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Abstract. We propose a dynamic version of the double description
method for generating the extreme rays of a polyhedral cone. The
dynamic version of the algorithm supports online input of inequalities.
Some modifications of the method were implemented and the results of
computational experiments are presented. On a series of problems, our
implementation of the algorithm showed higher performance results in
comparison with the known analogues.
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1 Introduction

It is well-known that any convex polyhedron P ⊆ F d, where F is an ordered
field, can be represented in any of the following two ways:

(1) as the set P = {x ∈ F d : Ax ≤ b} of solutions to a system of linear
inequalities, where A ∈ Fm×d, b ∈ Fm (facet description);

(2) as the sum of the conical hull of a set of vectors v1, . . . , vs in F d and the
convex hull of a set of points w1, . . . , wn in F d (vertex description).

The problem of finding the representation (1) given the representation (2) is
called the convex hull problem. According to the classical theorem of Weyl this
problem is equivalent (dual) to the problem of constructing the representation
(2) given the representation (1). These two problems are referred to as finding
the dual representation of a polyhedron.

The problem of constructing the dual representation of a convex polyhedron
plays a central role in the theory of systems of linear inequalities and compu-
tational geometry [11,21]. For some applications, the representation (1) is con-
venient, while in other cases the representation (2) is more usable, therefore, it
is important to quickly move from one description to another. The importance
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of studying this problem is also emphasized by the fact that it has a variety
of applications, the most known of which are linear and integer programming
[18], combinatorial optimization [19,21] and global optimization [15]. Some of
the newer applications are biological kinetics [20], analysis and verification of
software and hardware [5], identification of dynamic systems [13] and computer
algebra [17,22].

From an algorithmic or theoretical points of view it is convenient to consider
these problems only for polyhedral cones. Any polyhedral cone C ⊆ F d can be
represented in two equivalent ways:

(1) as the set C = {x ∈ F d : Ax ≥ 0} of solutions to a homogeneous system of
linear inequalities, where A ∈ Fm×d, or

(2) as the conical hull of a set of vectors v1, . . . , vs.

There is a standard method for reducing the problem of finding the dual
representation for convex polyhedra to the corresponding one for polyhedral
cones. For example, in order to find representation (2) for a polyhedron P =
{x ∈ F d : Ax ≤ b} it is sufficient to solve the corresponding problem for the
polyhedral cone {x = (x0, x1, . . . , xd) ∈ F d+1 : bx0 − Ax ≥ 0, x0 ≥ 0}, and
then set x0 = 1 (see Section 1.5 in [21]).

There are several known algorithms for solving problems of finding the dual
representation. One of the most popular ones is the double description method
(DDM) [16], also known as the Motzkin–Burger algorithm [11] or Chernikova’s
algorithm [12]. The double description method generally outperforms the other
algorithms when applied to degenerate inputs and/or outputs [3].

There are multiple known programs implementing various modifications of
the double description method. Among the most well-known are:

– cdd [14] (www.inf.ethz.ch/personal/fukudak/cdd home);
– Skeleton [23] (www.uic.unn.ru/∼zny/skeleton);
– QSkeleton [9] (github.com/sbastrakov/qskeleton);
– Parma Polyhedra Library [5] (bugseng.com/products/ppl).

Implementations of other algorithms solving the given problem should also be
noted:

– QHull [6] (www.qhull.org);
– lrs [2,4] (cgm.cs.mcgill.ca/ avis/C/lrs.html);
– pd [10] (www.cs.unb.ca/∼bremner/software/pd).

In this paper we consider the dynamic problem of finding the dual repre-
sentation. This problem appears in many of the applications listed above. For
definiteness, we will deal with the problem of constructing a description (2) if
the description (1) is given. In dynamic problem the full list of constraints is
not known in advance and the constraints come to the input of the algorithm
online as the computation proceeds, and the dual description must be computed
at each iteration for the current system of linear inequalities. Such framework
does not allow the use of many of the heuristics proposed by various authors

www.inf.ethz.ch/personal/fukudak/cdd_home
www.uic.unn.ru/~zny/skeleton
http://github.com/sbastrakov/qskeleton
http://bugseng.com/products/ppl
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(see the references above) to accelerate the algorithm. Nevertheless, we pro-
pose such an algorithm (as a version of the double description method) for the
dynamic problem, and our algorithm is usually not inferior in performance to
other offline algorithms.

