (3), and [u, y] is
a solution of problem (4).

In what follows, we assume that the inclusion y ∈ K is violated, that is
yi /∈ Kni for at least one index 1 ≤ i ≤ r. Since u satisfies equations (13),
we have σi = 0ni

, i ∈ Jr
I (x). Therefore, yi = 0ni

, when i ∈ Jr
I (x). Hence, the

inclusion yi ∈ Kni may be broken only in cases, where i ∈ Jr
N (x) or i ∈ Jr

F (x).
Consider firstly the case, where there exists the index k ∈ Jr

N (x) such that
yk /∈ Kni . We take this yk and make the spectral decomposition

yk = θk,1 fk,1 + θk,nk
fk,nk

, (14)

where
θk,1 =

1√
2

(
y0
k + ‖ȳk‖

)
, θk,nk

=
1√
2

(
y0
k − ‖ȳk‖

)
,

and fk,1, fk,nk
are frame vectors:

fk,1 =
1√
2

[
1;

ȳk
‖ȳk‖

]
, fk,nk

=
1√
2

[
1;− ȳk

‖ȳk‖

]
. (15)

Both vectors (3) are unit vectors. Since yk /∈ Knk , at least one of two coefficients
θk,1 or θk,nk

is negative. We suppose for definiteness, that θk,1 < 0.
Change components of the vector x, setting

x̂i = x̂i(α) = xi + αΔxi, 1 ≤ i ≤ r, (16)

where α > 0 is a step length. The vectors Δxi, i ∈ Jr, are defined by different
ways, depending on the case, to which set i ∈ Jr

N (x), i ∈ Jr
I (x) or i ∈ Jr

F (x) the
index i belongs. First of all, we set

Δxi =
{

fk,1, i = k,
0ni

, i �= k.
, i ∈ Jr

N (x). (17)
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Thus, x̂i = xi = 0ni
, when i ∈ Jr

N (x) and i �= k. For index k the updated
point x̂k is defined as x̂k = αfk,1. The vectors Δxi, i ∈ Jr

I (x), are arbitrary from
the space IRni .

For i ∈ Jr
F (x) we take Δxi in the form

Δxi = [Δxi,0;Δxi,1; 0; . . . ; 0] (18)

under the additional condition, that Δxi,0 = Δxi,1. The vector Δxi in this case
belongs to the linear hull of the ray l+i,1.

In order to satisfy the equality Ax̂ = b, we require that
∑

i∈Jr
F (x)

Ãi,1Δxi,1 +
∑

i∈Jr
I (x)

AiΔxi + Akfk,1 = 0m. (19)

Replacing Δxi, i ∈ Jr
B(x), by its coefficients Δνi = GT

i Δxi, we obtain
∑

i∈Jr
F (x)

(
ÃGi

i,1

)
Δνi,1 +

∑

i∈Jr
I (x)

AGi
i Δνi + AGk

k Δσk,1 = 0m, (20)

where Δσk,1 = GT
k fk,1.

Let
ΔνB = [Δν1,1; . . . ;ΔνrF ,1; ΔνrF+1; . . . ;ΔνrF+rI ] ∈ IRm.

Then the system (20) may be rewritten as

AG
BΔνB + AGk

k Δσk,1 = 0m. (21)

According to Theorem 1, the matrix AG
B of this system is nonsingular. Solving

the system (21), we get

ΔνB = −
(
AG

B

)−1
AGk

k Δσk,1. (22)

Analyze now, is it possible the case, when k ∈ Jr
F (x).

Proposition 6. The index k can not belong to the set Jr
F (x).

Proof. Under the assumption that k ∈ Jr
F (x), we must set Δxi = 0ni

, i ∈ Jr
N (x).

Moreover, as in the case k ∈ Jr
N (x), we must take Δxi, i ∈ Jr

I (x), arbitrary from
the space IRni .

