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Abstract. The subject of this paper is a linear quadratic case of a dif-
ferential game model with continuous updating. This class of differential
games is essentially new, there it is assumed that at each time instant,
players have or use information about the game structure defined on a
closed time interval with a fixed duration. As time goes on, informa-
tion about the game structure updates. Under the information about
the game structure we understand information about motion equations
and payoff functions of players. A linear quadratic case for this class
of games is particularly important for practical problems arising in the
engineering of human-machine interaction. The notion of Nash equilib-
rium as an optimality principle is defined and the explicit form of Nash
equilibrium for the linear quadratic case is presented. Also, the case of
dynamic updating for the linear quadratic differential game is studied
and uniform convergence of Nash equilibrium strategies and correspond-
ing trajectory for a case of continuous updating and dynamic updating
is demonstrated.

Keywords: Differential games with continuous updating ·
Nash equilibrium · Linear quadratic differential games

1 Introduction

Most of the real-life conflict-driven processes evolve continuously in time, and
their participants continuously receive updated information and adapt. Main
models considered in the classical differential game theory are associated with
problems defined on a fixed time interval (players have all the information on
a closed time interval) [6], problems defined on an infinite time interval with
discounting (players have all the information specified on an infinite time inter-
val) [1], problems defined on a random time interval (players have information
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on a given time interval, but the duration of this interval is a random variable)
[14]. One of the first works in the theory of differential games is devoted to
the differential pursuit game (the player’s gain depends on the time of capture
of the opponent) [12]. In all the above models and approaches it is assumed
that at the beginning of the game players know all information about the game
dynamics (equations of motion) and about player’s preferences (cost functions).
However, these approaches do not take into account the fact that in many real
conflict-controlled processes, players at the initial time instant do not have all
information about the game. Therefore classical approaches for defining in some
sense optimal strategies (for example, Nash equilibrium), such as Hamilton-
Jacobi-Bellman equation [2] or the Pontryagin maximum principle [13], cannot
be directly used to construct a large range of real game-theoretic models.

In this paper, we apply the approach of continuous updating to a special class
of dynamic games, where the environment can be modeled by a set of linear dif-
ferential equations and the objectives can be modeled by the functions containing
affine and quadratic terms. The popularity of the so-called linear quadratic dif-
ferential games [4] on one hand can be explained by practical applications in
engineering. To some extent, this kind of differential games is analytically and
numerically solvable. On the other hand, this linear quadratic problem setting
naturally appears if the agents’ objective is to minimize the effect of a small
perturbation of their nonlinear optimally controlled environment. By solving a
linear quadratic control problem, and using the optimal actions implied by this
problem, players can avoid most of the additional cost incurred by this pertur-
bation.

Most of the real conflict-driven processes are continuously evolving over time,
and their participants constantly adapt. This paper presents the approach of
constructing Nash equilibrium for game models with continuous updating. In
the game models with continuous updating, it is assumed that players

– have information about motion equations and payoff functions only on [t, t +
T ], where T – information horizon, t – current time instant.

– receive updated information about motion equations and payoff functions as
time t ∈ [t0,+∞) evolves.

In the general form, it is supposed that motion equations and payoff functions
explicitly depend on the time parameter. Therefore, in the general form of the
differential game with continuous updating information about motion equations
and payoff functions updates, because its form changes as the current time t ∈
[t0,+∞) evolves. In this paper, we consider a particular class of linear quadratic
differential games with continuous updating, where motion equations and payoff
functions do not explicitly depend on time parameter t, but the meaning of the
updating procedure is not missed, because the main goal of modeling of behavior
of players with continuous updating is reached.

Obviously, it is difficult to obtain Nash equilibrium due to the lack of
fundamental approaches to control problems with moving information horizon.
Classical methods such as dynamic programming and Hamilton-Jacobi-Bellman
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equation do not allow to directly construct Nash equilibrium in problems with
moving information horizon.

