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Abstract. Stochastic optimization problems with probabilistic and
quantile objective functions are considered. The probability objective
function is defined as the probability that the value of losses does not
exceed a fixed level. The quantile function is defined as the minimal
value of losses that cannot be exceeded with a fixed probability. Sample
approximations of the considered problems are formulated. A method to
estimate the accuracy of the approximation of the probability maximiza-
tion and quantile minimization is described for the case of a finite set of
feasible strategies. Based on this method, we estimate the necessary sam-
ple size to obtain (with a given probability) an epsilon-optimal strategy
to the original problems by solving their approximations in the cases of
finite set of feasible strategies. Also, the necessary sample size is obtained
for the probability maximization in the case of a bounded infinite set of
feasible strategies and a Lipschitz continuous probability function.

Keywords: Stochastic optimization · Sample approximation ·
Probability function · Quantile function

1 Introduction

Problems of stochastic programming with probabilistic and quantile objective
functions are encountered in many applied problems, where special attention is
paid to the reliability of the system. These problems and methods for solving
them are well covered in [1].

In this paper, we research the sample average approximation (SAA) method
for solving stochastic programming problems with probabilistic and quantile
objective functions. This method is based on statistical estimation of the objec-
tive function. For the expectation objective function, the convergence of the SAA
method is proved in [2]. The SAA method was applied to stochastic program-
ming problems with probabilistic constraints in [3], where the convergence of
the method was proved for a special case of the problem. In [4], the possibil-
ity of approximating a stochastic programming problem with probabilistic and
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quantile objective function was investigated. The hypo-convergence of sampling
probability functions is proved, which in turn guarantees the convergence of the
approximation of the probability maximization and quantile minimization prob-
lems with respect to the value of the objective function and with respect to the
optimization strategy.

From recent works on the SAA, [5] can be noted, where general approach to
study approximations of stochastic programming problems is suggested. In [6],
confidence bounds on the optimal objective value are constructed.

When the SAA method is applied, the reduced problem can be considered as
a stochastic optimization problem with discrete distribution of the vector of ran-
dom parameters. These problems can be reduced to mixed integer programming
problems [7], which can be solved by using available software.

To apply the SAA method, it is useful to know the quality of the obtained
approximate solution. In [8–10], in the case of a finite set of feasible strategies,
an estimate of the required sample size was obtained to approximate an expecta-
tion minimization problem. This result was extended for the case of a Lipschitz
continuous expectation function in [8]. To estimate the required number of real-
izations of the random vector, the exponential estimation of large deviations
was used. In [11], the rate of convergence is studied for stochastic programming
problems with probabilistic constraints.

This paper presents sample size estimates for problems of stochastic program-
ming with probabilistic and quantile objective function. For the probability max-
imization, we consider cases of finite and bounded set of feasible strategies. For
the quantile minimization, the case of finite set of feasible strategies is considered.

2 Statement

Let (X ,F ,P) be a complete probability space. Let X be a random vector defined
on this probability space. For simplicity, we assume that X ⊂ R

m is a closed set.
Let us denote by Φ(·) : U ×X → (−∞,+∞) a loss function, where U ⊂ R

n is
a nonempty compact set of strategies u. We assume that the function (u, x) �→
Φ(u, x) is lower semi-continuous in u ∈ U and B(U) × F-measurable in x ∈ X ,
where B(U) is the Borel σ-algebra of subsets U . These conditions guarantees
that the function (u, x) �→ Φ(u, x) is a normal integrand [12].

Let us introduce the probability function

Pϕ(u) � P{Φ(u,X) � ϕ},

and quantile function

ϕα(u) � min{ϕ : Pϕ(u) � α},

where α ∈ (0, P ∗) is a given reliability level,

P ∗ = sup
u∈U

P{Φ(u,X) < +∞}.
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We consider the probability maximization problem

α∗ � sup
u∈U

Pϕ(u) (1)

and the quantile minimization problem

ϕ∗ � inf
u∈U

ϕα(u). (2)

The sets of ε-optimal solutions to problems (1) and (2) are denoted by

Uε
ϕ � {u ∈ U : Pϕ(u) ≥ α∗ − ε},

V ε
α � {u ∈ U : ϕα(u) ≤ ϕ∗ + ε}

respectively.