Consider now situations with i ∈ Jr
F (x). If i �= k, then we take Δxi in

previous form (18). For i = k we must set

Δxk = [Δxk,0;Δxk,1; 0; . . . ; 0] + fk,1,

where Δxk,0 = Δxk,1. Respectively, in the space of coefficients ν we have

Δνk = [Δνk,0;Δνk,1; 0; . . . , 0] + Δσk,1, Δνk,0 = Δνk,1. (23)

Let the following representation Δσk,1 = [ρk,0; ρk,1; . . . ; ρk,nk−1] hold. Note,
that yk = dk,nk

, because of from just this condition and from similar conditions
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for other dual slacks yi, i ∈ Jr
F (x), all these dual slacks, including yk, are chosen.

Hence, ρk,0 = 1, ρk,1 = −1. All other coefficient ρk,j , 2 ≤ j ≤ nk − 1, are zeros.
Thus, (23) can be rewritten as

Δνk = [Δνk,0 + 1;Δνk,1 − 1; 0; . . . ; 0] . (24)

The matrix AGk

k is contained as ÃGk

k,1 in more general matrix AG
B . Therefore,

dropping zero components in (24) and substituting the reduced vector

Δνk = [Δνk,0 + 1;Δνk,1 − 1]

in general vector ΔνB , we obtain the homogeneous system of linear equation

AG
BΔνB = 0m (25)

with the nonsingular matrix. The solution of the system (25) is ΔνB = 0m.
Therefore, all components Δνi, with the exception of Δνk, are zeros. For Δνk
we have Δνk,0 = −1 and Δνk,1 = 1. This contradicts to equality: Δνk,0 = Δνk,1.


�

From Proposition 6 we come to conclusion, that index k must belong only to
the set Jr

N (x).
Denote by CK(x) a cone of feasible directions with respect of K at the point

x ∈ K. The cone CK(x) is the direct product of cones of feasible directions
CKni (xi) at points xi ∈ Kni , i ∈ Jr, that is

CK(x) = CKn1 (x1) × · · · × CKnr (xr).

According to Lemma 3.2.1 from [11], the direction h ∈ IRni belongs to CKni (xi)
if and only if h = h1 + h2, where h1 ∈ lin (Fmin(xi|Kni)) and h2 ∈ Kni . The
vector h belongs to cone of feasible directions with respect to the set FP at point
x ∈ FP , if h is a feasible direction with respect to the cone K and Ah = 0m.

The following result is valid.

Proposition 7. The direction Δx, defined by (17), (18) and (19), is a feasible
direction with respect to the set FP .

Proof. Observe that according to (19) the equality AΔx = 0m holds. Observe
also that the vector fk,1 belongs to the cone Knk (more exactly, to the boundary
of Knk). Hence, Δxi ∈ Knk , if i ∈ Jr

N (x) and i = k.
For i ∈ Jr

I (x) the point xi is an interior point of the cone Kni . Therefore,
the cone of feasible directions at this point with respect to Kni coincides with
the space IRni . At last, the vector Δxi, when i ∈ Jr

F (x), belongs to the linear
hull of the minimal face Fmin(xi|Kni), which is defined by the frame vector di,1.

Thus, the assertion, that Δx belongs to the cone of feasible directions with
respect to the set FP , follows from the representation of this cone. 
�
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Proposition 8. Let x ∈ FP be a regular extreme non-optimal point. Let also
k ∈ Jr

N (x) be such that yk /∈ Knk . Then,

〈c,Δx〉 = θk,1 < 0, (26)

where θk,1 < 0 is taken from the decomposition (14).

Proof. We have due to (22)

〈c,Δx〉 =
∑

i∈Jr
B(x)〈ci,Δxi〉 + 〈ck,Δxk〉

=
∑

i∈Jr
B(x)〈c

Gi
i ,Δνi〉 + 〈cGk

k ,Δσk,1〉 = 〈cGB ,ΔνB〉 + 〈cGk

k ,Δσk,1〉
= 〈cGk

k ,Δσk,1〉 − 〈
(
AG

B

)−T
cGB , AGk

k Δσk,1〉
= 〈cGk

k −
(
AGk

k

)T

u,Δσk,1〉 = 〈σk,Δσk,1〉
= 〈θk,1fk,1 + θk,nk

fk,nk
, fk,1〉 = θk,1‖fk,1‖2 = θk,1.