In the framework of dynamic updating approach the following papers were
published [5,7–11,15]. Their authors laid a foundation for further study of a
class of games with dynamic updating. It is assumed that the information about
motion equations and payoff functions is updated in discrete time instants and
interval on which players know the information is defined by the value of the
information horizon. However, the class of games with continuous updating pro-
vides with the new theoretical results.

For the linear quadratic game models with continuous updating Nash equilib-
rium in closed-loop form are constructed and it is proved that Nash equilibrium
in the corresponding linear quadratic game with dynamic updating uniformly
converges to the constructed controls. This approach allows concluding that the
constructed control indeed is optimal in the game model with continuous updat-
ing, i.e. in the case when the length of updating interval converges to zero. The
similar procedure is performed for the corresponding trajectory.

The paper is structured as follows. In Sect. 2, a description of the initial dif-
ferential game model and corresponding game model with continuous updating
as well as the concept of a strategy for it are presented. In Sect. 3, the concept
of Nash equilibrium is adapted for a class of games with continuous updating
and the explicit form of it for a class of linear quadratic differential games is pre-
sented. In Sect. 4, the description of the game model with dynamic updating and
the form of Nash equilibrium with continuous updating is presented. In Sect. 5,
the convergence of Nash equilibrium strategies and corresponding trajectories
for a case of dynamic and continuous updating is demonstrated. The illustrative
model example and corresponding numerical simulation are presented in Sect. 6.
Demonstration of convergence result is as well presented in the numerical simu-
lation part. In Sect. 7, the conclusion is drawn.

2 Game Model

In this section description of the initial linear quadratic game model and corre-
sponding game model with continuous updating are presented.

2.1 Initial Linear Quadratic Game Model

Consider n-player (|N | = n) linear quadratic differential game Γ (x0, T − t0)
defined on the interval [t0, T ]:

Motion equations have the form

ẋ(t) = Ax(t) + B1u1(t, x) + . . . + Bnun(t, x),
x(t0) = x0,
x ∈ R

l, u = (u1, . . . , un), ui = ui(t, x) ∈ Ui ⊂ compRk, t ∈ [t0, T ].
(1)
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Payoff function of player i ∈ N is defined as

Ki(x0, t0, T ;u) =

T∫

t0

⎛
⎝x′(t)Qix(t) +

n∑
j=1

u′
j(t, x)Rijuj(t, x)

⎞
⎠ dt, i ∈ N, (2)

where Qi, Rij are assumed to be symmetric, Rii is positive defined, ( · )′ means
transpose here and hereafter.

2.2 Linear Quadratic Game Model with Continuous Updating

Consider n-player differential game Γ (x, t, T ), t ∈ [t0,+∞) defined on the inter-
val [t, t + T ], where 0 < T < +∞.

Motion equations of Γ (x, t, T ) have the form

ẋt(s) = Axt(s) + B1u
t
1(s, x

t) + . . . + Bnut
n(s, xt),

xt(t) = x,
xt ∈ R

l, ut = (ut
1, . . . , u

t
n), ut

i = ut
i(s, x

t) ∈ Ui ⊂ compRk, t ∈ [t0,+∞).
(3)

Payoff function of player i ∈ N in the game Γ (x, t, T ) is defined as

Kt
i (x

t, t, T ;ut) =

t+T∫

t

⎛
⎝(

xt(s)
)′

Qix
t(s) +

n∑
j=1

(
ut

j(s, x
t)

)′
Riju

t
j(s, x

t)

⎞
⎠ ds, (4)

where xt(s), ut(s, x) are trajectory and strategies in the game Γ (x, t, T ).
Differential game with continuous updating evolves according to the rule:
Time parameter t ∈ [t0,+∞) evolves continuously, as a result players contin-

uously receive updated information about motion equations and payoff functions
under Γ (x, t, T ).

Strategies u(t, x) in the game model with continuous updating are defined in
the following way:

u(t, x) = ut(t, x), t ∈ [t0,+∞), (5)

where ut(s, x), s ∈ [t, t + T ] are some fixed strategies defined in the subgame
Γ (x, t, T ).

