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Abstract. The Capacitated Vehicle Routing Problem with Time Win-
dows (CVRPTW) is the well-known combinatorial optimization problem
having numerous valuable applications in operations research. Unlike the
classic CVRP (without time windows constraints), approximation algo-
rithms with theoretical guarantees for the CVRPTW are still developed
much less, even for the Euclidean plane. In this paper, perhaps for the
first time, we propose an approximation scheme for the planar CVRPTW
with non-uniform splittable demand combining the well-known instance
decomposition framework by A. Adamaszek et al. and Quasi-Polynomial
Time Approximation Scheme (QPTAS) by L. Song et al. Actually, for
any ε ∈ (0, 1) the scheme proposed finds a (1+ε)-approximate solution of
the problem in polynomial time provided the capacity q and the number

p of time windows does not exceed 2logδ n for some δ = O(ε). For any
fixed p and q the scheme is Efficient Polynomial Time Approximation
Scheme (EPTAS) with subquadratic time complexity.

Keywords: Capacitated vehicle routing problem · Time windows ·
Splittable demand · Polynomial time approximation scheme

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is the famous combinatorial
optimization problem, which was introduced by Dantzig and Ramser in their
seminal paper [9] and has a wide range of relevant applications in practice (see,
e.g. [30]). In the simplest setting of the problem, we are given by a finite set
of customers having the same unit demand and a fleet of identical capacitated
vehicles located initially at a single depot. The goal is to construct a collection
of vehicle routes minimizing the total transportation cost and servicing all the
customers.

The Capacitated Vehicle Routing Problem with Time Windows (CVRPTW)
[20,30] is an extension of the CVRP, where service of each customer should start
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at a specified time interval, called a time window. CVRP with hard windows
is widely applicable in natural gas distribution [7], dial-ride company planning
[11], continent-scale distribution of building materials [23], low-carbon economy
[26], and other practical transportation problems [25].

The problem is well-investigated by specialists in the field of exact methods,
heuristics, and meta-heuristics. Recently, a significant progress was achieved in
solving practically important instances of the CVRPTW by local-search heuris-
tics [13], Tabu-search [29], genetic [31], memetic [6,21], ant colony algorithms
[22], and their combinations (see, e.g. [8]).

Nevertheless, approximation results for this problem in the class of algo-
rithms with theoretical guarantees are still extremely rare. To the best of our
knowledge, they are exhausted by the Quasi-Polynomial Time Approximation
Scheme (QPTAS) proposed in [28] and extended recently to the case of multiple
depots [27] and our recent Efficient Polynomial-Time Approximation Schemes
(EPTAS) for the CVRPTW with any fixed capacity and number of time win-
dows. In addition, all known results relate to the special setting of the problem,
where all customers have the same unit demand.

Our Contribution. In this paper, perhaps for the first time for the CVRPTW
with non-uniform demand, we propose an approximation scheme with theoret-
ically proved time complexity bounds. Our scheme extends the decomposition
framework introduced by Adamaszek et al. in [1] for efficient approximation of
the simplest unit-demand CVRP on the Euclidean plane to more general case
of the problem to take into account additional time windows constraints and a
non-uniform splittable customer demand.

The rest of this paper is structured as follows. In Sect. 2, we give a short
overview of known approximation results for the CVRPTW in the class of algo-
rithms with theoretical bounds. In Sect. 3, we recall the mathematical setting
of the CVRPTW with non-uniform demand. Section 4 presents the mail idea of
the proposed scheme. In subsequent sections, we discuss this scheme in detail.
We start in Sect. 5 with basic known results needed for the subsequent construc-
tions. Then, in Sect. 6 we present our approximation scheme with a proof of
its accuracy bound. Time complexity bounds are proved in the Sect. 7. Finally,
in Sect. 8, we summarize the results obtained and list some questions that still
remain open.

2 Related Work

Being an extension of the well-known strongly NP-hard Traveling Salesman
Problem (TSP) [30], the Capacitated Vehicle Routing Problem is also strongly
NP-hard even in the Euclidean plane [24] provided the capacity q belongs to the
input. The metric CVRP remains intractable and APX-hard even for any fixed
q ≥ 3 and for the two-valued {1, 2}-metric.

For the Euclidean CVRP, the first approximation results date to the seminal
paper by Haimovich and Rinnooy Kan [12], where the first PTAS for the CVRP
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on the plane and capacity q = o(log log n) and first constant-factor algorithms
for an arbitrary metric were introduced. Then, in [3] an improved scheme, whose
running time retains polynomial for the wider range q = O(log n/ log log n), was
proposed.

