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Abstract. The paper is devoted to a generalization of a necessary opti-
mality condition in the form of the Feedback Minimum Principle for a
nonconvex discrete-time free-endpoint control problem. The approach is
based on an exact formula for the increment of the cost functional. This
formula is completely defined through a solution of the adjoint system
corresponding to a reference process. By minimizing that increment in
control variable for a fixed adjoint state, we define a multivalued map,
whose selections are feedback controls with the property of potential
“improvement” of the reference process. As a result, we derive a nec-
essary optimality condition (optimal process does not admit feedback
controls of a “potential descent” in the cost functional). In the case
when the well-known Discrete Maximum Principle holds, our condition
can be further strengthened. Note that obtained optimality condition is
quite constructive and may lead to an iterative algorithm for discrete-
time optimal control problems. Finally, we present sufficient optimality
conditions for problems, where Discrete Maximum Principle does not
make sense.
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1 Introduction

The paper concerns necessary (and sufficient) global optimality conditions for
the following discrete optimal control problem (problem (P )):

x(t + 1) = f
(
t, x(t), u(t)

)
, x(0) = x0, (1)

u(t) ∈ U(t), t ∈ T, (2)
J(σ) = l

(
x(N)

) → min .
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Here, x(t) ∈ Rn, sets U(t) ⊂ Rm are compact for all t ∈ T := {0, . . . , N −1}. By
σ we denote collections of vectors {x(t), u(t)} = {x(0), . . . , x(N), u(0), . . . , u(N−
1)}, i.e. admissible processes of problem (P ) (pairs of trajectories and con-
trols), D stands for the set of all admissible processes in problem (P ), and
σ̄ = {x̄(t), ū(t)} ∈ D is the reference (examined) process.

The functions f(t, x, u) are assumed to be continuous with respect to (w.r.t.)
(x, u) and continuously differentiable w.r.t. x for all t ∈ T , the cost function l(x)
is smooth.

First of all, we are interested in the necessary conditions for optimality of
σ̄, using feedback controls {v(t, x)} with the property of descent w.r.t. the func-
tional J . Such controls are constructed via special solution of discrete Hamilton-
Jacobi type inequality for weakly decreasing functions ϕ(t, x) [1]. This special
solution (being support majorant for the cost function J at point σ̄) is completely
defined by the trajectory {ψ(t)} adjoint to the process σ̄.

Being applied to classical optimal control problems in differential systems, the
discussed approach leads to a rather effective and constructive necessary optimal-
ity condition. This condition, called Feedback Minimum Principle (FMP) [2,3],
essentially strengthens the Pontryagin Maximum Principle. In [1] an analogue of
the feedback principle was obtained for discrete optimal control problems, linear
in the state variable. The present work contains a generalization of the results
[2,3] for nonlinear discrete problem (P ).

To illustrate our necessary optimality conditions, we consider certain mod-
ifications of examples from [4,5], which were used as counter-examples for the
Discrete Maximum Principle (DMP) [4–8]. In such modifications, necessary opti-
mality conditions with feedback controls are more effective either if DMP is not
applicable at all, or when it is not able to discard nonoptimal processes. In the
second case, FMP does work and leads to an optimal process.

2 Construction of Feedback Descent Controls

For a discrete dynamic system, the property of weak decrease of a function
ϕ(t, x) : T × Rn → R means that for any initial position (t∗, x∗) there exists
a trajectory {x(t)}, t = t∗, . . . , N , x(t∗) = x∗ (with a corresponding admissible
control {u(t)}, t = t∗, . . . , N − 1) such that ϕ

(
t + 1, x(t + 1)

) − ϕ
(
t, x(t)

) ≤ 0
for t = t∗, . . . , N . The following Hamilton-Jacobi type inequality guarantees the
property of weak decrease:

min
u∈U(t)

ϕ
(
t + 1, f(t, x, u)

) − ϕ(t, x) ≤ 0 ∀x ∈ Rn, t ∈ T. (3)

Necessary optimality conditions, discussed below, use solutions of (3) under
appropriate boundary conditions.