State x(t) in the model with continuous updating is defined according to

ẋ(t) = Ax(t) + B1u1(t, x) + . . . + Bnun(t, x),
x(t0) = x0,
x ∈ R

l
(6)

with strategies with continuous updating u(t, x) involved.
Essential difference between the game model with continuous updating and

classic differential game Γ (x0, T − t0) with prescribed duration is that players
in the initial game are guided by the payoffs that they will eventually receive
on the interval [t0, T ], but in the case of a game with continuous updating, at
the time instant t they orient themselves on the expected payoffs (4), which are
calculated using information about the game structure defined on the interval
[t, t + T ].
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3 Nash Equilibrium with Continuous Updating in LQ
Differential Games

3.1 Concept of Nash Equilibrium for Games with Continuous
Updating

Within the framework of continuously updated information in this class of dif-
ferential games it is interesting to understand of how to model the behavior of
players. To do this, we use the concept of Nash equilibrium in feedback strate-
gies. However, for the class of differential games with continuous updating, we
would like uNE(t, x) = (uNE

1 (t, x), . . . , uNE
n (t, x)) for each fixed t ∈ [t0,+∞) to

coincide with the feedback Nash equilibrium in the game (6), (4) defined on the
interval [t, t + T ] at the instant t.

Consider two time intervals [t, t+T ] and [t+ ε, t+T + ε], ε << T . According
to the problem statement, uNE(t, x) at the instant t should coincide with the
Nash equilibrium in the game defined on the interval [t, t + T ] and uNE(t + ε, x)
at instant t+ε should coincide with the Nash equilibrium in the game defined on
the interval [t + ε, t + ε + T ]. Therefore direct application of classical approaches
for determining Nash equilibrium in feedback strategies is not possible.

In order to construct such a strategy profile, we define the concept of gener-
alized Nash equilibrium in feedback strategies as an optimality principle:

ũNE(t, s, x) = (ũNE
1 (t, s, x), . . . , ũNE

n (t, s, x)), t ∈ [t0, T ], s ∈ [t, t + T ], (7)

which we further use to construct desired strategy profile uNE(t, x).

Definition 1. Strategy profile ũNE(t, s, x) = (ũNE
1 (t, s, x), . . . , ũNE

n (t, s, x)), t ∈
[t0,+∞), s ∈ [t, t+T ] is a generalized Nash equilibrium in the game with contin-
uous updating, if for any fixed t ∈ [t0,+∞) strategy profile ũNE(t, s, x) is Nash
equilibrium in feedback strategies in the game Γ (x, t, T ), 0 < T < ∞.

Using generalized feedback Nash equilibrium it is possible to define solution
concept for a game model with continuous updating.

Definition 2. Strategy profile uNE(t, x) is called the Nash equilibrium with con-
tinuous updating, if it is defined in the following way:

uNE(t, x) = ũNE(t, s, x)|s=t = (ũNE
1 (t, s, x)|s=t, . . . , ũ

NE
n (t, s, x)|s=t), (8)

where t ∈ [t0,+∞), ũNE(t, s, x) is the generalized feedback Nash equilibrium
defined above.

Strategy profile uNE(t, x) will be used as a solution concept in the game with
continuous updating.
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3.2 Theorem on Nash Equilibrium with Continuous Updating
for LQ Differential Games

Here we present the explicit form of Nash equilibrium with continuous updating
for a two-player differential game.

