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Abstract. In this paper, abstract parabolic control systems in Hilbert
space are considered. The state of the system is unknown, but there
is an equation of measurement in discrete times. The initial state and
disturbances are restricted by joint integral constraints. According to
measurements, the information set is introduced that contains the true
state of the system. This set includes all the states of the system that
are compatible with the measurements. The preliminary aim of control
consists in minimization of the terminal criterion depending of the infor-
mation set. We suggest some statements of the problem based on the
separation of control and observation processes. The optimal instants of
transition from estimation to control are looked for as well. The app-
roach is applied to distributed systems with partial derivatives and to
systems with the deviation of time of retarded and neutral types. The
approximation scheme are suggested and examples are considered.
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1 Introduction and Preliminaries

First of all we indicate that problems of control under incomplete information
were investigated in many books and papers [3–8]. The authors use either the
stochastic approach [7] or the minimax deterministic one going back to [3] and
developed in subsequent works. We keep to the deterministic problem formu-
lation in [3,4]. Similar formulations were used and modified in [9–11]. In this
work, we continue and complement [12,13] trying to generalize some results from
[14,15] on the case of infinite-dimensional systems. The algorithm of solution is
developed and special cases are considered for parabolic and hyperbolic partial
differential systems. Examples are examined. We consider also finite dimensional
and numerical approximations for the problem.

1.1 Weak Solutions of Evolutionary Systems

Let V , H be two real Hilbert spaces with norms ‖ · ‖ and | · | respectively.
Suppose that V ⊂ H, V is dense imbedded in H and separable, |v| ≤ γ‖v‖
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for every v ∈ V . The last inequality means that the imbedding V into H is
continuous and the dual space V ∗ contains H∗ = H. The spaces H and H∗ are
identified. Let further a(u, v) be a continuous, bilinear and coercive form on V ,
such that a(v, v) ≥ α‖v‖2, ∀v ∈ V .

Let a function f : [0, T ] → H be measurable and
∫ T

0
‖f(t)‖2dt < ∞. For

every point z0 ∈ H there exists a unique continuous in H function z(t) ∈ V ,
t > 0, such that

d〈z(t), v〉/dt + a(z(t), v) = 〈f(t), v〉, ∀v ∈ V, z(0) = z0. (1)

Here z(t) is implicitly supposed to be weakly absolutely continuous (see [1]).
The form a(u, v) defines a linear continuous operator u → Au ∈ V ∗ according

to the equality a(u, v) = 〈Au, v〉. Define by D(A) the set of all elements h ∈ V ,
for which Ah ∈ H ⊂ V ∗. The operator −A on H is an infinitesimal closed
generator for some strongly continuous semigroup S(t) : H → H (see [1,2]).
Besides the solution of (1) has a form

z(t) = S(t)z0 +
∫ t

0

S(t − s)f(s)ds, (2)

where the integral is understood in Bochner’s sense [2]. Remark that the solution
of (1) may be considered as a generalized solution of Cauchy problem

ż + Az = f(t), z(0) = z0 ∈ H. (3)

The generalized solution of (3) exists, is unique and may be represented by (2).
The solution z(t) is weakly differentiable in H, i.e. the weak limit limδ→0(z(t +
δ) − z(t))/δ = dz(t)/dt there exists a.e. on [0, T ] in weak topology of H.

2 The System and Measurements

Consider a controlled system of the form

ż + Az = Bu(t) + Cξ(t), z ∈ H. (4)

Suppose that the operator A is defined by continuous bilinear form a(u, v) given
on a separable Hilbert space V ⊂ H; B and C are continuous linear operators
from Hilbert spaces H1 and H2 to the H, respectively. Let L2(0, T,Hi) be the
Hilbert space of weakly measurable functions f(t) ∈ Hi such that

