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Preface

This volume contains the refereed proceedings of the 18th international conference on
Mathematical Optimization Theory and Operations Research (MOTOR 2019)1 held
during July 8–12, 2019, near Ekaterinburg, Russia.

The conference brings together a wide research community in the fields of
mathematical programming and global optimization, discrete optimization, complexity
theory and combinatorial algorithms, optimal control and games, and their applications
in relevant practical problems of operations research, mathematical economy, and data
analysis.

MOTOR 2019 was a successor of the following well-known international and
Russian conference series, which were organized in Ural, Siberia, and the Far East:

– Baikal International Triennial School Seminar on Methods of Optimization and
Their Applications, BITSS MOPT, was established in 1969 by academic
N.N.Moiseev; the 17th event2 in this series was held in 2017, in Buryatia.

– All-Russian Conference on Mathematical Programming and Applications, MPA,
was established in 1972 by academic I.I.Eremin; the 15th conference3 in this series
was held in 2015, near Ekaterinburg.

– International Conference on Discrete Optimization and Operations Research,
DOOR, was organized nine times from 1996, and the last event4 was held in 2016
in Vladivostok.

– International Conference on Optimization Problems and Their Applications, OPTA,
has been organized regularly in Omsk since 1997, the seventh event5 in this series
was held in 2018.

Starting from different origins, today these conference series grew very close to each
other, having much in common in their research topics, scientific community, and
organizers. Therefore, this year the common Program Committee (PC) decided to
organize a joint conference inheriting the long history of all the events and to name it
the 18th International Conference on Mathematical Optimization Theory and
Operations Research (MOTOR).

As per tradition, the main conference scope includes but is not limited to
mathematical programming, bi-level and global optimization, integer programming and
combinatorial optimization, approximation algorithms with theoretical guarantees and
approximation schemes, heuristics and meta-heuristics, optimal control and game
theory, optimization problems in function approximation, optimization in machine

1 http://motor2019.uran.ru.
2 http://isem.irk.ru/conferences/mopt2017/en/index.html.
3 http://mpa.imm.uran.ru/96/en.
4 http://www.math.nsc.ru/conference/door/2016/.
5 http://opta18.oscsbras.ru/en/.
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learning and data analysis, and valuable practical applications in operations research
and economics.

In response to the call for papers, MOTOR 2019 received 232 submissions. Out of
170 full papers considered for reviewing (62 abstracts and short communications were
excluded because of formal reasons) only 48 papers were selected by the PC for
publication. Thus, the acceptances rate for this volume is about 28%. Each submission
was reviewed by at least three PC members or invited reviewers, experts in their fields,
in order to supply detailed and helpful comments. In addition, the PC recommended to
include 50 papers in the supplementary volume after their presentation and discussion
during the conference and subsequent revision with respect to the reviewers’
comments.

The conference featured ten invited lectures:

– Prof. Olga Battaïa (ISAE-Supaero, Toulouse France), “Decision Under Ignorance:
A Comparison of Existing Criteria in a Context of Linear Programming”

– Prof. Oleg Burdakov (Linköping University, Sweden), “Node Partitioning and
Cycles Creation Problem”

– Prof. Christoph Dürr (Sorbonne Université, France), “Bijective Analysis of Online
Algorithms”

– Prof. Alexander Grigoriev (Maastricht University, The Netherlands), “A Survey on
Possible and Impossible Attempts to Solve the Treewidth Problem via ILPs”

– Prof. Mikhail Kovalyov (United Institute of Informatics Problems NASB, Belarus)
“No-Idle Scheduling of Unit-Time Jobs with Release Dates and Deadlines on
Parallel Machines”

– Prof. Vadim Levit (Ariel University, Israel) “Critical and Maximum Independent
Sets Revisited”

– Prof. Bertrand M. T. Lin (National Chiao Tung University, Hsinchu Taiwan), “An
Overview of the Relocation Problem”

– Prof. Natalia Shakhlevich (University of Leeds, UK), “On a New Approach for
Optimization Under Uncertainty”

– Prof. Angelo Sifaleras (University of Macedonia, Greece), “Exterior Point
Simplex-Type Algorithms for Linear and Network Optimization Problems”

– Prof. Vitaly Strusevich (University of Greenwich, UK), “Design of
Fully-Polynomial Approximation Schemes for Non-linear Boolean Programming
Problems”

The following seven tutorials were given by outstanding scientists:

– Prof. Tatjana Davidović (Mathematical Institute of the Serbian Academy of Sci-
ences and Arts, Serbia), “Distributed Memory-Based Parallelization of Meta-
heuristic Methods”

– Prof. Stephan Dempe (TU Bergakademie Freiberg, Germany), “Bilevel optimiza-
tion: The Model and its Transformations”

– Prof. Oleg Khamisov (Melentiev Energy Systems Institute SB RAS, Russia), “The
Fundamental Role of Concave Programming in Continuous Global Optimization”

– Prof. Alexander Kononov (Sobolev Institute of Mathematics, Russia), “Primal-dual
Method and Online Problems”
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– Prof. Nenad Mladenovic (Mathematical Institute SANU, Serbia), “Solving Non-
linear System of Equations as an Optimization Problem”

– Prof. Evgeni A. Nurminski (Far Eastern Federal University, Russia), “Projection
Problems and Problems with Projection”

– Prof. Alexander Strekalovsky (Matrosov Institute for System Dynamics and Control
Theory SB RAS, Russia), “Modern Methods of Non-convex Optimization”

We would like to thank all the authors for their submissions, as well as all members
of the PC and external reviewers for their efforts in providing exhaustive reviews. We
thank our sponsors, the Russian Foundation for Basic Research, Higher School of
Economics (Campus Nizhny Novgorod), Ural Federal University, and Novosibirsk
State University. In addition, we are grateful to Alfed Hofmann, Aliaksandr Birukou,
Anna Kramer, and their colleagues from Springer LNCS and CCIS editorial board for
their kind and helpful support.

July 2019 Michael Khachay
Yury Kochetov
Panos Pardalos
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Abstracts of Invited Talks



Decision Under Ignorance: A Comparison
of Existing Criteria in a Context of Linear

Programming

Olga Battaïa

ISAE-Supaero, Toulouse, France
Olga.Battaia@isae.fr

Abstract. Decision or optimization problems often arise in an uncertain context.
Depending on available information, several approaches have been proposed to
model this uncertainty. In this talk, we focus on the case of low knowledge on
possible states, namely decision under ignorance. In this case the decision-maker
is able to give the set of possible values of optimization problem parameters but
she/he is not able to differentiate them. We compare a set of criteria that can be
used in this case on the example of a linear programming problem and discuss
some possible applications.

Keywords: Decision making � Uncertainty � Linear programming

http://orcid.org/0000-0002-5367-7846


Node Partitioning and Cycles
Creation Problem

Oleg Burdakov

Linköping University, Sweden
oleg.burdakov@liu.se

Abstract. We present a new class of network optimization problems, which
extend the classical NP-hard travelling salesman problem. It is formulated as
follows. Given a graph with a certain time associated with each node and each
arc, a feasible partition of the nodes in subsets is such that, for each subset, there
exists a Hamiltonian cycle whose travelling time is below the time associated
with each node in the tour. It is required to find a feasible partitioning which
minimizes the number of such cycles. Problems of this kind are typical in
numerous applications, where services are repeatedly provided for a set of
customers. For each customer, there is a critical time within which a service
must be repeated. Given the travelling time between the customers, the set of
customers is partitioned so that each subset is served by one agent in a cyclic
manner without violating any individual critical time requirement. The number
of agents is minimized. As an example, we consider a problem, in which a fleet
of unmanned aerial vehicles is used for area patrolling.

We introduce an mixed integer programming formulation of the node
partitioning and cycles creation problem, and also heuristic algorithms for solving
this problem. Results of numerical experiments are presented. (Joint work with:
Kai Hoppmann, Thorsten Koch and Gioni Mexi (ZIB, Berlin, Germany)).

Keywords: TSP � Subtours � Integer programming

http://orcid.org/0000-0003-1836-4200


Bijective Analysis of Online Algorithms

Christoph Dürr

Sorbonne Université, France
christoph.durr@lip6.fr

Abstract. In the online computing framework the instance arrives in form a
request sequence, every request must be served immediately, through a decision,
which generates some cost. Think at the paging problem for memory caches.
The goal in this research area is to identify the best strategy, also called online
algorithm. Classically this is done through the competitive analysis, i.e. the
performance of an online algorithm is compared with the optimal offline solu-
tion. The goal is to find an algorithm which minimizes this ratio over the worst
case instance. You would say that algorithm A is better than algorithm B if it has
a smaller ratio. However there are situations where two algorithms have the
same ratio, still in practice one is better than the other. So people came up with a
different technique to compare online algorithms directly with each other, rather
than through the optimal offline solution. The bijective analysis is one of them.
I would do a survey on this technique, and talk about a related personal work:
Best-of-two-worlds analysis of online search, with Spyros Angelopoulos and
Shendan Jin.

Keywords: Online algorithms � Bijective analysis

http://orcid.org/0000-0001-8103-5333


A Survey on Possible and Impossible Attempts
to Solve the Treewidth Problem via ILPs

Alexander Grigoriev

Maastricht University, Netherlands
a.grigoriev@maastrichtuniversity.nl

Abstract. We survey a number of integer programming formulations for the
pathwidth and for the treewidth problems. The attempts to find good
formulations for the problems span the period of 15 years, yet without any true
success. Nevertheless, some formulations provide potentially useful frameworks
for attacking these notorious problems. Some others are just curious and
interesting fruits of mathematical imagination.

Keywords: Treewidth and pathwidth problems � Integer programming

http://orcid.org/0000-0002-8391-235X


No-Idle Scheduling of Unit-Time Jobs
with Release Dates and Deadlines

on Parallel Machines

Mikhail Kovalyov

United Institute of Informatics Problems NASB, Belarus
kovalyov_my@yahoo.co.uk

Abstract. While the problem of scheduling unit-time jobs with release dates and
deadlines on parallel machines is polynomially solvable via a reduction to the
assignment problem, the no-idle requirement destroys this reduction and makes
the problem challenging. In the presentation, a number of properties of this
problem are reported, and heuristic and optimal algorithms based on these
properties are described.

Keywords: Scheduling � Optimal algorithms � Heuristics

http://orcid.org/0000-0003-0832-0829


Critical and Maximum Independent
Sets Revisited

Vadim Levit

Ariel University, Israel
levitv@ariel.ac.il

Abstract. A set of vertices of a graph is independent if no two its vertices are
adjacent. A set is critical if the difference between its size and the size of its
neighborhood is maximum. Critical independent sets define an important area of
research due to their close relationships with the well-known NP-hard problem
of finding a maximum independent set. Actually, every critical independent set
is contained in a maximum independent set, while a maximum critical
independent set can be found in polynomial time. If S is an independent set such
that there is a matching from its neighborhood into S, then it is a crown.
It is known that every critical independent set forms a crown. A graph is
König-Egerváry if every maximum independent set is a crown. Crowns are also
accepted as important tools for fixed parameter tractable problems. For instance,
the size of the vertex cover can be substantially reduced by deleting both the
vertices of a crown and its neighborhood. In this presentation, we discuss
various connections between unions and intersections of maximum (critical)
independent sets of graphs, which lead to deeper understanding of crown
structures, in general, and König-Egerváry graphs, in particular.

Keywords: Maximum independent set � Critical independent set �
Parameterized complexity

http://orcid.org/0000-0002-4190-7050


An Overview of the Relocation Problem

Bertrand M. T. Lin

National Chiao Tung University, Hsinchu, Taiwan
bmtlin@mail.nctu.edu.tw

Abstract. The relocation problem is formulated from a municipal
redevelopment project in east Boston. In its abstract form, the relocation
problem incorporates a generalized resource constraint in which the amount
of the resource returned by a completed activity is not necessarily the same as
that the activity has acquired for commencing the processing. We will first
introduce the connection of the relocation problem to flow shop scheduling.
Several traditional scheduling models with the generalized resource constraints
have been proposed investigated. We will review existing results, suggest new
models and present several open questions.

Keywords: Relocation problem � Flow shop scheduling

http://orcid.org/0000-0003-0456-296X


On a New Approach for Optimization
Under Uncertainty

Natalia Shakhlevich

University of Leeds, UK
N.Shakhlevich@leeds.ac.uk

Abstract. Research on decision making under uncertainty has a long history of
study. Still theoretical findings have strong limitations: stochastic programming
requires probability distributions for uncertain parameters which are often hard
to specify; robust optimisation essentially relies on worst-case scenarios which
can be over-pessimistic and far from realistic scenarios; stability analysis
explores optimal solutions which can be hard to find even for well predicted
scenarios. As an alternative approach, we propose a new system model based on
the concept of resiliency. Resilient solutions are not required to be optimal, but
they should keep quality guarantees for the widest range of uncertain problem
parameters. The talk illustrates key steps of resiliency analysis considering
examples of 0/1 combinatorial optimisation problems.

Keywords: Decision making � Stochastic programming � Resiliency

http://orcid.org/0000-0002-5225-4008


Exterior Point Simplex-Type Algorithms
for Linear and Network Optimization

Problems

Angelo Sifaleras

University of Macedonia, Greece
sifalera@uom.gr

Abstract. Two decades of research led to the development of a number of
efficient algorithms that can be classified as exterior point simplex-type. This
type of algorithms can cross over the infeasible region of the primal (dual)
problem and find an optimal solution reducing the number of iterations needed.
Thus, such approaches aim to find an efficient way to get to an optimal basis via
a series of infeasible ones. In this lecture, we present the developments in
exterior point simplex-type algorithms for linear and network optimization
problems, over the recent years. We also present other approaches that, in a
similar way, do not preserve primal or dual feasibility at each iteration such as
the monotonic build-up Simplex algorithms and the criss-cross methods, and
also discuss some open research problems.

Keywords: Exterior point algorithms � Simplex-type algorithms �
Criss-cross methods

http://orcid.org/0000-0002-5696-7021


Design of Fully-Polynomial Approximation
Schemes for Non-linear Boolean Programming

Problems

Vitaly Strusevich

University of Greenwich, UK
V.Strusevich@gre.ac.uk

Abstract. The talk is aimed at describing various techniques used for designing
fully-polynomial approximation schemes (FPTAS) for problems of minimizing
and maximizing non-linear non-separable functions of Boolean variables, either
with no additional constraints or with linear knapsack constraints. Most of the
reported results are on optimizing a special quadratic function known as the
half-product, which has numerous scheduling applications. Besides, problems
with a more general objective and nested linear constraints are considered and a
design of an FPTAS based on the K-approximation calculus is discussed.

Keywords: FPTAS � K-approximation calculus � Half-product

http://orcid.org/0000-0002-4602-8573


Abstracts of Tutorials



Distributed Memory Based Parallelization
of Metaheuristic Methods

Tatjana Davidović

Mathematical Institute of the Serbian Academy
of Sciences and Arts, Serbia
tanjad@mi.sanu.ac.rs

Abstract. Metaheuristics represent powerful tools for addressing hard
combinatorial optimization problems. However, real life instances usually cannot
be treated efficiently by the means of computing times. Moreover, a major issue in
metaheuristic design and calibration is to provide high performance solutions for
a variety of problems. Parallel metaheuristics aim to address both issues. The
main goal of parallelization is to speed up the computations by dividing the total
amount of work between several processors. Parallelization of stochastic
algorithms, such as metaheuristics may involve several additional goals. Besides
speeding up the search (i.e., reducing the search time), it could be possible to:
improve the quality of the obtained solutions (by enabling searching through
different parts of the solution space); improve the robustness of the search (in
terms of solving different optimization problems and different instances of a given
problem in an effective manner; robustness may also be measured in terms of the
sensitivity of the metaheuristic to its parameters); and solve large-scale problems
(i.e., solve very large instances that cannot be even stored in the memory of a
sequential machine). A combination of gains may also be obtained: parallel
execution can enable an efficient search through different regions of the solution
space, yielding an improvement of the quality of the final solution within a smaller
amount of execution time. The objective of this talk is to present a state-of-the-art
survey of the main ideas and strategies related to the parallelization of
metaheuristic methods. Various paradigms related to the development of parallel
metaheuristics are explained. Among them, communications, synchronization,
and control aspects are identified as the most relevant. Implementation issues are
also discussed, pointing out the characteristics of shared and distributed memory
multiprocessors as target architectures. All these topics are illustrated by the
examples from recent literature related to the parallelization of various
meta-heuristic methods, with the focus on distributed memory parallelization of
Variable Neighborhood Search (VNS) and Bee Colony Optimization (BCO)
using Message Passing Interface (MPI) communication protocol.

Keywords: Parallel metaheuristics � Distributed memory � MPI
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Bilevel Optimization: The Model and its
Transformations

Stephan Dempe

TU Bergakademie Freiberg, Germany
dempe@math.tu-freiberg.de

Abstract. Bilevel (or hierarchical) optimization problems aim to minimize one
function subject to (a subset of) the graph of the solution set mapping of a
second, parameter dependent optimization problem. The parameter is the deci-
sion variable of the socalled leader, the optimization problem describing the
constraints is the problem of the follower. These problems have a large number
of applications in science, engineering, economics. To investigate and solve
them, they need to be transformed into a single-level optimization problem. For
that different approaches can be used.

(1) If the followers problem is regular and convex, it can be replaced using the
Karush-Kuhn-Tucker conditions. The result is a so-called Mathematical
Program with Equilibrium Constraints. In these nonconvex optimization
problems, the Mangasarian-Fromovitz constraint qualification is violated at
every feasible point. Solution algorithms converge (under suitable
assumptions) to stationary points which are, in general, not related to sta-
tionary points of the bilevel optimization problem. To overcome this
unpleasant situation, a certain regularization approach can be used. Another
approach uses the transformation to a mixed integer (nonlinear) optimiza-
tion problem.

(2) If the optimal value function of the followers problem is used, a nonconvex,
nonsmooth optimization problem arises. Again, the (now nonsmooth)
Mangasarian-Fromovitz constraint qualification is violated at every feasible
point. If the optimal value function is convex or concave, its approximation
is helpful to describe a solution algorithm. Optimality conditions can be
derived using partial calmness or a certain penalization approach.

(3) The problem can be reformulated as a generalized Nash equilibrium prob-
lem. Topic of the lecture is the introduction of the model together with some
surprising properties and a short overview over promising accesses to
investigate and solve it.

Keywords: Bilevel optimization � KKT theorem � Constraint qualification
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The Fundamental Role of Concave
Programming in Continuous

Global Optimization

Oleg Khamisov

Melentiev Energy Systems Institute SB RAS, Russia
globopt@mail.ru

Abstract. A comprehensive description of connections between concave pro-
gramming and other branches of global optimization like Lipschitz optimization,
d.c. optimization etc. is given. It is shown that in general solution of almost
every global optimization problem can reduced to solution of a sequence of
concave programming problems. Modern concave optimization technology
including cuts, branch and bounds, branch and cuts and so on as well as the
corresponding extensions to different global optimization problems are
presented. A part of the talk is devoted to the connection between concave and
mixed 0-1 linear programming.

Keywords: Global optimization � Concave programming �
Mixed linear programming
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Primal-Dual Method and Online Problems

Alexander Kononov

Sobolev Institute of Mathematics, Russia
alvenko@math.nsc.ru

Abstract. The primal-dual method is a powerful tool in the design of
approximate algorithms for combinatorial optimization problems. In our tutorial
we discuss how this method can be extended to develop online algorithms. The
tutorial is based on the survey by N. Buchbinder and J. Naor and the
web-presentation by N. Bansal.

Keywords: Combinatorial optimization � Primal-dual method �
Online algorithms
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Solving Nonlinear System of Equations
as an Optimization Problem

Nenad Mladenovic

Mathematical Institute SANU, Serbia
nenadmladenovic12@gmail.com

Abstract. The Nonlinear System of Equations (NSE) problem is usually
transformed into an equivalent optimization problem, with an objective function
that allows us to find all the zeros. Instead of the usual sum-of-squares objective
function, the new objective function is presented as the sum of absolute values.
Theoretical investigation confirms that the new objective function provides more
accurate solutions regardless of the optimization method used. In addition, we
achieve increased precision at the expense of reduced smoothness. In this paper,
we propose the continuous variable neighbor-hood search method for finding all
the solutions to a NSEs. Computational analysis of standard test instances shows
that the proposed method is more precise and much faster than two recently
developed methods. Similar conclusions are drawn by comparing the proposed
method with many other methods in the literature.

Keywords: System of nonlinear equations � Continuous optimization �
Variable neighborhood search � Direct search methods

Joint work with Jun Pei, Zorica Drazic, Milan Drazic, and Panos M. Pardalos.

http://orcid.org/0000-0001-6655-0409


Projection Problems and Problems
with Projection

Evgeni A. Nurminski

Far Eastern Federal University, Russia
nurmi@dvo.ru

Abstract. This lecture reviews the state of the art for probably the most common
computational operation in applied mathematics—projection, which can be also
considered as the problem of finding the least norm element (LNE) in a given
subset of a linear vector space. The special attention in the lecture will be given
to Euclidean or orthogonal projection, but we plan to discuss another norms as
well. Projection is computationally intensive operation even for relatively simple
sets like canonical simplexes and special algorithms are a way more efficient
than off-the-shelf quadratic programming methods especially for large-scale
problems. Large-scale projection problems can be decomposed in different
sequential or parallel manner as extension of celebrated Kaczmarz sequential
projection procedure and block-row action methods. We discuss also the
problem of numerical instability of projection operation which is quite common
in such applications as new optimization algorithms, linear programming,
machine learning and automatic classification.

Keywords: Projection procedures � Large-scale problems � Decomposition
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Modern Methods of Nonconvex Optimization

Alexander Strekalovsky

Matrosov Institute for System Dynamics and Control
Theory SB RAS, Russia
strekal@icc.ru

Abstract. We address the nonconvex optimization problem with the cost
function and equality and inequality constraints given by d.c. functions. The
linear space of d.c. functions possesses a number of very attractive properties.
For example, every continuous function can be approximated at any desirable
accuracy by a d.c. function and any twice differentiable function belongs to the
DC space. In addition, any lower semicontinuous (l.s.c.) function can be
approximated at any precision by a sequence of continuous functions.
Furthermore, provided that for the optimization problem under study we
proposed the new Global Optimality Conditions (GOCs), which have been
published in the English and Russian languages. The natural question arises: is it
possible to construct a computational scheme based on the GOCs (otherwise,
what are they for?) that would allow us not only to generate critical points (like
the KKT-vectors) but to escape any local pitfall, which makes it possible to
reach a global solution to the problem in question? First of all, we recall that
with the help of the Theory of Exact Penalization, the original d.c. problem was
reduced to a problem without constraints. Moreover, it can be readily seen that
this penalized problem is a d.c. problem as well. Furthermore, special Local
Search Methods (LSMs) were developed and substantiated in view of their
convergence features. In addition, the GOCs were generalized for the
minimizing sequences in the penalized problem. A special theoretical method
was proposed and its convergence properties were studied. We developed a
Global Search Scheme (GSS) based on all theoretical results presented above,
and, moreover, we were lucky to prove that the sequence produced by the GSS
turned out to be minimizing in the original d.c. optimization problem. Finally,
we developed a Global Search Method (GSM), combining the special LSM and
the GSS proposed. The convergence of the GSM is also investigated under some
natural assumptions. The first results of numerical testing of the approach will be
demonstrated.

Keywords: Global optimization � d.c. functions
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Critical and Maximum Independent
Sets Revisited

Vadim E. Levit1(B) and Eugen Mandrescu2

1 Ariel University, 40700 Ariel, Israel
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2 Holon Institute of Technology, 5810201 Holon, Israel
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Abstract. Let G be a simple graph with vertex set V (G).
A set S ⊆ V (G) is independent if no two vertices from S are adjacent,

and by Ind(G) we mean the family of all independent sets of G.
The number d (X) = |X| − |N(X)| is the difference of X ⊆ V (G),

and a set A ∈ Ind(G) is critical if d(A) = max{d (I) : I ∈ Ind(G)} [34].
Let us recall the following definitions:

• core (G) =
⋂

{S : S is a maximum independent set} [16],

• corona (G) =
⋃

{S : S is a maximum independent set} [5],

• ker(G) =
⋂

{S : S is a critical independent set} [18],

• nucleus(G) =
⋂

{S : S is a maximum critical independent set} [12]

• diadem(G) =
⋃

{S : S is a (maximum) critical independent set}
[24].

In this paper we focus on interconnections between ker, core, corona,
nucleus, and diadem.

Keywords: Independent set · Critical set · Ker · Core · Corona ·
Diadem · Matching

1 Introduction

Throughout this paper G = (V,E) is a finite, undirected, loopless graph without
multiple edges, with vertex set V = V (G) of cardinality |V (G)| = n (G), and
edge set E = E(G) of size |E (G)| = m (G). If X ⊆ V (G), then G[X] is the
subgraph of G induced by X. By G−W we mean either the subgraph G[V (G)−
W ], if W ⊆ V (G), or the subgraph obtained by deleting the edge set W , for
W ⊆ E(G). In either case, we use G − w, whenever W = {w}. If A,B ⊆ V (G),
then (A,B) stands for the set {ab : a ∈ A, b ∈ B, ab ∈ E (G)}.

The neighborhood N(v) of a vertex v ∈ V (G) is the set {w : w ∈ V (G)
and vw ∈ E (G)}, while the closed neighborhood N [v] of v ∈ V (G) is the set
N(v) ∪ {v}; in order to avoid ambiguity, we use also NG(v) instead of N(v). A
vertex v is isolated if N(v) = ∅. Let us define isol(G) as the set of all isolated
vertices.
c© Springer Nature Switzerland AG 2019
M. Khachay et al. (Eds.): MOTOR 2019, LNCS 11548, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-030-22629-9_1
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The neighborhood N(A) of A ⊆ V (G) is {v ∈ V (G) : N(v) ∩ A �= ∅},
and N [A] = N(A) ∪ A. We may also use NG(A) and NG [A], when referring to
neighborhoods in a graph G.

A set S ⊆ V (G) is independent if no two vertices from S are adjacent, and
by Ind(G) we mean the family of all the independent sets of G. An independent
set of maximum size is a maximum independent set of G, and the independence
number α(G) of G is max{|S| : S ∈ Ind(G)}. Let Ω(G) denote the family of all
maximum independent sets, and let

• core(G) =
⋂

{S : S ∈ Ω(G)} [16],

• corona(G) =
⋃

{S : S ∈ Ω(G)} [5].

Clearly, N (core(G)) ⊆ V (G) − corona(G), and there exist graphs with
N (core(G)) �= V (G) − corona(G). The problem of whether core(G) �= ∅ is
NP-hard [5].

A matching is a set M of pairwise non-incident edges of G. If A ⊆ V (G),
then M (A) is the set of all the vertices matched by M with vertices belonging to
A. A matching of maximum cardinality, denoted μ(G), is a maximum matching.

Recall from [34] the following definitions for a graph G:

• d(X) = |X| − |N(X)| is the difference of X ⊆ V (G);
• d(G) = max{d(X) : X ⊆ V (G)} is the critical difference;
• id(G) = max{d(I) : I ∈ Ind(G)} is the critical independence difference;
• if A ∈ Ind(G) and d (A) = id(G), then A is a critical independent set.

Clearly, d(G) ≥ id(G). It was shown in [34] that d(G) = id(G) holds for every
graph G. All pendant vertices not belonging to K2 components are included in
every inclusion maximal critical independent set.

For example, let X = {v1, v2, v3, v4} and I = {v1, v2, v3, v6, v7} in the graph
G of Fig. 1. Note that X is a critical set, since N(X) = {v3, v4, v5} and d(X) =
1 = d(G), while I is a critical independent set, because d(I) = 1 = id(G). Other
critical sets are {v1, v2}, {v1, v2, v3}, {v1, v2, v3, v4, v6, v7}.

� � � � � �

� � � �

�

� �������

�
�

�

�
�

�
v1

v2 v3 v4

v5 v6

v7

v9

v8 v11

v10 v12 v13

G

Fig. 1. core(G) = {v1, v2, v6, v10} is a critical set.

It is known that finding a maximum independent set is an NP-hard problem
[10]. Zhang proved that a critical independent set can be found in polynomial
time [34]. A simpler algorithm, reducing the critical independent set problem to
computing a maximum independent set in a bipartite graph is given in [1].



Critical and Maximum Independent Sets Revisited 5

Theorem 1. [6] Each critical independent set can be enlarged to a maximum
independent set.

Theorem 1 leads to an efficient way of approximating α(G) [33]. Moreover, it
has been shown that a critical independent set of maximum cardinality can be
computed in polynomial time [14]. Recently, a parallel algorithm computing the
critical independence number was developed [8].

Recall that if α(G) + μ(G) = n (G), then G is a König-Egerváry graph
[9,32]. As a well-known example, each bipartite graph is a König-Egerváry
graph as well. Various properties of König-Egerváry graphs can be found in
[2–4,11–20,23,26,31].

Theorem 2. [17] If G is a König-Egerváry graph, M is a maximum matching
of G, and S ∈ Ω (G), then:

(i) M matches V (G) − S into S, and N(core(G)) into core(G);
(ii) N (core(G)) =

⋂ {V (G) − S : S ∈ Ω(G)} = V (G) − corona(G).

The deficiency def(G) is the number of non-saturated vertices relative to a
maximum matching, i.e., def(G) = n (G)−2μ(G) [28]. A proof of a conjecture of
Graffiti.pc [7] yields a new characterization of König-Egerváry graphs: these are
exactly the graphs, where there exists a critical maximum independent set [15].

Theorem 3. [19] For a König-Egerváry graph G the following equalities hold

d(G) = |core(G)| − |N(core(G))| = α(G) − μ(G) = def(G).

Using this finding, we have strengthened a characterization of König-
Egerváry graphs given in [15].

Theorem 4. [19] G is a König-Egerváry graph if and only if each of its maxi-
mum independent sets is critical.

For a graph G, let us denote

• ker(G) =
⋂

{A : A is a critical independent set} [18],

• MaxCritIndep(G) = {S : S is a maximum critical independent set},

• nucleus(G) =
⋂

MaxCritIndep(G) [12],

• diadem(G) =
⋃

MaxCritIndep(G) [24].

Clearly, isol(G) ⊆ ker(G) ⊆ nucleus(G) and, according to Theorem 1, the
inclusion diadem(G) ⊆ corona(G) is true for every graph G.

In this paper we present several properties of ker(G), in relation with core(G),
corona(G), diadem(G), and nucleus(G).
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2 Preliminaries

Theorem 5. [18] For a graph G, the following assertions are true:

(i) the function d is supermodular, i.e., d(A ∪ B) + d(A ∩ B) ≥ d(A) + d(B)
for every A,B ⊆ V (G);

(ii) if A and B are critical in G, then A ∪ B and A ∩ B are critical as well;
(iii) G has a unique minimal independent critical set, namely, ker(G).

As a consequence, we have the following.

Corollary 1. For every graph G, diadem(G) is a critical set.

For instance, diadem(G) = {v1, v2, v3, v4, v6, v7, v8, v10} is critical, but not
independent, where the graph G is from Fig. 1.

a

b

c

d

G1

x

y

z

w

G2

Fig. 2. Both G1 and G2 are not König-Egerváry graphs.

Combining Theorems 4 and 5(ii), we deduce the following.

Corollary 2. If G is a König-Egerváry graph, then both core(G) and corona(G)
are critical sets.

Let us consider the graphs G1 and G2 from Fig. 2: core(G1) = {a, b, c, d} and
it is a critical set, while core(G2) = {x, y, z, w} and it is not critical.

Theorem 6. [14] All inclusion maximal critical independent sets are of the
same size. In other words,

{A : A is an inclusion maximal critical independent set} = MaxCritIndep(G).

By Theorems 1, 6, corona(G) ⊇ diadem(G) for every graph.

Theorem 7. [12] If core(G) is a critical set, then core(G) ⊆ nucleus(G). If, in
addition, diadem(G) = corona(G), then core(G) ⊆ nucleus(G).

3 Structural Properties of ker (G)

Deleting a vertex from a graph may change its critical difference. For instance,
d (G − v1) = d (G) − 1, d (G − v13) = d (G), while d (G − v3) = d (G) + 1, where
G is the graph of Fig. 1.
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Proposition 1. [21] For a vertex v in a graph G, the following assertions hold:

(i) d (G − v) = d (G) − 1 if and only if v ∈ ker(G);
(ii) if v ∈ ker(G), then ker(G − v) ⊆ ker(G) − {v}.

Note that ker(G − v) may differ from ker(G) − {v}. For example, ker(K3,2)
is equal to the partite set of size 3, but ker(K3,2 − v) = ∅ whenever v is in that
set. Also, if G = C4, then ker(G)−{v} = ∅−{v} = ∅, while ker(G−v) = NG(v)
for every v ∈ V (G).

Since d (G) is polynomially computable [34], Proposition 1 implies the
following.

Corollary 3. [18] The set ker(G) can be computed by an algorithm of polyno-
mial complexity.

It seems interesting to find even better polynomial approximations of core(G).

Theorem 8. [14] There is a matching from N(S) into S for every critical inde-
pendent set S.

In the graph G of Fig. 1, let S = {v1, v2, v3}. By Theorem 8, there is a
matching from N (S) into S = {v1, v2, v3}, for instance, M = {v2v5, v3v4}, since
S is critical independent. On the other hand, there is no matching from N (S)
into S − v3.

Theorem 9. [21] For a critical independent set A in a graph G, the following
statements are equivalent:

(i) A = ker(G);
(ii) there is no set B ⊆ N (A) , B �= ∅ such that |N (B) ∩ A| = |B|;
(iii) for each v ∈ A there exists a matching from N (A) into A − v.

The graphs G1 and G2 in Fig. 3 satisfy ker(G1) = core(G1), ker(G2) =
{x, y, z} ⊂ core(G2), and both core(G1) and core(G2) are critical sets of max-
imum size. The graph G3 in Fig. 3 has ker(G3) = {u, v}, the set {t, u, v} as a
critical independent set of maximum size, while core(G3) = {t, u, v, w} is not a
critical set.

An independent set S is inclusion minimal with d (S) > 0 if no proper subset
of S has positive difference. For example, in Fig. 3 one can see that ker(G1) is an
inclusion minimal independent set with positive difference, while for the graph

� � �

� �

a

b

G1

� � � �

� � � �
�

�� �
��

qx

y z

G2

� � � � � �

� � � � � �
�

��
�

��v

u
t w

G3

Fig. 3. core(G1) = {a, b}, core(G2) = {q, x, y, z}, core(G3) = {t, u, v, w}.
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G2 the sets {x, y}, {x, z}, {y, z} are inclusion minimal independent with positive
difference, and ker(G2) = {x, y} ∪ {x, z} ∪ {y, z}.

Actually, all inclusion minimal independent sets S with d(S) > 0 are of the
same difference.

Proposition 2. [21] If S0 is an inclusion minimal independent set such that
d (S0) > 0, then d (S0) = 1. In other words,

{S0 : S0 is an inclusion minimal independent set with d (S0) > 0} =
{S0 : S0 is an inclusion minimal independent set with d (S0) = 1} .

The converse of Proposition 2 is not true. For instance, S = {x, y, u} is
independent in the graph G of Fig. 4 and d (S) = 1, but S is not minimal with
this property.

Theorem 10. [21] If ker(G) �= ∅, then

ker(G) =
⋃

{S0 : S0 is inclusion minimal independent with d (S0) = 1}
=

⋃
{S0 : S0 is inclusion minimal independent with d (S0) > 0} .

� � �

� � � � �
�

�
� ������x y u v w

G
� � �

� �
�

�
�v1

v2 v3

v4

H

Fig. 4. Both S1 = {x, y} and S2 = {u, v, w} are inclusion minimal independent sets
satisfying d (S) > 0. The same is true for each pair of leaves in H.

In a graph G, the union of all minimum cardinality independent sets S with
d (S) > 0 may be a proper subset of ker (G). For example, consider the graph G
in Fig. 4, where {x, y} ⊂ ker (G) = {x, y, u, v, w}.

Proposition 3. [21] min {|S0| : d (S0) > 0, S0 ∈ Ind(G)} ≤ |ker (G)|−d (G)+1
is true for every graph G.

Conjecture 1. [21] The number of inclusion minimal independent set S such that
d(S) > 0 is greater than or equal to d(G).

For an independent set X of G a new graph HX is defined as follows. The
vertex set V (HX) = X ∪ N(X) ∪ {v, w}, where v and w are two new vertices
not in V (G) and the edge set

E(HX) = {xy ∈ E(G) : x ∈ X, y ∈ N(X)} ∪ {vw} ∪ {vx : x ∈ N(X)}.

Note that if G is a connected graph with |V (G)| > 1, then HX is a connected
bipartite graph. Also observe that for all Y ⊂ X, dHX

(Y ) = dG(Y ).
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Theorem 11. [3] If X is an independent set of G with d(X) > 0 such that
d(Y ) < d(X) for all proper subsets Y of X, then ker(HX) = X ⊂ ker(G).

Proposition 4. [3] A set S with d(S) > 0 such that no proper subset of S has
positive difference must be an independent set.

Theorem 12. [3] Let X ∈ Ind(G) with d(X) = k > 0. If d(Y ) < k for all
proper subsets Y of X, then X can be expressed as a union of k distinct inclusion
minimal sets with positive difference.

Putting X = ker(G) in Theorem 12, one may conclude that there
exist d (ker(G)) = d(G) inclusion minimal independent sets, which validates
Conjecture 1.

4 Relationships Between ker (G) and Core(G)

Let us consider again the graph G2 from Fig. 2: core(G2) = {x, y, z, w} and it
is not critical, but ker (G2) = {x, y, z} ⊆ core(G2). Clearly, the same inclusion
holds for G1, whose core(G1) is a critical set.

Theorem 13. [18] For every graph G, ker(G) ⊆ core(G).

Let Ic be a maximum critical independent set of G, and X = Ic ∪ N(Ic).
In [30] it is proved that core(G [X]) ⊆ core(G). Moreover, in [18], we showed
that the chain of relationships ker(G) = ker(G [X]) ⊆ core(G [X]) ⊆ core(G)
holds for every graph G. Theorem 13 allows an alternative proof of the following
finding due to Lorentzen.

Corollary 4. [18,27,29] The inequality d (G) ≥ α (G) − μ (G) holds for every
graph.

The following lemma will be used further to give an alternative proof for the
assertion that ker(G) = core(G) holds for every bipartite graph G.

Lemma 1. If G = (A,B,E) is a bipartite graph with a perfect matching, say
M , S ∈ Ω (G), X ∈ Ind(G), X ⊆ V (G) − S, and G [X ∪ M (X)] is connected,
then

X1 = X ∪ M ((N (X) ∩ S) − M (X))

is an independent set, and G
[
X1 ∪ M

(
X1

)]
is connected.

Proof. Let us show that the set M ((N (X) ∩ S) − M (X)) is independent. Sup-
pose, to the contrary, that there exist v1, v2 ∈ M ((N (X) ∩ S) − M (X)) such
that v1v2 ∈ E (G). Hence M (v1) ,M (v2) ∈ (N (X) ∩ S) − M (X).

If M (v1) and M (v2) have a common neighbor w ∈ X, then the set of vertices
{v1, v2,M (v2) , w,M (v1)} spans C5, which is forbidden for bipartite graphs.

Otherwise, let w1, w2 ∈ X be neighbors of M (v1) and M (v2), respectively.
Since G [X ∪ M (X)] is connected, there is a path with an even number of edges
connecting w1 and w2. Together with {w1,M (v1) , v1, v2,M (v2) , w2} this path
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produces a cycle of odd length in contradiction with the hypothesis on G being
a bipartite graph.

To complete the proof of independence of the set

X1 = X ∪ M ((N (X) ∩ S) − M (X))

it is enough to demonstrate that there are no edges connecting vertices of X and
M ((N (X) ∩ S) − M (X)).

Assume, to the contrary, that there is an edge vw ∈ E, such that v ∈
M ((N (X) ∩ S) − M (X)) and w ∈ X. Since M (v) ∈ (N (X) ∩ S) − M (X)
and G [X ∪ M (X)] is connected, it follows that there exists a path with an odd
number of edges connecting M (v) to w. This path together with the edges vw
and vM (v) produces cycle of odd length, in contradiction with the bipartiteness
of G.

Finally, since G [X ∪ M (X)] is connected, G
[
X1 ∪ M

(
X1

)]
is connected as

well, by definitions of set functions N and M (Fig. 5).

Fig. 5. S ∈ Ω(G), Y = (N (X) ∩ S) − M (X) and X1 = X ∪ M (Y ).

Theorem 13 claims that ker(G) ⊆ core(G) for every graph.

Theorem 14. [20] If G is a bipartite graph, then ker(G) = core(G).

Proof (Alternative Proof). The assertions are clearly true, whenever core(G) =
∅, i.e., for G having a perfect matching. Assume that core(G) �= ∅.

Let S ∈ Ω (G) and M be a maximum matching. By Theorem 2(i), M matches
V (G) − S into S, and N(core(G)) into core(G).

According to Theorem 9(ii), it is sufficient to show that there is no set Z ⊆
N (core(G)), Z �= ∅, such that |N (Z) ∩ core(G)| = |Z|.

Suppose, to the contrary, that there exists a non-empty set Z ⊆ N (core(G))
such that |N (Z) ∩ core(G)| = |Z|. Let Z0 be a minimal non-empty subset of
N (core(G)) enjoying this equality.

Clearly, H = G [Z0 ∪ M (Z0)] is bipartite, because it is a subgraph of a
bipartite graph. Moreover, the restriction of M on H is a perfect matching.
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Claim 1. Z0 is independent.

Since H is a bipartite graph with a perfect matching, it has two maxi-
mum independent sets at least. Hence there exists W ∈ Ω (H) different from
M (Z0). Thus W ∩ Z0 �= ∅. Therefore, N (W ∩ Z0) ∩ core(G) = M (W ∩ Z0).
Consequently,

|N (W ∩ Z0) ∩ core(G)| = |M (W ∩ Z0)| = |W ∩ Z0| .

Finally, W ∩ Z0 = Z0, because Z0 has been chosen as a minimal subset of
N (core(G)) such that |N (Z0) ∩ core(G)| = |Z0|. Since |Z0| = α (H) = |W | we
conclude with W = Z0, which means, in particular, that Z0 is independent.

Claim 2. H is a connected graph.

Otherwise, for any connected component of H, say H̃, the set V
(
H̃

)
∩ Z0

contradicts the minimality property of Z0.

Claim 3. Z0∪ (core(G) − M (Z0)) is independent.

By Claim 1, Z0 is independent. The equality |N (Z0) ∩ core(G)| = |Z0|
implies N (Z0) ∩ core(G) = M (Z0), which means that there are no edges con-
necting Z0 and core(G) − M (Z0). Consequently, Z0 ∪ (core(G) − M (Z0)) is
independent.

Claim 4. Z0 ∪ (core(G) − M (Z0)) is included in a maximum independent set.

Let Zi = M ((N (Zi−1) ∩ S) − M (Zi−1)) , 1 ≤ i < ∞. By Lemma 1 all the
sets Zi =

⋃
0≤j≤i

Zj , 1 ≤ i < ∞ are independent. Define

Z∞ =
⋃

0≤i≤∞
Zi,

which is, actually, the largest set in the sequence
{
Zi, 1 ≤ i < ∞}

(Fig. 6).

Fig. 6. S ∈ Ω(G), Q = core (G) − M (Z0), Y0 = M (Z0), Y1 = (N (Z0) − M (Z0)) ∩ S,
Y2 = ..., and Zi = M (Yi) , i = 1, 2, ... .
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The inclusion

Z0 ∪ (core(G) − M (Z0)) ⊆ (S − M (Z∞)) ∪ Z∞

is justified by the definition of Z∞.
Since |M (Z∞)| = |Z∞| we obtain |(S − M (Z∞)) ∪ Z∞| = |S|. According

to the definition of Z∞ the set

(N (Z∞) ∩ S) − M (Z∞)

is empty. In other words, the set (S − M (Z∞))∪Z∞ is independent. Therefore,
we arrive at

(S − M (Z∞)) ∪ Z∞ ∈ Ω (G) .

Thus (S − M (Z∞)) ∪ Z∞ is a desired enlargement of the set Z0∪
(core(G) − M (Z0)).

Claim 5. core(G) ∩ ((S − M (Z∞)) ∪ Z∞) = core(G) − M (Z0).

The only part of (S − M (Z∞))∪Z∞ that interacts with core(G) is the subset

Z0 ∪ (core(G) − M (Z0)) .

Hence we obtain

core(G) ∩ ((S − M (Z∞)) ∪ Z∞) =
core(G) ∩ (Z0 ∪ (core(G) − M (Z0))) = core(G) − M (Z0) .

Since Z0 is non-empty, by Claim 5 we arrive at the following contradiction

core(G) is not a subset of (S − M (Z∞)) ∪ Z∞ ∈ Ω (G) .

Finally, we conclude with the fact there is no set Z ⊆ N (core(G)) , Z �= ∅
such that |N (Z) ∩ core(G)| = |Z|, which, by Theorem 9, means that core(G)
and ker(G) coincide.

� � � �

� � �

x

y

G1

� � � � �

� � �
�

�
�a

b

G2

Fig. 7. core(G1) = ker (G1) = {x, y} and core(G2) = ker (G2) = {a, b}.

Notice that there are non-bipartite graphs enjoying the equality ker(G) =
core(G); e.g., the graphs from Fig. 7, where only G1 is a König-Egerváry graph.

There is a non-bipartite König-Egerváry graph G, such that ker(G) �=
core(G). For instance, the graph G1 from Fig. 8 has ker(G1) = {x, y}, while
core(G1) = {x, y, u, v}. The graph G2 from Fig. 8 has ker(G2) = ∅, while
core(G2) = {w}.
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� � � �
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�

�
�

�
�

�

x y u v

G1
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w

G2

Fig. 8. Both G1 and G2 are König-Egerváry graphs. Only G2 has a perfect matching.

5 Interrelationships Between ker (G), Nucleus(G),
Diadem(G) and Corona(G)

There is a non-König-Egerváry graph G with V (G) = N (core(G))∪ corona(G);
e.g., the graph G from Fig. 9.

� � � � � � � �

� � � �
�

�
�

�
�

�
x

y

z
G

Fig. 9. G is not a König-Egerváry graph, and core(G) = {x, y, z}.

Theorem 15. If G is a König-Egerváry graph, then

(i) [23] |corona(G)| + |core(G)| = 2α (G);
(ii) [25] diadem(G) = corona(G), while diadem(G) ⊆ corona(G) is true for

every graph;
(iii) [25] |ker (G)| + |diadem (G)| ≤ 2α (G).

Notice that the graph from Fig. 9 has |corona(G)|+ |core(G)| > 2α (G). For a
König-Egerváry graph with |ker (G)|+|diadem (G)| < 2α (G), see Fig. 8. Figure 9
shows that a graph may have diadem(G) �= corona(G) and ker(G) �= core(G).

� � � � � �

� � � ��

������

�
�

�
G1

� � � � �

� � �
�

�
�

x

y t u

z v w
G2

Fig. 10. G1 is a non-bipartite König-Egerváry graph, such that ker(G1) = core(G1) and
diadem(G1) = corona(G1); G2 is a non-König-Egerváry graph, such that ker(G2) =
core(G2) = {x, y}; diadem(G2) ∪ {z, t, v, w} = corona(G2).
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The combination of diadem(G) �= corona(G) and ker(G) = core(G) is realized
in Fig. 10.

The following three conjectures were resolved in [31].

Conjecture 2. [11,22] |ker(G)| + |diadem(G)| ≤ 2α(G) for every graph G.

Conjecture 3. [12] If |nucleus(G)| + |diadem(G)| = 2α(G), then G is a König-
Egerváry graph.

Conjecture 4. [11] If |diadem(G)| = |corona(G)|, then G is a König-Egerváry
graph.

Actually, all these conjectures are involved in a more general framework,
where they appear as corollaries.

If Γ, Γ ′ are two set collections, we write Γ ′  Γ if
⋃

Γ ′ ⊆
⋃

Γ and
⋂

Γ ⊆
⋂

Γ ′ [12].

Theorem 16. [12] Let ∅ �= Γ ⊆ Ω(G).

(i) If Γ ′ ⊆ Ind(G) is such that Γ ′  Γ , then
∣∣∣
⋂

Γ ′
∣∣∣ +

∣∣∣
⋃

Γ ′
∣∣∣ ≤

∣∣∣
⋂

Γ
∣∣∣ +

∣∣∣
⋃

Γ
∣∣∣.

(ii) 2α(G) ≤
∣∣∣
⋂

Γ
∣∣∣ +

∣∣∣
⋃

Γ
∣∣∣.

(iii) If, in addition, G is a König-Egerváry graph, then
∣∣∣
⋂

Γ
∣∣∣+

∣∣∣
⋃

Γ
∣∣∣ = 2α(G),

and, in particular, |corona(G)| + |core(G)| = 2α(G).

Notice that if S ∈ Ind(G), then G[N [S]] is not necessarily a König-Egerváry
graph.

Theorem 17. [15] For every graph G, there is some X ⊆ V (G), such that:

(i) X = N [S] for every S ∈ MaxCritIndep(G);
(ii) G[X] is a König-Egerváry graph.

In other words, Theorem 17(i) claims that X = N [S] does not depend on
the choice of S ∈ MaxCritIndep(G).

Lemma 2. If S ∈ MaxCritIndep(G) and X = N [S], then MaxCritIndep(G) 
Ω (G[X]).

There exist graphs, such that

MaxCritIndep(G) �= Ω (G[X]) , S ∈ MaxCritIndep(G),

and X = N [S].

Corollary 5. [31] If S ∈ MaxCritIndep(G) and X = N [S], then

diadem(G) ⊆ diadem(G[X]) and nucleus(G[X]) ⊆ nucleus(G).
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The critical independence number is

α′(G) = max{|S| : S ∈ MaxCritIndep(G)}

[15].

Lemma 3. [26] If ∅ �= Γ ′ ⊆ MaxCritIndep(G) and ∅ �= Γ ⊆ Ω(G), then
∣∣∣
⋂

Γ ′
∣∣∣ +

∣∣∣
⋃

Γ ′
∣∣∣ ≤ 2α′(G) ≤ 2α(G) ≤

∣∣∣
⋂

Γ
∣∣∣ +

∣∣∣
⋃

Γ
∣∣∣ .

If Γ ′ = MaxCritIndep(G) and Γ = Ω(G), Lemma 3 implies the following.

Corollary 6. [31] |nucleus(G)| + |diadem(G)| ≤ 2α (G) for every graph G.

Since ker(G) ⊆ nucleus(G), Corollary 6 validates Conjecture 2. An alterna-
tive proof of Conjecture 2 may be found in [3].

A family Γ ⊆ Ind(G) is a König-Egerváry collection if
∣∣∣
⋂

Γ
∣∣∣+

∣∣∣
⋃

Γ
∣∣∣ = 2α(G)

[12]. It is worth mentioning that Ω(G) may be a König-Egerváry collection, while
G is not a König-Egerváry graph.

Theorem 18. [26] For a graph G, the following assertions are equivalent:

(i) G is a König-Egerváry graph;
(ii) every non-empty family of maximum critical independent sets of G is a

König-Egerváry collection;
(iii) there is a König-Egerváry collection of maximum critical independent sets

of G.

Since |nucleus(G)| + |diadem(G)| = 2α(G) means that MaxCritIndep(G) is
a König-Egerváry collection, Theorem 18 implies the validity of Conjecture 3.

Corollary 7. [31] If |nucleus(G)| + |diadem(G)| = 2α(G), then G is a König-
Egerváry graph.

If ∅ �= Γ ⊆ Ω(G), then none of
⋂

Γ and
⋃

Γ is necessarily critical.

Proposition 5. [26] Let Γ ⊆ Ω(G) and ∅ �= Γ ′ ⊆ MaxCritIndep(G) be such
that for every A ∈ Γ ′ there exists S ∈ Γ such that A ⊆ S. If

⋃
Γ ′ =

⋃
Γ , then

G is a König-Egerváry graph.

If Γ ′ = MaxCritIndep(G) and Γ = Ω(G), Proposition 5 immediately implies
the validity of Conjecture 4.

Corollary 8. [31] If diadem(G) = corona(G), then G is a König-Egerváry
graph.
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6 Conclusions

Theorem 14 claims that the equality ker(G) = core(G) is true for bipartite
graphs.

Problem 1. [20] Characterize graphs with ker(G) = core(G).

By Corollary 2, core(G) is critical for every König-Egerváry graph.

Problem 2. [11] Characterize graphs, where core(G) is a critical set.

Conjecture 5. If core(G) is a critical set, then core(G) = nucleus(G).

By Theorem 4, for König-Egerváry graphs core(G) = nucleus(G).

Problem 3. [12] Characterize graphs with core(G) = nucleus(G).

For König-Egerváry graphs corona(G) is critical in accordance with Theorem
4 and Theorem 5(ii).

Problem 4. [25] Characterize graphs such that corona(G) is a critical set.

By Theorem 16, every subcollection of a König-Egerváry collection of maxi-
mum independent sets is König-Egerváry as well.

Problem 5. [12] Characterize the graphs such that every collection of maximum
independent sets is König-Egerváry. In other words, characterize the graphs such
that |corona(G)| + |core(G)| = 2α (G).

Theorem 3 says that d(G) = α(G) − μ(G) for König-Egerváry graphs.

Problem 6. Characterize graphs satisfying d(G) = α(G) − μ(G).

Acknowledgments. The first author would like to thank the organizers of the Math-
ematical Optimization Theory and Operations Research Conference - MOTOR2019 for
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Abstract. This paper addresses a technique for generating two types of
nonconvex test problems. We study quadratic problems with d.c. inequal-
ity constraints and sum-of-ratios programs where both numerators and
denominators are quadratic functions. Based on the idea of P. Calamai
and L. Vicente, we propose the procedures for constructing nonconvex
test problems with quadratic functions of any dimension, where global
and local solutions are known. The implementation of the procedures
does not require any complicated operations and solving auxiliary prob-
lems, except for elementary operations with matrices and vectors.
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1 Introduction

Test problems play an important role in computational testing of numeri-
cal methods. They help verify the efficiency of algorithm and allow us to
compare it with other methods. Test problems often come from two sources:
(pseudo)random generators and existing test collections (libraries). As for ran-
domly generated problems, we usually do not know the properties of prob-
lems, such as the number of stationary points, the number of local and global
solutions. Moreover, we often do not even know if these solutions actually
exist. The libraries of test problems offer us specific classes of problems of
given dimension. For instance, there are Floudas and Pardalos’ collection [3],
COCONUT Benchmark [14], DEGEN collection, etc. But it is rather difficult
to find test instances of required dimension for minimizing a quadratic function
with quadratic inequality constraints in these collections. Let alone instances
with nonconvex functions both in the objective function and in the constraints.
The situation remains the same with test problems for fractional optimization.
There are some examples with affine functions [8] or with quadratic functions,
but with the small number of fractions [6].

Thus, this paper was motivated by the necessity to have a test problem collec-
tion for nonconvex problems with quadratic functions. We consider a method of
generating nonconvex test problems based on the technique proposed by Calamai
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M. Khachay et al. (Eds.): MOTOR 2019, LNCS 11548, pp. 21–33, 2019.
https://doi.org/10.1007/978-3-030-22629-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22629-9_2&domain=pdf
http://orcid.org/0000-0001-9942-0977
https://doi.org/10.1007/978-3-030-22629-9_2


22 M. V. Barkova

and Vicente [1,2,13]. The idea of their method is to construct a “big” problem
of the desired dimension by combining a finite number of low-dimensional prob-
lems. These so-called kernel problems are rather simple, and we can find all their
local and global solutions. In addition, this technique does not require solving
auxiliary problems or systems of equations. Thus, we can construct test instances
of any dimension with needed properties and known local and global solutions.

In the paper we propose a method for generating nonconvex quadratic prob-
lems in the following form:

(P) :

{
f0(x) := 〈x,Q0x〉 + 〈b0, x〉 + d0 ↓ min

x
, x ∈ S,

fi(x) := 〈x,Qix〉 + 〈bi, x〉 + di ≤ 0, i ∈ I = {1, ..., N},

where S ⊂ IRn is a closed convex set, Qi ∈ IRn×n are indefinite, symmetric matri-
ces, and x, bi ∈ IRn, di ∈ IR, i = 0, ..., N .

Furthermore, we propose a method for constructing fractional programs in
the following form:

(FP) :
m∑

i=1

ψi(x)
ϕi(x)

=
m∑

i=1

〈x,Aix〉 + 〈pi, x〉 + qi

〈x,Bix〉 + 〈ci, x〉 + ti
↓ min

x
, x ∈ S,

where Ai, Bi ∈ IRn×n, x, pi, ci ∈ IRn, qi, ti ∈ IR, i = 1, . . . ,m, and ψi, ϕi such
that
(H0) : ψi(x) > 0, ϕi(x) > 0 ∀x ∈ S, i = 1, . . . , m.

In contrast to the techniques for generating test quadratic programs proposed
in [1] or in [10,11], we construct problems with nonconvex quadratic inequality
constraints (P). Moreover, due to some easy additional operations, we can gen-
erate fractional test problems (FP).

2 Quadratic Program Generating Scheme

The proposed method of the generation of the nonconvex quadratic test prob-
lem (P) consists of three stages [1]. The first one includes the construction of
low-dimensional kernel problems and the analytical search for all local and global
solutions of these problems. At the second stage, a separable problem of the
required dimension is constructed by merging a finite number of kernel prob-
lems having different properties. Finally, the separable problem is transformed
in order to eliminate the separability of constructed problem. Each of these
stages is described below.

2.1 Kernel Problems

In this section, we describe the classes of nonconvex quadratic kernel problems.
Each class possesses its own properties. These classes will be combined to gen-
erate a “big” separable problem.
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Define kernel problems in the following way:

(Pk) :

⎧⎨
⎩

f0(x) = −pkx1(x1 − 3) − 0.5 + x2 ↓ min
x

,

f1(x) = −x2
1 − x2 ≤ 0,

f2(x) = (x1 − 1)2 − x2 − 2.5 ≤ 0,

where x ∈ IR2, pk ∈ {p1, p2, p3}.
The problems (Pk) are nonconvex quadratic problems in the space IR2 with

parameters pk, k = 1, 2, 3, in the objective function. All stationary points of
problems (Pk) were obtained analytically using KKT-theorem. They are illus-
trated in Fig. 1.

Fig. 1. Three classes of kernel problems

Analytical solutions for all types of kernel problem are provided below.
There are three following classes to consider.

Class 1 (p1 = 0.5):

z0 = (1/2,−1/4), f0(z0) = −0.125;

z1 = (−1/2,−1/4), f0(z1) = −1.625;

z2 = (3/2,−9/4), f0(z2) = −1.625.

Points z1, z2 are the global solutions, z0 is the stationary point (see Fig. 1(a)).

Class 2 (p2 = 0.25):

z0 = (3/10,−9/100), f0(z0) = −1.7375;

z1 = (−1/2,−1/4), f0(z1) = −1.1875;

z2 = (3/2,−9/4), f0(z2) = −2.1875.

Point z2 is the global solution, z1, z0 are the stationary ones (see Fig. 1(b)).
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Class 3 (p3 = 0.6):

z0 = (9/16,−81/256), f0(z0) = −0.3164;

z1 = (−1/2,−1/4), f0(z1) = −1.8;

z2 = (3/2,−9/4), f0(z2) = −1.4.

Point z1 is the global solution, z2, z0 are the stationary points (see Fig. 1(c)).
Further, these kernel problems will be used to construct a separable problem.

2.2 Separable Quadratic Problem

At the second stage of the method, a separable problem is generated by com-
bining a finite number of different classes of kernel problems. Let n is desired
dimension of the “big” problem. So, we construct the quadratic problem of the
form:

(SP) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r∑
i=1

[−pkx2i−1(x2i−1 − 3) − 0.5 + x2i] ↓ min
x

,

f2i−1(x) = −x2
2i−1 − x2i ≤ 0,

f2i(x) = (x2i−1 − 1)2 − x2i − 2.5 ≤ 0, i = 1, . . . , r,

where r is the number of kernel problem, n = 2r, x ∈ IRn, pk ∈ {p1, p2, p3}.
Note that in this case the number of variables of the problem (SP) coincides
with the number of constraints 2r = n = N .

Let us specify following properties of the separable problem (SP).

Proposition 1. [1,2,9,13] The vector x∗ ∈ IR2r is a local (global) solution to
the problem (SP) if and only if its components are local (global) solutions to the
problems (Pk), k = 1, 2, 3.

Proposition 2. [1,2,9,13] The problem (SP) that includes r1 kernel problems
of the class 1, r2 kernel problems of the class 2, and r3 kernel problems of the
class 3, so that r1 + r2 + r3 = r, has 3r1+r2+r3 stationary points among which
2r1 solutions are global solutions to this problem.

The problem (SP) can be reformulated as follows:

(QP) :

{
f0(x) = 〈x,Q0x〉 + 〈b0, x〉 + d0 ↓ min

x
,

fi(x) = 〈x,Qix〉 + 〈bi, x〉 + di ≤ 0, i ∈ I = {1, ..., 2r},

where

Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−pk

0 (0)
−pk

0
. . .

(0) −pk

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3pk

1
3pk

1
...

3pk

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, d0 = −0.5r;
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and for odd indexes i, i ∈ I:

i

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
. . . (0)

−1

(0)
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎠

i ,

i

bi =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

−1
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

i , di = 0;

for even indexes i, i ∈ I:

i

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
. . . (0)

1

(0)
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎠

i ,

i

bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

−2
−1
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

i−1

i
, di = −1.5;

Qi ∈ IR2r×2r, bi ∈ IR2r, di ∈ IR, i = 0, . . . , 2r.

2.3 Transformation of the Separable Problem

At the final stage of the method, it is necessary to get rid of the separability
to expand the variety of the constructed problem. For this purpose, we use the
substitution

x = M · M−1x,

where M ∈ IR2r×2r : detM 	= 0, and replacement of a variable:

z = M−1x.

Applying the above-described transformation to an arbitrary problem of the
class (QP), we obtain the following problem:

(QP ′) :

{
f0(z) = 〈z,MT Q0Mz〉 + 〈MT b0, z〉 + d0 ↓ min

z
,

fi(z) = 〈z,MT QiMz〉 + 〈MT bi, z〉 + di ≤ 0, i ∈ I.

Using the standard definitions of the linear algebra [4], one can easily
show that the matrices Qi remain indefinite after the transformation MT QiM ,
i = 0, ..., 2r. Therefore, the problem (QP ′) remains in the class of nonconvex
quadratic problems.
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Let us describe one of the methods of constructing the matrix M . First,
calculate a random Householder matrix [7] satisfying

H = E − 2
〈h, h〉hhT , (1)

where E is the identity matrix, h ∈ IR2r is an arbitrary nonzero vector.
And then the matrix M is in the following form:

M = Λ · H, (2)

where Λ is random positive defined diagonal matrix (2r × 2r).
Therefore, inverse matrices with respect to M can be obtained by

M−1 = H · Λ−1 = W.

Proposition 3. [1] The problem (P) in the variables z ∈ IR2r is equivalent to
the problem (QP ′) in the variables z̄ ∈ IR2r under the nonsingular transforma-
tion z̄ = Wz.

2.4 A Simple Example

Let us construct a low-dimension example to demonstrate how the method can
be used to generate nonconvex quadratic problems.

Suppose that n = 4, r = 2, r1 = 1, r2 = 1 and r3 = 0, i.e. we choose one
problem from the first class of kernel problem and another one from the second
class. This corresponds to the following separable quadratic problem:

f0(x) = −0.5x2
1 + 1.5x1 + x2 − 0.25x2

3 + 0.75x3 + x4 − 1 ↓ min
x

,

f1(x) = −x2
1 − x2 ≤ 0,

f2(x) = (x1 − 1)2 − x2 − 2.5 ≤ 0,
f3(x) = −x2

3 − x4 ≤ 0,
f4(x) = (x3 − 1)2 − x4 − 2.5 ≤ 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3)

The problem (3) is a nonconvex quadratic 4-dimension problem with 2 non-
convex and 2 convex quadratic constrains. Since r = 2, r1 = 1, r2 = 1,
r3 = 0, the problem (3) has 3r1+r2+r3 = 32 = 9 stationary points includ-
ing 2r1 = 21 = 2 global solutions, namely z∗

1 = (−1/2,−1/4, 3/2,−9/4) and
z∗
2 = (3/2,−9/4, 3/2,−9/4).

Then after using transformations (1)–(2) with the following parameters

Λ =

⎛
⎜⎜⎝

9 0 0 0
0 3 0 0
0 0 10 0
0 0 0 4

⎞
⎟⎟⎠ , h =

⎛
⎜⎜⎝

−6
−5
2

−1

⎞
⎟⎟⎠ , M =

⎛
⎜⎜⎝

−0.82 −8.18 3.27 −1.64
−2.73 0.73 0.91 −0.45
3.64 3.03 8.79 0.61

−0.73 −0.61 0.24 3.88

⎞
⎟⎟⎠ ,
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the transformed nonconvex quadratic problem (QP ′) would be:

f0(x̄) =

⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠
T⎛
⎜⎜⎝

−3.64 −6.10 −6.65 −1.22
−6.10 −35.76 6.73 −7.15
−6.65 6.73 −24.66 1.34
−1.22 −7.15 1.34 −1.43

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

−1.95
−9.87
12.65
1.42

⎞
⎟⎟⎠
T⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠ − 1 ↓ min

x̄
,

f1(x̄) =

⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠
T⎛
⎜⎜⎝

−0.66 −6.69 2.67 −1.33
−6.69 −66.94 26.77 −13.38
2.67 26.77 −10.71 5.35

−1.33 −13.38 5.35 −2.67

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

2.72
−0.72
−0.90
0.45

⎞
⎟⎟⎠
T⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠ ≤ 0,

f2(x̄) =

⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠
T⎛
⎜⎜⎝

0.66 6.69 −2.67 1.33
6.69 66.94 −26.77 13.38

−2.67 −26.77 10.71 −5.35
1.33 13.38 −5.35 2.67

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

4.36
15.63
−7.45
3.72

⎞
⎟⎟⎠
T⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠ ≤ 1.5,

f3(x̄) =

⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠
T⎛
⎜⎜⎝

−13.22 −11.01 −31.95 −2.20
−11.01 −9.18 −26.62 −1.83
−31.95 −26.62 −77.22 −5.32
−2.20 −1.83 −5.32 −0.36

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

0.72
0.60

−0.24
−3.87

⎞
⎟⎟⎠
T⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠ ≤ 0,

f4(x̄) =

⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠
T⎛
⎜⎜⎝

13.22 11.01 31.95 2.20
11.01 9.18 26.62 1.83
31.95 26.62 77.22 5.32
2.20 1.83 5.32 0.36

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

−6.54
−5.45
−17.81
−5.09

⎞
⎟⎟⎠
T⎛
⎜⎜⎝

x̄1

x̄2

x̄3

x̄4

⎞
⎟⎟⎠ ≤ 1.5.

As we can see, we have obtained a nonconvex quadratic problem with non-
convex inequality constraints. All transformed matrices are indefinite and dense.

The two global minima for this problem are:

z̄1 = (0.238, 0.161, 0.052,−0.514),
z̄2 = (0.823,−0.203,−0.069,−0.453),

with value f0(z̄1) = f0(z̄2) = −3.8125.

3 Fractional Programming Test Problem

For describing the technique of construction fractional programming problem
it is necessary to recall reduction theorem which shows the relations between
fractional and d.c. minimization problem. This reduction will be need to produce
the fractional problem (FP) from the quadratic in the test problem generation
scheme.

In that purpose we consider the following d.c. minimization problem with
vector parameter α
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(Pα) : Φ(x, α) :=
m∑

i=1

[ψi(x) − αiϕi(x)] ↓ min
x

, x ∈ S,

where α = (α1, . . . , αm)� ∈ IRm
+ .

Suppose, that the data of the problem (FP) satisfies “the nonnegativity
condition”, so that the following inequalities hold

(Hα) : ψi(x) − αiϕi(x) ≥ 0 ∀x ∈ S, i = 1, . . . ,m.

In addition, suppose that the following assumptions are fulfilled:

(H1) :
{

(a) V(α) > −∞ ∀α ∈ K,where K is a convex set from IRm;
(b) ∀α∈K⊂IRm there exists a solution z = z(α) to Problem (Pα).

Theorem 1. [5] Suppose that the assumptions (H0), (H1) are satisfied in the
problem (FP).

In addition, let there exist a vector α0 = (α01, . . . , α0m)� ∈ K ⊂ IRm at
which “the nonnegativity condition” (Hα0) holds.

Besides, suppose that in Problem (Pα0) the following equality takes place

V(α0)
�
= min

x

{
m∑

i=1

[ψi(x) − α0iϕi(x)] : x ∈ S

}
= 0. (4)

Then, any solution z = z(α0) to the problem (Pα0) is a solution to Prob-
lem (FP), so that z ∈ Sol(Pα0) ⊂ Sol(FP).

Let us turn to the generation scheme (Fig. 2). In order to generate one ratio
of the problem (FP), first of all, we should construct the quadratic problem of
the required dimension with linear or box constraints by the scheme described
in Sect. 2. It is well known that all quadratic functions can be represented as a

Fig. 2. Generation scheme
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difference of two convex functions, i.e. d.c. functions [12]. Therefore, after that,
we rewrite the constructed quadratic problem in a d.c. form. Then, in view
of the reduction Theorem 1, we obtain one ratio with quadratic functions. By
repeating this procedure m times we generate the sum-of-ratios problem (FP)
with m fractions.

3.1 Kernel Problems

Let us construct the following kernel problems:

(KPk)

{
fk(x) ↓ min

x
,

x ∈ Sk, k = 1, 2, 3,

where f1(x) = −2
3
x2 +

14
3

x − 4, S1 = {x ∈ IR | −2x + 2 ≤ 0, x − 5.5 ≤ 0},

f2(x) = −1
2
x2 + 3x − 5

2
, S2 = {x ∈ IR | −2x + 2 ≤ 0, x − 4.5 ≤ 0},

f3(x) = −1
4
x2 +

9
4
x − 2, S3 = {x ∈ IR | −2x + 2 ≤ 0, x − 7.5 ≤ 0}.

These problems are nonconvex quadratic minimization problems with linear
constraints, and their solutions are illustrated by Fig. 3.

Fig. 3. Kernel problems

The bold line in Fig. 3 shows the feasible sets of the problems (KPk), k =
1, 2, 3. The point z1 is the global solution for each kernel problem and the point z2
is the local one. It should be noted that, in order for the “nonnegative condition”
(Hα) to be fulfilled, the optimal values of all problems are equal to zero and their
global solutions coincide.
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3.2 Separable Problem and Its Transformation

At the second stage of the method we combine a finite number of kernel problems
to construct the following separable problem

(FSP)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l∑
i=1

fk(xi) ↓ min
x

,

−2xi + 2 ≤ 0,
xi − pk ≤ 0, i = 1, . . . , l,

where l is the number of classes of kernel problems, x ∈ IRl, fk ∈ {f1, f2, f3},
pk ∈ {5.5, 4.5, 7.5}.

Then we reformulate problem (FSP) as follows:

(FQP)

{
f0(x) = 〈x,Q0x〉 + 〈b0, x〉 + d0 ↓ min

x
,

Ax ≤ B,

where Q0 ∈ IRl×l, b0 ∈ IRl, d0 ∈ IR, A ∈ IR2l×l, B ∈ IR2l.
In order to increase the variety of constructed problems, it is necessary to

eliminate separateness. For this purpose, we use the substitution x = M ·M−1x,
where M ∈ IRl×l : detM 	= 0, and a change of the variable: y = M−1x.

We obtain the following problem:

(FQP ′)

{
f0(y) = 〈yM,Q0My〉 + 〈MT b0, y〉 + d0 ↓ min

y
,

AMy ≤ B.

Thus, we have generated nonconvex quadratic problems of the given dimension.

3.3 Fractional Problem

Further, we represent the objective function of the problem (FQP ′) as a d.c.
function using the well-known decomposition MT Q0M = Q01 − Q02, where
Q01, Q02 are positive definite symmetric matrices such that

f0(y) = 〈y,MT Q0My〉 + 〈MT b0, y〉 + d0 = g0(y) − h0(y)
= [〈y,Ay〉 + 〈p, y〉 + q] − α[〈y,By〉 + 〈c, y〉 + t]

where α > 0, α ∈ IR is some given parameter, i.e. Q02 = αB. As well-known, the
d.c. decomposition of a function is not unique, therefore we can choose some
positive parameter α. For example, we can set α = 1.

Further, due to the reduction Theorem1 f0(·) = 0 (see equality (4) for

m = 1), we get one ratio α =
〈y,Ay〉 + 〈p, y〉 + q

〈y,By〉 + 〈c, y〉 + t
, and the corresponding

fractional program

〈y,Ay〉 + 〈p, y〉 + q

〈y,By〉 + 〈c, y〉 + t
↓ min

y
, AMy ≤ B. (5)

Repeating this procedure m times and summing ratios, we generate an objec-
tive function of the test Problem (FP). The feasible set of (FP) is obviously
constructed by adding all constraints of all problems (5).
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3.4 A Simple Example

The following example demonstrates how the method can be used to generate a
fractional problem with quadratic functions in 2 ratios.

First of all, let us generate a nonconvex quadratic problem for the first frac-
tion. Suppose that number of kernel problems of first class is l1 = 1, the second
class is l2 = 1, and the third one is l3 = 0. So, the total number of kernel problem
is l = l1 + l2 + l3 = 2. This corresponds to the following separable quadratic
problem:

f0(x) = −2
3
x2
1 +

14
3

x1 − 1
2
x2
2 + 3x2 − 13

2
↓ min

x
,

−2x2
1 + 2 ≤ 0,

x1 − 5.5 ≤ 0,
−2x2

2 + 2 ≤ 0,
x2 − 4.5 ≤ 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6)

Then, let us generate a nonconvex quadratic problem for the second fraction
with parameters: l1 = 0, l2 = 1, l3 = 1, l = 2.

f0(x) = −1
2
x2
2 + 3x2 − 1

4
x2
3 +

9
4
x3 − 9

2
↓ min

x
,

−2x2
2 + 2 ≤ 0,

x2 − 4.5 ≤ 0,
−2x2

3 + 2 ≤ 0,
x3 − 7.5 ≤ 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7)

Problems (6)–(7) are nonconvex quadratic 3-dimension problems each of
which has 2l1+l2+l3 = 22 = 4 local solutions and one global solution. These
global solutions coincide y∗

1 = y∗
2 = (1, 1, 1) and the optimal values of the prob-

lems are equal to zero.
Now suppose the following data were used in the transformation:

Λ =

⎛
⎝8 0 0

0 3 0
0 0 6

⎞
⎠ , h =

⎛
⎝ 4

8
10

⎞
⎠ , M =

⎛
⎝ 6.58 −2.84 −3.56

−1.07 0.87 −2.67
−2.67 −5.33 −0.67

⎞
⎠ .

This yield the following quadratic programming problems (FQP ′): for the
first ratio

f1
0 (y) =

⎛
⎝y1

y2
y3

⎞
⎠
T⎛
⎝−29.41 12.94 14.17

12.94 −5.77 −5.59
14.17 −5.59 −11.98

⎞
⎠
⎛
⎝y1

y2
y3

⎞
⎠ −

⎛
⎝ 27.49

−10.67
−24.59

⎞
⎠
T⎛
⎝y1

y2
y3

⎞
⎠ − 6.5 ↓ min

y
,

subject to

−13.15y1 + 5.69y2 + 7.11y3 ≤ −2,

6.57y1 − 2.84y2 − 3.56y3 ≤ 5.5,

2.13y1 − 1.73y2 + 5.33y3 ≤ −2, (8)
−1.07y1 + 0.87y2 − 2.67y3 ≤ 4.5,

5.33y1 + 10.67y2 + 1.33y3 ≤ −2,

−2.67y1 − 5.33y2 − 0.67y3 ≤ 7.5,
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and for the second one:

f2
0 (y) =

⎛
⎝y1

y2
y3

⎞
⎠
T⎛
⎝−2.35 −3.09 −1.87

−3.09 −7.49 0.27
−1.87 0.27 −3.67

⎞
⎠
⎛
⎝y1

y2
y3

⎞
⎠ −

⎛
⎝−9.2

−9.4
−9.5

⎞
⎠
T⎛
⎝y1

y2
y3

⎞
⎠ − 4.5 ↓ min

y
,

subject to (8).
Further, we represent objective functions f1

0 , f2
0 of transformed problems as

d.c. functions using the well-known decomposition [12]:

f1
0 (y) = [〈y,A1y〉 + 〈p1, y〉 + q1] − α[〈y,B1y〉 + 〈c1, y〉 + t1],

and
f2
0 (y) = [〈y,A2y〉 + 〈p2, y〉 + q2] − α[〈y,B2y〉 + 〈c2, y〉 + t2],

where

A1 =

⎛
⎝27.11 12.94 14.17

12.94 12.94 0
14.17 0 14.17

⎞
⎠ , p1 =

⎛
⎝ 27.49

−10.67
−24.59

⎞
⎠ , q1 = −6.5,

B1 =

⎛
⎝56.52 0 0

0 18.71 5.59
0 5.59 26.15

⎞
⎠ , c1 =

⎛
⎝0

0
0

⎞
⎠ , t1 = 0,

A2 =

⎛
⎝2.61 0 0

0 0.27 0.27
0 0.27 0.27

⎞
⎠ , p2 =

⎛
⎝−9.2

−9.4
−9.5

⎞
⎠ , q2 = −6.5,

B2 =

⎛
⎝4.96 3.09 1.87

3.09 7.75 0
1.87 0 3.93

⎞
⎠ , c2 =

⎛
⎝0

0
0

⎞
⎠ , t2 = 0, α = 1.

Finally, due to the reduction Theorem1, we obtain 2 ratios. Summing them,
we generate an objective function of the test problem. Its feasible set is obviously
constructed by adding all constraints.

Thus, we have the following sum-of-ratios test problem:

f(y) =
〈y,A1y〉 + 〈p1, y〉 + q1
〈y,B1y〉 + 〈c1, y〉 + t1

+
〈y,A2y〉 + 〈p2, y〉 + q2
〈y,B2y〉 + 〈c2, y〉 + t2

↓ min
y

, (9)

with linear inequality constraints (8).
The global minimum for this problem is:

ȳ = (−0.089,−0.096,−0.370),

with an optimal value f0(ȳ) = 2. It should be noted that, since we have chosen
the parameter α = 1, the global value of the problem (9) coincides with the
number of ratios.
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4 Conclusion

To conclude, it can be said that the described technique for generating non-
convex quadratic problems and fractional problems allows us to construct var-
ious test problems of the desired dimension with known local and global solu-
tions. Moreover, this technique does not require any complicated operations and
solving auxiliary problems. Therefore, our approach looks quite promising and
beneficial.
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Abstract. In this paper, we describe a non-convex constrained
quadratic programming problem arising in short wave transmitting
antenna array synthesis and provide preliminary computational results.
We consider problem instances for three different antenna designs includ-
ing up to 25 radiators. In the computational experiments, BARON pack-
age is compared to the gradient optimization method, applied to the
unconstrained problem formulation using the penalty function method.
Global optimality of the obtained solutions is established using BARON
package the smallest instances of 4 radiators. On small instances, both
methods have demonstrated similar results, while on larger instances sig-
nificant difference has been observed. The set of local optima is studied
experimentally. It is established that even though the problem instances
have numerous local optima, the objective function in many local optima
has the same value.

Keywords: Quadratic programming · Local optima · Antenna array ·
Gradient optimization · Computational experiment

1 Introduction

Phased antenna arrays (PAA) are regular arrays of radiators, connected to
devices that provide the required distribution of phases and amplitudes. PAA are
widely used in super-high frequency (SHF) band to obtain directional radiation
(see, for example, [8]). On high frequency band (HF), which corresponds to the
short waves (SW), such systems are not widely used. However, the possibilities
to increase the energy of the communication channel of the HF-band, and to
reduce the occupied space through the use of phased antenna arrays attract the
attention to such systems [14,20,21].
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On the SHF band, mutual influence of radiators is usually weak and this
allows to assume their independence. However, on HF, where other designs of
radiators are commonly used, such an assumption is inappropriate. This leads
to more complex optimization problems for such antenna arrays.

Various optimization methods have been used to solve the PAA optimization
problems. In particular, it was reported in the literature about methods based on
semi-definite relaxation [7], gradient optimization methods [13], metaheuristics
[1,3,13,19], methods of linear algebra [23,24], approximation theory [15] etc.
In some cases, it is possible to solve the original problem approximately, using
convex programming methods [6].

Nevertheless, the optimization problems for PAA in HF-band with strong
mutual influence of radiators are lacking consideration. In this paper, we study
the applicability of a gradient-based algorithm to such a problem (penalty func-
tion method is used to take into account the constrains) and compare its results
with the results of the BARON solver built into GAMS package. Besides that,
we study the properties of the local optima found in multiple restarts of the
gradient-based algorithm and discuss the directions for further research.

2 Basic Notations and Problem Formulation

In this paper, similarly to the works [22,24], we consider HF phased antenna
arrays consisting of broadband vertical monopoles (BVM), see Fig. 1a, broad-
band vertical dipoles (BVD), see Fig. 1b, and whip antennae. Each BVM consists
of 8 wires that make up a “thick” vertical radiator, fed against the counterpoise
system. The counterpoise system of each radiator consists of 6 wires, located
parallel to the ground. BVD is designed similarly to BVM with the only differ-
ence being that instead of the counterpoise system, another “thick” radiator is
attached, pointing in the opposite direction. The whip antenna has a standard
dipole configuration. In principle, any other designes of the radiators may be
considered, provided that relevant mathematical models may be constructed for
them.

Fig. 1. Broadband vertical monopoles (a) and broadband vertical dipoles (b)
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Our goal is to maximize radiation of the antenna array in a given direction
(i.e. to maximize the antenna system gain) under constraints on the power input
to the antenna system. This problem can be formulated as follows (see [23,24]
for details). Let k be the index of a directional vector component: k = 1 for the
angle of the horizontal direction and k = 2 for the vertical angle (the distance
can be considered a sufficiently large constant, which can be omitted in what
follows). The total electromagnetic field f

(k)
Σ is given by

f
(k)
Σ =

N∑

i=1

Iif
(k)
i , (1)

where Ii is the complex current in i-th feeding point; f
(k)
i is the partial field that

is radiated if a unit current flows at the i-th feeding point of the radiating system
while the current at all other feeding points of the radiating system is zero. This
formula follows by the linearity, so that the total field f

(k)
Σ is a superposition of

the partial fields from the currents at each power point of the radiating system.
The values f

(k)
i and f

(k)
Σ are functions of direction and frequency. These values

may be computed using some antenna modelling system (in this study NEC-2
system [4] will be used).

Let f denote a complex conjugate number to f . As mentioned above, the goal
is to maximize the nonnormalized energy flux in the given direction, therefore

F =
∑

k

f
(k)

Σ f
(k)
Σ (2)

is the objective function. It is quite obvious that there are restrictions imposed
on the currents Ii due to the fact that the power of sources of these currents
is limited. To find the power of source i, we express the corresponding complex
voltage Ui as follows:

Ui =
N∑

i=1

ZijIj , (3)

where Zij are matrix elements of the impedance matrix Z. Equation (3) is a
generalization of the Ohm’s law.

In some cases, it is convenient to use the matrix notation. In order to go to
such notation, we introduce a one-column matrix of currents i and a one-column
matrix of voltages u. Then the objective function can be written as follows:

F = i+Ai , (4)

where
Aij =

∑

k

f
(k)

i f
(k)
j . (5)

Similarly, the relationship between currents and voltages can be written as
follows:

u = Zi . (6)
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There are various forms of restrictions that correspond to a different antenna
systems. For example, the total power at all feeding points P can be restricted.
In this case, the optimization problem can be written as follows:

{
i+Ai → max,

i+Bi = 1 ,
(7)

where
B =

1
4P

(Z + Z+) , (8)

the superscript + means the Hermitian conjugation. Such a problem can be
solved analytically [23].

The optimization problem is more difficult in the case when the power is
restricted at each feeding point. This problem can be written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i+Ai → max,

0 ≤ i+B(1)i ≤ 1,

...

0 ≤ i+B(n)i ≤ 1,

i ∈ C
n,

(9)

where
B(k) =

1

4P
(k)
m

(Z+P(k) + P(k)Z) , (10)

P
(k)
m is the maximum admissible power at k-th feeding point, P(k) is the

matrix projector having a single nonzero matrix element P(k)
kk = 1. It can be

proved [23] that:

1. All matrices B(k) have no more than two nonzero eigenvalues. One of them
is positive, the other one is negative or zero.

2. Matrices A and B(k) are Hermitian, i.e. aij = aji ∀ij.
3. Matrix A is positive semi-definite.

Apparently, the problem (9) can be solved only by numerical methods. For
the development of solution algorithms, it is convenient to reformulate it in
terms of real numbers. Let us denote the corresponding real matrices: G for the
objective function and H(k) ∈ R

(2n)2 ; 0 ≤ k ≤ n for each of the constraints. Let
y ∈ C

n, A ∈ C
n2

, and let x ∈ R
2n be a vector, where the first n components are

the real parts of the corresponding components of the vector y while the rest of
the components are imaginary, i. e.

yi ∈ C ←→ (xi,xn+i), xi = Re(yi), xn+i = Im(yi) .

Let G ∈ R
(2n)2 denote a matrix of the following form:

(
Re(A) −Im(A)
Im(A) Re(A)

)
(11)
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Then
Ay = Gx . (12)

Indeed

Gx =
(

Re(A)Re(y) − Im(A)Im(y)
Im(A)Im(y) + Re(A)Re(y)

)
=

(
b
c

)

Gx = b + ic = Re(A)Re(y) − Im(A)Im(y) + Im(A)Im(y) + Re(A)Re(y)

Ay = (Re(A) + iIm(A)(Re(y) + iIm(y)) =

Re(A)Re(y) − Im(A)Im(y) + Im(A)Im(y) + Re(A)Re(y)

The fact that the matrix A is Hermitian leads to the symmetry of matrix G.
Indeed, since the matrix A is Hermitian, this implies symmetry of Re(A) and a
skew-symmetry of Im(G). This means that

GT =
(

Re(A) (Im(A))T

(−ImA)T Re(A)

)
=

(
Re(A) −Im(A)
Im(A) Re(A)

)
= G .

Thus, G is a symmetric matrix. The same applies to all matrices of the con-
straints H(k) ∈ R

(2n)2 ; 0 ≤ k ≤ n. In real numbers, the optimization problem (9)
has the following formulation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xT Gx → max,

0 ≤ xT H(1)x ≤ 1,

...

0 ≤ xT H(n)x ≤ 1,

x ∈ R
2n.

(13)

To summarize, the proposed mathematical programming problem (13) for
short wave antenna array optimization has the objective function defined by a
quadratic form with symmetric positive semi-definite matrix G. Every constraint
is given by a quadratic form, defined by a symmetric matrix H(k) with two
identical positive eigenvalues and two identical non-negative eigenvalues, the
rest of the eigenvalues are equal to zero. Globally optimal solutions to the non-
convex mathematical programming problems of this type may be found using
branch and bound methods [12,18] or DC programming approaches [11,17]. If
global optima are hard to find, then at least the locally optimal solutions may be
found by means of the gradient-based optimization or Newton’s algorithm [9]. In
case of numerous local optima, different metaheuristic algorithms may be helpful
as well (see e.g. [5,16]).

2.1 Bounding the Feasible Area

In computational experiments, it will be helpful to reduce the size of the set
of feasible solutions to problem (13), still keeping at least one globally optimal
solution in this area.
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First of all, note that problem (13) in complex numbers has an obvious
symmetry with respect to the transformation i → eiφi of all complex coordinates
(up to an arbitrary angle φ). In physical terms, this symmetry corresponds to
the phase-independence of the radiation power flux (symmetry of the objective
function) and phase-independence of real power flow in each feeder of the antenna
system (symmetry of the set of feasible solutions).

The symmetry w.r.t. the transformation i → eiφi can be utilized to reduce
the search space dimensionality by one, e.g. by fixing Im(yn) = 0, which is
equivalent to adding a constraint x2n = 0 to problem (13).

Now we can also impose a bound on the set of feasible solutions in terms of
the Euclidean distance to the origin. Note that if x satisfies all constraints of
problem (13), this implies

n∑

k=1

xT H(k)x ≤ n.

Denote Hsum :=
∑n

k=1 H(k). By physical properties of the problem, we can
assume that the minimum eigenvalue of Hsum (denoted λmin) is positive. Then,
in view of the fact that

min{zT Hsumz : z ∈ R
2n, ||z|| = 1} = λmin,

(see e.g. [10], Chap. 1, § 1.0.2), it holds that

xT Hsumx ≥ ||x||2λmin

and

||x|| ≤
√

n

λmin
. (14)

This upper bound will be helpful to establish global optimality to some prob-
lem instances by means of BARON solver in the next section.

3 Computational Experiment

The general procedure for solving the antenna array optimization problem, when
power is restricted at each feeding point, is as follows:

1. For each radiator in the array, calculate the partial field components.
2. Compute matrices G and H(k), k = 1, . . . , n, by the above formulas.
3. Solve problem (13).

As the most basic optimization method, we consider a gradient-based maxi-
mization method (a maximization version of the steepest descent) with quadratic
approximation algorithm as a line search procedure [9]. In this case the constraint
optimization problem was reduced to an unconstraint optimization problem by
the external point method [2] as follows:

xT Gx − r ·
n∑

k=1

(
min

(
0,xT H(k)x

)
+ min

(
0, 1 − xT H(k)x

))4

→ max, (15)
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where r is the penalty parameter. An optimal solution obtained for this uncon-
straint optimization problem may be infeasible w.r.t. problem (13), but the
greater penalty parameter r is chosen, the smaller violations of constraints will
be. Besides that, given an infeasible solution x, such that only the inequali-
ties on the right-hand side of the constraints are violated in problem (13), one
can easily convert it into a feasible solution x′ := α(x)−1/2x, where α(x) :=
maxk=1,...,n xT H(k)x. The objective function value xT Gx will be reduced only
by a factor of α(x). In what follows, we will refer to the results of gradient
optimization method, including this feasibility restoring post-processing proce-
dure. The gradient optimization algorithm was performed repeatedly, using a
randomly generated vector X ∈ R

2n as a starting point. The distribution of X
is described in Subsect. 3.2.

In order to establish the global optimality by means of the BARON solver,
based on branch and bound approach [18], it is necessary to provide a bounding
box or an upper bound on the norm of feasible solutions. To this end, we use the
inequality (14). Unfortunately, the values of λmin turned out to be practically
applicable only for three arrays. The BARON solver was tested in terms of global
optimality proof only for these instances (denoted by sign “*” in Tables 1, 2 and
4 below).

3.1 Problem Instances

The computational experiments were carried out on three types of regular phased
antenna arrays: grids of broadband vertical monopoles (BVM) (Fig. 1a), arrays
of broadband vertical dipoles (BVD) (Fig. 1b), and arrays of vertical whip
dipoles (VWD). The array sizes are 2× 2, 3 × 3 and 5× 5, but only the whip
antennae array of size 5× 5 are considered because NEC system could not han-
dle 5 × 5 BVM and 5× 5 BVD due to large complexity of these models.

BVM arrays are modelled as placed above the real ground at a height of
0.2 m (the conductivity of the ground equals 0.01 S/m and its dielectric constant
equals 10), while BVD and VWD are modelled in free space. In the case of BVM
and BVD, the distance between the neighboring radiators is 20 m. The height
of each BVM radiator is 15 m. The distance between the endpoints of dipoles
in each BVD radiator is 30 m. In the case of whip antennae, the length of the
whole radiator is 10 m, the distance between the neighboring radiators is 5 m.
The frequency of the signal is 5 MHz in all instances. The target direction for
maximization of radiation is given as 45 degrees in the horizontal plane and 70◦

vertical.

3.2 Results of Computational Experiments

In this subsection, we compare the results of the simple gradient method and
the BARON solver in its default mode. In all experiments described below, the
overall time limit was set to 1000 sec. of Intel i7 processor. If a gradient opti-
mization converged (termination by minimal admissible step size 10−4), then it
was restarted again, until the overall time budget was used. At each initialization
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of the gradient method, the random starting point X was chosen independently
with the uniform distribution in the cube [0, 2000]2n. The best found solution is
considered as a final result. The penalty weight parameter r in the gradient opti-
mization method is set to 106 in all runs. The BARON solver of version 18.5.8
was given the same amount of CPU time, when it was compared to the gra-
dient method (row “BARON”) and practically unlimited time when the global
optimality was tested (row “BARON∗”). In all tables, the column “Time” pro-
vides the time till the reported solution was found the first time or the global
optimality was established (denoted by “*”).

Tables 1, 2 and 3 compare the simple gradient method and the BARON
solver, applied to the 2× 2 arrays.

Table 1. CPU times and objective function values for BVM 2× 2

Solver Time (sec) Objective function

Gradient 0.058 138.2

BARON 0.12 139.2

BARON∗ 0.69∗ 139.2∗

Table 2. CPU times and objective function values for BVD 2× 2

Solver Time (sec) Objective function

Gradient 0.14 459.7

BARON 0.27 463.6

BARON∗ 1.14∗ 463.6∗

Table 3. CPU times and objective function values for VWD 2× 2

Solver Time (sec) Goal function

Gradient 3.3 303.0

BARON 26.62 306.2

As an illustration of physical properties of the obtained solutions, in Figs. 2
and 3 we show a horizontal plan of the beam pattern for the PAA using the
solutions obtained by the gradient method (the solutions found by BARON
solver look very similar). Figure 2 contains the beam pattern for the 2× 2 array
of BVD elements. As it can be seen from this figure, the maximal radiation is
attained in the given direction (45◦), but 2× 2 array does not form a sharp main
lobe. Figure 3 contains the beam pattern for the 3× 3 array of BVD elements,
given the same target direction. Comparison of this figure to Fig. 2 shows that
the 3× 3 array allows to form a sharper main lobe (Tables 5 and 6).
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Fig. 2. Horizontal plan of beam pattern for 2× 2 array of BVD elements

Table 4. CPU times and objective function values for BVM 3× 3

Solver Time (sec) Goal function

Gradient 0.68 575.7

BARON 0.34 580.6

BARON∗ 1873.83∗ 580.6∗

Table 5. CPU times and objective function values for BVD 3× 3

Solver Time (sec) Goal function

Gradient 40.0 1954.8

BARON 0.56 1980.7

3.3 Statistics on the Number of Different Local Optima Found

Table 7 shows the statistics on the number of different local optima found by
the multistart procedure during 1000 s CPU time. In Table 7, M is a number
of restarts made, Mne is the number of non-equivalent local optima, and Mf

is the number of local optima with identical objective function value (up to a
error tolerance below the last digit reported in tables above). In the case of 5× 5
VWD the gradient method found just one solution in 1000 s but this time was
not enough to find a local optimum, so this instance is not included into Table 7.

It can be observed from Table 7 that the local optima corresponding to the
problem instances under consideration are not unique. The column Mf suggests
that value of the objective function of all local optima computed for and BVM,
BVD was identical for each of the problems, except for BVD 3× 3 where local
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Fig. 3. Horizontal plan of beam pattern for 3× 3 array of BVD elements

Table 6. CPU times and objective function values for VWD 5× 5

Solver Time (sec) Goal function

Gradient 1000 1382.7

BARON 217.94 33.5

Table 7. The number of local optima found

PAA M Mne Mf

BVM 2× 2 31691 340 1

BVD 2× 2 9531 194 1

VWD 2× 2 305 302 24

BVM 3× 3 1551 94 1

BVD 3× 3 94 52 52

optima with 52 different objective function values were found. In VWD 2× 2, a
total of 24 local optima with different objective function values were found. The
results for BVM 2× 2, BVD 2× 2 and BVM 3× 3 suggest that it is plausible
that for many instances of problem (13) for BVM and BVD arrays, all local
optima are in fact global solutions.

4 Conclusion

In this paper, we have investigated the problem of optimizing an antenna array
in conditions where power restrictions are imposed at each feeding point. Such
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a problem is reduced to a quadratic programming problem with quadratic con-
straints. This problem can not be solved analytically, so the numerical solution
methods from BARON package and a simple gradient-based algorithm are con-
sidered. BARON package and a simple gradient-based algorithm are compared
in computational experiments.

Both algorithms demonstrated their advantages and disadvantages. It is
observed that the local optima corresponding to the problem under consider-
ation are not unique. However the value of the objective function in many local
optima turns out to be the same.

Elucidation of the nature of multiplicity of optima with identical objective
value is the subject of further research. It may be helpful to study the symmetries
of the feasible area that cause multiple optima with equal objective.

Acknowledgment. The work on Sect. 2 was funded in accordance with the state task
of the Omsk Scientific Center SB RAS (project number FWEF-2019-0006).
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Abstract. We suggest the modified splitting method for mixed varia-
tional inequalities and prove its convergence under rather mild assump-
tions. This method maintains the basic convergence properties but does
not require any iterative step-size search procedure. It involves a simple
adaptive step-size choice, which takes into account the problem behavior
along the iterative sequence. The key element of this approach is a given
majorant step-size sequence converging to zero. The next decreased value
of step-size is taken only when the current iterate does not give a suffi-
cient descent of the objective function. This descent value is estimated
with the help of an Armijo-type condition, similar to the rule used in
the inexact step-size linesearch. If the current iterate gives a sufficient
descent, we can even take an increasing step-size value at the next iterate.
Preliminary results of computational experiments confirm the efficiency
of the proposed modification in comparison with the ordinary splitting
method using the inexact step-size linesearch procedure.
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1 Introduction

The so-called forward-backward splitting method was proposed first in [1] for
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linesearch procedure with respect to a cost function is inserted. The first split-
ting method with linesearch was proposed in [3] and further developed in [4–10].
This method is suitable for decomposable problems such as mixed variational
inequalities or optimization problems of a special structure. The objective func-
tion of such optimization problems can be split into two parts, where the first
part is differentiable but can be non-convex, and the second one is convex but
non-differentiable in general.

On the other hand, a general scheme of simple adaptive step-size choice was
recently proposed for iterative optimization methods in [11,12]. In the present
paper, we apply this scheme to the splitting method for solving mixed variational
inequalities with potential cost mappings and prove its convergence under rather
mild assumptions. This scheme takes into account the behavior of the problem
along the iterative sequence. The key element of this approach is a given majo-
rant step-size sequence converging to zero. In accordance with this majorant, the
next decreased value of the step-size is taken only when the current iterate does
not give a sufficient descent, which is estimated with the help of an Armijo-type
condition. If the current iterate gives a sufficient descent, we can even take an
increasing step-size value at the next iterate.

The rest of the paper is organized as follows. In Sect. 2 we recall a gen-
eral scheme of the splitting method for solving mixed variational inequalities.
Section 3 contains the main result of the paper, it describes the splitting method
with the adaptive step-size choice and the proof of its convergence. Preliminary
numerical tests are presented in Sect. 4.

2 The General Scheme of the Splitting Method

Let F : Rn → Rn be a continuous mapping, h : Rn → R be a convex but not
necessarily differentiable function, D ∈ Rn be a nonempty convex closed feasible
set. A mixed variational inequality is the problem of finding a point x∗ ∈ D such
that

〈F (x∗), x − x∗〉 + h(x) − h(x∗) ≥ 0 ∀x ∈ D. (1)

We denote by D0 the solution set of this problem and assume that it is
nonempty. This is the case if, for example, the set D is bounded. If the mapping F
is strongly monotone or the function h is strongly convex, then D0 is a singleton.

Now we recall the general scheme of the splitting method for problem (1)
(see, for example, [5]). Let us be given a current iterative point xk ∈ D. Then
the next iterative point xk+1 ∈ D can be defined as a solution of the following
mixed variational inequality:

〈F (xk) + θ−1(xk+1 − xk), y − xk+1〉 + h(y) − h(xk+1) ≥ 0 ∀y ∈ D. (2)

On the one hand, if the function h is constant, then algorithm (2) becomes
the well known projection method

xk+1 = πD

[
xk − θF (xk)

]
,
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where πD : Rn → D is the projection operator onto the set D. On the other
hand, if F ≡ 0, we obtain a pure implicit (proximal) process.

Under the given assumptions, there exists a unique solution to the optimiza-
tion problem

min
y∈D

→ {
h(y) + (2θ)−1‖y − x‖2} (3)

for any θ > 0 and any point x ∈ Rn.
We denote this solution by Pθ(x), therefore we define the proximal continuous

mapping x → Pθ(x). It follows from the optimality condition of problem (3) that
the point Pθ(x) ∈ D is a solution to the variational inequality

∃d ∈ ∂h(Pθ(x)), 〈d + θ−1(Pθ(x) − x), y − Pθ(x)〉 ≥ 0 ∀y ∈ D.

Then splitting method (2) can equivalently be defined by the following formula

xk+1 = Pθ[xk − θF (xk)], θ > 0. (4)

If we define the mapping x → P̄θ(x) as follows

P̄θ(x) = Pθ(x − θF (x)), (5)

then P̄θ(x) is a solution to the problem

min
y∈D

−→ {〈F (x), y〉 + h(y) + (2θ)−1‖y − x‖2} .

or the following variational inequality

∃d ∈ ∂h(P̄θ(x)), 〈F (x) + d + θ−1(P̄θ(x) − x), y − P̄θ(x)〉 ≥ 0 ∀y ∈ D. (6)

Evidently, the mappings x → Pθ(x) and x → P̄θ(x) can equivalently be used.
Let us remind some important properties of the mapping x → P̄θ(x) under

the given assumptions (see also [5]).

Proposition 1. The mapping x → P̄θ(x) has the following properties:
(a) it is continuous;
(b) if x̄ = P̄θ(x̄) for some x̄ ∈ D, then x̄ ∈ D0;
(c) ∃d ∈ ∂h(x), 〈F (x) + d, P̄θ(x) − x〉 ≤ −θ−1‖P̄θ(x) − x‖2 ∀x ∈ D.

Proof. To prove property (a), we arbitrarily fix two points x′, x′′ ∈ D and sum
inequality (6) with x = x′, y = P̄θ(x′′) and the same inequality with x = x′′ and
y = P̄θ(x′). Then we obtain

〈F (x′) − F (x′′) + θ−1(x′′ − x′), P̄θ(x′′) − P̄θ(x′)〉 ≥ θ−1‖P̄θ(x′′) − P̄θ(x′)‖2.
It follows that

‖F (x′) − F (x′′)‖ + θ−1‖x′′ − x′‖ ≥ θ−1‖P̄θ(x′′) − Pθ(x′)‖.

We conclude that the mapping x → P̄θ(x) is continuous, assertion (a) holds true.
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Now let x̄ = P̄θ(x̄). Then by setting xk = x̄ in (2) and taking into account (4)
and (5) we obtain that x̄ solves problem (1). Conversely, let x̄ solves problem (1).
Then combining inequalities (1) with y = P̄θ(x̄) and (2) with y = x̄, xk = x̄ we
have that −θ−1‖P̄θ(x̄) − x̄‖ ≥ 0, therefore x̄ = P̄θ(x̄). Assertion (b) was proven.

Further, using assertion (6) with y = x, we have

−θ−1‖P̄θ(x) − x‖2 ≥ 〈F (x), P̄θ(x) − x〉 + h(P̄θ(x)) − h(x)
≥ 〈F (x) + d, P̄θ(x) − x〉

for all x ∈ D and certain d ∈ ∂h(x). Hence, assertion (c) is also true.

We note that the general scheme (2) requires choosing some procedure for
constructing the step size θ. On the one hand, one can use constant step sizes,
but they are usually tightly connected with the initial problem properties such
as Lipschitz constants or strong monotonicity constants. On the other hand,
procedure (2) yields a descent direction P̄θ(x) − x and then one can use this
direction in certain iterative procedures of exact or inexact step-size search.

In the next section, we describe a variant of the splitting method with adap-
tive step size choice, which is independent of such problem constants and does
not require iterative line-search procedures.

3 The Adaptive Step-Size Choice in the Splitting Method

In what follows, we consider mixed variational inequalities with potential map-
pings, i.e., we assume that there exists a function f : Rn → R such that
f ′(x) = F (x) ∀x ∈ Rn. We denote ϕ(x) = f(x)+h(x). Then variational inequal-
ity (1) is equivalent to the following optimization problem

min
x∈D

−→ ϕ(x). (7)

We denote by D∗ the solution set of problem (7) and by ϕ∗ the optimal value
of its objective function.

We also use a general coercivity condition, which is necessary for the conver-
gence of the method, if the feasible set of the initial problem is unbounded.

(A1) There exists a number γ > ϕ∗ such that the set

Dγ = {x ∈ D : ϕ(x) ≤ γ}
is bounded.

Let us apply the general scheme of adaptive step size choice from [12] and
describe the modified splitting method, which solves mixed variational inequality
(1) and can also solve optimization problem (7) if the function f is convex.

The Splitting Method with Adaptive Step-Size (SMA)
Step 0. Choose an initial point x0 ∈ Dγ , a coefficient β ∈ (0, 1), and a

majorant sequence {τl} → 0, τl ∈ (0, 1). Set k = 0, l = 0, u0 = x0, choose an
initial step size λ0 ∈ (0, τ0].
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Step 1. Take a point yk = P̄θ(xk). If yk = xk, then stop. Otherwise set
dk = yk − xk and zk+1 = xk + λkdk.

Step 2. If
ϕ(zk+1) − ϕ(xk) ≤ −βλk‖dk‖2, (8)

then take λk+1 ∈ [λk, τl], set xk+1 = zk+1, and go to Step 4.
Step 3. Set λ′

k+1 = min{λk, τl+1}, l = l + 1, and take λk+1 ∈ (0, λ′
k+1]. If

ϕ(zk+1) ≤ γ, set xk+1 = zk+1 and go to Step 4. Otherwise set xk+1 = uk,
uk+1 = uk, k = k + 1, and go to Step 1.

Step 4. If ϕ(xk+1) < ϕ(uk), set uk+1 = xk+1. Set k = k +1 and go to Step 1.

Here we apply a very simple rule of step choice, which follows the approach
from [12]. We use condition (8) similar to conditions used in the Armijo-type
line-search. Even if this condition is violated at the current iteration and the
objective function does not sufficiently decrease (but it does not exceed the
threshold γ), we do this step, but we take the next value of step-size for using
at the next iteration.

We note that the auxiliary sequence {uk} contains the best current points of
the iterative sequence {xk}, in other words,

ϕ(uk) = min
0≤i≤k

ϕ(xi).

If the method stops at Step 1 at some point x̄k, then x̄k = P̄θ(x̄k) and x̄k

is the exact solution to the initial problem due to property (b) of Proposition 1.
Hence, in what follows we consider the case when the iterative sequence {xk} is
infinite. The proof of the next theorem is similar to that of Theorem 1 from [12],
but involves certain differences.

Theorem 1. Let the assumption (A1) be fulfilled and β < θ−1. Then the fol-
lowing assertions hold true.

(i) The iterative sequence {xk} generated by SMA has a limit point, which
belongs to D0.

(ii) If D∗ = D0, then all the limit points of the iterative sequence {xk} belongs
to the set D∗ and

lim
k→∞

ϕ(xk) = ϕ∗. (9)

Proof. We note that the iterative sequence {xk} is contained in a bounded set
Dγ , therefore it has limit points. Due to property (a) of Proposition 1, so are
sequences {yk} and {dk}. We take a subsequence of indices {is} such that

ϕ(zis+1) > ϕ(xis) − βλis‖dis‖2, (10)

ϕ(zis+1) > γ, ϕ(xis) ≤ γ. (11)

In other words, is are indices of such iterations, which do not give a sufficient
descent and the step value will decrease at the next iterate. In addition, we do
not take zk+1 as the next iterative point, because the objective function value
is too large at zk+1.
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Then several cases are possible.

Case 1. The subsequence {is} is infinite.
Take an arbitrary limit point x′ of subsequence {xis}. Without loss of generality
we can assume that

x′ = lim
s→∞ xis , y′ = lim

s→∞ yis ,

where y′ = P̄θ(x′), because the mapping x → P̄θ(x) is continuous due to assertion
(a) of Proposition 1. We also note that we take the next value of step majorant
for the next iterate at each is, i.e.,

λis ∈ (0, τls ], λis+1 ∈ (0, τls+1],

for some infinite subsequence of indices ls, where lim
s→∞ τls = 0. Therefore

lim
s→∞ λis = 0. Earlier we noted that the sequence {dis} is bounded, then by

construction of {zis+1} the limit points of subsequences {zis+1} and {xis} coin-
cide. Hence from (11) we obtain

ϕ(x′) = γ > ϕ∗. (12)

Since the function h is convex by definition, from assumption (10) we obtain

f(xis + λisd
is) − f(xis) + λis〈g(zis+1), dis〉 > −βλis‖dis‖2

for some subgradient g(zis+1) ∈ ∂h(zis+1). Taking the limit in the previous
inequality as s → ∞ yields

〈F (x′) + g(x′), y′ − x′〉 ≥ −β‖y′ − x′‖2

for some subgradient g(x′) ∈ ∂h(x′). Using assertion (c) from Proposition 1, we
obtain

β‖y′ − x′‖2 ≥ θ−1‖y′ − x′‖2.
Therefore, x′ = P̄θ(x′) and due to assertion (b) of Proposition 1,

x′ ∈ D0. (13)

Assertion (i) is proven for this case.

Case 2: The subsequence {is} is finite.
We assumed that the sequence {xk} is infinite. Then zk = xk for sufficiently
large k. The further proof depends on the properties of the sequence λk.

Case 2a: The number of changes of the index l is finite.
Then we have λk ≥ λ̄ > 0 for numbers k large enough, therefore we obtain from
condition (8)

ϕ(xk+1) ≤ ϕ(xk) − βλk‖dk‖2 ≤ ϕ(xk) − βλ̄‖dk‖2

for k large enough. Since ϕ(xk) ≥ ϕ∗ > −∞, we obtain
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lim
k→∞

ϕ(xk) = μ (14)

and
lim

k→∞
‖yk − xk‖ = 0. (15)

Let x′ be an arbitrary limit point of the sequence {xk}. From (15) we have

P̄θ(x′) = x′,

which gives x′ ∈ D0 due to assertion (b) of Proposition 1. Hence all the limit
points of the iterative sequence {xk} belong to the set D0. Therefore, assertion
(i) is also true in this case.

Case 2b: The number of changes of the index l is infinite.
In this case, there exists an infinite subsequence of indices {kl} such that xkl+1 =
xkl + λkl

dkl and condition (8) is violated:

ϕ(xkl + λkl
dkl) − ϕ(xkl) = ϕ(xkl+1) − ϕ(xkl) > −βλkl

‖dkl‖2, (16)

in addition,
λkl

∈ (0, τl], λkl+1 ∈ (0, τl+1],

and lim
l→∞

τl = 0. Therefore, lim
l→∞

λkl
= 0. Note that since the subsequence {dkl}

is bounded, the limit points of the subsequences {xkl+1} and {xkl} coincide. Let
us take an arbitrary limit point x′ of this subsequence {xkl}. Without loss of
generality we can assume that

x′ = lim
s→∞ xkl , y′ = lim

s→∞ ykl ,

where y′ = P̄θ(x′). Since the function h is convex by definition, we obtain from
assumption (16)

f(xkl + λkl
dkl) − f(xkl) + λkl

〈g(xkl+1), dkl〉 > −βλkl
‖dkk |2.

for some subgradient g(xkl+1) ∈ ∂h(xkl+1). Taking the limit in the previous
inequality as l → ∞ yields

〈F (x′) + g(x′), y′ − x′〉 ≥ −β‖y′ − x′‖2

for some subgradient g(x′) ∈ ∂h(x′). Using assertion (c) from Proposition 1, we
obtain

β‖y′ − x′‖2 ≥ θ−1‖y′ − x′‖2.
i.e., x′ = P̄θ(x′) and x′ ∈ D0. Therefore, all the limit points of the subsequence
{xkl} belong to the set D0. Assertion (i) is also proven for this case.

Now we assume that the solution sets of problems (1) and (7) coincide, i.e.,
D∗ = D0. Note that relations (12) and (13) are inconsistent and Case 1 is
impossible. This means that the subsequence {xis} cannot be infinite. In Case
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2a we have μ = ϕ∗ in (14) which gives (9). We conclude that assertion (i) holds
true in this case.

In Case 2b, as we showed above, the limit points of the subsequences {xkl}
and {xkl+1} coincide and all they now belong to the set D∗. For any index k we
define the index m(k) as follows

m(k) = max{j : j ≤ k, ϕ(xj) − ϕ(xj−1) > −βλj−1‖dj−1‖2},

i.e., m(k) is the closest to k but not greater index from the subsequence {xkl+1}.
This means that m(k) = k if ϕ(xk) − ϕ(xk−1) > −βλk−1‖dk−1‖2. By definition,
we have

ϕ(xk) ≤ ϕ(xm(k)). (17)

Now let us take an arbitrary limit point x∗ of the sequence {xk}, i.e., lim
s→∞ xts =

x∗. Construct the corresponding infinite subsequence {xm(ts)}. From condition
(17) we have ϕ∗ ≤ ϕ(xts) ≤ ϕ(xm(ts)), but all the limit points of the sequence
{xm(ts)} belong to the set D∗ because it is contained in the sequence {xks+1}.
Choose any limit point x̄ of {xm(ts)}. Then, taking a subsequence if necessary,
we obtain

ϕ∗ ≤ ϕ(x∗) ≤ ϕ(x̄) = ϕ∗,

therefore x∗ ∈ D. This means that all the limit points of the iterative sequence
{xk} belong to the set D∗ and condition (9) is fulfilled. We conclude that asser-
tion (ii) also holds true. The proof is complete.

The proposed method can be simplified in the case when the feasible set D
is bounded. Then we can set γ = +∞ and remove all the calculations of the
sequence {uk} of best current points. It is easy to verify that all the assertions
of Theorem 1 remain true.

4 Preliminary Computational Results

We compared the proposed version of the splitting method with adaptive step-
size (SMA) with the ordinary version of this method (SMI), using the inexact
line-search procedure.

The Splitting Method with Inexact Step-Size Line-Search (SMI)
Step 0. Choose an initial point x0 ∈ D, coefficients β ∈ (0, 1), α ∈ (0, 1). Set

k = 0.
Step 1. Take a point yk = P̄θ(xk). If yk = xk, then stop. Otherwise set

dk = yk − xk.
Step 2. Find the smallest nonnegative number m such that

ϕ(xk + αmdk) − ϕ(xk) ≤ −βαm‖dk‖2,
set λk = αm, xk+1 = xk + λkdk, k = k + 1, and go to Step 1.

The computational results are presented in tables, which have the follow-
ing structure. The first column contains the dimensions of problems. Each row
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presents the aggregate results of 100 problem instances: mean values (mean val.)
and standard deviations (st.dev.) of calculation time and iterations numbers. All
randomly generated data are uniformly distributed.

The smooth part of the objective function has the form

f(x) = 1/2〈Ax, x〉 − 〈b, x〉. (18)

Here A = BT B. Coefficients bij and bi are randomly generated numbers from
the segment [−1, 1], i, j = 1, . . . , n. The stopping criterion is ‖dk‖ < 0.001. The
coefficients of methods are α = 0.5, β = 0.5, θ = 1, τ0 = 1, τk+1 = 0.5τk.

We remind that if the current iterate gives a sufficient descent, we can even
take an increasing step-size value at the next iterate. At each 20-th iterate, we
increase the step-size value λk+1 = λk/0.5.

Example 1. The first series of experiments contains simple nonsmooth functions,
which are defined as follows

h(x) =
∑

i=1,...,n

|xi|. (19)

For the sake of simplicity we consider the unconditional optimization problem,
i.e., D = Rn. The computational results for Example 1 are presented in Table 1.

Table 1. Results for Example 1.

n SMI SMA

Time (s) Iterations Time (s) Iterations

mean val. st.dev. mean val. st.dev. mean val. st.dev. mean val. st.dev.

50 0.005 0.007 35 8 0.002 0.005 99 9

100 0.025 0.008 54 8 0.018 0.005 124 17

150 0.076 0.016 67 13 0.052 0.009 163 20

200 0.183 0.031 83 13 0.107 0.016 185 22

250 0.294 0.048 84 14 0.186 0.014 210 12

300 0.534 0.065 102 13 0.307 0.020 244 13

350 0.868 0.099 118 14 0.451 0.044 264 26

400 1.273 0.136 129 14 0.644 0.051 287 20

450 1.508 0.214 121 18 0.810 0.084 286 30

Example 2. The functions f and h are defined in (18) and (19), and the feasible
set is a parallelepiped

D = {x ∈ Rn : di ≤ xi ≤ ei, i = 1, . . . , n}, (20)

where the coefficients di, ei are randomly generated numbers from the segment
[−10, 10], i = 1, . . . , n, taking into account that di ≤ ei for all i = 1, . . . , n. The
computational results for Example 2 are presented in Table 2.
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Table 2. Results for Example 2.

n SMI SMA

Time (s) Iterations Time (s) Iterations

mean val. st.dev. mean val. st.dev. mean val. st.dev. mean val. st.dev.

50 0.016 0.012 142 81 0.008 0.008 163 30

100 0.241 0.075 466 130 0.053 0.010 341 49

150 0.481 0.133 406 112 0.168 0.024 502 67

200 2.523 0.430 1 096 173 0.413 0.045 685 76

250 4.854 0.551 1 305 144 0.771 0.088 826 95

300 4.412 1.245 822 233 1.447 0.181 1 065 135

350 10.068 1.706 1 340 213 2.315 0.267 1 261 146

400 25.893 3.091 2 441 278 3.421 0.481 1 406 187

450 44.228 3.772 3 123 137 4.851 0.684 1 539 201

Table 3. Results for Example 3.

n SMI SMA

Time (s) Iterations Time (s) Iterations

mean val. st.dev. mean val. st.dev. mean val. st.dev. mean val. st.dev.

50 0.016 0.012 132 82 0.006 0.008 155 28

100 0.205 0.076 408 141 0.049 0.010 322 47

150 0.438 0.132 368 112 0.167 0.024 487 64

200 2.372 0.438 1 034 174 0.395 0.048 655 78

250 4.813 0.539 1 295 140 0.765 0.104 811 102

300 4.523 1.269 848 236 1.321 0.180 981 132

350 9.852 2.012 1 310 251 2.222 0.297 1 207 160

400 24.450 3.399 2 317 271 3.233 0.510 1 312 170

450 42.609 2.519 3 104 144 4.522 0.622 1 459 192

Example 3. Now we consider conditional optimization problems with nonsmooth
functions

h(x) =
∑

i=1,...,n

αi|xi|,

where αi are randomly generated numbers from the segment [0, 10], i = 1, . . . , n.
The functions f are defined in (18) and D is given in (20). The computational
results for Example 3 are presented in Table 3.

Example 4. Now we consider problems with nonsmooth functions

h(x) =
∑

i=1,...,n

|xi − ci|,
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Table 4. Results for Example 4.

n SMI SMA

Time (s) Iterations Time (s) Iterations

mean val. st.dev. mean val. st.dev. mean val. st.dev. mean val. st.dev.

50 0.019 0.013 156 97 0.007 0.008 165 24

100 0.229 0.080 451 143 0.051 0.009 339 45

150 0.424 0.131 361 110 0.176 0.025 517 68

200 2.507 0.418 1 089 165 0.406 0.040 668 64

250 5.002 0.544 1 295 134 0.820 0.116 843 99

300 4.528 1.432 813 246 1.443 0.218 1 035 128

350 10.907 2.675 1 391 291 2.377 0.295 1 248 151

400 24.822 2.992 2 420 262 3.362 0.394 1 400 165

450 43.486 2.644 3 212 157 4.757 0.618 1 545 174

where ci are randomly generated numbers from the segment [−10, 10], i =
1, . . . , n. The functions f are defined in (18) and D is given in (20). The com-
putational results for Example 4 are presented in Table 4.

Example 5. In conclusion, we consider problems with nonsmooth functions

h(x) =
∑

i=1,...,n

αi|xi − ci|,

where αi are randomly generated numbers from the segment [0, 10], i = 1, . . . , n,
ci are randomly generated numbers from the segment [−10, 10], i = 1, . . . , n. The

Table 5. Results for Example 5.

n SMI SMA

Time (s) Iterations Time (s) Iterations

mean val. st.dev. mean val. st.dev. mean val. st.dev. mean val. st.dev.

50 0.015 0.012 133 85 0.007 0.005 160 26

100 0.226 0.076 449 137 0.047 0.007 326 34

150 0.457 0.143 387 119 0.162 0.022 503 67

200 2.481 0.473 1072 177 0.385 0.050 674 85

250 4.695 0.432 1276 115 0.732 0.073 839 82

300 4.108 1.270 772 237 1.316 0.172 1038 136

350 10.161 1.996 1338 246 2.150 0.230 1221 127

400 24.757 2.788 2410 247 3.050 0.350 1348 151

450 43.283 2.629 3185 148 4.501 0.687 1544 211
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functions f are defined in (18) and D is given in (20). The computational results
for Example 5 are presented in Table 5.

These preliminary results of computational tests show the efficiency of the
proposed method. It is more flexible in the choice of parameters in comparison
with the original version using inexact line-search. In our opinion, this approach
is promising for further investigations.

The program was written in Visual C# with double precision, tested on an
Intel i3-4170 CPU at 3.7 GHz, 4 Gb, running under Windows 7.

5 Conclusion

In the present work, we propose the modified splitting method for mixed vari-
ational inequalities and prove its convergence under rather mild assumptions.
This method maintains the basic convergence properties but does not require
any iterative step-size search procedure. It involves a simple adaptive step-size
choice, which takes into account the behavior of the problem along the itera-
tive sequence. The key element of this approach is a given majorant step-size
sequence converging to zero. The next decreased value of step-size is taken only
when the current iterate does not give a sufficient descent of the objective func-
tion. This descent value is estimated with the help of an Armijo-type condition,
similar to the rule used in the inexact step-size linesearch. If the current iterate
gives a sufficient descent, we can even take an increasing step-size value at the
next iterate.

Preliminary results of computational experiments confirm the efficiency of
the proposed modification in comparison with the ordinary splitting method
using the inexact step-size line-search procedure.
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Abstract. We propose a dynamic version of the double description
method for generating the extreme rays of a polyhedral cone. The
dynamic version of the algorithm supports online input of inequalities.
Some modifications of the method were implemented and the results of
computational experiments are presented. On a series of problems, our
implementation of the algorithm showed higher performance results in
comparison with the known analogues.

Keywords: System of linear inequalities · Convex hull · Cone ·
Polyhedron · Double description method

1 Introduction

It is well-known that any convex polyhedron P ⊆ F d, where F is an ordered
field, can be represented in any of the following two ways:

(1) as the set P = {x ∈ F d : Ax ≤ b} of solutions to a system of linear
inequalities, where A ∈ Fm×d, b ∈ Fm (facet description);

(2) as the sum of the conical hull of a set of vectors v1, . . . , vs in F d and the
convex hull of a set of points w1, . . . , wn in F d (vertex description).

The problem of finding the representation (1) given the representation (2) is
called the convex hull problem. According to the classical theorem of Weyl this
problem is equivalent (dual) to the problem of constructing the representation
(2) given the representation (1). These two problems are referred to as finding
the dual representation of a polyhedron.

The problem of constructing the dual representation of a convex polyhedron
plays a central role in the theory of systems of linear inequalities and compu-
tational geometry [11,21]. For some applications, the representation (1) is con-
venient, while in other cases the representation (2) is more usable, therefore, it
is important to quickly move from one description to another. The importance
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of studying this problem is also emphasized by the fact that it has a variety
of applications, the most known of which are linear and integer programming
[18], combinatorial optimization [19,21] and global optimization [15]. Some of
the newer applications are biological kinetics [20], analysis and verification of
software and hardware [5], identification of dynamic systems [13] and computer
algebra [17,22].

From an algorithmic or theoretical points of view it is convenient to consider
these problems only for polyhedral cones. Any polyhedral cone C ⊆ F d can be
represented in two equivalent ways:

(1) as the set C = {x ∈ F d : Ax ≥ 0} of solutions to a homogeneous system of
linear inequalities, where A ∈ Fm×d, or

(2) as the conical hull of a set of vectors v1, . . . , vs.

There is a standard method for reducing the problem of finding the dual
representation for convex polyhedra to the corresponding one for polyhedral
cones. For example, in order to find representation (2) for a polyhedron P =
{x ∈ F d : Ax ≤ b} it is sufficient to solve the corresponding problem for the
polyhedral cone {x = (x0, x1, . . . , xd) ∈ F d+1 : bx0 − Ax ≥ 0, x0 ≥ 0}, and
then set x0 = 1 (see Section 1.5 in [21]).

There are several known algorithms for solving problems of finding the dual
representation. One of the most popular ones is the double description method
(DDM) [16], also known as the Motzkin–Burger algorithm [11] or Chernikova’s
algorithm [12]. The double description method generally outperforms the other
algorithms when applied to degenerate inputs and/or outputs [3].

There are multiple known programs implementing various modifications of
the double description method. Among the most well-known are:

– cdd [14] (www.inf.ethz.ch/personal/fukudak/cdd home);
– Skeleton [23] (www.uic.unn.ru/∼zny/skeleton);
– QSkeleton [9] (github.com/sbastrakov/qskeleton);
– Parma Polyhedra Library [5] (bugseng.com/products/ppl).

Implementations of other algorithms solving the given problem should also be
noted:

– QHull [6] (www.qhull.org);
– lrs [2,4] (cgm.cs.mcgill.ca/ avis/C/lrs.html);
– pd [10] (www.cs.unb.ca/∼bremner/software/pd).

In this paper we consider the dynamic problem of finding the dual repre-
sentation. This problem appears in many of the applications listed above. For
definiteness, we will deal with the problem of constructing a description (2) if
the description (1) is given. In dynamic problem the full list of constraints is
not known in advance and the constraints come to the input of the algorithm
online as the computation proceeds, and the dual description must be computed
at each iteration for the current system of linear inequalities. Such framework
does not allow the use of many of the heuristics proposed by various authors

www.inf.ethz.ch/personal/fukudak/cdd_home
www.uic.unn.ru/~zny/skeleton
http://github.com/sbastrakov/qskeleton
http://bugseng.com/products/ppl
www.qhull.org
http://cgm.cs.mcgill.ca/~avis/C/lrs.html
www.cs.unb.ca/~bremner/software/pd
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(see the references above) to accelerate the algorithm. Nevertheless, we pro-
pose such an algorithm (as a version of the double description method) for the
dynamic problem, and our algorithm is usually not inferior in performance to
other offline algorithms.

The problem of efficient removal of constraints from the double description
is considered in [1,7]. Other issues concerning the dynamic problem are studied
in [8].

2 Preliminaries

The material in this section is based on [11,18,21]. A polyhedral cone, or simply
a cone, in F d is defined as a set

C =
{
x ∈ F d : Ax ≥ 0

}
,

where F is an ordered field, A ∈ Fm×d. The system of linear inequalities Ax ≥ 0
is said to define the cone C. A cone is called pointed, if it contains no zero
subspaces. It is well-known that for a cone to be pointed it is necessary and
sufficient that rank A = d, where rank A denotes the rank of matrix A. Any
polyhedral cone C can be defined as the conical hull of a finite set of vectors
v1, v2, . . . , vs in F d, i. e.

C = {x = α1v1 + α2v2 + · · · + αsvs : αi ≥ 0 (i = 1, . . . , s)} .

By writing vectors v1, v2, . . . , vs as rows of matrix V ∈ F s×d the conical hull can
be defined as

C = {x = αV, α ∈ F s, α ≥ 0} ,

where α is a row vector. The set of vectors v1, . . . , vs are said to generate the
cone C.

A non-zero vector u ∈ C is referred to as a ray of the cone C. Two rays u
and v are equal (written as u � v) if for some α > 0 it is true that u = αv. A ray
u ∈ C is said to be extreme if the condition u = αv + βw, where α ≥ 0, β ≥ 0
and v, w ∈ C implies u � v � w. Suppose that P is a convex subset of F d, and
for some a ∈ F d, α ∈ F , it holds that P ⊆ {x : ax ≤ α}. Then P ∩{x : ax = α}
is called a face of the set P . Two different extreme rays u and v of a pointed
cone C are said to be adjacent, if no minimal face containing both rays contains
any other extreme rays of the cone C.

The problem of constructing the set of vectors generating polyhedral cone
C =

{
x ∈ F d : Ax ≥ 0

}
is reduced to finding the extreme generators of a

pointed cone by transition to the orthogonal complement L⊥ of the maximal
subspace L =

{
x ∈ F d : Ax = 0

}
contained inside C. Unfortunately, in our

study we cannot take advantage of this fact (as is often the case), since in the
process of adding new inequalities, the space L may change.

Notations: Id×d is the identity matrix of size d × d, Os×m is the zero matrix of
size s × m, Ai is the i-th row of matrix A, Aij is the element from the i-th row
and j-th column of matrix A.
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3 Dynamic Double Description Method

The dynamic variant of the double description method is based on the regular
double description method [11]. The procedure takes a matrix A ∈ Fm×d as
its input. The output is matrices U ∈ F t×d and V ∈ F s×d, the rows of which
compose a basis of maximal subspace L =

{
x ∈ F d : Ax = 0

}
and an irreducible

set of vectors generating the cone C =
{
x ∈ F d : Ax ≥ 0

}
respectively.

procedure DDM-dyn(A)
Input: A ∈ Fm×d

Output: the basis U of maximal subspace L =
{
x ∈ F d : Ax = 0

}

and the set of vectors V generating the cone C =
{
x ∈ F d : Ax ≥ 0

}

U ← Id×d

V ← O0×d

Q ← O0×d

for i = 1, 2, . . . ,m
p ← U · A�

i

q ← V · A�
i

if p = 0
insert the column Bool(q) into Q
J+ ← {j : qj > 0}
J− ← {j : qj < 0}
Vnew ← O 0×d

Qnew ← O 0×m

E ← Adjacent(Q, J+, J−)
for {j1, j2} ∈ E

append the row Normalize (qj1Vj2 − qj2Vj1) to Vnew

append the row Normalize (Qj1 ∨ Qj2) to Qnew

append the zero column to Qnew

remove the rows J− from V and from Q
append the rows of Vnew to V and the rows of Qnew to Q

else
find j0 with pj0 
= 0
if pj0 < 0

Uj0 ← −Uj0

pj0 ← −pj0

for j = 1, 2, . . . , d
if j 
= j0 and pj 
= 0

Uj ← Normalize (pj0Uj − pjUj0)
for j = 1, 2, . . . , s

if qj 
= 0
Vj ← Normalize (pj0Vj − qjUj0)

insert the row Uj0 into V
remove the j0-th row from U
insert the zero column into Q
insert the (0, 0, . . . , 0, 1) row into Q
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The normalization function Normalize used in the algorithm is necessary to
prevent unlimited growth of elements. Its implementation may vary, the one used
in this study for integer calculations divides each element of the input vector by
their greatest common divisor. The Adjacent function checks a pair of extreme
rays for adjacency.

Typically modifications of the double description method alter some of the
following three parameters:

(1) the order in which the rows of the primal representation are considered
(2) the test for adjacency of two extreme rays
(3) the moment when the extreme rays are tested for adjacency.

Since the dynamic version of the double description method has to support
online input of inequalities, only modifications of the latter two aspects are
applicable to this algorithm. Two versions of adjacency test were implemented:
the combinatorial test [16], and the graph test [23].

function Adjacent.Combinatorial(Q, J1, J2)
Input: Q ∈ F s×m

J1, J2 ⊆ {1, 2, . . . , s}
Output: E = {{j1, j2} : j1 ∈ J1, j2 ∈ J2, j1 and j2 - adjacent rays}
E = ∅
for j1 ∈ J1

for j2 ∈ J2

Z ← {� : Qj1� = 0 ∧ Qj2� = 0}
if |Z| ≥ r − 2

if ∀ k = 1, 2, . . . , s, k 
= j1 ∧ k 
= j2 ∃ � ∈ Z : Qk� = 1
E ← E ∪ {{j1, j2}}

return E

function Adjacent.Graph(Q, J1, J2)
Input: Q ∈ F s×m

J1, J2 ⊆ {1, 2, . . . , s}
Output: E = {{j1, j2} : j1 ∈ J1, j2 ∈ J2, j1 and j2 are adjacent rays}
E ← ∅
for j1 ∈ J1

D ← ∅
for j ∈ {1, 2 . . . ,m}

Z ← {� : Qj1� = 0 ∧ Qj� = 0}
if |Z| ≥ r − 2

D ← D ∪ {j}
for j2 ∈ D ∩ J2

if ∀ k = 1, 2, . . . , s, k 
= j1 ∧ k 
= j2 ∃ � ∈ Z : Qk� = 1
E ← E ∪ {{j1, j2}}

return E
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Some modifications of the double description method were proposed (e.g.
[14]) where the set of adjacent extreme rays is maintained and rebuilt immedi-
ately after the list of extreme rays is updated. Instead of iterating over all pairs
of rays (u, v) for which uA�

i · vA�
i < 0 to generate new extreme rays the algo-

rithm iterates over all pairs of adjacent extreme rays. Below is an adaptation
of such a modification for the dynamic version of the algorithm which will be
referred to as M1.

procedure DDM-dyn.M1(A)
Input: A ∈ Fm×d

Output: the basis U of maximal subspace L =
{
x ∈ F d : Ax = 0

}

and the set of vectors V generating the cone C =
{
x ∈ F d : Ax ≥ 0

}

U ← Id×d

V ← O0×d

Q ← O0×d

E ← ∅
for i = 1, 2, . . . ,m

p ← U · A�
i

q ← V · A�
i

if p = 0
insert the column Bool(q) into Q
Enew ← ∅
Eold ← ∅
for {j1, j2} ∈ E

if qj1 > 0 ∧ qj2 < 0
append row Normalize (qj1Vj2 − qj2Vj1) to Vnew

append row Normalize (Qj1 ∨ Qj2) to Qnew

j ← index of the new rows after their insertion
Enew ← Enew ∪ {{j1, j}}
Eold ← Eold ∪ {{j1, j2}}

else if qj1 < 0 ∧ qj2 > 0
append row Normalize (qj2Vj1 − qj1Vj2) to Vnew

append row Normalize (Qj1 ∨ Qj2) to Qnew

j ←index of the new rows after their insertion
Enew ← Enew ∪ {{j, j2}}
Eold ← Eold ∪ {{j1, j2}}

else if qj1 ≤ 0 ∧ qj2 ≤ 0
Eold ← Eold ∪ {{j1, j2}}

E ← E ∪ Enew \ Eold

J− ← {j : qj < 0}
J± ← {j : qj = 0}
remove rows J− from V and from Q
update row indices in E and J±
append rows of Vnew to V and insert their new indices into J±
append rows of Qnew to Q
E ← E ∪ Adjacent.M1(Q, J±)
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else
find j0 with pj0 
= 0
if pj0 < 0

Uj0 ← −Uj0

pj0 ← −pj0

for j = 1, 2, . . . , d
if j 
= j0 and pj 
= 0

Uj ← Normalize (pj0Uj − pjUj0)
for j = 1, 2, . . . , s

if qj 
= 0
Vj ← Normalize (pj0Vj − qjUj0)

append row Uj0 to V , j ← its new index
E ← E ∪ {{j′, j} : j′ ∈ {1, 2 . . . , j − 1}}
remove row j0 from U
append the zero column to Q
append the (0, 0, . . . , 0, 1) row into Q

Adjacent.M1(Q, J±) is a simple modification of Adjacent(Q, J1, J2) that
iterates over {{j1, j2} : j1 ∈ J±, j2 ∈ J±, j1 
= j2} rather than {(j1, j2) : j1 ∈
J1, j2 ∈ J2}.

4 Computational Results

A C++ implementation of the dynamic double description method and its mod-
ifications presented above has been developed. The computational experiments
were performed on a computer with Intel(R) Core(TM) i7-8700K CPU at 3.70
GHz, Microsoft Windows 10 operating system, using the Microsoft Visual Studio
2017 compiler. The experiments were run using the problem instances described
in [14].

Tables 1 and 2 present the performance comparison of DDM-dyn, its modi-
fication DDM-dyn.M1 and Skeleton [23], with/without its PlusPlus modifi-
cation. Since computation time depends significantly on the order in which the
rows of the primal representation are considered and which is fixed in the case of
the dynamic algorithm, Skeleton was used with the minindex order of consid-
eration. Note that the PlusPlus modification of Skeleton reduces the number
of adjacency checks by relying on the fact that the entire primal representation
is known ahead of time and, therefore, it cannot be adopted for use with online
input of inequalities.

Figures 1, 2 and 3 demonstrate the dependence of the number of adjacency
checks on the number of iteration made by DDM-dyn and DDM-dyn.M1 on
cube18, mit729-9 and ccc7 problems. The number of the checks varies from one
problem instance to another and heavily impacts total computation time.
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Table 1. Performance comparison of DDM-dyn and Skeleton, with combinatorial
adjacency test (s)

Problem Input Output DDM-dyn DDM -dyn.M1 Skeleton Skeleton,
PlusPlus

cube16 32 × 17 65536 × 17 3.512 7.210 12.199 3.354

cube18 36 × 19 262144 × 19 45.184 103.514 207.037 27.069

mit729-9 729 × 9 4862 × 9 164.727 120.745 274.795 255.393

ccc7 63 × 22 38780 × 22 14793.694 15413.77 16016.7 3437.64

Table 2. Performance comparison of DDM-dyn and Skeleton, with graph adjacency
test (s)

Problem Input Output DDM-dyn DDM -dyn.M1 Skeleton Skeleton,
PlusPlus

cube16 32 × 17 65536 × 17 4.316 4.961 4.777 4.489

cube18 36 × 19 262144 × 19 48.215 54.552 50.698 48.498

mit729-9 729 × 9 4862 × 9 874.575 106.253 289.037 258.991

ccc7 63 × 22 38780 × 22 >5 h 2988.16 3041.86 1854.63

DDM-dyn
DDM-dyn.M1

Fig. 1. Number of adjacency checks on cube18
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DDM-dyn
DDM-dyn.M1

Fig. 2. Number of adjacency checks on mit729-9 (first 200 iterations)

DDM-dyn
DDM-dyn.M1

Fig. 3. Number of adjacency checks on ccc7
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5 Conclusion

A dynamic version of the double description method for finding extreme rays
of a polyhedral cone with online input of inequalities has been proposed. Two
known modifications of the algorithm (graph adjacency test and maintaining
the edge set to generate new extreme rays) have been adopted for its dynamic
variant and tested on multiple problem instances. The results of computational
experiments demonstrate better performance with certain configurations than
that of Skeleton on a number of problems if the same limitations of input
being unknown ahead of time are imposed on both implementations.
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Abstract. In this paper popular open-source solvers are compared aga-
inst Globalizer solver, which is developed at the Lobachevsky State Uni-
versity. The Globalizer is designed to solve problems with black-box
objective function satisfying the Lipschitz condition and shows compet-
itive performance with other similar solvers. The comparison is done
on several sets of challenging multi-extremal benchmark functions. Also
this work considers a method of heuristic hyperparameters control for
the Globalizer allowing to reduce amount of initial tuning before opti-
mization. The proposed scheme allows substantially increase convergence
speed of the Globalizer by switching between “local” and “global” search
phases in runtime.

Keywords: Deterministic global optimization ·
Stochastic global optimization · Algorithms comparison ·
Derivative-free algorithms · Black-box optimization ·
Multi-extremal problems

1 Introduction

The problem of finding the global minima of the nonlinear nonconvex functions
is considered to be one of the most difficult mathematical programming problems
traditionally. Often, it appears to be more complex than the local optimization in
an essentially multidimensional space. For the latter, the application of the sim-
plest gradient descent method or of the pattern search algorithms may appear to
be sufficient [26] whereas in order to guarantee the finding of the global optimum,
the optimization methods have to accumulate the information on the behavior
of the objective function in the whole search domain [3,10,17,25]. Recently, var-
ious stochastic global optimization algorithms, first of all, the evolution ones
[12,20,23] became popular. These ones have rather simple structure and allow
solving the problems of large dimensionality. However, these methods provide
the global convergence in the probabilistic meaning only.
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In the present work, the open-source implementations of the eight different
global optimization methods included into the NLOpt library [8] and the SciPY
package [9] are considered. All algorithms were tested on a set of 900 essen-
tially multiextremal functions, which has been generated with the use of special
problem generators [5,7].

2 Related Work

Earlier, the comparison of the stochastic global optimization algorithms [1,16]
as well as of the deterministic ones [13,14,18] between each other has been
considered in the literature. In these works, most of modern methods have been
studied in details. In the majority of works, the sets of well-known test problems
(for example, the Rastrigin function, Ackley function, etc.) were taken as the
sets of test functions. The sizes of such sets don’t exceed 100 different functions
usually, some of which can be the single-extremal ones (such as the Rosenbrock
function).

In [2], some general principles were formulated, which, in the author’s opin-
ion, should be obeyed when comparing the optimization methods. In particular,
the authors say about the advantages of the problem generators allowing gen-
erating the large sets of problems thus minimizing the random effects when
comparing the methods. At the same time, the use of a single generator can
appear to be not enough for a comprehensive comparison of the methods. In
order to overcome this problem in part, the authors of the paper [2] advise to
use several generators of various nature and to create the sets of problems of
various complexity.

Taking into account the experience of the preceding works in the field of
comparison of the optimization methods, two generators of the test problems of
different nature will be used in the present work. Using these ones, 9 sets of 100
problems of various complexity with the dimensionality varying from 2 to 5 were
generated.

3 Statement of Multidimensional Global Optimization
Problem

In this paper, the core class of optimization problems, which can be solved using
global optimization methods, is formulated. This class involves the multidimen-
sional global optimization problems without constraints, which can be defined
in the following way:

ϕ(y∗) = min{ϕ(y) : y ∈ D},
D = {y ∈ R

N : ai ≤ yi ≤ bi, 1 ≤ i ≤ N} (1)

with the given boundary vectors a and b. It is supposed, that the objective
function ϕ(y) satisfies the Lipschitz condition

|ϕ(y1) − ϕ(y2)| ≤ L‖y1 − y2‖, y1, y2 ∈ D, (2)

where L > 0 is the Lipschitz constant, and || · || denotes the norm in R
N space.
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Usually, the objective function ϕ(y) is defined as a computational procedure,
according to which the value ϕ(y) can be calculated for any vector y ∈ D (let
us further call such a calculation a trial). It is supposed that this procedure is
time-consuming.

4 Review of Considered Optimization Methods

4.1 Algorithm of Global Search

Dimension Reduction with Space-Filling Curves. Within the framework
of the information-statistical global optimization theory, the Peano space-filling
curves (or evolvents) y(x) mapping the interval [0, 1] onto an N -dimensional
hypercube D unambiguously are used for the dimensionality reduction
[22,24,25].

As a result of the reduction, the initial multidimensional global optimization
problem (1) is reduced to the following one-dimensional problem:

ϕ(y(x∗)) = min{ϕ(y(x)) : x ∈ [0, 1]}. (3)

It is important to note that this dimensionality reduction scheme transforms
the Lipschitzian function from (1) to the corresponding one-dimensional function
ϕ(y(x)), which satisfies the uniform Hölder condition, i. e.

|ϕ(y(x1)) − ϕ(y(x2))| ≤ H|x1 − x2|
1
N , x1, x2 ∈ [0, 1], (4)

where the constant H is defined by the relation H = 2L
√

N + 3, L is the
Lipschitz constant from (2), and N is the dimensionality of the optimization
problem (1).

The algorithms for the numerical construction of the Peano curve approxi-
mations are given in [25].

The computational scheme obtained as a result of the dimensionality reduc-
tion consists of the following:

– The optimization algorithm performs the minimization of the reduced one-
dimensional function ϕ(y(x)) from (3),

– After determining the next trial point x, a multidimensional image y is cal-
culated by using the mapping y(x),

– The value of the initial multidimensional function ϕ(y) is calculated at the
point y ∈ D,

– The calculated value z = ϕ(y) is used further as the value of the reduced one-
dimensional function ϕ(y(x)) at the point x.

Optimization method applied in Globalizer [6] to solve the reduced problem
(3) is based on the AGS method, which can be presented as follows—see [24], [25].
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The algorithm considered for solving the stated problem implies generating
a sequence of points xk, in which the values of the minimized function zk =
f(xk) are computed. Let us call the process of computating the function value
(including calculating an image yk = y(xk)) a trial, and the pair (xk, zk)—the
result of the trial. A set of the pairs {(xk, zk)}, 1 � k � n makes up the search
information accumulated by the method after executing n steps.

The initial iteration of the algorithm is performed at an arbitrary point x1 ∈
(0, 1). Then, let us suppose that k, k ≥ 1, optimization iterations have been
completed already. The selection of the trial point xk+1 for the next iteration is
performed according to the following rules.

Step 1. Renumber the points in the set Xk = {x1, . . . , xk}∪ {0}∪ {1}, which
includes the boundary points of the interval [0, 1] as well as the points of pre-
ceding trials, by the lower indices in order of increasing coordinate values i.e.

0 = x0 < x1 < . . . < xk+1 = 1

Step 2. Assuming zi = f(xi), 1 � i � k, compute the values

μ = max
1�i�k

|zi − zi−1|
Δi

,M =
{

rμ, μ > 0
1, μ = 0 (5)

where r > 1 is a predefined parameter for the method, and Δi = (xi − xi−1)
1
N .

Step 3. For each interval (xi−1, xi), 1 � i � k+1, compute the characteristics
according to the formulae

R(1) = 2Δ1 − 4
z1
M

,R(k + 1) = 2Δk+1 − 4
zk
M

, (6)

R(i) = Δi +
(zi − zi−1)2

M2Δi
− 2

zi + zi−1

M
, 1 < i < k + 1. (7)

Step 4. Determine the interval with the maximum characteristic
(xt−1, xt), t = argmax1�i�k+1 R(i)

Step 5. Execute a new trial at point xk+1 computed according to the formula

xk+1 =
xt + xt−1

2
, t = 1, t = k + 1,

xk+1 =
xt + xt−1

2
− sign(zt − zt−1)

1
2r

[ |zt − zt−1|
μ

]N

, 1 < t < k + 1. (8)

The stopping condition, which terminated the trials, is defined by the inequal-
ity Δt � ε for the interval with the maximum characteristics from Step 4 and
ε > 0 is the predefined accuracy of the optimization problem solution. If the
stopping condition is not satisfied, the index k is incremented by 1, and the new
global optimization iteration is executed.

The convergence conditions of the described algorithm are given, for example,
in [25].
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Hyperparameters Control in AGS. The parameter r from (5) affects the
global convergence of AGS directly (see [25], Chap. 8): at high enough value
of r, the method converges to all global minima of the objective function with
guarantee. At the same time, according to (7) and (8), at the infinitely high
value of r, AGS turns into the brute force search method on a uniform grid.

In the ideal case, in order to provide the highest convergence speed, the
estimate of the Lipschitz constant from (5) should not be too overestimated, but
in practice the actual value of L from (2) in unknown, and one has either to
take an obviously overestimated value of r or to execute several runs of AGS
with different parameters. In order to resolve the problem of choosing r to some
extent, let us use the following scheme:

– execute q iterations of AGS with r = rmax;
– execute q iterations of AGS with r = rmin;
– repeat the above steps either until convergence or until the allowed number

of iterations are exhausted.

In the above algorithm, rmin < rmax, q > 1. Instead one parameter r, now
3 ones should be selected. However, according to the results of the numerical
experiments, it is easier than to find the optimal value of r. Intuitively, the
practical efficiency of the proposed scheme can be explained by the fact that
now the operation of the method takes place in two modes: the global search
with r = rmax and the local one with r = rmin. If during the global search phase,
the method approached the global minimum whereas during the next phase, the
estimate of the global minimum would be refined rapidly. If two phases are
not enough, the process is continued. This way, a better trade-off between the
exploration and the exploitation is achieved. Further, we will denote the method
utilizing the scheme described above as AGS-AR.

4.2 Other Optimization Methods

– Multi Level Single Linkage [11]. MLSL is an improved multistart algo-
rithm. It samples low-discrepancy starting points and does local optimizations
from them. In contrast to the dummy multistart schemes MLSL uses some
clustering heuristics to avoid multiple local descents to already explored local
minima.

– DIRECT [10]. The algorithm is deterministic and recursively divides the
search space and forms a tree of hyper-rectangles (boxes). DIRECT uses the
objective function values and the Lipschitz condition (2) to estimate promis-
ing boxes.

– Locally-biased DIRECT (DIRECTl) [4]. It’s a variation of DIRECT
which pays less attention to non-promising boxes and therefore has less explo-
ration power: it can converge faster on problems with few local minima, but
lost the global one in complicated cases.
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– Dual Simulated Annealing [27]. This stochastic method is a combina-
tion of the Classical Simulated Annealing and the Fast Simulated Annealing
coupled to a strategy for applying a local search on accepted locations. It
converges much faster than both parent algorithms, CSA and FSA.

– Differential Evolution [23]. DE is an adaptation of the original genetic
algorithm to the continuous search domain.

– Controlled Random Search [19]. The CRS starts with a set of random
points and then defines the next trial point in relation to a simplex chosen
randomly from a stored configuration of points. CRS in not an evolutional
algorithm, although stores something like population and performs transfor-
mation resembling a mutation.

– StoGO [15]. StoGO is dividing the search space into smaller hyper- rectan-
gles via a branch-and-bound approach, and searching them by a local-search
algorithm, optionally including some randomness.

All the mentioned algorithms are available in source codes as parts of wide-
spread optimization packages. DIRECT, DIRECTl, CRS, MLSL and StoGO are
part of the NLOpt library [8]. Differential Evolution and DSA can be found in
the latest version of the SciPy [9] package for Python.

5 Tools for Comparison of Global Optimization
Algorithms

The use of the sets of test problems with known solutions generated by some
random mechanisms is one of commonly accepted approaches to comparing the
optimization algorithms [2]. In the present work, we will use two generators of
test problems generating the problems of different nature [5,7]1.

Let us denote the problem set obtained with the use of the first generator
from [7] as FGR. The mechanism of generation of the problems FGR doesn’t pro-
vide the control of the problem complexity and of the number of local optima.
However, the generated functions are known to be the multiextremal ones essen-
tially. Besides, the problems generated by FGR are the two-dimensional ones.
In the present work, we will use 100 functions from the class FGR generated
randomly.

The GKLS generator [5] allows obtaining the problems of given dimension-
ality with given number of extrema. Moreover, GKLS allows adjusting the com-
plexity of the problems by decreasing or increasing the size of the global mini-
mum attractor. In [21] the parameters of the generator allowing generating the
sets of 100 problems each of two levels of complexity (Simple and Hard) of the
dimensionality equal to 2, 3, 4, and 5 are given. Following the authors of the
GKLS generator, we will use the parameters proposed by them and, this way,
add 800 more problems of various dimensionalities and complexity into the test
problem set.
1 Software implementations of these generators are available in source codes at the

page https://github.com/sovrasov/global-optimization-test-problems.

https://github.com/sovrasov/global-optimization-test-problems
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Let us suppose a test problem to be solved if the optimization method
executes the scheduled trial yk in a δ-vicinity of the global minimum y∗, i.e.∥∥yk − y∗∥∥ ≤ δ = α ‖b − a‖, where a and b are the left and the right boundaries
of the hypercube from (1), α is relative precision. If this relation is not fulfilled
before the expiration of the limit of the number of trials, the problem was con-
sidered to be unsolved. The limit of the number of trials and α were set for each
problem class according to the dimensionality and complexity (see Table 1).

Table 1. Trials limits and relative precision for the test problem classes

Problems class Trials limit α

FGR 5000 0.01

GKLS 2d Simple 8000 0.01

GKLS 2d Hard 9000 0.01

GKLS 3d Simple 15000 0.01

GKLS 3d Hard 25000 0.01

GKLS 4d Simple 150000
4
√

10−6

GKLS 4d Hard 250000
4
√

10−6

GKLS 5d Simple 350000
5
√

10−7

GKLS 5d Hard 600000
5
√

10−7

Let us consider the averaged number of trials executed to solve a single
problem and the number of solved problems as the characteristics of the opti-
mization method on each class. The less the number of trials, the faster the
method converges to a solution, hence the less times it turns to a potentially
computation-costly procedure of computing the objective function. The number
of solved problems evidences the reliability of the method at given parameters on
the class of test problems being solved. In order to make independent the quan-
tities featuring the reliability and the speed of convergence, averaged number of
trials always was calculated taking into account solved problems only.

The average number of trials doesn’t represent the real behavior of an opti-
mization method on a problems set in some cases. For an instance, if a method
performs well on the most problems and spends too much trials to solve the least
several problems, we wouldn’t catch such case looking at the average number of
trials only. As an advanced measure of performance we will use the operating
characteristic [7]. It’s defined by a set of points on the (K,P ) plane where K is
the average number of search trials conducted before satisfying the termination
condition when minimizing a function from a given class, and P is the propor-
tion of problems solved successfully. If at a given K, the operating characteristic
of a method goes higher than one from another method, it means that at fixed
search costs, the former method has a greater probability of finding the solution.
If some value of P is fixed, and the characteristic of a method goes to the left
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from that of another method, the former method requires fewer resources to
achieve the same reliability.

6 Results of Numerical Experiments

The results of various algorithms on different problem classes depend on the
adjustments of algorithms directly. In most cases, the authors of software imple-
mentations are oriented onto the problems of medium difficulty. In order to
obtain a satisfactory result when solving the essentially multiextremal problems,
a correction of some parameters is required. When conducting the comparison,
the following parameters for the methods were employed:

– in the AGS-AR method, the parameter of alternation the global and local
stages q was set to be equal to 50 · log2(N − 1) · N2, also rmin = 3, rmax =
2 · rmin;

– in the DIRECT and DIRECTl methods, the parameter ε = 10−4;
– in the SDA method, the parameter visit = 2.72.

The rest parameters were varied subject to the problem class (see Table 2).
For the AGS the value of the r parameter, such that the method solves all
problems and performs the minimum amount of trials, was estimated by brute
force on the uniform grid with step 0.1.