Let us describe the construction of a desired solution to inequality (3).
Introduce the Pontryagin function

H(t, x, ψ, u) = 〈ψ, f(t, x, u)〉,
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the adjoint (for σ̄) system

ψ(t) = Hx

(
t, x̄(t), ψ(t), ū(t)

)
, ψ(N) = lx

(
x̄(N)

)
(4)

(note that the terminal condition corresponds to the minimum condition of the
Pontryagin function in DMP) and the function

ϕ∗(t, x) = 〈ψ(t) − lx
(
x̄(t)

)
, x〉 + l(x) (5)

(〈·, ·〉 stands for the scalar product). Due to the terminal condition in (4), we
obtain

ϕ∗(N,x) = l(x). (6)

It is easy to see that the following equality holds:
∑

t∈T

[
ϕ∗

(
t + 1, f

(
t, x(t), u(t)

)) − ϕ∗(t, x(t)
)]

=

J(σ) − ϕ∗(0, x0) ∀σ ∈ D.
(7)

Introduce the function

K(t, x, u) = ϕ∗(t + 1, f(t, x, u)
) − ϕ∗(t, x). (8)

Then, by equalities (5)–(7), one can obtain the exact formula for the increment
of the cost functional J :

J(σ) − J(σ̄) =
∑

t∈T

[
K

(
t, x(t), u(t)

) − K
(
t, x̄(t), ū(t)

)] ∀σ ∈ D. (9)

Based on the previous formula (see also (7)) for any position (t, x) we define
the set U∗(t, x) of feedback controls, which may generate the deepest descent
for functionals (9) and (7). Evidently, if σ̄ is an optimal process, then descent
controls do not exist for σ̄.

The discussed idea leads to the following multivalued ϕ∗-extremal map:

U∗(t, x) = Argmin
u∈U(t)

[
H

(
t, x, p(t + 1), u

)
+ l

(
f(t, x, u)

)]
, t ∈ T, (10)

where
p(t) = ψ(t) − lx

(
x̄(t)

)
, t = 0, . . . , N.

Any sequence of vectors {v(t, x)}, t ∈ T , satisfying the inclusion v(t, x) ∈
U∗(t, x) on T × Rn, generates a trajectory {xv(t)} of the discrete system

x(t + 1) = f
(
t, x(t), v

(
t, x(t)

))
, x(0) = x0, (11)

and the open-loop control
{
uv(t) = v

(
t, xv(t)

)}
. Denote by D∗ the set of

sequences ν =
{
xv(t), v(t, x)

}
, which may be obtained in this way. Let J(ν) =

l
(
xv(N)

) ∀ν ∈ D∗.
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Theorem 1. If process σ̄ =
{
x̄(t), ū(t)

}
is optimal for problem (P ), then the

following inequality holds:

J(σ̄) ≤ J(ν) ∀ν ∈ D∗.

In other words, there are no feedback descent controls at the point σ̄ which can
be generated by the ϕ∗-extremal map U∗(t, x).

To prove the Theorem, it is sufficient to note that any sequence ν ∈ D∗
generates the pair σ =

{
xv(t), uv(t)

} ∈ D such that J(σ) = J(ν).
The presented idea does not demand multifunction U∗(t, x) to be constructed

by the extremal principle, at all. In fact, any map V (t, x) ⊂ U(t) on T × Rn

could be chosen instead of U∗(t, x). Of course, such a casual mapping V (t, x) is
generically useless.

Let us show that ϕ∗-extremal multifunction (10) for feedback descent controls
corresponds to a solution of the Hamilton-Jacobi inequality (3). The latter one
is designed by some “calibration” of function ϕ∗.

Let R(t) be a reachable set of system (1), (2) at t; obviously, R(t) is a compact
set in Rn ∀t = 1, . . . , N . Given an open set Q(t) ⊇ R(t) for all t = 1, . . . , N ,
define (see also (8))

m(t) = sup
x∈Q(t)

min
u∈U(t)

K(t, x, u), t ∈ T,

r(t) = r(t + 1) − m(t), r(N) = 0,

ϕ̃(t, x) = ϕ∗(t, x) − r(t), (t, x) ∈ T × Q(t).

It is easy to check that function ϕ̃ satisfies the condition of weak decrease (3)
on T × Q(t), and the ϕ̃-extremal multifunction for descent controls coincides
with U∗(t, x). This reasoning provides additional justification for using the set
of feedback descent controls (10).

We also stress an important role of Theorem 1 for applications. If process σ̄
does not satisfy this necessary optimality condition, then one has a process that
improves σ̄ (new process has a smaller value of the cost functional J).