∫ T

0
‖f(t)‖2dt ≤

∞. According to Subsect. 1.1, an each pair of functions u(·) ∈ L2(0, T ;H1) and
ξ(·) ∈ L2(0, T ;H2) along with an initial state z0 ∈ H defines a unique weak
solution z(t; z0, u, ξ) of (4). This solution satisfies the equation

d〈z(t), v〉/dt + a(z(t), v) = 〈Bu(t) + Cξ(t), v〉, ∀v ∈ V, z(0) = z0,

and may be represented as

z(t) = S(t)z0 +
∫ t

0

S(t − s)(Bu(s) + Cξ(s))ds. (5)
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In what follows the state z(t) of (4) or (5) is unknown. The available information
about it may be described as follows. Given a uniform partition 0 = t0 < t1 <
· · · < tN = T of [0, T ], ti − ti−1 = T/N = δ, at the instants ti a vector yi =
Gz(ti−1) + wi is observed, where G : H → Rm is a finite-dimensional linear
operator. Unknown disturbances ξ(·), the initial state z0, and vectors wi are
restricted by the joint constraint

‖z0‖2P0
+

∫ T

0

‖ξ(t)‖2Qdt +
N∑

i=1

‖wi‖2R ≤ 1. (6)

Here and further we use the notation ‖u‖2F = 〈u, Fu〉 for a self-adjoint positive
and coercive operator F ; 〈· , ·〉 is an inner product in the corresponding space.
The operators P0, Q, and the matrix R are supposed to be similar to F . Besides,
we have a constraint on the control u(·):

∫ T

0

‖u(t)‖2F dt ≤ 1. (7)

2.1 Transformation to a Discrete-Time System

System (5) with measurements and controls may be represented in a discrete-
time form

zi = Szi−1 + ηi + ξi, where S = S(δ), zi = z(ti), (8)

ηi =
∫ ti

ti−1

S(ti − s)Bu(s)ds, ξi =
∫ ti

ti−1

S(ti − s)Cξ(s)ds,

yi = Gzi−1 + wi, i ∈ 1 : N.

Let us derive constraints on parameters in (8). Denote by ξN
i the set of elements

{ξi, . . . , ξN}. The symbol wN
i has the same meaning. If i = 1, we write ξN =

ξN
1 . Find first the support function (see, for example, [6]) of all the parameters

{z0, ξ
N , wN} according to constraints (6). Let χA(s) be a characteristic function.

We have

max
z0,ξ(·),wN

{
〈k, z0〉 +

N∑
i=1

(
〈li, ξi〉 + 〈mi, wi〉

)}

= max
z0,ξ(·),wN

{
〈k, z0〉 +

∫ T

0

〈 N∑
i=1

χ[ti−1,ti](s)C
∗S∗(ti − s)li, ξ(s)

〉
ds +

N∑
i=1

〈mi, wi〉
}

=

√√√√〈k, P −1
0 k〉 +

N∑
i=1

(
〈li,Cli〉 + 〈mi, R−1mi〉

)
,
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where the self-adjoint positive operator C is defined as

Cl =
∫ δ

0

S(δ − s)CQ−1C∗S∗(δ − s)lds

=
∫ ti

ti−1

S(ti − s)CQ−1C∗S∗(ti − s)lds.

that does not depend on i. Doing the same with the control, we obtain

max
u(·)

{
N∑

i=1

〈li, ηi〉
}

= max
u(·)

{∫ T

0

〈 N∑

i=1

χ[ti−1,ti](s)B
∗S∗(ti − s)li, u(s)

〉

ds

}

=

√
√
√
√

N∑

i=1

(
〈li,Bli〉

)
,

where the self-adjoint positive operator B is defined as

Bl =
∫ δ

0

S(δ − s)BF−1B∗S∗(δ − s)lds. (9)

Now defining B = B1/2 and C = C1/2 we come to the conclusion.

Lemma 1. The discrete-time system (8) with constraints (6), (7) is equivalent
to the system

zi = Szi−1 + Bui + Cvi, with constraints (10)
N∑

i=1

‖ui‖2 ≤ 1, ‖z0‖2P0
+

N∑

i=1

(‖vi‖2 + ‖wi‖2R
) ≤ 1,

yi = Gizi−1 + wi, i ∈ 1 : N.