The ideas proposed by Arora in his celebrated paper [2] were used by Das
and Mathieu to design their Quasi-Polynomial Time Approximation Scheme
(QPTAS) [10] for the general case of the planar Euclidean CVRP. Their QPTAS
finds a (1 + ε)-approximate solution of this problem (for the case, when q is a
part of the instance) in time n(log n)O(1/ε)

. Using this QPTAS as a black-box,
Adamaszek, Czumaj, and Lingas [1] showed that (1 + ε)-approximate solution
of the planar CVRP can be found in polynomial time, if q ≤ 2log

δ n for some
δ = δ(ε). Some aforementioned results were extended to the case of Euclidean
spaces of an arbitrary finite dimension [14,18,19] and several special graphs [4,5].

Unlike CVRP, approximability of the Euclidean CVRPTW is much less inves-
tigated. To the best of our knowledge, the family of known approximation algo-
rithms for this problem is exhausted by a Quasi-Polynomial Time Approxima-
tion Scheme (QPTAS) developed in [27,28] for the general case of the prob-
lem and approximation schemes for the case of max{p, q} = o(log log n) and
p3q4 = O(log n), where p is the number of time windows, proposed in [16] and
[15,17], respectively.

All aforementioned results for the CVRPTW relate to the simplest setting
of the problem, when all customers have the same unit demand. In this paper,
we try to bridge this gap and to propose an approximation scheme for the case
of the CVRPTW with a non-uniform splittable demand.

3 Problem Statement

We consider the Euclidean Capacitated Vehicle Routing Problem with Time
Windows and non-uniform Splittable customer Demand (CVRPTW-SD). For
the sake of simplicity, we restrict ourselves to the case of the Euclidean
plane, pairwise disjoint time windows, and a single depot. An instance of the
CVRPTW-SD is defined by

– a set X = {x1, . . . , xn} of customer locations (customers) on the Euclidean
plane and a dedicated location y also known as depot, such that, for any
locations v1, v2 ∈ X ∪ {y}, transportation cost associated with the direct
move from v1 to v2 coincides with ‖v1 − v2‖2

– a natural-valued function d specifying demand d(x) of any customer x ∈ X
that should be serviced by one or more vehicle routes

– an unbounded fleet of vehicles having the same integer capacity q and located
initially in the depot y

– a linearly ordered set T = {T1, . . . , Tp} of the consecutive time windows, such
that the demand d(x) of any customer x should be fulfilled within the given
time window T (x) ∈ T ; we assume that, for any 1 ≤ j < p, the time window
Tj precedes Tj+1 and use the notation Tj ≺ Tj+1.
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The goal is to satisfy the demand of each customer minimizing the total trans-
portation cost with respect to the capacity and time windows constraints.

Mathematically, an instance of the CVRPTW-SD is given by a complete
node- and edge-weighted graph G = (X ∪ y,E, d, w), natural number q, and a
partition

X1 ∪ . . . ∪ Xp = X, where Xj = {xi ∈ X : T (xi) ∈ T }, (j ∈ {1, . . . , p}). (1)

To any customer node xi ∈ X, the weighting function d assigns1 the positive
integer demand di = d(xi), while the function w defines the transportation cost
w(v1, v2) = ‖v1 − v2‖2 for any edge e = {v1, v2} ∈ E.

A feasible route is an ordered pair Rj = (Rj ,Dj), where Rj = y, xi1 , . . . , xis
, y

is a simple cycle in the graph G and the n-tuple Dj = (d1j , . . . , dnj) satisfying
time windows

T (xil
) � T (xil+1), (1 ≤ l < s)

and capacity
1 ≤ dilj ≤ dil

, (1 ≤ l ≤ s)

dij = 0, i 	∈ {i1, . . . , is}
n∑

i=1

dij ≤ q

constraints, where dij is a part of the i-th customer demand covered by the route
Rj . To any feasible route R, we assign the transportation cost

w(R) = w(y, xi1) + w(xi1 , xi2) + . . . + w(xis
, y).

The goal is to find, for some m ≥ 1, a minimum cost multi-cover U =
(R1, . . . ,Rm) of the graph G, satisfying the total customer demand, i.e.

m∑

j=1

dij = di, (1 ≤ i ≤ n).

In the sequel, we propose a novel approximation scheme for this problem,
which is an Efficient Sub-Quadratic Approximation Scheme for any fixed capac-
ity q and the number p of time windows retaining the polynomial running time,
when max{p, q} ≤ 2log

δ n for some δ = δ(ε).