Table 2. Class-specific parameters of the optimization algorithms

AGS CRS DE

FGR r = 3 popsize = 150 mutation = (1.1, 1.9), popsize = 60

GKLS 2d Simple r = 4.6 popsize = 200 mutation = (1.1, 1.9), popsize = 60

GKLS 2d Hard r = 6.5 popsize = 400 mutation = (1.1, 1.9), popsize = 60

GKLS 3d Simple r = 3.7 popsize = 1000 mutation = (1.1, 1.9), popsize = 70

GKLS 3d Hard r = 4.4 popsize = 2000 mutation = (1.1, 1.9), popsize = 80

GKLS 4d Simple r = 4.7 popsize = 8000 mutation = (1.1, 1.9), popsize = 90

GKLS 4d Hard r = 4.9 popsize = 16000 mutation = (1.1, 1.9), popsize = 100

GKLS 5d Simple r = 4 popsize = 25000 mutation = (1.1, 1.9), popsize = 120

GKLS 5d Hard r = 4 popsize = 30000 mutation = (1.1, 1.9), popsize = 140

The results of running the optimization methods on the considered prob-
lem classes are presented in Tables 3 and 4. The DIRECT, AGS and AGS-AR
methods have demonstrated the best convergence speed on all classes, at that
AGS-AR inferior to DIRECT on the 2d problems from the Simple classes and
has an advantage on the problems of the Hard classes. As one can see from
Table 4, the deterministic methods (AGS, AGS-AR, DIRECT, and DIRECTl)
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Table 3. Averaged number of trials executed by optimization methods for solving the
test optimization problems

AGS AGS-AR CRS DIRECT DIRECTl MLSL SDA DE StoGO

FGR 193.1 248.3 400.3 182.2 214.9 947.2 691.2 1257.3 1336.8

GKLS 2d Simple 254.9 221.6 510.6 189.0 255.2 556.8 356.3 952.2 1251.5

GKLS 2d Hard 728.7 785.0 844.7 985.4 1126.7 1042.5 1637.9 1041.1 2532.2

GKLS 3d Simple 1372.1 1169.5 4145.8 973.6 1477.8 4609.2 2706.5 5956.9 3856.1

GKLS 3d Hard 3636.1 1952.1 6787.0 2298.7 3553.3 5640.1 4708.4 6914.3 7843.2

GKLS 4d Simple 5729.8 4919.1 19883.6 7328.8 15010.0 41484.8 22066.0 6271.2 29359.2

GKLS 4d Hard 13113.4 12860.1 27137.4 22884.4 55596.1 80220.1 68048.0 12487.6 58925.5

GKLS 5d Simple 5821.5 6241.3 62921.7 5966.1 10795.5 52609.2 34208.8 20859.4 69206.8

GKLS 5d Hard 17008.6 21555.1 87563.9 61657.3 148637.8 138011.8 115634.6 26850.0 141886.5

Table 4. Number of test optimization problems solved by the methods

AGS AGS-AR CRS DIRECT DIRECTl MLSL SDA DE StoGO

FGR 100 100 76 100 100 97 96 96 67

GKLS 2d Simple 100 100 85 100 100 100 100 98 90

GKLS 2d Hard 100 97 74 100 100 100 93 85 77

GKLS 3d Simple 100 100 75 100 100 100 89 86 44

GKLS 3d Hard 100 100 72 100 99 100 88 77 43

GKLS 4d Simple 100 100 74 100 100 94 82 68 72

GKLS 4d Hard 100 100 60 99 99 94 73 55 69

GKLS 5d Simple 100 100 86 100 100 98 100 88 82

GKLS 5d Hard 100 100 77 100 93 79 86 77 78

were the most reliable. Among the stochastic methods, MLSL and SDA have
demonstrated the highest reliability.

Operating characteristic of the methods (Figs. 1a–d) demonstrates that AGS
and AGS-AR faster than the other methods achieve 100% success rate. Also on
GKLS 5d Simple the DIRECT generally has the best performance, but there
are several hard problems that affect it’s average number of trials metric.

Robustness of AGS and AGS-AR to the Hyperparameters Choice. In order to
investigate the influence of hyperparameters to the convergence speed of the
AGS and AGS-AR, experiments with the following settings were conducted on
the problems from GKLS 5d Simple class:

– AGS with r = 4 (like in the Table 2);
– AGS with r = 6;
– AGS-AR with parameters from the beginning of the Sect. 6 (q = 50 · log2(4) ·

25 = 2500, rmin = 3, rmax = 2 · rmin);
– AGS-AR with rmax = 8 and other parameters from the previous experiment;
– AGS-AR with q = 1000 and other parameters from the beginning of the

Sect. 6;
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(a) 4d Simple (b) 4d Hard

(c) 5d Simple (d) 5d Hard

Fig. 1. Operating characteristics of the algorithms when solving problems from the
GKLS 4d and 5d classes. Best viewed in color.

Fig. 2. Operating characteristics of AGS and AGS-AR with different hyperparameters
when solving problems from the GKLS 5d Simple classes. Best viewed in color. (Color
figure online)
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The operating characteristics collected in the experiments described above
are shown in the Fig. 2. AGS with r = 6 (the cyan-colored curve) shows the
worst convergence speed, which indicates that AGS is very sensitive to choice
of r. Since on the start AGS-AR has the same value of r as AGS with r =
6, operating characteristics of these methods are identical up to K = 2500.
After that point AGS-AR switches to r = 3 and rapidly begins to increase
the amount of solved problems until the next exploration phase on K = 5000.
Intervals where AGS-AR works with r = rmax are visible on the operating
characteristics as plateaus. Variations of r and q didn’t drastically change the
operating characteristic of AGS-AR. The latter observation shows robustness of
the proposed AGS modification with the alternating parameter r.

7 Conclusions

In the present paper, several global optimization algorithms were considered. A
comparison of efficiencies of these ones has been done on a set of test problems.
Also a scheme of hyperparameters control for the AGS algorithms was proposed
and evaluated. The results presented in this work allow making the following
conclusions:

– the proposed modification of the stock AGS, AGS-AR allows to pay less
attention to initial hyperparameter tuning and performs on-par with properly
tuned AGS;

– AGS-AR method has demonstrated the convergence speed and reliability at
the level of DIRECT and exceeds many other algorithms, the open-source
implementations of which are available;

– the stochastic optimization methods inferior to the deterministic ones in the
convergence speed and in reliability. It is manifested especially strongly on
more complex multiextremal problems.
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Abstract. We consider the classical optimization problem of minimiz-
ing a strongly convex, non-smooth, Lipschitz-continuous function with
one Lipschitz-continuous constraint. We develop the approach in [10] and
propose two methods for the considered problem with adaptive stopping
rules. The main idea of the methods is using the dichotomy method and
solving an auxiliary one-dimensional problem at each iteration. Theo-
retical estimates for the proposed methods are obtained. Partially, for
smooth functions, we prove the linear rate of convergence of the meth-
ods. We also consider theoretical estimates in the case of non-smooth
functions. The results for some examples of numerical experiments illus-
trating the advantages of the proposed methods and the comparison with
some adaptive optimal method for non-smooth strongly convex functions
are also given.
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[15] and Lagrange multipliers method [5]. Recently in [2], some adaptive Mir-
ror Descent methods were proposed for optimization problems of convex and
strongly convex functions with non-smooth constraints

min{f(x) : x ∈ Q ⊂ E, g(x) ≤ 0}, (1)

where Q is a convex and compact subset of a finite-dimensional real vector space
E, f : Q → R and g : E → R are convex Lipschitz-continuous functions. In the
case of several strongly convex non-smooth constraints, we consider one max-
type constraint which is also strongly convex.

Methods in [2] are optimal from the point of view of lower oracle bounds and
guarantee achieving acceptable precision ε with complexity O

(
ε−1
)

for strongly
convex, Lipschitz-continuous objective f and convex Lipschitz-continuous con-
straint g.

In this paper, we develop the approach in [10] and propose an alternative
approach for the problem (1) with a strongly convex Lipschitz-continuous objec-
tive f and a convex Lipschitz-continuous constraint g. Our approach is based on
the transition to a strongly convex dual problem. In this case, the dual function
depends on one dual variable λ ≥ 0. When the Slater conditions for the problem
(1) hold, all possible values of the dual variable are limited to a certain segment.
This allows us to apply the dichotomy method similarly to [10] to search for the
value of the dual variable λ, which is close to the appropriate λ∗, for which

λ∗ · g(x(λ∗)) = 0. (2)

We propose two algorithms with adaptive stopping criterion that meet the
necessary condition (2) in the general situation λ∗ ≥ 0 (Algorithm 1), as well as
under the stronger assumption of the existence of λ∗ > 0 (Algorithm 2). Partially,
the last condition holds for the economic problem considered in [10].

It turns out that, with the possibility of a relatively quick solution of auxiliary
problems, due to the proposed adaptive stopping criterion, Algorithms 1 and 2
may work faster than the optimal schemes in [2]. In proposed Algorithms 1 and
2 strong convexity of g is not required, and there is also no need to know the
value of the strong convexity parameter of f .

The paper consists of an Introduction and four main sections. In Sect. 2
we consider the problem statement and some basic information concerning the
necessary conditions of the extremum. In Sect. 3 we describe two main algorithms
and give some estimates of the rate of convergence for them. Section 4 is devoted
to basic information for optimal Mirror Descent Algorithms in the class of non-
smooth strongly convex functions [2]. In Sect. 5 we make a comparison between
the proposed algorithms and Mirror Descent Algorithm [2].

Thus, in the paper, we propose two methods for solving the problem (1) with
the following types of assumptions:

|f(x) − f(y)| � Mf ||x − y||2, |g(x) − g(y)| � Mg||x − y||2 (3)

or

||∇f(x) − ∇f(y)||2 � Lf ||x − y||2, ||∇g(x) − ∇g(y)||2 � Lg||x − y||2 (4)

for all x, y ∈ Q, and for some real positive numbers Mf ,Mg, Lf , Lg.
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The contributions of this paper can be summarized as follows.

– With assumptions (4), the proposed methods have complexity

O

(
log22

1
ε

)
, (5)

i.e. the linear rate of convergence. Note that we assume the strong convexity
for the objective f only. The functional constraint g may not be strongly
convex.

– With assumptions (3) we obtain complexity O

(
1
ε2

log2
1
ε

)

, which is generally

not optimal. However, due to the adaptivity of Algorithms 1 and 2, these
methods can work faster than the optimal ones in [2] (see Sect. 5 below).
Note that, unlike ([2], Subection 3.2), we require the strong convexity only of
the objective functional f . In this case, the functional g, in general, may not
be strongly convex.

– Also, a class of non-smooth functionals is considered, for which Algorithms 1
and 2 have complexity (5) (see Subsect. 3.4 below).

2 Problem Statement

Let (E, ||·||2) be a normed finite-dimensional vector space with inner product 〈·, ·〉
and norm ||x||2 =

√〈x, x〉. In this paper we consider the following optimization
problem

f(x) → min
g(x)�0
x∈Q

, (6)

where f is a μf -strongly convex function with respect to the 2-norm, i.e.

f(αx + (1 − α)y)) ≤ αf(x) + (1 − α)f(y) − α(1 − α)
μf

2
‖x − y‖22

for α ∈ [0, 1] and for all x, y ∈ Q. Assume that f and g are Lipschitz-continuous:

|f(y) − f(x)| � Mf‖y − x‖2, ∀x, y ∈ Q,

|g(y) − g(x)| � Mg‖y − x‖2, ∀x, y ∈ Q.

Let us introduce a dual factor λ � 0 and consider the dual problem to (6).

min
g(x)�0
x∈Q

f(x) = min
x∈Q

{
f(x) + max

λ�0
(λg(x))

}
= max

λ�0

{
min
x∈Q

(f(x) + λg(x))
︸ ︷︷ ︸

=ϕ(λ)

}
.

Then the dual problem to the problem (6) is:

ϕ(λ) = f(x(λ)) + λg(x(λ)) → max
λ�0

, (7)
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where
x(λ) = arg min

x∈Q
{f(x) + λg(x)} . (8)

Let us mention the following important well-known Demyanov-Danskin-
Rubinov Theorem, see [7,8].

Theorem 1. Let ϕ(λ) = min
x∈X

F (x, λ) for all λ � 0, where F (x, λ) is a smooth

convex function with respect to λ and x(λ) is the only maximum point. Then

ϕ′(λ) = F ′
λ(x(λ), λ).

For the problem (7) Theorem 1 means that:

ϕ′(λ) = g(x(λ)). (9)

Let λ∗ be a solution of the dual problem (7). Then, according to the necessary
condition of the extremum, the following equality must be satisfied for λ∗:

λ∗g(x(λ∗)) = 0, λ∗ � 0,

which, by using (9), can be modified as follows:

λ∗ϕ′(λ∗) = 0, λ∗ � 0. (10)

3 Algorithms and Estimates of the Accuracy of Solutions
and the Rate of Convergence

To solve the above-mentioned optimization problem (6), we proposed two algo-
rithms. The main idea of the proposed algorithms is using the dichotomy method
to solve the dual problem and solving an auxiliary one-dimensional problem at
each iteration of the algorithms. Note that stopping criteria are the only differ-
ence between these algorithms.

Algorithm 1
Require: convex function f ; initial localization interval

[
λ0

min, λ0
max

]
of the dual vari-

able; accuracy δ for auxiliary problems; accuracy ε.
1: N := 0
2: repeat

3: λN :=
λN

min+λN
max

2
;

4: xδ(λ
N ) = argmin

x∈Q
{f(x) + λNg(x)};

5: ϕ′(λN ) = g(xδ(λ
N ));

6: if ϕ′(λN ) < 0 then λN+1
max :=

λN
min+λN

max
2

;

7: if ϕ′(λN ) > 0 then λN+1
min :=

λN
min+λN

max
2

;
8: N := N + 1;
9: until λN |g(xδ(λ

N ))| ≤ ε.
Ensure: λN , with λN |g(xδ(λ

N ))| ≤ ε; xδ(λ
N ).
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Algorithm 2
Require: convex function f ; initial localization interval

[
λ0

min, λ0
max

]
of the dual vari-

able; accuracy δ for auxiliary problems; accuracy ε.
1: N := 0
2: repeat

3: λN :=
λN

min+λN
max

2
;

4: xδ(λ
N ) = argmin

x∈Q
{f(x) + λNg(x)};

5: ϕ′(λN ) = g(xδ(λ
N ));

6: if ϕ′(λN ) < 0 then λN+1
max :=

λN
min+λN

max
2

;

7: if ϕ′(λN ) > 0 then λN+1
min :=

λN
min+λN

max
2

;
8: N := N + 1;
9: until |g(xδ(λ

N ))| ≤ ε.
Ensure: λN , with |g(xδ(λ

N ))| ≤ ε; xδ(λ
N ).

Remark 1. Note that the stopping criterion of Algorithm1 is necessarily reached
due to the assumption that there exists such k ∈ N, λk = 0. However, we need an
additional assumption to guarantee that the Algorithm2 stops. Suppose there
exists a point x ∈ Q, such that g′(x) = 0.

3.1 Slater Condition

In order to use the dichotomy method and solve the dual problem, it is necessary
to compactify the dual variable. So, the initial interval of the localization of
the dual variable must be determined. As the dual variable reflects namely the
inequality constraint, we can take zero as the lower bound, that means

λmin = 0.

To determine the upper bound, we need to use the Slater condition.

Lemma 1. Consider the problem of convex optimization

f(x) → min
g(x)�0
x∈Q

.

Suppose the Slater condition is satisfied, so there is such a point x ∈ Q that
g(x) < 0, i.e. there exists γ > 0 such that g(x) = −γ < 0. Then the following
estimate holds

λ∗ � 1
γ

(f(x) − min
x∈Q

f(x)), (11)

where λ∗ is a solution of the dual problem ϕ(λ) → max
λ�0

.
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Proof. Note the following inequality

min
x∈Q

f(x) = min
x∈Q

⎧
⎨

⎩
f(x) + λ︸︷︷︸

=0

g(x)

⎫
⎬

⎭
� max

λ�0
min
x∈Q

{f(x) + λg(x)}

= min
x∈Q

{f(x) + λ∗g(x)} � f(x̄) + λ∗g(x̄) = f(x̄) + λ∗γ.

Using this inequality one can get

λ∗γ � f(x) − min
x∈Q

f(x).

�
Thus, by using lemma (1), we can take the upper bound for the dual variable

λ as follows:
λmax =

1
γ

(
f(x) − min

x∈Q
f(x)
)
.

3.2 An Estimate of the Accuracy of Solutions for the Proposed
Algorithms

To estimate the rate of convergence of the previous Algorithms 1 and 2, we need
the following analogue of Theorem 1 from [11].

Theorem 2. Let f(x) be a μf -strongly convex function, the function g(x) satis-
fies the Lipschitz condition with a constant Mg. Then the function ϕ(λ), defined
in (7), where x(λ) is determined by the condition (8), is an M2

g /μf -smooth
function, i.e. the derivative of the function ϕ(λ) satisfies the following Lipschitz
condition

|ϕ′(λ2) − ϕ′(λ1)| � Lϕ |λ2 − λ1| , (12)

with a constant Lϕ = M2
g /μf .

Proof. Let λ1, λ2 ∈ [λmin, λmax]. Define

x1 = arg min
x∈Q

{f(x) + λ1g(x)} , x2 = arg min
x∈Q

{f(x) + λ2g(x)} .

Since x1 and x2 are unique due to the strong convexity of the function f and
by using (9), one can get

ϕ′(λ1) = g(x1), ϕ′(λ2) = g(x2).

Recall the necessary optimality conditions are

〈∇f(x1) + λ1∇g(x1), x1 − x2〉 � 0, 〈∇f(x2) + λ2∇g(x2), x2 − x1〉 � 0.

Summing these inequalities, we get

〈∇f(x1) − ∇f(x2), x2 − x2〉 � 〈λ1∇g(x1) − λ2∇g(x2), x2 − x1〉.
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Due to the strong convexity of f(x), we obtain the following inequality

〈∇f(x2) − ∇f(x1), x2 − x1〉 � μf ||x2 − x1||22.
Then

μf ||x2 − x1||22 � 〈λ1∇g(x1) − λ2∇g(x2), x2 − x1〉
= λ1︸︷︷︸

�0

〈∇g(x1) − ∇g(x2), x2 − x1〉︸ ︷︷ ︸
�0

+(λ1 − λ2)〈∇g(x2), x2 − x1〉

� |λ1 − λ2|〈∇g(x2), x2 − x1〉 � |λ1 − λ2| ||∇g(x2)||2 ||x2 − x1||2
� Mg|λ1 − λ2| ||x2 − x1||2,

where ||∇g(x2)||2 � Mg since g satisfies Lipschitz condition (3).
Thus, for x1 �= x2 we get

μf ||x2 − x1||2 � Mg|λ2 − λ1|.
As a result, the following estimate holds

|ϕ′(λ2) − ϕ′(λ1)| = |g(x2) − g(x1)| � Mg||x2 − x1||2 �
M2

g

μf
|λ2 − λ1|.

�
In order to estimate the accuracy of solutions of the proposed Algorithms 1

and 2, we set the following two lemmas.

Lemma 2. Suppose the stopping criterion of Algorithm 1 holds for λ = λN ,
then the following inequalities hold

f(xδ(λ)) − f(x∗) � ε + δ, g(xδ(λ)) � ε

λ
.

For the case δ = ε we get

f(xδ(λ)) − f(x∗) � 2ε, g(xδ(λ)) � ε

λ
.

Proof. Let λ∗ be a solution of the dual problem (7). Denote x∗ = x(λ∗). Then
we get the following relation

f(xδ(λ)) + λg(xδ(λ)) � f(x(λ)) + λg(x(λ)) + δ = ϕ(λ) + δ

� ϕ(λ∗) + δ = f(x∗) + λ∗ g(x∗)
︸ ︷︷ ︸

�0

+ δ � f(x∗) + δ.

Consequently,

f(xδ(λ)) − f(x∗) � −λg(xδ(λ)) + δ � ε + δ

due to the stopping criterion of Algorithm1, as required. The inequality
g(xδ(λ)) � ε

λ follows from the stopping criterion of Algorithm1 (see item 9).
�
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Also an analogue of Lemma2 takes place.

Lemma 3. Suppose the stopping criterion of Algorithm2 holds for λ = λN ,
then the following inequalities hold

f(xδ(λ)) − f(x∗) � λε + δ, g(xδ(λ)) � ε.

For the case δ = ε we get

f(xδ(λ)) − f(x∗) � (λ + 1)ε, g(xδ(λ)) � ε.

Remark 2. Let us analyze Lemmas 2 and 3. Algorithm 1 (Lemma 2) guarantees
the desirable accuracy of the solution with respect to the objective function, but,
possibly, unsatisfactory accuracy of the solution with respect to the constraint,
as the estimate is huge in case λ is small. Algorithm 2 (Lemma 3) provides the
desirable accuracy of the solution with respect to the constraint and, possibly,
unsatisfactory accuracy of the solution with respect to the objective function
in case λ is huge. So one of the Algorithms 1, 2 surely guarantees the desirable
accuracy with respect to both the objective function and the constraint.

3.3 Estimates of the Rate of Convergence
for Lipschitz-Continuous Functionals

The idea of the proposed methods is the consistent decrease of the localization
interval of the values of the dual variable λ. At each iteration of Algorithms 1
and 2, this interval decreases by 2 times and every time contains λ∗, for which
λ∗g(x(λ∗)) = 0 (for Algorithm 1)

λ∗g(x(λ∗)) = λ∗ϕ′(λ∗) = 0

or g(x(λ∗)) = 0 (for Algorithm 2)

g(x(λ∗)) = ϕ′(λ∗) = 0.

By Theorem 2 for all λ1, λ2 ∈ [0;λmax]

|ϕ′(λ2) − ϕ′(λ1)| �
M2

g

μf
|λ2 − λ1|, (13)

whence

|λ2ϕ
′(λ2) − λ1ϕ

′(λ1)| �
(

|ϕ′(0)| +
M2

g λmax

μf

)

|λ2 − λ1| = C|λ2 − λ1|, (14)

where C = |ϕ′(0)|+ M2
g λmax

μf
. Therefore, the achievement of the stopping criterion

for Algorithm 2 (item 9) is possible with

λN
max − λN

min =
λmax

2N
� ε

2C
,
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i.e.
N � log2

2Cλmax

ε
.

So, Algorithm 1 stops after no more than

O

(

log2
M2

g λ2
max

εμf

)

iterations. Similarly, if there is λ∗ : ϕ′(λ∗) = 0, then (14) means that Algorithm 2
stops after no more than

O

(

log2
M2

g λmax

εμf

)

iterations.
Let us analyze the rate of convergence of proposed Algorithms 1 and 2. We

need some results from [2] concerning a strongly convex objective function.
Method which guarantees an optimal rate of convergence for the problem

(6) is an algorithm based on the restarting of another Adaptive Mirror Descent
Algorithm. Information concerning the ordinary Adaptive Mirror Descent Algo-
rithm and the algorithm with its restart can be found in Sect. 4 (Algorithms 3
and 4 respectively). In each iteration of Algorithms 1 and 2 the auxiliary problem

xδ(λ) = arg min
x∈Q

{
f(x) + λg(x)

}

is being solved inexactly with the accuracy δ, which means

f(xδ(λ)) + λg(xδ(λ)) − f(x∗(λ)) + λg(x∗(λ)) � δ,

where the function f(x) + λg(x) is strongly convex and satisfies the Lipschitz
condition for any fixed λ due to the properties of the functions f(x) and g(x).

To solve the auxiliary problem of minimization of the functional Fλ(x) =
f(x) + λg(x), we use the standard gradient method. Let us note an important
statement [1]. After k iterations of the standard projected subgradient method
the following inequality holds

Fλ(xk) − Fλ(x∗) �
2M2

Fλ

k · μf
,

where MFλ
= max{Mf , λ · Mg}. Due to the strong convexity of f we have

Fλ(x) � Fλ(x∗) + 〈∇Fλ(x∗), x − x∗〉 +
μf

2
‖x − x∗‖22 � Fλ(x∗) +

μf

2
‖x − x∗‖22.

So,

‖x − x∗‖22 � 2
μf

(Fλ(x) − Fλ(x∗)) .
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Taking x = xk the following estimate holds

‖x − x∗‖22 � 4M2
F

k · μ2
f

� δ2.

Thus, the required number of iterations does not exceed

k =
4M2

F

μ2
fδ2

.

Now by using Theorem 2 and taking into account the complexity O
(
log2(

1
ε )
)

of the dichotomy in Algorithms 1 and 2, the general complexity is

O

(
1
δ2

log2
1
ε

)
.

Remark 3. If δ = ε then the general complexity of Algorithms 1 and 2:

O

(
1
ε2

log2
1
ε

)
.

3.4 Estimate for Composite Formulation

Let us emphasize an important remark. Let f have a Lipschitz-continuous gra-
dient, with a constant Lf

||∇f(x) − ∇f(y)||2 � Lf ||x − y||2∀x, y ∈ Q,

and g be a so-called simple function, i.e. g is a non-smooth convex function of a
simple structure. The latter means that Lebesgue sets

Λy = {x ∈ Q : g(x) < y} (15)

have a simple structure. For example, to such problems can be attributed the
LASSO problem [3,9,12]:

1
2
||Ax − b||22 + λ||x||1 → min

x∈Rn
, (16)

where A is a matrix of (m×n) dimension, b ∈ R
m, λ is a regularization parameter

and || · ||1 denotes the standard l1-norm.
Then we can use the following gradient-type procedure

xk+1 = arg min
x∈Q

{
〈∇f(xk), x − xk〉 + λg(x) +

Lf

2
||x − xk||22

}
. (17)

For the method (17) we can achieve ||x − x(δ)||2 � ε after
√

Lf

μ
log2

1
δ
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iterations of the method (17) [9]. In such a case, the general complexity of
Algorithms 1 and 2:

O

(
log2

1
δ
log2

1
ε

)
. (18)

The convergence rate is similar in the case when g is a smooth convex function
of a simple structure (see (15)). Let g have a Lipschitz-continuous gradient, with
a constant Lg

||∇g(x) − ∇g(y)||2 � Lg||x − y||2∀x, y ∈ Q

and f be a non-smooth convex function. Then we can use the following gradient-
type procedure

xk+1 = arg min
x∈Q

{
〈λ∇g(xk), x − xk〉 + f(x) +

λLg

2
||x − xk||22

}
. (19)

For the method (19) we can achieve ||x − x(δ)||2 � ε after
√

λLg

μf
log2

1
δ

iterations of the method (19) and the general complexity (18) for Algorithms 1
and 2.

3.5 The Case of Smooth Functionals

Suppose functions f and g are smooth, i.e. there exist some Lf , Lg such that

||∇f(x) − ∇f(y)||2 � Lf ||x − y||2 ∀x, y ∈ Q,

||∇g(x) − ∇g(y)||2 � Lg||x − y||2 ∀x, y ∈ Q.

Then the auxiliary problem
arg min

x∈Q
Fλ(x),

where Fλ(x) = f(x) + λg(x), is also smooth and it can be solved, for example,
with Gradient Descent [9]

xk+1 = xk − α∇Fλ(xk).

Note that Fλ is a μf -strongly convex function.
In such a case, the following estimate for the rate of convergence holds ([6],

[9])

||xk − x(δ)||22 � ||x0 − x(δ)||22
(

1 − μf

max{Lf , λLg}
)k

.

It means that the complexity of Algorithms 1 and 2 is (18). For δ = ε the
estimate (18) is

O

(
log22

1
ε

)
.
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4 Comparison with Mirror Descent Algorithms

In this section, we compare the proposed methods with two variants of the
Mirror Descent Algorithm. These are the classical variant and the one based on
the restart method. Let us, according to [2], present basic information concerning
Mirror Descent Algorithms. Assume that there exists a constant Θ0 > 0, that
1
2‖x − x∗‖22 ≤ Θ2

0. If there is a set of solutions of the problem {x∗
i }, assume that

min
x∗∈{x∗

i }
1
2
‖x − x∗‖22 ≤ Θ2

0.

The standard definition of the mirror descent operator with Euclidean prox-
imal setup is defined as

Mirrx(p) = arg min
v∈Q

{
〈p, v〉 +

1
2
‖x − v‖22

}
for each x ∈ Q and p ∈ E∗,

and assume that it is easily computable.

Algorithm 3. Adaptive Mirror Descent Algorithm.
Require: ε > 0, Θ0 s.t.

1
2
‖x − x∗‖2

2 � Θ2
0.

1: x0 = argminx∈Q
1
2
‖x − x∗‖2

2

2: I =: ∅
3: N ← 0
4: repeat
5: if g(xN ) � ε then
6: MN = ||∇f(xN )||2, hN = ε

M2
N

7: xN+1 = MirrxN (hN∇f(xN )) “productive step”
8: N → I
9: else
10: MN = ||∇g(xN )||2, hN = ε

M2
N

11: xN+1 = MirrxN (hN∇g(xN )) “non-productive step”
12: end if
13: N ← N + 1

14: until
N−1∑

j=0

1
M2

j
� 2

Θ2
0

ε2

Ensure: x̄N :=

∑

k∈I
xkhk

∑

k∈I
hk

Theorem 3. Let the functionals f and g satisfy the Lipschitz condition with
constants Mf and Mg respectively. Then Algorithm 3 works no more than

N =

⌈
2max{M2

f ,M2
g }Θ2

0

ε2

⌉
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iterations, and the point xN is a ε-solution of (6). It means that

f(xk) − f(x∗) ≤ ε, g(xk) ≤ ε. (20)

Consider the case of μ-strong convex f and g. We need to modify some
proposed assumptions. Assume that

x0 = arg min
x∈Q

1
2
‖x − x∗‖22,

1
2
‖x − x∗‖22 ≤ Ω

2
∀x ∈ Q : ‖x‖2 ≤ 1,

where Ω is some known constant. Suppose that there exists some initial starting
point x0 ∈ Q and a number R0 > 0 such that ‖x0 − x∗‖22 ≤ R2

0.

Algorithm 4. Adaptive Mirror Descent Algorithm for Strongly Convex Func-
tions (with restart of Algorithm 3).
Require: accuracy ε > 0; starting point x0; Ω s.t. 1

2
‖x−x∗‖2

2 ≤ Ω
2

∀x ∈ Q : ‖x‖2 ≤ 1;
strong convexity parameterμ; R0 s.t. ‖x0 − x∗‖2

2 ≤ R2
0.

1: Set d0(x) =
1
2
‖

(
x−x0

R0

)
− x∗‖2

2.

2: Set p = 1.
3: repeat
4: Set R2

p = R2
0 · 2−p.

5: Set εp =
μR2

p

2
.

6: Set xp as the output of Algorithm 3 with accuracy εp, prox-function dp−1(·) and
Ω
2

as Θ2
0.

7: dp(x) ← 1
2
‖

(
x−xp

Rp

)
− x∗‖2

2.

8: Set p = p + 1.

9: until p > log2
μR2

0
2ε

.
Ensure: xp.

Theorem 4. Assume that f and g satisfy the Lipschitz condition with constants
Mf and Mg respectively. Then solving the μ-strongly convex problem (6), Algo-
rithm 4 works no more than

k =
⌈
log2

μR2
0

2ε

⌉
+

32Ω max{M2
f ,M2

g }
με

iterations. The output point xp of Algorithm4 is satisfied to (20) and the follow-
ing inequality holds

‖xp − x∗‖22 ≤ 2ε

μ
.

5 Numerical Experiments

To compare Algorithms 1, 2 and 4, a series of numerical experiments were carried
out. Consider three different examples of strongly convex, Lipschitz-continuous
objective functions, as follows
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Example 1.

f(x) = x2
1 +

n∑

i=1

ix2
i +

1
100

n∑

i=1

⎛

⎝
i∑

j=1

xj

⎞

⎠

2

.

Example 2.

f(x) =
n−1∑

i=1

ix2
i +

n−2∑

i=1

(xi + xi+1 + xi+2)
2
.

Example 3.

f(x) =
n∑

i=1

ix4
i +

1
2
‖x‖22.

The functional constraint has the next form: g(x) = max
1≤i≤m

{gi(x)}, where

gi((x1, . . . , xn)) = 〈aix, x〉 − 5,

aT
i (i = 1, . . . , m) are the rows in the matrix A ∈ R

m×n with entries drawn from
the discrete uniform distribution in the half open interval [1, 6).

Let us choose the set Q = {x = (x1, x2, ..., xn) ∈ R
n ; x2

1 +x2
2 + ...+x2

n ≤ 1}.
For Algorithms 1 and 2, we choose λmin = 0, λmax = f(x̄)

−g(x̄) , where x̄ is an arbi-
trary point such that g(x̄) < 0. For Algorithm 4 we choose standard Euclidean
proximal setup as prox-function, starting point x0 = (1,...,1)√

n
, Θ0 =

√
2 (i.e.

Ω = 4) and R0 = 1.
For ε = 1

2 , 1
4 , 1

8 , 1
16 , 1

32 the results of the work of Algorithms 1, 2 and 4, for
Examples 1 and 2, when n = 200,m = 100, are represented in Figs. 1 and 2 below.
For Example 3, when n = 1000 and m = 100, they are represented in Fig. 3.
These results demonstrate the comparison of the running time (in seconds) for
each algorithm, with different accuracy ε.

All experiments were implemented in Python 3.4, on a computer fitted with
Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical
Processor(s). The RAM of the computer is 8 GB.

In general, from all experiments conducted, we can see that Algorithm 1 is the
best algorithm, the efficiency of this algorithm is represented by its very high
execution speed, where by this algorithm one needs a few seconds to achieve
the solution and to reach its stopping criterion. In some details, from Fig. 1
and Fig. 2, for Examples 1 and 2 when n = 200,m = 100, one can see that,
according to the running time of each algorithm, Algorithm1 works better than
Algorithm 2, which works better than Algorithm4. We note that the running
time of Algorithm 4 is very long compared with the running time of Algorithms 1
and 2. Therefore, for the objective functions in Examples 1 and 2 (quadratic
functions), we can see that Algorithm 4 works badly, unlike Algorithm1. For
Example 3 when n = 1000,m = 100, from Fig. 3, we can see that Algorithm 1 is
still the best, but now Algorithm 4 works better than Algorithm 2. We note that
the difference between the running time of Algorithms 1 and 4 is very small, but
it is very long compared with the running time of Algorithm2.
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Fig. 1. Example 1, n = 200. Fig. 2. Example 2, n = 200. Fig. 3. Example 3, n = 1000.
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Abstract. We consider optimization methods for convex minimization
problems under inexact information on the objective function. We intro-
duce inexact model of the objective, which as a particular cases includes
inexact oracle [16] and relative smoothness condition [36]. We analyze
gradient method which uses this inexact model and obtain convergence
rates for convex and strongly convex problems. To show potential appli-
cations of our general framework we consider three particular problems.
The first one is clustering by electorial model introduced in [41]. The
second one is approximating optimal transport distance, for which we
propose a Proximal Sinkhorn algorithm. The third one is devoted to
approximating optimal transport barycenter and we propose a Proximal
Iterative Bregman Projections algorithm. We also illustrate the practical
performance of our algorithms by numerical experiments.

Keywords: Gradient method · Inexact oracle · Strong convexity ·
Relative smoothness · Bregman divergence

1 Introduction

In this paper we consider optimization methods for convex problems under inex-
act information on the objective function. This information is given by an object,
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which we call inexact model. Inexact model generalizes the inexact oracle intro-
duced in [16], where inexactness is assumed to be present in the objective value
and its gradient. The authors show that, based on these two objects, it is possi-
ble to construct a linear function, which is a lower approximation and, up to a
quadratic term, an upper approximation of the objective, and these two approx-
imations are enough to obtain convergence rates for gradient method and accel-
erated gradient method. We go beyond and assume that the approximations of
the objective are given through some function, which is not necessarily linear.

This allows us to construct general gradient-type method which is applicable
in for different problem classes and allows to obtain convergence rates in these
situations as a corollary of our general theorem. Besides convex problems we
focus also on strongly convex objectives and illustrate the application of our
general theory by two examples. The first example is data clustering by electoral
model [41]. The second example relates to Wasserstein distance and barycenter,
which are widely used in data analysis [12,13].

Many optimization methods use some model of the objective function to
define a step by minimization of this model. Usually the model is constructed
using exact first-order [18,39,43], second-order [42], or higher-order information
[9,40] information on the objective. The influence of inexactness on the conver-
gence of gradient-type methods have being studied at least since [46]. Accelerated
first-order methods with inexact oracle are studied in [11,14,16,21,37]. Some
recent works study also non-convex problems in this context [8,19]. Randomized
methods with inexact oracle are also studied in the literature, e.g. coordinate
descent in [27,53], random gradient-free methods and random directional deriva-
tive methods in [22,23]. A method with inexact oracle for variational inequalities
can be found in [26].

The contributions of this paper can be summarized as follows.

� We introduce an inexact model of the objective function for convex opti-
mization problems and strongly convex optimization problems.
� We introduce and theoretically analyze a gradient-type method for convex
and strongly convex problems with an inexact model of the objective function.
For the latter case we prove linear rate of convergence.
� We apply our method to, generally speaking, non-convex optimization
problem which arises in clustering model introduced in [41]. To do this we
construct an inexact model and apply our general algorithms and convergence
theorems.
� We apply our general framework for Wasserstein distance and barycenter
problems and show that it allows to construct a proximal á la [10] version of
the Sinkhorn’s algorithm [49] and Iterative Bregman Projection algorithm [5].

Notation. We define 1 = (1, ..., 1)T ∈ R
n, KL(z|t) to be the Kullback-Leibler

divergence: KL(z|t) =
n∑

k=1

zk ln(zk/tk), ∀z, t ∈ Sn(1), where Sn(1) is the stan-

dard simplex in R
n. We also denote by � the entrywise product of two matrices.
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2 Gradient Methods with Inexact Model of the Objective

Consider the convex optimization problem

f(x) → min
x∈Q

, (1)

where function f is convex and Q ⊆ R
n is a simple convex compact set. Moreover,

assume that minx∈Q f(x) = f(x∗) for some x∗ ∈ Q.
To solve this problem, we introduce a norm ‖ · ‖ on R

n and a prox-function
d(x) which is continuous and convex. We underline that, unlike most of the
literature, we do not require d to be strongly convex.

Without loss of generality, we assume that min
x∈Rn

d(x) = 0. Further, we define

Bregman divergence V [y](x) := d(x) − d(y) − 〈∇d(y), x − y〉. Next we define the
inexact model of the objective function, which generalizes the inexact oracle of
[16] (see also [8,21,24,29,52,54]).

Definition 1. Let function ψδ(x, y) be convex in x ∈ Q and satisfy ψδ(x, x) = 0
for all x ∈ Q.

(i) We say that ψδ(x, y) is a (δ, L)-model of the function f at a given point y
with respect to V [y](x) iff, for all x ∈ Q, the inequality

0 ≤ f(x) − (f(y) + ψδ(x, y)) ≤ LV [y](x) + δ

holds for some L, δ > 0.
(ii) We say that ψδ(x, y) is a (δ, L, μ)-model of the function f at a given point

y with respect to V [y](x) iff, for all x ∈ Q, the inequality

μV [y](x) ≤ f(x) − (f(y) + ψδ(x, y)) ≤ LV [y](x) + δ (2)

Note that we allow L to depend on δ. We refer to the case (i) as convex case
and to the case (ii) as strongly convex case.

Remark 1. In the particular case of function f possessing (δ, L)-oracle [16] at a
given point y, one has

0 ≤ f(x) − f(y) − 〈gδ(y), x − y〉 ≤ L

2
‖x − y‖2 + δ

and ψδ(x, y) = 〈gδ(y), x − y〉. In the same way, if function f is equipped with
(δ, L, μ)-oracle [17], i.e.,

μ

2
‖x − y‖2 ≤ f(x) − f(y) − 〈gδ,L,μ(y), x − y〉 ≤ L

2
‖x − y‖2 + δ ∀x ∈ Q,

we have ψδ(x, y) = 〈gδ,L,μ(y), x − y〉.
The algorithms we develop are based on solving auxiliary simple problems

on each iteration. We assume that these problems can be solved inexactly and,
following [4] introduce a definition of inexact solution of a problem.
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Definition 2. Consider a convex minimization problem

φ(x) → min
x∈Q⊆Rn

. (3)

If φ is smooth, we say that we solve it with δ̃-‘precision’ (δ̃ ≥ 0) if we find x̃

s.t. maxx∈Q〈∇φ(x̃), x̃ − x〉 = δ̃. If φ is general convex, we say that we solve this
problem with δ̃-‘precision’ if we find x̃ s.t. ∃h ∈ ∂φ(x̃), 〈h, x∗ − x̃〉 ≥ −δ̃. In both
cases we denote this x̃ as argmin˜δ

x∈Q φ(x).

We notice that the case δ̃ = 0 corresponds to the case when x̃ is an exact solution
of convex optimization problem (3) [4,39].

The connection of Definition 2 with standard definitions of inexact solution,
e.g. in terms of the objective residual, can be found in Appendix G of the full
version of the paper [51].

2.1 Convex Case

In this subsection we describe a gradient-type method for problems with (δ, L)-
model of the objective. This algorithm is a natural extension of gradient method,
see [29,52,54].

Algorithm 1. Gradient method with (δ, L)-model of the objective.

1: Input: x0 is the starting point, L > 0 and δ, ˜δ > 0.
2: for k ≥ 0 do
3:

φk+1(x) := ψδ(x, xk) + LV [xk](x), xk+1 := arg min
x∈Q

˜δφk+1(x).

4: end for
Output: x̄N = 1

N

∑N−1
k=0 xk+1

Theorem 1. Let V [x0](x∗) ≤ R2, where x0 is the starting point, and x∗ is
the nearest minimum point to the point x0 in the sense of Bregman divergence
V [y](x). Then, for the sequence, generated by Algorithm 1 the following inequality
holds:

f(x̄N ) − f(x∗) ≤ LR2

N
+ δ̃ + δ,

In Appendix A of the full version of the paper [51] we prove this theorem and
provide an adaptive version of Algorithm 1, which does not require knowledge
of the constant L.
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2.2 Strongly Convex Case

In this subsection we consider problem (1) with (δ, L, μ)-model of the objective
function satisfying (2). This more strong assumption allows us to obtain linear
rate of convergence of the proposed algorithm. Our algorithm is listed as Algo-
rithm 2 and it is a version of Algorithm 1, which is adaptive to possibly unknown
constant L.

Algorithm 2. Adaptive gradient method with an oracle using the (δ, L, μ)-model
1: Input: x0 is the starting point, μ > 0 L0 ≥ 2μ and δ.
2: Set S0 := 0
3: for k ≥ 0 do
4: Find the smallest ik ≥ 0 such that

f(xk+1) ≤ f(xk) + ψδ(xk+1, xk) + Lk+1V [xk](xk+1) + δ,

where Lk+1 = 2ik−1Lk for Lk ≥ 2μ and Lk+1 = 2ikLk for Lk < 2μ,
αk+1 := 1

Lk+1
, Sk+1 := Sk + αk+1.

φk+1(x) := ψδ(x, xk) + Lk+1V [xk](x), xk+1 := arg min
x∈Q

˜δφk+1(x).

5: end for
Output: x̄N = 1

SN

∑N−1
k=0

xk+1
Lk+1

Let’s introduce average parameter L̂:

1 − μ

L̂
= k+1

√(

1 − μ

Lk+1

) (

1 − μ

Lk

)

. . .

(

1 − μ

L1

)

.

Note that by Li ≥ μ (i = 1, 2, . . .)

min
1≤i≤k+1

Li ≤ L̂ ≤ max
1≤i≤k+1

Li ≤ 2L.

The following result holds.

Theorem 2. Let ψδ(x, y) is a (δ, L, μ)-model for f w.r.t. V [y](x). Then, after
k iterations of Algorithm 2, we have

V [xk+1](x∗) ≤ 2L(δ + δ̃)
μ2

(

1 −
(
1 − μ

2L

)k+1
)

+
(

1 − μ

L̂

)k+1

V [x0](x∗),

f(xk+1)−f(x∗) ≤ 4L2(δ + δ̃)
μ2

(

1 −
(
1 − μ

2L

)k+1
)

+2L

(

1 − μ

L̂

)k+1

V [x0](x∗).

The details of proof can be found in Appendix B of the full version of the
paper [51]. Note that Algorithm 1 also has linear convergence rate for the strongly
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convex case. The details can be found in Appendix C of the full version of the
paper [51]. The benefit of Algorithm 1 is that there is no need to know the
strong convexity parameter μ for the algorithm to work. On the other hand,
this parameter is needed for assessing the quality of the solution returned by
the algorithm. The benefit of the adaptive version is that it does not require to
know the value of the parameter L and adapts to it. Moreover, the parameter L
can be different for the model at different points and the algorithm adapts also
for the local value of this parameter.

3 Clustering by Electorial Model

In this section we consider clustering model introduced in [41]. In this model
voters (data points) choose a party (cluster) in an iterative manner by alternative
minimization of the following function.

fμ1,μ2(x = (z, p)) = g(x) + μ1

n∑

k=1

zk ln zk +
μ2

2
‖p‖22 → min

z∈Sn(1),p∈R
m
+

, (4)

where R
m
+ is a non-negative orthant and Sn(1) is the standard n-dimensional

simplex in R
n.

The vector z contains probabilities with which voters choose the considered
party, and vector p describes the position of the party in the space of voter
opinions. The minimized potential is the result of combining two optimization
problems into one: voters choose the party whose position is closest to their
personal opinion and the party adjusts its position minimizing dispersion and
trying not to go too far from its initial position. Yu. Nesterov in [41] used sequen-
tial elections process to show that under some natural assumptions the process
convergence and gives the clustering of the data-points. This was done for a par-
ticular choice of the function g which has limited interpretability. We show, how
our framework of inexact model of the objective allows to construct a gradient-
type method for the case of general function g, which is not necessarily convex.

Assume that g(x) (generally, non-convex) is a function with Lg-Lipschitz
continuous gradient:

‖∇g(x) − ∇g(y)‖∗ ≤ Lg‖x − y‖ ∀x, y ∈ Sn(1) × R
m
+ ,

and, following [41], the numbers μ1, μ2 are chosen such that Lg ≤ μ1 and
Lg ≤ μ2.

The norm ‖ · ‖ in Sn(1) × R
m
+ is defined as ‖(z, p)‖2 = ‖z‖21 + ‖p‖22, where

‖z‖1 =
n∑

k=1

zk and ‖p‖2 =

√
m∑

k=1

p2k. The correctness of this definition is proven

in Appendix I of the full version of the paper [51].
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It can be shown that

ψδ(x, y) = 〈∇g(y), x − y〉 − Lg · KL(zx|zy) − Lg

2
‖px − py‖22

+μ1(KL(zx|1) − KL(zy|1)) +
μ2

2
(‖px‖22 − ‖py‖22

)

is a (0, 2Lg)-model of fμ1,μ2(x) in x with respect to the following Bregman
divergence

V [y](x) = KL(zx|zy) +
1
2
‖px − py‖22.

The proof is detailed in Appendix I of the full version of the paper [51].
Further, for the case min{μ1, μ2} > Lg ψδ(x, y) is a strongly convex w.r.t.

V [y](x):

ψδ(x, y) = ψlin
δ (x, y) + (μ1 − Lg) · KL(zx|zy) +

μ2 − Lg

2
‖px − py‖22 (5)

≥ (min{μ1, μ2} − Lg) · V [y](x),

where

ψlin
δ (x, y) = 〈∇g(y), x − y〉 + μ1〈∇KL(zy|1), zx − zy〉 + μ2〈py, px − py〉

is linear in y. The proof of (5) is given in Appendix I of the full version of the
paper [51].

Thus, ψlin
δ (x, y) is a (0,max{μ1, μ2} + Lg,min{μ1, μ2} − Lg)-model of the

function fμ1,μ2 :

fμ1,μ2(y) + ψlin
δ (x, y) + (min{μ1, μ2} − Lg)V [y](x) ≤ fμ1,μ2(x)

and

fμ1,μ2(x) ≤ fμ1,μ2(y) + ψlin
δ (x, y) + (max{μ1, μ2} + Lg)V [y](x).

So, we can apply our Algorithms 1 and 2 to the problem (4).

4 Proximal Sinkhorn Algorithm for Optimal Transport

In this section we consider the problem of approximating an optimal transport
(OT) distance. Recently optimal transport distances has gained a lot of interest
in machine learning and statistical applications [3,6,15,28,34,45,50]. To state
the OT problem, assume that we are given two discrete probability measures
p, q ∈ Sn(1) and ground cost matrix C ∈ R

n×n
+ , then the optimal transport

problem is

〈C, π〉 → min
π∈U(p,q)

, U(p, q) = {π ∈ R
n×n
+ : π1 = p, πT1 = q} (6)
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where 〈·, ·〉 denotes Frobenius dot product of matrices, π is a transportation
plan.

The above optimal transport problem is the Kantorovich [31] linear program
(LP) formulation of the problem, which goes back to the Monge’s problem [38].

The best known theoretical complexity for this linear program is1 Õ(n2.5),
see [35]. However, there is no known practical implementation of this algorithm.
In practice, the simplex method gives complexity O(n3 ln n) [44]. We follow the
alternative approach based on entropic regularization of the OT problem [12].
We show how our general framework of inexact model of the objective allows to
construct Proximal Sinkhorn algorithm with better computational stability in
comparison with the standard Sinkhorn algorithm.

For any optimization problem (1), ψδ(x, y) = f(x)−f(y) satisfies Definition 1
with any L ≥ 0. In this case, our Algorithm 1 becomes inexact Bregman proximal
gradient method

xk+1 = arg min
x∈Q

δ̃ {f(x) + LV [xk](x)} .

Our idea is to apply this proximal method for the OT problem and approx-
imately find the next iterate xk+1 by Sinkhorn’s algorithm [2,12,25,49]. The
latter is made possible by the choice of V as KL divergence, which makes the
problem of finding the point xk+1 to be an entropy-regularized OT problem,
which, in turn, is efficiently solvable by the Sinkhorn algorithm.

Consider the iterates

π0 = pqT ∈ U(p, q), πk+1 = arg min
π∈U(p,q)

ε/2
{〈C, π〉 + L · KL(π|πk)

}

= arg min
π∈U(p,q)

ε/2KL

(

π

∣
∣
∣
∣π

k � exp
(

−C

L

))

, (7)

which we call outer iterations. On each outer iteration we use Sinkhorn’s algo-
rithm 3, which solves the minimization problem in (7) with accuracy ε̃ in terms
of its objective residual. Notice that here ε′ differs from the one from [2,25]
as we need approximated solution to the regularized problem. Moreover, unlike
[25] we use a slightly refined theoretical bounds for the Sinkhorn’s algorithm not
depending on vectors p, q2.

Theorem 3. Let π̄N = 1
N

∑N
k=1 πk, where πk are the iterates of (7). Then,

after N = 4L lnn
ε iterations, it holds that 〈C, π̄N 〉 ≤ minπ∈U(p,q)〈C, π〉+ ε. More-

over, the accuracy ε̃ for the solution of (7) is sufficient to be set as Õ(ε4/(Ln4))
and the complexity of Sinkhorn’s Algorithm on k-th iteration is bounded as

n2Õ

(

min

{

exp
( c̄k

L

)( c̄k

L
+ ln

c̄k

ε̃

)
,

c̄2k
Lε̃

})

, (8)

1 Here and below for all (large) n: ˜O(g(n)) ≤ C̃ · (ln n)rg(n) with some constants
C̃ > 0 and r ≥ 0. Typically, r = 1, but not in this particular case. If r = 0, then
˜O(·) = O(·).

2 One can find the proof in Appendix E of the full version of the paper [51].
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Algorithm 3. Sinkhorn’s Algorithm
Input: Accuracy ε̃, matrix K = e−C/γ , marginals p, q ∈ Sn(1).

1: Set t = 0, u0 = ln p, v0 = ln q, ε′ = ε̃
4

(

maxi,j Cij − mini,j Cij + 2γ ln
(

4γn2

ε̃

))−1

.

2: repeat
3: if t mod 2 = 0 then
4: ut+1 = ut + ln p − ln(B(ut, vt)1), where B(u, v) := diag(eu)K diag(ev)
5: vt+1 = vt

6: else
7: vt+1 = vt + ln q − ln(B(ut, vt)T1)
8: ut+1 = ut

9: end if
10: t = t + 1
11: until

∥

∥B(ut, vt)1 − p
∥

∥

1
+

∥

∥B(ut, vt)T1 − q
∥

∥

1
≤ ε′

12: Find π̂ as the projection of B(ut, vt) on U(p, q) by Algorithm 2 in [2].
Output: π̂.

where3

c̄k = ‖C‖∞ + L ln

(
maxi,j πk

ij

mini,j πk
ij

)

.

Fig. 1. Adaptive choice of L

Remark 2. The standard Sinkhorn’s method
can be seen as a particular case of our algo-
rithm (7) with only one step. To obtain
an ε-approximate solution of (6), the regu-
larization parameter L needs to be chosen
O (ε/ ln n) [2,25,30]. This can lead to insta-
bility of the Sinkhorn’s algorithm [48]. On
the opposite, our Proximal Sinkhorn algo-
rithm allows to run Sinkhorn’s algorithm
with larger regularization parameter. This
parameter can be chosen by minimization of the theoretical bound (8), which
gives L = Õ(‖C‖∞). In practice one can choose this constant adaptively since we
have a (δ, L)-model for any L and can vary L from iteration to iteration. First,
the inner problem (7) is solved with overestimated L. Then, we set L := L/2
and the problem is solved with the updated value of the parameter and so on
until a significant increase (e.g. 10 times) in the complexity of the auxiliary
entropy-linear programming problem in comparison with the initial complexity

3 This bound is rough and typically c̄k is smaller in practice. By proper rounding of
πk one can guarantee (without loss of generality) that πk

ij ≥ ε/(2n2 ‖C‖∞), which
gives

c̄k

L
=

‖C‖∞
L

+ ln

(

2n2 ‖C‖∞
ε

)

.

But, in practice there often is no need to make ‘rounding’ after each outer iteration.
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is detected, see Fig. 1, where N(L) is a number of required iterations of Sinkhorn
algorithm to solve the inner problem with accuracy ε.

From the Theorem 3 and Remark 2 one can roughly estimate the total com-
plexity of Proximal Sinkhorn algorithm as4 Õ(n4/ε2).

We also mention several recent complexity bounds5 for the OT problem
Õ(n2/ε3) [2], Õ(n2/ε2) and Õ(n2.5/ε) [25], Õ(n2/ε) [7,47], Õ(n/ε3+d), d ≥ 1 [1].

4.1 Numerical Illustration

In this subsection we provide numerical illustration of the Proximal Sinkhorn
algorithm.6 In the experiments we use a standard MNIST dataset with images
scaled to a size 10 × 10. The vectors p and q contain the pixel intensities of the
first and second images respectively. The value of cij is equal to the Euclidean
distance between the i-th pixel from the vector p and the j-th pixel from the
vector q on the image pixel grid. For experiments with varying number of pixels
n the images are resized to be images of 10 ·m× 10 ·m pixels, where m ∈ N. We
replace all the zero elements in p and q with 10−3 and, then, normalize these
vectors.

Fig. 2. Comparison of iteration number of Sinkhorn’s algorithm and total number of
Sinkhorn steps in Proximal Sinkhorn’s algorithm for different L.

Figure 2 shows that the growth rate of the iteration number with increasing
accuracy or size of the problem for the Sinkhorn’s algorithm is greater than for
4 Our experiments on MNIST data set show (see Figs. 2, 3) that in practice the bound

is better.
5 Strictly speaking for the moment we can not verify all the details of the proof of

estimate Õ(n2/ε). Also the proposed in [7,47] methods are mainly theoretical, like
Lee–Sidford’s method for OT problem with the complexity Õ(n2.5) [35]. For the
moment it is hardly possible to implement these methods such that theirs practical
efficiencies correspond to the theoretical ones.

6 The code is available at https://github.com/dmivilensky/Proximal-Sinkhorn-
algorithm.

https://github.com/dmivilensky/Proximal-Sinkhorn-algorithm
https://github.com/dmivilensky/Proximal-Sinkhorn-algorithm
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Fig. 3. Comparison of working time of Sinkhorn’s algorithm and Proximal Sinkhorn’s
algorithm with different L.

the Proximal Sinkhorn’s method. At the same time, with a higher value of L
in proximal method, the iteration number is greater, and the growth rates with
some precision are equal. The same type of dependence on the accuracy and the
size of the problem can be seen for the working time (Fig. 3).

More experiments can be found in the full version of this paper [51], in
particular, on the mean number of inner iterations7.

5 Proximal IBP Algorithm for Wasserstein Barycenter

In this section we consider a more complicated problem of approximating an
OT barycenter. OT barycenter is a natural definition of a mean in a space
endowed with an OT distance. Such barycenters are used in the analysis of data
with geometric structure, e.g. images, and other machine learning applications
[5,13,32,33,45].

For a set of probability measures {p1, . . . , pm}, cost matrices C1, . . . , Cm ∈
R

n×n
+ , and w ∈ Sn(1), the weighted barycenter of these measures is defined as a

solution of the following convex optimization problem

m∑

l=1

wl min
πl∈U(pl,q)

〈Cl, πl〉 → min
q∈Sn(1)

⇐⇒
m∑

l=1

wl〈Cl, πl〉 → min
π∈C1∩C2

,

C1 = {π = [π1, . . . , πm] : ∀l πl1 = pl} , C2 =
{

π = [π1, . . . , πm] : πT
1 1 = · · · = πT

m1
}

.

The idea is similar to the one in Sect. 4, namely, we use our framework to
define a Proximal Iterative Bregman Projections algorithm.

7 Figures 5–8 are given in the more complete version of the text by link https://arxiv.
org/abs/1902.09001

https://arxiv.org/abs/1902.09001
https://arxiv.org/abs/1902.09001
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The algorithm starts from the point π s.t. π0
l = 1

npl1
T ∈ U(pl,1/n), l =

1, ...,m and iterates

πk+1 = arg min
π∈C1∩C2

ε/2
m∑

l=1

wl

{〈Cl, πl〉 + L · KL(πl|πk
l )

}

= arg min
π∈C1∩C2

ε/2
m∑

l=1

wlKL

(

πl

∣
∣
∣
∣π

k
l � exp

(

−Cl

L

))

. (9)

These iterations are called outer iterations and on each such iteration, the Iter-
ative Bregman Projections algorithm [5] listed as Algorithm 4 below is used to
solve the auxiliary minimization problem.

Algorithm 4. Iterative Bregman Projection
Input: C1, . . . , Cm, p1, . . . , pm, L > 0, ε̃ > 0

1: u0
l := 0, v0

l := 0, Kl := exp
(

−Cl
L

)

, l = 1, . . . , m

2: repeat

3: vt+1
l :=

∑m
k=1 wk ln KT

k eut
k − ln KT

l eut
l , ut+1 := ut

4: t := t + 1
5: ut+1

l := ln pl − ln Kle
vt
l , vt+1 := vt

6: t := t + 1
7: until

∑m
l=1 wl

∥

∥BT
l (ut

l , v
t
l )1 − q̄t

∥

∥

1
≤ ε̃

4maxl‖Cl‖∞
, where Bl(ul, vl) =

diag (eul) Kl diag (evl), q̄t :=
∑m

l=1 wlB
T
l (ut

l , v
t
l )1

8: q := 1
∑m

l=1 wl〈1 ,Bl1〉
∑m

l=1 wlB
T
l 1

9: Calculate π̂1, . . . , π̂m by Algorithm 2 from [2] s.t.
π̂l ∈ U(pl, q), ‖π̂l − Bl‖1 ≤ ‖Bl1 − pl‖1 +

∥

∥BT
l 1 − q

∥

∥

1
.

Output: q, π̂ = [π̂1, . . . , π̂m].

Theorem 4. Let π̄N = 1
N

∑N
k=1 πk, where πk are the iterates of (9). Then,

after N = 4Lm lnn
ε iterations, it holds that

m∑

l=1

wl〈Cl, π̄
N
l 〉 ≤ min

π∈C1∩C2

m∑

l=1

wl〈Cl, πl〉 + ε.

Moreover, the accuracy ε̃ for the solution of (9) is sufficient to be set as ε̃ =
Õ(ε2/(mn3)) and the complexity of IBP on k-th iteration is bounded as

mn2Õ

(

min

{

exp
( c̄k

L

)
ln

c̄k

ε̃
,

c̄2k
Lε̃

})

,

c̄k = O

(

max
l=1,...,m

[

‖Cl‖∞ + L ln
(

maxi,j [πk
l ]ij

mini,j [πk
l ]ij

)])

.

The proof of Theorem 4 is based on Theorem 1 and [32]. All the remarks from
Sect. 4 for Proximal Sinkhorn algorithm also hold for Proximal IBP.
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In [32] it was shown that complexity of IBP is Õ
(
n2/ε2

)
. Despite the theo-

retical complexity of Proximal IBP is worse than this bound, we show in the next
section that in practice Proximal IBP beats the standard IBP algorithm. As an
alternative to the IBP algorithm we mention primal-dual accelerated gradient
descent [20,55].

5.1 Numerical Illustration

In this section, we present preliminary computational results for the numerical
performance analysis of the Proximal Iterative Bregman Projection (ProxIBP)
method discussed above asthe iterates (9).

Initially, we show the results for the computation of a non-regularized Wasser-
stein barycenter of a set of 10 truncated Gaussian distributions with finite sup-
port. For the finite support x = [−5,−4.9,−4.8, . . . ,−0.1, 0, 0.1, . . . , 4.8, 4.9, 5],
we set the finite distribution pl such that pl(i) = N (xi;μi, σi), that is, the
value at coordinate i of the distribution pl, for 1 ≤ l ≤ m, is the value of
the Normal distribution with mean μi and standard deviation σi. The values
{μi} ∼ Uniform[−5, 5], are uniformly chosen in the line segment [−5, 5], and the
values are selected as {μi} ∼ Uniform[0.25, 1.25]. For simplicity of exposition,
we select uniform weighting for all distributions, i.e., wl = 1/m.

Figure 4 shows the numerical results for a number of comparative scenar-
ios between the Iterative Bregman Projection (IBP) algorithm proposed in [5]
and its Proximal variant in (9). For both algorithms, we show the function val-
ues achieved by the generated iterates, and the final approximated barycenter.
The results for the IBP algorithm are shown in Fig. 4(a) and (b). Figure 4(a)
shows the weighted distance between the generated barycenter and the original
distributions for three different desired accuracy values.

It is clear that a bigger ε generates a faster convergence, but the final cost
is slightly higher than in other cases. Figure 4(b) shows the resulting barycenter
for the three values of the accuracy parameter. For higher accuracy, the effects of
the regularization constant are smaller and thus we obtain a “spikier” barycen-
ter. Figure 4(c) and (d) shows a similar analysis for the proposed Proximal IBP
in (9), in Fig. 4(c) we observe the function value of the generated barycenter, for
a fixed number of inner loop iterations, and changing values of L, note that here
L is not a regularization parameter but the weight on the Bregman function.
For larger values of L, the inner loop problem is easier to solve, requires less
iterations to achieve certain accuracy, with the price in a larger number of itera-
tions in the outer loop. For the particular problem studied, 200 iterations in the
outer loop are sufficient to achieve good performance even with relatively smaller
values of L. Figure 4(c) shows the generated barycenters for the Proximal IBP
algorithm. Finally, Fig. 4(e) and (f) show the results, for the analogous adaptive
stopping condition described in Line 11 of Algorithm 3 with ε = 1 · 10−10. We
test two different values of the parameter L, namely 1 and 0.1. Additionally,
we explore the suggested adaptive search procedure, where one decreases the
value of the parameter L at each iteration, until the inner problem has become
particularly hard to solve. This last approach is shown a fast convergence as
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Fig. 4. Numerical results for the computation of the barycenter of 10 truncated Gaus-
sian random variables with finite support for the IBP Algorithm and the Proximal IBP
algorithm. Both function value and final resulting barycenter are shown for an number
of simulation scenarios.
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it reaches a comparable value in around 10 iterations. Figure 4(f) shows the
resulting barycenters.

Again, we refer to the full version [51] for additional experiments e.g. on
computing Wasserstein barycenters of images from MNIST dataset8.

6 Conclusions

In this paper we consider gradient methods with inexact information of the
objective given by inexact model of this objective. We analyze a gradient-type
method for this type of problems and provide its convergence rate. To illustrate
the applications, we consider optimization problems in optimal transport and a
clustering model. Notably, our framework allows to solve non-convex problems
which have a convex inexact model, which is illustrated in the section devoted
to clustering model.
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Abstract. The linear second-order cone programming problem is con-
sidered. For its solution a variant of the primal simplex-type method is
proposed. This variant is a generalization on the cone programming of
the standard simplex method for linear programming. At each iteration
the dual variable and dual slack are defined, and the move from the given
extreme point to another one is realized. Finite and infinite convergence
of the method to the solution of the problem having a special form is
discussed.

Keywords: Second-order cone programming · Simplex-type method ·
Finite and infinite convergence

1 Introduction

Cone programming is more general setting with respect to linear programming
(LP). In cone programming, the requirement that variables must be non-negative
is replaced by belonging them to convex cones. The second-order cone program-
ming (SOCP) is the very important special case of cone programming, in which
the linear goal function is minimized over the intersection of a linear manifold
with direct product of second-order cones [1,2]. Many optimization problems,
including, in particular, quadratically constrained convex quadratic problems,
robust optimization and combinatorial optimization problems, may be formu-
lated as SOCP [2,3].

The most popular methods of solving SOCP are primal-dual interior point
techniques, which were developed for LP and were extended for cone program-
ming [4,5]. The simplex-type algorithms for SOCP are developed essentially
less. There are only a few simplex-type methods for SOCP. This situation with
simplex-type methods is explained by the presence of infinitely many extreme
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points in feasible sets. The general approach for constructing simplex-type meth-
ods for cone programming was proposed in [6]. In [7] the SOCP problem of special
structure with the single second-order cone and other nonnegative variables was
considered and the simplex-type algorithm for its solution was developed. The
other variant of a simplex-type algorithm for the general linear SOCP problem
had been worked out in [8]. This algorithm is based on the reformulation of
the SOCP problem as a linear semi-infinite programme and on the consequent
application of the dual-simplex primal-exchange method from [9] for solving the
reformulated problem. As it is mentioned by authors, their algorithm is more
advantage, when it solves the SOCP problems with similar structure.

In the present paper, the general SOCP problem is considered. For its solu-
tion, a variant of the primal simplex-type method is proposed. This variant can
be treated as the simple extension of the well-known simplex method for LP. In
pivoting procedures all variables, belonging to the second-order cone, are taken
in the form of a single variable. The method can be interpreted as a special way
of solving the system of optimality conditions. The primal feasibility and com-
plementarity between primal variables and dual slack variables are preserved in
the course of iterations. The dual slack variable (dual slack) is estimated at each
iteration in order to define the primal variable, which must enter the list of basic
variables. The similar way of constructing the primal simplex-type method for
solving linear semidefinite programming problems had been used in [10].

The paper is organized as follows. In Sect. 2, the statement of SOCP is given.
Here we also introduce some notions and notations. Among them definitions of
regular and irregular extreme points of the feasible set are rather important. In
Sect. 3, the approach to updating regular extreme points is described. Finally,
in Sect. 4, the partial case of the SOCP problem is considered. It is shown that
the sequence, generated by the proposed algorithm, converges to the solution of
the problem.

2 The Problem Statement and Basic Definitions

Let Kn denote the second-order (Lorentz) cone in IRn. By its definition

Kn =
{
[x0; x̄] ∈ IR × IRn−1 : x0 ≥ ‖x̄‖

}
,

where ‖ · ‖ refers to the standard Euclidean norm and n is the dimension of Kn.
Here and in what follows we use “;” for adjoining vectors or components of a
vector in a column. The cone Kn is self-dual, and it induces a partial order in
IRn, namely: x1 �Kn x2, if x1 − x2 ∈ Kn.

Consider the cone programming problem

min
∑r

i=1〈ci, xi〉,∑r
i=1 Aixi = b, x1 �Kn1 0n1 , . . . , xr �Knr 0nr

.
(1)

Here, ci ∈ IRn
i , 1 ≤ i ≤ r, and b ∈ IRm. Matrices Ai are of dimensions m × ni,

1 ≤ i ≤ r, and 0ni
is a zero vector of dimension ni. The angle brackets denote

the usual Euclidean scalar product in IRni .
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The dual problem to (1) has the following form

max 〈b, u〉,
AT

i u + yi = ci, 1 ≤ i ≤ r; y1 �Kn1 0n1 , . . . , yr �Knr 0nr
,

(2)

in which u ∈ IRm.
Let n = n1 + · · · + nr. Denoting

c = [c1; . . . ; cr] ∈ IRn, x = [x1; . . . ;xr] ∈ IRn; y = [y1; . . . ; yr] ∈ IRn,

and A = [A1, . . . Ar], K = Kn1 × · · · × Knr , it is possible to rewrite the pair of
problems (1) and (2) as

min 〈c, x〉, Ax = b, x �K 0n, (3)

max 〈b, u 〉, ATu + y = c, y �K 0n. (4)

We assume that solutions of both problems (3) and (4) exist. Moreover, we
assume that m < n and rows of the matrix A are linear independent. The
feasible set in problem (3) is denoted by FP . Observe, that LP is a special case
of (3), (4) with the nonnegative orthant IRn

+ as K.
In order that both problems (3) and (4) have solutions it is necessary that

the following system of equalities and inclusions

〈x, y〉 = 0, Ax = b, ATu + y = c, x ∈ K, y ∈ K (5)

be solvable. The simplex-method under consideration is one of the possible ways
for solving this system.

Let x ∈ K. We split all components xi, composed the vector x, onto zero and
nonzero components. In addition, we split nonzero components onto internal
components xi, belonging to interior of the cone Kni , and onto boundary com-
ponents, belonging to the boundary of the cone Kni (more exactly, to a nonzero
face of Kni). From boundary, internal and zero components of the vector x it
is possible to compose three blocks of components: xF , xI , xN . Without loss of
generality, we assume that these blocks are located in the mentioned order, i.e.

x = [xF ;xI ;xN ]. (6)

We suppose also that

xF = [x1; . . . ;xrF ] , xI = [xrF+1; . . . ;xrF+rI ] , xN = [xrF+rI+1; . . . ;xr] .
(7)

Thus, the first block of components xF consists of rF = rF (x) components
xi. Respectively, the second and the third blocks consist of rI = rI(x) and
rN = rN (x) components xi, respectively. Some blocks may be empty, then the
corresponding numbers rF , rI or rN are equal to zero. We have rF +rI +rN = r.

Let Jr = [1 : r]. The following partition of the index set Jr onto three subsets

Jr
F (x) = [1, . . . , rF ], Jr

I (x) = [rF +1, . . . , rF +rI ], Jr
N (x) = [rF +rI+1, . . . , r]
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corresponds to the introduced splitting of x onto blocks. Below we use also
notations:

rB = rB(x) = rF (x) + rI(x), Jr
B(x) = Jr

F (x) ∪ Jr
I (x).

For any nonzero component xi, i ∈ Jr
B(x), the following spectral decomposi-

tion
xi = ηi,1 di,1 + ηi,ni

di,ni
(8)

takes place (see [2]). In (8) the pair {di,1,di,ni
} is the “so-called” Jordan frame.

The frame vectors di,1 and di,ni
have the forms

di,1 =
1√
2

[
1;

x̄i

‖x̄i‖

]
, di,ni

=
1√
2

[
1;− x̄i

‖x̄i‖

]
,

and
ηi,1 =

1√
2

(
x0
i + ‖x̄i‖

)
, ηi,ni

=
1√
2

(
x0
i − ‖x̄i‖

)
.

Both vectors di,1 and di,ni
are unit vectors and are orthogonal with each other.

If xi ∈ Kni , then ηi,1 ≥ 0, ηi,ni
≥ 0.

Introduce in IRni the system of coordinates associated with the current point
xi. For this purpose we set

gi,0 = [1; 0; . . . ; 0] , gi,1 =
[
0;

x̄i

‖x̄i‖

]
.

Both vectors gi,0, gi,1 are unite vectors and

di,1 =
1√
2

(gi,0 + gi,1) , di,ni
=

1√
2

(gi,0 − gi,1) .

The vector gi,0 coincides with the basis vector in IRni corresponding to the
component with zero index. Furthermore, in the subspace

IRni
0 =

{
xi = [x0

i ; x̄i] ∈ IRni : x0
i = 0

}

we take arbitrary unit vectors gi,2, . . . ,gi,ni−1, which are orthogonal to each
others and orthogonal to the vector gi,1 too. Then the vectors gi,j , 1 ≤ j ≤ ni−1,
form the orthonormal basis in IRni

0 , and jointly with gi,0—the orthonormal basis
in IRni .

Let Gi, i ∈ Jr
B(x), denote the orthogonal matrix Gi =

[
gi,0, gi,1, . . . ,

gi,ni−1

]
of order ni. For i ∈ Jr

N (x) the intrinsic basis IRni is taken as Gi. Then
for any point xi ∈ IRni , i ∈ Jr, the representation xi = Giνi is valid, where
νi = [νi,0; νi,1; . . . ; νi,ni−1] ∈ IRni and νi = GT

i xi.
Introduce additionally ni × (ni − 1) matrix

Λi =

⎡

⎢
⎢
⎢
⎢
⎣

ν0
i,1 ν0

i,2 . . . ν0
i,ni−1

νi,1 0 . . . 0
0 νi,2 0. . . 0

. . .
0 . . . 0 νi,ni−1

⎤

⎥
⎥
⎥
⎥
⎦

, i ∈ Jr,



A Variant of the Simplex Method for Second-Order Cone Programming 119

and denote λi,j = Λiei,j ∈ IRni , where ei,j is the jth unit orth in IRni . Then for
components xi, i ∈ Jr

B(x), with representations (8), the following equality

xi = Giλi,1 = ν0
i,1gi,0 + νi,1gi,1, (9)

takes place. Moreover, if i ∈ Jr
F (x), the equality νi,0 = νi,1 = ν0

i,1 = x0
i holds. All

other components λi,j , 2 ≤ j ≤ ni − 1, are zero vectors. For i ∈ Jr
I (x) we have:

ν0
i,1 = x0

i , νi,1 = ‖x̄i‖ and ν0
i,1 > νi,1. If we set

[
ν0
i,1; νi,1

]
= [0; 0], then, formally,

the representation (9) is valid for xi, when i ∈ Jr
N (x).

Denote by G and Λ block diagonal matrices

G = Diag (G1, . . . ,Gr) , Λ = Diag (Λ1, . . . ,Λr) .

Moreover, denote by e1 the n-dimensional vector e1 = [e1,1; e2,1; . . . ; er,1]. Then,
for the vector x = [xF ;xI ;xN ] ∈ FP with components xi, i ∈ Jr we obtain
Ax = AGΛe1 = b, where AG = AG. The matrix AG together with the matrix
A has full rank equal to m.

Consider the sets

Si,j = {xi ∈ IRni : xi = GiΛiei,j} , 1 ≤ j ≤ ni − 1.

By S+
i,j we denote the following subset of the set Si,j :

S+
i,j =

{
xi ∈ IRni : xi = GiΛiei,j , ν0

i,j ≥ |νi,j |
}

, 1 ≤ j ≤ ni − 1.

The set S+
i,j , being a two-dimensional second-order cone, is the section of the

cone Kni .
Let xi,j = Giλi,j ∈ Si,j , 1 ≤ j ≤ ni − 1. The cone Kni is convex, therefore,

xi =
∑ni−1

j=1 xi,j ∈ Kni , if xi,j ∈ S+
i,j , 1 ≤ j ≤ ni − 1. From the other hand,

if x ∈ Kni
2 , then x can be represented as the sum of the vectors xi,j ∈ Si,j ,

1 ≤ j ≤ ni − 1, but at nonunique way.
In what follows, we will need in extreme rays of the cone S+

i,j , which are the
sets

l+i,j =
{
xi = GiΛiei,j ∈ S+

i,j : ν0
i,j = νi,j

}
,

l−i,j =
{
xi = GiΛiei,j ∈ S+

i,j : ν0
i,j = −νi,j

}
.

Both rays l+i,j and l−i,j belong to the boundary of the cone S+
i,j , and, consequently,

belong to the boundary of the cone Kni .

Definition 1. A point xi,j = Giλi,j ∈ S+
i,j is called interior point of the cone

S+
i,j, if the pair [ν0

i,j ; νi,j ] is such, that ν0
i,j > |νi,j |.

Definition 2. A point xi,j = Giλi,j ∈ S+
i,j is called nonzero boundary point of

the cone S+
i,j, if the pair [ν0

i,j ; νi,j ] is such, that ν0
i,j = |νi,j | > 0.

Proposition 1. Let xi =
∑ni−1

j=1 xi,j, where xi,j ∈ S+
i,j, 1 ≤ j ≤ ni − 1. Let

also at least one point xi,j be an interior point of the cone S+
i,j. Then xi is the

interior point of the cone Kni .
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Proposition 2. Let xi = xi,1, where xi,1 is an interior point of the cone S+
i,1.

Let, in addition, Δxi =
∑ni−1

j=1 Δxi,j, where Δxi,j ∈ Si,j, 1 ≤ j ≤ ni − 1. Then
there is α∗ > 0, such that xi + αΔxi ∈ Kni for any 0 ≤ α ≤ α∗.

Denote by Fmin(x|K) the minimal face of the cone K, containing the point
x ∈ K. Denote also by N (A) the null space of the matrix A. According to [6]
the vector x ∈ FP is an extreme point of the set FP , if

lin (Fmin(x | K)) ∩ N (A) = {0n},

where lin (Fmin(x|K)) is a linear hull of the face Fmin(x|K). Moreover, the fol-
lowing inequality dimFmin(x | K) ≤ m must hold.

We have

dim Fmin(xi |Kni) =
{

1, i ∈ Jr
F (x),

ni, i ∈ Jr
I (x).

Hence, for the dimension of a minimal face, containing the extreme point x, the
inequality dimFmin(x | FP ) ≤ m is fulfilled, where

dim Fmin(x | FP ) = rF + nI , nI = nI(x) =
∑

i∈Jr
I (x)

ni.

We call an extreme point x ∈ FP regular, if dimFmin(x | FP ) = m. In the case,
where dim Fmin(x | FP ) < m, we call an extreme point x ∈ FP irregular.

3 Updating of Regular Extreme Point

Let x be a regular extreme point of the feasible set FP . We want to move from
x to another extreme point x̂ ∈ FP next to it. Moreover, we want to make this
move in such a manner, that the value of the objective function at the updated
point x̂ is less than at x. To this end, we will determine at first the slack dual
variable y ∈ IRn, satisfying to all equalities from (5). In addition, we require that
these equalities be reserved during the move from x to x̂.

As a preliminary, we determine the dual vector u ∈ IRm in order to determine
y. Assume that the extreme point x ∈ FP is regular.

Partition (6) of the vector x onto components xF , xI and xN generates the
partition of the vector y onto corresponding components yF , yI and yN , where

yF = [y1; . . . ; yrF ] , yI = [yrF+1; . . . ; yrB ] , yN = [yrB+1; . . . ; yrB+rN ] .

By analogy with x each component yi, i ∈ Jr, may be represented as yi =
Giσi with σi = [σi,0;σi,1; . . . ;σi,ni−1] ∈ IRni . Moreover, for any vector y =
[y1; . . . ; yr] ∈ IRn the equality y = Gσ is valid, where σ = [σ1; . . . ; σr] ∈ IRn.
Thus, σ = GT y.

The complementary condition 〈x, y〉 = 0 from (5) may be rewritten as

〈x, y〉 =
∑

i∈Jr
B(x)

〈xi, yi〉 = 0.
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It follows from here that this condition is fulfilled, if the following equalities

〈xi, yi〉 = 0, i ∈ Jr
B(x), (10)

hold. In the case, where i ∈ Jr
I (x), equality (10) is fulfilled, if, for example,

yi = 0ni
. For i ∈ Jr

F (x), i.e. when xi = ηi,1di,1 is a boundary point of Kni , we
may take yi = di,ni

. Since di,1 ⊥ di,ni
, the equality (10) is also fulfilled in this

case.
Take into account that yi = ci − AT

i u. Then conditions yi = 0ni
, i ∈ Jr

I (x),
may be written as the system of linear equations with respect to the dual variable
u, that is: (

AGi
i

)T

u = cGi
i , i ∈ Jr

I (x). (11)

Here and in what follows, AGi
i = AiGi, cGi

i = GT
i ci.

Consider now the case, where i ∈ Jr
F (x). In this case xi = ηi,1di,1 and

ηi,1 =
√

2x0
i . From here we have

νi = GT
i xi = ηi,1GT

i di,1 = x0
iG

T
i (gi,0 + gi,1) = x0

i [1; 1; 0; . . . ; 0] .

Hence, for yi = di,ni
we obtain

σi = GT
i yi =

1√
2
GT

i (gi,0 − gi,1) =
1√
2

[1;−1; 0; . . . ; 0] .

Thus, it is sufficient to require σi,0 = −σi,1 in order to satisfy the equality
〈xi, yi〉 = 0.

Let i ∈ Jr
F (x). Denote by cGi

i,0 and cGi
i,1 the zero and the first components

of the vector cGi
i , respectively. Denote also by AGi

i,0 and AGi
i,1 the zero and the

first columns of the matrix AGi
i . We set c̃Gi

i,1 = cGi
i,0 + cGi

i,1 , ÃGi
i,1 = AGi

i,0 + AGi
i,1 .

Since σi = GT
i yi = cGi

i −
(
AGi

i

)T

u, we derive from here and (11) the following
system of linear equations

(
ÃGi

i,1

)T

u = c̃Gi
i,1 , i ∈ Jr

F (x);
(
AGi

i

)T

u = cGi
i , i ∈ Jr

I (x). (12)

At the regular point x ∈ FP the system (12) consists of m equations, the number
of variables (components of the vector u) is also equal m.

Denoting by AG
B the square matrix of the order m

AG
B =

[
ÃGi

1,1, . . . , ÃGi
rF ,1, A

GrF +1

rF+1 , . . . , A
GrF +rI
rF+rI

]
,

and denoting by cGB the m-dimensional vector

cGB =
[
c̃Gi
1,1; . . . ; c̃Gi

rF ,1; c
GrF +1

rF+1 ; . . . ; c
GrF +rI
rF+rI

]
,

rewrite the system of equations (12) as
(
AG

B

)T
u = cGB . (13)
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If the matrix of this system is nonsingular, then, solving (13), we obtain

u =
(
AG

B

)−T
cGB .

Here and in what follows the notation M−T is used instead of (MT )−1.
Let us give the definition of the non-degenerate point x ∈ FP from [2].

Definition 3. The point x ∈ FP is called non-degenerate, if TK(x)+NA = IRn,
where TK(x) is the tangent space to the cone K at x, and NA is the null-space
of the matrix A.

Denote by ĀGi
i , i ∈ Jr

F (x), the matrix

ĀGi
i =

[
AGi

i,0 + AGi
i,1 , AGi

i,2 , . . . , AGi
i,ni−1

]
,

and by ĀG
B—the matrix

ĀG
B =

[
ĀG1

1 , . . . , Ā
GrF
rF , A

GrF +1

rF+1 , . . . , A
GrF +rI
rF+rI

]
.

The matrix ĀG
B has the dimension m × (nB − rF ), where nB = nB(x) =∑

i∈Jr
B(x) ni.

Proposition 3 (Non-degeneracy criterion). The point x = [xF ;xI ;xN ] ∈
FP is non-degenerate if and only if the rows of the matrix ĀG

B are linear inde-
pendent.

According to Proposition 3, the inequality m + rF ≤ nB must hold at the
non-degenerate point x ∈ FP .

Now, let us give the criterion of extreme point x ∈ FP (see [6]).

Proposition 4 (Criterion of an extreme point). The point x ∈ FP is an
extreme point of the set FP , if and only if columns of the matrix AG

B are linear
independent.

By Proposition 4 the inequality rF +nI ≤ m must hold at any extreme point
of FP .

Proposition 5. Let x ∈ FP be a regular extreme point. Then x is a non-
degenerate point.

Proof. Since all columns of the matrix AG
B are contained in the matrix ĀG

B , and
since the row rank of the matrix ĀG

B coincides with its column rank, all m rows
of ĀG

B are linear independent. Taking into account Proposition 3, we come to
conclusion, that any regular extreme point x ∈ FP is a non-degenerate point. �

Theorem 1. Let x be a regular extreme point of FP . Then the matrix AG
B is

non-singular.
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Proof. The matrix AG
B consists of m columns. But the extreme point x is regu-

lar. Hence, according to the assertion of Proposition 4 these columns are linear
independent. We obtain that the square matrix AG

B is nonsingular. �

By Theorem 1, columns of the matrix AG
B are linear independent, and we

may regard AG
B as the matrix of basis at the regular extreme point x ∈ FP . In

addition, we may regard xi, i ∈ Jr
B(x), as basic variables, and we may regard xi,

i ∈ Jr
N (x), as non-basic variables. What is more, we call the basic variables xi,

i ∈ Jr
F (x), by facet basic variables, and we call the basic variables xi, i ∈ Jr

I (x),
by interior basic variables.

Further, we take the obtained dual variable u and define the dual slack

y = c − ATu = c − AT
(
AG

B

)−T
cGB .

For the vector of coefficients σ = [σ1; . . . ;σr] ∈ IRn, we obtain respectively

σ = [σ1; . . . ;σr] = cG − (AG)T
(
AG

B

)−T
cGB .

In the case, where y ∈ K, the point x is a solution of problem (3), and [u, y] is
a solution of problem (4).

In what follows, we assume that the inclusion y ∈ K is violated, that is
yi /∈ Kni for at least one index 1 ≤ i ≤ r. Since u satisfies equations (13),
we have σi = 0ni

, i ∈ Jr
I (x). Therefore, yi = 0ni

, when i ∈ Jr
I (x). Hence, the

inclusion yi ∈ Kni may be broken only in cases, where i ∈ Jr
N (x) or i ∈ Jr

F (x).
Consider firstly the case, where there exists the index k ∈ Jr

N (x) such that
yk /∈ Kni . We take this yk and make the spectral decomposition

yk = θk,1 fk,1 + θk,nk
fk,nk

, (14)

where
θk,1 =

1√
2

(
y0
k + ‖ȳk‖

)
, θk,nk

=
1√
2

(
y0
k − ‖ȳk‖

)
,

and fk,1, fk,nk
are frame vectors:

fk,1 =
1√
2

[
1;

ȳk
‖ȳk‖

]
, fk,nk

=
1√
2

[
1;− ȳk

‖ȳk‖

]
. (15)

Both vectors (3) are unit vectors. Since yk /∈ Knk , at least one of two coefficients
θk,1 or θk,nk

is negative. We suppose for definiteness, that θk,1 < 0.
Change components of the vector x, setting

x̂i = x̂i(α) = xi + αΔxi, 1 ≤ i ≤ r, (16)

where α > 0 is a step length. The vectors Δxi, i ∈ Jr, are defined by different
ways, depending on the case, to which set i ∈ Jr

N (x), i ∈ Jr
I (x) or i ∈ Jr

F (x) the
index i belongs. First of all, we set

Δxi =
{

fk,1, i = k,
0ni

, i �= k.
, i ∈ Jr

N (x). (17)
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Thus, x̂i = xi = 0ni
, when i ∈ Jr

N (x) and i �= k. For index k the updated
point x̂k is defined as x̂k = αfk,1. The vectors Δxi, i ∈ Jr

I (x), are arbitrary from
the space IRni .

For i ∈ Jr
F (x) we take Δxi in the form

Δxi = [Δxi,0;Δxi,1; 0; . . . ; 0] (18)

under the additional condition, that Δxi,0 = Δxi,1. The vector Δxi in this case
belongs to the linear hull of the ray l+i,1.

In order to satisfy the equality Ax̂ = b, we require that
∑

i∈Jr
F (x)

Ãi,1Δxi,1 +
∑

i∈Jr
I (x)

AiΔxi + Akfk,1 = 0m. (19)

Replacing Δxi, i ∈ Jr
B(x), by its coefficients Δνi = GT

i Δxi, we obtain
∑

i∈Jr
F (x)

(
ÃGi

i,1

)
Δνi,1 +

∑

i∈Jr
I (x)

AGi
i Δνi + AGk

k Δσk,1 = 0m, (20)

where Δσk,1 = GT
k fk,1.

Let
ΔνB = [Δν1,1; . . . ;ΔνrF ,1; ΔνrF+1; . . . ;ΔνrF+rI ] ∈ IRm.

Then the system (20) may be rewritten as

AG
BΔνB + AGk

k Δσk,1 = 0m. (21)

According to Theorem 1, the matrix AG
B of this system is nonsingular. Solving

the system (21), we get

ΔνB = −
(
AG

B

)−1
AGk

k Δσk,1. (22)

Analyze now, is it possible the case, when k ∈ Jr
F (x).

Proposition 6. The index k can not belong to the set Jr
F (x).

Proof. Under the assumption that k ∈ Jr
F (x), we must set Δxi = 0ni

, i ∈ Jr
N (x).

Moreover, as in the case k ∈ Jr
N (x), we must take Δxi, i ∈ Jr

I (x), arbitrary from
the space IRni .

Consider now situations with i ∈ Jr
F (x). If i �= k, then we take Δxi in

previous form (18). For i = k we must set

Δxk = [Δxk,0;Δxk,1; 0; . . . ; 0] + fk,1,

where Δxk,0 = Δxk,1. Respectively, in the space of coefficients ν we have

Δνk = [Δνk,0;Δνk,1; 0; . . . , 0] + Δσk,1, Δνk,0 = Δνk,1. (23)

Let the following representation Δσk,1 = [ρk,0; ρk,1; . . . ; ρk,nk−1] hold. Note,
that yk = dk,nk

, because of from just this condition and from similar conditions
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for other dual slacks yi, i ∈ Jr
F (x), all these dual slacks, including yk, are chosen.

Hence, ρk,0 = 1, ρk,1 = −1. All other coefficient ρk,j , 2 ≤ j ≤ nk − 1, are zeros.
Thus, (23) can be rewritten as

Δνk = [Δνk,0 + 1;Δνk,1 − 1; 0; . . . ; 0] . (24)

The matrix AGk

k is contained as ÃGk

k,1 in more general matrix AG
B . Therefore,

dropping zero components in (24) and substituting the reduced vector

Δνk = [Δνk,0 + 1;Δνk,1 − 1]

in general vector ΔνB , we obtain the homogeneous system of linear equation

AG
BΔνB = 0m (25)

with the nonsingular matrix. The solution of the system (25) is ΔνB = 0m.
Therefore, all components Δνi, with the exception of Δνk, are zeros. For Δνk
we have Δνk,0 = −1 and Δνk,1 = 1. This contradicts to equality: Δνk,0 = Δνk,1.

�

From Proposition 6 we come to conclusion, that index k must belong only to
the set Jr

N (x).
Denote by CK(x) a cone of feasible directions with respect of K at the point

x ∈ K. The cone CK(x) is the direct product of cones of feasible directions
CKni (xi) at points xi ∈ Kni , i ∈ Jr, that is

CK(x) = CKn1 (x1) × · · · × CKnr (xr).

According to Lemma 3.2.1 from [11], the direction h ∈ IRni belongs to CKni (xi)
if and only if h = h1 + h2, where h1 ∈ lin (Fmin(xi|Kni)) and h2 ∈ Kni . The
vector h belongs to cone of feasible directions with respect to the set FP at point
x ∈ FP , if h is a feasible direction with respect to the cone K and Ah = 0m.

The following result is valid.

Proposition 7. The direction Δx, defined by (17), (18) and (19), is a feasible
direction with respect to the set FP .

Proof. Observe that according to (19) the equality AΔx = 0m holds. Observe
also that the vector fk,1 belongs to the cone Knk (more exactly, to the boundary
of Knk). Hence, Δxi ∈ Knk , if i ∈ Jr

N (x) and i = k.
For i ∈ Jr

I (x) the point xi is an interior point of the cone Kni . Therefore,
the cone of feasible directions at this point with respect to Kni coincides with
the space IRni . At last, the vector Δxi, when i ∈ Jr

F (x), belongs to the linear
hull of the minimal face Fmin(xi|Kni), which is defined by the frame vector di,1.

Thus, the assertion, that Δx belongs to the cone of feasible directions with
respect to the set FP , follows from the representation of this cone. �
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Proposition 8. Let x ∈ FP be a regular extreme non-optimal point. Let also
k ∈ Jr

N (x) be such that yk /∈ Knk . Then,

〈c,Δx〉 = θk,1 < 0, (26)

where θk,1 < 0 is taken from the decomposition (14).

Proof. We have due to (22)

〈c,Δx〉 =
∑

i∈Jr
B(x)〈ci,Δxi〉 + 〈ck,Δxk〉

=
∑

i∈Jr
B(x)〈c

Gi
i ,Δνi〉 + 〈cGk

k ,Δσk,1〉 = 〈cGB ,ΔνB〉 + 〈cGk

k ,Δσk,1〉
= 〈cGk

k ,Δσk,1〉 − 〈
(
AG

B

)−T
cGB , AGk

k Δσk,1〉
= 〈cGk

k −
(
AGk

k

)T

u,Δσk,1〉 = 〈σk,Δσk,1〉
= 〈θk,1fk,1 + θk,nk

fk,nk
, fk,1〉 = θk,1‖fk,1‖2 = θk,1.

Hence, the inequality (26) is correct. �

The step length α is chosen as large as possible under the condition that the
updated point x̂ belongs to the feasible set FP . Since AΔx = 0m, the step length
α is defined as minimal among maximal step lengths, satisfying to conditions:
x̂i(α) ∈ Kni for all cones Kni , i ∈ Jr

B(x).

Proposition 9. Let index k ∈ Jr
N (x) be such that Δxi ∈ Kni for all i ∈ Jr

B(x).
Then the set FP is unbounded and 〈c, x̂(α)〉 → −∞, when α → +∞.

If the assertion of Proposition 9 is not realized, the step length α is finite and
it is possible to make the move from the extreme point x to another feasible
point x̂(α) ∈ FP with decreasing the value of goal function.

Proposition 10. Let x be a regular extreme point of FP , and let the step length
α be finite. Then the updated point x̂(α) is an extreme point of FP too.

Proof. Since the step length α is finite, there are only two situations, when it is
possible:

(1) There is the index s ∈ Jr
F (x) such that at updated point x̂ this index s

belongs to the set Jr
N (x̂). In other words, the facet basic variable becomes a

non-basic variable.
(2) There is the index s ∈ Jr

I (x) such that at the updated point x̂ this index
s belongs either to the set Jr

F (x̂) or to Jr
N (x̂). In other words, the interior

basic variable becomes either a non-basic variable or a facet basic variable.

In principle, the cases are possible, when each of these situations or both
situations happen simultaneously.

Denote nB(x) = rF (x)+nI(x). If x is an extreme point of FP , then nB(x) ≤
m. Regardless of the way, how α is defined, we obtain that at the updated point
x̂ the following inequality nB(x̂) ≤ nB(x) holds. Here we take into account that
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the non-basis variable xk becomes the facet basic variable at the updated point.
The inequality nB(x̂) ≤ nB(x) is necessary for x̂ be an extreme point.

Let us show that Proposition 4 is fulfilled at the point x̂. Since x is an extreme
point, columns of the matrix AG

B are linear independent. Moreover, at regular
extreme point x the number of these linear independent columns exactly equals
to m. The following representation is valid for the right hand side vector

b =
∑

i∈Jr
F (x)

ÃGi
i,1 νi,1 +

∑

i∈Jr
I (x)

AGi
i νi, (27)

and more, in (27) all νi,1 > 0, i ∈ Jr
F (x), and all νi ∈ Kn

i , i ∈ Jr
I (x).

Denote

posKni A
Gi
i =

{
zi ∈ IRm : zi = AGi

i νi, νi ∈ Kni

}
.

The set posKni A
Gi
i is an image of the convex cone Kni under the linear mapping.

Thus, posKni A
Gi
i is a convex cone in IRm. Observe, that in (27) νi ∈ intKni ,

where intKni is an interior of the cone Kni . Hence, zi = AGi
i νi is an interior

point of the convex cone posKni A
Gi
i .

Let Wi = coneÃGi
i,1 , i ∈ Jr

F (x), be a cone hull of the vector ÃGi
i,1 . In other

words, it is the ray generated by ÃGi
i,1 . Let also Wi = posKni A

Gi
i , i ∈ Jr

I (x). All
these sets are convex cones in IRm, which don’t intersect between themselves.
We take the sum of these cones

W = W1 + . . . + WrF + WrF+1 + . . . + WrF+rI .

Since columns of the matrix AG
B are linear independent, the cone W has

non-empty interior. The point νB = [ν1,1; . . . ; νrF ,1; νrF+1; . . . ; νrF+rI ] ∈ IRm

belongs to the interior of W.
In the case, where facet basic variable xs, s ∈ Jr

F (x) becomes nonbasic, the
column ÃGi

s,1 is taken out from the decomposition (27), and the column ÃGk

k,1

is introduced. If this column ÃGk

k,1 together with the rest columns are linear
dependent, it means that the vector b belongs to the boundary of the cone W,
which is impossible. The same conclusion is valid, when an interior basic variable
becomes the facet basic variable.

Thus, the assertion of Proposition 4 is fulfilled at the updated point x̂. There-
fore, x̂ is an extreme point of FP . �

By Propositions 8 and 10, we may construct the simplex-type iterative algo-
rithm, in which all points are extreme points of the feasible set, and values of
the goal function monotonically decreases from iteration to iteration.

4 Partial Case of SOCP Problem

Consider the partial case of problem (3), when it is known in advance, that the
solution of (3) is an extreme point of FP with all basic variables being facet
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basic variables. Then it is possible to take an extreme point x0 ∈ FP with only
facet basic variables as a starting point. The move from any extreme point to
another one turns out to be such that only facet basic variables are at all these
extreme points.

In what follows, we call the sequence of points {xl}, generated by the algo-
rithm, regular, if all these points xl are regular extreme points of FP . Moreover,
denote by extF (FP ) the subset of all extreme points from FP with all basic vari-
ables being of facet type. We say that the problem (3) is non-degenerate with
respect to extF (FP ), if all points from this set are non-degenerate.

Proposition 11. Let x∗ ∈ extF (FP ) be regular unique solution of the problem
(3). Let also the starting extreme point x0 ∈ extF (FP ) be such that the sequence
{xl} is regular. If {xl} is finite, then the last point of this sequence coincides
with x∗.

Theorem 2. Let Problem (3) be non-degenerate with respect to the set
extF (FP ). Let also all assumptions of Proposition 11 be fulfilled, except the
assumption that {xl} is a finite sequence. Suppose additionally that the start-
ing point x0 is such that the set

FP (x0) =
{
x ∈ FP : 〈c, x〉 ≤ 〈c, x0〉

}

is bounded. Then the sequence {xl} converges to x∗.

Proof. Since the sequence {xl} is bounded, there exist limit points of {xl}. Let
{xls} be a convergent subsequence of {xl}, and let xls → x̄. All points of {xls}
are regular extreme points of FP . Moreover, xls ∈ extF (FP ) for s ≥ 1. The point
x̄ is also an extreme point of FP , and more: x̄ ∈ extF (FP ).

The number of all possible sets Jr
F (x), consisting of m indices, is finite. There-

fore, we may assume without loss of generality, that sets Jr
F (xls) are the same

for all s. Denote this set by J̄r
F . Because of continuity we have Jr

F (x̄) ⊆ J̄r
F .

Moreover, the matrices AG
B converge to a certain matrix ĀG

B , and vectors cGB
converge to a certain vector c̄GB . As a matter of fact, ĀG

B and c̄GB are the matrix
and the vector, defined at the extreme point x̄. Since x̄ ∈ extF (FP ), we have
that x̄ is a non-degenerate point. From here we derive that x̄ is a regular extreme
point. Hence, the matrix ĀG

B is nonsingular.
Let ū be a dual variable, satisfying the system of linear Eq. (13) with ĀG

B and
c̄GB . Let also ȳ be the corresponding dual slack. Since x̄ is not an optimal point,
the coefficient θ̄ in the decomposition of ȳ is such that θ̄1,k < 0. Dual variables
uls , being solutions of system (13) at points xls , converge to ū. Dual slacks yls

converge to ȳ too. We obtain by Proposition 8 that 〈c, xls+1〉 ≤ 〈c, xls〉+αlsθls1,k <

〈c, xls〉. As Δxls are bounded for s sufficiently large, the step lengths αls don’t
tend to zero. Thus, we obtain at some iteration that 〈c, xls+1〉 < 〈c, x̄〉. This
contradicts to monotone decreasing of values of the objective function at each
iteration and convergence of the sequence {xls} to x̄. Hence, x̄ may be only the
optimal point. �
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5 Conclusion

We presented a variant of the simplex method for SOCP problems. The main
attention has been given to updating of regular extreme points. In principle, it is
possible to develop an approach for updating irregular extreme points. However,
this approach is more complicated compared with the regular case.
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1 Introduction

In the location theory, the important part of literature is devoted to the hub
location problems (HLP). Roughly speaking, the goal is to find the optimal
locations of hubs (nodes in a graph) and allocations of non-hub nodes to hubs
(called spokes), regarding a given objective. Hubs serve as concentration points
through which the flows are routed between the origin and destination pairs
(O-D). This concept should provide several benefits like reducing the number
of spokes and empowering the economies of scale. The HLPs can be classified
according to: the source that determines the number of hubs, the set of possible
hub locations is discrete or not, the number of allocations of a non-hub node
to hubs, whether the hubs are capacitated or uncapacitated, the hub location
and allocation cost, etc. An interested reader is referred to the papers [1,2] for
a better and deeper introduction into the topic.

In the current HLP research, the work is focused on the solution approaches
that are able to handle real-life instances and on the extension of classical HLP
models in order to grasp more reality. Several extensions of the classic hub loca-
tion problems have been used quite successfully. Lüer-Villagra and Marianov [3]
have argued that the location or route opening decisions can be very dependent
on the revenues that a company can obtain. In turn, revenues depend on the
price structure. The paper of Sasaki and Fukushima [4] addresses a continuous
Stackelberg competition in which the incumbent competes with several entrants
for profit maximization. For every route, only one hub was allowed. Mahmuto-
gullari and Kara [5] addressed the competitive bi-level HLP in which the goal is
the market share maximization. In their paper, the demand is divided among the
competitors by the “winner-takes-it-all” rule: a competitor with lower route cost
gets the whole demand for a given O-D pair. Čvokić et al. [6] have formulated, in
a sketchy way, the model of Stackelberg competition that includes a price game.
The results were primarily announced, i.e., only the sketches of proofs are given.
More general review of facility location and pricing problems can be found in [7].
A good review concerning the equilibrium solutions for the location games is the
paper of Karakitsiou and Migdalas [8]. In this study we focus on the Stackelberg
strategy for a scenario in which two competing transportation companies intend
to enter the market and both of them aspire to maximize their respective profits
by finding the best hub and spoke networks and price structures, assuming the
price war scenario.

The organization of this paper is given as follows. In Sect. 2, we describe a
new bi-level problem for finding the Stackelberg strategy as an (r|p) hub-centroid
problem under the price war ((r|p)HCPuPW) and formulate the corresponding
bi-level mathematical model. The existence of Bertrand-Nash price equilibrium
for this model is shown in Sect. 3, alongside with the derivation of transcendent
price equations. On the basis of this result, the solution existence is proved.
The complexity of this problem is separately investigated in Sect. 4. Finally, in
Sect. 5, the concluding remarks on this research are given, alongside with some
proposals for the future work.
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2 The (r|p) Hub-Centroid Problem Under the Price War

The two competing transportation companies intend to enter the market. They
are aware of each other. The both of them aspire to maximize their respective
profits by finding the best hub and spoke networks and price structures. One
company wants to locate p hubs and the other wants to locate r hubs. After
setting their networks, it is expected that the competing companies will engage
in the price war, which assumes responding to the current opponent’s pricing
with the more competitive one. The solution of the price war, if it exists, is a
Bertrand-Nash equilibrium, in which none of the competitors have incentive to
change their price decisions, unilaterally. This setting implies that the leader
does not have the ability to impose prices to the follower. The pricing is a result
of the follower’s entrance to the market.

The basic setting for the problem is a complete digraph G = G(N,A), where
N is the non-empty node set and A is the set of arcs. A hub can only be estab-
lished at the node k ∈ N , it can be shared, and there are no capacity constraints.
All hubs should be mutually interconnected. Establishing a hub is considered as a
strategic decision. For every arc (i, j) ∈ A there is a transportation cost per unit
of flow cij ≥ 0. For each O-D pair (i, j) ∈ N2, only one route can be established.
Multiple allocations of non-hub nodes to hubs are allowed. The transportation
factors ℵ, α and δ are already known for the market and they correspond to
flow consolidation in collection (origin to hub), transfer between hubs, and dis-
tribution (hub to destination), respectively. Concatenation of arcs composes a
route, where hubs are located at the joints. At most two hubs are allowed to be
on a single route, i.e., at most two stops are permitted. Transportation cost on a
route i → k → l → j is given as cij,kl = ℵcij + αckl + δclj , for all i, j, k, l ∈ N . It
is assumed that the customers choose routes according to the prices. Both com-
petitors are using the mill pricing, i.e., the customers are paying their respective
expenses. The multinomial logit model (MNL) is used to resolve the issue with
the discrete choice, as in [3,6,9]. The MNL is essentially a rule that determines
what fraction of the flow is going to be captured. It has a sensitivity param-
eter Θ ≥ 0 with an already known non-negative value assigned. A higher Θ
means that customers are very sensitive to price differences, so they will mostly
choose less expensive routes. On the other hand, a smaller Θ means that the
clients are less sensitive to price differences. The demand wij ≥ 0 for every O-D
pair is taken to be perfectly inelastic. Every customer must be served by one of
the competitors. Following the specific reasoning presented in [6,10] we require
that both companies have to cover all nodes. Sometimes, we will use different
pronouns for the competitors: “she” for the leader and “he” for the follower.

The following variables are used to describe the choices made by the leader
and follower:

– xk = 1 if the leader has established a hub at node k ∈ N , and 0 otherwise
– ρij,kl = 1 if the leader has established a transportation route i → k → l → j

from i to j, and 0 otherwise
– tij,kl is the price charged by the leader on a route i → k → l → j
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– yk = 1 if the follower has established a hub at node k ∈ N , and 0 otherwise
– ςij = 1 if the follower has established a transportation route i → k → l → j

from i to j, and 0 otherwise
– qij,kl is the price charged by the follower on a route i → k → l → j

In order to represent the sequence of variables, we will use a more compact nota-
tion: c = (cij,kl)i,j,k,l∈N , x = (xk)k∈N , ρ = (ρij,kl)i,j,k,l∈N , t = (tij,kl)i,j,k,l∈N ,
y = (yk)k∈N , ς = (ςij,kl)i,j,kl∈N , and q = (qij,kl)i,j,k,l∈N . The set of follower’s
solutions for a given leader’s solution is shortly denoted as F(x, ρ). The optimal
solutions are denoted with the asterisk, as usual.

Bitran and Ferrer in [11] provided the closed form expression for the optimal
response price q over a cost c, when the opponent’s price p is known:

q∗ = c +
1
Θ

(
1 + W0

(
e−Θ(c−t)−1

))
(1)

Here, W0 is the principal branch of the Lambert W function. Lüer-Villagra and
Marianov [3] have generalized this expression considering HLP with multiple
routes of the same O-D pair. This motivates us to introduce the function to
represent the optimal price response. Following the result in [3], this new function
λij,kl : N × R

4|N |4
+ −→ R is defined as

λij,kl(N, c, ρ, p, ς) = cij,kl +
1
Θ

(
1 + W0

(∑
u,v∈N e−Θcij,uv−1ςij,uv∑
u,v∈N e−Θtij,uvρij,uv

))
(2)

Usually two scenarios are considered in the literature: simultaneous and
sequential entrance to the market. In the first scenario, the price war is a natural
assumption. The issue is that we could expect multiple Nash equilibria to exists,
when it comes to the competitors’ hub and spoke topologies. Finding payoff-
dominant equilibrium could be a daunting task. Moreover, the payoff-dominant
equilibrium does not need to be in pure strategies, i.e., it can be characterized
by a cycle of the best responses. The standard interpretation of Nash equilib-
rium in mixed-strategies is not acceptable. The company will not flip a coin to
choose the network. In the second scenario, the price war is not assumed, i.e.,
the first competitor that enters the market is committed to its location and
price decisions. But the existence of finite Stackelberg price solution implies the
existence of feasible Bertrand-Nash price equilibrium, which opens the door to
a cooperative price game with transferable utilities.

Taking all this into the account, we find it interesting in this study to consider
an intermediate variant, i.e., a Stackelberg competition under the price war,
where one company, usually called the leader, enters the market as the first
competitor, anticipating the entrance of the other company, incidentally called
the follower. The prices are set according to the solution of the price war. In other
words, the leader is setting the prices, so that she does not have the incentive to
deviate after the followers move. This setting is equivalent to the search for the
Stackelberg strategy if the game is simultaneous, and it can be related to the
search for the price status quo point when a cooperative pricing is considered.



The Competitive Hub Location Under the Price War 137

The (r|p)HCPuPW can be represented as a bi-level mix-integer non-linear
mathematical program. For the leader, we propose the following model.

max
∑

i,j,k,l∈N

wij(tij,kl − cij,kl)
ρij,kle

−Θtij,kl

∑
u,v∈N ρij,uve−Θtij,uv +

∑
u,v∈N ς∗

ij,uve−Θq∗
ij,uv

(3)

tij,kl = λij,kl(N, c, q∗, ς∗, ρ), ∀i, j, k, l ∈ N (4)
∑

k∈N

ρij,kl ≤ xl, ∀i, j, l ∈ N (5)

∑

l∈N

ρij,kl ≤ xk, ∀i, j, k ∈ N (6)

∑

k,l∈N

ρij,kl = 1, ∀i, j ∈ N (7)

∑

k∈N

xk = p (8)

(q∗, y∗, ς∗) ∈ F∗(x, ρ) (9)
xk ∈ {0, 1}, ∀k ∈ N (10)
ρij,kl ∈ {0, 1}, ∀i, j, k, l ∈ N (11)

The leader’s profit (3) is calculated as a sum of all net incomes. The leader’s
price is the best response to the anticipated follower’s optimal price, according to
the Eq. (4). We note that (4) is not a constraint set, but a parameter definition.
The constraints (5)–(6) require that the nodes can be allocated solely to hubs.
Only one route can be established per O-D pair and that is imposed with the
constraint set (7). The number of hubs to locate is exogenous and specified with
Eq. (8). Constraint (9) denotes that for a given leader’s solution only optimal
follower’s solutions are considered. The domain of decision variables is stated in
(10)–(11).

Recalling the terminology for the bi-level problems, a solution ((x, ρ), (q, y, ς))
is called semi-feasible if (x, ρ) satisfies (5)–(8), (10)–(11) (i.e., without (9)) and
(q, y, ς) ∈ F (x, ρ). In other words, the optimality for the follower’s solution is
not required. For a solution to be feasible, it is required that (q, y, ς) is optimal
[12,13].

Now, for the follower’s problem, we propose the following multi-objective
mixed-integer non-linear program, for which the preferred solutions are obtained
by an a priori lexicographic method. It is assumed that the follower’s behavior
is altruistic, i.e., the leader has optimistic expectations concerning the follower’s
attitude.

max
∑

i,j,k,l∈N

wij(qij,kl − cij,kl)
ςij,kle

−Θqij,kl

∑
u,v∈N ρij,uve−Θtij,uv +

∑
u,v∈N ςij,uve−Θqij,uv

(12)

max
∑

i,j,k,l∈N

wij(tij,kl − cij,kl)
ρij,kle

−Θtij,kl

∑
s,t∈N ρij,uve−Θtij,uv +

∑
s,t∈N ςij,uve−Θqij,uv

(13)
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tij,kl = λij,kl(N, c, q, ς, ρ), ∀i, j, k, l ∈ N (14)
∑

k∈N

ςij,kl ≤ yl, ∀i, j, l ∈ N (15)

∑

l∈N

ςij,kl ≤ yk, ∀i, j, k ∈ N (16)

∑

k,l∈N

ςij,kl = 1, ∀i, j ∈ N (17)

∑

k∈N

yk = r (18)

qij,kl = λij,kl(N, c, ρ, (λij,uv(N, c, ς, q, ρ))i,j,u,v∈N , ς), ∀i, j, k, l ∈ N (19)
qij,kl ≥ 0, ∀i, j, k, l ∈ N (20)
yk ∈ {0, 1}, ∀k ∈ N (21)
ςij,kl ∈ {0, 1}, ∀i, j, k, l ∈ N (22)

The follower’s profit (12) is calculated as a sum of all net incomes. The behav-
ior of follower as the altruistic competitor is defined by (13). As in the previous
model, we note that (14) is not a constraint set, but a parameter definition. The
difference is that here the value of tij,kl is not based on the optimal follower’s
solution (the star notation is omitted). The constraints (15)–(16) require that
the nodes can be allocated solely to hubs. Only one route can be established per
O-D pair and that is imposed with the constraint set (17). The number of hubs
to locate is exogenous and specified with Eq. (18). The follower is setting the
equilibrium prices (19). Basically, the follower sets his prices so that he does not
have an incentive to change his own price decisions, after the leader’s best price
response. The domains of price and network variables are stated in (20)–(22).

Remark 1. Changing the second objective from maximization to minimization
we obtain the model for the selfish follower’s behavior. In that case, the leader
would have pessimistic expectations concerning the follower’s attitude.

Summing the leader’s objective function with the follower’s first objective one
will not result in a constant. Therefore, we can not claim that this is a zero-sum
game. This is the main reason behind the bi-objective formulation. Otherwise,
the problem could be ill-posed.

The lower level model, regarding solely the first objective, is concerned with
finding a medianoid affected by the price war, for which the leader’s set of hubs
HL is fixed. Therefore, we will call it the (r|Hp) hub-medianoid problem under
the price war. The lower level model, regarding the second objective, is usually
in the literature denoted as the auxiliary model [12,13].

Remark 2. If the Bertrand-Nash price equilibrium exists, then the equilibrium
equation holds for the leader’s prices, too. In other words,

tij,kl = λij,kl(N, c, ς∗, (λij,uv(N, c, ρ, t, ς∗))i,j,u,v∈N , ρ). (23)
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3 The Solution Existence

If a finite Bertrand-Nash price equilibrium does not exists, then obviously the
set of feasible solutions is empty for both competitors. On the other hand, the
existence of multiple price equilibria could make problem ill-posed. In Čvokić et
al. [6], the result concerning the Bertrand-Nash price equilibrium is primarily
announced, i.e., only the sketch of proof is given. Here, we provide the com-
plete rigorous proof with the appropriate discussion. We find that not only the
statement itself is important, but also the way how it is proved and interpreted.

Theorem 1. For given hub and spoke networks in the (r|p) hub-centroid prob-
lem under the price war, there is a unique finite Bertrand-Nash price equilibrium.

Proof. The objective function for both competitors are separable by O-D pairs.
Taking into account that the networks are already given, we know which routes
are established. Thus, we can focus on a particular O-D pair in our analysis
and neglect the indexes entirely. Because each competitor can establish only one
route per O-D pair, the best response price constraints are reduced to (1).

The derived closed form expression for the best response in terms of margins
for the competitors are given as follows:

• the leader’s best response margin rL(rF ) = 1
Θ

(
1 + W0

(
QeΘrF −1

))

• the follower’s best response margin rF (rL) = 1
Θ

(
1 + W0

(
eΘrL−1

Q

))

where Q = e
−ΘchL

e
−ΘchF

. The margins of best responses are bijective functions (con-
tinuous, monotone increasing) from a domain of non-negative real numbers, to
corresponding co-domains, and vice versa for the inverses. We need to prove that
the finite stable point, i.e., a Bertrand-Nash price equilibrium, always exists. In
other words, when it comes to the margins, we need to solve the following equa-
tion r∗

L = rL(r∗
F ) = rL(rF (r∗

L)), which is reduced to the system

τ = W0

(
QeW0( eτ

Q )
)

(24)

r∗
L =

τ + 1
Θ

(25)

Algebra can also be done for the other player, in the same fashion. The prin-
cipal branch of Lambert W function can be represented by an infinitely nested
logarithm as W0(x) = ln

(
x

W0(x)

)
. Using this, we can transform Eq. (24) into

W0

(
QeW0( eτ

Q )
)

eτ = QeW0( eτ

Q ). After multiplication of both sides by W0

(
eτ

Q

)

and simplifying the equation, we obtain the next system of equations with their
corresponding constraints

W0

(
Qeξ

)
=

1
ξ

∧ ξ > 0 (26)



140 D. D. Čvokić et al.

ξ = W0

(
eτ

Q

)
(27)

r∗
L =

τ + 1
Θ

∧ r∗
L ≥ 0 (28)

The first equation always has a solution on (0,∞). What remains is to check
if the solution is feasible, i.e., if r∗

L ≥ 0. The last two equations result in eτ =

Qξeξ ∧ ξ > 0 ∧ τ ≥ −1 ⇐⇒ ξ ≥ W0

(
1

Qe

)
. So, we need to prove that

W0

(
QeW0((Qe)−1)

)
≤ 1

W0((Qe)−1) for all Q > 0. To do that, we will analyze the

function f(Q) = W0

(
(Qe)−1

)
W0

(
QeW0((Qe)−1)

)
.

Fig. 1. The graph of the function f(Q) when Q ∈ (0, ∞). The limit of f(Q) when
Q → 0+ is 1

e
, and the limit when Q → ∞ is 0.

We observe that lim
Q→∞

f(Q) = 0, which can be seen through the series

expansion at x = ∞. Next, W0

(
1

Qe

)
W0

(
QeW0( 1

Qe )
)2

= 0 is representing
the first order condition for f(Q), which doesn’t have a solution on (0,∞).
At the end, lim

Q→0+
f(Q) = 1

e , because W0((Qe)−1) → ∞ when Q → 0+, and

lim
x→∞ xW0

(
a
x

)
= a for some real a, which can again be seen from the series

expansion at x = ∞. In our case a = 1
e . The graph of the function f(Q) is

presented in Fig. 1. ��
On a plot, the Bertrand-Nash price equilibrium can be represented as an

intersection of the best response curves, as it is done in Fig. 2.

Remark 3. The pair (∞,∞) is also the equilibrium, but it is not feasible.

Remark 4. The logit model and possibly different route costs yield a Bertrand-
Nash price equilibrium that is not a perfect competition.
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Proposition 1 (The follower’s Bertrand-Nash equilibrium pricing). For
a given leader’s network, the follower’s Bertrand-Nash equilibrium price q∗

ij,kl on
a route i → k → l → j is given by the following equations

τij,kl = W0

(
eτij,kl

W0

(
eτij,kl+Θ(cij,kl−cij,uv)

)
)

(29)

q∗
ij,kl = cij,kl +

τij,kl + 1

Θ
(30)

where (u, v) is the pair of hubs connecting the route established by the leader for
the O-D pair (i, j).

Proof. The statements follows from the proof of the Theorem 1, when the net-
works are fixed and equations are derived from the follower’s point of view. To
obtain Eq. (29) from Eq. (24) we exploit the identity eW0(x) = x

W0(x)
. ��

Fig. 2. The Nash pricing equilibrium for Θ = 3.35 and Q = 0.5, presented as the
intersection of the best response curves: the leader’s (blue) and the follower’s (red).
Doted line represents the follower’s best response in the same coordinate system as the
leader’s one (just for comparison). (Color figure online)

Remark 5. The new Bertrand-Nash equilibrium follower’s pricing does not take
into account the leader’s price — only the route costs.

Remark 6. The proof of Theorem1 gives the starting point for computing the
follower’s price as max

{
W0

(
e−Θ(cij,uv−cij,kl)−1

)
, 1

Θ

(
1 +W0

(
e−Θ(cij,uv−cij,kl)−1

))}
.

Remark 7. The existence of Bertrand-Nash price equilibrium does not depend
on the behavior of the follower.
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Thus, the search for the optimal leader’s solution can be based on finding the
best feasible follower’s hub and spoke topology for which the prices are computed
by (29)–(30).

From the Theorem 1 we obtain the following result about the solution exis-
tence.

Theorem 2. The optimal solution exists for the (r|p) hub-centroid problem
under the price war.

Proof. The number of possible hub and spoke networks for both players in the
market is finite. For each pair of networks, there is a unique finite Bertrand-Nash
price equilibrium. Therefore, there exists the optimal solution for the problem
(3)–(11). The same reasoning can be applied in the case of pessimistic leader’s
expectations about the follower’s behavior. ��

4 The Computational Complexity

In this section we address some questions about the computational complexity
for the leader’s and the follower’s problem. We prove that the follower’s problem
is NP-hard by showing a polynomial reduction from the well known NP-complete
decision problem for the r-clique to the standard decision problem of (r|Hp) hub-
medianoid under the price war.

Problem 1 (the decision problem for the r-clique [5,14]). Given an undirected
graph G = (N,E) and an integer r, determine if G has an r-clique, i.e., that
there exists a set of nodes K with |K| ≥ r such that for each pair of nodes in K
there is an edge in E between them.

Theorem 3. The follower’s problem is NP-hard.

Proof. The bi-criteria formulation of the follower requires solving the correspond-
ing (r|Hp) hub-medianoid problem under the price war. The values of variables
qij,kl (∀i, j, k, l ∈ N) can be precomputed, i.e., we can consider them as con-
stants. From the constraint sets (15)–(17) we know that only one route can be
established per O-D pair. If ςij,kl = 1, for some k, l ∈ N , then for all other
k′, l′ ∈ N ∧ (k′, l′) �= (k, l) we have that ςij,k′l′ = 0, and vice versa. This means
that instead of

∑
u,v∈N ςij,uve−Θqij,uv , we can write just e−Θqij,uv in the denom-

inator, which leads to the following reformulation of the first objective:

max
∑

i,j,k,l∈N

wijQij,klςij,kl. (31)

where Qij,kl is computed as (qij,kl − cij,kl) e−Θqij,kl
∑

s,t∈N ρij,ste
−Θtij,uv+e−Θqij,kl

. As we

have already said, if we show a polynomial reduction from the r-clique decision
problem to the standard decision problem of (r|Hp) hub-medianoid and pricing,
then the problem of follower is NP-hard.
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Consider an r-clique instance G(N,E), where N is the set of nodes and
E is the set of edges. We can construct a (digraph) network G′(N ′, A′) where
N ′ = N and (i, j) ∈ A′ ⊆ N2 if (i, j) ∈ E. Note that for the (r|HL) hub-
medianoid problem under the price war, the opponent’s network does not need
to satisfy the constraints (5)–(8), nor the route costs have to be computed in the
same way. It just needs to be a valid hub and spoke topology with non-negative
finite values for the route costs.

Now, assume that in the opponent’s network all established routes are spokes
i → i → j → j, for all available O-D pairs (i, j) ∈ A′. Furthermore, take that
Θ ≥ 0, α = 1, and wij = 2Θ

1+τ (∀i, j ∈ N), where τ is the solution of equation
τ = W0(eW0(e

τ )).
If the r-clique exists, then there is a network (y, ς) in which the hub backbone

corresponds to this r-clique. For each inter-hub spoke, both competitors have the
same route costs, which implies the same equilibrium prices with margin 1+τ

Θ
and equal market share. Therefore, the profit obtained just on the hub backbone
is greater than r(r−1)

2 .
On the other hand, the solution existence itself implies the existence of

r-clique, because of constraint (18). If the solution with objective value greater
then or equal to r(r−1)

2 does not exists, then we have two cases:

(1) the objective value of every feasible solution is strictly less than r(r−1)
2

(2) the set of feasible solutions is empty.

In the first case, we easily reach the contradiction. In the second case, we infer
that there is no r-clique.

The situation when α ∈ [0, 1) is analyzed in the similar fashion. We just need
to assume that the opponent’s route costs are all discounted. ��

Although, the follower’s problem is NP-hard, the corresponding allocation
problem is easier to solve.

Theorem 4. The linear relaxation of the corresponding allocation problem for
the follower has an integral solution.

Proof. Regarding the follower’s first objective, for an O-D pair (i, j) ∈ N2, the
highest coefficient of variable ςij,kl (calculated form (31)) determines the optimal
route. Moreover, a linear relaxation where ςij,kl ∈ [0, 1] must have an integral
optimal solution. If we assume that the fractional optimal solution exists for the
linear relaxation, we can easily see that the corresponding first objective function
(31) will have a linear deviation.

Regarding the second follower’s objective, we know that solution should
always be from the set of optimal solutions concerning the first objective. Observe
that the higher values of e−Θqij,uv (u, v ∈ N) (i.e. the lower values of qij,uv) are
more preferable, for a given O-D pair (i, j) ∈ N2. If we assume that the frac-
tional optimal solution exists for this linear relaxation, we can easily see that
the corresponding second objective function will have a linear deviation, too. ��
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From the proof of this statement, the following two corollaries follow.

Corollary 1. The allocation problem of the (r|Hp) hub-medianoid under the
price war is polynomially solvable.

Corollary 2. The allocation problem of the auxiliary problem is polynomially
solvable.

Because finding the optimal solution for the leader requires solving the
NP-hard problem of the follower, we could assess that the leader’s problem is
NP-hard. The proof of statement about the leader’s computational complexity
is based on the vertex cover decision problem.

Problem 2 (the decision problem for the vertex cover [5,14]). Given an undirected
graph G = (N,E) and an integer p, determine if G has a vertex cover, i.e., if
there is a set of vertices C with |C| ≤ p such that for each edge (i, j) ∈ E, either
i or j is in C.

Theorem 5. The leader’s problem is NP -hard.

Proof. Given an instance of vertex cover problem on an undirected graph
G(N,E), we can construct a digraph G′(N ′, A′) where N ′ = N and A′ = N ′×N ′.
Let r > p, and

wij =

{
1, if (i, j) ∈ E

0, otherwise.
(32)

We need to show that there exists a vertex cover C with |C| ≤ p if and only
if there exists a set of p nodes Hp on G′, such that the follower’s network will
coincide with the leader’s one on edges (i, j), for which wij = 1. We know from
the expression (1) what are the margins for both competitors, if their profits are
equal. Therefore, we are able to know exactly the leader’s profit, from which we
can derive the corresponding standard decision problem.

(→) Assume that the vertex cover problem has a solution C ⊆ N and |C| ≤ p.
We can let Hp ⊇ C and observe that if i ∈ HL or j ∈ Hp then the unit flow wij

could get value 1, depending on the membership to E. In all other cases wij is
always equal to 0. In other words, the pricing can be important only for those
O-D pairs (i, j) that have at least i or j in Hp. Therefore, the leader and the
follower could compete for the profit only on those routes in which each flow is
routed via one (single) spoke that has at least one end in C (subset of Hp). In
this situation, the follower can not choose strictly better routes for O-D pairs
than those the leader is already using.

(←) Suppose that Hp on G′ is such that the best follower’s response is to
copy of the leader’s solution on all O-D pairs for which wij = 1. If Hp does not
contain as a subset the vertex cover of G, then there exists an edge (i, j) ∈ E
and i /∈ Hp or j /∈ Hp (otherwise Hp would be a vertex cover). Then, on that
particular O-D pair (i, j) the follower can profit more than the leader, if his hub
backbone includes i or j. In this situation, the follower is offering a non-stop
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(direct) route to the customers, while the leader has to route the flow through
the intermediate hubs. This contradicts to the assumption of follower using the
same solution as the leader, as his best one.

Hence, we can conclude that the standard decision problem for the leader is
polynomially equivalent to the decision problem for the vertex cover. ��

5 Concluding Remarks

This study introduces an intermediate variant of hub location and pricing prob-
lem in which competitors are sequentially entering into the market (a leader-
follower scenario), but the pricing is resolved as in the Bertrand price game.
Involving pricing is a more realistic scenario than relaying solely on the costs
and demands. The leader and the follower are intending to establish p and r
hubs, respectively. The setting for hub location and establishing routes is derived
from the classic uncapacitated multiple allocation hub location problem. Mul-
tiple allocations are allowed and there are no limits on hub capacities. Only
one route can be established per O-D pair. The demand is perfectly inelastic
and split between the competitors according to the logit model, which is also a
more realistic assumption. The objective for both companies is the profit maxi-
mization, contrary to the usual viewpoint in which the company is interested in
the minimization of its costs. The problem is denoted as the (r|p) hub-centroid
problem under the price war. Compared to some other bi-level problems in the
literature, here we need to properly define the behavior of follower.

The existence of finite Bertrand-Nash price equilibrium for perfectly inelastic
demand is shown, which further implied the existence of optimal solution to the
problem itself. The new price equations are proposed for the follower, and they
could be seen as a game theoretic generalization of the expression given by
Bitran and Ferrer [11]. The logit model and possibly different route costs yield
a Bertrand-Nash price equilibrium that is not a perfect competition. Besides
the pricing related statements, we have addressed the computational complexity
for the leader’s and follower’s problems. It is shown that the follower’s problem
is NP-hard, but on the other hand the derived allocation problem is in fact
polynomially solvable. Also, it is shown, as one could asses, that the leader’s
problem is NP-hard, too.

The finite Bertrand-Nash price equilibrium, indicates that it would be rea-
sonable to consider the cooperative price game with transferable utilities. In this
setting, the leader announces the strategy profile in terms of prices and has an
incentive to find the position on the market that would ensure the best credible
threat strategy, or the status quo point, depending whether the side payment
is allowed or not. Also, one could address some robust variants of this problem
(or a similar one), i.e., to explore situations in which the demand or cost can be
affected by some uncertain factors.

The solution approach is another line of research for the future work. It is a
tough proposition to design the exact solution method for the bi-level optimiza-
tion problems with non-linear objectives and where the follower’s behavior must
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be properly defined. As a matter of fact, finding a good heuristic approaches for
these kind of problems is not an easy piece of work, too. But on the other hand,
the location patterns and managerial insights provide the stepping stone for the
further development and refinement of models.

An interesting research direction is the investigation of relationships con-
cerning the polynomial and approximation hierarchies, similarly as it was done
in [15].
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Abstract. If the lower-level problem in a bilevel optimization problem
is replaced by its Karush-Kuhn-Tucker conditions, a mathematical pro-
gram with complementarity constraints is obtained. Solving this noncon-
vex optimization problem, locally optimal solutions are computed which
do in general not correspond to locally optimal solutions of the bilevel
problem. Using a relaxation of this problem in two constraints it can be
shown that a sequence of locally optimal solutions of the relaxed prob-
lems converges to a point which is related to a locally optimal solution
of the bilevel optimization problem. If the lower-level problem is a linear
one, relaxation of only the complementarity constraint is sufficient.

Keywords: Optimistic bilevel optimization · KKT transformation ·
Locally optimal solutions

1 Introduction

Bilevel optimization problems are hierarchical optimization problems of two
levels. The lower-level problem is

min
y

{f(x, y) : g(x, y) ≤ 0} (1)

depending on the upper-level variable x, where f : R
n × R

m → R as well as
g : Rn ×R

m → R
p. We can add equality constraints by adjusting the constraint

qualification. Let

ϕ(x) := min
y

{f(x, y) : g(x, y) ≤ 0} : Rn → R

denote the optimal value function of problem (1) and

Ψ(x) := Argmin
y

{f(x, y) : g(x, y) ≤ 0} : Rn → 2R
m
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its solution set mapping. If

gphΨ := {(x, y) ∈ R
n × R

m : y ∈ Ψ(x)}
denotes the graph of the solution set mapping, the upper-level optimization
problem can be formulated as

min
x,y

{F (x, y) : G(x) ≤ 0, (x, y) ∈ gphΨ}, (2)

where F : Rn × R
m → R and G : Rn → R

q. We do not want to consider upper-
level constraints depending on both x and y since this implies some ambiguity
if the solution set Ψ(x) does not reduce to a singleton for some x. Problem (2)
is the so-called optimistic version of the bilevel optimization problem. For the
pessimistic formulation where the upper-level decision maker has to bound the
damage resulting from an unwelcome decision of the lower-level decision maker,
see e.g. [12]. All functions F, f, gi, Gi are assumed to be sufficiently smooth.

A point (x, y) ∈ R
n ×R

m is called feasible for (1), (2) if G(x) ≤ 0, y ∈ Ψ(x).
It is a locally optimal solution provided there exists an open neighborhood U of
(x, y) such that

F (x, y) ≥ F (x, y) ∀ feasible points (x, y) ∈ U.

Finally, it is a globally optimal solution if U = R
n × R

m can be used.
Problem (1), (2) has been investigated at least in three monographs [2,5,11],

it has many applications, see [6]. It is a nonconvex optimization problem with,
moreover, a feasible set which is not given in an explicit form using equality or
inequality constraints.

To investigate it and to find possible solution algorithms, it needs to be
replaced by a single-level optimization problem. For that we have different
possibilities:

1. We can use the optimal value function of the lower-level problem and bound
its objective function from above. This idea goes back to [20] and results in
the fully equivalent, nonconvex optimization problem

min
x,y

{F (x, y) : G(x) ≤ 0, f(x, y) ≤ ϕ(x), g(x, y) ≤ 0}. (3)

Problem (3) is irregular in the sense that the nonsmooth Mangasarian-
Fromovitz constraint qualification is violated at every feasible point and the
function ϕ(·) is not differentiable even if the lower-level problem (1) is a
parametric linear optimization problem. For more information about (3) see
e.g. [8,9].

2. If the functions y �→ f(x, y), y �→ gi(x, y), i = 1, . . . , p, are differentiable
and a regularity condition is satisfied at all points (x, y), problem (1) can be
replaced by its Karush-Kuhn-Tucker conditions resulting in

min
x,y,u

{F (x, y) : G(x) ≤ 0, ∇yL(x, y, u) = 0,

g(x, y) ≤ 0, u ≥ 0, u�g(x, y) = 0}, (4)
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where L(x, y, u) = f(x, y) + u�g(x, y) is the Lagrange function of (1). This
is the KKT transformation which can only be used if the lower-level prob-
lem (1) is a convex optimization problem, see [18]. Problem (4) is a co-called
mathematical program with complementarity constraints (MPCC), it is a
nonconvex optimization problem for which the Mangasarian-Fromovitz con-
straint qualification is violated at every feasible point [23]. This problem has
been the topic of a large number of monographs and articles, see e.g. [19].
If the regularity condition (Slater’s condition) is violated for the lower-level
problem at some points (x, y) the F.-John conditions can be used to replace
(1), see [1], or the feasible set of problem (4) is perhaps no longer closed.

3. Under some restrictive assumptions, the optimal solution y(x) of the lower-
level problem is strongly stable [14] and can be inserted directly into (2)
resulting is a nondifferentiable single level optimization problem

min
x

{f(x, y(x)) : G(x) ≤ 0}, (5)

which, under certain assumptions, is a Lipschitz continuous optimization
problem, see [4].

Topic of the article is the solution of problem (4). This problem has often be
used to solve the bilevel optimization problem (1), (2). From now on assume that
y �→ f(x, y) and y �→ gi(x, y), i = 1, . . . , p, are convex functions. Problem (4) is
a nonconvex optimization problem. Globally optimal solutions of this problem
can easily be shown to be related to globally optimal solutions of the bilevel
optimization problem [7]. This is in general not the case for locally optimal
solutions, see Sect. 2. Section 3 is devoted to an algorithm for computing local
solutions of the bilevel optimization problem. After that, the special case of a
linear bilevel optimization problem is investigated in Sect. 4.

2 Relations Between the Bilevel Optimization Problem
and Its KKT-transformation

Problem (4) is often used for solving the bilevel optimization problem. The
following example from [7] shows that this is not so easy.

Example 1 (Dempe and Dutta [7]). Consider the linear lower-level problem

min
y

{−y : x + y ≤ 1, −x + y ≤ 1} (6)

and the upper-level problem

min{(x − 1)2 + (y − 1)2 : (x, y) ∈ gphΨ}. (7)

This problem has the unique optimal solution (x, y) = (0.5, 0.5) and no other
locally optimal solutions.

Consider the point (x0, y0) = (0, 1). Here, Λ(x0, y0) = conv{(1, 0), (0, 1)} is
the set of regular Lagrange multipliers, where convA denotes the convex hull of
the set A.
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Then, the point (x0, y0, u0) = (0, 1, (0, 1)) can be shown to be a locally opti-
mal solution of the KKT-reformulation (4) of (6), (7). 	

Since solution algorithms solving nonconvex, irregular MPCCs can often only
be shown to compute stationary solutions and these do not need to be related
to stationary solutions of the bilevel optimization problem, this approach is not
without difficulties.

Remark 1. If the bilevel optimization problem is a linear one, i.e. if the functions
f, F, gi, Gj are all affine linear, the feasible set of problem (4) is polyhedral:
it is the union of a finite number of convex polyhedral sets. Hence, stationary
points of (4) are at least local minima.

Theorem 1 ([7]). Let Slater’s condition be satisfied for (1) for all x with G(x) ≤
0, i.e., ∃ w(x) satisfying gi(x,w(x)) < 0 ∀ i = 1, . . . , p. Then, a feasible point
(x, y) of (1), (2) is a locally optimal solution if and only if the point (x, y, u) is
a locally optimal solution for (4) for all

u ∈ Λ(x, y) := {w ∈ R
p : w ≥ 0, w�g(x, y) = 0, ∇yL(x, y, w) = 0}.

The feasible point (x, y) is a globally optimal solution of (1), (2) if and only
if (x, y, u) is a globally optimal solution of (4) for some u ∈ Λ(x, y).

The point (x0, y0, u) = (0, 1, (1, 0)) is not a locally optimal solution of (4) in
Example 1.

3 Relaxation of the KKT Transformation

Since the Mangasarian-Fromovitz constraint qualification is violated at every
feasible point of the problem (4), see [23], and standard solution algorithms for
optimization problems suppose a constraint qualification for sure convergence
to a solution, special approaches need to be used. One often used approach is
a relaxation approach [13]. Within the relaxation approaches, on the basis of a
numerical comparison with other relaxation methods, the one by Scholtes [24] is
favored in [13]. The idea here is to replace (4) by

min
x,y,u

F (x, y) (8)

s.t. G(x) ≤ 0, (9)
∇yL(x, y, u) = 0, (10)

g(x, y) ≤ 0, u ≥ 0, −u�g(x, y) ≤ ε, (11)

where the last equation in (4) is relaxed, see (11). This problem is solved for
different relaxation parameters ε > 0 tending to zero.

Theorem 2 ([13]). Let {εk} ↓ 0 and let (xk, yk, uk) be a stationary point
of (8)–(11) for ε = εk with {(xk, yk, uk)} converging to (x, y, u) such that MPEC-
MFCQ holds at (x, y, u). Then (x, y, u) is a C-stationary point of (4).
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Here, MPEC-MFCQ is the Mangasarian-Fromovitz constraint qualification
adapted to (4): The complementarity constraint is not considered and some of
the inequality constraints are replaced by equations. C-stationarity means that
conditions similar to the Karush-Kuhn-Tucker conditions are satisfied where the
multipliers to the biactive constraints (ui = 0 and gi(x, y) = 0) do not need to
be nonnegative (as in the Karush-Kuhn-Tucker conditions) but satisfy a weaker
condition: they have the same sign, their product is not negative.

Theorem 2 shows that, if locally optimal solutions of problem (8)–(11) are
computed, the algorithm will in general not converge to a locally optimal solution
which corresponds to a locally optimal solution of the bilevel optimization prob-
lem (cf. Theorem 1). Consider the following relaxation of (4) where additionally
to the last equation in (11) also the Eq. (10) is relaxed:

min
x,y,u

F (x, y) (12)

s.t. G(x) ≤ 0, (13)
‖∇yL(x, y, u)‖ ≤ ε1, (14)

g(x, y) ≤ 0, u ≥ 0, −u�g(x, y) ≤ ε2. (15)

Here, ‖ · ‖ is an arbitrary norm in R
m. We prefer to use the Chebyshev norm

‖a‖ = max
i

|ai| meaning that (14) reduces to a set of 2m inequalities.

The use of problem (12)–(15) for decreasing εj , j = 1, 2, for solving the bilevel
optimization problem has originally been suggested in [16], see also [17]. There,
the following convergence result has been shown:

Theorem 3 ([17]). Let {(xk, yk, uk)} be a sequence of locally optimal solutions
of problem (12)–(15) for {εk} tending to zero converging to (x, y, u). If Slater’s
condition, the constant rank constraint qualification (CRCQ) and the strong suf-
ficient optimality condition of second order (SSOSC) are satisfied for the lower-
level problem (1) and the Mangasarian-Fromovitz constraint qualification is sat-
isfied for the upper-level constraints then, (x, y) is a Bouligand stationary point
for the bilevel optimization problem.

The assumptions (MFCQ) (or Slater’s condition), (CRCQ) and (SSOSC) for
the lower-level problem imply that the (globally by convexity) optimal solu-
tion y(x) of (1) is a PC1 function (i.e. a continuous and piecewise continuously
differentiable function) which is locally Lipschitz continuous and directionally
differentiable [21]:

y′(x : d) := lim
t↓0

y(x + td) − y(x)
t

exists and is finite for all directions d. It is a strongly stable function y(x) by
[14]. Hence, problem (1)–(2) can locally be replaced by

min
x

{F (x, y(x)) : G(x) ≤ 0}. (16)
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The point (x, y) with y = y(x) is Bouligand stationary if the necessary opti-
mality condition

∂

∂x
F (x, y)d +

∂

∂y
F (x, y)y′(x; d) ≥ 0 ∀ d ∈ T (x),

where T (x) := {d : ∇Gi(x)d ≤ 0 for all i ∈ I(x) := {j : Gj(x) = 0}} is satisfied
at x, see [4]. The proof of Theorem 3 uses an algorithm of feasible directions
where, in each iteration, a descent direction d is computed. For that, a bilevel
optimization problem needs to be solved (the directional derivative y′(x : d) is
the optimal solution of some quadratic optimization problem, see [21]). Hence,
Theorem 3 is theoretically interesting but very difficult to be applied in solving
the bilevel optimization problem.

The topic of this article is to show that the sequence of problems (12)–(15) can
be used even if the assumptions of Theorem 3 are violated and that this problem
can be solved using other methods than an algorithm of feasible directions.

Since the feasible set of problem (12)–(15) contains the feasible set of (4) the
following theorem is clear due to Theorem 1.

Theorem 4. Let Slater’s condition be satisfied for the lower-level problem at all
x with G(x) ≤ 0 and let {(xk, yk, uk)} be a sequence of globally optimal solutions
of problem (12)–(15) for {εk} ⊂ R

2
+ converging to zero. Then, any accumulation

point (x, y, u) of {(xk, yk, uk)} corresponds to a globally optimal solution (x, y)
of (1), (2).

To abbreviate notation, let M(ε) denote the feasible set of problem (12)–(15)
for fixed εi > 0, i = 1, 2.

Theorem 5. Assume that Slater’s condition is satisfied for (1) for all x with
G(x) ≤ 0 and let {(xk, yk, uk)} be a sequence of locally optimal solutions of
problem (12)–(15) for εki > 0, i = 1, 2 tending to zero. Assume that there exists
δ > 0 such that F (x, y) ≥ F (xk, yk) for all (x, y, u) ∈ M(εk1 , ε

k
2) with ‖(x, y) −

(xk, yk)‖2 ≤ δ and all k. Then, each accumulation point (x, y, u) of {(xk, yk, uk)}
corresponds to a locally optimal solution (x, y) of (1), (2).

Proof. Assume without loss of generality that {(xk, yk, uk)} converges to (x, y, u)
and that (x, y) is not a locally optimal solution of (1), (2). Then, by Theo-
rem 1 there exists ũ ∈ Λ(x, y) such that (x, y, ũ) is not a local minimum of (4).
Hence, there exists a sequence {(xt, yt, ut)} of feasible points to (4) converging
to (x, y, ũ) with

F (xt, yt) < F (x, y) ∀t.

Consider the sequence {(xt, yt, ũ)}. For sufficiently large t and εki > 0, i =
1, 2, (xt, yt, ũ) ∈ M(εk) and ‖(xt, yt) − (xk, yk)‖2 ≤ δ. Hence,

F (xk, yk) ≤ F (xt, yt) < F (x, y) ∀k and sufficiently large t.

Let (x0, y0) ∈ gphΨ with G(x0) ≤ 0 be arbitrarily chosen such that

‖(x0, y0) − (x, y)‖2 ≤ δ/2.
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Take u0 ∈ Λ(x0, y0). Then, (x0, y0, u0) is feasible for (4) and also for (12)–(15)
for all εk > 0, ∀ k. For sufficiently large k we have ‖(xk, yk) − (x, y)‖2 ≤ δ/2
and hence ‖(xk, yk) − (x0, y0)‖2 ≤ δ implying F (xk, yk) ≤ F (x0, y0) by our
assumption. Passing to the limit we derive

F (x, y) ≤ F (x0, y0).

Note, that we can also take (x0, y0) = (xt, yt) which contradicts now our
assumption that (x, y, ũ) is not locally optimal for (4). �

Note that we used a neighborhood of feasible points of (4) not depending
on the Lagrange multiplier in the lower-level problem. This has also been done
in [15,25]. This is justified here since the objective function of the upper-level
problem does not depend on u.

Example 2. Consider Example 1 again at the point x0 = 0, y0 = 1, u0 = (0, 1).
Problem (12)–(15) reads as

min
x,yx,y,u

(x − 1)2 + (y − 1)2 (17)

s.t. x + y ≤ 1, −x + y ≤ 1 (18)
|u1 + u2 − 1| ≤ ε1 (19)
u1 ≥ 0, x + y − 1 ≤ 0, u1(1 − x − y) ≤ ε2 (20)
u2 ≥ 0, −x + y − 1 ≤ 0, u2(1 + x − y) ≤ ε2 (21)

It is easy to see that, for ε > 0, the point x = t, y = 1−t, u1 = t, u2 = 1−t has
a smaller function value than (x0, y0, u0) for sufficient small t > 0 and is feasible:
Objective function value is F (t, 1− t) = 2t2 −2t+1 < 1 for 0 < t < 1, u1 +u2 =
1, x + y = 1, −x + y = 1 − 2t < 1, u2(1 + x − y) = (1 − t)(2t) = 2t − 2t2 ≤ ε2
for 0 < t ≤ 0.5 − √

0.25 − ε2. Hence, the point (x0, y0, u0) is no longer locally
optimal.

Note that this is correct also for ε1 = 0 since the lower-level problem is a
linear optimization problem with right-hand-side perturbations.

4 The Linear Bilevel Optimization Problem

Now, let the lower-level problem be a right-hand-side perturbed linear optimiza-
tion problem:

ΨL(x) := Argmin
y

{c�y : Ay ≤ x} (22)

and consider the upper-level problem (2) with Ψ(x) = ΨL(x) and G(x) = Gx− b
for some matrix G and vector b of appropriate dimension. The KKT transfor-
mation of this problem is

min
x,y,u

F (x, y), (23)

s.t. Gx ≤ b, (24)

A�u = c, (25)

u ≥ 0, Ay − x ≤ 0, u�(Ay − x) = 0. (26)
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Consider now an algorithm which solves the relaxation in the sense of Scholtes
[24] of problem (23)–(26):

min
x,y,u

F (x, y), (27)

s.t. Gx ≤ b, (28)

A�u = c, (29)

u ≥ 0, Ay − x ≤ 0, u�(x − Ay) ≤ ε (30)

for ε ↓ 0. Again we see easily that accumulation points of a sequence of globally
optimal solutions of these problems for ε ↓ 0 correspond to globally optimal
solutions of the bilevel optimization problem (2), (22).

Theorem 6. Let {(xk, yk, uk)} be a sequence of locally optimal solutions of prob-
lem (27)–(30) for {εk} tending to zero and let (x, y, u) be an accumulation point
of this sequence. Then, (x, y) is a locally optimal solution of (2), (22).

Proof. Without loss of generality assume that lim
k→∞

(xk, yk, uk) = (x, y, u) and

assume that this point does not correspond to a local minimum of (2), (22).
Since the set

K := {(x, y, u) : A�u = c, u ≥ 0, Ay − x ≤ 0, u�(x − Ay) = 0}
is polyhedral there exist convex polyhedra Kj and index sets Ij , Jj such that

Kj := {(x, y, u) : A�u = c, u ≥ 0, ui = 0, i ∈ Ij ,

Ay − x ≤ 0, (Ay − x)i = 0, i ∈ Jj},

Ij ∪ Jj = {1, . . . , p}, where p is the number of inequalities in the lower-level
problem (22), and K = ∪jKj . Since (x, y) is assumed to be not a local minimum
of (2), (22), by Theorem 1, there exists

ũ ∈ Λ(x, y) := {u : u ≥ 0, A�u = c, u�(Ay − x) = 0}
such that (x, y, ũ) is not a local minimum of (23)–(26). Hence, since the feasible
set {x×{0}×{0} : Gx ≤ b}∩K is polyhedral, there exists a direction (dx, dy, du)
of descent:

∇xF (x, y)dx + ∇yF (x, y)dy < 0

and

(x, y, ũ) + t(dx, dy, du) ∈ Kj , G(x + tdx) ≤ b for sufficiently small t > 0,

and some index sets Ij ⊆ {i : ũi = 0}, Jj ⊆ {i : (Ay − x)i = 0} and Ij ∪ Jj =
{1, . . . , p}. Hence,

A�du = 0, (Ady − dx)i = 0, ∀ i ∈ Jj , (du)i = 0, ∀ i ∈ Ij ,

(Gdx)i ≤ 0, ∀ i : (Gx − b)i = 0.
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For i �∈ Ij we have i ∈ Jj and hence, by feasibility of (xk, yk),

(A(yk + tdy) − xk − tdx)i ≤ 0 for small t > 0.

For i �∈ Jj but (Ay − x)i = 0 we have

(Ady − dx)i ≤ 0 and thus (A(yk + tdy) − xk − tdx)i ≤ 0 for small t > 0.

In the last case, if (Ay − x)i < 0, (A(yk + tdy) − xk − tdx)i ≤ 0 follows from
continuity. Hence, A(yk + tdy) − xk − tdx ≤ 0 for sufficiently small t > 0. We
similarly have G(xk + tdx) ≤ b.

Consequently, (xk + tdx, y
k + tyd, ũ) ∈ Kj is feasible for (27)–(30) and has a

smaller objective function value than (xk, yk, uk).
Since ũ ∈ Λ(x, y) and uk ≥ 0 we have uk + α(ũ − uk) ≥ 0 for 0 ≤ α ≤ 1 and

A�(uk +α(ũ−uk)) = c. Moreover, by {uk�(xk −Ayk)} converging to zero there
exists k′ ≥ k such that

uk′�(xk′ − Ayk′
) < εk

and thus

(uk′
+ α(ũ − uk′

))�(xk′ − Ayk′
) ≤ εk for α > 0 sufficiently small.

Setting without loss of generality k = k′ we see that (dx, dy, ũ − uk) is a direc-
tion of descent in (xk, yk, uk) which is, thus, not a local minimum. Since this
contradicts our assumption, the proof is completed.

�

Example 2 illustrates this result.

5 Conclusion

The bilevel optimization problem is often transformed into a single level opti-
mization problem using the Karush-Kuhn-Tucker conditions of the lower-level
problem resulting in an MPCC. This is a nonconvex optimization problem and,
solving it, locally optimal solutions or even stationary points are obtained.
Locally optimal solutions of the MPCC do in general not correspond to locally
optimal solutions of the bilevel optimization problem. To overcome this unpleas-
ant situation, a relaxation approach is suggested in which two constraints of
the MPCC, namely the complementarity constraint and the condition that the
gradient of the Lagrange function of the lower-level problem with respect to the
lower-level variable vanishes, are relaxed. Then, it can be shown that a sequence
of locally optimal solutions of the relaxed problems converges to a solution which
corresponds to a locally optimal solution of the bilevel optimization problem. A
similar result has been obtained in the article [10]. If the lower-level problem is a
linear optimization problem parameterized in the right-hand side, the relaxation
of the complementarity constraint as suggested in [24] is sufficient for deriving the
same result, see [3]. Numerical test runs in [22] have shown yet that the solution
of linear bilevel optimization problems using the first, more general, approach
leads often to better locally optimal solutions than applying the second one.
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Abstract. A comparative analysis is conducted of the efficiency of dif-
ferent partnership models in the natural resources sector of Russia. The
first one is a classic public-private partnership (PPP) model used in
developed countries, whereby a private company builds an object of pub-
lic property and transfers it to the government either immediately after
the construction or after a certain period of operation of the object.
The second model represents for the government a costly alternative
of the former and is used in Russia in underdeveloped regions. This
model assumes that the government supports the investor in infrastruc-
ture development and, in part, in the implementation of mandatory envi-
ronmental protection measures and can also provide tax incentives. In
practical terms, this work aims to look into possible ways of transforming
the current Russian PPP model towards the classic forms of partnership.
To conduct the comparative analysis of the PPP models, Stackelberg
models are formulated and original iterative algorithms are developed for
solving the corresponding bilevel Boolean programming problems based
on probabilistic local search. The properties of the equilibrium solutions
are studied using real data for the Transbaikal krai. Based on the mod-
eling results, the different partnership models are compared to find out
the conditions under which the private investor would choose to invest
in publicly owned industrial infrastructure facilities in Russia.

Keywords: Stackelberg game ·
Bilevel mathematical programming problems ·
Mineral resources development program ·
Probabilistic local search algorithm

1 Introduction

The public-private partnership (PPP) scheme has gained popularity worldwide,
offering an effective tool to reach a compromise of interests in various sec-
tors of economy. Here, the classical partnership model has gained foothold,
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whereby a private company builds an object of public property and transfers
it to the government either immediately after the construction or after a certain
period of operation of the object [1–4]. Developed nations apply this model in
the natural resource sector, where it substantially expands the sources of project
financing and encourages subsoil users to develop new deposits in hard-to-reach
areas.

Russia’s natural resource sector is only beginning to institutionalize the PPP
scheme. To date, a few PPP-based projects have been implemented in underde-
veloped regions, which apply a model, in a sense, alternative to the classical one.
In this model, the government supports the investor in infrastructure develop-
ment and, in part, in the implementation of mandatory environmental protection
measures and can also provide tax incentives.