Hence, the inequality (26) is correct. 
�

The step length α is chosen as large as possible under the condition that the
updated point x̂ belongs to the feasible set FP . Since AΔx = 0m, the step length
α is defined as minimal among maximal step lengths, satisfying to conditions:
x̂i(α) ∈ Kni for all cones Kni , i ∈ Jr

B(x).

Proposition 9. Let index k ∈ Jr
N (x) be such that Δxi ∈ Kni for all i ∈ Jr

B(x).
Then the set FP is unbounded and 〈c, x̂(α)〉 → −∞, when α → +∞.

If the assertion of Proposition 9 is not realized, the step length α is finite and
it is possible to make the move from the extreme point x to another feasible
point x̂(α) ∈ FP with decreasing the value of goal function.

Proposition 10. Let x be a regular extreme point of FP , and let the step length
α be finite. Then the updated point x̂(α) is an extreme point of FP too.

Proof. Since the step length α is finite, there are only two situations, when it is
possible:

(1) There is the index s ∈ Jr
F (x) such that at updated point x̂ this index s

belongs to the set Jr
N (x̂). In other words, the facet basic variable becomes a

non-basic variable.
(2) There is the index s ∈ Jr

I (x) such that at the updated point x̂ this index
s belongs either to the set Jr

F (x̂) or to Jr
N (x̂). In other words, the interior

basic variable becomes either a non-basic variable or a facet basic variable.

In principle, the cases are possible, when each of these situations or both
situations happen simultaneously.

Denote nB(x) = rF (x)+nI(x). If x is an extreme point of FP , then nB(x) ≤
m. Regardless of the way, how α is defined, we obtain that at the updated point
x̂ the following inequality nB(x̂) ≤ nB(x) holds. Here we take into account that
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the non-basis variable xk becomes the facet basic variable at the updated point.
The inequality nB(x̂) ≤ nB(x) is necessary for x̂ be an extreme point.

Let us show that Proposition 4 is fulfilled at the point x̂. Since x is an extreme
point, columns of the matrix AG

B are linear independent. Moreover, at regular
extreme point x the number of these linear independent columns exactly equals
to m. The following representation is valid for the right hand side vector

b =
∑

i∈Jr
F (x)

ÃGi
i,1 νi,1 +

∑

i∈Jr
I (x)

AGi
i νi, (27)

and more, in (27) all νi,1 > 0, i ∈ Jr
F (x), and all νi ∈ Kn

i , i ∈ Jr
I (x).

Denote

posKni A
Gi
i =

{
zi ∈ IRm : zi = AGi

i νi, νi ∈ Kni

}
.

The set posKni A
Gi
i is an image of the convex cone Kni under the linear mapping.

Thus, posKni A
Gi
i is a convex cone in IRm. Observe, that in (27) νi ∈ intKni ,

where intKni is an interior of the cone Kni . Hence, zi = AGi
i νi is an interior

point of the convex cone posKni A
Gi
i .

Let Wi = coneÃGi
i,1 , i ∈ Jr

F (x), be a cone hull of the vector ÃGi
i,1 . In other

words, it is the ray generated by ÃGi
i,1 . Let also Wi = posKni A

Gi
i , i ∈ Jr

I (x). All
these sets are convex cones in IRm, which don’t intersect between themselves.
We take the sum of these cones

W = W1 + . . . + WrF + WrF+1 + . . . + WrF+rI .

Since columns of the matrix AG
B are linear independent, the cone W has

non-empty interior. The point νB = [ν1,1; . . . ; νrF ,1; νrF+1; . . . ; νrF+rI ] ∈ IRm

belongs to the interior of W.
In the case, where facet basic variable xs, s ∈ Jr

F (x) becomes nonbasic, the
column ÃGi

s,1 is taken out from the decomposition (27), and the column ÃGk

k,1

is introduced. If this column ÃGk

k,1 together with the rest columns are linear
dependent, it means that the vector b belongs to the boundary of the cone W,
which is impossible. The same conclusion is valid, when an interior basic variable
becomes the facet basic variable.