Theorem 1. The two-player linear quadratic differential game Γ (x0, t0, T ) with
continuous updating has, for every initial state, a linear feedback Nash equilib-
rium, if and only if the following set of coupled Riccati differential equations has
a set of symmetric solutions K1, K2 on the interval [0, 1]:

K̇i(τ) = −(AT − SjKj(τ))′Ki(τ) − Ki(τ)(AT − SjKj(τ))
+ Ki(τ)SiKi(τ) − Qi − Kj(τ)SjiKj(τ),

Ki(1) = 0, i �= j ∈ N, (9)

where
Si = T

2
BiR

−1
ii B′

i, Sij = T
2
BiR

−1
ii RjiR

−1
ii B′

i, i �= j ∈ N. (10)

In this case there is a unique feedback Nash equilibrium with continuous updating,
which has the form:

uNE
i (t, x) = −R−1

ii B′
iKi(0)Tx, i ∈ N. (11)

Proof. In order to prove the Theorem we introduce the following change of vari-
ables

s = t + Tτ,

y(τ) = x(t + Tτ),

vi(τ, y) = ui(t + Tτ, x), i ∈ N.

(12)

By substituting (12) to the motion equations (3), payoff function (4) we obtain

ẏ(τ) = TAy(s) + TB1v1(τ, y) + TB2v2(τ, y) (13)

and

Ki(y, τ ; v) =

1∫

0

y′(s)Qiy(s) +
2∑

j=1

(vj( s, y))′
Rijvj(s, y)ds, i ∈ N. (14)

It is known [4] that the criterion for existence of feedback Nash equilibrium is
the existence of symmetric solution for the system of differential Eq. (9). Accord-
ing to [4] feedback Nash equilibrium strategies have the form

vNE
i (τ, y) = −R−1

ii B′
iKi(τ)Ty. (15)

From (12) we have

τ =
s − t

T
,
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returning to original variables we obtain the following strategies

ut
i(s, x) = −R−1

ii B′
iKi

(
s − t

T

)
Tx.

These strategies are Nash equilibrium in feedback strategies in the subgame
Γ (x, t, T ) by construction.

Task (13), (14) and solution (15) have the same form for all values t in
original game with continuous updating. Then a generalized Nash equilibrium
in the game with continuous updating has the form

ũNE
i (t, s, x) = −R−1

ii B′
iKi

(
s − t

T

)
Tx. (16)

Apply the procedure (8) to determine Nash equilibrium with continuous
updating using generalized Nash equilibrium (16), s = t:

uNE
i (t, x) = −R−1

ii B′
iKi(0)Tx, t ∈ [t0,+∞), i ∈ N. (17)

This proves the theorem.

4 LQ Differential Game with Dynamic Updating

In this section, we define a game model with dynamic updating in order to later
demonstrate the convergence of Nash equilibrium strategies and corresponding
trajectories for a case of dynamic and continuous updating.

4.1 LQ Game Model with Dynamic Updating

In papers [5,7–11,16] the method for constructing differential game model with
dynamic updating is described. There it is assumed that players have information
about the game structure only over a truncated interval and, based on this,
make decisions. In order to model the behavior of players in the case, when
information updates dynamically, consider the case when information is updated
every Δt > 0 and the behavior of players on each segment [t0+jΔt, t0+(j+1)Δt],
j = 0, 1, 2, . . . is modeled using the notion of truncated subgame:

Definition 3. Let j = 0, 1, 2, . . .. Truncated subgame Γ̄j(x
j
0, t0 + jΔt, t0 + jΔt+

T ) is the game defined on the interval [t0 + jΔt, t0 + jΔt + T ] in the following
way. On the interval [t0 + jΔt, t0 + jΔt + T ] payoff function, motion equation
in the truncated subgame and initial game model Γ (x0, T − t0) coincide:

ẋj(s) = Axj(s) + B1u
j
1(s, x

j) + . . . + Bnuj
n(s, xj),

xj(t0 + jΔt) = xj
0,

xj ∈ R
n, uj = (uj

1, . . . , u
j
n), uj

i = uj
i (s, x

j) ∈ Ui ⊂ compRk, t ∈ [t0,+∞).
(18)
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Kj
i (xj , t0 + jΔt, t0 + jΔt + T ; uj) =

t0+jΔt+T∫

t0+jΔt

(
xj(s)

)′
Qix

j(s)

+

n∑
k=1

(
uk(s, xj)

)′
Rikuk(s, xj)ds, i ∈ N,

(19)

At any instant t = t0 + jΔt information about the game structure updates,
and therefore players adapt to it. This class of game models is called differential
games with dynamic updating.