4 Main Idea

Our scheme extends the approach proposed by Adamaszek et al. in [1] to the
more general case of the Capacitated Vehicle Routing Problem augmented by
non-uniform splittable customer demand and time windows constraints. In this
section, we give a short overview of the scheme, which consists of the following
stages.
1 Without loss of generality, we can can assume that d(y) = 0, for the depot y.
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Preprocessing. To any customer xi, we assign the distance ri = w(y, xi) from
the depot y and relabel the customers in non-increasing order of these distances,
i.e., r1 ≥ . . . ≥ rn. Then, given an ε > 0, we set a tolerance threshold

ρ =
r1ε

N
, where N =

n∑

i=1

⌈
di

q

⌉
, (2)

and exclude all the customers xi, for which ri ≤ ρ.

Rounding. We reduce the given instance of the CVRPTW-SD to an appropriate
instance of the special kind, which we call rounded. To proceed with such a reduc-
tion, we draw a number of circles centered at the depot y and separating them
into equal sectors by rays spreading from this depot and introduce an accuracy
dependent grid consisting of locations, which are the intersections between circles
and rays. We divide each location to p slots by the number of given time win-
dows and move any customer xi to the corresponding slot of the closest location.
Finally, we show that any (1 + ε)-approximate solution of the rounded instance
obtained can be efficiently transformed to a (1 + O(ε))-approximate solution of
the initial one. Therefore, in the sequel, we assume that the given instance is
rounded.

Decomposition. At this stage, we decompose the given rounded CVRPTW-SD
instance into a number of independent subinstances of two kind, we call them
white and gray, which can be solved in parallel. We show that, to obtain an
(1+O(ε))-approximate solution of the initial instance, it is sufficient to construct
(1 + ε)-approximate solution of any white subinstance and approximate any
gray subinstance by an appropriate adaptation of the well-known Iterative Tour
Partition (ITP) heuristic [12]. Then, following [1], we show that any subinstance
(white or gray) can be efficiently reduced to an equivalent one, whose total
demand does not exceed a polynomial of the capacity q, the number of time
windows p and 1/ε.

Blackboxing. Finally, we complete our approximation scheme by employing the
QPTAS proposed in [28] and our extension of the ITP heuristic [16] to find
approximate solutions of all the reduced white and gray subinstances, respec-
tively.

5 Preliminaries

We start with some necessary definitions and facts. All of them remain valid
not only for the planar setting of the CVRPTW considered in this paper but
also for the general metric CVRPTW defined by an arbitrary non-negative edge-
weighting function w satisfying the triangle inequality.
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Lemma 1. For any instance of the CVRPTW-SD, such that r1 ≥ . . . ≥ rn,
ri = w(y, xi), the following inequality

OPT ≥ max

{
TSP∗(X ∪ {y}), 2r1,

2
q

n∑

i=1

diri

}
(3)

is valid, where TSP∗(X ∪{y}) is the optimum value of the TSP instance defined
by the graph G = G(X ∪ {y}, E,w).

Proof. Since the inequalities OPT ≥ TSP∗(X ∪{y}) ≥ 2r1 are a straightforward
consequence of the triangle inequality, we prove the bound OPT ≥ 2

q

∑n
i=1 diri.

Let U = {R1, . . . ,Rm} be an arbitrary optimum solution of the given CVRP-
TW-SD instance. For each j ∈ [m] = {1, . . . , m}, introduce the non-empty subset
X(Rj) = {xi ∈ X : dij > 0} of customers visited by the route Rj . Since, for any
xi ∈ X(Rj), 2ri = w(y, xi) + w(xi, y) ≤ w(Rj), by the triangle inequality, the
following equation

dij∑n
l=1 dlj

w(Rj) ≥ 2dij∑n
l=1 dlj

ri

is valid for each customer xi ∈ X. Therefore,

w(Rj) =
∑n

i=1 dij∑n
l=1 dlj

w(Rj) ≥ 2
∑n

i=1 dijri∑n
l=1 dlj

≥ 2
q

n∑

i=1

dij .ri,

since q ≥
∑n

l=1 dlj, and

w(U) =
m∑

j=1

w(Rj) ≥ 2
q

m∑

j=1

n∑

i=1

dijri =
2
q

n∑

i=1

ri

m∑

j=1

dij =
2
q

n∑

i=1

diri.

Lemma is proved.