Proof. It follows from the fact that the support functions of the sets {BuN} and
{z0,CvN , wN} coincide with functions found above. �

Note that the states zi of system (10) are not the approximations of z(ti). We
have the equality zi = z(ti) under some parameters in the systems.

3 Estimation for Discrete-Time Evolutionary Systems

For system (10) the information set Zj(y, u) (see [4]) is defined as follows.

Definition 1. The set Zj(y, u) ⊂ H is said to be informational if it consists
of all vectors zj for which there exist elements z0, vi, wi, such that Eq. (10)
are fulfilled for all i ∈ 1 : j, constraints in (10) hold, and measurements yi =
Gzi−1 + wi are valid for all i ∈ 1 : j.

Introduce the linear operator S(z, v) = Sz + Cv. The representation of Zi(y, u)
is given by
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Theorem 1. The information set is the ellipsoid Zi(y, u) = {z : ‖z−ẑi‖2Pi
+hi ≤

1} with parameters given by the formulas

P−1
i = SJ−1

i S∗ + C, Ji = Pi−1 + G∗RG, (11)
ẑi = Bui + Sži, ži = ẑi−1 + J−1

i G∗R(yi − Gẑi−1),
ẑ0 = 0, hi = hi−1 + ‖yi − Gẑi−1‖2Gi

,

h0 = 0, G−1
i = GP−1

i−1G
∗ + R−1.

The sum ‖z− ẑi‖2Pi
+hi is a minimum of relation ‖z0‖2P0

+
∑i

j=1

(‖vj‖2+‖wj‖2R
)

under the assumption that parameters z0, vj , wj submit the boundary condition
zi = z due to Eq. (10).

Proof. Theorem 1 may be proved by induction. Let ui = 0 and Fi(z, v) = ‖v‖2 +
‖yi − Gz‖2R. Introduce some axillary sets and functions:

Vi(y) = {(z, v) ∈ H × H : Vi−1(z) + Fi(z, v) ≤ 1} ,

Zi(y) = SVi(y), V0(z) = ‖z‖2P0
, i ∈ 1 : N,

Vi(zi) =

⎧
⎨

⎩

min
(z,v)∈Vi(y)

{Vi−1(z) + Fi(z, v) : zi = S(z, v)} , zi ∈ Zi(y),

2, zi �∈ Zi(y).
(12)

The set Vi(y) is said to be compartible with signal at the instant i, the set Zi(y)
is informational at the instant i. So, the sets Zi(y) are images of Vi(y) according
to (10). Let the signal yN be realized under the elements z∗

0 , v∗
i , w∗

i , i ∈ 1 : N .
Then the constraints in (10) are fulfilled with these elements. We assert that sets
Vi(y) and Zi(y) are not empty for all i ∈ 1 : N . The function Vi(zi) is equal to
the minimum of functional F̃i(z0, vi, y) = ‖z0‖2P0

+
∑i

j=1 Fj(zj−1, vj) over all the
elements z0, vi, satisfying to (10) and the boundary condition zi = S(zi−1, vi).
The informational sets Zi(y) are expressed by the inequality Zi(y) = {z ∈ H :
Vi(z) ≤ 1}. Note that the functional F̃i(z∗

0 , vi∗, y) ≤ 1 for all i ∈ 1 : N . Therefore,
the pair (z∗

i−1, v
∗
i ) ∈ Vi(y) and the element z∗

i ∈ Zi(y) ∀i. The sets in (12) are
not empty. The relation Zi(y) = {z ∈ H : Vi(z) ≤ 1} is obvious for i = 1. Indeed,
we have

V1(y) =
{
(z, v) : ‖z‖2P0

+ ‖v‖2 + ‖y1 − Gz‖2R = ‖z − ž1‖2J1
+ ‖v‖2 + h1 ≤ 1

}
,

Z1(y) = SV1(y) =
{
z : ‖z − ẑ1‖2P1

+ h1 = V1(z) ≤ 1
}

.