As a solution concept in the differential game model with dynamic updating
we will use feedback Nash equilibrium. In the same way as in Sect. 3 we will
need to define a special form of it. According to the approach described above,
at any time instant t ∈ [t0,+∞), players have or use truncated information about
the game structure Γ (x0, T − t0), therefore classical approaches for determining
optimal strategies (cooperative and noncooperative) cannot be directly applied.
In order to determine the solution for games with dynamic updating, the notion
of resulting feedback Nash equilibrium is introduced:

Definition 4. Resulting feedback Nash equilibrium

ûNE(t, x) = (ûNE
1 (t, x), . . . , ûNE

n (t, x))

of players in the game model with dynamic updating have the form:

{ûNE(t, x)}∞
t=t0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uNE
0 (t, x), t ∈ [t0, t0 + Δt],

· · ·
uNE

j (t, x), t ∈ (t0 + jΔt, t0 + (j + 1)Δt],
· · ·

(20)

where uNE
j (t, x) = (uj,NE

1 (t, x), . . . , uj,NE
n (t, x)) is some fixed feedback Nash equi-

librium in the truncated subgame Γ̄j(x
j,NE
0 , t0+jΔt, t0+jΔt+T ), j = 0, 1, 2, . . .

starting along the equilibrium trajectory of the previous truncated subgame:
xj,NE
0 = xj−1,NE(t0 + jΔt).

Trajectory obtained by using motion equation (1) and the resulting feedback
Nash equilibrium ûNE(t, x) = (ûNE

1 (t, x), . . . , ûNE
n (t, x)) we denote by x̂NE(t)

and call the resulting equilibrium trajectory.

4.2 Resulting Feedback Nash Equilibrium with Dynamic Updating

Firstly, consider Nash Equilibrium in truncated subgame Γ̄j(x
j
0, t0 + jΔt, t0 +

jΔt + T ).
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Theorem 2. The two-player linear quadratic differential game Γ̄j(x
j
0, t0 +

jΔt, t0 + jΔt + T ) has, for every initial state, a linear feedback Nash equilib-
rium if and only if the following set of coupled Riccati differential equations has
a set of symmetric solutions K1, K2 on the interval [0, 1]:

K̇i(τ) = −(AT − SjKj(τ))′Ki(τ) − Ki(τ)(AT − SjKj(τ))
+ Ki(τ)SiKi(τ) − Qi − Kj(τ)SjiKj(τ),

Ki(1) = 0, i �= j, (21)

where
Si = T

2
BiR

−1
ii B′

i, Sij = T
2
BiR

−1
ii RjiR

−1
ii B′

i, i �= j ∈ N. (22)

In that case there is a unique equilibrium. The equilibrium strategies are

uj,NE
i (t, x) = −R−1

ii B′
iKi

(
t − (t0 + jΔt)

T

)
Tx. (23)

Proof. To prove this theorem we use similar change of variables as in (12) for
each truncated subgame:

τ =
t − (t0 + jΔt)

T
. (24)

According to (20) Nash equilibrium for the game model with dynamic updat-
ing ûNE

i (t, x) can be constructed using the Nash equilibrium defined in each
truncated subgame uj,NE

i (t, x). Corresponding trajectory x̂NE(t) is constructed
using ûNE

i (t, x) and (1).

5 Convergence of Resulting Nash Equilibrium Strategies
and Trajectory

Theorem 3. For Δt → 0 and x ∈ X (X—limited set) resulting feedback Nash
equilibrium strategies ûNE

i (t, x) in the game with dynamic updating uniformly
converge to feedback Nash equilibrium with continuous updating ũNE

i (t, x):

ûNE
i (t, x) ⇒

[t0,+∞)
ũNE

i (t, x), i ∈ N. (25)

Proof. Introduce the notation: tj
def= t0 + jΔt and let t ∈ [tj , tj+1] for some

j. According to the definition of ûNE(t, x) (20) we will need to show that
‖ũNE

i (t, x) − uj,NE
i (t, x)‖ → 0, when Δt → 0.