Thus, the assertion of Proposition 4 is fulfilled at the updated point x̂. There-
fore, x̂ is an extreme point of FP . 
�

By Propositions 8 and 10, we may construct the simplex-type iterative algo-
rithm, in which all points are extreme points of the feasible set, and values of
the goal function monotonically decreases from iteration to iteration.

4 Partial Case of SOCP Problem

Consider the partial case of problem (3), when it is known in advance, that the
solution of (3) is an extreme point of FP with all basic variables being facet
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basic variables. Then it is possible to take an extreme point x0 ∈ FP with only
facet basic variables as a starting point. The move from any extreme point to
another one turns out to be such that only facet basic variables are at all these
extreme points.

In what follows, we call the sequence of points {xl}, generated by the algo-
rithm, regular, if all these points xl are regular extreme points of FP . Moreover,
denote by extF (FP ) the subset of all extreme points from FP with all basic vari-
ables being of facet type. We say that the problem (3) is non-degenerate with
respect to extF (FP ), if all points from this set are non-degenerate.

Proposition 11. Let x∗ ∈ extF (FP ) be regular unique solution of the problem
(3). Let also the starting extreme point x0 ∈ extF (FP ) be such that the sequence
{xl} is regular. If {xl} is finite, then the last point of this sequence coincides
with x∗.

Theorem 2. Let Problem (3) be non-degenerate with respect to the set
extF (FP ). Let also all assumptions of Proposition 11 be fulfilled, except the
assumption that {xl} is a finite sequence. Suppose additionally that the start-
ing point x0 is such that the set

FP (x0) =
{
x ∈ FP : 〈c, x〉 ≤ 〈c, x0〉

}

is bounded. Then the sequence {xl} converges to x∗.

Proof. Since the sequence {xl} is bounded, there exist limit points of {xl}. Let
{xls} be a convergent subsequence of {xl}, and let xls → x̄. All points of {xls}
are regular extreme points of FP . Moreover, xls ∈ extF (FP ) for s ≥ 1. The point
x̄ is also an extreme point of FP , and more: x̄ ∈ extF (FP ).

The number of all possible sets Jr
F (x), consisting of m indices, is finite. There-

fore, we may assume without loss of generality, that sets Jr
F (xls) are the same

for all s. Denote this set by J̄r
F . Because of continuity we have Jr

F (x̄) ⊆ J̄r
F .

Moreover, the matrices AG
B converge to a certain matrix ĀG

B , and vectors cGB
converge to a certain vector c̄GB . As a matter of fact, ĀG

B and c̄GB are the matrix
and the vector, defined at the extreme point x̄. Since x̄ ∈ extF (FP ), we have
that x̄ is a non-degenerate point. From here we derive that x̄ is a regular extreme
point. Hence, the matrix ĀG

B is nonsingular.
Let ū be a dual variable, satisfying the system of linear Eq. (13) with ĀG

B and
c̄GB . Let also ȳ be the corresponding dual slack. Since x̄ is not an optimal point,
the coefficient θ̄ in the decomposition of ȳ is such that θ̄1,k < 0. Dual variables
uls , being solutions of system (13) at points xls , converge to ū. Dual slacks yls

converge to ȳ too. We obtain by Proposition 8 that 〈c, xls+1〉 ≤ 〈c, xls〉+αlsθls1,k <

〈c, xls〉. As Δxls are bounded for s sufficiently large, the step lengths αls don’t
tend to zero. Thus, we obtain at some iteration that 〈c, xls+1〉 < 〈c, x̄〉. This
contradicts to monotone decreasing of values of the objective function at each
iteration and convergence of the sequence {xls} to x̄. Hence, x̄ may be only the
optimal point. 
�



A Variant of the Simplex Method for Second-Order Cone Programming 129

5 Conclusion

We presented a variant of the simplex method for SOCP problems. The main
attention has been given to updating of regular extreme points. In principle, it is
possible to develop an approach for updating irregular extreme points. However,
this approach is more complicated compared with the regular case.
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