The well-known Iterative Tour Partition (ITP) heuristic introduced in [12] for
the metric Capacitated Vehicle Routing Problem (CVRP) with unit demand can
be defined as follows. Consider an instance of the metric CVRP defined by the
complete edge-weighted graph G = G(X ∪ {y}, E,w) and capacity q. Suppose,
we are given by an arbitrary Hamiltonian cycle H in the subgraph G〈X〉 induced
by the customer subset X. Starting at some customer x, cut the cycle H onto
l = �n/q chains, where n = |X|, such that each chain, except maybe the last
one, visits q customers exactly. For any chain obtained, connect its endpoints
with the depot y directly constructing the set S(x) of l routes. Proceed with
the similar procedure taking each other customer x ∈ X as a staring point and
output the route set

SITP = arg min{w(S(x)) : x ∈ X}

of the minimum cost. The following lemma [12] gives an upper bound for the
cost of the obtained solution.
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Lemma 2.

w(SITP) ≤ 2
⌈

n

q

⌉ ∑n
i=1 ri

n
+(1−1/q)w(H) ≤

(
1 +

q

n

)
· 2
q

n∑

i=1

ri +(1−1/q)w(H).

In [17], we extend ITP heuristic to the case of the metric CVRPTW with uniform
demand. For the sake of completeness, we present this technique in this paper
in Algorithm 1, which can be easily adapted to the case of the metric CVRPTW
with non-uniform splittable demand.

Algorithm 1. The ITP heuristic for the metric CVRPTW
Input: an instance of the metric CVRPTW defined by a complete graph
G(X ∪ {y}, E, w), capacity q, and partition X1 ∪ . . . ∪ Xp = X
Parameter: β-approximation algorithm Aβ for the metric TSP
Output: an approximate solution SITP of the given CVRPTW instance

1: using Aρ obtain a ρ-approximate metric TSP solution H for the subgraph G〈X〉
2: by shortcutting, split the cycle H into smaller cycles H1, . . . , Hp, s.t. Hj spans

customers from Xj

3: for each cycle Hj do
4: for each x ∈ Xj do
5: starting from the node x, split the cycle Hj into lj = �|Xj |/q� chains, s.t. each

of them, except maybe one, spans q vertices
6: connecting endpoints of each chain with the depot y directly, construct a set

S(x) of lj routes
7: end for
8: put Sj = arg min{w(S(x)) : x ∈ Xj}
9: end for

10: output the solution SITP = S1 ∪ . . . ∪ Sp.

Indeed, to obtain an ITP-based approximate solution in this case, we repre-
sent each customer xi with demand di by the family of di its unit-demand copies
and reduce the initial instance to the obtained instance of the metric CVRPTW
with unit demand defined by the auxiliary graph on D = 1+

∑n
i=1 di nodes. For

the weight w(SITP) of the resulting solution, we obtain the following bound.

Lemma 3.

w(SITP ) ≤ 2 ·
(

2
q

n∑

i=1

diri

)
+ pw(H) ≤ 2 ·

(
2
q

n∑

i=1

diri

)
+ pβ · TSP∗(X).

Proof. Indeed, applying Lemma2 to each customer subset Xj , we obtain

w(Sj) ≤
(

1 +
q

Dj

)
· 2
q

∑

xi∈Xj

diri +(1−1/q)w(Hj) ≤ 2 ·

⎛

⎝2
q

∑

xi∈Xj

diri

⎞

⎠+w(H),

where Dj =
∑

xi∈Xj
di. Since w(SITP) =

∑p
j=1 w(Sj) and W (H) ≤ βTSP∗(X),

Lemma is proved.
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Finally, we present the following fact taken from [1], which helps us to reduce
the instance in question to the equivalent one with much less total demand and to
prove a polynomial time complexity bound of the scheme proposed. Hereinafter,
we call a feasible route R non-trivial, if it visits at least two distinct customers,
i.e. |X(R)| > 1. Otherwise, the route is called trivial.

Lemma 4. For any instance of the CVRPTW-SD, there exists an optimum
solution U = {R1, . . . ,Rm}, such that, among its m routes, at most |X| are
non-trivial.

Actually, Lemma 4 was proven in [1] for a more restricted case, i.e. the unit-
demand CVRP free of the time windows constraints. But this result can be
easily extended to the CVRPTW with splittable non-uniform demand. For the
sake of brevity, we skip the proof this claim, postponing it to the forthcoming
paper.

6 Approximation Scheme

It this section, we describe our approximation scheme following the overview
presented in Sect. 4 and prove its correctness.