3 Sample Approximation

Let X1, . . . , XN be a sample generated by random vector X, i.e., random vectors
Xk, k = 1, N , are independent identically distributed with distribution func-
tion F (x) = P{X � x}. We assume that the sample is defined on a complete
probability space (Ω,F ′,P′). This probability space may differ from the space
(X ,F ,P). However, below we will use the same letter P for the probability P′,
because it is clear which probability space is considered. Then we can write the
frequency of the event {Φ(u,X) � ϕ} as

P (N)
ϕ � 1

N

N∑

k=1

χ(−∞,ϕ](Φ(u,Xk)). (3)

where

χA(x) �
{

0, x ∈ A;
1, x /∈ A.

By using (3), the quantile function can be estimated by

ϕ(N)
α (u) � min{ϕ : P (N)

ϕ (u) ≥ α}. (4)

The sample approximation of the probability maximization problem is for-
mulated as

Û (N)
ϕ � Arg max

u∈U
P (N)

ϕ (u), N ∈ N; (5)

and the sample approximation of the quantile minimization problem is formu-
lated as

V̂ (N)
α � Arg min

u∈U
ϕ(N)

α (u), N ∈ N. (6)

From [4] it follows that quantile function (4) coincides with the order statistics
of sample values {Φk}N

k=1 for the random variable Φ � Φ(u,X) that has index
	αN
 and is called the sample quantile, where 	x
 � min{k ∈ N : x � k}.
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4 Estimation of the Necessary Sample Size
for Probability Maximization

In [4] the convergence of the approximating stochastic programming problems (5)
and (6). These results, however, do not show the quality of solutions for a given
sample of size N . In this section, we find upper bounds on the necessary sample
size to consider a solution to (5) as an approximate solution to problem (1).

4.1 Case of Finite Set of Feasible Strategies

Let us begin with the case when the set U is finite. Its cardinality is denoted
by |U |.

We consider the event
{

Û (N)
ϕ �⊂ Uε

ϕ

}
=

⋃

u∈U\Uε
ϕ

⋂

y∈U

{
P̂ (N)

ϕ (u) � P̂ (N)
ϕ (y)

}
.

The event
{

Û
(N)
ϕ �⊂ Uε

ϕ

}
means that there exists an optimal solution u

(N)
ϕ to the

approximation problem (5) such that u
(N)
ϕ is not ε-optimal solution to the true

problem (1).
Then, given that the set U is finite, we can find an upper bound for the

probability

P
{

Û (N)
ϕ �⊂ Uε

ϕ

}
≤

∑

u∈U\Uε
ϕ

P

⎛

⎝
⋂

y∈U

{
P̂ (N)

ϕ (u) ≥ P̂ (N)
ϕ (y)

}
⎞

⎠ . (7)

Let u∗ be an optimal solution to the true problem (1). If there several optimal
solution to problem (1), then u∗ can be taken arbitrarily. It follows from (7) that

P
{

Û (N)
ϕ �⊂ Uε

ϕ

}
≤

∑

u∈U\Uε
ϕ

P
{

P (N)
ϕ (u) ≥ P (N)

ϕ (u∗)
}

≤ |U | max
u∈U\Uε

ϕ

P
{

P̂ (N)
ϕ (u) ≥ P̂ (N)

ϕ (u∗)
}

. (8)

Let us introduce the random variables

ξk = χ(−∞,ϕ](Φ(u,Xk)) − χ(−∞,ϕ](Φ(u∗,Xk)).

Notice that ξk are independent. Then we can write

P
{

P̂ (N)
ϕ (u) ≥ P̂ (N)

ϕ (u∗)
}

= P

{
N∑

k=1

ξk ≥ 0

}
= P

{
exp

(
t

N∑

k=1

ξk

)
≥ 1

}
,
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where t > 0. By Chebyshev’s inequality,

P

{
exp

(
t

N∑

k=1

ξk

)
≥ 1

}
≤ E

[
exp

(
t

N∑

k=1

ξk

)]
= (M(t))N , (9)

where
M(t) � E [exp (tξ1)] (10)

is the moment-generating function of the random variable ξ1.

Lemma 1. Let M(t) be the function defined by (10). Let 0 < ε < α∗. Then

inf
t>0

M(t) ≤
√

1 − ε2.