Consider the expressions for ũNE
i and uj,NE

i :

ũNE
i (t, x) = −R−1

ii B′
iKi(0)Tx,

uj,NE
i (t, x) = −R−1

ii B′
iKi

(
t − tj

T

)
Tx.
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From Taylor decomposition for K(t) at the point t = 0 we obtain:

‖ũNE
i (t, x) − uj,NE

i (t, x)‖ ≤ ‖R−1
ii B′

i‖‖x‖
(∥∥∥K̇(0)

∥∥∥ Δt

T
+ o(Δt)

)
. (26)

When Δt → 0 the right hand side of (26) converges to zero and as a result the
left hand side of (26) also converges to zero. This completes the proof.

Theorem 4. Equilibrium trajectory in the game with dynamic updating x̂NE(t)
pointwise converges to the equilibrium trajectory x̃NE(t) in the game with con-
tinuous updating x̃NE(t) for Δt → 0:

x̂NE(t) →
[t0,+∞)

x̃NE(t). (27)

Proof. Let t ∈ [tj , tj+1] for some j. According to the definition of x̂NE(t) we will
need to show that ‖x̃NE(t) − xNE

j (t)‖ → 0 when Δt → 0.
Trajectories x̃NE(t) and xNE

j (t) satisfy the differential equations respectively

˙̃x(t) =
(
A − B1R

−1
11 B′

1K1(0)T − B2R
−1
22 B′

2K2(0)T
)
x̃(t),

ẋj(t) =
(

A − B1R
−1
11 B′

1K1

(
t − tj

T

)
T − B2R

−1
22 B′

2K2

(
t − tj

T

)
T

)
xj(t).

Notice that

Ki(0)x̃ − Ki

(
t − tj

T

)
xj = Ki(0)(x̃ − xj) +

(
Ki(0) − Ki

(
t − tj

T

))
xj .

Let yNE
j (t) = x̃NE(t) − xNE

j (t), Ã = A − B1R
−1
11 B′

1K1(0)T − B2R
−1
22 B′

2K2(0)T
and

fj(t) = −B1R
−1
11 B′

1

[
K1(0) − K1

(
t − tj

T

)]
Txj(t)

− B2R
−1
22 B′

2

[
K2(0) − K2

(
t − tj

T

)]
Txj(t).

Then yNE
j (t) satisfies following differential equation

ẏj(t) = Ãyj(t) + fj(t).

Consider

y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y0(t), t ∈ [t0, t0 + Δt],
· · ·
yj(t), t ∈ (t0 + jΔt, t0 + (j + 1)Δt],
· · ·

(28)

and

f(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f0(t), t ∈ [t0, t0 + Δt],
· · ·
fj(t), t ∈ (t0 + jΔt, t0 + (j + 1)Δt],
· · ·
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then (28) satisfies following differential equation

ẏ(t) = Ãy(t) + f(t).

with initial state y(t0) = 0, since x̂NE(t0) = x̃NE(t) = x0.
By the Cauchy formula we have for any t ≥ t0

y(t) =

t∫

t0

e
˜A(t−s)f(s)ds.

Taking this into account we have for fixed t

lim
Δt→0

‖y(tj)‖ ≤ lim
Δt→0

‖e
˜A(t−t0)‖(t − t0)β

(
Δt

T
+ o(Δt)

)
= 0, (29)

where

β =
(
‖B1R

−1
11 B′

1‖
∥∥∥K̇1(0)

∥∥∥ + ‖B2R
−1
22 B′

2‖
∥∥∥K̇2(0)

∥∥∥
)

TM(t),

M(t) = max
τ∈[t0,t]

‖x̂NE(τ)‖.

According to (29) y(t) →
[t0,+∞)

0, when Δt → 0. This proves the theorem.