Practical experience in implementing Russian PPP projects shows that this
partnership model, firstly, puts a financial burden on the government. Secondly,
it requires a well-calibrated decision-making methodology. That is why all the
attempts undertaken by the government of Russia to encourage various part-
nership schemes with private businesses were not accompanied by economically
sound managerial decisions [1,5–7].

This article continues our research into cooperation between public and pri-
vate investors in the natural resource sector [8–10]. This work aims to analyze
and compare the classical and Russian partnership models in terms of efficiency,
using the game-theoretical Stackelberg model. This way we can explore possible
ways to transform the Russian PPP model, using the resources of the Investment
Fund of Russia, towards the classical forms of partnership. This is important for
addressing a whole range of issues related to the strategic management of the
natural resource sector in Russia.

2 Mathematical Models

The choice of the Stackelberg model is dictated by the features of the hierarchy
of interactions between the government and the private investor in the natural
resource sector. Although the private investor usually initiates the development
of a new field, the model assigns the leadership role to the government. Until
the government makes critical decisions such as selling a license, choosing infras-
tructure projects, approving environmental measures, etc., the investor cannot
decide to implement the project. Thus, we assume that the government makes
the first move.

Classical PPP Model. A private company builds an object of public property
and transfers it to the government either immediately after the construction or
after a certain period of operation of the object. In underdeveloped regions rich in
natural resources, this model in the natural resource sector develops according to
the following scenario. The investor cannot launch its field development projects
due to the lack of the necessary infrastructure. Therefore, the investor negotiates
with the government a list of infrastructure projects that “open up” the target
development projects and implements these infrastructure projects at its own
expense. The government compensates the investor for the costs as soon as the
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budget receives the taxes from the extraction of natural resources by the private
investor.

The government can compensate the investor for the infrastructure costs
in two ways. In the first case, the investor does not trust the government and
demands the reimbursement regardless of the overall results of the development
program. For the government, this situation necessitates such a schedule of pay-
ments within the budget constraints, starting from the time when the taxes from
mining operations come into the budget, that will compensate the investor for
the infrastructure s costs with the discount. In the second scheme of mutual set-
tlements, the investor shows substantially greater trust in the government. This
scheme implies a coordinated assessment of the integral effect for the investor,
taking into account the infrastructure costs and the compensation payments
from the government that guarantee a positive final net present value for the
investor.

Thus, the following information serves as input data in the PPP model:

– A schedule of compensation payments to the investor for infrastructure devel-
opment.

– A set of industrial projects to develop natural resource sites, implemented by
the private investor.

– A set of infrastructure development projects.
– A list of environmental projects necessary to compensate for the environmen-

tal damage caused by the implementation of the investment projects.

The output of the model is a natural resource development program, i.e., a
set of infrastructure, environmental, and industrial projects implemented by the
private investor.

A formal description of the classical PPP model can be presented as follows.
We use the following notation:

T is a planning horizon; I is a set of investment projects; J is a set of
infrastructure development projects; K is a set of environmental projects;

Investment project i in year t:
CFP t

i is the cashflow (the difference between the incomes and expenses of
all kinds, taking into account a transaction costs, constructive borrowed from
[11]);

EPP t
i is the environmental damage from the implementation of project;

DBP t
i is the government revenue from the implementation of project;

Infrastructure development project j in year t:
ZIt

j is the costs of implementation of project;
EPIt

j is the environmental damage from the implementation of project;
V DIt

j is the government revenue from local economic development as a result
of the implementation of project;

Environmental project k in year t: ZEt
k is the costs of implementation of

project;
The matrices μ and ν define the relationship between the projects, where μij

is a coherence indicator for the infrastructure and investment projects, i ∈ I,
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j ∈ J , and νij is a coherence indicator for the environmental and investment
projects, i ∈ I, k ∈ K:

μij =

⎧
⎨

⎩

1, if the implementation of investment project i
requires the implementation of infrastructure development project j,

0 otherwise;

νik =

⎧
⎨

⎩

1, if the implementation of investment project i
requires the implementation of environmental project k,

0 otherwise.

The discounts of the government and the investor:
DG is the discount of the government; DI is the discount of the investor;
The budget constraints:
bG
t is the government budget in year t; bO

t is the investor budget in year t.
We use the following variables:

vj =
{

1, if the investor launches infrastructure development project j,
0 otherwise;

zi =
{

1, if the investor launches investment project i,
0 otherwise;

uk =
{

1, if the investor launches environmental project k,
0 otherwise.

Wt, W̄t is the schedule of compensation payments for infrastructure develop-
ment in year t, which was proposed by the government and used by the investor.

The government problem P̃S:
∑

t∈T

(∑

i∈I

(DBP t
i −EPP t

i )zi+
∑

j∈J

(V DIt
j−EPIt

j)vj−Wt

)
/(1+DG)t → max

W,v,z
(1)

subject to: ∑

1≤t≤ω

W̄t ≤
∑

1≤t≤ω

bG
t ;ω ∈ T ; (2)

W̄t ≥ 0; t ∈ T ; (3)

(z, v) ∈ F∗(W̄ ); (4)

The set F∗ is a set of optimal solutions of the low-level parametric investor
problem.

The investor problem P̃I(W̄ ):
∑

t∈T

( ∑

i∈I

CFP t
i zi −

∑

k∈K

ZEt
kuk −

∑

j∈J

ZIt
jvj − Wt

)
/(1 + DI)t → max

z,u,v
(5)

subject to:
∑

t∈T

(
Wt −

∑

j∈J

ZIt
jvj

)
/(1 + DI)t ≥ 0; (6)
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∑

k∈K

ZEt
k uk +

∑

j∈J

ZIt
jvj −

∑

i∈I

CFP t
i zi − Wt ≤ bO

t ; t ∈ T ; (7)

vj ≥ μij zi; i ∈ I, j ∈ J ; (8)

uk ≥ νik zi; i ∈ I, k ∈ K; (9)

∑

i∈I

νik zi ≥ uk; k ∈ K; (10)

∑

t∈T

( ∑

i∈I

(DBP t
i − EPP t

i )zi − Wt

)
/(1 + DG)t ≥ 0; (11)

Wt ≤ W̄t; t ∈ T ; (12)

vj , zi, uk ∈ {0, 1}; i ∈ I, k ∈ K, j ∈ J. (13)

The objective function of the government is the part of the natural resource
rent received by the government in the form of taxes, taking into account the
compensation payments to the investor for infrastructure development. Budget
constraint (2) is soft, i.e., financial resources that are not spent in the current
year go to the next year. Constraints (8)–(9) capture the interrelations between
the industrial, infrastructure, and environmental projects. Each environmental
project must be necessary for the implementation of some industrial project (10).
Constraint (11) blocks industrial programs that do not provide a positive balance
between budget revenues and compensation payments, taking into account the
discounts and environmental losses.

Problem (1)–(13) describes the behavior of an investor who does not trust
the government and demands reimbursement regardless of the overall results of
the development program. The model of coordinated partnership with a sub-
stantially higher level of trust in the government on the part of the investor
lacks constraint (6): this constraint formalizes the requirement of unconditional
reimbursement of the investor’s costs.

Russian PPP Model. While the classical PPP model implies that the investor
helps the government, the Russian version does things the other way round: the
government supports the investor on underdeveloped territories in building the
infrastructure and implementing the necessary environmental measures and, in
some cases, provides tax incentives. The full version of this type of model has
been described by the authors in [10]. Here, we use a simplified version of the
model, which, however, can be used to compare the properties of the two PPP
models based on the analysis of the properties of equilibrium solutions.
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The Russian PPP version can be formalized as the following Stackelberg
model. We use the following variables additionally:

TP t
im is a tax incentive of level for project;

M is a set of tax incentive levels;

xj =
{

1, if the government launches infrastructure development project j,
0 otherwise;

ȳk =

⎧
⎨

⎩

1, if the government is prepared to launch environmental project k
(the government has included it into the budget expenses),

0 otherwise;

yk =

⎧
⎨

⎩

1, if the government launches environmental project k
as agreed with the investor,

0 otherwise;

ϕ̄im =

⎧
⎨

⎩

1, if the government is prepared to provide the investor with a tax
incentive of level m for investment project i,

0 otherwise;

ϕim =

⎧
⎨

⎩

1, if the government provides the investor with a tax incentive
of level m for investment project i,

0 otherwise;

The government problem PS:

∑

t∈T

(∑

i∈I

(DBP t
i − EPP t

i )zi −
∑

i∈I

∑

m∈M

TP t
imϕim

+
∑

j∈J

(V DIt
j − EPIt

j − ZIt
j)xj −

∑

k∈K

ZEt
k yk

)
/(1 + DG)t → max

x,ȳ,ϕ̄,ϕ,y,z,u

(14)

subject to: ∑

j∈J

ZIt
j xj +

∑

k∈K

ZEt
k ȳk ≤ bG

t ; t ∈ T ; (15)

∑

m∈M

ϕ̄im ≤ 1; i ∈ I; (16)

(y, z, u, ϕ) ∈ F∗(x, ȳ, ϕ̄); (17)

ϕ̄im, xj , ȳk,∈ {0, 1}; j ∈ J, k ∈ K,m ∈ M. (18)

The objective function of the government represents the net present value
received by the government (14). Constraints (15) guarantee that the govern-
ment expenses on infrastructure and environmental protection stay within the
budget. Constraint (16) forbids the government to provide several tax incentives



164 S. Lavlinskii et al.

within one project. Constraint (17) means that the investor acts in an optimal
way, which implies solving the low-level problem (the investor problem). The set
F∗(x, ȳ, ϕ̄) is a set of optimal solutions of the low-level parametric problem.

The investor problem PI(x, ȳ, ϕ̄):

∑

t∈T

( ∑

i∈I

(CFP t
i zi +

∑

m∈M

TP t
im ϕim) −

∑

k∈K

ZEt
kuk

)
/(1 + DI)t → max

z,u,y,ϕ
(19)

subject to:
∑

k∈K

ZEt
k uk −

∑

i∈I

(CFP t
i zi −

∑

m∈M

TP t
im ϕim) ≤ bO

t ; t ∈ T ; (20)

xj ≥ μij zi; i ∈ I, j ∈ J ; (21)

yk + uk ≤ 1; k ∈ K; (22)

yk + uk ≥ νik zi; i ∈ I, k ∈ K; (23)

yk ≤ ȳk; k ∈ K; (24)

ϕim ≤ ϕ̄im; i ∈ I;m ∈ M ; (25)
∑

m∈M

ϕim ≤ zi; i ∈ I; (26)

yk, zi, uk, ϕim ∈ {0, 1}; i ∈ I, k ∈ K,m ∈ M. (27)

The income of the private investor is determined by objective function (19).
From (20) it follows that the investor’s costs in each year do not exceed the
budget, considering the income received from the investment projects and the tax
incentives. Constraints (21)–(23) ensure technological coherence of the projects
and prevent the situation when the investor and the government implement the
same environmental projects simultaneously. Constraint (24) guarantees that
the government implements only included environmental projects.

In solving the PPP planning problems, we applied an approximate hybrid
algorithm based on the ideas of local descent and the CPLEX package [12–16].
The latter is applied for solving both the one-level problem, where the govern-
ment decides for the investor, and the investor problem. The local descent is
used to search for a good approximate solution for the government.

First, we describe the schema of the algorithm for the Russian PPP model.
Since the problem being studied has two levels and an arbitrary feasible solu-
tion (x, ȳ, ϕ, ϕ̄, y, z, u) contains the optimal solution (y, z, u, ϕ) of the paramet-
ric investor problem with the parameters x, ȳ and ϕ̄, and, we call the solution
(x, ȳ, ϕ̄) an almost feasible solution if it satisfies constraints (15), (16), and (18)
and the investor problem with the parameters (x, ȳ, ϕ̄) is solvable.

Algorithm parameters:
mIter is the maximum number of iterations in the algorithm for finding the

initial solution (Step 2);
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cfBound is the coefficient of constraint relaxation by the value of objective
function (14) in solving the auxiliary problem in Step 2.3.

Hybrid algorithm:
Step 1. Calculate the upper bound Bound by solving the government problem

with the low-level constraints (i.e., the problem with objective function (14) and
constraints (15), (16), (18) and (20)–(27)), using CPLEX.

Step 2. Find a feasible solution (x0, ȳ0, ϕ̄0) (which will later be used as an
initial solution in the local search algorithm):

Step 2.1. iter := 1.
Step 2.2: If iter ≤ mIter, then solve the investor problem with the govern-

ment’s variables and constraints (i.e., the problem with objective function (19)
and constraints (15), (16), (18) and (20)–(27)) and the additional constraint
that the government’s objective function (14) is no less than (Bound − 1)/iter
by CPLEX. Otherwise, proceed to Step 3.

Step 2.3: If the problem in the previous step is solvable and (x, ȳ, ϕ, ϕ̄, y, z, u)
is an optimal solution, then calculate the value f of objective function (14)
by solving the problem PI(x, ȳ, ϕ̄) using CPLEX. If f < (Bound − 1)/(iter ∗
cfBound) or the problem in the previous step has no solution, then assume that
iter := iter + 1 and proceed to Step 2.2; otherwise, assume x0 := x, ȳ0 := ȳ,
ϕ̄0 := ϕ̄, and f0 := f and proceed to Step 3.

Step 3: If we could not find a feasible solution in Step 2, then we use a zero
solution as a feasible one; i.e., we assume that x0 := 0, ȳ0 := 0 and ϕ̄0 := 0,
and calculate the value f0 of objective function (14) by solving the problem
PI(x0, ȳ0, ϕ̄0) using CPLEX. Then we apply the local search algorithm:

Step 3.1: Take (x, ȳ, ϕ̄) := (x0, ȳ0, ϕ̄0) as a staring solution and f := f0 as a
record value.

Step 3.2: Find the best neighbor (x∗, ȳ∗, ϕ̄∗) in the neighborhood of the solu-
tion (x, ȳ, ϕ̄).

Step 3.3: If the value of the objective function f(x∗, ȳ∗, ϕ̄∗) > f , then assume
that x := x∗, ȳ := ȳ∗, ϕ̄ := ϕ̄∗ and f := f(x∗, ȳ∗, ϕ̄∗) and proceed to Step 3.2;
otherwise, stop the algorithm.

We used as a neighborhood in the local search algorithm the following ran-
domized neighborhood with precisely one neighbor. The randomized neighbor-
hood of the solution (x, ȳ, ϕ̄) has precisely one solution (x

′
, ȳ

′
, ϕ̄

′
), which was

obtained as follows. Each component of the vector x
′

is a random value which
is equal with a probability of 1 − 1/|J | to the corresponding component of the
vector x and with a probability of 1/|J | to the corresponding component of the
vector 1 − x. The situation with the vectors ȳ

′
and ȳ is the same, except that

the probabilities are 1 − 1/|K| and 1/|K|, respectively. For the tax incentives,
the probabilities are 1 − 1/(|I||M |) and 1/(|I||M |), respectively. The result of
the algorithm is the best found solution.

For the classical PPP model, the hybrid algorithm changes as follows. In the
Step 3 we find the best W̄ using the local search algorithm with the following
randomized neighborhood. The neighborhood consists of preciously one neigh-
bor. It is obtained when we change any of the vector W̄ with a probability of
1/T . The value W̄t is selected randomly from the segment [0, bO

t ].
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The stopping criterion for the local search algorithm with the randomized
neighborhood was a limit on the number of iterations. The time of the local
descent was limited to 5000 iterations, and the parameters mIter and cfBound
were 30 and 3, respectively.

3 Numerical Experiment

To demonstrate the methodology of application of the described tools, we
designed a special model test site, whose prototype was a set of 50 polymetallic
ore deposits in the Transbaikal krai. For this model test site, we composed a set
of 10 infrastructure projects, some of which are being implemented (railroads
and powerlines) while others make up for the infrastructure that is currently
missing but is necessary for the deposit development projects (powerlines and
highways). For each of the deposits, there are 5 levels of tax incentives and a
set of compensating environmental activities integrated into the relevant envi-
ronmental project.

Thus, the model test site captures the specificity of the object being mod-
eled: long timeframe of investment processes, nonstationary market conditions,
and well-established technology of natural resource management. The method-
ology for studying the properties of the Stackelberg equilibrium draws upon an
analysis of how sensitive the solutions of the corresponding bilevel Boolean pro-
gramming problem are to changes in the key parameters of the model. This is
a critical issue, primarily because for many of the model parameters, we know
only the operational ranges of their values. Likewise, when designing a subsoil
development program, an expert has access only to the project-related data and
can only use approximate estimates for many parameters such as the discounts
of the partnership participants, environmental costs and losses, etc.

The figures below show the results of the calculations that analyzed the
sensitivity of the solution to changes in the key model parameters, i.e., the
discounts of the investor and the government. In the calculations, we used a single
information base to compare four models: the classical model of the “distrustful”
investor (Classical1), classical model of coordinated partnership (Classical2), and
Russian PPP models without (Russian1) and with tax incentives (Russian2).

Figure 1 shows the dependence of the government’s objective function on the
discounts of the PPP participants. The upper panel corresponds to the case
where the investor builds the infrastructure. Here, we see that among the clas-
sical models, the coordinated partnership model yields at small values of the
investor’s discount almost twice-as-good results. However, with the increase in
the investor’s discount, the value of the government’s objective function falls at
a significantly higher rate than in the distrustful-investor model.

The alternative partnership scheme, whereby the government builds the
infrastructure, provides it with higher values of the functional, compared with the
classical version. Here, we see a greater resistance to the growth of the investor’s
discount in Russian1, and the introduction of tax incentives removes the hollow
on the surface of Russian1, ensuring even greater stability of the partnership
results in Russian2.
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Fig. 1. The government objective function and the partner discounts

Figure 2 explains why the objective function of the government behaves in
such a way. This figure shows the dependence of the intensity of infrastructure
development on the ratio between the partner’s discounts. In the classical coor-
dinated partnership model Classic2, the number of implemented infrastructure

Fig. 2. Number of implemented infrastructure projects
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projects does not depend on the government’s discount and falls at the maxi-
mum rate with the increase in the investor’s discount. The investor who demands
unconditional compensation for the costs incurred implements about half of the
possible infrastructure projects in half of the working range of its discount. In
the Russian model, the government implements a more intensive infrastructure
program, whose characteristics show the maximum resistance to the growth of
the investor’s discount in Russian2.

Figure 3 shows the dependence of the investor’s functional on the partner’s
discounts. In the classical scheme, the distrustful investor gets an advantage. The
transition to the Russian model naturally gives an increment to the investor’s
objective function since the government provides support for the implementation
of the projects.

Fig. 3. The investor objective function and the partner discounts

Thus, in underdeveloped regions, the Russian PPP model has certain advan-
tages at small investor discounts if we ignore the fact that the government needs
to find budget funds to support the investor.

Figure 4 shows the dependence of the government’s costs on the partner’s
discounts in the different models. In the classical scheme, these are the com-
pensation costs; in the Russian models, the costs of supporting the investor in
the implementation of infrastructure and environmental projects. In the latter
case, the costs are large enough at small discounts of the investor and decrease
with their growth only because of the decrease in the number of infrastructure
development projects.

The costs in the classical models differ by an order of magnitude and increase
with increasing discount of the investor although the infrastructure program
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Fig. 4. Government expenses on the compensation payments

shrinks to a minimum. What is the relationship between the total compensation
costs of the government and the costs of implemented infrastructure projects in
the different models?

Figure 5 shows the surfaces reflecting the balance between the costs and the
acquired production assets for the government (costs of new infrastructure minus
the total compensation costs) in the different classical models. We see that in
the distrustful- investor model, the amount of compensation payments from the
government significantly exceeds the actual cost of the implemented infrastruc-
ture program: it would be more cost-efficient for the government to finance the
infrastructure development itself. The coordinated partnership model is a differ-
ent story. Here, we see a positive balance at all the discounts of the partners.

Fig. 5. The balance between the costs and the acquired production assets for the
government
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4 Results and Discussion

The government needs to stimulate the development of regions with rich natural
resources yet poor infrastructure. Having launched several partnership projects
financed from the Investment Fund in the Russian1 format, the government
found that this path puts a heavy financial burden on the budget and does not
always provide a positive effect. All we need is to transform the Russian PPP
model based on the resources of the Investment Fund of Russia towards the
classical forms of partnership.

The results show that at least two conditions should be satisfied for the clas-
sical PPP model to work efficiently in Russia’s natural resource sector. Firstly,
the investor should trust the government, and, secondly, the investor discount
should be low. Hence it follows that in order to transform the Investment-Fund-
based Russian PPP model towards Classic2, the best of the classical PPP models
for Russia, we need to improve the quality of the institutional environment as
well as general macroeconomic conditions.

What steps should be taken to improve the PPP institution in the natural
resource sector of Russia?

The government decision-makers need to gain a sufficiently detailed under-
standing of the natural resource sites and the respective development projects.
This is possible if the decision-making on subsoil use is supported by the relevant
government institutions that evaluate subsoil development projects from the per-
spective of the government and society as a whole. Institutions that examined
long-term natural resource development projects were lost during the Russian
economic reforms. It is necessary to restore the institutional infrastructure of
natural resource development planning, which is capable of working out profes-
sional solutions for long-term goals of sustainable development in Russia.

The potential investor needs, apart from macroeconomic stability, a compre-
hensive cost assessment of subsoil deposits, i.e., detailed, up-to-date information
on economically viable development projects as potential investment targets.
Such an assessment cannot rely on the previous expert assessments of deposit
development projects because the situation in raw materials markets undergoes
substantial changes over time, and so do the price ratios in a national econ-
omy with a high inflation and an unsteady rate of the national currency. In
this situation, the government needs to make an inventory of the main deposits,
taking into account the current conditions, and organize continuous monitoring
of their rental assessment. This will help not only develop the decision-making
infrastructure, which is necessary for an external investor, but also set up a
knowledge base for the government, which seeks to make the most efficient use
of the available natural resources.

It is necessary to abandon the established practice of natural resource devel-
opment programs relying mainly on political arguments and simplest estimates
for the cost-effectiveness of the relevant decisions, which build upon analysis of
technological projects and current prices of raw materials. A priori confidence
that PPP always brings a positive result is groundless if we set the task of
safeguarding the interests not only of private business but society as a whole.
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The search for options for reconciling these interests represents a separate prob-
lem, and a very complicated one, solving which might benefit from the use of
the Stackelberg model.

Acknowledgements. This work was financially supported by the Russian Science
Foundation (project No. 16-18-00073).

References

1. Reznichenko, N.V.: Public-private partnership models. Bull. St. Petersburg Univ.
Ser. 8 Manag. 4, 58–83 (2010). (in Russian)

2. Quiggin, J.: Risk, PPPs and the public sector comparator. Aust. Account. Rev.
14(33), 51–61 (2004)

3. Grimsey, D., Levis, M.K.: Public private partnerships: the worldwide revolution in
infrastructure provision and project finance. Edward Elgar, Cheltenham (2004)

4. Bennett, J., Iossa, E.: Delegation of contracting in the private provision of public
services. Rev. Ind. Organ. 29(1), 75–92 (2006)

5. Lavlinskii, S.M.: Public-private partnership in a natural resource region: ecological
problems, models, and prospects. Stud. Russ. Econ. Dev. 21(1), 71–79 (2010).
https://doi.org/10.1134/S1075700710010089

6. Glazyrina, I.P., Kalgina, I.S., Lavlinskii, S.M.: Problems in the development of the
mineral and raw material base of Russia’s far east and prospects for the modern-
ization of the region’s economy in the framework of Russian-Chinese cooperation.
Reg. Res. Russ. 3(4), 21–29 (2013). https://doi.org/10.1134/S2079970514010055

7. Glazyrina, I.P., Lavlinskii, S.M., Kalgina, I.S.: Public-private partnership in the
mineral resources complex of Zabaikalskii krai: problems and prospects. Geogr.
Nat. Resour. 35(4), 359–364 (2014). https://doi.org/10.1134/S1875372814040088

8. Lavlinskii, S., Panin, A., Pliasunov, A.: A two-level planning model for public-
private partnership. Autom. Remote Control. 11, 89–103 (2015). https://doi.org/
10.1134/S0005117915110077

9. Lavlinskii, S., Panin, A., Pliasunov, A.: Comparison of models of planning the
public-private partnership. J. Appl. Ind. Math. 10(3), 1–17 (2016). https://doi.
org/10.1134/S1990478916030017

10. Lavlinskii, S., Panin, A.A., Plyasunov, A.V.: Public-private partnership models
with tax incentives: numerical analysis of solutions. In: Eremeev, A., Khachay,
M., Kochetov, Y., Pardalos, P. (eds.) OPTA 2018. CCIS, vol. 871, pp. 220–234.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93800-4 18

11. Glazyrina, I., Lavlinskii, S.: Transaction costs and problems in the development
of the mineral and raw-material base of the resource region. J. New Econ. Assoc.
New Econ. Assoc. 38(2), 121–143 (2018)

12. Dempe, S.J.: Foundations of Bilevel Programming. Kluwer Academic Publishers,
Dordrecht (2002)

13. Davydov, I., Kochetov, Yu., Plyasunov, A.: On the complexity of the (r|p)-centroid
problem in the plane. TOP 22(2), 614–623 (2014)

14. Plyasunov, A.V., Panin, A.A.: The pricing problem, Part I: exact and approximate
algorithms. J. Appl. Ind. Math. 7(2), 1–14 (2013)

15. Plyasunov, A.V., Panin, A.A.: The pricing problem, Part II: computational com-
plexity. J. Appl. Ind. Math. 7(3), 1–13 (2013)

16. Kononov, A.V., Kochetov, Yu. A., Plyasunov, A.V.: Competitive facility location
models. Comput. Math. Math. Phys. 49(6), 994–1009 (2009)

https://doi.org/10.1134/S1075700710010089
https://doi.org/10.1134/S2079970514010055
https://doi.org/10.1134/S1875372814040088
https://doi.org/10.1134/S0005117915110077
https://doi.org/10.1134/S0005117915110077
https://doi.org/10.1134/S1990478916030017
https://doi.org/10.1134/S1990478916030017
https://doi.org/10.1007/978-3-319-93800-4_18


The Local and Global Searches in Bilevel
Problems with a Matrix Game at the

Lower Level

Andrei V. Orlov(B) and Tatiana V. Gruzdeva

Matrosov Institute for System Dynamics and Control Theory of SB of RAS,
Irkutsk, Russia

{anor,gruzdeva}@icc.ru

Abstract. This work addresses the simplest class of the bilevel opti-
mization problems (BOPs) with equilibrium at the lower level. We study
linear BOPs with a matrix game at the lower level in their optimistic
statement. First, we transform this problem to a single-level nonconvex
optimization problem with the help of the optimality conditions for the
lower level problem. Then we apply the special Global Search Theory
(GST) for general d.c. optimization problems to the reduced problem.
Following this theory, the methods of local and global searches in this
problem are constructed. These methods take into account the structure
of the problem in question.
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1 Introduction

The study of optimization problems with hierarchical structure is now at the
front edge of the recent advances in Operations Research [1,2]. Such problems
arise in modeling of complex systems, which are characterized by unequal status
of the participants. Hierarchical problems have many applications in control,
economy, transport, networks, energy, etc. [3–5]. Over the last 50 years, a great
number of scientists have been focusing their research on hierarchical problems
[3,4], which are much more difficult than the classical one-level formulations
because they imply taking into account the interests of different levels of the
hierarchy. Therefore, their study is often bounded at a bilevel structure [1].

Usually in a hierarchical bilevel problem, the upper level depends on the lower
level through the objective function and/or the feasible set, and the lower level
depends on the upper one in the same way. It is assumed that the upper level
makes the first move [1]. Additionally, note that bilevel optimization problems
(BOPs) are closely connected with the so-called Mathematical Programs with
Equilibrium Constraints (MPECs) [6,7].
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Using the optimization problem at the lower level, either one or several play-
ers depending on the upper level can be modeled. In the latter case, it is nec-
essarily assumed that these players are independent of each other (and make
decisions simultaneously and independently). Then we can assume that actually
one aggregated player acts on the lower level. On the one hand, such a model
makes it possible to investigate cases when the upper level player controls sev-
eral players at the lower level. Such situations prevail in practice (for example,
a corporation usually has several branches). On the other hand, the assump-
tion about the independence of players may reduce the adequacy of the model.
Therefore, the study of bilevel problems with several players at the lower (Single-
Leader-Multi-Follower-Problem (SLMFP)) or at the upper level (Multi-Leader-
Single-Follower-Problem (MLSFP)), which help model more complex systems,
is gaining popularity [8–12]. Some researches even attempted to study Multi-
Leader-Follower-Problems (MLFPs) [8–12]. The research in this area is mostly
motivated by practical applications, and at the moment there is no general app-
roach to developing numerical methods for such problems.

At the same time, according to Pang [2] for example, hierarchy and equi-
librium are the promising paradigms in mathematical optimization in the 21st
century. Therefore, development of the efficient numerical methods even for the
simplest classes of BOPs with an equilibrium is a challenge of modern Opera-
tions Research. In this connection, the present paper addresses a new approach
to a special type of BOPs with the simplest equilibrium at the lower level, where
one leader is connected with two followers. We consider a bilevel problem with
a parametric matrix game [13–15] at the lower level and with a linear objective
function subject to linear constraints at the upper level.

In order to elaborate numerical methods for solving BOPs with a matrix game
at the lower level, we reformulate it as a single-level optimization problem using a
reduction theorem. This auxiliary problem turns out to be a global optimization
problem with a nonconvex feasible set (see, e.g., [16–18]). It is well known that
classical convex optimization methods do not provide global solutions for non-
convex optimization problems [18–20]. Therefore, to solve the obtained single-
level problem, we apply a special Global Search Theory (GST) developed by
A.S. Strekalovsky for optimization problems with d.c. functions [18,21–24]. In
the recent years, the GST has proved to be an efficient tool for numerical solu-
tion of different nonconvex problems of Operations Research (including problems
with hierarchical and equilibrium structures) [18,21,25–34].

2 Problem Statement and Reduction

Let us formulate the BOPs with a matrix game at the lower level in the following
way:

〈c, x〉 + 〈d1, y〉 + 〈d2, z〉 ↑ max
x,y,z

, x ∈ X, (y, z) ∈ C(ΓM(x)), (BPΓM )
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where X = {x ∈ IRm | Ax ≤ a, x ≥ 0, 〈b1, x〉 + 〈b2, x〉 = 1}, C(ΓM(x)) is a set
of saddle points [13–15] of the game

〈y,Bz〉 ↑ max
y

, y ∈ Y (x) = {y | y ≥ 0, 〈en1 , y〉 = 〈b1, x〉},

〈y,Bz〉 ↓ min
z

, z ∈ Z(x) = {z | z ≥ 0, 〈en2 , z〉 = 〈b2, x〉};

}
(ΓM(x))

c, b1, b2 ∈ IRm; y, d1 ∈ IRn1 ; z, d2 ∈ IRn2 ; a ∈ IRm1 ; b1 ≥ 0, b1 	= 0, b2 ≥
0, b2 	= 0; A,B are matrices and en1 = (1, ..., 1), en2 = (1, ..., 1) are vectors of
appropriate dimension.

It can be readily seen that at the lower level we formulate the special
matrix game with mixed strategies, which is considered on simplexes depending
on the upper level variable x, instead of canonical simplexes. The expression
〈b1, x〉 + 〈b2, x〉 = 1 can be interpreted as some resource, which should be dis-
tributed by the leader among the followers.

Additionally, the problem (BPΓM ) is formulated in the so-called optimistic
statement, when interests of the upper level can be coordinated with the actions
of the lower level [1].

In order to elaborate numerical methods for solving the bilevel problem
(BPΓM ), we need to transform it to a single-level problem.

Let us set ξ1 := 〈b1, x〉, ξ2 := 〈b2, x〉 (x is fixed) and formulate the so-called
non-normalized matrix game with parameters ξ1, ξ2:

〈y,Bz〉 ↑ max
y

, y ∈ Y = {y | y ≥ 0, 〈en1 , y〉 = ξ1 > 0},

〈y,Bz〉 ↓ min
z

, z ∈ Z = {z | z ≥ 0, 〈en2 , z〉 = ξ2 > 0}.

}
(ΓM)

Further we present the optimality conditions for the non-normalized matrix
game (ΓM). These conditions are a generalization of classical optimality condi-
tions for a classical matrix game [13–15]. Note that if we use an expression like
yB, we mean that y is a row vector here, but if we write Bz, we mean that z is
a column vector.

Definition 1. The situation (y∗, z∗) ∈ Y × Z satisfying the inequalities

∀y ∈ Y 〈y,Bz∗〉 ≤ v∗ ≤ 〈y∗, Bz〉 ∀z ∈ Z, (1)

where v∗
�
= 〈y∗, Bz∗〉 is an optimal value of the game (ΓM), is said to be the

saddle point of the game (ΓM) ((y∗, z∗) ∈ C(ΓM)).

Theorem 1. The tuple (y∗, z∗) ∈ C(ΓM), if and only if there exists a number
v∗, such that the following system is fulfilled:

ξ1(Bz∗) ≤ v∗en1 , z∗ ≥ 0, 〈en2 , z
∗〉 = ξ2;

ξ2(y∗B) ≥ v∗en2 , y∗ ≥ 0, 〈en1 , y
∗〉 = ξ1.

}
(2)

Proof. Necessity. Set yi = (0, ...,
i

ξ1, ..., 0) ∈ Y ∀i = 1, ..., n1 and

zj = (0, ...,
j

ξ2, ..., 0) ∈ Z ∀j = 1, ..., n2 in (1). Then we obtain (2).
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Sufficiency. Scalarly multiplying the first inequality in (2) by y∗, we obtain:

ξ1〈y∗, Bz∗〉 ≤ v∗
n1∑
i=1

y∗
i .

Similarly, multiplying the first inequality in the second line of the (2) by z∗, we
get:

v∗
n2∑

j=1

z∗
j ≤ ξ2〈y∗, Bz∗〉.

Hence, v∗=〈y∗, Bz∗〉.
Now, multiplying the first inequality in (2) by an arbitrary y ∈ Y and the

first inequality in the second line of (2) by an arbitrary z ∈ Z, we obtain:

ξ1〈y,Bz∗〉 ≤ v∗
n1∑
i=1

y∗
i ∀y ∈ Y ; v∗

n2∑
j=1

z∗
j ≤ ξ2〈y∗, Bz〉 ∀z ∈ Z.

So, we arrive at (1). ��
Note that conditions (2) represent finite numbers of equalities and inequali-

ties. Now we can replace a game at the lower level by its optimality conditions.
Hence, for the bilevel problem (BPΓM ), it is possible to formulate the following
equivalent single-level problem:

−f0(x, y, z)
�
= 〈c, x〉 + 〈d1, y〉 + 〈d2, z〉 ↑ max

x,y,z,v
,

(x, y, z) ∈ S
�
= {x, y, z | Ax ≤ a, x ≥ 0, 〈b1, x〉 + 〈b2, x〉 = 1,

y ≥ 0, 〈en1 , y〉 = 〈b1, x〉, z ≥ 0, 〈en2 , z〉 = 〈b2, x〉},
〈b1, x〉(Bz) ≤ ven1 ,

−〈b2, x〉(yB) ≤ −ven2 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(PM)

More precisely, the following theorem takes place.

Theorem 2. The triplet (x∗, y∗, z∗) is a global optimistic solution of the bilevel
problem (BPΓM ) ((x∗, y∗, z∗) ∈ Sol(BPΓM )), if and only if there exist a number
v∗ such that the 4-tuple (x∗, y∗, z∗, v∗) is a global solution of the problem (PM).

Proof. Necessity. Let the triplet (x∗, y∗, z∗) ∈ Sol(BPΓM ). Then
(y∗, z∗) ∈ C(ΓM(x∗)) and Theorem 1 is fulfilled. Therefore, there exists v∗:
the conditions (2) hold under ξ1 = 〈b1, x∗〉 and ξ2 = 〈b2, x∗〉. Since, in addition,
x∗ ∈ X, then the 4-tuple (x∗, y∗, z∗, v∗) is feasible in the problem (PM).

Let on the contrary (x∗, y∗, z∗, v∗) 	∈ Sol(PM). Then there exists a feasible
in the problem (PM) 4-tuple (x̄, ȳ, z̄, v̄), such that

〈c, x̄〉 + 〈d1, ȳ〉 + 〈d2, z̄〉 > 〈c, x∗〉 + 〈d1, y∗〉 + 〈d2, z∗〉. (3)

At the same time, the conditions (2) are fulfilled for the 4-tuple (x̄, ȳ, z̄, v̄)
(under ξ1 = 〈b1, x̄〉, ξ2 = 〈b2, x̄〉, and (y∗, z∗, v∗) = (ȳ, z̄, v̄)) because of
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(x̄, ȳ, z̄, v̄) is feasible in the problem (PM). Therefore, according to Theorem 1
(ȳ, z̄) ∈ C(ΓM(x̄)), and the triplet (x̄, ȳ, z̄) is feasible in the problem (BPΓM ),
because x̄ ∈ X. Since the objective functions of the problems (BPΓM ) and
(PM) coincide, the inequality (3) contradicts (x∗, y∗, z∗) ∈ Sol(BPΓM ).

Sufficiency. Now let the 4-tuple (x∗, y∗, z∗, v∗) ∈ Sol(PM). Then x∗ ∈ X
and the conditions (2) hold for the 4-tuple (x∗, y∗, z∗, v∗) (under ξ1 = 〈b1, x∗〉
and ξ2 = 〈b2, x∗〉). Therefore, according to Theorem 1, (y∗, z∗) ∈ C(ΓM(x∗))
and the triplet (x∗, y∗, z∗) is feasible in the problem (BPΓM ).

Further let there exist a feasible in the problem (BPΓM ) 3-tuple (x̃, ỹ, z̃),
such that

〈c, x̃〉 + 〈d1, ỹ〉 + 〈d2, z̃〉 > 〈c, x∗〉 + 〈d1, y∗〉 + 〈d2, z∗〉. (4)

According to Theorem 1, again there exists a number ṽ: the conditions (2)
are fulfilled for the 4-tuple (x̃, ỹ, z̃, ṽ) (under ξ1 = 〈b1, x̃〉, ξ2 = 〈b2, x̃〉, and
(y∗, z∗, v∗) = (ỹ, z̃, ṽ)). Then this 4-tuple is feasible in the problem (PM) and
the inequality (4) holds. As above, this contradicts (x∗, y∗, z∗, v∗) ∈ Sol(PM).

��
It can be readily seen that the problem (PM) is a global optimization prob-

lem with a nonconvex feasible set (see, e.g., [16–18]). A nonconvexity in the
problem (PM) is generated by the two last vector constraints (two groups of
(n1 + n2) bilinear constraints in total). These constraints have arisen from opti-
mality conditions for a non-normalized matrix game at the lower level of the
bilevel problem (BPΓM ). It is known that a bilinear function can be represented
as a difference of two convex functions (i.e. a bilinear function is a d.c. function)
[14,26]. Therefore, the problem (PM) belongs to the class of nonconvex opti-
mization problems with d.c. constraints [18,22–24] and we can apply the GST
to solving this class of nonconvex problems.

3 D.C. Decomposition

The first stage of the application of the Global Search Theory to the problem
under scrutiny is an explicit decomposition of nonconvex functions from the
problem statement as a difference of two convex functions. As noted above,
(n1 + n2) bilinear constraints generate the basic nonconvexity in the prob-
lem (PM).

Therefore, we should find a decomposition of the following functions by the
difference of two convex functions. First, let us obtain an explicit d.c. represen-
tation of the i-th scalar constraint in the first group:

fi(x, z, v) = 〈b1, x〉〈(B)i, z〉 − v ≤ 0, i = 1, . . . , n1, (5)

where (B)i is an i-th row of the matrix B.
Introduce the denotation QT

i = (b(1)1 (B)i; b
(2)
1 (B)i; . . . ; b

(m)
1 (B)i), where

b
(1)
1 , b

(2)
1 ..., b

(m)
1 are components of the vector b1. Hence, we can reduce (5) to

a standard bilinear form fi(x, z, v) = 〈xQi, z〉 − v ≤ 0, i = 1, . . . , n1. And we
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can use here the known d.c. representation based on the property of a scalar
product [14,26]:

fi(x, z, v) = gi(x, z, v) − hi(x, z), (6)

where gi(x, z, v) =
1
4
‖xQi + z‖2 − v, hi(x, z) =

1
4
‖xQi − z‖2.

Similarly, if we introduce the matrix RT
j =(b(1)2 (B)j ; b

(2)
2 (B)j ; . . . ; b

(m)
2 (B)j)

((B)j is a j-th column of the matrix B), we obtain a d.c. representation of the
constraints in the second group:

fj(x, y, v) = −〈b2, x〉〈y, (B)j〉 + v = gj(x, y, v) − hj(x, y), j = 1, ..., n2, (7)

where gj(x, y, v) =
1
4
‖xRj − y‖2 + v, hi(x, z) =

1
4
‖xRj + y‖2.

In total, we obtain the following problem with (n1 + n2) d.c. constraints:

f0(x, y, z) ↓ min
x,y,z,v

, (x, y, z) ∈ S,

fi(x, z, v) := gi(x, z, v) − hi(x, z) ≤ 0, i = 1, . . . , n1,
fj(x, y, v) := gj(x, y, v) − hj(x, y) ≤ 0, j = 1, . . . , n2,

⎫⎪⎬
⎪⎭ (P)

where the functions f0, gi, hi ∀i ∈ I = {1, ..., n1}, and gj , hj

∀j ∈ J = {1, ..., n2} as well as the set

S ={x, y, z≥ 0 | Ax ≤ a, 〈b1, x〉+〈b2, x〉=1, 〈en1 , y〉=〈b1, x〉, 〈en2 , z〉=〈b2, x〉} ,

are convex.
And now we are ready to apply the GST to the problem (P).

4 Local Search

As has been mentioned, for the purpose of solving the d.c. constraint problem
(P), we develop the Global Search Algorithm based on the Global Search Theory
(GST) [18,23,24] using the d.c. decomposition constructed above. According
to the GST, the algorithm for solving the problem (P) should consist of two
principal stages:

(1) a special Local Search Method (LSM), which takes into account the struc-
ture of the problem in question [18,22];

(2) the procedure based on the Global Optimality Conditions (GOCs) and the
Global Search Algorithm based on the Global Search Theory (GST) [18,23,24],
which allows us to improve the point provided by the LSM [18,22].

In order to develop the LSM for the problem (P), we suppose that the feasible
set D := {(x, y, z, v) | (x, y, z) ∈ S; fi(x, z, v) ≤ 0, i ∈ I; fj(x, y, v) ≤ 0, j ∈ J}
of the problem (P) is not empty and the optimal value V(P) := inf{f0(x, y, z) |
(x, y, z, v) ∈ D} of the problem (P) is finite: V(P) > −∞.

Furthermore, let us denote w := (x, y, z, v) ∈ IRm+n1+n2+1 and assume that
a feasible starting point w0 ∈ D is given and, in addition, after several iterations
it has derived the current iterate ws ∈ D, s ∈ Z+ = {0, 1, 2, . . .}.
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In order to propose an LSM for the problem (P), let us apply a classical idea
of linearization with respect to the basic nonconvexity of the problem (i.e. with
respect to hi(·), i ∈ I and hj(·), j ∈ J) at the point ws [18–20,22]. Thus, we
obtain the following linearized problem:

f0(x, y, z) ↓ min
x,y,z,v

, (x, y, z) ∈ S,

ϕis(x, z, v) := gi(x, z, v) − 〈∇hi(xs, zs), (x, z) − (xs, zs)〉
−hi(xs, zs) ≤ 0, i = 1, . . . , n1,

ϕjs(x, y, v) := gj(x, y, v) − 〈∇hj(xs, ys), (x, y) − (xs, ys)〉
−hj(xs, ys) ≤ 0, j = 1, . . . , n2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(PLs)

where

∇xhi(xs, zs) =
1
2

(
Qi(xsQi − zs)

)
, ∇zhi(xs, zs) = −1

2

(
xsQi − zs

)
,

i ∈ I;

∇xhj(xs, ys) =
1
2

(
Rj(xsRj + ys)

)
, ∇yhj(xs, ys) =

1
2

(
xsRj + ys

)
,

j ∈ J.

(8)

Suppose that the point ws+1 is provided by the approximate solution to the
problem (PLs), so that

ws+1 ∈ Ds = {(x, y, z, v) | (x, y, z) ∈ S;
ϕis(x, z, v) ≤ 0, i ∈ I; ϕjs(x, y, v) ≤ 0, j ∈ J}

and the inequality

f0(xs+1, ys+1, zs+1) ≤ V(PLs) + δs

holds. Here V(PLs) is the optimal value to the problem (PLs):

V(PLs)
�
= inf

w
{f0(x, y, z) | (x, y, z) ∈ S, ϕis(x, z, v) ≤ 0, i ∈ I,

ϕjs(x, y, v) ≤ 0, j ∈ J},

and the sequence {δs} satisfies the following condition:
∞∑

s=0
δs < +∞.

Therefore, the LSM generates the sequence {ws}, ws ∈ Ds, s ∈ Z+ of solu-
tions to the problems (PLs). As it was proven in [22], the cluster point w∗ of the
sequence {ws} is a solution to the linearized problem (PL∗) (which is the prob-
lem (PLs) with w∗ instead of ws), and w∗ can be called the critical point with
respect to the LSM. Thus, the algorithm constructed in this way provides crit-
ical points by employing suitable convex optimization methods with any given
accuracy τ .

The inequalities

f0(xs, ys, zs) − f0(xs+1, ys+1, zs+1) ≤ τ

2
, δs ≤ τ

2
,

can be chosen as a stopping criterion for the LSM [22].
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Computational simulations (see, e.g., [30]) confirm the efficiency of the LSM
developed, the performance of which naturally depends on the choice of the
method or the software employed to solve auxiliary problems (we can use, for
example, IBM ILOG CPLEX or other efficient software for solving convex opti-
mization problems). Thus, the LSM can be applied in future implementations
of the global search algorithm for solving the bilevel problem (BPΓM ) which is
formulated as an equivalent single-level problem with d.c. constraints (PM).

5 Global Search

The second part of the global search procedure can be viewed as the most impor-
tant and even the crucial one, because we have to address the issue of escaping
a critical point (the non-global solution provided by a local search). Such a pro-
cedure is substantiated by the theoretical basis produced with the help of the
Global Search Theory (GST) developed by Strekalovsky [18,23,24] for a prob-
lem with d.c. constraints. Furthermore, we intend to solve the problem (P) using
the exact penalization approach to the d.c. optimization developed in [23,24].
Therefore, we introduce the penalized problem in the following way

θσ(x, y, z, v) = f0(x, y, z) + σ max{0; fi(x, z, v), i = 1, . . . n1;
fj(x, y, v), j = 1, . . . n2} ↓ min, (x, y, z) ∈ S.

(Pσ)

It can be readily seen that the penalized function θσ(·) is a d.c. function, because
the functions fi(·) = gi(·) − hi(·), i ∈ I, fj(·) = gj(·) − hj(·), j ∈ J are d.c.
functions and the objective function f0(·) of the problem (P) (see also single-level
problem (PM)) is an affine function.

Actually, since σ > 0, θσ(x, y, z, v) = Gσ(x, y, z, v) − Hσ(x, y, z),

Hσ(x, y, z) := σ

[
n1∑
i=1

hi(x, z) +
n2∑

j=1

hj(x, y)

]
,

Gσ(x, y, z, v) := θσ(x, y, z, v) + Hσ(x, y, z)

= f0(x, y, z) + σ max

{
n1∑
i=1

hi(x, z) +
n2∑
j=1

hj(x, y);⎡
⎣gi(x, z, v) +

n1∑
l=1
l �=i

hl(x, z) +
n2∑

j=1

hj(x, y)

⎤
⎦, i ∈ I;

⎡
⎣gj(x, y, v) +

n2∑
l=1
l �=j

hl(x, y) +
n1∑
i=1

hi(x, z)

⎤
⎦, j ∈ J

⎫⎬
⎭ .

(9)

It is clear that Gσ(·) and Hσ(·) are convex functions.
It is well-known that if for some σ the 4-tuple (x(σ), y(σ), z(σ), v(σ)) ∈

Sol(Pσ), and (x(σ), y(σ), z(σ), v(σ)) is feasible in the problem (P), then
(x(σ), y(σ), z(σ), v(σ)) is a global solution to the problem (P) [19,20,24]. More-
over, this situation remains the same when the value of σ grows [19,20,24].
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Hence, the key point for using exact penalization theory here is the exis-
tence of a threshold value σ̂ > 0 of the penalty parameter σ such that
Sol(Pσ) ⊂ Sol(P) ∀σ ≥ σ̂. In other words, for σ ≥ σ̂ the problems (P) and
(Pσ) turn out to be equivalent in the sense that Sol(P) = Sol(Pσ) [24]. Due
to the fact that the objective function f0 of the problem (P) satisfies the Lips-
chitz property [19,20] with respect to all variables, such threshold value σ̂ exists
[24], and we can use the following Global Optimality Conditions in order to
characterize a global solution to this problem [24].

Theorem 3. [24] Let a feasible point (x, y, z, v) ∈ D, ζ := f0(x, y, z), be a
solution to the problem (P) and σ ≥ σ∗ > 0, where σ∗ ≥ 0 is a threshold value
of the penalty parameter such that Sol(P) = Sol(Pσ) ∀σ ≥ σ∗.

Then, for every pair (q, β) ∈ IRm+n1+n2 × IR such that

Hσ(q) = β − ζ, (10)

the following inequality holds

Gσ(x, y, z, v) − β ≥ 〈∇Hσ(q), (x, y, z) − q〉 ∀(x, y, z) ∈ S. (11)

It is not difficult to notice that Theorem 3 reduces the solution of the non-
convex problem (Pσ) to an investigation of the family of the convex (linearized)
problems

Gσ(x, y, z, v) − 〈∇Hσ(q), (x, y, z)〉 ↓ min
(x,y,z,v)

, (x, y, z) ∈ S, (PσL(q))

depending on the pairs (q, β) ∈ IRm+n1+n2 × IR, which fulfill the Eq. (10).
It is worth noting that the linearization is carried out here with respect to the

“unified” nonconvexity of the problem (P) accumulated by the function Hσ(·)
from the d.c. representation (9) and ∇Hσ(·) can be constructed in the following
way

∇xHσ(x, y, z) := σ

[
n1∑
i=1

∇xhi(x, z) +
n2∑

j=1

∇xhj(x, y)

]
,

∇yHσ(x, y) := σ
n2∑

j=1

∇yhj(x, y),

∇zHσ(x, z) := σ
n1∑
i=1

∇zhi(x, z),

where ∇xhi(x, z), ∇zhi(x, z), i ∈ I, ∇xhj(x, y), ∇yhj(x, y), j ∈ J, given by
formulas (8).

Hence, the verification of the principal inequality (11) can be performed
by solving the linearized problems (PσL(q)) and varying the parameters (q, β)
satisfying (10).

Let the Lagrange multipliers, associated with the constraints and corre-
sponding to the point wk ∈ IRm+n1+n2+1, k ∈ {0, 1, 2, ...}, be denoted by
λk := (λ1, . . . , λn1+n2) ∈ IRn1+n2 .



The Local and Global Searches in BOPs with a Matrix Game 181

Basing on the relations and connections (see [24]) between the conditions
(10), (11) of Theorem 3 and the Classical Optimality Conditions [19,20], we can
present the following Global Search Scheme in the problem (Pσ).

Let there be given a starting point (x0, y0, z0) ∈ S, numerical sequences
{τk}, {δk} (τk, δk > 0, k = 0, 1, 2, ...; τk ↓ 0, δk ↓ 0(k → ∞)).

Global Search Scheme
Step 0. Set k := 0.
Step 1. Using the LSM from Sect. 4, find a τk-critical point

wk = (xk, yk, zk, vk) in the problem (P).

Step 2. Set σk :=
n1+n2∑

l=1

λk
l .

Choose a number β : inf(Gσ, S) ≤ β ≤ sup(Gσ, S).
Choose an initial β0 = Gσ(wk), ζk = θσ(wk).

Step 3. Construct a finite approximation

Ak(β) = {q1, . . . , qNk | Hσ(qp) = β − ζk, p = 1, . . . , Nk, Nk = Nk(β)}
of the level surface U(ζk) = {(x, y, z) | Hσ(x, y, z) = β − ζk} of the function
Hσ(·).

Step 4. Find a δk-solution ūp ∈ IRm+n1+n2+1 to the following linearized
problem:

Gσ(x, y, z, v) − 〈∇Hσ(qp), (x, y, z)〉 ↓ min
(x,y,z,v)

, (x, y, z) ∈ S. (PσL(qp))

Step 5. Starting from the point ūp, find a τk-critical point
w̄p = (x̄p, ȳp, z̄p, v̄p) by the LSM from Sect. 4.

Step 6. Choose the point (x̂, ŷ, ẑ) :

f0(x̂, ŷ, ẑ) ≤ min{f0(x̄p, ȳp, z̄p), p = 1, ..., Nk}.

Step 7. If f0(x̂, ŷ, ẑ) < f0(xk, yk, zk), then set wk+1 = (x̂, ŷ, ẑ, v̂), k = k + 1
and go to Step 2.

Step 8. Otherwise, choose a new value of β and go to Step 3. ��
It can be readily seen that the Global Search Scheme is not an algorithm in

the conventional sense, because some of its steps are not specified. For example,
we do not know precisely how to construct a starting point and the approxima-
tion of the level surface of the function, how to implement a local search and
solve the problem (PσL(qp)) etc. The answer to these questions depends on the
real data of numerical instances and uses the previous computational experience
concerning the nonconvex problems solution [18,21,25–34].

6 Concluding Remarks

In the present paper, we developed a new approach to finding optimistic solutions
to a special bilevel problem with an equilibrium (with a parametric matrix game)
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at the lower level. These methods are based on the original Global Search Theory
for nonconvex (d.c.) optimization by A.S. Strekalovsky.

We described in detail the reduction of the original bilevel problem to a non-
convex single-level problem and showed how to develop special local and global
search methods that take into account properties of the problem in question.

In our future research we will increase the complexity of the bilevel model
(we are going to study problems with bimatrix game at the lower level) and
carry out numerical testing of the developed methods on specially generated
examples. Based on our previous computational experience (see, for example,
results on solution of other bilevel problems [27,28]), we hope that the algorithms
developed can also be used for efficient numerical solution of bilevel problems
with an equilibrium at the lower level.
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Abstract. The routing open shop problem, being a generalization of
the metric TSP and the open shop scheduling problem, is known to
be NP-hard even in case of two machines with a transportation network
consisting of two nodes only. We consider a generalization of this problem
with unrelated travel times of each machine. We determine a tight optima
localization interval for the two-machine problem in the case when the
transportation network consists of at most three nodes. As a byproduct
of our research, we present a linear time 5

4
-approximation algorithm for

the same problem. We prove that the algorithm has the best theoretically
possible approximation ratio with respect to the standard lower bound.

Keywords: Scheduling · Routing open shop · Unrelated travel times ·
Optima localization · Approximation algorithm

1 Introduction

The idea of determining the tight optima localization interval for scheduling
problems was introduced more than 20 years ago in [14]. It can be described as
follows. Consider some minimization problem f(x) → min with a lower bound
LB on the optimum. Then the tight optima localization interval (subject to LB)
is an interval of type [LB, ρ·LB] with the smallest possible value of ρ guaranteed
to contain an optimum value for any problem instance. The systematic search for
such tight intervals [LB, ρ·LB] is useful for the following reasons. First, it proves
that the approximation factor ρ of an algorithm guaranteed to find a solution
with f(x) � ρLB is as good as possible with respect to LB. Second, it also
allows the quality of the lower bound LB to be estimated: any approximation
algorithm with worst-case ratio performance guarantee less than ρ has to be
based either on another lower bound (more precise than LB) or on the optimum
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itself. Third, as it typically turns out for scheduling problems, one can compute
the upper and lower bounds in linear time. Thus, essentially, optima localization
can yield linear-time approximation algorithms that are provably as good as
possible with respect to a certain lower bound.

An example of such a research for the classic open shop scheduling problem [9]
with three machines with respect to the standard lower bound was implemented
in [14]. The approach used includes an instance reduction preserving the lower
bound, and intellectual enumeration of subsets of instances in the branch-and-
bound manner. Altogether that approach can be referred to as an algorithm of
proving and can be used to obtain similar results for a huge variety of scheduling
problems. The proof described in [14] involved massive enumeration of subsets
and therefore was a computer-aided one. In this paper we illustrate the appli-
cation of the same approach to a special case of some relatively new scheduling
model being a generalization of the open shop and the metric traveling salesman
problem. Note that the proof in our case is compact and not computer-aided
due to the following reasons. First, we consider a two-machine case (note that
our case is still a generalization of a known NP-hard problem). Second, but not
least, we fine-tuned the approach allowing a more efficient instance reduction.
The main goal of the paper is to describe the approach in details and to obtain
optima localization results for a new scheduling problem.

The problem under consideration is a certain generalization of the routing
open shop model. Routing open shop was first introduced in [1,2]. In this model,
the sets of jobs J and machines M are given, and machines have to perform
operations of each job (with given processing times) in an arbitrary order similar
to the classic open shop scheduling problem: different operations of the same job
cannot be processed simultaneously. Jobs are distributed among the nodes of
some transportation network represented by an edge-weighted graph G. The
weight dist(v, u) of an edge e = [v, u] represents the travel distance between
the nodes v and u. All the machines are initially located at a predefined node
referred to as the depot. Machines have to travel with unit speed between the
nodes of the transportation network to process their operations and to return
to the depot. Machines are allowed to use shortest paths between the nodes,
therefore we may assume that travel times satisfy the triangle inequality.

Such a problem can appear in a production, where mobile machines have
to perform technological operations on some large unmovable parts, located in
different workshops.

For any schedule S, the value Rmax(S) denotes the makespan of S which is
the moment when the last machine returns to the depot after processing all the
operations (see Sect. 2 for details). The goal is to minimize the makespan. Fol-
lowing the traditional three-field notation (see [12] for example) the m-machine
routing open shop problem is denoted as ROm||Rmax or ROm|G = X|Rmax

in case we want to specify the structure X of a transportation network. In the
latter case we use standard graph theory notation, like G = Kp for a complete
graph with p nodes, or G = tree.
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Note that in the open shop environment, due to the duality of sets J
and M, the routing open shop problem is very similar to an open shop with
sequence-dependent transportation delays (see, e.g., [3]). However, traditionally
researchers consider problems with a constant number of machines, hence the
focus of the research differs depending on which model we use.

We assume that each node (with the possible exception of the depot) contains
at least one job. This makes it necessary for each machine to visit each node at
least once. Therefore, the routing open shop with a single machine is equivalent
to the classic metric TSP which is well-known to be NP-hard in the strong sense.
On the other hand, a single-node routing open shop is just a plain open shop
problem and is NP-hard for three and more machines while being polynomi-
ally solvable in the two-machine case [9]. Surprisingly, the combination of those
classic problems remains NP-hard even in the case with two machines on a link
(RO2|G = K2|Rmax), as proved in [2]. A fully polynomial time approximation
scheme for RO2|G = K2|Rmax is described in [11].

Let us give a brief review of the routing open shop problem focusing on a case
of two machines RO2||Rmax. A first 7

4 -approximation algorithm was proposed
in [2]. It was further improved in [5] where a 13

8 -approximation algorithm is
described. This improvement is relatively significant due to the following remark.
Note that the RO2||Rmax problem includes the metric TSP as a special case.
Since the best known up to date approximation algorithm for the metric TSP
is the 3

2 -approximation algorithm due to Christofides [8] and Serdyukov [13]
we cannot hope to achieve better than 3

2 -approximation for RO2||Rmax until a
better approximation for the metric TSP is found. On the other hand, the easy-
TSP version of the RO2||Rmax problem (the case when an optimal solution for
the underlying TSP is known, or the time complexity of its solving is not taken
into account) admits a 4

3 -approximation algorithm described in [5].
The standard lower bound R̄ for RO||Rmax was introduced in [1] (see Sect. 2).

All the approximation algorithms mentioned in the previous paragraph use R̄
to justify their performance guarantees: ρ-approximation algorithms actually
obtain a schedule with makespan belonging to an interval [R̄, ρR̄]. Hence the
search for the tight optima localization interval for RO2||Rmax with respect to
R̄ is an important step in the design of such approximation algorithms.

Such an interval is known only for a few special cases of the RO||Rmax prob-
lem. The problem with 2 nodes RO2|G = K2|Rmax was thoroughly investigated
in [1]. It was shown that the optimal makespan for any instance does not exceed
6
5 R̄ and this upper bound is tight. A few years ago that result was generalized
to a problem with 3 nodes RO2|G = K3|Rmax [6]: it was shown that the same
optima localization interval holds for the triangular transportation network. The
tight upper bound of the optima localization interval for RO2||Rmax is still an
open question. The properties of the 4

3 -approximation algorithm from [5] imply
that the upper bound of the optima localization interval for RO2||Rmax does
not exceed 4

3 R̄. Therefore, the exact value of the upper bound of the optima
localization interval for the two-machine problem lies between 6

5 R̄ and 4
3 R̄.
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In this paper we consider the following generalization of the routing open
shop problem introduced in [4]. In this model, travel times are specific for each
machine. Let disti(v, u) stand for the travel times of machine Mi ∈ M between
nodes v and u. We assume distances to be symmetrical: disti(v, u) = disti(u, v)
for any nodes u, v. Consider the following hierarchy of the travel time models,
introduced in [4]:

– RO|Ptt|Rmax: disti(v, u) = dist(v, u) (identical travel times, equivalent to
RO||Rmax);

– RO|Qtt|Rmax: disti(v, u) =
dist(v, u)

σi
(uniform travel times, σi represents

the travel speed of machine Mi);
– RO|Rtt|Rmax: disti(v, u) are individual for each machine (unrelated travel

times).

The usage of P , Q and R for notation is inspired by a well-known notation for
scheduling problems with parallel machines (see [12]). Note that in Rtt environ-
ment it is possible to model a situation when each machine has to visit only
some of the nodes of the transportation network, i.e., in a case when each job
has to be processed only by a subset of M.

In this paper we consider the following special cases with uniform and unrelated
travel times: RO2|Qtt,G = K2|Rmax, RO2|Qtt,G = K3|Rmax, RO2|Rtt,G =
K2|Rmax and RO2|Rtt,G = K3|Rmax. Obviously, RO2|Qtt,G = K2|Rmax can
be considered as a subcase of both RO2|Qtt,G = K3|Rmax and RO2|Rtt,G =
K2|Rmax problems while the latter problems are special cases of RO2|Rtt,G =
K3|Rmax (see Fig. 1).

RO2|Qtt, G = K2|Rmax

RO2|Qtt, G = K3|RmaxRO2|Rtt, G = K2|Rmax

RO2|Rtt, G = K3|Rmax

Fig. 1. Reduction graph for routing open shop problems with individual travel times.

First, we show that there exists a series of instances Iε with ε ∈ (0, 1) for
RO2|Qtt,G = K2|Rmax such that lim

ε→0

R∗
max(Iε)

R̄(Iε)
= 5

4 . Second, we constructively

prove that for any instance I of RO2|Rtt,G = K3|Rmax there exists a schedule
S such that Rmax(S) ∈ [R̄(I), 5

4 R̄(I)] with the standard lower bound R̄(I) being
adapted for individual travel times. Based on the reducibility discussed in the
previous paragraph we derive that the interval [R̄(I), 5

4 R̄(I)] is the tight optima
localization interval for all four problem cases considered.
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The structure of the paper is as follows. Section 2 contains a formal descrip-
tion of the problem under consideration, the necessary notation, some prelimi-
nary results and the description of the series Iε of instances. In Sect. 3, we provide
the proof of the main result for three important special cases. The final proof and
the description of the 5

4 -approximation algorithm for the RO2|Rtt,G = K3|Rmax

problem, as well as some concluding remarks, are given in Sect. 4.

2 Preliminary Notes

Let us give a formal description of RO2|Qtt|Rmax and RO2|Rtt|Rmax problems.
Sets J = {J1, . . . , Jn} of jobs and M = {M1,M2} of machines are given.

Each job Jj consists of two operations aj and bj to be processed by machines M1

and M2, respectively, in an arbitrary order. We use the same notation (aj , bj) for
operations’ processing times. An undirected transportation network is described
by a graph G = 〈V,E〉, a node v0 ∈ V is referred to as the depot. Jobs are
distributed among the nodes of G, J (v) denotes the set of jobs located in the
node v ∈ V . (We also use notation J (I; v) in case we want to specify a problem
instance I.) We assume that each non-depot node contains at least one job. Two
weights dist1(v, u) and dist2(v, u) are associated with each edge e = [v, u] ∈ E
and represent travel times over e for M1 and M2, respectively. Machines can visit
nodes without job processing and can visit each node multiple times. Any number
of machines can travel over the same edge simultaneously in any direction. For
each machine Mi, travel times disti(v, u) satisfy the triangle inequality. In the
case of Qtt, for each e ∈ E, travel times are related by dist2(v, u) = σdist1(v, u)
with σ being the travel speed of machine M1 (in this case, without loss of gen-
erality, we assume that M2 travels with unit speed). Note that for RO2||Rmax,
travel times of both machines are equal: dist1(v, u) = dist2(v, u) = dist(v, u).

Machines are initially located at the depot and have to travel over G to pro-
cess jobs in arbitrary order. Jobs cannot be processed by two machines simulta-
neously (however two jobs from the same location can be processed at the same
time). The goal is to perform all the operations and to return to the depot as
soon as possible. As preemption is not allowed, any schedule S can be described
by specifying the starting times sj1(S) and sj2(S) for operations aj and bj of
each job Jj . The completion times of the operations of job Jj and machine Mi

can be defined as cj1(S) = sj1(S)+aj , cj2(S) = sj2(S)+bj . We also use notation
s(aj), s(bj), c(aj), c(bj) if schedule S is specified.

Any feasible schedule S has to agree with the following conditions. If machine
Mi processes job Jj ∈ J (v) before job Jj′ ∈ J (u), then sj′i(S) ≥ cji(S) +
disti(u, v). If job Jj ∈ J (v) is the first job processed by machine Mi in schedule
S, then sji(S) ≥ disti(v0, v).

Let job Jl ∈ J (v) be the last job processed by machine Mi in schedule S.
Then the return time of Mi in S is

Ri(S) = max
j

cji(S) + disti(v0, v) = cli(S) + disti(v0, v).

The goal is to minimize the makespan Rmax(S) = max
i

Ri(S).
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For any problem instance I we use the following notation.

– �1 =
n∑

j=1

aj and �2 =
n∑

j=1

bj are machine loads of M1, M2, �max = maxi �i,

– dj = aj + bj is the job length of Jj , dmax(v) = max
Jj∈J (v)

dj ,

– Δ(v) =
∑

Jj∈J (v)

dj is the load of the node v, Δ =
∑

v∈V

Δ(v),

– T ∗
i is the length of an optimal tour on G for machine Mi (TSP optimum for

distances disti in G),
– R∗

max(I) is the optimal makespan.

The standard lower bound on the makespan for RO||Rmax is described in [1]:

R∗
max � max

{

�max + T ∗,max
v∈V

(
dmax(v) + 2dist(v0, v)

)
}

.

(In this case T ∗ = T ∗
1 = T ∗

2 .)
A similar lower bound for problems with individual travel times was intro-

duced in [4] and has the following form

R̄
.= max

{

max
i

(�i + T ∗
i ),max

v∈V

(
dmax(v) + dist1(v0, v) + dist2(v0, v)

)
}

. (1)

Note that (1) implies

Δ = �1 + �2 � 2R̄ − T ∗
1 − T ∗

2 . (2)

Note that R̄ can be easily computed in linear time if we do know the optimal
solution of the underlying TSPs (otherwise it is not polynomially computable).

We denote the sets of all instances with nonzero standard lower bound for
RO2|G = X|Rmax, RO2|Qtt,G = X|Rmax and RO2|Rtt,G = X|Rmax by IX

2 ,
IX

Q2 and IX
R2, respectively. If the graph structure is not restricted, we omit the

notation X.
We use the following terminology (consistent with one introduced in [10]).

Definition 1. A feasible schedule S for an instance I ∈ I2 ∪ IQ2 ∪ IR2 is nor-
mal if Rmax(S) = R̄(I). An instance I is referred to as normal if it admits
constructing a normal schedule.

Definition 2. The abnormality of instance I is α(I) =
R∗

max(I)
R̄(I)

.

The abnormality for some class of instances K is defined as α(K) = sup
I∈K

α(I).

Obviously, the tight optima localization interval for a class K coincides with
[R̄, α(K)R̄], therefore the search for such an interval is equivalent to the search
for an instance I ∈ K with maximal abnormality (if any).

We know that α
(
IK2
2

)
= α

(
IK3
2

)
= 6

5 [1,6]. In this paper we prove that

α
(
IK2

Q2

)
= α

(
IK3

Q2

)
= α

(
IK2

R2

)
= α

(
IK3

R2

)
=

5
4
.
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Lemma 1. α
(
IK2

Q2

)
� 5

4 .

Proof. Consider the following instance Iε ∈ IK2
Q2 for any 0 < ε � 1. The depot

v0 contains a single job J0, with a0 = 0 and b0 = 4. There are two identical jobs
J1, J2 in v1, with a1 = a2 = 4−ε and b1 = b2 = 1. Machine M2 travels with unit
speed, τ2 = τ2

01 = 1. Travel speed of M1 is σ = ε−1, hence τ1 = τ1
01 = ε. Note

that R̄(Iε) = 8. Let us prove that the schedule for Iε given in Fig. 2 is optimal,
and R∗

max(Iε) = 10 − ε.

M2

M1

a1 a2

b0 b1 b2

ε 4 8− ε5 6 9− ε 10− ε

Fig. 2. Optimal schedule for Iε.

In any optimal schedule, as soon as R∗
max(Iε) � 10 − ε, the machine M2

travels only once (otherwise R2 � �2 +4τ2 = 10). Without loss of generality, M2

performs operations in the order b0, b1, b2: jobs J1 and J2 are identical, J0 cannot
be processed between them because the machine makes a single trip, and the
order b2, b1, b0 can be transformed into b0, b1, b2 by reversing the direction of time.
Therefore, c(b1) � b0 + τ2 + b1 = 6. Hence operation a1 precedes b1 (otherwise
R1 � c(a1) + τ1 � 10), a2 precedes b2 by similar reasoning and a1 precedes a2

(otherwise c(b1) � 9−ε and R2 � 11−ε). Therefore, s(b2) � τ1+a1+a2 = 8−ε
and R2 � 10 − ε, hence R∗

max(Iε) = 10 − ε.

Since lim
ε→0

α(Iε) = lim
ε→0

10 − ε

8
=

5
4
, this proves the Lemma. �	

Note that for the problem RO2|G = K2, Rtt|Rmax it is sufficient to consider
a single instance I0 (with ε = 0) to confirm that α

(
IK2

R2

)
� 5

4 .
The proof of the main result is based on the following job aggregation pro-

cedure similar to one described in detail in [6].

2.1 Job Aggregation

Definition 3. Let I ∈ I2 ∪ IQ2 ∪ IR2. A node v ∈ V is called overloaded if

Δ(v) + dist1(v0, v) + dist2(v0, v) > R̄,

otherwise the node v is underloaded.

Proposition 1. Any I ∈ I2 ∪ IQ2 ∪ IR2 contains at most one overloaded node.
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Proof. Suppose we have two overloaded nodes v and u:

Δ(v) + dist1(v0, v) + dist2(v0, v) > R̄, Δ(u) + dist1(v0, u) + dist2(v0, u) > R̄.

Then we have

Δ � Δ(v)+Δ(u) > 2R̄−(dist1(v0, v)+dist1(v0, u))−(dist2(v0, v)+dist2(v0, u))

� 2R̄ − T ∗
1 − T ∗

2 ,

which contradicts (2). �	
Definition 4. Let I ∈ IQ2 ∪ IR2, K ⊆ J (v) for some v ∈ V . Then we say that
an instance I ′ is obtained from I by aggregation of jobs from K if the set of jobs
K is replaced by a new job JK such that

J (I ′; v) = J (I; v) \ K ∪ {JK}, aK =
∑

Jj∈K
aj , bK =

∑

Jj∈K
bj ,

∀u �= v J (I ′;u) = J (I;u).

The instance Ĩ obtained from I by a series of job aggregations will be referred to
as a modification of I.

Any feasible schedule for some modification of I can be treated as a fea-
sible schedule for I with the same makespan. Therefore, the optimum of any
modification of I is greater or equal to R∗

max(I).
Note that machine loads and node loads are preserved by any job aggregation

operation, but the standard lower bound R̄ might grow if dK is large enough. In
order to preserve R̄ we may only aggregate such sets K that

∑

Jj∈K
dj � R̄ − dist1(v0, v) − dist2(v0, v). (3)

Proposition 2. For every instance I ∈ I2 ∪ IQ2 ∪ IR2 there exists its modifi-
cation Ĩ such that

1. R̄(Ĩ) = R̄(I),
2. each underloaded node in Ĩ contains exactly one job, the only overloaded node

(if any) contains at most three jobs.

Proof. For any underloaded node v, set K = J (v) satisfy (3) by Definition 3,
and therefore we can aggregate such sets preserving R̄. Now we need to prove
that all jobs from an overloaded node (if any) can be aggregated into at most
three jobs without alteration of R̄.

Let v be overloaded and J (v) = {J1, . . . , Jp}. Let j be the maximal number

such that
j∑

t=1
dt � R̄ − dist1(v0, v) − dist2(v0, v). Note that j < p, as v is

overloaded. Lets aggregate all jobs from the set K = {J1, . . . , Jj}. Due to the
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choice of j, we have dK + dj+1 > R̄ − dist1(v0, v) − dist2(v0, v). Suppose that
j + 1 < p (otherwise we have two jobs at after the aggregation v and the claim
holds). Let K′ = {Jj+2, . . . , Jp}. From (2) we have

∑

Jt∈K′
dt � Δ − dK − dj+1 < 2R̄ − T ∗

1 − T ∗
2 − (R̄ − dist1(v0, v) − dist2(v0, v))

� R̄ − dist1(v0, v) − dist2(v0, v),

therefore aggregating the set K′ does not increase R̄. Thus, the modification
claimed to exist is achieved by aggregating all jobs at each underloaded node,
then of jobs in K, and finally in K′. �	

Note that, for any instance I, such a modification Ĩ can be found in time
O(n).

Let Ĩ be a modification of I, with R̄(Ĩ) = R̄(I) = R̄. If there exists a
schedule S for Ĩ, such that Rmax(S) � ρR̄, then R∗

max(I) � ρR̄. Hence, there
exists an instance with maximal abnormality, which has at most three jobs at
an overloaded node (if any) due to Proposition 2. It is sufficient to consider
only irreducible modifications, for which no further reduction (preserving R̄)
is possible. In the next section we consider all the three possibilities for an
irreducible instance:

1. Instance has an overloaded node with exactly three jobs. (Following [7] we
refer to such a node as superoverloaded.)

2. Instance has an overloaded node with exactly two jobs.
3. Instance has only underloaded nodes.

3 Optima Localization for Irreducible Instances

According to Proposition 2 any irreducible instance contains at most five jobs.
We describe schedules for such an instance in the following manner. We specify
the order of the operations for each job and each machine. Such an ordering is
represented by a weighted digraph referred to as a scheme of a schedule. Each
node’s weight is the corresponding operation’s processing time, and arc weights
are travel times. For clarity, we add the source S and the sink F (both with zero
weight) to each scheme. Denote the set of paths connecting nodes x and y by
Px,y. For some path P ∈ Px,y its length |P | is the total weight of all nodes and
arcs belonging to P . The early completion time of operation x in the scheme is the
maximal length over all the paths from PS,x: ĉ(x) .= max

P∈PS,x

|P |. Any operation’s

processing in any feasible schedule cannot be completed earlier than its early
completion time. For any scheme H we consider an early schedule SH, in which
each operation x completes at ĉ(x). The makespan of early schedule Rmax(SH) =
max

P∈PS,F

|P | = |P̂ |, there P̂ is referred to as a critical path in schedule SH.

The weights in H depend on an instance, so we cannot tell in advance which
path is critical. However, one can easily describe the set PS,F of complete paths
and consider the length of any P ∈ PS,F as a total sum of corresponding variable
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processing times and travel times. In our analysis we have to consider each non-
trivial complete path as a candidate for a critical one. We will not consider trivial
paths with the total length not exceeding R̄ for any problem instance.

For any schedules S1, . . . , Sk, the best among them is denoted by S1∨· · ·∨Sk.

3.1 One of the Nodes is Superoverloaded

It was proved in [7] that, unless P = NP , one cannot test in polynomial time
whether a node is superoverloaded. However, if we have an irreducible modifica-
tion with three jobs in some node, then the node is definitely superoverloaded.
The next Theorem concerns exactly that special case.

Theorem 1. Let I ∈ IK3
R2 and one of the nodes in I is superoverloaded. Then

R∗
max(I) � 7

6
R̄(I).

S

aα aβ aγ a2 a1

F
bα bβbγb2b1

τ1

τ2

T1

T2

Fig. 3. Scheme H′.

S

aαaβ aγ a2 a1

F
bα bβbγb2b1

τ1

τ2

T1

T2

Fig. 4. Scheme H′′.

Proof. Apply the job aggregation procedure preserving R̄, obtaining a single job
in each underloaded node and exactly three jobs Jα, Jβ , Jγ in the superover-
loaded node v. Let τ1 and τ2 be travel times from the depot to v for M1 and
M2, respectively. Then for any p, q ∈ {α, β, γ} with p �= q we have

dp + dq > R̄ − τ1 − τ2. (4)

Without loss of generality, we assume

aα + τ1 = min
{
min{aα, aβ , aγ} + τ1,min{bα, bβ , bγ} + τ2

}
. (5)
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Under this assumption

aα � 1
3
�1 � 1

3
R̄. (6)

Denote single jobs in underloaded nodes by J1 and J2, where J1 belongs to the
depot in the case v �= v0.

Consider an early schedule S1 = SH′ (see Fig. 3).
Note that the travel time of M2 along the path from S to bγ is exactly

T2 = T ∗
2 − τ2 � τ2, and the travel time of M1 from aγ to F is T1 = T ∗

1 − τ1.
Hence, by (5), c(bγ) � c(aα). Let us prove that R1 � R̄. Indeed,

R1 = max{c(aβ), c(bγ)}+aγ +a2+a1+T1 = max{�1+T ∗
1 , d1+d2+dγ +T2+T1}.

Using (1), (2) and (4) we have R1 � max{R̄,Δ+T ∗
1 +T ∗

2 −(dα+dβ+τ1+τ2)} � R̄.
If S1 is not normal, then

Rmax(S1) = R2 = τ1 + aα + aβ + bβ + τ2. (7)

In this case consider an early schedule S2 = SH′′ (Fig. 4).
If S2 is not normal, then

Rmax(S2) = T2 + b1 + b2 + bγ + max{bα, aγ} + aα + a2 + a1 + T1. (8)

Let S = S1 ∨ S2. Then, by (7), (8) and (6),

2Rmax(S) � Rmax(S1)+Rmax(S2) = �1+T ∗
1 +�2+T ∗

2 −min{bα, aγ}+aα � 7
3
R̄,

therefore Rmax(S) � 7
6 R̄.

Note that, according to Proposition 2, such a schedule can be constructed in
time O(n).

According to Lemma 1 and Theorem 1, an instance I ∈ IK3
R2 with maximal

abnormality does not have a superoverloaded node (although one of the nodes
can be overloaded). Those cases are considered in the next two subsections.

3.2 One of the Nodes is Overloaded

The next lemma is concerned with the case when the irreducible instance con-
tains exactly two jobs in an overloaded node. Although, in this case, that node
might still be superoverloaded in the initial instance (and this can be shown
by some other reduction), this need not hold in general. The following lemma
completes the consideration of the general case with an overloaded node.

Lemma 2. Let an instance I ∈ IK3
R2 have a single job at each node except v,

which is overloaded and contains two jobs. Then there exists a feasible schedule
S for I such that Rmax(S) � 5

4 R̄.
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Proof. We use notation similar to that in the proof of Theorem1. Let J (v) =
{Jα, Jβ}, and let τ1 and τ2 be travel times from the depot to v for M1 and
M2, respectively. The remaining travel time for each machine is denoted by
Ti = T ∗

i − τi, for i = 1, 2. Denote single jobs from the underloaded nodes by
J1, J2, where J1 belongs to the depot in the case v �= v0.

Since v is overloaded, we have dα + dβ > R̄ − τ1 − τ2. Together with (2) that
implies

d1 + d2 + T1 + T2 < R̄. (9)

Consider schedules S1 = SH1 , S2 = SH2 , S3 = SH3 , and S4 = SH4 (Fig. 5).

S

aβ aα a1 a2

F
b2 b1 bβ bα

H1

τ1

τ2

T1

T2

S

aβaα a1a2

F
b2b1 bβ bα

H2

τ1

τ2

T1

T2

S

aαaβ a1a2

F
b2b1 bα bβ

H3

τ1

τ2

T1

T2

S

aα aβ a1 a2

F
b2 b1 bα bβ

H4

τ1

τ2

T1

T2

Fig. 5. Schemes H1, H2, H3 and H4 for the case with overloaded node.

Note that both H1 and H4 contain a complete path S → b2 → b1 → a1 →
a2 → F of length not greater than d1 +d2 +T1 +T2; by (9) its length is less than
R̄ and it is therefore not critical. Schemes H2 and H3 have a single non-trivial
complete path each. Assuming that each of these schedules is not normal, we
obtain

Rmax(S1) = τ1 + τ2 + aβ + bα + max{aα, bβ},

Rmax(S2) = b1 + b2 + bβ + aβ + a2 + a1 + T1 + T2,

Rmax(S3) = b1 + b2 + bα + aα + a2 + a1 + T1 + T2,

Rmax(S4) = τ1 + τ2 + aα + bβ + max{aβ , bα}.

For the schedule S = S1 ∨ S2 ∨ S3 ∨ S4 we have

4Rmax(S) � Rmax(S1) + Rmax(S2) + Rmax(S3) + Rmax(S4) =

2(�1+T ∗
1 +�2+T ∗

2 )+(max{aα, bβ}+max{aβ , bα})�4R̄+max{�1, �2, dα, dβ}�5R̄,

therefore Rmax(S) � 5
4 R̄.
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3.3 Each Node is Underloaded

Lemma 3. Let an instance I ∈ IK3
R2 contain a single job at each node. Then

there exists a feasible schedule S for I such that Rmax(S) � 5
4 R̄(I).

Proof. Let J (vk) = {Jk}, k = 0, 1, 2. We also use the following notation for
travel times:

τi = disti(v0, v1), νi = disti(v0, v2), μi = disti(v1, v2), T ∗
i = τi+μi+νi, i = 1, 2.

S

a1 a2 a0

F
b0 b2 b1

H5

τ1
μ1 ν1

ν2 μ2
τ2

S

a2 a1 a0

F
b0 b1 b2

H6

ν1

μ1 τ1

τ2 μ2
ν2

S

a1 a2 a0

F
b0 b1 b2

H7

τ1
μ1 ν1

τ2 μ2
ν2

S

a2 a1 a0

F
b0 b2 b1

H8

ν1

μ1 τ1

ν2 μ2
τ2

Fig. 6. Schemes H5, H6, H7 and H8 for the case with underloaded nodes.

Consider schedules S1 = SH5 , S2 = SH6 , S3 = SH7 , and S4 = SH8 (Fig. 6).
Assuming that none of these schedules is normal, we have

Rmax(S1) = b0 + b2 + a2 + a0 + ν1 + ν2,

Rmax(S2) = b0 + b1 + a1 + a0 + τ1 + τ2,

Rmax(S3) = τ1 + ν2 + a1 + b2 + max{μ1 + a2, μ2 + b1},

Rmax(S4) = ν1 + τ2 + a2 + b1 + max{μ1 + a1, μ2 + b2}.

For S = S1 ∨ S2 ∨ S3 ∨ S4 we have

4Rmax(S) � Rmax(S1) + Rmax(S2) + Rmax(S3) + Rmax(S4)

� 2�1 + 2�2 + 2(τ1 + τ2 + ν1 + ν2 + max{μ1, μ2}) + (max{a2, b1} + max{a1, b2})
� 2(�1 + T ∗

1 ) + 2(�2 + T ∗
2 ) + max{�1, �2, d1, d2} � 5R̄,

therefore Rmax(S) � 5
4 R̄.
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4 Conclusion

Proposition 2, Theorem 1, Lemmas 2 and 3 imply the following

Theorem 2. For any instance I ∈ IK3
R2 there exists a feasible schedule S with

makespan in the interval [R̄, 5
4 R̄]. Such a schedule can be built in linear time.

Indeed, we just need to perform the job aggregation procedure to obtain
an irreducible modification Ĩ discussed in Sect. 2. If Ĩ has a node with exactly
three jobs, then we build a schedule according to the proof of Theorem1, with
makespan not exceeding 7

6 R̄. In other cases, we use the proof of the corresponding
Lemma 2 or 3 to build a schedule desired, and finally transform that schedule into
the feasible schedule for the initial instance, treating each aggregated operation
as a block of initial operations performed without idle times in an arbitrary
order. Thus we need to construct at most four schedules for a reduced instance.

We have proved that α
(
IKp

Q2

)
= α

(
IKp

R2

)
= 5

4 for 2 � p � 3, while the
abnormality for a greater number of nodes (and therefore in the general case)
remains unknown. We have similar results for the problem with identical travel
times [6]: α

(
IKp

2

)
= 6

5 for p � 3, while in the general case we only have an

upper bound α (I2) � 4
3 [5]. The most intriguing open problem is to find the

exact value of the abnormality for both problem classes, although it seems to
be hard to approach at the moment. One of the important steps towards the
solution of that problem is to find an instance with a greater abnormality (if
any). We have no knowledge of an existence of such an instance and would like
to propose the following

Conjecture 1. α (I2) = 6
5 , α (IQ2) = α (IR2) = 5

4 .

We suggest the following open questions for future research.

Question 1. If Conjecture 1 is not true, what is the smallest number of nodes
p such that α

(
IKp

2

)
> 6

5? α
(
IKp

Q2

)
> 5

4? α
(
IKp

R2

)
> 5

4? α
(
IKp

Q2

)
< α

(
IKp

R2

)
?

This question is a significant motivation for studying special cases with a
small transportation network ([2,6] and this paper).

Question 2. It was proved in [7] that any instance of RO2|G = K2|Rmax

with a superoverloaded node is normal. This result can be easily extended for
G = K3. The claim of Theorem 1 is significantly weaker (although sufficient
for our purposes). The question is, does a similar result on the normality of
an instance with a superoverloaded node hold for RO2|Qtt,G = K3|Rmax and
RO2|Rtt,G = K3|Rmax?

Question 3. It is known [1] that α
(
IK2
2

)
= 6

5 , although different travel times

can increase that value up to 5
4 (Lemma 1). We probably need an unbounded

machine’s travel speed σ1 to achieve that abnormality. Suppose we have an
instance I ∈ IK2

Q2 with travel speeds σ2 = 1 and σ1 ∈ [1, x]. What is the maximal
abnormality of such an instance as a function of x?
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Abstract. We address the problem of minimizing the aggregated fuel
consumption by the vessels in an inland waterway (a river) with a sin-
gle lock. The fuel consumption of a vessel depends on its velocity and
the slower it moves, the less fuel it consumes. Given entry times of the
vessels into the waterway and the deadlines before which they need to
leave the waterway, we decide on optimal velocities of the vessels that
minimize their private fuel consumption. Presence of the lock and pos-
sible congestions on the waterway make the problem computationally
challenging. First, we prove that in general Nash equilibria might not
exist, i.e., if there is no supervision on the vessels velocities, there might
not exist a strategy profile from which no vessel can unilaterally devi-
ate to decrease its private fuel consumption. Next, we introduce simple
supervision methods to guarantee existence of Nash equilibria. Unfortu-
nately, though a Nash equilibrium can be computed, the aggregated fuel
consumption of such a stable solution is high compared to the consump-
tion in a social optimum, where the total fuel consumption is minimized.
Therefore, we propose a mechanism involving payments between ves-
sels, guaranteeing Nash equilibria while minimizing the fuel consumption.
This mechanism is studied for both the offline setting, where all infor-
mation is known beforehand, and online setting, where we only know the
entry time and deadline of a vessel when it enters the waterway.

Keywords: Lock scheduling · Congestions · Social welfare ·
Mechanism design · Online scheduling

1 Introduction

The high fuel prices, a congested road network and the increasing demand for
transport due to globalization put a high pressure on the existing transportation
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network, especially road transport. The growing sense of resource scarcity and
climate change motivates companies to rethink their logistical operations and, if
possible shift towards a more sustainable transport mode. In comparison to other
transportation modes, the use of barges is more sustainable (less greenhouse gas
emission) and relatively cheap (due to economies of scale). Moreover, as a single
barge can replace over 100 trucks, increased use of the water network is likely
to reduce congestion and the number of accidents on the road network. The
Netherlands, located around the mouth of multiple important European rivers,
has a dense network of over 4600 km of navigable inland waterways [2], on which
36% of all freight transport (in tonne-kilometre) takes place [3].

Besides longer travel times, mainly due to the relatively low density of the net-
work, the high uncertainty in arrival time is one the major drawbacks of freight
transport over inland waterways. This uncertainty is caused by the presence of
many river obstacles, such as low bridges, narrow river segments, harbors and
locks, which gives rise to unexpected congestion and waiting time. This requires
the skipper, the person in charge of the boat, to increase the speed afterwards
to guarantee an on-time arrival at the destination. However, the operational
cost for the skipper is largely determined by the fuel consumption, which is
related directly to the required power and, therefore, the speed of the vessel.
The required speeding up results therefore in a direct increase of operational
costs for the skipper.

In this paper, we investigate how coordination and scheduling of all movement
around these river obstacles can help to reduce congestion and waiting times,
and therefore increase the efficiency of inland waterway transport. Moreover,
by optimizing a recommended speed for each barge between two consecutive
obstacles, one can control the arrival times of the vessels at each obstacle, guar-
anteeing the minimal throughput time and at the same time the minimal total
fuel consumption. For a single lock, the strategy of reducing the speed of the
vessel to avoid waiting time has resulted in significant economic benefits [14].

2 Literature Review

Lock Scheduling. Existing research on the optimization of river obstacles is
mainly focused on lock scheduling. In a single lock scheduling problem, the oper-
ating times of a single lock are optimized for a set of vessels with given arriving
time at the lock. By batching the vessels together and determining the optimal
service time for each batch, the goal is to reduce overall waiting time at the lock.

Passchyn et al. [8] provide a polynomial time algorithm to optimally solve
the single lock scheduling problem, given the arrival times of the boats and the
capacity of the lock. Passchyn, Briskorn and Spieksma present in [6] a complexity
analysis of this problem and provide a polynomial time algorithm that applies to
special cases for the single lock scheduling problem with multiple parallel cham-
bers. The problem of physically placing vessels inside the chamber of the lock has
been addressed by Verstichel et al. [16,17]. The joint optimization of multiple
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sequential locks on the river is considered by Passchyn et al. [7] and Prandtstetter
et al. [10]. Here, Prandtstetter et al. propose a Variable Neighborhood Search for
solving the problem. Passchyn et al. propose an MILP to find an exact solution,
which is also used in the current work. In all the contributions above the vessel
speeds and arrival times in the river segment are deterministic and given. In an
optimal lock schedule the aim is always to minimize the aggregated fuel cost or
emissions, and selfish behavior of skippers is not addressed.

There are also multiple case studies conducted for the lock scheduling prob-
lem, focused on specific lock sequences on important waterways in the world.
Petersen et al. [9] consider the Welland Canal in North America for which they
provide a heuristic that employs optimal dynamic programming submodels for
scheduling individual locks in order to determine operating schedules for the lock
sequence. Smith et al. [13] present a simulation model to evaluate the quality
of different heuristics on lock operations on the Upper Mississippi River in the
US. This research has been extended by Smit et al. [12]. Here, the authors pro-
pose a MIP model to solve the lock scheduling problem with sequence-dependent
setup- and processing times. On the same river segment, Nauss [5] incorporated
the malfunctioning of locks in order to efficiently resolve a queue of vessels that
might arise due to the malfunctioning. Also, a model for the lock scheduling
problem with multiple parallel chambers for this river layout has been inves-
tigated by Ting and Schonfeld [15]. Finally, the Kiel Canal is considered by
Günter, Lübbecke and Möring [4]. They incorporate collision of ships in their
model and provide a heuristic to determine a routing and scheduling to fleet of
ships in a collision-free manner.

In contrast to the previous literature, only Passchyn et al. [7] take into
account that skippers can choose the speed of their boat, and hence influence the
time in which they arrive at the lock. They minimize overall CO2 emissions by
optimizing the speed at which vessels have to approach the locks using a MILP
formulation. Although this approach is closely related to the problem addressed
in this paper, the authors of [7] focus on minimizing the aggregated emissions
without considering the fact that each skipper is mainly interested in minimizing
his personal fuel cost and emissions. As a consequence, skippers might deviate
from the proposed solution and increase their individual utility. In this paper, we
view this problem from a game-theoretic point of view, and propose a schedule
in which no skipper can profitably deviate from the proposed solution.

Fuel Reduction. Academic literature on fuel savings has been extensive in the
context of ocean vessels. We refer to [11] for a more detailed survey. Though,
inland waterways are significantly different compared to the ocean, as there
are no ’river’ obstacles in the ocean. Research on fuel consumption in inland
waterways is sparse. Ting et al. [14] found that the strategy of reducing vessels
speed to avoid idle time has resulted in significant economic benefits for a single
lock. This may been seen as a key observation for the motivation of the current
work. The fact that fuel consumption grows non-linearly in the vehicle’s speed
is corroborated by Bialystockia and Konovessis [1].
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Our Contributions. Previous research on the lock scheduling is based on the
assumption that lock operators have the full power to determine the operating
schedule for the lock. In practice, this schedule is typically determined using
the first come first serve (FIFO) principle based on the order at which vessels
arrive at the lock. Skippers that know this have the incentive to speed up when
approaching a lock in order to pass their predecessors and get served first. This
action leads to longer waiting times before the locks, and increases the opera-
tional cost for these skippers due to the higher fuel consumption that is caused
by maintaining a higher speed.

In this paper, we aim to minimize the aggregated fuel consumption by the
vessels in the river, while keeping in mind that each skipper is a rational indi-
vidual with the sole goal of minimizing his personal fuel cost or emissions. In the
solutions we present, we determine an optimal speed for each individual boat
and for each river segment. The positive relation between vessel speed and fuel
consumption leads to the observation that maintaining the slowest speed—yet
meeting the arrival deadline at the destination harbour—minimizes the total
fuel consumption of a single vessel. Unfortunately, even a single lock on the river
becomes a source of congestion and the speeds of the vessels have to be adjusted
accordingly.

The paper is structured as follows. In Sect. 3, we model the problem as a
non-cooperative game and discuss a variety of priority rules that can be used
by the lock operators in case multiple vessels approach the lock (possibly in
the opposite directions). Moreover, we discuss the existence of Nash equilibria—
situations in which no skipper can unilaterally deviate from the proposed solution
and decrease its individual cost. In Sect. 4, we introduce a cooperative game
perspective on the traffic optimization problem at hand. We assume that binding
contracts between different skippers are possible and propose a mechanism based
on monetary payments. This situation will give rise to new Nash equilibria. We
design an algorithm that computes these Nash equilibria while minimizing total
fuel consumption on the river. Finally, in Sect. 5, we extend this algorithm to
comply with an online setting.

3 Non-cooperative Game for Traffic Optimization
at River Obstacles

3.1 Mathematical Notation of the System

Without loss of generality, we assume a waterway with a single lock L. Let
this lock be defined by its capacity C, i.e., the number of boats that can be
leveled up or down simultaneously, and its current state P , indicating whether
the level of the water is high (equal to the upstream level) or low (equal to the
downstream level). Let T be the time to change the lock state from high to low
or vice versa. If a batch of vessels is processed, an additional Ti times units are
required for each vessel i in the batch. That time represents the loading and
unloading of vessels and varies across different types and sizes of vessels [13].
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The total processing time of a batch of vessels is the sum of lockage time T and
the individual processing times Ti for every vessel i in the batch. Moreover, let
Lu and Ld be the distances between the upstream and downstream end points of
the waterway respectively and the lock. From the moment that a vessel is within
that distance from the lock, we consider it to be in the system. The complete
system is, therefore, determined by the tuple L = {C,P, T, Lu, Ld}.

Now, let U and D be sets of vessels, that sail upstream or downstream respec-
tively and let S = U ∪ D be the set of all vessels. Let n = |S| be the size of the
entire fleet. For each vessel i ∈ U , we are given an arrival time at the upstream
end point of the river, denoted by ai, and a deadline di, the latest time when
the vessel has to reach the downstream end point of the waterway. Similarly, aj

and dj are defined for each vessel j ∈ D, sailing in the opposite direction. Fur-
thermore, we assume that vessels in set S are ordered according to their arrival
times and that between any two sequential vessel arrivals at least ε time elapses.
Finally, let vi,p denote the speed of vessel i along river segment p ∈ {u, d},
where u and d represent the upstream and downstream segments respectively.
We assume the minimum and the maximum speed for any vessel is bounded by
vmin and vmax.

3.2 Model Definition

In the game, each vessel i ∈ U∪D decides on vi,d and vi,u ∈ [vmin, vmax], such that
vi = (vi,d, vi,u). Furthermore, let v−i denote the strategy profile of every player
in the game except for i and let v = (vi, v−i). Note that only constant speeds
have been specified for both, upstream and downstream, waterway segments.
Due to the convexity of the cost function, defined below, skippers will have
no incentive to alter their speed midway of the segments. The assumption of
constant speeds is relaxed, when an online setting of the game is considered, in
Sect. 5. To illustrate the game, consider the following example.

Example 1. Assume three vessels (see also Fig. 1): 1 and 2 sailing upstream and
3 sailing downstream. The waterway is 20 km long, and the lock is placed in the
middle of the waterway. As a result, Lu = Ld = 10. The lock has an infinite
capacity and T = T1 = T2 = T3 = 0.5. The entry/arrival times of the vessels are
as follows: a1 = 0, a2 = ε and a3 = 2ε. Moreover, we know that (v1,u, v1,d) =
(5, 5), (v2,u, v2,d) = (10, 5) and (v3,u, v3,d) = (5, 10). Given the current speeds,
vessel 1 arrives at the lock at time 2, vessel 2 at time 1+ε and vessel 3 is expected
to arrive at the lock at time 1 + 2ε.

The total fuel consumption is given by the function E(v), where v represents
the speed of the vessel. The function is measured in tons per kilometer. We
assume that fuel consumption is equal to zero if the vessel is not moving, i.e.,
its speed is equal to zero, and vessels are only standing still inside the lock.
Following the conventions from the related literature, we assume convexity of
E(v), v > 0 (see [7]).
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Fig. 1. The setup of locks and vessel for Example 1

To further simplify notations, and without loss of generalization, we consider
the fuel consumption function to be the same for every vessel and equal to

Ei(vi) = LuE(vi,u) + LdE(vi,d). (1)

The fuel consumption of the entire fleet can therefore be written as

Etot(v) =
∑

i∈S

Ei(vi). (2)

Each skipper i aims to minimize its total fuel consumption Ei(vi), given its
deadline (denoted as di) on the arrival time at the destination. This is considered
a hard constraint. Arriving at the destination after the predefined deadline is
considered infeasible, represented by an infinite penalty cost. In case the deadline
is unrestrictive for the vessel, it will sail at the minimum speed vmin. Therefore,
we define the cost function for skipper i ∈ S by

Ci(v) =

{
Ei(vi) if ai + Lu/vi,u + Ld/vi,d + qi(v) ≤ di;
∞ otherwise ,

(3)

where qi(v) is the total processing time of vessel i at the lock, i.e., waiting time
before entering the lock plus the lock re-level time T and the individual loading
times. This waiting time depends on the congestion induced by the strategy
profile, i.e., individual speeds of all vessels in the system.

We now define the social cost C(v) of a strategy profile v as the aggregated
cost of all players, defined as

C(v) =
∑

i∈S

Ci(v). (4)

The strategy profile v that minimizes the social cost is called the social optimum,
and has a social cost of

Copt = min
v

C(v). (5)
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3.3 Nash Equilibrium and Queuing Discipline at the Lock

In a non-cooperative game (without binding contracts between the skippers), we
assume that skippers act selfishly and aim to minimize their individual costs.
One of the most important tools that game theorists have at their disposal is the
Nash equilibrium: a strategy profile v∗ where no vessel can unilaterally deviate
from its current strategy v∗

i and decrease its current cost. More formally, v∗ is
a Nash equilibrium if and only if

Ci(v∗
i , v

∗
−i) ≤ Ci(vi, v∗

−i),∀vi ∈ Vi. (6)

The importance of the Nash equilibrium comes from the natural observation
that agents/players/skippers are rather interested in selfishly minimizing their
individual costs than reducing the social cost, i.e., the total cost of the entire fleet.
The Nash equilibrium is calculated by minimizing the regret of the individual
players, where regret is defined as the cost they could have saved by altering the
strategy.

The existence of the Nash Equilibrium is dependent on the waiting time of
vessels in front of the locks. In turn, this waiting time is subject to the queuing
discipline of the lock. This queuing discipline dictates the order in which ves-
sels are served by the lock operator. As the waiting time impacts the optimal
(required) speed after the lock, the queuing discipline directly affects the cost of
each skipper. Therefore, different lock mechanisms yield different characteristics
of the game. We consider the following three simple lock mechanisms:

Mechanism 1: Lock FIFO. For any i, j ∈ U ∪ D, vessel i is served by the lock
before vessel j if i arrives at the lock before j. If vessels i and j arrive at the
lock at the same time, i will be served first if ai < aj .

Mechanism 2: System FIFO. For any i, j ∈ U ∪ D, vessel i is served by the lock
before vessel j if ai < aj .

Mechanism 3: System FIFO with filling idle time. Consider vessel i ∈ U ∪ D.
Assume that skippers choose strategies sequentially and all (vj)j=1,...,i−1 are
given. For any i, j ∈ U ∪ D such that j < i, vessel i is served before j if it does
not affect the time of departure of vessel j determined by the strategy profile
(vj)j=1,...,i−1.

The following example illustrates how these three mechanisms work and how
they affect the payoff of a strategy profile.

Example 2. Consider again the setup of Example 1. Let us remind that the
entry/arrival times of the vessels were a1 = 0, a2 = ε and a3 = 2ε. Furthermore,
given the current speeds of the vessels, the arrival times at the locks are 2, 1 + ε
and 1 + 2ε, for vessels 1, 2 and 3, respectively.

First, if the lock operates under Mechanism 1, only the arrival times at the
lock are relevant. Note that vessel 2 arrives at the lock first, vessel 3 second and
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vessel 1 is the last one. As vessels are processed in order of arrival time, the
waiting times under the strategy profile are 2 + ε, 1, 2 − ε for vessel 1, 2 and 3
respectively.

Second, under mechanism 2, only the arrival times into the system are rele-
vant. Note that vessel 1 arrives first in the system, vessel 2 second and vessel 3
last. The waiting times are 1, 2 − ε, 3 − 2ε for vessel 1, 2 and 3 respectively.

Lastly, when Mechanism 3 is applied, the arrival times into the system and
at the locks are relevant. Note that if vessel 2 or 3 is served before vessel 1,
the exit from the lock of vessel 1 would be delayed. Since vessel 1 arrives first
into the system, it has priority and therefore it is processed first. Once vessel 1
is processed, the lock is open to the downstream side and vessels 2 and 3 are
waiting on the upstream and downstream segments, respectively. Vessel 2 arrives
first into the system, therefore it has priority. However, when vessel 1 has been
processed, the lock is on the side of vessel 3. Thus, serving vessel 3 does not
affect the waiting time of vessel 2. Therefore, under this mechanism, vessel 3 is
processed second and vessel 2 is processed last. The waiting times are now equal
to 1, 4 − ε, 3 − 2ε for vessel 1, 2 and 3 respectively.

Since the choice of a lock mechanism influences the behavior of vessels, it
also influences the existence of equilibria. Under the assumption of Mechanism
1, where the priority of vessels is determined by the arrival of vessels at the lock,
equilibria might not exist, which is shown in the following example.

Example 3 (Mechanism 1). Assume there are two vessels: vessel 1 sailing
upstream and vessel 2 sailing downstream. The complete river segment is again
20 km long, and the lock is placed in the middle of the waterway, hence,
Lu = Ld = 10. The lock has capacity of 1 (though, any positive capacity will
do) and its duration T and loading times T1 and T2 are set to 0.5. We assume
that the fuel consumption function E(v) is convex, non-negative and increas-
ing in speeds vi,p ∈ [5, 10], p ∈ {u, d}. We assume that the lock starts on the
upstream side, but can switch to the downstream side in time whenever vessel 2
is the first one to arrive at the lock. We assume the arrival times in the system
are given by a1 = 0 and a2 = ε and the deadlines are d1 = 4 and d2 = 4 + ε.
Note that whenever a vessel has decided on its speed up to the lock, there is a
unique speed after the lock that minimizes the fuel consumption such that the
deadline, if possible, will not be exceeded. Therefore, the strategy of the vessels
can be expressed in their speed before the lock (denoted by v1 for vessel 1, and
v2 for vessel 2). We divide all possible speed scenarios into six cases, presented in
Table 1. We see that in every strategy profile, there is a skipper that can decrease
its fuel consumption by changing its speed. Hence, there does not exist a Nash
equilibrium. Note that for this example, vopt = 6.6̄, i.e., the optimal speed for
each vessel if it would be the only vessel on this waterway segment.

Under lock operating mechanisms 2 and 3, however, the Nash equilibrium
does exist as the order in which the vessels enter the lock is determined solely
by the order in which they arrive into the system. Hence, it cannot occur that
vessels race each other to the lock, which is the main idea behind our previous
example. Under these two mechanisms, vessels cannot affect the costs of vessels
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Table 1. Speed scenarios for example 3.

Scenario v1 v2 Improving move

1 10 [5, vopt] Player 1 should decrease v1 to vopt

2 10 (vopt, 10] Player 2 should decrease v2 to 5

3 (5, 10) v2 ≤ v1 Player 2 should increase v2 to 10

4 (5, 10) v2 ≥ v1 Player 1 should increase v1 to 10

5 5 (vopt, 10] Player 2 should decrease v2 to vopt

6 5 [5, vopt] Player 1 should increase v1 to vopt

that entered the river section earlier. This implies that vessels can sequentially
choose a best response, taking into account the arrival times of the previous
vessels. We prove this statement more formally in the next theorem.

Theorem 1. Consider the single lock scheduling problem, where the lock oper-
ates under Mechanism 2 or 3. Then, each game possesses at least one Nash
equilibrium.

Proof. We provide a generic construction of a strategy profile and show that
this strategy profile constitutes a Nash equilibrium. Observe that under both
Mechanism 2 and 3, for any speed vi, the waiting time of vessel i, qi(v), only
depends on the vessels arriving earlier in the system than vessel i. Consequently,
knowing the strategies v1, . . . , vi−1 is sufficient to determine optimal strategy vi.

By construction of the strategy profile, it is apparent that each vessel i
chooses its best possible strategy with respect to the early arriving vessels. Also,
strategies of vessels that arrive later cannot influence the costs experienced by
vessel i. Hence, vessel i can not decrease its private cost and therefore the result-
ing strategy profile is a Nash equilibrium.

Note, that the difference between the two mechanisms occurs in the individual
optimization of strategies: under Mechanism 3 the waiting times caused by profile
v might be different from the waiting times under Mechanism 2 using the same
vector v. However, the implications and the arguments stay the same: the cost
for vessel i is only affected by the strategies of the first i − 1 vessels. ��

A central authority could guarantee the existence of a Nash equilibrium by
forcing the lock operators to use Mechanism 2 or Mechanism 3. However, the
fact that a Nash equilibrium exists does not tell us anything about its cost
efficiency. Selfish decision making may lead to a Nash equilibrium with a high
social cost, which then leads to a waste of resources and high pollution on rivers.
In Mechanism 2 and 3, individual costs highly depend on the strategies taken by
the previous vessels. Therefore, selfish decision making may lead to the scenario
in which later vessels are unable to cross the river segment before their deadline,
resulting in a Nash equilibrium with an infinitely high social cost. Such scenario
indicates that the price of anarchy of this game (the ratio between the highest
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social cost of any Nash equilibrium and the minimal social cost) is unbounded.
This becomes apparent in the following example.

Example 4. We consider the same instance as in Example 3. However, this time
we assume that the lock operates under Mechanism 2. We construct a Nash
equilibrium with the procedure described in the proof of Theorem 1. This implies
that v∗

1 = (20/3, 20/3). Note that there is no strategy in the strategy space of
vessel 2, such that it passes the river segment before its deadline. Thus the social
cost of this instance is infinitely high.

There is a strategy profile such that both vessels cross the river before their
deadlines. More precisely, v = (5, 10) leads to a finite costs for both vessels.
Because of this, the price of anarchy of the game at hand is unbounded. Note that
the same results hold, when the lock is assumed to operate under Mechanism 3.

The goal of this section was to show that, though the concept of a Nash
equilibrium seems appealing, in the non-cooperative setting it might not exist or
it might be extremely inefficient compared to a socially optimal strategy profile.
In the next section, we review the problem from a cooperative game point of view
as we introduce the possibility to make binding contracts between the vessels.

4 Cooperative Game for Traffic Optimization
at River Obstacles

We now assume that the vessels can make binding contracts and allow payments
between skippers. As a result, the agents/skippers can incentivize their counter-
agents to adapt their speeds by reimbursing their extra costs. We aim to find
a solution concept that is cost optimal while making sure that no player can
profit from a unilateral deviation from the social optimum. More precisely, we
introduce a payment system that fulfills two criteria:

1. By participating in the payment system, the cost of a player can never be
higher than when he/she did not participate.

2. The payment system should give a vessel an incentive to behave as in the
social optimum.

In this section, we consider full information about the lock, river segments
and vessels that will enter the system to be known in advance. An online variant
of this problem is presented in Sect. 5, in which only the information about
the river segment and the lock are publicly known while information about the
vessels becomes only available when a vessel physically enters the waterway.
First, we propose an algorithm that returns for each vessel a speed vi, and
the payment scheme Pi,j indicating payment of skipper i to skipper j for the
requested velocity adjustment. Second, we prove that the solution proposed by
the algorithm satisfies the two criteria mentioned above.
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4.1 Iterative Payment Scheme Algorithm

The algorithm sequentially determines optimal speeds and payments in the order
of vessels arrival by considering all vessels 1 through i, denoted by the set S̄i. In
the first iteration, only vessel 1 is considered and its optimal speed is determined.
Let ζ1 be the operating cost associated with this strategy such that ζ1 = C1(v1).
During future iterations, it will be ensured that the cost for this skipper will not
go above the cost of this benchmark situation. To do this, other skippers should
fully reimburse any cost increase that results from changing the strategy for the
skipper.

Now, let P ∗
j,j′ be the payment scheme for all j′ < j < i at iteration i.

Moreover, all guaranteed costs ζj are considered to be known for all j < i. To
determine the speeds vj for all j ∈ S̄i and payments Pi,j for all j < i, we solve
the following optimization problem: determine new velocities of the vessels from
S̄i such that the sum of the costs and payments for vessel i is minimized, while
the total cost of each vessel j < i is at most ζj . Then, we compute the value of
the guaranteed cost ζi of player i. More formally, we define following relations.

Copt,k(S̄i) := Ck

(
(v∗

j )j∈S̄i

)
k ∈ S̄i, (7)

P ∗
i,k := Copt,k(S̄i) − ζk −

∑

j∈S̄i−1:j>k

P ∗
jk k ∈ S̄i−1, (8)

ζi := Copt,i(S̄i), (9)

where v∗ and P ∗ are the solutions to the following optimization problem. For
a given vessel i > 1, having computed all optimal values P ∗ for all i′ < i, the
mathematical program reads

min
(vj)j∈S̄i

;Pi,j

⎛

⎝ Ci

(
(vj)j∈S̄i

)
+

∑

k∈S̄i−1

Pi,k

⎞

⎠ (10)

Ck

(
(vj)j∈S̄i

) − Pi,k −
∑

j∈S̄i−1
j>k

P ∗
j,k ≤ ζk, k ∈ S̄i−1. (11)

Algorithm 1 represents the payment system which outputs both optimal
speeds and payments for all skippers. Note that the optimization problem has
been replaced by a computation of the social optimal speeds. This is a valid
substitution due to Theorem 2 below.
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Input: (L := (C, T, P, Lu, Ld), U,D, (ai, di, vmin, vmax)i∈U∪D)
Output: Optimal set of speeds and payments.
S̄1 = {1} ;
ζ1 = Copt(Si) ;
for i from 2 to n do

S̄i = S̄i−1 ∪ {i} ;
Compute Copt(S̄i) and let (v∗

j )j∈S̄i
be the optimal parameters;

Copt,k(S̄i) := Ck

(
(v∗

j )j∈S̄i

) ∀k ∈ S̄i;
P ∗
i,k := Copt,k(S̄i) − ζk − ∑

j∈S̄i−1:j>k P ∗
jk ∀ k ∈ S̄i−1;

ζi := Copt,k(S̄i);
end
return ((v∗

j )j∈S , (P ∗
ij)i,j∈S)

Algorithm 1. Payment mechanism

The subroutine computing of Copt(S̄i) can be implemented in various ways.
In the Appendix, we provide a MIP-formulation to solve the lock scheduling
problem to optimality. This formulation is based on the model in [7] and has
been adjusted to comply with our problem statement. Moreover, we show that
the problem is NP-complete in the strong sense, this way motivating design
of MIP-formulations and approximation algorithms for the problem. Regarding
existence of good approximation algorithms, we leave this question open but
stress that any α-approximation algorithm directly leads to an α-approximate
Nash equilibrium.

Given a solution to the optimization problem above, in Theorem2, we show
that the optimal speeds in that problem are equivalent to the speeds in the social
optimum computed on vessels in the set S̄i.

Theorem 2. (v∗
j )j∈S̄i

= argmin(vj)j∈S̄i

∑
k∈S̄i

Ck(vj)j∈S̄i
.

Proof. For each k ∈ S̄i−1,

Pi,k = Ck

(
(vj)j∈S̄i

) − ζk −
∑

j∈S̄i−1
j>k

P ∗
j,k (12)

and therefore the optimization problem can be written as

(v∗
j )j∈S̄i

= argmin
(vj)j∈S̄i

Ci

(
(vj)j∈S̄i

)
+

∑

k∈S̄i−1

Pi,k (13)

= argmin
(vj)j∈S̄i

Ci

(
(vj)j∈S̄i

)
+

∑

k∈S̄i−1

(
Ck

(
(vj)j∈S̄i

) − ζk −
∑

j∈S̄i−1
j>k

P ∗
j,k

)

(14)
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= argmin
(vj)j∈S̄i

∑

k∈S̄i

Ck

(
(vj)j∈S̄i

) −
∑

k∈S̄i−1

(
ζk +

∑

j∈S̄i−1
j>k

P ∗
j,k

)
(15)

= argmin
(vj)j∈S̄i

∑

k∈S̄i

Ck

(
(vj)j∈S̄i

)
, (16)

��
Lastly, in Theorem 3, we show that in the i-th iteration of the algorithm the

best response for skipper i is to obey the payment mechanism. This means that
the guaranteed cost of vessel i plus the payments this skipper has to pay to all
other skipper is lower than the cost of any strategy not involving the payments.

Theorem 3. In Algorithm 1 for each S̄i, it holds that

ζi +
∑

k∈S̄i−1

Pi,k ≤ Ci(vi, (v∗
j )j∈S̄i−1

) for all vi ∈ Vi. (17)

Proof. Note that after every iteration i, it holds for every k ∈ S̄i−1

P ∗
i,k = Copt,k(S̄i) − ζk −

∑

j∈S̄i−1
j>k

P ∗
jk (18)

Copt,k(S̄i) = ζk +
∑

j∈S̄i
j>k

P ∗
jk (19)

This leads to the following equality.

ζi +
∑

k∈S̄i−1

P ∗
ik = Copt,i(S̄i) +

∑

k∈S̄i−1

(
Copt,k(S̄i) − ζk −

∑

j∈S̄i−1
j>k

P ∗
jk

)
(20)

=
∑

k∈S̄i

Copt,k(S̄i) −
∑

k∈S̄i−1

(
ζk +

∑

j∈S̄i−1
j>k

P ∗
jk

)
(21)

=
∑

k∈S̄i

Copt,k(S̄i) −
∑

k∈S̄i−1

Copt,k(S̄i−1) (22)

= Copt(S̄i) − Copt(S̄i−1) (23)

Furthermore, we know that

Copt(S̄i) ≤ Ci(vi, (v∗
j )j∈S̄i−1

) + Copt(S̄i−1) for all vi ∈ Vi (24)

Copt(S̄i) − Copt(S̄i−1) ≤ Ci(vi, (v∗
j )j∈S̄i−1

) for all vi ∈ Vi (25)

ζi +
∑

k∈S̄i−1

P ∗
ik ≤ Ci(vi, (v∗

j )j∈S̄i−1
) for all vi ∈ Vi (26)

��
From Theorems 2 and 3, it follows that the stated criteria for an efficient

payment mechanism are fulfilled by Algorithm 1.
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5 Online Setting

The assumption of perfect information on arrival times is likely to be violated
in real-life. That is, there is no information prior to the arrival of the vessels at
the boundaries of the system. Each time a vessel enters, the optimal speed and
payments are recomputed taking into account the location of the vessels already
present on the waterway. Note that the definition of a social optimum and a
best response of a player are dependent on the information setting of the game.
Therefore, we have to dynamically redefine/adjust these quantities in an online
setting.

Let the distance between vessel i and the exit of the waterway at time t be
denoted by ht

i. The best response of vessel i, given the strategies of the other
vessels, is defined as the strategy that minimizes the cost of vessel i conditional
on the position of the other vessels at time t. The cost of vessel i under strategy
profile v conditional on the position of all vessels in set S̄ at time t is denoted as
Ci

(
(vj)j∈S̄ |(ht

j)j∈S̄

)
. The social optimum is defined as a strategy profile, which

provides the lowest possible cost given the positions of vessels in S̄ at time t.
Similar to the offline setting, the algorithm sequentially determines optimal

speeds and payments at the arrival of each vessel. In each iteration, a set S̄i is
constructed containing all vessels currently in the system. Assume that vessel
i arrives and vessels in S̄ = {k, k + 1, . . . , i} have not left the waterway yet.
Assume that the payments P ∗

j,j′ for all k ≤ j′ < j < i and the guaranteed
costs ζj for all k ≤ j < i are given. Since each vessel is at a different position,
payments and costs are normalized to units per kilometers. Therefore, we solve
the following optimization problem: determine new velocities of the vessels from
S̄i such that the sum of the costs and payments for vessel i is minimized, while
the normalized total cost of each vessel k ≤ j < i is at most the normalized
guaranteed cost. Given the following relations

Cai

opt,k(S̄i) = Ck

(
(v∗

j )j∈S̄i
|(hai

j )j∈S̄i

) ∀ k ∈ S̄i, (27)

P ∗
i,k := Cai

opt,k(S̄i) − hai

k

( ∑

j∈S̄i\{i}
j>k

(
P ∗
j,k

h
aj

k

)
+

ζk
ld + lu

)
∀ k ∈ S̄i \ {i} , (28)

ζi := Cai
opt,i(S̄i) (29)

we define the online optimization problem as

(v∗
j )j∈S̄i

∈ argmin
(vj)j∈S̄i

:Pi,j

⎛

⎝Ci

(
(vj)j∈S̄i

|(hai
j )j∈S̄i

)
+

∑

k∈S̄i\{i}
Pi,k

⎞

⎠ (30)

s.t

Ck

(
(vj)j∈S̄i

|(hai
j )j∈S̄i

)

hai

k

− Pi,k

hai

k

−
∑

j∈S̄i\{i}
j>k

P ∗
j,k

h
aj

k

≤ ζk
ld + lu

k ∈ S̄i \ {i} .

(31)
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Again, it can be shown that the two conditions for an efficient payment
mechanism are fulfilled in the online setting. The proof is similar to the one
discussed in the offline case. The resulting algorithm is given in Algorithm 2.

Input: (L := (C, T, P, Lu, Ld), U, D, (ai, di, vmin, vmax)i∈U∪D)
Output: Optimal set of speeds and payments.
vessel i arrives in the system at time ai:
For each vessel currently present in the waterway, update the distance to the
destination;

Let S̄i be the set of vessels in the waterway at time ai;
if S̄i �= ∅ then

Compute Cai
opt(S̄i) and let (v∗

j )j∈S̄i
be the optimal parameters;

Cai
opt,k(S̄i) = Ck

(
(v∗

j )j∈S̄i
|(hai

j )j∈S̄i

) ∀ k ∈ S̄i;

P ∗
i,k := Cai

opt,k(S̄i) − hai
k

( ∑

j∈S̄i\{i}
j>k

(
P ∗
j,k

h
aj

k

)
+

ζk
ld + lu

)
∀ k ∈ S̄i \ {i} ;

ζi := Cai
opt,i(S̄i);

else

ζi = min
vi

Ci(vi);

end

Algorithm 2. Payment mechanism Online Setting

Note that whenever a vessel enters the lock, its total fuel cost and payments
to the other vessels are known, and will not change anymore. Hence, the lock
operator can also operate as a bank: whenever a vessel crosses the lock, it pays
(or receives) the payments. This implies that the lock operator needs a cash
reserve, as it is likely that the first vessels entering the lock receive money from
the vessels that did not arrive at the lock yet. Clearly, this cash reserve needs
to be at most the cost of an optimal profile minus the minimum fuel cost of all
earlier vessels. In the journal version of the paper we give a simple and insightful
example where the cash reserve is actually completely needed.
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4. Günther, E., Lübbecke, M.E., Möhring, R.H.: Vessel traffic optimization for the
Kiel canal. TRISTAN VII Book of Extended Abstracts 104 (2010)

5. Nauss, R.M.: Optimal sequencing in the presence of setup times for tow/barge
traffic through a river lock. Eur. J. Oper. Res. 187(3), 1268–1281 (2008)

6. Passchyn, W., Briskorn, D., and Spieksma, F.C.R.: No-wait scheduling for locks.
Technical Report KBI 1605, KU Leuven, Research group Operations Research and
Business Statistics, Leuven, Belgium (2016)

7. Passchyn, W., Briskorn, D., Spieksma, F.C.R.: Mathematical programming models
for lock scheduling with an emission objective. Eur. J. Oper. Res. 248(3), 802–814
(2016)

8. Passchyn, W., Coene, S., Briskorn, D., Hurink, J.L., Spieksma, F.C.R., Vanden
Berghe, G.: The lockmaster’s problem. Eur. J. Oper. Res. 251(2), 432–441 (2016)

9. Petersen, E.R., Taylor, A.J.: An optimal scheduling system for the Welland Canal.
Transp. Sci. 22(3), 173–185 (1988)

10. Prandtstetter, M., Ritzinger, U., Schmidt, P., Ruthmair, M.: A variable neighbor-
hood search approach for the interdependent lock scheduling problem. In: Ochoa,
G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 36–47. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16468-7 4

11. Psaraftis, H.N., Kontovas, C.A.: Speed models for energy-efficient maritime trans-
portation: a taxonomy and survey. Transp. Res. Part C: Emerg. Technol. 26,
331–351 (2013)

12. Smith, L.D., Nauss, R.M., Mattfeld, D.C., Li, J., Ehmke, J.F., Reindl, M.: Schedul-
ing operations at system choke points with sequence-dependent delays and process-
ing times. Transp. Res. Part E: Logistics Transp. Rev. 47(5), 669–680 (2011)

13. Smith, L.D., Sweeney, D.C., Campbell, J.F.: Simulation of alternative approaches
to relieving congestion at locks in a river transportion system. J. Oper. Res. Soc.
60(4), 519–533 (2009)

14. Ching-Jung, T., Schonfeld, P.: Effects of speed control on tow travel costs. J.
Waterw. Port Coastal Ocean Eng. 125(4), 203–206 (1999)

15. Ching-Jung, T., Schonfeld, P.: Control alternatives at a waterway lock. J. Waterw.
Port Coastal Ocean Eng. 127(2), 89–96 (2001)

16. Verstichel, J., De Causmaecker, P., Spieksma, F.C.R., Vanden Berghe, G.: Exact
and heuristic methods for placing vessels in locks. Eur. J. Oper. Res. 235(2),
387–398 (2014)

17. Verstichel, J., De Causmaecker, P., Spieksma, F.C.R., Vanden Berghe, G.: The gen-
eralized lock scheduling problem: an exact approach. Transp. Res. Part E: Logistics
Transp. Rev. 65, 16–34 (2014)

https://www.inland-navigation-market.org/wp-content/uploads/2017/09/CCNR_annual_report_EN_Q2_2017_BD_-1.pdf
https://www.inland-navigation-market.org/wp-content/uploads/2017/09/CCNR_annual_report_EN_Q2_2017_BD_-1.pdf
https://www.inland-navigation-market.org/wp-content/uploads/2017/09/CCNR_annual_report_EN_Q2_2017_BD_-1.pdf
https://doi.org/10.1007/978-3-319-16468-7_4


Integer Conic Function Minimization
Based on the Comparison Oracle

Dmitriy V. Gribanov1,2(B) and Dmitriy S. Malyshev1,2

1 Lobachevsky State University of Nizhny Novgorod,
23 Gagarina Avenue, Nizhny Novgorod 603950, Russian Federation

dimitry.gribanov@gmail.com
2 National Research University Higher School of Economics, 25/12 Bolshaja

Pecherskaja Ulitsa, Nizhny Novgorod 603155, Russian Federation
dsmalyshev@rambler.ru

Abstract. Let f : R
n → R be a conic function and x0 ∈ R

n.
In this note, we show that the shallow separation oracle for the set
K = {x ∈ R

n : f(x) ≤ f(x0)} can be polynomially reduced to the com-
parison oracle of the function f . Combining these results with known
results of D. Dadush et al., we give an algorithm with (O(n))n logR
calls to the comparison oracle for checking the non-emptiness of the
set K ∩ Z

n, where K is included to the Euclidean ball of a radius R.
Additionally, we give a randomized algorithm with the expected oracle
complexity (O(n))n logR for the problem to find an integral vector that
minimizes values of f on an Euclidean ball of a radius R. It is known
that the classes of convex, strictly quasiconvex functions, and quasicon-
vex polynomials are included into the class of conic functions. Since any
system of conic functions can be represented by a single conic function,
the last facts give us an opportunity to check the feasibility of any system
of convex, strictly quasiconvex functions, and quasiconvex polynomials
by an algorithm with (O(n))n logR calls to the comparison oracle of the
functions. It is also possible to solve a constraint minimization problem
with the considered classes of functions by a randomized algorithm with
(O(n))n logR expected oracle calls.

Keywords: Nonlinear integer programming · Conic function ·
Convex function · Quasiconvex function · Comparison oracle ·
Separation oracle · Membership oracle · Convex set · Integral lattice

1 Introduction

Let K be a convex set included into the Euclidean ball a + R · Bn
2 with a center

a ∈ Q
n and a radius R ∈ Q+. Let, additionally, Λ = Λ(B) be the lattice induced
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by the columns of a matrix B ∈ Q
n×n. In this note, we consider the following

two problems. The first problem is to check the non-emptiness of a set

K ∩ Λ (1)

and return x ∈ K ∩ Λ, if it is not empty. The second one is to find an exact
minimizer of the following minimization problem

f(x) → min (2)
x ∈ K ∩ Λ,

where f : K → R is a quasiconvex function, or assert that K ∩ Λ is empty.
The integer minimization problem of (quasi)convex functions under (quasi)

convex constraints is a well-known and intensively studied generalization of the
integer linear programming problem [1,3,4,6–8,10–15,18–20].

The goal function and constraints can be defined explicitly or by an oracle. In
the papers [7,20], for the non-emptiness (feasibility) problem (1), it was proposed
a polynomial-time on log R algorithm, for a fixed dimension n, where K is given
by the separation hyperplane oracle. A modification of these results and a good
survey can be found in [6], where a (O(n))n poly(log R)-oracle time algorithm has
been presented. Additionally, in [6] a randomized (O(n))n poly(log R)-expected
oracle time algorithm for the minimization problem (2) has been presented,
where K is given by the separation hyperplane oracle and f is convex and given
by the subgradient oracle. A novel approach in integer convex optimization,
based on the centerpoint concept, is proposed in [2,18].

The main disadvantage of the oracles mentioned above is that they are hard
to implement. A more convenient way is to use the comparison oracle and the 0-
th order oracle that computes function values. For any two points x, y ∈ dom(f),
the comparison oracle allows to decide which of the two possibilities f(x) ≤ f(y)
or f(x) > f(y) holds. It was shown in [5] that the minimization problem (2),
for an arbitrary quasiconvex function f and for K = R · Bn

2 , can not be solved
by an algorithm with a polynomial on log R number of calls to the comparison
oracle. Additionally, it means that the problem (2), for the separation hyperplane
oracle, can not be polynomially reduced to the same problem for the comparison
oracle.

The integer minimization problem of convex (and closed to them) functions,
given by the comparison oracle or by the 0-th order oracle, was considered in
[4,5,21].

In the paper [4], an algorithm was developed for minimization of integer
strictly quasiconvex function for n = 2 with the number of comparison oracle
calls at most 2 log22 R+O(log R). In the paper [21], it was considered the symmet-
ric version of the problem for n = 2 with the 0-th order oracle and the number
of oracle calls at most 4 log2 R + O(1).

In the paper [5], it was considered the question about a possibility of narrow-
ing the class of quasiconvex functions, given by the comparison oracle, for which
the integer optimization problem, for a fixed dimension, can be solved in polyno-
mial on log R time. In particular, some classes of functions were introduced there,
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called conic and discretely conic. The class of conic functions contains the classes
of convex, strictly quasiconvex functions and the class quasiconvex polynomials.
For the minimization problem (2), where K = R ·Bn

2 and f is a conic function, a
deterministic algorithm with the oracle complexity (O(n))2n log R was presented
in [5]. Additionally in [5], the lower oracle complexity bound 3n−1 log(2R − 1)
was obtained.

1.1 Results of This Article

Let g : Rn → R be a conic function and x0 ∈ R
n. We show that the shallow

separation oracle for the set K = {x ∈ R
n : g(x) ≤ g(x0)} can be polynomially

reduced to the comparison oracle of the function g. Using the shallow cut ellipsoid
method [9,17], introduced by A. Nemirovsky and D. Yudin, we then can find an
ellipsoid E with a center a ∈ Q

n, such that K is well-sandwiched by E:

1
2(n + 1)

√
n

E ⊆ K − a ⊆ E.

The presented result gives us an opportunity to use results of Dadush et al. [6].
The work [6] contains an algorithm with the oracle complexity (O(n))n log R
for the non-emptiness problem (1), where K is defined by the strict separation
hyperplane oracle. A detailed consideration of the algorithm from [6] shows that
it also works for the set K, equipped by the membership oracle, for which it is
possible to find an ellipsoid E in 2O(n)-time, such that K is well-sandwiched by E.
All together, it gives an algorithm for the non-emptiness (feasibility) problem (1),
where K = {x ∈ R

n : g(x) ≤ g(x0)} with (O(n))n log R calls to the comparison
oracle for g. In a similar way, a randomized algorithm with the expected number
(O(n))n log R of calls to the oracle is presented for the minimization problem
(2), where K = {x ∈ R

n : g(x) ≤ g(x0)} and f is conic.

2 Definitions, Notation and Some Preliminary Results

Let Bn
p be the n-dimensional unit ball related to the norm lp. In other words,

Bn
p = {x ∈ R

n : ||x||p ≤ 1}.

For a matrix B ∈ R
m×n, cone(B) = {Bt : t ∈ R

n
+} is the cone spanned by

columns of B, conv.hull(B) = {Bt : t ∈ R
n
+,

∑n
i=1 ti = 1} is the convex hull

spanned by columns of B, affine(B) = {Bt : t ∈ R
n,

∑n
i=1 ti = 1} is the affine

hull spanned by columns of B, and Λ(B) = {Bt : t ∈ Z
n} is the lattice spanned

by columns of B.
For points x(1), x(2), . . . , x(k) ∈ R

n, the set

x(k) + cone(x(k) − x(1), . . . , x(k) − x(k−1)) (3)

is denoted as cone(x(1), x(2), . . . , x(k−1)|x(k)).
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For a set D ⊆ R
n, int(D) and br(D) are the sets of interior and boundary

points of D, respectively. The sets of interior and boundary points related to
affine(D) are denoted by rel. int(D) and rel.br(D), respectively. The closure of
D is denoted by cl(D).

For a vector x ∈ R
n, xi is the i-th component of x. The set of integer values,

started from i and ended in j, is denoted by i : j = {i, i+1, . . . , j}. The interval
between points y, z ∈ R

n is denoted by

[y, z] = {x = ty + (1 − t)z : 0 ≤ t ≤ 1}.

We will use the symbol (y, z) to define an open interval. The set D is said to be
convex if ∀x, y ∈ D we have [x, y] ⊆ D. For a function f , dom(f) is the domain
of f . For any y ∈ dom(f), H≤

f (y) is the set of contour lines for f . In other words,

H≤
f (y) = {x ∈ dom(f) : f(x) ≤ f(y)}.

The set H=
f (y) is defined in a similar way.

For any symmetric positive definite matrix A ∈ R
n and vector a ∈ R

n,
E(A, a) is the ellipsoid E(A, a) = {x ∈ R

n : (x − a)�A−1(x − a) ≤ 1}.

2.1 Classes of Functions

Let us consider the set of functions f : dom(f) → R, such that dom(f) ⊆ R
n is

convex. A function f is said to be quasiconvex if

∀x, y ∈ dom(f), ∀z ∈ (x, y) f(z) ≤ max{f(x), f(y)}.

A function f is said to be strictly quasiconvex if

∀x, y ∈ dom(f), ∀z ∈ (x, y) f(z) < max{f(x), f(y)}.

A function f is said to be convex if

∀x, y ∈ dom(f), ∀t ∈ (0, 1) f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y).

We will denote these classes by the symbols QConvn, SQConvn, and Convn,
respectively. Additionally, we denote by QCPolyn the class of quasiconvex poly-
nomials with real coefficients.

Definition 1. Let D be a set, equipped by a linear (total) order 	. Let f :
dom(f) → D, where dom(f) is convex.

The function f is conic if ∀y, z ∈ dom(f) and ∀t ≥ 0, such that f(y) 	 f(z)
and z + t(z − y) ∈ dom(f), we have

f(z + t(z − y)) � f(z).
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In our work, we mainly use D = R with the standard ordering, but the
results of the work are valid for the general case too. Additionally, In Section
“Algorithms for the optimization problem” we need to use D = R

2 with the lex-
icographical ordering to reduce a constraint minimization problem to an uncon-
strained variant.

Clearly, the class Conicn of conic functions is a subclass of the quasiconvex
functions class, that is Conicn ⊂ QConvn. The inclusion is strict, a counterex-
ample is the quasiconvex function sgn(x1).

The next theorem from [5] gives two additional ways to define the class of
conic functions.

Theorem 1. Let f : dom(f) → D, where dom(f) ⊆ R
n is convex, and D be a

set, equipped by a linear (total) order 	. The following definitions are equivalent:

1. For any pair of points y, z ∈ dom(f) and ∀t ≥ 0, such that f(y) 	 f(z) and
z + t(z − y) ∈ dom(f), we have

f(z + t(z − y)) � f(z).

2. For any set of points x(1), x(2), . . . , x(k), y ∈ dom(f), such that

f(x(1)) 	 f(x(2)) 	 · · · 	 f(x(k)) and

y ∈ cone(x(1), x(2), . . . , x(k−1)|x(k)),

the inequality f(y) � f(x(k)) holds. Furthermore, we can assume that the
points x(1), x(2), . . . , x(k) are in general position, i.e. no hyperplane contains
more than n of them.

3. For any x ∈ dom(f), the set H≤
f (x) is convex (which is equivalent to the

quasiconvexity of the function f) and

∀x ∈ dom(f) \ M H=
f (x) ⊆ rel.br(H≤

f (x)),

where M = arg min
x∈dom(f)

f(x). If the set M is not defined, we will put it to be

empty.

The next theorems from [5] show that the class Conicn contains some impor-
tant subclasses.

Theorem 2. The following strict inclusions hold:

1. SQConvn ⊂ Conicn ⊂ QConvn,
2. QCPolyn ⊂ Conicn,
3. Convn ⊂ Conicn.

Theorem 3. The class Conicn is closed with respect to the following operations.

1. Let fi ∈ Conicn be real-valued functions and wi ∈ R+, for any i ∈ 1 : k.
Then the function g(x) = max

i∈1:k
{wifi(x)} belongs to the class Conicn, where

dom(g) =
⋂

i∈1:k

dom(fi).



Integer Conic Function Minimization Based on the Comparison Oracle 223

2. Let f ∈ Conicn be real-valued function and h : R → R be a non-decreasing
function. Then the function g = h · f belongs to the class Conicn.

3. Let f ∈ Conicm, A ∈ R
m×n, and b ∈ R

m. Then the affine image g(x) =
f(Ax + b) belongs to the class Conicn.

2.2 Computational Model

Let us present types of oracles that we will need in this paper. With some slight
modifications, we adopt the terminology from [6,9].

Let K ⊆ R
n be a convex set. We say that K is (a,R)-circumscribed if K ⊆

a + R · Bn
2 for some a ∈ Q

n and R ∈ Q+. If the set K is (0, R)-circumscribed,
then we simply call it R-circumscribed. For ε ∈ Q+, we define

Kε = K + εBn
2 and K−ε = {x ∈ K : x + εBn

2 ⊆ K}.

For A ∈ Q
m×n we define size(A) as the length of the binary encoding of A.

Definition 2. The membership oracle OK for K is a function, which takes as
an input a point x ∈ Q

n and returns OK(x) = [x ∈ K].

Definition 3. The strong separation oracle SSEPK on an input y ∈ Q
n either

returns YES if y ∈ K or some c ∈ Q
n, such that c�x < c�y for any x ∈ K.

Definition 4. The weak separation oracle WSEPK on an input y ∈ Q
n and a

rational ε > 0, either

1. asserts that y ∈ Kε or
2. finds a vector c ∈ Q

n with ||c||∞ = 1, such that c�x ≤ c�y + ε for every
x ∈ K−ε

When working with separation oracles, we assume that there is a polynomial
φ, such that on an input y and ε as above, the outputs of SSEPK and WSEPK

have a size bounded by φ(size(y) + size(ε)). The running times of algorithms
using SSEPK and WSEPK will therefore depend on φ. Clearly, the membership
oracle can be easily derived from the strong separation oracle.

Definition 5. Let f : K → R be a convex function with dom(f) = K. We refer
that the function f is equipped by the subgradient oracle, if we have a query
access to a subgradient v ∈ δf(x) and to the value f(x) for any x ∈ K.

Definition 6. The shallow separation oracle, for a convex set K ⊆ R
n, is an

oracle, whose input is an ellipsoid E(A, a), described by a positive definite matrix
A ∈ Q

n×n and a vector a ∈ Q
n. The shallow separation oracle, denoted by

SHALLK(A, a), can output one of the following possible answers:

1. a vector c ∈ Q
n \ {0}, so that the halfspace H = {x ∈ R

n : c�x ≤ c�a + (n +
1)−1

√
c�Ac} contains K ∩ E(A, a) (a vector c with this property is called a

shallow cut for K and E(A, a)),
2. the assertion that E(A, a) is tough.
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As above, we assume the existence of a polynomial φ, such that the size of the
output of SHALLK(A, a) is bounded by φ(size(A) + size(a)). “Toughness” is a
parameter left open, and in every instance of the shallow separation oracle the
particular meaning of “tough” has to be specified. In our work, a tough ellipsoid
is an ellipsoid E(A, a), such that E( 1

4n(n+1)2 A, a) ⊆ K.

Theorem 4. (Shallow cut ellipsoid method [17], [9, pp. 94–102]). There
exists an oracle-polynomial time algorithm, called the shallow cut ellipsoid
method, so that for any rational number ε > 0 and for any R-circumscribed
closed convex set, given by the shallow separation oracle SHALLK , finds a posi-
tive definite matrix A ∈ Q

n×n and a point a ∈ Q
n, such that one of the following

holds:

1. E(A, a) has been declared tough by the oracle,
2. K ⊆ E(A, a) and vol(E(A, a)) ≤ ε.

Here we give the definitions of strong and weak versions of comparison
oracles. Our definitions are slightly stronger then the standard ones, because
they allow to compare the function values with zero. We need this possibility,
because we want to work with sets of the type {x ∈ R

n : f(x) ≤ 0} instead
of {x ∈ R

n : f(x) ≤ f(x0)}. It makes sense clearer, and the constraint is not
crucial from our point of view.

Definition 7. The comparison oracle COMPf for f : Rn → R is a function,
which takes as an input a pair of points x, y ∈ Q

n, and returns COMPf (x, y) =
[f(x) ≤ f(y)].

It also possible to compare the value of the function f in the point x ∈ Q
n

with zero. In this case, we assume that COMPf takes as an input x, and returns
COMPf (x) = [f(x) ≤ 0].

Definition 8. The weak comparison oracle WCOMPf for f : R
n → R is a

function, which takes as an input a pair of points x, y ∈ Q
n and a rational ε,

and returns WCOMPf (x, y, ε) = [f(x) ≤ f(y)] if |f(x) − f(y)| > ε, where any
answer is possible if |f(x) − f(y)| ≤ ε.

It also possible to compare the value of the function f in the point x ∈ Q
n

with zero. In this case, we assume that WCOMPf takes as an input x and a
rational ε > 0, and returns WCOMPf (x, ε) = [f(x) ≤ 0] if |f(x)| > ε, where
any answer is possible if |f(x)| ≤ ε.

The next theorems give some knowledge about the power of comparison
oracles for convex functions.

Theorem 5. Let an R-circumscribed convex set K be given by the strong separa-
tion hyperplane oracle SSEPK . Then, there exists a conic function f : Rn → R,
equipped by the weak comparison oracle WCOMPf , such that K = {x ∈ R

n :
f(x) ≤ 0}. The computation of WCOMPf needs a polynomial number of calls
to SSEPK on any input.
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Proof. Let f : Rn → R be the function given by the formula

f(x) =

{
0, for x ∈ K

1 + dK(x), for x /∈ K,

where dK(x) = inf
y∈K

||x − y||2 is the distance from the point x to K. Clearly,

K = {x ∈ R
n : f(x) ≤ 0} and the function f is conic by the third item of

Theorem 1. Let us show how to implement WCOMPf (y, z, ε) for y, z ∈ Q
n and

a rational ε, assuming that |dK(y)−dK(z)| > ε. The separation hyperplane oracle
gives an opportunity to check the statements y ∈ K and z ∈ K. In case y ∈ K we
put WCOMPf (y, z, ε) = 1. If y /∈ K and z ∈ K we put WCOMPf (y, z, ε) = 0.
In the case, when y /∈ K and z /∈ K we need to compute the distances dK(y)
and dK(z) and compare them. The problem to compute the value of dK(y) can
be formulated as the following convex optimization problem

min
x∈K

||y − x||2.

The results, described in [9, pp. 56, 105–107], state that this problem for an
R-circumscribed convex set K, equipped by the weak separation hyperplane
oracle WSEPK , can be solved with any accuracy δ > 0 in time polynomial on
size(y) + size(R) + size(δ). Finally, we can compute d1 ≈ dK(y) and d2 ≈ dK(z)
with the accuracy δ = ε/2 and return WCOMPf (y, z, ε) = [d1 ≤ d2].

The next theorem states that a polynomial-time reduction from the weak
separation oracle to the weak comparison oracle is also possible in the case,
when K is additionally closed.

Theorem 6. Let a closed R-circumscribed convex set K be given by the weak
separation hyperplane oracle WSEPK . Then, there exists a conic function f :
R

n → R, equipped by the weak comparison oracle WCOMPf , such that K =
{x ∈ R

n : f(x) ≤ 0}. The computation of WCOMPf needs a polynomial number
of calls to WSEPK on any input.

Proof. Let f = dK(x), where dK(x) = inf
y∈K

||x−y||2 is the distance from the point

x to K. Clearly, cl(K) = {x ∈ R
n : f(x) ≤ 0} and the function f is conic by the

third item of Theorem 1. Since K is closed, we have K = {x ∈ R
n : f(x) ≤ 0}.

Assuming that |dK(y) − dK(z)| > ε, the oracle WCOMPf (y, z, ε), for y, z ∈ Q
n

and a rational ε, can be implemented by the following way. In the previous proof,
it has already been mentioned that the value of dK(y) can be computed with
any accuracy δ in time polynomial on size(y) + size(R) + size(δ). Hence, we can
compute d1 ≈ dK(y) and d2 ≈ dK(z) with the accuracy δ = ε/2 and return
WCOMPf (y, z, ε) = [d1 ≤ d2].

3 Algorithms for the Feasibility Problem

The goal of this section is to design an algorithm for the non-emptiness problem
(1), when K = {x ∈ R

n : gi(x) ≤ 0, for i ∈ 1 : m}, where gi : R
n → R
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are conic functions equipped by the comparison oracle. By the first property of
conic functions from Theorem 3, the function f(x) = max

i
gi(x) is also conic and

the comparison oracle for f can be easily derived by comparison oracles of the
functions gi. Moreover, K = {x ∈ R

n : f(x) ≤ 0}. Hence, the considered problem
is equivalent to the non-emptiness problem with only one function f . Finally, by
the third property from Theorem 3, the superposition of a conic function with
an affine map is a conic function, and we can assume that Λ = Z

n.

Theorem 7. Let f : Rn → R be a conic function, equipped by the comparison
oracle COMPf , and K = {x ∈ R

n : f(x) ≤ 0}. Then the shallow separation
oracle SHALLK can be polynomially reduced to COMPf .

Proof. We shall only describe the underlying simple geometric idea of the algo-
rithm, supposing that all calculations with real numbers can be carried out
exactly. The necessary rounding can be done by standard methods, see for exam-
ple [9, pp. 86–102]. We will give the detailed analysis in the extended version of
the work.

Let A ∈ Q
n×n, a ∈ Q

n and an ellipsoid E(A, a) be an input of
SHALLD(A, a). Since A is a symmetric positive definite matrix, then there
exists the unique symmetric positive definite matrix A1/2, such that A =
A1/2A1/2. The affine map x → A1/2x + a transforms the ellipsoid E(A, a) to the
unit Euclidean ball. By the third property of Theorem 3, the function f(Ax+a)
is conic and the comparison oracle for f(Ax + a) can be easily derived from
COMPf . Hence, we can assume that the input of SHALLD is the unit Euclidean
ball E(I, 0) = Bn

2 .
Let γ = 1

n+1 , B = Bn
2 and B(t) = tB, for t ∈ (0, γ). Let r ∈ R

n and ||r||2 = 1,
then the rotation cone around a ray r with an angle φ is denoted by the symbol

C(r, φ) = {x ∈ R
n : (x, r) ≥ ||x||2 cos φ}, for 0 ≤ φ ≤ π

2
.

The hyperplane H(r) = {x ∈ R
n : r�x = γ} supports B(γ) in the point γr.

Clearly, there exists an angle φ(t), such that the cone tr + C(r, φ(t)) intersects
the bound of the ball B along the hyperplane H(r). In other words

H(r) ∩ brB = (tr + C(r, φ)) ∩ brB, for φ = φ(t).

Let us show, that

cos φ(t) =
γ − t

√
t2 − 2γt + 1

. (4)

Without loss of generality, we can assume that r = e1. The intersection of
the hyperplane H(r) with brB has the equation x2

2 +x2
3 + · · ·+x2

n = 1− γ2 and
contains the point y = γe1 +

√
1 − γ2e2. Clearly, the φ(t) is an angle between

the vectors r and y − tr. We have that r�(y − tr) = γ − t and ||y − tr||2 =√
(γ − t)2 + (1 − γ2) =

√
t2 − 2γt + 1. So the formula (4) for cos φ(t) is correct.
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The reduction algorithm is following. Firstly, using the comparison oracle
COMPf , we compute the point p = arg max

i∈1:n
f(± 1

2γei). If f(p) ≤ 0, then we can

declare that B is tough, because

1
2
√

n
γB ⊆ conv.hulli∈1:n(±1

2
γei) ⊆ K.

Suppose, that f(p) > 0, so p /∈ K.
The paper [5, p. 26] gives an algorithm that, for a given angle 0 < α < π/2

can build a sequence of points

x(1), x(2), . . . , x(n), x(n+1) ∈ 1
2
γB,

such that the cone D = cone(x(1), x(2), . . . , x(n)|x(n+1)) has the following prop-
erties:

1. x(n+1) + C( x(n+1)

||x(n+1)||2 , α) ⊆ D,

2. f(x) ≥ f(p) for x ∈ D.

The algorithm complexity is polynomial by size(cos φ). Additionally, we need
to note that the considered algorithm was firstly developed by Nemirovsky and
Yudin in [16] (see also [17, p. 345]) for convex optimization with the 0-th order
oracle. In [5, p. 26], the reformulation of this algorithm for convex functions has
been given.

Next, we run this algorithm for the function f in the ball 1
2γB with the

parameter α = φ(1/2γ). Let w = x(n+1). By the definition of cone D, we have

K ⊆ {x ∈ R
n : w�x ≤ γ||w||2} ∩ B,

and the corresponding hyperplane supports γB, so the vector w is a shallow cut.

Theorem 7, together with the shallow cut ellipsoid method from Theorem 4,
gives us an algorithm that outputs an ellipsoid E(A, a), such that either

E(
1

4(n + 1)2n
A, a) ⊆ K ⊆ E(A, a), for K = {x ∈ R

n : f(x) ≤ 0}, (5)

or K ⊆ E(A, a) and vol(E(A, a)) ≤ ε.
The following theorem was proved in [6, p. 220].

Theorem 8. Let an R-circumscribed convex set K be given by the separation
hyperplane oracle SSEPK and Λ = Λ(B), for B ∈ Q

n×n. Then there is an
algorithm with the oracle complexity (O(n))n poly(log R) that finds a point x ∈
K ∩ Λ or asserts that K ∩ Λ = ∅.

The algorithm presented in [6, p. 240] that solves the problem from the
previous theorem is called “An Improved Kannan Type Algorithm”. A detailed
consideration of this algorithm shows that the separation oracle SSEPK is only



228 D. V. Gribanov and D. S. Malyshev

needed for deriving an ellipsoid with the property (5). Everywhere in other parts
of the algorithm the strong membership oracle OK may only be used. Combining
all facts together and using the Dadush’s algorithm, we obtain a solution for the
problem defined in beginning of this section.

Theorem 9. Let a R-circumscribed convex set K be given by the formula
K = {x ∈ R

n : f(x) ≤ 0}, where f : R
n → R is a conic function, equipped

by the comparison oracle COMPf . Then there is an algorithm with the oracle
complexity (O(n))n poly(log R) that finds a point x ∈ K ∩ Z

n or asserts that
K ∩ Z

n = ∅.

4 Algorithms for the Optimization Problem

The goal of this section is to design an algorithm for the minimization problem
(2), when K = {x ∈ R

n : gi(x) ≤ 0, for i ∈ 1 : m}, where gi : Rn → R and f are
conic functions, equipped by the comparison oracle. By the first and second prop-
erties of conic functions from Theorem 3, the function g(x) = max

i
{(gi(x))+} is

also conic, where (x)+ = [x ≥ 0]x is a positive part of x, and the comparison
oracle for g can be easily derived by comparison oracles of the functions gi. More-
over, arg min

x∈Rn
g(x) = K. Now, consider the function h : Rn → R

2, given by the

formula h(x) =
(

g(x)
f(x)

)

. Clearly, the function h is conic and the lexicographical

comparison oracle for h can be easily derived from comparison oracles of g and
f . Clearly,

arg min
x∈K∩Λ

f(x) = arg min
x∈Λ

h(x). (6)

Finally, by Theorem 3, the superposition of a conic function with an affine map
is a conic function. Hence, the constrained minimization problem 2 on the lattice
Λ = Λ(B) is equivalent to the problem min

x∈Zn
h(Bx).

The following theorem was proved in [6, p. 247].

Theorem 10. Let an R-circumscribed convex set K be given by the separa-
tion hyperplane oracle SSEPK and Λ = Λ(B), for B ∈ Q

n×n. Let, addi-
tionally, f : K → R be a convex function, equipped by the subgradient oracle.
Then there is a randomized algorithm with the expected number of oracle calls
(O(n))n poly(log R) that finds an exact minimizer of the problem min

x∈K∩Λ
f(x) or

asserts that K ∩ Λ = ∅.
The algorithm presented in [6, p. 247] that solves the problem from the pre-

vious theorem is called “Convex Integer Minimization”. A detailed consideration
of this algorithm shows that the separation oracle SSEPK is only needed for
deriving an ellipsoid with the property (5). Everywhere in other parts of the
algorithm the strong membership oracle OK may only be used. Now we will
show how to avoid usage of the subgradient oracle for f by changing it to the
comparison oracle. The main idea of Dadush’s algorithm is to show that if the
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convex set K is sufficiently wide, then K contains a deep lattice point, and in
the opposite case, a dimension can be reduced.

Denote by y ∈ K ∩Λ this lattice point. Clearly, an optimal point is contained
in the set K ′ = K∩{x ∈ R

n : f(x) ≤ f(y)}. Dadush showed that if there exists a
hyperplane, supporting K ′ in the point y, then volk(K ′) ≤ (1− 1

210−k) volk(K),
where k = dim(K). He used a subgradient of f in y as the normal vector of the
supporting hyperplane. The next step is defining the separation oracle for K ′,
and the process is repeated. This approach leads to exponential decreasing of
the volume of K ′ that gives its flatness sooner or later.