If α∗ ≤ 1+ε
2 , then

inf
t>0

M(t) ≤ 2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗ ≤
√

1 − ε2.

Proof. Let us introduce the events

A � {Φ(u,X) ≤ ϕ},

B � {Φ(u∗,X) ≤ ϕ}.

Then
M(t) = p+et + p−e−t + 1 − p+ − p−,

where
p+ = P(A ∩ B), p− = P(A ∩ B). (11)

Since u∗ is an optimal solution to the true problem (1) and u ∈ U \ Uε
ϕ, it holds

that
P(A) ≤ α∗ − ε, P(B) = α∗. (12)

From (11) and (12), it follows that

p+ ∈ [0, α∗ − ε], p− ∈ [ε, α∗]. (13)

Therefore,

ε ≤ P(B)−P(A) = P(A ∩ B)+P(A ∩ B)−(P(A ∩ B)+P(A ∩ B)) = p− −p+.
(14)

The function t �→ M(t) is convex. From the optimality conditions, we obtain

Arg min
t>0

M(t) =
{

1
2

ln
p−
p+

}

if p+ > 0. From (14), it follows that

1
2

ln
p−
p+

> 0.
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Thus,
Q(p+, p−) = inf

t>0
M(t) = 2

√
p−p+ + 1 − p+ − p−. (15)

If p+ = 0, then equality (15) holds too.
The function (p+, p−) �→ Q(p+, p−) is concave (see, for example, [13, P. 74]).

Let us find
max
p+,p−

Q(p+, p−)

subject to (13), (14), and (15). Since the unconditional maximum of Q(p+, p−)
is attained when p+ = p−, the conditional maximum is attained when the con-
straint (14) is active. Taking into account the constraint p+ + p− ≤ 1, it is easy
to see that

inf
t>0

M(t) ≤
max
p+,p−

{Q(p+, p−) | p− − p+ = ε, p+ + p− ≤ 1, p+ ∈ [0, α∗ − ε], p− ∈ [ε, α∗]}

= max
p+

{
2
√

p+(p+ + ε) + 1 − 2p+ − ε | p+ + p+ + ε ≤ 1, p+ ∈ [0, α∗ − ε]
}

=

{
2
√

1−ε
2 · 1+ε

2 + 1 − (1 − ε) − ε =
√

1 − ε2 if α∗ − ε > 1−ε
2 ,

2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗ ≤ √
1 − ε2 if α∗ − ε ≤ 1−ε

2 .

Thus, Lemma 1 is proved.

Let us prove a theorem on the necessary sample size to approximate the true
problem (1).

Theorem 1. Let β ∈ (0, 1). If the set U is finite and

N ≥ 2
ln |U | − ln(1 − β)

| ln(1 − ε2)| , (16)

then
P
{

Û (N)
ϕ ⊂ Uε

ϕ

}
≥ β. (17)

Moreover, if it is known that α∗ ≤ 1+ε
2 , then inequality (17) holds if

N ≥ ln |U | − ln(1 − β)∣∣∣ln
(
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗
)∣∣∣

. (18)

Proof. First, let us consider the case α∗ ≤ ε. Then, it is obvious that

P
{

Û (N)
ϕ ⊂ Uε

ϕ

}
= 1,

hence, the assertion of the theorem is true.
If α∗ > ε and α∗ ≤ 1+ε

2 , then, from (8), (9), and Lemma 1, it follows that

P
{

Û (N)
ϕ �⊂ Uε

ϕ

}
≤ inf

t>0
|U |(M(t))N ≤

(
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗
)N

.
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Thus, inequality (17) holds if

|U |
(
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗
)N

≤ 1 − β ⇔

N ≥ ln(1 − β) − ln |U |
ln
(
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗
) =

ln |U | − ln(1 − β)∣∣∣ln
(
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗
)∣∣∣

.

Since
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗ ≤
√

1 − ε2,

we obtain that inequality (17) holds for

N ≥ ln |U | − ln(1 − β)∣∣ln
√

1 − ε2
∣∣ = 2

ln |U | − ln(1 − β)
|ln (1 − ε2)| .

In the case when α∗ > ε and α∗ > 1+ε
2 , the theorem is proved in the same

manner. Theorem 1 is proved.