Here we use the known inverse operator formula R − RG(P + G∗RG)−1G∗R =
(R−1 + GP−1G∗)−1. Let the relation Zi−1(y) = {x ∈ H : Vi−1(x) ≤ 1} be valid
and formulas (11), (12), i ≥ 2, be fulfilled for i − 1. Now, from (12) it follows
that the inclusion zi ∈ Zi(y) results in the existence of pair (zi−1, vi) ∈ Vi(y),
for which zi = S(zi−1, vi). Therefore, Vi(zi) ≤ 1. Conversely, if the last inequal-
ity is valid, then by definition there exists a pair such that zi = S(zi−1, vi) ∈
SVi(y) = Zi(y). Moving back in indexes, we obtain that the inclusion z ∈ Zi(y)
is equivalent to the existence of the set (z0, vi), for which F̃i(z0, vi, y) ≤ 1 and
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z = S(zi−1, vi) under Eq. (10). So, we get minz0,vi F̃i(z0, vi, y) = Vi(z) under the
boundary condition z = S(zi−1, vi). Suppose that Vi−1(z) = ‖z−ẑi−1‖2Pi−1

+hi−1,
i ≥ 2. Then

Vi(y) =
{
(z, v) : ‖z − ẑi−1‖2Pi−1

+ hi−1 + ‖v‖2 + ‖yi − Gz‖2R
= ‖z − ži‖2Ji

+ ‖v‖2 + hi ≤ 1
}
,

Zi(y) = SVi(y) =
{
z : ‖z − ẑi‖2Pi

+ hi = Vi(z) ≤ 1
}

.

We see that values yi − Gẑi−1 and hi do not depend on controls ui. Therefore,
the values Bui are added additively only for the second equality in (11). �


4 Problem Formulation and General Solution

We are going to formulate a problem in which processes of estimation and control
are separate in time. At first the estimation is provided under given control and
we get the information set Zi(y, u). After that the minimax off-line procedure is
realized. Our main control problem consists in finding of the instant i of finishing
observation and passing to the new control on the rest of time.

4.1 Minimax Off-Line Control

From now on we introduce the other compatible set Vi(y, u) of uncertain param-
eters consisting of all pairs (zi, v

N
i+1) that are compatible with the signal yi. The

projection projHVi(y, u) of the compatible set on H coincides with the infor-
mation set Zi(y, u). This new compatible set is defined by the formula

Vi(y, u) =

⎧
⎨

⎩
(z, vN

i+1) : ‖z − ẑi‖2Pi
+

N∑

j=i+1

‖vj‖2 ≤ 1 − hi

⎫
⎬

⎭
,

where parameters are given in (11). Let ũ = uN
i+1 be some controls and ZN (ũ |

Vi(y, u)) be the attainability domain of first equation in (10) with respect to
Vi(y, u) under given further controls ũ. Consider some functional Φ(Z) that
defined on all bounded sets Z ⊂ H. The primary objective of controls consists
in minimization of the cost Φ(ZN (y, u)) that depends on the information set.
At the initial instant we choose optimal control uN,0 that solves the problem
Φ(ZN (uN | V0)) → minuN = r0 and after that it is corrected. Here V0 ={

(z, vN ) : ‖z‖2P0
+

∑N
j=1 ‖vj‖2 ≤ 1

}
and the measurements are not taken into

account.
At any instant i = 1, . . . , N we solve the auxiliary control problem

Φ(ZN (u | Vi(y, u0))) → min
u∈Ui(u0)

= ri(y, u0), (13)

where u0 = uN,0 is a control chosen at initial instant; Ui(u0) is a set of controls
after the instant i, i.e. Ui(u0) =

{
uN

i+1 :
∑N

j=i+1 ‖uj‖2 ≤ 1 − ∑i
j=1 ‖u0

j‖2
}
.