Thus, if we want to apply the Dadush’s result, we need to show the existence
of an hyperplane that supports K ′ = K ∩ {x ∈ R

n : f(x) ≤ f(y)} in the point
y ∈ K ∩ Λ, and to show how to implement the comparison oracle COMPf ′ for
a conic function f ′, such that K ′ = {x ∈ R

n : f ′(x) ≤ 0}. Let us answer the
first question. By the third item of Theorem 1, the point y is a boundary point
of the set {x ∈ R

n : f(x) ≤ f(y)}. Hence, y is also a boundary point of the set
K ′. By the definition of a convex set, there exists a hyperplane supporting K ′ in
the point y. Now, the conic function f ′ and its comparison oracle can be easily
derived using the properties of conic functions from Theorem 3. See the example
marked by (6). Combining all facts together and using the Dadush’s algorithm,
we obtain a solution for the problem, defined in beginning of this section.

Theorem 11. Let f : Rn → R be a conic function, equipped by the comparison
oracle COMPf , with the property that

arg min
x∈Zn

f(x) ⊆ a + R · Bn
2 .

Then there is a randomized algorithm with the expected number of oracle calls
(O(n))n poly(log R) that finds an exact minimizer of the problem min

x∈Zn
f(x).

5 Conclusion: Future Work and Remarks

It has already been mentioned that the class of conic functions is sufficiently
wide [5]. It was shown in [5] that any constraint minimization problem for conic
functions can be reduced to an unconstrained minimization problem with only
one conic function. Moreover, it has been shown in Subsection “Computational
model” (see Theorems 5 and 6) that any convex set K, equipped by the strong
separation hyperplane oracle, can by represented as K = {x ∈ R

n : f(x) ≤
0}, where f : Rn → R is a conic function, equipped by the weak comparison
oracle. If, additionally, the set K is closed, then the reduction from the weak
separation hyperplane oracle to the weak comparison oracle is also possible. This
reductions, from separation to weak comparison, can be done by a polynomial-
time algorithm. But, the existence of a polynomial-time reduction between the
strong separation hyperplane oracle and the strong comparison oracle is an open
question. Another open question is the possibility of an inverse polynomial-
time reduction. Probably, the answer is “No”, since the known algorithms for
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continuous conic function minimization only guaranty decreasing of the distance
to an optimum point and not guaranty decreasing of the function value. But,
the question needs additional consideration. We are planning to answer these
questions in the extended version of this article.
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Eidgenössische Technische Hochschule, Zürich (2014)
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Abstract. We present a framework for optimizing sparse quadratic
assignment problems. We propose an iterative algorithm that dynam-
ically generates the quadratic part of the assignment problem and, thus,
solves a sparsified linearization of the original problem in every iteration.
This procedure results in a hierarchy of lower bounds and, in addition,
provides heuristic primal solutions in every iteration. This framework
was motivated by the task of the French government to design the French
keyboard standard, which included solving sparse quadratic assignment
problems with over 100 special characters; a size where many commonly
used approaches fail. The design of a new standard often involves con-
flicting opinions of multiple stakeholders in a committee. Hence, there
is no agreement on a single well-defined objective function that can be
used for an extensive one-shot optimization. Instead, the process is highly
interactive and demands rapid prototyping, e.g., quick primal solutions,
on-the-fly evaluation of manual changes, and prompt assessments of solu-
tion quality. Particularly concerning the latter aspect, our algorithm is
able to provide high-quality lower bounds for these problems in several
minutes.

Keywords: Quadratic assignment · Integer programming ·
Linearization · Keyboard optimization

1 Introduction

Assignment problems aim at finding the cheapest one-to-one correspondence
between n items and locations. Already in 1946, Birkhoff [4] showed that the
optimal assignment can be found in O(n3) time if the objective function is
linear. However, linear objective functions cannot capture pairwise dependen-
cies between variables. Koopmans and Beckmann [16] investigated a variant
with quadratic terms in the cost function. This quadratic optimization problem
includes several practical applications, such as the keyboard layout problem [6],
the facility location problem [19], the traveling salesman problem [5], and many
others.
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As expected, great modeling power comes with increased hardness; there are
problems of only n = 30 items that cannot be solved to optimality in reasonable
time. From a complexity theoretical point of view, Queyranne [23] showed that
the quadratic assignment problem (QAP) is NP-hard to approximate within any
constant factor, even if the quadratic cost can be factorized to a symmetric block
diagonal matrix and a distance matrix describing a line metric.

To cope with the hardness, researchers have proposed many ideas over the
last decades. Many of them are based on linearizations, e.g., the classical results
by Gilmore [11] and Lawler [17], and by Kaufman and Broeckx [15]. These
linearizations can be considered light, meaning that their space requirements are
linear in the input size and the corresponding relaxations can be solved quickly,
e.g., in a branch-&-bound framework. Moreover, the latter approach seems to be
amenable for primal heuristics of state-of-the-art MIP solvers to compute good
incumbents. However, their lower bounds deteriorate quickly with increasing
input size, which negatively impacts the performance of branch-&-bound. More
recently, new improved linearizations have been developed by Xia and Yuan [25]
and Zhang [26] who combine the ideas of the light-weight approaches mentioned
above.

On the contrary, the formulations by Frieze and Yadegar [10] and by Adams
and Johnson [1] compute very strong lower bounds at the expense of O(n4) addi-
tional variables. Both approaches yield equivalent formulations for the QAP and
are commonly referred to as RLT1 formulations, a more general concept pro-
posed by Sherali and Adams [24]. Huber and Riedl showed [13] that the Adams-
Johnson formulation dominates the one of Xia and Yuan. For many instances
of practical size and especially in our scenario, RLT1 and other similar more
powerful approaches could not produce any result within the given resources,
which is expected due to the sheer size of the problem.

Recently, semidefinite programming relaxations for QAPs [14,22,27] have
become more popular. Peng et al. [20] showed that these approaches can indeed
often produce good lower bounds for the QAP.

1.1 Keyboard Optimization as Assignment Problems

Already in the 70s, Pollatschek [21] as well as Burkard and Offermann [6] pro-
posed to optimize keyboard layouts as a quadratic assignment problem. They
consider the assignment problem with mixed linear and quadratic terms in
the objective function. Formally, let us assume that the n items and locations
are numbered from 1 to n. In the following, we refer to the set of items as
[n] := {1, . . . , n}. Furthermore, let xik ∈ {0, 1} denote the decision of whether or
not to assign item i to location k (or in our case: assign character i to key slot
k). With cik being the linear assignment cost and qijk� the quadratic assignment
cost, we obtain the following quadratic program.
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min
n∑

i,k=1

cikxik +
n∑

i,j,k,�=1

qijk�xikxj�

subject to
n∑

i=1

xik = 1 ∀k ∈ [n]
n∑

k=1

xik = 1 ∀i ∈ [n]

xik ∈ {0, 1} ∀i, k ∈ [n]

(1)

The term qijk� describes the cost of simultaneously assigning items i and j
to the locations k and �, respectively. In keyboard problems, this term usually
factors into qijk� = pij ·dk�, where pij denotes the empirical probability of typing
letter j after letter i and dk� is the time between pressing the key slots k and �.

Typically, integer linear programs are relaxed by dropping the integrality
constraints of the variables. In this case, however, the assignment polytope is
well-understood, we can quickly solve linear assignment problems with over a
million variables [18]. The hardness of QAPs comes, therefore, not from the
polytope, but from the quadratic terms of the objective function. It is possible to
exploit the structure of the objective so that special cases become more tractable,
in some cases polynomial approximation algorithms have been developed [3].
In this work, we define a relaxation of the QAP, too. While also keeping the
integrality constraints untouched, we exploit the sparse nature of the quadratic
objective function and modify the quadratic terms to obtain upper and lower
bounds for the original problem.

1.2 Designing the French Keyboard Standard

In 2015, the French Ministry of culture discussed the concerns about not having
an official French keyboard standard [7]. The commonly used AZERTY layout
did not provide typing frequent special characters like À, œ, etc. One year later,
AFNOR, the French national organization for standardization, was issued with
the task to design the new standard [8], which should support all missing spe-
cial characters that are used in the French language. Two major options were
discussed: optimizing the whole keyboard from scratch or keeping the most fre-
quent characters (A–Z ) fixed and only optimizing the addition of over 100 special
characters to maintain familiarity and facilitate learnability. We participated in
the endeavor for the latter.

The process of defining the standard consisted of several rounds of gathering
data (details can be found in [9]), modeling the problem as a QAP, finding a
(near-)optimal keyboard, which was then proposed to an official committee who
expressed further wishes for the objective, modified the weighting of its compo-
nents, and added or removed certain characters. Eventually, the objective func-
tion stabilized as a conic combination of four different measures: performance
– special characters, which are often used in combination with fixed characters,
should be close together in order to minimize the time to type; ergonomics
– frequently used special characters should be quite central on the keyboard
to avoid unhealthy stretches of the fingers; intuitiveness – special characters
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should be placed close to similar fixed characters and other special characters to
simplify finding them on the keyboard; familiarity – frequent special characters
should be placed close to their position in the original AZERTY keyboard if this
character was already present there. Note that every interaction between special
characters and fixed characters can be modeled as linear expressions because we
are not allowed to change the position of these fixed characters, so their impact
to the objective function is constant. Hence, 3 out of 4 of these measures describe
a linear objective function. The quadratic part of the objective function models
similarity of two special characters, which is part of the intuitiveness measure-
ment. Since there is only a restricted number of similar special characters, e.g., é
and è or % and �, this explains the sparsity of the quadratic objective function.

After a first consensus had been found, a public inquiry organized by AFNOR
provided feedback on the proposed design. Not only after the public inquiry, but
after every iteration of this feedback loop, the underlying model was updated and
new solutions were heuristically computed; which our algorithm then showed to
be near-optimal. Why is this last step important? In contrast to one-shot opti-
mization with a single well-defined objective, the committee, which consists of
multiple stakeholders with different interests and opinions, discusses several solu-
tions, evaluates the impact of manual changes on different parts of the objective,
and alters the optimization model to find a compromise. Deciding model changes
based on very sub-optimal solutions is pointless since the observed solution might
not properly represent the current model. Therefore, it is not only important to
find near-optimal solutions, but also to have a sharp picture of the their quality,
for allowing a well-founded discussion and decision process. Additionally, it is
important that such solutions to updated models and corresponding bounds can
be computed as fast as possible, ideally even in real-time.

Fig. 1. The new French keyboard standard (NF Z71-300). Special characters (blue)
and diacritic marks (red) were added to the old AZERTY layout. More information
about the new standard can be found on https://norme-azerty.fr (Color figure online)

Finally, the expert committee agreed on a layout for the new French keyboard
standard [2], which is depicted in Fig. 1 and was launched on 2 April 20191.
1 https://normalisation.afnor.org/actualites/faq-clavier-francais/ – retr. 2019-04-03.

https://norme-azerty.fr
https://normalisation.afnor.org/actualites/faq-clavier-francais/
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1.3 Our Contribution

The goal of our framework is to utilize the power of the RLT1 approach while
avoiding the computational overhead. We present an algorithm that dynami-
cally generates the quadratic terms of the QAP, which leads to a hierarchy of
lower bounds and heuristic primal solutions at the same time. In contrast to a
classic column-generation approach, our algorithm guarantees a sequence of non-
decreasing lower bounds in every step instead of non-increasing upper bounds.
This iterative framework produces a (1+ε)-approximation2 for the QAP for any
ε ≥ 0. We show the success of our framework during the design process of the
new French keyboard standard. The lower bounds computed by our algorithm
showed very small optimality gaps within several minutes for sparse QAPs with
over 100 items and 130 locations. All examples shown in this paper are real-world
instances created during this standardization process. Hence, our tool is usable
to provide almost real-time feedback with very limited resources, for example,
on a laptop.

2 Algorithm

Linear relaxations for quadratic programs have been extensively studied over the
last decades and are still a good starting point for many new ideas. However, the
disadvantage of standalone linear relaxations is either high space complexity or
an inefficient bound generation. We want to overcome this issue for QAPs with
sparse quadratic objectives.

Let S ⊆ [n]4 be a set of indices. We define the following subproblem of (1).

min
n∑

i,k=1

cikxik +
∑

(i,j,k,�)∈S
qijk�yijk� (2a)

subject to
n∑

i=1

xik = 1 ∀k ∈ [n]

n∑

k=1

xik = 1 ∀i ∈ [n]

∑

j:(i,j,k,�)∈S
yijk� ≤ xik ∀i, k, � ∈ [n] (2b)

∑

�:(i,j,k,�)∈S
yijk� ≤ xik ∀i, j, k ∈ [n] (2c)

∑

i:(i,j,k,�)∈S
yijk� ≤ xj� ∀j, k, � ∈ [n] (2d)

2 We give no polynomial time guarantee. The existence of a PTAS would imply P =
NP.
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∑

k:(i,j,k,�)∈S
yijk� ≤ xj� ∀i, j, � ∈ [n] (2e)

xik + xj� ≤ 1 + yijk� ∀(i, j, k, �) ∈ S (2f)
yijk� ∈ [0, 1] ∀(i, j, k, �) ∈ S
xik ∈ {0, 1} ∀i, k ∈ [n]

Note that it is feasible to add symmetry constraints for the y-variables of
the form yijk� = yji�k inspired by the Adams-Johnson formulation because they
simulate the commutative multiplication of xik and xj�, however, we could not
observe any performance gain, and thus, omit them.

We first show that the proposed formulation is exact in the boundary case
S = [n]4.

Lemma 1. Let S = [n]4 and let z(1) = x(1), z(2) = (x(2), y(2)) be optimal solu-
tions of (1) and (2), respectively.

Then cost(z(1)) = cost(z(2)).

Proof. Let (i, j, k, �) ∈ [n]4 and consider the linear inequalities (2b)–(2f). If one
of x

(2)
ik and x

(2)
j� is 0, then at least one of the inequalities (2b) to (2e) forces y

(2)
ijk�

to 0. On the other hand, if both x
(2)
ik = x

(2)
j� = 1, constraint (2f) sets y

(2)
ijk� to 1.

Therefore, and because x(2) is a binary variable, we can interpret y
(2)
ijk� as the

product x
(2)
ik · x

(2)
j� .

Since S = [n]4, this observation holds for all variables and the formulations
(1) and (2) coincide. ��

Despite this result, we emphasize that using S = [n]4 leads to an intractable
problem size for most practical input instances, e.g., more than 100 000 000 vari-
ables in our application. Even for sparse problems, reducing S to all the indices
with nonzero contribution to the quadratic objective term may not suffice as,
e.g., still about 2 000 000 variables remain in our case. To overcome this issue, we
select an increasing sequence of subsets S, with each subset being significantly
smaller than [n]4. Lemma 2 explains why it is beneficial to do so.

Lemma 2. Let S ⊂ [n]4 and z∗ be the optimal solution of (2). Then cost(z∗) is
a lower bound for (1).

Proof. Let (P, c, q), (P ′, c′, q′) be the polytopes and objective functions of (2)
defined over S and [n]4, respectively. Clearly, the set of constraints of P form
a subset of the constraints of P ′. Hence, every feasible solution in P ′ is also
feasible in P , i.e., P ′ ⊆ P .

Setting qijk� = 0 for all (i, j, k, �) 
∈ S, we can write (2a) as
n∑

i,k=1

cikxik +
∑

(i,j,k,�)∈[n]4

qijk�yijk�.

Since all terms in the objective functions are assumed to be non-negative, it
holds for every (i, j, k, �) ∈ [n]4 that qijk� ≤ q′

ijk�, which concludes the proof. ��
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This lemma shows that dynamically increasing S yields a hierarchy of inte-
ger linear programs with increasing bounds for the original QAP. The proposed
iterative algorithm later in this section is a natural consequence of Lemma 2. It
remains to show how to initialize and update the set S. We remark here that it
is advisable to solve the integer linear programs close to optimality instead of
considering their linear programming relaxations. Although dropping the inte-
grality constraints drastically reduces the computation time with growing S,
the resulting lower bounds have shown to be significantly worse than the ones
obtained by solving the integral versions for the same amount of time.

We now present two variants of the algorithm, which differ only in the pro-
cedure on how to grow S.

Variant 1: Conservative Growth. First, we choose an arbitrary ε ≥ 0. We
will show later that the algorithm then produces a (1 + ε)-approximation of the
optimal assignment. Note, however, that our algorithm allows to choose ε = 0,
then computing an optimal solution. Assume that for a given index set S, we
computed an optimal binary solution (x∗, y∗) with objective value V . We build
the candidate set

C :=
{
(i, j, k, �) 
∈ S : x∗

ik = x∗
j� = 1 and qijk� > 0

}
(3)

and sort C in an ascending order with respect to qijk�. Note that |C| ≤ n2.
Formally, we define the function π : [|C|] → [n]4 such that for every i < j ∈
{1, . . . , |C|}, it holds qπ(i) ≤ qπ(j). Let s be the index that satisfies the following
equation.

s = max

{

t ∈ {0, . . . , |C|} :
t∑

α=1

qπ(α) ≤ ε · V

}

(4)

Intuitively, we skip the s smallest positive cost values that sum up to a certain
threshold and add the rest of the indices to our active set S.

The complete algorithm is presented in Algorithm 1. Theorem 1 shows that
the update step eventually yields a (1 + ε)-approximation.

Input : number of items/locations n, linear cost c, quadratic cost q,
precision parameter ε

Result: Optimal assignment or upper/lower bound if aborted

1 S ← ∅;
2 do
3 (x∗, y∗) ← opt. sol. of (2) with S;
4 V ← evaluate x∗ at (1);
5 C, π, s as in equations (3)-(4);
6 S ← S ∪ {π(i)}|C|

i=s+1;
7 while S changed in line 6 ;
8 return x∗;

Algorithm 1. The complete algorithm (conservative version)
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Theorem 1. Let ε ≥ 0. If line 6 of Algorithm 1 does not add any index to S,
then the x-part of the current solution (x∗, y∗) is (1+ε)-optimal for problem (1).

Proof. Since C ∩ S = ∅ by definition, the only reason why S did not change is
that s = |C|. In particular, this means that

∑

α∈C

qα ≤ ε · cost(x∗, y∗)

Let x̃ be the optimal solution of (1). We evaluate (x∗, y∗) on the complete
objective function of the QAP and interpret y∗

ijk� = x∗
ikx∗

k�, which is a valid
assumption already shown in the proof of Lemma 1. Then, we obtain an upper
bound for x̃.

OPT =
n∑

i,k=1

cikx̃ik +
n∑

i,j,k,�=1

qijk�x̃ikx̃j�

≤
n∑

i,k=1

cikx∗
ik +

∑

(i,j,k,�)∈S
qijk�x

∗
ikx∗

j� +
∑

(i,j,k,�) �∈S
qijk�x

∗
ikx∗

j�

=
n∑

i,k=1

cikx∗
ik +

∑

(i,j,k,�)∈S
qijk�x

∗
ikx∗

j� +
∑

(i,j,k,�)∈C

qijk�x
∗
ikx∗

j�

≤ cost(x∗, y∗) + εcost(x∗, y∗) = (1 + ε)cost(x∗, y∗)

��

Variant 2: Progressive Growth. We change the definition of the candidate
set C in Eq. (3) to

C ′ :=
{
(i, j, k, �) 
∈ S : x∗

ik = 1 ∨ x∗
j� = 1 and qijk� > 0

}
. (5)

This means we consider a tuple as a candidate if at least one of the corresponding
x-variables were set to 1 in the previous optimal solution (instead of requiring
both variables to be 1). The rest of the algorithm remains the same. In this
second variant, |C ′| ≤ n3, i.e., we potentially add more terms to the model.
This can improve the evolution of lower bounds because we consider a more
substantial portion of the model more quickly. As a trade-off, we potentially add
more irrelevant terms than the conservative variant and, additionally, we could
quickly arrive at a model of a size that exceeds the resources of the computer
used to run the algorithm. Note that Theorem 1 also holds for this variant of
the algorithm, the proof is analogue to the proof shown above with the extra
information that C ⊂ C ′.

Variant 3: Hybrid Strategy. To achieve a balance between the fast evolution
of lower bounds in variant 2 and the moderate growth of model size in variant
1, we propose the hybrid strategy that kick-starts with the progressive variant 2
and switches to the conservative variant 1 before the model size grows too large.
The evaluation shows that this strategy is indeed superior to both standalone
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variants. For all instances, there is a critical point where the amount of generated
quadratic terms would grow so large that an MIP solver cannot compute the
integer optimal solution within a reasonable time. Therefore, we switch to the
conservative variant at this critical point, which grows the model more slowly
while still steadily improving the lower bound.

3 Evaluation

We applied our algorithm within several stages of the French keyboard stan-
dardization process. The instances consist of over 100 special characters and 130
keys (in order to achieve the classic QAP formulation, one can generate dummy
characters symbolizing that a key is left empty), and the objective function con-
sists of a conic combination of a sparse quadratic and dense linear cost terms.
The quadratic term can be factorized into a sparse matrix F , which describes
the association score (similarity) of two different special characters, and a dense
matrix D, describing the distances between two key slots. The weight of the
quadratic part ranges between 30% and 50%. Additionally, some instances fix
few characters like punctuation symbols to fixed slots or require that the capital
versions of special characters are placed on the shifted slot of the same letter
(e.g., È is placed on the shifted slot of è) whereas other instances also allow them
to be on the Alt-Shift or Alt version of this slot.

We evaluated the instances on a single Intel(R) Xeon(R) CPU E5-2680 v3
@ 2.50 GHz processor core with 16 GB of RAM. We compare our algorithm
against the formulation of Xia and Yuan [25] as a state-of-the-art lightweight
linearization for the QAP. As already mentioned before, stronger formulations
like RLT1 could not compute any lower bound within the given resources, often
because the model size already exceeded the available RAM. We use Gurobi
version 8.1 [12] as the underlying solver for both approaches.

We first discuss the impact of the variant choice on one example instance.
More specifically, we test the hybrid strategy and the effect of the switch from
progressive to conservative at different iterations τ . Figure 2 shows the evolution
of lower bounds for τ = 1, . . . , 10. Since naturally the bound evolves faster during
the first seconds and minutes, the graph shows a more detailed view on the
evolution within this first period. Setting τ = 1 leads to using the conservative
variant from the beginning while setting τ = 10 implies that the strategy switch
does not occur within the given time window of 12 h because the model of the
last iteration is already too large to be solved efficiently. We observe that as
long as the model size is moderately low, the progressive variant achieves better
results at every time stamp. However, after roughly 45 min, the model size for
this variant already grows notably large so that the next iterations takes quite a
long time. After yet another size increase, the ILP solver could not compute an
optimal solution within the remaining 10 h. Note that depending on the available
resources (time limit and hardware) as well as the particular instance (dimension
and sparsity), the critical point at which a switch from the progressive to the
conservative variant is valuable varies. Since all our instances are of similar size
and sparsity, the critical point for this evaluation is at the 9th iteration.
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Fig. 2. The evolution of the lower bound when switching variants for instance N50s.
The numbers in the legend describe the iteration at which the switch was triggered.

Fig. 3. The evolution of the lower bounds within 12 h of computation time for instance
N50s.

Figure 3 compares the evolution of the lower bounds of our algorithm using
only variant 2, switching after 9 iterations, and the formulation of Xia and Yuan
within a total time period of 12 h for the same example instance. It is impor-
tant to note that the setup time for the Xia-Yuan formulation is around 25 min
for every instance because over 10 000 linear assignment problems are solved
beforehand. Therefore, the first bound for the original QAP is only produced
after 25 min.
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Fig. 4. Lower and upper bounds for the QAP instances

To avoid visual clutter in the following figures, we only depict the results of
the hybrid algorithm switching at the 9th iteration. The lower and upper bounds
for all QAP instances are shown in Fig. 4. We ran our hybrid algorithm for one
hour and compare it against the formulation of Xia and Yuan after one and 12 h
of computation time.

The naming of the test instances is as follows: the first letter describes the
set of additional constraints (N for no additional constraints, and E for fixed
punctuation symbols and the fixed symbols è, é, ê, à, and e). The number in the
middle describes the weight (in percent) of the quadratic term in the objective
function, and the following letter describes if the capitalized letter of a special
character has to be placed on the shifted slot (s) or on any alternative of this
slot (r). Note that almost every instance uses a slightly different set of characters
because this set constantly changed in committee meetings. The full description
of all the different character sets and further details about the data gathering is
beyond the scope of this paper and can be found in [9]. Therefore, it occurs that
two instances are equally named although they slightly differ in the character set
used. In this case, one of the instance names ends with 2 for better differentiation.

We can see that within one hour, we outperform the formulation of Xia and
Yuan for every instance independent of its time limit being one hour or 12 h.
Although we slightly improved the lower bounds of all instances, this is not the
true benefit of our framework. What we really want to emphasize here is how
fast we achieve high-quality lower bounds, which is especially important in the
practical application of our algorithm. In this highly interactive environment
with countless model updates and changes, receiving valuable feedback of an
optimization method after only several minutes can greatly improve the dynam-
ics of an expert committee that discusses different proposals and has to decide
the next steps towards a final keyboard standard.
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Fig. 5. The time we need to exceed the bounds of Xia and Yuan after 1 h and 12 h (in
seconds)

We measure the time our algorithm needs to exceed the lower bounds that the
Xia-Yuan formulation produces after 1 h and 12 h, respectively. Figure 5 shows
that we achieve this goal within several minutes for all instances. In the worst
case, it takes 20 min to exceed the 12 h bound of Xia-Yuan. Hence, for every
instance, we achieve superior lower bounds within the setup time of 25 min that
is needed for the creation of the Xia-Yuan linearization.

3.1 Robustness Analysis

To analyze the robustness of our approach, we vary the nonzero values of the
quadratic cost matrix with additive noise generated by a normal distribution
with 0 mean and standard deviation σ.

Recall that the quadratic matrix Q is the Kronecker product of the dense
matrix D containing the distances between the keys and the sparse matrix F
encoding the similarity between the special characters. We only add noise to the
entries in F while keeping its entries non-negative. More specifically, consider
fij > 0 and δij ∼ N(0, σ), then we set f ′

ij = fij + δij if f ′
ij > 0, otherwise we

recompute δij . Let μ be the average value of all nonzero entries in the association
matrix A, then we set σ to 10%, 50%, and 100% of μ. For this evaluation, we
use the instance N35s as a base instance and generate 20 randomly variated
instances for each of the three variance values.

Figure 6 shows the boxplots of the time (in seconds) our approach needed to
exceed the bound that the Xia-Yuan formulation achieves after 12 h. In every of
the 60 instances in total, we exceeded said bound after at most five minutes. Note
that the Xia-Yuan formulation has a setup time for around 25 min for instances
of this size. This means we can consistently produce high quality bounds during
the setup time of the competing approach.
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Fig. 6. Boxplots of the time (in seconds) until our approach exceeded the 12 h Xia-Yuan
bound

σ = 0.1μ σ = 0.5μ σ = μ

Fig. 7. Bounds for 60 randomly variated instances (20 each) with variance σ

Moreover, Fig. 7 shows the lower and upper bounds for the 20 runs each
with σ ∈ {0.1μ, 0.5μ, μ}, respectively. We observe that the results of these ran-
domized instances are very consistent with the results of the original evaluation,
independent of the variance.

4 Conclusion

We presented a lightweight framework for sparse quadratic assignment prob-
lems that combines powerful linearization techniques and ideas from column-
generation. It is lightweight in a sense that it can generate good bounds for
sparse QAPs of huge size (over 100 items) on a normal laptop. Our algorithm
was used in the process of defining the new French keyboard standard. The eval-
uation, which is based on real data gathered during this standardization process,
showed that we can compete with state-of-the-art linearization techniques. We
showed that we can produce high quality lower bounds within several minutes,
which serves the purpose of almost real-time feedback in such a dynamic inter-
active optimization process.
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Abstract. We consider the traveling salesperson problem in a directed
graph. The pyramidal tours with step-backs are a special class of Hamil-
tonian tours for which the traveling salesperson problem is solved by
dynamic programming in polynomial time. The polytope of pyramidal
tours with step-backs PSB(n) is defined as the convex hull of the char-
acteristic vectors of all possible pyramidal tours with step-backs in a
complete directed graph. The skeleton of PSB(n) is the graph whose
vertex set is the vertex set of PSB(n) and the edge set is the set of geo-
metric edges or one-dimensional faces of PSB(n). The main result of the
paper is a necessary and sufficient condition for vertex adjacencies in the
skeleton of the polytope PSB(n) that can be verified in polynomial time.

Keywords: Traveling salesperson problem · Directed graph ·
Pyramidal tour with step-backs · Polytope · 1-skeleton ·
Vertex adjacency

1 Introduction

We consider a classic asymmetric traveling salesperson problem: for a given
complete weighted digraph Dn = (V,E) it is required to find a Hamiltonian
tour of minimum weight. We denote by HTn the set of all Hamiltonian tours in
Dn. With each Hamiltonian tour x ∈ HTn we associate a characteristic vector
xv ∈ R

E by the following rule:

xv
e =

{
1, if an edge e ∈ E is contained in the tour x,

0, otherwise.

The polytope
ATSP(n) = conv{xv | y ∈ HTn}

is called the asymmetric traveling salesperson polytope.
The skeleton of a polytope P (also called 1-skeleton) is the graph whose ver-

tex set is the vertex set of P (the characteristic vectors xv for the traveling sales-
person problem) and edge set is the set of geometric edges or one-dimensional
faces of P . Many papers are devoted to the study of 1-skeletons associated with
c© Springer Nature Switzerland AG 2019
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combinatorial problems. On the one hand, the vertex adjacencies in 1-skeleton
are of great interest for the development of algorithms to solve problems based
on local search technique (when we choose the next solution as the best one
among adjacent solutions). For example, various algorithms for perfect match-
ing, set covering, independent set, a ranking of objects, problems with fuzzy
measures, and many others are based on this idea [1,3,10,11,13]. On the other
hand, some characteristics of 1-skeleton of the problem, such as the diameter
and the clique number, estimate the time complexity for different computation
models and classes of algorithms [4,5,9,15].

However, for such combinatorial problems as a knapsack, a set partition and
set covering, an integer programming, a leaf-constrained and degree-constrained
minimum spanning tree, a connected k-factor and some others already the ques-
tion whether two vertices in 1-skeleton are adjacent is an NP-complete problem
[8,17,22]. Historically, the first result of this type was obtained by Papadimitriou
for the traveling salesperson polytope.

Theorem 1 (Papadimitriou, [19]). The question whether two vertices of the
polytope ATSP(n) are nonadjacent is NP-complete.

In this regard, the study of 1-skeleton of the traveling salesperson problem
has shifted to the study of individual faces of the polytope [20,21], the polytopes
of related problems [2], as well as the polytopes of special cases of the traveling
salesperson problem. In particular, for the polytope of the pyramidal tours, it
was established that the verification of the vertex adjacency in 1-skeleton can
be performed in linear time [6,7].

In this paper, we consider a 1-skeleton of a wider class of the pyramidal tours
with step-backs.

2 Pyramidal Tours with Step-Backs

We suppose that the cities are labeled from 1 to n. Let τ be a Hamiltonian tour.
We denote the successor of i-th city as τ(i). For any natural k, we denote the
k-th successor of i as τk(i), the k-th predecessor of i as τ−k(i).

The city i satisfying τ−1(i) < i and τ(i) < i is called a peak.
A pyramidal tour is a Hamiltonian tour with only one peak n.
A step-back peak (Fig. 1) is the city i, such that either

τ−1 < i, τ(i) = i − 1 and τ2(i) > i,

or
τ−2 > i, τ−1(i) = i − 1 and τ(i) < i.

A proper peak is a peak i which is not a step-back peak. A pyramidal tour
with step-backs is a Hamiltonian tour with exactly one proper peak n.

Traveling salesperson problem on pyramidal tours is one of the most studied
polynomial special cases of the problem [14]. A more general class of pyramidal
tours with step-backs was introduced in [12]. These tours are of interest, since, on
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τ−1(i) i − 1 i τ2(i)

τ(i) i − 1 i τ−2(i)

Fig. 1. A step-back in ascending and descending order

the one hand, the minimum cost pyramidal tour with step-backs can be found in
O(n2) time by dynamic programming, and, on the other hand, there are known
restrictions on the distance matrix that guarantee the existence of an optimal
tour that is pyramidal with step-backs [12].

A generalization of pyramidal tours with step-backs is the class of quasi-
pyramidal tours for which the traveling salesperson problem is fixed-parameter
tractable [16,18].

We denote by PSBTn the set of all pyramidal tours with step-backs in the
complete digraph Dn = (V,E). With each pyramidal tour with step-backs x ∈
PSBTn we associate a characteristic vector xv ∈ R

E by the following rule:

xv
e =

{
1, if an edge e ∈ E is contained in the tour x,

0, otherwise.

The polytope
PSB(n) = conv{xv | x ∈ PSBTn}

is called the polytope of pyramidal tours with step-backs.
Besides we use a special encoding to represent the pyramidal tours with step-

backs. With each tour x ∈ PSBTn we associate an encoding vector x0,1,sb of
length n − 2, each coordinate corresponds to a city from 2 to n − 1, by the
following rule:

x0,1,sb
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if i is visited by x in ascending order,
#   »

1 1, if i is a step-back peak in ascending order,
0, if i is visited by x in descending order,
#   »
0 0, if i is a step-back peak in descending order.

Note that a step-back peak i also involves the previous coordinate i − 1. An
example of a pyramidal tour with step-backs and the corresponding encoding
vector x0,1,sb is shown in Fig. 2.

We denote by x0,1,sb
[i,j] a fragment of encoding on coordinates from i to j. The

superscript indicates what we consider in the encoding: descending order (0),
ascending order (1), or step-backs (sb). For example, x1,sb

[i,j] means a fragment of
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Fig. 2. An example of a tour and the corresponding encoding

the encoding only in ascending order taking into account step-backs; x0,1
[i,j] – a

fragment of the encoding disregarding step-backs, etc.

3 Auxiliary Statements

We denote by x ∪ y a multigraph that contains all edges of both tours x and y.

Lemma 1 (Sufficient condition for nonadjacency). Given two tours x and
y, if the multigraph x∪y includes a pair of other complementary pyramidal tours
with step-backs, then the corresponding vertices xv and yv of the polytope PSB(n)
are not adjacent.

Proof. Let two complementary pyramidal tours with step-backs z and t be com-
posed from the edges of x and y, then for the corresponding vertices the following
equality takes place:

xv + yv = zv + tv. (1)

We divide the equality (1) by 2 and obtain that the segment [xv, yv] intersects
with the segment [zv, tv]. Therefore, the vertices xv and yv of the polytope
PSB(n) are not adjacent.

Lemma 2 (Necessary condition for nonadjacency). If the vertices xv and
yv of the polytope PSB(n) are not adjacent, then the multigraph x ∪ y includes
at least two pyramidal tours with step-backs other than x and y.

Proof. Let the vertices xv and yv of the polytope PSB(n) be not adjacent, then
the segment [xv, yv] intersects with the convex hull of some of the remaining
vertices of the polytope PSB(n):

αxv + (1 − α)yv = β1z
v
1 + . . . + βmzvm,

∀i : βi > 0 and β1 + . . . + βm = 1.
(2)

Note that m ≥ 2, since the segment connecting two vertices of a convex polytope
cannot intersect a third vertex. If at least one tour zi includes an edge e that
does not belong to the multigraph x ∪ y, then the equality (2) is violated in the
coordinate corresponding to the edge e.
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Lemma 3. Let x and y be two pyramidal tours with step-backs. Suppose that
there are two edges ex of x and ey of y that no pyramidal tour with step-backs
can include both edges ex and ey at the same time. Let the corresponding vertices
xv and yv of the polytope PSB(n) be not adjacent. Then the convex combination
of the remaining vertices of PSB(n), that coincides with the convex combination
of xv and yv, cannot include with a nonzero coefficient any vertex corresponding
to the tour without at least one edge of the pair ex and ey.

Proof. Since the vertices xv and yv are not adjacent, their convex hull intersects
with the convex hull of the remaining vertices of the polytope PSB(n):

αxv + (1 − α)yv =
∑

βiz
v
i +

∑
βj,xzvj,x +

∑
βk,yz

v
k,y, (3)∑

βi +
∑

βj,x +
∑

βk,y = 1,

where zj,x are all pyramidal tours with step-backs, containing the edge ex, and
zj,y are all pyramidal tours with step-backs, containing the edge ey. The remain-
ing tours zi do not contain edges ex and ey, and no pyramidal tour with step-
backs can include both edges ex and ey at the same time. The equality (3) in
the coordinates, corresponding to ex and ey, takes the form of a system{

α =
∑

βj,x,

1 − α =
∑

βk,y.

Therefore,
∑

βi = 0.

4 Necessary and Sufficient Condition for Adjacency

We consider 12 blocks of the following form (a wavy line means that the corre-
sponding coordinate can either contain a step-back or not):

U11 =
〈

1
1

〉
, U00 =

〈
0
0

〉
, U1111 =

〈 #     »
1 1

#     »
1 1

〉
, U0000 =

〈 #     »
0 0
#     »
0 0

〉
,

L1110 =
〈 #     »

1 1
1 0̃

〉
, L1011 =

〈
1 0̃

#     »
1 1

〉
, L0001 =

〈 #     »
0 0
0 1̃

〉
, L0100 =

〈
0 1̃
#     »
0 0

〉
,

R1101 =
〈 #     »

1 1
0̃ 1

〉
, R0111 =

〈
0̃ 1

#     »
1 1

〉
, R0010 =

〈 #     »
0 0
1̃ 0

〉
, R1000 =

〈
1̃ 0
#     »
0 0

〉
.

Theorem 2. Vertices xv and yv of the polytope PSB(n) are not adjacent if and
only if the following conditions are satisfied.

– There exists a city i (called a left block) such that the tours x and y on the
coordinate i (coordinates i and i + 1 for double blocks) have the form of U,L,
or i = 1.
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– There exists a city j (called a right block) such that the tours x and y on the
coordinate j (coordinates j −1 and j for double blocks) have the form of U,R,
or j = n.
We denote by ia the first city after the left block: ia = i + 1 for single blocks
and ia = i+2 for double blocks. We denote by jb the last city before the right
block: jb = i − 1 for single blocks and jb = j − 2 for double blocks.
Two blocks cut the encoding of the tours into three parts: the left (less than
ia), the central (from ia to jb) and the right (larger than jb).

– In the central part, the coordinates of x0,1 and y0,1 completely coincide:
x0,1
[ia,jb]

= y0,1
[ia,jb]

.
We say that two tours

• differ in the left part if x0,1,sb
[1,ia−1] �= y0,1,sb

[1,ia−1],

• differ in the right part if x0,1,sb
[jb+1,n] �= y0,1,sb

[jb+1,n],

• differ in the central part in ascending order if x1,sb
[ia,jb]

�= y1,sb
[ia,jb]

,

• differ in the central part in descending order if x0,sb
[ia,jb]

�= y0,sb
[ia,jb]

.
The remaining conditions are divided into four cases depending on the values
of x0,1

i and x0,1
j .

1. If x0,1
i = x0,1

j = 1, then the tours differ
• in the central part in ascending order;
• in the left part, or in the central part in descending order, or in the

right part.
2. If x0,1

i = x0,1
j = 0, then the tours differ

• in the central part in descending order;
• in the left part, or in the central part in ascending order, or in the

right part.
3. If x0,1

i = 1, x0,1
j = 0, then the tours differ

• in the central part in ascending order or in the right part;
• in the central part in descending order or in the left part.

4. If x0,1
i = 0, x0,1

j = 1, then the tours differ
• in the central part in descending order or in the right part;
• in the central part in ascending order or in the left part.

Cities 1 and n can be considered in the encoding as visited in ascending or
descending order, if required.

Proof. Necessity. Let the vertices xv and yv of PSB(n) be not adjacent, then by
Lemma 2 there exists a pyramidal tour with step-backs z ⊂ x ∪ y, different from
x and y, such that the vertex zv is in a convex combination

αxv + (1 − α)yv = βzv +
∑

βizi

with a nonzero coefficient.
We choose the city i with the smallest number such that z enters i along an

edge of the tour x, and leaves along an edge of the tour y. We choose the city j
with the smallest number such that z enters j along an edge of the tour y, and
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i − 1 i

i − 1 i

x

y

a)

i − 1 i i + 1

i − 1 i

x

y

b)

Fig. 3. Transition 1 → 0 (cases 1 (a) and (b))

leaves along an edge of the tour x. By construction, the tour z contains edges of
both x and y, therefore such cities exist.

Part 1. Let us prove that the city i (city j) cannot be visited by the tours x
and y in opposite orders. Without loss of generality, we consider the case when
the city i is visited by z and x in ascending order, and by y in descending order.
The remaining cases are treated similarly since they are completely symmetric.

Let us consider an edge ei,y of the tour y that leaves i and is included in the
tour z. It can lead either to a city with a smaller number or to a city with a
larger number.

1. Let the edge ei,y lead to a city with a smaller number. However, the edge ei,y
is a part of z in ascending order. The only possible option is that ei,y is an
edge of the form (i − 1) ← (i) that will be a step-back in ascending order of
the tour z. In the multigraph x ∪ y there are two edges leaving i − 1: ei−1,x

of x and ei−1,y of y. The edge ei−1,y leads to a city with a smaller number,
since i − 1 is visited by y in descending order. Thus, it cannot be a part of
z, otherwise, z is not a pyramidal tour with step-backs. Therefore, z can go
only along the edge ei−1,x to a city with a larger number. Since the cities
i − 1 and i are visited by x in ascending order, only two configurations are
possible (the city i is in bold):

(a)
〈

1 1
0 0

〉
, (b)

〈
1

#     »
1 1

0 0

〉
.

In both of them, the tour z goes to a city that has already been passed before:
(a) i, (b) i + 1 (Fig. 3).
Hereinafter, unless stated otherwise, the following notation is used in the fig-
ures: solid edges – edges of z, dashed – edges of (x∪y)\z, dotted – transitions
of z between edges of x and y.

2. Let the edge ei,y lead to a city with a larger number. However, ei,y is a part of
y in descending order. Consequently, this is an edge of the form (i) → (i + 1)
that was a step-bask of y. The next edge of z has to go to a city with a
larger number since we cannot return to i. Two edges ei+1,y of y and ei+1,x

of x leave the city i + 1. The edge ei+1,y is directed to a city with a smaller
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number, since i + 1 is visited by y in descending order. Therefore, z can go
only along the edge ei+1,x. We consider the possible configurations:

(a)
〈
1 1
#     »
0 0

〉
, (b)

〈
1

#     »
1 1

#     »
0 0

〉
, (c)

〈
1

#     »
0 0

#     »
0 0

〉
,

(d)
〈 #     »

1 1 1
#     »
0 0

〉
, (e)

〈 #     »
1 1

#     »
1 1

#     »
0 0

〉
, (f)

〈 #     »
1 1

#     »
0 0

#     »
0 0

〉
.

(a) Transitions in cities i and i+1 between tours x and y do not make sense,
since the edge (i) → (i + 1) is included in both tours (Fig. 4).

(b) We consider the edges (i) → (i + 2) of x and (i) ← (i + r) of y (Fig. 4).
None of them is included in z. The edge (i) → (i + 2) cannot be a part
of descending order, the edge (i) ← (i + r) cannot be a part of ascending
order. Therefore, no pyramidal tour with step-backs can contain both
edges at the same time. By Lemma 3, the vertex zv cannot be included
in a convex combination that coincides with a convex combination of xv

and yv with a nonzero coefficient. We got a contradiction.
(c) We consider the edges (i − r) ← (i + 2) of x and (i − s) ← (i + 1) of y

(Fig. 5). None of them is included in z since the cities i + 1 and i + 2 are
visited in ascending order. However, only these two edges lead from cities
with numbers greater than i to cities with numbers less than i. The tour
z cannot return to the city 1. We got a contradiction.

i i + 1

i i + 1

x

y

a)

i i + 1 i + 2

i i + 1 i + r

x

y

b)

Fig. 4. Transition 1 → 0 (cases 2 (a) and (b))

i − r i i + 1 i + 2

i − s i i + 1

x

y

c)

i − 1 i i + 1

i − r i i + 1

x

y

d)

Fig. 5. Transition 1 → 0 (cases 2 (c) and (d))
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(d) We consider the edges (i − 1) → (i + 1) of x and (i − r) ← (i + 1) of
y (Fig. 5). As in case (b), these two edges are not included in z and no
pyramidal tour with step-backs can contain both these edges at the same
time. By Lemma 3, we got a contradiction.

(e) The configuration has the form shown in Fig. 6 (the edges of z are solid).
We consider the edge ei−1,y of y that leaves the city i − 1.

– Let the edge ei−1,y be directed to a city with a larger number. Suppose
that there exists a pyramidal tour with step-backs t that contains both
the edges (i + 1) ← (i + 2) and (i) ← (i + s) that are not included
in z (Fig. 7, the edges of t are solid). There are two edges from i:
(i) → (i+1) and (i− 1) ← (i). The edge (i) → (i+1) cannot be part
of t, since in this case two edges (i) → (i + 1) and (i + 1) ← (i + 2)
of t enter the city i + 1. Therefore, the edge (i − 1) ← (i) is a part
of t, and the cities i − 1 and i are visited by t in descending order.
However, both edges leaving the city i − 1 are directed to the cities
with numbers at least i+1. Thus, no pyramidal tour with step-backs
t can contain both edges (i + 1) ← (i + 2) and (i) ← (i + s) that are
not included in z. By Lemma 3, we got a contradiction.

– Let the edge ei−1,y be directed to a city with a smaller number. Sup-
pose that there exists a pyramidal tour with step-backs t that contains
both the edges (i−1) ← (i) and (i−r) ← (i+1) that are not included
in z (Fig. 8, the edges of t are solid). There are two edges directed to
i+1: (i) → (i+1) and (i+1) ← (i+2). The edge (i) → (i+1) cannot
be part of t, since in this case two edges (i) → (i+1) and (i−1) ← (i)
of t leave the city i. Therefore, the edge (i + 1) ← (i + 2) is a part of
t and the cities i+1 and i+2 are visited by t in descending order. In
this case, the tour t has the edge (i − p) ← (i − 1) of two edges that
leave the city i−1. Consequently, the cities i and i−1 are also visited
in descending order. However, no pyramidal tour with step-backs can
go along the edges (i+1) ← (i+2) and (i− r) ← (i+1) and visit the
city i in descending order. Thus, no pyramidal tour with step-backs
t can contain both the edges (i − 1) ← (i) and (i − r) ← (i + 1) that
are not included in z. By Lemma 3, we got a contradiction.

(f) Similar to the case (c) there are only three edges: (i − 1) ← (i), (i − r) ←
(i+2), and (i−s) ← (i+1) that lead to the cities with numbers less than
i (Fig. 9), and none of them are included in z. The tour z cannot return
to the city 1. We got a contradiction.

Thus, if the tour z enters the city i along an edge of x and leaves along an
edge of y, or vice versa, then i is visited by x and y in the same order. Since from
the city 1 there are only edges leading to the cities that are visited in ascending
order by x and y, the tour z in ascending order includes only edges of ascending
orders of x and y, in descending order – only edges of descending orders.

Part 2. Let us prove that transitions between the edges of x and y can only
be performed by blocks U,L,R from the statement of the theorem. Without loss
of generality, we assume that the city i is visited by x and y in ascending order
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i − 1 i i + 1 i + 2

i − r i − 1 i i + 1 i + 2 i + s

x

y

Fig. 6. Transition 1 → 0 (case 2 (e))

i − 1 i i + 1 i + 2

i − 1 i i + 1 i + s

x

y

Fig. 7. Case 2 (e), ei−1,y is directed to a city with a larger number

i − 1 i i + 1 i + 2

i − r i − p i − 1 i i + 1

x

y

Fig. 8. Case 2 (e), ei−1,y is directed to a city with a smaller number

i − r i − 1 i i + 1 i + 2

i − s i i + 1

x

y

Fig. 9. Transition 1 → 0 (case 2 (f))
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(x0,1
i = y0,1

i = 1). The case x0,1
i = y0,1

i = 0 is treated similarly. We consider the
possible configurations:

(a)
〈

1
1

〉
, (b)

〈
1

#     »
1 1

〉
, (c)

〈
1

#     »
1 1

〉
, (d)

〈 #     »
1 1

1

〉
, (e)

〈 #     »
1 1
1

〉
,

(f)
〈 #     »

1 1
#     »

1 1

〉
, (g)

〈 #     »
1 1

#     »
1 1

〉
, (h)

〈 #     »
1 1

#     »
1 1

〉
.

(a) The transition has the form of a block U11.
(b) Suppose that the city i+1 is visited by x in ascending order (x0,1

i+1 = 1):

(b1)
〈

1 1
#     »

1 1

〉
, (b2)

〈
1

#     »
1 1

#     »
1 1

〉
.

In the case (b1) none of the edges entering the city i + 1 was included
in the tour z, therefore, z cannot be a Hamiltonian tour.
In the case (b2), the tour z can visit the city i + 1 only along the edge
(i + 1) ← (i + 2) of x. At the same time, z can enter the city i + 2 only
along an edge of the tour y in ascending order:

(b21)
〈

1
#     »

1 1
#     »

1 1 1

〉
, (b22)

〈
1

#     »
1 1

#     »
1 1

#     »
1 1

〉
.

In the case (b21), transition between the tours x and y does not make
sense, since the edge (i) → (i + 2) is contained in both tours (Fig. 10).
The case (b22) contains a transition of the configuration (g), the impos-
sibility of which will be considered separately.
Thus, the city i + 1 can be visited by x only in descending order
(x0,1

i+1 = 0). The transition has the form of a block:

L1011 =
〈

1 0̃
#     »

1 1

〉
.

(c, d, e) Similar to configuration (b), the transitions have the form of the blocks
R0111, R1101, and L1110.

(f) The transition has the form of a block U1111.
(g) The tour z enters the city i by the edge (i) ← (i+1) of x and leaves by

the edge (i − 1) ← (i) of y. A pyramidal tour with step-backs cannot
contain both these edges in ascending order since this is a double step-
back (Fig. 10).

(h) The edges (i − 1) ← (i) and (i) ← (i + 1) are not included in z and
no pyramidal tour with step-backs can contain both these edges at the
same time (Fig. 11). By Lemma 3, we got a contradiction.

Thus, the transition between the edges of x and y is possible only at blocks
U,L,R from the statement of the theorem. Besides, it can be done at cities 1
and n which can be considered as universal blocks.
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i i + 1 i + 2

i i + 1 i + 2

x

y

b21)

i i + 1

i − 1 i

x

y

g)

Fig. 10. Transition 1 → 1 (cases (b21) and (g))

i − 1 i

i i + 1

x

y

Fig. 11. Transition 1 → 1 (case (h))

Part 3. Let us prove that the remaining conditions of the theorem are satis-
fied. By construction, i is the city with the smallest number, such that z enters
i by an edge of x and leaves by an edge of y, j is the city with the smallest
number, such that z enters j by an edge of y and leaves by an edge of x.

The coordinates x0,1
i and x0,1

j can take one of the four combinations of the
values 0 and 1 that are described in the statement of the theorem. Without loss
of generality we assume that i < j and x0,1

i = 1, other cases are treated similarly.
Since i and j are the cities with the smallest numbers where the tour z makes

transitions between edges of x and y, the traversal diagram has the form shown
in Fig. 12. In particular, the tour z visits i − 1 by the edges of x.

i j

i j

x

y

Fig. 12. The traversal diagram of the tour z if i < j
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First, we prove that transition at i has the form of a left block U or L.
Suppose the contrary, then the block has one of two possible forms:

R1101 =
〈 #     »

1 1
0̃ 1

〉
, R0111 =

〈
0̃ 1

#     »
1 1

〉
.

In the case of R1101, the tour z skips the city i − 1 in ascending order, since the
edge (i−1) ← (i) of x is not a part of z, and then again skips i−1 in descending
order. In the case of R0111, the tour z visits the city i − 1 in ascending order,
since this time (i − 1) ← (i) of y is a part of z, and then again visits i − 1 in
descending order. In both cases, the tour is not Hamiltonian. Similarly, we can
prove that the transition at j cannot have the form of a left block L.

We denote by ia the first city after the left block: ia = i + 1 for single blocks
and ia = i + 2 for double blocks. We denote by jb the last city before the right
block: jb = i − 1 for single blocks and jb = j − 2 for double blocks.

Therefore, by construction, in the central part between the blocks, the tour
z in ascending order goes along the edges of y: z1,sb[ia,jb]

= y1,sb
[ia,jb]

, in descending

order – along the edges of x: z0,sb[ia,jb]
= x0,sb

[ia,jb]
. While on the left side z moves

along the edges of x in both directions: z0,1,sb[1,ia−1] = x0,1,sb
[1,ia−1] (Fig. 12).

We combine the conditions for the central part:⎧⎨
⎩

z1,sb[ia,jb]
= y1,sb

[ia,jb]
,

z0,sb[ia,jb]
= x0,sb

[ia,jb]

⇒ x0,1
[ia,jb]

= y0,1
[ia,jb]

.

Indeed, if for at least one city in the central part the coordinates of x0,1
[ia,jb]

and

y0,1
[ia,jb]

do not match, then the tour z will either skip this city or visit it twice.

1. If x0,1
j = 1, then both cities i and j are visited by x, y, z in ascending order.

We verify the remaining conditions of the theorem.
– If the first condition is not satisfied:

x1,sb
[ia,jb]

= y1,sb
[ia,jb]

= z1,sb[ia,jb]
,

then the transitions at the cities i and j do not make sense, since all the
edges of y that are part of z as a result are also contained in the tour x.

– If the second condition is not satisfied:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0,sb
[ia,jb]

= y0,sb
[ia,jb]

= z0,sb[ia,jb]
,

x0,1,sb
[1,ia−1] = y0,1,sb

[1,ia−1] = z0,1,sb[1,ia−1],

x0,1,sb
[jb+1,n] = y0,1,sb

[jb+1,n] = z0,1,sb[jb+1,n],

then the tour z completely coincides with the tour y.
2. If x0,1

j = 0, then the city i is visited by x, y, z in ascending order, the city j
– in descending order. We verify the remaining conditions of the theorem.
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– If the first condition is not satisfied:⎧⎨
⎩

x1,sb
[ia,jb]

= y1,sb
[ia,jb]

= z1,sb[ia,jb]
,

x0,1,sb
[jb+1,n] = y0,1,sb

[jb+1,n] = z0,1,sb[jb+1,n],

then the tour z completely coincides with the tour x.
– If the second condition is not satisfied:⎧⎨

⎩
x0,sb
[ia,jb]

= y0,sb
[ia,jb]

= z0,sb[ia,jb]
,

x0,1,sb
[1,ia−1] = y0,1,sb

[1,ia−1] = z0,1,sb[1,ia−1],

then the transitions at the cities i and j do not make sense, since all the
edges of x that are part of z as a result are also contained in the tour y.

Thus, if the vertices xv and yv of the polytope PSB(n) are not adjacent, then
the conditions of the theorem are satisfied.

Sufficiency. Suppose that sufficient conditions of the theorem are satisfied.
We consider the pyramidal tour with step-backs z, constructed as described in
Table 1, and the pyramidal tour with step-backs t, constructed as t = (x ∪ y)\z.
The multigraph x ∪ y includes a pair of complementary pyramidal tours with
step-backs z and t, different from x and y. Thus, by Lemma 1 the vertices xv

and yv of the polytope PSB(n) are not adjacent. Examples of the first and third
sufficient conditions are shown in Fig. 13.

Table 1. Construction of the tour z

1. If x0,1
i = x0,1

j = 1, then

z0,1,sb
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0,1,sb
k , if k < ia,

y1,sb
k , if ia ≤ k ≤ jb,

x0,sb
k , if ia ≤ k ≤ jb,

x0,1,sb
k , if k > jb.

2. If x0,1
i = x0,1

j = 0, then

z0,1,sb
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0,1,sb
k , if k < ia,

x1,sb
k , if ia ≤ k ≤ jb,

y0,sb
k , if ia ≤ k ≤ jb,

x0,1,sb
k , if k > jb.

3. If x0,1
i = 1, x0,1

j = 0, then

z0,1,sb
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0,1,sb
k , if k < ia,

y1,sb
k , if ia ≤ k ≤ jb,

x0,sb
k , if ia ≤ k ≤ jb,

y0,1,sb
k , if k > jb.

4. If x0,1
i = 0, x0,1

j = 1, then

z0,1,sb
k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0,1,sb
k , if k < ia,

x1,sb
k , if ia ≤ k ≤ jb,

y0,sb
k , if ia ≤ k ≤ jb,

y0,1,sb
k , if k > jb.
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x 〈 1 1 1 1 1 〉
y 〈 1 1 1 1 0 〉

1 2 3 4 5 6 7x

1 2 3 4 5 6 7y

1 2 3 4 5 6 7z

1 2 3 4 5 6 7t

x 〈 1 0 0 1 0 〉
y 〈 1 0 0 0 0 〉

1 2 3 4 5 6 7x

1 2 3 4 5 6 7y

1 2 3 4 5 6 7z

1 2 3 4 5 6 7t

Fig. 13. Examples of first and third sufficient conditions

Theorem 3. The question whether two vertices of the polytope PSB(n) are adja-
cent can be verified in polynomial time.

Proof. We consider two pyramidal tours with step-backs x and y, and the cor-
responding vertices xv and yv of the polytope PSB(n).

In the encodings x0,1,sb and y0,1,sb there are O(n) possible positions for the
left block. Similarly, there are O(n) possible positions for the right block. For
each pair of blocks, the verification of the remaining conditions will require a
single pass along the vectors x0,1,sb and y0,1,sb that can be performed in time
O(n). Thus, the vertex adjacency test by an exhaustive search of all possible
cases of the Theorem 2 will require at most O(n3) operations.

In fact, the test can be performed in linear time O(n). A single pass through
the encodings x0,1,sb and y0,1,sb is enough to consistently find the left block, then
the right block, then check the remaining conditions.

5 Conclusion

The general formulation of the traveling salesperson problem and the verification
of vertex adjacency in 1-skeleton of the traveling salesperson polytope are NP-
complete [19]. At the same time, the traveling salesperson problem for pyramidal
tours and pyramidal tours with step-backs is solvable by dynamic programming
in polynomial time [12,14]. We have established that the vertex adjacency in
1-skeleton of the polytope of pyramidal tours [7] and pyramidal tours with step-
backs can be verified in polynomial time. Thus, the properties of 1-skeleton of
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the traveling salesperson polytope are directly related to the properties of the
problem itself.
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Abstract. In the Routing Open Shop problem n jobs are located in
the nodes of an edge-weighted graph G = (V,E) and m machines must
process all jobs in such a way that each machine processes only one job at
a time and each job is processed by only one machine at a time. The goal
is to minimize the makespan, i. e. the time when the last machine comes
back to the initial node called a depot (at the beginning all machines are
in the depot). This problem is NP-hard even when the graph contains
only two nodes. In this paper we consider the case of G = K2 when all
processing times and travel times are unit. We pose the conjecture that
the problem is polynomially solvable in this case, i. e. that the makespan
depends only on the number of machines and the loads of the nodes and
can be calculated in time O(logmn). We provide some bounds on the
makespan for the case of m = n depending on the loads distribution.

Keywords: Routing Open Shop · Unit processing times ·
Complexity · Scheduling · Polynomial time · Makespan bounds

1 Introduction

The Open Shop is one of the classical scheduling problems. There are given a
set J of n jobs, a set M of m machines and a matrix of processing times pij for
each machine Mi and job Jj . The task is to find a schedule with the minimum
makespan to process each job on each machine in an arbitrary order so that each
machine processes only one job at a time and each job is processed by only one
machine at a time. Here all “switching” (used for changing jobs) times for all
machines are assumed to be zero. In the Routing Open Shop problem the jobs
are located in the nodes (vertices) of an edge-weighted graph G = (V,E) where
the weight of an edge is equal to a travel time needed for a machine to move
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from one node to another (if two jobs are in the same node then the switching
times are still zero). All machines at the beginning are in the same node called
the depot. The makespan is equal to the time when the last machine comes back
to the depot after processing all jobs. Note that the Routing Open Shop problem
generalizes two well-known NP-hard problems, namely, Open Shop and metric
Traveling Salesman Problem.

The Open Shop problem was first considered in [8]. It was proved there that
it is polynomially solvable for m = 2 and NP-hard for m ≥ 3. Moreover, for
an arbitrary number of machines m there is no c-approximation algorithm for
c < 5/4 unless P=NP [14]. If all processing times are unit then this problem
is equivalent to an edge coloring of a bipartite graph which is polynomially
solvable (the fastest algorithm can be found in [7]). The Routing Open Shop
was introduced in [1] and proved to be NP-hard even for m = 2 and G = K2 in
[2]. Kononov [9] suggested an FPTAS for the latter case of this problem, while
the best possible 6/5-approximation with respect to the standard lower bound
algorithm for it was presented in [1]. If preemption is allowed then the Routing
Open Shop problem is NP-hard for G = K2 and arbitrary m, but polynomially
solvable for m = 2 [12] (note that the preemptive Open Shop is polynomially
solvable [8] for an arbitrary m). In the case of unit processing times Routing
Open Shop was proved to be fixed parameter tractable in [3,4] parametrized
by m + |V |. However, in the case of unit processing time and arbitrary m the
problem complexity remains unknown even for G = K2.

In this paper we consider the Routing Open Shop with G = K2, unit process-
ing times and unit travel times. Main results of the paper are obtained for the
case of m = n. Note that in spite of the well-known symmetry in the traditional
Open Shop problem between the sets of jobs and machines, the existence of
the depot makes Routing Open Shop substantially different from the scheduling
with job transportations [6,11,13], so the results of this paper, most probably,
cannot be applied there.

2 Preliminaries

For a string x denote by x[i] its cyclic shift by i positions to the right. For
instance, if x = (1, 3, 2, 6, 5, 4) then x[2] = (5, 4, 1, 3, 2, 6).

Denote by a the number of jobs in the depot and by b the number of jobs in
the second node. Clearly, a+ b = n. We may assume that the jobs J1, . . . , Ja are
in the depot and the jobs Ja+1, . . . , Jn are not.

It is convenient to present a schedule as a table m × n filled in by positive
integers, where the value k in a cell (i, j) means that the machine Mi processes
the job Jj in the interval [k − 1, k]. Denote by tij a number in a cell (i, j).
Then the table defines a correct schedule with the makespan K if the following
conditions are satisfied:

1. tij ∈ {1, . . . , K} if j ∈ {1, . . . , a} and tij ∈ {2, . . . , K − 1} if j ∈ {a +
1, . . . , n};
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2. tij1 �= tij2 and ti1j �= ti2j whenever i1 �= i2 and j1 �= j2;
3. For every i ∈ {1, . . . , m}, j1 ∈ {1, . . . , a}, j2 ∈ {a + 1, . . . , n} the inequality
|tij1 − tij2 | ≥ 2 holds.

We refer to the columns 1, . . . , a as a left part of the table and to the columns
a + 1, . . . , n as a right part of the table.

Denote by K∗ the optimal makespan. The first and second conditions imply
that K∗ ≥ m + 2, while the second and third conditions result in K∗ ≥ n + 2.
So, we have the following lower bound:

K∗ ≥ max{m,n} + 2. (1)

We call any table satisfying the second condition a Latin rectangle (a Latin
square, if n = m). For any integer j ≥ i denote by L(i, j) the Latin square with
a side of size j − i+1 filled in by the numbers i, . . . , j and by L′(i, j) and L′′(i, j)
the Latin rectangles obtained from L(i, j) by deleting the last string or the last
column, respectively. The easiest way to construct L(i, j) is taking the string
x0 = (i, i + 1, . . . , j) and putting xk = x

[k]
0 for k = 1, . . . , j − i. Note that the

idea of using Latin rectangles for unit-time Open Shop scheduling first appeared
in [5] (see [10, Chapter 8] for further details).

The following upper bound was proved in [3,4]:

K∗ ≤ max{m,n} + 4. (2)

The corresponding schedule can be obtained by the following procedure (the
detailed proof can be found in [3,4]):

Step 1. If m > n then add m − n columns to the left part of the table (fictive
jobs in the depot) and increase a by m−n. Put the first string x1 = (1, . . . , n)
and xi = x

[i−1]
1 for i = 2, . . . , m.

Step 2. Color each cell (i, j) green, if i ≤ j ≤ a, yellow, if j ≥ max{i, a + 1},
orange, if j ≤ min{i − 1, a} and red, if a < j < i.
Step 3. Increase the numbers in yellow, orange and red cells by 1,2, and 3,
respectively.

The obtained table defines a correct schedule with the makespan at most
max{m,n}+4. Moreover, if m ≤ a+1 then there are no red cells, and we obtain
an optimal solution with K∗ = n + 2.

It follows from the bounds (1) and (2) that the optimal makespan K∗ =
max{m,n} + s where s ∈ {2, 3, 4}; so, for solving the problem these three cases
should be characterized. Further in the paper we consider the only the case
of m = n. Note that the general case cannot be reduced to this one, since
adding one more job or machine can increase the optimal makespan (even if
the lower bound (1) remains the same). For instance, in Table 1a and b there
are two examples with the minimum possible makespan 9 (m = 7, n = 6 and
m = 6, n = 7 respectively), but adding a job (in any node) to the example (a)
or a machine to (b) results in an instance with the makespan 10, as follows from
Theorem 1 and Corollary 1 below. Nevertheless, solving the case m = n looks
important since it could provide ideas useful for the general case.
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Table 1. Examples of correct schedules

a)

1 2 3 4 6 8
9 1 2 3 7 5
8 9 1 2 4 6
7 8 9 1 5 3
2 3 4 5 8 7
6 7 8 9 2 4
5 6 7 8 3 2

b)

1 2 3 4 5 7 8
9 1 2 3 4 6 7
8 9 1 2 3 5 6
7 8 9 1 2 4 5
6 7 8 9 1 3 4
5 6 7 8 9 2 3

c)
1 2 3
3 1 2
2 3 1

−→

1 2 3 4 5 6 8 9 10
3 1 2 6 4 5 10 8 9
2 3 1 5 6 4 9 10 8
9 10 11 1 2 3 5 6 7
11 9 10 3 1 2 7 5 6
10 11 9 2 3 1 6 7 5
6 7 8 9 10 11 2 3 4
8 6 7 11 9 10 4 2 3
7 8 6 10 11 9 3 4 2

3 Main Results

The subject of study in this section is the following

Problem 1. Consider the Routing Open Shop with G = K2, m = n machines
and jobs, where a jobs are in the depot and b = n − a jobs are in the second
node. All processing times and travel times between the nodes are unit. Find
out whether the optimal makespan K∗ = n + 2 or K∗ = n + 3 or K∗ = n + 4.

The first theorem provides the criterion when the lower bound (1) is
achievable.

Theorem 1. In Problem 1 the optimal makespan K∗ = n + 2 if and only if
a ≡ 0 (mod b).

Proof. Sufficiency. Let k = a/b. Consider a Latin square L(1, k+1) obtained by
k cyclic shifts of the string (1, . . . , k +1). Color all cells below the main diagonal
orange, all cells in the last column yellow and all remaining cells green. Let a cell
contain a number t. Then substitute it by L((t − 1)b + 1, tb) if the cell is green,
by L((t − 1)b + 2, tb + 1) if the cell is yellow, and by L((t − 1)b + 3, tb + 2) if the
cell is orange. Apply the same operation for all cells. This procedure for a = 6
and b = 3 is illustrated in Table 1c where italic and bold numbers correspond
to yellow and orange cells respectively. It is easy to check that in each string
the number in the yellow cell is larger than numbers in green cells and smaller
than numbers in orange cells; also, for every column in the left part of the table
every number in a green cell is less than any number in an orange cell. These
two facts clearly result in the correctness of the obtained schedule of makespan
K∗ = n + 2.

Necessity. If K∗ = n + 2 then all numbers from {2, . . . , n + 1} are met in each
column of the right part of the table. In particular, there are b strings containing
2 there. Since all machines work without waits (except for the travels between
the nodes), all number from {3, . . . , b + 1} are also met in these strings in the
right part of the table, i. e. the intersection of these strings and columns induces
in the table a Latin square L(2, b + 1). Similarly, the strings containing b + 2
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in the right part of the table induce there L(b + 2, 2b + 1), etc. However, it is
possible only if n ≡ 0 (mod b), and thus a ≡ 0 (mod b). ��
Corollary 1. If a ≡ b − 1 (mod b) or a ≡ 0 (mod b + 1) then K∗ = n + 3.

Proof. Add a new machine and a new job to the first or the second node
respectively and apply Theorem 1. ��

Another completely solved case is a < b.

Theorem 2. Let a < b. Then the optimal makespan K∗ = n + 3 if b − a = 1 or
a = 1, b = 3 or a = 2, b = 4 and K∗ = n + 4 in all other cases.

Proof. Assume K∗ = n+3, i. e. each machine has at most one wait. Since each
machine must process b jobs in the second node and come back, it must arrive
there at the time at least a+2 and cannot leave the second node before the time
b+2. Therefore, in the left part of the table all numbers are either at most a+1
or at least b+3, i. e. there are at most 2a+2 of them. Since all numbers in every
column must be distinct, we have 2a + 2 ≥ a + b and hence b − a ≤ 2. Suppose
b = a+2. Since the left part of the table contains a(a+ b) = a(2a+2) cells, each
of 2a + 2 available numbers is used exactly a times. In particular, this holds for
the numbers a + 1 and b + 3. So, there are a machines that arrive to the second
node at time a + 2 (already having one wait in the depot) and a machines that
leave the second node at time b + 2 = a + 4 (and thus they must work without
waits there). But then at the moment a + 3 at least 2a machines must process
jobs in the second node, implying 2a ≤ b = a + 2, i. e. a ≤ 2.

To finish the proof note that the case a = b − 1 follows from Corollary 1 and
the correct schedules in cases a = 1, b = 3 and a = 2, b = 4 are presented in
Table 2a and b respectively. ��

Table 2. Schedules in Theorem 2 and Proposition 1

a)

1 3 5 6
2 6 4 5
7 2 3 4
6 4 2 3

b)

1 2 6 4 8 7
3 1 7 6 5 8
2 3 8 7 6 5
8 9 2 3 4 6
7 8 5 2 3 4
9 7 4 5 2 3

c)
L′(1, a) L′′(a+ 2, 2a)

L′(a+ 2, 2a+ 1) L′′(2, a)

So, later on we consider only the case a > b.

Proposition 1. If a − b ∈ {1, 2} then K∗ = n + 3.

Proof. The case a = b + 1 follows from Corollary 1 and the schedule for the
case a = b + 2 is presented in Table 2c (note that n = 2(a − 1)). ��
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However, if a − b = k ≥ 3 then the optimal makespan can be n + 4 provided
that b is large enough.

Theorem 3. If a = b+k where k ≥ 3 and b ≥ 2k+1 then the optimal makespan
K∗ = n + 4.

Proof. Assume the opposite, K∗ = n + 3. Then only numbers 2, . . . , n + 2 can
meet in the right part of the table. Let each number i meets there xi times.
Clearly, xi ∈ {0, . . . , b} and

∑n+2
i=2 xi = nb, and hence

d :=
n+2∑

i=2

(b − xi) = b. (3)

Note also that if i is the minimum (maximum) number in a string in the right
part of the table then the maximum (minimum) number there is at most b + i
(at least i − b), for otherwise the corresponding machine would have more than
one wait. Let α1 and α2 (β1 and β2) be the number of strings with the minimum
number 2 and 3 respectively (maximum number n+2 and n+1 respectively) in
the right part of the table, and denote by γ the number of other strings. Clearly,
n = α1+α2+β1+β2+γ, x2 = α1, x3 ≤ α1+α2, xn+2 = β1, and xn+1 ≤ β1+β2.
Note that n − b + 1 = b + k + 1 > b + 3 since k > 2. Therefore, xb+3 ≤ α2 + γ
and xn−b+1 ≤ β2 + γ. Put I = {2, 3, b + 3, n − b + 1, n + 1, n + 2}. We have
d ≥ ∑

i∈I(b − xi) ≥ 6b − 2n = 2b − 2k > b since b > 2k, contradicting (3). ��
Corollary 2. If b + 3 ≤ a ≤ (3b − 1)/2 (thus, b ≥ 7) then K∗ = n + 4.

On the other hand, if a is much more than b then K∗ = n + 3, as follows
from Corollary 3 below.

Theorem 4. If a = kb + l where k ≥ l ≥ 1 then the optimal makespan K∗ =
n + 3.

Proof. Clearly, n = kb + b + l = l(b + 1) + (k − l + 1)b. If k = l then the result
follows from Corollary 1, so assume k−l ≥ 1. Partition n strings of the table into
l blocks of size b + 1 and (k − l + 1) blocks of size b. The right part of the table
consists of the following Latin rectangles and squares (listed from the highest to
the lowest):

L′′(n−b+2, n+2), L′′(n−2b+1, n−b+1), . . . , L′′((k−l+1)b+3, (k−l+2)b+3),

L((k − l)b + 2, (k − l + 1)b + 1), L((k − l − 1)b + 2, (k − l)b + 1), . . . , L(2, b + 1).

Denote by xi the first string of ith block (i = 0, 1, . . . , k) in the left part of
the table (i. e., each xi has length a). Then the left part of ith block contains the
strings xi, x

[1]
i , . . . , x

[b]
i if i ∈ {0, . . . , l−1} and xi, x

[1]
i , . . . , x

[b−1]
i if i ∈ {l, . . . , k}.

So, it is sufficient to specify the first string of each block. They are obtained by
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Table 3. The block structure in Theorem 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 25 21 22 23
18 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 24 25 21 22
17 18 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 24 25 21
16 17 18 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 22 23 24 25
25 26 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19
14 25 26 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 20 16 17 18
13 14 25 26 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 19 20 16 17
12 13 14 25 26 22 23 24 1 2 3 4 5 6 7 8 9 10 11 18 19 20 16
11 12 13 14 25 26 22 23 24 1 2 3 4 5 6 7 8 9 10 17 18 19 20
20 21 17 18 19 25 26 22 23 24 1 2 3 4 5 6 7 8 9 11 12 13 14
9 20 21 17 18 19 25 26 22 23 24 1 2 3 4 5 6 7 8 15 11 12 13
8 9 20 21 17 18 19 25 26 22 23 24 1 2 3 4 5 6 7 14 15 11 12
7 8 9 20 21 17 18 19 25 26 22 23 24 1 2 3 4 5 6 13 14 15 11
6 7 8 9 20 21 17 18 19 25 26 22 23 24 1 2 3 4 5 12 13 14 15
15 16 12 13 14 20 21 17 18 19 25 26 22 23 24 1 2 3 4 6 7 8 9
4 15 16 12 13 14 20 21 17 18 19 25 26 22 23 24 1 2 3 9 6 7 8
3 4 15 16 12 13 14 20 21 17 18 19 25 26 22 23 24 1 2 8 9 6 7
2 3 4 15 16 12 13 14 20 21 17 18 19 25 26 22 23 24 1 7 8 9 6
10 11 7 8 15 16 12 13 14 20 21 17 18 19 25 26 22 23 24 2 3 4 5
24 10 11 7 8 15 16 12 13 14 20 21 17 18 19 25 26 22 23 5 2 3 4
23 24 10 11 7 8 15 16 12 13 14 20 21 17 18 19 25 26 22 4 5 2 3
22 23 24 10 11 7 8 15 16 12 13 14 20 21 17 18 19 25 26 3 4 5 2

concatenation of some partial strings defined below. The string zj = (1, . . . , j)
has length j. Put

wj = (n − j(b + 1) + 4, . . . , n − (j − 1)(b + 1) + 3)[2] =

= (n−(j−1)(b+1)+2, n−(j−1)(b+1)+3, n−j(b+1)+4, . . . , n−(j−1)(b+1)+1)

for j = 1, . . . , l. Each wj has length b + 1. Put also

yk−l = ((k − l + 1)b + 2, (k − l + 1)b + 3, (k − l)b + 3, . . . , (k − l + 1)b)

and

yj = (jb + 3, . . . , (j + 1)b + 2)[2] = ((j + 1)b + 1, (j + 1)b + 2, jb + 3, . . . , (j + 1)b)

for j = 1, . . . , k − l − 1. All these strings are of length b.
Now define

x0 = zkb+l, xk = y1 . . . yk−lwl . . . w1

xj = wj . . . w1z(k−j)b+l−j for j = 1, . . . , l,

xk−j = yj+1 . . . yk−lwl . . . w1zjb for j = 1, . . . , k − l − 1.

An example of the schedule structure for a = 19, b = 4 (i. e. k = 4, l = 3) is
presented in Table 3.
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Let us check that this table defines a correct schedule. Since the maximum
number in the left and right parts of the table are respectively n+3 (in w1) and
n+2, the condition 1 is true. It is easy to see that the intervals of the numbers in
the Latin rectangles and squares do not intersect, implying that the condition 2
holds for columns in the right part of the table.

To check the conditions 2 and 3 for strings note that in the left part of the
lowest block k the numbers from the window {1, . . . , b + 2} are absent and the
numbers from the set {2, . . . , b+1} are used in the right part of this block. Each
next block shifts both the window and the set by b until the block l is reached.
In the block j such that 0 ≤ j ≤ l − 1 the window is {a − j(b + 1) + 1, . . . , a −
j(b + 1) + b + 3} and the set is {n − (j + 1)b − j + 2, . . . , n − jb − j + 2}. So, the
condition 3 holds for every string. Besides, it is easy to verify that no number
meets twice in any xj , implying the condition 2 for strings.

In order to verify the condition 2 for the columns in the left part of the table
we will determine the positions of each number i ∈ {1, . . . , n+3} in the left part
of the table.

First let i = αb + β where 0 ≤ α ≤ (k − l) and 1 ≤ β ≤ b. In this case i
meets in zj for j ≥ i and in the table it covers the diagonal from the cell (1, i)
to the cell (a − i + 1, a). Also, if β �= 1 it covers the diagonal from (a − i + 2, 1)
to (a − i + β, β − 1). Since β − 1 < i even if α = 0 all these columns with
i are distinct. However, if i ≥ b + 3 then i also meets in some yj . Namely, if
1 ≤ α ≤ k − l, 3 ≤ β ≤ b then i meets in yα and covers a diagonal from
(n − i + β + 1, β) to (n, i − 1)). If 2 ≤ α ≤ k − l, β ∈ {1, 2} then i meets in yα−1

and covers a diagonal from (n − i + b + β + 1, β) to (n − b, i − 1)).
The number i = (k − l + 1)b + 1 meets only in zj for j ≥ i and in the table

it covers the diagonals from (1, i) to (a − i + 1, a) and from (a − i + 2, 1) to
(a − i + b + 1, b).

Now let i = (k − l)b+α(b−1)+β where 1 ≤ α ≤ l −1, 1 ≤ β ≤ b+1. Again,
as a part of corresponding zj , i covers the diagonal from (1, i) to (a−i+1, a) and
also the diagonal from (a− i+2, 1) to (a− i+β, β−1) unless β = 1. If α = 1 and
β ∈ {1, 2} then i meets in yk−l and covers a diagonal from (n − (k − l)b + 1, β)
to (n, i− b− 2). If 1 ≤ α ≤ l, 3 ≤ β ≤ b+1 then i is a part of wl−α+1 and covers
a diagonal from (n − i + β + 2, β) to (n, i − 2). If 2 ≤ α ≤ l + 1, β ∈ {1, 2} then i
meets in wl−α+2 and covers a diagonal from (n− i+ b+β +3, β) to (n, i− b+3).

Finally, let i = kb + l + β = aβ for 1 ≤ β ≤ b + 3. If β ∈ {1, 2} then i meets
only in w2 and covers the diagonal from (2b + 3, β) to (n, i − b − 3). Otherwise,
i is only a part of w1. If 3 ≤ β ≤ b + 1 then i covers the diagonal from (b + 2, β)
to (n−2−β, a) and (n+1−β, 1) to (n, β −2). If β ∈ {b+2, b+3} then i covers
the diagonal from (b + 2, β − b + 1) to (n, a + β − b − 3).

Now it is easy to verify that for every i all columns containing i are different
and thus, the schedule is correct. ��

The lower bound on k in Theorem 4 can be slightly decreased, but the sched-
ule construction is a bit different in this case.

Theorem 5. If a = (k − 1)b + k then the optimal makespan K∗ = n + 3.
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Table 4. The cases a = 8, b = 5 and a = 9, b = 6

1 2 3 4 5 6 7 8 15 11 12 13 14
8 1 2 3 4 5 6 7 11 12 13 14 15
7 8 1 2 3 4 5 6 12 14 15 10 11
6 7 8 1 2 3 4 5 14 15 10 12 13
5 6 7 8 1 2 3 4 13 10 11 15 12
4 5 6 15 16 1 2 3 10 13 8 11 9
3 12 13 14 15 16 1 2 6 8 5 9 7
2 3 12 13 14 15 16 1 8 5 9 6 10
9 10 11 12 13 14 15 16 3 4 6 7 2
16 9 10 11 12 13 14 15 4 6 7 2 3
15 16 9 10 11 12 13 14 5 7 2 3 4
14 15 16 9 10 11 12 13 7 2 3 4 5
13 14 15 16 9 10 11 12 2 3 4 5 6

1 2 3 4 5 6 7 8 9 11 13 14 15 16 17
9 1 2 3 4 5 6 7 8 17 11 13 14 15 16
8 9 1 2 3 4 5 6 7 16 17 11 13 14 15
7 8 9 1 2 3 4 5 6 15 16 17 12 13 14
6 7 8 9 1 2 3 4 5 14 15 16 17 12 13
5 6 7 8 9 1 2 3 4 13 14 15 16 17 12
4 5 14 15 16 17 1 2 3 8 12 10 7 11 9
3 4 5 14 15 16 17 1 2 10 8 12 9 7 11
2 3 4 5 14 15 16 17 1 12 10 8 11 9 7
18 10 11 12 13 14 15 16 17 7 2 3 4 5 6
17 18 10 11 12 13 14 15 16 6 7 2 3 4 5
16 17 18 10 11 12 13 14 15 5 6 7 2 3 4
15 16 17 18 10 11 12 13 14 4 5 6 8 2 3
14 15 16 17 18 10 11 12 13 3 4 5 6 8 2
13 14 15 16 17 18 10 11 12 2 3 4 5 6 8

Proof. In this case n = a + b = k(b + 1), i. e. the set of strings of the table can
be partitioned into k blocks of b + 1 strings. The right part of the table consists
of the following Latin rectangles (listed from the lowest to the highest):

L′′(2, b+2), L′′(b+4, 2b+4), L′′(2b+5, 3b+5), . . . , L′′((k−1)b+k+2, kb+k+2).

Denote by xi the first string of ith block (i = 1, . . . , k) in the left part of
the table. Then for every i = 1, . . . , k the left part of ith block contains strings
xi, x

[1]
i , . . . , x

[b]
i , and again, it is sufficient to specify only the first string of each

block. They are obtained by concatenation of some partial strings defined below.
The string zj = (1, . . . , j) has length j. Put

wj = ((k − j)b + k − j + 4, . . . , (k − j + 1)b + k − j + 4)[2], for j = 1, . . . , k − 2

and w = (b + 4, . . . , 2b + 5)[2]. Note that w is of length b + 2 while each wj has
length b + 1. Put

x1 = za, xk = wwk−2 . . . w1

and
xj = wj . . . w1za−j(b+1) for j = 2, . . . , k − 1.

Let us verify the correctness of the schedule. Condition 1 clearly holds as
well as condition 2 for columns in the right part of the table. It is easy to
see that ith block for i = 1, . . . , k − 1 misses the numbers (k − i)b + k + 2 −
i . . . , (k − i + 1)b + k + 4 − i in the left part of the table, while the numbers
(k − i)b + k + 3 − i . . . , (k − i + 1)b + k + 3 − i are used in the right part of the
table. The kth block uses the numbers b+4, . . . , n+3 in the left part of the table
and the numbers 2, . . . , b + 2 in the right part of the table. Since each number is
used at most once in each string, the conditions 2 and 3 hold for strings.
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Table 5. The case a = 10, b = 6

1 2 3 4 5 6 7 8 9 10 18 12 13 15 16 17
10 1 2 3 4 5 6 7 8 9 17 18 12 13 15 16
9 10 1 2 3 4 5 6 7 8 16 17 18 12 14 15
8 9 10 1 2 3 4 5 6 7 15 16 17 18 12 14
7 8 9 11 1 2 3 4 5 6 14 15 16 17 18 13
6 7 8 9 11 1 2 3 4 5 13 14 15 16 17 18
5 6 7 17 16 19 1 2 3 4 12 13 14 9 10 11
4 5 6 7 17 16 19 1 2 3 11 10 9 14 13 12
3 4 16 15 18 17 14 13 1 2 8 7 6 11 9 10
2 3 4 16 15 18 17 14 13 1 10 9 11 6 7 8
14 13 12 10 9 15 16 17 18 19 2 3 4 5 6 7
19 14 13 12 10 9 15 16 17 18 7 2 3 4 5 6
18 19 14 13 12 10 9 15 16 17 6 8 2 3 4 5
17 18 19 14 13 12 10 9 15 16 5 6 8 2 3 4
16 17 18 19 14 13 12 10 9 15 4 5 7 8 2 3
15 16 17 18 19 14 13 12 10 9 3 4 5 7 8 2

In order to verify the condition 2 for the columns in the left part of the table
we will determine the positions of each number i ∈ {1, . . . , n+3} in the left part
of the table.

Clearly, the number 1 covers in the table the diagonal from the cell (1, 1) to
the cell (a−1, a−2). Each i = α(b+1)+β where 0 ≤ α ≤ k−2 and 2 ≤ β ≤ b+2
meets in zj for all j ≥ i and covers the diagonal from (1, i) to (a − i + 1, a) and
if β �= 2 it also covers the diagonal from (a− i+2, 1) to (a−α(b+1)− 1, β +2).

Each number i = b + 3 + β where 1 ≤ β ≤ b + 2 belongs to w and thus it
covers a diagonal from (a, β + 2) to (n, β + b + 2) if β ≤ b and the diagonal from
(a, β − b) to (n, β) if β ∈ {b + 1, b + 2}.

Now let i = α(b+1)+β where 2 ≤ α ≤ k−2 and 4 ≤ β ≤ b+4; then i meets in
wk−α. If β ∈ {b+3, b+4} then i covers the diagonals from (n−α(b+1)+1, β−b−2)
to (a − 1, i − 2b − 4) and from (a, i − 2b − 2) to (n, i − b − 2). If 4 ≤ β ≤ b + 2
then i covers the diagonals from (n−α(b+1)+1, β − 1) to (a− 1, i− b− 3) and
from (a, i − b − 1) to (n, i − 1).

Finally, let i = a + β where 3 ≤ β ≤ b + 3. All these numbers meet only in
w1. If 3 ≤ β ≤ b + 1 then i covers three diagonals, namely, from (b + 2, β) to
(a − 1, i − b − 3), from (a, i − b − 1) to (n − β + 1, a) and from (n − β + 2, 1) to
(n, β−1). The number n+2 covers the diagonals from (b+2, 1) to (a−1, a−b−2)
and from (a, a − b) to (n, a), while the number n + 3 covers the diagonals from
(b + 2, 2) to (a − 1, a − b − 1) and from (a, a − b + 1) to (n − 1, a) and also meets
in the cell (n, 1).

Now it is easy to verify that for every i all columns containing i are different
and thus, the schedule is correct. ��
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Table 6. The case a = 16, b = 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 18 19 20 21 22
15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 23 24 18 19 20 21
14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 22 23 24 18 19 20
13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 21 22 23 24 18 19
12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 20 21 22 23 24 18
11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 19 20 21 22 23 24
19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16
9 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 16 11 12 13 14 15
8 9 19 20 21 22 23 24 25 1 2 3 4 5 6 7 15 16 11 12 13 14
7 8 18 19 20 21 22 23 24 25 1 2 3 4 5 6 14 15 16 10 12 13
6 7 8 18 19 20 21 22 23 24 25 1 2 3 4 5 13 14 15 16 10 12
5 6 7 8 18 19 20 21 22 23 24 25 1 2 3 4 12 13 14 15 16 10
4 5 17 23 14 15 16 20 21 22 18 24 25 1 2 3 8 10 12 7 11 9
3 4 5 17 24 14 15 16 20 21 22 23 18 25 1 2 9 8 10 12 7 11
2 3 4 5 17 25 14 15 16 20 21 22 23 24 18 1 10 9 8 11 12 7
10 11 12 13 9 17 18 14 15 16 20 21 22 23 24 25 7 2 3 4 5 6
25 10 11 12 13 9 17 18 14 15 16 20 21 22 23 24 6 7 2 3 4 5
24 25 10 11 12 13 9 17 18 14 15 16 20 21 22 23 5 6 7 2 3 4
23 24 25 10 11 12 13 19 17 18 14 15 16 20 21 22 4 5 6 8 2 3
22 18 24 25 10 11 12 13 19 17 23 14 15 16 20 21 3 4 5 6 8 2
21 22 23 24 25 10 11 12 13 19 17 18 14 15 16 20 2 3 4 5 6 8

Corollary 3. If a ≥ b2 − 3b then K∗ ≤ n + 3.

Proof. Let a ≡ l (mod b). Then a = kb+ l where k ≥ b−3 and l < b. If l = 0 or
l = b−1 then the statement follows respectively from Theorem 1 or Corollary 1.
Otherwise, it follows from Theorem 4 or Theorem 5. ��

At last, we show that the bound b ≥ 7 from Corollary 2 on the minimum b
for which the makespan can reach n + 4 cannot be improved.

Proposition 2. If b ≤ 6 then K∗ ≤ n + 3.

Proof. Let a = kb + l where l < b. The cases l = 0, 1, b − 1 follow respectively
from Theorems 1, 4, and Corollary 1. The case l = 2 is resolved either by
Theorem 4 or by Proposition 1. This covers all possibilities for b ≤ 4. The cases
l = 3, k ≥ 2 and l = 4, k ≥ 3 follow from Theorems 4 and 5. Finally, the schedules
for the remaining four cases b = 5, a = 8 and b = 6, a ∈ {9, 10, 16} are given in
Tables 4, 5 and 6. ��

4 Conclusions

In this paper we partially characterized the makespan in Problem 1 for some
values of a and b. Our conjecture is that in all remaining open cases the makespan
is n+3. If this were true then Problem 1 would be polynomially solvable. Indeed,
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its input size is O(log n) (it is sufficient to specify just a and b), and the conditions
of Theorems 1, 2, 3 can be checked in time O(log n). Note that the schedule in the
form of table has size O(n2), i. e. in the table representation it cannot be bounded
by a polynomial of the input size. However, since the constructed schedules have
quite regular structure, it is possible to specify functions computable in O(log n)
time which output completion time of an operation for every machine-job pair.

Note that in the general case (m �= n) the situation is more unclear since
even the criterion from Theorem 1 does not work, as shown in Table 1a and b.
However, we conjecture that the problem is polynomially solvable in the general
case.
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Abstract. Given a graph G = (V, E) with edge weights and a sub-
set R ⊆ E of required edges, the NP-hard Rural Postman Problem
(RPP) is to find a closed walk of minimum total weight containing all
edges of R. The number b of vertices incident to an odd number of edges
of R and the number c of connected components formed by the edges
in R are both bounded from above by the number of edges that has to
be traversed additionally to the required ones. We show how to reduce
any RPP instance I to an RPP instance I ′ with 2b + O(c/ε) vertices in
O(n3) time so that any α-approximate solution for I ′ gives an α(1 + ε)-
approximate solution for I, for any α ≥ 1 and ε > 0. That is, we provide
a polynomial-size approximate kernelization scheme (PSAKS). We make
first steps towards a PSAKS with respect to the parameter c.

Keywords: Eulerian extension · Lossy kernelization ·
Parameterized complexity

1 Introduction

In the framework of lossy kernelization [15,29], we study trade-offs between the
provable effect of data reduction and the provably achievable solution quality
for the following classical vehicle routing problem [31].

Problem 1.1 (Rural Postman Problem, RPP).

Input: A graph G = (V,E) with n vertices, edge weights ω : E → N ∪ {0}, and
a multiset R of required edges of G.

Task: Find a closed walk W ∗ in G containing each edge of R and minimizing
the total weight ω(W ∗) of the edges on W ∗.
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We call any closed walk containing all edges of R an RPP tour. RPP has direct
applications in snow plowing, street sweeping, meter reading [7,13], vehicle depot
location [18], drilling, and plotting [17,20]. The undirected version occurs espe-
cially in rural areas, where service vehicles can operate in both directions even on
one-way roads [13]. Moreover, RPP is a special case of the Capacitated Arc Rout-
ing Problem (CARP) [19] and used in “route first, cluster second” algorithms
for CARP [1,6,34], which are notably the only ones with proven approximation
guarantees [4,24,35]. Improved approximations for RPP automatically lead to
better approximations for CARP.

Unfortunately, containing the metric Traveling Salesman Problem as a special
case, RPP is APX-hard [25]. While there is a folklore polynomial-time 3/2-
approximation, we aim for (1+ε)-approximations for all ε > 0. Since finding such
approximations typically requires exponential time, we present data reduction
rules for this task. Their effectiveness depends on the desired approximation
factor.

1.1 Our Contributions and Outline of This Paper

In Sect. 2, we introduce basic notation. In Sect. 3, we prove basic structural
properties of optimal RPP solutions. In Sect. 4, we show our main theorem:

Theorem 1.2. For any ε > 0, any RPP instance (G,R, ω) can be reduced to
an RPP instance (G′, R′, ω′) in O(n3 + |R|) time such that

(i) the number of vertices in G′ is 2b + O(c/ε),
(ii) the number of required edges is |R′| ≤ 4b + O(c/ε),
(iii) the maximum edge weight with respect to ω′ is O((b + c)/ε),
(iv) any α-approximate solution for I ′ for some α ≥ 1 can be transformed into

an α(1 + ε)-approximate solution for I in polynomial time,

where b is the number of vertices of G incident to an odd number of edges in R
and c is the number of connected components formed by the edges in R.

Notably, the α-approximate solution for I ′ in Theorem 1.2 may be obtained
by any means, for example exact algorithms or heuristics. Thus, Theorem 1.2 can
be used to speed up expensive heuristics without much loss in the solution qual-
ity. In terms of the recently introduced concept of lossy kernelization [29], The-
orem 1.2 yields a polynomial-size approximate kernelization scheme (PSAKS).

Remark 1.3. We can prove that Theorem 1.2 cannot be generalized to ε = 0
unless the polynomial-time hierarchy collapses.1 In fact, we can prove the
stronger result that RPP is WK[1]-complete [23] even when parameterized by a
larger parameter—the number and cost d = ω(W ∗)−ω(R)+ |W ∗|− |R| of edges
traversed additionally to the required ones. That is, exactly solving RPP presum-
ably cannot be polynomial-time reduced to solving instances of size polynomial
in d (and thus, also not to solving instances of size polynomial in b + c ≤ 3d/2).
1 All omitted proofs can be found in the full version of this paper, available on arXiv:

https://arxiv.org/abs/1812.10131.

https://arxiv.org/abs/1812.10131
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1.2 Related Work

Classical Complexity. Being a generalization of the metric TSP, RPP is APX-
hard [25]. There is a folklore polynomial-time 3/2-approximation (we refer to
arc routing surveys [5,13] for a detailed algorithmic description).

Parameterized Complexity. Dorn et al. [9] showed an O(4d·n3)-time algorithm for
the directed RPP, where d = |W ∗|− |R| is the minimum number of deadheading
arcs in an optimal solution W ∗. It can be easily adapted to the undirected RPP.
Sorge et al. [32] showed an O(4c log b2 poly(n))-time algorithm for the directed
RPP, where c is the number of (weakly) connected components induced by the
required arcs in R and b =

∑
v∈V | indeg(v) − outdeg(v)|. It is not obvious

whether this algorithm can be adapted to the undirected RPP maintaining its
running time. Gutin et al. [22] showed a randomized algorithm that solves the
directed and undirected RPP in f(c) poly(n) time if edge weights are bounded
polynomially in n. The existence of a deterministic algorithm with this running
time is open [5,22,33].

Exact Kernelization. RPP can easily be reduced to a problem kernel with
2|R| vertices [5]. In contrast, Sorge et al. [32] showed that, unless the polynomial-
time hierarchy collapses, the directed RPP has no problem kernel of size poly-
nomial in the number of deadheading arcs. This can be strengthened to WK[1]-
hardness, also for the directed RPP (see Remark 1.3).

Lossy Kernelization. Recently the concept of approximate kernelization has
gained increased interest [15,29]. In this context, Eiben et al. [11] called for
finding connectivity-constrained problems that do not have polynomial-size ker-
nels but α-approximate polynomial-size kernels. We exhibit that RPP is such a
problem (see Theorem 1.2 and Remark 1.3). Among the so far few known lossy
kernels [11,12,27–29], our Theorem 1.2 stands out since it shows a time and
size efficient PSAKS, which is a property previously observed only in results of
Krithika et al. [27].

2 Preliminaries

Sets and Multisets. By N we denote the set of natural numbers including zero.
For two multisets A and B, A � B is the multiset obtained by adding the mul-
tiplicities of elements in A and B. By A \ B we denote the multiset obtained by
subtracting the multiplicities of elements in B from the multiplicities of elements
in A. Finally, given some weight function ω : A → N, the weight of a multiset A
is ω(A) :=

∑
e∈A ν(e)ω(e), where ν(e) is the multiplicity of e in A.

Graphs. We generally consider multigraphs G = (V,E) with a set V (G) := V of
vertices, a multiset E(G) := E over {{u, v} | u, v ∈ V } of (undirected) edges, and
edge weights ω : E → N. Graphs are allowed to have loops and parallel edges.
For a multiset R of edges, we denote by V (R) the set of their incident vertices.
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Paths and Cycles. A walk from v0 to v� in G is a sequence w = (v0, e1, v1,
e2, v2, . . . , e�, v�) such that ei is an edge with end points vi−1 and vi for each i ∈
{1, . . . , �}. If v0 = v�, then we call w a closed walk. If all vertices on w are pairwise
distinct, then w is a path. If only its first and last vertex coincide, then w is a
cycle. By E(w) we denote the multiset of edges on w. The length of walk w is its
number |w| := � = |E(w)| of edges. The weight of walk w is ω(w) :=

∑�
i=1 ω(e�).

An Euler tour for G is a closed walk that traverses each edge of G exactly as
often as it is present in G. A graph is Eulerian if it allows for an Euler tour.

Connectivity and Blocks. Two vertices u, v of G are connected if there is a path
from u to v in G. A connected component of G is a maximal subgraph of G
in which the vertices are mutually connected. A vertex v of G is a cut vertex if
removing v and its incident edges increases the number of connected components
of G. A biconnected component or block of G is a maximal subgraph without cut
vertices.

Edge- and Vertex-Induced Subgraphs. For a subset U ⊆ V of vertices, the sub-
graph G[U ] of G = (V,E) induced by U consists of the vertices of U and all
edges of G between them (respecting multiplicities). For a multiset R of edges
of G, G〈R〉 := (V (R), R) is the graph induced by the edges in R. For a walk w,
we also denote G〈w〉 := G〈E(w)〉. Note that G〈R〉 and G〈w〉 do not contain
isolated vertices yet might contain edges with a higher multiplicity than G and,
therefore, are not necessarily sub(multi)graphs of G.

Lossy Kernelization. Kernelization is a notion of provably effective data reduc-
tion [21,26] from parameterized complexity theory [8]. Since RPP does not have
polynomial-size kernels (see Remark 1.3) and is hard to approximate at the same
time, we consider approximate kernelization [29]:

Definition 2.1 (polynomial-size approximate kernelization scheme). A
polynomial-size approximate kernelization scheme (PSAKS) for an optimization
problem L with parameter k consists of two algorithms: for each constant ε > 0,

(i) the first algorithm reduces an instance I of L to an instance I ′ of size poly(k)
in polynomial time,

(ii) the second algorithm turns any α-approximate solution for I ′ into an
α · (1 + ε)-approximate solution for I in polynomial time.

We will use the following lemma to shrink edge weights. It is a generalization
of an idea implicitly used for weight reduction in a proof of Lokshtanov et al.
[29, Theorem 4.2] and shrinks weights faster and more significantly than a the-
orem of Frank and Tardos [16] that is frequently used in the exact kernelization
of weighted problems [2,14,30].
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Lemma 2.2 (lossy weight reduction). Let F ⊆ Q
n
≥0 and ω ∈ Q

n
≥0 such that

– ‖ω‖∞ ≤ β for some β ∈ Q and
– ‖x‖1 ≤ N for some N ∈ N and all x ∈ F .

Then, for any ε > 0, in linear time, we can compute ω̄ ∈ N
n such that

(i) ‖ω̄‖∞ ≤ N/ε and
(ii) for any x ∈ F with ω̄�x ≤ α · ω̄�x̄∗, one has ω�x ≤ α · ω�x∗ + εβ,

where α ∈ Q, x∗ ∈ arg min{ω�x | x ∈ F}, and x̄∗ ∈ arg min{ω̄�x | x ∈ F}.

3 Solution Structure

In this section, we prove fundamental properties of optimal solutions to RPP.
To make these hold, we first establish the triangle inequality.

Proposition 3.1 ([3]). In O(n3) time, an RPP instance (G,R, ω) can be
turned into an RPP instance (G′, R, ω′) such that

– G′ is a complete graph on the vertex set of G,
– ω′ satisfies the triangle inequality, and
– any α-approximate RPP tour for (G′, R, ω′) can be turned into an α-

approximate RPP tour for (G,R, ω) in polynomial time.

Remark 3.2. Since Proposition 3.1 does not change R, it affects neither the num-
ber of connected components nor the number of odd-degree vertices of G〈R〉 =
G′〈R〉. Thus, it is sufficient to prove Theorem 1.2 for RPP with triangle
inequality.

Now, consider any RPP tour W for an RPP instance (G,R, ω). Then
G〈W 〉 is an Eulerian supergraph of G〈R〉 with total edge weight ω(W ). More-
over, any Eulerian supergraph G〈W ′〉 of G〈R〉 yields an RPP tour for (G,R, ω)
of total weight ω(W ′). Thus, RPP tours one-to-one correspond to Eulerian
extensions [33]:

Definition 3.3 (Eulerian extension, edge-minimizing). An Eulerian
extension (EE) for an RPP instance (G,R, ω) is a multiset S of edges such
that G〈R � S〉 is Eulerian.

We say that an Eulerian extension S is edge-minimizing if there is no Eule-
rian extension S′ with |S′| < |S| and ω(S′) ≤ ω(S).

We exploit that a graph without isolated vertices is Eulerian if and only if it is
connected and balanced :

Definition 3.4 (balanced). A vertex is balanced if it has even degree. A graph
is balanced if each of its vertices is balanced.
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Thus, solving RPP reduces to finding a minimum-weight set S of edges such
that G〈R � S〉 is connected and balanced. Since an Euler tour in the Eulerian
graph G〈R � S〉 is computable in linear time using Hierholzer’s algorithm, we
can easily recover an RPP tour from an Eulerian extension.

Proposition 3.5. Let (G,R, ω) be an RPP instance.

(i) From any RPP tour W for (G,R, ω), one can compute an Eulerian exten-
sion S of cost ω(W ) = ω(R) + ω(S) in time linear in |W |.

(ii) From any Eulerian extension S for (G,R, ω), one can compute an RPP
tour W of cost ω(W ) = ω(R) + ω(S) in time linear in |R| + |S|.

When assuming the triangle inequality, any RPP tour can be shortcut so as not
to contain vertices that are not incident to required edges. Thus:

Observation 3.6. Any edge-minimizing Eulerian extension S for an RPP
instance (G,R, ω) satisfies V (S) ⊆ V (R).

Moreover, since an edge-minimizing Eulerian extension uses balanced vertices
only to make connections between components, we can prove:

Lemma 3.7. Let (G,R, ω) be an RPP instance and c be the number of connected
components of G〈R〉. At most 2c − 2 balanced vertices in G〈R〉 are incident to
edges of an edge-minimizing Eulerian extension and this bound is tight.

Using the triangle inequality, any RPP tour using a vertex more than once can
be shortcut, yielding the following lemma:

Lemma 3.8. An edge-minimizing Eulerian extension contains exactly one edge
incident to each unbalanced vertex of G〈R〉 and either no or two edges incident
to each balanced vertex of G〈R〉.
We now establish some inequalities used in the analysis of our algorithm.

Definition 3.9. In the context of an RPP instance (G,R, ω), we denote by

R – the set of required arcs,
c – the number of connected components in G〈R〉,
b – the number of imbalanced vertices in G〈R〉,

W ∗ – a minimum-weight RPP tour with a minimum number of edges,
D – a minimum-weight edge-minimizing Eulerian extension for (G,R, ω),
T – a minimum-weight set of edges such that G〈R � T 〉 is connected, of mini-
mum cardinality,

M – a minimum-weight set of edges such that G〈R � M〉 is balanced, of mini-
mum cardinality.

Notably, when assuming the triangle inequality, M is simply a minimum-weight
perfect matching on the b imbalanced vertices in G〈R〉 [10].
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Lemma 3.10. The following relations hold:

ω(W ∗) = ω(R) + ω(D), (3.1)
ω(M) ≤ ω(D), (3.2)
ω(T ) ≤ ω(D), (3.3)
ω(D) ≤ ω(M) + 2ω(T ), (3.4)

|W ∗| = |R| + |D|, (3.5)
2b = |M | ≤ |D|, (3.6)

c − 1 = |T | ≤ |D|, (3.7)
|D| ≤ |M | + 2|T |, (3.8)

where |S| ≤ |M | + 2|T | holds for any edge-minimizing Eulerian extension S.

4 Approximate Kernelization Schemes for the Rural
Postman Problem

In this section, we prove Theorem 1.2. To this end, in Sect. 4.1, we present three
data reduction rules. In Sect. 4.2, we then show how to apply these rules to obtain
a polynomial-size approximate kernelization scheme (PSAKS) of size 2b+O(c/ε),
proving Theorem 1.2. Finally, in Sect. 4.3, we discuss some problems that one
faces when trying to improve it to a PSAKS of size O(c).

4.1 Data Reduction Rules

Since, by Observation 3.6, no edge-minimizing Eulerian extension uses vertices
outside of V (R), the following is immediate.

Reduction Rule 4.1. Let (G,R, ω) be an RPP instance with triangle inequal-
ity. Delete all vertices that are not incident to edges in R.

Proposition 4.2. Reduction Rule 4.1 turns an RPP instance (G,R, ω) into an
RPP instance (G′, R, ω) such that

– any edge-minimizing Eulerian extension for (G,R, c) is one for (G′, R, c) and
– any Eulerian extension for (G′, R, c) is one for (G,R, c).

The next data reduction rule shrinks the set of required edges. This will be
crucial since other data reduction rules only reduce the number of vertices, yet
may leave the multiset of required edges between them unbounded.

Reduction Rule 4.3. Let (G,R, ω) be an instance of RPP and C be a cycle
in G〈R〉 such that G〈R \ C〉 has the same number of connected components
as G〈R〉, then delete the edges of C from R.

Lemma 4.4. Using Reduction Rule 4.3, one can in O(|R|) time compute a
set R′ ⊆ R of required edges with the following properties.

(i) Any Eulerian extension for (G,R′, ω) is one for (G,R, ω) and vice versa.
(ii) The number of edges in each connected component of G〈R′〉 with k vertices

is at most max{1, 2k − 2}.
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We finally present a data reduction rule that removes balanced vertices. To this
end, the following lemma in particular shows that removing a balanced vertex
with all its incident edges changes the balance of an even number of vertices.
This allows us to restore their original balance by adding a matching to the set
of required edges, not increasing the total weight of required edges. This will be
crucial to prove that our reduction rules maintain approximation factors.

Lemma 4.5. Let Γ = (V,E) be a multigraph, ω : {{u, v} | u, v ∈ V } → N

satisfy the triangle inequality, and F be an even-cardinality submultiset of edges
incident to a common vertex v ∈ V . Then

(i) The set U ⊆ V \ {v} of vertices incident to an odd number of edges of F
has even cardinality.

(ii) For any matching Mv in the complete graph on U , ω(Mv) ≤ ω(F ) and
|Mv| ≤ |F |.

We now use Lemma 4.5 to define an operation that allows us to remove a bal-
anced vertex from G〈R〉. It is illustrated in Fig. 1.

v v

Fig. 1. Illustration of Definition 4.6(a). Only required edges are shown. Thick edges on
the right are the added matching Mv.

Definition 4.6 (vertex extraction). Let (G,R, ω) be an RPP instance with
ω satisfying the triangle inequality, v be a vertex that

– is balanced in a connected component of G〈R〉 with at least three vertices and
– not a cut vertex of G〈R〉 or contained in exactly two blocks of G〈R〉,
and let Rv ⊆ R be the required edges incident to v. The result of extracting v is
a set R′ constructed as follows:

(a) If v is not a cut vertex of G〈R〉, then R′ = (R \ Rv) � Mv, where Mv is any
perfect matching on the set of vertices incident to an odd number of edges
of Rv.
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(b) If v is a cut vertex of G〈R〉 contained in exactly two blocks A and B of G〈R〉,
then R′ = (R \ Rv) � Mv � {{a, b}}, where a is a neighbor of v in A, b is a
neighbor of v in B, and Mv is any perfect matching on the set of vertices
incident to an odd number of edges of Rv \ {{a, v}, {b, v}}.

Lemma 4.7. Let (G,R, ω) be an RPP instance and R′ be the result of extracting
a balanced vertex v of G〈R〉. Then the following properties hold.

(i) V (R′) = V (R) \ {v}.
(ii) ω(R′) ≤ ω(R) and |R′| ≤ |R|.
(iii) Each vertex of G〈R′〉 is balanced if and only if it is balanced in G〈R〉.
(iv) Two vertices of G〈R′〉 are connected if and only if they are so in G〈R〉.
(v) Any multiset S of edges with V (S) ⊆ V (R′) is an Eulerian extension

for (G,R′, ω) if and only if it is one for (G,R, ω).

We can now turn Definition 4.6 into a data reduction rule. Its parameter γ ∈ Q

allows a trade-off between aggressivity and introduced error.

Reduction Rule 4.8. Let (G,R, ω) be an RPP instance with G = (V,E),
ω satisfying the triangle inequality, and γ ∈ Q. Let Ci be the vertices in con-
nected component i ∈ {1, . . . , c} of G〈R〉 and Bi ⊆ Ci be an inclusion-maximal
set of vertices such that, for each u, v ∈ Bi with u �= v, one has ω({u, v}) > γ.
Finally, let

B :=
c⋃

i=1

Bi.

Now, initially let R′ := R and, as long as G〈R′〉 contains a vertex v ∈ V \B that
can be extracted using Definition 4.6, replace R′ by the result of extracting v.

Lemma 4.9. Let (G,R, ω) be an RPP instance with ω satisfying the triangle
inequality. Then, Reduction Rule 4.8 in O(n3) time yields a multiset R′ of edges
such that

(i) ω(R′) ≤ ω(R) and V (R′) ⊆ V (R).
(ii) Any multiset S of edges with V (S) ⊆ V (R′) is an Eulerian extension

for (G,R′, ω) if and only if it is one for (G,R, ω).
(iii) Any edge-minimizing Eulerian extension S for (G,R, ω) can be turned into

an Eulerian extension S′ for (G,R′, ω) such that ω(S′) ≤ ω(S)+2γ ·(2c−2).
(iv) G〈R′〉 contains at most 2b + 2c + 4ω(R)/γ vertices.

Proof. (i) and (ii) follow from Lemma 4.7 since R′ is the result of a sequence of
vertex extractions.

(iii) We turn S into an Eulerian extension S′ with V (S′) ⊆ V (R′) and then
apply (ii). First, since S is edge-minimizing and ω satisfies the triangle inequality,
by Observation 3.6, V (S) ⊆ V (R). By Reduction Rule 4.8, the vertices in X :=
V (R)\V (R′) are not in B and, thus, for each v ∈ X∩Ci, we find a vertex v′ ∈ Bi

such that ω({v, v′}) ≤ γ. Note that v′ ∈ V (R′). Since each vertex in X is
balanced in G〈R〉, by Lemma 3.8, each vertex v ∈ X∩V (S) is incident to exactly
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two edges {v, u} and {v, w} of S (possibly, u = w). Since {v, v′} ⊆ Ci, S′ :=
(S\{{v, u}, {v, w}})�{v′, u}�{v′, w} is also an Eulerian extension for (G,R, ω).
Moreover, ω(S′) ≤ ω(S) + 2γ. Doing this replacement for each v ∈ X ∩ V (S),
we finally obtain an Eulerian extension S′ for (G,R, ω) with V (S′) ⊆ V (R′) and
ω(S′) ≤ ω(S) + 2γ · |X ∩ V (S)|. Since each vertex in X is balanced in G〈R〉, by
Lemma 3.7, |X ∩ V (S)| ≤ 2c − 2. Finally, by (ii), S′ is an Eulerian extension
for (G,R′, ω).

(iv) The vertices of G〈R′〉 can be partitioned into X � Y � Z, where X are
imbalanced in G〈R′〉, Y are balanced and in B, and Z are balanced but not
in B.

By Lemma 4.7(iii), the vertices in X are imbalanced in G〈R〉 also. Thus,

|X| ≤ b. (4.1)

We next analyze |Y |. For i ∈ {1, . . . , c}, let Ri ⊆ R be the edges between vertices
in Ci, T ∗

i be a tree of the smallest weight in G〈Ri〉 connecting all vertices in Bi,
Ti be a minimum-weight spanning tree in G[Bi], and Hi be a minimum-weight
Hamiltonian cycle in G[Bi]. Doubling all edges of T ∗

i yields a closed walk in G〈Ri〉
containing the vertices in Bi. Using the triangle inequality of ω, it can be shortcut
to a Hamiltonian cycle in G[Bi]. Thus, ω(Ti) ≤ ω(Hi) ≤ 2ω(T ∗

i ).2 We thus get

(|Bi| − 1)γ =
∑

e∈Ti

γ <
∑

e∈Ti

ω(e) = ω(Ti) ≤ 2ω(T ∗
i ) ≤ 2ω(Ri) and thus

|Y | ≤ |B| =
c∑

i=1

|Bi| <
c∑

i=1

(
2ω(Ri)

γ
+ 1

)

= 2ω(R)/γ + c. (4.2)

Finally, we analyze |Z|. Definition 4.6 is not applicable to any vertex v ∈ Z,
since it would have been removed by Reduction Rule 4.8. Thus, v is a cut vertex
contained in at least three blocks of G〈R′〉 or the connected component of G〈R′〉
containing v consists of only two vertices. To analyze |Z|, for each i ∈ {1, . . . , c},
consider Xi := X ∩ Ci, Zi := Z ∩ Ci, the set R′

i ⊆ R′ of edges between vertices
in Ci, and the block-cut tree Ti of G〈R′

i〉: the vertices of Ti are the cut vertices
and the blocks of G〈R′

i〉 and there is an edge between a cut vertex v and a
block A of G〈R′

i〉 in Ti if v is contained in A. Then either |Zi| ≤ 2 or the
vertices in Zi have degree at least three in Ti. Therefore, Ti has at most |Xi| +
|Yi| leaves. Since a tree with � leaves has at most � − 1 vertices of degree three,
|Zi| ≤ max{2, |Xi| + |Yi| − 1}. Thus,

|Z| =
c∑

i=1

|Zi| ≤ |X| +
c∑

i=1

|Yi| = |X| + |Y |. (4.3)

Combining (4.1), (4.2), (4.3), and that |V (R′)| = |X| + |Y | + |Z|, (iv) follows. ��
2 That is, Ti is the folklore 2-approximation of a Steiner tree with terminals Bi

in G〈Ri〉.
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4.2 A Polynomial-Size Approximate Kernelization Scheme
for the Parameter b + c (proof of Theorem 1.2)

This section proves Theorem 1.2. We describe how to transform a given RPP
instance I and ε > 0 into an RPP instance I ′ such that any α-approximate
solution for I ′ can be transformed into an α(1 + ε)-approximate solution for I.
Due to Proposition 3.1, we assume that I = (G,R, ω) has been preprocessed in
O(n3) time so as to satisfy the triangle inequality.

Shrinking the Graph. Choose ε1 + ε2 = ε. Apply Reduction Rule 4.8 with

γ =
ε1 · ω(R)
4c − 4

, (4.4)

which, by Lemma 4.9, in O(n3) time gives an instance (G,R1, ω) with

|V (R1)| ≤ 2b + 2c +
16c − 16

ε1
. (4.5)

To (G,R1, ω) we apply Reduction Rule 4.3, which, by Lemma 4.4, in O(|R1|) time
gives an instance (G,R2, ω) with

R2 ⊆ R1 and |R2| ≤ 4b + 4c +
32c − 32

ε1
. (4.6)

Finally, applying Reduction Rule 4.1 to (G,R2, ω) in linear time yields an
instance (G2, R2, ω) such that

|V (G2)| ≤ |V (R2)| ≤ |V (R1)|. (4.7)

Shrinking Edge Weights. Since G〈R�T 〉 is connected, due to the triangle inequal-
ity of ω, each edge e = {u, v} of G, and thus of its subgraph G2, satisfies
ω(e) ≤ ω(R) + ω(T ). Moreover, by Lemma 3.10, any edge-minimizing Eulerian
extension for (G2, R2, ω) has at most |M | + 2|T | = b/2 + 2c − 2 edges. Thus,
we can apply Lemma 2.2 with β = ω(R) + ω(T ) and N = |R2| + b/2 + 2c − 2
to (G2, R2, ω) to get an instance (G2, R2, ω2) such that for all edges e,

ω(e) ≤ |R2| + b/2 + 2c − 2
ε2

. (4.8)

In Lemma 2.2, set F just contains all vectors x that encode RPP tours W induced
by edge-minimizing Eulerian extensions for (G2, R2, ω) (it has a 1 for each edge
of G2 in W and a 0 for each edge of G2 not in W ). We finally return (G2, R2, ω2),
whose construction takes O(n3 + |R|) time, as required by Theorem 1.2.

Kernel Size Analysis. The returned instance satisfies Theorem 1.2(i) due to (4.5)
and (4.7), (ii) due to (4.6), and (iii) due to (4.8).
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Approximation Factor Analysis. It remains to prove Theorem 1.2(iv), that is,
that we can lift an α-approximate solution for (G2, R2, ω2) to an α(1 + ε)-
approximate solution for (G,R, ω).

An optimal RPP tour for (G,R, ω) has cost ω(W ∗) = ω(R) + ω(D) by (3.1),
where D is a minimum-cost Eulerian extension. By Lemma 4.9(iii) and (4.4),
there is an Eulerian extension D′ for (G,R1, ω) with

ω(D′) ≤ ω(D) + 2γ(2c − 2) = ω(D) + ε1 · ω(R). (4.9)

By Lemma 4.4, D′ is an Eulerian extension for (G,R2, ω) and, by Proposition
4.2, for (G2, R2, ω). Then D′ is also an Eulerian extension for (G2, R2, ω2). Thus,
an optimal RPP tour for (G2, R2, ω2) has cost at most ω2(R2) + ω2(D′). By
Proposition 3.5, an α-approximate solution for (G2, R2, ω2), can be turned into
an Eulerian extension S such that

ω2(R2) + ω2(S) ≤ α(ω2(R2) + ω2(D′)). (4.10)

By Proposition 4.2, S is an Eulerian extension for (G,R2, ω). By Lemma 4.4, S is
an Eulerian extension for (G,R1, ω), and by Lemma 4.9, it is one for (G,R, ω),
since V (S) ⊆ V (G2) = V (R2) ⊆ V (R1) ⊆ V (R). Thus, by Proposition 3.5,
S can be turned into an RPP tour of cost ω(R)+ω(S) for (G,R, ω). We analyze
this cost. By (4.10) and Lemma 2.2 with β = ω(R) + ω(T ),

ω(R2) + ω(S) ≤ α(ω(R2) + ω(D′)) + ε2(ω(R) + ω(T )).

Using ω(R2) ≤ ω(R1) ≤ ω(R) from Lemmas 4.4 and 4.9, and α ≥ 1, we get

ω(R) + ω(S) ≤ α(ω(R) + ω(D′)) + ε2(ω(R) + ω(T ))
≤ α(ω(R) + ω(D′)) + ε2(ω(R) + ω(D)) using (3.7)
≤ α(ω(R) + ω(D) + ε1ω(R)) + ε2(ω(R) + ω(D)) using (4.9)
≤ α(1 + ε1 + ε2)(ω(R) + ω(D)) = α(1 + ε)ω(W ∗) using (3.1).

Thus, we got an α(1 + ε)-approximation for (G,R, c). ��

4.3 Towards a Polynomial-Size Approximate Kernelization Scheme
for the Parameter c

In the previous section we have shown a polynomial-size approximate kernel-
ization scheme (PSAKS) for RPP parameterized by b + c. An obvious question
is whether there is a PSAKS for the parameter c. Unfortunately, we leave this
question open, yet make some first steps and discuss the difficulties in resolving
this question.

To get a PSAKS for c, one has to reduce the number of imbalanced vertices
in G〈R〉. One idea is adding to R cheap edges of a minimum-weight perfect match-
ing M on imbalanced vertices, since this is optimal if it happens to connect G〈R〉.
Reduction Rule 4.10. Let (G,R, ω) be an RPP instance with triangle
inequality and δ ∈ Q. Add to R a subset M∗ ⊆ M of edges with

∑
e∈M∗ ω(e) ≤ δ.
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required edges R

added matching edges M∗

optimal Eulerian extension D

Fig. 2. Example showing that the bound given in Observation 4.11(iii) is tight: adding
the edges in M∗ to R breaks the only optimal Eulerian extension D (dashed). To fix
it, one either has to double all edges of D or add all edges of M∗ to D. Note that the
star can be arbitrarily enlarged.

Observation 4.11. Let R′ = R � M∗ be obtained by applying Reduction Rule
4.10 to R.

(i) There are at most 2(|M | − |M∗|) imbalanced vertices in G〈R′〉.
(ii) For any Eulerian extension S′ for (G,R′, ω), S = S′ � M∗ is an Eulerian

extension for (G,R, ω) and ω(R) + ω(S) = ω(R′) + ω(S′).
(iii) For any Eulerian extension S for (G,R, ω), S′ = S � M∗ is an Eulerian

extension for (G,R′, ω) with ω(S′) ≤ ω(S) + δ.

We expect that Reduction Rule 4.10 will indeed have some impact in practice
when choosing δ = ε(ω(R) + ω(M)), for example. Yet to show a PSAKS, it is
unsuitable:

1. To reduce the number of imbalanced vertices in G〈R〉 to some constant, we
have to add all but a constant number of edges of M to R, yet, by Observation
4.11(iii), each added edge potentially contributes to the error and thus would
merely retain a 2-approximation. Unfortunately, Fig. 2 shows that the bound
given by Observation 4.11(iii) is tight.

2. Reduction Rule 4.10 increases the total weight of required edges. This makes
it unusable for a PSAKS, since, in the resulting instance, a solution might be
(1+ ε)-approximate merely due to the fact that the lower bound ω(R) on the
solution is sufficiently large (we will see this below).

Given the difficulties of showing a PSAKS for c, it is tempting to disprove its
existence. However, the existing tools for excluding PSAKSes [29] also exclude
polynomial-size kernels from which only optimal solutions can be lifted to (1+ε)-
approximate solutions for the input instance. In terms of Fellows et al. [15], these
are so-called (1 + ε)-fidelity-preserving kernels. However, we can easily build a
(1 + ε)-fidelity-preserving kernel with size polynomial in ω(T ), that is, of size
polynomial in c in case that the edge weights are bounded by poly(c):

Proposition 4.12. Let (G,R, ω) be an instance of RPP with triangle inequality.

(i) If ω(T ) ≤ ε(ω(R) + ω(M)), then one can find a (1 + 2ε)-approximate RPP
tour for (G,R, ω) in polynomial time.
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(ii) If ω(M) ≤ ε(ω(R)+ω(T )), then (G,R, ω) has a (1+3ε)-fidelity-preserving
kernel with O(c) vertices.

(iii) Otherwise, (G,R, ω) has an (exact) problem kernel with respect to the
parameter min{ω(T )/ε − ω(M), ω(M)/ε − ω(T )}.

Proposition 4.12 shows that, in order to exclude PSAKSes for RPP parameter-
ized by c, a reduction must use unbounded edge weights, the weights of T , M ,
and R may not differ too much (by (i) and (ii)), yet the weights of T and M
must not be too close either (by (iii)). Given these restrictions, we conjecture:

Conjecture 4.13. RPP has a PSAKS with respect to the parameter c.

5 Conclusion

Our main algorithmic contribution is a polynomial-size approximate kerneliza-
tion scheme for the Rural Postman Problem parameterized by b + c, where b is
the number of vertices incident to an odd number of required edges and c is the
number of connected components formed by the required edges. In future work,
we plan to implement the algorithm and to evaluate it on real-world data.

Notably, the approach taken by Reduction Rule 4.8, namely reducing all
vertices that do not belong to some inclusion-maximal set B, does not generalize
well to asymmetric distances, so that the main open question besides resolving
Conjecture 4.13 is whether the scheme for the parameter b + c presented in this
work can be generalized to the directed Rural Postman Problem. We point out
that, using known ideas [4], one can reduce any instance I of the directed or
undirected RPP to an instance I ′ with c vertices in O(n3 log n) time such that
any α-approximation for I ′ yields an (α + 1)-approximation for I.
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problems. J. Comput. Syst. Sci. 84, 1–10 (2017)

15. Fellows, M.R., Kulik, A., Rosamond, F.A., Shachnai, H.: Parameterized approx-
imation via fidelity preserving transformations. J. Comput. Syst. Sci. 93, 30–40
(2018)
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Abstract. We study a version of the graph 2-clustering problem. In this
version, for a given undirected graph, one has to find a nearest 2-cluster
graph, i.e., the graph on the same vertex set with exactly 2 nonempty
connected components each of which is a complete graph. The distance
between two graphs is the number of noncoinciding edges.

The problem under consideration is NP-hard. In 2004, Bansal, Blum,
and Chawla presented a simple polynomial time 3-approximation algo-
rithm for the similar correlation clustering problem in which the number
of clusters doesn’t exceed 2. In 2008, Coleman, Saunderson, and Wirth
presented a 2-approximation algorithm for this problem applying local
search to every feasible solution obtained by the 3-approximation algo-
rithm of Bansal, Blum, and Chawla.

Unfortunately, the method of proving the performance guarantee of
the Coleman, Saunderson, and Wirth’s algorithm is not suitable for
the graph 2-clustering. Coleman, Saunderson, and Wirth used switching
technique that allows to reduce clustering any graph to the equivalent
problem whose optimal solution is the complete graph, i.e., the cluster
graph consisting of the single cluster.

In the graph 2-clustering problem any optimal solution has to con-
sist of exactly 2 clusters, so we need another approximation algorithm
and another method of proving a bound on its worst-case behaviour. We
present a polynomial time 2-approximation algorithm for the 2-clustering
problem on general graphs. In contrast to the proof of Coleman, Saunder-
son, and Wirth, our proof of the performance guarantee of this algorithm
doesn’t use switchings.

Keywords: Graph clustering · Approximation algorithm ·
Performance guarantee

1 Introduction

We study a version of the graph clustering problem equivalent to the well-known
2-correlation clustering. In this version, for a given undirected graph, one has to

c© Springer Nature Switzerland AG 2019
M. Khachay et al. (Eds.): MOTOR 2019, LNCS 11548, pp. 295–308, 2019.
https://doi.org/10.1007/978-3-030-22629-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22629-9_21&domain=pdf
http://orcid.org/0000-0002-4675-3724
http://orcid.org/0000-0002-9772-6582
http://orcid.org/0000-0002-2203-6528
https://doi.org/10.1007/978-3-030-22629-9_21


296 V. Il’ev et al.

find a nearest 2-cluster graph, i.e., the graph on the same vertex set with exactly
2 nonempty connected components each of which is a complete graph.

We consider only simple graphs, i.e., undirected graphs without loops and
multiple edges. A graph is called a cluster graph if each of its connected compo-
nents is a complete graph.

Let V be a finite set. Denote by M(V ) the set of all cluster graphs on the
vertex set V ; let Mk(V ) be the set of all cluster graphs on V consisting of
exactly k nonempty connected components, and let M≤k(V ) be the set of all
cluster graphs on V consisting of at most k connected components, 2 ≤ k ≤ |V |.

If G1 = (V,E1) and G2 = (V,E2) are graphs on the same vertex set V , then
the distance ρ(G1, G2) between them is defined as follows

ρ(G1, G2) = |E1ΔE2| = |E1 \ E2| + |E2 \ E1|,

i.e., ρ(G1, G2) is the number of noncoinciding edges in G1 and G2.
The following variants of the graph clustering problem with bounded number

of clusters were studied in the literature under different names: Graph Approx-
imation Problem [1,5], k-Correlation Clustering [2,3], MinDisAgree[k]
[4], k-Cluster Editing [6], etc.

GC≤k. Given a graph G = (V,E) and an integer k, 2 ≤ k ≤ |V |, find a
graph M∗ ∈ M≤k(V ) such that

ρ(G,M∗) = min
M∈M≤k(V )

ρ(G,M).

GCk. Given a graph G = (V,E) and an integer k, 2 ≤ k ≤ |V |, find a graph
M∗ ∈ Mk(V ) such that

ρ(G,M∗) = min
M∈Mk(V )

ρ(G,M).

In 2004, Shamir, Sharan, and Tsur [6] showed that problem GCk is NP-hard
for any fixed k ≥ 2. In 2006, Giotis and Guruswami [4] published a more simple
proof of the same result. At the same time, Ageev, Il’ev, Kononov, and Talevnin
[1] independently proved that problems GC2 and GC≤2 are NP-hard even on
3-regular graphs and deduced from this that both the problems GCk and GC≤k

on general graphs are NP-hard for any fixed k ≥ 2.
In 2004, Bansal, Blum, and Chawla [2] presented a simple polynomial time

3-approximation algorithm for problem GC≤2. In 2006, Giotis and Guruswami
[4] presented a randomized PTAS for problem MinDisAgree[k] equivalent to
GC≤k (for any fixed k ≥ 2). In 2008, Coleman, Saunderson, and Wirth [3]
pointed out that complexity of PTAS from [4] makes it practically useless and
presented a 2-approximation algorithm for problem GC≤2 applying local search
to every feasible solution obtained by the 3-approximation algorithm from [2].

Unfortunately, the method of proving the performance guarantee of the Cole-
man, Saunderson, and Wirth’s algorithm is not suitable for the graph 2-clustering
problem GC2. Coleman, Saunderson, and Wirth used switching technique that
allows to reduce clustering any graph to the equivalent problem whose optimal
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solution is the complete graph, i.e., the cluster graph consisting of the single
cluster.

In problem GC2 any optimal solution has to consist of exactly 2 nonempty
clusters, so we need another approximation algorithm and another method
of proving a bound on its worst-case behaviour. We present a modified 2-
approximation algorithm for problem GC2. In contrast to the proof of Cole-
man, Saunderson, and Wirth, our proof of the performance guarantee of this
algorithm doesn’t use switchings.

2 Problem GC2

Consider the special case of problem GCk with k = 2.

GC2. Given a graph G = (V,E), find a graph M∗ ∈ M2(V ) such that

ρ(G,M∗) = min
M∈M2(V )

ρ(G,M).

Let us introduce the following notation.
Let NG(v) be the set of vertices adjacent to v in the graph G = (V,E), and

NG(v) = V \ (NG(v) ∪ {v}).
Let G1 = (V,E1) and G2 = (V,E2) be graphs on the same vertex set V ,

n = |V |. Denote by D(G1, G2) the graph on the vertex set V with the edge
set E1ΔE2. Note that ρ(G1, G2) is equal to the number of edges in the graph
D(G1, G2).

For nonempty sets V1, V2 ⊆ V such that V1 ∩ V2 = ∅ and V1 ∪ V2 = V we
denote by M(V1, V2) the cluster graph in M2(V ) with connected components
induced by V1, V2. The sets V1 and V2 are called clusters.

The following lemma is the straight corollary of the “handshaking lemma”.

Lemma 1. Let dmin be the minimum vertex degree in the graph D(G1, G2).
Then the following inequality holds:

ρ(G1, G2) ≥ ndmin

2
.

Observe also the following useful property of the graph D(G,M∗), where M∗

is an optimal solution to problem GC2 on an arbitrary graph G.

Lemma 2. Let M∗ = M(X∗, Y ∗) ∈ M2(V ) be an optimal solution to problem
GC2 on an arbitrary n-vertex graph G = (V,E), where |X∗| ≥ 2, |Y ∗| ≥ 2. Then
for each vertex v ∈ V the following inequality holds:

dD(v) ≤ n

2
,

where D = D(G,M∗).
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Proof. Suppose the opposite. Let w ∈ V be a vertex such that dD(w) > n
2 , i.e.,

dD(w) = n
2 + c, where c > 0, n

2 + c ∈ N, and n
2 + c ≤ n − 1. Consider the graph

˜M ∈ M2(V ) obtained from M∗ by moving the vertex w to another cluster. It is
obvious that ˜M is a feasible solution to problem GC2 on the graph G (since
|X∗| ≥ 2, |Y ∗| ≥ 2). Consider the graph ˜D = D(G, ˜M). It is easy to see that the
degree of the vertex w in the graph ˜D is equal to the non-degree of the vertex
w in the graph D:

d
˜D(w) = n − 1 − n

2
− c =

n

2
− 1 − c.

Obviously, the graphs D and ˜D differ only in the edges of the form wu, u ∈ V ,
other edges in these graphs are the same. Therefore,

ρ(G, ˜M) − ρ(G,M∗) = |N
˜D(w)| − |ND(w)| = d

˜D(w) − dD(w)

=
n

2
− 1 − c − n

2
− c = −(1 + 2c) < 0.

Hence the graph M∗ is not optimal, contradicting the condition of the lemma.
Lemma 2 is proved.

Let G = (V,E) be an arbitrary graph. For any vertex v ∈ V and a set A ⊆ V
we denote by A+

v the number of vertices u ∈ A such that (v, u) ∈ E, and by A−
v

the number of vertices u ∈ A \ {v} such that (v, u) /∈ E.

We rewrite Lemma 2 in a more convenient form.

Lemma 3. Let G = (V,E) be an arbitrary graph, |V | = n, and
M∗ = M(X∗, Y ∗) be an optimal solution to problem GC2 on the graph G, where
|X∗| ≥ 2, |Y ∗| ≥ 2. Then, for each vertex v ∈ V , the following inequalities hold:

1. if v ∈ X∗, then (X∗)−
v + (Y ∗)+v ≤ n

2 ;
2. if v ∈ Y ∗, then (X∗)+v + (Y ∗)−

v ≤ n
2 .

We will use the following approximation algorithm for problem GC2. In
contrast to the 3-approximation algorithm of Bansal, Blum, and Chawla [2] for
problem GC≤2, our algorithm looks over only 2-cluster graphs, i.e., feasible
solutions to problem GC2.

Algorithm A1.
Input: graph G = (V,E).
Step 1. For each ordered pair of vertices (v, w) ∈ V × V , v 	= w, define the

cluster graph Mv,w = M(X,Y ) ∈ M2(V ), where X = {v} ∪ (

NG(v) \ {w})

,
Y = V \ X.

Step 2. Among all Mv,w choose the nearest to G cluster graph M1:

ρ(G,M1) = min
(v, w) ∈ V × V,

v �= w

ρ(G,Mv,w).
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Output: cluster graph M1 = M(X,Y ) ∈ M2(V ).

In fact, algorithm A1 differs from the algorithm of Bansal, Blum, and Chawla
[2] by the only additional operation which excludes each vertex w 	= v from the
set X.

The following bound on worst-case behaviour of algorithm A1 takes place.

Theorem 1. For any graph G = (V,E) the following inequality holds:

ρ(G,M1) ≤ 3ρ(G,M∗),

where M1 ∈ M2(V ) is the solution returned by algorithm A1 and M∗ is an
optimal solution to problem GC2 on the graph G.

Proof. Let M∗ = M(X∗, Y ∗) and let v be a vertex of the minimum degree in the
graph D = D(G,M∗). Without loss of generality, we can assume that v ∈ X∗.
Obviously, there is a vertex w such that w ∈ Y ∗.

By the definition of the graph D we have

X∗ = {v} ∪ (

NG(v) \ ND(v)
) ∪ (

NG(v) ∩ ND(v)
)

. (1)

Consider the graph Mv,w = M(X,Y ) ∈ M2(V ), where X = {v}∪(NG(v)\{w}),
Y = V \ X. Clearly,

NG(v) \ {w} =
(

(

NG(v) \ ND(v)
) ∪ (

NG(v) ∩ ND(v)
)

)

\ {w}.

Further, we show that the graph Mv,w can be obtained from the graph M∗

by moving at most dmin vertices to another cluster, where dmin = dD(v) is the
minimum degree of vertices in the graph D. The following two cases are possible.

Case 1. Vertices v and w aren’t adjacent in G, i.e., w ∈ NG(v) ∩ ND(v).
Then NG(v) \ {w} = NG(v). Calculate the cardinality of the set X∗ΔX. By the
definition of the graph Mv,w,

X = {v} ∪ (

NG(v) \ {w})

= {v} ∪ NG(v)

= {v} ∪ (

NG(v) \ ND(v)
) ∪ (

NG(v) ∩ ND(v)
)

.

So, using (1), we have

X∗ΔX = (X∗ \X)∪ (X \X∗) =
(

NG(v)∩ND(v)
)∪(

NG(v)∩ND(v)
)

= ND(v).

Thus, |X∗ΔX| = |ND(v)| = dD(v) = dmin, so the graph Mv,w can be obtained
from the graph M∗ by moving dmin vertices of the set ND(v) to another cluster.

Case 2. Vertices v and w are adjacent in G, i.e., w ∈ NG(v) ∩ ND(v). Then
dmin ≥ 1. Calculate the cardinality of the set X∗ΔX. By the definition of the
graph Mv,w,

X = {v} ∪ (

NG(v) \ {w})

=
({v} ∪ NG(v)

) \ {w}
=

({v} ∪ (

NG(v) \ ND(v)
) ∪ (

NG(v) ∩ ND(v)
)) \ {w}.
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So, using (1) and inclusion w ∈ NG(v) ∩ ND(v), we obtain

X∗ΔX =
(

(

NG(v) ∩ ND(v)
) ∪ (

NG(v) ∩ ND(v)
)

)

\ {w} = ND(v) \ {w}.

So |X∗ΔX| = |ND(v)| − 1 = dmin − 1. Hence the graph Mv,w can be obtained
from the graph M∗ by moving dmin−1 vertices of the set ND(v)\{w} to another
cluster.

Thus, it is shown that the graph Mv,w can be obtained from the graph M∗ by
moving at most dmin vertices to another cluster. Note that moving dmin vertices
may increase the objective function by at most ndmin. So, by Lemma 1, we have

ρ(G,Mv,w) ≤ ρ(G,M∗) + ndmin ≤ ρ(G,M∗) + 2ρ(G,M∗) = 3ρ(G,M∗).

The graph Mv,w is constructed among all graphs at step 1 of algorithm A1.
Theorem 1 is proved.

Remark 1. Among all graphs constructed by algorithm A1 at step 1, there is
the cluster graph Mv,w = M(X,Y ) such that

(a) dD(v) = min
u∈V

dD(u);

(b) Mv,w is obtained from M∗ by moving at most dmin vertices to another
cluster;

(c) v ∈ X ∩ X∗, w ∈ Y ∩ Y ∗.

The proof follows from the proof of Theorem1.

3 A 2-Approximation Algorithm for GC2

Consider the following local search procedure.

Procedure LS(M,X, Y, x, y).
Input: cluster graph M = M(X,Y ) ∈ M2(V ), x ∈ X, y ∈ Y .
Iteration 0. Set X0 = X,Y0 = Y .
Iteration k(k ≥ 1).

Step 1. For each vertex u ∈ V \ {x, y} calculate the following quantity
δk(u) (possible variation of the value of the objective function in case of moving
the vertex u to another cluster. If δk(u) > 0, then this quantity is said to be the
local improvement for the vertex u at iteration k):

δk(u) =
{

(Xk−1)−
u − (Xk−1)+u + (Yk−1)+u − (Yk−1)−

u for u ∈ Xk−1 \ {x},
(Yk−1)−

u − (Yk−1)+u + (Xk−1)+u − (Xk−1)−
u for u ∈ Yk−1 \ {y}.

Step 2. Choose the vertex uk ∈ V \ {x, y} such that

δk(uk) = max
u∈V \{x,y}

δk(u).

Step 3. If δk(uk) ≤ 0, then set X ′ = Xk−1 and Y ′ = Yk−1. STOP.
Return M ′ = M(X ′, Y ′).
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Step 4. If uk ∈ Xk−1, then set Xk = Xk−1 \ {uk}, Yk = Yk−1 ∪ {uk}.
Else uk ∈ Yk−1, then set Xk = Xk−1 ∪{uk}, Yk = Yk−1 \{uk}. Go to iteration
k + 1.

Output: cluster graph M ′ = M(X ′, Y ′) ∈ M2(V ).

Remark 2. The cluster graph M ′ returned by procedure LS always belongs to
the set M2(V ).

This is obvious because the vertices x ∈ X and y ∈ Y always lie in different
clusters.

Consider the following approximation algorithm for problem GC2 that can
be viewed as extension of algorithm A1 when local search procedure is applied
to every feasible solution obtained by algorithm A1.

Algorithm A2.
Input: graph G = (V,E).
Step 1. For each ordered pair of vertices (v, w) ∈ V × V, v 	= w, do the

following:
Step 1.1. Define a cluster graph Mv,w = M(X,Y ) ∈ M2(V ), where

X = {v} ∪ (

NG(v) \ {w})

, Y = V \ X.
Step 1.2. Run local search procedure LS(Mv,w,X, Y, v, w). Denote the

resulting graph by M ′
v,w.

Step 2. Among all locally-optimal solutions M ′
v,w choose the nearest to G

cluster graph M ′:

ρ(G,M ′) = min
(v, w) ∈ V × V,

v �= w

ρ(G,M ′
v,w).

Step 3. For each u ∈ V define the cluster graph M ′′
u = M(X ′′, Y ′′) ∈ M2(V ),

where X ′′ = V \ {u}, Y ′′ = {u}.
Step 4. Among all graphs M ′′

u choose the nearest to G cluster graph M ′′:

ρ(G,M ′′) = min
u∈V

ρ(G,M ′′
u ).

Step 5. If ρ(G,M ′) ≤ ρ(G,M ′′), then set M2 = M ′, else set M2 = M ′′.
Output: cluster graph M2 = M(X,Y ) ∈ M2(V ).

The running time of algorithm A2 is O(n6). This is greater than the running
time of the algorithm of Coleman, Saunderson, and Wirth [3] for problem GC≤2

because of more complicated step 1.1.
Let G = (V,E) be an arbitrary graph, let M∗ = M(X∗, Y ∗) be an optimal

solution to problem GC2 on the graph G, and let M = M(X,Y ) be an arbitrary
feasible solution to problem GC2 on the graph G. We will compare the distance
ρ(G,M∗) and the distance ρ(G,M) in the following way.
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Lemma 4. ρ(G,M) − ρ(G,M∗)

=
∑

u∈X∩Y ∗

(

(X ∩ X∗)−
u − (X ∩ X∗)+u + (Y ∩ Y ∗)+u − (Y ∩ Y ∗)−

u

)

+
∑

u∈Y ∩X∗

(

(Y ∩ Y ∗)−
u − (Y ∩ Y ∗)+u + (X ∩ X∗)+u − (X ∩ X∗)−

u

)

.

Proof. Calculate the distance between graphs G and M∗. Taking into account
that X∗ = (X ∩ X∗) ∪ (Y ∩ X∗) and Y ∗ = (X ∩ Y ∗) ∪ (Y ∩ Y ∗), we have

ρ(G,M∗) =
1
2

∑

u∈X∩X∗
(X ∩ X∗)−

u +
1
2

∑

u∈Y ∩X∗
(Y ∩ X∗)−

u

+
1
2

∑

u∈X∩Y ∗
(X ∩ Y ∗)−

u +
1
2

∑

u∈Y ∩Y ∗
(Y ∩ Y ∗)−

u

+
∑

u∈X∩Y ∗
(X ∩ X∗)+u +

∑

u∈Y ∩X∗
(Y ∩ Y ∗)+u +

∑

u∈Y ∩X∗
(X ∩ X∗)−

u

+
∑

u∈Y ∩X∗
(X ∩ Y ∗)+u +

∑

u∈Y ∩Y ∗
(X ∩ X∗)+u +

∑

u∈X∩Y ∗
(Y ∩ Y ∗)−

u .

Similarly, calculate the distance between graphs G and M .

ρ(G,M) =
1
2

∑

u∈X∩X∗
(X ∩ X∗)−

u +
1
2

∑

u∈Y ∩X∗
(Y ∩ X∗)−

u

+
1
2

∑

u∈X∩Y ∗
(X ∩ Y ∗)−

u +
1
2

∑

u∈Y ∩Y ∗
(Y ∩ Y ∗)−

u

+
∑

u∈X∩Y ∗
(X ∩ X∗)−

u +
∑

u∈Y ∩X∗
(Y ∩ Y ∗)−

u +
∑

u∈Y ∩X∗
(X ∩ X∗)+u

+
∑

u∈Y ∩X∗
(X ∩ Y ∗)+u +

∑

u∈Y ∩Y ∗
(X ∩ X∗)+u +

∑

u∈X∩Y ∗
(Y ∩ Y ∗)+u .

Thus, ρ(G,M) − ρ(G,M∗) =
∑

u∈X∩Y ∗

(

(X ∩ X∗)−
u − (X ∩ X∗)+u + (Y ∩ Y ∗)+u − (Y ∩ Y ∗)−

u

)

+
∑

u∈Y ∩X∗

(

(Y ∩ Y ∗)−
u − (Y ∩ Y ∗)+u + (X ∩ X∗)+u − (X ∩ X∗)−

u

)

.

Lemma 4 is proved.

The main result of this paper is the following bound on the worst-case
behaviour of algorithm A2.

Theorem 2. For any graph G = (V,E) the following inequality holds:

ρ(G,M2) ≤ 2ρ(G,M∗),

where M2 ∈ M2(V ) is the solution returned by algorithm A2 and M∗ is an
optimal solution to problem GC2 on the graph G.
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Proof. Let M∗ = M(X∗, Y ∗). We may assume that |X∗| ≥ 2 and |Y ∗| ≥ 2 since
otherwise M2 = M∗ due to step 3 of algorithm A2.

Let v be a vertex of the minimum degree in the graph D = D(G,M∗). Since
step 1 of algorithm A1 and step 1.1 of algorithm A2 are the same, then by
Remark 1 among all graphs constructed by algorithm A2 at step 1.1 there exists
the graph Mv,w = M(X,Y ) such that

(a) dD(v) = min
u∈V

dD(u);

(b) Mv,w is obtained from M∗ by moving at most dmin vertices to another
cluster;

(c) v ∈ X ∩ X∗, w ∈ Y ∩ Y ∗.

Consider the performance of procedure LS(Mv,w,X, Y, v, w) on the graph
Mv,w = M(X,Y ).

It is easy to see that

|X ∩ Y ∗| ∪ |Y ∩ X∗| ≤ dmin.

Local search procedure LS starts with X0 = X and Y0 = Y . At every
iteration k either LS moves some vertex uk ∈ V \ {v, w} to another cluster, or
no vertex is moved and LS finishes.

Consider in detail iteration t + 1 such that

– at every iteration k ∈ {1, ..., t} procedure LS selects some vertex
uk ∈ (X ∩ Y ∗) ∪ (Y ∩ X∗);

– at iteration t + 1 either procedure LS selects some vertex
ut+1 ∈ (

(X ∩ X∗) ∪ (Y ∩ Y ∗)
) \ {v, w},

or iteration t + 1 is the last iteration of LS.

Let us introduce the following quantities:

αt+1(u) =

{

(Xt ∩ X∗)−u −(Xt ∩ X∗)+u +(Yt ∩ Y ∗)+u −(Yt ∩ Y ∗)−u for u ∈ Xt ∩ Y ∗,

(Yt ∩ Y ∗)−u −(Yt ∩ Y ∗)+u +(Xt ∩ X∗)+u −(Xt ∩ X∗)−u for u ∈ Yt ∩ X∗.

βt+1(u) =

{

(Xt ∩ Y ∗)−u −(Xt ∩ Y ∗)+u +(Yt ∩ X∗)+u −(Yt ∩ X∗)−u for u ∈ Xt ∩ Y ∗,

(Yt ∩ X∗)−u −(Yt ∩ X∗)+u +(Xt ∩ Y ∗)+u −(Xt ∩ Y ∗)−u for u ∈ Yt ∩ X∗.

It is not difficult to see that for each vertex u ∈ (Xt ∩ Y ∗) ∪ (Yt ∩ X∗) there
holds

δt+1(u) = αt+1(u) + βt+1(u). (2)

Indeed, if u ∈ Xt ∩ Y ∗, then the local improvement δt+1(u) is equal to

δt+1(u) = (Xt)−
u − (Xt)+u + (Yt)+u − (Yt)−

u

= (Xt ∩ X∗)−
u − (Xt ∩ X∗)+u + (Yt ∩ Y ∗)+u − (Yt ∩ Y ∗)−

u

+ (Xt ∩ Y ∗)−
u − (Xt ∩ Y ∗)+u + (Yt ∩ X∗)+u − (Yt ∩ X∗)−

u

= αt+1(u) + βt+1(u).
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For vertices u ∈ Yt ∩ X∗ equality (2) can be proved similarly.

Consider the cluster graph Mt = M(Xt, Yt). Then by Lemma 4

ρ(G,Mt) − ρ(G,M∗) =
∑

u∈Xt∩Y ∗
αt+1(u) +

∑

u∈Yt∩X∗
αt+1(u).

Since at all iterations preceding iteration t + 1 only vertices of the set
(X ∩ Y ∗) ∪ (Y ∩ X∗) were moved, then

|Xt ∩ Y ∗| + |Yt ∩ X∗| = r ≤ dmin. (3)

Hence

ρ(G,Mt) − ρ(G,M∗) ≤ r max{αt+1(u) : u ∈ (Xt ∩ Y ∗) ∪ (Yt ∩ X∗)}. (4)

Now let us prove that at iteration t + 1 the following statement is true:

∀u ∈ (Xt ∩ Y ∗) ∪ (Yt ∩ X∗) αt+1(u) ≤ n

2
. (5)

We do this in two stages.

I. First, for each vertex u ∈ V \ {v, w}, we estimate the local improvement
δt+1(u), i.e., decreasing of the value of the objective function in case of moving
u to another cluster.

(1) Prove that for all u ∈ (Xt∩X∗)∪(Yt∩Y ∗)\{v, w} the following inequality
holds:

δt+1(u) ≤ 2
(|Yt ∩ X∗| + |Xt ∩ Y ∗|) + 1. (6)

(a) Let u ∈ (Xt ∩ X∗) \ {v}. Observe that

(Yt ∩X∗)+u +(Yt ∩X∗)−
u +(Xt ∩Y ∗)+u +(Xt ∩Y ∗)−

u = |Yt ∩X∗|+ |Xt ∩Y ∗|, (7)

(Xt∩X∗)+u +(Xt∩X∗)−
u +(Yt∩Y ∗)+u +(Yt∩Y ∗)−

u = n−1−|Yt∩X∗|−|Xt∩Y ∗|.
(8)

By Lemma 3 we obtain

(Xt ∩ X∗)−
u + (Yt ∩ Y ∗)+u ≤ (X∗)−

u + (Y ∗)+u ≤ n

2
. (9)

The local improvement δt+1(u) for the vertex u ∈ (Xt ∩ X∗) \ {v} is equal to

δt+1(u) = (Xt)−
u − (Xt)+u + (Yt)+u − (Yt)−

u

= (Xt ∩ X∗)−
u − (Xt ∩ X∗)+u + (Yt ∩ Y ∗)+u − (Yt ∩ Y ∗)−

u

+ (Xt ∩ Y ∗)−
u − (Xt ∩ Y ∗)+u + (Yt ∩ X∗)+u − (Yt ∩ X∗)−

u .

Add and subtract (Xt ∩ X∗)−
u + (Yt ∩ Y ∗)+u . Then

δt+1(u) = 2
(

(Xt ∩ X∗)−u + (Yt ∩ Y ∗)+u
) − (Xt ∩ X∗)−u − (Yt ∩ Y ∗)+u

− (Xt ∩ X∗)+u −(Yt ∩ Y ∗)−u +(Xt ∩ Y ∗)−u −(Xt ∩ Y ∗)+u +(Yt ∩ X∗)+u −(Yt ∩ X∗)−u .
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So, using (9) and (8), we have

δt+1(u) ≤ 2n
2 − (

(Xt ∩ X∗)−
u + (Yt ∩ Y ∗)+u + (Xt ∩ X∗)+u + (Yt ∩ Y ∗)−

u

)

+ (Xt ∩ Y ∗)−
u − (Xt ∩ Y ∗)+u + (Yt ∩ X∗)+u − (Yt ∩ X∗)−

u

= n − n + 1 + |Yt ∩ X∗| + |Xt ∩ Y ∗|
+ (Xt ∩ Y ∗)−

u − (Xt ∩ Y ∗)+u + (Yt ∩ X∗)+u − (Yt ∩ X∗)−
u .

Since all terms are non-negative, then

(Xt ∩ Y ∗)−
u − (Xt ∩ Y ∗)+u + (Yt ∩ X∗)+u − (Yt ∩ X∗)−

u

≤ (Xt ∩ Y ∗)−
u + (Xt ∩ Y ∗)+u + (Yt ∩ X∗)+u + (Yt ∩ X∗)−

u .

So, using (7), we have

δt+1(u) ≤ |Yt ∩ X∗| + |Xt ∩ Y ∗| + 1
+ (Xt ∩ Y ∗)−

u − (Xt ∩ Y ∗)+u + (Yt ∩ X∗)+u − (Yt ∩ X∗)−
u

≤ |Yt ∩ X∗| + |Xt ∩ Y ∗| + 1 + |Yt ∩ X∗| + |Xt ∩ Y ∗|
= 2

(|Yt ∩ X∗| + |Xt ∩ Y ∗|) + 1.

Thus, for each vertex u ∈ (Xt ∩ X∗) \ {v} inequality (6) is proved.
(b) If u ∈ (Yt ∩ Y ∗) \ {w}, then one can prove inequality (6) by symmetric

replacement Xt,X
∗ with Yt, Y

∗ respectively.