Remark 1. In [9, Theorem 5.17], a result similar to Theorem 1 is proved for the
maximization of the expectation function. By applying this result to problem
(1), it can be obtained that inequality (17) holds for

N ≥ 2
ln |U | − ln(1 − β)

ε2
.

It is easy to check that
ε2 <

∣∣ln
(
1 − ε2

)∣∣

for ε ∈ (0, 1). Thus, the sample estimate (16) improves the result in [8] for
maximization of the probability function.

Remark 2. To apply the sample estimate (18), we need to know exact solution
to problem (1). However, the sample approximation is construct to estimate α∗.
Sometimes, it possible to find an upper bound ᾱ ≥ α∗. If ᾱ ≤ 1+ε

2 , then we can
improve the sample estimate (16). It is guaranteed that inequality (17) holds if

N ≥ ln |U | − ln(1 − β)∣∣∣ln
(
2
√

(ᾱ − ε)ᾱ + 1 + ε − 2ᾱ
)∣∣∣

.

4.2 Case of Bounded Set of Feasible Strategies

Let us consider the case when U is a bounded, not necessarily finite, subset of
R

n. The diameter of U is denoted by

D � sup
u,v∈U

‖u − v‖,

where the norm ‖u‖ = max{|u1|, . . . , |un|} is used.
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We suppose that the probability function u �→ Pϕ(u) is Lipschitz continuous
on U with a Lipschitz constant L, i.e.

|Pϕ(u) − Pϕ(v)| ≤ L‖u − v‖ (19)

for all u, v ∈ U .

Theorem 2. Let β ∈ (0, 1). If the assumption (19) is satisfied and

N ≥ 2 inf
γ∈(0,1)

n ln
⌈

DL
(1−γ)ε

⌉
− ln(1 − β)

| ln(1 − γ2ε2)| , (20)

then
P
{

Û (N)
ϕ ⊂ Uε

ϕ

}
≥ β. (21)

Proof. First, let us check that the event
{

Û
(N)
ϕ ⊂ Uε

ϕ

}
∈ F ′. Since the function

(u, x) �→ Φ(u, x) is a normal integrand, the function u �→ Pϕ(u) is upper semi-
continuous and the set Uε

ϕ is compact [4]. Also, the u �→ P̂
(N)
ϕ (u) is upper

semi-continuous for all fixed realizations of the sample. The compactness of U
and semi-continuity of these function imply that the supremum

sup
u∈U

P̂ (N)
ϕ (u)

is attained and is a measurable function of the sample. Thus, the considered
event can be represented as

{
Û (N)

ϕ ⊂ Uε
ϕ

}
=

⋂

u∈U\Uε
ϕ

{
P̂ (N)

ϕ (u) < sup
v∈U

P̂ (N)
ϕ (v)

}

=
⋂

k∈N

{
sup

u∈Uk

P̂ (N)
ϕ (u) < sup

u∈U
P̂ (N)

ϕ (u)
}

,

where

Uk =
{

u ∈ U : inf
v∈Uε

ϕ

‖u − v‖ ≥ 1
k

}
.

The set Uk is compact, so the function

(x1, . . . , xN ) �→ sup
u∈Uk

P̂ (N)
ϕ (u)

is measurable and, hence,
{

Û (N)
ϕ ⊂ Uε

ϕ

}
∈ F ′.

Let Ũ be a finite subset of U . Let

ν � sup
u∈U

inf
v∈Ũ

‖u − v‖.
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The value of ν shows the maximal distance between an arbitrary point of U and
the nearest point of Ũ . The set Ũ can be selected in such a way that

|Ũ | ≤
⌈

D

ν

⌉n

. (22)

It will be assumed that condition (22) is satisfied.
Let

Ũε
ϕ � {u ∈ Ũ : Pϕ(u) ≥ α∗

Ũ
− ε},

where
α∗

Ũ
� sup

u∈Ũ

Pϕ(u).