Example 1. Consider a modification of Example 2 from [4, p. 431], which is used
to show that DMP is not applicable to problems of optimal control for systems,
obtained by a difference approximation of continuous ones, in general. Modifi-
cation is due to a square term in the cost function. The example illustrates the
applicability of Theorem1 in contrast to DMP.

J = x2(2) + y(2) → min;

x(t + 1) = x(t) +
1
2
u(t), x(0) = 0,

y(t + 1) = y(t) + x2(t) − u2(t), y(0) = 0,

|u(t)| ≤ 1, t = 0, 1.
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One can check that

min J = min
|u(t)|≤1, t=0,1

{
− 1

4

[
2u2(1) +

(
u(1) − u(0)

)2]} = −7
4
,

and the minimum is attained by u∗
0 = ±1, u∗

1 = ∓1.
The Pontryagin function is

H = ψ(t + 1)
[
x(t) +

1
2
u(t)

]
+ y(t) + x2(t) − u2(t),

and the adjoint system writes

ψ(t) = ψ(t + 1) + 2x(t), ψ(2) = 2x(2).

Let us consider the process σ̄ with ū ≡ −1,

x̄(1) = −1
2
, x̄(2) = −1,

ȳ(1) = −1, ȳ(2) = −7
4
,

ψ̄(1) = −3, ψ̄(2) = −2,

and J(σ̄) = −3
4
.

Let us test this process by the necessary optimality condition proposed
Theorem 1. The selectors of U∗(t, x) are described by the following conditions:

t = 0 : −u0 − 3
4
u2
0 → min ⇒ U∗(0, x0) = {1};

t = 1 : −3
4
u2
1 + x1u1 → min ⇒ U∗(1, x1) =

⎧
⎨

⎩

{−1}, x1 > 0,
{1}, x1 < 0,
{−1, 1}, x1 = 0.

Any feedback control v : v(t, x) ∈ U∗(t, x) generates process σ̃ with ũ(0) = 1,

ũ(1) = −1, x̃(1) =
1
2
, x̃(2) = 0, ỹ(1) = −1, ỹ(2) = −7

4
, J(σ̃) = −7

4
. Obviously,

σ̃ brings a global solution. Notice that the optimal process σ̃ does not satisfy
DMP.

Example 2. This example is aimed to show that Theorem 1 is rather effective to
discard nonoptimal DMP-extrema (control processes satisfying DMP).

Consider the following nonconvex problem:

J = y(2) − ax2(2) → min;
x(t + 1) = x(t) + (t − 1)u(t), x(0) = 0,

y(t + 1) = y(t) +
(
u(t) − 1

)
x(t), y(0) = 0,

|u(t)| ≤ 1, t = 0, 1; a > 0.

It is easy to check that

min J = min
|u(t)|≤1, t=0,1

{ − (
u(1) − 1

)
u(0) − au2(0)

}
= −2 − a.
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Let us specify some objects. The Pontryagin function:

H = ψ(t + 1)
(
x(t) + (t − 1)u(t)

)
+ y(t) +

(
u(t) − 1

)
x(t),

and the adjoint system:

ψ(t) = ψ(t + 1) + u(t) − 1, ψ(2) = −2ax(2).

The H-minimum condition looks as follows:
[
(t − 1)ψ(t + 1) + x(t)

]
ut →

min; |ut| ≤ 1.
Consider the process σ̄: ū ≡ 1, x̄(1) = x̄(2) = −1, ȳ ≡ 0, ψ̄ ≡ 2a, J(σ̄) = −a.

Notice that σ̄ satisfies DMP.
Let us apply Theorem 1 to σ̄. The ϕ∗-extremal map (10) is defined by the

following optimization problems:

t = 0 : −au2
0 → min ⇒ U∗(0, x0) = {±1};

t = 1 : x1u1 → min ⇒ U∗(1, x1) =

⎧
⎪⎪⎨

⎪⎪⎩

{−1}, x1 > 0,

{1}, x1 < 0,

[−1, 1], x1 = 0.

Choosing the feedback control v(t, x):

v(0) = −1, v(1, x) =
{−1, x ≥ 0,

1, x < 0,

one can obtain the process σ̃: ũ ≡ −1, x̃(1) = x̃(2) = 1, ỹ(1) = 0, ỹ(2) = −2
with J(σ̃) = −2 − a < −a = J(σ̄).