The problem of efficient removal of constraints from the double description
is considered in [1,7]. Other issues concerning the dynamic problem are studied
in [8].

2 Preliminaries

The material in this section is based on [11,18,21]. A polyhedral cone, or simply
a cone, in F d is defined as a set

C =
{
x ∈ F d : Ax ≥ 0

}
,

where F is an ordered field, A ∈ Fm×d. The system of linear inequalities Ax ≥ 0
is said to define the cone C. A cone is called pointed, if it contains no zero
subspaces. It is well-known that for a cone to be pointed it is necessary and
sufficient that rank A = d, where rank A denotes the rank of matrix A. Any
polyhedral cone C can be defined as the conical hull of a finite set of vectors
v1, v2, . . . , vs in F d, i. e.

C = {x = α1v1 + α2v2 + · · · + αsvs : αi ≥ 0 (i = 1, . . . , s)} .

By writing vectors v1, v2, . . . , vs as rows of matrix V ∈ F s×d the conical hull can
be defined as

C = {x = αV, α ∈ F s, α ≥ 0} ,

where α is a row vector. The set of vectors v1, . . . , vs are said to generate the
cone C.

A non-zero vector u ∈ C is referred to as a ray of the cone C. Two rays u
and v are equal (written as u � v) if for some α > 0 it is true that u = αv. A ray
u ∈ C is said to be extreme if the condition u = αv + βw, where α ≥ 0, β ≥ 0
and v, w ∈ C implies u � v � w. Suppose that P is a convex subset of F d, and
for some a ∈ F d, α ∈ F , it holds that P ⊆ {x : ax ≤ α}. Then P ∩{x : ax = α}
is called a face of the set P . Two different extreme rays u and v of a pointed
cone C are said to be adjacent, if no minimal face containing both rays contains
any other extreme rays of the cone C.

The problem of constructing the set of vectors generating polyhedral cone
C =

{
x ∈ F d : Ax ≥ 0

}
is reduced to finding the extreme generators of a

pointed cone by transition to the orthogonal complement L⊥ of the maximal
subspace L =

{
x ∈ F d : Ax = 0

}
contained inside C. Unfortunately, in our

study we cannot take advantage of this fact (as is often the case), since in the
process of adding new inequalities, the space L may change.

Notations: Id×d is the identity matrix of size d × d, Os×m is the zero matrix of
size s × m, Ai is the i-th row of matrix A, Aij is the element from the i-th row
and j-th column of matrix A.
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3 Dynamic Double Description Method

The dynamic variant of the double description method is based on the regular
double description method [11]. The procedure takes a matrix A ∈ Fm×d as
its input. The output is matrices U ∈ F t×d and V ∈ F s×d, the rows of which
compose a basis of maximal subspace L =

{
x ∈ F d : Ax = 0

}
and an irreducible

set of vectors generating the cone C =
{
x ∈ F d : Ax ≥ 0

}
respectively.

procedure DDM-dyn(A)
Input: A ∈ Fm×d

Output: the basis U of maximal subspace L =
{
x ∈ F d : Ax = 0

}

and the set of vectors V generating the cone C =
{
x ∈ F d : Ax ≥ 0

}

U ← Id×d

V ← O0×d

Q ← O0×d

for i = 1, 2, . . . ,m
p ← U · A�

i

q ← V · A�
i

if p = 0
insert the column Bool(q) into Q
J+ ← {j : qj > 0}
J− ← {j : qj < 0}
Vnew ← O 0×d

Qnew ← O 0×m

E ← Adjacent(Q, J+, J−)
for {j1, j2} ∈ E

append the row Normalize (qj1Vj2 − qj2Vj1) to Vnew

append the row Normalize (Qj1 ∨ Qj2) to Qnew

append the zero column to Qnew

remove the rows J− from V and from Q
append the rows of Vnew to V and the rows of Qnew to Q

else
find j0 with pj0 
= 0
if pj0 < 0

Uj0 ← −Uj0

pj0 ← −pj0

for j = 1, 2, . . . , d
if j 
= j0 and pj 
= 0

Uj ← Normalize (pj0Uj − pjUj0)
for j = 1, 2, . . . , s

if qj 
= 0
Vj ← Normalize (pj0Vj − qjUj0)

insert the row Uj0 into V
remove the j0-th row from U
insert the zero column into Q
insert the (0, 0, . . . , 0, 1) row into Q
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The normalization function Normalize used in the algorithm is necessary to
prevent unlimited growth of elements. Its implementation may vary, the one used
in this study for integer calculations divides each element of the input vector by
their greatest common divisor. The Adjacent function checks a pair of extreme
rays for adjacency.