(2) Prove that for all u ∈ (Yt ∩ X∗) ∪ (Xt ∩ Y ∗)

δt+1(u) ≤ 2
(|Yt ∩ X∗| + |Xt ∩ Y ∗|) + 1. (10)

(a) If at iteration t + 1 of the local search procedure LS a vertex
ut+1 ∈ (

(Xt ∩ X∗) ∪ (Yt ∩ Y ∗)
) \ {v, w} is moved, then using (6) we obtain

∀u ∈ (Yt ∩X∗)∪ (Xt ∩Y ∗) δt+1(u) ≤ δt+1(ut+1) ≤ 2
(|Yt ∩X∗|+ |Xt ∩Y ∗|)+1.

(b) If iteration t + 1 of procedure LS is the last, then the following inequali-
ties hold:

∀u ∈ (Yt ∩ X∗) ∪ (Xt ∩ Y ∗) δt+1(u) ≤ 0.

In this case inequalities (10) are obvious.

II. Now prove inequalities (5).
(1) First, prove that

∀u ∈ Yt ∩ X∗ αt+1(u) ≤ n

2
.

Suppose the opposite, i.e., there is a vertex p ∈ Yt ∩ X∗ such that
αt+1(p) > n

2 . By (2), δt+1(p) = αt+1(p) + βt+1(p), whence

βt+1(p) = δt+1(p) − αt+1(p) < δt+1(p) − n

2
.
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By (10), δt+1(p) ≤ 2
(|Yt ∩ X∗| + |Xt ∩ Y ∗|) + 1, therefore

βt+1(p) < 2
(|Yt ∩ X∗| + |Xt ∩ Y ∗|) + 1 − n

2
. (11)

Since dmin = min
u∈V

dD(u), then

dD(p) = (Yt ∩ X∗)−
p + (Xt ∩ X∗)−

p + (Xt ∩ Y ∗)+p + (Yt ∩ Y ∗)+p ≥ dmin.

So, using (3), we obtain

(Yt∩X∗)−
p +(Xt∩X∗)−

p +(Xt∩Y ∗)+p +(Yt∩Y ∗)+p ≥ |Yt∩X∗|+ |Xt∩Y ∗|. (12)

Since p ∈ Yt ∩ X∗, then

(Yt∩X∗)+p +(Yt∩X∗)−
p +(Xt∩Y ∗)+p +(Xt∩Y ∗)−

p = |Yt∩X∗|+|Xt∩Y ∗|−1, (13)

(Xt∩X∗)+p +(Xt∩X∗)−
p +(Yt∩Y ∗)+p +(Yt∩Y ∗)−

p = n−|Yt∩X∗|−|Xt∩Y ∗|. (14)

By the definition,

βt+1(p) = (Yt ∩ X∗)−
p − (Yt ∩ X∗)+p + (Xt ∩ Y ∗)+p − (Xt ∩ Y ∗)−

p .

It follows from (13) that

− (Yt ∩X∗)+p − (Xt ∩Y ∗)−
p = (Yt ∩X∗)−

p +Xt ∩Y ∗)+p −|Yt ∩X∗|− |Xt ∩Y ∗|+1,

hence

βt+1(p) = (Yt ∩ X∗)−
p + (Xt ∩ Y ∗)+p + (Yt ∩ X∗)−

p + (Xt ∩ Y ∗)+p
− |Yt ∩ X∗| − |Xt ∩ Y ∗| + 1

= 2
(

(Yt ∩ X∗)−
p + (Xt ∩ Y ∗)+p

) − |Yt ∩ X∗| − |Xt ∩ Y ∗| + 1.

By (12),

(Yt ∩ X∗)−
p + (Xt ∩ Y ∗)+p ≥ |Yt ∩ X∗| + |Xt ∩ Y ∗| − (Xt ∩ X∗)−

p − (Yt ∩ Y ∗)+p ,

so

βt+1(p) ≥ 2
(|Yt ∩ X∗| + |Xt ∩ Y ∗| − (Xt ∩ X∗)−

p − (Yt ∩ Y ∗)+p
)

−|Yt ∩ X∗| − |Xt ∩ Y ∗| + 1
= |Yt ∩ X∗| + |Xt ∩ Y ∗| + 1 − 2(Xt ∩ X∗)−

p − 2(Yt ∩ Y ∗)+p .

Add and subtract (Xt ∩ X∗)+p and (Yt ∩ Y ∗)−
p . Then

βt+1(p) ≥ |Yt ∩ X∗| + |Xt ∩ Y ∗| + 1
+ (Yt ∩ Y ∗)−

p − (Yt ∩ Y ∗)+p + (Xt ∩ X∗)+p − (Xt ∩ X∗)−
p

−(

(Yt ∩ Y ∗)−
p + (Yt ∩ Y ∗)+p + (Xt ∩ X∗)+p + (Xt ∩ X∗)−

p

)

.
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So, using (14), we have

βt+1(p) ≥ |Yt ∩ X∗| + |Xt ∩ Y ∗| + 1
+ (Yt ∩ Y ∗)−

p − (Yt ∩ Y ∗)+p + (Xt ∩ X∗)+p − (Xt ∩ X∗)−
p − n

+ |Yt ∩ X∗| + |Xt ∩ Y ∗| = 2
(|Yt ∩ X∗| + |Xt ∩ Y ∗|) + 1 − n

+ (Yt ∩ Y ∗)−
p − (Yt ∩ Y ∗)+p + (Xt ∩ X∗)+p − (Xt ∩ X∗)−

p .

Since p ∈ Yt ∩ X∗, then

αt+1(p) = (Yt ∩ Y ∗)−
p − (Yt ∩ Y ∗)+p + (Xt ∩ X∗)+p − (Xt ∩ X∗)−

p ,

whence

βt+1(p) ≥ 2
(|Yt ∩ X∗| + |Xt ∩ Y ∗|) + 1 − n + αt+1(p)

> 2
(|Yt ∩ X∗| + |Xt ∩ Y ∗|) + 1 − n

2
.

This contradicts to inequality (11). Therefore, for each u ∈ Yt∩X∗ inequality (5)
holds (due to arbitrariness of the vertex p).

(2) For all u ∈ Xt ∩ Y ∗ the inequality

αt+1(u) ≤ n

2

can be proved similarly by symmetric replacement Xt,X
∗ with Yt, Y

∗ respec-
tively.

Thus, inequalities (5) hold.

Using (3), (4), (5), and Lemma 1, we obtain

ρ(G,M ′
v,w) − ρ(G,M∗) ≤ r max{αt+1(u) : u ∈ (Xt ∩ Y ∗) ∪ (Yt ∩ X∗)}

≤ r
n

2
≤ dmin

n

2
≤ ρ(G,M∗).

Thus,
ρ(G,M ′

v,w) ≤ 2ρ(G,M∗).

The graph M ′
v,w is constructed among all graphs at step 1.2 of algorithm A2.

Theorem 2 is proved.
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Abstract. The Capacitated Vehicle Routing Problem with Time Win-
dows (CVRPTW) is the well-known combinatorial optimization problem
having numerous valuable applications in operations research. Unlike the
classic CVRP (without time windows constraints), approximation algo-
rithms with theoretical guarantees for the CVRPTW are still developed
much less, even for the Euclidean plane. In this paper, perhaps for the
first time, we propose an approximation scheme for the planar CVRPTW
with non-uniform splittable demand combining the well-known instance
decomposition framework by A. Adamaszek et al. and Quasi-Polynomial
Time Approximation Scheme (QPTAS) by L. Song et al. Actually, for
any ε ∈ (0, 1) the scheme proposed finds a (1+ε)-approximate solution of
the problem in polynomial time provided the capacity q and the number

p of time windows does not exceed 2logδ n for some δ = O(ε). For any
fixed p and q the scheme is Efficient Polynomial Time Approximation
Scheme (EPTAS) with subquadratic time complexity.

Keywords: Capacitated vehicle routing problem · Time windows ·
Splittable demand · Polynomial time approximation scheme

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is the famous combinatorial
optimization problem, which was introduced by Dantzig and Ramser in their
seminal paper [9] and has a wide range of relevant applications in practice (see,
e.g. [30]). In the simplest setting of the problem, we are given by a finite set
of customers having the same unit demand and a fleet of identical capacitated
vehicles located initially at a single depot. The goal is to construct a collection
of vehicle routes minimizing the total transportation cost and servicing all the
customers.

The Capacitated Vehicle Routing Problem with Time Windows (CVRPTW)
[20,30] is an extension of the CVRP, where service of each customer should start
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at a specified time interval, called a time window. CVRP with hard windows
is widely applicable in natural gas distribution [7], dial-ride company planning
[11], continent-scale distribution of building materials [23], low-carbon economy
[26], and other practical transportation problems [25].

The problem is well-investigated by specialists in the field of exact methods,
heuristics, and meta-heuristics. Recently, a significant progress was achieved in
solving practically important instances of the CVRPTW by local-search heuris-
tics [13], Tabu-search [29], genetic [31], memetic [6,21], ant colony algorithms
[22], and their combinations (see, e.g. [8]).

Nevertheless, approximation results for this problem in the class of algo-
rithms with theoretical guarantees are still extremely rare. To the best of our
knowledge, they are exhausted by the Quasi-Polynomial Time Approximation
Scheme (QPTAS) proposed in [28] and extended recently to the case of multiple
depots [27] and our recent Efficient Polynomial-Time Approximation Schemes
(EPTAS) for the CVRPTW with any fixed capacity and number of time win-
dows. In addition, all known results relate to the special setting of the problem,
where all customers have the same unit demand.

Our Contribution. In this paper, perhaps for the first time for the CVRPTW
with non-uniform demand, we propose an approximation scheme with theoret-
ically proved time complexity bounds. Our scheme extends the decomposition
framework introduced by Adamaszek et al. in [1] for efficient approximation of
the simplest unit-demand CVRP on the Euclidean plane to more general case
of the problem to take into account additional time windows constraints and a
non-uniform splittable customer demand.

The rest of this paper is structured as follows. In Sect. 2, we give a short
overview of known approximation results for the CVRPTW in the class of algo-
rithms with theoretical bounds. In Sect. 3, we recall the mathematical setting
of the CVRPTW with non-uniform demand. Section 4 presents the mail idea of
the proposed scheme. In subsequent sections, we discuss this scheme in detail.
We start in Sect. 5 with basic known results needed for the subsequent construc-
tions. Then, in Sect. 6 we present our approximation scheme with a proof of
its accuracy bound. Time complexity bounds are proved in the Sect. 7. Finally,
in Sect. 8, we summarize the results obtained and list some questions that still
remain open.

2 Related Work

Being an extension of the well-known strongly NP-hard Traveling Salesman
Problem (TSP) [30], the Capacitated Vehicle Routing Problem is also strongly
NP-hard even in the Euclidean plane [24] provided the capacity q belongs to the
input. The metric CVRP remains intractable and APX-hard even for any fixed
q ≥ 3 and for the two-valued {1, 2}-metric.

For the Euclidean CVRP, the first approximation results date to the seminal
paper by Haimovich and Rinnooy Kan [12], where the first PTAS for the CVRP
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on the plane and capacity q = o(log log n) and first constant-factor algorithms
for an arbitrary metric were introduced. Then, in [3] an improved scheme, whose
running time retains polynomial for the wider range q = O(log n/ log log n), was
proposed.

The ideas proposed by Arora in his celebrated paper [2] were used by Das
and Mathieu to design their Quasi-Polynomial Time Approximation Scheme
(QPTAS) [10] for the general case of the planar Euclidean CVRP. Their QPTAS
finds a (1 + ε)-approximate solution of this problem (for the case, when q is a
part of the instance) in time n(log n)O(1/ε)

. Using this QPTAS as a black-box,
Adamaszek, Czumaj, and Lingas [1] showed that (1 + ε)-approximate solution
of the planar CVRP can be found in polynomial time, if q ≤ 2log

δ n for some
δ = δ(ε). Some aforementioned results were extended to the case of Euclidean
spaces of an arbitrary finite dimension [14,18,19] and several special graphs [4,5].

Unlike CVRP, approximability of the Euclidean CVRPTW is much less inves-
tigated. To the best of our knowledge, the family of known approximation algo-
rithms for this problem is exhausted by a Quasi-Polynomial Time Approxima-
tion Scheme (QPTAS) developed in [27,28] for the general case of the prob-
lem and approximation schemes for the case of max{p, q} = o(log log n) and
p3q4 = O(log n), where p is the number of time windows, proposed in [16] and
[15,17], respectively.

All aforementioned results for the CVRPTW relate to the simplest setting
of the problem, when all customers have the same unit demand. In this paper,
we try to bridge this gap and to propose an approximation scheme for the case
of the CVRPTW with a non-uniform splittable demand.

3 Problem Statement

We consider the Euclidean Capacitated Vehicle Routing Problem with Time
Windows and non-uniform Splittable customer Demand (CVRPTW-SD). For
the sake of simplicity, we restrict ourselves to the case of the Euclidean
plane, pairwise disjoint time windows, and a single depot. An instance of the
CVRPTW-SD is defined by

– a set X = {x1, . . . , xn} of customer locations (customers) on the Euclidean
plane and a dedicated location y also known as depot, such that, for any
locations v1, v2 ∈ X ∪ {y}, transportation cost associated with the direct
move from v1 to v2 coincides with ‖v1 − v2‖2

– a natural-valued function d specifying demand d(x) of any customer x ∈ X
that should be serviced by one or more vehicle routes

– an unbounded fleet of vehicles having the same integer capacity q and located
initially in the depot y

– a linearly ordered set T = {T1, . . . , Tp} of the consecutive time windows, such
that the demand d(x) of any customer x should be fulfilled within the given
time window T (x) ∈ T ; we assume that, for any 1 ≤ j < p, the time window
Tj precedes Tj+1 and use the notation Tj ≺ Tj+1.
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The goal is to satisfy the demand of each customer minimizing the total trans-
portation cost with respect to the capacity and time windows constraints.

Mathematically, an instance of the CVRPTW-SD is given by a complete
node- and edge-weighted graph G = (X ∪ y,E, d, w), natural number q, and a
partition

X1 ∪ . . . ∪ Xp = X, where Xj = {xi ∈ X : T (xi) ∈ T }, (j ∈ {1, . . . , p}). (1)

To any customer node xi ∈ X, the weighting function d assigns1 the positive
integer demand di = d(xi), while the function w defines the transportation cost
w(v1, v2) = ‖v1 − v2‖2 for any edge e = {v1, v2} ∈ E.

A feasible route is an ordered pair Rj = (Rj ,Dj), where Rj = y, xi1 , . . . , xis
, y

is a simple cycle in the graph G and the n-tuple Dj = (d1j , . . . , dnj) satisfying
time windows

T (xil
) � T (xil+1), (1 ≤ l < s)

and capacity
1 ≤ dilj ≤ dil

, (1 ≤ l ≤ s)

dij = 0, i 	∈ {i1, . . . , is}
n∑

i=1

dij ≤ q

constraints, where dij is a part of the i-th customer demand covered by the route
Rj . To any feasible route R, we assign the transportation cost

w(R) = w(y, xi1) + w(xi1 , xi2) + . . . + w(xis
, y).

The goal is to find, for some m ≥ 1, a minimum cost multi-cover U =
(R1, . . . ,Rm) of the graph G, satisfying the total customer demand, i.e.

m∑

j=1

dij = di, (1 ≤ i ≤ n).

In the sequel, we propose a novel approximation scheme for this problem,
which is an Efficient Sub-Quadratic Approximation Scheme for any fixed capac-
ity q and the number p of time windows retaining the polynomial running time,
when max{p, q} ≤ 2log

δ n for some δ = δ(ε).

4 Main Idea

Our scheme extends the approach proposed by Adamaszek et al. in [1] to the
more general case of the Capacitated Vehicle Routing Problem augmented by
non-uniform splittable customer demand and time windows constraints. In this
section, we give a short overview of the scheme, which consists of the following
stages.
1 Without loss of generality, we can can assume that d(y) = 0, for the depot y.
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Preprocessing. To any customer xi, we assign the distance ri = w(y, xi) from
the depot y and relabel the customers in non-increasing order of these distances,
i.e., r1 ≥ . . . ≥ rn. Then, given an ε > 0, we set a tolerance threshold

ρ =
r1ε

N
, where N =

n∑

i=1

⌈
di

q

⌉
, (2)

and exclude all the customers xi, for which ri ≤ ρ.

Rounding. We reduce the given instance of the CVRPTW-SD to an appropriate
instance of the special kind, which we call rounded. To proceed with such a reduc-
tion, we draw a number of circles centered at the depot y and separating them
into equal sectors by rays spreading from this depot and introduce an accuracy
dependent grid consisting of locations, which are the intersections between circles
and rays. We divide each location to p slots by the number of given time win-
dows and move any customer xi to the corresponding slot of the closest location.
Finally, we show that any (1 + ε)-approximate solution of the rounded instance
obtained can be efficiently transformed to a (1 + O(ε))-approximate solution of
the initial one. Therefore, in the sequel, we assume that the given instance is
rounded.

Decomposition. At this stage, we decompose the given rounded CVRPTW-SD
instance into a number of independent subinstances of two kind, we call them
white and gray, which can be solved in parallel. We show that, to obtain an
(1+O(ε))-approximate solution of the initial instance, it is sufficient to construct
(1 + ε)-approximate solution of any white subinstance and approximate any
gray subinstance by an appropriate adaptation of the well-known Iterative Tour
Partition (ITP) heuristic [12]. Then, following [1], we show that any subinstance
(white or gray) can be efficiently reduced to an equivalent one, whose total
demand does not exceed a polynomial of the capacity q, the number of time
windows p and 1/ε.

Blackboxing. Finally, we complete our approximation scheme by employing the
QPTAS proposed in [28] and our extension of the ITP heuristic [16] to find
approximate solutions of all the reduced white and gray subinstances, respec-
tively.

5 Preliminaries

We start with some necessary definitions and facts. All of them remain valid
not only for the planar setting of the CVRPTW considered in this paper but
also for the general metric CVRPTW defined by an arbitrary non-negative edge-
weighting function w satisfying the triangle inequality.
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Lemma 1. For any instance of the CVRPTW-SD, such that r1 ≥ . . . ≥ rn,
ri = w(y, xi), the following inequality

OPT ≥ max

{
TSP∗(X ∪ {y}), 2r1,

2
q

n∑

i=1

diri

}
(3)

is valid, where TSP∗(X ∪{y}) is the optimum value of the TSP instance defined
by the graph G = G(X ∪ {y}, E,w).

Proof. Since the inequalities OPT ≥ TSP∗(X ∪{y}) ≥ 2r1 are a straightforward
consequence of the triangle inequality, we prove the bound OPT ≥ 2

q

∑n
i=1 diri.

Let U = {R1, . . . ,Rm} be an arbitrary optimum solution of the given CVRP-
TW-SD instance. For each j ∈ [m] = {1, . . . , m}, introduce the non-empty subset
X(Rj) = {xi ∈ X : dij > 0} of customers visited by the route Rj . Since, for any
xi ∈ X(Rj), 2ri = w(y, xi) + w(xi, y) ≤ w(Rj), by the triangle inequality, the
following equation

dij∑n
l=1 dlj

w(Rj) ≥ 2dij∑n
l=1 dlj

ri

is valid for each customer xi ∈ X. Therefore,

w(Rj) =
∑n

i=1 dij∑n
l=1 dlj

w(Rj) ≥ 2
∑n

i=1 dijri∑n
l=1 dlj

≥ 2
q

n∑

i=1

dij .ri,

since q ≥
∑n

l=1 dlj, and

w(U) =
m∑

j=1

w(Rj) ≥ 2
q

m∑

j=1

n∑

i=1

dijri =
2
q

n∑

i=1

ri

m∑

j=1

dij =
2
q

n∑

i=1

diri.

Lemma is proved.

The well-known Iterative Tour Partition (ITP) heuristic introduced in [12] for
the metric Capacitated Vehicle Routing Problem (CVRP) with unit demand can
be defined as follows. Consider an instance of the metric CVRP defined by the
complete edge-weighted graph G = G(X ∪ {y}, E,w) and capacity q. Suppose,
we are given by an arbitrary Hamiltonian cycle H in the subgraph G〈X〉 induced
by the customer subset X. Starting at some customer x, cut the cycle H onto
l = �n/q chains, where n = |X|, such that each chain, except maybe the last
one, visits q customers exactly. For any chain obtained, connect its endpoints
with the depot y directly constructing the set S(x) of l routes. Proceed with
the similar procedure taking each other customer x ∈ X as a staring point and
output the route set

SITP = arg min{w(S(x)) : x ∈ X}

of the minimum cost. The following lemma [12] gives an upper bound for the
cost of the obtained solution.
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Lemma 2.

w(SITP) ≤ 2
⌈

n

q

⌉ ∑n
i=1 ri

n
+(1−1/q)w(H) ≤

(
1 +

q

n

)
· 2
q

n∑

i=1

ri +(1−1/q)w(H).

In [17], we extend ITP heuristic to the case of the metric CVRPTW with uniform
demand. For the sake of completeness, we present this technique in this paper
in Algorithm 1, which can be easily adapted to the case of the metric CVRPTW
with non-uniform splittable demand.

Algorithm 1. The ITP heuristic for the metric CVRPTW
Input: an instance of the metric CVRPTW defined by a complete graph
G(X ∪ {y}, E, w), capacity q, and partition X1 ∪ . . . ∪ Xp = X
Parameter: β-approximation algorithm Aβ for the metric TSP
Output: an approximate solution SITP of the given CVRPTW instance

1: using Aρ obtain a ρ-approximate metric TSP solution H for the subgraph G〈X〉
2: by shortcutting, split the cycle H into smaller cycles H1, . . . , Hp, s.t. Hj spans

customers from Xj

3: for each cycle Hj do
4: for each x ∈ Xj do
5: starting from the node x, split the cycle Hj into lj = �|Xj |/q� chains, s.t. each

of them, except maybe one, spans q vertices
6: connecting endpoints of each chain with the depot y directly, construct a set

S(x) of lj routes
7: end for
8: put Sj = arg min{w(S(x)) : x ∈ Xj}
9: end for

10: output the solution SITP = S1 ∪ . . . ∪ Sp.

Indeed, to obtain an ITP-based approximate solution in this case, we repre-
sent each customer xi with demand di by the family of di its unit-demand copies
and reduce the initial instance to the obtained instance of the metric CVRPTW
with unit demand defined by the auxiliary graph on D = 1+

∑n
i=1 di nodes. For

the weight w(SITP) of the resulting solution, we obtain the following bound.

Lemma 3.

w(SITP ) ≤ 2 ·
(

2
q

n∑

i=1

diri

)
+ pw(H) ≤ 2 ·

(
2
q

n∑

i=1

diri

)
+ pβ · TSP∗(X).

Proof. Indeed, applying Lemma2 to each customer subset Xj , we obtain

w(Sj) ≤
(

1 +
q

Dj

)
· 2
q

∑

xi∈Xj

diri +(1−1/q)w(Hj) ≤ 2 ·

⎛

⎝2
q

∑

xi∈Xj

diri

⎞

⎠+w(H),

where Dj =
∑

xi∈Xj
di. Since w(SITP) =

∑p
j=1 w(Sj) and W (H) ≤ βTSP∗(X),

Lemma is proved.
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Finally, we present the following fact taken from [1], which helps us to reduce
the instance in question to the equivalent one with much less total demand and to
prove a polynomial time complexity bound of the scheme proposed. Hereinafter,
we call a feasible route R non-trivial, if it visits at least two distinct customers,
i.e. |X(R)| > 1. Otherwise, the route is called trivial.

Lemma 4. For any instance of the CVRPTW-SD, there exists an optimum
solution U = {R1, . . . ,Rm}, such that, among its m routes, at most |X| are
non-trivial.

Actually, Lemma 4 was proven in [1] for a more restricted case, i.e. the unit-
demand CVRP free of the time windows constraints. But this result can be
easily extended to the CVRPTW with splittable non-uniform demand. For the
sake of brevity, we skip the proof this claim, postponing it to the forthcoming
paper.

6 Approximation Scheme

It this section, we describe our approximation scheme following the overview
presented in Sect. 4 and prove its correctness.

Suppose, we are given by ε ∈ (0, 1) and an instance of the Euclidean
CVRPTW-SD on the plane defined by a complete node- and edge-weighted
graph G = (X ∪ {y}), E, d, w), capacity q ∈ N, and partition X1 ∪ . . . ∪ Xp = X
induced by an ordered set T = {T1, . . . , Tp} of consecutive disjoint time windows
(see Sect. 3 for details). In this section, we show how to construct an (1 + ε)-
approximate solution of this instance.

6.1 Instance Preprocessing

Discuss the details of an approximation scheme proposed by us. Firstly, reorder-
ing the customers X by decreasing their distances r(x) to the depot y. Then,
we can notify that some customers can be ignoring with respect to the fixed ε.
We start with assigning to each customer xi the distance ri = w(xi, y) from the
depot y and reordering them by descending the distances r1 ≥ . . . ≥ rn. Then,
we show that, during construction an (1+ε)-approximate solution we can ignore
the customers, which are located sufficiently close to the depot in accordance to
formula (2).

Lemma 5. Demand of all customers, for which ri ≤ ρ, can be serviced by routes
of at most ε · OPT total cost.

Proof. Indeed, for any customer xi, its demand di can be serviced by �di/q
trivial routes, each of them has the cost 2ri. Therefore, for the total cost Cρ, we
have

Cρ ≤
n∑

i=1

2ri

⌈
di

q

⌉
≤ 2ρ · N ≤ 2N

εr1
N

≤ 2εr1 ≤ ε · OPT,

where the last inequality follows from Lemma 1. Lemma is proved.
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In the sequel, without loss of generality we assume that the equation ρ ≤ ri ≤ r1
holds for any customer xi ∈ X.

6.2 Rounding

In this section, we reduce the given instance to a special one, which we call
rounded. To proceed with this reduction, we introduce the accuracy dependent
grid induced by the circles centered at the depot y of radii

ρi = ρ

(
1 +

ε

q

)i

, 0 ≤ i ≤ �log1+ ε
q

N/ε (4)

and rays spreading from y dividing each disk into s = �2πq/ε equal circular
sectors with central angle 2π/s. We call locations the obtained intersection points
between rays and circles. To any location, we assign p slots, by the number of
different time windows. Then, we move each customer xi ∈ Xj to the j-th slot
of the nearest location such that, each slot accumulates the total demand of all
customers that are moved to it. Since the number of circles and rays are

log1+ ε
q

N

ε
= Θ

(
q

ε
log

N

ε

)
and Θ

(q

ε

)
,

respectively, the total number of slots is Θ
(
p ·

(
q
ε

)2 log N
ε

)
.

Thus, we reduce the initial instance to the special instance of the Euclidean
CVRPTW-SD (we call it rounded), whose customers are slots assigned to grid
locations.

Lemma 6. The proposed reduction changes the cost of any solution by at most
ε · OPT.

Proof. Indeed, consider an arbitrary customer x with demand d(x) located at a
distance r(x) from the depot y, between two neighboring circles of radii ρi and
ρi+1 (Fig. 1). It is easy to verify that the distance between x and the nearest
location l has the following upper bound

‖x − l‖2 ≤ p1 + p2 ≤ r(x)α/2 + (ρi+1 − ρi)/2.

Therefore,
‖x − l‖2 ≤ r(x)

ε

q
,

since α ≤ ε/q, ρi+1 = ρi(1 + ε/q), and r(x) ≥ r(x), by construction. Since an
arbitrary feasible solution visits each customer xi by at most di routes, the total
change of its cost induced by moving all the customers to slots at the closest
locations does not exceed

ε · 2
q

n∑

i=1

diri ≤ ε · OPT,

by Lemma 1. Lemma is proved.

Thanks to Lemma 6, in the rest of this paper, we can assume without loss of
generality that each CVRPTW-SD instance considered is rounded.
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Fig. 1. Moving the customer x to the slot at the nearest location l

6.3 Instance Decomposition

In this section, we show that any rounded instance of the CVRPTW-SD can be
decomposed into an appropriate collection of subinstances, which can be solved
in parallel, such that (1 + ε)-approximate solution of the initial instance can be
combined from the approximate solutions of the subinstances obtained.

We start this decomposition with partitioning the enclosing disk (of radius
r1) to rings, such that each ring (except maybe the most inner one) consists
of k = �log1+ ε

q

5
ε consecutive circles. Then, each regular ring K has an inner

radius rin = ρ(1 + ε/q)i for some 0 ≤ i ≤ �log1+ ε
q

N/ε and the outer one

rout = rin(1 + ε/q)k. By W (K) we denote a width of the ring K. Since

W (K) = rin

((
1 +

ε

q

)�log1+ ε
q

5
ε �

− 1

)
≥ rin

((
1 +

ε

q

)log1+ ε
q

5
ε

− 1

)

= rin

(
5
ε

− 1
)

≥ rin

(
5
ε

− 1
ε

)
= 2rin

2
ε
,

we obtain the following upper bound

2rin ≤ ε

2
· W (K) (5)

for the length of the inner radius of any ring K in terms of its width W (K),
which is important for the subsequent constructions.

At the second step, for a positive integer a = �(20pβ + 4)/ε and some
number b ∈ {0, . . . , a − 1}, whose choice will be explained later, we color all the
rings obtained in white and gray, starting from the outer one, such that the ring
Ki is painted gray, if i ≡ b (mod a). Here β is an approximation factor of the
algorithm used for solving the auxiliary TSP instances and the choice of b will
be explained later, in Lemma 10.

In the sequel, we show that such a coloring leads to a successful decomposition
of the initial rounded CVRPTW-SD instance. Let us discuss it in detail. First,
we prove Lemma 7 that holds for much more general white-gray ring colorings.
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Indeed, by F1, . . . ,Fα and OPT(Fi) denote the maximal (by inclusion) families of
consecutive white rings and the optimum value of the CVRPTW-SD subinstance
induced by slots located in rings of the family Fi, respectively.

Lemma 7. For any white-gray coloring of rings obtained by the following rules:
(i) any monochromatic pair of the adjacent rings is white; (ii) the outer ring is
white as well, the following equation

α∑

i=1

OPT(Fi) ≤
(
1 +

ε

2

)
OPT

is valid.

Proof. Indeed, let U = {R1, . . . Rm} be an arbitrary optimum solution of the
initial rounded instance of the CVRPTW-SD. By the following recurrent pro-
cedure, transform any route R ∈ U to an appropriate collection of routes, such
that each new route visits the slots located in a single family of white rings
exclusively. For the given route R, consider the outermost white ring family
visited by this route, say F1, and the adjacent gray ring K (Fig. 2). Including
2 · l inner radii rin and l chords of the ring K, split the route R into subroutes
Rg(1), . . . ,Rg(l), each of them visits no slots outside F1 and a single subroute
Rb located in the interior of the ring K. Thanks to Eq. (5) and the triangle
inequality, such a transformation results in the increase of the transportation
cost by at most

4 · rin · l ≤ 2l · ε/2 · W (K) ≤ ε/2 · w(R ∩ K),

where w(R ∩ K) denotes the partial cost of the route R related to its inter-
section with the ring K. Continuing this transformation procedure recursively

Fig. 2. Splitting of the route R into Rg(1), . . . , Rg(l) and Rb subroutes
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(proceeding with the subroute Rb and so on), we obtain that the total cost
increasing caused by such a transformation for the route R does not exceed

ε

2
·

α∑

j=1

w(R ∩ Kj),

where the summation is performed over all gray rings K1 . . . , Kα. Therefore, the
total cost of the obtained routes is at most

w(U) +
ε

2

m∑

i=1

α∑

j=1

w(Ri ∩ Kj) ≤ (1 + ε/2)w(U).

Lemma follows from the obvious observation that, for any family Fi, the
optimum value OPT(Fi) does not exceed the total cost of the subroutes produced
by the above recursive procedure that visit this family.

For any gray ring K, by TSP∗(K) we denote the optimum value of the
Euclidean TSP for the slots located in this ring. Evidently, each TSP∗(K) does
not exceeds the optimum value of the TSP instance induced by all slots and the
depot, we denote this value by TSP∗. The following lemma gives much more
accurate bound.

Lemma 8. Let K1, . . . , Kα be gray rings. Then,

α∑

i=1

TSP∗(Ki) ≤ (1 + πε) TSP∗.

Proof. Let H be an arbitrary minimum cost Hamiltonian cycle passing through
all the slots and the depot, such that w(H) = TSP∗ (Fig. 3a). To obtain the
desired bound, we employ the following recursive tour splitting procedure similar
to the procedure provided in the proof of Lemma7. We start with the outermost
gray ring K and cut out segments of the cycle H that belong to this ring and
its exterior (Fig. 3b). By Wext(K) denote their total cost. Further, without loss
of generality, we can assume that each such a segment touches the inner circle
of the ring K in two points. Therefore, the number of such points is even.

Connecting the adjacent points by chords and including the perfect matching
as it is done in Fig. 4a, we construct the auxiliary 4-regular multi-graph having
the Eulerian cycle E(K), which admits shortcutting to the Hamiltonian cycle
H(K) containing all the aforementioned outer segments of the cycle H (Fig. 4b).

Again, taking into account Eq. (5) and the triangle inequality, obtain the
upper bound for the cost w(H(K)) of the constructed cycle H(K)

w(H(K)) ≤ w(E(K)) ≤ Wext(K) + 4π · rin

≤ Wext(K) + πε · W (K) ≤ Wext(K) + πε · w(H ∩ K),
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(a) (b)

Fig. 3. (a) the initial cycle (b) cutting out the outer segments

(a) (b)

Fig. 4. (a) constructing the Eulerian cycle (b) shortcutting to the Hamiltonian cycle

where w(H ∩ K) denotes the cost of the segment of the cycle H that belongs
to the ring K. Proceeding with this procedure recursively and summing over all
the gray rings, we obtain the final bound

α∑

i=1

TSP∗(Ki) ≤
α∑

i=1

w(H(Ki)) ≤ (1 + πε) w(H) = (1 + πε) TSP∗.

Lemma is proved.

Further, applying Lemma8 twice to the alternating coloring, where each family
Fi consists of a single ring, we estimate the total cost of the optimum Hamiltonan
cycles for all rings obtained at the first step of instance decomposition.
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Lemma 9. Let TSP∗(Ki) be the optimum value for the Euclidean TSP instance
enclosed in the ring Ki. Then, the following equation holds:

k∑

i=1

TSP∗(Ki) ≤ 10 · TSP∗.

Proof. Indeed. Consider two alternative colorings. In the first one, we color gray
each even ring, whilst, in the second one, each odd. Employing Lemma8, and
taking into account the additional assumption that the outermost ring K1 cannot
be gray, we obtain the following equation

k∑

i=1

TSP∗(Ki) =
∑

i≡0 ( mod 2)

TSP∗(Ki) +
∑

i≡1 ( mod 2)

TSP∗(Ki)

≤ 2 (1 + πε) TSP∗ + TSP∗(K1) ≤ 2 (1 + πε) TSP∗ + TSP∗ ≤ 10 · TSP∗,

since ε < 1. Lemma is proved.

In the sequel, for any gray ring, we will solve the associated subinstance by the
ITP heuristic. The following lemma gives an upper bound for the total cost of
these solutions.

Lemma 10. There exists a number b ∈ {1, . . . , a}, such that the total cost of all
ITP solutions for the subinstances enclosed in the gray rings is at most ε

2 ·OPT.

Proof. Indeed, for any ring K, by Xslots(K) and SITP(K) denote the subset of
slots enclosed in the ring K and the ITP-solution of the corresponding subin-
stance, respectively. Then,

w(SITP(K)) ≤ 2 · 2
q

∑

x∈Xslots(K)

d(x)r(x) + pβ · TSP∗(K)

Therefore, by Lemmas 3, 9, and 1,

a−1∑

b=0

∑

i≡b ( mod a)

w(SITP(Ki)) ≤ 2 · 2
q

∑

x∈Xslots

d(x)r(x) + pβ ·
k∑

i=1

TSP∗(Ki)

≤ 2 · OPT + 10pβ · TSP∗ ≤ (2 + 10pβ)OPT.

Hence, there exists b, such that

∑

i≡b ( mod a)

w(SITP(Ki)) ≤ 2 + 10pβ

a
OPT ≤ ε

2
OPT,

by construction. Lemma is proved.

To complete the decomposition of the given instance, we perform white-gray
coloring of the rings driven by the parameters a and b and obtain subinstances
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defined by white families Fi and gray rings Kj . Hereinafter, we call them white
and gray, respectively. Then, by Lemma 4, we reduce each subinstance with σ
slots and an arbitrarily large demand to the equivalent one, whose total demand
does not exceed σ2q. Finally, we find a (1 + ε/2)-approximate solution and an
ITP-solution of any reduced white and gray subinstance, respectively. Our first
result follows straightforwardly from Lemmas 7 and 10.

Theorem 1. For any ε ∈ (0, 1), the proposed decomposition provides (1 + ε)-
approximate solution for the initial rounded CVRPTW-SD instance.

6.4 Approximate Algorithms for Subinstances

As we mentioned in Sect. 4, to find an approximate solution for an arbitrary
white subinstance we apply as a black box the quasi-polynomial approximation
scheme (QPTAS) proposed by Song et al. in [28], whilst, each gray subinstance
we approximate with our recent modification [16,17] of the well-known ITP
heuristic.

7 Time Complexity Bounds

As shown in Sect. 6, the proposed scheme consists of the following stages: pre-
processing, rounding, instance decomposition and the main stage dealing with
the approximation of white and gray subinstances.

It can be easily verified that the first three stages can be carried out in
time O(n log n), where n is the number of distinct customers. To estimate time
complexity of the final stage, recall that the Song’s QPTAS and our modification
of the ITP are developed for the case of CVRPTW with unit demand. Therefore,
in our case, their complexity bounds should be represented in terms of the total
customer demand D defining the instance in question, i.e. O

(
DlogO(1/ε) D

)
and

O(D3), respectively (see [16,28]).
Thanks to Lemma 4, for any subinstance (white or gray) obtained during the

decomposition of the given rounded instance, its total demand D = σ2q, where
σ is the number of slots engaged, which in turn is determined by the number of
circles included into an appropriate family of white rings or to the gray ring. By
construction, each ring contains

O

(
log1+ ε

q

1
ε

)
= O

(
q

ε
· log

1
ε

)

circles, each of them consists of O(pq/ε) slots. Therefore, for any gray subin-
stance,

σ = σg = O

(
pq2

ε2
· log

1
ε

)
,

while any white instance is determined by

σ = σw = a · σg = O

(
(pq)2

ε3
· log

1
ε

)
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slots. Further, the number I of white (or gray) subinstances is

I = O

(
log N

ε

a log 1
ε

)
= O

(
ε

p

log N
ε

log 1
ε

)
,

where N is defined by Eq. (2). Thus, we proved our second result.

Theorem 2. Time complexity of the proposed scheme is

O (I · K(p, q, ε) + n log n) , (6)

where
K(p, q, ε) =

(
σ2

wq
)(log(σ2

wq))O(1/ε)

+ (σ2
gq)3. (7)

Notice that the proposed scheme admits near to linear parallel speedup, since all
the subinstances obtained at the stage of instance decomposition can be solved
independently.

Corollary 1. For any fixed ε ∈ (0, 1), the running time of the proposed scheme
does not exceed O(n log N), if p = Ω(1), q = Ω(1), and

max{p, q} ≤ 2log
δ n (8)

for some δ = O(ε).

Proof. Fix an arbitrary ε ∈ (0, 1) and obtain an upper bound for (6). Indeed,
I = O(log N), σ2

wq = Cp4q5 for some constant C > 0, and the first term in (7)
dominates the second one. Then, Eq. (8) implies that, for n � 1

log σ2
wq = log C + 4 log p + 5 log q ≤ 10 logδ n ≤ log2δ n.

Therefore,

K(p, q, ε) = 2(log(Cp4q5))O(1/ε) ≤ 2(log
2δ n)O(1/ε)

= 2(log n)C1δ/ε

=
(
2log n

) logC1δ/ε n
log n ≤ 2log n = n

any time, when C1δ/ε ≤ 1, where C1 is some positive constant, and n > 1.
Hence, for the fixed ε,

I · K(p, q, ε) + n log n = O(n log N).

Corollary is proved.

Corollary 2. For any fixed p and q the proposed scheme is EPTAS with time

complexity O

((
1
ε8

)(log 1
ε )O(1/ε)

· log N + n log n

)
.
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8 Conclusion

In this paper, perhaps for the first time for the Euclidean Capacitated Vehicle
Routing Problem with Time Windows and non-uniform splittable demand, a
polynomial time approximation scheme is proposed. The scheme is based on the
instance decomposition framework developed in [1] and uses the QPTAS from
[28] and our modification [16] of the Iterative Tour Partition as a black box. For
any fixed ε ∈ (0, 1) and the total customer demand D, the scheme finds a (1+ε)-
approximate solution of the problem in time O(n log D) any time provided that
max{p, q} ≤ 2log

δ n for some δ = O(ε). Furthermore, for any fixed capacity q
and the number p of time windows, the proposed scheme is an EPTAS, which
significantly outperforms by the time complexity bound the previous best result
[17] for the CVRPTW on the Euclidean plane.

For future work we left the open questions related to a possible extension
of the proposed scheme to an arbitrary finite dimension Euclidean space and to
the case of non-splittable demand.
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Abstract. We consider a modification to the classic medianoid prob-
lem, where facilities of different types are present on the market. A
newcomer firm opens facilities providing a specific type of products and
competes with existing facilities of that type. Each customer requires
multiple products of different types and chooses the shortest route vis-
iting facilities providing the needed types of products. A local search
approach to maximize the market share of the newcomer firm is pro-
posed, utilizing upper and lower bounds for the customers’ trip lengths
to avoid time-consuming computations.

Keywords: Competitive location · Multi-purpose trips · Local search

1 Introduction

Location of commercial facilities is a long-term strategic decision that must take
into account as much information regarding the market as it is possible. One of
the most critical aspects is competition between suppliers of similar products or
services. The models of competitive location were firstly introduced by Hotelling
[8], and now form a broad class of optimization problems considering such aspects
as design, pricing, capacity management, shipment, and others [1,4,9,11].

In the present paper, we consider a generalization of the classic competitive
location model called the medianoid problem. It consists of finding locations
of r new facilities providing that the total weight of customers that prefer the
new facilities to the existing competitor’s ones is maximized. The model was
introduced by S. L. Hakimi in the paper [6], where it is shown to be NP–hard.
We focus on the discrete case, where both the set of customers and the set of
potential locations for new facilities are finite.

Assumptions about the customers’ behavior are one of the essential ingre-
dients of competitive models since they determine procedures to estimate the
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major objectives such as market share and income. These assumptions are often
called behavior rules. In the literature, the most widely–used rules are binary
and proportional ones assuming that the customer’s demand is captured by a
single facility or is proportionally distributed among several facilities, respec-
tively. Such measurable factors like travel distance, quality of the facility, and
others are used to determine the distribution of the customer’s budget.

The present work aims to focus on the influence of facilities that do not
compete with the firm but may be in demand for customers. A concentration of
these facilities allows the customers to make multi-purpose trips when several
different types of products or services can be obtained together during a single
tour. The paper of Marianov et al. [14] considers multi-purpose shopping trips
in the context of non-essential products. The experiments there show that the
total demand depends on the relative location of facilities of different types since
spending the trip budget on getting several products provides higher utility to
a customer. The authors conclude that taking into account multi-purpose trips
is beneficial to the decision maker. In the present paper, we deal with essen-
tial products and investigate how the binary customer behavior rule, assuming
that each customer patronizes the closest facility, is affected by multi-purpose
shopping trips.

To find a quality location of the firm’s facilities in a situation when the cus-
tomers optimize their shopping trips and get service from the facilities visited
by the shortest route, we developed the randomized local search procedure. Dur-
ing the computations, the procedure stores estimations of the routes’ lengths to
avoid solving the customers’ problems directly. The information about routes’
lengths gathered during the workflow is used to compute an upper bound for the
firm’s market share and estimate the quality of the solution obtained. The proce-
dure computing the upper bound is to solve a bi-criteria mixed-integer problem
with lexicographic order of the objective functions. It finds an optimal location
of the firm’s facilities when the information about routes’ lengths is sufficient.

The paper is organized as follows. In Sect. 2, we introduce all the necessary
notations and formulate the medianoid problem with multi-purpose shopping
trips in terms of bi-level mathematical programming. All the ingredients of the
methods developed are given in Sect. 3. Section 4 presents the results of numer-
ical experiments with artificially generated instances, and Sect. 5 concludes the
paper.

2 Mathematical Model

Let us introduce the necessary notations to formalize the problem to find an
optimal location of the firm’s facilities. We suppose that the firm produces some
type of products or just a product for short. This type of products is further
indexed with t0. The firm enters the market by opening r facilities in some of a
finite set of candidate sites I. Denote the set of locations where the firm decided
to open its facilities with IF . The same product is supplied by existing facilities
located in sites IL and belonging to competitors. Without loss of generality, we
assume that IL ∩ I = ∅.
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Denote the set of customers interested in the product t0 with J . Let T be the
set of all products other than t0 that are of interest for the customers from J .
Further, we refer to these products as additional. Suppose that, for each product
t ∈ T , we are given with the set It of facilities providing that product.

Suppose that, for each customer j ∈ J , we are given with a subset Tj ⊆ T of
all the additional products that the customer needs. Denote the initial location
of the customer j ∈ J by sj . The customer then decides how to get all the needed
products while minimizing the distance traveled. More specifically, the customer
j ∈ J starts from sj , visits a single facility in It for each t ∈ Tj , one of the
facilities in IL or IF , and returns to sj , while minimizing the route’s length. To
find the shortest route, the customer must solve a generalized traveling salesman
problem (GTSP). We say that the customer is captured by the firm if their route
visits one of the facilities opened by the firm.

From a certain perspective, an initial location of the customer j ∈ J can be
considered as a facility providing an exclusive product tj that is in demand for
this customer only. For consistency, denote It0 = I ∪ IL, as the set of all the
sites that can potentially provide the product t0, and Itj = {sj}. With this in
mind, let T j = Tj ∪{t0}∪{tj} be the set of all the products the customer needs,
including their exclusive product.

Let S be the set of all customer locations, S = {sj |j ∈ J}; let I be the set
of all the facilities that provide additional products, I =

⋃
t∈T It. We assume

that we are given a full weighted directed graph G with a set of vertices V =
S ∪ I ∪ I ∪ IL, and we will consider the weight of an edge wij in this graph to
be the distance between two locations. Note that the edge weights have to be
non-negative, but do not need to be symmetric or follow the triangle inequality.

For each T ⊆ T ∪ {t0} ∪ S, define IT =
⋃

t∈T It as the set of all the locations
that provide either of the products in T . When the customer j solves their GTSP,
they only travel within a certain subset of V , which is denoted by Vj = IT j

.
To formulate the mathematical model of the problem, we use the following

variables. Let zi, i ∈ I be the decision variables, with zi = 1 if the firm decides
to open a facility in the location i ∈ I, and 0 otherwise. In other words, zi =
1 ⇐⇒ i ∈ IF , zi = 0 otherwise.

Let zij , i ∈ I, j ∈ J , be an indicator variable that equals one if and only if
the customer j is served by the facility i opened by the firm, and zero otherwise.
If that is the case, the firm earns a profit equal to bj .

Finally, let γj
gh, j ∈ J ; g, h ∈ Vj be a (0, 1)–variable that indicates whether or

not the customer j travels along the edge gh during the shortest tour.
With this in mind, the mathematical model can be formulated as the follow-

ing bi-level program with multiple lower-level problems of the customers.

max
(zi),(zij)

∑

i∈I

∑

j∈J

bjzij , (1)

s.t.: ∑

i∈I

zi = r, (2)
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zij =
∑

g∈Vj

γj
gi, i ∈ I, j ∈ J, (3)

zi, zij ∈ {0, 1}, i ∈ I, j ∈ J, (4)

where, for each j ∈ J , (γj
gh) solve the routing problem of the customer j:

min
(γj

gh)

∑

g∈Vj

∑

h∈Vj

wghγj
gh (5)

s.t.: ∑

g∈Vj

γj
gh =

∑

g∈Vj

γj
hg, h ∈ V (6)

∑

g∈It

∑

h∈It

γj
gh = 0, t ∈ T j , (7)

∑

g∈IT

∑

h∈Vj\IT

γj
gh ≥ 1, T ⊂ T j , (8)

∑

g∈Vj

γj
gi ≤ zi, i ∈ I, (9)

γj
gh ∈ {0, 1}, g, h ∈ Vj (10)

The objective function (1) represents the total firm’s profit obtained from
the customers captured. Due to assumptions of the model, the firm opens r
facilities, which is guaranteed by the constraint (2). Next, the constraint (3)
defines the connection between zij and γj

gh, ensuring that the customer j is
considered captured by the facility i if the customer’s shortest tour visits i.

Note that each of the lower-level problems (5)–(10) is a GTSP problem in
the sub-graph of G with the subsets to visit being It, t ∈ Tj . The constraints (6)
ensure flow conservation in and out of a given vertex, (7) forbids travel within
the same subset, while (8) forbids the tour to be split into unconnected cycles
by ensuring that for each possible combination of subsets there exists a single
edge that leads to the outside of these subsets. Finally, the constraint (9) forbids
the tour to pass through facilities in I that have not been opened by the firm.

Third, note that, given values for zi, γj
gh are calculated by solving the prob-

lem (5)–(9). We are to highlight that the customer may have several different
optimal tours that can lead to different values of the objective function (1). In
our experiments, we deal with a pessimistic formulation of the problem (1)–(10)
assuming the a customer chooses a tour avoiding to visit firm’s facilities, if they
could. It is equivalent to the assumption that a customer is captured by the
firm’s facility only when the route through this facility is shorter than the ones
visiting the competitors’ facilities by some ε > 0. Once the values of (zi) are
fixed, (3) is enough to compute the best values for zij , and the corresponding
value of the objective function. Thus, the problem under study can be consid-
ered as a problem to maximize a pseudo–Boolean function f(z) depending on
the vector z = (zi) of location variables’ values. This function maps the vector
z to the value of the objective function (1) on the corresponding solution of the
problem (1)–(10).
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3 Algorithm

Being an NP–hard problem even in a case of single product type, the medianoid
problem with multi–purpose trips is a reasonable target for metaheuristic algo-
rithms that explore the search space using local information about the landscape
of the objective function. The representation of the problem in the form of maxi-
mizing the pseudo-Boolean function f(·) allows working in a convenient space of
(0, 1)-vectors with r non-zero components. At the same time, given z, comput-
ing the objective function f(z) requires to solve multiple NP–hard customers’
problems. Thus, an intensive evaluation of the objective function significantly
decreases the capabilities of the algorithm.

The GTSP is a classic combinatorial optimization problem arising in many
practical applications [12], and the literature on algorithmic approaches to this
problem is vast [7,17]. In our computations, we do not apply a specialized method
to solve arising GTSPs but delegate them to the Gurobi solver for mixed-integer
programming problems (MIP) [5]. On the other side, the main efforts are focused
on developing tools that allow calling the solver less frequently and decrease the
computational cost of exploring the solution space. The quality of the solution
obtained by the algorithm can be estimated when compared with the upper
bound provided by the procedure introduced in Subsect. 3.3.

3.1 Local Search

To find a quality solution of the problem to maximize the function f(·), we apply
the randomized local search scheme introduced in [15] to solve large instances
of bi-level competitive location model. For each z ∈ {0, 1}|I| we define its swap
neighborhood

Swap(z) = {y ∈ {0, 1}|I||H(z, y) = 2,H(x, 0) = H(y, 0)},

where H(·, ·) is the Hamming distance between two vectors. The neighborhood
Swap(z) contains all the (0, 1)–vectors that are obtained from z by moving a
single non-zero component to another position.

The swap neighborhood contains r(|I| − r) elements and evaluating all of
them is a costly procedure. The algorithm utilizes a randomization technique to
increase the exploring rate and prevent sticking in a local optimum.

A randomized neighborhood of the vector z is a randomly chosen subset
RSwap(z) ⊆ Swap(z). In our implementation, the probability of the element to
be taken in RSwap(z) is the same for all the elements. The number of solutions
in RSwap(z) is derived from two parameters: q1 and q2. The parameters define
the relative quality of the best solution in RSwap(z) and the probability that
this quality is achieved. For instance, q1 = q2 = 0.5 means that the best element
of RSwap(z) produces a not worse value of the objective function than 50% of
the set Swap(z) with a probability not less than 0.5.

The local search starts at a random feasible solution z1 and performs similar
iterations. The iteration s of the search starts from the solution zs and consists of
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making N steps. Each step moves the search to the best neighbor of the current
solution with respect to the neighborhood RSwap(·). The iteration s + 1 starts
from the solution zs+1 being the best solution found on iteration s. Notice that
the solutions zs+1 and zs can be equal. The process is repeated, until the time
limit T is reached. The best found solution is returned as the local search result.

To tune the parameters N , q1 and q2, the irace package was used [13]. It
implements a modified F-race algorithm finding parameters’ values that outper-
form other settings on a given set of instances. After tuning the parameters, the
setting q1 = 0.8, q2 = 0.85, N = |I| was found as the most efficient.

3.2 Objective Function Evaluation and Tour Length Estimates

Since explicit calculating the optimal routes is a time-consuming procedure, it
is desirable to avoid it as much as possible. The approach used relies on storing
bounds for tour lengths. Let us discuss it in detail.

For each pair i ∈ It0 , j ∈ J , define the ij-tour, which is the shortest tour that
passes through sj , i, and through one facility from It for each t ∈ Tj . For the
ij-tour, let us introduce three values: lij , Lij and uij , which are, respectively:
the lower bound for the tour’s length, the exact value of the tour’s length and
the upper bound for it. Over the course of the local search, values lij and uij

are stored and modified in such a way that the inequality lij ≤ Lij ≤ uij always
holds.

Consider some feasible solution z ∈ {0, 1}|I| such that
∑

i∈I zi = r. Then,
having IF = {i ∈ I|zi = 1}, let us discuss the procedure to evaluate f(z).
Consider the problem (5)–(10), where the customer’s options for acquiring the
product t0 are limited to a non-empty subset of facilities C ⊆ IF ∪ IL. On the
base of the Gurobi MIP solver, we implement a procedure GTSP(j, C,B, b),
where B and b, such that B > b ≥ 0, are numerical input parameters. The
procedure may finish with the following three results:

1. An optimal tour passes through i∗ ∈ C and has the length Li∗j < B.
2. It is proven that no ij-tour with i ∈ C exists with Lij < B.
3. A tour passing through some i1 ∈ C is shorter than b, but no proof of

optimality.

Both the second and the third exit conditions stop the branch-and-bound process
prematurely, potentially saving time. The second exit condition is reached when
the solver makes sure that an optimal tour has a length greater than B. The
third exit condition is reached when a feasible solution better than a quality
threshold b is found. Since proving optimality takes more time than yielding good
solutions, this option leads to time savings when finding an optimal solution is
not necessary.

From here, the procedure to check, if a customer is captured by the firm
or not, becomes one of building C and choosing B and b. In the first case, the
procedure returns 1 and 0 otherwise.

Algorithm 1, answering the question if the customer is captured by the firm
or not, starts from finding the current best candidate i0 ∈ IL ∪ IF and then
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Algorithm 1. Detect if the customer is captured
i0 ← arg mini∈IF ∪IL

uij

C ← {i ∈ IF ∪ IL|lij ≤ ui0j}
if C ⊆ IF then

return 1
else if C ⊆ IL then

return 0
end if
if ui0j = li0j then

C ← C \ {i0} // the exact length of the i0j-tour is known
end if
B := ui0j

if i0 ∈ IL and C ⊆ IF then
b := li0j

else
b := 0

end if
Call GTSP(j, C,B, b)
if (An optimal ij-tour found through i∗ ∈ C, with length L < B) then

li∗j ← L
ui∗j ← L
for all i ∈ C \ {i∗} do

lij ← max{lij , L} // since i∗ is optimal, other ij-tours are not shorter
end for
return |{i∗} ∩ IF |

else if (It is proven that no ij-tour with i ∈ C exists with L < B) then
for all i ∈ C do

lij ← max{lij , B}
end for
return |{i0} ∩ IF |

else if (An ij-tour found through i1 ∈ C with length L < b, but no proof of
optimality) then

ui1j ← L
return 1

end if

ensures that those facilities that are proven to have a worse tour than the one
through i0 are not considered. After that, it is checked if solving GTSP can be
avoided entirely, that is, if all the candidates belong to one owner. If the exact
length of the i0j-tour is known, then i0 is removed from the candidate list. Then,
the quality threshold B for the GTSP solver is set up to make sure that only
solutions with ij-tours shorter than the i0j-tour are considered.

The lower quality threshold is set up afterward. It is b = li0j only if i0 ∈ IL

and all the other candidates are from IF . After that, the optimizer is launched
and the results are interpreted. If an optimal i∗j-tour is found, then it is shorter
than all other tours, and by our assumption we conclude that lij = min{lij , L}. If
it is proven that no ij-tours shorter than B exist, then the values lij are updated
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accordingly. Finally, if some good enough i1j-tour is found, but no proof is given,
then the value ui1j is updated.

The only thing that remains uncovered yet for a complete description of the
local search algorithm is how the initial values for lij and uij are set up. There
are numerous heuristics for the GTSP which the local search can benefit from
[10], but solving the GTPS is out of scope of this study, thus, we applied a very
straightforward approach to estimate the lengths of the tours for the beginning.
Namely, the upper bounds are set up as lengths of randomly generated feasible
GTSP solutions. The lower bounds are set up as the distance to travel from
sj to i and back: lij = ωisj

+ ωsji, which is a feasible lower bound when the
triangle inequality holds. When it is not the case, other trivial estimates M and
0, respectively, are used, where M is a sufficiently large value. Even the second
variant yields a significant improvement over computing the lengths explicitly.

3.3 Finalizing the Algorithm and Upper Bound Procedure

During the computational process, the local search algorithm continuously
updates the values lij , uij . These values are used to construct a lexicograph-
ical bi-objective MIP [3] called estimating problem. Since the local search avoids
computing optimal customers’ tours, the information about lengths of these
tours may not be full after the termination of the algorithm. Further, we say
that the customer j ∈ J is potentially captured by the firm’s facility i ∈ I if
lij < uL

j , i. e. the information about tours of this customer, gathered during
the local search process, is insufficient to claim that the j prefers some facility
from IL to i. It is clear, that, given the location of the firm’s facilities, the total
weight of all potentially captured customers is not less than the actual value of
the firm’s market share. Thus, the primary objective function of the estimating
problem being the total weight of potentially captured customers provides an
upper bound for the function f(·). The secondary objective function shows the
total weight of the potentially captured customers that can not be proven to
be captured by the firm using the information about the lengths of customers’
tours. While minimizing this function, we aim to reduce the gap between the
upper bound value and the actual market share.

Consider a set of values lij , uij computed during the local search process,
and a solution zLS , which is the best solution found. For all j ∈ J , let us
denote: lLj = mini∈IL lij , uL

j = mini∈IL uij , the most optimistic and the most
pessimistic estimates of the shortest ij-tour for all i ∈ IL, respectively. Introduce
two matrices: cij and c̃ij , i ∈ I, j ∈ J defined as follows:

cij =
{

1 if lij < uL
j

0 , otherwise c̃ij =
{

1 if uij < lLj
0 otherwise

As such, cij = 1 if j is potentially captured by i, whereas c̃ij = 1 if i captures
j for sure. Note that cij ≥ c̃ij

To formulate the MIP, we use additional (0, 1)-variables (vj) and (ṽj), j ∈ J ,
where vj indicates if some firm’s facility potentially captures j. At the same time,
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ṽj equals one if some firm’s facility surely captures j, and zero otherwise. With
the introduced notations, the bi-objective estimating problem can be written as
follows:

UB = max
(zi),(vj),(ṽj)

∑

j∈J

bjvj , (11)

Gap = min
(zi),(vj),(ṽj)

∑

j∈J

bj(vj − ṽj), (12)

s.t.
vj ≤

∑

i∈I

cijzi, j ∈ J (13)

ṽj ≤
∑

i∈I

c̃ijzi, j ∈ J (14)

∑

i∈I

zi = r (15)

vj , ṽj , zi ∈ {0, 1}, i ∈ I, j ∈ J. (16)

The first objective function (11) represents the total demand that can be
potentially captured by the firm. The second objective function shows the mag-
nitude of deviation of the actual value of market share from the value UB.
The constraints (13) and (14) have a form of covering constraints with matrices
(cij) and (c̃ij) indicating if the element is covered or not. Note that integrality
constraints for variables (vj) and (ṽj) can be relaxed with the optimal solution
guaranteed to be integer.

Consider the lexicographically optimal solution ((zi), (vj), (ṽj)) of the prob-
lem (11)–(16) and the corresponding values UB and Gap of its objective func-
tions. First, note that the value UB is an upper bound for the function f(·).
Moreover, if Gap = 0, then z∗ = (zi) maximizies the function f(·). The overall
algorithm consists of running the local search procedure with time limit stopping
criteria and then solving the problem (11)–(16) providing values UB and Gap.

4 Numerical Experiments

To analyze the impact of the algorithm’s ingredients and the model’s behavior,
we performed numerical experiments with artificial data. From the application
side, our interest is to compare the model’s predictions with the classic (r|Xp)-
medianoid problem. The numerical data was taken from the benchmark “Dis-
crete location problems” [2], compiling instances of the (r|p)-centroid problem
and results of experiments with these instances. The experiments are performed
by a MacBook Pro with an Intel Core i5 2.9 GHz dual-core processor and 8 GB
of RAM under control of the Windows 8.1 operating system. The algorithm was
written in C# and utilized Gurobi 7.5.2 running with default settings.

The (r|p)-centroid problem is a classic bi-level location problem considering
two players deciding where to open their facilities. The first player, called the



Medianoid Problem with Multi-purpose Shopping Trips 337

Leader, opens their facilities first. The second player, called the Follower, opens
their facilities after the Leader but has the benefit of knowing the Leader’s
solution. Customers choose facilities based on how close they are to the facility.
A more detailed description of this problem can be found, for instance, in the
work [16].

In the instances considered, the customers are points on the Euclidean plane.
The sites to open facilities coincide with the locations of the customers. This
means that S = V (G), I ∪ IL = S. The instances from [2] are provided with
optimal Leader’s solutions if the authors found them, or the best Leader’s solu-
tions obtained so far. For each instance, we fix the best Leader’s solution and
consider the set of facilities opened by the Leader, IL, as the existing competi-
tors’ ones in our model. The rest of the possible locations are given to the firm
to open its facilities in: I = S \ IL. It is assumed that the firm opens the same
number of facilities as the competitors: r = |IL|.

Next, the additional facilities are generated. For each t ∈ T the set It is
built as an optimal solution of the p-median problem with p = k and randomly
generated weights (bt

j), j ∈ J of the customers from the uniform distribution on
the integer range {1, 2, . . . 25}. In other words, the set It is chosen to contain k
elements of the set S such that the sum over the set of customers J of distances
from a customer j to the nearest element of S weighed by bt

j is minimized. It is set
|It1 | = |It2 |, t1, t2 ∈ T meaning that the number of facilities providing additional
products is the same for all product types. In the test instances generated, the
customers share the same shopping lists having Tj = T for all j ∈ J , whereas the
number of additional product types equals two, |T | = 2. This value was chosen
because solving the GTSP explicitly turned out to be time-consuming on our
hardware for |T | ≥ 3.

The base (r|p)-centroid instances are unweighted ones (bj ≡ 1) with codes
111, 211, 311, and weighted instances coded by 111(W), 211(W), 311(W),
411(W) and 511(W), where (bj) are uniformly distributed on the integer range
{1, . . . , 200). We consider values r = 5, 10 for unweighted instances and r =
5, 10, 15, 20 for the weighted ones.

A comparison was made between a benchmark solution, z0, which is the
optimal Follower solution in the original (r|p)-centroid problem and the best
solution found by the algorithm. This solution is chosen from the best solution
found during the local search, zLS , and the solution found by solving the bi-
objective problem described in Subsect. 3.3, zBO.

The local search was given a time limit of two minutes. The bi-objective
problem was solved by the optimizer in under a second in all of the tested
instances. Let z denote the best solution from zLS and zBO.

Table 1 provides the following values:

r is the number of facilities open by the firm;
|It| is the size of the set of additional facilities for each type;
Imp is the improvement for the best solution found by the algorithm over
the benchmark solution:

Imp = (F (z) − F (z0))/F (z0) · 100%;
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Table 1. Summarized results of the numerical experiments

r |It| Improvement, % SP of best solution GTSPs
solved

Solutions
explored

5 5 76.1% 3 19015 1060

5 10 54.9% 2.5 6584 458

5 20 21% 4.5 1385 174

10 5 82.3% 5.2 15674 660

10 10 51.5% 6.83 7344 382

10 20 20.5% 7.5 1622 86

15 5 32.7% 5.4 12985 422

15 10 52.1% 7.6 6713 225

15 20 27% 10.4 1607 62

20 5 35% 4.4 10299 265

20 10 34.8% 8.6 6130 165

20 20 22.9% 13.2 1585 42

It was noticed that high-quality solutions tend to share locations with the
facilities providing additional products. SP is a numerical expression of this
tendency computed as the number of times the facilities from IF share location
with some additional facility, i.e.,

SP =
∑

i∈IF

∑

t∈T
|It ∩ {i}|;

“GTSPs solved” is the number calls to the MIP solver to solve a GTSP;
“Solutions explored” is the number of evaluations of the objective function.

The values for Imp, SP , “GTSPs solved” and “Solutions explored” are aver-
aged out across all the instances tested.

To summarize the results, first notice that the higher r and |It|, the fewer
solutions are explored and the fewer GTSPs are solved. It is expected, considering
that GTSPs become more difficult to solve as the number of nodes in a subset
to visit grows. Consequently, one would expect that the quality of solutions
would decrease as |It| increases. This trend is most apparent for r = 5, 10, the
Improvement measure decreases by 20—30% each |It| step.

Also worthy to note that the SP of the best solution is on average significantly
higher than the expected value for random solutions, which can be roughly
estimated as (2|It|/100) · r.

Table 2 provides a more detailed comparison between the medianoid models
with single-purpose and multi-purpose shopping trips. For the numerical data
based on the first three weighted and unweighted (r|p)-centroid instances and
different values of r and |It|, we list the following data.

fs is the market share computed for the solution z0 in the single-purpose
model with no additional products;
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Table 2. Detailed results on some instances

Instance # fs fm fLS fBO GTSPs solved Solutions explored

r = 5, |It| = 5

111 53 22 22 22 20955 1276

211 52 38 53 53 19850 484

311 55 28 40 47 20671 1072

r = 5, |It| = 10

111 53 54 52 64 6495 544

211 52 35 47 62 6744 616

311 55 53 75 79 6331 562

r = 5, |It| = 15

111 53 53 54 57 1305 148

211 52 35 47 62 1387 148

311 55 46 41 59 1483 132

r = 10, |It| = 5

111 50 34 74 74 21694 1336

211 51 65 70 70 15417 712

311 52 43 78 78 15026 580

r = 10, |It| = 10

111 50 25 45 45 8810 460

211 51 38 53 53 6970 208

311 52 25 45 45 7529 436

r = 10, |It| = 20

111 50 49 67 65 1700 124

211 51 35 33 47 1569 76

311 52 55 55 66 1504 112

r = 15, |It| = 5

111(W) 47.1 41.7 43.7 43.7 10607 232

211(W) 48.9 57.1 64.8 64.8 14278 424

311(W) 48.7 35.9 57.8 57.8 19600 664

r = 15, |It| = 10

111(W) 47.1 51.3 67.9 67.9 5141 208

211(W) 48.9 45.7 54.7 54.7 8060 268

311(W) 48.7 23.4 46.0 46.0 6701 184

r = 15, |It| = 20

111(W) 47.1 31.0 33.7 29.0 1432 40

211(W) 48.9 41.7 54.6 51.9 1869 100

311(W) 48.7 23.2 36.3 30.5 1655 52

r = 20, |It| = 5

111(W) 48.1 47.2 64.4 64.4 10673 436

211(W) 48.4 32.1 38.7 38.7 12558 220

311(W) 47.7 26.3 47.3 47.3 10635 220

r = 20, |It| = 10

111(W) 48.1 24.6 39.0 39.0 5579 136

211(W) 48.4 33.8 52.8 52.8 6795 256

311(W) 47.7 29.5 34.4 34.0 5911 112

r = 20, |It| = 20

111(W) 48.1 37.2 42.9 41.0 1410 52

211(W) 48.4 16.1 24.3 17.7 1444 28

311(W) 47.7 31.4 41.5 31.0 1774 40
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fm is the market share computed for z0 when multi-purpose trips are taken
into account;
fLS is the market share computed with multi-purpose trips for zLS ;
fBO is the market share computed with multi-purpose trips for zBO;

This table shows that optimal solutions of the model with single-purpose
shopping could perform poorly in a situation when the customers actually make
multi-purpose trips. At the same time, taking into account the locations of facil-
ities providing additional products allows finding locations of a new-comer firm’s
facilities, which are more attractive for the customers and capture a greater mar-
ket share. When speaking about the accuracy of the upper bound computed by
the bi-objective estimating problem, it is insufficient to measure the quality of
the solutions obtained for the instances considered. The reason is that the local
search algorithm does not have enough time to gather enough information about
the trip lengths, which ends up causing some facilities to be assumed to capture
all or most of the customers optimistically. It prevents the upper bound for the
objective function from being a non-trivial estimation.

Overall, the algorithm performs well on the instances considered, reliably and
quickly producing solutions of significantly higher quality than the benchmark.

5 Conclusion and Future Work

In this paper, we considered the medianoid problem with multi-purpose shop-
ping trips. It aims to maximize a market share of a new-comer firm opening
its facilities in a competitive environment. The model takes into account the
presence of facilities that do not compete with the firm but that are of interest
for the customers. The customers are assumed to solve a generalized traveling
salesman problem (GTSP) with the aim to minimize the length of their shop-
ping tours visiting facilities of the types needed. Thus, the model generalizes the
classic medianoid problem, where customers get service in the nearest facility.

To find a quality solution of the model, we developed a local search procedure
storing estimations for lengths of the shortest customers’ tours to avoid solving
GTSPs explicitly. The gathered information about lengths of the tours is used to
construct an estimating problem in a form of bi-objective MIP providing upper
bound for the firm’s market share.

Numerical experiments show that taking into account the information about
facilities, which are of interest for the customers, may bring significant benefits
for the entering firm. The necessity to solve customers’ routing problems makes
exploring the search space more difficult for metaheuristics due to costly proce-
dure to estimate the objective function. At the same, the suggested technique
to store the additional information about tours’ lengths has demonstrated its
efficiency in speeding-up the computations and increasing exploring capabilities
of the method in a situation of time limitation.

Our future work is focused on improving the quality of tour lengths’ esti-
mations used by the method. Plenty of algorithmic approaches on the GTSP
presented in the literature can be applied for these purposes. Efficient strategies
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to balance between exploring the search space of the firm’s location and col-
lecting the information about optimal customers’ routes are subject for future
research as well. Finally, studying the model to find a Stackelberg equilibrium
in a situation where the competitors make sequential decisions about location of
their facilities is planned.
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Abstract. The paper is concerned with the two-machine flow shop,
where each job needs storage space (a buffer requirement) during the
entire time of its processing. The buffer requirement is determined
by the duration of job’s first operation. The goal is to minimise the
time needed for the completion of all jobs. This scheduling problem is
NP-hard in the strong sense even for very restricted cases such as the
case with a given order of jobs processing on one of the machines. The
paper contributes to the efforts of establishing the borderline between
the NP-hard and polynomial-time solvable cases by proving that there
exists a polynomial-time algorithm which constructs an optimal schedule
if the duration of each operation does not exceed one-fifth of the buffer
capacity. The presented polynomial-time algorithm is used as a basis
for a heuristic for the general case. This heuristic is complemented by a
Lagrangian relaxation based heuristic and a bin-packing based construc-
tive heuristic. The heuristics are tested by computational experiments.
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1 Introduction

In this paper, we consider a two-machine flow shop problem with a limited buffer.
Each job seizes the portion of the buffer from the start of its processing on the
first-stage machine and releases this portion only after its completion on the
second-stage machine. It is assumed that the buffer requirement of each job is
equal to the job’s processing time on the first stage of the flow shop. The capacity
of the buffer cannot be exceeded at any time. The objective is to minimize the
maximum completion time of all jobs.
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The flow shop problem with a buffer has been extensively studied in the lit-
erature. Most of the papers, however, consider flow shops with an intermediate
buffer between stages, where the buffer capacity is limited by a number of jobs
[1,2,4,17]. The models with the buffer requirement, which varies from job to job,
and the buffer is occupied by a job for its entire processing, has been studied only
recently, though such models better reflect the real-world applications [20]. The
scheduling problem, considered in this paper, arises in supply chains when the
change of vehicles involves unloading and loading, using certain storage space [6];
in multimedia systems where files for presentations are downloaded from remote
storage and stored in a limited memory [15,16].

The considered scheduling problem is NP-hard in the strong sense [14]. The
problem remains NP-hard in the strong sense even under the restriction that,
on one of the machines, the jobs are to be processed in a given sequence [8].
Furthermore, as has been proven in [7], there are instances for which the set
of all optimal schedules does not contain a permutation schedule, that is, a
schedule in which both machines process the jobs in the same order. Even the
decision problem, requiring an answer to the question of whether or not the
given instance is one of the instances that do not have an optimal schedule that
is a permutation one, is an NP-complete. This paper contributes to the efforts of
establishing the borderline between the NP-hard and polynomial-time solvable
cases by proving that there exists a polynomial-time algorithm which constructs
an optimal schedule if the duration of each operation does not exceed one-fifth
of the buffer capacity.

In what follows, the presented polynomial-time algorithm is also used as a
basis for a heuristic for the general case. This heuristic is complemented by
a Lagrangian relaxation based heuristic and a bin-packing based constructive
heuristic. The heuristics are tested by computational experiments. These algo-
rithms contribute to the existing publications aimed at the development of opti-
misation procedures for the general case [12,13,15].

The paper is organised as follows. Section 2 provides the problem’s descrip-
tion. Section 3 presents a polynomial-time algorithm and a proof that this algo-
rithm constructs an optimal schedule. Section 4 describes three heuristics, a
heuristic which is based on the polynomial-time algorithm in Sect. 3 (this heuris-
tic will be referred to as barrier heuristic), a Lagrangian relaxation based heuris-
tic, and a bin-packing based heuristic. A lower bound on the optimal value of
makespan is introduced in Sect. 5. The results of computational experiments are
provided in Sect. 6. Section 7 concludes the paper.

2 Description of the Problem

We are given a set of jobs N = {1, ..., n} and two machines M1 and M2. Each
job has two operations. The first operation of job i must be processed on the
machine M1 for a given amount of time ai and the second operation of job i must
be processed on the machine M2 for bi time units, the job’s second operation
can commence only after the first operation has been completed.
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Once job processing has been started, it cannot be interrupted. Each machine
can process at most one job at a time, and each job can be processed by at most
one machine at a time; the processing of jobs commences at time t = 0. Each
job i seizes ω(i) units of buffer space when its processing has started on the
first machine; this portion of the buffer is released only when the job has been
completed on the second machine. Similar to [12,13,15,16] it is assumed that
ω(i) = ai for each job i. At any point in time t, the total buffer requirement of
all jobs that started their processing before or at t and have a completion time
of their second operation greater than t cannot exceed Ω - the buffer capacity.
A schedule σ specifies for each j ∈ N the points in time S1

j (σ) and S2
j (σ), when

job j starts processing, and C1
j (σ) and C2

j (σ), when job j completes processing
on machine M1 and M2, correspondingly. Thus we have S1

j (σ) + aj = C1
j (σ)

and S2
j (σ) + bj = C2

j (σ). The goal is to minimise maximum completion time
Cmax(σ) = maxj∈N C2

j (σ). Following [12] we call this problem the PP-problem.

3 Polynomial–Time Algorithm

The PP-problem is strongly NP-hard [16]. However, the problem is easily solvable
if the buffer size is large enough, for example, when all jobs can be simultaneously
placed in the buffer. In this case, the problem is equivalent to the two-machine
flow shop problem, and it can be solved in O(n log n) time by Johnson’s algo-
rithm [11]. Thus, the computational complexity of the problem depends on the
relationship between the size of jobs and the size of the buffer.

Let I be an instance of the PP-problem such that

max
i∈N

{ai, bi} ≤ Ω

5
. (1)

Assume for a moment that there is no buffer restriction. Then a permutation
schedule σJ constructed by Johnson’s rule [11] is optimal. Johnson’s rule can be
formulated as follows:

– partition N into two sets: L1 = {i ∈ N : ai < bi} and L2 = {i ∈ N : ai ≥ bi};
– first schedule the jobs from L1 in non-decreasing order of ai, and then schedule

the jobs from L2 in non-increasing order of bi.

Further assume that the jobs are numbered according to the sequence con-
structed by Johnson’s rule, then Cmax(σJ) can be expressed as following:

Cmax(σJ) = max
k

(
k∑

i=1

ai +
n∑

i=k

bi

)
. (2)

Let k′ be the number at which the maximum is reached in (2). Denote by Idle1
and Idle2 the total idle time in the interval [0, Cmax(σJ)] on machines M1 and
M2, respectively. Then we have



Flow Shop with Job–Dependent Buffer Requirements 345

Idle1 = Cmax(σJ) −
n∑

i=1

ai =
n∑

i=k′
bi −

n∑
i=k′+1

ai ≤
n∑

i=k′
bi (3)

and

Idle2 = Cmax(σJ) −
n∑

i=1

bi =
k′∑

i=1

ai −
k′−1∑
i=1

bi ≤
k′∑

i=1

ai. (4)

Let nA =
⌈
5Idle2

Ω

⌉
and nB =

⌈
5Idle1

Ω

⌉
. We introduce set X of nA jobs with

ai = 0, bi = Idle2
nA

for i = 1, . . . nA and set Y of nB jobs with ai = Idle1
nB

, bi = 0
for i = 1, . . . nB . Observe that ai ≤ Ω

5 for i ∈ Y and bi ≤ Ω
5 for i ∈ X. Moreover,

(3) and (4) imply that nA + nB ≤ n + 1.
Consider the modified instance I ′ of the problem with the set of jobs N ′ =

N ∪ X ∪ Y. We note that ∑
i∈N ′

ai =
∑
i∈N ′

bi. (5)

If the buffer capacity is unlimited we will show that the optimal makespan
OPT (I ′) of I ′ is equal to Cmax(σJ). Since the schedule σJ is feasible, an opera-
tion of each job on M1 precedes an operation of the same job on M2. Keeping the
order of operations, we shift all operations on M1 to the left and all operations
on M2 to the right without changing the makespan. Thus, in the new sched-
ule the machine M1 is idle during the period of time from Cmax(σJ) − Idle1
to Cmax(σJ) and the machine M2 is idle during the time period from 0 to
Idle2. We schedule first all jobs in X in an arbitrary order, then all jobs in N
in the same order as in the schedule σJ and finally all jobs in Y in an arbi-
trary order. In this case, the jobs of the set X are completed at time 0 on M1

and occupy the interval [0, Idle2] on M2 and the jobs of the set Y are pro-
cessed in the interval [Cmax(σJ) − Idle1, Cmax(σJ)] on M1 and after that are
executed at time Cmax(σJ) on M2. Denote the obtained schedule by σ′. Then
Cmax(σ′) = Cmax(σJ) and both machines work without idle times in the inter-
val [0, Cmax(σJ)]. Moreover, the permutation of jobs, induced by σ′, does not
contradict Johnson’s rule. Denote this permutation by πJ .

Now we consider the instance I ′ of the PP-problem with the set of jobs N ′ and
the buffer with capacity Ω. Let L′

1 = X ∪ L1 and L′
2 = L2 ∪ Y and set H = 2Ω

5 .
Let π1 be the permutation of jobs from L′

1 in a non-decreasing order of ai, and
π2 be the permutation of jobs from L′

2 in a non-increasing order of bi. Denote by
lk,i(π) the total processing time of first k jobs in a permutation π on machine Mi,

i.e. lk,1(π) =
∑k

j=1 aπ(j) and lk,2(π) =
∑k

j=1 bπ(j). Let Rk(π) = lk,2(π) − lk,1(π)
and n′ = n + nA + nB . In what follows, π = ∅ indicates that sequence π is
not specified. Starting with π = ∅, Algorithm 1 below constructs a schedule by
sequentially determining the order in which the jobs are to be processed.
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Algorithm 1.
1: Set i = 1, i1 = 1, i2 = 1, π = ∅, R0(∅) = 0.
2: while i ≤ n′ do
3: if Ri−1(π) < H and i1 ≤ |L′

1| then
4: set π(i) = π1(i1), i = i + 1, i1 = i1 + 1;
5: else
6: set π(i) = π2(i2), i = i + 1, i2 = i2 + 1;
7: end if
8: set S1

π(i)(σ) = li−1,1(π) and S2
π(i)(σ) = li−1,2(π);

9: end while
10: return schedule σ.

Lemma 1. Algorithm 1 finds an optimal schedule for instance I ′.

Proof. First we will show that Algorithm 1 works correctly and builds a feasible
schedule. Observe that the following inequalities hold:

Ri(π) > 0, for 1 ≤ i ≤ n′ − 1; (6)
Ri−1(π) < Ri(π), if π(i) is in L′

1; (7)
Ri−1(π) ≥ Ri(π), if π(i) is in L′

2. (8)

It is easy to check that the operator if works correctly. Indeed, if Ri−1(π) ≥ H
or i1 = |L′

1|, then (5) and (6) imply that there are still unassigned jobs in L′
2

and i2 ≤ |L′
2|.

We will prove that the following conditions are satisfied:

(a) the schedule σ has no overlapping jobs on the same machine;
(b) the schedule σ has no overlapping operations of the same job;
(c) the schedule σ does not violate the buffer constraint.

(a): Since l0,i(π) = 0 for i = 1, 2, the job π(1) is π1(1) and it starts at time 0
on both machines. According to the step 8 of the algorithm, each next job π(i)
starts its operation on either stage at the time of completion of the previous job
π(i − 1). Hence, the schedule σ has no overlapping jobs on the same machine.

(b): We note that if Ri(π) < H for all i, then the permutation π is Johnson’s
permutation and the schedule σ coincides with the schedule σ′. The feasibility
σ′ implies that the schedule σ has no overlapping operations of the same job.

Let π(k) be the first job in π such that Rk(π) ≥ H. Let π(h) be the last
job from L′

1 in the permutation π, i.e., π(h) = π1(|L′
1|). Then Rj ≥ Rj+1

for all j ≥ h, and, hence, k ≤ h. If k = h, then π(1), . . . , π(h) ∈ L′
1 and

π(h + 1), . . . , π(n′) ∈ L′
2. So, the schedule σ coincides with the schedule σ′. If

k < h we partition the permutation π into three subsequences: (π(1), . . . , π(k)),
(π(k + 1), . . . , π(h)), and (π(h + 1), . . . , π(n′)). By virtue of (7), the first k jobs
in the π are from the set L′

1. Hence, σ and σ′ are the same for the first k jobs.
Consequently, for j = 1, . . . , k, the operations of job π(j) do not overlap.
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Since Rk(π) ≥ H and k < h, for each k + 1 ≤ j ≤ h, the algorithm assigns a
job from L′

2 when Rj−1(π) ≥ H, and from L′
1, otherwise. Since H = 2Ω/5 and

the processing time of each operation does not exceed Ω/5, we have

Ω

5
≤ Rj(π) ≤ 3Ω

5
, (9)

for any k ≤ j ≤ h. Hence, for a job j, k + 1 ≤ j ≤ h, we obtain

C1
π(j)(σ) = S1

π(j)(σ) + aπ(j) = lj−1,1(π) + aπ(j)

= lj−1,2(π) + aπ(j) − Rj−1(π) ≤ S2
π(j)(σ).

Thus, the operations of job π(j) do not overlap for j = k + 1, . . . , h.
Finally, we observe, that set of h first jobs are the same for π and πJ . More-

over, the machines M1 and M2 work without idle time in both schedules σ and
σ′. Thus, we have C1

π(h)(σ) = C1
πJ (h)(σ

′) and C2
π(h)(σ) = C2

πJ (h)(σ
′). Moreover,

we have π(j) = πJ(j) for all j > h. Hence, σ and σ′ are the same for the last
n′ −h jobs and feasibility of σ′ implies that operations of job π(j) do not overlap
for j = h + 1, . . . , n′.

(c): For any j ∈ N ′ consider the buffer consumption at its starting time S1
j .

Let k(j) be the job with the smallest completion time such that C2
k(j) ≥ S1

j . The
buffer consumption at S1

j does not exceed the buffer requirements of job k(j)
and all jobs within interval [C1

k(j), C
2
k(j)] and the job j. By virtue of (1) and (9)

this buffer load does not exceed

Ω

5
+ Rk(j)(π) +

Ω

5
≤ Ω

5
+

3Ω

5
+

Ω

5
= Ω,

hence the buffer capacity is observed every time a job starts its processing.
Since both machines proceed jobs without idle time, the makespan of σ coin-

cides with the load of the machine and σ is an optimal schedule. ��
It remains to note that after removing all jobs from set X ∪Y from schedule

σ we obtain a feasible schedule for the original instance I of the problem. Thus,
we get the following result.

Theorem 1. There exists an O(n log n) algorithm that constructs an optimal
schedule for any instance of PP-problem which satisfies (1).

Observe, that the Theorem 1 shows that the condition (1) implies that

– The problem (under this condition) is polynomially solvable;
– The optimal makespan coincides with LBJohnson.
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4 Heuristics

In this section we describe three different approaches to construct a schedule:

– barrier heuristic;
– Lagrangian relaxation decomposition based heuristic;
– bin-packing based heuristic.

In all three heuristics we will use the “Wait” Algorithm which is described in [8]
and can be summarised as follows:

– the “Wait” Algorithm follows the given permutation on each stage by placing
jobs one by one, assigning a current job for each stage first, before proceeding
to the next job; the second operation of a job is placed only after the first
operation has completed;

– if there is no sufficient space in the buffer for the current job, the “Wait”
Algorithm waits till one or more jobs have completed on the second stage to
allow space for the current job.

4.1 Barrier Heuristic

The polynomial-time algorithm described in Sect. 3 constructs an optimal sched-
ule for a particular case of the considered scheduling problem. Hence there is a
reasonable expectation that the permutation obtained with the help of this algo-
rithm would allow to construct good quality schedules for arbitrary instances of
the problem. The barrier heuristic can be summarised as follows:

Algorithm 2. Barrier heuristic
1: Ignoring the buffer constraint and applying Johnson’s rule construct a permutation

schedule σJ ;
2: Set amax = maxi∈N ai;
3: Set Idle1 = Cmax(σ

J) − Σi∈Nai, and Idle2 = Cmax(σ
J) − Σi∈Nbi;

4: Set nx =
⌈

Idle2
amax

⌉
, x = Idle2

nx
, ny =

⌈
Idle1
amax

⌉
, and y = Idle1

ny
;

5: Create a new instance I ′ adding to the set N nx “dummy” jobs i with ai = 0,
bi = x and ny “dummy” jobs j with aj = y, bj = 0;

6: Set a value for the barrier H and construct a schedule for the instance I ′ by
Algorithm 1 for this value of H;

7: Let π be a permutation of jobs obtained by Algorithm 1, apply the “Wait” Algo-
rithm for the instance I ′ and the permutation π ignoring the “dummy” jobs.

4.2 Lagrangian Relaxation Based Heuristic

Lagrangian relaxation is an efficient method for solving problems of combina-
torial optimization [5,8–10,18]. Lagrangian relaxation is obtained by relaxing
some of the constraints of the integer formulation of the problem. This relax-
ation allows to decompose the dual problem into subproblems. The Lagrangian
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heuristic is an iterative procedure, which at each iteration solves the subprob-
lems by a recursive algorithm for the current set of Lagrangian multipliers. At
each iteration of the Lagrangian heuristic, job’s starting times, obtained during
the decomposition stage, provide the order of jobs on M1 and M2. To construct
a feasible schedule and update the best upper bound we will be using the per-
mutation formed by the starting times on M1 and the “Wait” Algorithm. The
Lagrangian multipliers are updated with standard gradient method [5]. After all
iterations, the schedule with the smallest value of the objective function is chosen
as the result of the Lagrangian heuristic. The integer formulation, Lagrangian
relaxation and decomposition, and the recursive procedure below is the adapta-
tion of the model, discussed in [8], for the objective function of the maximum
completion time.

Integer Formulation
It is easy to see that for any i ∈ N its completion time Ci ≤ ∑

i∈N (ai + bi).
However, smaller planning horizon T improves convergence of an algorithm. To
obtain the tighter T , we run “Wait” Algorithm with the permutation defined by
non-increasing order of ai + bi, and set T to the resulting value of the makespan.
Define xm

it , i ∈ N , 0 ≤ t < T , m ∈ {1, 2}, as

xm
it =

{
1, if Sm

i = t;
0, otherwise. (10)

Denote by Cmax = maxi∈N

∑T−1
t=1 tx2

it + bi. The considered scheduling problem
can be formulated as:

min Cmax (11)

subject to

T−1∑
t=0

xm
it = 1, for 1 ≤ i ≤ n and m ∈ {1, 2} (12)

n∑
i=1

t∑
τ=max{0,t−pm

i +1}
xm

iτ ≤ 1, for 0 ≤ t < T and m ∈ {1, 2} (13)

T−1∑
t=1

tx2
it −

T−1∑
t=1

tx1
it ≥ ai, for 1 ≤ i ≤ n (14)

n∑
i=1

ω(i)

(
t∑

τ=0

x1
iτ −

t−bi∑
τ=0

x2
iτ

)
≤ Ω, for 0 ≤ t < T (15)

T−1∑
t=1

tx2
it + bi ≤ Cmax, for 1 ≤ i ≤ n (16)

xm
it ∈ {0, 1}, for 1 ≤ i ≤ n, 0 ≤ t < T, and m ∈ {1, 2}; Cmax ≥ 0 (17)
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Lagrangian Relaxation and Decomposition
To obtain Lagrangian relaxation, for Lagrangian multipliers vtm ≥ 0 and ut ≥ 0
we dualize the constraints (13), (15). To dualize (16) we use technique described
in [19]. For multipliers λi ≥ 0 with at least one λj > 0 we aggregate (16):

n∑
i=1

λi

(
T−1∑
t=1

tx2
it + bi

)
≤

n∑
i=1

λiCmax

or
n∑

i=1

λi∑n
j=1 λj

(
T−1∑
t=1

tx2
it + bi

)
≤ Cmax. (18)

Denote by qi = λi∑n
j=1 λj

, i ∈ N ; hence we obtain the Lagrangian relaxation:

min Cmax +

n∑

i=1

qi

(
T−1∑

t=1

tx2
it + bi

)
− Cmax +

T−1∑

t=0

2∑

m=1

vtm

⎛

⎝
n∑

i=1

t∑

τ=max{0,t−pm
i +1}

xm
iτ − 1

⎞

⎠

+

T−1∑

t=0

ut

⎡

⎣
n∑

i=1

ω(i)

⎛

⎝
t∑

τ=0

x1
iτ −

t−bi∑

τ=0

x2
iτ

⎞

⎠ − Ω

⎤

⎦

subject to (12), (14) and (17).
Let (v, u, q) be the sets of the all Lagrangian multipliers, and L(v, u, q) be

the optimal value of the Lagrangian relaxation above. For each i ∈ N denote by
Li(v, u, q) the optimal value of the following integer linear program:

min qi

T−1∑
t=1

tx2
it +

T−1∑
t=0

2∑
m=1

vtm

t∑
τ=max{0,t−pm

i +1}
xm

iτ + ω(i)

T−1∑
t=0

ut

(
t∑

τ=0

x1
iτ −

t−bi∑
τ=0

x2
iτ

)

(19)
subject to

T−1∑
t=0

xm
it = 1, for m ∈ {1, 2} (20)

T−1∑
t=1

tx2
it −

T−1∑
t=1

tx1
it ≥ ai (21)

xm
it ∈ {0, 1}, for 0 ≤ t < T, and m ∈ {1, 2} (22)

Therefore, for the chosen set of Lagrangian multipliers (v, u, q), L(v, u, q) could
be computed as the sum of all Li(v, u, q) and a linear combination of parameters:

L(v, u, q) =
n∑

i=1

Li(v, u, q) +
n∑

i=1

qibi −
T−1∑
t=0

2∑
m=1

vtm − Ω

T−1∑
t=0

ut (23)

Consequently, for the given set (v, u, q), the L(v, u, q) can be found by solving n
separate integer problems (19)–(22). For each problem we will use the reclusive
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procedure described in [8], with some minor current changes. For convenience of
the reader we summarise the procedure below.

Recursive Procedure
If job i starts at time s on M1 and at time r on M2, then by virtue of (20), only
x1

is = 1 and x2
ir = 1, and the value of objective function (19) is

qir +
s+ai−1∑

t=s

vt1 +
r+bi−1∑

t=r

vt2 + ω(i)
r+bi−1∑

t=s

ut.

Define the function f(r) for ai ≤ r ≤ T − bi as

f(r) = min
0≤s≤r−ai

(
s+ai−1∑

t=s

vt1 + ω(i)
r+bi−1∑

t=s

ut

)
. (24)

Observe that the initial value of f(r) = f(ai) =
∑ai−1

t=0 vt1 + ω(i)
∑bi−1

t=0 ut, and
hence for r > ai the following recursive relation holds:

f(r) = min

[
f(r − 1) + ω(i)ur+bi−1,

r−1∑
t=r−ai

vt1 + ω(i)
r+bi−1∑
t=r−ai

ut

]
(25)

Hence the value of Li(v, u, q) can be found as

Li(v, u, q) = min
ai≤r≤T−bi

(
f(r) + qir +

r+bi−1∑
t=r

vt2

)
.

4.3 Bin-Packing Heuristic

As the name suggests, the bin-packing heuristic utilises the idea of bin-packing
[3], and the heuristic can be summarised as follows:

Algorithm 3. Bin-packing heuristic
1: Sort jobs from N in non-increasing order of ω(i);
2: Partition all jobs into “bins” of size Ω by going through the list of jobs, and

assigning the current job on the list to the first bin the job “fits in”: that is if the
total first operation requirement of all jobs in the bin does not exceed Ω as well as
the total second operation requirement of all jobs in the bin does not exceed Ω. If
the job does not fit to any of the existing bins, create a new bin;

3: Create a permutation of jobs by sorting the bins in non-decreasing order of total
buffer requirement of jobs in a bin and sorting the jobs in each bin according to
Johnson’s rule;

4: Use the permutation and “Wait” Algorithm to construct a schedule.
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5 Lower Bound

The proposed lower bound method is taking into account the buffer capacity Ω
and can be computed as follows. Assume that all jobs i ∈ N are numbered in the
non-increasing order of ai. Let LargeJobs = {1, 2, ..., k} be the set of the jobs i
with buffer requirement ai > Ω

2 . Obviously, that no two jobs from this set can
be in the buffer together. Hence in any schedule the time, required to process
a subset Bl = {1, 2, ..., l} ⊆ LargeJobs, 1 ≤ l ≤ k, is at least Σl

i=1(ai + bi). In
addition, for the subset Bl there might be a subset of smaller jobs Sl = {i > l :
ai + al > Ω} such that none of the smaller jobs from Sl can occupy the buffer
together with any job from Bl. Note that N = S0 when LargeJobs = ∅. Let
C(Sl)J be the maximum completion time in a permutation schedule where the
jobs from Sl are scheduled according to Johnson’s rule and there is no buffer
restriction. The minimum time required to process sets Bl and Sl is at least
Σl

i=1 (ai + bi) + C(Sl)J . Hence the following lower bound denoted as LBbuffer:

LBbuffer = max
1≤l≤k

{
Σl

i=1 (ai + bi) + C(Sl)J
}

(26)

Denote by LBJohnson = C(N)J . Hence the lower bound LB can be found as

max{LBbuffer, LBJohnson} (27)

It is easy to see, that if there are no large jobs, then LBbuffer = LBJohnson.

6 Computational Experiments

The computational experiments were run for the barrier, Lagrangian and bin-
packing heuristics and aimed to compare their performance against the lower
bound (27). The computational experiments were conducted by the second
author on a personal computer with Intel Core i5 processor CPU@1.70 Ghz,
with Ubuntu 14.04 LTS, and base memory 4096 MB. The algorithms were imple-
mented in the C programming language.

The test instances were generated randomly with ai for a job i chosen from
the interval [1, 20], and bi chosen from the interval [1, 50]. There were 50 instances
in each tested set. In what follows, we will describe an instance as n−Ωk, where
n is the number of jobs, and Ωk is the size of the buffer. The experiments were
run for sets of instances with 25, 50 and 100 jobs and for buffer sizes Ω1 = amax,
Ω3 = 3amax and Ω5 = 5amax, where amax is the maximum buffer requirement
among all jobs of an instance. Subgradient algorithm in the Lagrangian heuristic
was run for 300 iterations; the value of the barrier in the barrier heuristic was
set to H = 2amax; there was a 30 min time limit per instance for all heuristics.

The results of the computational experiments are represented by the box-plot
charts on Figs. 1, 2, 3, which were obtained as follows. For each instance, the
duality gap DG was calculated as DG = UB−LB

LB , where UB is the makespan
value provided by either barrier, Lagrangian or bin-packing heuristic, and LB
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is calculated according to (27). For the instances with the small buffer Ω1 the
Lagrangian heuristic provided solutions with smaller duality gap than both the
barrier and bin-packing heuristic did. Remarkably, once the buffer size is larger
(sizes Ω3 and Ω5), all three heuristics provide solutions with the duality gap
within 0%−3% for the absolute majority of the instances. Moreover, the barrier
heuristic solved to optimality all instances with the buffer Ω5 as it provided
the same value of the objective function as the corresponding value of the lower
bound. Here we note that the condition (1) does not hold for the Ω5 instances,
as for all tested instances amax < bmax, where amax and bmax are the maximum
processing time on the first and second stage, correspondingly, among all jobs
of an instance.

Both barrier and bin-packing heuristics have spent within 0.00004–0.0008 s
per 25–100 jobs instances, while the Lagrangian heuristic’s CPU time per
instance varied between 6–28 s per 25 jobs instance, between 1–3.5 min per 50
jobs instance and between 6–20 min per 100 jobs instance. In comparison, when
fifteen 25 − Ω5 instances were tested by running a straightforward integer pro-
gram (CPLEX), it took 30 min per instance for to deliver optimal solutions for
only a third of the instances, however CPLEX determined that the provided
solution is optimal for less than a half of these instances. For another fifteen
25−Ω3 instances, CPLEX found an optimal solution for only 20% of instances,
however it did not recognised any of these values as optimal within the given
time.

Fig. 1. Duality gap: buffer size Ω1
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Fig. 2. Duality gap: buffer size Ω3

Fig. 3. Duality gap: buffer size Ω5

The box-plot chart on Fig. 4 compares the values of LBbuffer and LBJohnson

for instances with the smaller buffer Ω1 and for each instance shows by how
much, in %, LBbuffer is tighter (has larger value) than LBJohnson; for each
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Fig. 4. Lower bound improvement, in %

instance the improvement is calculated as LBbuffer−LBJohnson

LBJohnson . The LBbuffer

improves the lower bound by 1%–24% across all instances.
In summary, the computational experiments demonstrated that the bar-

rier and bin-packing heuristics are fast algorithms which generate near opti-
mal/optimal schedules for the instances with larger buffer size. The Lagrangian
heuristics provide tighter results for the instances with smaller buffer. The pro-
posed method to calculate lower bound considerably tightens the duality gap for
instances with smaller buffer.

7 Conclusion

In this paper we discussed the two-machine flow shop with a limited buffer and
the objective function of the maximum completion time. The buffer require-
ment equals to the processing time of a job on the first stage and it varies from
job to job; the job occupies the buffer for its entire processing, and the buffer
capacity cannot be violated at any point of time. We established the borderline
between the NP-hard and polynomial-time solvable cases of the considered prob-
lem by proving that there exists a polynomial-time algorithm which constructs
an optimal schedule if the duration of each operation does not exceed one-fifth
of the buffer capacity. We also introduced three heuristics: barrier, Lagrangian
and bin-packing heuristics and an efficient method to calculate lower bound.
The computational experiments demonstrated, that the barrier and bin-packing
heuristics construct nearly optimal/optimal schedules for the instances with
larger buffer capacity, and the Lagrangian heuristic produced tighter solutions
for the instances with smaller buffer capacity. The proposed lower bound allowed
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to tighten duality gap for instances with smaller buffer capacity. Further research
will look into the heuristics’ performance for the instances with more jobs and
various combinations of processing times and buffer capacities, and seek answers
to the open questions:

– What is the minimum value of α such that the class of instances with Ω ≥
α × max

i∈N
{ai, bi} is polynomially solvable?

– What is the minimum value of β such that the optimal makespan of any
instance with Ω ≥ β × max

i∈N
{ai, bi} coincides with LBJohnson?

The authors are grateful to the anonymous referees for the recommendations,
which allowed to improve the paper, and the suggestions for the further research.
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Abstract. We consider the bicriteria asymmetric travelling salesman
problem (bi-ATSP): Given a complete directed graph where each arc is
associated to a couple of positive weights, the aim is to find the Pareto
set, consisting of all non-dominated Hamiltonian circuits. We propose
new hybrid algorithms for the bi-ATSP using the adjacency-based rep-
resentation of solutions and the operators that use the Pareto relation.
Our algorithms are based on local search and evolutionary methods. The
local search combines principles of the well-known Pareto Local Search
procedures and Variable Neighborhood Search approach, realizing the
search in width and depth. A genetic algorithm with NSGA-II scheme is
applied to improve and extend a set of Pareto local optima by means of
evolutionary processes. The experimental evaluation shows applicability
of the algorithms to various structures of the bi-ATSP instances gener-
ated randomly and constructed from benchmark asymmetric instances
with single objective.

Keywords: The Pareto set · Genetic algorithm · Local search ·
Computational experiment

1 Introduction

The travelling salesman problem (TSP) is one of the most popular problems in
combinatorial optimization [3]. Given a complete graph where each arc (or edge)
is associated with a positive weight, we search for a circuit (or cycle) visiting
every vertex of the graph exactly once and minimizing the total weight. In this
paper, we consider the bicriteria asymmetric TSP (bi-ATSP) which is a special
case of the multicriteria asymmetric TSP [8], where an arc is associated to a
couple of weights. Note that in the asymmetric problem (ATSP) weights of an
arc depend on direction in contrast to the symmetric case (STSP), and we need
to consider this feature when algorithms are developed.

Optimal solution to a multicriteria optimization problem (MOP) is usually
supposed to be the Pareto set [8,22]. The bi-ATSP is NP-hard and intractable
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(see, e.g. [4]). Moreover, in [2], the non-approximability bounds were obtained
for the multicriteria ATSP with weights 1 and 2. The results are based on the
non-existence of a small size approximating set. Therefore, metaheuristics, in
particular local search heuristics (LSs) and hybrid methods, are appropriate to
approximate the Pareto set of the bi-ATSP.

Local search methods are successfully applied for solving a wide variety of
NP-hard single-objective and multi-objective combinatorial optimization prob-
lems. There are two main approaches to construct a LS for multi-objective
instances. The first one explores different aggregations of the objective func-
tions, and uses a good local search algorithm to find a local optimum for single-
objective version of the problem [20]. The second approach is the Pareto local
search (PLS), which explores neighborhoods of a set of non-dominated solutions
and determines acceptance criterion for new solutions based on the Pareto rela-
tion [19]. Hybrid algorithms have been also developed (see e.g. [16]). For example,
non-dominated solutions are generated by solving a number of aggregated sub-
problems in the first phase and PLS is then adopted for obtaining better approx-
imation in the second phase. A variant of LS heuristics is Variable Neighborhood
Search (VNS) [11], which systematically changes the neighborhood within a ran-
domized local search algorithm. VNS demonstrated competitive results on a wide
variety of intractable problems [11].

Moreover, LSs are often used as subroutines in metaheuristics (evolutionary
algorithms, ant and bee colony optimization methods and others) in order to
improve solutions obtained in searching operators. One of the effective algorithms
of this class is Genetic Local Search (GLS) (see, e.g., [12,15,23]).

NSGA [28] is a generational multi-objective evolutionary algorithm (MOEA)
based on Pareto-dominance. It sorts a population into different non-domination
levels and uses the well-known sharing function approach, which has been found
to maintain sustainable diversity in a population with appropriate setting of its
associated parameters. In NSGA-II [7], the sharing function approach is replaced
with a crowded-comparison approach, which does not require any user-defined
parameter for maintaining diversity among population members. NSGA-II has
one of the best results in the literature on MOEAs for the MOPs with two or
three objectives. In [6], a fast implementation of a steady-state version of the
NSGA-II is proposed for two dimensions.

Various meta-heuristics and heuristics have been developed for the multi-
criteria STSP, such as LSs, MOEAs, multi-objective ant colony optimization
methods, memetic algorithms and others (see, e.g., [1,10,13,15–17,19,20,23]).
Symmetry of weights plays an important role in the operators and processes
of the abovementioned algorithms. At the same time, we have not found in the
literature any multi-objective metaheuristic proposed specifically to the multicri-
teria ATSP and experimentally tested on instances with non-symmetric weights
of arcs. So, in this paper we propose new VNS with PLS scheme and GLS
with NSGA-II scheme for the bi-ATSP using adjacency-based representation
of solutions. Computational experiment is carried out on instances, generated
randomly or constructed from the well-known benchmark ATSP instances with
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single objective. The results of the experiment indicate the viability and effec-
tiveness of our algorithms. Performance of the algorithms is estimated by hyper-
volume, two set coverage metric, spread measure, and ε-indicator [26,32].

In [10,23], NSGA-II was adopted to the multicriteria symmetric travelling
salesman problem, and the experimental evaluation was performed on symmetric
instances from TSPLIB library [25]. Psychas et al. [23] developed and experi-
mentally studied NSGA-II on the multicriteria symmetric travelling salesman
problem, in which a solution is encoded as a floating point in interval (0, 1].
In [17], NSGA-II was successfully integrated with SPEA2, MOEA/D and
2-opt improving for symmetric bi-objective TSP. Various LSs were proposed and
demonstrated competitive results on bi-STSP instances (see, e.g., [16,19,20]).

Previously, in [30,31], we proposed the MOEA based on NSGA-II scheme,
which applies a problem-specific heuristic to generate the initial population and
uses reproduction operators based on the preservation of the adjacencies found
in the parents taking into account the Pareto-dominance. In comparison to the
MOEA from [30] the current GLS applies new local search heuristics to generate
the initial population and improve offspring after crossover operations. In addi-
tion, the GLS realizes a more effective non-dominated sorting [14] and a new
rule for adaptation of reproduction operators. Here, more careful experimental
analysis and evaluation of our GLS are carried out.

2 Problem Statement

An instance of the bicriteria asymmetric travelling salesman problem [3] (bi-
ATSP) is given by a complete graph G = (V,E), where V = {v1, . . . , vn} is
the set of vertices and E is the set of arcs. Each arc e ∈ E is characterized by
couple of weights w(e) = (w1(e), w2(e)), which can represent travel distance,
travel time, expenses, number of flight changes, etc. A feasible solution to an
instance of the bi-ATSP is a Hamiltonian circuit (tour), i.e., a circuit through
the entire set of vertices. We denote by C all possible (n − 1)! tours of graph G.
The weight of a tour C is a two-dimensional vector W (C) = (W1(C),W2(C)),
where Wj(C) =

∑
e∈C wj(e) is the sum of arc weights in the tour, j = 1, 2.

We say that one solution (tour) C∗ dominates another solution C if the
inequality W (C∗) ≤ W (C) holds. The relation W (C∗) ≤ W (C) means that
W (C∗) �= W (C) and Wi(C∗) � Wi(C) for i = 1, 2. This relation ≤ is also
called Pareto relation. A set of all non-dominated solutions is called the set of
Pareto-optimal solutions [8,22] PW (C) = {C ∈ C | �C∗ ∈ C : W (C∗) ≤ W (C) }.
If we denote W = W (C), then the Pareto set is defined as P (W) = {y ∈ W |
�y∗ ∈ W : y∗ ≤ y }. We assume that the Pareto set is specified except for a
collection of equivalence classes, generated by equivalence relation C ′ ∼ C ′′ iff
W (C ′) = W (C ′′).

The aim of solving the bi-ATSP is to find the set of Pareto-optimal tours,
which gives the Pareto set.
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3 Local Search Procedures

In the single objective case, a local search algorithm starts from an initial feasible
solution. It moves iteratively from one solution to a better neighboring solution
and terminates at a local optimum. In the multiobjective case, another approach
is usually used. The non-dominated solutions that were previously produced are
compared to a solution from the neighborhood during the local search. The
number of steps of the algorithm and the time complexity of one step depend
essentially on the neighborhood.

In general, k-opt neighborhood for the bi-ATSP is defined as the set of tours
that can be obtained from a given tour by replacing k arcs, where k is not less
than 3 and odd for the asymmetric setting. As shown previously, such neighbor-
hood structure is more appropriate for TSP instances (see, e.g., [11,16,19,20]).

Let C be a tour, N be a neighborhood structure, and N (C) denote the set
of solutions in the neighborhood of C. We say that solution C is a Pareto local
optimum with respect to N if and only if there is no C ′ in N (C) such that
W (C ′) ≤ W (C).

3.1 Improving One Solution

Here we propose an algorithm that allows to locally improve an arbitrary feasible
tour. Our Local Search Heuristic named LSone is a typical local search heuristic
that explores a subset of 3-opt neighborhood, and uses the well-known “first
improving move” strategy.

Fig. 1. 3-change.

We try to improve the current tour by changing
three of its arcs (see Fig. 1). To this end, we consider
arcs of the current tour as candidates for arc (vi1 , vi2)
to be deleted in the order defined by the Pareto rela-
tion. The last level consists of all non-dominated arcs.
Arcs of the previous level are the non-dominated arcs,
when arcs of the last level are discounted, and so on.
Arcs of the same level are ordered at random. In addi-
tion, we test only the α% first arcs as candidates for
(vi1 , vi2).

Later, in our search, the possibilities of choosing vi3

(arc (vi1 , vi3) is added) is considered in the following
sequence. For each vertex v we store a list of the remaining vertices in the
sequence defined by the Pareto relation such that the non-dominated arcs have
the highest priority. Considering candidates for vi3 , we start at the beginning of
vi1 ’s list and proceed down the list during the search. Moreover, only the β%
first vertices are stored in the sorted list assigned to each vertex, this allows to
reduce the running time and memory usage.

Finally, among all vertices belonging to the closed circuit C created by
(vi1 , vi3), we choose a vertex vi5 that would produce a favorable 3-change in
terms of the Pareto dominance. Local Search Heuristic stops if no favorable
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3-change is possible, otherwise it proceeds to the next step with a new tour
obtained.

The presented algorithm attempts to greedy improve the given solution
returning only one tour and can be considered as a search in depth.

3.2 Variable Neighborhood Search

One of the well-known approaches to solve different optimization problems
is Variable Neighborhood Search (VNS) [11]. VNS is a metaheuristic, which
systematically changes the neighborhood within a randomized local search
algorithm.

Initially, VNS was proposed for single-objective optimization problems. To
the best of our knowledge, there are two versions of VNS for single objective
ATSP. In the first VNS the well-known HyperOpt (the problem is splitted into
small subproblems, which are solved by an exact algorithm) and k-opt local
search approaches are combined [5]. The second one uses insertion and swap
neighborhood structures [21]. We extend the single-objective VNS to the multi-
objective one for the considered problem.

We realize the following two schemes of VNS attempting to find a Pareto
local optimum set for the bi-ATSP (the Pareto local optimum solutions) with
respect to 3-opt neighborhood structure, searching in width.

The first VNS algorithm called VNS1 works such that only one solution is
constructed at each iteration (see Algorithm 1).

Preliminary computational experiment showed that one run of VNS1 gener-
ates a Pareto set approximation of small size. Note that this property is natural
for local search methods, where each time only one solution is selected from a
neighborhood (see, e.g., [20]). So, we propose the following restarting rule. Algo-
rithm VNS1 is restarted every time as soon as during the given number Nrst

of iterations the archive is not updated. In addition, an external elite archive is
supported. This archive stores non-dominated solutions over all restarts.

Algorithm 1. Algorithm VNS1
1: select the set of k-opt neighborhood structures Nk, k = 3, 5, . . . , γ ≤ n
2: generate an initial set of non-dominated tours named as archive (randomly con-

struct NVNS number of tours, apply local optimization by LSone to each of them
and choose the non-dominated ones)

3: pick a random non-visited tour C from the archive and set k := 3; if such solution
does not exist then terminate

4: Shaking: generate a tour C′ at random from Nk(C)
5: Local improving: apply local search procedure LSone to C′ as initial solution; let

C′′ be the obtained tour
6: Moving: if C′′ is not dominated by any solution from the archive, then we add it

to the archive, remove from the archive all solutions that are dominated by C′′,
mark C as visited tour and go to step 3; otherwise set k := k + 2 and go to step 4
(if k > γ, then mark C as visited tour and go to step 3)
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The second VNS algorithm called VNS2 is PLS with changes of the neighbor-
hood. In PLS, a list of potentially efficient solutions is updated. A neighborhood
of the chosen solution is explored, and if the neighbor is not dominated by a
solution of the list, the neighbor is added to this list. The algorithm stops when
there is no more possibility to find new non-dominated neighbors. In addition,
our algorithm VNS2 changes the neighborhood during the search process and
works in accordance with Algorithm 2.

Algorithm 2. Algorithm VNS2
1: select the set of k-opt neighborhood structures Nk, k = 3, 5, . . . , γ ≤ n
2: generate an initial set of non-dominated tours named as archive (randomly con-

struct NVNS number of tours, apply local optimization by LSone to each of them
and choose the non-dominated ones)

3: pick a random non-visited tour C from the archive and set k := 3; if all solutions
in the archive are visited then terminate

4: Shaking: generate a tour C′ at random from Nk(C)
5: Local descent: explore 3-opt neighborhood of C′; whenever a non-dominated solu-

tion C̄ with respect to the archive is found in the 3-opt neighborhood of C′, we
add it to the archive and remove from the archive all solutions that are dominated
by C̄

6: Moving: if there is a neighbor of C′ that dominates a solution from the archive,
then we mark C as visited tour and go to step 3; otherwise set k := k + 2 and go
to step 4 (if k > γ, then mark C as visited tour and go to step 3)

Algorithm VNS2 performs the search in 3-opt neighborhood of a tour as in
algorithm LSone.

In [19], the structure of the Pareto local optimum sets was analyzed on ran-
domly generated symmetric instances and problems constructed from symmetric
series KRO of TSPLIB library [25]. It was experimentally shown that a Pareto
local optimum set is partitioned into small number of clusters, where the mini-
mum number of different edges between a solution of a cluster and at least one
solution of the same cluster is at most 3. So, we expect that analogous property
may take place for asymmetric instances, and exploring 3-opt neighborhood will
have success.

4 Genetic Local Search

The genetic algorithm (GA) is a random search method that models a process
of evolution of a population of individuals [24], being sample solutions to the
considered optimization problem. In genetic local search, local optimization is
improved by means of evolutionary processes of GA.
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4.1 NSGA-II Scheme

We develop a GLS based on Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [7]. Our algorithm GLS is initiated by generating the initial popu-
lation, where NGLS random solutions are locally optimized by LSone. The pop-
ulation size NGLS remains constant during execution of GLS. Each population
is sorted based on the non-domination relation (the Pareto relation), and ranks
for solutions are assigned. All non-dominated solutions of the population are set
rank 1, solutions have rank k + 1, if they are non-dominated when solutions of
ranks 1, . . . , k are discounted. Sorting is computed in O(NGLS log(NGLS)) time
by means of the more effective algorithm [14] than the one proposed in the
original version of NSGA-II [7]. To get an estimate of the density of solutions
surrounding a solution C in a non-dominated level of the population, two nearest
solutions on each side of this solution are identified for each of the objectives.
The estimation of solution C is called crowding distance and it is computed as a
normalized perimeter of the cuboid formed in the criterion space by the nearest
neighbors. The crowding distances of individuals in all non-dominated levels are
computed in O(NGLS log(NGLS)) time (see e.g. [7]).

At each iteration of GLS we select pairs of parent solutions from the current
population Pt−1 using s-tournament selection [24]. Then we mutate parents, and
create offspring, applying a crossover (recombination) to each pair of parents.
Offspring compose population Qt−1.

The next population Pt is composed from the best NGLS solutions of the
current population Pt−1 and the offspring population Qt−1. Population Qt−1 ∪
Pt−1 is sorted based on the non-domination relation, and the crowding distances
of individuals are calculated. The best NGLS solutions are selected using the rank
and the crowding distance as follows. Between two solutions with differing non-
domination ranks, we prefer the solution with the lower rank. If both solutions
belong to the same level, then we prefer the solution with the bigger crowding
distance.

Algorithm GLS aims at constructing an approximation with size limit in
contrast to the PLS. This may be important when the Pareto set is required to
be approximated by a relatively small number of points of good quality.

4.2 Recombination and Mutation

The experimental results of [9,29] for the TSP indicate that reproduction oper-
ators with the adjacency-based representation of solutions have an advantage
over operators, which emphasize the order of the vertices in parent solutions.
We suppose that a feasible solution to the bi-ATSP is encoded as a list of arcs.

Our recombination combines Directed Edge Crossover (DEC) operator and
local search improving. DEC is transmitting and respectful, i.e. offspring is con-
structed only from arcs presented in parents, moreover, arcs shared by both
parents are copied into the offspring. Our version of DEC operator tries to con-
struct an offspring of good quality, taking into account the Pareto relation (see
details in [30]).
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The recombination is organized as follows. We select two parents, apply DEC
operator, then obtain a tour, and explore its 3-opt neighborhood like in LSone.
All non-dominated solutions of the neighborhood, also compared to its parents,
form offspring. The recombination is applied to parents pairs until the total
number of offspring is less than NGLS .

The presented approach allows us to avoid creating a clone of parents and to
maintain a diverse set of good solutions in the population.

The mutation is applied to each parent with probability pmut, which is a
tunable parameter of the GA. We use a mutation operator proposed in [9] for
the one-criteria ATSP. It performs a random jump within 3-opt neighborhood,
trying to improve a parent solution in terms of one of the criteria. Each time
one of two objectives is used in mutation with equal probability.

5 Computational Experiment

This section presents the results of computational experiment on the bi-ATSP
instances. Our algorithms (GLS, VNS1, VNS2) were programmed in C++ and
tested on a computer with Intel Xeon E5420 2.5 GHz processor, 16 Gb RAM.
On the basis of preliminary computational experiment we set the tournament
size s = 10, the mutation probability pmut = 0.1. All vertices are taken into
account when 3-opt neighborhood is explored in LSone for constructing initial
population in GLS and initial archive in VNS1 and VNS2, i.e. α = β = 100%.
However, the percentages of tested vertices α = β = 50% in searching process of
the proposed algorithms. Also in algorithm VNS1 we set Nrst to the number of
elements of the archive at step 2 in Algorithm 1.

We estimate the performance of our algorithms and compare them. The
experiment is arranged in the following form. Algorithm VNS2 is terminated
when all tours from the archive are visited, but it continues no more than 5000
iterations. Another two algorithms are given CPU resource T approximately
equal to the average run time of VNS2 over 30 trials. Thus, all compared algo-
rithms have similar average run time. Note that there exists MOOLIBRARY
library [18], which contains test instances of some discrete multicriteria prob-
lems. However the multicriteria TSP is not presented in this library, so we gen-
erate the bi-ATSP test instances randomly and construct them from benchmark
ATSP instances with one objective, as well.

The most popular metrics hypervolume (HV ), two set coverage metric (C),
ε-indicator (Iε), and spread measure (Δ) are used to compare the performance
of algorithms on medium-size instances [26,32]. These metrics provide the anal-
ysis of experimental results from different sides: accuracy, diversity, cardinality,
giving many aspect estimates. Later on, we say that vector a ∈ W weakly domi-
nates vector b ∈ W iff a1 � b1 and a2 � b2 [22]. As for approximation sets, weak
dominance means that any vector from “worse” set is weakly dominated by a
vector from “better” set [32]. Obviously, any set weakly dominates itself.
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We construct the following three series with n = 50: S10, S20, S10,20. Each
series consists of five problems with integer weights w1(·) and w2(·) of arcs ran-
domly generated from intervals [1,10] and [1,10] for S10, [1,20] and [1,20] for S20,
[1,10] and [1,20] for S10,20.

We also tested two series composed from benchmark single-criterion
instances. Series SftvRand consists of seven ATSP instances from TSPLIB
library [25]: ftv33, ftv35, ftv38, ftv44, ftv47, ftv55, ftv64 are used for the first cri-
terion. Arc weights for the second criterion are generated randomly from interval
[1, wmax

1 ], where wmax
1 is the maximum arc weight on the first criterion. Here each

instance is named by adding the letter R after the original name. Series SND
contains five paired combinations of instances ND4944 and ND61442 (ND120,
n = 120); ND82040 and ND82041m (ND122, n = 122), ND61443 and ND82042
(ND128, n = 128), ND102641m and ND122641a (ND152, n = 152), ND81744 and
ND82043m (ND154, n = 154) presented in [27]. These asymmetric instances are
constructed from one single-vehicle routing problem.

The size NVNS in VNS1 and VNS2 was set to 100 for series S10, S20, S10,20
and SftvRand, and was set to 200 for series SND. For algorithm GLS the size
NGLS of initial population is equaled to the doubled average size of approxima-
tions obtained by VNS2 for series S10, S20, S10,20 and SftvRand, and NGLS

equals the average size of approximations obtained by VNS2 for series SND.
Tables 1, 2, 3, 4, 5 and Figs. 2, 3, 4 show the obtained results. In Table 1 we

denote the following average data obtained by the corresponding algorithm over
30 runs: the number of elements in the Pareto set approximation as K, standard
deviation of elements number as σK , Euclidean distance between consecutive
points in approximation set as δ, and its standard deviation as σδ. In Tables 2,
3, 4 and 5, the coverage metric and ε-indicator are presented, and each entry is
averaged over all pairwise comparisons of runs of corresponding two algorithms.
We denote approximation sets obtained by algorithms by the name of algorithms
itself in notation of binary metrics. Also we note that standard deviation σδ is
known as spread measure.

Initially, we compare VNS2 and GLS on series S10, S20, S10,20 and
SftvRand. Average hypervolume for GLS is at most 1% less than average hyper-
volume for VNS2. Algorithm VNS2 generates the number of points only in 1.1
times greater than GLS on average. Both algorithms demonstrate similar spread
of solutions in approximations (see values of metrics δ and σδ). According to [32]
since values of ε-indicator between approximations constructed by VNS2 and
GLS tend to 1 and also differ by at most 3.75% (for series S10, S20, S10,20) and
at most 0.63% (for series SftvRand), approximation sets are close to each other.
Moreover, all values are greater than 1, and we could not claim that one approx-
imation weakly dominates another (see Table 4). So, the algorithms generate
close to each other sets with identical “distribution” along some function.

However, an approximation of VNS2 covers at least 55% points found by
GLS, but an approximation of GLS covers at most 50% points found by VNS2 as
shown by coverage metric (for two non-dominated sets we calculate the fraction
of points in each set that are weakly dominated by at least one solution in the
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Table 1. Number of points in approximation and spread measure

Instance VNS2 GLS VNS1

K(σK) δ(σδ) K(σK) δ(σδ) K(σK) δ(σδ)

S10 60 (2.8) 5.2 (6.2) 58 (3.1) 5.2 (6) 45 (3.2) 7.2 (7.2)

S10,20 84 (3.5) 6.1 (8.4) 79 (3.6) 6.3 (8.4) 58 (3.9) 9.4 (10.8)

S20 110 (5.3) 7.2 (8.3) 100 (5.6) 7.8 (8.8) 68 (4.7) 11.8 (12.4)

ftv33R 141 (8.4) 44.6 (64.3) 136 (9.5) 43.7 (54) 88(6.4) 72.1 (105.7)

ftv35R 189 (8.3) 42 (37.3) 176 (6.5) 45.2 (36.9) 102 (8.5) 77.8 (64.9)

ftv38R 175 (11.6) 41.6 (39.1) 161 (9.8) 45.1 (37.9) 100 (6.9) 72.1 (67.6)

ftv44R 201 (14.4) 44.6 (45.6) 185 (9.7) 47.2 (44) 97 (8) 101.2 (119.7)

ftv47R 253 (20.6) 41.3 (44.3) 219 (14.4) 48 (48.7) 114 (8.4) 93.4 (97.4)

ftv55R 341 (21.5) 36.2 (43.7) 307 (20.1) 39 (42.8) 135 (7.4) 89 (87.2)

ftv64R 389 (22.1) 37.5 (41.2) 323 (16.1) 44.5 (44.8) 150 (11.3) 98.9 (95.8)

ND120 618 (53.3) 78.9 (313.1) 464 (11.1) 79.8 (273.9) 121 (7.3) 479 (1070.6)

ND122 551 (36.5) 154.6 (757) 415 (12.6) 147.4 (684.5) 138 (8.5) 670 (1528.9)

ND128 784 (69.4) 70.8 (254.8) 539 (27.9) 84.9 (304.4) 151 (5.8) 375 (783)

ND152 774 (43.3) 70 (252) 584 (7.9) 81 (295.2) 136 (12.3) 424.6 (705.5)

ND154 686 (65.9) 55.13 (119.1) 510 (13) 59.45 (191.8) 142 (19) 287.80 (565.8)

other set). Note that different nature of algorithms VNS2 and GLS (shaking
in VNS2 and evolutionary processes in GLS) allows us to construct different
non-dominated solutions.

Algorithms VNS2 and GLS demonstrate more successful results than algo-
rithm VNS1 on all considered instances in terms of all presented performance
metrics. We believe that this is due to the fact, that only one solution is gen-
erated on each iteration of VNS1. Outperformance becomes more significant on
series SND, where data are not random. Moreover, the results for series SND
clearly indicate the superior performance of GLS, which approximation covers
at least 65% points found by VNS2 and at least 98% points found by VNS1.
While the fraction of a set obtained by GLS which is covered by a set of VNS1
or VNS2 composes no more than 26%. The comparisons based on hypervolume
lead to the same conclusions (see Fig. 4).

Also values of ε-indicator on series SND show that approximation sets
obtained by GLS weakly dominate and do not equal approximations obtained
by VNS1 in four out of five instances due to conditions Iε(GLS,VNS1) � 1 and
Iε(VNS1, GLS) > 1 are valid (see Table 5) [32].

The statistical analysis of experimental data was carried out using the
Wilcoxon signed-rank test at a 0.05 significance level. We test for each instance
the difference between values of hypervolume reached in 30 runs of algorithms
VNS2 and GLS. As a result, we obtain that

1. on series S10, S20, S10,20 algorithm VNS2 demonstrates better values of
hypervolume than algorithm GLS (in all 15 cases the difference between
hypervolumes is statistically significant);
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2. on series SftvRand the difference between hypervolumes is statistically sig-
nificant only on instance ftv44R, where VNS2 outperforms GLS;

3. on series SND algorithm GLS shows significantly better values of hypervol-
ume than VNS2.

Table 2. Two set coverage metric (series S10, S20, S10,20, SftvRand), %

C-metric S10 S20 S10,20 ftv33R ftv35R ftv38R ftv44R ftv47R ftv55R ftv64R

C(VNS2, GLS) 74.9 79.5 72.1 63.2 60.7 55.9 73.1 63.4 59.2 57.1

C(VNS2,VNS1) 78.2 88.2 83.3 70.8 90.6 80.7 89.7 87.4 91.7 93.8

C(GLS,VNS2) 29.5 24.1 31.3 50.1 58.2 44.5 33.2 38.7 43.1 44.5

C(GLS,VNS1) 53.9 56.2 59.6 65.7 86.1 72.9 76.1 76.1 86.3 86.2

C(VNS1,VNS2) 25.6 11.8 17.5 23.6 8.2 14.7 5.5 8.4 4.9 4.1

C(VNS1, GLS) 47.7 40.1 38.9 27.1 10.3 19.3 14.4 14.5 8.8 9.7

Table 3. Two set coverage metric (series SND), %

C-metric ND120 ND122 ND128 ND152 ND154

C(VNS2, GLS) 0.39 25.58 0.98 5.76 0.05

C(VNS2,VNS1) 86.26 98.71 76.14 85.72 84.14

C(GLS,VNS2) 98.78 65.06 97 91.28 99.87

C(GLS,VNS1) 100 98.47 100 100 100

C(VNS1,VNS2) 7.42 0.47 15.16 6.92 10.01

C(VNS1, GLS) 0 0.54 0 0 0

Table 4. ε-Indicator (series S10, S20, S10,20, SftvRand)

Iε S10 S20 S10,20 ftv33R ftv35R ftv38R ftv44R ftv47R ftv55R ftv64R

Iε(VNS2, GLS) 1.03 1.03 1.038 1.033 1.022 1.031 1.045 1.033 1.032 1.034

Iε(VNS2,VNS1) 1.02 1.02 1.025 1.019 1.012 1.017 1.013 1.013 1.013 1.011

Iε(GLS,VNS2) 1.05 1.07 1.059 1.04 1.022 1.03 1.044 1.036 1.031 1.039

Iε(GLS,VNS1) 1.05 1.06 1.05 1.02 1.016 1.021 1.021 1.019 1.018 1.018

Iε(VNS1,VNS2) 1.06 1.09 1.078 1.079 1.052 1.066 1.101 1.083 1.073 1.106

Iε(VNS1, GLS) 1.05 1.08 1.075 1.078 1.054 1.068 1.105 1.084 1.071 1.099

Table 5. ε-Indicator (series SND)

Iε ND120 ND122 ND128 ND152 ND154

Iε(VNS2, GLS) 1.00043 1.00012 1.00046 1.00034 1.00043

Iε(VNS2,VNS1) 1.00011 1.00002 1.00017 1.00010 1.00009

Iε(GLS,VNS2) 1.00002 1.00011 1.00005 1.00009 0.99996

Iε(GLS,VNS1) 0.99988 1.00002 0.99983 0.99995 0.99979

Iε(VNS1,VNS2) 1.00117 1.00142 1.00093 1.00156 1.00098

Iε(VNS1, GLS) 1.00145 1.00144 1.00117 1.00169 1.00122
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We also tested a version of GLS named GLS1, where an offspring is locally
improved by LSone, and, therefore, only one tour is created in recombination.
The experiment clearly showed an advantage of GLS over GLS1. The algorithm
GLS1 on average gave only 60% points of Pareto set approximation obtained
by GLS within the same CPU time limit.

Generally speaking, genetic local search and variable neighborhood search
are based on the same basic principles “search locally” and “explore variety”,
meaning searching non-dominated solutions in a neighborhood and exploration
of various regions. In our algorithms, in each pair of GLS1, VNS1 and GLS,
VNS2 principle “search locally” is the same, and difference occurs in “explore
variety” principle. GLSs use evolutionary process, and VNS s apply shaking
procedure. This leads to different subsets of non-dominated solutions, which
do not completely cover each other.

Aforementioned procedures of “explore variety” work in different ways, and
this gives different behavior of the proposed algorithms on various problem struc-
tures, as we have seen changes in performance on random and non-random gen-
erated series. So, we could not establish the leader, which certainly outperforms
other algorithms. Summing up the obtained experimental results we conclude
that VNS2 and GLS may be used successfully in combination, for example:

– alternative using of algorithms by means of some learning technics;
– apply shaking on GLS iterations;
– partition points obtained in VNS2 into pairs and apply the recombination to

extend the approximation set.

Let us notice that PLSs showed comparable or better results than GLSs in
terms of coverage metric and R measure [26] on symmetric instances constructed
from series KRO of TSPLIB library (see details in [19,20]). However, running
times reported for PLSs appear to be higher than for GLSs. Both approaches
are based on exploring k-opt neighborhood.

Fig. 2. Relative hypervolume on series S10, S20, S10,20
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Fig. 3. Relative hypervolume on series SftvRand

Fig. 4. Relative hypervolume on series SND

6 Conclusion

New hybrid algorithms aimed at finding the approximation of the Pareto set are
proposed for the bi-ATSP. Starting from Pareto local optima, our algorithms
realize shaking procedures or reproduction operations with subsequent heuristic
local search.

An experimental evaluation on randomly generated and benchmark instances
shows that the behavior and outcome of an algorithm depend on problem struc-
ture. Variable neighborhood search based on PLS approach and genetic local
search with NSGA-II scheme are competitive with each other.

Results of the experiment also indicate that at local search improving stage,
the strategy of exploring a neighborhood of the given tour and returning all non-
dominated neighbors outperforms the iterative scheme of moving from a tour to
a better neighboring tour and returning only one greedy solution as the result.
Superiority takes place on all test instances.

Our study can be extended in several ways. The first possibility is to consider
more objectives with various nature. The second one could be devoted to inves-
tigation of combining the proposed approaches using various neighborhoods and
machine learning technics. Furthermore, it would be interesting to investigate
the bi-ATSP instances with specific structure.
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Abstract. We consider 1-skeletons of the symmetric and asymmetric
traveling salesperson polytopes whose vertices are all possible Hamilto-
nian tours in the complete directed or undirected graph, and the edges
are geometric edges or one-dimensional faces of the polytope. It is known
that the question whether two vertices of the symmetric or asymmetric
traveling salesperson polytopes are nonadjacent is NP-complete. A suf-
ficient condition for nonadjacency can be formulated as a combinatorial
problem: if from the edges of two Hamiltonian tours we can construct
two complementary Hamiltonian tours, then the corresponding vertices
of the traveling salesperson polytope are not adjacent. We consider a
heuristic simulated annealing approach to solve this problem. It is based
on finding a vertex-disjoint cycle cover and a perfect matching. The algo-
rithm has a one-sided error: the answer “not adjacent” is always correct,
and was tested on random and pyramidal Hamiltonian tours.

Keywords: Traveling salesperson problem · Hamiltonian tour ·
Traveling salesperson polytope · 1-skeleton · Vertex adjacency ·
Simulated annealing · Vertex-disjoint cycle cover · Perfect matching

1 Introduction

We consider a classical traveling salesperson problem on a complete directed or
undirected graph.

Symmetric traveling salesperson problem. Given a complete
weighted graph Kn = (V,E), it is required to find a Hamiltonian cycle of mini-
mum weight.

Asymmetric traveling salesperson problem. Given a complete
weighted digraph Dn = (V,A), it is required to find a Hamiltonian tour of
minimum weight.

We denote by HCn the set of all Hamiltonian cycles in Kn and by HTn the
set of all Hamiltonian tours in Dn. With each Hamiltonian cycle x ∈ HCn we
associate a characteristic vector xv ∈ R

E by the following rule:

xv
e =

{
1, if the cycle x contains an edge e ∈ E,

0, otherwise.
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With each Hamiltonian tour y ∈ HTn we associate a characteristic vector yv ∈
R

A by the following rule:

yv
a =

{
1, if the tour y contains an edge a ∈ A,

0, otherwise.

The polytope
TSP(n) = conv{xv | x ∈ HCn}

is called the symmetric traveling salesperson polytope, and the polytope

ATSP(n) = conv{yv | y ∈ HTn}
is called the asymmetric traveling salesperson polytope.

The 1-skeleton of a polytope P is the graph whose vertex set is the vertex set
of P (characteristic vectors xv for the traveling salesperson problem) and edge
set is the set of geometric edges or one-dimensional faces of P . Many papers
are devoted to the study of 1-skeletons associated with combinatorial problems.
On the one hand, the vertex adjacency in 1-skeleton is of great interest for the
development of algorithms to solve problems based on local search technique
(when we choose the next solution as the best one among adjacent solutions).
For example, various algorithms for perfect matching, set covering, indepen-
dent set, a ranking of objects, problems with fuzzy measures, and many others
are based on this idea [2,4,11,13,17]. On the other hand, some characteristics
of 1-skeletons, such as the diameter and the clique number, estimate the time
complexity for different computation models and classes of algorithms [6–8,19].

Unfortunately, the classical result by Papadimitriou states that the construc-
tion of 1-skeleton of the traveling salesperson polytope is NP-complete for both
directed and undirected graphs.

Theorem 1 (Papadimitriou, [26]). The question whether two vertices of the
polytopes TSP(n) or ATSP(n) are nonadjacent is NP-complete.

As a result, there are a large number of papers on the diameter and the clique
number of 1-skeleton of TSP(n) and ATSP(n) [6,28,29], but little progress with
adjacency relation. We can only note the polynomial time algorithms to test
vertex adjacencies in the pedigree polytope [3] and the polytope of pyramidal
tours [9,10] which are directly related to the traveling salesperson problem.

However, the vertex adjacency test for TSP(n) and ATSP(n) is an interest-
ing problem itself. It can be solved with a geometric approach by constructing
and analyzing the facet description of the polytope using convex hull algorithms.
Although, this seems not very promising because both polytopes have a superex-
ponential number of vertices and facets [16,19]. In particular, the largest known
symmetric traveling salesperson polytope for a problem with 10 cities has a
conjectured complete description with 51 043 900 866 facets [12].

Another approach is combinatorial. In [27] the sufficient condition for vertex
adjacency in the traveling salesperson polytope was reformulated in a combina-
torial form.
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1 2 3 4 5 6 7 8x

1 2 3 4 5 6 7 8y

1 2 3 4 5 6 7 8z

1 2 3 4 5 6 7 8w

Fig. 1. Two complementary tours z and w are constructed from the edges of x and y

Lemma 1 (Sufficient condition for nonadjacency). If from the edges of
two Hamiltonian tours x and y it is possible to construct two complementary
Hamiltonian tours z and w, then the corresponding vertices xv and yv of the
polytope TSP(n) (or ATSP(n)) are not adjacent.

From the geometric point of view, the Lemma 1 means that the segment
connecting two vertices xv and yv intersects with the segment connecting two
other vertices zv and wv of the polytope TSP(n) (or ATSP(n) correspondingly),
thus it cannot be an edge in 1-skeleton. An example of a satisfied sufficient
condition is shown in Fig. 1.

Let us formulate the sufficient condition for vertex nonadjacency of the trav-
eling salesperson polytope in the form of a combinatorial problem.

Instance. Let x and y be two Hamiltonian tours.
Question. Does the multigraph x ∪ y include a pair of Hamiltonian tours z

and w different from x and y such that

z ∪ w = x ∪ y and z ∩ w = ∅?

We denote by x ∪ y a multigraph that contains all edges of both tours x and
y (Fig. 2).

In this formulation, the problem is close to the 2-peripatetic salesperson prob-
lem in which it is required to find two Hamiltonian tours of minimum weight
without common edges. The 2-peripatetic salesperson is NP-complete even for
4-regular graphs [14]. Much attention was paid to the development of approxi-
mation algorithms for this problem (see, for example, [1,5,18]).

However, the combinatorial form of the sufficient condition for nonadjacency
has a number of differences from the 2-peripatetic salesperson problem:

– this is a decision problem, not an optimization one;
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– the graph is a 4-regular graph (or digraph) of a special form constructed as
a union of two Hamiltonian tours;

– it is required to find two Hamiltonian tours different from x and y.

1
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x

1

2 3
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y

1

2 3

4

56

x ∪ y

1

2 3

4

56

z

1

2 3

4

56

w

Fig. 2. An example of w = (z ∪ y)\z that is not a Hamiltonian tour

Note also that if from the edges of two Hamiltonian tours x and y it is possible
to construct another Hamiltonian tour z, then all the remaining edges (x ∪ y)\z
almost certainly does not form a Hamiltonian tour (Fig. 2). Thus, instead of
algorithms for a single Hamiltonian tour in the multigraph x ∪ y, in this paper
we consider a heuristic simulated annealing approach to test vertex adjacency in
the symmetric and asymmetric traveling salesperson polytopes based on finding a
vertex-disjoint cycle cover and a perfect matching. We have chosen the simulated
annealing heuristic, since it is easy to implement, and traditionally it shows good
results for the traveling salesperson problem [21].

2 Simulated Annealing

The simulated annealing borrows the concept from annealing in metallurgy
where a metal material is repeatedly heated, kneaded, and cooled to enlarge
the size of its crystals to eliminate defects [21].

We consider a general scheme of the Algorithm 1. It is required to minimize
the energy function specified for the current system state. The algorithm starts
from a certain initial state: at each step, a neighbor candidate state is generated
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Algorithm 1. Simulated Annealing Algorithm
Input : Hamiltonian tours x and y (or 2/4-regular graph combG),

initial temperature initT , number of iterations iterN , size of a queue
of fixed edges fixEdgesN

Output: adjacency of vertices xv and yv, complementary Hamiltonian tours z
and w, if exist

Procedure SimulatedAnnealing(x, y, combG, initT , fixEdgesN)
T ← initT
z, w ← GetInitialState(x, y, combG)
For k ← 1 to iterN

If z and w are Hamiltonian tours different from x and y Then
Return z and w

End
zCand, wCand ← GenerateNeighbourCandidate(z, w, fixEdgesN)
candE ← CalculateEnergy(zCand, wCand)
If candE <currE or ShouldAcceptCandidate() Then

z ← zCand, w ← wCand
End
T ← CoolingSchedule(k)

End
Return no complementary tours found;

End

Procedure TestV ertexAdjacency(x, y, combG, initT , fixEdgesN)
z, w ← SimulatedAnnealing(x, y, combG, initT , fixEdgesN)
If z and w are not empty Then

Return vertices xv and yv are not adjacent
Else

Return vertices xv and yv are probably adjacent
End

End

which energy is compared to the energy of the previous state. If the energy
decreases, the system transits to the new state, otherwise, it may transit with a
certain probability (to prevent falling into the local minimum).

The algorithm receives input data in one of the following formats:

1. Two Hamiltonian tours x = [a1, . . . , aN ] and y = [b1, . . . , bN ], given as the
permutations of vertices in a complete graph (or digraph) KN ;

2. 2/4-regular graph (2—for directed and 4—for undirected graphs) of size N ,
i.e. the union of two Hamiltonian tours, given as the adjacency list.

Other input parameters: the initial value of temperature initT , the maximum
number of iterations iterN , and the size of a queue of fixed edges fixEdgesN .
The algorithm stops when the solution is found or when the number of iterations
exceeds the value of the parameter iterN . As an output, the algorithm returns
two complementary Hamiltonian tours z and w constructed from the edges of
x and y. By the sufficient condition (Lemma 1), the corresponding vertices xv
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and yv of the traveling salesperson polytope are not adjacent. If the algorithm
cannot find the complementary tours, then it returns that the corresponding
vertices are probably adjacent. Thus, the algorithm has a one-sided error: the
answer “not adjacent” is always correct, while the answer “probably adjacent”
leaves the possibility that the vertices actually are not adjacent.

3 Generation of the Initial State

To generate the initial system state and neighbor candidate states, we construct
a vertex-disjoint cycle cover of the multigraph x∪y. A vertex-disjoint cycle cover
of a graph G is a set of cycles with no vertices in common which are subgraphs
of G and contain all vertices of G.

If x and y are undirected Hamiltonian cycles, then all vertices in the multi-
graph x ∪ y have degrees equal to 4. Let z be a vertex-disjoint cycle cover of
x ∪ y, then all the remaining edges form a graph w = (x ∪ y)\z with all vertex
degrees being equal to 2. Thus, w is also a vertex-disjoint cycle cover of x ∪ y.

If x and y are directed Hamiltonian tours, then all vertices in the multigraph
x ∪ y have both indegrees and outdegrees equal to 2. Let z be a vertex-disjoint
cycle cover of x ∪ y, then in the digraph w = (x ∪ y)\z all vertices have both
indegrees and outdegrees equal to 1. Thus, w is also a vertex-disjoint cycle cover
of x ∪ y.

Finding a vertex-disjoint cycle cover of both the directed and undirected
graph can be performed in polynomial time by a reduction to perfect match-
ing [30]. Let us recall that a perfect matching is a set of pairwise nonadjacent
edges which matches all vertices of the graph. The procedures for directed and
undirected graphs are somewhat different. We consider them separately.

Let x and y be undirected Hamiltonian cycles.

Step 1. From the multigraph x ∪ y = G = (V,E), we construct a new graph
G′ = (V ′, E′). With each vertex v ∈ V we associate a gadget Gv that is
a complete bipartite subgraph K4,2 (note that the degree of v equals 4)
as it is shown in Fig. 3:
– there are 4 vertices in the outer part (va, vb, vc and vd) that correspond

to 4 edges incident to v in G (edges A, B, C, D); these vertices are
connected with other gadgets;

– there are 2 vertices in the inner part (v1 and v2) that are connected
only with the vertices of the outer part.

Step 2. A perfect matching in G′ corresponds to a vertex-disjoint cycle cover
in the original graph G. Indeed, a perfect matching has to cover
both inner vertices v1 and v2. Therefore, it includes exactly one
edge of {(v1, va), (v1, vb), (v1, vc), (v1, vd)} and exactly one edge of
{(v2, va), (v2, vb), (v2, vc), (v2, vd)}. Both of these edges cover exactly two
vertices of {va, vb, vc, vd}. The other two vertices have to be covered by
the edges that correspond to the edges of G (Fig. 4). We include these
edges into z, then the degree of each vertex v in the graph z equals 2,
and thus, z is a vertex-disjoint cycle cover of the multigraph x ∪ y.
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Fig. 3. Construction of the graph G′ for the symmetric problem
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Fig. 4. A perfect matching in G′ and a vertex-disjoint cycle cover in G

A perfect matching in a general undirected graph can be found by Edmond’s
algorithm [15] in O(V 2E) time or using Micali-Vazirani matching algorithm [24]
in O(

√
V E) time. We have chosen Edmond’s algorithm as a more simple one to

implement. Note that replacing it with a more efficient Micali-Vazirani algorithm
does not require changing the rest of the algorithm.

Let x and y be directed Hamiltonian tours.

Step 1. From the directed multigraph x ∪ y = D = (V,A), we construct a
bipartite graph D′ = (L,R,E). With each vertex v ∈ V we associate a
pair of vertices vL ∈ L and vR ∈ R, and with each edge (u, v) ∈ A we
associate a new edge (uL, vR) in the bipartite graph D′ (Fig. 5).

Step 2. A perfect matching in the bipartite graph D′ corresponds to a vertex-
disjoint directed cycle cover in the original graph D. Indeed, every vertex
of D is a head of exactly one edge and a tail of exactly one edge of a
perfect matching in D′ (Fig. 6).
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Fig. 5. Construction of the bipartite graph D′ for the asymmetric problem
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Fig. 6. A perfect matching in D′ corresponds to a vertex-disjoint cycle cover of D

A perfect matching in a bipartite graph can be found by Hopcroft-Karp
algorithm [20] in O(

√
V E) time.

4 Generation of a Neighbor Candidate State

A process of constructing a neighbor candidate state is shown in Procedure 2.
The algorithm receives as input the current state as the vertex-disjoint cycle

covers z and w, and the parameter fixEdgesN that set the size of a queue of
edges that are fixed in the graph z and the corresponding perfect matching.
When this limit is exceeded, the first edge of the queue is deleted.

In order to find a neighbor candidate state we chose an edge of w with
endpoints in two different connected components of z and add it to the queue
of fixed edges (Fig. 7, fixed edges of z are dashed, an edge of w that is added
to the queue is dashed-dotted). Such edge always exists due to the connectivity
of the multigraph x ∪ y. If z contains exactly one connected component, then
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Algorithm 2. Constructing a neighbor candidate state

Procedure GenerateNeighbourCandidate(z, w, fixEdgesN)
UpdateF ixedEdgesQueue(z, w, fixEdgesN)

If tours z and w are directed Then
RunHopcroftKarpAlgorithm()

Else
RunEdmondsAlgorithm()

End
Return z, w

End
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Fig. 7. Generation of a neighbor candidate state

the graphs z and w can be swapped. The idea of this procedure is to reduce
the number of connected components in z and w. The neighbor candidate state
is constructed by the perfect matching algorithms with fixed edges forming the
initial matching.

5 Cooling Schedule

If a neighbor candidate state has two complementary Hamiltonian tours different
from x and y (or any two complementary Hamiltonian tours, if the input is a
2/4-regular graph), then the algorithm successfully stops and returns a solution.

Otherwise, the energy function is calculated for a neighbor candidate state.
We have chosen the following function (Procedure 3): (number of connected
components in z) + (number of connected components in w).

At each step of the algorithm, the candidate states correspond to two vertex-
disjoint cycle covers z and w. Therefore, if the total number of connected com-
ponents in z and w equals 2, then z and w are Hamiltonian tours.



SA Approach to Verify Vertex Adjacencies in the TSP Polytope 383

Algorithm 3. Energy function and cooling schedule

Procedure CalculateEnergy(z, w)
Return CountComponents(z) + CountComponents(w)

End

Procedure CoolingSchedule(k)
Return initT/ k

End

If the energy function has decreased compared to the previous state, then we
accept a transition to the neighbor candidate state.

If the energy function has not decreased, then we make a transition with
probability

P = e− candE−currE
T ,

where T is the current temperature, currE is the current energy value, and
candE is the energy of the considered neighbor candidate state. Such a transition
is necessary to avoid the problem of falling into the local minimum.

The current temperature gradually decreases from initT to 0, and its function
depends on the initial temperature initT and the index of the current iteration
k (Procedure 3).

Note that after a small modification the algorithm can be used to solve the
Hamiltonian decomposition problem [23].

Hamiltonian decomposition problem. Given a 2k-regular graph G, is it
possible to find k edge-disjoint Hamiltonian cycles in G?

Every candidate state will correspond to k vertex-disjoint cycle covers of G,
and the energy function will be equal to the total number of connected compo-
nents.

6 Experiments

The algorithm to verify vertex adjacencies in the polytopes TSP(n) and ATSP(n)
was implemented as a console application with different input parameters. Some
of them are described below:

--N—number of vertices in the input graph/tour;
--times—number of times to run the algorithm;
--iterN—number of iterations in the simulated annealing algorithm;
--stateCandidate=random/match—how to generate a neighbor candidate

state:

random: random exchange of edges between tours
match: constructing a vertex-disjoint cycle cover and a perfect matching;

--exEdgesN—number of edges to randomly exchange between tours (used only
for --stateCandidate=random);
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--ansN—multistart: number of repeatedly runs of the algorithm (used only for
--stateCandidate=random);

--fixEdgesN—the size of a queue of edges that can be fixed in the initial
matching (used only for --stateCandidate=match).

We tested the algorithm on random directed and undirected Hamiltonian
tours, and also on directed and undirected pyramidal tours.

A Hamiltonian tour

τ = (1, i1, i2, . . . , ir, n, j1, j2, . . . , jn−r−2)

is called pyramidal if

i1 < i2 < . . . < ir and j1 > j2 > . . . > jn−r−2.

We have chosen the pyramidal tours for experiments since for them the vertex
adjacencies in the corresponding polytopes can be easily verified. In particular,
the following problem: given two pyramidal tours x and y, is it possible to
construct two complementary pyramidal tours z and w from the edges of x and
y, can be solved in linear time [9,10]. Thus, we run the algorithm on pyramidal
tours, for which it is known that the sufficient condition of Lemma 1 is satisfied.
This allows us to estimate the error percentage when the algorithm could not
find complementary tours that are guaranteed to exist.

The results of the tests for undirected pyramidal tours are presented in
Table 1 (Edmond’s algorithm is used). The algorithm was run with the number
of iterations iterN = 8000, the initial temperature initT = 1000 and the number
of fixed edges fixEdgesN = �N/3�. In the previous version of the program [22]
a different method to generate neighbor candidate state was implemented—the
exchange of random edges between two subgraphs z and w. Its results are also
shown in the table for comparison. For the exchange of random edges the fol-
lowing input parameters were used: the number of iterations iterN = 50000, the
initial temperature initT = 1000, the number of multistart attempts ansN = 5
and the number of edges to exchange exEdgesN = 3.

The following parameters were calculated for both algorithms:

– TNFavg is the average executing time in milliseconds when the complimen-
tary Hamiltonian tours were not found;

– TFavg is the average time in milliseconds when the algorithm managed to
find complimentary tours;

– Tavg is the total average time in milliseconds for all tests;
– Acc is the accuracy parameter that indicates how often the algorithm could

find the right solution (since the complementary tours are guaranteed to
exist).

A dash in the table means that for all conducted experiments the case specified
in the column never happened. For instance, for the size N = 8 the algorithm
was able to find complimentary tours for all input tours, that is why TFavg and
Tavg columns have the same values.
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Table 1. Results for undirected pyramidal tours with number of tests times = 50

N Exchange of random edges Cycle cover and perfect matching

Tours are
not
found,
TNFavg

Tours are
found,
TFavg

Average
time,
Tavg

Accuracy,
%, Acc,

Tours are
not
found,
TNFavg

Tours are
found,
TFavg

Average
time,
Tavg

Accuracy,
%, Acc

8 − 9,84 9,84 100 − 5,57 5,57 100

16 5066,57 382,79 851,17 90 − 22,08 22,08 100

24 6549,75 1403,32 5005,82 30 9096,65 33,34 214,61 98

32 7832,24 1330,37 7312,09 8 − 224,93 224,93 100

40 10035,64 2351,53 9728,28 4 18656,05 610,26 971,18 98

48 13455,39 − 13455,39 0 27695,76 978,18 3649,94 90

64 16243,99 108,64 15921,28 2 48377,16 988,05 12361,43 76

96 98409,50 12293,68 53629,27 52

128 158485,17 21982,49 120264,40 28

192 334841,38 26165,54 297800,28 12

256 569912,07 10740,39 513994,91 10

Note that compared to the exchange of random edges, both the accuracy
of the algorithm and the size of solved problems have increased. The accuracy
can also be adjusted by increasing the number of iterations or changing the
maximum number of fixed edges in the queue.

The results of the tests for directed pyramidal tours and the Hopcroft-Karp
algorithm are presented in Table 2. The given computed parameters are the same
as in Table 1. The input parameters are similar to the case with undirected tours.
Here, for all test graphs with the number of vertices less than 100, the algorithm
works with the accuracy of 100%.