Thus, Theorem 1 leads to the global extremum σ̃, starting from σ̄.

3 Feedback Minimum Principle

In continuous optimal control problems, FMP [2,3] states that an optimal trajec-
tory of the considered problem is necessarily optimal for a certain auxiliary prob-
lem of dynamic optimization, called the accessory one. Moreover, the analogue
of Theorem 1 was covered by FMP. Below we show that for discrete optimization
problems the situation is significantly different compared to the continuous case.
However, this is not surprising: for example, in continuous optimization prob-
lems, the Pontryagin Maximum Principle is a universal necessary condition, but
in discrete problems, it is not always the case [4–8].

Denote by (P∗) the following discrete problem of closed-loop (feedback)
control:

J(ν) := l
(
x(N)

) → min, ν ∈ D∗,

where pairs ν = {x(t), v(t, x)} satisfy system (11) and the inclusion v(t, x) ∈
U∗(t, x) on T × Rn.
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In general, the pair
{
x̄(t), ū(t)

}
is not admissible in problem (P∗). The fol-

lowing minimum condition M(σ̄) guarantees that σ̄ ∈ D∗:

ū(t) ∈ U∗
(
t, x̄(t)

) ∀t ∈ T.

By (10), M(σ̄) is equal to the condition

H
(
t, x̄(t), p(t + 1), ū(t)

)
+ l

(
f
(
t, x̄(t), ū(t)

))
=

min
u∈U(t)

[
H

(
t, x̄(t), p(t + 1), u

)
+ l

(
f
(
t, x̄(t), u

))]
∀t ∈ T.

Given a process σ̄ satisfying condition M(σ̄), introduce the feedback control
v̄(t, x) ∈ U∗(t, x) in the following way:

v̄(t, x) =
{

ū(t), (t, x) ∈ orb x̄(t),
any w(t, x) ∈ U∗(t, x), (t, x) /∈ orb x̄(t), (12)

where orb x̄(t) =
{ (

t, x̄(t)
) ∣
∣ t = 0, . . . , N

}
is the orbit of trajectory x̄(t).

It is easy to see that ν̄ =
{
x̄(t), v̄(t, x)

} ∈ D∗. Then by Theorem 1 one can
derive FMP as follows:

Theorem 2. Let process σ̄ =
{
x̄(t), ū(t)

}
be optimal for problem (P ) and satisfy

the minimum condition M(σ̄). Then process ν̄ =
{
x̄(t), v̄(t, x)

}
with control (12)

is optimal for problem (P∗).

In the assumptions of this theorem, problem (P∗) appears to be accessory
(for σ̄) in the classical sense. It means that (P∗) is a variational type problem,
designed to analyze the optimality of process σ̄.

FMP, generalizing Theorem 1, is a very attractive theoretical result. However,
it is difficult to solve the accessory problem in practice. Therefore, in applications,
one normally applies Theorem 1 instead of Theorem 2 (using the “trial and error”
method when choosing selectors of multifunction U∗(t, x)). In addition, the class
of problems, for which FMP is valid, is restricted by condition M(σ̄). Although
this condition is often met, it is not necessary at all (see Example 2, where process
σ̄ with ū ≡ 1 is admissible in problem (P∗) but does not solve it).

Example 3. Consider a modification of Example 6.46 from [5, Vol. II, p. 249]
which shows a failure of DMP for optimal processes. At the same time, FMP
holds here for some values of parameters.

J = x2(3) + y(3) → min;
x(t + 1) = g

(
t, u(t)

)
, x(0) = 0,

y(t + 1) = ax2(t) + by(t) − a

b
g2

(
t, u(t)

)
, y(0) = 0,

u(t) ∈ U, t = 0, 1, 2; a > 0, b > 0,

the function g(t, ·) is continuous, the set U is compact.

min J = min
u(2)∈U

b − a

b
g2

(
2, u(2)

)
.
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It means that any admissible process σ̄ with ū(2) ∈ Argmin
u∈U

b − a

b
g2

(
2, u(2)

)
is

optimal.
The Pontryagin function is

H = ψ(t + 1)g
(
t, u(t)

)
+ ξ(t + 1)

[
ax2(t) + by(t) − a

b
g2

(
t, u(t)

)]

(here, ξ(t) is the adjoint of y).
Let us consider any optimal process and denote it by σ̄ =

(
x̄(t), ȳ(t), ū(t)

)
.