Typically modifications of the double description method alter some of the
following three parameters:

(1) the order in which the rows of the primal representation are considered
(2) the test for adjacency of two extreme rays
(3) the moment when the extreme rays are tested for adjacency.

Since the dynamic version of the double description method has to support
online input of inequalities, only modifications of the latter two aspects are
applicable to this algorithm. Two versions of adjacency test were implemented:
the combinatorial test [16], and the graph test [23].

function Adjacent.Combinatorial(Q, J1, J2)
Input: Q ∈ F s×m

J1, J2 ⊆ {1, 2, . . . , s}
Output: E = {{j1, j2} : j1 ∈ J1, j2 ∈ J2, j1 and j2 - adjacent rays}
E = ∅
for j1 ∈ J1

for j2 ∈ J2

Z ← {� : Qj1� = 0 ∧ Qj2� = 0}
if |Z| ≥ r − 2

if ∀ k = 1, 2, . . . , s, k 
= j1 ∧ k 
= j2 ∃ � ∈ Z : Qk� = 1
E ← E ∪ {{j1, j2}}

return E

function Adjacent.Graph(Q, J1, J2)
Input: Q ∈ F s×m

J1, J2 ⊆ {1, 2, . . . , s}
Output: E = {{j1, j2} : j1 ∈ J1, j2 ∈ J2, j1 and j2 are adjacent rays}
E ← ∅
for j1 ∈ J1

D ← ∅
for j ∈ {1, 2 . . . ,m}

Z ← {� : Qj1� = 0 ∧ Qj� = 0}
if |Z| ≥ r − 2

D ← D ∪ {j}
for j2 ∈ D ∩ J2

if ∀ k = 1, 2, . . . , s, k 
= j1 ∧ k 
= j2 ∃ � ∈ Z : Qk� = 1
E ← E ∪ {{j1, j2}}

return E



64 S. O. Semenov and N. Yu. Zolotykh

Some modifications of the double description method were proposed (e.g.
[14]) where the set of adjacent extreme rays is maintained and rebuilt immedi-
ately after the list of extreme rays is updated. Instead of iterating over all pairs
of rays (u, v) for which uA�

i · vA�
i < 0 to generate new extreme rays the algo-

rithm iterates over all pairs of adjacent extreme rays. Below is an adaptation
of such a modification for the dynamic version of the algorithm which will be
referred to as M1.

procedure DDM-dyn.M1(A)
Input: A ∈ Fm×d

Output: the basis U of maximal subspace L =
{
x ∈ F d : Ax = 0

}

and the set of vectors V generating the cone C =
{
x ∈ F d : Ax ≥ 0

}

U ← Id×d

V ← O0×d

Q ← O0×d

E ← ∅
for i = 1, 2, . . . ,m

p ← U · A�
i

q ← V · A�
i

if p = 0
insert the column Bool(q) into Q
Enew ← ∅
Eold ← ∅
for {j1, j2} ∈ E

if qj1 > 0 ∧ qj2 < 0
append row Normalize (qj1Vj2 − qj2Vj1) to Vnew

append row Normalize (Qj1 ∨ Qj2) to Qnew

j ← index of the new rows after their insertion
Enew ← Enew ∪ {{j1, j}}
Eold ← Eold ∪ {{j1, j2}}

else if qj1 < 0 ∧ qj2 > 0
append row Normalize (qj2Vj1 − qj1Vj2) to Vnew

append row Normalize (Qj1 ∨ Qj2) to Qnew

j ←index of the new rows after their insertion
Enew ← Enew ∪ {{j, j2}}
Eold ← Eold ∪ {{j1, j2}}

else if qj1 ≤ 0 ∧ qj2 ≤ 0
Eold ← Eold ∪ {{j1, j2}}

E ← E ∪ Enew \ Eold

J− ← {j : qj < 0}
J± ← {j : qj = 0}
remove rows J− from V and from Q
update row indices in E and J±
append rows of Vnew to V and insert their new indices into J±
append rows of Qnew to Q
E ← E ∪ Adjacent.M1(Q, J±)
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else
find j0 with pj0 
= 0
if pj0 < 0