Since the function u �→ Pϕ(u) is Lipschitz continuous, the condition u ∈ Ũε
ϕ

implies u ∈ Uε+Lν
ϕ . If γ ∈ (0, 1) is a fixed number and Lν = (1 − γ)ε, then

{
Û (N)

ϕ ⊂ Ũγε
ϕ

}
⊂
{

Û (N)
ϕ ⊂ Uε

ϕ

}
. (23)

From (23) and Theorem 1, it follows that

P
{

Û (N)
ϕ ⊂ Uε

ϕ

}
≥ P

{
Û (N)

ϕ ⊂ Ũγε
ϕ

}
≥ β

if

N ≥ 2
ln |Ũ | − ln(1 − β)

| ln(1 − γ2ε2)| ≤ 2
ln
⌈

D
ν

⌉n − ln(1 − β)
| ln(1 − γ2ε2)| = 2

n ln
⌈

DL
(1−γ)ε

⌉
− ln(1 − β)

| ln(1 − γ2ε2)| .

Since γ is selected arbitrarily, the theorem is proved.

Remark 3. A similar result for minimization of the expectation function is
proved in [8]. This result can be obtained from Theorem 2 if t = 1/2. Addi-
tional optimization in t ∈ (0, 1) can improve the result [8] for the special case
of probability maximization. If the exact value of the infimum is difficult to
find, then the sample estimate N can be found by substituting several values of
t ∈ (0, 1) into (20). The minimal value of the obtained numbers can be set as
the sample estimate N .

Remark 4. To apply the sample estimate (20), the Lipschitz constant is need
to know. If the function u �→ Pϕ(u) is continuously differentiable on the set U ,
then, from the mean value theorem, it follows that

|Pϕ(u) − Pϕ(v)| � sup
w∈U

‖∇Pϕ(w)‖‖u − v‖.

Therefore, we can take L = supw∈U ‖∇Pϕ(w)‖. Methods to find the gradient of
the probability function are described in [14,15].
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5 Estimation of the Necessary Sample Size for Quantile
Minimization

In this section, we find upper bounds on the necessary sample size to consider
a solution to (6) as an approximate solution to problem (2). We assume that the
set U is finite.

We suppose that the following assumption is satisfied.

Assumption 1. The random variable Φ(u,X) is absolutely continuous for all
u ∈ U with probability density function pu(·) continuous at the point ϕα(u) with
its neighborhood. Also, there exists a number C > 0 such that

min
u∈U

pu(ϕα(u)) > C.

As for the probability function, consider the event
{

V̂ (N)
α �⊂ V ε

α

}
=

⋃

u∈U\V ε
α

⋂

y∈U

{
ϕ̂(N)

α (u) � ϕ̂(N)
α (y)

}
.

Then we can find an upper bound for the probability

P
{

V̂ (N)
α �⊂ V ε

α

}
≤

∑

u∈U\V ε
α

P

⎛

⎝
⋂

y∈U

{
ϕ̂(N)

α (u) � ϕ̂(N)
α (y)

}
⎞

⎠ . (24)

Let us fix an optimal solution to the true problem (2) u∗. From (24), we
obtain

P
{

V̂ (N)
α �⊂ V ε

α

}
≤

∑

u∈U\V ε
α

P
{

ϕ̂(N)
α (u) � ϕ̂(N)

α (u∗)
}

≤ |U | max
u∈U\V ε

α

P
{

ϕ̂(N)
α (u) � ϕ̂(N)

α (u∗)
}

. (25)

Let us define the random variables

ηN = ϕ̂(N)
α (u∗) − ϕ̂(N)

α (u), N ∈ N.

Notice that the random variables ϕ
(N)
α (u∗) and ϕ

(N)
α (u) can be dependent. We

need to find an upper bound on the probability

P{ηN ≥ 0}.

By the Mosteller theorem [16], the distribution of the order statistics ϕ
(N)
α (u∗)

and ϕ
(N)
α (u) converges to a normal distribution:

√
N
(
ϕ(N)

α (u∗) − ϕ∗
)

d−→ Zu∗ ∼ N
(

0,
α(1 − α)
p2u∗(ϕ∗)

)
,

√
N
(
ϕ(N)

α (u) − ϕα(u)
)

d−→ Zu ∼ N
(

0,
α(1 − α)
p2u(ϕα(u))

)
.
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Therefore, we can write

lim
N→∞

EηN ≤ −ε,

lim sup
N→∞

var
[
ηN

√
N
]

<
4α(1 − α)

C
.