The corresponding trajectory (ψ̄, ξ̄) of adjoint system (4) is

ψ̄(1) = 2abg
(
0, ū(0)

)
, ψ̄(2) = 2ag

(
1, ū(1)

)
, ψ̄(3) = 2g

(
2, ū(2)

)
,

ξ̄(1) = b2, ξ̄(2) = b, ξ̄(3) = 1.

One can check that σ̄ does not satisfy DMP. Moreover, for t = 0, 1, the
Pontryagin function H reaches on ū(t) its maximum (rather than minimum),
and the H-minimum conditions are as follows:

t = 0 : ab
[
2g

(
0, ū(0)

)
g
(
0, u0

) − g2
(
0, u0

)] → min, u0 ∈ U ;

t = 1 : a
[
2g

(
1, ū(1)

)
g
(
1, u1

) − g2
(
1, u1

)] → min, u1 ∈ U.

When t = 2, the “H → min” condition takes the form

2g
(
2, ū(2)

)
g
(
2, u2

) − a

b
g2

(
2, u2

) → min, u2 ∈ U.

Therefore, all optimal processes do not satisfy DMP.
Let us check FMP for optimal process σ̄. The ϕ∗-extremal multifunction (10)

leads to the following conditions:

t = 0 : (ab − 1)
[
2g

(
0, ū(0)

)
g
(
0, u0

) − g2
(
0, u0

)] → min, u0 ∈ U ;

t = 1 : (a − 1)
[
2g

(
1, ū(1)

)
g
(
1, u1

) − g2
(
1, u1

)] → min, u1 ∈ U ;

t = 2 :
b − a

b
g2

(
2, u2

) → min, u2 ∈ U

(compare with the previous formulas). It means that condition M(σ̄) is satisfied
and σ̄ is admissible for problem (P∗) only when a ≤ 1 and ab ≤ 1. By the way,
the conditions of Theorem 1 for σ̄ are evidently relaxed.

Example 4. Now we propose another case, where Theorems 1 and 2 accompany
one another. Consider the following modification of Example 3 from [4, p. 432]:

J = ax2(2) + y(2) → min;
x(t + 1) = 2u(t), x(0) = 0,

y(t + 1) = y(t) + x2(t) − u2(t), y(0) = 0,

|u(t)| ≤ 1, t = 0, 1; a ∈ R.
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Obviously,
min J = min

|u(t)|≤1, t=0,1

{
3u2

0 + (4a − 1)u2
1

}
.

Therefore, the minimizing controls are the following:

– if a >
1
4
, then u∗ ≡ 0;

– if a =
1
4
, then u∗

0 = 0, u∗
1 ∈ [−1, 1];

– if a <
1
4
, then u∗

0 = 0, u∗
1 ∈ {−1, 1}.

Any optimal process σ̄ does not satisfy DMP for a > 0, but it satisfies

condition M(σ̄) and Theorems 1 and 2 (∀a). However, in the case a <
1
4

the

condition M(σ) does not hold for the process σ ≡ 0. Nevertheless, by applying
Theorem 1 the process σ could be discarded.

4 Comparison with Known Necessary Optimality
Conditions

Theorems 1 and 2 offer certain necessary conditions for global optimality, and the
scope of application of constructive Theorem 1 is unlimited. As is known [6], only
necessary conditions for a weak minimum have similar universality—in the class
of sufficiently small variations |x(t) − x̄(t)| and |u(t) − ū(t)| for all t. Therefore,
these local conditions of optimality are less effective than those obtained above
(both theoretically and practically).

The DMP is a necessary condition for a strong minimum (variations |u(t) −
ū(t)| do not have to be small), and in this sense DMP is more attractive than the
conditions for a weak minimum. However, this criterion is not universal—it is
valid for problem (P ) under certain convexity conditions on the set f

(
t, x, U(t)

)
;

the simplest of these conditions is the convexity of f
(
t, x, U(t)

) ∀x ∈ Rn and
t ∈ T . Theorems 1 and 2 do not imply these assumptions; however, FMP contains
the assumption M(σ̄) on the reference process. Therefore, a direct comparison
of FMP with DMP in their applicability is difficult. However, as the examples
show, the combination of Theorems 1 and 2 exceeds DMP (for problems where
DMP is applicable) in efficiency. Note also that in the case when l is linear,
condition M(σ̄) coincides with the extremal condition from DMP, but, along
with M(σ̄), FMP requires σ̄ to be optimal for the accessory problem (P∗). This
fact essentially strengthens the necessary condition.