Suppose, we are given by ε ∈ (0, 1) and an instance of the Euclidean
CVRPTW-SD on the plane defined by a complete node- and edge-weighted
graph G = (X ∪ {y}), E, d, w), capacity q ∈ N, and partition X1 ∪ . . . ∪ Xp = X
induced by an ordered set T = {T1, . . . , Tp} of consecutive disjoint time windows
(see Sect. 3 for details). In this section, we show how to construct an (1 + ε)-
approximate solution of this instance.

6.1 Instance Preprocessing

Discuss the details of an approximation scheme proposed by us. Firstly, reorder-
ing the customers X by decreasing their distances r(x) to the depot y. Then,
we can notify that some customers can be ignoring with respect to the fixed ε.
We start with assigning to each customer xi the distance ri = w(xi, y) from the
depot y and reordering them by descending the distances r1 ≥ . . . ≥ rn. Then,
we show that, during construction an (1+ε)-approximate solution we can ignore
the customers, which are located sufficiently close to the depot in accordance to
formula (2).

Lemma 5. Demand of all customers, for which ri ≤ ρ, can be serviced by routes
of at most ε · OPT total cost.

Proof. Indeed, for any customer xi, its demand di can be serviced by �di/q
trivial routes, each of them has the cost 2ri. Therefore, for the total cost Cρ, we
have

Cρ ≤
n∑

i=1

2ri

⌈
di

q

⌉
≤ 2ρ · N ≤ 2N

εr1
N

≤ 2εr1 ≤ ε · OPT,

where the last inequality follows from Lemma 1. Lemma is proved.
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In the sequel, without loss of generality we assume that the equation ρ ≤ ri ≤ r1
holds for any customer xi ∈ X.

6.2 Rounding

In this section, we reduce the given instance to a special one, which we call
rounded. To proceed with this reduction, we introduce the accuracy dependent
grid induced by the circles centered at the depot y of radii

ρi = ρ

(
1 +

ε

q

)i

, 0 ≤ i ≤ �log1+ ε
q

N/ε (4)

and rays spreading from y dividing each disk into s = �2πq/ε equal circular
sectors with central angle 2π/s. We call locations the obtained intersection points
between rays and circles. To any location, we assign p slots, by the number of
different time windows. Then, we move each customer xi ∈ Xj to the j-th slot
of the nearest location such that, each slot accumulates the total demand of all
customers that are moved to it. Since the number of circles and rays are

log1+ ε
q

N

ε
= Θ

(
q

ε
log

N

ε

)
and Θ

(q

ε

)
,

respectively, the total number of slots is Θ
(
p ·

(
q
ε

)2 log N
ε

)
.

Thus, we reduce the initial instance to the special instance of the Euclidean
CVRPTW-SD (we call it rounded), whose customers are slots assigned to grid
locations.

Lemma 6. The proposed reduction changes the cost of any solution by at most
ε · OPT.

Proof. Indeed, consider an arbitrary customer x with demand d(x) located at a
distance r(x) from the depot y, between two neighboring circles of radii ρi and
ρi+1 (Fig. 1). It is easy to verify that the distance between x and the nearest
location l has the following upper bound

‖x − l‖2 ≤ p1 + p2 ≤ r(x)α/2 + (ρi+1 − ρi)/2.

Therefore,
‖x − l‖2 ≤ r(x)

ε

q
,

since α ≤ ε/q, ρi+1 = ρi(1 + ε/q), and r(x) ≥ r(x), by construction. Since an
arbitrary feasible solution visits each customer xi by at most di routes, the total
change of its cost induced by moving all the customers to slots at the closest
locations does not exceed

ε · 2
q

n∑

i=1

diri ≤ ε · OPT,

by Lemma 1. Lemma is proved.

Thanks to Lemma 6, in the rest of this paper, we can assume without loss of
generality that each CVRPTW-SD instance considered is rounded.
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Fig. 1. Moving the customer x to the slot at the nearest location l

6.3 Instance Decomposition

In this section, we show that any rounded instance of the CVRPTW-SD can be
decomposed into an appropriate collection of subinstances, which can be solved
in parallel, such that (1 + ε)-approximate solution of the initial instance can be
combined from the approximate solutions of the subinstances obtained.