Suppose that there exists at least one optimal control uN,i
i+1 in problem (13).
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4.2 Finding of the Observation Stopping Time

Now we explain how to find the instant i of finishing observation and passing
to the new optimal control uN,i

i+1 of problem (13) on the rest of time. To do the
choice we compare the value ri(y, u0) with value of forecasting

ri(s, yi, us) = max
ys
i+1∈Ys,i(yi,us)

rs(y, u), (14)

where Ys,i(yi, us) = {ys
i+1} is a set of all possible continuations of signal yi up to

the instant s > i. The value (14) is the worst result of control if the system is
located in the position {yi, ui} and up to the instant s the control us

i+1 is used.
We set ri(i, yi, ui) = ri(y, u). Our problem can be repeated [14,15]. Introduce
one more value r i(y, u) = mins∈i:N ri(s, yi, us). Let us be already located in
position {yi, ui}, where ui is a part of control uN previously found. In this case,
we verify the condition r i(y, u) < ri(y, u), (i ∈ 1 : N − 1). If this holds, then
the control uN

i+1 does not change. Otherwise, we pass to the new control uN,t
t+1,

delivering the minimum in (13). So, the first instant i such that

r i(y, u) ≥ ri(y, u), where i ∈ 1 : N − 1, (15)

we call the observation stopping time. In this instant i the observation is stopped
and we pass the optimal off-line control in problem (13).

Consider some particular cases. Let u = uN,0. If r 1(y, u) ≥ r1(y, u), then
the observation is stopped at first instant. From the other hand, suppose that
relations (15) are not valid for all i ∈ 1 : N − 1 and

∑N
i=1 ‖u0

i ‖2 < 1. In this
case, the observation continues all the time, but the resource of control is not
exhausted at the last instant N . Therefore, we can solve the minimax problem
Φ(ZN (y, u)) → minuN

, ‖uN‖2 ≤ 1 − ∑N
i=1 ‖u0

i ‖2, and regard optimal ũN as an
additional control action at the last instant.

4.3 An Algorithm of Repeated Correction

If we can continue observation after any stopping time, then the following algo-
rithm of repeated correction can be proposed.

1. We find the value r0 and optimal control uN,0 before any observations.
2. At i = 1 we decide if this control has to be changed, i.e. if the value

r 1(y, uN,0) < r1(y, u1,0) then the control uN,0 should be kept. Otherwise,
we pass to the new control uN,1

2 , delivering the minimum in (13).
3. In position {yi, ui}, where ui is a part of control uN previously found, we

verify the condition (15), where i ∈ 1 : N − 1. If this holds, then we pass to
the optimal control uN,i

i+1, delivering the minimum in (13).
4. In any case, if at the last instant N the inequality

∑N
i=1 ‖ui‖2 < 1 is

obtained, we solve the minimax problem Φ(ZN (y, u)) → minuN
, ‖uN‖2 ≤

1−∑N
i=1 ‖ui‖2, and regard optimal ũN as an additional control action at the

last instant.
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According to the algorithm, we obtain the sequence {τ1, τ2, . . . } of instants where
control has been changed. This sequence depends on the signal. In particular, the
sequence may be empty when observations are bad for control, or it may coincide
with the set 1 : N − 1, when, on the contrary, the observations give essential
information. The values ri = rτi(y, u) form the nonincreasing sequence. Here the
strong inequalities ri > ri+1 hold if τi+1 − τi ≥ 2. In the case τi+1 − τi = 1 the
strong inequality ri > ri+1 holds if and only if the signal yτi+1 is not the worst.

Instead of inequality (15) at every instant i < N , we may check the simpler
condition rt(t+1, yt, ut+1) < rt(y, u). If it is fulfilled, then the control uN

t+1 does
not change. Otherwise, we pass to the new control uN,t

t+1 in problem (13).