6 Example Model

6.1 Common Description

Consider the model in which there are two individuals investing in a public stock
of knowledge (see also Dockner et al. [3]). Let x(t) be the stock of knowledge
at time t and ui(t) – the investment of player i in public knowledge at time
t. Assume that the stock of knowledge evolves according to the accumulation
equation

ẋ(t) = −βx(t) + u1(t, x) + u2(t, x), x(0) = x0, (30)

where β is the depreciation rate. Assume that each player derives quadratic
utility from the consumption of the stock of knowledge and that the cost of
investment increases quadratically with the investment effort. That is, the cost
function of both players is given by

Ki(x0, t0, T ;u) =
∫ T

0

( − qix
2(t) + riu

2
i (t, x)

)
dt, i = 1, 2. (31)

Consider the initial game (30), (31) in the terms of LQ-games theory [4]. To
find a feedback Nash equilibrium, we need to solve the following set of coupled
Riccati differential equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k̇1(t) = −2(−β − 1
r2

k2(t))k1(t) + 1
r1

k2
1(t) + q1,

k̇2(t) = −2(−β − 1
r1

k1(t))k2(t) + 1
r2

k2
2(t) + q2,

k1(T ) = 0,

k2(T ) = 0.

(32)
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As an example consider the symmetric case r1 = r2 = r, q1 = q2 = q. Let
k(t) = k1(t) = k2(t). We obtain the following differential equation:

{
k̇(t) = 2βk(t) + 3k2(t)

r + q,

k(T ) = 0.
(33)

The solution of Cauchy problem (33) is

k(t) =
βr + v

3

(
2v

(v − βr)e
2v
r (t−T ) + v + βr

− 1
)

,

where v =
√

β2r2 − 3qr. According to [4] feedback Nash equilibrium for the
initial game model will have the form:

uNE
i (t, x) = −k(t)x

r
, i = 1, 2. (34)

By substituting the value for k(t) in (34) we obtain:

uNE
i (t, x) =

βr + v

3r

(
1 − 2v

(v − βr)e
2v
r (t−T ) + v + βr

)
x(t).

6.2 Game Model with Continuous Updating

Now consider the case of continuous updating. Here we suppose that two individ-
uals at each time instant t ∈ [t0,+∞) use information about motion equations
and payoff functions on the interval [t, t + T ]. As the current time t evolves the
interval, which defines the information shifts as well. Motion equations for the
game model with continuous updating have the form

ẋt(s) = −βxt(s) + ut
1(s, x) + ut

2(s, x), xt(t) = x, t ∈ [t0,+∞). (35)

Payoff function of player i ∈ N for the game model with continuous updating
is defined as

Kt
i (x

t, t, T ;ut) =

t+T∫

t

(
− (

xt(s)
)2

qi +
(
ut

i(s, x)
)2

ri

)
ds, i = 1, 2. (36)

According to the Theorem 2 defining the form of feedback Nash equilibrium
with continuous updating on the first step we need to solve the following differ-
ential equation: {

k̇(τ) = 2βTk(τ) + 3Tk2(τ)
r + Tq,

k(1) = 0.
(37)

The solution of (37) is

k(τ) =
βr + v

3

(
2v

(v − βr)e
2vT
r (τ−1) + v + βr

− 1

)
, (38)
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where v =
√

β2r2 − 3qr. According to (23) feedback Nash equilibrium with
continuous updating has the form:

ũNE
i (t, x) = −k(0)xT

r
. (39)

By substituting (38) in (39) we obtain:

ũNE
i (t, x) =

βr + v

3r

(
1 − 2v

(v − βr)e− 2vT
r + v + βr

)
Tx, (40)

by substituting (40) in (30) we obtain x̃NE(t) as solution of equation

˙̃x
NE

(t) = −βx̃NE(t) + ũNE
1 (t, x) + ũNE

2 (t, x), x̃NE(0) = x0. (41)

6.3 Game Model with Dynamic Updating

Perform similar calculations for the resulting Nash equilibrium for a game with
dynamic updating based on the calculations for the original game and the app-
roach described in Sect. 4.1 and obtain