We start this decomposition with partitioning the enclosing disk (of radius
r1) to rings, such that each ring (except maybe the most inner one) consists
of k = �log1+ ε

q

5
ε consecutive circles. Then, each regular ring K has an inner

radius rin = ρ(1 + ε/q)i for some 0 ≤ i ≤ �log1+ ε
q

N/ε and the outer one

rout = rin(1 + ε/q)k. By W (K) we denote a width of the ring K. Since

W (K) = rin

((
1 +

ε

q

)�log1+ ε
q

5
ε �

− 1

)
≥ rin

((
1 +

ε

q

)log1+ ε
q

5
ε

− 1

)

= rin

(
5
ε

− 1
)

≥ rin

(
5
ε

− 1
ε

)
= 2rin

2
ε
,

we obtain the following upper bound

2rin ≤ ε

2
· W (K) (5)

for the length of the inner radius of any ring K in terms of its width W (K),
which is important for the subsequent constructions.

At the second step, for a positive integer a = �(20pβ + 4)/ε and some
number b ∈ {0, . . . , a − 1}, whose choice will be explained later, we color all the
rings obtained in white and gray, starting from the outer one, such that the ring
Ki is painted gray, if i ≡ b (mod a). Here β is an approximation factor of the
algorithm used for solving the auxiliary TSP instances and the choice of b will
be explained later, in Lemma 10.

In the sequel, we show that such a coloring leads to a successful decomposition
of the initial rounded CVRPTW-SD instance. Let us discuss it in detail. First,
we prove Lemma 7 that holds for much more general white-gray ring colorings.
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Indeed, by F1, . . . ,Fα and OPT(Fi) denote the maximal (by inclusion) families of
consecutive white rings and the optimum value of the CVRPTW-SD subinstance
induced by slots located in rings of the family Fi, respectively.

Lemma 7. For any white-gray coloring of rings obtained by the following rules:
(i) any monochromatic pair of the adjacent rings is white; (ii) the outer ring is
white as well, the following equation

α∑

i=1

OPT(Fi) ≤
(
1 +

ε

2

)
OPT

is valid.

Proof. Indeed, let U = {R1, . . . Rm} be an arbitrary optimum solution of the
initial rounded instance of the CVRPTW-SD. By the following recurrent pro-
cedure, transform any route R ∈ U to an appropriate collection of routes, such
that each new route visits the slots located in a single family of white rings
exclusively. For the given route R, consider the outermost white ring family
visited by this route, say F1, and the adjacent gray ring K (Fig. 2). Including
2 · l inner radii rin and l chords of the ring K, split the route R into subroutes
Rg(1), . . . ,Rg(l), each of them visits no slots outside F1 and a single subroute
Rb located in the interior of the ring K. Thanks to Eq. (5) and the triangle
inequality, such a transformation results in the increase of the transportation
cost by at most

4 · rin · l ≤ 2l · ε/2 · W (K) ≤ ε/2 · w(R ∩ K),

where w(R ∩ K) denotes the partial cost of the route R related to its inter-
section with the ring K. Continuing this transformation procedure recursively

Fig. 2. Splitting of the route R into Rg(1), . . . , Rg(l) and Rb subroutes
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(proceeding with the subroute Rb and so on), we obtain that the total cost
increasing caused by such a transformation for the route R does not exceed

ε

2
·

α∑

j=1

w(R ∩ Kj),

where the summation is performed over all gray rings K1 . . . , Kα. Therefore, the
total cost of the obtained routes is at most

w(U) +
ε

2

m∑

i=1

α∑

j=1

w(Ri ∩ Kj) ≤ (1 + ε/2)w(U).

Lemma follows from the obvious observation that, for any family Fi, the
optimum value OPT(Fi) does not exceed the total cost of the subroutes produced
by the above recursive procedure that visit this family.

For any gray ring K, by TSP∗(K) we denote the optimum value of the
Euclidean TSP for the slots located in this ring. Evidently, each TSP∗(K) does
not exceeds the optimum value of the TSP instance induced by all slots and the
depot, we denote this value by TSP∗. The following lemma gives much more
accurate bound.

Lemma 8. Let K1, . . . , Kα be gray rings. Then,

α∑

i=1

TSP∗(Ki) ≤ (1 + πε) TSP∗.

Proof. Let H be an arbitrary minimum cost Hamiltonian cycle passing through
all the slots and the depot, such that w(H) = TSP∗ (Fig. 3a). To obtain the
desired bound, we employ the following recursive tour splitting procedure similar
to the procedure provided in the proof of Lemma7. We start with the outermost
gray ring K and cut out segments of the cycle H that belong to this ring and
its exterior (Fig. 3b). By Wext(K) denote their total cost. Further, without loss
of generality, we can assume that each such a segment touches the inner circle
of the ring K in two points. Therefore, the number of such points is even.