5 A Special Case of the Terminal Cost

Let the terminal functional has the form Φ(Z) = maxz∈Z ‖Δz‖, where Δ : H →
Rk is a linear finite-dimensional operator and ‖ · ‖ is the Euclidean norm. In this
case, we can obtain formulas (13)–(15) in more detail.

First of all we describe all the continuations of the signal.

Lemma 2. A signal ys
i+1 is a continuation of the signal yi iff there exists a

sequence ϕs
i+1 such that

s∑

j=i+1

‖ϕi‖2Gi
≤ 1 − hi, and ẑj = Buj + S(ẑj−1 +

J−1
j G∗Rϕj), yj = Gẑj−1 + ϕj , for j ∈ i + 1 : s.

This lemma follows from Eq. (12). Below we use vectors l ∈ Rk as column-vectors
and the symbol l′ is used for row-vector. Then we have the relation

ri(y, u) = max
l′l≤1

{

γi(l)ẑi −
(

1 −
i∑

j=1

‖ui‖2
)1/2( N∑

j=i+1

γj(l)Bγ∗
i (l)

)1/2

+ (1 − hi)1/2 (π0(i)(1 − l′l) + l′ΔPN,iΔ
∗l)1/2

}

, (16)

where γj(l) = γj+1(l)S, γN (l) = l′Δ; Pj,i = SPj−1,iS
∗ + C, Pi,i =

P−1
i ;π0(i) = maxl′l≤1 l′ΔPN,iΔ

∗l. Using Lemma 2, we obtain

ri(s, y
i, ui) = max

l′l≤1

{
γi(l)ẑi +

s∑
j=i+1

γj(l)Buj −
(

1 −
s∑

i=1

‖ui‖2

)1/2

·
( N∑

j=s+1

γj(l)Bγ∗
j (l)

)1/2

+ (1 − hi)
1/2(π0(s)(1 − l′l) + l′ΔPN,iΔ

∗l)1/2

}
. (17)

Formulas (16)–(17) are established similarly to [4,9]. In addition, let us note that
optimal control is on the formula

u0
j = −Bγ∗

j (l0)
(

1 −
j∑

i=1

‖ui‖2
)1/2( N∑

i=j+1

γi(l0)Bγ∗
i (l0)

)−1/2

, j > i,

where l0 is a maximizer in formula (16) which does not convert the corresponding
sum into zero.
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6 A Finite-Dimensional Approximation

Let us return to general relations in Sect. 1, where V is a separable Hilbert space
and a(u, v) is a bilinear form with properties:

a(v, v) ≥ α‖v‖2, a(u, v) ≤ β‖u‖‖v‖. (18)

Given finite-dimensional subspace F ⊂ V , define Ritz’s projector Π : V → F as
a(v, u − Πu) = 0, ∀v ∈ F (see [16]). The following estimate holds:

‖u − Πu‖ ≤ βd(u,F)/α, where d(u,F) = min
v∈F

‖u − v‖. (19)

Consider an increasing sequence Fn of finite-dimensional subspaces Fn ⊂
Fn+1 ⊂ V such that the distance d(u,Fn) → 0 as n → ∞ ∀u ∈ V . Such a
sequence is called complete. The proof of following lemma may be found in [16]
or somewhere.

Lemma 3. Let u : [0, T ] → V be a continuous function and Fn be a complete
sequence of finite-dimensional subspaces. Then the real function ‖u(t)−Πnu(t)‖
tends to zero uniformly in t ∈ [0, T ], where Πn : V → Fn is the Ritz projector.

Let H be another Hilbert space and let the space V ⊂ H be densely imbedded
in H as in Sect. 1. The linear operator A with a dense domain D(A) ⊂ V has
been defined as a(u, v) = 〈Au, v〉H , ∀v ∈ V . The dual operator A∗ is defined
by the relation a(u, v) = 〈u,A∗v〉H , ∀u ∈ V . The operator −A∗ is a infinitesi-
mal generator for the semigroup S∗(t) (see, for example, [17]). In addition, the
function ψ(t) = S∗(t)ψ, where ψ ∈ H, is defined a weak solution of equation

d〈v, ψ(t)〉H/dt + a(v, ψ(t)) = 0 ∀v ∈ V, ψ(0) = ψ.