ũNE
i (t, x) = −

k
(

t−ti
T

)
xT

r
, t ∈ [ti, ti+1]. (42)

By substituting (38) in (42) we obtain:

ûNE
i (t, x) =

βr + v

3r

(
1 − 2v

(v − βr)e
2v(t−ti−T )

r + v + βr

)
Tx, t ∈ [ti, ti+1],

(43)
by substituting (43) in (30) we obtain x̂NE(t) as solution of equation

˙̂xNE(t) = −βx̂NE(t) + ûNE
1 (t, x) + ûNE

2 (t, x), x̂NE(0) = x0. (44)

6.4 Game Model on Infinite Interval

Consider classic approach for Nash equilibrium for the game on infinite interval
[0,+∞). Motion equations have the form

ẋ(t) = −βx(t) + u1(t, x) + u2(t, x), x(0) = x0. (45)

Payoff function of player i ∈ N is defined as

Ki(x0;u) = lim
T→∞

∫ T

0

( − qix
2(t) + riu

2
i (t, x)

)
dt, i = 1, 2. (46)

According to [4] feedback Nash equilibrium strategies have the form

uNE(t, x) = −kx

r
(47)
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in our symmetric case (r1 = r2 = r, q1 = q2 = q), where k is solution of

3k2

r
+ 2βk + q = 0.

By substituting (47) in (45) we obtain xNE(t) as solution of equation

ẋNE(t) =
(

−β − 2k

r

)
xNE(t), xNE(0) = x0. (48)

6.5 Numerical Simulation

Consider the results of numerical simulation for the game model presented above
on the interval [0, 8], i.e. t0 = 0, T = 8. At the initial instant t0 = 0 the stock
of knowledge is 100, i.e. x0 = 100. The other parameters of models: β = 0.9,
r = 6, q = 1. Suppose that for the case of a dynamic updating (blue solid and
dotted lines Figs. 1 and 2), the intervals between updating instants are Δt = 2,
therefore l = 4. In Fig. 1 the comparison of resulting Nash equilibrium in the
game with dynamic updating (blue line) and Nash equilibrium with continuous
updating (red lines) is presented. In Fig. 2 similar results are presented for the
strategies.

In order to demonstrate the results of Theorems 3 and 4 on convergence
of resulting equilibrium strategies and corresponding trajectory to the equilib-
rium strategies and trajectory with continuous updating, consider the simulation
results for a case of frequent updating, namely l = 20. Figures 3 and 4 represent
the same solutions as in Figs. 1 and 2, but for the case, when Δt = 0.4. There-
fore, convergence results are confirmed by the numerical experiments presented
below.

Fig. 1. x̃NE(t) (41) - red upper line,
x̂NE(t) (44) - blue broken line, xNE(t)
(48) - green lower line. (Color figure online)

Fig. 2. ũNE(t) (40) - red upper line,
ûNE(t) (43) - blue broken line, uNE(t)
(47) - green lower line. (Color figure online)
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Fig. 3. x̃NE(t) (41) - red upper line,
x̂NE(t) (44) - blue broken line, xNE(t)
(48) - green lower line. (Color figure online)

Fig. 4. ũNE(t) (40) - red upper line,
ûNE(t) (43) - blue broken line, uNE(t)
(47) - green lower line. (Color figure online)

7 Conclusion

The concept of feedback Nash equilibrium for the class of linear quadratic dif-
ferential games with continuous updating is constructed and the corresponding
Theorem is presented. The form of feedback Nash equilibrium for a game model
with dynamic updating is also presented and convergence of resulting feedback
Nash equilibrium with dynamic updating to the feedback Nash equilibrium with
continuous updating as the number of updating instants converges to infinity
is proved. The results are demonstrated using the differential game model of
knowledge stock. Obtained results are both fundamental and applied in nature
since they allow specialists from the applied field to use a new mathematical
tool for more realistic modeling of engineering system describing human-machine
interaction.
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