Connecting the adjacent points by chords and including the perfect matching
as it is done in Fig. 4a, we construct the auxiliary 4-regular multi-graph having
the Eulerian cycle E(K), which admits shortcutting to the Hamiltonian cycle
H(K) containing all the aforementioned outer segments of the cycle H (Fig. 4b).

Again, taking into account Eq. (5) and the triangle inequality, obtain the
upper bound for the cost w(H(K)) of the constructed cycle H(K)

w(H(K)) ≤ w(E(K)) ≤ Wext(K) + 4π · rin

≤ Wext(K) + πε · W (K) ≤ Wext(K) + πε · w(H ∩ K),
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(a) (b)

Fig. 3. (a) the initial cycle (b) cutting out the outer segments

(a) (b)

Fig. 4. (a) constructing the Eulerian cycle (b) shortcutting to the Hamiltonian cycle

where w(H ∩ K) denotes the cost of the segment of the cycle H that belongs
to the ring K. Proceeding with this procedure recursively and summing over all
the gray rings, we obtain the final bound

α∑

i=1

TSP∗(Ki) ≤
α∑

i=1

w(H(Ki)) ≤ (1 + πε) w(H) = (1 + πε) TSP∗.

Lemma is proved.

Further, applying Lemma8 twice to the alternating coloring, where each family
Fi consists of a single ring, we estimate the total cost of the optimum Hamiltonan
cycles for all rings obtained at the first step of instance decomposition.
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Lemma 9. Let TSP∗(Ki) be the optimum value for the Euclidean TSP instance
enclosed in the ring Ki. Then, the following equation holds:

k∑

i=1

TSP∗(Ki) ≤ 10 · TSP∗.

Proof. Indeed. Consider two alternative colorings. In the first one, we color gray
each even ring, whilst, in the second one, each odd. Employing Lemma8, and
taking into account the additional assumption that the outermost ring K1 cannot
be gray, we obtain the following equation

k∑

i=1

TSP∗(Ki) =
∑

i≡0 ( mod 2)

TSP∗(Ki) +
∑

i≡1 ( mod 2)

TSP∗(Ki)

≤ 2 (1 + πε) TSP∗ + TSP∗(K1) ≤ 2 (1 + πε) TSP∗ + TSP∗ ≤ 10 · TSP∗,

since ε < 1. Lemma is proved.

In the sequel, for any gray ring, we will solve the associated subinstance by the
ITP heuristic. The following lemma gives an upper bound for the total cost of
these solutions.

Lemma 10. There exists a number b ∈ {1, . . . , a}, such that the total cost of all
ITP solutions for the subinstances enclosed in the gray rings is at most ε

2 ·OPT.

Proof. Indeed, for any ring K, by Xslots(K) and SITP(K) denote the subset of
slots enclosed in the ring K and the ITP-solution of the corresponding subin-
stance, respectively. Then,

w(SITP(K)) ≤ 2 · 2
q

∑

x∈Xslots(K)

d(x)r(x) + pβ · TSP∗(K)

Therefore, by Lemmas 3, 9, and 1,

a−1∑

b=0

∑

i≡b ( mod a)

w(SITP(Ki)) ≤ 2 · 2
q

∑

x∈Xslots

d(x)r(x) + pβ ·
k∑

i=1

TSP∗(Ki)

≤ 2 · OPT + 10pβ · TSP∗ ≤ (2 + 10pβ)OPT.

Hence, there exists b, such that

∑

i≡b ( mod a)

w(SITP(Ki)) ≤ 2 + 10pβ

a
OPT ≤ ε

2
OPT,

by construction. Lemma is proved.

To complete the decomposition of the given instance, we perform white-gray
coloring of the rings driven by the parameters a and b and obtain subinstances
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defined by white families Fi and gray rings Kj . Hereinafter, we call them white
and gray, respectively. Then, by Lemma 4, we reduce each subinstance with σ
slots and an arbitrarily large demand to the equivalent one, whose total demand
does not exceed σ2q. Finally, we find a (1 + ε/2)-approximate solution and an
ITP-solution of any reduced white and gray subinstance, respectively. Our first
result follows straightforwardly from Lemmas 7 and 10.

Theorem 1. For any ε ∈ (0, 1), the proposed decomposition provides (1 + ε)-
approximate solution for the initial rounded CVRPTW-SD instance.