This equation is similar to (1). Let us remind that the inclusion z0 ∈ D(A)
implies z(t) = S(t)z0 ∈ D(A) for all t ≥ 0 and

dz(t)/dt + Az(t) = 0, (20)

i.e. z(t) is a strong solution of Eq. (20).
Suppose that the increasing sequence Fn ⊂ V of finite-dimensional subspaces

is complete. Consider the problem

d〈zn(t), vn〉/dt + a(zn(t), vn) = 〈f(t), vn〉 ∀vn ∈ Fn, zn(0) = zn, (21)

where one needs to find a function zn(t) ∈ Fn. The problem (21) is called
the Galerkin-type finite-dimensional approximation of problem (1). We need the
following

Theorem 2 ([18]). Let zn → z in the space H as n → ∞. Then the solution
zn(t) of problem (21) uniformly converges on [0, T ] to the solution z(t) of problem
(1) in the space H.
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Let e1, . . . , en be a basis in the space Fn. We set

zn(t) =
n∑

j=1

qj(t)ej , zn =
n∑

j=1

qjej .

A finite-dimensional approximation of problems in Sect. 4 with respect to the
complete sequence Fn of subspaces is as follows. Problem (21) is equivalent to
the solution of differential equations in matrix form:

Mq̇ + Kq = f(t), q0 = [q1; . . . ; qn], f(t) = [〈f(t), e1〉; . . . ; 〈f(t), en〉],

where M (detM �=0) and K have elements 〈ei, ej〉 and a(ei, ej) respectively. The
solution of the system for our problems may be written similarly to (5):

q(t) = Sn(t)q0 +
∫ t

0

Sn(t − s)(Bnu(s) + Cnv(s))ds, (22)

where Sn(t) = exp(−M−1Kt) is the transition matrix having n × n-dimension,
u(t) and v(t) are n-dimensional measurable functions. Matrices Bn and Cn

have the similar structure and represent a multiplication of matrix M−1 and
the square root of matrices with elements 〈ei, BF−1B∗ej〉 and 〈ei, CQ−1C∗ej〉
respectively. Constraints (6) and (7) are transformed to

‖q0‖2Pn
0

+
∫ T

0

‖v(s)‖2ds +
N∑

i=1

‖wi‖2R ≤ νn,

∫ T

0

‖u(s)‖2ds ≤ μn. (23)

Measurement equation from (8) has the form

yi = Gnq(ti) + wi, Gn = [Ge1, . . . , Gen] ∈ Rk×n. (24)

Problems of Sects. 4 and 5 may be solved for relations (22)–(24) as described
above.

Let us explain the appearance of numbers μn and νn in constraints (23).
The matter is that the system (10) is infinite-dimensional and, therefore, the
signal yN of this system in some cases can not be realized in finite-dimensional
approximation (22)–(24) if we set μn = 1, νn = 1. But under some μn > 1,
νn > 1 the finite-dimensional formulas like (13)–(17) are valid. Moreover, we get

Theorem 3. There exist sequences μn ↓ 1, νn ↓ 1 as n → ∞ such that for-
mulas like (11)–(17) for finite-dimensional approximation (22)–(24) hold and
rn
i (y, u) → ri(y, u), rn

i (s, yi, ui) → ri(s, yi, ui) as n → ∞ in relations (16), (17).

In the general case, it is hard to obtain the estimates of velocity for convergence
μn ↓ 1, νn ↓ 1 with respect to parameters α, β in (18), (19).
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6.1 An Application to Heat Equation

Let the controlled system be described by the equations

zt = zxx + u(t)f(x), x ∈ [0, l], t ≥ 0, with boundary conditions (25)
zx(t, 0) = z(t, 0), zx(t, l) = −z(t, l).