We analyzed the cases where the algorithm could not find complementary
cycles, although they exist. The algorithm works best if the multigraph x ∪ y
has a lot of Hamiltonian cycles, and it faces difficulties if x∪ y has a unique pair
of complementary cycles z and w.

Finally, Table 3 shows the test results for random directed and undirected
Hamiltonian tours. Since we can not estimate the accuracy of the algorithm in
this case, the different parameter is presented – the percentage of experiments
where complimentary tours were found and the vertices are not adjacent.

From the table, it can be concluded that for random tours the algorithm
works even faster than for pyramidal tours. Note that for undirected graphs
the algorithm finds complementary tours more often than for directed graphs.
This is due to the fact that the 1-skeleton of the asymmetric traveling salesperson
polytope is generally much denser than the 1-skeleton of the symmetric polytope.
For example, the diameter of the 1-skeleton of ATSP(n) is 2 [25], while the
best known upper bound for the diameter of the 1-skeleton of TSP(n) is 4 [28].
Besides, for undirected cycles, the algorithm was able to find a solution for almost
all cases. We can conclude that for the symmetric traveling salesperson polytope
TSP(n) two random vertices are not adjacent with a very high probability.
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Table 2. Results for directed pyramidal tours (Hopcroft-Karp algorithm), with the
number of tests times = 50 and number of fixed edges fixEdgesN = [N/3]

N Tours
are not
found,
TNFavg

Tours
are
found,
TFavg

Average
time,
Tavg

Accuracy,
%, Acc

8 − 2,27 2,27 100

16 − 5,03 5,03 100

24 − 19,75 19,75 100

32 − 19,14 19,14 100

40 − 40,89 40,89 100

48 − 95,38 95,38 100

64 − 689,20 689,20 100

96 − 330,21 330,21 100

128 129532,21 4514,36 9515,07 96

192 242480,51 15783,70 70190,93 76

256 407471,21 13373,64 178894,62 58

Table 3. Results for random Hamiltonian tours with the number of tests times = 50

N Undirected tours Directed tours

Tours are

not found,

TNFavg

Tours are

found,

TFavg

Average

time,

Tavg

Percentage

not

adjacent, %

Tours are

not found,

TNFavg

Tours are

found,

TFavg

Average

time,

Tavg

Percentage

not

adjacent, %

8 1604,66 15,02 491,91 30 3118,99 4,05 2682,90 14

16 − 13,75 13,756 100 6799,17 4,71 4624,95 32

24 − 28,52 28,52 100 10594,29 9,38 8265,61 22

32 − 46,64 46,64 100 14764,29 39,19 10052,26 32

40 − 75,27 75,27 100 19184,31 19,33 15734,62 18

48 − 87,86 87,86 100 25214,48 142,08 19197,11 24

64 − 235,37 235,37 100 38886,56 238,95 29611,13 24

96 − 481,37 481,37 100 74654,25 1150,20 61423,52 18

128 − 827,42 827,42 100 121790,32 1851,29 95403,73 22

192 − 4064,84 4064,84 100 252321,67 8979,84 213386,98 16

256 − 8875,01 8875,01 100 442527,79 62699,56 389351,84 14

The largest instance that was solved by the algorithm had random Hamilto-
nian tours on 5 000 vertices and required 2 797 275 ms. However, due to the long
waiting time for several tests, we limited the presented experiments to tours of
size under 256 vertices.
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7 Conclusion

The construction and study of 1-skeletons of the polytopes associated with
intractable problems is of interest for the development and analysis of com-
binatorial algorithms. However, for such problems as the traveling salesperson
even determining whether two vertices are adjacent or not is an NP-complete
problem. This paper proposes an original heuristic approach based on simulated
annealing to verify vertex adjacencies in 1-skeleton of the traveling salesperson
polytope. The algorithm has a one-sided error: the answer “not adjacent” is
always correct, while the answer “probably adjacent” leaves the possibility that
the vertices actually are not adjacent. The algorithm showed good practical
results during the experiments.

Acknowledgments. The research is supported by the grant of the President of the
Russian Federation MK-2620.2018.1 (agreement no. 075-015-2019-746).
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Abstract. Having defined a complete bipartite graph G, with weights
associated with both vertices and edges, the Bipartite Quadratic
Programming problem (BQP) consists in selecting a subgraph that max-
imizes the sum of the weights associated with the chosen vertices and
the edges that connect them. Applications of the BQP arise in mining
discrete patterns from binary data, approximation of matrices by rank-
one binary matrices, computation of the cut-norm of a matrix, etc. In
addition, BQP is also known in the literature under different names such
as maximum weighted induced subgraph, maximum weight bi-clique and
maximum cut on bipartite graphs. Since the problem is NP-hard, many
heuristic methods have been proposed in the literature to solve it. In
this paper, we apply the recent Less is more approach, whose basic idea
is to design a heuristic as simple as possible, i.e., a method that uses a
minimum number of ingredients but provides solutions of better quality
than the current state-of-the-art. To reach that goal, we propose a simple
hybrid heuristic based on Tabu search, that uses two neighborhood struc-
tures and relatively simple rule for implementation of short-term memory
operation. In addition, a simple rule for calculation of tabu list length
is introduced. Computational results were compared favorably with the
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1 Introduction

1.1 BPQ Problem

The bipartite unconstrained 0–1 quadratic programming problem (BQP) is
defined on a complete bipartite graph G = (V,E). Set of vertices V consists
of two subsets. The first subset represents the vertices in the left-hand side and
it is denoted by I, while the second subset represents the vertices in the right-
hand side and it is denoted by J . The set of edges connecting these two subsets
is denoted by E. The weight is associated with each vertex, as well as with each
edge. The weight of a vertex i ∈ I is denoted by ai, the weight of vertex j ∈ J is
denoted by bj , while the weight of an edge (i, j) with i ∈ I and j ∈ J is denoted
by cij . Having such a defined complete bipartite graph G, the BQP consists of
selecting a subgraph that maximizes the sum of the weights associated with the
chosen vertices and the edges that connect them. More formally, the problem
may be defined as the following 0–1 quadratic programming problem:

max
∑

i∈I

aixi +
∑

j∈J

bjyj +
∑

i∈I,j∈J

cijxiyj (1)

xi, yj ∈ {0, 1} i ∈ I, j ∈ J, (2)

where binary variables xi and yj are used to indicate if a certain node is selected
or not. More precisely, a variable xi takes value 1 if and only if a node i ∈ I is
selected. Analogously, a variable yj takes value 1 if and only if a node j ∈ J is
selected.

1.2 Applications and Previous Work

Applications of the BQP arise in mining discrete patterns from binary data,
approximation of matrices by rank-one binary matrices, computation of the cut-
norm of a matrix, etc. In addition, BQP is also known in the literature under dif-
ferent names such as maximum weight induced subgraph [12], maximum weight
biclique [2] and maximum cut on bipartite graphs [1]. Also, matrix factorization
[6] is a similar problem that can be reduced to BQP.

Mainly, the BQP has been studied from the theoretical perspective of eval-
uation of the complexity of the problem and proposition of exact methods for
some cases. Recently, the BQP attracted researchers’ attention to develop heuris-
tic approaches that enable them to tackle large scale instances that turned out
to be elusive for exact methods. Among them, the first work from the heuristic
perspective is by Karapetyan and Punnen [9]. In this work, the authors pro-
pose 24 heuristics that may be classified as fast-heuristics, slow-heuristics and
row-merge heuristics. After that Duarte et al. [4] proposed two solution construc-
tion procedures, two mechanisms to perform neighborhood exploration, which
are together with a perturbation procedure exploited within ILS framework.
Glover et al. [7] proposed heuristic algorithms based on tabu search and Very
Large Scale Neighborhood search, as well as a hybrid algorithm combining them.
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Recently, Karapetyan et al. [10] proposed new metaheuristic scheme that they
named Conditional Markov Chain Search (CMCS). This scheme is conceived for
automated generation of a multi-component metaheuristic and was successfully
applied to the BQP. The components that Karapetyan et al. [10] considered may
be split into two categories: hill climbers, components used to possibly improve
a solution, and mutations, components used to diversify search. In total, the
authors designed and compared 5 heuristics stemming from this scheme. One
of those heuristics turned out to belong to the family of variable neighborhood
search (VNS) heuristics. This heuristic uses three neighborhood structures in
the hill climbing phase and a shaking procedure based on flipping values of 16
randomly chosen variables that correspond to the nodes in the set I. According
to the computational results, designed in such way VNS heuristic turn out to
be dominated by the best one stemming from CMCS scheme, which also showed
superiority in comparison with previously proposed heuristics.

1.3 Contribution and Outline

Analyzing numerous previous heuristic approaches, we found that they are
becoming more and more complex. We decided to apply the recent Less is more
approach [3,11,13], whose basic idea is to design a heuristic as simple as possi-
ble, i.e., a heuristic that uses a minimum number of components but provides
solutions of better quality than the current state-of-the-art. In this paper, we
propose Tabu Search based heuristics with only two neighborhoods and a rel-
atively simple rule for tabu list implementation (especially, a relatively simple
rule for calculation of a tabu list length).

This paper is organized as follows. In Sect. 2, a description of the proposed
Tabu Search is given. In Sect. 3 results of detailed experiments are reported.
Concluding remarks are given in Sect. 4.

2 Tabu Search Based Heuristic for the BQP

In this section, we give a detailed description of the main ingredients of our
heuristic (solution representation and neighborhood structures explored) as well
as how these elements are integrated into our heuristic.

2.1 Solution Representation

The solution of the BQP in our heuristic is presented as (m′, n′, x, y) where m′

and n′ denote number of elements selected from the sets I and J , respectively,
while x and y are two arrays used to store elements chosen from the sets I and J ,
respectively. More precisely, let us denote by m and n the cardinalities of the sets
I and J , then the array x has the form x1, x2, ..., xm′−1, xm′ , xm′+1, ..., xm mean-
ing that elements x1, x2, ..., xm′ are included into a solution (i.e., subset I ′ ⊂ I)
while elements xm′+1, xm′+2, ..., xm are not included into a solution. Analo-
gously, we have the array y of the length n (i.e, y1, y2, ..., yn′−1, yn′ , yn′+1, ..., yn)
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meaning that elements y1, y2, ..., yn′ are included into a solution (i.e., subset
J ′ ⊂ J) while elements yn′+1, yn′+2, ..., yn are not included into a solution.

For such represented solution we also maintain two auxiliary arrays sxc and
syc with the lengths m and n, respectively. The elements of these arrays are
defined as

sxci =
∑

j∈J ′
cij =

n′∑

j=1

ciyj
,

sycj =
∑

i∈I′
cij =

m′∑

i=1

cxij .

In other words, each element sxci (resp. sycj) represents the total weight of the
edges connecting vertex i (resp. j) with vertices in the subset J ′ (resp. I ′). Using
these two arrays the objective function value for the current solution (m′, n′, x, y)
can be calculated (expressed) in the following way:

f(x, y) =
m′∑

i=1

axi
+

n′∑

j=1

byj
+

m′∑

i=1

sxcxi
=

m′∑

i=1

axi
+

n′∑

j=1

byj
+

n′∑

j=1

sycyj
.

As it will be shown in the subsequent sections, the arrays sxc (syc) enable
us to speed-up local search procedures. Note that the complexity of calculating
arrays sxc and syc is O(mn).

Note also that for the fixed subset I ′ ⊂ I, optimal subset J ′ ⊂ J giving the
maximum value of the objective function (not absolutely maximal, but maximal
for fixed subset I ′ ⊂ I) in linear time. In other words, the complexity of comput-
ing optimal subset J ′ is O(n). Namely, it can be shown that for the fixed subset
I ′ ⊂ I, the subset J ′ ⊂ J that gives the maximal value of the objective function
is equal to:

J ′(I ′) = {j ∈ J |bj + sycj > 0}.
Obviously, the objective function can be rewritten in the following form:

f(I ′, J ′) = f(x, y) =
m′∑

i=1

axi
+

n′∑

j=1

(byj
+ sycyj

)

so, by inserting an element j having property that bj + sycj < 0, the objective
value decreases.

Similarly, for a fixed subset J ′ ⊂ J , an optimal subset J ′ ⊂ I giving maximum
value of the objective function value can be calculated in linear time in the
following way:

I ′(J ′) = {i ∈ I|ai + sxci > 0}.
So, a solution can be represented by a pair (m′, x), where m′ is the number

of elements selected into the subset I ′ ⊂ I, while x is an array (permutation of
set {1, 2, ...,m}) having property that its first m′ elements are included into the
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subset I ′, while the rest of the array x are labels of elements not included in the
subset I ′.

Similarly, a solution can be represented by a pair (n′, y), where n′ is the num-
ber of elements selected into the subset J ′ ⊂ J , while y is an array (permutation
of set {1, 2, ..., n}) having property that the first n′ elements are included into
the subset J ′ while the rest of the array y are labels of elements not included
into the subset J ′.

In the rest of the text, we suppose that the solution is represented by a pair
(m′, x). i.e. by representation of the subset I ′ ⊂ I.

2.2 Neighborhoods

Drop Neighborhood. Drop (remove) neighborhood NremI consists of all solu-
tions obtained by removing one element from the current subset (solution) I ′ ⊂ I.

In order to explore this neighborhood, for each k ∈ I ′, we calculate the subset
J ′(I\{k}) optimal for the subset I ′\{k}, and also calculate the objective function
value for the pair of subsets I ′\{k} and J ′(I ′\{k}). The calculated change of the
objective function value (i.e. new value of objective function) has the complexity
O(n). Namely, the objective function value for a solution obtained after removing
element k from I ′ is equal to

fn(I ′ \ {k}) =
∑

{ai|i ∈ I ′ \ {k}} +
∑

{bj + sycj − ckj |bj + sycj − ckj > 0},

or

fn(I ′ \ {k}) =
∑

{ai|i ∈ I ′} − ak+
∑

{bj + sycj − ckj |bj + sycj − ckj > 0, j = 1, 2, ..., n}.

Calculation of objective function value after removing one vertex from subset
I ′ ⊂ I is presented in Algorithm 1. So, exploration of complete Remove neigh-
borhood has complexity O(mn) (of course, by using an auxiliary data structure
syc).

Algorithm 1. Calculation of the objective function value after removing xk

(1 ≤ k ≤ m′) from the current solution x. Value sa denotes the sum of weights
of nodes from the subset I ′ ⊂ I.

1 Function remIov(m′, x, syc, sa, k);
2 ov ← sa − axk ;
3 for j ← 1 to n do
4 if bj + sycj − cxkj > 0 then
5 ov ← ov + bj + sycj − cxkj

6 end

7 end
8 return ov;
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Add Neighborhood. Add (Insert) neighborhood NinsI consists of all solutions
obtained by inserting into the solution one element that is currently not in the
subset (solution) I ′ ⊂ I.

In order to explore this neighborhood, for each k �∈ I ′ we calculate a subset
J ′(I ′ ∪ {k}) optimal for the subset I ′ ∪ {k}, and also calculate the objective
function value for the pair of subsets I ′ ∪ {k} and J ′(I ′ ∪ {k}). The calculated
change of the objective function value (i.e. new value of objective function) has
the complexity O(n). Namely, objective function value for solution obtained after
inserting an element k into the subset I ′ is equal to

fn(I ′ ∪ {k}) =
∑

{ai|i ∈ I ′ ∪ {k}}+
∑

{bj + sycj + ckj |bj + sycj + ckj > 0, j = 1, 2, ..., n},
or

fn(I ′ ∪ {k}) =
∑

{ai|i ∈ I ′} − ak+
∑

{bj + sycj − ckj |bj + sycj − ckj > 0, j = 1, 2, ..., n}.

Calculation of an objective function value after inserting one vertex into
the subset I ′ ⊂ I is presented in Algorithm 2. So, exploration of complete Insert
neighborhood has complexity O(mn) (of course, by using an auxiliary data struc-
ture syc).

Algorithm 2. Calculation of the objective function value after inserting xk (m′+
1 ≤ k ≤ m) into the current solution x. With sa is denoted as the sum of weights
of nodes from subset I ′ ⊂ I.

1 Function insIov(m′, x, syc, sa, k);
2 ov ← sa + axk ;
3 for j ← 1 to n do
4 if bj + sycj + cxkj > 0 then
5 ov ← ov + bj + sycj + cxkj

6 end

7 end
8 return ov;

2.3 Tabu Search for the BQP

Algorithm 3 represents Tabu search for BQP. Tabu list contains vertices which
change status in recent iterations and because of that are “forbidden” for using
(removing from solution or inserting into solution) in a current iteration. Length
of tabu list (i.e. number of recent iterations) is not fixed. Length of tabu list
changes according to the procedure previously proposed by Galinier et al. [5].
Complete Tabu search algorithm consists of sequence of iterations. Iterations
are numbered by positive integer numbers starting from 1. Length of a tabu list
changes in iterations bi (i = 0, 1, 2, ...), in the following way: length of a tabu list
in iterations from interval [bi, bi+1] is equal ai + rand(2), where
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ai =
⌊cimod 15

8
Tmax

⌋
.

In this formula:

– c is an array with 15 elements as follows: 1, 2, 1, 4, 1, 2, 8, 1, 2, 1, 4, 1, 2, 1;
– Tmax is a maximal allowed length of tabu list; and
– rand(n) represents a random number between 0 and n.

Sequence bi is defined as following:

b0 = 1 bi+1 = bi + 5 × ai.

In other words, a length of tabu list changes periodically (shortest period is
15) and can take one of the following four values (with “small noise” not greater
than 2):

⌊
1 × Tmax

8

⌋
,

⌊
2 × Tmax

8

⌋
,

⌊
4 × Tmax

8

⌋
,

⌊
8 × Tmax

8

⌋
.

Number 5 in the formula for calculating bi+1 is also proposed by [5]. Value
Tmax is selected after detailed experimentation and set by the following equation:

Tmax = min(m′
best,m − m′

best)/2

where m′
best is number of elements in subset I ′

best representing the best solution
obtained during the execution of tabu search.

3 Computational Results

For comparison, we use test instances generated by [9]. All the details on how the
test instances are generated can be found in Sect. 4 of [9]. Test instances can be
classified into five types: random graphs, max biclique graphs, max induced sub-
graph, maxcut, and matrix factorization. For each graph type, 17 test instances
of different sizes are generated giving in total 85 test instances.

Test instances are divided into three groups according to their sizes:

– 7 small instances (m ∈ {20, 25, 30, 35, 40, 45, 50} and n = 50),
– medium instances (m ∈ {200, 400, 600, 800, 1000} and n = 1000),
– large instances (m ∈ {1000, 2000, 3000, 4000, 5000} and n = 5000).

Our method is implemented on programming language C++. All experi-
ments are performed on a machine with an Intel(R) Core(TM) i5-3470 with
CPU 3.20GHz and 16GB RAM. We decided to perform experiments only on
medium and large instances (small instances are relatively “easy” for solving).
All instances from medium size and large size are executed ten times. Stopping
condition was execution time in seconds. For medium size instances, execution
time was set to 1000 second, while execution time for large size instances was
set to 10000 s.
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Algorithm 3. Tabu search for BQP

1 Function BQPTS();
2 (m′, x, syc) ← InitialSolution;

3 fcurr ← ObjValue(m′, x, syc);
4 fbest ← fcurr;
5 sa ← SumA(m′, x);
6 while stopping condition is not met do

7 fmaxRNT ← −∞; fmaxINT ← −∞;
8 fmaxRT ← −∞; fmaxIT ← −∞;

9 for i ← 1 to m′ do
10 ftmp ← remIov(m′, x, syc, sa, i);
11 if xi ∈ Tabu then

12 if ftmp > fmaxRT then

13 fmaxRT ← ftmp; imaxRT ← i;
14 end

15 else

16 if ftmp > fmaxRNT then
17 fmaxRNT ← ftmp; imaxRNT ← i;
18 end

19 end

20 end

21 for i ← m′ + 1 to m do

22 ftmp ← insIov(m′, x, syc, sa, i);
23 if xi ∈ Tabu then

24 if ftmp > fmaxIT then
25 fmaxIT ← ftmp; imaxIT ← i;

26 end

27 else

28 if ftmp > fmaxINT then
29 fmaxINT ← ftmp; imaxINT ← i;
30 end

31 end

32 end
33 if max(fmaxIT , fmaxRT ) > max(fmaxINT , fmaxRNT ) and

fcurr +max(fmaxIT , fmaxRT ) > fbest then
34 if fmaxIT > fmaxRT then

35 insI(m′, x, syc, sa, imaxIT ); fcurr ← fmaxIT ;

36 else
37 remI(m′, x, syc, sa, imaxRT ); fcurr ← fmaxRT ;
38 end

39 else
40 if fmaxINT > fmaxRNT then
41 insI(m′, x, syc, sa, imaxINT ); fcurr ← fmaxINT ;

42 else
43 remI(m′, x, syc, sa, imaxRNT ); fcurr ← fmaxRNT ;

44 end

45 end
46 if fcurr > fbest then

47 fbest ← fcurr;
48 end

49 end
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In Table 1 results obtained on medium size instances are presented. In the
first column of Table 1 the names of instances are given. Column 2 contains the
best known values for the corresponding instances. Columns 3, 4, 5 and 6 contain
percentage deviation of results obtained by executing CMCS [10] from the best
known results with time limit 1 s, 10 s, 100 s and 1000 s, respectively. Column
7 contains a percentage deviation of results obtained by TS [4] with time limit
1000 s. Columns 8, 9 and 10 contain best, average and worst results obtained
by ten times execution of our Tabu Search (as already said in the previous
paragraph, a time limit was set to 1000 s). Column 11 contains time when the
solution reported as best has been found for the first time. Column 12 contains
a percentage deviation of the best solution obtained by Tabu Search from best
known approach (negative value indicates that our Tabu Search reaches the
solution better than the previous best known method).

In Table 2 results obtained on large size instances are presented. The format
of this table is the same as the format of Table 1.

Table 1. Comparison of different methods on moderate size instances

CMCS [10] TS [4] TS

Instance Best known 1s 10s 100s 1000 s 1000 s Best Average Worst Time Dev

Rand200x1000 612947 0.00 0.00 0.00 0.00 0.00 612947 612947 612947 2.77 0.00

Rand400x1000 951950 0.05 0.00 0.00 0.00 0.00 951950 951950 951950 0.60 0.00

Rand600x1000 1345748 0.00 0.00 0.00 0.00 0.00 1345748 1345748 1345748 3.86 0.00

Rand800x1000 1604925 0.09 0.00 0.00 0.00 0.01 1604925 1604925 1604925 14.49 0.00

Rand1000x1000 1830236 0.04 0.04 0.02 0.00 0.07 1830236 1830236 1830236 29.70 0.00

Biclique200x1000 2150201 0.00 0.00 0.00 0.00 0.00 2150201 2150201 2150201 144.67 0.00

Biclique400x1000 4051884 0.27 0.09 0.00 0.00 0.00 4051884 4051884 4051884 1.18 0.00

Biclique600x1000 5501111 0.59 1.48 0.47 0.47 0.65 5501111 5500173 5497187 420.39 0.00

Biclique800x1000 6703926 0.68 0.56 0.04 0.04 0.79 6703926 6703926 6703926 80.15 0.00

Biclique1000x1000 8680142 0.10 0.35 0.35 0.11 0.91 8680142 8680142 8680142 1.36 0.00

MaxInduced200x1000 513081 0.00 0.00 0.00 0.00 0.00 513081 513081 513081 0.33 0.00

MaxInduced400x1000 777028 0.01 0.00 0.00 0.00 0.00 777028 777028 777028 2.08 0.00

MaxInduced600x1000 973711 0.00 0.00 0.00 0.00 0.00 973711 973711 973711 2.21 0.00

MaxInduced800x1000 1205533 0.01 0.00 0.00 0.00 0.07 1205533 1205533 1205533 20.77 0.00

MaxInduced1000x1000 1415622 0.03 0.03 0.03 0.01 0.06 1415622 1415622 1415622 193.69 0.00

BMaxCut200x1000 617700 1.59 0.06 0.00 0.00 0.14 617700 617700 617700 7.90 0.00

BMaxCut400x1000 951726 1.34 0.40 0.00 0.00 1.13 951726 951726 951726 48.12 0.00

BMaxCut600x1000 1239982 1.83 0.53 0.53 0.37 2.00 1239982 1239214.25 1236322 365.41 0.00

BMaxCut800x1000 1545820 1.74 1.05 0.08 0.08 1.66 1545820 1544237.5 1540902 437.96 0.00

BMaxCut1000x1000 1816688 1.83 0.46 0.23 0.23 2.47 1814056 1811155.75 1803470 507.42 0.14

MatrixFactor200x1000 6283 0.18 0.00 0.00 0.00 0.00 6283 6283 6283 0.18 0.00

MatrixFactor400x1000 9862 0.00 0.00 0.00 0.00 0.00 9862 9862 9862 0.50 0.00

MatrixFactor600x1000 12902 0.05 0.00 0.00 0.00 0.03 12902 12902 12902 1.50 0.00

MatrixFactor800x1000 15466 0.49 0.00 0.00 0.00 0.19 15466 15466 15466 6.51 0.00

MatrixFactor1000x1000 18813 0.08 0.03 0.00 0.00 0.11 18813 18813 18813 93.17 0.00

Average 1782131.48 0.44 0.20 0.07 0.05 0.41 1782026.20 1781778.66 1781102.68 95.48 0.01
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From these tables we can conclude the following:

– regarding the medium size instances, our Tabu search reach the best known
solution for 23 out of 25 instances (CMCS reaches best known for 18 instances,
while TS [4] reaches best known for 10 instances);

– for 21 instances out of 25 instances, our Tabu search reaches the best known
solution in all ten executions;

– average percentage deviation of the best solution obtained by our Tabu search
is 0.01% (while the average percentage deviation for CMCS is 0.05% and the
average percentage deviation for TS [4] is 0.41%);

– regarding the large instances, for 8 out of 25 instances the new best known
solutions have been found;

– average percentage deviation of the best solution obtained by our Tabu search
is −0.03% (while the average percentage deviation for CMCS is 0.39% and
the average percentage deviation for TS [4] is 0.97%).

4 Concluding Remarks

In this paper, we present a new simple Tabu search heuristic for solving
Quadratic Bipartite Programming Problem (BQP). In designing a heuristic, we
follow the recent Less is more approach (LIMA) [3,11,13], whose basic idea is in
forcing simplicity and user-friendliness, i.e., use of the minimum number of ingre-
dients, but in a way to outperform the current state-of-the-art heuristics. Our
method uses two neighborhood structures, and thus may be seen as a hybrid
between TS and Variable neighborhood search (VNS) [8]. Proposed heuristic
uses only the short-term memory mechanism and only one parameter, i.e., the
tabu list length. Moreover, the frequency-based memory and long-term memory
(diversification) are not used at all.

Despite its simplicity, our Tabu search based hybrid method outperforms
all existing methods for solving the BQP problem. When compared with a few
most successful heuristics from the literature on commonly used test instances,
average results reported by our method had the smallest deviation from the best
known values. Moreover, we reported 6 new best known solutions on large test
instances.

Future research may include the following: (i) proposition of new neighbor-
hood structures; (ii) changing the concept of tabu list by modifying the rule
for calculation of the tabu list length, (iii) suggestion of a nested VNS strategy
within TS, without increasing the number of parameters, etc.
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Abstract. The Divide-and-Conquer approach is often used to solve
hard instances of the Boolean satisfiability problem (SAT). In partic-
ular, it implies splitting an original SAT instance into a series of simpler
subproblems. If this split satisfies certain conditions, then it is possible to
use a stochastic pseudo-Boolean black-box function to estimate the time
required for solving an original SAT instance with the chosen decomposi-
tion. One can use black-box optimization methods to minimize the func-
tion over the space of all possible decompositions. In the present study,
we make use of peculiar features which stem from the NP-completeness
of the Boolean satisfiability problem to improve this general approach. In
particular, we show that the search space over which the black-box func-
tion is minimized can be extended by adding solver parameters and the
SAT encoding parameters into it. In the computational experiments, we
use the SMAC algorithm to optimize such black-box functions for hard
SAT instances encoding the problems of cryptanalysis of several stream
ciphers. The results show that the proposed approach outperforms the
competition.

Keywords: Black-box optimization · Discrete optimization ·
Monte Carlo method · SAT · Cryptanalysis

1 Introduction

In multidisciplinary research, it is often necessary to optimize a function for
which there is no reliable information on its derivative. Moreover, in many cases
a function is not even defined analytically. These features make it impossible to
tackle such optimization problems using traditional methods. This fact led to
the development of derivative-free and black-box optimization methods [2] that
seldom require more than being able to compute the value of a function in a
point of the search space, thus treating the function as a black box.

One particular class of optimization problems which can be dealt with only
using black-box optimization methods contains many problems related to the
algorithms for solving some NP-complete problem. Such an algorithm usually
implements exhaustive search, heavily modified by various heuristics. Because
of its heuristic nature and the NP-completeness of the underlying problem,
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the only arguments to be made regarding the behaviour of such algorithm on
any input rely on treating it like a black box.

In the present paper, we study the applications of black-box optimization
methods to the Boolean satisfiability problem (SAT) [4]. In particular, we con-
sider them in the context of the divide-and-conquer SAT solving approach. As
it follows from the name, it implies that an original SAT instance is split into
disjoint simpler subproblems that can be solved independently. If the original
problem has a small number of solutions (or none) and also if all subproblems
constructed during “division” have more or less the same complexity, then it is
possible to use the Monte-Carlo method [27] to estimate how long it will take
to solve the original problem. For this purpose a small sample of subproblems is
processed and the resulting time is scaled to the total number of subproblems.
In [32] it was proposed, that the division method that consists in choosing a
subset of variables in a SAT instance and varying all possible assignments of
their values, satisfies the aforementioned criteria. It means that for a given SAT
instance and a fixed algorithm for solving SAT the set of variables for splitting
formula into subproblems can be viewed as an input to a stochastic discrete
black-box function computing the estimation of the runtime required for solv-
ing the original problem. Thus, one can attempt to optimize this function over
the space of all possible subsets of variables in order to find the one that yields
minimal runtime estimation.

On the one hand, the NP-completeness of SAT forces one to use heuristic
algorithms for its solving and gives no guarantees that a particular SAT instance
will be solved in a reasonable time. On the other hand, in the context of black-box
optimization it may open new horizons. Indeed, the heuristic parameters of SAT-
solving algorithms can naturally be used to extend the search space for the black-
box function considered. Another prominent feature of SAT that distinguishes it
from the usual cases is that any original problem can be translated into SAT form
by a multitude of ways. Due to the heuristic nature of SAT solving algorithms,
they all are worth being considered. Thus, the encoding parameters can also
be used to extend the search space in question. We investigate this direction
of research and show that taking these parameters into consideration makes
it possible to obtain much better runtime estimations. In our experiments, we
use the Sequential Model-based optimization Algorithm Configuration [18]. As
the test cases, we consider the SAT instances encoding the cryptanalysis of the
Alternating step and Bivium keystream generators.

The paper has the following structure. In the next section, the Divide-and-
Conquer approach for solving SAT is described. In Sect. 3 the problem of finding
a good Divide-and-Conquer based decomposition is considered as a stochastic
black-box optimization problem. In particular, in this section a new stochastic
discrete black-box objective function is proposed, which operates in an extended
search space. In Sect. 4, the certain extended search space of the proposed type is
described. In Sect. 5, the computational study of the proposed objective function
in the extended search space is presented. Finally, the related work is discussed
and conclusions are drawn.
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2 Background and Notation

The Boolean satisfiability problem (SAT) is without exaggeration one of the
most well-studied combinatorial problems. In the general formulation as a deci-
sion problem it consists in answering the question whether an arbitrary Boolean
formula is satisfiable, i.e. if there exists such an assignment of all Boolean vari-
ables in this formula that it takes the value of True over them. In practice, it
is typically considered for the Boolean formulas in Conjunctive Normal Form
(CNF). To put it more formally, assume that C is a Boolean formula in CNF
over a set of n Boolean variables X, xi ∈ {0, 1}, xi ∈ X, i = 1, . . . , n. If the
formula is satisfiable – it means that there exists such an assignment α ∈ {0, 1}n,
that once each variable xi is set to value αi, the formula is evaluated as True. If
there is no such assignment, then the formula is called unsatisfiable.

Since SAT is an NP-complete problem, it means that a lot of hard prac-
tical problems can actually be reduced to it. Their hardness does not magi-
cally disappear during this reduction, but makes it possible to apply to these
problems the well-developed apparatus for solving SAT. In the recent two
decades, there have been achieved a tremendous progress in this area. One of
the directions in SAT solving is aimed at parallel SAT solving. It is of partic-
ular importance for hard SAT instances. There are two classes of parallel SAT
solving techniques [12]: Portfolio (competition-based) and Divide-and-Conquer
(cooperation-based). According to the Portfolio approach [15], many different
sequential SAT solvers solve the same original SAT instance simultaneously,
until any of them finds a satisfying assignment, or proves that the given for-
mula is unsatisfiable. In the Divide-and-Conquer approach, the original instance
is decomposed into a family of simpler subproblems that are solved separately
by sequential solvers. One of the relative advantages of the Divide-and-Conquer
approach consists in the fact that since it deals with simplified subproblems, it
is more convenient from the general point of view, for example it can easily be
scaled to any amount of computational resources by splitting more or less, the
subproblems can be processed independently, it does not require one to wait for
large amounts of time like months or years, etc.

There exist several Divide-and-Conquer decomposition techniques, e.g., scat-
tering [20] or Cube-and-Conquer [17]. In the present study, we are interested
mostly in such variants of Divide-and-Conquer solving, that make it reasonable
to assume that all the subproblems will be solved in more or less the same time.
In particular, we employ the following decomposition. As before, assume that C
denotes a Boolean formula in CNF and X is a set of its Boolean variables. Assume
that a subset S of variables from X is given, |S| = k, k < n. A simplified formula
produced by assigning values α = (α1, . . . , αk) to variables from S is denoted as
C[α/S]. A set of simplified formulas produced by instantiating all possible dif-
ferent assignments of values to variables from S in C is called a decomposition of
an original formula C and is denoted as DS [C] = {C[α/S], α ∈ {0, 1}|S|}. Note,
that |DS [C]| = 2k. Since all subproblems in the decomposition differ only in
values of several variables it is reasonable to assume that all subproblems repre-
sent similarly weakened variants of the original one. The SAT instances forming
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DS can be processed by independent SAT solvers in parallel. Note, that if the
original formula is unsatisfiable, then the unsatisfiability of all simplified formu-
las must be proven. Otherwise once the satisfying assignment is found for any
subproblem, the processing of all the remaining subproblems can be interrupted.

Note that finding a good set S to decompose a problem is actually a very
hard task. For example, if a SAT instance encodes a cryptanalysis instance then
finding such set is (with some reservations) equal to a construction of a guess-
and-determine attack on the underlying cipher [3]. For some SAT instances the
choice of S may be prompted by the structure of the original problem (see,
e.g., [33,40]). For others, it might not matter much which variables are put into
S because they are equally inter-dependant on each other. In [10,32,35] there
was proposed a general approach to finding S which essentially involved using
a special black-box objective function for this purpose. It will be discussed in
detail in the following section.

3 Optimization of Black-Box Functions
for Divide-and-Conquer SAT Solving

Assume that a SAT instance C over a set of Boolean variables X, |X| = n, a
SAT solver A and an integer N,N � 2n are given. As an input the function F
takes a set S ⊆ X. The value of the function is calculated using the Monte Carlo
method [27] as follows. First, a random sample R = {C[β1/S], . . . , C[βN/S]} of
size N is constructed by choosing randomly {β1, . . . , βN} from {0, 1}|S|. Then
the solver A is launched on each subproblem from R. The notation TA(C[βi/S])
stands for the runtime of A on the subproblem C[βi/S]. Finally, the value of F
is the estimation of the time it would take to solve all subproblems from DS [C]
by the solver A.

FN,C,A(S) = 2|S| × 1
N

×
N∑

i=1

TA(C[βi/S]). (1)

Function (1) is a stochastic function, because the Monte Carlo method is
used for its calculation. The function’s input S is a subset of X, |X| = n. Any
possible input S can be represented as a Boolean vector of size n, where the
i − th element is 1 if i ∈ S, and 0, otherwise. It means that the function (1)
maps Bn onto R, so (1) is a pseudo-Boolean function. It is also a black-box
function, because its analytic form is unknown. This function is costly, because
the experiment involving solving N SAT instances to construct the Monte Carlo
estimation requires a lot of computational resources for large N . Thus, (1) is a
stochastic costly pseudo-Boolean black-box function.

Now let us assume that PA is the set of discrete parameters for algorithm A
and PC is the set of discrete parameters of the encoding used to transform an
original instance into SAT instance C. Without the loss of generality, assume
that pA and pC denote assignments of parameters from PA and PC , respectively.
C(pC) stands for a SAT instance constructed with parameter values specified
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by pC , A(pA) is the solver A with parameters values pA. Then the corresponding
stochastic costly discrete black-box function over the extended set of parameters
will look as follows:

GN (pC , pA, S) = 2|S| × 1
N

×
N∑

i=1

TA(pA)(C(pC)[βi/S]). (2)

Note, that pseudo-Boolean function (1) can be considered as a special case
of discrete function (2) with constant pA and pC . Usually in the role of pA for
minimizing (1) the default parameters of A are used.

Also, it is possible to consider one more special case of (2), when it is intended
to find good values of PA and PC with constant S. The corresponding stochastic
costly discrete black-box function is presented below.

HN,S(pC , pA) = 2|S| × 1
N

×
N∑

i=1

TA(pA)(C(pC)[βi/S]). (3)

In the computational experiments (see Sect. 5), the following optimization
strategies were employed.

1. Standard: minimize FN,C,A over possible S ∈ 2n;
2. Extended: minimize GN over possible {S, pC , pA}, S ∈ 2n, pC ∈ PC , pA ∈ PA;
3. Combined: minimize FN,C,A over possible S ∈ 2n, then use the found Sbest

as a constant to minimize HN,S over possible {pC , pA}, pC ∈ PC , pA ∈ PA.

In the next section, certain values of parameters PA and PC , used to optimize
(2) and (3), are described. In Sect. 5, the proposed optimization strategies are
compared on hard optimization problems.

4 Description of the Extended Search Space

As it was noted above, the extension of the parameter space which makes it
possible to introduce minimization problems for functions (2) and (3) is possible
because at their core lies the solving of SAT instances using some SAT solver.
Since SAT is an NP-complete problem and thus is solved mainly via heuristic
algorithms, there are a lot of possibilities for additional parameters. The partic-
ular cases of encoding of an original problem into SAT and tuning SAT solvers’
parameters are detailed below.

4.1 SAT Encodings Parameters

The peculiar feature of NP problems consists in the fact that there can be several
equivalent formulations of the same problem instance. Here, there are only rea-
sonable limits on their number since essentially, one can introduce nonsensical
changes that formally result in a different SAT instance while changing nothing
essential.
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Let us consider an example. Assume that we have the following Boolean
formula:

x1 ⊕ x2 ⊕ x3 ⊕ x4 (4)

and we are interested in finding if it is satisfiable or not. In order to apply modern
SAT solvers to it, we need to transform it into Conjunctive Normal Form. CNF
is a conjunction of clauses, where a clause is a disjunction of literals, and literals
are formulas of the kind ∈ {x,¬x} (x is a Boolean variable). It can be done
directly by constructing a truth table for (4) and writing CNF directly based on
it. The result will look like this:

(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)
∧ (x1 ∨ x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ x3 ∨ ¬x4)
∧ (x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x3 ∨ ¬x4)
∧ (¬x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ x3 ∨ x4)

(5)

Meanwhile, it is possible to introduce two new auxiliary variables x5 and x6 and
transform (4) into the equivalent Boolean formula that looks as follows:

(x5 ≡ x1 ⊕ x2) ∧ (x6 ≡ x3 ⊕ x4) ∧ (x5 ⊕ x6)

And the resulting CNF:

(x5 ∨ x1 ∨ ¬x2) ∧ (x5 ∨ ¬x1 ∨ x2) ∧ (¬x5 ∨ x1 ∨ x2)
∧ (¬x5 ∨ ¬x1 ∨ ¬x2) ∧ (x6 ∨ x3 ∨ ¬x4) ∧ (x6 ∨ ¬x3 ∨ x4)
∧ (¬x6 ∨ x3 ∨ x4) ∧ (¬x6 ∨ ¬x3 ∨ ¬x4) ∧ (x5 ∨ ¬x6) ∧ (¬x5 ∨ x6)

(6)

Thus, essentially, CNFs (5) and (6) encode the very same original Boolean for-
mula (4). Moreover, it is easy to show, that from any satisfying assignment of
one of them it is easy to effectively construct one for another [36]. What is the
difference? The CNF (5) has no auxiliary variables and contains less clauses than
(6) (8 vs 10). However, the average clause size in (5) is bigger and the number
of distinct literals is also bigger (32 literals vs 28). Generally speaking, the only
way to answer the most important question: which CNF is better for some SAT
solver—is to launch the solver in question on both and wait until both are solved.

The empirical evaluation shows that rational considerations apply to SAT
encodings only to a certain extent. Sometimes, the encoding that has lower
number of variables, clauses and literals just works worse than the competition.
Thus, it is important to be able to construct and test different SAT encodings for
hard problems. Note, that the corresponding area concerned with devising new
methods for encoding different predicates to SAT is developing quite actively in
the recent years [31].

In our experiments we consider the problems of cryptanalysis of the following
cryptographic keystream generators: Bivium [7] and the alternating step gener-
ator (ASG) [14]. ASG is considered in two variants: ASG-72 and ASG-96, which
are described in [40]. Thus, 3 cryptanalysis problems were considered, all in the
form of the so-called known plaintext attack. Informally, it means that we need
to find the a secret key of a generator given the keystream sequence it produced
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from this secret key. Note, that both these generators have already been studied
in the context of the SAT-based cryptanalysis [10,32,35,40], but the previous
studies did not consider an extended parameter space for the objective function.

The different encodings for the considered problems were constructed in much
the same way as it was shown for (5) and (6), however, since the algorithms and
the corresponding Boolean formulas are much more complex compared to (4),
the differences are more subtle. To construct the SAT encodings for all considered
problems we employed the Transalg software system [30]. In case of the Bivium
keystream generator, there were constructed two distinct encodings, that differ in
the way the auxiliary variables are introduced and handled. For the cryptanalysis
of ASG we considered three variants of SAT encodings that differ in the size of
a keystream fragment: 76, 80, 84 for ASG-72 and 112, 116, 120 for ASG-96. It
was shown in [40] that they yield quite different results.

It is clear, that the different encodings for the same problem do not use the
same variables, thus making it hard to switch between them while preserving
the set S used to decompose the problem, because, for example, the variables
{x1, x5, x42} for one SAT instance may correspond to completely different enti-
ties in another SAT instance. However, they have at least two sets of variables
with one-to-one correspondence: the input variables, which encode the secret key
of analyzed keystream generator, and output variables that contain the values
assigned to keystream bits produced by a generator. Since the values of out-
put variables are set (remind, that we want to find the secret key for a given
keystream fragment), it means that only input variables remain in common.
Thankfully, due to specifics of propositional encoding techniques, they form the
so-called Strong Backdoor set [39], meaning that once all values of input vari-
ables are set, it is possible to determine if the corresponding SAT instance is
satisfiable in polynomial time, thus in a way making them the most valuable.
The feature of the Transalg tool is that it makes the input variables appear
before all other, e.g. they are always represented by a set Xin = {x1, . . . , xk},
k > 0. Due to the reasons outlined above, we can assume that Xin is common
for all encodings of each particular problem. Thus in all experiments the set S
that is used to decompose a SAT instance can only be a subset of set Xin.

4.2 SAT Solver Parameters

The most promising results in the SAT-based cryptanalysis were achieved by
SAT solvers based on the Conflict-Driven Clause Learning (CDCL) concept [24].
CDCL performs a depth-first search of the space of partial truth assignments.
This search is augmented in several ways. The most important is Clause learning.
which consists in learning new clauses when the search reaches a conflict state.
If a conflict cannot be resolved by backtracking then the formula is unsatisfiable.
If all the variables are assigned and no conflict is detected then the formula is
satisfiable.

In the role of A (see Sect. 3), a CDCL solver MapleLCMDistChronoBT
[28] was chosen, because it won the Main track at the SAT competition 2018. In
Table 1, we show the nine parameters of this solver which were chosen for tuning.
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Values of these parameters affect the basic CDCL algorithm, as well as various
heuristics added to boost it. The first 7 parameters originally have real value,
while the last 2 parameters are integer (and all their possible values are presented
in the table). The discretization of the first 7 parameters was performed in order
to obtain a set of discrete variables for the search space. Thus, an arbitrary pA is a
9-element vector with values from Table 1. Based on the performed discretization,
there are 57 × 32 = 703 125 possible assignments of pA in total.

4.3 Search Spaces Sizes

According to Subsect. 4.1, there is one additional variable which refers to SAT
encoding type. In the cases of ASG-72 and ASG-96, this variable has 3 values,
while for Bivium it has two values. According to Subsect. 4.2, there are 9 solver’s
variables with 703 125 values in total.

In Table 2, the size of the search space for each considered pair (optimization
strategy, problem) is shown.

Table 1. The parameters (PA) of the solver MapleLCMDistChronoBT.

Name Possible values Default value

step-size-dec 0.000001; 0.00001; 0.0001; 0.001; 0.01 0.000001

min-step-size 0.01; 0.03; 0.06; 0.1; 0.3 0.06

cla-decay 0.999; 0.95; 0.9; 0.8; 0.5 0.999

var-decay 0.9; 0.8; 0.7; 0.6; 0.5 0.8

step-size 0.1; 0.2; 0.3; 0.4; 0.5 0.4

chrono −1, 10, 100, 1000, 10000 100

confl-to-chrono 1000, 2000, 4000, 8000, 16000 4000

ccmin-mode 0, 1, 2 2

phase-saving 0, 1, 2 2

Table 2. Search spaces sizes for each pair (strategy, problem).

Standard Extended Combined

ASG-72 272 272 × 2 109 375 272, then 2 109 375

ASG-96 296 296 × 2 109 375 296, then 2 109 375

Bivium 2177 2177 × 1 406 250 2177, then 1 406 250
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5 Computational Experiments

To solve three black-box optimization problems, described in Sect. 4, three opti-
mization strategies from Sect. 3 were used: Standard, Extended and Combined.
Let us remind, that the Standard strategy have been already used in previous
studies, while to the best of our knowledge the Extended and Combined strate-
gies are proposed in this paper.

To minimize the objective functions (1), (2), (3), the SMAC (sequential
model-based algorithm configuration) [18] tool was chosen. SMAC is an imple-
mentation of the Sequential Model-based optimization (SMBO) framework [21].
According to SMBO, a regression model is constructed, that predicts values of
an objective function and as a result recommends in which points an objective
function should be calculated. SMAC’s prediction model is based on the random
forest machine learning algorithm [6]. SMAC can be used for optimizing costly
discrete black-box functions. The additional reason why SMAC was chosen is
that it has been widely used for tuning SAT solving algorithms (see [11,19]).
Note, that in two optimization strategies out of three (Combined and Extended)
it is in fact required to solve a similar problem – to tune SAT solver’s parameters.

The objective functions were implemented on the basis of the ALIAS tool
[22]. This tool was configured to work with the MapleLCMDistChronoBT
sequential SAT solver [28] which was briefly described in Subsect. 4.2.

All the experiments were conducted on the “Academician V.M. Matrosov”
computing cluster [8]. Each computational node of this cluster is equipped with
2 × 18-core Intel Xeon E5-2695 CPUs and 128 Gb RAM. In all experiments
SMAC operated on 1 computing node. While ALIAS calculates the Monte
Carlo estimation in the multi-threaded mode, at each moment of time SMAC
operates with exactly one point from a search space.

In all experiments N was equal to 1000, so the SAT solver needed to solve
1000 simplified versions of an original instance to obtain a Monte-Carlo-based
objective function value at a point. Since SAT solvers are essentially heuristic
algorithms, they can work for very large amounts of time during the calculation
of the objective function value at some point. That is why the time limit on the
SAT solver runtime was introduced. If for any subproblem from a random sample
the runtime of SAT solver exceeded the imposed time limit, the processing of
the sample was interrupted with the objective function value set to 1e100. Two
values of time limit were tried: 5 s and 10 s. It turned out, that this parameter
is quite important.

Since all the objective functions are stochastic (see Sect. 3), SMAC was
launched 3 times on each configuration (problem, optimization strategy, time
limit) on one cluster’s computational node (i.e. on 36 CPU cores) to alleviate
the effect of randomness. As it is recommended by SMAC’s developers, each
launch was for one day. Thus, 3 × 3 × 2 × 3 = 54 1-day launches were performed
in total. Note, that in the case of the Combined strategy, the function (1) was
first minimized for 12 h, then the point with the best found estimation was used
as a starting point for minimizing function (3) for another 12 h. The obtained
results are shown in Table 3. The best results for each of three optimization
problems are marked with bold.
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Table 3. Objective functions values found by different strategies for ASG-72, ASG-96
and Bivium. The best values are marked with bold.

Strategy Solver limit 10 s Solver limit 5 s

Launch 1 Launch 2 Launch 3 Launch 1 Launch 2 Launch 3

ASG-72

Standard 3.42e+7 1.49e+7 2.2e+7 7.47e+6 2.26e+6 7.62e+6

Extended 3.6e+7 3.14e+7 9.19e+6 4.99e+7 2.23e+7 1.53e+7

Combined 3.8e+6 3.6e+6 1.98e+7 1.42e+7 1.34e+7 4.01e+6

ASG-96

Standard 1.73e+11 3.19e+10 4.82e+11 3.07e+11 4.29e+11 1.41e+12

Extended 7.26e+9 1.52e+11 2.38e+11 2.6e+11 7.8e+11 5.95e+11

Combined 1.33e+10 3.23e+11 7.99e+10 1.07e+11 6.36e+11 4.85e+11

Bivium

Standard 3.27e+19 2.95e+19 3.49e+19 2.4e+19 9.18e+18 1.1e+19

Extended 1.14e+19 9.25e+18 7.99e+18 7.72e+18 4.27e+18 8.88e+18

Combined 4.3e+19 1.59e+19 5.74e+19 1.82e+19 4.46e+19 1.55e+19

Results from Table 3 are also shown in Figs. 1, 2 and 3. The best results for
each pair (problem, solver time limit) are marked with a horizontal gold dotted
line.

In Table 4 the number of calculations of the objective functions performed
by SMAC is shown. For the Combined strategy, the numbers for both stages
are presented.

Note, that while 24 h on 36 CPU cores were given for SMAC in all launches
(that is similar to 864 h on 1 CPU core), the number of calculations did not
exceed 5000 in each launch. To perform one calculation of an objective function,
it took about 10–40 m (on 1 CPU core) on average. Thus, all three objective
functions are extremely costly.

(a) Solver time limit 10 seconds (b) Solver time limit 5 seconds

Fig. 1. Results of 3 launches of each strategy on ASG-72.
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(a) Solver time limit 10 seconds (b) Solver time limit 5 seconds

Fig. 2. Results of 3 launches of each strategy on ASG-96.

(a) Solver time limit 10 seconds (b) Solver time limit 5 seconds

Fig. 3. Results of 3 launches of each strategy on Bivium.

According to the results, on ASG-72 the Standard strategy found the best
runtime estimation. As for ASG-96 and Bivium, the best results were achieved
by the Extended strategy. It should be noted, that on Bivium this strategy
is better than two others on all performed launches. The Combined strategy
also showed promising results. In particular, for ASG-96 it is better than the
Standard strategy. It turned out, that the solver time limit is very important.
On ASG-72 and Bivium the time limit of 5 s allowed to find better estimations
than for 10 s, while it is vice versa on ASG-96.

It should be specifically noted, that the best found runtime estimations for
ASG-72, ASG-96 and Bivium are worse than state-of-the-art. The main reason
is that we used an independent call of the SAT solver for each subinstance from
the considered random samples. It means that for each subinstance the solver
had to read the corresponding CNF anew. As a result, it took a lot of additional
computational resources. Moreover, the time required for reading CNFs was
considered as a part of the total runtime, and for some decompositions it lead to
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Table 4. The number of calculations of the objective functions performed by SMAC.
For the Combined strategy, the numbers of two stages are divided by “+”.

Strategy Solver limit 10 s Solver limit 5 s

Launch 1 Launch 2 Launch 3 Launch 1 Launch 2 Launch 3

ASG-72

Standard 4147 4199 4183 1343 1612 1635

Extended 2544 2513 1549 2236 1765 2241

Combined 969 + 780 728 + 555 729 + 557 969 + 1630 728 + 3461 729 + 794

ASG-96

Standard 2342 2331 2351 2502 2539 2534

Extended 2111 3120 3121 2777 2813 2877

Combined 671 + 460 1102 + 815 1101 + 880 1185 + 1786 1256 + 1831 1237 + 1775

Bivium

Standard 2173 2229 2234 2902 2903 2884

Extended 2186 2190 2189 4155 4183 4204

Combined 1125 + 829 1127 + 818 1128 + 815 1124 + 3424 1116 + 2523 941 + 2666

overly pessimistic estimations. However, the goal of this study was to compare
several search spaces in the similar conditions, and this goal was achieved. In the
nearest future, we are planning to improve the proposed approach by handling
the mentioned drawback.

6 Discussion

The present study is a step forward in solving hard SAT instances by black-box
optimization methods. The related works are discussed below.

The local search metaheuristics have been widely used for cryptanalysis. In
[23] the cryptanalysis of several polyalphabetic ciphers was performed using the
hill climbing and simulated annealing algorithms. In [5], an algebraic cryptanal-
ysis of the Trivium stream cipher was considered as an optimization problem,
which was also studied by hill climbing and simulated annealing. In [37], Mixed
Integer Linear Programming was used to find guessing strategies for algebraic
cryptanalysis of the block cipher EPCBC.

In [25], a stochastic local search algorithm was used to solve hard crypt-
analysis problems in the SAT form. In [32] the SAT-based cryptanalysis of the
stream ciphers A5/1, Bivium and Grain was considered as an optimization prob-
lem, which in turn was solved by a tabu search algorithm. The objective func-
tion minimized in that paper is essentially the objective function (1), described
in Sect. 3 in detail. In [34], a completely different objective function combined
with the similar optimization algorithm were used to analyze the Magma and
AES-128 block ciphers and the Trivium stream cipher. Implicitly, the objective
function (1) was also employed to analyze the block cipher GOST and several
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keystream generators (Crypto-1, Hitag2, A5/1, Bivium) [9,10,26,33,35], but in
these papers the sets for decomposing an original SAT instance were constructed
manually.

To the best of our knowledge one of the first examples of the study of different
SAT encodings for cryptanalysis instances are the papers [29,40]. In [40], the
alternating step generator and two of its modifications were analyzed using SAT.
An objective function based on a modified version of (1) was minimized by a
hill climbing algorithm. The master thesis [29] is devoted to the analysis of SAT-
based cryptanalysis of the SHA-1 hash function.

Generally speaking, each objective function, considered in this study, can be
minimized by any discrete black-box optimization algorithm that suits for costly
functions: evolutionary [1] algorithm; genetic algorithm [38]; variable neighbor-
hood search [16]; tabu search [13].

The SMAC tool has been widely used for tuning SAT solving algorithms
(see, e.g., [11]). It was used as one of the automated algorithm configuration tools
on the Configurable SAT Solver Challenge [19] in 2014, where the solvers were
compared by the performance achieved after a fully automated configuration
step. SMAC was applied to the problem of finding good decompositions for
SAT solving in [22,41].

As far as the authors are aware, the extended search space, that includes
not only decomposition set, but also SAT solver and SAT encoding parameters,
for optimizing the black-box function that estimates the runtime of divide-and-
conquer SAT solving was considered for the first time in the present paper.

7 Conclusions and Future Work

In the present paper, an improvement on the stochastic discrete black-box opti-
mization for SAT solving was made. Two new optimization strategies were pro-
posed, which are based on the usage of an extended search space. Three hard
discrete black-box optimization problems were analyzed by these strategies and
also by the standard one. For two out of three problems, the proposed strategies
showed better results.

In the computational experiments, only SMAC algorithm was used to min-
imize all three considered objective functions. The main reason is that these
functions are extremely costly, and we could afford a meticulous computational
study of only one such algorithm. However, in the nearest future, we are plan-
ning to try several other black-box optimization algorithms, namely, local search,
tabu search, evolutionary algorithm, genetic algorithm.
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16. Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applica-
tions. Eur. J. Oper. Res. 130(3), 449–467 (2001). https://doi.org/10.1016/S0377-
2217(00)00100-4

17. Heule, M.J.H., Kullmann, O., Biere, A.: Cube-and-conquer for satisfiability. In:
Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 31–59.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3 2

18. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

https://doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1007/978-0-387-88757-9
https://doi.org/10.1007/978-0-387-88757-9
https://doi.org/10.1007/978-3-642-19574-7_4
https://doi.org/10.1007/978-3-642-19574-7_4
https://doi.org/10.1007/978-3-540-68351-3_18
http://hpc.icc.ru
https://doi.org/10.1007/978-3-540-79719-7_7
https://doi.org/10.1007/978-3-319-24318-4_16
https://doi.org/10.1007/978-3-319-24318-4_16
https://doi.org/10.1007/978-3-319-66263-3_15
https://doi.org/10.1007/3-540-39118-5_2
https://doi.org/10.1016/S0377-2217(00)00100-4
https://doi.org/10.1016/S0377-2217(00)00100-4
https://doi.org/10.1007/978-3-319-63516-3_2
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40


416 O. Zaikin and S. Kochemazov

19. Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: The
configurable SAT solver challenge (CSSC). Artif. Intell. 243, 1–5 (2015). https://
doi.org/10.1016/j.artint.2016.09.006

20. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT
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Abstract. In this paper, abstract parabolic control systems in Hilbert
space are considered. The state of the system is unknown, but there
is an equation of measurement in discrete times. The initial state and
disturbances are restricted by joint integral constraints. According to
measurements, the information set is introduced that contains the true
state of the system. This set includes all the states of the system that
are compatible with the measurements. The preliminary aim of control
consists in minimization of the terminal criterion depending of the infor-
mation set. We suggest some statements of the problem based on the
separation of control and observation processes. The optimal instants of
transition from estimation to control are looked for as well. The app-
roach is applied to distributed systems with partial derivatives and to
systems with the deviation of time of retarded and neutral types. The
approximation scheme are suggested and examples are considered.

Keywords: Control · Evolutionary systems · Information sets ·
Incomplete information

1 Introduction and Preliminaries

First of all we indicate that problems of control under incomplete information
were investigated in many books and papers [3–8]. The authors use either the
stochastic approach [7] or the minimax deterministic one going back to [3] and
developed in subsequent works. We keep to the deterministic problem formu-
lation in [3,4]. Similar formulations were used and modified in [9–11]. In this
work, we continue and complement [12,13] trying to generalize some results from
[14,15] on the case of infinite-dimensional systems. The algorithm of solution is
developed and special cases are considered for parabolic and hyperbolic partial
differential systems. Examples are examined. We consider also finite dimensional
and numerical approximations for the problem.

1.1 Weak Solutions of Evolutionary Systems

Let V , H be two real Hilbert spaces with norms ‖ · ‖ and | · | respectively.
Suppose that V ⊂ H, V is dense imbedded in H and separable, |v| ≤ γ‖v‖
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for every v ∈ V . The last inequality means that the imbedding V into H is
continuous and the dual space V ∗ contains H∗ = H. The spaces H and H∗ are
identified. Let further a(u, v) be a continuous, bilinear and coercive form on V ,
such that a(v, v) ≥ α‖v‖2, ∀v ∈ V .

Let a function f : [0, T ] → H be measurable and
∫ T

0
‖f(t)‖2dt < ∞. For

every point z0 ∈ H there exists a unique continuous in H function z(t) ∈ V ,
t > 0, such that

d〈z(t), v〉/dt + a(z(t), v) = 〈f(t), v〉, ∀v ∈ V, z(0) = z0. (1)

Here z(t) is implicitly supposed to be weakly absolutely continuous (see [1]).
The form a(u, v) defines a linear continuous operator u → Au ∈ V ∗ according

to the equality a(u, v) = 〈Au, v〉. Define by D(A) the set of all elements h ∈ V ,
for which Ah ∈ H ⊂ V ∗. The operator −A on H is an infinitesimal closed
generator for some strongly continuous semigroup S(t) : H → H (see [1,2]).
Besides the solution of (1) has a form

z(t) = S(t)z0 +
∫ t

0

S(t − s)f(s)ds, (2)

where the integral is understood in Bochner’s sense [2]. Remark that the solution
of (1) may be considered as a generalized solution of Cauchy problem

ż + Az = f(t), z(0) = z0 ∈ H. (3)

The generalized solution of (3) exists, is unique and may be represented by (2).
The solution z(t) is weakly differentiable in H, i.e. the weak limit limδ→0(z(t +
δ) − z(t))/δ = dz(t)/dt there exists a.e. on [0, T ] in weak topology of H.

2 The System and Measurements

Consider a controlled system of the form

ż + Az = Bu(t) + Cξ(t), z ∈ H. (4)

Suppose that the operator A is defined by continuous bilinear form a(u, v) given
on a separable Hilbert space V ⊂ H; B and C are continuous linear operators
from Hilbert spaces H1 and H2 to the H, respectively. Let L2(0, T,Hi) be the
Hilbert space of weakly measurable functions f(t) ∈ Hi such that

∫ T

0
‖f(t)‖2dt ≤

∞. According to Subsect. 1.1, an each pair of functions u(·) ∈ L2(0, T ;H1) and
ξ(·) ∈ L2(0, T ;H2) along with an initial state z0 ∈ H defines a unique weak
solution z(t; z0, u, ξ) of (4). This solution satisfies the equation

d〈z(t), v〉/dt + a(z(t), v) = 〈Bu(t) + Cξ(t), v〉, ∀v ∈ V, z(0) = z0,

and may be represented as

z(t) = S(t)z0 +
∫ t

0

S(t − s)(Bu(s) + Cξ(s))ds. (5)
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In what follows the state z(t) of (4) or (5) is unknown. The available information
about it may be described as follows. Given a uniform partition 0 = t0 < t1 <
· · · < tN = T of [0, T ], ti − ti−1 = T/N = δ, at the instants ti a vector yi =
Gz(ti−1) + wi is observed, where G : H → Rm is a finite-dimensional linear
operator. Unknown disturbances ξ(·), the initial state z0, and vectors wi are
restricted by the joint constraint

‖z0‖2P0
+

∫ T

0

‖ξ(t)‖2Qdt +
N∑

i=1

‖wi‖2R ≤ 1. (6)

Here and further we use the notation ‖u‖2F = 〈u, Fu〉 for a self-adjoint positive
and coercive operator F ; 〈· , ·〉 is an inner product in the corresponding space.
The operators P0, Q, and the matrix R are supposed to be similar to F . Besides,
we have a constraint on the control u(·):

∫ T

0

‖u(t)‖2F dt ≤ 1. (7)

2.1 Transformation to a Discrete-Time System

System (5) with measurements and controls may be represented in a discrete-
time form

zi = Szi−1 + ηi + ξi, where S = S(δ), zi = z(ti), (8)

ηi =
∫ ti

ti−1

S(ti − s)Bu(s)ds, ξi =
∫ ti

ti−1

S(ti − s)Cξ(s)ds,

yi = Gzi−1 + wi, i ∈ 1 : N.

Let us derive constraints on parameters in (8). Denote by ξN
i the set of elements

{ξi, . . . , ξN}. The symbol wN
i has the same meaning. If i = 1, we write ξN =

ξN
1 . Find first the support function (see, for example, [6]) of all the parameters

{z0, ξ
N , wN} according to constraints (6). Let χA(s) be a characteristic function.

We have

max
z0,ξ(·),wN

{
〈k, z0〉 +

N∑
i=1

(
〈li, ξi〉 + 〈mi, wi〉

)}

= max
z0,ξ(·),wN

{
〈k, z0〉 +

∫ T

0

〈 N∑
i=1

χ[ti−1,ti](s)C
∗S∗(ti − s)li, ξ(s)

〉
ds +

N∑
i=1

〈mi, wi〉
}

=

√√√√〈k, P −1
0 k〉 +

N∑
i=1

(
〈li,Cli〉 + 〈mi, R−1mi〉

)
,
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where the self-adjoint positive operator C is defined as

Cl =
∫ δ

0

S(δ − s)CQ−1C∗S∗(δ − s)lds

=
∫ ti

ti−1

S(ti − s)CQ−1C∗S∗(ti − s)lds.

that does not depend on i. Doing the same with the control, we obtain

max
u(·)

{
N∑

i=1

〈li, ηi〉
}

= max
u(·)

{∫ T

0

〈 N∑

i=1

χ[ti−1,ti](s)B
∗S∗(ti − s)li, u(s)

〉

ds

}

=

√
√
√
√

N∑

i=1

(
〈li,Bli〉

)
,

where the self-adjoint positive operator B is defined as

Bl =
∫ δ

0

S(δ − s)BF−1B∗S∗(δ − s)lds. (9)

Now defining B = B1/2 and C = C1/2 we come to the conclusion.

Lemma 1. The discrete-time system (8) with constraints (6), (7) is equivalent
to the system

zi = Szi−1 + Bui + Cvi, with constraints (10)
N∑

i=1

‖ui‖2 ≤ 1, ‖z0‖2P0
+

N∑

i=1

(‖vi‖2 + ‖wi‖2R
) ≤ 1,

yi = Gizi−1 + wi, i ∈ 1 : N.

Proof. It follows from the fact that the support functions of the sets {BuN} and
{z0,CvN , wN} coincide with functions found above. �
Note that the states zi of system (10) are not the approximations of z(ti). We
have the equality zi = z(ti) under some parameters in the systems.

3 Estimation for Discrete-Time Evolutionary Systems

For system (10) the information set Zj(y, u) (see [4]) is defined as follows.

Definition 1. The set Zj(y, u) ⊂ H is said to be informational if it consists
of all vectors zj for which there exist elements z0, vi, wi, such that Eq. (10)
are fulfilled for all i ∈ 1 : j, constraints in (10) hold, and measurements yi =
Gzi−1 + wi are valid for all i ∈ 1 : j.

Introduce the linear operator S(z, v) = Sz + Cv. The representation of Zi(y, u)
is given by
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Theorem 1. The information set is the ellipsoid Zi(y, u) = {z : ‖z−ẑi‖2Pi
+hi ≤

1} with parameters given by the formulas

P−1
i = SJ−1

i S∗ + C, Ji = Pi−1 + G∗RG, (11)
ẑi = Bui + Sži, ži = ẑi−1 + J−1

i G∗R(yi − Gẑi−1),
ẑ0 = 0, hi = hi−1 + ‖yi − Gẑi−1‖2Gi

,

h0 = 0, G−1
i = GP−1

i−1G
∗ + R−1.

The sum ‖z− ẑi‖2Pi
+hi is a minimum of relation ‖z0‖2P0

+
∑i

j=1

(‖vj‖2+‖wj‖2R
)

under the assumption that parameters z0, vj , wj submit the boundary condition
zi = z due to Eq. (10).

Proof. Theorem 1 may be proved by induction. Let ui = 0 and Fi(z, v) = ‖v‖2 +
‖yi − Gz‖2R. Introduce some axillary sets and functions:

Vi(y) = {(z, v) ∈ H × H : Vi−1(z) + Fi(z, v) ≤ 1} ,

Zi(y) = SVi(y), V0(z) = ‖z‖2P0
, i ∈ 1 : N,

Vi(zi) =

⎧
⎨

⎩

min
(z,v)∈Vi(y)

{Vi−1(z) + Fi(z, v) : zi = S(z, v)} , zi ∈ Zi(y),

2, zi �∈ Zi(y).
(12)

The set Vi(y) is said to be compartible with signal at the instant i, the set Zi(y)
is informational at the instant i. So, the sets Zi(y) are images of Vi(y) according
to (10). Let the signal yN be realized under the elements z∗

0 , v∗
i , w∗

i , i ∈ 1 : N .
Then the constraints in (10) are fulfilled with these elements. We assert that sets
Vi(y) and Zi(y) are not empty for all i ∈ 1 : N . The function Vi(zi) is equal to
the minimum of functional F̃i(z0, vi, y) = ‖z0‖2P0

+
∑i

j=1 Fj(zj−1, vj) over all the
elements z0, vi, satisfying to (10) and the boundary condition zi = S(zi−1, vi).
The informational sets Zi(y) are expressed by the inequality Zi(y) = {z ∈ H :
Vi(z) ≤ 1}. Note that the functional F̃i(z∗

0 , vi∗, y) ≤ 1 for all i ∈ 1 : N . Therefore,
the pair (z∗

i−1, v
∗
i ) ∈ Vi(y) and the element z∗

i ∈ Zi(y) ∀i. The sets in (12) are
not empty. The relation Zi(y) = {z ∈ H : Vi(z) ≤ 1} is obvious for i = 1. Indeed,
we have

V1(y) =
{
(z, v) : ‖z‖2P0

+ ‖v‖2 + ‖y1 − Gz‖2R = ‖z − ž1‖2J1
+ ‖v‖2 + h1 ≤ 1

}
,

Z1(y) = SV1(y) =
{
z : ‖z − ẑ1‖2P1

+ h1 = V1(z) ≤ 1
}

.

Here we use the known inverse operator formula R − RG(P + G∗RG)−1G∗R =
(R−1 + GP−1G∗)−1. Let the relation Zi−1(y) = {x ∈ H : Vi−1(x) ≤ 1} be valid
and formulas (11), (12), i ≥ 2, be fulfilled for i − 1. Now, from (12) it follows
that the inclusion zi ∈ Zi(y) results in the existence of pair (zi−1, vi) ∈ Vi(y),
for which zi = S(zi−1, vi). Therefore, Vi(zi) ≤ 1. Conversely, if the last inequal-
ity is valid, then by definition there exists a pair such that zi = S(zi−1, vi) ∈
SVi(y) = Zi(y). Moving back in indexes, we obtain that the inclusion z ∈ Zi(y)
is equivalent to the existence of the set (z0, vi), for which F̃i(z0, vi, y) ≤ 1 and
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z = S(zi−1, vi) under Eq. (10). So, we get minz0,vi F̃i(z0, vi, y) = Vi(z) under the
boundary condition z = S(zi−1, vi). Suppose that Vi−1(z) = ‖z−ẑi−1‖2Pi−1

+hi−1,
i ≥ 2. Then

Vi(y) =
{
(z, v) : ‖z − ẑi−1‖2Pi−1

+ hi−1 + ‖v‖2 + ‖yi − Gz‖2R
= ‖z − ži‖2Ji

+ ‖v‖2 + hi ≤ 1
}
,

Zi(y) = SVi(y) =
{
z : ‖z − ẑi‖2Pi

+ hi = Vi(z) ≤ 1
}

.

We see that values yi − Gẑi−1 and hi do not depend on controls ui. Therefore,
the values Bui are added additively only for the second equality in (11). �

4 Problem Formulation and General Solution

We are going to formulate a problem in which processes of estimation and control
are separate in time. At first the estimation is provided under given control and
we get the information set Zi(y, u). After that the minimax off-line procedure is
realized. Our main control problem consists in finding of the instant i of finishing
observation and passing to the new control on the rest of time.

4.1 Minimax Off-Line Control

From now on we introduce the other compatible set Vi(y, u) of uncertain param-
eters consisting of all pairs (zi, v

N
i+1) that are compatible with the signal yi. The

projection projHVi(y, u) of the compatible set on H coincides with the infor-
mation set Zi(y, u). This new compatible set is defined by the formula

Vi(y, u) =

⎧
⎨

⎩
(z, vN

i+1) : ‖z − ẑi‖2Pi
+

N∑

j=i+1

‖vj‖2 ≤ 1 − hi

⎫
⎬

⎭
,

where parameters are given in (11). Let ũ = uN
i+1 be some controls and ZN (ũ |

Vi(y, u)) be the attainability domain of first equation in (10) with respect to
Vi(y, u) under given further controls ũ. Consider some functional Φ(Z) that
defined on all bounded sets Z ⊂ H. The primary objective of controls consists
in minimization of the cost Φ(ZN (y, u)) that depends on the information set.
At the initial instant we choose optimal control uN,0 that solves the problem
Φ(ZN (uN | V0)) → minuN = r0 and after that it is corrected. Here V0 ={

(z, vN ) : ‖z‖2P0
+

∑N
j=1 ‖vj‖2 ≤ 1

}
and the measurements are not taken into

account.
At any instant i = 1, . . . , N we solve the auxiliary control problem

Φ(ZN (u | Vi(y, u0))) → min
u∈Ui(u0)

= ri(y, u0), (13)

where u0 = uN,0 is a control chosen at initial instant; Ui(u0) is a set of controls
after the instant i, i.e. Ui(u0) =

{
uN

i+1 :
∑N

j=i+1 ‖uj‖2 ≤ 1 − ∑i
j=1 ‖u0

j‖2
}
.

Suppose that there exists at least one optimal control uN,i
i+1 in problem (13).
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4.2 Finding of the Observation Stopping Time

Now we explain how to find the instant i of finishing observation and passing
to the new optimal control uN,i

i+1 of problem (13) on the rest of time. To do the
choice we compare the value ri(y, u0) with value of forecasting

ri(s, yi, us) = max
ys
i+1∈Ys,i(yi,us)

rs(y, u), (14)

where Ys,i(yi, us) = {ys
i+1} is a set of all possible continuations of signal yi up to

the instant s > i. The value (14) is the worst result of control if the system is
located in the position {yi, ui} and up to the instant s the control us

i+1 is used.
We set ri(i, yi, ui) = ri(y, u). Our problem can be repeated [14,15]. Introduce
one more value r i(y, u) = mins∈i:N ri(s, yi, us). Let us be already located in
position {yi, ui}, where ui is a part of control uN previously found. In this case,
we verify the condition r i(y, u) < ri(y, u), (i ∈ 1 : N − 1). If this holds, then
the control uN

i+1 does not change. Otherwise, we pass to the new control uN,t
t+1,

delivering the minimum in (13). So, the first instant i such that

r i(y, u) ≥ ri(y, u), where i ∈ 1 : N − 1, (15)

we call the observation stopping time. In this instant i the observation is stopped
and we pass the optimal off-line control in problem (13).

Consider some particular cases. Let u = uN,0. If r 1(y, u) ≥ r1(y, u), then
the observation is stopped at first instant. From the other hand, suppose that
relations (15) are not valid for all i ∈ 1 : N − 1 and

∑N
i=1 ‖u0

i ‖2 < 1. In this
case, the observation continues all the time, but the resource of control is not
exhausted at the last instant N . Therefore, we can solve the minimax problem
Φ(ZN (y, u)) → minuN

, ‖uN‖2 ≤ 1 − ∑N
i=1 ‖u0

i ‖2, and regard optimal ũN as an
additional control action at the last instant.

4.3 An Algorithm of Repeated Correction

If we can continue observation after any stopping time, then the following algo-
rithm of repeated correction can be proposed.

1. We find the value r0 and optimal control uN,0 before any observations.
2. At i = 1 we decide if this control has to be changed, i.e. if the value

r 1(y, uN,0) < r1(y, u1,0) then the control uN,0 should be kept. Otherwise,
we pass to the new control uN,1

2 , delivering the minimum in (13).
3. In position {yi, ui}, where ui is a part of control uN previously found, we

verify the condition (15), where i ∈ 1 : N − 1. If this holds, then we pass to
the optimal control uN,i

i+1, delivering the minimum in (13).
4. In any case, if at the last instant N the inequality

∑N
i=1 ‖ui‖2 < 1 is

obtained, we solve the minimax problem Φ(ZN (y, u)) → minuN
, ‖uN‖2 ≤

1−∑N
i=1 ‖ui‖2, and regard optimal ũN as an additional control action at the

last instant.
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According to the algorithm, we obtain the sequence {τ1, τ2, . . . } of instants where
control has been changed. This sequence depends on the signal. In particular, the
sequence may be empty when observations are bad for control, or it may coincide
with the set 1 : N − 1, when, on the contrary, the observations give essential
information. The values ri = rτi(y, u) form the nonincreasing sequence. Here the
strong inequalities ri > ri+1 hold if τi+1 − τi ≥ 2. In the case τi+1 − τi = 1 the
strong inequality ri > ri+1 holds if and only if the signal yτi+1 is not the worst.

Instead of inequality (15) at every instant i < N , we may check the simpler
condition rt(t+1, yt, ut+1) < rt(y, u). If it is fulfilled, then the control uN

t+1 does
not change. Otherwise, we pass to the new control uN,t

t+1 in problem (13).

5 A Special Case of the Terminal Cost

Let the terminal functional has the form Φ(Z) = maxz∈Z ‖Δz‖, where Δ : H →
Rk is a linear finite-dimensional operator and ‖ · ‖ is the Euclidean norm. In this
case, we can obtain formulas (13)–(15) in more detail.

First of all we describe all the continuations of the signal.

Lemma 2. A signal ys
i+1 is a continuation of the signal yi iff there exists a

sequence ϕs
i+1 such that

s∑

j=i+1

‖ϕi‖2Gi
≤ 1 − hi, and ẑj = Buj + S(ẑj−1 +

J−1
j G∗Rϕj), yj = Gẑj−1 + ϕj , for j ∈ i + 1 : s.

This lemma follows from Eq. (12). Below we use vectors l ∈ Rk as column-vectors
and the symbol l′ is used for row-vector. Then we have the relation

ri(y, u) = max
l′l≤1

{

γi(l)ẑi −
(

1 −
i∑

j=1

‖ui‖2
)1/2( N∑

j=i+1

γj(l)Bγ∗
i (l)

)1/2

+ (1 − hi)1/2 (π0(i)(1 − l′l) + l′ΔPN,iΔ
∗l)1/2

}

, (16)

where γj(l) = γj+1(l)S, γN (l) = l′Δ; Pj,i = SPj−1,iS
∗ + C, Pi,i =

P−1
i ;π0(i) = maxl′l≤1 l′ΔPN,iΔ

∗l. Using Lemma 2, we obtain

ri(s, y
i, ui) = max

l′l≤1

{
γi(l)ẑi +

s∑
j=i+1

γj(l)Buj −
(

1 −
s∑

i=1

‖ui‖2

)1/2

·
( N∑

j=s+1

γj(l)Bγ∗
j (l)

)1/2

+ (1 − hi)
1/2(π0(s)(1 − l′l) + l′ΔPN,iΔ

∗l)1/2

}
. (17)

Formulas (16)–(17) are established similarly to [4,9]. In addition, let us note that
optimal control is on the formula

u0
j = −Bγ∗

j (l0)
(

1 −
j∑

i=1

‖ui‖2
)1/2( N∑

i=j+1

γi(l0)Bγ∗
i (l0)

)−1/2

, j > i,

where l0 is a maximizer in formula (16) which does not convert the corresponding
sum into zero.
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6 A Finite-Dimensional Approximation

Let us return to general relations in Sect. 1, where V is a separable Hilbert space
and a(u, v) is a bilinear form with properties:

a(v, v) ≥ α‖v‖2, a(u, v) ≤ β‖u‖‖v‖. (18)

Given finite-dimensional subspace F ⊂ V , define Ritz’s projector Π : V → F as
a(v, u − Πu) = 0, ∀v ∈ F (see [16]). The following estimate holds:

‖u − Πu‖ ≤ βd(u,F)/α, where d(u,F) = min
v∈F

‖u − v‖. (19)

Consider an increasing sequence Fn of finite-dimensional subspaces Fn ⊂
Fn+1 ⊂ V such that the distance d(u,Fn) → 0 as n → ∞ ∀u ∈ V . Such a
sequence is called complete. The proof of following lemma may be found in [16]
or somewhere.

Lemma 3. Let u : [0, T ] → V be a continuous function and Fn be a complete
sequence of finite-dimensional subspaces. Then the real function ‖u(t)−Πnu(t)‖
tends to zero uniformly in t ∈ [0, T ], where Πn : V → Fn is the Ritz projector.

Let H be another Hilbert space and let the space V ⊂ H be densely imbedded
in H as in Sect. 1. The linear operator A with a dense domain D(A) ⊂ V has
been defined as a(u, v) = 〈Au, v〉H , ∀v ∈ V . The dual operator A∗ is defined
by the relation a(u, v) = 〈u,A∗v〉H , ∀u ∈ V . The operator −A∗ is a infinitesi-
mal generator for the semigroup S∗(t) (see, for example, [17]). In addition, the
function ψ(t) = S∗(t)ψ, where ψ ∈ H, is defined a weak solution of equation

d〈v, ψ(t)〉H/dt + a(v, ψ(t)) = 0 ∀v ∈ V, ψ(0) = ψ.

This equation is similar to (1). Let us remind that the inclusion z0 ∈ D(A)
implies z(t) = S(t)z0 ∈ D(A) for all t ≥ 0 and

dz(t)/dt + Az(t) = 0, (20)

i.e. z(t) is a strong solution of Eq. (20).
Suppose that the increasing sequence Fn ⊂ V of finite-dimensional subspaces

is complete. Consider the problem

d〈zn(t), vn〉/dt + a(zn(t), vn) = 〈f(t), vn〉 ∀vn ∈ Fn, zn(0) = zn, (21)

where one needs to find a function zn(t) ∈ Fn. The problem (21) is called
the Galerkin-type finite-dimensional approximation of problem (1). We need the
following

Theorem 2 ([18]). Let zn → z in the space H as n → ∞. Then the solution
zn(t) of problem (21) uniformly converges on [0, T ] to the solution z(t) of problem
(1) in the space H.
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Let e1, . . . , en be a basis in the space Fn. We set

zn(t) =
n∑

j=1

qj(t)ej , zn =
n∑

j=1

qjej .

A finite-dimensional approximation of problems in Sect. 4 with respect to the
complete sequence Fn of subspaces is as follows. Problem (21) is equivalent to
the solution of differential equations in matrix form:

Mq̇ + Kq = f(t), q0 = [q1; . . . ; qn], f(t) = [〈f(t), e1〉; . . . ; 〈f(t), en〉],

where M (detM �=0) and K have elements 〈ei, ej〉 and a(ei, ej) respectively. The
solution of the system for our problems may be written similarly to (5):

q(t) = Sn(t)q0 +
∫ t

0

Sn(t − s)(Bnu(s) + Cnv(s))ds, (22)

where Sn(t) = exp(−M−1Kt) is the transition matrix having n × n-dimension,
u(t) and v(t) are n-dimensional measurable functions. Matrices Bn and Cn

have the similar structure and represent a multiplication of matrix M−1 and
the square root of matrices with elements 〈ei, BF−1B∗ej〉 and 〈ei, CQ−1C∗ej〉
respectively. Constraints (6) and (7) are transformed to

‖q0‖2Pn
0

+
∫ T

0

‖v(s)‖2ds +
N∑

i=1

‖wi‖2R ≤ νn,

∫ T

0

‖u(s)‖2ds ≤ μn. (23)

Measurement equation from (8) has the form

yi = Gnq(ti) + wi, Gn = [Ge1, . . . , Gen] ∈ Rk×n. (24)

Problems of Sects. 4 and 5 may be solved for relations (22)–(24) as described
above.

Let us explain the appearance of numbers μn and νn in constraints (23).
The matter is that the system (10) is infinite-dimensional and, therefore, the
signal yN of this system in some cases can not be realized in finite-dimensional
approximation (22)–(24) if we set μn = 1, νn = 1. But under some μn > 1,
νn > 1 the finite-dimensional formulas like (13)–(17) are valid. Moreover, we get

Theorem 3. There exist sequences μn ↓ 1, νn ↓ 1 as n → ∞ such that for-
mulas like (11)–(17) for finite-dimensional approximation (22)–(24) hold and
rn
i (y, u) → ri(y, u), rn

i (s, yi, ui) → ri(s, yi, ui) as n → ∞ in relations (16), (17).

In the general case, it is hard to obtain the estimates of velocity for convergence
μn ↓ 1, νn ↓ 1 with respect to parameters α, β in (18), (19).
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6.1 An Application to Heat Equation

Let the controlled system be described by the equations

zt = zxx + u(t)f(x), x ∈ [0, l], t ≥ 0, with boundary conditions (25)
zx(t, 0) = z(t, 0), zx(t, l) = −z(t, l).

Here f(x) is a smooth function on [0, l], u(t) is a control. This system describe the
heat process for the uniform bar. In our situation H1 = R, C = 0, V = H1(0, l),
H = L2(0, l) where H1(0, l) is the Sobolev space with parameter k = 1. The
operator B : R → L2(0, l) has the form Bu = uf(x). Dual operator B∗ :
L2(0, l) → R is written as B∗φ =

∫ l

0
f(x)φ(x)dx, φ ∈ L2(0, l). The weak form of

considered system is obtained by the multiplication of (25) by φ ∈ H1(0, l) with
subsequent integration on [0, l] using boundary conditions. The form a(φ, ψ) may
be written as

a(φ, ψ) =
∫ l

0

φ̇(x)ψ̇(x)dx + φ(l)ψ(l) + φ(0)ψ(0).

The coercivity follows from Friedrich’s inequality. So, relation (1) for system (25)
looks like

∂

∫ l

0

z(t, x)φ(x)dx/∂t + a(z(t, ·), φ(·)) = u(t)
∫ l

0

f(x)φ(x)dx

for all φ ∈ H1(0, l), z(0, x) = z0(x).
Let us divide the segment [0, l] by n subsegments of length l/n. Let xi,

i ∈ 0 : n, be the points of partition. For the space Fn we consider piecewise-
linear functions ei(x), for which ei(xi) = 1 and ei(xj) = 0 if i �= j. The sequence
of finite-dimensional subspaces Fn with basis ei(x), i ∈ 0 : n, is complete. There-
fore, we can perform the approximation. Suppose that measurement equations
are of the form

yi =
∫ l

0

b(x)z(ti−1, x)dx + wi, i ∈ 1 : N, where b(·) ∈ L2(0, l).

Consider the (n + 1) × (n + 1)-matrices M with elements Mij =
∫ l

0
ei(x)ej(x)dx

and K with elements Kij = a(ei, ej). The M is a three-diagonal symmetric
matrix, where M00 = Mnn = l/(3n) and other diagonal elements are equal to
2l/(3n). The secondary diagonal elements are equal to l/(6n). The K is also
a three-diagonal symmetric matrix, where K00 = Knn = n/l + 1 and other
diagonal elements are equal to 2n/l. The secondary diagonal elements of K are
equal to −n/l. If f(x) ≡ 1, then we obtain the finite-dimensional system

Mq̇ + Kq = u(t)f , where f = l[1; 2; . . . ; 2; 1]/(2n) ∈ Rn+1. (26)

Let b(x) ≡ 1. Then measurement Eq. (24) has the form

yi = Gnq(ti−1) + wi where Gn = f ′.
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Suppose that initial constraints (6), (7) may be written as

∫ l

0

z2(0, x)dx +
N∑

i=1

w2
i ≤ 1,

∫ T

0

u2(t)dt ≤ 1.

It follows from this that constraints (23) are:

‖q0‖2M +
N∑

i=1

w2
i ≤ μn,

∫ T

0

u2(t)dt ≤ 1.

We need not to increase the constraints for u(·), but we do it for q0 and wi in
order to include the sequence yN in the scope. After that we need to convert
the continuous system (26) to discrete one of the type (9), (10). Many solved
examples of such a finite-dimensional problems where considered in [12,13,19].

7 Conclusion

We considered a control problem with incomplete information for abstract
parabolic control systems in Hilbert space. Information about the system state
are known in discrete instants. According to measurements, the information set
was introduced that contained the true state of the system. This set included all
the states of the system that were compatible with the measurements. For the
terminal criterion depending of the information set, we suggested some state-
ments of the problem based on the separation of control and observation pro-
cesses. The optimal instants of transition from estimation to control were looked
for as well. The approach was applied to distributed systems with partial deriva-
tives. The approximation scheme was suggested and example with heat equation
was considered. In this research some aspects demand more detailed study. For
example, we need to obtain the estimates for values μn, νn, and convergence
speed for parameters in Theorem 3. It is interesting to expand the approach to
the case of continuous measurements.
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Introduction

In the present paper, we discuss the following three related problems.

(1) Exact inequality between the uniform norm (more exactly, the norm of the
space C(−∞,∞)) of the kth order derivative of a function, the variation
of the Fourier transform of the function, and the L∞-norm of its nth order
derivative, 0 < k < n. This inequality can be considered as a nonclassical
variant of the Kolmogorov inequality.

(2) Stechkin’s problem on the best uniform approximation of the kth order
differentiation operator on the class of functions with bounded nth order
derivative, 0 < k < n, by bounded operators in the corresponding spaces.

(3) Optimal (i.e., with the smallest possible error) calculation in the space
C(−∞,∞) of the kth order derivative of a function with bounded nth order
derivative, 0 < k < n, by the Fourier transform of the function approx-
imately given with a known error in measure (and, in particular, in the
space L(−∞,∞)).

We study all three problems simultaneously, taking into account their inter-
relation. Section 2 is devoted to these questions.

In Sect. 1, we discuss three similar problems in the space C(−∞,∞) of con-
tinuous bounded functions on the axis: the classical variant of the Kolmogorov
inequality, Stechkin’s problem on the best approximation of differentiation oper-
ators by bounded operators, and optimal calculation of derivatives of smooth
functions given approximately in the uniform norm on the axis. Solutions of
all these three problems are known; we present information about these prob-
lems and the methods for their study to the extent that need for the further.
This topic can be found, for example, in the author’s review paper [3] and in
monographs [5,12].

1 Three Interrelated Problems in the Space of
Continuous Bounded Functions on the Axis

All functional spaces considered in what follows are complex. The space L∞ =
L∞(−∞,∞) consists of measurable essentially bounded functions on the axis
and is equipped with the norm

‖f‖L∞ = ess sup{|f(t)| : t ∈ (−∞,∞)}.

The space L∞ contains the space C = C(−∞,∞) of continuous bounded func-
tions on the axis; it is equipped with the norm

‖f‖C = sup{|f(t)| : t ∈ (−∞,∞)}.

The space C(−∞,∞) contains the space C0 = C0(−∞,∞) of functions vanishing
at infinity.
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1.1 Kolmogorov Inequality

Let Wn = Wn
∞,∞, n � 1, be the space of functions f ∈ C that are n − 1 times

continuously differentiable on the axis and such that the derivative f (n−1) of
order n − 1 is locally absolutely continuous, and the nth order derivative f (n)

belongs to the space L∞.
The following inequality holds on the set Wn with finite constant (indepen-

dent of the function f but essentially depending on k and n) for 0 < k < n:

‖f (k)‖C � Cn,k‖f‖(n−k)/n
C ‖f (n)‖k/n

L∞ , f ∈ Wn. (1.1)

This fact was proved [11] by Hardy and Littlewood in 1912.
Inequality (1.1) with exact constant was first obtained [10] by Hadamard for

n = 2 and k = 1 in 1914. Bosse (alias Shilov, a student of A.N. Kolmogorov,
1937) obtained [6] the exact inequality (1.1) for n = 3, 4 and all 1 � k < n and for
n = 5 and k = 2. In 1939, Kolmogorov found [13] an exact constant in inequality
(1.1) for all 1 � k < n; his method is the elegant Kolmogorov comparison
theorem. Kolmogorov’s result is one of the most striking and important in this
subject area; in this connection, inequality (1.1) and similar inequalities with
other norms on the axis and semi-axis are often called Kolmogorov inequalities.

The known Favard–Akhiezer–Krein function

fn(t) =
4
π

∞∑

�=0

sin ((2� + 1)t − nπ/2)
(2� + 1)n+1

, t ∈ R, (1.2)

is extremal in inequality (1.1). Let us mention some properties of function (1.2)
(see, for example, [14, Ch. 5, Sect. 5.4]):

f (m)
n = fn−m, 1 � m � n;

f0(t) =
4
π

∞∑

�=0

sin ((2� + 1)t)
(2� + 1)

= sgn sin t, t ∈ R.

The uniform norm of function (1.2) is

Mn = ‖fn‖C =
4
π

∞∑

�=0

(−1)�(n+1)

(2� + 1)n+1
. (1.3)

Using the known values of the sums of the corresponding numerical series (see,
for example, [15]), we, in particular, obtain

M0 = 1, M1 =
π

2
, M2 =

π2

8
, M3 =

π3

24
, M4 =

5π4

384
.

The extremality of the function fn and its properties mentioned above imply
that

Cn,k = Mn−k (Mn)−n−k
n .
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1.2 Approximation of the Differentiation Operator by Bounded
Operators (Stechkin’s Problem)

Denote by B = B(C,C) the set of all bounded linear operators in the space C

and by B(N), where N > 0, the set of operators T ∈ B such that .
In the space Wn, consider the class of elements

Qn = Qn
∞,∞ = {f ∈ Wn : ‖f (n)‖L∞ � 1}.

Let 0 < k < n be integer. For an operator T ∈ B, define

U(T ) = sup{‖f (k) − Tf‖C : f ∈ Qn}. (1.4)

The value (1.4) can be interpreted as the deviation (in the space C) of the
operator T from the differentiation operator Dk = dk/dtk on the class Qn. For
N > 0, the value

En,k(N) = inf{U(T ) : T ∈ B(N)} (1.5)

is the best approximation (in the space C) of the differentiation operator Dk on
the class Qn by the set of bounded linear operators B(N).

This is Stechkin’s problem; it consists in calculating value (1.5) and finding
an extremal operator at which the infimum in (1.5) is attained; we will also call
it problem (1.5), and sometimes the problem En,k(N).

Stechkin’s result about the connection between problem (1.5) and inequal-
ity (1.1) is very useful in this topic. As a special case of Stechkin’s more general
result [17, inequality (6)], value (1.5) and the best constant in (1.1) are related
by the inequality (see details in [3, Sects. 1, 4])

En,k(N) � k

(
Cn,k

n

)n
k

(
N

n − k

)−n−k
k

, N > 0. (1.6)

In fact, we have the equality

En,k(N) = k

(
Cn,k

n

)n
k

(
N

n − k

)−n−k
k

, N > 0. (1.7)

This fact was first obtained in [2] as a consequence of Domar’s result [8]. Later
on, it became clear that this fact is a special case of a more general Gabushin’s
result [9] about the best approximation of unbounded functionals by bounded
ones.

The solution of problem (1.4) is known at present. First, note an auxiliary
fact. Value (1.4) is homogeneous by N ; more exactly,

En,k(N) = N−γEn,k(1), γ =
n − k

k
. (1.8)

The origin of this formula is as follows. Following Stechkin, we assign to an
operator T ∈ B(N) an operator Th, h > 0, by the formula

(Thf)(t) = h−k(Tfh)(th−1), (1.9)



438 V. V. Arestov

in which fh(u) = f(hu). It is easy to verify that

‖Th‖C→C = h−k‖T‖C→C ; (1.10)

U(Th) = hn−kU(T ). (1.11)

From definition (1.9) and property (1.10), we conclude that, under the mapping
T → Th, the set of operators B(N) is mapped one-to-one onto the set B(h−kN).

As a consequence of (1.11), we have the following formula for all h > 0 and
N > 0:

En,k(h−kN) = hn−kEn,k(N), (1.12)

which is more general in comparison with (1.8). Moreover, an operator T ∈ B(N)
is extremal in the problem En,k(N) if and only if the operator Th is extremal in
the problem En,k(h−kN).

It follows from the above argument that it is sufficient to solve problem (1.5)
for a specific N ; formulas (1.12) and (1.9) enable us to obtain its solution for all
values of the parameter N .

First exact results in problem (1.5) were obtained by Stechkin. He proved
[16,17] that, for n = 2 and n = 3 and 1 � k < n, the following classical (finite-
difference) operators Th

n,k are extremal:

(Th
2,1f)(t) = (Th

3,1f)(t) =
f(t + h) − f(t − h)

2h
, N = h−1, (1.13)

(Th
3,2f)(t) =

f(t + h) − 2f(t) + f(t − h)
h2

, N =
4
h2

.

Arestov found [1] the solution of problem (1.5) for n = 4 and 5, and Buslaev
solved [7] the problem for arbitrary n � 6. For n � 4, extremal operators are
infinite with uniform nodes. More exactly, for example, the extremal operator
for k = 1 has the form

Tn,1f(t) = h−1
∞∑

�=0

α�(f(t + (2� + 1)h) − f(t − (2� + 1)h));

the sequence is the sum of [n/2]−1 geometric progressions. In the proof
of these results, the lower bound (1.6) and the exact Kolmogorov inequality (1.1)
were used.

1.3 Optimal Differentiation of Approximately Given Functions

Kolmogorov inequality (1.1) and Stechkin’s problem (1.5) are related to one
more important problem of optimal differentiation in the space Wn of functions
given approximately with a known error in the uniform norm (see [3] and the
references therein).

Suppose that we need to calculate the kth order derivative f (k) of a function f
in the situation when: (1) the function f is given approximately with a known
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error δ > 0; more exactly, instead of the function f , we know a function g =
fδ ∈ C with the property ‖f − fδ‖C � δ; (2) we know the a priori information
about the function f that f ∈ Wn and the specific bound for the norm of the
highest derivative holds: . For definiteness, we assume that A = 1,
i.e., f ∈ Qn. The problem is to construct a method that, being applied to the
function fδ under the given information, recovers the kth order derivative of the
function from the class Qn optimally (in the best way).

The exact statement of the problem is as follows. Let O = O(C,C) be the
set of arbitrary (single-valued) mappings of the space C to itself. For a mapping
T ∈ O and a parameter δ > 0, define

Δ(T ) = Δδ
n,k(T ) = sup{‖f (k) − Tg‖C : f ∈ Qn, g ∈ C, ‖g − f‖C � δ}. (1.14)

Quantity (1.14) can be interpreted as the error of recovery of the differentiation
operator Dk = dk/dtk on functions from the class Qn given with the error δ by
means of the method T . The smallest value

ρn,k(δ) = inf{Δ(T ) : T ∈ O} (1.15)

of quantity (1.14) over all mappings T ∈ O is the smallest recovery error. A map-
ping T δ

n,k ∈ O at which the infimum in (1.15) is attained is called an optimal
recovery method.

Let us present the following well known considerations (see, for example,
[3] and the references therein), which reflect the relation between Stechkin’s
problem (1.5), the (exact) inequality (1.1), and problem (1.15). For an operator
T ∈ B(N) and functions f ∈ Qn and g ∈ C with the property ‖f − g‖ � δ, we
have

‖f (k) − Tg‖C � ‖f (k) − Tf‖C + ‖T (f − g)‖C � U(T ) + Nδ.

This implies the bound

ρn,k(δ) � En,k(N) + Nδ, N > 0.

Substituting (1.7) into this inequality, we obtain

ρn,k(δ) � k

(
Cn,k

n

)n
k

(
N

n − k

)−n−k
k

+ Nδ, N > 0.

The right-hand side of this inequality, as a function of variable N > 0, takes the
smallest value equal to Cn,kδ

n−k
n for

N = N(δ) =
n − k

n
Cn,kδ− k

n . (1.16)

Consequently, the inequality holds. On the other hand, the
inverse inequality also holds; see details and the references in [3, Sect. 2]. Hence,
we conclude that there holds the equality

ρn,k(δ) = Cn,kδ
n−k
n . (1.17)
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Moreover, if Tn,k is an extremal operator in Stechkin’s problem (1.5) for
value (1.16) of the parameter N , then this operator is an optimal method in
problem (1.15).

2 Three Problems in Spaces of Functions with Exactly
or Approximately Given Fourier Transform

In what follows, we refer to some results of [4] using the notation of the present
paper.

2.1 A Nonclassical Variant of the Kolmogorov Inequality

Let L = L(−∞,∞) be the space of (complex-valued) measurable functions f
summable on the numerical axis R = (−∞,∞); the space L is equipped with
the norm

‖f‖L =
∫

|f(t)| dt.

Hereinafter, we omit the integration set in integrals over the axis. For a function
f ∈ L, its Fourier transform f̂ and inverse Fourier transform qf are defined by
the formulas (see, for example, [18])

f̂ (t) =
∫

e−2πtηif(η) dη, qf (t) =
∫

e2πtηif(η) dη.

In what follows, we apply the Fourier transform, the inverse Fourier trans-
form, and some other classical operations in functional spaces to more general
objects, which can be interpreted as generalized functions. Let S be the (topo-
logical vector) space of fast decreasing infinitely differentiable functions on R,
and let S ′ be the corresponding dual space of generalized functions (see, for
example, [18]). We use the standard notation 〈θ, φ〉 for the value of a functional
θ ∈ S ′ at a function φ ∈ S . The space S ′ contains the set L of measurable
functions f locally summable on the real axis and increasing at infinity not faster

than a degree of |t|, more exactly, satisfying the condition
∫

(1+|t|)λ|f(t)|dt < ∞
with some exponent λ = λ(f) ∈ R. The formula

〈f, φ〉 =
∫

f(t)φ(t)dt, φ ∈ S ,

puts in correspondence to a function f ∈ L a functional f ∈ S ′.
For a functional θ ∈ S ′, the derivative of order n � 1 is the functional

θ(n) ∈ S ′ defined by the relation 〈θ(n), φ〉 = (−1)n〈θ, φ(n)〉, φ ∈ S . The Fourier
transform of a functional θ ∈ S ′ is the functional θ̂ ∈ S ′ acting by the formula

〈θ̂ , φ〉 = 〈θ, φ̂〉, φ ∈ S .
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Denote by V the space of (complex-valued) bounded Borel measures on
(−∞,∞). We will identify this space with the set of (complex-valued) func-
tions z of bounded variation on (−∞,∞) whose real and imaginary parts at the
discontinuity points are between the limits on the right and on the left. The
norm in the space V is the complete variation

∨
z of a measure (a function)

z ∈ V .
Define the space F = qV = {f ∈ C : f̂ ∈ V } of functions f ∈ C whose Fourier

transforms are bounded Borel measures (in general, complex-valued) on the axis;
more exactly, the set of functions representable in the form

f(t) =
∫

e2πtηi dμ(η), where μ = μf = f̂ ∈ V. (2.1)

We will denote by ‖f‖F the complete variation
∨

μ of the measure μ in (2.1).
The space F = qV is a Banach space with respect to this functional.

For n � 1, consider the space Y n = F ∩ Wn
∞,∞ of functions f ∈ F that are

n−1 times continuously differentiable on (−∞,∞) and such that the derivatives
f (n−1) of order n−1 are locally absolutely continuous on the axis, and f (n) ∈ L∞.
The embedding Y n ⊂ Wn

∞,∞ is valid; moreover, if f ∈ Y n, then ‖f‖C �
∨

f̂ .
Therefore, the classical variant (1.1) of the Kolmogorov inequality implies the
following inequality on the set Y n:

‖f (k)‖C � Kn,k

(∨
f̂
)(n−k)/n

‖f (n)‖k/n
L∞ , f ∈ Y n. (2.2)

The best constants in this inequality and inequality (1.1) are related as follows:

Kn,k � Cn,k. (2.3)

As we will see below, the latter inequality, depending on the values of the param-
eter n, can turn into an equality but can also be strict.

The following statement about function (1.2) will be used in what follows.

Lemma 1. For all n � 1, the function fn belongs to the space F and

‖fn‖F = M∗
n, M∗

n =
4
π

∞∑

�=0

1
(2� + 1)n+1

. (2.4)

Proof. Function (1.2) can be written in the exponential form

fn(t) =
2
πi

∞∑

�=0

1
(2� + 1)n+1

(
e−inπ/2ei(2�+1)t − einπ/2e−i(2�+1)t

)
. (2.5)

Using the Dirac δ-function, we define the measure dμn on the axis by the relation

dμn(η) =
2
πi

∞∑

�=0

e−inπ/2

(2� + 1)n+1
δ(η − η�) − 2

πi

∞∑

�=0

einπ/2

(2� + 1)n+1
δ(η + η�), (2.6)
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where η� =
2� + 1

2π
, � � 0. Representation (2.5) of the function fn by means of

measure (2.6) can be written in the form

fn(t) =
∫ ∞

−∞
e2πηtidμn(η) = |μn(t). (2.7)

Representation (2.7) means that fn ∈ F and

‖fn‖F =
∨

μn =
4
π

∞∑

�=0

1
(2� + 1)n+1

.

Lemma 1 is proved.

Lemma 2. For all n � 2, the function fn belongs to the space Y n and provides
the following bound for the best constant Kn,k in inequality (2.2):

Kn,k � Mn−k (M∗
n)−n−k

n . (2.8)

Proof. According to Lemma 1, the function fn belongs to the space F and,
hence, fn ∈ F ∩ Wn = Y n. Substituting the function fn into inequality (2.2),
we obtain bound (2.8). Lemma 2 is proved.

Lemmas 1 and 2 imply the following statement.

Theorem 1. For odd n � 3 and all 1 � k < n, the best constants in inequali-
ties (2.2) and (1.1) coincide; i.e., the following equality holds:

Kn,k = Cn,k, (2.9)

and the function fn defined by formula (1.2) is extremal not only in inequal-
ity (1.1) but also in inequality (2.2).

Proof. For all n � 2, bounds (2.3) and (2.8) for Kn,k are valid. According to
formulas (1.3) and (2.4), for odd n, the uniform norm and the F -norm of the
function fn coincide: Mn = M∗

n. This implies all the assertions of Theorem 1.

2.2 The Best Approximation of the Differentiation Operator on the
Set of Smooth Functions with Exactly Given Fourier Transform

In the space Y n, consider the class . Consider
the problem of the best uniform approximation of the kth order differentiation
operator on class Qn by the set B(F,C) of bounded linear operators from F
to C:

En,k(N) = inf{U(T ) : ‖T‖
̂V →C � N} (2.10)

U(T ) = sup{‖f (k) − Tf‖ : f ∈ Qn}. (2.11)
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Using the same argument as in the proof of (1.7), we prove that value (2.10)
and the best constant in (2.2) are related as follows:

En,k(N) = k

(
Kn,k

n

)n
k

(
N

n − k

)−n−k
k

, N > 0. (2.12)

For all values of the parameters, we have the inequality

En,k(N) � En,k(N), N > 0. (2.13)

This fact follows from formulas (1.7) and (2.12) and inequality (2.3). In the proof
of the following theorem, we will give another, “operator,” justification of this
inequality.

Theorem 2. For odd n � 3, 1 � k < n, and N > 0, the following equality
holds:

En,k(N) = En,k(N). (2.14)

Moreover, an operator extremal in problem (1.5) is also extremal in prob-
lem (2.10).

Proof. Equality (2.14), certainly, follows from formulas (1.7) and (2.12) and
equality (2.9).

Let us prove the second assertion of the theorem. We have the embedding
B(C,C) ⊂ B(F,C) together with the corresponding inequality for the operator

norms. Indeed, let T ∈ B(C,C). Then
for all functions f ∈ F . Consequently, if T ∈ B(C,C), then T ∈ B(F,C) and

. Further, for every operator T ∈ B(C,C), the values of
deviations (2.11) and (1.4) are related by the inequality U(T ) � U(T ), because
Qn ⊂ Qn.

For all n � 2, we have the following relations for an operator T extremal in
problem (1.5):

En,k(N) � U(T ) � U(T ) = En,k(N). (2.15)

Hence, inequality (2.13) holds for all n � 2 again. If n is odd, then, by (2.14),
it follows from (2.15) that the operator T is also extremal in problem (2.10).
Theorem 2 is proved.

2.3 Optimal Differentiation of Functions from the Class Qn

when the Fourier Transform is Known with an Error

Let O(V,C) be the set of all mappings from the space V of functions of bounded
variation to the space C of continuous bounded functions. For a mapping Υ ∈
O(V,C) and a parameter δ > 0, define

R(Υ ) = Rδ
n,k(Υ ) = sup

{
‖f (k) − Υg‖C : f ∈ Qn, g ∈ V,

∨(
g − f̂

)
� δ

}
.

(2.16)
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The smallest value

�n,k(δ) = inf{R(Υ ) : Υ ∈ O(V,C)} (2.17)

of quantity (2.16) over all mappings Υ ∈ O(V,C) is the smallest error of recovery
of the differentiation operator Dk = dk/dtk on functions from the class Qn

whose Fourier transform is given with the error δ in variation. The problem is to
calculate (or at least to estimate) value (2.17) and find a mapping Υ δ

n,k ∈ O(V,C)
at which the infimum in (2.17) is attained; it is called an optimal recovery method.

Theorem 3. For odd n � 3, the equality

�n,k(δ) = Cn,kδ
n−k
n

holds. Moreover, if Tn,k is an extremal operator in Stechkin’s problem (1.5) for
value (1.16) of the parameter N , then the operator defined on the space V by the
formula

Υ δ
n,kg = Tn,kĝ, g ∈ V, (2.18)

is an optimal method in problem (2.17).

Proof. Using the same argument as in the proof of (1.17), we prove the following
statement. For all n � 2, we have the equality

�n,k(δ) = Kn,kδ
n−k
n .

Moreover, if Tn,k is an extremal operator in problem (2.10) for

N =
n − k

n
Kn,kδ− k

n ,

then the operator defined on the space V by formula (2.18) is an optimal method
in problem (2.17).

By Theorems 1 and 2, this statement for odd n becomes Theorem 3. Theo-
rem 3 is proved.

2.4 Even n

In Subsects. 2.1–2.3, it is shown that, for odd n, extremal problems (2.2), (2.10),
and (2.17) in the space Y n reduce to the corresponding problems in the space
Wn, whose solutions are known and were described in Sect. 1. Theorems 1, 2
and 3 are, most likely, not valid for even n. They does not hold at least for n = 2
(k = 1). The exact inequality (2.2) and the solution of problem (2.10) for n = 2
and k = 1 were obtained in [4]. Let us comment these two results.

In [4, Theorem 2], it was proved that the smallest possible constant in inequal-
ity (2.2) for n = 2 and k = 1 is

K2,1 =
π

2

( 4
π

∞∑

�=0

1
(2� + 1)3

)−1/2

, (2.19)
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and the function f2 is extremal. The following bounds are valid for con-
stant (2.19): √

π

2
< K2,1 <

√
2. (2.20)

According to Hadamard’s result [10], in this case, C2,1 =
√

2. The second inequal-
ity in (2.20) means that the strict inequality K2,1 < C2,1 holds.

In [4, Theorem 5], the solution of problem (2.10) for n = 2 and k = 1 was
obtained. The extremal operator Θ2,1 found in [4] has the form of convolution
with a singular kernel; it is different from operator (1.13), which, according
to Stechkin’s result [17], is extremal in problem (1.5). Note that, in addition,
Θ2,1 �∈ B(C,C).

2.5 The Problems in the Space of Functions with Summable Fourier
Transform

Consider the space F0 = qL of functions from C0(−∞,∞) whose Fourier trans-
forms are summable functions. In other words, the space F0 consists of functions
representable in the form

f(t) =
∫

e2πtηiϕ(t) dη, where ϕ = f̂ ∈ L.

We define the norm in the space F0 by the formula ‖f‖F0 = ‖f̂‖L. With respect
to this functional, the space F0 is Banach. For n � 2, define Y n

0 = F0 ∩ Wn;
this is the space of functions f ∈ C0(−∞,∞) that are n − 1 times continuously
differentiable on the axis and such that the derivative f (n−1) of order n − 1 is
locally absolutely continuous, and the nth order derivative f (n) belongs to the
space L∞.

In the author’s opinion, analogs of inequality (2.2) and problems (2.10)
and (2.17) in the space Y n

0 are of interest. One can expect that the corresponding
pairs of problems on the spaces Y n and Y n

0 are equivalent. Let us explain this
assumption for inequality (2.2) and problem (2.17).

Denote by K0
n,k the smallest constant in the inequality

‖f (k)‖C � K0
n,k‖f̂ ‖ (n−k)/n

L ‖f (n)‖k/n
L∞ , f ∈ Y n

0 . (2.21)

Obviously, K0
n,k � Kn,k. Let us discuss the possible equality

K0
n,k = Kn,k. (2.22)

For n = 2 and k = 1, equality (2.22) was proved in [4]. For this, in [4, Lemma 2],
a special case of the following lemma was used.

Lemma 3. For the function fn with n � 2, there exists a family of functions
{gα} ⊂ Y n

0 depending on a parameter α, 0 < α � α0 = 1/(2π), and possessing
the following properties:
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(1) ‖ĝα‖L =
∨

f̂n, 0 < α � α0;
(2) lim

α→+0
‖g

(n)
α ‖L∞ = ‖f

(n)
n ‖L∞ ;

(3) lim
α→+0

‖g
(l)
α ‖C0 = ‖f

(l)
n ‖C , 0 � l � n − 1;

(4) for all A > 0 and 0 � l � n − 1, the following limit relation holds:

‖f (l)
n − g(l)α ‖C[−A,A] → 0, α → +0.

The proof of this statement for n � 3 is similar to the proof of [4, Lemma 2].
Lemma 3 and Theorem 1 imply the following statement.

Corollary. Property (2.22) holds for odd n � 3 and all 1 � k � n − 1.

In conclusion, let us discuss an analog of problem (2.17) in the space Y n
0 .

Let O(L,C) be the set of all (single-valued) mappings from the space L of
summable functions to the space C of continuous bounded functions. For a
mapping Υ ∈ O(L,C) and a parameter δ > 0, define

R0(Υ ) = sup
{

‖f (k) − Υg‖C : f ∈ Y n
0 , ‖f (n)‖L∞ � 1, g ∈ L, ‖g − f̂‖L � δ

}
.

We are interested in the value

�0n,k(δ) = inf{R0(Υ ) : Υ ∈ O(L,C)} (2.23)

of the smallest error of recovery of the differentiation operator Dk = dk/dtk on
functions of the space Y n

0 whose Fourier transform is given with the error δ in
the L-norm.

General results related to problems of recovery (see, for example, [3, The-

orem 2.1]) give the bound for value (2.23) in terms of the
best constant in inequality (2.21). The corollary and Theorems 1 and 3 imply
the statement similar to Theorem 3.

Theorem 4. The following equality holds for odd n � 3:

�0n,k(δ) = Cn,kδ
n−k
n .

Moreover, if Tn,k is an extremal operator in Stechkin’s problem (1.5) for
value (1.16) of the parameter N , then the operator defined on the space L by
the formula

Υ δ
n,kg = Tn,kĝ, g ∈ L,

is an optimal method in problem (2.23).

3 Conclusion

By now, exact solutions were known for the following three extremal problems
in the space Wn, n � 2, of functions f ∈ C(−∞,∞) that are n − 1 times
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continuously differentiable on the axis, their derivative f (n−1) of order n − 1
is locally absolutely continuous, and the derivative f (n) of order n belongs to
the space L∞. A.N. Kolmogorov (1939) obtained exact inequality between the
uniform norm of the derivative of order k, 1 � k � n − 1, of functions from
Wn and the norms of the function and the nth order derivative. S.B. Stechkin
(1967), V.V. Arestov (1967), and A.P.Buslaev (1981) solved Stechkin’s problem
on the best approximation of the differentiation operator of order k on the class

by bounded linear operators in the space C(−∞,∞). By
the known scheme, this enabled obtaining a solution of the problem on optimal
differentiation of functions from the class Wn given with a known error in the
uniform norm. In the present paper, we discussed analogs of all these problems in
the narrower space Y n = F

⋂
Wn of functions from Wn whose Fourier transform

is a bounded Borel measure on the axis. Unexpectedly, it turned out that the
situation with solutions of the problems is different for even and odd n. For odd n,
solutions of the corresponding problems on the spaces Wn and Y n coincide. This
is not so for even n. The corresponding problems have different solutions at least
for n = 2.
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Abstract. The paper is devoted to a generalization of a necessary opti-
mality condition in the form of the Feedback Minimum Principle for a
nonconvex discrete-time free-endpoint control problem. The approach is
based on an exact formula for the increment of the cost functional. This
formula is completely defined through a solution of the adjoint system
corresponding to a reference process. By minimizing that increment in
control variable for a fixed adjoint state, we define a multivalued map,
whose selections are feedback controls with the property of potential
“improvement” of the reference process. As a result, we derive a nec-
essary optimality condition (optimal process does not admit feedback
controls of a “potential descent” in the cost functional). In the case
when the well-known Discrete Maximum Principle holds, our condition
can be further strengthened. Note that obtained optimality condition is
quite constructive and may lead to an iterative algorithm for discrete-
time optimal control problems. Finally, we present sufficient optimality
conditions for problems, where Discrete Maximum Principle does not
make sense.

Keywords: Exact formula of the cost functional increment ·
Feedback controls · Necessary optimality conditions ·
Feedback Minimum Principle · Maximum Principle ·
Method of feedback iterations

1 Introduction

The paper concerns necessary (and sufficient) global optimality conditions for
the following discrete optimal control problem (problem (P )):

x(t + 1) = f
(
t, x(t), u(t)

)
, x(0) = x0, (1)

u(t) ∈ U(t), t ∈ T, (2)
J(σ) = l

(
x(N)

) → min .

Partially supported by the Russian Foundation for Basic Research, projects nos
17-01-00733, 18-31-20030, 18-31-00425.

c© Springer Nature Switzerland AG 2019
M. Khachay et al. (Eds.): MOTOR 2019, LNCS 11548, pp. 449–460, 2019.
https://doi.org/10.1007/978-3-030-22629-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22629-9_31&domain=pdf
http://orcid.org/0000-0003-3758-6730
http://orcid.org/0000-0001-7788-1473
https://doi.org/10.1007/978-3-030-22629-9_31


450 V. Dykhta and S. Sorokin

Here, x(t) ∈ Rn, sets U(t) ⊂ Rm are compact for all t ∈ T := {0, . . . , N −1}. By
σ we denote collections of vectors {x(t), u(t)} = {x(0), . . . , x(N), u(0), . . . , u(N−
1)}, i.e. admissible processes of problem (P ) (pairs of trajectories and con-
trols), D stands for the set of all admissible processes in problem (P ), and
σ̄ = {x̄(t), ū(t)} ∈ D is the reference (examined) process.

The functions f(t, x, u) are assumed to be continuous with respect to (w.r.t.)
(x, u) and continuously differentiable w.r.t. x for all t ∈ T , the cost function l(x)
is smooth.

First of all, we are interested in the necessary conditions for optimality of
σ̄, using feedback controls {v(t, x)} with the property of descent w.r.t. the func-
tional J . Such controls are constructed via special solution of discrete Hamilton-
Jacobi type inequality for weakly decreasing functions ϕ(t, x) [1]. This special
solution (being support majorant for the cost function J at point σ̄) is completely
defined by the trajectory {ψ(t)} adjoint to the process σ̄.

Being applied to classical optimal control problems in differential systems, the
discussed approach leads to a rather effective and constructive necessary optimal-
ity condition. This condition, called Feedback Minimum Principle (FMP) [2,3],
essentially strengthens the Pontryagin Maximum Principle. In [1] an analogue of
the feedback principle was obtained for discrete optimal control problems, linear
in the state variable. The present work contains a generalization of the results
[2,3] for nonlinear discrete problem (P ).

To illustrate our necessary optimality conditions, we consider certain mod-
ifications of examples from [4,5], which were used as counter-examples for the
Discrete Maximum Principle (DMP) [4–8]. In such modifications, necessary opti-
mality conditions with feedback controls are more effective either if DMP is not
applicable at all, or when it is not able to discard nonoptimal processes. In the
second case, FMP does work and leads to an optimal process.

2 Construction of Feedback Descent Controls

For a discrete dynamic system, the property of weak decrease of a function
ϕ(t, x) : T × Rn → R means that for any initial position (t∗, x∗) there exists
a trajectory {x(t)}, t = t∗, . . . , N , x(t∗) = x∗ (with a corresponding admissible
control {u(t)}, t = t∗, . . . , N − 1) such that ϕ

(
t + 1, x(t + 1)

) − ϕ
(
t, x(t)

) ≤ 0
for t = t∗, . . . , N . The following Hamilton-Jacobi type inequality guarantees the
property of weak decrease:

min
u∈U(t)

ϕ
(
t + 1, f(t, x, u)

) − ϕ(t, x) ≤ 0 ∀x ∈ Rn, t ∈ T. (3)

Necessary optimality conditions, discussed below, use solutions of (3) under
appropriate boundary conditions.

Let us describe the construction of a desired solution to inequality (3).
Introduce the Pontryagin function

H(t, x, ψ, u) = 〈ψ, f(t, x, u)〉,
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the adjoint (for σ̄) system

ψ(t) = Hx

(
t, x̄(t), ψ(t), ū(t)

)
, ψ(N) = lx

(
x̄(N)

)
(4)

(note that the terminal condition corresponds to the minimum condition of the
Pontryagin function in DMP) and the function

ϕ∗(t, x) = 〈ψ(t) − lx
(
x̄(t)

)
, x〉 + l(x) (5)

(〈·, ·〉 stands for the scalar product). Due to the terminal condition in (4), we
obtain

ϕ∗(N,x) = l(x). (6)

It is easy to see that the following equality holds:
∑

t∈T

[
ϕ∗

(
t + 1, f

(
t, x(t), u(t)

)) − ϕ∗(t, x(t)
)]

=

J(σ) − ϕ∗(0, x0) ∀σ ∈ D.
(7)

Introduce the function

K(t, x, u) = ϕ∗(t + 1, f(t, x, u)
) − ϕ∗(t, x). (8)

Then, by equalities (5)–(7), one can obtain the exact formula for the increment
of the cost functional J :

J(σ) − J(σ̄) =
∑

t∈T

[
K

(
t, x(t), u(t)

) − K
(
t, x̄(t), ū(t)

)] ∀σ ∈ D. (9)

Based on the previous formula (see also (7)) for any position (t, x) we define
the set U∗(t, x) of feedback controls, which may generate the deepest descent
for functionals (9) and (7). Evidently, if σ̄ is an optimal process, then descent
controls do not exist for σ̄.

The discussed idea leads to the following multivalued ϕ∗-extremal map:

U∗(t, x) = Argmin
u∈U(t)

[
H

(
t, x, p(t + 1), u

)
+ l

(
f(t, x, u)

)]
, t ∈ T, (10)

where
p(t) = ψ(t) − lx

(
x̄(t)

)
, t = 0, . . . , N.

Any sequence of vectors {v(t, x)}, t ∈ T , satisfying the inclusion v(t, x) ∈
U∗(t, x) on T × Rn, generates a trajectory {xv(t)} of the discrete system

x(t + 1) = f
(
t, x(t), v

(
t, x(t)

))
, x(0) = x0, (11)

and the open-loop control
{
uv(t) = v

(
t, xv(t)

)}
. Denote by D∗ the set of

sequences ν =
{
xv(t), v(t, x)

}
, which may be obtained in this way. Let J(ν) =

l
(
xv(N)

) ∀ν ∈ D∗.
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Theorem 1. If process σ̄ =
{
x̄(t), ū(t)

}
is optimal for problem (P ), then the

following inequality holds:

J(σ̄) ≤ J(ν) ∀ν ∈ D∗.

In other words, there are no feedback descent controls at the point σ̄ which can
be generated by the ϕ∗-extremal map U∗(t, x).

To prove the Theorem, it is sufficient to note that any sequence ν ∈ D∗
generates the pair σ =

{
xv(t), uv(t)

} ∈ D such that J(σ) = J(ν).
The presented idea does not demand multifunction U∗(t, x) to be constructed

by the extremal principle, at all. In fact, any map V (t, x) ⊂ U(t) on T × Rn

could be chosen instead of U∗(t, x). Of course, such a casual mapping V (t, x) is
generically useless.

Let us show that ϕ∗-extremal multifunction (10) for feedback descent controls
corresponds to a solution of the Hamilton-Jacobi inequality (3). The latter one
is designed by some “calibration” of function ϕ∗.

Let R(t) be a reachable set of system (1), (2) at t; obviously, R(t) is a compact
set in Rn ∀t = 1, . . . , N . Given an open set Q(t) ⊇ R(t) for all t = 1, . . . , N ,
define (see also (8))

m(t) = sup
x∈Q(t)

min
u∈U(t)

K(t, x, u), t ∈ T,

r(t) = r(t + 1) − m(t), r(N) = 0,

ϕ̃(t, x) = ϕ∗(t, x) − r(t), (t, x) ∈ T × Q(t).

It is easy to check that function ϕ̃ satisfies the condition of weak decrease (3)
on T × Q(t), and the ϕ̃-extremal multifunction for descent controls coincides
with U∗(t, x). This reasoning provides additional justification for using the set
of feedback descent controls (10).

We also stress an important role of Theorem 1 for applications. If process σ̄
does not satisfy this necessary optimality condition, then one has a process that
improves σ̄ (new process has a smaller value of the cost functional J).

Example 1. Consider a modification of Example 2 from [4, p. 431], which is used
to show that DMP is not applicable to problems of optimal control for systems,
obtained by a difference approximation of continuous ones, in general. Modifi-
cation is due to a square term in the cost function. The example illustrates the
applicability of Theorem1 in contrast to DMP.

J = x2(2) + y(2) → min;

x(t + 1) = x(t) +
1
2
u(t), x(0) = 0,

y(t + 1) = y(t) + x2(t) − u2(t), y(0) = 0,

|u(t)| ≤ 1, t = 0, 1.
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One can check that

min J = min
|u(t)|≤1, t=0,1

{
− 1

4

[
2u2(1) +

(
u(1) − u(0)

)2]} = −7
4
,

and the minimum is attained by u∗
0 = ±1, u∗

1 = ∓1.
The Pontryagin function is

H = ψ(t + 1)
[
x(t) +

1
2
u(t)

]
+ y(t) + x2(t) − u2(t),

and the adjoint system writes

ψ(t) = ψ(t + 1) + 2x(t), ψ(2) = 2x(2).

Let us consider the process σ̄ with ū ≡ −1,

x̄(1) = −1
2
, x̄(2) = −1,

ȳ(1) = −1, ȳ(2) = −7
4
,

ψ̄(1) = −3, ψ̄(2) = −2,

and J(σ̄) = −3
4
.

Let us test this process by the necessary optimality condition proposed
Theorem 1. The selectors of U∗(t, x) are described by the following conditions:

t = 0 : −u0 − 3
4
u2
0 → min ⇒ U∗(0, x0) = {1};

t = 1 : −3
4
u2
1 + x1u1 → min ⇒ U∗(1, x1) =

⎧
⎨

⎩

{−1}, x1 > 0,
{1}, x1 < 0,
{−1, 1}, x1 = 0.

Any feedback control v : v(t, x) ∈ U∗(t, x) generates process σ̃ with ũ(0) = 1,

ũ(1) = −1, x̃(1) =
1
2
, x̃(2) = 0, ỹ(1) = −1, ỹ(2) = −7

4
, J(σ̃) = −7

4
. Obviously,

σ̃ brings a global solution. Notice that the optimal process σ̃ does not satisfy
DMP.

Example 2. This example is aimed to show that Theorem 1 is rather effective to
discard nonoptimal DMP-extrema (control processes satisfying DMP).

Consider the following nonconvex problem:

J = y(2) − ax2(2) → min;
x(t + 1) = x(t) + (t − 1)u(t), x(0) = 0,

y(t + 1) = y(t) +
(
u(t) − 1

)
x(t), y(0) = 0,

|u(t)| ≤ 1, t = 0, 1; a > 0.

It is easy to check that

min J = min
|u(t)|≤1, t=0,1

{ − (
u(1) − 1

)
u(0) − au2(0)

}
= −2 − a.
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Let us specify some objects. The Pontryagin function:

H = ψ(t + 1)
(
x(t) + (t − 1)u(t)

)
+ y(t) +

(
u(t) − 1

)
x(t),

and the adjoint system:

ψ(t) = ψ(t + 1) + u(t) − 1, ψ(2) = −2ax(2).

The H-minimum condition looks as follows:
[
(t − 1)ψ(t + 1) + x(t)

]
ut →

min; |ut| ≤ 1.
Consider the process σ̄: ū ≡ 1, x̄(1) = x̄(2) = −1, ȳ ≡ 0, ψ̄ ≡ 2a, J(σ̄) = −a.

Notice that σ̄ satisfies DMP.
Let us apply Theorem 1 to σ̄. The ϕ∗-extremal map (10) is defined by the

following optimization problems:

t = 0 : −au2
0 → min ⇒ U∗(0, x0) = {±1};

t = 1 : x1u1 → min ⇒ U∗(1, x1) =

⎧
⎪⎪⎨

⎪⎪⎩

{−1}, x1 > 0,

{1}, x1 < 0,

[−1, 1], x1 = 0.

Choosing the feedback control v(t, x):

v(0) = −1, v(1, x) =
{−1, x ≥ 0,

1, x < 0,

one can obtain the process σ̃: ũ ≡ −1, x̃(1) = x̃(2) = 1, ỹ(1) = 0, ỹ(2) = −2
with J(σ̃) = −2 − a < −a = J(σ̄).

Thus, Theorem 1 leads to the global extremum σ̃, starting from σ̄.

3 Feedback Minimum Principle

In continuous optimal control problems, FMP [2,3] states that an optimal trajec-
tory of the considered problem is necessarily optimal for a certain auxiliary prob-
lem of dynamic optimization, called the accessory one. Moreover, the analogue
of Theorem 1 was covered by FMP. Below we show that for discrete optimization
problems the situation is significantly different compared to the continuous case.
However, this is not surprising: for example, in continuous optimization prob-
lems, the Pontryagin Maximum Principle is a universal necessary condition, but
in discrete problems, it is not always the case [4–8].

Denote by (P∗) the following discrete problem of closed-loop (feedback)
control:

J(ν) := l
(
x(N)

) → min, ν ∈ D∗,

where pairs ν = {x(t), v(t, x)} satisfy system (11) and the inclusion v(t, x) ∈
U∗(t, x) on T × Rn.
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In general, the pair
{
x̄(t), ū(t)

}
is not admissible in problem (P∗). The fol-

lowing minimum condition M(σ̄) guarantees that σ̄ ∈ D∗:

ū(t) ∈ U∗
(
t, x̄(t)

) ∀t ∈ T.

By (10), M(σ̄) is equal to the condition

H
(
t, x̄(t), p(t + 1), ū(t)

)
+ l

(
f
(
t, x̄(t), ū(t)

))
=

min
u∈U(t)

[
H

(
t, x̄(t), p(t + 1), u

)
+ l

(
f
(
t, x̄(t), u

))]
∀t ∈ T.

Given a process σ̄ satisfying condition M(σ̄), introduce the feedback control
v̄(t, x) ∈ U∗(t, x) in the following way:

v̄(t, x) =
{

ū(t), (t, x) ∈ orb x̄(t),
any w(t, x) ∈ U∗(t, x), (t, x) /∈ orb x̄(t), (12)

where orb x̄(t) =
{ (

t, x̄(t)
) ∣
∣ t = 0, . . . , N

}
is the orbit of trajectory x̄(t).

It is easy to see that ν̄ =
{
x̄(t), v̄(t, x)

} ∈ D∗. Then by Theorem 1 one can
derive FMP as follows:

Theorem 2. Let process σ̄ =
{
x̄(t), ū(t)

}
be optimal for problem (P ) and satisfy

the minimum condition M(σ̄). Then process ν̄ =
{
x̄(t), v̄(t, x)

}
with control (12)

is optimal for problem (P∗).

In the assumptions of this theorem, problem (P∗) appears to be accessory
(for σ̄) in the classical sense. It means that (P∗) is a variational type problem,
designed to analyze the optimality of process σ̄.

FMP, generalizing Theorem 1, is a very attractive theoretical result. However,
it is difficult to solve the accessory problem in practice. Therefore, in applications,
one normally applies Theorem 1 instead of Theorem 2 (using the “trial and error”
method when choosing selectors of multifunction U∗(t, x)). In addition, the class
of problems, for which FMP is valid, is restricted by condition M(σ̄). Although
this condition is often met, it is not necessary at all (see Example 2, where process
σ̄ with ū ≡ 1 is admissible in problem (P∗) but does not solve it).

Example 3. Consider a modification of Example 6.46 from [5, Vol. II, p. 249]
which shows a failure of DMP for optimal processes. At the same time, FMP
holds here for some values of parameters.

J = x2(3) + y(3) → min;
x(t + 1) = g

(
t, u(t)

)
, x(0) = 0,

y(t + 1) = ax2(t) + by(t) − a

b
g2

(
t, u(t)

)
, y(0) = 0,

u(t) ∈ U, t = 0, 1, 2; a > 0, b > 0,

the function g(t, ·) is continuous, the set U is compact.

min J = min
u(2)∈U

b − a

b
g2

(
2, u(2)

)
.
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It means that any admissible process σ̄ with ū(2) ∈ Argmin
u∈U

b − a

b
g2

(
2, u(2)

)
is

optimal.
The Pontryagin function is

H = ψ(t + 1)g
(
t, u(t)

)
+ ξ(t + 1)

[
ax2(t) + by(t) − a

b
g2

(
t, u(t)

)]

(here, ξ(t) is the adjoint of y).
Let us consider any optimal process and denote it by σ̄ =

(
x̄(t), ȳ(t), ū(t)

)
.

The corresponding trajectory (ψ̄, ξ̄) of adjoint system (4) is

ψ̄(1) = 2abg
(
0, ū(0)

)
, ψ̄(2) = 2ag

(
1, ū(1)

)
, ψ̄(3) = 2g

(
2, ū(2)

)
,

ξ̄(1) = b2, ξ̄(2) = b, ξ̄(3) = 1.

One can check that σ̄ does not satisfy DMP. Moreover, for t = 0, 1, the
Pontryagin function H reaches on ū(t) its maximum (rather than minimum),
and the H-minimum conditions are as follows:

t = 0 : ab
[
2g

(
0, ū(0)

)
g
(
0, u0

) − g2
(
0, u0

)] → min, u0 ∈ U ;

t = 1 : a
[
2g

(
1, ū(1)

)
g
(
1, u1

) − g2
(
1, u1

)] → min, u1 ∈ U.

When t = 2, the “H → min” condition takes the form

2g
(
2, ū(2)

)
g
(
2, u2

) − a

b
g2

(
2, u2

) → min, u2 ∈ U.

Therefore, all optimal processes do not satisfy DMP.
Let us check FMP for optimal process σ̄. The ϕ∗-extremal multifunction (10)

leads to the following conditions:

t = 0 : (ab − 1)
[
2g

(
0, ū(0)

)
g
(
0, u0

) − g2
(
0, u0

)] → min, u0 ∈ U ;

t = 1 : (a − 1)
[
2g

(
1, ū(1)

)
g
(
1, u1

) − g2
(
1, u1

)] → min, u1 ∈ U ;

t = 2 :
b − a

b
g2

(
2, u2

) → min, u2 ∈ U

(compare with the previous formulas). It means that condition M(σ̄) is satisfied
and σ̄ is admissible for problem (P∗) only when a ≤ 1 and ab ≤ 1. By the way,
the conditions of Theorem 1 for σ̄ are evidently relaxed.

Example 4. Now we propose another case, where Theorems 1 and 2 accompany
one another. Consider the following modification of Example 3 from [4, p. 432]:

J = ax2(2) + y(2) → min;
x(t + 1) = 2u(t), x(0) = 0,

y(t + 1) = y(t) + x2(t) − u2(t), y(0) = 0,

|u(t)| ≤ 1, t = 0, 1; a ∈ R.
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Obviously,
min J = min

|u(t)|≤1, t=0,1

{
3u2

0 + (4a − 1)u2
1

}
.

Therefore, the minimizing controls are the following:

– if a >
1
4
, then u∗ ≡ 0;

– if a =
1
4
, then u∗

0 = 0, u∗
1 ∈ [−1, 1];

– if a <
1
4
, then u∗

0 = 0, u∗
1 ∈ {−1, 1}.

Any optimal process σ̄ does not satisfy DMP for a > 0, but it satisfies

condition M(σ̄) and Theorems 1 and 2 (∀a). However, in the case a <
1
4

the

condition M(σ) does not hold for the process σ ≡ 0. Nevertheless, by applying
Theorem 1 the process σ could be discarded.

4 Comparison with Known Necessary Optimality
Conditions

Theorems 1 and 2 offer certain necessary conditions for global optimality, and the
scope of application of constructive Theorem 1 is unlimited. As is known [6], only
necessary conditions for a weak minimum have similar universality—in the class
of sufficiently small variations |x(t) − x̄(t)| and |u(t) − ū(t)| for all t. Therefore,
these local conditions of optimality are less effective than those obtained above
(both theoretically and practically).

The DMP is a necessary condition for a strong minimum (variations |u(t) −
ū(t)| do not have to be small), and in this sense DMP is more attractive than the
conditions for a weak minimum. However, this criterion is not universal—it is
valid for problem (P ) under certain convexity conditions on the set f

(
t, x, U(t)

)
;

the simplest of these conditions is the convexity of f
(
t, x, U(t)

) ∀x ∈ Rn and
t ∈ T . Theorems 1 and 2 do not imply these assumptions; however, FMP contains
the assumption M(σ̄) on the reference process. Therefore, a direct comparison
of FMP with DMP in their applicability is difficult. However, as the examples
show, the combination of Theorems 1 and 2 exceeds DMP (for problems where
DMP is applicable) in efficiency. Note also that in the case when l is linear,
condition M(σ̄) coincides with the extremal condition from DMP, but, along
with M(σ̄), FMP requires σ̄ to be optimal for the accessory problem (P∗). This
fact essentially strengthens the necessary condition.

The previous examples show that FMP is more applicable than DMP. The
case of linear cost function can be found, e.g., in [1] (this example coincides
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with Example 2, excepting the linear cost function J = y(2)). Now, we present
another eloquent case:

Example 5. This quadratic modification of Example 8 by [4, p. 433] presents the
situation when all optimal processes do not satisfy DMP, while FMP does hold
for each one.

J = x2(2) + y(2) → min;
x(t + 1) = u(t), x(0) = 0,

y(t + 1) = y(t) + x2(t), y(0) = 0,

u(t) ∈ {−1,+1}, t = 0, 1.

Notice that any admissible process is optimal.
The Pontryagin function is

H = ψ(t + 1)u(t) + x2(t) + y(t),

and the adjoint system takes the form:

ψ(t) = 2x(t), ψ(2) = 2x(2).

It is notable that any optimal process σ̄ does not satisfy the DMP:

2x̄(t + 1)ut → min ⇒ u∗
t = −sign ū(t).

At the same time, FMP holds for all optimal processes: M(σ̄) and FMP lead
to the condition

u2
t → min; ut ∈ {−1,+1}.

5 Sufficient Optimality Conditions

We proceed with the natural inequality

ΔJ(σ̄) = J(σ) − J(σ̄) ≥ 0 ∀σ ∈ D,

where the increment ΔJ(σ̄) is described by the exact formula (9) (see also (5)
and (8)).

Let R(t) denote a compact reachable set of discrete system (1), (2) at time
t, and E(t) ⊇ R(t) be its outer estimate by some compact set E(t) ⊂ Rn (here,
t = 1, . . . , N). Introduce the function

μ(t) = min
(x,u)∈E(t)×U(t)

K(t, x, u). (13)

Represent this formula in a more traditional form — introduce the following
objects:

h(t, x, ψ) = min
u∈U(t)

[
H(t, x, ψ, u) + l

(
f(t, x, u)

)]
(14)
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(an analogue of the lower Hamiltonian of problem (P )),

K(t, x) = h
(
t, x, p(t + 1)

) − l(x) − 〈p(t), x〉 (15)

(the extended lower Hamiltonian). So, function μ(t) from (13) can be defined in
the following way:

μ(t) = min
x∈E(t)

K(t, x), t = 1, . . . , N. (16)

By the definition of function μ(t) and formula (9), one obtains the following
sufficient optimality condition:

Theorem 3. Let a process σ̄ =
{
x̄(t), ū(t)

}
satisfy the minimum condition:

K(
t, x̄(t)

)
= μ(t), t = 1, . . . , N,

where functions K and μ are defined by equalities (13)–(16) on some compact
sets E(t) ⊇ R(t), t = 1, . . . , N . Then σ̄ is optimal for (P ).

Theorem 3 gives a first-order sufficient optimality condition, since it uses only
the first derivatives of the input data. However, no convexity assumptions are
imposed.

Note that these conditions are well combined with the necessary conditions of
Theorems 1 and 2, since they are formulated in the same constructions: FMP can
be applied iteratively. Assumed that these iterations stop, the resulting process
can be checked for optimality by Theorem3.

6 Conclusion

In the paper nonlocal necessary and sufficient optimality conditions with feed-
back comparison controls are obtained for nonconvex discrete control problems.
The main results are related to the necessary optimality conditions in the class of
feedback descent controls (Theorems 1 and 2). These conditions are constructive,
independent of DMP, and lead to an efficient iterative algorithm for improving
the control (see, e.g., [9]).

This algorithm seems efficient for solving complex discrete control problems
with terminal constraints on trajectory, using the methods of penalty functions,
modified Lagrangians, etc. Indeed, in all these methods, the associated problems
of unconditional optimization should be also solved globally.

Theoretically, it is of interest to generalize Theorems 1 and 2 to more com-
plex problems with constraints, analyze the connection with the quasi-maximum
condition [5,7] (the influence of the time quantization frequency on the optimal-
ity conditions), the effect of relaxation of the problem, etc. These questions are
also important for the theory of optimal control in differential systems.
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Estimates of the Minimal Eigenvalue of
the Controllability Gramian for a System

Containing a Small Parameter
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Abstract. We consider a linear time-invariant control system with
right-hand side depending on a small parameter. Assuming that the
system is controllable, we study the asymptotics of the minimal eigen-
value of a system’s controllability Gramian and provide some bounds for
the eigenvalue. These estimates are applied to the study of convexity
properties of reachable sets for nonlinear control systems with integral
constraints on control variables.

Keywords: Control system · Controllability Gramian ·
Small parameter · Reachable set · Integral constraints

1 Introduction

Consider the linear time-invariant control system

ẋ(t) = εAx(t) + Bu(t), t ∈ [0, 1], (1)

x ∈ R
n, u ∈ R

r, and ε > 0 is a small parameter. If the pair (A,B) is completely
controllable then (εA,B) is also controllable for any ε �= 0. In this case the min-
imal eigenvalue ν(Wε) of the controllability Gramian Wε of (1) is positive for
every value ε > 0. In this paper we study the asymptotics of ν(Wε) for small
ε and apply it to propose sufficient conditions for the convexity of reachable
sets for a nonlinear time-invariant control-affine system on a small time inter-
val under quadratic integral constraints on control variables. The proof is based
on the result of Polyak [15] on the convexity of reachable sets for a nonlinear
control system with L2 norms of controls bounded from above by a sufficiently
small number. The reachability properties of nonlinear systems with integral
constraints and algorithms for the construction of reachable sets were investi-
gated in the papers [10,15], [5,6]. The problems of control and estimation under
integral constraints were studied in many papers (see, for example, [1,3,4,7,11]).
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2 Preliminaries

Further we use the following notation. By A� we denote the transpose of a real
matrix A, I is an identity matrix, 0 stands for a zero vector or a zero matrix of
appropriate dimension. For x, y ∈ R

n let (x, y) = x�y denotes the inner product
of two vectors, x� = (x1, . . . , xn), ‖x‖ = (x, x)

1
2 be the Euclidean norm, and

B(x̄, r) = {x ∈ R
n : ‖x − x̄‖ ≤ r} be a ball of radius r > 0 centered at x̄. For

a real n × n matrix A a spectral matrix norm induced by the Euclidean vector
norm is denoted as ‖A‖. The symbols L1, L2 and C stand for the spaces of
summable, square summable and continuous functions respectively. The norms
in these spaces are denoted as ‖ · ‖

L1
, ‖ · ‖

L2
, ‖ · ‖

C
.

Definition 1. The symmetric matrix Wε(t) defined by the equality

Wε(t) =
∫ t

0

Xε(t, τ)BB�X�
ε (t, τ)dτ, (2)

where Xε(t, τ) is a fundamental Cauchy matrix of system (1) (Ẋε(t, τ) =
AXε(t, τ), X(τ, τ) = I) is called the controllability Gramian of the control
system (1).

Differentiating equality (2) we get that Wε(t) is a solution of the linear differential
equation

Ẇε = εAWε + εWεA
� + BB�, Wε(0) = 0. (3)

Proposition 1. The matrix Wε(t), t > 0 is positive definite for every ε �= 0 if
and only if the pair (A,B) is completely controllable.

Proof. Really, complete controllability of (A,B) is equivalent to the equality

span(B,AB, ..., An−1B) = R
n,

where span(B,AB, ..., An−1B) denotes the linear span of the columns of the
corresponding matrices. For ε �= 0 we have

span(B,AB, ..., An−1B) = span(B, εAB, ..., εn−1An−1B).

Thus (εA,B) is contrlollable iff (A,B) is controllable. Since controllability is
equivalent to non singularity of the controllability Gramian, this implies the
assertion.

Let us look for Wε(t) as a sum of a series in powers of ε

Wε(t) = V0(t) + εV1(t) + ε2V2(t) + ..., Vk(0) = 0, k = 0, 1, .... (4)

Differentiating (4) and equating multipliers in front of equal degrees of ε we
get
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V̇0(t) = BB�, V̇k(t) = AVk−1(t) + Vk−1(t)A�, k = 1, 2, .... (5)

After integration Eq. (5) we get

V0(t) = tU0, Vi(t) =
ti+1

(i + 1)!
AUi, i = 1, 2, ...,

where
U0 = BB�, Ui = AUi−1 + Ui−1A

�, k = 1, 2, .... (6)

Thus for Wε = Wε(1) we have

Wε =
∞∑

k=0

εk

(k + 1)!
Uk. (7)

By virtue of the estimate ‖Uk‖ ≤ 2‖A‖‖Uk−1‖ ≤ 2k‖A‖k‖U0‖ the series (7), (4)
are majorized by the converging series

∞∑
k=0

(2ε‖A‖)k

(k + 1)!
‖U0‖.

As a result we arrive at the following statement.

Proposition 2. The matrix Wε = Wε(1) is represented by the sum of series
(7), uniformly convergent on every bounded subset of R.

We deal with the estimates of the asymptotic behaviour of the minimal eigen-
value ν(Wε) under ε → 0. Note that all the matrices Uk in (7) are symmetric
but not necessarily positive semi-definite. For U0 we obviously have ν(U0) ≥ 0.
If ν(U0) > 0 then there exists α > 0 such that ν(Wε) ≥ α for sufficiently small
ε. Further, we assume that ν(U0) = 0, hence ν(Wε) → 0 as ε → 0.

Definition 2. (See, for example, [12]) The pair (A,B) is linearly equivalent
to the pair (A1, B1) if there exists a nonsingular matrix S such that A1 = SAS−1,
B1 = SB.

The linear equivalent pairs generate equations of the same control system in
different systems of coordinates. The pair (A,B) is controllable iff (A1, B1) is
controllable.

Lemma 1. Let (A,B), (A1, B1) be linearly equivalent pairs and let Wε, W 1
ε be

corresponding controllability Gramians. There exist α > 0, β > 0 such that

αν(Wε) ≤ ν(W 1
ε ) ≤ βν(Wε)

for all ε.
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Proof. Denote by U1
k , k = 0, 1, 2, ... matrices in the expansion (7) for W 1

ε . Then
by induction we get

U1
0 = B1B

�
1 = SBB�S� = SU0S

�, U1
k = A1U

1
k−1 + U1

k−1A
�
1 =

SAS−1SUk−1S
�+SUk−1S

�(S−1)�A�S� = S(AUk−1+Uk−1A
�)S� = SUkS�.

The last implies the equality W 1
ε = SWεS

� which means that W 1
ε and Wε are

congruent matrices. For symmetric congruent matrices the following is true (see,
for example,[13, Theorem 4.5.9]): for any symmetric matrix D there exist the
numbers θi, λ1(SS�) ≤ θi ≤ λn(SS�), i = 1, ..., n such that

λi(SDS�) = θiλi(D).

Here λi denote eigenvalues of the matrices ordered by ascending. The last implies
the assertion of the lemma.

3 Estimates for Minimal Eigenvalues of Controllability
Gramian

Consider systems with a single control input. In this case A is an n × n matrix
and B is a column n-vector.

Theorem 1. Assume that system is completely controllable. If n = 2 then there
exist α > 0, β > 0 such that for all sufficiently small ε > 0 the following inequal-
ity holds

αε2 ≤ ν(Wε) ≤ βε2.

If n ≥ 3 then there exists β > 0 such that for all sufficiently small ε > 0

0 < ν(Wε) ≤ βε2n−2. (8)

Proof. Since the pair (A,B) is controllable, there exists a nonsingular matrix S
such

A1 = SAS−1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...
0 0 0 ... 1
a1 a2 a3 ... an

⎞
⎟⎟⎟⎟⎠ , B1 = SB =

⎛
⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎠ . (9)

Here a1, a2, ..., an are the coefficients of the characteristic polynomial of the
matrix A. Taking into account Lemma 1 we can assume without loss of generality
that the pair (A,B) itself has the form (9).

For m ≥ 1 denote

Sm(ε) =
m∑

k=0

εk

(k + 1)!
Uk, Rm(ε) =

∞∑
k=m

ε(k−m)

(k + 1)!
Uk,
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then Wε is represented by

Wε = Sm(ε) + εm+1Rm+1(ε).

Consider n = 2, in this case

A =
(

0 1
a1 a2

)
, B =

(
0
1

)
. (10)

U0 =
(

0 0
0 1

)
, U1 =

(
0 1
1 2a2

)
, U2 =

(
2 3a2

3a2 2a1 + 4a2
2

)
.

Letting
Wε = S2(ε) + ε3R3(ε),

we get

S2(ε) =
(

ϕ1(ε) ϕ2(ε)
ϕ2(ε) ϕ3(ε)

)

where

ϕ1(ε) =
1
3
ε2, ϕ2(ε) =

a2

2
ε2 +

1
2
ε, ϕ3(ε) =

a1 + 2a2
2

3
ε2 + a2ε + 1.

Calculating the minimal eigenvalue of S2(ε) we get

ν(S2(ε)) =
ϕ1 + ϕ2

2
(1 −

√
1 + ψ),

where

ψ = −4
ϕ1ϕ3 − ϕ2

2

(ϕ1 + ϕ3)2
.

Since

ϕ1ϕ3 − ϕ2
2 =

ε2

3
− ε2

4
+ o(ε2) =

ε2

12
+ o(ε2), (ϕ1 + ϕ3)2 = O(1),

we have

ψ = −ε2

3
+ o(ε2), ν(S2(ε)) =

ε2

12
+ o(ε2).

From the theorem on the perturbation of eigenvalues of a symmetric matrix [13]
it follows that

|ν(Wε) − ν(S2(ε))| ≤ ‖ε3R3(ε)‖ ≤ ε3‖R3(0)‖/2

for sufficiently small positive ε. Hence,

ν(Wε) ≥ ν(S2(ε)) − ε3‖R3(0)‖/2 ≥ ε2

12
+ o(ε2),

this proves the fist part of the theorem.
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For a square n×n matrix A denote by di(A) diagonals parallel to the antidi-
agonal, counting from the right-bottom corner. Thus

d1(A) = {ann}, d2(A) = {an(n−1), a(n−1)n},

d3(A) = {an(n−2), a(n−1)(n−1), a(n−2)n},

etc., i = 1, 2, ..., 2n− 1. By induction we prove that all the elements of the matrix
Ui, lying above the diagonal di(Ui−1), are equal to zero. Then the elements in
the left top corners of the matrices Ui are equal to zero for all i = 1, ..., 2n − 3.
Hence, this matrices Si(ε) are singular, that implies inequalities ν(Si(ε)) ≤ 0
for all i = 1, ..., 2n − 3. From the equality

Wε = S2n−3(ε) + ε2n−2R2n−2(ε)

we get the estimate (8).

4 Convexity of Small Time Reachable Sets

Consider the control system

ẋ(t) = f1(t, x(t)) + f2(t, x(t))u(t), x(t0) = x0, (11)

where t0 ≤ t ≤ t̄1, x ∈ R
n , u ∈ R

r, the functions f1 : Rn+1 → R
n, f2 : Rn+1 →

R
n×r are assumed to be continuous and continuously differentiable in x.

If f1, f2 satisfy the conditions:

‖ f1(t, x) ‖ ≤ l1(t)(1+ ‖ x ‖), ‖ f2(t, x) ‖n×r ≤ l2(t), (12)

where l1(·) ∈ L1[t0, t̄1], l2(·) ∈ L2[t0, t̄1], then for any u(·) ∈ L2[t0, t̄1] there exists
a unique absolutely continuous solution x(t) of system (11) which is defined on
the interval [t0, t̄1].

With t0 < t1 ≤ t̄1 given consider the space of square integrable vector-
functions on [t0, t1] with an inner product defined as

(u(·), v(·)) =
∫ t1

t0

u�(t)v(t)dt.

For this space we also use the notation L2 = L2[t0, t1].
All the trajectories of system (11) corresponding to controls from a Hilbert

ball B(0, μ) = {u(·) ∈ L2[t0, t̄1] : (u(·), u(·)) ≤ μ2} are lying in a compact set
D ⊂ R

n (see, for example, [7]). Instead of assuming that inequalities (12) are
satisfied we may further suppose that all the trajectories of system (11) are
defined on the interval [t0, t1] and belong to some compact set D.

Definition 3. The set

G(t1) = {x ∈ R
n : ∃u(·) ∈ L2[t0, t1] : (u(·), u(·)) ≤ μ2, x = x(t1, u(·))},

is called a reachable set of system (11) at a given time instant t1.
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Definition 4. Let u(t) be a control from L2, x(t) be a corresponding trajectory.
A linear control system

˙δx = A(t)δx + B(t)δv, δx(t0) = 0, (13)

where
A(t) =

∂f1
∂x

(t, x(t)) +
∂

∂x
[f2(t, x(t))u(t)], B(t) = f2(t, x(t))

is said to be a linearization of (11) along the pair (x(t), u(t)).

Assumption 1. The functions f1(t, x), f2(t, x) have continuous derivatives in
x which satisfy the Lipschitz conditions: for all t ∈ [t0, t̄1], x1, x2 ∈ D

‖∂f1
∂x

(t, x1) − ∂f1
∂x

(t, x2)‖ ≤ l3‖x1 − x2‖,

‖∂f2
∂x

(t, x1) − ∂f2
∂x

(t, x2)‖ ≤ l4‖x1 − x2‖,

where li ≥ 0 for i = 3, 4.