The previous examples show that FMP is more applicable than DMP. The
case of linear cost function can be found, e.g., in [1] (this example coincides
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with Example 2, excepting the linear cost function J = y(2)). Now, we present
another eloquent case:

Example 5. This quadratic modification of Example 8 by [4, p. 433] presents the
situation when all optimal processes do not satisfy DMP, while FMP does hold
for each one.

J = x2(2) + y(2) → min;
x(t + 1) = u(t), x(0) = 0,

y(t + 1) = y(t) + x2(t), y(0) = 0,

u(t) ∈ {−1,+1}, t = 0, 1.

Notice that any admissible process is optimal.
The Pontryagin function is

H = ψ(t + 1)u(t) + x2(t) + y(t),

and the adjoint system takes the form:

ψ(t) = 2x(t), ψ(2) = 2x(2).

It is notable that any optimal process σ̄ does not satisfy the DMP:

2x̄(t + 1)ut → min ⇒ u∗
t = −sign ū(t).

At the same time, FMP holds for all optimal processes: M(σ̄) and FMP lead
to the condition

u2
t → min; ut ∈ {−1,+1}.

5 Sufficient Optimality Conditions

We proceed with the natural inequality

ΔJ(σ̄) = J(σ) − J(σ̄) ≥ 0 ∀σ ∈ D,

where the increment ΔJ(σ̄) is described by the exact formula (9) (see also (5)
and (8)).

Let R(t) denote a compact reachable set of discrete system (1), (2) at time
t, and E(t) ⊇ R(t) be its outer estimate by some compact set E(t) ⊂ Rn (here,
t = 1, . . . , N). Introduce the function

μ(t) = min
(x,u)∈E(t)×U(t)

K(t, x, u). (13)

Represent this formula in a more traditional form — introduce the following
objects:

h(t, x, ψ) = min
u∈U(t)

[
H(t, x, ψ, u) + l

(
f(t, x, u)

)]
(14)
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(an analogue of the lower Hamiltonian of problem (P )),

K(t, x) = h
(
t, x, p(t + 1)

) − l(x) − 〈p(t), x〉 (15)

(the extended lower Hamiltonian). So, function μ(t) from (13) can be defined in
the following way:

μ(t) = min
x∈E(t)

K(t, x), t = 1, . . . , N. (16)

By the definition of function μ(t) and formula (9), one obtains the following
sufficient optimality condition:

Theorem 3. Let a process σ̄ =
{
x̄(t), ū(t)

}
satisfy the minimum condition:

K(
t, x̄(t)

)
= μ(t), t = 1, . . . , N,

where functions K and μ are defined by equalities (13)–(16) on some compact
sets E(t) ⊇ R(t), t = 1, . . . , N . Then σ̄ is optimal for (P ).

Theorem 3 gives a first-order sufficient optimality condition, since it uses only
the first derivatives of the input data. However, no convexity assumptions are
imposed.

Note that these conditions are well combined with the necessary conditions of
Theorems 1 and 2, since they are formulated in the same constructions: FMP can
be applied iteratively. Assumed that these iterations stop, the resulting process
can be checked for optimality by Theorem3.

6 Conclusion

In the paper nonlocal necessary and sufficient optimality conditions with feed-
back comparison controls are obtained for nonconvex discrete control problems.
The main results are related to the necessary optimality conditions in the class of
feedback descent controls (Theorems 1 and 2). These conditions are constructive,
independent of DMP, and lead to an efficient iterative algorithm for improving
the control (see, e.g., [9]).

This algorithm seems efficient for solving complex discrete control problems
with terminal constraints on trajectory, using the methods of penalty functions,
modified Lagrangians, etc. Indeed, in all these methods, the associated problems
of unconditional optimization should be also solved globally.

Theoretically, it is of interest to generalize Theorems 1 and 2 to more com-
plex problems with constraints, analyze the connection with the quasi-maximum
condition [5,7] (the influence of the time quantization frequency on the optimal-
ity conditions), the effect of relaxation of the problem, etc. These questions are
also important for the theory of optimal control in differential systems.
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