Here f(x) is a smooth function on [0, l], u(t) is a control. This system describe the
heat process for the uniform bar. In our situation H1 = R, C = 0, V = H1(0, l),
H = L2(0, l) where H1(0, l) is the Sobolev space with parameter k = 1. The
operator B : R → L2(0, l) has the form Bu = uf(x). Dual operator B∗ :
L2(0, l) → R is written as B∗φ =

∫ l

0
f(x)φ(x)dx, φ ∈ L2(0, l). The weak form of

considered system is obtained by the multiplication of (25) by φ ∈ H1(0, l) with
subsequent integration on [0, l] using boundary conditions. The form a(φ, ψ) may
be written as

a(φ, ψ) =
∫ l

0

φ̇(x)ψ̇(x)dx + φ(l)ψ(l) + φ(0)ψ(0).

The coercivity follows from Friedrich’s inequality. So, relation (1) for system (25)
looks like

∂

∫ l

0

z(t, x)φ(x)dx/∂t + a(z(t, ·), φ(·)) = u(t)
∫ l

0

f(x)φ(x)dx

for all φ ∈ H1(0, l), z(0, x) = z0(x).
Let us divide the segment [0, l] by n subsegments of length l/n. Let xi,

i ∈ 0 : n, be the points of partition. For the space Fn we consider piecewise-
linear functions ei(x), for which ei(xi) = 1 and ei(xj) = 0 if i �= j. The sequence
of finite-dimensional subspaces Fn with basis ei(x), i ∈ 0 : n, is complete. There-
fore, we can perform the approximation. Suppose that measurement equations
are of the form

yi =
∫ l

0

b(x)z(ti−1, x)dx + wi, i ∈ 1 : N, where b(·) ∈ L2(0, l).

Consider the (n + 1) × (n + 1)-matrices M with elements Mij =
∫ l

0
ei(x)ej(x)dx

and K with elements Kij = a(ei, ej). The M is a three-diagonal symmetric
matrix, where M00 = Mnn = l/(3n) and other diagonal elements are equal to
2l/(3n). The secondary diagonal elements are equal to l/(6n). The K is also
a three-diagonal symmetric matrix, where K00 = Knn = n/l + 1 and other
diagonal elements are equal to 2n/l. The secondary diagonal elements of K are
equal to −n/l. If f(x) ≡ 1, then we obtain the finite-dimensional system

Mq̇ + Kq = u(t)f , where f = l[1; 2; . . . ; 2; 1]/(2n) ∈ Rn+1. (26)

Let b(x) ≡ 1. Then measurement Eq. (24) has the form

yi = Gnq(ti−1) + wi where Gn = f ′.
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Suppose that initial constraints (6), (7) may be written as

∫ l

0

z2(0, x)dx +
N∑

i=1

w2
i ≤ 1,

∫ T

0

u2(t)dt ≤ 1.

It follows from this that constraints (23) are:

‖q0‖2M +
N∑

i=1

w2
i ≤ μn,

∫ T

0

u2(t)dt ≤ 1.

We need not to increase the constraints for u(·), but we do it for q0 and wi in
order to include the sequence yN in the scope. After that we need to convert
the continuous system (26) to discrete one of the type (9), (10). Many solved
examples of such a finite-dimensional problems where considered in [12,13,19].

7 Conclusion

We considered a control problem with incomplete information for abstract
parabolic control systems in Hilbert space. Information about the system state
are known in discrete instants. According to measurements, the information set
was introduced that contained the true state of the system. This set included all
the states of the system that were compatible with the measurements. For the
terminal criterion depending of the information set, we suggested some state-
ments of the problem based on the separation of control and observation pro-
cesses. The optimal instants of transition from estimation to control were looked
for as well. The approach was applied to distributed systems with partial deriva-
tives. The approximation scheme was suggested and example with heat equation
was considered. In this research some aspects demand more detailed study. For
example, we need to obtain the estimates for values μn, νn, and convergence
speed for parameters in Theorem 3. It is interesting to expand the approach to
the case of continuous measurements.
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