For u(·), ui(·) ∈ B(0, μ) ⊂ L2[t0, t1], and corresponding trajectories x(·),
xi(·), i = 1, 2 denote as A(t), Ai(t), B(t), Bi(t) the matrices of the lineariza-
tions of system (13) along the pairs (u(·), x(·)) (ui(·), xi(·)). Let X(t, s), Xi(t, s),
i = 1, 2 be fundamental matrices of the systems

ẋ(t) = A(t)x(t), ẋ(t) = Ai(t)x(t), i = 1, 2, t ∈ [t0, t1].

Lemma 2. Suppose the Assumption 1 to be fulfilled. There exists a constant C
such that

‖X1(t, s) − X2(t, s)‖ ≤ C‖u1(·) − u2(·)‖L2 , t, s ∈ [t9, t1],

for any ui(·) ∈ B(0, μ).

Proof. From the integral identities

xi(t) =
∫ t

t0

f1(s, xi(s))ds +
∫ t

t0

f2(s, xi(s))ui(s)ds,

we get

‖x1(t) − x2(t)‖ ≤ ‖ ∫ t

t0
[f1(s, x1(s)) − f1(s, x2(s))]ds‖

+ ‖ ∫ t

t0
[f2(s, x1(s)) − f2(s, x2(s))]u1(s)ds‖ + ‖ ∫ t

t0
f2(s, x2(s))(u1(s) − u2(s))ds‖

≤ ∫ t

t0
(L1 + L2‖u1(s)‖)‖x1(s) − x2(s)‖ds + k1‖u1(·) − u2(·)‖L2 .

Here L1, L2 are Lipschitz constants (with respect to x) for f1(s, x), f2(s, x) on
the set D, and

k1 = ((t1 − t0) max
[t0,t1]×D

‖f2(t, x)‖)1/2.
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From the Grownwall inequality [16] we have

‖x1(·) − x2(·)‖C ≤ K‖u1(·) − u2(·)‖L2 , (14)

where
K = k1 exp (L1(t1 − t0) + L2μ(t1 − t0)1/2).

Denote X(s) = X(t1, s), the matrix X(s) satisfies the equation

Ẋ(s) = −A�(s)X(s), X(t1) = I.

From the proof of Theorem 3 in [17] it follows that there exists k2 > 0 such that

‖X(s)‖ ≤ k2, s ∈ [t0, t1] (15)

for all u(·) ∈ B(0, μ).
Applying inequalities from Assumption 1 and using the scheme of the proof

of inequality (14) we obtain the estimates

∫ t1

t0

‖ A1(t) − A2(t) ‖ dt ≤ C1‖u1(·) − u2(·)‖L2 , (16)

‖ B1(·) − B2(·) ‖C≤ C2‖u1(·) − u2(·)‖L2 , (17)

where C1 > 0, C2 > 0 do not depend on u1(·), u2(·).
Since

d

dt
(X1 − X2) = −A�

1 (t)(X1 − X2) + (A2(t) − A1(t))�X2,

we get the following formula

X1(t) − X2(t) =
∫ t

t1

Y (t, s)(A2(s) − A1(s))�X2(s)ds.

Here Y (t, τ) is a fundamental matrix of the system

ẋ = −A�
1 (t)x.

Inequality (15) imlplies that there exists C3 > 0 such that

‖Y (t, s)‖ ≤ C3, t, s ∈ [t0, t1] (18)

for all u1(·) ∈ B(0, μ). From (16), (17), (18) we get

‖X1(t) − X2(t)‖ ≤ C1C3k2‖u1(·) − u2(·)‖L2 , t ∈ [t0, t1],

and hence
‖X1(t, s) − X2(t, s)‖ ≤ C4‖u1(·) − u2(·)‖L2 (19)

for some C4 > 0 and all t, s ∈ [t0, t1].
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The reachable sets for nonlinear systems, as a rule, are not convex. This cre-
ates additional difficulties in the application of algorithms using optimization
techniques in their construction [2,8,9,14].

From [15] it follows that if the linearization of system (11) along the trajectory
x(t, 0), x(t0, 0) = x0, corresponding to zero control, is controllable, then the
reachable set G(t1) is convex for all sufficiently small μ > 0. The paper [15]
provides also an upper estimate of the value of μ which ensures the convexity of
the reachable set. This estimate is as follows.

Define the map F : L2 → R
n by the equality

F (u(·)) = x(t1),

here x(t) is a trajectory of system (11), cu(·). The map has a continuous Fréchet
derivative F ′ : L2 → R

n

F ′(u(·))Δu(·) = Δx(t1).

where Δx(t) is a solution of the linearization along (u(t), x(t)) of system (11)
with zero initial vector and the control Δu(t).

From (4) we get that

F ′(u(·)) = X(t1, s, u(·))B(s, u(·)), s ∈ [t0, t1],

where X(t1, s, u(·)) is a fundamental matrix of system (13), whose matrices
A(t) = A(t, u(·)), B(t) = B(t, u(·)) depend on u(·). Using inequalities (17),
(19) one may prove that F ′(u(·)) is Lipschitz continuous

‖F ′(u1(·)) − F ′(u2(·))‖ ≤ L‖u1(·) − u2(·)‖L2 (20)

on B(0, μ).
The controllability of the linearization of system (11) along the trajectory

x(t, 0), is equivalent to positivity of the minimal eigenvalue ν of the controllabil-
ity Gramian W = W (t1) of this system. The estimate mentioned above in this
case has the form

μ ≤
√

ν

2L
. (21)

Further we propose sufficient conditions for the reachable set G(t1) to be
convex in the case when μ is fixed but the time interval [t0, t1] is small, denote
t1 − t0 = ε. Applying a change of variables t = ετ + t0 and denoting y(τ) =
x(ετ + t0), v(τ) = εu(ετ + t0) we have

ẏ(τ) = f̃1(τ, y(τ)) + f̃2(τ, y)v(τ), 0 ≤ τ ≤ 1, y(0) = x0, (22)

where f̃1(τ, y) = εf1(ετ + t0, y), f̃2(τ, y) = f2(ετ + t0, y), with constraints on the
control v(·) given by the inequality

∫ 1

0

v�(t)v(t)dt ≤ (μ
√

ε)2. (23)
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Let us assume that all the trajectories of system (11) corresponding to u(·) ∈
B(0, μ) ⊂ L2[t0, t̄1] belong to some compact set D. Let t1 ∈ (t0, t̄1]. Note that
trajectories of (22), (23) are also lying in D for ε ≤ t̄1 − t0, and y(τ, 0) =
x(ετ + t0, 0). The Lipschitz contstants of f̃1, f̃2, ∂f̃1/∂y, ∂f̃2/∂y on the set D
equal respectively to εL1, L2, εl3, l4. The inequality (14) being applied to system
(22) implies

‖y1(·) − y2(·)‖C ≤ K̃‖v1(·) − v2(·)‖L2 , (24)

for some K̃, which does not depend on ε. Notation C, L2 refers here to spaces
of functions defined on a segment [0, 1]. Similarly, from (16), (17) we get

∫ t1

t0

‖ Ã1(t) − Ã2(t) ‖ dt ≤ (C̃1ε + C̃2)‖v1(·) − v2(·)‖L2 , (25)

‖ B̃1(·) − B̃2(·) ‖C≤ C̃3‖v1(·) − v2(·)‖L2 , (26)

for some C̃i ≥ 0. The matrices Ãi(t), B̃i(t) denote here the matrices of the
linearization of system (22) along the pairs (yi(·), ui(·)).

Note that in the case when f2(t, x) does not depend on x, a constant C̃2

equals to zero.
The inequality (20) can be rewritten as follows

‖F̃ ′(v1(·)) − F̃ ′(v2(·))‖ ≤ L(ε)‖v1(·) − v2(·)‖L2 (27)

where F̃ is an analog of the map F for the system (22) and a Lipschitz constant
of F̃ ′ L(ε) = L̃1ε + L̃2 for some L̃i ≥ 0. As above L̃2 = 0 if f2(t, x) = f2(t). The
inequality (21) takes the form here

4μ2εL2(ε) ≤ ν, (28)

this inequality gives the sufficient conditions for the reachable set G̃(1) of the
system (22) under constraints (23) to be convex. Taking into account that
G(t1) = G̃(1) we come to the following

Theorem 2. Let ν(ε) be the minimal eigenvalue of the controllability Gramian
of the linearization of system (22) along x(t, 0). Suppose that there exist C > 0,
α > 0, ε̄ > 0 such that for all ε ≤ ε̄

ν(ε) ≥ Cε1−α

or
ν(ε) ≥ Cε3−α

in the case f2(t, x) = f2(t). Then G(t1) is convex for all sufficiently small t1.
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5 Time-Invariant Systems on a Small Time Interval

Consider here the autonomous control system with a single input

ẋ(t) = f(x(t)) + Bu(t), x(0) = x0, 0 ≤ t ≤ t1, (29)

where 0 ≤ t ≤ t1, x ∈ R
n , u ∈ R, f : Rn → R

n is a continuously differential
mapping, B is an n×1 matrix (a column vector), x0 is a fixed initial state, with
control variables subjected to quadratic integral constraints u(·) ∈ B(0, μ).

Suppose, as before, that there exists a compact set D ⊂ R
n containing all

the trajectories of the system (29), and that f(x) has a Lipschitz continuous
derivative on this set.

Denote A(t) = ∂f
∂x (x(t, 0)) a matrix of the linearization of the system along

x(t, 0). Suppose that f(x0) = 0, in this case x(t, 0) ≡ 0, hence,

A(t) =
∂f

∂x
(x(t, 0)) =

∂f

∂x
(x0) = A

is a constant matrix. Let Wε be the controllability Gramian of the pair (εA,B)
on the interval [0, 1] and ν(ε) be the minimal eigenvalue of Wε. If the pair (A,B)
is controllable then by Theorem 1 ν(Wε) ≥ αε2 if n = 2, and ν(Wε) ≤ βε4 if
n ≥ 3 for some α, β > 0.

With this in mind from Theorem 2 we get the following:

Corollary 1. If n = 2 and the linearization of the system (29) at the point x0

is controllable then the reachable set G(t1) is convex for all sufficiently small t1.
For n ≥ 3 the sufficient conditions of convexity of G(t1) are not satisfied.

As an illustrative example consider the Duffing equation

ẋ1 = x2, ẋ2 = −x1 − 10x3
1 + u, 0 ≤ t ≤ t1 (30)

which describes the motion of nonlinear stiff spring on impact of an external
force u, under integral constraints

∫ t1

0

u2(t)dt ≤ μ2,

and zero initial state x1(0) = 0, x2(0) = 0. Consider a Lyapunov-type function

V (x) = V (x1, x2) =
5
2
x4
1 +

1
2
x2
1 +

1
2
x2
2.

Differentiating V (x(t)) along an arbitrary trajectory of the system (30) one get

dV

dt
(x(t)) = x2(t)u(t),

hence

V (x(t)) =
∫ t

0

x2(τ)u(τ)dτ ≤ μ(
∫ t

0

x2
2(τ)dτ)1/2 ≤ μ(2

∫ t

0

V (τ)dτ)1/2. (31)
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An analog of the Grownwall lemma (see, for example, [16]) being applied to
differential inequality (31) yields V (x(t)) ≤ μ2t. Hence, all the trajectories of
system (30) belongs to a compact set

D = {x ∈ R
2 : V (x) ≤ μ2t1}.

The linearization of (30) along x(t) ≡ 0 after time variable change

ẋ1 = t1x2, ẋ2 = −x1 + u, x(0) = (0, 0), 0 ≤ t ≤ 1

is completely controllable. From Corollary 1 it follows that the reachable sets
G(t1) in this example are convex for small t1.

In the next figure the results of the numerical simulation are shown. These
results are obtained using the proposed in [8] algorithm based on Pontryagin’s
maximum principle for boundary trajectories.
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1
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Fig. 1. The reachable sets for the Duffing system.

Figure 1 shows the plot of the reachable sets for μ2 = 2 at times t1 =
0.3, 0.5, 0.7, 0.9, 1.2, 1.5 respectively. A larger set in the Figure corresponds to a
larger value of t1. This plot indicates that reachable sets are convex for small
values of t1 and lose their convexity as t1 increase.

References

1. Anan’ev, B.I.: Motion correction of a statistically uncertain system under commu-
nication constraints. Autom. Remote Control 71(3), 367–378 (2010)

2. Baier, R., Gerdts, M., Xausa, I.: Approximation of reachable sets using optimal
control algorithms. Numer. Algebra Control Optim. 3(3), 519–548 (2013)

3. Dar’in, A.N., Kurzhanskii, A.B.: Control under indeterminacy and double con-
straints. Differ. Equ. 39(11), 1554–1567 (2003)

4. Filippova, T.F.: Estimates of reachable sets of impulsive control problems with
special nonlinearity. In: AIP Conference Proceedings Application of Mathematics
in Technical and Natural Sciences, 2016, vol. 1773, Article number 100004, pp.
1–10 (2016)



Estimates of the Minimal Eigenvalue of the Controllability Gramian 473

5. Guseinov, K.G., Ozer, O., Akyar, E., Ushakov, V.N.: The approximation of reach-
able sets of control systems with integral constraint on controls. Nonlinear Differ.
Equ. Appl. 14(1–2), 57–73 (2007)

6. Guseinov, Kh. G., Nazlipinar, A.S.: Attainable sets of the control system with
limited resources.Trudy Inst. Mat. i Mekh. Uro RAN 16(5), 261–268 (2010)

7. Gusev, M.: On reachability analysis of nonlinear systems with joint integral con-
straints. In: Lirkov, I., Margenov, S. (eds.) LSSC 2017. LNCS, vol. 10665, pp.
219–227. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73441-5 23

8. Gusev, M.I., Zykov, I.V.: On extremal properties of boundary points of reach-
able sets for a system with integrally constrained control. IFAC-PapersOnLine
50(1), 4082–4087 (2017). https://doi.org/10.1016/j.ifacol.2017.08.792. 20th IFAC
WORLD CONGRESS, 2017

9. Gusev, M.I.: Internal approximations of reachable sets of control systems with state
constraints. Proc. Steklov Inst. Math. 287(Suppl. 1), S77–S92 (2014)

10. Huseyin, N., Huseyin, A.: Compactness of the set of trajectories of the controllable
system described by an affineintegral equation. Appl. Math. Comput. 219, 8416–
8424 (2013)

11. Kurzhanski, A.B., Varaiya, P.: Dynamic optimization for reachability problems. J.
Optim. Theory Appl. 108(2), 227–251 (2001)

12. Lee, E.B., Marcus, L.: Foundations of Optimal Control Theory. Willey, Hoboken
(1967)

13. Horn, R.A., Jonson, C.R.: Matrix Analysis. Cambridge University Press,
Cambridge (1986)

14. Patsko, V.S., Pyatko, S.G., Fedotov, A.: Three-dimensional reachability set for a
nonlinear control system. J. Comput. Syst. Sci. Int. 42(3), 320–328 (2003)

15. Polyak, B.T.: Convexity of the reachable set of nonlinear systems under l2 bounded
controls. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 11, 255–267
(2004)

16. Walter, W.: Differential and Integral Inequalities. Springer, Berlin (1970). https://
doi.org/10.1007/978-3-642-86405-6

17. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer
Academic Press, Boston (1988)

https://doi.org/10.1007/978-3-319-73441-5_23
https://doi.org/10.1016/j.ifacol.2017.08.792
https://doi.org/10.1007/978-3-642-86405-6
https://doi.org/10.1007/978-3-642-86405-6


Optimality Conditions and Numerical
Algorithms for Hybrid Control Systems

Nadezhda Maltugueva(B) , Nikolay Pogodaev , and Olga Samsonyuk

Matrosov Institute for System Dynamics and Control Theory, Irkutsk 664033, Russia
{malt,n.pogodaev}@icc.ru, olga.samsonyuk@gmail.com

Abstract. For an optimal control problem with intermediate state con-
straints, we construct an iterative descent algorithm and prove a related
necessary optimality condition. Finally, we show how these results can
be applied to measure-driven multiprocesses.
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1 Introduction

In this paper we consider the following optimal control problem with intermedi-
ate state constraints:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J = l (x(θN )) → min, (cost)
ẋ = f(t, x, u), u(t) ∈ U, (dynamics) (P )
x(0) = x0, (initial condition)
x(θi) ∈ Ai, i = 1, . . . , N, (intermediate constraints)

where U ⊂ R
m is a compact set, a = θ0 < θ1 < · · · < θN = b are given time

moments on the segment T = [a, b], and Ai, i = 1, . . . N , are given closed subsets
of the phase space R

n.
Let us remark that any control system with intermediate constrains can

be naturally considered as a hybrid control system, or a multiprocess in the
terminology of [5].

In what follows, we impose the usual regularity assumptions on f and l:

(H) (t, x, u) �→ f(t, x, u) is continuous on T ×R
n ×U , sublinear, i.e., f(t, x, u) ≤

C(1 + |x|) for all t, x, u, and continuously differentiable in x; l : R
n → R is

continuously differentiable.

Note that, if (H) holds, the input-output map u(·) �→ x(·) of the dynamical
system is single-valued, so we may think of J as a function of u, i.e., J = J [u].
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Setting aside the methods involving integrating the Hamilton-Jacobi-Bellman
equation, there are two main ways to tackle numerically an optimal control prob-
lem. The first approach consists in replacing it with a certain finite-dimensional
optimization problem and then solving the latter (see, for instance, [4,21,22]).
The second approach uses control variations in infinite dimensional spaces to
construct a sequence of controls along which the cost of the problem monotoni-
cally decrease (see [9,12,20]). Roughly speaking, such algorithms can be thought
of as gradient descent methods in infinite dimensional spaces; for this reason we
will call them the iterative descent algorithms.

Methods of the first type usually involve time discretization and thus can be
easily applied to the problem (P ). On the other hand, methods of the second
type deal, as a rule, only with unconstrained optimal control problems (in the
sense that such problems contain no terminal or intermediate constraints). There
were attempts to use them for solving hybrid problems similar to (P ), but they
led to highly complicated numerical algorithms [2,18]. In the present paper, we
make another effort in this direction, but we base it on completely different ideas.

More precisely, we aim at constructing an iterative algorithm for (P ) which,
starting from an admissible u0, generates a sequence of admissible controls uk,
k ∈ N, with the descending property: J [uk] < J [uk−1] for all k ∈ N. To that end,
we replace (P ), for a given reference control ū, with an unconstrained optimal
control problem (Pū) with the property

Jū[u] < Jū[ū] ⇒ J [u] < J [ū].

Then, applying to (Pū) any known descent method, we obtain a control u satis-
fying J [u] < J [ū]. As a byproduct we will prove a new necessary optimality con-
dition, which, being rougher than the usual Hybrid maximum principle [1,6,8],
has strong relations with the proposed algorithm. Finally, we show that optimal
impulsive control problems with intermediate state constraints, interpreted as
measure-driven optimal multiprocesses, can be reduced to the problem (P ).

2 Preliminaries

We collect in this section several important definitions and lemmas that will be
used throughout the paper.

2.1 Flows

Throughout this section, let g : R
+ × R

n → R
n be a time dependent vector

field satisfying the usual regularity assumptions: g = g(t, x) is measurable in t,
continuously differentiable in x, and obeys the sublinear growth condition.

Definition 1. The map Φ : R
+ × R

+ × R
n → R

n defined by Φt
s(x) = y(t, s, x),

where y(·, s, x) satisfies the Cauchy problem
{

ẏ(t) = g (t, y(t)) ,

y(s) = x,
(1)
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is called the flow of the time dependent vector field g.

Recall some essential properties of the flow [3]:

(i) for any s, t, θ ∈ R
+, one has Φs

θ ◦ Φθ
t = Φs

t and Φt
t = id.

(ii) for any s, t ∈ R
+, the map x �→ Φt

s(x) is a diffeomorphism and its derivative
is given by DΦt

s(x) = M(t), where M(·) satisfies the linear matrix equation

{
Ṁ(t) = Dg (t, Φt

s(x)) M(t),
M(s) = I.

(2)

Above id denotes the identity map, I the identity matrix, D the differentia-
tion with respect to the spatial variable x.

2.2 Regular Sets

Given a closed set S ⊂ R
n and a point x ∈ S, let us denote by NS(x) and NL

S (x)
the Bouligand and the limiting normal cones to S at x (see, e.g., [7] for their
definitions).

Definition 2. A closed set S ⊂ R
n is called regular at x ∈ S if

NS(x) = NL
S (x) = co NL

S (x).

For details we refer to [7, Section 10.3 and Theorem 11.36].

Example 1 (cf. [7, Corollary 10.44]). Let us take

S = {x : gi(x) ≤ 0, i = 1, . . . , k} ,

where all gi are continuously differentiable functions, and I(x) = {i : gi(x) = 0}.
Let x ∈ S be such that I(x) 	= ∅. If the vectors {∇gi(x), i ∈ I(x)} are linearly
independent then S is regular at x and

NS(x) =
{

∑

i∈I(x)

λi∇gi(x) : λi ≥ 0
}

.

Definition 3. Closed sets A1, A2 are said to be transversal at x ∈ A1 ∩ A2 if
−NL

A1
(x) ∩ NL

A2
(x) = {0}.

The following lemma helps to compute normal cones to the intersection of
regular sets.

Lemma 1 (cf.[7, Theorem 11.39]). Let A1 and A2 be regular and transversal
at x ∈ A1 ∩ A2. Then

NA1∩A2(x) = NA1(x) + NA2(x).
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The next lemma describes how the normal cone to a set evolves when this
set is transported by a vector field.

Lemma 2. Let Φ be the flow of the time dependent vector field (t, x) �→ g(t, x),
x(·) be one of its integral curves, and A ⊂ R

n be a closed set such that x(s) ∈ A
for some s ∈ R

+. Finally, let Ψ denote the flow of the time dependent vector
field (t, p) �→ −pDg(t, x(t)). If A is regular at x(s) then

NΦt
s(A)

(
x(t)

)
= Ψ t

s

(
NA(x(s))

) ∀t ∈ R
+.

Lemma 2 is a simple consequence of [7, Theorem 10.19].

3 Auxiliary Problem

Throughout this section, let (x̄, ū) be a fixed admissible process for (P ), Φ and
Ψ be the flows of the time dependent vector fields (t, x) �→ f (t, x, ū(t)) and
(t, p) �→ −pDf(t, x̄(t), ū(t)), respectively.

For any i = 1, . . . N , consider the following auxiliary problem:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ji = l ◦ ΦθN

θi
(x(θi)) → min, (cost)

ẋ = f(t, x, u), u(t) ∈ U, (dynamics) (Pi)
x(θi−1) = x̄(θi−1), (initial condition)
x(θi) ∈ ⋂N

j=i Φθi

θj
(Aj). (terminal condition)

The next lemma establishes a relation between the problems (P ) and (Pi).

Lemma 3. Let (xi, ui) be an admissible process in (Pi), u : [0, T ] → U be defined
by

u(t) =

{
ui(t), t ∈ [θi−1, θi],
ū(t), otherwise,

and x(·) be a solution of the Cauchy problem
{

ẋ(t) = f (t, x(t), u(t)) ,

x(0) = x0.

Then the pair (x, u) is an admissible process in (P ). Moreover, for any i =
1, . . . , N − 1, the inequality Ji[ui] < Ji[ū] implies J [u] < J [ū].

Proof. Let us note that x(t) = x̄(t) for all t ∈ [0, θi−1]. Moreover, from

x(θi) ∈
N⋂

j=i

Φθi

θj
(Aj)

it follows that x(θj) ∈ Aj , for all j = i, . . . , N . Thus, the process (x, u) is
admissible in (P ).
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If Ji[ui] < Ji[ū] then, by definition, l ◦ ΦθN

θi
(x(θi)) < l ◦ ΦθN

θi
(x̄(θi)). On the

other hand, we have

l ◦ ΦθN

θi
(x(θi)) = l (x(θN )) , l ◦ ΦθN

θi
(x̄(θi)) = l (x̄(θN )) .

Hence J [u] < J [ū], as desired.

This lemma immediately implies the following

Proposition 1. If ū is optimal in (P ) then its restriction ū|[θi−1,θi] on each
time interval [θi−1, θi], i = 1, . . . , N , is optimal in (Pi).

The above proposition, in turn, allows us to prove a necessary optimality
condition for the original problem (P ).

3.1 Necessary Optimality Condition

We state and prove the necessary optimality condition only in the generic case
(under additional regularity assumptions). This greatly simplifies the proof and
allows the reader to see the geometrical meaning of the result.

Regularity Assumption. Let (x̄, ū) be an optimal pair in (P ) and

E = {x : l(x) ≤ l(x̄(θN ))} .

Then, for each i = 1, . . . , N ,

(i) Ai is regular at x̄(θi) and Dl (x̄(θN )) 	= 0;
(ii) the sets Φθi

θN
(E), Φθi

θj
(Aj), j ≥ i, are pairwise transversal at x̄(θi).

Note that (i) implies that each Φθi

θj
(Aj), j ≥ i, is regular at x̄(θi).

Theorem 1 (necessary optimality condition). Let (x̄, ū) be an optimal pro-
cess in (P ) and the regularity assumption hold. Then there exists a family of arcs
pi : [θi−1, θi] → R

n satisfying, for a.e. t ∈ [θi−1, θi], the adjoint equation

ṗi(t) = −Df(t, x̄(t), ū(t))pi(t), (3)

the maximum condition

〈pi(t), f (x̄(t), ū(t))〉 = max
ω∈U

〈pi(t), f (x̄(t), ω)〉 , (4)

the transversality condition

− pi(θi) ∈ Ψθi

θN

(
NE(x̄(θN ))

)
+

N∑

j=i

Ψθi

θj

(
NAj

(x̄(θj))
)
, (5)

and the nontriviality condition

pi(θi) 	= 0. (6)
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Proof. Let (x̄, ū) be optimal in (P). Then, by Proposition 1, its restriction on
[θi−1, θi] is optimal in (Pi) for each i = 1, . . . , N .

Fix some i. According to the classical Pontryagin maximum principle [7,
Theorem 22.2], if a pair (x̄, ū) is optimal in (Pi) then there exist a scalar λi ≥ 0
and an arc pi : [θi−1, θi] → R

n satisfying the nontriviality condition (λi, pi(θi)) 	=
0, the adjoint equation (3), the maximum condition (4), and the transversality
condition

− pi(θi) ∈ N⋂N
j=i Φ

θi
θj

(Aj)
(x̄(θi)) + λiD

(
l ◦ Φθi

θN

)
(x̄(θi)). (7)

Note that

Φθi

θN
(E) =

{
x : l ◦ ΦθN

θi
(x) ≤ l ◦ ΦθN

θi
(x̄(θi))

}
.

Taking into account the regularity assumption and Example 1, we conclude that

N
Φ

θi
θN

(E)
(x̄(θi)) =

{
λD

(
l ◦ Φθi

θN

)
(x̄(θi)) : λ ≥ 0

}
.

Hence (7) can be equivalently expressed as

−pi(θi) ∈ N⋂N
j=i Φ

θi
θj

(Aj)
(x̄(θi)) + N

Φ
θi
θN

(E)
(x̄(θi)),

at the same time the nontriviality condition must be substituted with the one
given by (6).

Now, Lemma 1 implies that

N⋂N
j=i Φ

θi
θj

(Aj)
(x̄(θi)) =

N∑

j=i

N
Φ

θi
θj

(Aj)
(x̄(θi)),

while Lemma 2 together with the regularity assumption yields (5), as desired.

Remark 1. Let us describe the geometrical meaning of the transverslity condition
(5). At the time moment θi it is constructed in the following way. We take all
the targets ahead Aj , j ≥ i, together with the favorable region E. Then we
compute the normal cones to these sets at the points x̄(θj), j ≥ i, and x̄(θN ),
respectively. Next we transfer these cones back to the time moment θi with flow
Ψ of the adjoint system. Finally, we compute the sum of the translated cones to
get the right-hand side of (5). See also Fig. 1.

Remark 2. Let us denote the right-hand side of (5) by Ci. It is easy to see that
the sets Ci can be constructed recursively as follows:

{
CN = NAN

(x̄(θN )) + NE (x̄(θN )) ,

Ci = NAi
(x̄(θi)) + Ψθi

θi+1
(Ci+1) , i < N.
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Now, note that, for each i = 0, . . . , N − 1, the following implications hold:

−pi+1(θi+1) ∈ Ci+1 ⇒ −pi+1(θi) ∈ Ψθi

θi+1
(Ci+1) ⇒

−pi+1(θi) + NAi
(x̄(θi)) ⊂ Ci.

If we replace, in the statement of Theorem 1, the transversality condition
−pi(θi) ∈ Ci with the more restrictive condition

−pi(θi) ∈ −pi+1(θi) + NAi
(x̄(θi)) ,

we get exactly the jump condition of the Hybrid maximum principle [6,8]. This
allows us to conclude that our necessary optimality condition is rougher than the
Hybrid maximum principle (any extremal of the latter satisfies the assumptions
of Theorem 1, but not vice versa).

Fig. 1. The figure shows two snapshots of the phase space at the time moments t =
θN−1 and t = θN . One the right snapshot, TN is the tangent cone to AN ∩ E, i.e., the
cone of “profitable directions”, CN is the corresponding normal cone, ΓN is the cone of
“feasible directions”, i.e., those directions along which one can shift the terminal point
x̄(θN ) by using needle variations of ū on [θN−1, θN ]. Since ū is optimal, TN and ΓN are
weakly separated by a hyperplane pN (θN ) · v = 0, hence −pN (θN ) ∈ CN . Similarly on

the left snapshot, TN−1 is the tangent cone to the set AN−1 ∩Φ
θN−1
θN

(AN )∩Φ
θN−1
θN

(E),
CN−1 its normal cone, ΓN−1 is again the cone of “feasible directions”. Since ΓN−1

and TN−1 must be weakly separated, one has −pN−1(θN−1) ∈ CN−1. The regularity
assumption allows us to express CN−1 and CN in the form (5).

4 Numerical Method

4.1 General Scheme

Suppose that there is an iterative descent algorithm A0 that can be used to solve
each auxiliary problem (Pi). In other words, starting from some admissible u0,
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the algorithm A0 produces a sequence of admissible controls uk, k ∈ N, with the
property Ji[uk] ≤ Ji[uk−1], for all k ∈ N. Now, the following scheme provides a
descent algorithm for (P ).

Algorithm A.

0. Let u0 be an initial guess. Set i := 1, k := 0.
1. Make one iteration of A0 in the auxiliary problem (Pi) using uk as the initial

guess. This gives uk
i satisfying Ji[uk

i ] ≤ Ji[uk].
2. Set

uk+1(t) :=

{
uk

i (t), t ∈ [θi−1, θi],
uk(t), otherwise.

3. If i < N then i := i + 1 else i := 1.
4. Return to step 1.

Indeed, according to Proposition 1, the algorithm produces a sequence uk,
k ∈ N, satisfying J [uk] ≤ J [uk−1], for all k ∈ N.

Definition 4. We say that A0 is strictly improving for (Pi) if, for any initial
guess u0, the sequence uk produced by A0 is such that

(i) Ji[uk] = Ji[uk−1] if uk−1 satisfies the Pontryagin maximum principle,
(ii) Ji[uk] < Ji[uk−1] otherwise.

Examining the proof of Theorem 1, we conclude that if A0 is strictly improv-
ing for each (Pi), i = 1, . . . , N , then A is strictly improving for (P ) in the sense
that, for any initial guess u0, the sequence uk produced by A is such that

(i) J [uk] = J [uk−1] if uk−1 satisfies the necessary condition given by Theorem 1,
(ii) J [uk] < J [uk−1] otherwise.

Roughly speaking, if A0 cannot improve the controls satisfying the Pon-
tryagin maximum principle, then A cannot improve the controls satisfying the
conditions of Theorem 1.

4.2 Implementation

As we have said before, most iterative descent algorithms can be applied only
to problems with no terminal constraints. Hence, in practice, we use the penalty
method to get rid of the terminal constraints in (Pi).

Suppose, for example, that all target sets Ai are uniformly prox-regular (see
[17]). Then we can replace (Pi) with the following minimization problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l ◦ ΦθN

θi
(x(θi)) +

N∑

j=i

Mj d2Aj

(
Φ

θj

θi
(x(θi))

)
→ min,

ẋ = f(t, x, u), u(t) ∈ U, (P̃i)
x(θi−1) = x̄(θi−1),
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where dA(x) denotes the distance between a point x and a set A, Mj , j =
i, . . . , N , are sufficiently large positive constants.

Note that the uniform prox-regularity of A implies that d2Aj
is C1,1 and

Dd2A(x) = 2(x−projA(x)) on a neighborhood of A. Hence, if Φ
θj

θi
(x) is sufficiently

close to Aj , we have

Dd2Aj

(
Φ

θj

θi
(x)

)
= 2

(
Φ

θj

θi
(x) − projAj

(
Φ

θj

θi
(x)

))
· DΦ

θj

θi
(x).

Recall that for computing DΦ
θj

θi
(x) it suffices to solve a linear matrix differential

equation of the form (2).
Thus, to compute the cost at a given point x, one must solve a nonlinear

differential equation of the form (1). To compute the gradient of the cost, one
must solve in addition a linear matrix differential equation of the form (2).

With these observations taken into account, any algorithm from [9,12,20]
can be directly applied to (P̃i), and thus taken as A0.

4.3 Numerical Example

Here we apply the algorithm to solve the “generalized travelling salesman prob-
lem”. Unlike the classical travelling salesman problem, we want to visit a number
of targets Ai ⊂ R

2 at time moments θi with the minimal fuel consumption.
The state of the salesman is described by a vector x = (x1, x2, x3, x4) ∈ R

4,
where (x1, x2) refers to the salesman’s position and (x3, x4) to his or her velocity.
We assume that the salesman’s acceleration (u1, u2) can be controlled and the
fuel consumption is proportional to the square of the acceleration.

Now, the problem can be formalized as follows:
⎧
⎪⎨

⎪⎩

∫ θN

0
|u|2 dt → min,

ẍ = u, |u| ≤ a,

x(0) = x0, x(θi) ∈ Ai,

where a denotes the maximal absolute value of the acceleration.
The usual trick, which consists in introducing new variables y(t) = ẋ(t) and

z(t) =
∫ t

0
|u(s)|2 ds, allows us to rewrite the above problem in the form (P ).

To deal with the auxiliary problems (P̃i) we use the method of needle lin-
earization [20]. Let us remark that this method is strictly improving in the sense
of Definition 4. Some results of the computations are presented in Fig. 2.

5 Applications for Measure-Driven Multiprocesses

5.1 An Optimal Impulsive Control Problem with Intermediate
State Constraints

In this section, we address an optimal impulsive control problem and show how
the results presented above can be applied for measure-driven multiprocesses.
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Fig. 2. The salesman must visit 5 targets A1, . . . , A5 (the green balls on the plane) at
the time moments 4, 7, 11, 15, 20, respectively. The control found by the algorithm is
on the right figure, the path of the salesman is on the left. (Color figure online)

We consider the optimal impulsive control problem (P imp):

J = l
(
x(b)

) → min

stated on solutions of the measure-driven dynamic system

dx(t) = f
(
t, x(t), u(t)

)
dt + G

(
t, x(t)

)
μ(dt), x(a−) = x0, (8)

x(θi) ∈ Ai, i = 1, . . . , N, (9)
u(t) ∈ U for L-a.e. t ∈ T, μ ∈ C∗(T,K). (10)

Here, T = [a, b] ⊂ R is a fixed time interval, U is a given compact subset of R
r,

K is a closed convex cone from R
m, Ai, i = 1, . . . , N , are closed sets from R

n,
θ = {θ1, . . . , θN} is a given vector of time moments such that a ≤ θ1 < θ2 <
· · · < θN ≤ b, N < ∞, and x0 ∈ R

n is a given initial state. The symbol L stands
for the Lebesgue measure on the real line. The dynamics (8)–(10) depends on
two types of input signals: the “usual” control u ∈ L∞(T,U), and the impulsive
control μ, which is a vector measure. The functions x(·) define trajectories and
are functions of bounded variation.

We posit the following assumptions:
(H1) The function l : R

n �→ R is continuous.
(H2) The functions f : T ×R

n×U �→ R
n, G : T ×R

n �→ R
n×r are continuous

and locally Lipschitz continuous in x. Moreover, there exist constants c1,2 > 0
such that

∥
∥f(t, x, u)

∥
∥ ≤ c1

(
1 + ‖x‖), ∥

∥G(t, x)
∥
∥ ≤ c2 (1 + ‖x‖)

for any (t, x, u) ∈ T × R
n × U . Here,

∥
∥ · ∥

∥ denotes the vector norm defined by

||x|| =
n∑

j=1

|xj | or a consistent matrix norm of the proper dimension.

(H3) The set f(t, x, U) .=
{
f(t, x, u) | u ∈ U

}
is convex for all (t, x) ∈ T ×R

n.
The solution concept for the control system (8)–(10) is given in Sect. 5.2. We

note that any interpretation of (8)–(10) as a measure-driven differential equation
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cannot provide a concept of solution with well-posedness properties [13,15]. This
is due to the fact that we do not assume any commutativity property of the vector
fields generated by the columns of G. Namely, generally the Lie brackets [Gi, Gj ],
i, j = 1, . . . , m, do not vanish identically. To overcome this drawback we extend
the notion of impulsive control to a pair π(μ) consisting of μ and some additional
components, which characterise a way of approximation of μ by some sequences
of L-absolutely continuous measures μk = vk(t)dt, where vk(·) ∈ L∞(T,K).

Let K1
.= {v ∈ K : ||v|| = 1} and let co A be the convex hull of a set A.

Given μ, a bounded Borel measure on T , we denote by μc, |μc|, and Sd(μ) the
continuous component in the Lebesgue decomposition of the measure μ, the total
variation of μc, and the set on which the discrete component of μ is concentrated,
i.e., Sd(μ) .= {s ∈ T : μ({s}) 	= 0}, respectively.

By an impulsive control π we mean a collection

π =
(
μ, S, {ds, ωs(·)}s∈S

)

satisfying the following conditions:
(i) μ is a bounded K-valued Borel measure on T ,
(ii) the set S is at most countable subset of the interval T , and Sd(μ) ⊆ S,
(iii) ds ∈ R, ds ≥ ∥

∥μ
({s})∥

∥ for all s ∈ S, and
∑

s∈S ds < ∞;
(iv) the functions ωs(·) : [0, ds] → co K1, s ∈ S, are Borel measurable func-

tions with the property
∫ ds

0

ωs(τ)dτ = μ
({s})

.

By W(T,K) we denote the set of all impulsive controls. Taken π ∈ W(T,K),
one defines the function V = V [π] : T → R by the relation:

V (t) = |μc|
(
[a, t]

)
+

∑

s≤t, s∈S

ds, t ∈ (a, b], V (a) = 0.

5.2 The Solution Concept and Comments

Let BV (T, Rn) be the space of R
n-valued functions of bounded variation (BV -

functions) and BV r(T, Rn) be the space of BV -functions which are right con-
tinuous on (a, b].

We propose the solution concept for the control system (8)–(10) via the
concept of graph completions for BV -functions.

Let τ1 > 0 be given. We say that η : [0, τ1] → [a, b] is a time reparametrization
if η(·) is a nondecreasing Lipschitz continuous function such that η(0) = a,
η(τ1) = b.

Given a time reparametrization η(·), we define the pseudoinverse function
θ : [a, b] → [0, τ1] by the rule:

θ(t) = inf{τ ∈ [0, τ1] : η(τ) > t}, t ∈ (a, b], θ(a) = 0. (11)

Given η(·) and its pseudoinverse θ(·), let Sη .= Sd(θ), dη
s

.= θ(s) − θ(s−). Given
x ∈ BV r([a, b], Rn), the time reparametrization η(·) is said to be consistent with
x(·) if Sd(x) ⊆ Sd(θ).
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Let x ∈ BV r([a, b], Rn), η(·) be a consistent time reparametrization, and θ(·)
be the pseudoinverse for η(·). Let zs : [0, dη

s ] → R
n, s ∈ Sη be the family of

Lipschitz continuous functions such that zs(0) = x(s−), zs(dη
s) = x(s), s ∈ Sη.

Then, we say that xη
.=

(
x(·), {zs(·)}s∈Sη

)
is a graph completion corresponding

to η(·) for x(·).
Following [13,14], given controls (u, π), where π =

(
μ, S,

{
ds, ωs(·)

}

s∈S

) ∈
W(T,K), u ∈ L∞(T, Rm), we define a function xr(·) ∈ BV r(T, Rn) satisfying
the following relations:

xr(t) = x0 +
∫ t

a

f
(
τ, xr(τ), u(τ)

)
dτ +

∫ t

a

G
(
τ, xr(τ)

)
μc(dτ)

+
∑

s∈S, s≤t

(
zs(ds) − xr(s−)

)
, t ∈ (a, b], xr(a) = x0, (12)

dzs(τ)
dτ

= G
(
s, zs(τ)

)
ωs(τ), zs(0) = xr(s−),

for L-a.e. τ ∈ [0, ds] and all s ∈ S. (13)

We note that the collection
(
xr(·), {zs(·)}s∈S

)
is a graph completion for xr(·).

Indeed, given π and V = V [π], let θμ(t) = t − a + V (t) for all t ∈ T. Denote
τ1

.= b − a + V (b) and consider the function ημ : [0, τ1] → [a, b] for which θμ(·) is
the pseudoinverse defined by (11). Then, xημ

=
(
xr(·), {zs(·)}s∈S

)
and ημ(·) is

a consistent time reparametrization for xr(·).
Next, we consider a set-valued function X : T → comp(Rn) defined as

(i) X(t) = xr(t) for all t ∈ T \ S,
(ii) X(s) =

{
zs(τ) : τ ∈ [0, ds]

}
for all t = s ∈ S.

Then, X is said to be the solution of the measure-driven equation (8) correspond-
ing to the controls (u, π). We say that X satisfies the intermediate constraints
(9) if

X(θi) ∩ Ai 	= ∅, i = 1, . . . , N. (14)

In what follows, σ denotes a feasible process of problem (P imp), i.e., a triple(
X,u, π

)
satisfying the conditions (8), (14) together with

u ∈ L∞(T,U), π ∈ W(T,K), (15)

and Σ stands for the set of all feasible processes.
We can interpret (P imp) as a relaxation of a conventional optimal control

problem. Indeed, let {εk} be a sequence such that εk → 0 as k → ∞. We
consider the following problem (P0,εk

):

J0,εk
= l

(
x(b)

) → inf

subject to the dynamics

ẋ(t) = f
(
t, x(t), u(t)

)
+ G

(
t, x(t)

)
v(t), x(a) = x0, (16)

x(θi) ∈ Ai + εkB, i = 1, . . . , N, (17)
u(t) ∈ U, v(t) ∈ K for L- a.e. t ∈ T, (18)
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where x ∈ AC(T, Rn), u ∈ L∞(T, Rr), v ∈ L∞(T, Rm), B ⊂ R
n is the closed

unit ball centered at zero. We say that g =
(
x(·), u(·), v(·)) is a feasible process

for the problem (P0,εk
) if the components of g satisfy the relation (16)–(18). We

denote by Σεk
the collection of all feasible processes g.

In general, the problem (P0,εk
) does not have optimal solution with measur-

able controls u(·), v(·) and absolutely continuous trajectories x(·). This is due
to the fact that the velocity set defined by the Eq. (16) is unbounded.

The following theorems clarify the sense in which the problem (P imp) is
considered as a relaxation of a conventional optimal control problem.

Theorem 2 (approximation of solutions). Let σ =
(
X,u, π(μ)

) ∈ Σ.
Then, there exist sequences {εk} and {gk} such that:
(i) εk → 0 as k → ∞,
(ii) gk =

(
xk(·), uk(·), vk(·)) ∈ Σεk

for all k ∈ N,
(iii) there exists a selection x(·) of the set-valued function X such that xk(t) →
x(t) for all t ∈ T.

Theorem 3 (existence of an optimal solution). Let sequences {εk} and
{xk(·), uk(·), vk(·)} be such that: (i) εk → 0 as k → ∞,
(ii) for every k ∈ N the process gk =

(
xk(·), uk(·), vk(·)) is feasible for (P0,εk

);

(iii) sup
k

∫ b

a

∥
∥vk(t)

∥
∥dt < +∞;

(iv) l
(

lim
k→∞

xk(b)
)

= lim
k→∞

inf
g∈Σεk

Jεk
(g).

Then, there exists σ̄ =
(
X̄, ū, π̄

) ∈ Σ, where π̄ =
(
μ̄, S̄,

{
d̄s, ω̄s(·)

}

s∈S̄

)
and X̄ is

defined by the corresponding collection
(
x̄r(·), {z̄s(·)}s∈S̄

)
, such that

J(σ̄) = min
σ∈Σ

J(σ)

and xk(t) → x̄r(t) for all t ∈ T \ S̄.

The proofs of Theorems 2, 3 follow from the approximation results in [19].

5.3 Space-Time Representation for Measure-Driven Multiprocesses

Following [13,15,16,23], we consider a space-time representation of the measure-
driven system (8)–(10). This representation reduces our impulsive model to a
conventional variational problem with measurable compact-valued controls. The
space-time problem (Pa) takes the form:

Ĵ = l
(
y(τb)

) → min

subject to the relations:

η′(τ) = ω0(τ), η(0) = a, η(τb) = b, (19)

y′(τ) = f
(
η(τ), y(τ), ν(τ)

)
ω0(τ) + G

(
η(τ), y(τ)

)
ω(τ), y(0) = x0, (20)

(
η(τi), y(τi)

) ∈ {θi} × Ai, i = 1, . . . , N, (21)

ν(τ) ∈ U,
(
ω0(τ), ω(τ)

) ∈ co K̃1 for L-a.e. τ ∈ [0, τb]. (22)
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Here,
(
η(·), y(·)) ∈ AC

(
[0, τb], Rn+1

)
, ν(·) ∈ L∞(

[0, τb], Rr
)
,

(
ω0(·), ω(·)) ∈

L∞(
[0, τb], Rm+1

)
, ρ = (τ1, . . . , τN , τb) is a vector of non-fixed points of time such

that 0 ≤ τ1 < τ2 < · · · < τN ≤ τb; K̃1
.= {(ω0, ω) ∈ [0, 1] × K : ω0 + ‖ω‖ = 1};

prime indicates the derivative w.r.t τ .
Let ζ denote a feasible process of problem (Pa), i.e., a tuple

(
ρ, η, y, ν, ω0, ω

)

satisfying the conditions (19)–(22), and Σa stands for the set of all feasible
processes. Then, there is a one-to-one correspondence between the sets Σ and
Σa [15]. Furthermore,

min
σ∈Σ

J(σ) = min
ζ∈Σa

Ĵ(ζ).

We note that applying the hybrid maximum principle [6] to the problem (Pa)
allows us to obtain more general necessary optimality conditions for measure-
driven multiprocesses than in [10,11], where special assumptions about optimal
controls were posited.

By a standard way, the problem (Pa) is transformed to an optimal control
problem with fixed intermediate time points. Thus, (P imp) can be considered
as a particular case of (P ). Assuming additionally that the functions f , G are
continuously differentiable in x, and l is differentiable, we can apply the necessary
optimality condition presented by Theorem 1 and the numerical algorithm for
our measure-driven multiprocesses.
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Abstract. The problem of the ellipsoidal estimation of the reachable
set of the control system under uncertainties is considered. The matrix
included in the differential equations of the system dynamics is uncer-
tain and only bounds on admissible values of this matrix coefficients are
known. It is assumed that the initial states of the system are unknown but
belong to a given star-shaped symmetric nondegenerate polytope. This
polytope may be a non-convex set. Under such conditions, the dynami-
cal system is a nonlinear and reachable set loses convexity property. A
Minkowski function is used in the investigation to describe the trajectory
tubes and their set-valued estimates. The step by step algorithm for con-
structing external and internal ellipsoidal estimates of reachable sets for
such bilinear control systems is proposed. Numerical experiments were
performed. The results of these numerical experiments are included.

Keywords: Control system · Ellipsoidal calculus · Estimation ·
Reachable set

1 Introduction

The present paper deals with the problem of reachable sets estimation for bilin-
ear control systems described by differential equations. The case of the set-
membership description of uncertain parameters is considered here. The matrix
included in the differential equations of the system dynamics is uncertain, but
the bounds on admissible perturbations of the matrix are known. These sys-
tems can be used for simulation of various electrical, mechanical and other types
of systems with unknown parameters bounded by certain limits [1,2]. As an
example, we can indicate mechanical systems in which the stiffness or friction
coefficients are given inaccurately. Electrical systems where the resistance, capac-
itance, inductance, or feedback coefficients are known with a certain accuracy
can also be described by such systems.

The systems with uncertainty on initial data were considered in [3,8–10,17,
18,21]. The systems with convex initial sets were considered in many works.
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However, in concrete applied problems the initial sets and reachable sets may be
non-convex but have special properties. In the present paper it is assumed that
the initial state of the system is bounded by a given star-shaped set [16,19]. In
a common case this set may be a non-convex.

The most developed approaches for estimating reachable sets are the method
of ellipsoidal calculus [3,4,6,9,17] and the method of polyhedral techniques [7].
In the present paper we continue the researches [11–14] and develop methods
of ellipsoidal approximation. As the result of the study we present modified
estimates of the reachable set of the system using a special structure of the initial
set and unknown parameters. The external and internal ellipsoidal estimates of
reachable sets for such bilinear control systems are considered here.

2 Problem Formulation

In this section, we introduce the main necessary notations used in the paper and
give the basic formulation of the problem.

2.1 Basic Notations

Let compR
n be the set of all compact subsets of the R

n and convR
n be the set

of all convex and compact subsets of Rn. Here R
n is the n–dimensional vector

space. Also let Rn×n stands for the set of all real n × n–matrices, ˜R
n×n ⊂ R

n×n

stands for the set of all symmetric positive definite matrices, and x′y = (x, y) =
∑n

i=1 xiyi be the usual inner product of x, y ∈ R
n with prime as a transpose,

‖x‖ = (x′x)1/2. Let I ∈ R
n×n be the identity matrix, tr(A) be the trace of n×n-

matrix A (the sum of its diagonal elements), diag b = diag{bi} be the diagonal
matrix A with aii = bi where bi are components of the vector b. By the symbol
co A we denote closed convex hull of the set A ⊂ R

n.
The Hausdorff distance between sets A,B ∈ R

n we denote by h(A,B). Here
h(A,B) = max{h+(A,B), h−(A,B)}, with h+(A,B) and h−(A,B) being the
Hausdorff semidistances between A and B, h+(A,B) = sup{d(x,B) : x ∈ A},
h−(A,B) = h+(B,A), d(x,A) = inf{‖x − y ‖: y ∈ A}.

By symbol
B(a, r) = {x ∈ R

n : ‖x − a‖ ≤ r}
we denote the ball in R

n with radius r > 0 and center a ∈ R
n. By symbol

E(a,Q) = {x ∈ R
n : (Q−1(x − a), (x − a)) ≤ 1}

denote the ellipsoid in R
n with symmetric positive definite n × n-matrix Q and

center a ∈ R
n.

We suppose, that parallelepiped [7] P(p, P ) in R
n is a set

P(p, P ) = {x : x = p +
n

∑

i=1

piαi, |αi| ≤ 1, i = 1, n}, (1)
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where p ∈ R
n is its center, and P = {p1 . . . pn} is the orientation matrix (det P �=

0), pi are the direction vectors. The unit cube is the parallelepiped with a unit
orientation matrix P = I.

A set Z ⊆ R
n is called star-shaped (with center c) if c + λ(Z − c) ⊆ Z for all

λ ∈ [0, 1]. By symbol St(c,Rn) we will denote the set of all star-shaped compact
subsets Z ⊆ R

n with center c, StRn = St(0,Rn).

2.2 Problem Statement

Introduce the bilinear control system

ẋ = A(t)x + u(t), x ∈ R
n, x0 ∈ X0 t ∈ [t0, T ], (2)

where the matrix function A(t) ∈ R
n×n is measurable, unknown and belongs to

the set A
A(t) ∈ A, t ∈ [t0, T ], (3)

where

A = {A(t) ∈ R
n×n : A(t) = diag a, a = (a1, . . . , an) ∈ A0}, (4)

A0 = {a ∈ R
n :

n
∑

i=1

|ai|2 ≤ 1}.

It is assumed that control function u(t) ∈ R
n is Lebesgue measurable

on [t0, T ] and u(t) ∈ U = E(â, Q̂) for all t ∈ [t0, T ].
We suppose that the initial value x0 = x(−0) for the system (2) is unknown

but belongs to a given set X0 ∈ St(p,Rn), where X0 ∈ R
n. The set X0 is a sym-

metric nondegenerate polytope M(p) with center p ∈ R
n and 2m faces (m ≥ n).

It is assumed that M(p) can be represented by the union of m parallelepipeds
P(p, Pk)

x0 ∈ X0 = M(p) =
m
⋃

k=1

P(p, Pk), (5)

where Pk = {p1k . . . pn
k}, pi

k are the direction vectors for parallelepipeds P(p, Pk).
The control system (2)–(5) presents a model of an uncertain dynamic system

with an unknown matrix and given inclusion descriptions A(t) ∈ A, x0 ∈ X0,
and u(t) ∈ U .

Let the function x(·) = x(·; t0, x0, A(·), u(·)) be a solution of the system (2)
for initial state x0 ∈ X0, a matrix A(t) ∈ A and admissible control u(t) ∈ U .
The trajectory tube X (·) of the system (2) is defined as

X (·) = X (· ; t0,X0,A, U) =
⋃

{

x(·) : x0 ∈ X0, A(·) ∈ A, u(·) ∈ U}

and the reachable set is the cross-section X (t) of this set for the time moment
t ∈ [t0, T ]. It should be note that a reachable set has the following evolutionary
property: X (t ; t0,X0,A, U) = X (t ; τ,X (τ),A, U) where τ ∈ [t0, t].
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The problem of the study is to find the internal and external ellipsoidal esti-
mates (with respect to the inclusion of sets) of the reachable set X (t) (t0 < t ≤ T )
for the bilinear system (2) by using the analysis of bilinear control systems with
uncertainty on initial data.

3 Main Results

3.1 Ellipsoidal Estimates of the Initial Set

First we construct the ellipsoidal estimates of the initial set.

Lemma 1. [13] For the polytope M(p) defined in (5) the following ellipsoidal
estimates holds

m
⋃

k=1

E(p,D−
k ) ⊆ M(p) ⊆

m
⋃

k=1

E(p,D+
k ),

D−
k = PkP ′

k, D+
k = nPkP ′

k. (6)

Remark 1. If it is necessary to construct an estimate in the form of a single
ellipsoid, then it is sufficient to find an external ellipsoidal estimate for the
union of the ellipsoids in the inclusion (6). The algorithm of internal ellipsoidal
estimation of the union of the ellipsoids is given in [20].

Example 1. Consider the symmetric polytope M(0) with vertices: (4, 0), (2, 3),
(−2, 5), (−3, 1), (−4, 0), (−2,−3), (2,−5), (3,−1). The octagon M(0) can be
represented by the union of parallelograms P(0, Pk) (k = 1, . . . , 4)

M(0) =
4
⋃

k=1

P(0, Pk),

P1 =
(

0 2
4 −1

)

, P2 =
(

3 −1
1.5 1.5

)

,

P3 =
(

3.5 1.5
−0.5 0.5

)

, P4 =
(

0.5 −2.5
2 3

)

,

where Pk (k = 1, . . . , 4) are the orientation matrices composed of direction vec-
tors pi. The set M(0) and its external and internal ellipsoidal estimates are
shown in Fig. 1.

3.2 External Ellipsoidal Estimates

Note that the sets X (t) need not be convex for the bilinear system (2)–(5).
However, these sets have other geometrical properties.

Assumption 1. (i) For every t ∈ [t0, T ] the inclusion 0 ∈ U is true. (ii) The
inclusion 0 ∈ X0 is true.

The following theorem is valid.
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Fig. 1. Polytope M(0) and its external and internal ellipsoidal estimates.

Theorem 1. [10] Under Assumption 1 the reachable sets X (t) are star-shaped
and compact sets for all t ∈ [t0, T ] (X (t) ∈ StRn).

We need the following notation

M ∗ X = {z ∈ R
n : z = Mx, M ∈ M, x ∈ X},

where M ∈ convR
n×n, X ∈ convR

n. Then the evolution equation that describes
the dynamics of trajectory tubes has the following form.

Theorem 2. [5] The trajectory tube X (t) of the bilinear differential system
(2)–(5) is the unique solution to the evolution equation

lim
σ→+0

σ−1h
(X (t+σ), (I+σA)∗X (t)+σU)

= 0, X (t0) = X0, t ∈ [t0, T ]. (7)

Denote the Minkowski function of a set M ∈ StRn by

hM (z) = inf{t > 0 : z ∈ tM, z ∈ R
n}.

Let ρ(l|M) be the support function of a convex compact set C ∈ convR
n, i.e.,

ρ(l|C) = max{(l, c) : c ∈ C, l ∈ R
n}.

Theorem 3. [5,12] For every z ∈ R
n such that zi �= 0 (i = 1, n) the following

formula is true:

h(I+σA0)∗X0(z, σ) = min
{

max
l �=0

1
ρ(l|X0)

n
∑

i=1

lizi

1 + σai
: a ∈ A0, i = 1, n

}

. (8)

By using equality (8) for the given set A and if X0 = E(0, Q0) we get the
Minkowski function of set (I + σA) ∗ E(0, Q0) [12]
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h(I+σA)∗E(0,Q0)(z, σ) =
(

‖w(z)‖2−2σ
(

n
∑

i=1

w4
i (z)

)
1
2
)

1
2

+ o(σ)‖w(z)‖, (9)

w(z) = Q
′− 1

2
0 z, lim

σ→+0
σ−1o(σ) = 0.

Theorem 4. For the trajectory tube X (t) of the system (2)–(5) for all σ > 0
the following inclusion holds

X (t0 + σ) ⊆
m
⋃

k=1

E(a+(σ), Q+
k (σ)) + o(σ)B(0, 1), lim

σ→+0
σ−1o(σ) = 0, (10)

where

a+(σ) = p + σâ,

Q+
k (σ) = (q−1

1 + 1)Hk(σ) + (q1 + 1)σ2Q̂,

Hk(σ) = (q−1
2 + 1)σ2 diag{(pi)2} + (q2 + 1)Rk(σ)D+

k , p = {pi}
Rk(σ) = max

z

z′(D+
k )−1z

(

h
(I+σA)∗E(p,D

+
k

)
(z,σ)

) , k = 1, . . . , m,

where h(I+σA)∗E(p,D+
k )(z, σ) may be found by formula (8) and q1 and q2 are the

unique positive root of the equations

n
∑

i=1

1
q1 + αi

=
n

q1(q1 + 1)
,

n
∑

i=1

1
q2 + βi

=
n

q2(q2 + 1)
,

with αi ≥ 0 (i = 1, n) being the roots of the following equation |Hk(σ)−
ασ2Q̂| = 0 and βi ≥ 0 (i = 1, n) being the roots of the following equation

n
∏

i=1

(

σ2(pi)2 − βR2
k(σ)

)

= 0.

Proof. From Theorem 2 we have the funnel equation for small σ (t = t0 + σ)

h
(X (t0 + σ), (I + σA) ∗ X0

)

= o(σ), lim
σ→+0

σ−1o(σ) = 0.

Note that

(I + σA) ∗ E(p,D+
k ) = p + σA ∗ p + (I + σA) ∗ E(0,D+

k ).

The set A ∗ p is convex, therefore

ρ(l|A ∗ p) = max
A∈A

l′Ap =
(

n
∑

i=1

l2i (pi)2
)

1
2 = ρ

(

l|E(0,diag{(pi)2})
)

. (11)

Further we use the properties of the Minkowski function and the results of
the Theorem 3. The inequality
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hE(0,Rk(σ)D
+
k )(z) ≥ h(I+σA)∗E(0,D+

k )(z)

holds for

Rk(σ) = max
z

z′(D+
k )−1z

(

h(I+σA)∗E(p,D+
k )(z, σ)

) .

By direct calculation we obtain the following result

(I + σA) ∗ E(p,D+
k ) + σU

= E(p, σ2 diag{(pi)2}) + (I + σA) ∗ E(0,D+
k ) + σE(â, Q̂)

⊆ E(p, σ2 diag{(pi)2}) + E(0, Rk(σ)D+
k ) + σE(â, Q̂),

Rk(σ) = max
z

z′(D+
k )−1z

(

h
(I+σA)∗E(p,D

+
k

)
(z,σ)

) .

Based the procedure of external ellipsoidal estimate of the sum of the ellip-
soids given in [3,9] and estimate for initial set (6)

X0 ⊆
m
⋃

k=1

E(p,D+
k )

we get the external estimate (10).

Algorithm 1. Introduce subsegments [ti, ti+1] of the time segment [t0, T ] where
ti = t0 + ih (i = 1, . . . , m), tm = T , h = (T − t0)/m = σ.

1. With applying of Lemma1 find m ellipsoids E(p,D+
k ), k = 1,m for the given

symmetric nondegenerate polytope X0 = M(p).
2. With applying Theorem4 define the ellipsoids E(a1

k, Q1
k)=E(a+(σ), Q+

k (σ))
for each ellipsoid E(p,D+

k ) (k = 1,m).
3. Consider the system on the next subsegment [t1, t2] with E(a1

k, Q1
k) as the

initial ellipsoids at instant t1.
4. If t = T then end of the procedure otherwise the next step repeats the previous

iterations.

The result of the process is the external estimate of the reachable set X (T )
of the system (2).

3.3 Internal Ellipsoidal Estimates

The following theorem allows us to find an internal ellipsoidal estimate the reach-
able set of the bilinear control system (2)–(5).

Theorem 5. For the trajectory tube X (t) of the system (2)–(5) for all σ > 0
the following inclusion holds

m
⋃

k=1

E(a−(σ), Q−
k (σ)) ⊆ X (t0 + σ) + o(σ)B(0, 1), lim

σ→+0
σ−1o(σ) = 0, (12)
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where

a−(σ) = p + σâ,

Q−
k (σ) = Gk(σ) + σ2Q̂ + 2σGk(σ)

1
2
(

Gk(σ)− 1
2 Q̂Gk(σ)− 1

2 )
1
2 Gk(σ)

1
2 ,

Gk(σ) = σ2 diag{(pi)2} + rk(σ)D−
k

+2σrk(σ) diag{(pi)}(diag{p−1
i }D−

k diag{p−1
i })1/2 diag{(pi)}, p = {pi},

rk(σ) = min
z

z′(D−
k )−1z

(

h
(I+σA)∗E(p,D

−
k

)
(z,σ)

) , k = 1, . . . ,m,

where h(I+σA)∗E(p,D−
k )(z, σ) may be found by formula (8).

Proof. Consider the funnel Eq. (7). Note that

(I + σA) ∗ E(p,D−
k ) = a0 + σA ∗ p + (I + σA) ∗ E(0,D−

k ).

The following formulas may be derived by direct calculation by using the
results of the Theorem 3, formulas (11) and Minkowski function for the ellipsoid

(I + σA) ∗ E(p,D−
k ) + σU

= E(p, σ2 diag{(pi)2}) + (I + σA) ∗ E(0,D−
k ) + σE(â, Q̂)

⊇ E(p, σ2 diag{(pi)2}) + E(0, rk(σ)D−
k ) + σE(â, Q̂),

rk(σ) = min
z

z′(D−
k )−1z

(

h
(I+σA)∗E(p,D

−
k

)
(z,σ)

) .

Based the procedure of internal ellipsoidal estimate of the sum of two ellip-
soids given in [3,9] and estimate for initial set (6)

m
⋃

k=1

E(p,D−
k ) ⊆ X0

we get the internal estimate (12).

Algorithm 2. Introduce subsegments [ti, ti+1] of the time segment [t0, T ] where
ti = t0 + ih (i = 1, . . . , m), h = (T − t0)/m = σ, tm = T .

1. Find m ellipsoids E(p,D−
k ), k = 1,m for the given symmetric nondegenerate

polytope X0 = M(p) by Lemma 1.
2. Define the ellipsoids E(a1

k, Q1
k)=E(a−(σ), Q−

k (σ)) for each ellipsoid E(p,D−
k )

(k = 1,m) by Theorem 5.
3. Consider the system on the next subsegment [t1, t2] with E(a1

k, Q1
k) as the

initial ellipsoids at instant t1.
4. If t = T then end of the procedure. Otherwise, the next step repeats the

previous iterations.

At the end of the process, we will get the internal estimate of the reachable
set X (T ) of the system (2).
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4 Numerical Simulation

The following example illustrates the main result of the study.

Example 2. Consider the following bilinear control system in R
2

{

ẋ1 = a1x1 + u1,
ẋ2 = a2x2 + u2, 0 ≤ t ≤ 0.8.

Here the uncertain bounded matrix function A ∈ A where

A=
{

A : A = diag{a1, a2}, a2
1 + a2

2 ≤ 1
}

.

The control function

u(t) ∈ U = E(0, Q̂), Q̂ =
(

5 4
4 5

)

.

The initial set X0 is the symmetric polytope M(0) with vertices: (1.5, 0),
(0.5, 0.5), (0, 1.5), (−0.5, 0.5), (−1.5, 0), (−0.5,−0.5), (0,−1.5), (0.5,−0.5). For
M(0) parallelepipeds P(0, Pi), i = 1, 2, 3, 4 were constructed,

X0 = M(0) =
4
⋃

i=1

P(0, Pi),

P1 =
(−0.25 0.25

1 0.5

)

P2 =
(

0.25 0.25
1 −0.5

)

P3 =
(

1 −0.5
0.25 0.25

)

P4 =
(

1 0.5
0.25 0.25

)

.

The external and internal ellipsoidal estimates for X0 are given in Fig. 2. The
trajectory tube X (t) is shown in the Fig. 3. This tube was constructed approxi-
mately with using results [15]. The external and internal ellipsoidal estimates of
the reachable set X (t) under t = 0.8 are given in Fig. 4.

-1.5            -1            -0.5            0             0.5             1             1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Fig. 2. Polytope M(0) and its external and internal ellipsoidal estimates.
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Fig. 3. The trajectory tube X (t), 0 < t ≤ 0.8.

Fig. 4. External (red line) and internal (blue line) ellipsoidal estimates of the reachable
set X (0.8). (Color figure online)

5 Conclusions

The paper deals with the problems of state estimation of the bilinear control
system with uncertainties. It is assumed that the initial state is unknown but
belongs to a given star-shaped symmetric nondegenerate polytope. The matrix
in the linear part of the system is also unknown but bounded.

Basing on the results of ellipsoidal calculus developed earlier for some classes
of uncertain systems the modified state estimation approach was presented. This
approach uses the special constraints on the control and uncertainties and allows
us to construct the external and internal ellipsoidal estimates of the reachable set.
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Abstract. We find conditions of unique strong solution existence for the
generalized Showalter—Sidorov problem to semilinear evolution equa-
tions with a degenerate operator at the highest fractional Gerasimov—
Caputo derivative and with some constraint on the image of the nonlinear
operator. Then we consider a class of optimal control problems for sys-
tems, whose dynamics is described by such equations endowed with the
respective initial value conditions. Target functional is assumed not to
take into account control costs. In such situation we used the additional
condition of the admissible controls set boundedness. The obtained result
of the initial problem unique solvability and properties of some functions
spaces are applied to the proof of optimal control existence for such class
of problems. Abstract results are applied to study of a control problem
for a system, which is described by an initial-boundary value problem to
a nonlinear partial differential equation, not solvable with respect to the
highest time fractional derivative.

Keywords: Optimal control problem · Distributed control system ·
Semilinear degenerate evolution equation · Fractional derivative ·
Strong solution · Initial-boundary value problem

1 Introduction

Suppose that X , Y, U are Banach spaces, operators L : X → Y, ker L �= {0},
B : U → Y are linear and continuous, M : DM → Y is linear and closed, DM is
dense in X , N : (t0, T ) × X m−1 → Y. In this work an optimal control problem
without taking into account control costs for a system, described by the equation

LDαx(t) = Mx(t) + N(t, x(t), x(1)(t), . . . , x(m−2)(t)) + Bu(t), t ∈ (t0, T ), (1)

with the fractional Gerasimov—Caputo [2,10] derivative Dα of the order α > 0,
is studied. Note that fractional differential equations and systems of such equa-
tions often arise in mathematical modeling of various real processes (see [11,13]
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and the bibliographies there). This research continues the series of the first
author’s works on the solvability investigation of degenerate evolution equa-
tions and of optimal control problems for corresponding systems. Particularly,
the existence of a unique strong solution for initial problems to degenerate frac-
tional order equation in Banach spaces was researched in the linear case [20],
in the semilinear case with the nonlinear operator N , not depending on the
degeneration subspace elements [16,17,21], for the incomplete semilinear equa-
tion with restrictions on the image of the nonlinear operator N(t, x(t)) [17]. The
existence of an optimal control in problems with compromise target functionals
was investigated in [16–19] in the case of distributed control, in the work [19]
for the start control problems. Obtained abstract results were applied to the
problems for systems of equations of viscoelastic fluids dynamics [16,18,21], for
pseudoparabolic equations [20] of time fractional order.

The presence of the degenerate (ker L �= {0}) linear operator L in (1) at the
highest derivative does not allow to investigate the equation by classical methods
[1,8,22]. We use the methods of the degenerate evolution equations from the
works [5–7,14] of Fedorov and his co-authors. In this case, the original equation
is represented as a system of a singular equation and an equation, resolved with
respect to the fractional derivative. The paper considers the problem with the
generalized Showalter—Sidorov initial conditions

(Px)(k)(t0) = xk, k = 0, 1, . . . ,m − 1. (2)

They mean, that the initial data are given only for the projection of the unknown
function on the subspace X 1 = imP without degeneration.

The results of this work differ from the other works results of the author in
this direction firstly in the condition on a nonlinear operator. Here we use the
constraints on the nonlinear operator N image, which are used before only for
the incomplete nonlinear equation (1) [17]. The existence and the uniqueness of
a strong solution for generalized Showalter—Sidorov problem (2) to nonlinear
equation (1) is proved in the first part of this work.

Another feature of the present work is the form of the target functional

Jq(x, u) = ‖x − xd‖q
Qα,q(t0,T ;X ) → inf, (3)

which does not include control costs. Such control problems are often called
problems of hard control [9]. When considering such problems, the properties of
the coercivity of the target functional and its strict convexity (if any) are lost.
The coercivity of the functional does not disappear, if we additionally require
the boundedness of the set of admissible controls in the control space U. Using
these consideration, we proved the existence of an optimal control for the hard
control problem to the system, which state is described by (1), (2). Obtained
abstract results are illustrated on the example of the system, described by an
initial-boundary value problem to a nonlinear partial differential equation, not
solvable with respect to the time fractional derivative.

Other methods and approaches for optimal control problems study to frac-
tional order systems, including systems, not solved with respect to the time
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derivative, can be found in [3,4,12,15,24] (see also the references lists there)
and others.

2 Strong Solution of Semilinear Degenerate Equation

For β > 0, t > 0 we define functions gβ(t) := tβ−1/Γ (β), where Γ (β) is the Euler
function at the point β. For convenience, we shall denote g̃β(t) := gβ(t − t0).

The fractional Riemann—Liouville integral of order β > 0 is

Jβz(t) :=

t∫

t0

(t − s)β−1

Γ (β)
z(s)ds, t > t0.

Let m − 1 < α ≤ m ∈ N, Dm := dm

dtm be the ordinary derivative of the inte-
ger order m. The fractional Gerasimov—Caputo derivative of order α > 0 is
defined as

Dαz(t) := DmJm−α

(
z(t) −

m−1∑
k=0

z(k)(t0)gk+1(t − t0)

)
.

Let Z is a Banach space, operator A ∈ L(Z), i. e. it is a linear continuous
operator from Z into Z, m − 1 < α ≤ m ∈ N. An operator B : (t0, T ) × Zm →
Z is called Caratheodory mapping, if for any z0, z1, . . . , zm−1 ∈ Z it is the
measurable mapping on (t0, T ), and for almost all t ∈ (t0, T ) it is continuous
with respect to z0, z1, . . . , zm−1 ∈ Z.

For a constant q > 1 denote the space

Qα,q(t0, T ;Z)

:=
{

z ∈ Cm−1([t0, T ];Z) : Jm−α

(
z −

m−1∑
k=0

z(k)(t0)g̃k+1

)
∈ Wm

q (t0, T ;Z)
}

.

Consider the Cauchy problem

z(k)(t0) = zk, k = 0, 1, . . . ,m − 1, (4)

for the semilinear equation

Dαz(t) = Az(t) + B(t, z(t), z(1)(t), . . . , z(m−1)(t)). (5)

A strong solution of (4), (5) on (t0, T ) is a function z ∈ Qα,q(t0, T ;Z), for which
conditions (4) and almost everywhere on (t0, T ) equality (5) hold.

The bar over a symbol will mean an ordered set of m elements with indexes
from 0 to m − 1, for example, z = (z0, z1, . . . , zm−1). A mapping B : (t0, T ) ×
Zm → Z is called uniformly Lipschitz continuous in y, if there exists l > 0, such

that the inequality ‖B(t, x)−B(t, y)‖Z ≤ l
m−1∑
k=0

‖xk − yk‖Z is true for almost all

t ∈ (t0, T ) and for all x, y ∈ Zm.
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Theorem 1. [16]. Let A ∈ L(Z), B : (t0, T ) × Zm → Z be Caratheodory
mapping, uniformly Lipschitz continuous in y, q ∈ (max{1, 1/α},∞), for some
v ∈ Zm B(·, v) ∈ Lq(t0, T ;Z). Then for any z0, z1, . . . , zm−1 ∈ Z the Cauchy
problem (4), (5) has a unique strong solution on (t0, T ).

We assume that X , Y are Banach spaces, L ∈ L(X ;Y), i. e. it is a linear
continuous operator from X into Y, ker L �= {0}, M ∈ Cl(X ;Y), i. e. it is a linear
closed operator with a dense domain DM in the space X , which is acting into
Y. Define the L-resolvent set ρL(M) = {μ ∈ C : (μL − M)−1 ∈ L(Y;X )} and
the L-spectrum σL(M) = C \ ρL(M) of the operator M .

An operator M is said to be (L, σ)-bounded, if L-spectrum σL(M) of operator
M is bounded, i. e.

∃a > 0 ∀μ ∈ C (|μ| > a) ⇒ (μ ∈ ρL(M)) .

In the case of (L, σ)-boundedness of the operator M we can be define pro-
jectors P and Q on the spaces X and Y respectively. They have the forms

P :=
1

2πi

∫

γ

(μL − M)−1Ldμ ∈ L(X ), Q :=
1

2πi

∫

γ

L(μL − M)−1 dμ ∈ L(Y),

where γ := {μ ∈ C : |μ| = r > a}. Denote X 0 := kerP , X 1 := imP , Y0 := ker Q,
Y1 := imQ. Then X = X 0 ⊕ X 1, Y = Y0 ⊕ Y1. By Mk (Lk) we denote the
restriction of the operator M (L) onto DMk

:= X k ∩ DM (X k), k = 0, 1.

Theorem 2 [23, pp. 90, 91]. Let an operator M be (L, σ)-bounded. Then

(i) M1 ∈ L(X 1;Y1
)
, M0 ∈ Cl

(X 0;Y0
)
, Lk ∈ L(X k;Yk

)
, k = 0, 1;

(ii) the operators M−1
0 ∈ L(Y0;X 0

)
, L−1

1 ∈ L(Y1;X 1
)
exist.

Denote G := M−1
0 L0. An operator M is called (L, p)-bounded at p ∈ N0 :=

N ∪ {0}, if G is a nilpotent operator of the power p.

Lemma 1. Let H ∈ L(X ) be a nilpotent operator of the power p ∈ N0, a
function h : [t0, T ] → X , (HDα)nh ∈ Qα,q(t0, T ;X ) for n = 0, 1, . . . , p. Then
the equation HDαx(t) = x(t) + h(t) has a unique strong solution. Moreover, it

has the form x(t) = −
p∑

n=0
(HDα)nh(t).

Proof. Acting by the operator HDα on the both sides of the equation, we get
the equality (HDα)2x(t) = x(t) + h(t) + HDαh(t). After p steps we have

(HDα)p+1x = x +
p∑

n=0

(HDα)nh.

Moreover, (HDα)p+1x = (Dα)p+1Hp+1x ≡ 0 due to the nilpotency of the oper-
ator H. ��
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The semilinear equation

LDαx(t) = Mx(t) + N(t, x(t), x(1)(t), . . . , x(m−1)(t)) + f(t). (6)

will be called degenerate, since it is assumed before, that ker L �= {0}. A strong
solution of Eq. (6) on (t0, T ) is x ∈ Cm−1([t0, T ];X ) ∩ Lq(t0, T ;DM ), for which

Jm−α

(
x −

m−1∑
k=0

x(k)(t0)g̃k+1

)
∈ Wm

q (t0, T ;X ), q > 1, and almost everywhere

on (t0, T ) equality (6) is valid.
Consider the initial value problem

(Px)(k)(t0) = xk, k = 0, 1, . . . , m − 1, (7)

for Eq. (6). A strong solution of problem (6), (7) on the interval (t0, T ) is a
solution of Eq. (6), such that conditions (7) are satisfied. Here we take into
account that the smoothness of the function Px(t) = L−1

1 QLx(t) is not less,
than for Lx(t).

Theorem 3. Let α > 0, q > (α − m + 1)−1, p ∈ N0, an operator M be (L, p)-
bounded, an operator N : (t0, T )×X m → Y be Caratheodory mapping, uniformly
Lipschitz continuous in v ∈ X m, for some z ∈ X m N(·, z) ∈ Lq(t0, T ;Y),
imN ⊂ Y1, Qf ∈ Lq(t0, T ;Y), (GDα)nM−1

0 (I − Q)f ∈ Qα,q(t0, T ;X ) for
n = 0, 1, . . . , p ; x0, x1, . . . , xm−1 ∈ X 1. Then problem (6), (7) has a unique
strong solution on (t0, T ).

Remark 1. If a function f is smooth enough, then all the conditions on f in
Theorem 3 are satisfied.

Proof. If imN ⊂ Y1, then (I − Q)N ≡ 0, QN ≡ N . In this case Eq. (6) after
acting on its both sides by the operator M−1

0 (I − Q) has the form

DαGw(t) = w(t) + M−1
0 (I − Q)f(t),

where w(t) = (I − P )x(t). By the nilpotency of the operator G and Lemma 1
this equation has a unique strong solution

w(t) = −
p∑

n=0

(DαG)nM−1
0 (I − Q)f(t).

It remains to show the unique solvability of the problem

Dαv(t) = S1v(t) + L−1
1 Qf(t)

+L−1
1 N(t, v(t) + w(t), v(1)(t) + w(1)(t), . . . , v(m−1)(t) + w(m−1)(t)),

v(k)(t0) = Pxk, k = 0, 1, . . . ,m − 1.

Here S1 = L−1
1 M1, v(t) = Px(t). Since the operator

B(t, v0, v1, . . . , vm−1)

= L−1
1 N(t, v0 + w(t), v1 + w(1)(t), . . . , vm−1 + w(m−1)(t)) + L−1

1 Qf(t)

satisfies the conditions of Theorem1, we get the required result from this
theorem. ��
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3 Problems Without Control Costs

In this section we assume that Y is a Banach space, X , X1, U are reflexive Banach
spaces, X is compactly embedded in X1, L ∈ L(X ;Y), kerL �= {0}, M ∈ Cl(X ;Y)
is (L, p)-bounded operator, N : (t0, T ) × X m−1 → Y, B ∈ L(U ;Y). Endow the
domain DM of the operator M with the graph norm, then DM is the Banach
space due to the closedness of M . Denote the space

Zα,q(t0, T ;X ) = {x ∈ Lq(t0, T ;DM ) ∩ Cm−1([t0, T ];X ) :

Jm−α

(
x −

m−1∑
k=0

x(k)(t0)g̃k+1

)
∈ Wm

q (t0, T ;X )}, q > 1.

Lemma 2 [16,19]. Qα,q(t0, T ;X ) and Zα,q(t0, T ;X ) are Banach spaces with the
norms ‖x‖Qα,q(t0,T ;X ) = ‖x‖Cm−1([t0,T ];X ) + ‖Dαx‖Lq(t0,T ;X ) and

‖x‖Zα,q(t0,T ;X ) = ‖x‖Lq(t0,T ;DM ) + ‖x‖Cm−1([t0,T ];X ) + ‖Dαx‖Lq(t0,T ;X )

respectively.

Consider the problem of hard control

LDαx(t) = Mx(t) + N(t, x(t), x(1)(t), . . . , x(m−2)(t)) + Bu(t), t ∈ (t0, T ), (8)

(Px)(k)(t0) = xk, k = 0, 1, . . . ,m − 1, (9)

u ∈ U∂ , (10)

Jq(x, u) = ‖x − xd‖q
Qα,q(t0,T ;X ) → inf, (11)

where m− 1 < α ≤ m ∈ N, xd ∈ Qα,q(t0, T ;X ). Here U∂ is the set of admissible
controls.

Introduce the continuous operator γ0 : C([t0, T ];X ) → X , γ0x = x(t0).
Set of pairs (x, u) will be called admissible pairs set W of problem (8)–(11), if

u ∈ U∂ , x ∈ Zα,q(t0, T ;X ) is a strong solution of (8), (9), J(x, u) < ∞. Problem
(8)–(11) is a problem of finding of pairs (x̂, û) ∈ W, which minimize the cost
functional, i. e. J(x̂, û) = inf

(x,u)∈W
J(x, u).

Lemma 3 [18]. Let X0, X1 be reflexive Banach spaces, space X0 be compactly
embedded in X1, q ∈ (1,+∞). Then for m ∈ N Wm

q (t0, T ;X0) is compactly
embedded in Wm−1

q (t0, T ;X1).

Theorem 4. Let α > 1, q > (α − m + 1)−1, operator M be (L, p)-bounded, X
be compactly embedded in X1, the Banach space Zα,q(t0, T ;X ) be reflexive, an
operator N : (t0, T )×X m−1

1 → Y be Caratheodory mapping, uniformly Lipschitz
continuous in y = (y0, y1, . . . , ym−2) ∈ X m−1

1 , for some z ∈ X m−1 N(·, z) ∈
Lq(t0, T ;Y), N [(t0, T )×X m−1] ⊂ Y1, xk ∈ X 1, k = 0, 1, . . . ,m−1. Assume that
U∂ is a non-empty bounded closed convex subset in Lq(t0, T ;U), for some u0 ∈
U∂ (GDα)lM−1

0 (I − Q)Bu0 ∈ Cm−1([t0, T ];X ), Dα(GDα)lM−1
0 (I − Q)Bu0 ∈

Lq(t0, T ;X ) for l = 0, 1, . . . , p. Then problem (8)–(11) has a solution (x̂, û) ∈
Zα,q(t0, T ;X ) × U∂ .
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Proof. We use Theorem 2.4 from the monograph [9] for the proof of an optimal
control existence. Take spaces Y := Qα,q(t0, T ;X ), Y1 := Zα,q(t0, T ;X ), U :=
Lq(t0, T ;U), V := Lq(t0, T ;Y) × X m and operators

L(x, u) := (LDαx − Mx − Bu, γ0Px, γ0(Px)(1), . . . , γ0(Px)(m−1)),

F(z(·)) := −(N(·, x(·), x(1)(·), . . . , x(m−2)(·)), x0, x1, . . . , xm−1).

Since X is compactly embedded in X1, then the operator restriction N |X sat-
isfies all the conditions of Theorem 3. Hence by Theorem 3 the set W of admis-
sible pairs is nonempty.

The continuity of the linear operator L from Zα,q(t0, T ;X ) × Lq(t0, T ;U) to
Lq(t0, T ;Y) × X m follows from the inequalities

‖(LDαx − Mx − Bu, γ0Px, γ0(Px)(1), . . . , γ0(Px)(m−1))‖Lq(t0,T ;Y)×X m

≤ C1

(‖x‖Zα,q(t0,T ;X ) + ‖u‖Lq(t0,T ;U) + ‖x‖Cm−1([t0,T ];X )

)
≤ C2‖(x, u)‖Zα,q(t0,T ;X )×Lq(t0,T ;U).

If ‖xn−x‖Zα,q(t0,T ;X ) → 0 as n → ∞, due to the uniform Lipschitz continuity
of the operator N we have

‖N(·, xn(·), x(1)
n (·), . . . , x(m−2)

n (·)) − N(·, x(·), x(1)(·), . . . , x(m−2)(·))‖Lq(t0,T ;Y)

≤ C1

m−2∑
k=0

‖x(k)
n − x(k)‖C([t0,T ];X1) ≤ C2‖xn − x‖Cm−2([t0,T ];X ) → 0

as n → ∞. This fact and the continuous embedding

Zα,q(t0, T ;X ) ⊂ Cm−2([t0, T ];X )

imply the continuity of the operator F : Zα,q(t0, T ;X ) → V.
Choose Y−1 = Wm−2

q (t0, T ;X1) and check the remaining conditions of Theo-
rem 2.4 [9]. By Lemma 3 the space Zα,q(t0, T ;X ) ⊂ Wm−1

q (t0, T ;X ) is compactly
embedded in Wm−2

q (t0, T ;X1).
Due to the uniform Lipschitz continuity of the operator N for a linear con-

tinuous functional v∗ ∈ (Lq(t0, T ;X1))∗ we have

|v∗(N(·, xn(·), x(1)
n (·), . . . , x(m−2)

n (·)) − N(·, x(·), x(1)(·), . . . , x(m−2)(·)))|
≤ C1‖v∗‖(Lq(t0,T ;X1))∗‖xn − x‖W m−2

q (t0,T ;X1)
.

This reasoning allows us to conclude that the functional w(·) := v∗(F(·)) can be
continuously extended from Zα,q(t0, T ;X ) onto Y−1.
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For the pair (x, u) ∈ W we have

‖x‖Zα,q(t0,T ;X ) + ‖u‖Lq(t0,T ;U) ≤ C1‖x‖Qα,q(t0,T ;X )

+ ‖Mx‖Lq(t0,T ;Y) + ‖u‖Lq(t0,T ;U) = C1‖x‖Qα,q(t0,T ;X ) + ‖u‖Lq(t0,T ;U)

+ ‖LDαx − N(·, x(·), x(1)(·), . . . , x(m−2)(·)) − Bu‖Lq(t0,T ;Y)

≤ C2‖x‖Qα,q(t0,T ;X ) + C3‖u‖Lq(t0,T ;U)

+ ‖N(·, x(·), x(1)(·), . . . , x(m−2)(·))‖Lq(t0,T ;Y)

≤ C3‖x‖Qα,q(t0,T ;X ) + C4 + ‖N(·, z0, z1, . . . , zm−2)‖Lq(t0,T ;Y)

+ l‖x‖W m−2
q (t0,T ;X ) + l(T − t0)1/q

m−2∑
k=0

‖zk‖X ≤ C3‖x‖Qα,q(t0,T ;X ) + C5.

Here we take into account that the set U∂ is bounded in Lq(t0, T ;U), the operator
N is uniformly Lipschitz continuous, and N(·, z0, z1, . . . , zm−2) ∈ Lq(t0, T ;Y).
Thus, the functional J is coercive. ��

4 Application

Consider the initial-boundary value problem
(

∂2

∂s2
+ β

) (
∂kw

∂tk
(s, t0) − vk(s)

)
= 0, k = 0, 1, . . . ,m − 1, s ∈ (0, π), (12)

w(0, t) = w(π, t) = 0, t ∈ (t0, T ), (13)

for the model equation in (0, π) × (t0, T )

Dα
t

(
∂2

∂s2
+ β

)2

w = δw +
m−2∑
n=0

δn(t)
(

∂2

∂s2
+ β

)
ln

(
1 +

(
∂nw

∂tn

)2
)

+ u(s, t),

(14)
where Dα

t is the Gerasimov—Caputo derivative with respect to t, constants
β, δ ∈ R, m − 1 < α ≤ m ∈ N, δn : (t0, T ) → R, n = 1, 2, . . . ,m − 2.

Define Banach spaces

X := {v ∈ H4(0, π) : v(0) = v(π) = v′′(0) = v′′(π) = 0},

X1 := {v ∈ H2(0, π) : v(0) = v(π) = 0}, Y = U := L2(0, π),

and operators

L :=
(

∂2

∂s2
+ β

)2

, M := δI, B = I,

N(t, x0, x1, . . . , xm−2) :=
m−2∑
n=0

δn(t)
(

∂2

∂s2
+ β

)
ln(1 + x2

n),

xn ∈ X1, n = 0, . . . , m − 2.
We assume that β = k2

0 for some k0 ∈ N, then kerL = span{sin k0s} �= {0}
and Eq. (14) is degenerate.
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Theorem 5. Let α > 0, q > (α−m+1)−1, β = k2
0 for some k0 ∈ N, functions

δn : (t0, T ) → R, n = 0, 1, . . . , m − 2, be measurable and essentially bounded,
u ∈ Lq(t0, T ;L2(0, π)), vk ∈ X , k = 0, 1, . . . ,m − 1. Then there exists a unique
strong solution of problem (12)–(14) on (t0, T ).

Proof. Here we have (L, 0)-bounded operator M due to [6, Theorem 8], hence
ker L = X 0, imL = Y1. We see that conditions (12) determine the initial data on
the complement to ker L, i. e. on X 1, therefore, generalized Showalter—Sidorov
conditions (9) are equivalent to conditions (12). Hence problem (12)–(14) is
equivalent to problem (8), (9). We have also

imN ⊂ span{sin ks : k �= k0} = imL = Y1

at almost all t ∈ (t0, T ). Here the overline means the closure of the set in L2(0, π).
It is obvious, that X is compactly embedded in X1. Besides, X1 ⊂ C1[0, π],

therefore, for any x ∈ X1 we have

(ln(1 + x2))′′ =
2xx′′

1 + x2
+

2x′2(1 − x2)
(1 + x2)2

∈ L2(0, π),

ln(1 + x2(0)) = ln(1 + x2(π)) = 0,

hence ln(1 + x2) ∈ X1. Consequently, for every x = (x0, x1, . . . , xm−2) ∈ X m−1
1

and almost all t ∈ (t0, T ) we have N(t, x) ∈ Y.
Denote for z ∈ L2(0, π) the Fourier coefficients

[z]k =

√
2
π

π∫

0

z(s) sin ksds, k ∈ N,

with respect to the orthonormal basis
{√

2
π sin ks : k ∈ N

}
in L2(0, π), then for

any z ∈ X1 integration by parts implies the equality [z′′]k = −k2[z]k. Therefore,

‖z‖2H2(0,π) = ‖z‖2L2(0,π) + ‖z′′‖2L2(0,π) =
∞∑

k=1

(
[z]2k + [z′′]2k

)
=

∞∑
k=1

(1 + k4)[z]2k.

Besides,

[ln(1 + x2) − ln(1 + y2)]k =

√
2

π

π∫
0

sin ks

1∫
0

d

dθ
ln(1 + (θx(s) + (1 − θ)y(s))2)dθds

=

√
2

π

π∫
0

2(θ0x(s) + (1 − θ0)y(s))

1 + (θ0x(s) + (1 − θ0)y(s))2
(x(s) − y(s)) sin ksds

=
2(θ0x(ξ) + (1 − θ0)y(ξ))

1 + (θ0x(ξ) + (1 − θ0)y(ξ))2
[x − y]k
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at some θ0 ∈ (0, 1), ξ ∈ (0, π) due to the mean value theorem, which is applied
twice here. Since 2|x|

1+x2 ≤ 1 for all x ∈ R, we obtain the inequality

|[ln(1 + x2) − ln(1 + y2)]k| ≤ |[x − y]k|, k ∈ N.

Denote bn = ess sup{|δn(t)| : t ∈ (t0, T )}, n = 0, 1, . . . ,m − 2. For any
x, y ∈ X m−1 we have

‖N(t, x) − N(t, y)‖2Y ≤ 2
m−2∑
n=0

bn

∥∥∥∥
(

β +
d2

ds2

)
(ln(1 + x2

n) − ln(1 + y2
n))

∥∥∥∥
2

L2(0,π)

≤ C1

m−2∑
n=0

bn

∥∥ln(1 + x2
n) − ln(1 + y2

n)
∥∥2

H2(0,π)

= C1

m−2∑
n=0

bn

∞∑
k=1

(1 + k4)[ln(1 + x2
n) − ln(1 + y2

n)]2k

≤ C1

m−2∑
n=0

bn

∞∑
k=1

(1 + k4)[xn − yn]2k = C1

m−2∑
n=0

bn‖x − y‖H2(0,π).

Thus, operator N : (t0, T ) × X m−1
1 → Y is uniformly Lipschitz continuous in x

and the Caratheodory mapping. Hence its restriction

N |(t0,T )×X m−1 : (t0, T ) × X m−1 → Y
has these properties, besides, N(t, 0, . . . , 0) ≡ 0 ∈ Lq(t0, T ;Y). By Theorem 3 we
obtain the required statement. ��

Consider the control problem

‖u‖Lq(t0,T ;L2(0,π)) ≤ R, (15)

‖w‖q
Qα,q(t0,T ;H2(0,π)) → inf (16)

for system (12)–(14).

Theorem 6. Let α > 1, q > (α−m+1)−1, β = k2
0 for some k0 ∈ N, functions

δn : (t0, T ) → R be measurable and essentially bounded, n = 0, 1, . . . ,m − 2,
vk ∈ X , k = 0, 1, . . . ,m − 1, the Banach space Qα,q(t0, T ;X ) be reflexive. Then
there exists a solution of optimal control problem (12)–(16).

Proof. Since the operator M = δI is bounded, we have

Zα,q(t0, T ;X ) = Qα,q(t0, T ;X ).

Here the set of admissible controls

U∂ = {u ∈ Lq((t0, T );L2(0, π)) : ‖u‖Lq((t0,T );L2(0,π)) ≤ R}
contains the function u0 ≡ 0, which satisfies the conditions of Theorem 4.
Besides, U∂ is non-empty bounded closed convex subset in Lq(t0, T ;U). Other
conditions of that theorem are checked in the previous proof. By Theorem4 we
obtain the required result. ��
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5 Conclusion

The results can be used for the correct choice of formulation and parameters
of the applied problems, for the development of numerical methods for solving
problems, etc. In the future, the obtained results will allow us to investigate
perturbed equations of the corresponding classes, as well as to proceed to the
study of similar problems for more complex classes of fractional order evolution
equations, in particular, of equations with the nonlinearity, which contains lower
fractional derivatives.
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Abstract. We consider a broad class of optimal control problems for
nonlinear measure-driven equations. For such problems, we propose ne-
cessary optimality conditions, which are based on a specific procedure
of “feedback variation” of a given, reference impulsive control. The app-
roach is based on using impulsive feedback controls designed by means of
“weakly invariant functions”. The concept of weakly invariant function
generalizes the notion of weakly monotone function. In the paper, we dis-
cuss the advantages of this approach and some perspectives of designing,
on its base, nonlocal numeric algorithms for optimal impulsive control.

Keywords: Measure differential equations · Impulsive control ·
Feedback control · Optimality condition · Functions of Lyapunov type

1 Introduction

The work lays in the vein of optimal impulsive control theory—the area of
dynamic optimization, where the state trajectories can be discontinuous due
to “shock impacts” produced by Dirac-type distributions or signed measures,
playing the part of control inputs [1,3,4,9,13–15,17,19,21].

In this paper, we extend the ideas [7,8,10,11,22,23] towards deriving new ver-
sions of “feedback” necessary optimality conditions for impulsive control prob-
lems with states of bounded variation. The approach is, to some extent, in tune
with the dynamic programming [12]. At the same time, it does not require any
global information (exact or viscosity solution to the Hamilton-Jacobi equation).
Instead, it only operates with the known reference impulsive process, and, being
applied iteratively, generates a nonlocal algorithm for optimal impulsive control.
In order to discard (“improve”) a reference process, we shall apply feedback
controls of a specific “extremal” structure, whose construction appeals to the
concept of weakly invariant (with respect to the impulsive system) function—a
generalization of the more familiar notion of weakly monotone function [5,6,24].
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2 Problem Statement and Preliminaries

Assume that we are given the following data: a finite time interval T = [a, b] ⊂ R,
a compact set U ⊂ R

m, a closed convex cone K ⊆ R
r, and a vector x0 ∈ R

n.
Consider the following optimal impulsive control problem (P ):

Minimize J = l
(
x(b)

)
subject to (1)

dx(t) = f
(
t, x(t), u(t)

)
dt + G

(
t, x(t)

)
π(dt), x(a−) = x0; (2)

u ∈ L∞(T,U), π ∈ W(T,K). (3)

Here, by x(a−) we denote the left one-sided limit of a function x at a point t = a.
In (P ), we operate with two principally different types of input signals: u is a

“usual” control, involved in the drift of our dynamical system, while the term π
presents an impulsive control produced by a vector-valued Borel measure, whose
action is responsible for the jumps of the state x. An impulsive control is a
collection

π =
(
μ, S,

{
ds, ωs(·)

}
s∈S

)
,

containing the following objects: (i) a K-valued Borel measure μ on T ; (ii) a
finite or countable subset S ⊇ Sd(μ) .=

{
s ∈ T

∣
∣ μ({s}) �= 0

}
of the interval

T ; (iii) a collection of real numbers ds such that ds ≥
∥
∥μ

(
{s}

)∥∥
1

for all s ∈ S,
and

∑
s∈S ds < ∞ (‖ · ‖1 denotes the Manhattan norm in R

r), and (iv) Borel
measurable functions ωs(·) : [0, ds] → co K1, s ∈ S, with the property

∫ ds

0

ωs(τ) dτ = μ
(
{s}

)
.

Here, K1
.= {v ∈ K |

∥
∥v

∥
∥
1

= 1} and co A denotes the convex hull of a set A.
The set of impulsive controls is denoted by W(T,K). Note that the cone K
establishes the constraint on admissible “directions” of impulsive actions.

Equations of the form (2), called measure differential equations, give a con-
ventional but rather symbolic representation of impulsive dynamic processes.
In fact, (2) performs certain limit version (impulsive relaxation) of an ordinary
control system, which is affine in an “unbounded” (non-compact-valued) control
input. To become precise, the measure differential equation should be interpreted
as the following relations:

x(t) = x0 +
∫ t

a

f
(
τ, x(τ), u(τ)

)
dτ +

∫ t

a

G
(
τ, x(τ)

)
μc(dτ)

+
∑

s∈S, s≤t

(
zs(ds) − x(s−)

)
, t ∈ T, (4)

dzs(τ)
dτ

= G
(
s, zs(τ)

)
ωs(τ), zs(0) = x(s−),

for L-a.e. τ ∈ [0, ds] and all s ∈ S. (5)

Here, L stands for the Lebesgue measure on the real line, and μc is the continuous
part of measure μ.
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Under the following (rather standard) assumptions (H1)–(H3), a solution
x : T �→ R

n to (4), (5) is correctly defined for any (u, π) ∈ L∞(T,U)×W(T,K)
as a (unique) right continuous on [a, b) function of bounded variation (x ∈
BVr(T, Rn)) [18].

(H1) The function l : R
n �→ R is continuous.

(H2) The functions f : T ×R
n ×U �→ R

n, G : T ×R
n �→ R

n×r are continuous
and locally Lipschitz continuous in x.
(H3) The set f(t, x, U) .=

{
f(t, x, u) | u ∈ U

}
is convex for all (t, x) ∈ T ×R

n.

Triples σ = (x, u, π) satisfying conditions (3)–(5), are called feasible processes
of problem (P ), and Σ denotes the set of all feasible processes.

Given π ∈ W(T,K), we introduce the function V = V [π] : T → R+ as:

V (t) = |μc|
(
[t, b]

)
+

∑

s≥t, s∈S

ds, t ∈ [a, b), V (b) = 0, (6)

where |μ| denotes the total variation of μ, R+
.= {v ∈ R | v ≥ 0}. The value V (t)

characterizes the “resource” of impulsive control on the time interval [t, b] (or
rather, the remaining energy of the guide). In what follows, it will be convenient
to consider our impulsive system (3)–(5) together with (6) (i.e. to treat V as
an extra state variable). Furthermore, in some cases, problem (P ) is naturally
weighted by the constraint

V (a) ≤ M (7)

with given M ≥ 0. Note that, in this case, (P ) does have a solution [18].
In the next section, we propose a notion of weak invariance of a function

with respect to (w.r.t.) the impulsive system. This property will be formulated in
terms of supplemented trajectories to be introduced below: Taken u ∈ L∞(T,U)
and π ∈ W(T,K), let x, {zs}s∈S , and V be the associated solutions to (4)–
(6). We define the set-valued function XV , called a supplemented trajectory, as
follows:

(i) XV (t) =
(
x(t), V (t)

)
, if t ∈ T \ S, and

(ii) XV (s) =
{(

zs(τ), V (s−) − τ
)

| τ ∈ [0, ds]
}
, if t = s ∈ S.

The set of supplemented trajectories in problem (P ) is denoted by X . The
graph of XV on T is defined as graph

T
XV

.=
{
(t, x, V ) | t ∈ T, (x, V ) ∈ XV (t)

}
.

2.1 Weakly Invariant Functions of the Lyapunov Type

Given a continuous function ϕ : T × R
n × R+ �→ R, denote

Qϕ
.=

{
(t, x, V ) ∈ T × R

n × R+

∣
∣ ϕ(t, x, V ) ≤ 0

}
. (8)

Below, we introduce a specific class of the Lyapunov-type functions associated
to the impulsive dynamics (3)–(6). These functions are called by us “weakly
invariant”, which reflects the following characteristic property: the 0-sublevel set
Qϕ of such a function ϕ should be weakly invariant w.r.t. our control system.
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Definition 1. We say that ϕ is weakly invariant iff the set Qϕ is weakly invari-
ant, i.e., for any (tα, xα, Vα) ∈ Qϕ, there is XV ∈ X with XV (tα−) = (xα, Vα)
such that graph

[tα,b]

XV ⊂ Qϕ.

We note that any function, which is weakly monotone w.r.t. the control
system (3)–(6), is also weakly invariant.

Now we shall present a constructive criteria for the weak invariance of a
closed set Q ⊂ R

n+2 w.r.t. the control system (3)–(6).
First, recall the notion [6] of proximal normal cone: Given a closed set A ⊂ R

k

and x ∈ A, a vector ζ ∈ R
k is said to be proximal normal to A at a point x iff

there exists α > 0 such that dA(x + α ζ) = α ‖ζ‖, where dA(y) .= inf
x∈A

‖y − x‖.

The set NP
A (x) of all proximal normals ζ is called the proximal normal cone to

A at x.
Introduce the functions

h0(t, x, ψ1, ψ2) = ψ1 + min
u∈U

〈ψ, f(t, x, u)〉,

h1(t, x, ψ1, ψ2) = ψ1 + min
v∈K1

〈ψ,G(t, x) v〉,

and denote

Q[a,b) = Q ∩
(
[a, b) × R

n × (0,+∞)
)
,

Q[a,b]V0 =
{
(t, x) ∈ [a, b] × R

n | (t, x, 0) ∈ Q
}
,

QV0 =
{
(t, x) ∈ (a, b) × R

n | (t, x, 0) ∈ Q
}
,

Qt =
{
(x, V ) ∈ R

n × (0,+∞) | (t, x, V ) ∈ Q
}
.

Assumed that Q[a,b]V0 = lim sup
V ↓0

Q[a,b]V and {x | (b, x, 0) ∈ Q} �= ∅, consider the

following condition, which characterizes the set Q near a point (t, x, V ) w.r.t the
impulsive dynamics:

Condition (A): for all ζ = (ζt, ζx, ζV ) ∈ NP
Q[a,b)

(t, x, V ) and (t, x, y) ∈ Q[a,b) it

holds:
min

ω0, ω1≥0
ω0+ω1=1

{
h0(t, x, ζt, ζx)ω0 + h1(t, x,−ζV , ζx)ω1

}
≤ 0;

for all (ζt, ζx) ∈ NP
QV0

(t, x) and (t, x) ∈ QV0 ,

h0(t, x, ζt, ζx) ≤ 0;

and, for all (ζx, ζV ) ∈ NP
Qb

(x, V ) and (x, V ) ∈ Qb,

h1(b, x,−ζV , ζx) ≤ 0.

Here, Q[a,b), Qt, and QV0
are the closures of the sets Q[a,b), Qt, and QV0 , respec-

tively.
In [20], it is proved that Condition (A) is equivalent to the weak invariance

of a closed set Q ⊂ R
n+2 w.r.t. the control system (3)–(6).
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2.2 Time Reparameterization and Impulsive Feedback Controls

Let us introduce the following variational problem (Pa), which is an ordinary
counterpart of the impulsive control problem (P ). This problem is stated on
processes of the so-called space-time system (Sa), obtained from the measure
differential Eqs. (3)–(6) through the standard discontinuous time reparameteri-
zation technique [16–19,21]. Problem (Pa) takes the form:

Minimize Ĵ = l
(
y(τ1)

)
subject to

d

dτ
η

.= η′(τ) = ω0(τ), η(0) = a, η(τ1) = b,

y′(τ) = f
(
η(τ), y(τ), ν(τ)

)
ω0(τ) + G

(
η(τ), y(τ)

)
ω(τ), y(0) = x0,

m′(τ) = ω0(τ) − 1, m(τ1) = 0,

ν(τ) ∈ U,
(
ω0(τ), ω(τ)

)
∈ co K̃1 for L-a.e. τ ∈ [0, τ1].

Here, (η, y,m) ∈ W 1,1
(
[0, τ1], Rn+2

)
are new states, and ν ∈ L∞(

[0, τ1], Rm
)
,

(ω0, ω) ∈ L∞(
[0, τ1], Rr+1

)
are controls;

K̃1
.= {(ω0, ω) ∈ [0, 1] × K | ω0 + ‖ω‖1 = 1}.

Furthermore, if constraint (7) on the resource of impulsive control is imposed in
the original system, than τ1 ≤ b − a + M .

Note that the set Σa of processes ρ = (τ1, η, y,m, ν, ω0, ω) that are feasible
for (Pa) is in one-to-one correspondence with Σ [17], and min

σ∈Σ
J(σ) = min

ρ∈Σa
J(ρ)

(in other words, problems (P ) and (Pa) are equivalent one to another).
Let τ1 ≥ 0. Now we shall fix an appropriate class of time reparameterizations,

which are involved in the notion of feedback control. By the time reparametriza-
tion we mean a nondecreasing Lipschitz continuous function η : [0, τ1] �→ [a, b]
such that η(0) = a and η(τ1) = b, and denote by Tτ1 the set of time
reparametrizations enjoying the property: η′(θ) ∈ [0, 1] L-a.e. on [0, τ1]. The
feedback control is a collection

(
τ1, η(·), ν(τ, y), ω(τ, y)

)
, where

η(·) ∈ Tτ1 , (9)
ν(τ, y) ∈ U, (10)

ω(τ, y) ∈ V
(
τ ; η

) .=
{
v ∈ K |

(
η′(τ), v

)
∈ co K̃1

}
(11)

(cf. [2]). Note that any feedback control produces at least one sampling
(Krasovskii-Subbotin/Euler) solution of the closed-looped system (Sa) [6], and
this sampling solution satisfies terminal constraint η(τ1) = b.

3 Feedback Necessary Optimality Conditions

In this section, we formulate the main result—the feedback necessary conditions
for optimality,—and present some illustrative cases demonstrating the machinery
of our approach along with its key features.
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Let σ̄ = (x̄, ū, π̄) ∈ Σ be a reference control process in problem (P ), and
ḡ = (τ̄1, η̄, ȳ, m̄, ν̄, ω̄0, ω̄) the associated process of (Pa). We abbreviate x̄1

.= x̄(b).
Consider a function ϕ(t, x, V ), which is weakly invariant w.r.t. system (3)–(5),
and assume that i) ϕ(a, x0, V ) ≤ 0 for all V ∈ R+ and ii) ϕ(b, x, 0) ≥ l

(
x
)
−l

(
x̄1

)
.

Then, ϕ(η, y,m) is weakly invariant w.r.t. system (Sa). Moreover, there exists
g = (τ1, η, y,m, ν, ω0, ω) ∈ Σa such that the map τ �→ ϕ

(
η(τ), y(τ),m(τ)

)
is

non-positive on [0, τ1]. One concludes that

ϕ
(
b, y(τ1), 0

)
≤ 0, and

l
(
y(τ1)

)
− l

(
x̄1

)
≤ 0. (12)

In view of this, one easily derives the following (variational) necessary optimality
condition for problem (P ):

Theorem 1. Assume that σ̄ is globally optimal for (P ). Then the associated
process ḡ is a minimizer for (Pa), and the inequality (12) does not hold strictly.

This theorem, looking rather straightforward, shall be handled in its counter-
positive version, i.e., as a sufficient condition for non-optimality. Then, applied
iteratively, it is trivially turned into the following conceptual algorithm: Let
an appropriate ϕ be chosen. Fix τ1 and η(·). Design a feedback control(
τ1, η(·), ν(τ, y), ω(τ, y)

)
, satisfying conditions (9)–(11) in the way [6] (using the

set Ωϕ(t, x, V ) to be defined below, or the respective criterion for the invariance
w.r.t (Sa)), such that ϕ, contracted on an associated sampling solution, stays
within the set Qϕ (this is always possible due to the weak invariance of ϕ).

Here, given a weakly invariant function ϕ and (t, x, V ) ∈ T × R
n × R+,

Ωϕ(t, x, V ) denotes the set of triples (u, ω0, ω) such that vector (u, ω0, ω1, v)

with ω1 = ‖ω‖1 and v =
{

ω/‖ω‖1, ‖ω‖1 �= 0,
0, ‖ω‖1 = 0 brings the minima in the left-

hand sides of the respective inequalities in Condition (A), applied to the set
Q = Qϕ at the point (t, x, V ).

To illustrate, how the formulated scheme works in practice, we propose three
simple but eloquent cases, where an appropriate weakly invariant (for (Pa))
function ϕ can be chosen in the simplest state-linear form

ϕ(τ, y) =
(
ψ(τ) + ly(ȳ1)

)(
ȳ(τ) − y

)
+ l(y) − l

(
ȳ(τ)

)
. (13)

Here, ȳ1
.= ȳ(τ̄1), and ψ is the adjoint of ḡ in the sense of the Maximum Principle.

Note that this situation brings us to the paradigm of the so-called feedback
minimum principle [7,8].

Example 1. Minimize J [σ] =
〈
x(t1), Ax(t1)

〉
, A =

(
−5 3

3 −5

)
, subject to

x1(t) =
∫ t

0

μc1(dτ) +
∑

s∈S, s≤t

(
zs
1(ds) − x1(s−)

)
, x1(0) = 0, (14)

x2(t) =
∫ t

0

x1(τ)μc2(dτ) +
∑

s∈S, s≤t

(
zs
2(ds) − x2(s−)

)
, x2(0) = 0, (15)
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zs
1(τ)
dτ

= ωs
1(τ), zs

1(0) = x1(s−), (16)

zs
2(τ)
dτ

= zs
1(τ)ωs

2(τ), zs
2(0) = x2(s−), (17)

∣
∣ωs

1(τ)
∣
∣ +

∣
∣ωs

2(τ)
∣
∣ ≤ 1 for s ∈ S, L- a.e. τ ∈ [0, ds], (18)

|μc|
(
[0, t1]

)
+

∑

s∈S

ds ≤ M. (19)

This problem is characterized by infinitely many extrema of the impulsive
Maximum Principle [18]; the terminal states of any extremal trajectory belong
to the four-point set presented on Fig. 1 (the two green points correspond to
all local extrema, and the two red ones—to global solutions). Notice that the
reachable set R(t1) of system (14)–(19) at any time moment t1 ≥ 0 can be
represented as follows:

R(t1) =
{
(x1, x2) | ϕ1,2(x1, x2,M) ≤ 0

}
,

where ϕ1,2 are strongly decreasing functions of the form

ϕ1(x1, x2, V ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x2 + (V + x1)x1, x1 ≤ −V/3,

x2 − (V − x1)2

8
, x1 ∈

[
− V/3, 0

]
,

x2 − (V + x1)2

8
, x1 ∈

[
0, V/3

]
,

x2 − (V − x1)x1, x1 ≥ V/3, and
ϕ2(x1, x2, V ) = ϕ1(x1,−x2, V ).

Let M = 3. To illustrate the point, among all extremal controls, we choose
the four ones with the property: |μc| = 0 and S = {0}. For the respective control
processes, we apply Theorem 1. We are aimed at discarding non-optimal extrema
σ̃1,2 produced by controls

ω̃1(τ) =
{

(1, 0), τ ∈ [0, τ∗),
(0, 1), τ ∈ [τ∗, 3] and ω̃2(τ) =

{
(−1, 0), τ ∈ [0, τ∗),
(0, 1), τ ∈ [τ∗, 3], τ∗ = 1.6,

with J [σ̃1,2] = −16, 384. Note that global solutions σ1,2 correspond to the inputs

ω1(τ) =
{

(1, 0), τ ∈ [0, 2),
(0,−1), τ ∈ [2, 3], ω2(τ) =

{
(−1, 0), τ ∈ [0, 2),
(0,−1), τ ∈ [2, 3],

and give J [σ1,2] = −64.
The Pontryagin function takes the form H = ψ1 ω1+ψ2 y1 ω2, and the adjoint

system looks as follows:

ψ̇1 = −ψ2 ω2, ψ1(3) = 10 y1(3) − 6 y2(3), ψ2 ≡ −6 y1(3) + 10 y2(3).
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Fig. 1. Example 1: The level lines of the cost function and the reachable set R(t1) for
M = 3 and any t1 ≥ 0.

Consider a non-optimal (local) extrema σ̃1, and introduce the functions gi

generated by ϕ
.= ϕ(σ̃1) from (13):

g1 = g1(τ, y; ψ̃1
1)

.= ϕy1 = ψ̃1
1(τ) + ly1(y) − ly1(ỹ

1),

g2 = g2(τ, y; ψ̃1
2)

.= ϕy2y1 =
(
ψ̃1
2(τ) + ly2(y) − ly2(ỹ

1)
)

y1.

Then, the respective H-extremal set-valued function (which corresponds to the
set Ωϕ(t, x, V )) has the form

Ωϕ[g1, g2] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,−1), g2 < −|g1|,
(0, 1), g2 > |g1|,
(1, 0), g1 > |g2|,
(−1, 0), g1 < −|g2|,
(−λ, λ − 1), λ ∈ [0, 1], g2 = g1 < 0,
(λ, 1 − λ), λ ∈ [0, 1], g2 = g1 > 0,
(λ, λ − 1), λ ∈ [0, 1], g2 = −g1 < 0,
(−λ, 1 − λ), λ ∈ [0, 1], g2 = −g1 > 0,
g1 = g2 = 0 ω∗ is any admissible.

Taken any selection of this multifunction such that ω∗ = (1, 0) for g2 = g1 > 0,
one generates a new process with

ω̂(τ) =
{

(1, 0), τ ∈ [0, τ̂),
(0,−1), τ ∈ [τ̂ , 3], τ̂ =

274 +
√

96196
220

, and J [σ̂] ≈ −53, 835.

Few consecutive iterations lead to a global solution, see Table 1.

Example 2. Consider a version of Example 1, where the cost functional is lin-
ear in x(t1), while the component μ2 of the control measure is non-negative.
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Table 1. Example 1: Iterations of the feedback optimality condition (values of the
functional, and improvement w.r.t. the previous iteration)

Iteration Problem value % of improvement

0 −16,384 –

1 −53,835 228,583

2 −60,058 11,558

3 −63,464 5,671

4 −63,716 0,397

5 −63,930 0,335

6 −63,974 0,069

7 −63,988 0,022

8 −63,997 0,013

9 −63,997 1,25005E–05

10 −64 0,004

For simplicity, we describe the model through its conventional prototype:

J = c1x1(t1) + c2x2(t1) → inf; (20)
ẋ1 = v1, x1(0) = 0, (21)
ẋ2 = x1v2, x2(0) = 0, (22)

v1(t) ∈ R, v2(t) ≥ 0,

∫ t1

0

(
|v1(t)| + v2(t)

)
dt ≤ M. (23)

Let M = 5. Reachable sets of the respective impulsive system are depicted
on Fig. 2. Again, we study the optimal impulsive control problem by using its
space-time representation. We have:

H = ψ1 ω1 − c2 y1 ω2,

ψ̇1 = c2 ω2, ψ1(M) = −c1, ψ2 ≡ −c2;

g1 = g1(ψ1)
.= ψ1, g2 = g2(y1)

.= −c2 y1,

and the H-extremal controls can be described as follows:

Ω1 : g2 > |g1| ⇒ ω∗ = (0, 1),
Ω2 : g2 < −g1, g1 < 0 ⇒ ω∗ = (−1, 0),
Ω3 : g2 < g1, g1 > 0 ⇒ ω∗ = (1, 0),
Ω4 : g2 = g1, g1 > 0 ⇒ ω∗ = (λ, 1 − λ), λ ∈ [0, 1],
Ω5 : g2 = −g1, g1 < 0 ⇒ ω∗ = (−λ, 1 − λ), λ ∈ [0, 1],
Ω6 : g1 = 0, g2 < 0 ⇒ ω∗ = (2λ − 1, 0), λ ∈ [0, 1],
Ω7 : g1 = g2 = 0 ⇒ ω∗ is any admissible.
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Fig. 2. Example 2: The reachable sets of the impulsive system for M = 5, t1 ≥ 0.

(1) Let c1, c2 > 0. Then, simple calculations give the following characterization
of the optimal solution:

(a) if M <
c1
c2

, then ω̄ ≡ (−1, 0),
ȳ1(τ) = −τ,
ȳ2(τ) ≡ 0,
ψ̄1(τ) ≡ −c1,

J̃(σ̄) = −M ;

(b) if M >
c1
c2

, then ω̄(τ) =
{

(−1, 0), τ ∈ Δ1
.= [0, τ∗],

(0, 1), τ ∈ Δ2
.= (τ∗,M ], τ∗ =

c1 + c2M

2c2
,

ȳ1(τ) =

⎧
⎨

⎩

−τ, τ ∈ Δ1,

−c1 + c2M

2c2
, τ ∈ Δ2,

ȳ2(τ) =

⎧
⎨

⎩

0, τ ∈ Δ1,

−c1 + c2M

2c2
τ +

(c1 + c2M)2

4c22
, τ ∈ Δ2,

ψ̄1(τ) =

{
−c1 + c2M

2
, τ ∈ Δ1

.= [0, τ∗],

c2(τ − M) − c1, τ ∈ Δ2
.= (τ∗,M ],

J̃(σ̄) = −c1(c1 + c2M)
2c2

+
(c1 + c2M)2

4c2
− (c1 + c2M)M

2
.

For example, put c1 = c2 = 1, M = 2 (case b), and let ω0 ≡ (0, 0), y0
1 =

x0
2 ≡ 0, ψ0

1 ≡ −1, J̃0 = 0. Then g1 ≡ −1, g2 = −y1. Consider the following
feedback control

ω(τ, y) =

⎧
⎨

⎩

(−1, 0), in Ω2,
(0, 1), in Ω1 ∪ Ω5,
any admissible, otherwise.

Theorem 1 gives:

ω̃(τ) =
{

(−1, 0), τ ∈ [0, 1],
(0, 1), τ ∈ (1, 2], with ψ̃(τ) =

{
−2, τ ∈ [0, 1],
t − 3, τ ∈ (1, 2], J̃ [ω̃] = −2,
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and the second iteration ω̃ leads to an optimal control

ω̄(τ) =
{

(−1, 0), τ ∈ [0, 3/2],
(0, 1), τ ∈ (3/2, 2] with J̃ [σ̄] = −9

4
.

(2) A more interesting situation appears when c1 > 0, c2 < 0. Now, our problem
admits up to two extrema. Indeed, taken c1 = 1, c2 = −1, M = 5, we obtain
two extremal processes:

– a (strong) local minimum: ω̃ =
{

(1, 0), τ ∈ Δ1
.= [0, 2],

(0, 1), τ ∈ Δ2
.= (2, 5],

ỹ1(τ) =
{

τ, τ ∈ Δ1,
2, τ ∈ Δ2,

ỹ2(τ) =
{

0, τ ∈ Δ1,
2t − 4, τ ∈ Δ2,

ψ̃1(τ) =
{

2, τ ∈ Δ1,
4 − τ, τ ∈ Δ2,

J̃ [ω̃] = −4,

and
– a global minimum: ω̄ ≡ (−1, 0), ȳ1(τ) = −τ , x̄2(τ) ≡ 0, ψ̄1(τ) ≡ −1 with

J̃ [σ̄] = −5.

Thus, any initial process satisfying

M∫

0

ω2(τ) dτ < 1 could be discarded

(improved) in just one iteration.
Let ω0 ≡ (0, 1), y0

1 = y0
2 ≡ 0, ψ1(τ) = 4− τ . All extremal feedbacks generate

the following parametrized family of open-loop controls:

ω̃ = ω̃(τ, τ∗) =

⎧
⎨

⎩

(1, 0), τ ∈ [0, 2),
(−1, 0), τ ∈ [2, τ∗),
(0, 1), τ ∈ [τ∗, 5],

τ∗ ∈ [2, 5].

Taken τ∗ = 2, one comes to a point of local minimum, while, for τ∗ = 5, one
obtains a control with ω̃2 ≡ 0, and the second iteration leads to the optimal
solution.

Example 3. Consider an impulsive relaxation of the following ordinary varia-
tional problem:

J = x1(1) + 2x2(1) − 3x3(1) → inf;
ẋ1 = f1(t) + (ax2 + b)v1, x1(0) = x10,

ẋ2 = f2(t) + (cx1 + d)v2, x2(0) = x20,

ẋ3 = v1 + v2, x3(0) = 0, x3(1) ≤ M,

v1(t) ≥ 0, v2(t) ≥ 0, t ∈ [0, t1].

Here, a = 2, b = 1, c = 1, d = 3, M = 2, x0 = (1, 1), f(t) = (1, 1). Figure 3
demonstrates a cross-section of the reachable set of the associated measure dif-
ferential equation, for x3 = 2, t1 = 2.
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Fig. 3. Example 3: The cross-section of the reachable set for x3 = 2, t1 = 2.

In this example, the impulsive Maximum Principle [18] extracts two extremal
process; the terminal values of the extremal trajectories are located at the points,
depicted on Fig. 3: the green point (σ1) corresponds to a non-optimal extremum,
and the red one (σ2) presents the global solution.

By applying Theorem 1 with ϕ(τ, y) = ψ(τ)
(
ȳ(τ)−y

)
(ȳ and ψ are the phase

and adjoint states corresponding to σ1, respectively), we discard the non-optimal
process σ1. Furthermore, extremal feedback controls generated by ϕ provide the
property of descent (control improvement) w.r.t. the cost functional. By the
arguments similar to Examples 1, 2, one finally reaches the globally optimal
process σ2, as above.

4 Conclusion

As we have shown, the proposed feedback optimality conditions enjoy a const-
ructive feature: for impulsive processes, there are known criteria for weak inva-
riance (weak monotonicity) [20], which let one to design the feedback controls
generating “viable” trajectories, together with respective open-loop controls. By
an appropriate choice of function ϕ, one can construct an admissible control
process, whose cost is less or equal to the problem value on the reference process.
Furthermore, as multiple (even rather pathological) cases show, the effect of such
feedback variations can be quite essential; sometimes it serves to obtain a global
solution in few iterations, starting from a local extremum.
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Abstract. This paper proposes a semi-supervised classification method
which combines machine learning regularization framework and clus-
ter ensemble approach. We use the low-rank decomposition of the co-
association matrix of the ensemble to significantly speed up calculations
and save memory. Numerical experiments using Monte Carlo approach
demonstrate the efficiency of the proposed method.

Keywords: Semi-supervised classification · Cluster ensemble ·
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1 Introduction

In pattern recognition problems, it is required to classify objects characterized
by a set of features into several classes (patterns) obtaining an optimal value
of a certain quality functional (e.g., minimize an estimate of misclassification
probability). The creation of the classifier is based on the analysis of the learning
sample consisting of precedents, i.e., objects for which their class labels are
identified. In the basic formulation of the problem, the labels are known for all
objects in the sample (fully supervised classification).

This paper considers another variant of the problem: so-called semi-
supervised classification. In this task, class labels are defined only for a small
part of the sample. It is required to classify the existed unlabeled objects (trans-
ductive learning) or find a decision rule for classifying any new objects from
the statistical population (inductive learning). In this paper, we consider the
transductive learning problem.

Semi-supervised classification is important because the procedure of class
registration can be rather costly. For example, measurement of vegetation type
in remote sensing [1] requires expensive field research, therefore labels can be
attributed to only a small part of pixels. To improve the accuracy of prediction,
it is necessary to utilize information from both labeled and unlabeled data.
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A number of approaches and methods in semi-supervised classification exist
(see, e.g., [2]). At the present time, such methods as heuristic self-training, proba-
bilistic mixture decomposition, transductive support vector machine, and graph-
based Laplacian Regularization are widely used.

Unsupervised learning (clustering) is applied in the semi-supervised classifi-
cation as an instrument of knowledge extraction from unlabeled data. Ensemble
clustering is a way of obtaining robust clustering decisions, especially in the case
of uncertainty in the data structure. This methodology aims at finding consensus
decision from multiple partition variants [5]. Properly organized ensemble (even
composed of “weak” classifiers), as a rule, significantly improves the overall clus-
tering quality.

Different schemes of application of ensemble clustering in semi-supervised
classification have been proposed in [6,7]. The suggested methods are based on
evidence showing that usage of averaged co-association matrix in the role of
similarity matrix often improves the accuracy of decisions. This observation was
supported with theoretical analysis: it was proved in [7] that the probability of
classification error decreases with increase in ensemble size under some regularity
conditions.

In this paper, we propose a novel semi-supervised classification method using
graph Laplacian regularization and cluster ensemble methodology. Graph reg-
ularization (also known as manifold regularization) postulates that if two data
points belong to the same manifold, it is likely they have the same labels. A
graph Laplacian is used to measure the smoothness of the classifications in the
data manifold comprising both labeled and unlabeled data [8–10].

We suggest a low-rank decomposition of averaged co-association matrix to
reduce numerical cost and storage of the method.

In the rest of the paper, we give a short overview of related methods and
describe the details of the suggested method. Numerical experiments with arti-
ficial and real datasets are presented. Finally, concluding remarks are given.

2 Basic Preliminaries

Let a dataset X = {x1, . . . , xn} be given, where xi ∈ Rd is feature vector,
d is dimensionality of feature space X = (X1, . . . , Xd). In a fully supervised
classification, we are given an additional set Y = {y1, . . . , yn} of class labels,
yi ∈ DY , where DY = {c1, . . . , cK} is target feature domain, i.e., unordered set
of categorical values (classes). Using this information, it is necessary to find a
classifier y = f(x) for predicting target feature labels for any new data point
x ∈ Rd from the same statistical population. The function should be optimal in
some sense, e.g., give minimal value to the expected losses.

In an unsupervised learning setting, the target feature values are not pro-
vided. The problem of cluster analysis, which is an important direction in unsu-
pervised classification, consists in finding a partition P = {C1, . . . , CK} of X on
a relatively small number of homogeneous clusters describing the structure of
data. As a criterion of homogeneity, it is possible to use a function dependent
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on the scatter of observations within groups and the distances between clusters.
The desired number of clusters is either a predefined parameter or should be
found in the best way.

In a semi-supervised transductive classification problem, the target feature
labels are known only for a part of the data set X1 ⊂ X. It is possible to assume
that X1 = {x1, . . . , xn1}, and the unlabeled part is X0 = {xn1+1, . . . , xn}. The
set of labels for points from X1 is denoted by Y1 = {y1, . . . , yn1}. It is required
to predict labels Y0 = (yn1+1, . . . , yn) in some best way for a given unlabeled
sample X0.

3 Overview of Methods

Consider some of the commonly used approaches in semi-supervised classifica-
tion.

3.1 Heuristic Self-training

In this approach, some basic supervised classification algorithm is used. At the
first step, the algorithm is trained on the labeled sample and then classifies the
unlabeled part. For each classified object, a recognition quality score is calculated
(for example, the distance to the separating hyperplane). In the next step, those
observations for which the quality estimates are above a certain predetermined
threshold are excluded from the set X0 and added to X1, and their labels are
included to Y1. Then the basic algorithm is again used for training on the
updated labeled sample and classification the remaining unlabeled part. The
process is repeated until no unlabeled points remain.

Methods based on the described heuristic procedure, as a rule, are quite
effective, but theoretical analysis of their properties is a difficult task.

3.2 Probabilistic Approach

When using this approach, it is assumed that for each class ck some distribution
pk(x|θk) is specified on feature space, where θk is a vector of parameters, k =
1, . . . ,K. It is assumed that the general form of the distribution is known (for
example, multidimensional normal), and its parameters need to be estimated
with the sample. Denote θ = (θ1, . . . , θK), and let q = (q1, . . . , qK) be a set of a
priori probabilities of classes, where q1 + · · · + qK = 1. Then for a labeled point
xi ∈ X1, for which yi = ck, by the Chain rule we obtain:

p(xi, yi|θ) = qkpk(xi|θk).

According to the Law of Total Probability, for unlabeled point xi ∈ X0 the
following is true:

p(xi|θ) =
K∑

k=1

qkpk(xi|θk).
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One may consider the problem of maximizing the likelihood function:

(q∗, θ∗) = arg max
q,θ

{
∑

xi∈X1

log p(xi, yi|θ) +
∑

xi∈X0

log p(xi|θ)
}

,

For the solution of the problem, iterative algorithms have been developed (for
example, EM algorithm for analysis of distribution mixture [2]). After finding
optimal q∗ = (q∗

1 , . . . q
∗
K), θ∗ = (θ∗

1 , . . . , θ
∗
K), the unlabeled objects are classified

according to the Bayes formula:

f(xi) = ck∗, where k∗ = arg max
k

{q∗
kpk(xi|θ∗

k)} , i = n1 + 1, . . . , n.

The disadvantage of this approach is that under significant violation of the
assumptions on the distribution model, the found solutions will have large error.

3.3 Transductive Support Vector Machine

The methods of this type are based on support vector machine (SVM) method-
ology for the fully supervised two-class recognition problem (which can be
extended to the multi-class case). In the basic formulation (binary classification),
it is required to find the direction of the separating hyperplane, for which the
width of the margin separating the classes is maximum. The input of the algo-
rithm is a training sample X with class labels Y = {y1, . . . , yn}, yi ∈ {−1,+1},
i = 1, . . . , n. In the case of linear separability of classes, there are an infinite
number of separating hyperplanes. It is reasonable to choose a hyperplane, the
distance from which to both classes is maximal. The points lying on the border
of the separating margin are called support vectors.

The hyperplane equation can be represented as 〈w, x〉 + b = 0, where 〈· , ·〉
is a scalar product, w is a normal vector, and b is an auxiliary parameter. The
support vector method builds a decision function in the form

f(x) = sign(
n∑

i=1

αiyi 〈xi, x〉 + b)

where α1, . . . , αn ≥ 0 are some parameters; at the same time, the hyperplane
coefficients are normalized so that 〈w, xi〉 + b = 1 for the support vectors. It is
important to note that the summation goes only over the support vectors for
which αi �= 0.

For transductive support vector machine, it is required to find a hyperplane
which separates with the maximum margin not only labeled points from X1, but
also the unlabeled points from X0. Thus, the hyperplane must be located in the
region with the lowest density. The problem of finding the optimal hyperplane
can be formulated as follows:

find Y0, w, b, ξ : 1
2 ||w||2 + C

∑
i

ξi → min
Y0,w,b,ξ

s.t. yi(〈w, xi〉 + b) ≥ 1 − ξi, i = 1, . . . , n,
ξi ≥ 0, i = 1, . . . , n.
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Here ξ1, . . . , ξn are variables denoting penalty for violation margin boundaries,
C ≥ 0 is a given parameter. Thus, we need to maximize the width of separating
margin (it can be shown that this requirement is equivalent to minimizing ||w||2),
as well as minimize the total penalty for violating its boundaries.

Algorithms for the approximate solution of this problem exist (see [2]). For
the solution, the corresponding dual problem is solved with respect to parameters
α1, . . . , αn.

With linearly non-separable classes, it is possible to find a transform ϕ : X →
X ′ of the original feature space X to a new space X ′ of higher dimensionality
by use of some kernel function. In the new space, the objects can already be
linearly separable.

It is known that the optimization problem for transductive support vector
machine is not convex, and existing algorithms for its approximate solution have
a polynomial complexity depending on the number of observations. Therefore,
this approach is applicable to samples of relatively small size (about a thousand
observations).

3.4 Graph Laplacian Regularization

Consider weighted non-oriented complete graph G = (V,E), in which the set of
vertices V corresponds to points from X, and the set of edges E corresponds to
pairs (xi, xj), i, j = 1, . . . , n, i �= j. Each edge (xi, xj) is associated with a non-
negative weight Wij (the degree of similarity between the points). For example,
the weight can be determined using the RBF kernel:

Wij = exp
(

−||xi − xj ||
2σ2

)

where σ is a given parameter.
Let us introduce a diagonal matrix D with elements Dii =

∑
j Wij . Matrix

L = D−1/2W D−1/2

is called normalized graph Laplacian. It has a dimension n × n; elements of
the matrix are: Lij = Wij√

Dii

√
Djj

. Other types of graph Laplacian are also used:

standard Laplacian [3] Ls = D − W , and graph Laplacian associated with
random walk [4] Lrw = D−1W .

Let Yi = (Yi1, . . . , YiK) denote a Boolean vector of observable class labels:
Yik = I[yi = ck], where I[·] is an indicator function: I[true] = 1, I[false] = 0,
i = 1, . . . , n1, k = 1, . . . , K. Denote by Fi = (Fi1, . . . , FiK) classification vector
with elements equal to the estimated degrees of belonging of point xi to classes
c1, . . . , cK , and let F = (F1, . . . , Fn)T denote classification matrix.

Consider the following optimization problem:

find F ∗ = arg min
F∈Rn×K

Q(F )

= 1
2

(
∑

xi∈X1

||Fi − Yi||2 + β
∑

xi,xj∈X

Wij

∥∥∥∥
Fi√
Dii

− Fj√
Djj

∥∥∥∥
2
)

, s.t. F ≥ 0
(1)
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where β > 0 is a regularization parameter. The first sum in the right side of (1)
is aimed to reduce the fitting error on labeled data; the second component plays
the role of a smoothing function: its minimization means that if two points xi, xj

(either labeled or unlabeled) are similar, their classification vectors should not
be very different.

It is known that the optimized function is convex. To find the optimal solu-
tion, we differentiate (1), and after simple transformations with normalized graph
Laplacian get:

∂Q

∂Fik
|Fik=F ∗

ik
= F ∗

ik − Yik + βF ∗
ik − βLi· F ∗

·k = 0, i = 1, . . . , n1, (2)

∂Q

∂Fik
|Fik=F ∗

ik
= βF ∗

ik − βLi· F ∗
·k = 0, i = n1 + 1, . . . , n (3)

where Li·, F ∗
·k are ith row of matrix L and kth column of the matrix F ∗,

respectively, i = 1, . . . , n1, k = 1, . . . ,K.
Denote by Y1,0 the following matrix:

Y1,0 = (Y1, . . . , Yn1 , 0, . . . , 0︸ ︷︷ ︸
n−n1

)T

of dimensionality n × K, and by G diagonal matrix:

G = diag(G11 . . . , Gnn), Gii =
{

β+1, i=1,...,n1
β, i=n1+1,...,n (4)

of dimensionality n × n. Then one may rewrite (2), (3) in matrix form:

(G − βL)F ∗ = Y1,0, (5)

hence
F ∗ = (G − βL)−1Y1,0 (6)

if the inverse matrix exists (note that it is always possible to choose regularization
parameter β to ensure the well-posedness of the problem).

To find F ∗, one may use iterative matrix inversion methods [11]. The authors
of [9] describe the iterative algorithm (Label Spreading) used to solve a prob-
lem similar to (6). One may also apply the existing methods of solving systems
of linear algebraic equations for (5), where each system is determined for cor-
responding columns of matrices F ∗ and Y1,0. After calculating F ∗, the final
classification is determined as

yi = ck∗, where k∗ = arg max
k=1,...,K

F ∗
ik, i = n1 + 1, . . . , n. (7)

A limitation of this approach is that one needs to keep in memory non-sparse
graph Laplacian matrix of dimensionality n × n, and also a large cost of matrix
operations.
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4 Proposed Method

The method proposed in this paper is based on a combination of ensemble
clustering and graph Laplacian regularization. We use averaged co-association
matrix of clustering ensemble [12] as similarity matrix in (1).

This replacement has a number of reasons. First of all, the co-association
matrix defines semi-metric on observations space [13]. Thus the frequencies of
assigning pairs of objects to the same clusters can be viewed as measures of
similarity between data points. Second, one may believe that objects from a
dense region in feature space share their class labels with larger probability,
even though the region has complicated form (elongated or strip-like cluster)
and the Euclidian distance between points is large. Viewed from this angle, such
points are similar to each other.

Usually averaged co-association matrix is calculated in the process of cluster
ensemble formation and requires a memory of quadratic size. However, it is
possible to reduce the requirement by low-rank matrix decomposition.

4.1 Cluster Ensemble and Low-Rank Decomposition
of the Co-association Matrix

Let us consider a set of partition variants {Pl}r
l=1, where Pl = {Cl,1, . . . , Cl,Kl

},
Cl,k ⊂ X, Cl,k

⋂
Cl,k′ = ∅, Kl is the number of clusters in lth partition.

For each Pl we determine matrix Hl = (hl(i, j))n
i,j=1 with elements indicat-

ing whether a pair xi, xj belong to the same cluster in lth variant or not:
hl(i, j) = I[cl(xi) = cl(xj)], cl(x) is the cluster label assigned to x. The weighted
averaged co-association matrix (WACM) is defined as follows:

H = (H(i, j))n
i,j=1, H(i, j) =

r∑

l=1

wlHl(i, j)

where w1, . . . , wr are weights of ensemble elements, wl ≥ 0,
∑

wl = 1. The
weights should reflect the “importance” of base clustering variants in the ensem-
ble and be dependent on some evaluation function Γ (cluster validity index,
diversity measure) [13]: wl = γl/

∑
l′

γl′ , where γl = Γ (l) is an estimate of clus-

tering quality for the lth partition (we assume that a larger value of Γ indicates
better quality).

The following obvious property of WACM allows increasing the processing
speed.

Proposition 1. Weighted averaged co-association matrix admits low-rank decom-
position in the form:

H = BBT , B = [B1B2 . . . Br] (8)

where B is a block matrix, Bl =
√

wl Al, Al is n × Kl cluster assignment matrix
for lth partition: Al(i, k) = I[c(xi) = k], i = 1, . . . , n, k = 1, . . . , Kl.
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As a rule, m =
∑

l Kl 
 n, thus (8) gives us an opportunity of saving
memory by storing n × m sparse matrix instead of full n × n co-association
matrix. The complexity of matrix-vector multiplication H · x is decreased from
O(n2) to O(nm).

4.2 Cluster Ensemble and Graph Laplacian Regularization

Let us consider normalized graph Laplacian in the form: L̃ = D̃−1/2H D̃−1/2

where D̃ = diag(D̃′
11, . . . , D̃nn), D̃ii =

∑
j

H(i, j). We have:

D̃ii =
n∑

j=1

r∑

l=1

wl

Kl∑

k=1

Al(i, k)Al(j, k)

=
r∑

l=1

wl

Kl∑

k=1

Al(i, k)
n∑

j=1

Al(j, k) =
r∑

l=1

wlnl(i) (9)

where nl(i) is the size of the cluster which includes the point xi in lth partition
variant.

Substituting L̃ in (6), we obtain a cluster ensemble-based classification
matrix:

F ∗∗ = (G − βL̃)−1 Y1,0. (10)

Using low-rank decomposition, this expression can be transformed into the form
which involves more efficient matrix operations.

Denote U = D̃−1/2B. From (8) and (10) we get:

F ∗∗ = (G − βUUT )−1 Y1,0.

In linear algebra, the following Woodbury matrix identity is known:

(G + UV )−1 = G−1 − G−1U(I + V G−1U)−1V G−1

where G ∈ Rn×n is invertible matrix, U ∈ Rn×m and V ∈ Rm×n. From (4) it
follows that

G−1 = diag(1/G11, . . . , 1/Gnn).

Now it is possible to formulate the following statement:

Proposition 2. Cluster ensemble-based classification matrix ( 10) can be calcu-
lated using low-rank decomposition as follows:

F ∗∗ = (G−1 + βG−1U(I − βUT G−1U)−1UT G−1) Y1,0. (11)

A remarkable fact is that in (11) one has to invert significantly smaller m×m
dimensional matrix instead of n × n dimensional in (10). The overall computa-
tional complexity of (11) is O(nm + m3).
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The scheme of the suggested semi-supervised classification algorithm based
on graph Laplacian and low-rank decomposition of a co-association matrix (SSC-
LR) is as follows.

Algorithm SSC-LR
Input:
X: dataset including both labeled X1 and unlabeled samples X0;
Y1: set of known labels;
r: number of runs for base clustering algorithm;
Ω: set of parameters (working conditions) of the clustering algorithm.
Output:
Y0: predicted class labels for objects from X0.
Steps:
1. Generate r variants of clustering partition for working parameters randomly
chosen from Ω; calculate weights w1, . . . , wr of variants.
2. Find normalized graph Laplacian in low-rank representation using matrices
B in (8) and D̃ in (9);
3. Determine predicted classification matrix according to (11);
4. Calculate label assignments Y0 using (7).
end.

In the computer implementation of SSC-LR, we use K-means as base clus-
tering algorithm which has linear complexity with respect to data dimensions.

5 Numerical Experiments

In this section, we describe numerical experiments with the proposed SSC-LR
algorithm. The aim of experiments is to confirm the usefulness of involving clus-
ter ensemble for similarity matrix estimation in semi-supervised classification.
We experimentally evaluate the classification quality on one synthetic and one
real-life example.

In the first example, we consider data sets generated from a mixture of three
multidimensional normal distributions N (ai, σXI) under equal weights; ai ∈ Rd,
i = 1, 2, 3, d = 8, σX is a parameter, a1 = (0, 0, . . . , 0)T , a2 = (5, 5, . . . , 5)T ,
a3 = (−5, 5, . . . , 5)T . To study the robustness of the algorithm, we also generate
two independent random variables following uniform distribution U(0, 5) and use
them as additional “noisy” features.

In Monte Carlo modeling, we repeatedly generate samples of size n according
to the given distribution mixture. In the experiment, 10% of the points selected
at random from each component compose the labeled sample; the remaining
ones are included in the unlabeled part.

The ensemble variants are designed by random initialization of centroids
(selected data points) in K-means; the number of clusters equals three. The
ensemble size is r = 10. The wights of ensemble elements are the same: wl ≡ 1/r.
The regularization parameter β = 0.1.
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For the comparison purposes, we consider the method (denoted as SSC-RBF)
which uses standard similarity matrix evaluated with RBF kernel (best results
were obtained with RBF parameter σ = 4), where the output classifications are
calculated according to (6) and (7). The accuracy of classification is evaluated
by comparison of the predictions with true class labels for X0 (unknown in the
stage of classifier design).

To make the comparison results more statistically sound, we have averaged
accuracy estimations over 40 Monte Carlo repetitions and compare the results
by paired two-sample Student’s t-test.

Table 1 presents the results of experiments. In addition to the averaged classi-
fication accuracy, the table shows the averaged execution times for the algorithms
(working on dual-core Intel Core i5 processor with a clock frequency of 2.8 GHz
and 4 GB RAM). For SSC-LR, we separately indicate ensemble generation time
tens and low-rank matrix operation time tmatr (in seconds). The obtained p-
values for Student’s t-test are also taken into account. A p-value less than the
given significance level indicates a statistically significant difference between the
performance estimates.

Table 1. Results of experiments with a mixture of three distributions. Significantly
larger accuracy estimates (p-value < 10−5) are in bold. For n = 105 and n = 106,
SSC-RBF failed due to unacceptable memory demands.

n σX SSC-LR SSC-RBF

Accuracy tens (sec) tmatr (sec) Accuracy Time (sec)

1000 2 0.999 0.07 0.006 0.999 0.26

3 0.988 0.08 0.01 0.987 0.26

4 0.953 0.06 0.05 0.942 0.26

3000 2 0.999 0.08 0.02 0.999 4.02

3 0.988 0.08 0.02 0.988 4.09

4 0.952 0.09 0.02 0.949 4.08

7000 2 0.999 0.75 0.12 0.999 44.7

3 0.989 0.78 0.13 0.989 47.1

4 0.953 0.28 0.08 0.951 44.1

105 2 0.999 1.87 0.69 - -

106 2 0.999 27.2 8.28 - -

The results show that the proposed algorithm has comparable or even better
classification accuracy than SSC-RBF. At the same time, it works much faster.
For a large volume of data (n = 105, n = 106) only SSC-LR is able to find
a solution because SSC-RBF has refused to work due to unacceptable memory
demands (74.5 GB and 7450.6 GB correspondingly).

In the second example, we consider Cardiotocography Data Set [14]. Car-
diotocography is a simultaneous recording of Fetal Heart Rate (FHR) and
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Uterine Contractions (UC) and it is one of the most common diagnostic tech-
niques to evaluate maternal and fetal well-being during pregnancy and before
delivery. Fetal cardiotocograms were automatically processed and the respective
diagnostic features were measured. The dataset includes a total of 2126 observa-
tions of which is 1655 normal, 295 suspicious and 176 pathologic samples which
indicate the existing of fetal distress. 22 numerical features are FHR baseline
(beats per minute), number of accelerations per second, number of fetal move-
ments per second, number of UC per second, etc.

The following experiment’s settings are used. The volume of the labeled sam-
ple is 10% of overall data; the cluster ensemble architecture is the same as in
the previous example: K-means base algorithm with 10 clusters; ensemble size
r = 10. Parameter β = 0.1; SSC-RBF parameter σ = 4. The number of genera-
tions of labeled samples is 40.

As a result of modeling, the averaged accuracy rate for SSC-LR equals 0.89.
For SSC-RBF, the averaged accuracy is 0.80. The p-value less than 0.0001 indi-
cates a statistically significant difference between the quality estimates.

6 Conclusion

This work has introduced a semi-supervised classification method which com-
bines graph Laplacian regularization and multiple clustering methodologies.
Low-rank decomposition of co-association matrix gave us a possibility to speed
up calculations and save memory from cubic to linear.

There are a number of arguments for the usefulness of ensemble clustering
in semi-supervised classification. Ensemble decisions allow us to restore more
accurately metric relations between objects under the existence of complex data
structures. The obtained co-association matrix depends on the outputs of cluster-
ing algorithms and is less noise-addicted than conventional similarity matrices.
Clustering with a sufficiently large number of clusters can be viewed as Learning
Vector Quantization known for lowering the average distortion in data.

The efficiency of the suggested SSC-LR algorithm was confirmed experimen-
tally. Monte Carlo experiments have demonstrated comparable or even statis-
tically significantly better accuracy estimates and a considerable decrease in
running time for SSC-LR in comparison with analogous SSC-RBF algorithm
based on standard similarity matrix with RBF kernel.

We plan to continue studying the theoretical properties of the proposed
method, as well as to perform a detailed comparison with other state-of-the-art
methods. Applications of the method in various fields are also planned, especially
for hyperspectral imagery classification and analysis of genetic sequences.
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Abstract. In this paper we consider the following Maximum Diversity
Subset problem. Given a set of points in Euclidean space, find a subset
of size M maximizing the squared Euclidean distances between the cho-
sen points. We propose an exact dynamic programming algorithm for
the case of integer input data. If the dimension of the Euclidean space
is bounded by a constant, the algorithm has a pseudo-polynomial time
complexity. Using this algorithm, we develop an FPTAS for the special
case where the dimension of the Euclidean space is bounded by a con-
stant. We also propose a new proof of strong NP-hardness of the problem
in the general case.

Keywords: Euclidean space · Subset of points · Given size ·
Maximum variance · Strong NP-hardness · Integer instance ·
Exact algorithm · Fixed space dimension · Pseudo-polynomial time

1 Introduction

The subject of this research is the well-known Maximum Diversity Problem,
assuming the squared Euclidean distance as a distance measure: given N points
in Euclidean space, choose a subset of size M to maximize the sum of squared
Euclidean distances between all points of the subset. It is also known as max-sum
Dispersion Problem. The problem is strongly NP-hard [4].

Our goals are to study the possibility of finding approximate solutions to the
problem, to develop an exact algorithm for the special case of the Maximum
Diversity Problem where all points have integer coordinates, and to analyse the
complexity of this algorithm.

Suppose an objective function f(x) of a maximization problem is non-
negative (as in the case of the Maximum Diversity Problem). A feasible solu-
tion x is called a (1 − ε)-approximate solution if it satisfies the inequality
f(x) ≥ (1−ε)f∗, where 0 < ε < 1 and f∗ is the optimal objective function value.

c© Springer Nature Switzerland AG 2019
M. Khachay et al. (Eds.): MOTOR 2019, LNCS 11548, pp. 541–551, 2019.
https://doi.org/10.1007/978-3-030-22629-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22629-9_38&domain=pdf
http://orcid.org/0000-0001-5289-7874
http://orcid.org/0000-0001-7757-7228
http://orcid.org/0000-0003-0832-0829
http://orcid.org/0000-0001-5355-411X
https://doi.org/10.1007/978-3-030-22629-9_38


542 A. V. Eremeev et al.

An algorithm is called a (1− ε)-approximation algorithm if in a polynomial time
it outputs a (1− ε)-approximate solution for every solvable problem instance. A
family of (1 − ε)-approximation algorithms parameterized by ε > 0, such that
the time complexity of these algorithms is polynomially bounded by 1/ε and
by the problem instance length is called a fully polynomial-time approximation
scheme (FPTAS).

The paper is organized as follows. In Sect. 2 we introduce the Maximum
Diversity problem and survey known algorithmic results on this and related
problems. In Sect. 3 we suggest a new proof of strong NP-hardness of the prob-
lem. Section 4 contains some supplementary results, related to the properties of
the optimization criterion. In Sect. 5 we suggest an exact algorithm for the case
of integer input data and study its complexity. Section 6 presents an FPTAS for
the case when the dimension of the Euclidean space is bounded by a constant.
Concluding remarks are given in Sect. 7.

2 Problem Formulation, Related Problems and Known
Results

The Maximum Diversity Problem (later on referred to as Problem 1) considered
in this paper has the following formulation.

Problem 1.

Input: an N -element set Y of points in k-dimensional Euclidean space R
k

and a positive integer M ≤ N .
Problem: find a subset C ⊆ Y of points such that the objective function

h(C) :=
∑

y∈C

∑

z∈C

||z − y||2 (1)

is maximal under the constraint |C| = M on the size of the subset C.

Without loss of generality we can assume that Y contains at least one
non-zero vector (otherwise the problem is trivial).

Note that for any nonempty set C of points in Euclidean space the following
equations are true (see e.g. [5]):

f(C) :=
∑

z∈C

||z − z̄(C)||2 =
1

2|C|
∑

z∈C

∑

y∈C

||z − y||2 =
1

2|C|h(C). (2)

Here and below, z̄(C) := 1
|C|

∑
z∈C z denotes the centroid of a set C.

Therefore the optimum of the Problem 1 is attained on the same subsets as
the optimum of max{f(C) | |C| = M,C ⊆ Y } and these optimization problems
are equivalent.
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Problem 1 has numerous applications in ecological, medical or social sciences,
in animal and plant genetics [17]. In particular, if the given points correspond to
people so that the coordinates of points are equal to some characteristics of these
people, then the Maximum Diversity Problem may be treated as a problem of
finding a maximally diverse group of people of a given size (e.g. for composition of
medical crews [2] or in immigration control [15]). In evolutionary algorithms for
single-objective or multi-objective optimization in R

k, maximally diverse subset
of tentative solutions may be beneficial in selection for the next population.

The complexity and algorithmic issues of Problem 1 are addressed in a num-
ber of publications. Kuo, Glover and Dhir [14] have proposed several integer
programming formulations for this problem and showed that a more general
problem, where the distances between the points are arbitrary positive numbers,
is strongly NP-hard. A generalization of Problem 1 to the distance spaces of
negative type is considered by Cevallos, Eisenbrand, and Zenklusen [4], where
a polynomial-time approximation scheme (PTAS) has been developed and the
strong NP-hardness of the problem is established. Cevallos, Eisenbrand and
Morell in [3] (along with other results) propose a proof of NP-hardness of
Problem 1 in the case of 3-dimensional Euclidean space and give a survey of
the current state of the art in theoretical analysis of Problem1 and other diver-
sity maximization problems.

Note that changing the optimization direction from maximization to min-
imization converts Problem 1 into the M -Variance problem [1]. Strong NP-
hardness of the M -Variance problem is established in [9]. In the same paper,
it is shown that there does not exist a fully polynomial time approximation
scheme (FPTAS) for this problem unless P = NP. The exact algorithms with
time complexity O(kNk+1) were proposed in [1,19]. If the space dimension k is
fixed, these algorithms are polynomial and their time complexity is O(Nk+1).
An exact algorithm for the case of integer inputs was presented in [10]. The
time complexity of the algorithm is O(kN(2MB + 1)k), where B is the maxi-
mum absolute coordinate value in the input set. If the space dimension is fixed,
the algorithm is pseudo-polynomial and its time complexity is O(N(MB)k). In
[11], a 2-approximation polynomial algorithm with time complexity O(kN2) was
presented for the general case of the problem. A polynomial time approxima-
tion scheme (PTAS) was proposed in [18]. The time complexity of the scheme is
O(kN2/ε+1(9/ε)3/ε), where ε > 0 is a relative error.

In [12], the algorithm was proposed which allows finding a (1+ε)-approximate
solution in O(kN2(2

√
kM/ε + 2)k) time for given ε ∈ (0, 1). For fixed space

dimension k, the algorithm runs in O(N2(M/ε)k) time and implements an
FPTAS.