Thus, for any 0 < ε′ < ε, there exists Ñ(ε′) ∈ N such that

EηN ≤ −ε + ε′, (26)

var [ηN ] <
4α(1 − α)

CN
(27)

for all N > Ñ(ε′). We would like to notice that Ñ(ε′) can depend on u. So, the
maximal value of Ñ(ε′) should be taken.

By Cantelli’s inequality, for N > Ñ(ε′),

P{ηN ≥ 0} ≤ P{ηN − EηN ≥ ε − ε′} ≤ var [ηN ]
var [ηN ] + (ε − ε′)2

<
4α(1 − α)

4α(1 − α) + (ε − ε′)2CN
.

Thus, from (25), the theorem follows.

Theorem 3. Let U be a finite set, β ∈ (0, 1). Assumption 1 is supposed to be
satisfied. Then

P
{

V̂ (N)
α �⊂ V ε

α

}
≤ |U | 4α(1 − α)

4α(1 − α) + (ε − ε′)2CN
. (28)

for sufficiently large N .

Now, we can obtain the corollary from Theorem 3.

Corollary 1. Let assumptions of Theorem 3 be satisfied. Then

P
{

V̂ (N)
α ⊂ V ε

α

}
≥ β

if

N ≥ 4α(1 − α)(|U | + β − 1)
(1 − β)(ε − ε′)2C

(29)

and N > Ñ(ε′).

Proof. From (28), it follows that the assertion of the theorem is true if

|U | 4α(1 − α)
4α(1 − α) + (ε − ε′)2CN

≤ 1 − β.

By solving this inequality, we obtain (29). The corollary is proved.

Remark 5. Unfortunately, it is difficult find bounds on the value Ñ(ε′). To use
the estimate (29), inequalities (26) and (27) should be checked. It can be made
by statistical methods.
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6 Conclusion

In the paper, sample size estimates for approximation of stochastic optimization
problems with probabilistic and quantile objective functions are obtained. These
estimates are quite rough for practical use, but they allow us to judge the com-
plexity of the solution to the original problem. In future research, it is planned
to improve this result for special cases of stochastic optimization problems. We
hope that it is possible to describe a class of problems for which exponential
bounds can be obtained instead of (28). Also, a more general case of quantile
minimization problem on a bounded set should be studied.
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9. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming.
Society for Industrial and Applied Mathematics, Philadelphia (2009)

10. Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T.: The sample average approxima-
tion method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502
(2001). https://doi.org/10.1137/S1052623499363220

11. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with
probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008). https://doi.org/
10.1137/070702928

https://doi.org/10.1007/s10957-009-9523-6
https://doi.org/10.1134/S0005117918020029
https://doi.org/10.1137/17M1156769
https://doi.org/10.1137/17M1156769
https://doi.org/10.1080/10556788.2017.1350177
https://doi.org/10.1134/S0005117913060064
https://doi.org/10.1134/S0005117913060064
https://doi.org/10.1016/S0927-0507(03)10006-0
https://doi.org/10.1137/S1052623499363220
https://doi.org/10.1137/070702928
https://doi.org/10.1137/070702928


564 S. V. Ivanov and I. D. Zhenevskaya

12. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02431-3

13. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York (2004)

14. Kibzun, A., Uryasev, S.: Differentiability of probability function. Stochast. Anal.
Appl. 16(6), 1101–1128 (1998). https://doi.org/10.1080/07362999808809581

15. Van Ackooij, W., Henrion, R.: Gradient formulae for nonlinear probabilistic con-
straints with Gaussian and Gaussian-like distributions. SIAM J. Optim. 24(4),
1864–1889 (2014). https://doi.org/10.1137/130922689

16. Mosteller, F.: One some useful inefficient statistics. Ann. Math. Stat. 17, 317–408
(1946)

https://doi.org/10.1007/978-3-642-02431-3
https://doi.org/10.1080/07362999808809581
https://doi.org/10.1137/130922689

	Estimation of the Necessary Sample Size for Approximation of Stochastic Optimization Problems with Probabilistic Criteria
	1 Introduction
	2 Statement
	3 Sample Approximation
	4 Estimation of the Necessary Sample Size for Probability Maximization
	4.1 Case of Finite Set of Feasible Strategies
	4.2 Case of Bounded Set of Feasible Strategies

	5 Estimation of the Necessary Sample Size for Quantile Minimization
	6 Conclusion
	References