Uj0 ← −Uj0

pj0 ← −pj0

for j = 1, 2, . . . , d
if j 
= j0 and pj 
= 0

Uj ← Normalize (pj0Uj − pjUj0)
for j = 1, 2, . . . , s

if qj 
= 0
Vj ← Normalize (pj0Vj − qjUj0)

append row Uj0 to V , j ← its new index
E ← E ∪ {{j′, j} : j′ ∈ {1, 2 . . . , j − 1}}
remove row j0 from U
append the zero column to Q
append the (0, 0, . . . , 0, 1) row into Q

Adjacent.M1(Q, J±) is a simple modification of Adjacent(Q, J1, J2) that
iterates over {{j1, j2} : j1 ∈ J±, j2 ∈ J±, j1 
= j2} rather than {(j1, j2) : j1 ∈
J1, j2 ∈ J2}.

4 Computational Results

A C++ implementation of the dynamic double description method and its mod-
ifications presented above has been developed. The computational experiments
were performed on a computer with Intel(R) Core(TM) i7-8700K CPU at 3.70
GHz, Microsoft Windows 10 operating system, using the Microsoft Visual Studio
2017 compiler. The experiments were run using the problem instances described
in [14].

Tables 1 and 2 present the performance comparison of DDM-dyn, its modi-
fication DDM-dyn.M1 and Skeleton [23], with/without its PlusPlus modifi-
cation. Since computation time depends significantly on the order in which the
rows of the primal representation are considered and which is fixed in the case of
the dynamic algorithm, Skeleton was used with the minindex order of consid-
eration. Note that the PlusPlus modification of Skeleton reduces the number
of adjacency checks by relying on the fact that the entire primal representation
is known ahead of time and, therefore, it cannot be adopted for use with online
input of inequalities.

Figures 1, 2 and 3 demonstrate the dependence of the number of adjacency
checks on the number of iteration made by DDM-dyn and DDM-dyn.M1 on
cube18, mit729-9 and ccc7 problems. The number of the checks varies from one
problem instance to another and heavily impacts total computation time.
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Table 1. Performance comparison of DDM-dyn and Skeleton, with combinatorial
adjacency test (s)

Problem Input Output DDM-dyn DDM -dyn.M1 Skeleton Skeleton,
PlusPlus

cube16 32 × 17 65536 × 17 3.512 7.210 12.199 3.354

cube18 36 × 19 262144 × 19 45.184 103.514 207.037 27.069

mit729-9 729 × 9 4862 × 9 164.727 120.745 274.795 255.393

ccc7 63 × 22 38780 × 22 14793.694 15413.77 16016.7 3437.64

Table 2. Performance comparison of DDM-dyn and Skeleton, with graph adjacency
test (s)

Problem Input Output DDM-dyn DDM -dyn.M1 Skeleton Skeleton,
PlusPlus

cube16 32 × 17 65536 × 17 4.316 4.961 4.777 4.489

cube18 36 × 19 262144 × 19 48.215 54.552 50.698 48.498

mit729-9 729 × 9 4862 × 9 874.575 106.253 289.037 258.991

ccc7 63 × 22 38780 × 22 >5 h 2988.16 3041.86 1854.63

DDM-dyn
DDM-dyn.M1

Fig. 1. Number of adjacency checks on cube18
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DDM-dyn
DDM-dyn.M1

Fig. 2. Number of adjacency checks on mit729-9 (first 200 iterations)

DDM-dyn
DDM-dyn.M1

Fig. 3. Number of adjacency checks on ccc7
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5 Conclusion

A dynamic version of the double description method for finding extreme rays
of a polyhedral cone with online input of inequalities has been proposed. Two
known modifications of the algorithm (graph adjacency test and maintaining
the edge set to generate new extreme rays) have been adopted for its dynamic
variant and tested on multiple problem instances. The results of computational
experiments demonstrate better performance with certain configurations than
that of Skeleton on a number of problems if the same limitations of input
being unknown ahead of time are imposed on both implementations.
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