6.4 Approximate Algorithms for Subinstances

As we mentioned in Sect. 4, to find an approximate solution for an arbitrary
white subinstance we apply as a black box the quasi-polynomial approximation
scheme (QPTAS) proposed by Song et al. in [28], whilst, each gray subinstance
we approximate with our recent modification [16,17] of the well-known ITP
heuristic.

7 Time Complexity Bounds

As shown in Sect. 6, the proposed scheme consists of the following stages: pre-
processing, rounding, instance decomposition and the main stage dealing with
the approximation of white and gray subinstances.

It can be easily verified that the first three stages can be carried out in
time O(n log n), where n is the number of distinct customers. To estimate time
complexity of the final stage, recall that the Song’s QPTAS and our modification
of the ITP are developed for the case of CVRPTW with unit demand. Therefore,
in our case, their complexity bounds should be represented in terms of the total
customer demand D defining the instance in question, i.e. O

(
DlogO(1/ε) D

)
and

O(D3), respectively (see [16,28]).
Thanks to Lemma 4, for any subinstance (white or gray) obtained during the

decomposition of the given rounded instance, its total demand D = σ2q, where
σ is the number of slots engaged, which in turn is determined by the number of
circles included into an appropriate family of white rings or to the gray ring. By
construction, each ring contains

O

(
log1+ ε

q

1
ε

)
= O

(
q

ε
· log

1
ε

)

circles, each of them consists of O(pq/ε) slots. Therefore, for any gray subin-
stance,

σ = σg = O

(
pq2

ε2
· log

1
ε

)
,

while any white instance is determined by

σ = σw = a · σg = O

(
(pq)2

ε3
· log

1
ε

)
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slots. Further, the number I of white (or gray) subinstances is

I = O

(
log N

ε

a log 1
ε

)
= O

(
ε

p

log N
ε

log 1
ε

)
,

where N is defined by Eq. (2). Thus, we proved our second result.

Theorem 2. Time complexity of the proposed scheme is

O (I · K(p, q, ε) + n log n) , (6)

where
K(p, q, ε) =

(
σ2

wq
)(log(σ2

wq))O(1/ε)

+ (σ2
gq)3. (7)

Notice that the proposed scheme admits near to linear parallel speedup, since all
the subinstances obtained at the stage of instance decomposition can be solved
independently.

Corollary 1. For any fixed ε ∈ (0, 1), the running time of the proposed scheme
does not exceed O(n log N), if p = Ω(1), q = Ω(1), and

max{p, q} ≤ 2log
δ n (8)

for some δ = O(ε).

Proof. Fix an arbitrary ε ∈ (0, 1) and obtain an upper bound for (6). Indeed,
I = O(log N), σ2

wq = Cp4q5 for some constant C > 0, and the first term in (7)
dominates the second one. Then, Eq. (8) implies that, for n � 1

log σ2
wq = log C + 4 log p + 5 log q ≤ 10 logδ n ≤ log2δ n.

Therefore,

K(p, q, ε) = 2(log(Cp4q5))O(1/ε) ≤ 2(log
2δ n)O(1/ε)

= 2(log n)C1δ/ε

=
(
2log n

) logC1δ/ε n
log n ≤ 2log n = n

any time, when C1δ/ε ≤ 1, where C1 is some positive constant, and n > 1.
Hence, for the fixed ε,

I · K(p, q, ε) + n log n = O(n log N).

Corollary is proved.

Corollary 2. For any fixed p and q the proposed scheme is EPTAS with time

complexity O

((
1
ε8

)(log 1
ε )O(1/ε)

· log N + n log n

)
.
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8 Conclusion

In this paper, perhaps for the first time for the Euclidean Capacitated Vehicle
Routing Problem with Time Windows and non-uniform splittable demand, a
polynomial time approximation scheme is proposed. The scheme is based on the
instance decomposition framework developed in [1] and uses the QPTAS from
[28] and our modification [16] of the Iterative Tour Partition as a black box. For
any fixed ε ∈ (0, 1) and the total customer demand D, the scheme finds a (1+ε)-
approximate solution of the problem in time O(n log D) any time provided that
max{p, q} ≤ 2log

δ n for some δ = O(ε). Furthermore, for any fixed capacity q
and the number p of time windows, the proposed scheme is an EPTAS, which
significantly outperforms by the time complexity bound the previous best result
[17] for the CVRPTW on the Euclidean plane.

For future work we left the open questions related to a possible extension
of the proposed scheme to an arbitrary finite dimension Euclidean space and to
the case of non-splittable demand.
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