An improved approximation scheme that allows finding a (1+ε)-approximate

solution in O
(

kN2
(√

2k
ε + 2

)k
)

time was proposed in [13]. If the space dimen-

sion is fixed, the algorithm implements an FPTAS, since its time complexity in this
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case is O(N2(1/ε)k/2). In the same work, an improved approximation scheme were

proposed. The time complexity of this scheme is O
(√

kN2
(

πe
2

)k/2(√ 2
ε +2

)k
)
. In

the case of dimension k = O(log N), the improved scheme remains polynomial.
In this case it implements a PTAS with O

(
N c (1.05+log(2+

√
2
ε ))

)
time, where c is

a positive constant.
In [8], a parameterized randomized algorithm for the M -Variance problem

was proposed. For given upper bounds on the relative error and failure proba-
bility, the parameter value is defined for which the algorithm finds approximate
solutions in a polynomial time. The conditions are found under which these algo-
rithms are asymptotically exact and have the time complexity that is linear in
the space dimension and quadratic in the size of the input set.

3 New Proof of Strong NP-hardness

Theorem 9 in [4] implies that Problem 1 is NP-hard in the strong sense because
the square of Euclidean norm induces a distance space of negative type. Never-
theless, for the sake of completeness, we provide a direct proof of this fact since
it is very short and simple.

It is known [16] that the classic NP-complete Independent Set problem [6]
remains NP-complete for regular graphs:

Independent Set in a Regular Graph. Given a regular graph G of degree d
and a positive integer M , find whether this graph contains a vertex subset of
cardinality M such that every two vertices of this subset are not connected by
an edge.

Theorem 1. Problem 1 is NP-hard in the strong sense.

Let G be a regular graph of degree d with N vertices and q = dN/2 edges.
Construct the following instance of Problem 1. Put k = q and assign to every
vertex of the graph G a k-dimensional vector y whose i-th coordinate is 1 if the
edge i is incident with this vertex, and is 0 otherwise. Then, for a pair of vectors
y and z from Y = {y1, . . . , yN}, clearly, ‖y − z‖2 = 2d − 2, if the vertices of G
corresponding to y and z are adjacent, and ‖y − z‖2 = 2d, otherwise. So, the
optimum of Problem 1 is at least 2dM(M −1) iff G contains an independent set
of size M . �	

Note that the instance of Problem 1 constructed in Theorem 1 has inte-
ger (indeed, Boolean) input vectors, and therefore, the objective function takes
only integer values. Besides, the value of objective function is bounded by a
polynomial in the input size. Therefore (see e.g. [6]), unless P = NP, the gen-
eral case of Problem 1 does not admit a fully polynomial time approximation
scheme (FPTAS).
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4 Properties of the Objective Function

Denote by C∗ the optimal solution of the Problem 1. The following “folklore”
result is well-known. It gives an expression of the total quadratic cluster spread
with respect to any given point in terms of the cluster centroid.

Lemma 1. For an arbitrary point x ∈ R
k and a finite set C ⊂ R

k, we have the
equality ∑

z∈C

||z − x||2 =
∑

z∈C

||z − z̄(C)||2 + |C| · ||x − z̄(C)||2, (3)

where z is the centroid of C.

The above mentioned equality (2) relating the objective functions f(C) and
h(C) follows from Lemma 1 by summation over x ∈ C. A number of results
in [10,12,13] for the minimization version of the problem exploit Lemma 1 as
well.

The next lemma provides another expression for the objective function f(C),
which will be useful for development of an exact algorithm based on dynamic
programming in Sect. 5. Here we use the Boolean programming formulation,
where binary variables x1, . . . , xN give a natural representation of a subset C ⊆
Y , assuming xj = 1 if point yj ∈ C and xj = 0 otherwise, j = 1, . . . , N . Let
x = (x1, . . . , xN ) and fN (x) = f(C), where C is represented by x.

Let yj = (a1j , a2j . . . , akj), j = 1, . . . , N. Then Problem 1 is equivalent to
the following Boolean linear programming problem.

Problem 2.

max fN (x) = max
N∑

j=1

k∑

r=1

xj

(
arj −

∑N
i=1 arixi

M

)2

, (4)

subject to
N∑

j=1

xj = M, (5)

xj ∈ {0, 1}, j = 1, . . . , N. (6)

Lemma 2. If
∑N

j=1 xj = M then

fN (x) =
N∑

j=1

xj

M

k∑

r=1

(
(M − 1)a2

rj − 2arj

j−1∑

i=1

arixi

)
. (7)
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Proof. We can rewrite the objective function (4) as

fN (x) =
k∑

r=1

N∑
j=1

xj

(
arj −

∑N
i=1 arixi

M

)2

=
k∑

r=1

N∑
j=1

(
a2

rjxj − 2
M arjxj

N∑
i=1

arixi + 1
M2 xj

N∑
i=1

a2
rixi

+ 2
M2 xj

N∑
i=1

arixi

i−1∑
h=1

arhxh

)

=
k∑

r=1

( N∑
j=1

a2
rjxj − 2

M

N∑
j=1

arjxj

N∑
i=1

arixi + 1
M2

N∑
j=1

xj

N∑
i=1

a2
rixi

+ 2
M2

N∑
j=1

xj

N∑
i=1

arixi

i−1∑
h=1

arhxh

)

=
k∑

r=1

( N∑
j=1

a2
rjxj − 2

M

N∑
j=1

a2
rjxj − 4

M

N∑
j=1

arjxj

j−1∑
i=1

arixi + 1
M

N∑
i=1

a2
rixi

+ 2
M

N∑
i=1

arixi

i−1∑
h=1

arhxh

)

=
k∑

r=1

(
M−1

M

N∑
j=1

a2
rjxj − 2

M

N∑
j=1

arjxj

j−1∑
i=1

arixi

)

=
N∑

j=1

xj

M

k∑
r=1

(
(M − 1)a2

rj − 2arj

j−1∑
i=1

arixi

)
. �	

5 Exact Algorithm for Integer Instances

Our exact algorithm for instances with integer coordinates is based on dynamic
programming. Consider the Boolean programming formulation (4)–(6) and intro-
duce functions sj(·) for partial sums in (7):

sj(x1, . . . , xj) =
xj

M

k∑

r=1

(
(M − 1)a2

rj − 2arj

j−1∑

i=1

arixi

)
, j = 1, . . . , N.

Then we have fN (x) =
∑N

j=1 sj(x1, . . . , xj).
Let Fj(m,A1, . . . , Ak) be the maximum diversity for partial solutions

(x1, . . . , xj) such that exactly m ≤ M components among x1, . . . , xj are equal
to 1 and

∑j−1
i=1 arixi = Ar for every r = 1, . . . , k. Formally,

Fj(m,A1, . . . , Ak) = max
j∑

i=1

si(x1, . . . , xi), (8)

subject to
j∑

i=1

xj = m, (9)
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j−1∑

i=1

arixi = Ar, r = 1, . . . , k, (10)

xi ∈ {0, 1}, i = 1, . . . , j. (11)

In the case of integer inputs yj ∈ Z
k, j = 1, . . . , N , the partial sums∑j−1

i=1 arixi take only integer values from [−B,B] (recall that B denotes the
maximum absolute coordinate value in the input set) and we have the Bellman
Equation:

Fj(m,A1, . . . , Ak) =

max
xj∈{0,1}

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fj−1(m,A1, . . . , Ak), if xj = 0,

Fj−1(m − 1, A1 − a1j , . . . , Ak − akj)+

+ 1
M

∑k
r=1

(
(M − 1)a2

rj − 2arjAr

)
, otherwise.

Our exact algorithm for instances with integer coordinates of the input
points works as follows. Put A := max1≤r≤k

∑N
j=1 arj ≤ BN. First, com-

pute recursively the set of values Fj(m,A1, . . . , Ak) for all j = 1, . . . , N ,
m = 1, . . . , M , and A1 = −A, . . . , A, where they are defined (otherwise assume
Fj(m,A1, . . . , Ak) = 0). The set of binary vectors x1, . . . , xj corresponding to
each Fj(m,A1, . . . , Ak) can be easily back-tracked. Then, compute

fN (x∗) = max
x∈{0,1}N

N∑

j=1

sj(x1, . . . , xj) = max
(A1,...,Ak)∈[−A,A]k

FN (M,A1, . . . , Ak).

Output a subset C = ∪j:x∗
j=1{yj} as a solution to the problem. This algorithm

is called Algorithm DP in what follows.
Clearly, Lemma 3 below establishes a relation between optimal and algorith-

mic solutions.

Lemma 3. Suppose that components of all points in Y are integers from the
interval [−B,B]. Then the solution found by the Algorithm DP has the objective
value fDP = f(C∗) = 1

2M h(C∗).

The following theorem establishes the time complexity and correctness of the
Algorithm DP.

Theorem 2. If components of all points in Y have integer values in the interval
[−B,B], then Algorithm DP finds an optimal solution to Problem 2 in time
O(MN(2A + 1)k).

Algorithm DP is pseudo-polynomial for a fixed k of the space dimension since
the time complexity of this algorithm is O(MN(BN)k) that is polynomially
bounded in terms of problem dimension N and the value of B. This is expressed
in the following

Corollary 1. If components of all points in Y are integers from the interval
[−B,B] and k is bounded above by a constant, then Algorithm DP finds an
optimal solution to Problem 1 in pseudo-polynomial time O(MN(BN)k).
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6 Approximation Scheme

In order to obtain an FPTAS in the case of fixed space dimension k, we can use
the well-known rounding the input technique (see e.g. [7] or [6], Chapter 6).

For each subset C ⊂ Y denote by J(C) ⊂ {1, . . . , N} the set of indices j of
all elements yj from C.

First of all, preprocess the input data in such a way that all coordinates
become non-negative and, moreover, minj aij = 0 for each i = 1, . . . , k. Recall
that aij is the i-th coordinate of the vector yj . This can be done by an affine
transformation that, clearly, changes neither the value of the objective function
nor the set of indices J∗ := J(C∗) of the optimal solution.

Given an instance of Problem 1, i.e. an N -element set Y ⊂ R
k and an integer

M ≤ N , modify the instance, replacing each coordinate aij , i = 1, . . . , k of every
vector yj , j = 1 . . . , N by the new value âij := �aij/K for some appropriate
K > 0 which will be chosen later. Let ŷj = (â1j , . . . , âkj), j = 1, . . . , N . Suppose
that B is the maximum absolute coordinate value in the input set. The time
complexity of Algorithm DP on the resulting instance with integer input data
is O(MN(NB/K)k) by Corollary 1. Let the Algorithm DP output a set Ĉ ⊆
{ŷ1, . . . , ŷN} ⊂ Z

k, where |Ĉ| = M and h(Ĉ) is the optimal value of the objective
function of the rounded instance.

Note that for every j �= j′ the squared distance ||ŷj − ŷj′ ||2 is at least

k∑

i=1

( |aij − aij′ |
K

− 1
)2

=
k∑

i=1

(aij

K
− aij′

K

)2

− 2
k∑

i=1

|aij − aij′ |
K

+ k.

So,

||yj − yj′ ||2 ≤ K2||ŷj − ŷj′ ||2 + 2kK max
i

|aij − aij′ | − kK2

≤ K2||ŷj − ŷj′ ||2 + 2kKB. (12)

Denote by Z(J) the subset of vectors {ŷj , j ∈ J}, of the rounded instance
defined by the set of indices J ⊆ {1, ..., N}. Since |C∗| = M , we have the
following inequality

h(C∗) ≤ K2h(Z(J∗)) + 2kKBM2, (13)

giving us the following relation between the optimum value h(C∗) and the opti-
mum value h(Ĉ) for the modified instance:

h(C∗) ≤ K2h(Ĉ) + 2kKBM2. (14)

Similarly to (12), for every j �= j′ the squared distance ||ŷj − ŷj′ ||2 is at most

k∑

i=1

( |aij − aij′ |
K

+ 1
)2

=
k∑

i=1

(aij

K
− aij′

K

)2

+ 2
k∑

i=1

|aij − aij′ |
K

+ k,
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i.e.
||yj − yj′ ||2 ≥ K2||ŷj − ŷj′ ||2 − 2kKB − kK2, (15)

which means that

K2h(Ĉ) ≤
∑

j∈J ′

∑

j′∈J ′
||yj − yj′ ||2 + (2KB + K2)kM2, (16)

where J ′ = J(Ĉ). So, for an approximate solution C := ∪j∈J ′{yj} of the original
instance the value h(C) =

∑
j∈J ′

∑
j′∈J ′ ||yj − yj′ ||2 differs from K2h(Ĉ) by at

most (2KB + K2)kM2 due to (16). Combining this with (14), we conclude that

h(C∗) − h(C) ≤ (4KB + K2)kM2. (17)

Given a precision parameter ε ∈ (0, 1), choose

K :=
3B

24k2M4(ε−1 + 1)2
.

In what follows, Algorithm DP applied to the rounded input data with this K
outputting the feasible solution C defined above is referred to as Algorithm Aε.

The approximation algorithm Aε has the time complexity O
(
MN(NM4

(ε−1 + 1)2)k
)

which is polynomial in N and ε−1, if k = O(1). Moreover, in view
of (17) it holds that

h(C∗) − h(C) ≤ (4KB + K2)kM2 < 3B2

4kM2(ε−1+1)2 + 9B2

k328M6(ε−1+1)4

= B2

ε−1+1

(
3
4A + 9

256A3
)
,

where A := 1
kM2(ε−1+1) < 1/2. So, 3

4A + 9
256A3 < 1 and

h(C) > h(C∗) − B2

ε−1 + 1
. (18)

Now note that h(C∗) ≥ D2, where D := maxj �=j′ ||yj − yj′ || is the distance
between the most remote points of the input set. Due to the preprocessing, we
have D ≥ B and h(C∗) ≥ D2 ≥ B2.

Therefore, by (18) it holds that

h(C) > B2 − B2

ε−1 + 1
. (19)

Using (18) and (19) we get the approximation guarantee

h(C∗)
h(C)

≤ h(C) + B2

ε−1+1

h(C)
< 1 +

B2

ε−1+1

B2 − B2

ε−1+1

= 1 + ε. (20)

Therefore the following theorem holds.

Theorem 3. In the case of k = O(1), Algorithm Aε constitutes an FPTAS for
Problem 1 with the time complexity O

(
Nk+1M4k+1ε−2k

)
.
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7 Conclusions

The Maximum Diversity Subset problem is considered, where the optimization
criterion is to maximize the sum of squared Euclidean distances between all
points of the chosen subset. The main results of this paper are obtained for the
case when the dimension of the space is not a part of the input (i.e. the dimension
is fixed or bounded by a constant). In particular we show that in this special
case, the Maximum Diversity Subset problem is solvable in a pseudo-polynomial
time, if the coordinates of the input points are all integer. Using this fact, a
fully polynomial time approximation scheme is proposed for the case when the
dimension of the space is not a part of the input.

Further “positive” results for the Maximum Diversity Subset problem with
squared Euclidean distances may be expected for the special cases of Euclidean
space dimensions 1 and 2.
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Abstract. Stochastic optimization problems with probabilistic and
quantile objective functions are considered. The probability objective
function is defined as the probability that the value of losses does not
exceed a fixed level. The quantile function is defined as the minimal
value of losses that cannot be exceeded with a fixed probability. Sample
approximations of the considered problems are formulated. A method to
estimate the accuracy of the approximation of the probability maximiza-
tion and quantile minimization is described for the case of a finite set of
feasible strategies. Based on this method, we estimate the necessary sam-
ple size to obtain (with a given probability) an epsilon-optimal strategy
to the original problems by solving their approximations in the cases of
finite set of feasible strategies. Also, the necessary sample size is obtained
for the probability maximization in the case of a bounded infinite set of
feasible strategies and a Lipschitz continuous probability function.

Keywords: Stochastic optimization · Sample approximation ·
Probability function · Quantile function

1 Introduction

Problems of stochastic programming with probabilistic and quantile objective
functions are encountered in many applied problems, where special attention is
paid to the reliability of the system. These problems and methods for solving
them are well covered in [1].

In this paper, we research the sample average approximation (SAA) method
for solving stochastic programming problems with probabilistic and quantile
objective functions. This method is based on statistical estimation of the objec-
tive function. For the expectation objective function, the convergence of the SAA
method is proved in [2]. The SAA method was applied to stochastic program-
ming problems with probabilistic constraints in [3], where the convergence of
the method was proved for a special case of the problem. In [4], the possibil-
ity of approximating a stochastic programming problem with probabilistic and
c© Springer Nature Switzerland AG 2019
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quantile objective function was investigated. The hypo-convergence of sampling
probability functions is proved, which in turn guarantees the convergence of the
approximation of the probability maximization and quantile minimization prob-
lems with respect to the value of the objective function and with respect to the
optimization strategy.

From recent works on the SAA, [5] can be noted, where general approach to
study approximations of stochastic programming problems is suggested. In [6],
confidence bounds on the optimal objective value are constructed.

When the SAA method is applied, the reduced problem can be considered as
a stochastic optimization problem with discrete distribution of the vector of ran-
dom parameters. These problems can be reduced to mixed integer programming
problems [7], which can be solved by using available software.

To apply the SAA method, it is useful to know the quality of the obtained
approximate solution. In [8–10], in the case of a finite set of feasible strategies,
an estimate of the required sample size was obtained to approximate an expecta-
tion minimization problem. This result was extended for the case of a Lipschitz
continuous expectation function in [8]. To estimate the required number of real-
izations of the random vector, the exponential estimation of large deviations
was used. In [11], the rate of convergence is studied for stochastic programming
problems with probabilistic constraints.

This paper presents sample size estimates for problems of stochastic program-
ming with probabilistic and quantile objective function. For the probability max-
imization, we consider cases of finite and bounded set of feasible strategies. For
the quantile minimization, the case of finite set of feasible strategies is considered.

2 Statement

Let (X ,F ,P) be a complete probability space. Let X be a random vector defined
on this probability space. For simplicity, we assume that X ⊂ R

m is a closed set.
Let us denote by Φ(·) : U ×X → (−∞,+∞) a loss function, where U ⊂ R

n is
a nonempty compact set of strategies u. We assume that the function (u, x) �→
Φ(u, x) is lower semi-continuous in u ∈ U and B(U) × F-measurable in x ∈ X ,
where B(U) is the Borel σ-algebra of subsets U . These conditions guarantees
that the function (u, x) �→ Φ(u, x) is a normal integrand [12].

Let us introduce the probability function

Pϕ(u) � P{Φ(u,X) � ϕ},

and quantile function

ϕα(u) � min{ϕ : Pϕ(u) � α},

where α ∈ (0, P ∗) is a given reliability level,

P ∗ = sup
u∈U

P{Φ(u,X) < +∞}.



554 S. V. Ivanov and I. D. Zhenevskaya

We consider the probability maximization problem

α∗ � sup
u∈U

Pϕ(u) (1)

and the quantile minimization problem

ϕ∗ � inf
u∈U

ϕα(u). (2)

The sets of ε-optimal solutions to problems (1) and (2) are denoted by

Uε
ϕ � {u ∈ U : Pϕ(u) ≥ α∗ − ε},

V ε
α � {u ∈ U : ϕα(u) ≤ ϕ∗ + ε}

respectively.

3 Sample Approximation

Let X1, . . . , XN be a sample generated by random vector X, i.e., random vectors
Xk, k = 1, N , are independent identically distributed with distribution func-
tion F (x) = P{X � x}. We assume that the sample is defined on a complete
probability space (Ω,F ′,P′). This probability space may differ from the space
(X ,F ,P). However, below we will use the same letter P for the probability P′,
because it is clear which probability space is considered. Then we can write the
frequency of the event {Φ(u,X) � ϕ} as

P (N)
ϕ � 1

N

N∑

k=1

χ(−∞,ϕ](Φ(u,Xk)). (3)

where

χA(x) �
{

0, x ∈ A;
1, x /∈ A.

By using (3), the quantile function can be estimated by

ϕ(N)
α (u) � min{ϕ : P (N)

ϕ (u) ≥ α}. (4)

The sample approximation of the probability maximization problem is for-
mulated as

Û (N)
ϕ � Arg max

u∈U
P (N)

ϕ (u), N ∈ N; (5)

and the sample approximation of the quantile minimization problem is formu-
lated as

V̂ (N)
α � Arg min

u∈U
ϕ(N)

α (u), N ∈ N. (6)

From [4] it follows that quantile function (4) coincides with the order statistics
of sample values {Φk}N

k=1 for the random variable Φ � Φ(u,X) that has index
	αN
 and is called the sample quantile, where 	x
 � min{k ∈ N : x � k}.
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4 Estimation of the Necessary Sample Size
for Probability Maximization

In [4] the convergence of the approximating stochastic programming problems (5)
and (6). These results, however, do not show the quality of solutions for a given
sample of size N . In this section, we find upper bounds on the necessary sample
size to consider a solution to (5) as an approximate solution to problem (1).

4.1 Case of Finite Set of Feasible Strategies

Let us begin with the case when the set U is finite. Its cardinality is denoted
by |U |.

We consider the event
{

Û (N)
ϕ �⊂ Uε

ϕ

}
=

⋃

u∈U\Uε
ϕ

⋂

y∈U

{
P̂ (N)

ϕ (u) � P̂ (N)
ϕ (y)

}
.

The event
{

Û
(N)
ϕ �⊂ Uε

ϕ

}
means that there exists an optimal solution u

(N)
ϕ to the

approximation problem (5) such that u
(N)
ϕ is not ε-optimal solution to the true

problem (1).
Then, given that the set U is finite, we can find an upper bound for the

probability

P
{

Û (N)
ϕ �⊂ Uε

ϕ

}
≤

∑

u∈U\Uε
ϕ

P

⎛

⎝
⋂

y∈U

{
P̂ (N)

ϕ (u) ≥ P̂ (N)
ϕ (y)

}
⎞

⎠ . (7)

Let u∗ be an optimal solution to the true problem (1). If there several optimal
solution to problem (1), then u∗ can be taken arbitrarily. It follows from (7) that

P
{

Û (N)
ϕ �⊂ Uε

ϕ

}
≤

∑

u∈U\Uε
ϕ

P
{

P (N)
ϕ (u) ≥ P (N)

ϕ (u∗)
}

≤ |U | max
u∈U\Uε

ϕ

P
{

P̂ (N)
ϕ (u) ≥ P̂ (N)

ϕ (u∗)
}

. (8)

Let us introduce the random variables

ξk = χ(−∞,ϕ](Φ(u,Xk)) − χ(−∞,ϕ](Φ(u∗,Xk)).

Notice that ξk are independent. Then we can write

P
{

P̂ (N)
ϕ (u) ≥ P̂ (N)

ϕ (u∗)
}

= P

{
N∑

k=1

ξk ≥ 0

}
= P

{
exp

(
t

N∑

k=1

ξk

)
≥ 1

}
,
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where t > 0. By Chebyshev’s inequality,

P

{
exp

(
t

N∑

k=1

ξk

)
≥ 1

}
≤ E

[
exp

(
t

N∑

k=1

ξk

)]
= (M(t))N , (9)

where
M(t) � E [exp (tξ1)] (10)

is the moment-generating function of the random variable ξ1.

Lemma 1. Let M(t) be the function defined by (10). Let 0 < ε < α∗. Then

inf
t>0

M(t) ≤
√

1 − ε2.

If α∗ ≤ 1+ε
2 , then

inf
t>0

M(t) ≤ 2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗ ≤
√

1 − ε2.

Proof. Let us introduce the events

A � {Φ(u,X) ≤ ϕ},

B � {Φ(u∗,X) ≤ ϕ}.

Then
M(t) = p+et + p−e−t + 1 − p+ − p−,

where
p+ = P(A ∩ B), p− = P(A ∩ B). (11)

Since u∗ is an optimal solution to the true problem (1) and u ∈ U \ Uε
ϕ, it holds

that
P(A) ≤ α∗ − ε, P(B) = α∗. (12)

From (11) and (12), it follows that

p+ ∈ [0, α∗ − ε], p− ∈ [ε, α∗]. (13)

Therefore,

ε ≤ P(B)−P(A) = P(A ∩ B)+P(A ∩ B)−(P(A ∩ B)+P(A ∩ B)) = p− −p+.
(14)

The function t �→ M(t) is convex. From the optimality conditions, we obtain

Arg min
t>0

M(t) =
{

1
2

ln
p−
p+

}

if p+ > 0. From (14), it follows that

1
2

ln
p−
p+

> 0.
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Thus,
Q(p+, p−) = inf

t>0
M(t) = 2

√
p−p+ + 1 − p+ − p−. (15)

If p+ = 0, then equality (15) holds too.
The function (p+, p−) �→ Q(p+, p−) is concave (see, for example, [13, P. 74]).

Let us find
max
p+,p−

Q(p+, p−)

subject to (13), (14), and (15). Since the unconditional maximum of Q(p+, p−)
is attained when p+ = p−, the conditional maximum is attained when the con-
straint (14) is active. Taking into account the constraint p+ + p− ≤ 1, it is easy
to see that

inf
t>0

M(t) ≤
max
p+,p−

{Q(p+, p−) | p− − p+ = ε, p+ + p− ≤ 1, p+ ∈ [0, α∗ − ε], p− ∈ [ε, α∗]}

= max
p+

{
2
√

p+(p+ + ε) + 1 − 2p+ − ε | p+ + p+ + ε ≤ 1, p+ ∈ [0, α∗ − ε]
}

=

{
2
√

1−ε
2 · 1+ε

2 + 1 − (1 − ε) − ε =
√

1 − ε2 if α∗ − ε > 1−ε
2 ,

2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗ ≤ √
1 − ε2 if α∗ − ε ≤ 1−ε

2 .

Thus, Lemma 1 is proved.

Let us prove a theorem on the necessary sample size to approximate the true
problem (1).

Theorem 1. Let β ∈ (0, 1). If the set U is finite and

N ≥ 2
ln |U | − ln(1 − β)

| ln(1 − ε2)| , (16)

then
P
{

Û (N)
ϕ ⊂ Uε

ϕ

}
≥ β. (17)

Moreover, if it is known that α∗ ≤ 1+ε
2 , then inequality (17) holds if

N ≥ ln |U | − ln(1 − β)∣∣∣ln
(
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗
)∣∣∣

. (18)

Proof. First, let us consider the case α∗ ≤ ε. Then, it is obvious that

P
{

Û (N)
ϕ ⊂ Uε

ϕ

}
= 1,

hence, the assertion of the theorem is true.
If α∗ > ε and α∗ ≤ 1+ε

2 , then, from (8), (9), and Lemma 1, it follows that

P
{

Û (N)
ϕ �⊂ Uε

ϕ

}
≤ inf

t>0
|U |(M(t))N ≤

(
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗
)N

.
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Thus, inequality (17) holds if

|U |
(
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗
)N

≤ 1 − β ⇔

N ≥ ln(1 − β) − ln |U |
ln
(
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗
) =

ln |U | − ln(1 − β)∣∣∣ln
(
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗
)∣∣∣

.

Since
2
√

(α∗ − ε)α∗ + 1 + ε − 2α∗ ≤
√

1 − ε2,

we obtain that inequality (17) holds for

N ≥ ln |U | − ln(1 − β)∣∣ln
√

1 − ε2
∣∣ = 2

ln |U | − ln(1 − β)
|ln (1 − ε2)| .

In the case when α∗ > ε and α∗ > 1+ε
2 , the theorem is proved in the same

manner. Theorem 1 is proved.

Remark 1. In [9, Theorem 5.17], a result similar to Theorem 1 is proved for the
maximization of the expectation function. By applying this result to problem
(1), it can be obtained that inequality (17) holds for

N ≥ 2
ln |U | − ln(1 − β)

ε2
.

It is easy to check that
ε2 <

∣∣ln
(
1 − ε2

)∣∣

for ε ∈ (0, 1). Thus, the sample estimate (16) improves the result in [8] for
maximization of the probability function.

Remark 2. To apply the sample estimate (18), we need to know exact solution
to problem (1). However, the sample approximation is construct to estimate α∗.
Sometimes, it possible to find an upper bound ᾱ ≥ α∗. If ᾱ ≤ 1+ε

2 , then we can
improve the sample estimate (16). It is guaranteed that inequality (17) holds if

N ≥ ln |U | − ln(1 − β)∣∣∣ln
(
2
√

(ᾱ − ε)ᾱ + 1 + ε − 2ᾱ
)∣∣∣

.

4.2 Case of Bounded Set of Feasible Strategies

Let us consider the case when U is a bounded, not necessarily finite, subset of
R

n. The diameter of U is denoted by

D � sup
u,v∈U

‖u − v‖,

where the norm ‖u‖ = max{|u1|, . . . , |un|} is used.
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We suppose that the probability function u �→ Pϕ(u) is Lipschitz continuous
on U with a Lipschitz constant L, i.e.

|Pϕ(u) − Pϕ(v)| ≤ L‖u − v‖ (19)

for all u, v ∈ U .

Theorem 2. Let β ∈ (0, 1). If the assumption (19) is satisfied and

N ≥ 2 inf
γ∈(0,1)

n ln
⌈

DL
(1−γ)ε

⌉
− ln(1 − β)

| ln(1 − γ2ε2)| , (20)

then
P
{

Û (N)
ϕ ⊂ Uε

ϕ

}
≥ β. (21)

Proof. First, let us check that the event
{

Û
(N)
ϕ ⊂ Uε

ϕ

}
∈ F ′. Since the function

(u, x) �→ Φ(u, x) is a normal integrand, the function u �→ Pϕ(u) is upper semi-
continuous and the set Uε

ϕ is compact [4]. Also, the u �→ P̂
(N)
ϕ (u) is upper

semi-continuous for all fixed realizations of the sample. The compactness of U
and semi-continuity of these function imply that the supremum

sup
u∈U

P̂ (N)
ϕ (u)

is attained and is a measurable function of the sample. Thus, the considered
event can be represented as

{
Û (N)

ϕ ⊂ Uε
ϕ

}
=

⋂

u∈U\Uε
ϕ

{
P̂ (N)

ϕ (u) < sup
v∈U

P̂ (N)
ϕ (v)

}

=
⋂

k∈N

{
sup

u∈Uk

P̂ (N)
ϕ (u) < sup

u∈U
P̂ (N)

ϕ (u)
}

,

where

Uk =
{

u ∈ U : inf
v∈Uε

ϕ

‖u − v‖ ≥ 1
k

}
.

The set Uk is compact, so the function

(x1, . . . , xN ) �→ sup
u∈Uk

P̂ (N)
ϕ (u)

is measurable and, hence,
{

Û (N)
ϕ ⊂ Uε

ϕ

}
∈ F ′.

Let Ũ be a finite subset of U . Let

ν � sup
u∈U

inf
v∈Ũ

‖u − v‖.
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The value of ν shows the maximal distance between an arbitrary point of U and
the nearest point of Ũ . The set Ũ can be selected in such a way that

|Ũ | ≤
⌈

D

ν

⌉n

. (22)

It will be assumed that condition (22) is satisfied.
Let

Ũε
ϕ � {u ∈ Ũ : Pϕ(u) ≥ α∗

Ũ
− ε},

where
α∗

Ũ
� sup

u∈Ũ

Pϕ(u).

Since the function u �→ Pϕ(u) is Lipschitz continuous, the condition u ∈ Ũε
ϕ

implies u ∈ Uε+Lν
ϕ . If γ ∈ (0, 1) is a fixed number and Lν = (1 − γ)ε, then

{
Û (N)

ϕ ⊂ Ũγε
ϕ

}
⊂
{

Û (N)
ϕ ⊂ Uε

ϕ

}
. (23)

From (23) and Theorem 1, it follows that

P
{

Û (N)
ϕ ⊂ Uε

ϕ

}
≥ P

{
Û (N)

ϕ ⊂ Ũγε
ϕ

}
≥ β

if

N ≥ 2
ln |Ũ | − ln(1 − β)

| ln(1 − γ2ε2)| ≤ 2
ln
⌈

D
ν

⌉n − ln(1 − β)
| ln(1 − γ2ε2)| = 2

n ln
⌈

DL
(1−γ)ε

⌉
− ln(1 − β)

| ln(1 − γ2ε2)| .

Since γ is selected arbitrarily, the theorem is proved.

Remark 3. A similar result for minimization of the expectation function is
proved in [8]. This result can be obtained from Theorem 2 if t = 1/2. Addi-
tional optimization in t ∈ (0, 1) can improve the result [8] for the special case
of probability maximization. If the exact value of the infimum is difficult to
find, then the sample estimate N can be found by substituting several values of
t ∈ (0, 1) into (20). The minimal value of the obtained numbers can be set as
the sample estimate N .

Remark 4. To apply the sample estimate (20), the Lipschitz constant is need
to know. If the function u �→ Pϕ(u) is continuously differentiable on the set U ,
then, from the mean value theorem, it follows that

|Pϕ(u) − Pϕ(v)| � sup
w∈U

‖∇Pϕ(w)‖‖u − v‖.

Therefore, we can take L = supw∈U ‖∇Pϕ(w)‖. Methods to find the gradient of
the probability function are described in [14,15].
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5 Estimation of the Necessary Sample Size for Quantile
Minimization

In this section, we find upper bounds on the necessary sample size to consider
a solution to (6) as an approximate solution to problem (2). We assume that the
set U is finite.

We suppose that the following assumption is satisfied.

Assumption 1. The random variable Φ(u,X) is absolutely continuous for all
u ∈ U with probability density function pu(·) continuous at the point ϕα(u) with
its neighborhood. Also, there exists a number C > 0 such that

min
u∈U

pu(ϕα(u)) > C.

As for the probability function, consider the event
{

V̂ (N)
α �⊂ V ε

α

}
=

⋃

u∈U\V ε
α

⋂

y∈U

{
ϕ̂(N)

α (u) � ϕ̂(N)
α (y)

}
.

Then we can find an upper bound for the probability

P
{

V̂ (N)
α �⊂ V ε

α

}
≤

∑

u∈U\V ε
α

P

⎛

⎝
⋂

y∈U

{
ϕ̂(N)

α (u) � ϕ̂(N)
α (y)

}
⎞

⎠ . (24)

Let us fix an optimal solution to the true problem (2) u∗. From (24), we
obtain

P
{

V̂ (N)
α �⊂ V ε

α

}
≤

∑

u∈U\V ε
α

P
{

ϕ̂(N)
α (u) � ϕ̂(N)

α (u∗)
}

≤ |U | max
u∈U\V ε

α

P
{

ϕ̂(N)
α (u) � ϕ̂(N)

α (u∗)
}

. (25)

Let us define the random variables

ηN = ϕ̂(N)
α (u∗) − ϕ̂(N)

α (u), N ∈ N.

Notice that the random variables ϕ
(N)
α (u∗) and ϕ

(N)
α (u) can be dependent. We

need to find an upper bound on the probability

P{ηN ≥ 0}.

By the Mosteller theorem [16], the distribution of the order statistics ϕ
(N)
α (u∗)

and ϕ
(N)
α (u) converges to a normal distribution:

√
N
(
ϕ(N)

α (u∗) − ϕ∗
)

d−→ Zu∗ ∼ N
(

0,
α(1 − α)
p2u∗(ϕ∗)

)
,

√
N
(
ϕ(N)

α (u) − ϕα(u)
)

d−→ Zu ∼ N
(

0,
α(1 − α)
p2u(ϕα(u))

)
.
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Therefore, we can write

lim
N→∞

EηN ≤ −ε,

lim sup
N→∞

var
[
ηN

√
N
]

<
4α(1 − α)

C
.

Thus, for any 0 < ε′ < ε, there exists Ñ(ε′) ∈ N such that

EηN ≤ −ε + ε′, (26)

var [ηN ] <
4α(1 − α)

CN
(27)

for all N > Ñ(ε′). We would like to notice that Ñ(ε′) can depend on u. So, the
maximal value of Ñ(ε′) should be taken.

By Cantelli’s inequality, for N > Ñ(ε′),

P{ηN ≥ 0} ≤ P{ηN − EηN ≥ ε − ε′} ≤ var [ηN ]
var [ηN ] + (ε − ε′)2

<
4α(1 − α)

4α(1 − α) + (ε − ε′)2CN
.

Thus, from (25), the theorem follows.

Theorem 3. Let U be a finite set, β ∈ (0, 1). Assumption 1 is supposed to be
satisfied. Then

P
{

V̂ (N)
α �⊂ V ε

α

}
≤ |U | 4α(1 − α)

4α(1 − α) + (ε − ε′)2CN
. (28)

for sufficiently large N .

Now, we can obtain the corollary from Theorem 3.

Corollary 1. Let assumptions of Theorem 3 be satisfied. Then

P
{

V̂ (N)
α ⊂ V ε

α

}
≥ β

if

N ≥ 4α(1 − α)(|U | + β − 1)
(1 − β)(ε − ε′)2C

(29)

and N > Ñ(ε′).

Proof. From (28), it follows that the assertion of the theorem is true if

|U | 4α(1 − α)
4α(1 − α) + (ε − ε′)2CN

≤ 1 − β.

By solving this inequality, we obtain (29). The corollary is proved.

Remark 5. Unfortunately, it is difficult find bounds on the value Ñ(ε′). To use
the estimate (29), inequalities (26) and (27) should be checked. It can be made
by statistical methods.
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6 Conclusion

In the paper, sample size estimates for approximation of stochastic optimization
problems with probabilistic and quantile objective functions are obtained. These
estimates are quite rough for practical use, but they allow us to judge the com-
plexity of the solution to the original problem. In future research, it is planned
to improve this result for special cases of stochastic optimization problems. We
hope that it is possible to describe a class of problems for which exponential
bounds can be obtained instead of (28). Also, a more general case of quantile
minimization problem on a bounded set should be studied.

Acknowledgements. The work is supported by the Russian Foundation for Basic
Research (project 19-07-00436).
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Abstract. Polynomial time approximation algorithms are proposed
with constant approximation factors for a problem of computing the
smallest cardinality set of identical disks whose union intersects each
segment from a given set E of n straight line segments on the plane.
This problem has important applications in operations research, namely
in wireless and road network analysis. It is equivalent to finding the least
cardinality piercing (or hitting) set for the corresponding family of n
Euclidean r-neighborhoods of straight line segments of E on the plane,
which are called r-hippodromes in the literature. When the number of
distinct orientations is upper bounded by k of segments from E, a sim-
ple O(n log n)-time 4k-approximate algorithm is known for this problem.
Besides, when E contains arbitrary straight line segments, overlapping
at most at their endpoints, O(n4 logn)-time 100-approximate algorithm
is given recently. In the present paper, simple approximation algorithms
are proposed with small approximation factors for E, being edge set
of some special plane graphs of interest in road network applications;
here the number of distinct orientations of straight line segments from E
can be arbitrarily large. More precisely, O(n2)-time approximation algo-
rithms are constructed for edge sets of either Gabriel or relative neigh-
borhood graphs or of Euclidean minimum spanning trees with factors
of 14, 12 and 10 respectively. These algorithms are much faster, more
accurate and conceptually much simpler than the aforementioned 100-
approximate algorithm for the general case of the problem on edge sets
of arbitrary plane graphs.

Keywords: Operations research · Computational geometry ·
Approximation algorithms · Geometric piercing problem ·
Straight line segment · Hippodrome · Proximity graph

1 Introduction

Placement of geometric objects (or facilities) on the plane is a widely studied
problem at the intersection of computational geometry and operations research,
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known as the facility location problem in the literature. In its classical setting, an
arbitrary fixed number of objects is to be placed, say, production plants, inven-
tories or markets such that the average (or the maximum) distance from clients
(e.g. from customers or from roads) to their nearest object is the minimum pos-
sible. Here feasible locations of objects to place are given by a set F of simply
shaped geometric objects like disks or rectangles on the plane whereas clients
are given by a set K, which contains points or straight line segments. In the
more involved problem setting the sum is minimized of transportation costs and
placement fees. There is also a subclass of facility location problems called set
covering problems in which one needs to either cover or intersect segments from
K with the least cardinality subset of objects from F. Such settings might model
placement of markets at the vicinity of potential customers and road monitor-
ing with sensors, having bounded sensing area. In this paper, small guaranteed
constant factor approximation algorithms are designed for the following facility
location problem from the class of set covering problems:

Intersecting Plane Graph with Disks (IPGD): given a fixed constant
r > 0 and a straight line embedding G = (V,E) of a simple planar graph with
n straight line edges, which are allowed to intersect at most at their endpoints,
find the smallest cardinality subset H ⊂ R

2 of points (or disk centers) such
that each e ∈ E is within Euclidean distance r from some point x = x(e) ∈ H;
equivalently, a disk of radius r centered at x intersects e. Each isolated vertex
v ∈ V is considered a zero-length segment ev ∈ E. Moreover, the vertex set V is
assumed to be in general position.

Below the term “plane graph” is used to denote any straight line embedding
of a planar graph whose (straight line) edges intersect at most at their endpoints.

The IPGD problem is a special case of the well-known geometric piercing
(or, more generally, hitting set) problem on the plane. In its general setting the
latter problem is formulated as follows: one is to find the least cardinality subset
H ⊂ R

2 such that H ∩ R �= ∅ for every R ∈ R, where R is a given family of
subsets of R

2 also called objects. Below a set H ⊂ R
2 is called a piercing set for

R when H ∩ R �= ∅ for every R ∈ R.
Obviously, the IPGD problem is equivalent to the piercing problem for the

family Nr(E) = {Nr(e) : e ∈ E}, where Nr(e) = {x ∈ R
2 : d(x, e) ≤ r} and

d(x, e) is Euclidean distance between a point x ∈ R
2 and a segment e ∈ E.

Objects from Nr(E) are called hippodromes or, more precisely, r-hippodromes
in the literature.

Design of approximation algorithms for the IPGD problem above finds its
applications in operations research, more specifically, in optimal sensor place-
ment e.g. for road monitoring. Suppose a road network is to be monitored using
identical sensors with a circular sensing area. Geometrically, its roads can be
modeled by piecewise linear arcs on the plane. One can split these arcs into
chains of elementary straight line segments such that any two of the resulting
elementary segments intersect at most at their endpoints. When full road net-
work surveillance is costly, it may be a good approach to place the minimum
number of sensors such that each piece of every road (represented by an elemen-
tary segment) is partially covered by sensing area of some of the placed sensors.
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This approach leads to a geometric combinatorial optimization model, which
coincides with the IPGD problem.

1.1 Basic Definitions and Notations

In this paper a polynomial time and space algorithm (denote it by A) for the
IPGD problem is called f-approximate (or having an approximation factor of
f), if for any constant r > 0 and any plane graph G = (V,E) from a given graph
class the following inequality holds true uniformly within that class:

|HA(G, r)|
OPT(G, r)

≤ f,

where HA(G, r) is a feasible solution to the IPGD problem for the graph G and
the radius r, output by A, and OPT = OPT(G, r) is the optimum of the IPGD
problem for G and r. Below f is assumed to be some absolute constant, thus,
being r-independent.

Let α and β be computable functions with positive integer argument m.
Below the standard notation α(m) = O(β(m)) is used, reporting that there is a
constant D > 0 such that |α(m)| ≤ D|β(m)| for any sufficiently large m.

1.2 Our Results and Related Work

The IPGD problem generalizes a classical problem of covering a given n-point
set E on the plane with the minimum number of identical disks on the case of
sets of non-zero length segments. Therefore the IPGD problem is NP-hard [5,8].
Apparently, [5] is the first work to tackle a close problem in which segments of
E generally overlap by their relative interiors and are restricted to have their
orientations parallel to any of two coordinate axes. A simple 8-approximate algo-
rithm is built for this latter problem, working in O(n log n) time and O(n log n)
space. This algorithm can be easily extended to 4k-approximate algorithm for
the case of at most k distinct orientations of segments from E.

In the most general case, allowing segments to overlap by their relative inte-
riors and admitting segment sets with arbitrarily large number of distinct ori-
entations, it is unlikely [2] that an O(1)-approximate algorithm exists, at least,
based on the known algorithmic paradigms. However, when segments from E
are allowed to intersect at most at their endpoints (which coincides with the
general IPGD problem setting), 100-approximate algorithm [9] is known which
takes O(n4 log n) time and O(n2 log n) space. It follows from results of the ear-
lier paper [14] that an O(1)-approximate algorithm exists for the IPGD problem,
though with huge constant upper bound on its approximation factor.

Besides, one can assume (without loss of generality) that Nr(E) is a set of
closed convex pseudo-disks, i.e. |bd N1 ∩ bdN2| ≤ 2 for any distinct N1, N2 ∈
Nr(E) and both N1\N2 and N2\N1 are connected, where bd N denotes bound-
ary of a set N ⊂ R

2. Indeed, as straight line segments from E intersect at most
at their endpoints, segments of E can be slightly shifted to become pairwise
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disjoint and non-parallel while keeping all nonempty intersections of subsets of
objects from Nr(E) with some slightly larger r. For two non-overlapping seg-
ments e and e′ it can be understood that |bd Nr(e) ∩ bdNr(e′)| ≤ 2 because
Euclidean distance grows strictly monotonically from e (or from e′) to a point
of the curve χ(e, e′) = {x ∈ R

2 : d(x, e) = d(x, e′)}1 as that point moves along
χ(e, e′) in any of two opposite directions starting from midpoint of the segment
which joins closest points of e and e′; here also bdNr(e) ∩ bdNr(e′) ⊂ χ(e, e′).
This implies that Nr(e)\Nr(e′) is connected.

It follows from the aforementioned assumption that the IPGD problem
admits PTAS [13] (see also [12]) of large time complexity. Moreover, this assump-
tion gives that a 4-approximate local search based algorithm can be constructed
[3] for the IPGD problem taking O(n18) time.

Thus, for the general setting of the IPGD problem with arbitrary straight
line segments, overlapping at most at their endpoints, there is an ugly tradeoff
between accuracy estimates and time complexity of the known approximation
algorithms. Namely, achieving close to 1 approximation factor (which results in
high accuracy of produced feasible solutions) requires high computational cost
whereas only loose approximation factor can be guaranteed by known algorithms
with modest time complexity. This situation is very typical in geometric piercing
problems for sets of objects of more or less sophisticated shape.

Under those circumstances, apparently the best one can hope is to provably
approximate the IPGD problem well in some special cases, arising in various
applications. In the present paper approximation algorithms are proposed com-
bining both high accuracy and low complexity for the IPGD problem considered
on special configurations of straight line segments forming edge sets of special
graphs, called proximity graphs in the literature. These algorithms are concep-
tually much simpler than the algorithm from [9], designed for the general setting
of the IPGD problem.

Let us give some definitions. Let V be a finite point set in general position
on the plane. Assuming that no 4 points of V are cocircular, a plane graph
G = (V,E) is called a Gabriel graph [11] when [u, v] ∈ E iff intersection of V is
empty with interior of the disk with diameter [u, v]. Under the same assumption a
plane graph G = (V,E) is called a relative neighborhood graph [7] when [u, v] ∈ E
iff max{d(u,w), d(v, w)} ≥ d(u, v) for any w ∈ V \{u, v}.

A plane graph G = (V,E) is called Euclidean minimum spanning tree if G
coincides with the smallest weight spanning tree for the complete weighted graph
whose vertices are at points of V whereas edge weights are given by Euclidean
distances between edge endpoints. It can be shown that each Gabriel graph on
V contains some relative neighborhood graph on V , which itself contains some
Euclidean minimum spanning tree on the set V.

All types of proximity graphs defined above appear in a variety of network
applications. For example, they represent convenient network topologies, simpli-
fying routing and control in geographical (e.g. wireless) networks.

1 The curve χ(e, e′) is composed of pieces of straight lines and parabolas.
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In [8] for r > 0 NP-hardness is proved of the IPGD problem for any of these
three classes of proximity graphs. In the present paper, extending work [10], a 14-
approximate algorithm is proposed for the IPGD problem considered on the class
of Gabriel graphs, 12-approximate algorithm—for relative neighborhood graphs
and 10- approximate algorithm—for Euclidean minimum spanning trees. These
algorithms have identical order O(nOPT) of time complexity and O(n) space
cost. Furthermore, our algorithm for Gabriel graphs outperforms the algorithm
from [9] designed for this type of graphs both with respect to its time and space
cost.

2 Main Ideas of the Proposed Algorithms

Ideas beneath our O(1)-approximate algorithms can be summarized in the fol-
lowing algorithm and two underlying definitions.

Definition 1. A subset I ⊆ Nr(E) is called a maximal (with respect to inclu-
sion) independent set in Nr(E), if I ∩ I ′ = ∅ for any I, I ′ ∈ I, and for any
N ∈ Nr(E) there is some I ∈ I with N ∩ I �= ∅.

Definition 2. Let G = (V,E) be a plane graph and C > 0 be some absolute
constant. An edge e ∈ E is called C-coverable with respect to E, if for any
constant ρ > 0 one can construct at most C-point piercing set U(e,E) ⊂ R

2 for
Ne(E) = {N ∈ Nρ(E) : N ∩ Nρ(e) �= ∅} in polynomial time with respect to
|Ne(E)|.

Consider the following basic algorithm:
Covering edges of special plane graphs with equal disks.

Input: a constant r > 0 and a plane graph G = (V,E);
Output: an approximate solution H of the IPGD problem for G and r.

1. E′ := ∅, E0 := E and H := ∅;
2. while E0 �= ∅, repeat steps 3-4:
3. choose an arbitrary C-coverable edge e∗ ∈ E0 (with respect to E0) and con-

struct a piercing set U(e∗, E0) of at most C points for Ne∗(E0), applying
some auxiliary procedure;

4. set E0 := E0\{e ∈ E0 : Nr(e) ∩ U(e∗, E0) �= ∅}, E′ := E′ ∪ {e∗} and
H := H ∪ U(e∗, E0);

5. return H.

To give a comprehensive description of work of the algorithm above for some
class G of plane graphs, one should specify an algorithmic way to choose C-
coverable edge e∗ ∈ E0 for any subset E0 ⊆ E of edge set E of any graph
from G. Besides, one should implement an auxiliary procedure, which, given an
arbitrary E0 ⊆ E and a C-coverable edge e ∈ E0, seeks a piercing set U(e,E0)
for Ne(E0) of size at most C. Here it is assumed that such a procedure accepts
an edge e ∈ E0, a constant r > 0 and a family Ne(E0) as its input.
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In the sequel notation Ne(E0) is only used when one needs to emphasize
that Ne(E0) contains those ρ-hippodromes, Nρ(e), whose underlying segments
are from some subset E0 ⊆ E, which is generally not equal to E. If E0 = E, a
simpler notation Ne is applied.

In the statement below a sufficient condition is given under which the Cov-
ering edges of special plane graphs with equal disks algorithm is
C-approximate.

Statement 1. Let C > 0 be some constant and G be a class of plane graphs
such that for any G = (V,E) ∈ G and any E0 ⊆ E an edge e∗ ∈ E0 can
be found in (polynomial) O(ϕ(|E0|)) time and linear space cost, which is C-
coverable with respect to E0. Let O(ξ(|Ne∗(E0)|)) also be time complexity of an
auxiliary procedure with linear space cost, which seeks a piercing set for Ne∗(E0)
of size at most C for any ρ > 0. Then the Covering edges of special
plane graphs with equal disks algorithm is C-approximate for the IPGD
problem within the class G. Its time complexity is of the order O((n + ϕ(n) +
ξ(n))OPT(G, r)) whereas its space cost is O(n) for any G ∈ G and r > 0, where
n = |E|.
Proof. As the set Nr(E′) becomes maximal independent in Nr(E) to the step
5 of the Covering edges of special plane graphs with equal disks
algorithm, |E′| ≤ OPT and |H| ≤ C|E′| ≤ COPT. Trivial arguments lead to
claimed algorithm complexity bounds. 
�

To build O(1)-approximate algorithms for the IPGD problem, relying on
the Covering edges of special plane graphs with equal disks algo-
rithm, one should implement efficient search of C-coverable edges. Below a suffi-
cient condition is established for edge C-coverability. Given any N ⊆ Nr(E) let
E(N ) ⊆ E be such that Nr(E(N )) = N .

Statement 2 Let G = (V,E) be a plane graph and C > 0 be some absolute
constant. Then an edge e∗ ∈ E is C-coverable (with respect to E), if there is an
auxiliary procedure, which for any ρ > 0 efficiently seeks a point set U(e∗, E) ⊂
R

2 of size at most C such that

e ∩
⎛
⎝N2ρ(e∗) ∩

⋃
u∈U(e∗,E)

Nρ(u)

⎞
⎠ �= ∅

for any e ∈ E(Ne∗(E)).

The statement proof relies on the fact that e ∩ N2ρ(e∗) �= ∅ for any e ∈
E(Ne∗(E)).

Without additional restrictions either on mutual location of edges and ver-
tices of plane graphs in some more or less non-trivial graph class G, or, perhaps,
on either orientation or length of these edges, it is quite involved task to prove
that the sufficient condition above holds true within G for some constant C.
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An Idea to Implement Step 3 of the Basic Algorithm. For Euclidean
minimum spanning trees, Gabriel and relative neighborhood graphs, it follows
from their definitions that vertices and edges are located on the plane in some
very specific way of graphs of either type. More precisely, for each of the afore-
mentioned three graph types the following property holds true: for any subset
E0 ⊆ E of edge set E of any graph of an arbitrary type one can find such an edge
e∗ ∈ E0 that M(e∗) ∩ V0 = ∅, where V0 is the endpoint set for segments from
E0, orientation and location of object M(e∗) is defined by e∗ whereas shape of
M(e∗) is defined by the graph type.

For any of the aforementioned three graph types, due to specifics of shape and
mutual location of sets M(e∗) and N2r(e∗), it can be guaranteed that (see sub-
sequent sections) each segment from E(Ne∗(E0)) must intersect N2r(e∗)\M(e∗).
Due to the Statement 2, applied for ρ := r, in order to get a piercing set for
Ne∗(E0) it is sufficient to compute a point set U(e∗, E0) of small constant size
such that

N2r(e∗)\M(e∗) ⊂
⋃

u∈U(e∗,E0)

Nr(u).

Thus, to build a piercing set for Ne∗(E0) one can compute a “good” partial
cover of N2r(e∗) with small number of radius r disks, which does not depend on
the location of segments from E(Ne∗(E0)) with respect to e∗. In the next three
sections, procedures are described for each of the aforementioned three graph
types to construct such partial covers.

Finally, one can design an approximation algorithm for those graphs by
applying the Covering edges of special plane graphs with equal disks
algorithm, evoking search at its step 3 of a cover of complement of 2r-hippodrome
of some special edge e∗ ∈ E0 to the set M(e∗) with at most C radius r disks
for a graph type specific constant C. Moreover, one applies a graph type spe-
cific heuristic at this step to choose C-coverable edge e∗, trying to achieve the
smallest possible constant C.

This straightforward approach is conceptually simpler than the approach
of work [9] tackling the general setting of the IPGD problem, which relies on
tangled machinery of epsilon nets [1]. From one hand, it gives a significant cut in
upper bounds for guaranteed approximation factor, being compared with direct
application of the epsilon net based approach. From the other hand, our approach
has some drawbacks as size of the built cover of N2r(e∗)\M(e∗) does not depend
on |E(Ne∗(E0))| and mutual location of segments from E(Ne∗(E0)) with respect
to e∗. This may result in larger piercing set size than that obtained e.g. after
taking a single point from each object of Ne∗(E0).

Review of Related Approaches. Several examples are known in the literature
of designing O(1)-approximate algorithms for close problem settings, which rely
on similar approaches. In distinction to the IPGD problem in those settings
segments are allowed to intersect by their relative interiors. Moreover, some
restrictions are also imposed therein on either orientations or lengths of segments
from E. For example, for identically oriented segments, say, parallel to x-axis,
one can design a 4-approximate algorithm [5], which is similar to the Covering
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edges of special plane graphs with equal disks algorithm: segments
from E are sorted with respect to x-coordinates of their right endpoints, the
segment e∗ ∈ E0 is chosen with the least x-coordinate of its right endpoint;
segments from E(Ne∗(E0)) must intersect the half-disk of radius 2r centered at
that endpoint; this half-disk can be covered by at most 4 radius r disks. In [4]
the same idea is used in the case, where E consists of zero-length segments.

As follows from [6], the Covering edges of special plane graphs with
equal disks algorithm is C-approximate in the class Gλ, which consists of those
plane graphs G = (V,E) such that each edge e ∈ E is of Euclidean length of at
most λr, where λ > 0 depends only on the class Gλ and not on G. Here one has
C = O(λ).

3 12-Approximate Algorithm for Relative
Neighborhood Graphs

In this section, an O(1)-approximate algorithm is designed for the IPGD prob-
lem in the class of relative neighborhood graphs, which is based on applying the
Covering edges of special plane graphs with equal disks algorithm.
The idea from the previous section is used to implement its step 3, relying on
computing a cover of N2r(e)\M(e) by a few radius r disks for an arbitrarily
chosen edge e ∈ E0 and some special set M(e). The following characteristic
property of relative neighborhood graphs is formulated below, which defines a
shape of M(e) specific to graphs of this type.

Observation 1. Let G = (V,E) be a relative neighborhood graph, e =
[u1, u2] ∈ E and MRNG(e) = int (N2Δ(u1) ∩ N2Δ(u2)), where Δ = d(u1, u2)/2 >
0 and intN denotes interior of set N ⊆ R

2. Then MRNG(e) ∩ V = ∅.

The lemma below provides a sufficient condition for edge C-coverability, which
is specific to relative neighborhood graphs. It is weaker than that from the State-
ment 2, but follows the aforementioned idea by describing “good” partial covers
with radius r disks of 2r-hippodromes, induced by edges of relative neighborhood
graphs.

Lemma 1. Let G = (V,E) be a relative neighborhood graph and e ∈ E. Then the
edge e is C-coverable (with respect to E), if for any ρ > 0 a point set U(e) ⊂ R

2

can be found in polynomial time of size at most C such that

N2ρ(e)\MRNG(e) ⊂
⋃

u∈U(e)

Nρ(u). (1)

The lemma proof is based on the fact that g∩N2ρ(e) �= ∅ for any g ∈ E(Ne).
Moreover, it strongly relies on the assumption that relative neighborhood graphs
are plane.

Thus, to describe work of the Covering edges of special plane graphs
with equal disks algorithm in the class of relative neighborhood graphs, it is
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sufficient to formulate a procedure, which, given an arbitrary edge e ∈ E of any
graph G = (V,E) of this type, seeks a point set U(e) of size at most C such that
(1) is hold for e and U(e) with ρ = r. Below a procedure is given, seeking such
a point set U(e) with C = 12.

Partial r-disk cover search for 2r-hippodromes on RNG edges

Input: a constant r > 0 and an edge e = [u1, u2] of an arbitrary relative
neighborhood graph;
Output: URNG(e) ⊂ R

2 such that (1) is hold for e and U(e) = URNG(e) with
ρ = r;

1. for each s ∈ {1, 2} construct a regular hexagon inscribed in N2r(us), whose
orientation is such that the straight line through e contains a pair of vertices
of that hexagon; form a 7-point set Vs, which contains us and midpoints of
the hexagon sides (of length 2r);

2. for each s ∈ {1, 2} choose a subset Us ⊂ Vs with |Us| = 5 and Ts ⊂ ⋃
u∈Us

Nr(u),

where N2r(e) = T1 ∪ T2 ∪ R for some rectangle R and two closed half-disks
T1 and T2 of radii 2r centered at u1 and u2 respectively;

3. if either Δ ≥ (2
√

3−1)r

2
√

4
√

3−6
or Δ ∈ (0, r/2], return URNG(e) := U1 ∪ U2;

4. for Δ ∈
(

r/2, (2
√

3−1)r

2
√

4
√

3−6

)
choose those points vs1, vs2 ∈ Us, which are sym-

metric with respect to us, s = 1, 2; set ai = v1i+v2i
2 , where v1i and v2i lie on

the same side with respect to the straight line through e, i = 1, 2;
5. return URNG(e) := U1 ∪ U2 ∪ {a1, a2}.

The following lemma reports on the efficiency of the procedure above.

Lemma 2. Let e be an edge in the input of the Partial r-disk cover search
for 2r-hippodromes on RNG edges procedure, whereas URNG(e) is its out-
put. Then the inclusion (1) holds for e and URNG(e), where |URNG(e)| ≤ 12.

Proof. Below a proof sketch is provided.
To prove (1) for e and URNG(e) consider segments f1(e) and f2(e), which are

parallel and equal to e, such that

bdN2r(e) = S1 ∪ S2 ∪ f1(e) ∪ f2(e),

where Ss is the radius 2r half-circle on the boundary of Ts and fi(e) lies at the
same side with respect to the straight line through e as the segment [v1i, v2i]
does. Obviously, (1) holds if fi(e) ∩ MRNG(e) ∩ Nr(vsi) �= ∅ for every s = 1, 2.

The latter situation occurs when Δ ≥ (2
√

3−1)r

2
√

4
√

3−6
.

In the case Δ ∈ (0, r/2] one gets the inclusion

N2r(e) ⊂
⋃

u∈URNG(e)

Nr(u). (2)
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For the case Δ ∈
(

r
2 , (2

√
3−1)r

2
√

4
√

3−6

)
let usi = fi(e) ∩ bdNr(vsi). In the subcase

Δ ∈
[
r, (2

√
3−1)r

2
√

4
√

3−6

)
(1) holds if usi, csi ∈ Nr(ai), where csi = R ∩ bdNr(vsi) ∩

bdN2r(us), i, s = 1, 2. The latter can be proved with a few lines of algebra.
For the subcase Δ ∈ (r/2, r) let c′

si = R ∩ bdNr(vsi) ∩ bdNr(us). Here it is
enough to prove the inclusion usi, c

′
si ∈ Nr(ai) for i, s = 1, 2, to establish (1). �

Taking Lemmas 1, 2 and the Statement 1 into account, one can give the
following approximation algorithm for the IPGD problem in the class of relative
neighborhood graphs.

Theorem 3. If one chooses an arbitrary edge e ∈ E0 at the step 3 of the Cov-
ering edges of special plane graphs with equal disks algorithm and
performs the Partial r-disk cover search for 2r-hippodromes on RNG
edges procedure for that edge, this algorithm becomes 12-approximate for the
IPGD problem in the class of relative neighborhood graphs with O(n OPT) time
complexity and O(n) space cost, where n = |E|.

4 10-Approximate Algorithm for Euclidean Minimum
Spanning Trees

As every Euclidean minimum spanning tree on any point set V in general position
is a subgraph of some relative neighborhood graph on V , the 12-approximate
algorithm is applicable from the previous section for the IPGD problem in the
class of such trees. In this section, it is shown that there is a 10-approximate
algorithm for the IPGD problem in the class of Euclidean minimum spanning
trees for any r > 0. It is curious that for r = 0 the IPGD problem coincides
with the classical Vertex Cover problem, which is polynomially solvable in
the class of arbitrary trees.

Our 10-approximate algorithm uses the Covering edges of special
plane graphs with equal disks algorithm. It also employs the aforemen-
tioned idea of building a cover of size at most 10 at its step 3 of the complement
of 2r-hippodrome of some edge e to a special set MEMST(e), whose shape is
defined in the Lemma 3 below. Here a smaller value of the coverability parame-
ter C is gained due to the fact that MRNG(e) ⊂ MEMST(e).

The observation below follows from definition of Euclidean minimum span-
ning trees.

Observation 2. Let G = (V,E) be Euclidean minimum spanning tree with a
root v0 ∈ V , depth(u) = depth(u|v0, G) be the (graph-theoretic) distance in
G from v0 to an arbitrary u ∈ V and V (u|v0) be the subset of those vertices
w ∈ V such that the shortest path in G from w to v0 (with respect to the
number of its edges) passes through u. If an edge e = [u1, u2] ∈ E is such
that depth(u1) = depth(u2) − 1, then int N2Δ(u2) ∩ (V \V (u2|v0)) = ∅, where
Δ = d(u1, u2)/2.
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One can formulate a sufficient condition for edges of Euclidean minimum
spanning trees to be 10-coverable, being an analog of the Lemma 1, specific to
such trees. Notation is kept of the Observation 2.

Lemma 3. Let G0 = (V0, E0) be a subgraph without isolated vertices of
Euclidean minimum spanning tree G = (V,E). Let depth(·|v0) be a distance
function on V with respect to a chosen v0 ∈ V as defined in the Observation 2.
Then an edge e∗ = [u1, u2] ∈ E0 is 10-coverable with respect to E0, if u2 ∈
Arg max

u∈V0
depth(u) and for any constant ρ > 0 a point set U(e∗) ⊂ R

2 can be

found in polynomial time of size at most 10 such that

N2ρ(e∗)\MEMST(e∗) ⊂
⋃

u∈U(e∗)

Nρ(u), (3)

where MEMST(e∗) = int N2Δ(u2)\S2 and S2 is the closed half-circle of radius 2ρ
centered at u2 on the boundary of N2ρ(e∗).

Proof. Make use of the Observation 2. For Δ ≤ ρ one can prove (3) analogously
to proof of the Lemma 1, applied for the set E0 instead of E.

For Δ > ρ, from the inclusion u2 ∈ Arg max
u∈V0

depth(u) it follows that none

of edges from E0 is incident to u2 except for e∗. As segments from E0 intersect
at most at their endpoints, one gets e ∩ (N2ρ(e∗)\intN2Δ(u2)) �= ∅ for any
e ∈ E(Ne∗(E0)) with e ∩ S2 = ∅. 
�

To describe the Covering edges of special plane graphs with equal
disks algorithm work for an arbitrary Euclidean minimum spanning tree G =
(V,E) based on the Lemma 3, one should first implement a heuristic of choice of
10-coverable edge at its step 3, implied by this lemma. To simplify its implemen-
tation, a breadth-first search is preliminarily performed on G in O(|E|) time at
step 1 of the algorithm to compute a distance function depth(·) = depth(·|v0, G)
for an arbitrarily chosen v0 ∈ V as defined in the Observation 2. To its step 3
a subgraph G0 = (V0, E0) is constructed of G without isolated vertices. One is
ready to give the following heuristic to choose a 10-coverable edge in G0.

Choice of 10-Coverable Edge. At the algorithm step 3 in O(|E0|) time one
chooses an edge e∗ = [u1, u2] ∈ E0 such that u2 ∈ Arg max

u∈V0
depth(u).

The following auxiliary procedure can be formulated to construct a point set
U(e∗) of size at most 10, for which the inclusion (3) holds true for ρ = r with
respect to the segment e∗ chosen according to the Choice of 10-coverable
edge heuristic. In the procedure pseudocode some notations are kept of the Par-
tial r-disk cover search for 2r-hippodromes on RNG edges procedure
and of proof of the Lemma2.
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Partial r-disk cover search for 2r-hippodromes on EMST edges.

Input: a constant r > 0 and an edge e∗ = [u1, u2] of an arbitrary subgraph
G0 = (V0, E0) without isolated vertices of Euclidean minimum spanning tree
such that u2 ∈ Arg max

u∈V0
depth(u);

Output: UEMST(e∗) ⊂ R
2 such that (3) is hold for e∗ and U(e∗) = UEMST(e∗)

with ρ = r;

1. compute a set U1 in the same manner as in the Partial r-disk cover
search for 2r-hippodromes on RNG edges procedure;

2. for Δ ∈ (0, r/2] return UEMST(e∗) := U1 ∪ U2, where U2 is built as in the
Partial r-disk cover search for 2r-hippodromes on RNG edges
procedure;

3. consider a hexagon D inscribed in N2r(u2), whose orientation is such that
exactly three sides of D are contained in T2; compute a set U ′

2 of midpoints
of those three sides of D, which lie completely in T2;

4. if Δ ≥ (2
√

3−1)r

2
√

4
√

3−6
, return UEMST(e∗) := U1 ∪ U ′

2;

5. for Δ ∈
[
r, (2

√
3−1)r

2
√

4
√

3−6

)
set u1i = fi(e∗)∩bd Nr(v1i), zi := fi(e∗)∩bd N2Δ(u2)

and a′
i := u1i+zi

2 , where f1(e∗) and f2(e∗) are segments, which are parallel
and identical to e∗, such that bdN2r(e∗) = S1 ∪ S2 ∪ f1(e∗) ∪ f2(e∗) and Ss

is the radius 2r half-circle on the boundary of Ts, i, s = 1, 2;
6. for Δ ∈ (r/2, r) introduce a (rectangular) coordinate system with its origin

at u2, whose x-axis is along e∗ and y-axis is towards fi(e∗); set a′
i = u1i+bi

2 ,
where bi = (0, 2Δ);

7. return UEMST(e∗) := U1 ∪ U ′
2 ∪ {a′

1, a
′
2}.

The following lemma reports on the Partial r-disk cover search for
2r-hippodromes on EMST edges procedure efficiency.

Lemma 4. Let e∗ = [u1, u2] be an input of the Partial r-disk cover search
for 2r-hippodromes on EMST edges procedure. Then it returns a point set
UEMST(e∗) of size at most 10 such that (3) holds true for e∗ and UEMST(e∗).

Proof. Below a proof sketch is provided.
Cases Δ ≥ (2

√
3−1)r

2
√

4
√

3−6
and Δ ∈ (0, r/2] are proved using the same arguments

as in the Lemma 2 proof.

For Δ ∈
[
r, (2

√
3−1)r

2
√

4
√

3−6

)
, it is sufficient to establish that points u1i, zi and

c1i = R ∩ bdNr(v1i) ∩ bd N2r(u1) lie in Nr(a′
i) to prove (3). This can be done

using a few lines of algebra.
For Δ ∈ (r/2, r) let z′

i = (0, 2r) and c′
i be the point at the intersection

bdN2Δ(u2)∩bdNr(v1i) with the largest y-coordinate. To prove (3) it is enough
to establish the inclusion {u1i, z

′
i, bi, c

′
i} ⊂ Nr(a′

i). 
�
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The following 10-approximate algorithm results for the class of Euclidean
minimum spanning trees from Lemmas 3 and 4.

Theorem 4. The Covering edges of special plane graphs with equal
disks algorithm becomes 10-approximate for the IPGD problem in the class
of Euclidean minimum spanning trees when at its step 3 the Choice of 10-
coverable edge heuristic is used to choose e∗ ∈ E0 and the Partial r-disk
cover search for 2r-hippodromes on EMST edges procedure is applied
to compute a point set, defining a cover of N2r(e∗)\MEMST(e∗). This algorithm
takes O(n OPT) time and O(n) space, where n = |E|.

5 14-Approximate Algorithm for Gabriel Graphs

In this section, a 14-approximate algorithm is built for the IPGD problem in
the class of Gabriel graphs based on the Covering edges of special plane
graphs with equal disks algorithm, evoking a call of an auxiliary procedure
to get a cover of N2r(e)\MG(e) for an arbitrary edge e ∈ E0 chosen at the
step 3 of the latter algorithm, where MG(e) is defined in the following sufficient
condition of 14-coverability of edges of Gabriel graphs. Its proof is analogous to
the Lemma 1 proof.

Lemma 5. Let G = (V,E) be a Gabriel graph, e = [u1, u2] ∈ E, MG(e) =
intNΔ

(
u1+u2

2

)
and Δ = d(u1,u2)

2 > 0. Then the edge e is 14-coverable, if for any
ρ > 0 a point set U(e) ⊂ R

2 can be found of size at most 14 in polynomial time
such that

N2ρ(e)\MG(e) ⊂
⋃

u∈U(e)

Nρ(u). (4)

Keeping notation from both Partial r-disk cover search for 2r-
hippodromes on RNG edges and Partial r-disk cover search for 2r-
hippodromes on EMST edges procedures, one can formulate an analogous
procedure for Gabriel graphs.

Partial r-disk cover search for 2r-hippodromes on GG edges.

Input: a constant r > 0 and an edge e = [u1, u2] of an arbitrary Gabriel graph;
Output: UG(e) ⊂ R

2 such that (4) is hold for e and U(e) = UG(e) with ρ = r;

1. compute sets Us, s = 1, 2, as in the Partial r-disk cover search for
2r-hippodromes on RNG edges procedure;

2. if either Δ ≥ (2
√

3−1)r√
4
√

3−6
or Δ ∈ (0, r/2], return UG(e) := U1 ∪ U2;

3. for Δ ∈
[
2r, (2

√
3−1)r√

4
√

3−6

)
set u0 := u1+u2

2 and construct two points z1i and z2i

at the intersection fi(e) ∩ bdMG(e), where zsi is closer to usi than the point
z(3−s)i is; set asi = usi+zsi

2 , i, s = 1, 2;
4. if Δ ∈ (r, 2r) , consider a (rectangular) coordinate system with the origin at

us whose x-axis is along e and y-axis is perpendicular to x-axis, being directed
towards fi(e); set bi = (Δ,Δ) and asi = usi+bi

2 , i, s = 1, 2;
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5. for Δ ∈ (r/2, r] set a1i := (Δ,
√

3r) and a2i :=
(
Δ,

√
3r
2

)
, i = 1, 2;

6. return UG(e) := U1 ∪ U2 ∪ {asi}s,i=1,2;

The lemma below guarantees the efficiency of the Partial r-disk cover
search for 2r-hippodromes on GG edges procedure.

Lemma 6. Let e and UG(e) be an input and an output of the Partial r-disk
cover search for 2r-hippodromes on GG edges procedure respectively.
Then |UG(e)| ≤ 14 and the inclusion (4) holds true for e and UG(e).

Proof. Below a proof sketch is provided.
For the case Δ ≥ (2

√
3−1)r√

4
√

3−6
the proof is analogous to that from the Lemma 2,

replacing 2Δ with Δ. The case Δ ≤ r/2 is considered in the same way as in the
proof of that lemma.

In cases Δ ∈
[
2r, (2

√
3−1)r√

4
√

3−6

)
and Δ ∈ (r, 2r) the proof is analogous to the

Lemma 4 proof, replacing 2Δ with Δ.
In the case Δ ∈ (r/2, r] to establish (4) it is enough to prove inclusions

conv {u1i, u2i, c
′
1i, c

′
2i} ⊂ Nr(a1i) and conv {c′

1i, c
′
2i, u0} ⊂ Nr(a2i). 
�

One is ready to give the following approximation algorithm for the IPGD
problem in the class of Gabriel graphs.

Theorem 5. The Covering edges of special plane graphs with equal
disks algorithm becomes 14-approximate for the class of Gabriel graphs, when it
chooses an arbitrary edge e ∈ E0 at its step 3 and performs the Partial r-disk
cover search for 2r-hippodromes on GG edges procedure for e. It has
O(n OPT) time complexity and O(n) space cost, where n = |E|.

6 Tightness Analysis for Upper Bounds
on Approximation Factors of Our Algorithms

In this section a series of the IPGD problem instances is given for which con-
stants in upper bounds on approximation factors of our algorithms do not
strongly deviate from the ratio |H(G,r)|

OPT(G,r) , where H(G, r) is a feasible solution
to the IPGD problem for a graph G and a radius r > 0, output by our algo-
rithms, and OPT = OPT(G, r) is its optimum.

For an arbitrary plane graph G, choose r > 0 such a small that the IPGD
problem for G and r can be considered equivalent to the Vertex Cover
problem on G. In this case the segment set E′, which the Covering edges
of special plane graphs with equal disks algorithm constructs to its
step 5, is, in fact, a maximal (with respect to inclusion) matching in G and
|E′| ≤ OPT ≤ 2|E′|. As a consequence, the ratio |H(G,r)|

OPT(G,r) is at least 5, 5 and
4 for our algorithms on Gabriel, relative neighborhood graphs and Euclidean
minimum spanning trees respectively.
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7 Conclusion

In the present paper, approximation algorithms are designed with constant
approximation factors for the problem of intersecting sets of edges of special
plane graphs with the least number of identical disks, which generalizes on the
case of sets of non-zero length segments the classical NP-hard problem of cov-
ering a given finite point set on the plane with the fewest number of identical
disks. More precisely, based on specifics of mutual location of edges and vertices
of Gabriel, relative neighborhood graphs and Euclidean minimum spanning trees
approximation algorithms are built with factors of 14, 12 and 10 respectively,
combining modest complexity with good accuracy. Namely, their approximation
factors and time complexity bounds are smaller than those for known algorithms
designed for close problems (see e.g. [9] for algorithms on Gabriel graphs and on
arbitrary plane graphs). Our algorithms can be used in various network appli-
cations.
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Abstract. We consider one strongly NP-hard problem of clustering a
finite set of points in Euclidean space. In this problem, we need to par-
tition a finite set of points into two clusters minimizing the sum over
both clusters of the weighted intracluster sums. Each of these sums is
the sum of squared distances between the elements of the cluster and
their center. The center of the one cluster is unknown and determined
as the centroid, while the center of the other one is fixed at the origin.
The weight factors for both intracluster sums are the given sizes of the
clusters. In this paper, we present an approximation algorithm for the
problem and prove that it is a polynomial-time approximation scheme
(PTAS).

Keywords: Euclidean space · Weighted 2-clustering ·
Quadratic variation · NP-hardness · Approximation algorithm · PTAS

1 Introduction

The subject of this study is one strongly NP-hard cardinality-weighted 2-
clustering problem of a finite set of points in Euclidean space. Our goal is to
substantiate an approximation algorithm for this problem and show that it
implements a PTAS.

Our research is motivated by the fact that the problem under considera-
tion has been poorly studied in the algorithmic direction and by the problem
importance in some applications, for example, in Data Analysis, and in Data
mining.

The paper has the following structure. Section 2 contains the problem formu-
lation, related problems, and known results. In the same section, we announce
our result. We formulate and prove the basics of the algorithm in Sect. 3. The
approximation algorithm is presented in Sect. 4. Also in Sect. 4, we show that
our algorithm implements a PTAS.
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2 Problem Formulation and Related Problems,
Known and Obtained Results

Everywhere below R denotes the set of real numbers, ‖ · ‖ denotes the Euclidean
norm, and 〈·, ·〉 denotes the scalar product.

We consider the following

Problem 1 (Cardinality-weighted variance-based 2-clustering with given center).
Given an N -element set Y of points in R

d, and a positive integer number M .
Find a partition of Y into two non-empty clusters C and Y \ C such that

f(C) = |C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2 → min, (1)

where y(C) = 1
|C|

∑
y∈C

y is the centroid of C, subject to constraint |C| = M .

This optimization problem of geometric data (i.e., Y) approximation by the
clusters and the algorithms for its solution are important for Data mining [1,2]. It
is known that, in this applied field of testing hypotheses about the data structure,
efficient cluster approximation algorithms are the main mathematical tools.

Besides, this problem simulates the following applied problem. We have a set
Y of N measurement results for d characteristics of some object in two different
states (active and passive, for example). Each measurement has an error and
nobody knows the correspondence between the elements of the input set and
the states. In addition, it is known that exactly M times the object was in the
active state (or the probability of the active state is M

N ). It requires to find 2-
partition of the input set and evaluate the object characteristics (i.e., y(C) in
accordance with (1)).

The applied problem is typical, in particular, for medical and technical appli-
cations. In these applications, the objects might be presented by patients and
technical devices, and the states are healthy or sick, serviceable or malfunctioning.

One can easily check that only in the particular case of Problem 1, when
2M = N , the optimal clusters are separated by a hyperplane. In other cases,
the separating surface is non-linear. It is known that the construction of optimal
separating surfaces (i.e. optimal classifiers) is important for Pattern recognition
and Machine learning [3,4].

Problem 1 is closely related to the well-known Min-sum 2-clustering problem.
In this problem, it is required to find a partition of Y into two clusters so as to
minimize the sum

|C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y − y(Y\C)‖2.

Both centroids of the clusters are unknown in this problem. Min-sum 2-
clustering problem is equivalent to another well-known Min-sum all-pairs
2-clustering problem minimizing the sum

∑

x∈C

∑

z∈C
‖x − z‖2 +

∑

x∈Y\C

∑

z∈Y\C
‖x − z‖2.
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The NP-hardness of the general metric case of these problems was shown
earlier in [5,6]. The strong NP-hardness of the Euclidean case was proved in
[7,8].

There are some approximation results for these problems [6,9–12], but they
can not be applied to Problem1 because these problems are not equivalent.

It was proved in [7,8] that Problem 1 is the strongly NP-hard one. The
following algorithmic results were obtained for this problem.

First of all, recall that a number of algorithmic results [13–19] were obtained
for the particular case of Problem1 when 2M = N .

Further, in [20], an exact pseudo-polynomial algorithm was constructed for
the case of integer components of the input points and fixed dimension d of
the space. The running time of this algorithm is O(N(MD)d), where D is the
maximum absolute value of coordinates of the input points.

An approximation scheme that allows one to find (1+ε)-approximate solution

in O
(

dN2
(√

2d
ε + 2

)d
)

time was proposed in [21]. It implements an FPTAS in

the case of the fixed space dimension.
Moreover, the modification of this algorithm [22] with improved time com-

plexity: O
(√

dN2
(

πe
2

)d/2(√ 2
ε +2

)d
)
, was proposed. The algorithm implements

an FPTAS in the case of fixed space dimension and remains polynomial for
instances of dimension O(log n). In this case, it implements a PTAS with
O

(
NC (1.05+log(2+

√
2
ε ))

)
time, where C is a positive constant.

An approximation algorithm that allows one to find a 2-approximate solution
to the problem in O (

dN2
)

time was constructed in [23].
In [24], a randomized algorithm was constructed. It allows one to find (1+ε)-

approximate solution with probability not less than 1 − γ in O(dN) time for an
established parameter value, a given relative error ε and fixed γ. The conditions
are found under which the algorithm is asymptotically exact and runs in O(dN2)
time.

In this paper, we present an approximation algorithm with parameters s
and t that allows one to find a (1/t + 8ζ(t, s))-approximate solution, where
ζ(t, s) =

√
t − 1/s+(t− 1)/s2. It is proved that the algorithm is a PTAS with a

relative error of ε > 0 when t = 2/ε and s = 9t3/2. The time complexity in this
case is O(dN2/ε+1((9/ε)3/ε + 2/ε)).

Our algorithm is based on the approach presented in [14,25] and develops it.

3 Basics of the Algorithm

In this section, we formulate and prove some statements which are necessary for
substantiation of our algorithms. The proof of the following lemma can be found
in [20].

Lemma 1. Let

S(C, x) = |C|
∑

y∈C
‖y − x‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2, C ⊆ Y, x ∈ R

d. (2)
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Then the next statements are true:

(1) for any nonempty fixed set C ⊆ Y, the minimum of the function S(C, x) over
x ∈ R

d is reached at the point y(C) = 1
|C|

∑
y∈C

y;

(2) if |C| = M = const, then for any fixed point x ∈ R
d the minimum of function

S(C, x) over C ⊆ Y is reached at the subset Bx that consists of M points of
the set Y, at which the function

hx(y) = (2M − N) ‖y‖2 − 2M 〈y, x〉 , y ∈ Y, (3)

has the smallest values.

Lemma 1 allows us to find the optimal solution of some auxiliary problem
when the point x ∈ R

d is fixed. This auxiliary problem is to minimize the objec-
tive function (2) instead of (1), and that is the only difference from Problem 1.

Let us find out the necessary conditions for choosing x so as to construct
the solution of the auxiliary problem that is good enough in some sense for
Problem 1.

Let ε(C, y) denotes the relative error of the feasible solution y and C of the
auxiliary problem:

ε(C, y) =
S(C, y) − f(C)

f(C)
.

Everywhere below C∗ denotes the optimal solution of Problem1. Note that
if By is the set from Lemma 1 for the fixed point y, then the value ε(C∗, y) is an
upper estimate of the relative error of the solution By of Problem1. Indeed, by
Lemma 1,

f(By) = S(By, y(By)) ≤L1.1 S(By, y) ≤L1.2 S(C∗, y),

and, therefore,

f(By) − f(C∗)
f(C∗)

≤ S(C∗, y) − f(C∗)
f(C∗)

= ε(C∗, y).

The proof of the following well-known lemma is presented in many publica-
tions (see, for example, [26]).

Lemma 2. For an arbitrary point x ∈ R
d, a finite set Z ⊂ R

d and z =
1

|Z|
∑

z∈Z z (z is the centroid of Z), it is true that

∑

z∈Z
‖z − x‖2 =

∑

z∈Z
‖z − z‖2 + |Z| · ‖x − z‖2.

Applying Lemma 2 for objective function (2) and |C| = M , we get the next
equality:

S(C, x) = f(C) + M2||x − y(C)||2, (4)
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and, therefore,

ε(C, y) =
S(C, y) − f(C)

f(C)
=

M2||y − y(C)||2
f(C)

.

The statements of the following lemma and the theorem are completely iden-
tical with those in [25]. The proofs are similar but have some important differ-
ences. We omit the proof of the following lemma and present the proof of the
theorem. It is enough in order to demonstrate the differences.

Lemma 3. Let C be an arbitrary subset of Y of cardinality M . Let x be an
arbitrary point in Euclidean space and let y = y(x, C) be the point closest to y(C)
among those lying on the beams from x to all points of the cluster C. Then

ε(C, y) ≤ ε(C, x)
1 + ε(C, x)

.

Theorem 1. Let C be an arbitrary subset of Y of cardinality M , 1 ≤ t ≤ M .
Then a linear span of some subset of C of cardinality t contains a point yt such
that ε(C, yt) ≤ 1/t.

Proof. Prove the theorem by induction on t.
Base case: t = 1. Let y1 = arg min

y∈C
‖y − y(C)‖2 be the point from the subset

C closest to its centroid. Then

S(C, y(C)) = M
∑

y∈C
‖y − y(C)‖2 + (N − M)

∑

y∈Y\C
‖y‖2

≥ M
∑

y∈C
‖y − y(C)‖2 ≥ M2‖y1 − y(C)‖2.

Hence,

S(C, y1) = S(C, y(C)) + M2‖y1 − y(C)‖2 ≤ 2S(C, y(C)) = 2f(C)

and

ε(C, y1) =
S(C, y1) − f(C)

f(C)
≤ 1.

Induction step: Consider as yt+1 the point y(yt, C) of Lemma 3. It is contained
in the linear span of some subset of C of cardinality t+1. In this case, by Lemma 3,
we have

ε(C, yt+1) ≤ ε(C, yt)
1 + ε(C, yt)

.

By induction, ε(C, yt) ≤ 1/t, hence

ε(C, yt+1) ≤ 1/t

1 + 1/t
=

1
t + 1

.

�



586 A. Panasenko

Remark 1. For t ≥ M Theorem 1 also holds since y(C) is contained in the linear
span of C of the size M and, in this case, ε(C, y(C)) = 0 ≤ 1/t.

Theorem 1 and Remark 1 guarantee that if we consider the points of the linear
spans of all t-tuples of Y as a local center then one of them leads to the solution
with a relative error of 1/t.

Lemma 4. Let 1 ≤ t ≤ M , and let points y1, . . . , yt be constructed in series as
in Theorem1 applied to C∗. Let f1 = min

y∈Y
f(By), where By is constructed as in

Lemma 1. Then

‖yt − y(C∗)‖ ≤
√

f1
M2

.

Proof. The geometrical considerations imply

‖yt − y(C∗)‖ ≤ ‖y1 − y(C∗)‖. (5)

Since y1 = arg min
y∈C∗

‖y − y(C∗)‖2:

f(C∗) = S(C∗, y(C∗)) ≥ M
∑

y∈C∗
‖y − y(C∗)‖2 ≥ M2‖y1 − y(C∗)‖2,

and, therefore,

‖y1 − y(C∗)‖ ≤
√

f(C∗)
M2

,

hence, by inequality (5),

‖yt − y(C∗)‖ ≤(5) ‖y1 − y(C∗)‖ ≤
√

f(C∗)
M2

≤
√

f1
M2

,

since f(C∗) ≤ f1. We get the desired inequality. �
Remark 2. For t ≥ M Lemma 4 also holds since in this case yt = y(C∗) by
Remark 1.

Remark 3. Note that the distance from y1 to yt in Lemma 4 is not greater than

2
√

f1
M2 by triangle inequality. Hence, yt is somewhere in the ball centered at

y1 with the radius 2
√

f1
M2 . Since y1 = arg min

y∈C∗
‖y − y(C∗)‖2, it is enough to go

through all the points from Y to meet y1.

Lemma 5. Let the conditions of Lemma 4 hold and s > 0 be some integer
number. Let y′

t be the point of R
d such that ‖y′

t − yt‖ ≤ h
√

t − 1/2, where

h = 4
√

f1
M2 /s. Then,

ε(C∗, y′
t) ≤ ε(C∗, yt) + 8ζ(t, s), ζ(t, s) =

√
t − 1/s + (t − 1)/s2. (6)
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Proof. Let v denote h
√

t − 1/2. From (4), conditions of the lemma and the tri-
angle inequality we obtain

S(C∗, y′
t) − S(C∗, yt) = M2(‖y′

t − yt + yt − y(C∗)‖2 − ‖yt − y(C∗)‖2)
≤ M2((a + v)2 − a2),

where a = ‖yt − y(C∗)‖. By Lemma 4 we have a ≤
√

f1
M2 (let A denote

√
f1
M2 )

and, therefore,

(a + v)2 − a2 ≤ 2Av + v2 = A
√

t − 1h + (t − 1)h2/4
= 4A2

√
t − 1/s + 4A2(t − 1)/s2 = 4A2ζ(t, s).

Thus,
S(C∗, y′

t) − S(C∗, yt) ≤ 4M2A2ζ(t, s) = 4f1ζ(t, s).

In [23] was shown that f1 ≤ 2f(C∗). Hence,

S(C∗, y′
t) − S(C∗, yt) ≤ 8f(C∗)ζ(t, s).

Dividing the expression by f(C∗), we obtain the required inequality:

S(C∗, y′
t) − f(C∗) + f(C∗) − S(C∗, yt)

f(C∗)
= ε(C∗, y′

t) − ε(C∗, yt) ≤ 8ζ(t, s).

The proof of Lemma 5 is complete. �
Remark 4. For t ≥ M Lemma 5 also holds by Remark 2.

4 Approximation Algorithm

We present the approximation algorithm for Problem1 in this section. The main
idea of this algorithm can be described as follows. For each point u of the input
set Y, we form the subsets {x1, . . . , xq} ⊆ (Y \ {u}) of the other points with the
size q fixed. For each subset, we construct a domain (spherical with the radius
H+h

√
q/2 centered at u, where H and h will be defined below) so that the center

of the desired subset necessarily belongs to one of these domains. We generate,
using given (as input) parameters, a lattice (a grid) that discretizes the domain
with a uniform step h in all directions. These directions are defined with the help
of the Gram-Schmidt process applied to the vectors x1 −u, . . . , xq −u (note that
the dimension can be less than q). This kind of constructing allows us to have
the nodes which belong to the linear span of the current subset. For each lattice
node, a subset of M points from the input set that have the smallest values of
the function (3) is formed. The resulting set is declared as a solution candidate.
The candidate that minimizes the objective function is chosen to be the final
solution.
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Let s, t > 0 be the integer parameters of the algorithm. Let f1 = min
y∈Y

f(By),

where By is constructed as in Lemma 1. Let

A =

√
f1
M2

, H = 2A, h = 4A/s, q = min{M,d + 1, t} − 1. (7)

For an arbitrary point u ∈ Y, positive numbers h and H, and an arbitrary
subset {x1, . . . , xq} ⊆ (Y \ {u}), we define a grid D(u, x1, . . . , xq, h,H) by the
following way. We apply the Gram-Shmidt process to the vectors {x1−u, . . . , xq−
u} and use the result as the directions for the grid. Then we construct the desired
grid of size 2H centered at the point u with node spacing h.

For each y ∈ Y let R = H + h
√

q

2 . Let us construct the lattice

DR(y, x1, . . . , xq, h,H + h/2) = D(y, x1, . . . , xq, h,H + h/2) ∩ B(y,R), (8)

where B(y,R) = {x ∈ R
d| ‖x − y‖ ≤ R} is the ball of radius R and center y.

The step-by-step description looks like as follows.

Algorithm A.
Input : a set Y, positive integers M, s, t.
Step 0. f1 := ∞.
For each point y ∈ Y Steps 1–3 are executed:
Step 1. Compute the values hy(z), z ∈ Y, using formula (3). Find an M -

element subset By ⊆ Y with the smallest values hy(z). Compute f(By) using
formula (1).

Step 2. If f(By) = 0 then put CA = By; exit.
Step 3. If f(By) < f1 then put f1 = f(By).
Step 4. Compute the values A, H, h, q using formulae (7). Compute R =

H + h
√

q

2 .
For each point u ∈ Y and for each subset {x1, . . . , xq} ⊆ (Y \{u}), Steps 5–7

are executed.
Step 5. Apply the Gram-Shmidt process to the vectors x1 − u, . . . , xq − u.
Step 6. Construct the grip DR(u, x1, . . . , xq, h,H + h/2) using formula (8).
Step 7. For each node y of the grid DR(u, x1, . . . , xq, h,H + h/2), compute

the values hy(z), z ∈ Y, using formula (3). Find and remember an M -element
subset By ⊆ Y with the smallest values hy(z). Compute and remember f(By)
using formula (1).

Step 8. In the family W of candidate sets constructed above choose as a
solution CA the set Bx with minimal value f(Bx), where

W = {By : y ∈ DR(u, x1, . . . , xq, h,H + h/2), u ∈ Y, {x1, . . . , xq} ⊆ (Y \ {u})}.

Output : The set CA.
The following two lemmas were proved in [22]. We can apply these lemmas

to our case with d = q and grid DR(u, x1, . . . , xq, h,H + h/2).

Lemma 6. For an arbitrary point x of B(y,H), y ∈ Y, the distance from x to
the closest node of the grid DR(y, h,H + h/2) does not exceed the value h

√
d

2 .
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Lemma 7. For an arbitrary point y ∈ Y the cardinality of the lattice
DR(y, h,H + h/2) does not exceed the value

1√
πd

(2πe

d

)d/2(H

h
+

√
d
)d

.

Remark 5. The cardinality of the lattice DR(u, x1, . . . , xq, h,H + h/2) does not
exceed the value

LR =
1√
πq

(2πe

q

)q/2( s

2A
+

√
q
)q

.

We know that q ≤ d, so if the space dimension d is fixed, then we get
O(LR) ∼ O(sd).

Theorem 2. For any fixed s, t > 0 Algorithm A finds (1/t + 8ζ(t, s))-
approximate solution of Problem1, where ζ(t, s) =

√
t − 1/s + (t − 1)/s2, in

O
(

dN2

(
N − 1

q

)
(LR + q)

)
(9)

time, where q = min{M,d + 1, t} − 1.

Proof. Let us bound the approximation factor of the algorithm. It is obvious by
Remark 3, that the algorithm once uses the point y1 ∈ Y (the 2A-neighbourhood
of which contains yt from Lemmas 4 and 5) as the center of the constructed grid.
Point yt from Lemmas 4 and 5 is inside the ball B(y1,H). Hence, by Lemma 6,
the distance from yt to the closest node (let us denote this node by y′

t) of the
considered grid does not exceed the value h

√
q/2 and so does not exceed the

value h
√

t − 1/2, since q ≤ t − 1. So, we can apply Lemma 5 to the point y′
t and

get inequality (6). And then we can evaluate the right-hand side of the inequality
with the help of Theorem1 because:

1. If q = t−1 and t ≤ M , t ≤ d+1, then the algorithm meets the linear span of
each possible subset with cardinality t. And so it meets the desired one from
Theorem 1.

2. If q = d and d + 1 ≤ t, d + 1 ≤ M , then for arbitrary xi, u ∈ Y, the
linear span of vectors {x1 − u, . . . , xt − u} coincides with the linear span of
vectors {y1 − u, . . . , yd − u}, where {y1 − u, . . . , yd − u} is some subset of
{x1 − u, . . . , xt − u}. So, Steps 5–7 would have the same results if we use t
instead of q = d, and so the algorithm meets the desired one linear span from
Theorem 1.

3. If q = M − 1 and M ≤ d + 1, M ≤ t, then Remark 1 holds.

Let CA be the set produced by algorithm A. Applying Lemma 5 and
Theorem 1, we get the following chain of inequalities:

f(CA) − f(C∗)
f(C∗)

≤ f(By′
t) − f(C∗)
f(C∗)

≤ ε(C∗, y′
t) ≤L5

≤L5 ε(C∗, yt) + 8ζ(t, s) ≤Th1 1/t + 8ζ(t, s).
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Let us evaluate the time complexity of the algorithm.
Step 0 takes O(1) time.
Then Steps 1–3 are executed for N times. Step 1 requires O(dN) operations:

calculation of hy(z) requires at most O(dN)-time; finding the M smallest ele-
ments in the set of N elements requires O(N) operations (for example, using
the algorithm of finding the n-th smallest value in an unordered array [27]);
computation of the value f(By) takes O(dN) time. Steps 2 and 3 are executed
in O(d) operations.

Step 4 requires O(d) operations.
Steps 5–7 are executed for N

(
N−1

q

)
times. Step 5 takes O(dq2) time [28].

Step 6 requires at most O(dLR)-time. Step 7 takes O(dNLR) time. The total
time complexity of these steps is dN

(
N−1

q

)
(q2 + NLR). Since q ≤ N , we can

evaluate the time complexity by dN2
(
N−1

q

)
(q + LR).

Step 8 requires N
(
N−1

q

)
LR operations and the total time complexity of all

Steps is

O
(

dN2

(
N − 1

q

)
(LR + q)

)
.

�
Remark 6. Note some rough estimates:

N

(
N − 1

q

)
≤ N(N − 1)q ≤ Nq+1 ≤ N t; (10)

LR ≤ (2H/h + 2)q = (s/A + 2)q ≤ const1s
q ≤ const1s

t−1.

It implies that we can evaluate the time complexity of the algorithm by
O(dN t+1(st−1 + q)). This value coincides with the one from [25] when q ≤ st−1

(that is correct if s ≥ 2).

Property 1. In the case of t = 2/ε, where ε > 0, and s = 9t3/2, the algorithm
can solve the problem in time O(dN2/ε+1((9/ε)3/ε + 2/ε − 1)) with the relative
error of ε.

Indeed, chosen s, we have

ζ(t, s) ≤ 1
9t

+
1

81t2
≤ 1

8t
.

Hence, the relative error of the algorithm does not exceed 2/t = ε. The estimate
of the running time follows from

st−1 = (9t3/2)t−1 ≤ (9(2/ε)3/2)2/ε ≤ (9/ε)3/ε;

q ≤ t − 1 = 2/ε − 1.

Thus, the PTAS is obtained.
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Moreover, it is true that:

Property 2. In the case of t = 2/ε, where ε > 0, s = 9t3/2, and the fixed space
dimension d (or bounded by a constant), the algorithm can solve the problem in
time O(Nd+2ε−3d/2) with the relative error of ε.

Indeed, the value ε of the relative error is obvious by Property 1. The time
complexity can be evaluated by O(Nq+2sd) by Remark 5, (9) and (10). Since q ≤
d, s = 9t3/2 and t = 2/ε, the algorithm can solve the problem in O(Nd+2ε−3d/2)-
time.

5 Conclusion

In this paper, we presented an approximation algorithm for one Euclidean
cardinality-weighted 2-clustering problem for a finite set of points. Our algo-
rithm on the one hand based on an adaptive-grid-approach and on the other
hand based on the geometry of the linear spans and the Gram-Schmidt process.
It was proved that the algorithm is a PTAS for some parameters values. This
algorithm is the first PTAS for the considered clustering problem.
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Abstract. We consider the problem of controlling a rod attached to a
rotor. A rotating flywheel is attached to one end of the rod. The rotor
is controlled by the first player. The flywheel is controlled by the second
player. The goal of the first player is to bring the rotor to a vertical posi-
tion at a given time. The goal of the second player is the opposite. This
problem is an example of a more general linear differential game with a
one-dimensional aim. Using a linear change of variables, this problem is
reduced to a single-type one-dimensional differential game with a non-
convex terminal set, for which we have found the necessary and sufficient
conditions of termination and constructed the corresponding controls of
the players.

Keywords: Control · Differential game · Terminal set · Flywheel

1 Introduction

The linear differential game with fixed terminal time, using a linear change of
variables [5], can be reduced to the form when on the right-hand side of the new
equations there is only the sum of player controls whose values belong to given
sets depending on the time. In the case that in a linear differential game the
payoff is the value of the modulus of a linear function of the phase vector at a
given time moment, a linear change of variables leads to a single-type differential
game when the sets of player controls values are time-dependent segments. In
a more general case, such problems are characterized by the fact that player
controls vectograms are balls whose radii depend on time. Such dynamics after
a change of variable arises in well-known differential games “isotropic missiles”
[3], control example Pontryagin [9]. For such differential games, in the case when
the terminal set is a ball of a given radius, the form of an alternating integral is
found in [9]. In [10], optimal positional strategies for players were constructed.
In [12] the form of alternating integral for single-type games with an arbitrary
convex closed terminal set is found and optimal positional controls of players are
constructed.

The problems of controlling oscillatory mechanical systems are actual. When
conducting research and educational process in the field of mechatronics and
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automatic control systems, laboratory pendulum training and laboratory instal-
lations are widely used. In [1,2], problems of controlling the system, which con-
sists of a physical pendulum with a flywheel at the end, were investigated. In
the works [7,14], a numerical method developed by the authors was applied to
solve this problem and computer simulation was carried out.

In this paper, we consider a game problem, in which the first player controls a
rod attached to a rotor. A rotating flywheel is attached to one end of the rod. The
flywheel is controlled by the second player. The goal of the first player is to bring
the rotor to a vertical position at a given time. The goal of the second player
is the opposite. This problem is an example of a more general linear differential
game with a one-dimensional aim, which is determined using the modulus of a
linear function of the phase vector. Using a linear change of variables, this linear
differential game reduced to a single-type one-dimensional differential game. The
terminal set in this game is the union of an infinite number of disjoint segments.

2 Introductory Example

The rotor axis of the first electric motor passes through the point O perpendic-
ular to the plane of the figure (see Fig. 1). The rod AB is rigidly attached to the
axis of the rotor so that it can rotate together with the rotor about its axis in
the plane of the figure.

Fig. 1. The game problem of controlling rod AB with a rotating flywheel, which is
attached to it at point B.

Rotary flywheel symmetrical about its axis is mounted so that its center is
located at the point B. The flywheel can rotate about an axis passing through B
perpendicular to the plane of the figure. The axis of rotation of the flywheel is the
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axis of the rotor of the second electric motor. The total mass of the flywheel and
the second electric motor is M , and the total moment of inertia of the flywheel
and the second electric motor relative to their axis of rotation is J∗.

The center of mass of the system consisting of the rod AB, the rotor of the
first electric motor, the flywheel, and the second electric motor is at the point
O, and the moment of inertia of this mechanical system relative to the axis of
rotation passing through the point O is equal to J . Distance OB = L.

The kinetic energy of the system is equal to

T =
1
2

(
J + ML2

)
φ̇2
1 +

J∗
2

(φ̇1 + φ̇2)2. (1)

Calculate the virtual work δA = N1δφ1 + N2δφ2 of external forces acting
on the system. Here, Ni is the moment of electromagnetic forces applied to the
rotor of i–th motor on the side of its stator, i = 1, 2. Neglecting the inductance
in the rotor circuit, we assume [2,7,14]

Ni = ciwi − biφ̇i, ci > 0, bi > 0, i = 1, 2. (2)

Here, wi is the voltage supplied to i–th motor, and it is bounded |wi| ≤ w0
i ,

i = 1, 2. The product biφ̇i describes moment of forces, which arise because of
counter-emf.

Write down Lagrange equations, which describe the motion of the system

d

dt

∂T

∂φ̇i

− ∂T

∂φi
= Ni, i = 1, 2.

Formulas (1) and (2) imply that

(J + ML2)φ̈1 + J∗(φ̈1 + φ̈2) = c1w1 − b1φ̇1,

J∗(φ̈1 + φ̈2) = c2w2 − b2φ̇2.

From here we obtain that

φ̈1 = − b1
J + ML2

φ̇1 +
b2

J + ML2
φ̇2 +

c1
J + ML2

w1 − c2
J + ML2

w2,

φ̈2 =
b1

J + ML2
φ̇1−(

b2
J + ML2

+
b2
J∗

)φ̇2− c1
J + ML2

w1+(
c2

J + ML2
+

c2
J∗

)w2. (3)

The goal of the first player is the fulfilment of the inequality

min
i∈I

|φ1(p) − 2πi| ≤ ε, (4)

where 0 ≤ ε < π, I = 0,±1,±2,±3, . . .. Note that (4) is the condition of the rod
deviation from the vertical position is not more than on ε, taking into account
the periodicity. The second player has the opposite goal.

Making the change of variables

x1 = φ1, x2 = φ̇1, x3 = φ2, x4 = φ̇2
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and denoting

a1 =
b1

J + ML2
, a2 =

b2
J + ML2

, a3 =
b2

J + ML2
+

b2
J∗

,

γ =
c1

J + ML2
, δ1 =

c2
J + ML2

, δ2 =
c2

J + ML2
+

c2
J∗

,

we write the system (3) in the following form:

ẋ = A(t)x − ξ + η,

where

x =

⎛

⎜
⎜
⎝

x1

x2

x3

x4

⎞

⎟
⎟
⎠ , A(t) =

⎛

⎜
⎜
⎝

0 1 0 0
0 −a1 0 a2

0 0 0 1
0 a1 0 −a3

⎞

⎟
⎟
⎠ , (5)

ξ =

⎛

⎜
⎜
⎝

0
−γw1

0
γw1

⎞

⎟
⎟
⎠ , η =

⎛

⎜
⎜
⎝

0
−δ1w2

0
δ2w2

⎞

⎟
⎟
⎠ . (6)

3 Reduction to a Single-Type Problem

Consider the differential game

ẋ = A(t)x − ξ + η, x(t0) = x0; x ∈ IRn, t ≤ p. (7)

Here, control of the first player is ξ ∈ W ⊂ IRn, control of the second player is
η ∈ F ⊂ IRn, where W and F are connected compacts; A(t) is a matrix with
corresponding dimension whose elements are continuous for t0 ≤ t ≤ p functions.

Vector ψ0 ∈ IRn and numbers α, ε ∈ IR such that 0 ≤ 2ε < α are given. The
goal of the first player is the fulfilment of the inequality

min
i∈I

|〈ψ0, x(p)〉 − iα| ≤ ε. (8)

Here, 〈·, ·〉 denotes the scalar product in IRn. The second player has the opposite
goal. Note that condition (4) is an example of condition (8) with

ψ0 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ , α = 2π.

Denote by ψ(t) the solution of the Cauchy problem

ψ̇(t) = −A∗(t)ψ(t), ψ(p) = ψ0; t ≤ p. (9)

Here, A∗(t) denotes the transposed of matrix A(t).
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Denote

a−(t) = min
ξ

〈ψ(t), ξ〉, a+(t) = max
ξ

〈ψ(t), ξ〉, ξ ∈ W ;

b−(t) = min
η

〈ψ(t), η〉, b+(t) = max
η

〈ψ(t), η〉, η ∈ F.

Note that these functions are continuous [8, p. 84, Lemma II.3.5].
Then connectivity of compacts W and F imply [6, pp. 333–334, Theorem 4]

that

〈ψ(t), ξ〉 =
a+(t) + a−(t)

2
+ a(t)u, |u| ≤ 1, a(t) =

a+(t) − a−(t)
2

≥ 0;

〈ψ(t), η〉 =
b+(t) + b−(t)

2
+ b(t)v, |v| ≤ 1, b(t) =

b+(t) − b−(t)
2

≥ 0.

Introduce a new one-dimensional variable

z = 〈ψ(t), x〉 +
1
2

∫ p

t

(b+(r) + b−(r) − a+(r) − a−(r))dr.

Differentiate z:

ż = 〈−A∗(t)ψ(t), x〉 + 〈ψ(t), A(t)x − ξ + η〉 +
1
2
(a+(t) + a−(t) − b+(t) − b−(t)).

Given equality 〈ψ(t), A(t)x〉 = 〈A∗(t)ψ(t), x〉, the problem (7), (8) can be written
as follows

ż = −a(t)u + b(t)v, |u| ≤ 1, |v| ≤ 1, min
i∈I

|z(p) − iα| ≤ ε.

Here, the terminal condition can also be written as

z(p) ∈
⋃

i∈I

[iα − ε, iα + ε],

where set from the right side of inclusion is the union of an infinite number of
disjoint segments.

4 Problem Statement

The motion of z ∈ IR occurs according to the rule

ż = −a(t)u + b(t)v, |u| ≤ 1, |v| ≤ 1, t ≤ p. (10)

For the completeness of the exposition we assume that the functions a(t) ≥ 0
and b(t) ≥ 0 are summable on each segment of the semiaxis (−∞, p].

The numbers α, ε ∈ IR are given such that 0 ≤ 2ε < α. The goal of the
first player, which chooses the control u, is to lead point z at time moment p to
terminal set Z:

z(p) ∈ Z =
⋃

i∈I

[iα − ε, iα + ε]. (11)



600 I. V. Izmest’ev and V. I. Ukhobotov

The goal of the second player, which chooses the control v, is the opposite.
Admissible controls of players are arbitrary function, which satisfy

inequalities
|u(t, z)| ≤ 1, |v(t, z)| ≤ 1, t ≤ p, z ∈ IR. (12)

Fix the initial state t0 < p, z(t0) ∈ IR and the time moment t0 < t∗ ≤ p.
Take partition

ω : t0 < t1 < . . . < ti < ti+1 < . . . < tk < tk+1 = t∗

with diameter d(ω) = max(ti+1 − ti), i = 0, k. Construct polygonal line for
Eq. (10)

zω(t) = zω(ti) −
(∫ t

ti

a(r)dr

)
u(ti, zω(ti)) +

(∫ t

ti

b(r)dr

)
v(ti, zω(ti)) (13)

for ti < t ≤ ti+1. Here, zω(t0) = z(t0).
It can be shown that

|zω(τ) − zω(t)| ≤
∫ τ

t

(a(r) + b(r))dr for t0 ≤ t < τ ≤ t∗.

This equality and absolute continuity theorem on the Lebesgue integral [4, p. 282]
imply that the family of these polygonal line (13), which are determined on the
segment [t0, t∗], is uniformly bounded and equicontinuous [11, p. 56]. By Arzela’s
theorem [4, p. 104], from any sequence of the polygonal lines (13) we can select
a subsequence zωm

(t) with diameter d(ωm) → 0 that converges uniformly on the
segment [t0, t∗] to some function z(t).

The motion of the system z(t) realized with admissible controls (12) from the
initial state z(t0) is defined as any uniform limit of the sequence of the polygonal
lines (13), for which diameters of partition tend to zero.

5 Necessary and Sufficient Conditions of Termination
in a Single-Type Problem

Define function
f(t) =

∫ p

t

(a(r) − b(r))dr

for t ≤ p and denote

q1 = inf{t < p : ε + f(τ) < α − ε − f(τ) for all t < τ ≤ p},

q2 = inf{t < p : 0 ≤ ε + f(τ) for all t < τ ≤ p}.

Define set W (t) for t ≤ p as follows:

W (t) =

⎧
⎨

⎩

⋃
i∈I [iα − ε − f(t), iα + ε + f(t)] for max(q1, q2) ≤ t ≤ p,

IR for t < q1, q2 < q1
∅ for t < q2, q1 < q2.

Here, ∅ denotes empty set.
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5.1 Solution of Pursuit Problem

We show that if z(t0) ∈ W (t0), then there is a control of the first player, which,
with any admissible control of the second player, guarantees inclusion z(p) ∈ Z
for any realized motion z(t).

Case 1. Let max(q1, q2) ≤ t0 ≤ p, and the inclusion

z(t0) ∈ [iα − ε − f(t0), iα + ε + f(t0)]

holds for some i ∈ I.
Consider the differential game (10) with the terminal condition

|z(p)| ≤ ε, ε ≥ 0. (14)

For this problem, the following lemma is performed.

Lemma 1 ([10]). Let the initial state t0, z(t0) be such that

q2 ≤ t0 ≤ p and |z(t0)| ≤ ε + f(t0).

Then the control of the first player u(t, z) = sign z with any admissible control
of the second player guarantees the fulfilment of inequality

|z(τ)| ≤ ε + f(τ), t < τ ≤ p

for any realized motion z(t).

Now we consider the case when the terminal condition in the differential
game (10) has the form

iα − ε ≤ z(p) ≤ iα + ε (15)

for some i ∈ I.
Let’s change the variable

z∗ = z − iα.

Then (15) takes the form
|z∗(p)| ≤ ε.

Thus, in the new coordinates we obtain the differential game (10), (14).
Making the inverse change of variables, from Lemma1 we obtain the following

necessary and sufficient conditions of termination in the differential game (10),
(15)

q2 ≤ t0 ≤ p and iα − ε − f(t0) ≤ z(t0) ≤ iα + ε + f(t0),

and optimal control of the first player takes the form

u(t, z) = sign (z − iα) . (16)

The number i ∈ I in formula (16) can be calculated as a solution of the mini-
mization problem min

i∈I
|z − iα|.
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Case 2. Let t0 < q1 and q2 < q1. According to the definition of q1, equality

ε + f(q1) = α − ε − f(q1),

holds, and, therefore,

iα + ε + f(q1) = (i + 1)α − ε − f(q1)

holds for any i ∈ I. Thus, for any control of players on segment [t0, q1], inclusion

z(q1) ∈ [iα − ε − f(q1), iα + ε + f(q1)]

holds for some i ∈ I. From here we fall into the condition of case 1.

5.2 Solution of Evasion Problem

We show that if z(t0) /∈ W (t0), then there is a second player control, which, with
any admissible control of the first player, guarantees inclusion z(p) /∈ Z for any
realized motion z(t).

Case 1. Let max(q1, q2) ≤ t0 ≤ p, and inequalities

iα + ε + f(t0) < z(t0) < (i + 1)α − ε − f(t0) (17)

are fulfilled for some i ∈ I.
For ε1 > 0 we denote

t(ε1) = inf{t < p : ε1 > f(τ) for all t < τ ≤ p}.

Lemma 2 ([13]). Let the second player chooses control v(t, z) = −sign z. Then
for any motion z(t) and for any numbers t(ε1) ≤ t∗ < t∗ ≤ p, the following
condition is satisfied:

if |z(t∗)| < ε1 − f(t∗), then |z(t∗)| < ε1 − f(t∗).

Further, by making the change of variable

z∗ = z − (i + 0.5)α,

rewrite (17) as follows

|z∗(t0)| < 0.5α − ε − f(t0).

Note that for ε1 = 0.5α − ε > 0 the definitions of q1 and t(ε1) are the same.
Using Lemma 2 and the inverse change of variables, we obtain that the control
of the second player

v(t, z) = −sign (z − (i + 0.5)α) (18)
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guarantees fulfilment of inequalities iα+ ε < z(p) < (i+1)α− ε. Thus, inclusion
(11) is not fulfilled.

Case 2. Let t0 < q2 and q1 < q2. According to the definition of q2, there is time
moment q1 < t∗ < q2 such that

ε + f(τ) < 0

for all t∗ ≤ τ < q2. Thus, for any player controls on segment [t0, t∗], inequalities

iα + ε + f(t∗) < z(t∗) < (i + 1)α − ε − f(t∗)

are satisfied for some i ∈ I. Further proof is similar to case 1.

6 Example

Let’s return to the introductory example. Given the form of the matrix (5), write
down the system of equations (9)

ψ̇1 = 0, ψ̇2 = −ψ1 + a1ψ2 − a1ψ4, ψ̇3 = 0, ψ̇4 = −a2ψ2 − ψ3 + a3ψ4

with initial conditions

ψ1(p) = 1, ψ2(p) = ψ3(p) = ψ4(p) = 0.

Hence, ψ1(t) = 1, ψ3(t) = 0. Therefore,

ψ̇2 = a1ψ2 − a1ψ4 − 1, ψ̇4 = −a2ψ2 + a3ψ4. (19)

Since the numbers ai > 0, i = 1, 2, 3, then the characteristic equation
∣
∣
∣
∣
a1 − λ −a1

−a2 a3 − λ

∣
∣
∣
∣ = (λ − a1)(λ − a3) − a1a2 = 0

has two real roots

λ1,2 =
(a1 + a3) ± √

(a1 − a3)2 + 4a1a2

2
.

Then the general solution of system (19) takes the following form:

ψ2(t) = c1a1e
λ1t + c2a1e

λ2t − a3

a1(a3 − a2)
,

ψ4(t) = c1(a1 − λ1)eλ1t + c2(a1 − λ2)eλ2t − a2

a1(a3 − a2)
.

Note that a3 > a2. Assume ci = βie
−λip, i = 1, 2. From condition ψ2(p) =

ψ4(p) = 0 we obtain the equations for calculating the numbers βi:

β1 + β2 =
a3

a2
1(a3 − a2)

, λ1β1 + λ2β2 =
1
a1

.
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Thus,

ψ1(t) = 1, ψ2(t) = β1a1e
−(p−t)λ1 + β2a1e

−(p−t)λ2 − a3

a1(a3 − a2)
, ψ3(t) = 0,

ψ4(t) = β1(a1 − λ1)e−(p−t)λ1 + β2(a1 − λ2)e−(p−t)λ2 − a2

a1(a3 − a2)
. (20)

Formulas (6) imply that the sets W and F are symmetric in the example.
Using this, it can be shown that

a+(t) = −a−(t), b+(t) = −b−(t) for all t ≤ p. (21)

Therefore,

a(t) = max
ξ

〈ψ(t), ξ〉, ξ ∈ W ; b(t) = max
η

〈ψ(t), η〉, η ∈ F.

These formulas and (6) imply that

〈ψ(t), ξ〉 = γ(−ψ2(t) + ψ4(t))w1, a(t) = γw0
1 |ψ4(t) − ψ2(t)| ;

〈ψ(t), η〉 = (−δ1ψ2(t) + δ2ψ4(t))w2, b(t) = w0
2 |δ2ψ4(t) − δ1ψ2(t)| .

Using (21), we obtain that the variable z takes the form

z = 〈ψ(t), x〉.

This equality and (20) imply that

z = x1 + (β1a1x2 + β1(a1 − λ1)x4)e−(p−t)λ1

+(β2a1x2 + β2(a1 − λ2)x4)e−(p−t)λ2 − a3x2 + a2x4

a1(a3 − a2)
.

Note that z and, consequently, the optimal controls of the players do not depend
on x3 = φ2, i.e. on the angle of rotation of the flywheel with the center at point B.

The optimal player controls (16) and (18) can be written as follows:

u(t, z) = sign(z − iπ),

where i ∈ I gives a minimum to the expression |z − iπ|;

v(t, z) = −sign(z − (i + 0.5)π),

where i ∈ I gives a minimum to the expression |z − (i + 0.5)π|.
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7 Conclusion

In this paper, we consider the game problem, in which the first player controls
the rod attached to the rotor of the electric motor. A rotating flywheel controlled
by the second player is attached to one end of the rod. The goal of the first player
is to bring the rotor to a vertical position at a given time. The goal of the second
player is the opposite. We consider this problem as an example of a more general
linear differential game with a one-dimensional aim, which is determined using
the modulus of a linear function of the phase vector. Using a linear change of
variables, this problem is reduced to a single-type one-dimensional differential
game. The terminal set in this game is the union of an infinite number of disjoint
segments. This terminal set has the meaning of ε-neighbourhood of the target
position of the system, taking into account the periodicity.

Based on our previous results, we find the necessary and sufficient conditions
of termination and constructed the corresponding controls of the players in the
single-type differential game. Then, using the obtained results, we write down
the optimal controls of the players in the original game problem of controlling
the rod.

The obtained results can find applications in the design of control algorithms
for complex oscillatory mechanical systems. For example, we can consider the
behaviour of some elements of such systems as realizations of uncontrolled distur-
bances, the values of which belong given sets. Mathematical modelling of control
in such problems based on an approach that prescribes disturbance behaviour
that degrades the quality indicator, in accordance with which control is mod-
elled. This approach leads to the consideration of the problem of constructing a
control in the framework of the theory of differential games.
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General Limit Value for Stationary
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Abstract. We analyze the uniform asymptotics of the equilibrium value
(as a function of initial state) in the case when its payoffs are averaged
with respect to a density that depends on some scale parameter and this
parameter tends to zero; for example, the Cesàro and Abel averages as
payoffs for the uniform and the exponential densities, respectively. We
also investigate the robustness of this asymptotics of the equilibrium
value with respect to the choice of distribution when its scale parameter
is small enough. We establish the class of densities such that the existence
of the asymptotics of the equilibrium value for some density guarantees
the same asymptotics for a piecewise-continuous density; in particular,
this class includes the uniform, exponential, and rational densities. By
reducing the general n-person dynamic games to mappings that assigns
to each payoff its corresponding equilibrium value, we gain an ability to
consider dynamic games in continuous and discrete time, both in deter-
ministic and stochastic settings.

Keywords: n-person game · Dynamic game · Uniform value ·
Stationary Nash equilibrium · Tauberian theorem · Weighted payoffs

Introduction

In this paper, we study the asymptotic properties of dynamic games’ equilibrium
value with the payoff taken in the form of an average with respect to the given
discount function (density) as the time scale decreases (the horizon gets larger
and larger).

In dynamic optimization, ever so often, the payoff can be averaged over time
with respect to a certain probability distribution. In this case, to a realization
of the process—some function t �→ z(t)—in addition to the running cost—a
function t �→ g(z(t))—one takes a payoff in the form of a certain average of the
running cost, ∫ ∞

0

ρ(t)g(z(t)) dt,

with respect to a certain discount function, a density ρ. Most often, when the
problem is considered on infinite horizon, the potential infinity of the interval is
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emulated by considering the problems where the payoff is taken over increasingly
large intervals [0, T ] or in view of increasingly small discount λ; then, the limits
of these problems are studied if such exist. Thus, effectively, one considers the
asymptotic behavior of the equilibrium value for the payoffs∫ ∞

0

λρ(λt)g(z(t)) dt (1)

as the scale parameter λ tends to zero, for instance, for the densities of the
uniform ρ(t) = 1[0,1](t) (Cesàro mean) and exponential ρ(t) = e−t (Abel mean)
distributions, respectively.

Existence of a limit of equilibrium value with respect to density means that
the equilibrium value is robust with respect to the scale parameter λ if this
parameter is sufficiently small. In particular, in the stochastic statement, this
limit (the asymptotic value) is customarily considered the equilibrium value
when the planning horizon is infinite [3]. In these statements, one could often
obtain, in addition, an asymptotically optimal strategy guaranteeing a payoff
that is close to the optimal one (uniform value)—for sufficiently small scale
parameter [18]. In this paper, we will have to assume the existence of the equi-
librium value asymptotics in the sense of the uniform approach. Unfortunately,
the existence of the uniform equilibrium in nonzero-sum stochastic games was
proven only in special cases, see [7,22]; a lonely example in differential games
was obtained in [12]. In the case of zero-sum games, the conditions of existence
of uniform strategy are known well enough, see, for example [2,4–6,15,16].

Assuming the existence of these limits of equilibrium values for a certain den-
sity family (for example, the Abel mean), we can consider the same game with
another density family (for example, the Cesàro mean). The theorems relating
the asymptotics of different densities with each other are called Tauberian the-
orems. For a variety of two-person zero-sum dynamic game and optimal control
statements, it is possible to obtain the following Tauberian theorem: the uni-
form convergence of the equilibrium value for the running costs averaged with
respect to the uniform and/or exponential distributions guarantees the uniform
convergence to the same limit for the other distribution [9,14,18,24]. Later, a
Tauberian theorem for all two-person zero-sum games satisfying the Dynamic
Programming Principle was proved [11]; the case of the stationary-like uniform
Nash equilibrium was considered in [12].

Then, robustness can be stated in a more broad form: find a sufficient condi-
tion on the distribution family �λ under which the uniform convergence of equi-
librium values with the payoffs averaged in view of Cesàro/Abel means (or in
view of some other density family) implies the uniform convergence to the same
limit of the equilibrium values for all distributions. For example, in paper [19],
for discrete-time control processes, it was proved that the uniform convergence of
the equilibrium values for Cesàro/Abel means automatically implies the uniform
convergence (to the same limit) of the equilibrium values in view of payoffs (1)
for arbitrary nonincreasing density ρ (since density could be rendered as a con-
vex combination of Cesàro means). This result may be significantly improved
upon, at the very least, for the control systems on compact invariant sets under
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nonexpansive dynamics assumption; however, without additional assumptions,
this may already fail on Markov discrete-time control processes (see [25]). In the
general case of zero-sum two-person game, the corresponding general Tauberian
theorem was proved as a consequence of the Dynamic Programming Principle
in [13]. In this article, we extend this result to the stationary-like uniform Nash
equilibrium.

We consider the uniform equilibrium values’ robustness under the choice of
the scale parameter and the choice of density. Previously, this robustness could be
verified with only the exponential or uniform densities as initial; the same result
was obtained in [8,19,21,25] for different zero-sum game conceptions. A part of
the reason for considering the uniform or exponential families first is the fact that
they are invariant under scaling; however, other densities were also considered
(see, for instance, [17]). In [13], it is stated that the polynomial densities of the
kind (A+Bt)γ can be considered as initial density. Here, we improve this result,
allowing one to consider a rational density. From the existence of a uniform
equilibrium value with respect to a rational, uniform, or exponential densities,
it follows that this value is the common uniform equilibrium value with respect
to a continuous density.

The structure of the paper is as follows. In Sect. 1, we give the general state-
ment and definitions, in particular, the definitions of uniform equilibrium value
and a stationary-like strategy profile; further, we describe and discuss the needed
assumptions. The main result, Theorem 1, the Tauberian theorem for the uni-
form equilibria with arbitrary densities, is formulated in Sect. 2, and an example
is presented. The next section is devoted to the proof of Theorem 1; this proof
is by reduction to [13, Theorem 6] in the statement from [12].

1 The Game Model

1.1 The Dynamics

Dynamic System. Assume the following items are given:

– a nonempty set Ω of states;
– the set of players I

�
= {1, 2, . . . , n};

– a nonempty set K of processes, which are maps from R+ to Ω;
– a running cost gi : Ω �→ [0, 1] for every player i ∈ I;

Assume that the map t �→ gi(z(t)) is Borel measurable for every process z ∈ K

and every player i ∈ I.
For every player i ∈ I, fix a nonempty strategy set Si. Let S

�
=

∏
i∈I Si be the

set of all strategy profiles. For each ω ∈ Ω, each strategy profile s ∈ S generates
a unique process z[ω, s] ∈ K.

Let s−i �
= (s1, . . . , si−1, si+1, . . . , sn) for all i ∈ I and let s = (s1, . . . , sn) ∈

S; furthermore, for every s, ŝ ∈ S, set [ŝi, s−i] ≡ (s1, . . . , si−1, ŝi, si+1, . . . , sn),
[si, s−i] ≡ s for all i ∈ I.
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1.2 Densities and Weighted Payoffs

Let D be the set of all Borel measurable maps � : R+ → R+ such that

∫ ∞

0

�(t) dt = lim
T↑∞

∫ T

0

�(t) dt = 1.

The elements of D will be called densities.
For each density � ∈ D and each number r ∈ (0, 1), the quantile q[�](r) is

uniquely defined as the minimum root of

∫ q[�](r)

0

�(t) dt = r.

For a density � ∈ D and a positive T with the property
∫ ∞

T
�(t) dt > 0 and

them only, it is possible to introduce the density �T
shift by the following rule:

�T
shift(t) =

�(t + T )∫ ∞
T

�(t) dt
∀t ≥ 0.

For each density � ∈ D and arbitrary λ > 0, define the density �λ
scale by the rule

�λ
scale(t) = λ�(λt) ∀t ≥ 0.

To a density �, assign a payoff profile �[�] : K → R
n by the following rule:

�i[�](z)
�
=

∫ ∞

0

�(t)gi(z(t)) dt, ∀i ∈ I, z ∈ K.

1.3 On Accepted Value and Best-Reply Value

Let there be given a payoff profile c. Let all players pick a strategy profile s∗ ∈ S.
Then, each player must take the accepted value

V
i,�[ci](ω)

�
= ci

(
z[ω, s∗]

) ∀ω ∈ Ω.

However, each player could hope to come up with his own best-reply value

V
i,�[ci](ω)

�
= sup

si∈Si

ci
(
z[ω, si, s−i

∗ ]
) ∀ω ∈ Ω

assuming other players keep s∗.
Recall that a strategy profile s∗ ∈ Sn is a Nash equilibrium for a payoff c

with an initial state ω ∈ Ω if V
i,�[ci](ω) = ci(z[ω, s∗]) for all i ∈ I; moreover,

a strategy profile s∗ : R → S is a Nash ε-equilibrium for c with an initial state
ω ∈ Ω if V

i,�[ci](ω) ≤ ci(z[ω, s∗]) + ε for all i ∈ I. Thus, the best-reply value
and the accepted value coincide for each player in the case of Nash equilibrium,
and are ε-closed in the case of ε-Nash equilibrium.
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Usually, Nash equilibrium is defined only for the fixed initial state and fixed
payoff profile c. Nonetheless, in this article we deal with the asymptotics of the
equilibrium value (as a map from state space) for weighted payoff families (cλ)λ>0

as λ ↓ 0 for all initial states. These asymptotics are linked with the corresponding
Tauberian theorem, and these theorems have to consider the equilibrium value
for all initial states; in particular, for the simplest case—a control problem—we
have to require the uniform convergence, uniform on a given invariant set; other-
wise, see the corresponding counterexample in [20]. By this reason, we also have
to consider the uniform case, i.e., we assume that some strategy profile s∗ ∈ S is
a Nash ε-equilibrium for (cλ)λ>0 and all initial states ω ∈ Ω if λ is sufficiently
small. Here, we assume that s∗ is independent of the initial state ω and the
choice of λ. The first requirement is not essential; if we wanted it, we could con-
sider the sets of all functions s : Ω → Si as new sets Si. The second requirement
is important and essential, the uniform approach (see Introduction) is based on
the existence of a Nash equilibrium robust under the choice of sufficiently large
interval [0, T ] and/or of sufficiently small discount rate λ.

Definition 1. Let us say that a strategy profile s∗ ∈ S is a uniform Nash equi-
librium for the payoff profile family (cλ)λ>0 if the limit

lim
λ↓0

∣∣∣V i,�[ci
λ](ω) − ci

λ

(
z[ω, s∗]

)∣∣∣ = 0 ∀ω ∈ Ω, i ∈ I (2)

exists and is uniform in ω ∈ Ω.

Definition 2. Let us say that a function U∗ = (U1
∗ , . . . , Un

∗ ) : Ω → R
n is the

uniform equilibrium value of s∗ ∈ S for the payoff profile family (cλ)λ>0 as λ ↓ 0
if s∗ ∈ S is a uniform Nash equilibrium for this payoff family and the limit

lim
λ↓0

V
i,�[ci

λ](ω) = U i
∗(ω) ∀ω ∈ Ω

exists and is uniform in ω ∈ Ω for all i ∈ I.

It would be instructive to assume just (2), however, the author is unaware of
such a Tauberian theorem in game statements. Hereinafter we can assume the
existence of the uniform equilibrium value for a given payoff family. In Sect. 2,
we apply the Tauberian theorem proved in this paper to the uniform equilibrium
from [12].

1.4 Concatenations and Stationary-Like Strategies

We must also impose two conditions on strategies and processes. Similarly to [12],
for Nash equilibrium, consider merely stationary-like strategy profiles.

Definition 3. We will say that a strategy profile s∗ ∈ S is stationary-like if

z
[
z[ω, s∗](Δ), s∗

]
(t) = z[ω, s∗](t + Δ) ∀ω ∈ Ω,Δ, t ≥ 0. (3)
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Note that this condition on s∗ is very strong; on the other side, we will hope that
it could be weakened by the method of [10, Sect. 2], by applying multi-valued
strategies. For differential games, similar constructions were applied in [1,9].

For the second condition, we need the concatenation of processes. For all
τ ∈ R+, z′, z′′ ∈ K with the property z′(τ) = z′′(0) and them only, we define
their concatenation, a map from R+ to Ω, as follows:

(z′ 
τ z′′)(t)
�
=

{
z′(t), 0 ≤ t ≤ τ ;

z′′(t − τ), t > τ.
.

Recall the conditions of the Tauberian theorem for a most simple one-person
game, in particular, for a control problem. In [20], it was considered that the set
of processes was closed with respect to concatenation. Later (see [10, Sect. 7.2]), it
was shown that the restriction of an admissible process to a right-infinite interval
must also be an admissible process. Similarly to [12], we require these conditions
for the set of all processes generated by s∗ and for the set of all processes gener-
ated by (s−i

∗ , ŝi). We assume the following condition on a stationary-like strategy
profile s∗ ∈ S: for all i ∈ I, τ ∈ R,

{
z[ω, si, s−i

∗ ]
∣∣ si ∈ Si

}
=

{
ž 
τ z[ž(τ), ŝi, s−i

∗ ]
∣∣ ŝi, si ∈ Si, ž = z[ω, si, s−i

∗ ]
}
. (4)

This condition guarantees that every player i ∈ I could declare his strategy
stepwise for a time interval, not necessarily for the whole positive semiaxis, and
this stepwise declaration of Nash equilibrium would generate this Nash equi-
librium just as well. Condition (4) is sufficiently weak and it is similar to the
conditions of the Tauberian theorem [20], [10, (7.1)] for one-person game, and
condition [12, (5)]. This condition could also be relaxed in two ways. First, simi-
larly to [12, (4)], we could assume only the inclusion “⊂” instead of the equality
“=” in (4). Second, we could consider only natural τ in (4) for discrete-time
statements, i.e., each process z would satisfy z(n + r) = z(n) for natural n and
r ∈ (0, 1). These modifications will have required nothing more than additional
cumbersome references to proofs from [13]. The proof of the result below will be
much more simple.

2 Tauberian Theorem

Set the exponential and uniform density families as follows:

	λ(t) = λ · 1[0,1/λ](t), πλ(t) = λ · e−λt, ∀λ > 0, t ≥ 0.

A density � ∈ D is called rational if � is a nonnegative rational function.

Theorem 1. Let a stationary-like strategy profile s∗ ∈ S satisfy (4).
Then, for a given arbitrary function U∗ : Ω → R

n, the following conditions
are equivalent:

(c) for all piecewise continuous on (0,∞) densities μ ∈ D, U∗ is the uniform
equilibrium value of s∗ for the payoff profile family

(
�[μλ

scale]
)
λ>0

;



General Limit Value for Stationary Nash Equilibrium 613

(u) U∗ is the uniform equilibrium value of s∗ for the family
(
�[	λ]

)
λ>0

;
(e) U∗ is the uniform equilibrium value of s∗ for the family

(
�[πλ]

)
λ>0

;
(p) for a certain rational density ρ ∈ D, U∗ is the uniform equilibrium value of

s∗ for the payoff profile family
(
�[ρ1/λ

shift]
)
λ>0

;
(q) for all rational densities ρ ∈ D, U∗ is the uniform equilibrium value of s∗ for

the payoff profile family
(
�[ρ1/λ

shift]
)
λ>0

.

In [12] for uniform and exponential densities there was considered a uniform
stationary Nash equilibrium in a nonlinear modification of the Lanchester model
of competition of two firms (i = 1, 2) proposed in [23]. Let us extend this result
over all densities.

Example 1. For each density μ, consider the game

ẋ1 = u1

√
1 − x1 − u2

√
x1, ẋ2 = u2

√
1 − x2 − u1

√
x2, (5)

x1(0) = y∗1 > 0, x2(0) = y∗2 > 0, y∗1 + y∗2 = 1, u1, u2 ≥ 0, (6)

�i[μ](x1, x2, u1, u2)
�
=

∫ ∞

0

μ(t)
[
qixi(t) − 1

4
(ui(t))2

]
dt ∀i ∈ {1, 2}. (7)

Here xi is the market share of firm i, ui is advertising rate of firm i, qi is the unit
margin of firm i, and the payoff (7) is typical for Lanchester-type model with
constant potential market. It is easy to see that (6) guarantees x1(t)+x2(t) ≡ 1.

Fix a number Q ≥ 2
√

q1 + q2. Let S1 = S2 be the set of all bounded maps
R+×(0, 1) � (t, x) �→ s(t, x) ∈ [0, Q] such that (1) s(t, ·) are Lipschitz continuous
on any compact subset of (0, 1) for all t ≥ 0; (2) s(·, x) are Borel measurable for
all x ∈ (0, 1); (3) there exists a positive κ such that s(t, x) > κ if x < κ.

Paper [23] thoroughly investigated Nash equilibria of the game (5)–(7) with
exponential densities πr1 , πr2 ; thanks to [23, Theorem 5], the unique feedback
Nash equilibrium for this game is the following pair of stationary strategies:

ŝi
r1,r2

(xi) = 2ai

√
1 − xi, {i, j} = {1, 2}, (8)

where (a1, a2) is the unique positive solution of the system

airi + ai(ai + aj) = qi, {i, j} = {1, 2}.

Similarly [12], put Y0
�
= {(y1, y2) | y1 + y2 = 1, y1, y2 > 0}. Ω

�
= Y0 ×

[0, Q]2, K
�
= C(R+, Y0) × B(R+, [0, Q]2). Define the running cost gi(ω) =

1
2 + 1

2Q2

[
qiyi − 1

4 (ui)2
] ∈ (0, 1) for all initial data ω = (y1, y2, u1, u2). For each

ω = (y1∗, y2∗, u1, u2) ∈ Ω and strategy profile s = (s1, s2) ∈ S1 × S2 we set

z[ω, u](t) = (x1(t), x2(t), u1(t), u2(t)),

where (x1, x2) is the solution of (5) with the initial conditions (x1, x2)(0) =
(y1∗, y2∗) and controls u1(·) = s1(·, x1(·)), u2(·) = s2(·, x2(·)).
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Then we construct the basic statement of Sect. 1.
Let (b1, b2) be the unique positive solution of the system

bi(bi + bj) = qi, {i, j} = {1, 2}.

Define the strategy profile ŝ∗o = (ŝ1∗o, ŝ
2
∗o) by (8) with (a1, a2) = (b1, b2).

In [12] it was shown that the strategy profile ŝ∗o = (ŝ1∗o, ŝ
2
∗o), defined by

(8) with (a1, a2) = (b1, b2), is the uniform feedback Nash equilibrium for game
(5)–(7) with exponential density family (πλ)λ>0 (and, as consequence, uniform
density family (	λ)λ>0). Then, Theorem 1 guarantees that for all piecewise
continuous on (0,∞) densities μ ∈ D the strategy profile ŝ∗o = (ŝ1∗o, ŝ

2
∗o) is the

common uniform feedback Nash equilibrium for game (5)–(7) with the density
family μλ

scale.

3 The Proof of Theorem 1

The proof of this theorem will be reduced to [13, Theorem 6]. At the beginning,
we must verify the main conditions of [13, Theorem 6] for the accepted and best
reply values. In [12], it was proved that the maps c �→ V

i,�[c] and c �→ V
i,�[c] are

game value maps. Further, in the proof of [12, Theorem 1], the Dynamic Pro-
gramming Principle was established for these values with respect to exponential
and uniform densities. To apply [13, Theorem 6], we will only need to verify this
principle with respect to an arbitrary density.

Fix a density ρ ∈ D and some positive number T such that
∫ T

0
ρ(t) dt < 1.

Consider two payoff profiles: for all i ∈ I, z ∈ K,

c i,�[ρ](z)
�
=

∫ T

0

gi
(
z(t)

)
dt +

∫ ∞

T

ρ(t) dtV i,�
[
�i[ρT

shift]
]
(z(T )),

c i,�[ρ](z)
�
=

∫ T

0

gi
(
z(t)

)
dt +

∫ ∞

T

ρ(t) dtV i,�
[
�i[ρT

shift]
]
(z(T )).

We must prove that V
i,�

[
�i[ρ]

] ≡ V
i,�

[
c i,�

]
and V

i,�
[
�i[ρ]

] ≡ V
i,�

[
c i,�

]
.

Fix some initial data ω ∈ Ω; define z̄
�
= z[ω, s∗]. Then,

V
i,�

[
�i[ρ]

]
(ω) = �i[ρ]

[
z[ω, s∗]

]

=
∫ T

0

ρ(t)gi
(
z̄(t)

)
dt +

∫ ∞

0

ρ(t + T )gi
(
z̄(t + T )

)
dt

(3)
=

∫ T

0

gi
(
z̄(t)

)
dt +

∫ ∞

0

ρ(t + T )gi
(
z[z̄(T ), s∗](t)

)
dt

=
∫ T

0

gi(z̄(t)) dt +
∫ ∞

T

ρ(t) dt

∫ T

0

ρT
shift(t)g

i
(
z[z̄(T ), s∗](t)

)
dt

=
∫ T

0

gi(z[ω, s∗](t)) dt +
∫ ∞

T

ρ(t) dtV i,�
[
�i[ρT

shift]
]
(z[ω, s∗](T ))

= c i,�
(
z[ω, s∗]

)
= V

i,�
[
c i,�

]
(ω).
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For the best reply value, we also have

V
i,�

[
�i[ρ]

]
(ω) = sup

si∈Si

∫ ∞

0

ρ(t)gi(z[ω, si, s−i
∗ ](t)) dt

(4)
= sup

si,ŝi∈Si,ž
�
=z[ω,si,s−i

∗ ]

∫ ∞

0

ρ(t)gi
((

ž 
T z[ž(T ), ŝi, s−i
∗ ]

)
(t)

)
dt

= sup
si,ŝi∈Si,ž

�
=z[ω,si,s−i

∗ ]

[ ∫ T

0

ρ(t)gi(ž(t)) dt

+
∫ ∞

0

ρ(t + T )gi
(
z
[
ž(T ), ŝi, s−i

∗
]
(t)

)
dt

]

= sup
si∈Si,ž

�
=z[ω,si,s−i

∗ ]

[ ∫ T

0

ρ(t)gi(ž(t)) dt

+
∫ ∞

T

ρ(t) dt sup
ŝi∈Si

∫ T

0

ρT
shift(t)g

i
(
z
[
ž(T ), ŝi, s−i

∗
]
(t)

)
dt

]

= sup
si∈Si

[ ∫ T

0

ρ(t)gi(z[ω, si, s−i
∗ ](t)) dt

+
∫ ∞

T

ρ(t) dt V
i,�

[
�i[ρT

shift]
](

z[ω, si, s−i
∗ ](T )

)]

= sup
si∈Si

c i,�
(
z[ω, si, s−i

∗ ]
)

= V
i,�[c i,�](ω).

So, the accepted value and the best reply value satisfy the Dynamic Program-
ming Principle. Thus, we now have all the main conditions of [13, Theorem 6].

We prove Theorem 1 by the following scheme: (u) ⇔ (e), (c) ⇒ (e), (e) ⇒ (c),
(e) ⇒ (q), (q) ⇒ (p), (p) ⇒ (e).

(c) ⇔ (e). This implication is evident because (π1)λ
scale = πλ

scale and
(	1)λ

scale = 	λ
scale for all λ > 0.

(u) ⇔ (e). This implication was proved as [12, Theorem 1, (u) ⇔ (e)].
(u) ⇒ (c). Assume (e). Then, V

i,�
[
�i[πλ]

]
and V

i,�
[
�i[πλ]

]
uniformly on

Ω converge to U i
∗. Applying [13, Theorem 1, (e) ⇒ (c)] to V

i,�, we see that
V

i,�
[
�[μλ

scale]
]

uniformly on Ω converges to U i
∗ for all piecewise continuous on

(0,∞) densities μ ∈ D. Applying this implication to V
i,�, we obtain the same for

V
i,�

[
�[μλ

scale]
]
. Then, V

i,�
[
�i[μλ

scale]
] − V

i,�
[
�i[μλ

scale]
]

uniformly on Ω converges
to zero, s∗ is uniform Nash equilibrium, and U∗ is the uniform equilibrium value
of s∗ ∈ S for all families (μλ

scale)λ>0. So, (c) is proved.
(e) ⇒ (q). Assume (e). Fix a rational density ρ(t) = P (t)/Q(t). Clearly,

lim
t→∞ ρ(t) = lim

t→∞ P (t)/Q(t) = 0 + .
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Further, ρ(T ) and
∫ ∞

T
ρ(t)dt tend to 0 as T → ∞. Hence, d

dT

( ∫ ∞
T

ρ(t)dt
)

=
−ρ(T ) and, by the L’Hôpital rule, we have

lim
T↑∞

ρ(T )∫ T

0
ρ(t) dt

= lim
T↑∞

dρ(T )
dTρ(T )

= lim
T↑∞

[ dP (T )
dT P (T )

− dQ(T )
dT Q(T )

]
= 0. (9)

Moreover, we can choose some natural k and positive A and B such that, for all
positive λ and T ,

∫ ∞

T

ρ(t) dt = AT−k(1 + O(1/T )),

ρ(T ) = BT−k−1(1 + O(1/T )),

q[ρ](1 − λ) = (λ/A)− 1
k (1 + O(λ

1
k )),

ρ(q[ρ](1 − λ)) = Bλ
k+1

k (1 + O(λ
k+1

k )). (10)

Since ρ has a finite number of local maximums, we can assume that ρ is decreas-
ing on the positive semiaxis; otherwise, we can consider ρT

shift for a sufficiently
large T .

Also, note that existence of a uniform equilibrium value for the density fam-
ily (ρ1/λ

shift)λ>0 implies the same for the density family (ρq[ρ](1−λ)
shift )λ>0.

We again reduce the proof to a certain implication from [13]: to
[13, Theorem 6, (e) ⇒ (v)]. Condition (v) means the uniform on Ω conver-
gence of V

i,�
[
�i[νλ]

]
and V

i,�
[
�i[νλ] to U i

∗ with respect to an arbitrary density
family (νλ)λ>0 satisfying

lim
λ↓0

sup
t>0

νλ(t) = 0

sup
λ∈(0,1)

V
q[νλ](1−ε)
0 [νλ]q[νλ](1 − ε) < +∞, ∀ε ∈ (0, 1),

here V b
a [y] is the total variation of a function y in an interval [a, b).

So, we must require this condition with νλ = ρ
q[ρ](1−λ)
shift (λ > 0); now, since ρ

is decreasing, νλ(0) becomes the total variation of νλ in [0,∞), and it is sufficient
to require

lim
λ↓0

ρ
q[ρ](1−λ)
shift (0) = 0

sup
λ∈(0,1)

ρ
q[ρ](1−λ)
shift (0)q[ρ1/λ

shift](1 − ε) < +∞, ∀ε ∈ (0, 1),

i.e.,

lim
T↑∞

ρ(T )∫ ∞
T

ρ(t) dt
= 0,

sup
λ∈(0,1)

ρ(q[ρ](1 − λ))
λ

[
q[ρ](1 − λε) − q[ρ](1 − λ)

]
< +∞, ∀ε ∈ (0, 1).
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Note that the first part of this condition was proved in (9). With respect to the
second part of condition, we note that

lim
λ↑1

ρ(q[ρ](1 − λ))
λ

[
q[ρ](1 − λε) − q[ρ](1 − λ)

]
= ρ(0)q[ρ](1 − ε);

lim
λ↓0

ρ(q[ρ](1 − λ))
λ

[
q[ρ](1 − λε) − q[ρ](1 − λ)

]
= Bλ1/k

[(λε

A

)−1/k

−
( λ

A

)−1/k]

= BA1/k
(
ε−1/k − 1

)
.

By applying the continuity of ρ(q[ρ](1−λ))
λ

[
q[ρ](1−λε)−q[ρ](1−λ)

]
in λ, we have

verified the second part of the condition.
So, the condition [13, Theorem 6, (v)] is verified, and condition (q) is proved.
(q) ⇒ (p). This implication is clear.
(p) ⇒ (e). Assume (p). Fix a rational density μ(t) = P (t)/Q(t). We can

again assume that μ and −d lnμ(·)
dt is decreasing on the positive semiaxis. We can

also obtain (9) and (10) for the density μ. In particular, from (9), it follows that
ρT
shift(0) → 0 as T → ∞, i.e., 1

r μ(q[μ](1 − r)) → 0 as r ↓ 0. Since the mappings
q[μ](r) and μ(q[μ](1−r))/r are continuous in r, we find that, for every λ ≤ μ(0),
there exists a minimal number rλ such that μ(q[μ](1 − rλ)) = (1 − rλ)λ.

Set �λ
�
= μ

q[μ](1−rλ)
shift for arbitrary λ ≤ μ(0); further, �λ(0) = λ.

Again we reduce the proof to a certain implication from [13], namely, to
[13, Theorem 6, (∃) ⇒ (e)]. The condition (∃) means the existence of a density
family (�λ)λ>0 satisfying the following three properties:

1. for sufficiently small λ,

�λ(0) = λ ≥ �λ(t), ∀t ≥ 0; (11)

2. for all ε > 0, there exist δε ∈ (0, 1) and λε such that, for all positive λ < λε

and T ≤ δε/λ, we have

�λ(T ) ≥ λ(1 − ε); (12)

3. for a certain number r0 ∈ (0, 1), V [·] ≡ V
i,�

[
�i[·]] and V [·] ≡ V

i,�
[
�i[·]] satisfy

lim
λ↓0

sup
ω∈Ω

∣∣∣V [�λ](ω) − U∗(ω)
∣∣∣ = 0 (13)

lim
λ↓0

sup
T∈(0,q[�λ](r0)),ω∈Ω

∣∣∣V [(�λ)T
shift](ω) − U∗(ω)

∣∣∣ = 0. (14)

We claim that the family �λ = μ
q[μ](1−rλ)
shift satisfies all these assumptions

for �λ.
Indeed, since (�λ)T

shift ≡ μ
q[μ](1−λ)+T
shift , conditions (13), (14) follows from (p).

Next, (11) follows from construction of rλ and the monotonity of μ in t. So, we
only need to verify (12).
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Fix a positive ε and λ < μ(0). Consider an arbitrary positive T ≤ ε/2λ, and

set s
�
=

∫ T

0
�λ(t) dt ≤ T�λ(0) ≤ ε/2. From the chain

srλ =
∫ T

0

rλ�λ(t) dt =
∫ T+q[μ](1−rλ)

q[μ](1−rλ)

μ(t) dt =
∫ T+q[μ](1−rλ)

0

μ(t) dt − 1 + rλ,

we obtain T + q[μ](1 − rλ) = q[μ](1 − rλ + srλ). Then, we have

�λ(T )
�λ(0)

=
μ(q[μ](1 − rλ + srλ))

μ(q[μ](1 − rλ)
(9)
=

((1 − s)rλ)1+1/k(1 + O(r1/k
λ ))

r
1+1/k
λ (1 + O(r1/k

λ ))

= (1 − s)1+1/k(1 + O(r1/k
λ )) ≥ (1 − s)2(1 + O(r1/k

λ ))

So, we can choose a positive λ0 such that �λ(T )
�λ(0)

≥ 1 − 2s ≥ 1 − ε holds for all
positive λ ≤ λ0, T ≤ ε/λ, i.e., the assumption (12) has been verified. Then, we
have verified [13, (∃)] for the family �λ. Applying [13, Theorem 6, (∃) ⇒ (e)] for
V [·] ≡ V

i,�
[
�i[·]], V [·] ≡ V

i,�
[
�i[·]], we obtain condition (e).

The proof is completed.
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Abstract. The paper is concerned with the construction of open-loop
strategies for the n-person nonzero-sum differential game with multilevel
hierarchy. The dynamics of the first player (leader) is defined by its own
position and control. The player of further levels of hierarchy knows the
position and control of the players of the upper hierarchical levels. At
the same time the dynamics and payoff functional of the player do not
depend on the position and control of lower hierarchical levels.

We solve this problem with the help of consequent solutions of optimal
control problems for each player. Using the solution of Hamilton—Jacobi
equation and the results of optimal control theory we construct the open-
loop controls of the players. The specifics of this problem is the construc-
tion of solution for the Hamilton—Jacobi equation with the Hamiltonian
discontinuous w.r.t. phase variable. In this case we use the notion of
multivalued solution proposed by Subbotin. We show that the open-loop
controls provide a Nash equilibrium in the differential game with multi-
level hierarchy and the set of payoffs of the players is described by the
multivalued solution of the corresponding Hamilton—Jacobi equation.

Keywords: Discontinuous Hamilton—Jacobi equations ·
Nonzero-sum differential game · Nash equilibrium

1 Introduction

The paper is concerned with a construction of a program equilibrium for n-person
nonzero-sum differential game with multilevel hierarchy. Under the hierarchical
differential game we consider the following differential game: the k-th player is a
leader for the i-th player, when i = k +1, . . . , n and is a follower for i- th player,
if i = 1, . . . , k − 1. Therefore the first player is the leader for all other players.
Such games are investigated earlier in the case of linear dynamics and quadratic
payoffs [1,2].

We construct the open-loop strategies of the players using the approach based
on the solution of the system of Hamilton—Jacobi equations. This approach was
c© Springer Nature Switzerland AG 2019
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developed in [3–5], where the solution of the system of Hamilton—Jacobi equa-
tions is assumed to be smooth. However, in the general case the solution of the
system of Hamilton—Jacobi equations belongs to the class of multivalued maps
[6]. The particular cases of nonzero-sum differential games with continuous solu-
tion of the corresponding system of Hamilton—Jacobi equations are investigated
in [7,8]. In these works the dynamics of the players is described by simple motions
of IR. We consider the n-person nonzero-sum differential game in the space of
dimension n. It is assumed that the differential game is composed by n optimal
control problems for every player. The k-th player maximizes own payoff knowing
the optimal trajectories and optimal controls of k − 1 players. Thus, the corre-
sponding system of Hamilton—Jacobi equations has a hierarchical structure.

The paper is organized as follows: Sect. 2 is concerned with the statement of
the problem; in Sect. 3 we solve the optimal control problem for the first player
(leader) and construct an open-loop optimal control; in Sect. 4 we solve the
optimal control problem for other players and construct their open-loop optimal
controls; in Sect. 5 we design a Nash equilibrium;in Sect. 6 we construct the values
of the players on the base of a solution for a system of the Hamilton—Jacobi
equations.

2 Statement

Let us consider an n-person nonzero-sum differential game with the dynamics
given by

ẋ1 = f1(t, x1, u), x1(t0) = x0
1, u ∈ U, (1)

ẋk = fk(t, x1, . . . , xk, u, v2, . . . , vk), xk(t0) = x0
k, vk ∈ Vk, k = 2, . . . , n. (2)

Here t ∈ [0, T ], x = (x1, . . . , xn) ∈ IRn, U, Vk, k = 2, . . . , n are compact subsets
of IR. Denote the set of admissible controls of the leader by Ũ :

Ũ = {u : [t0, T ] → U : u is a measurable function}, (3)

and the set of admissible controls of the k-th player by Ṽk:

Ṽk = {v : [t0, T ] → Vk : v is a measurable function}, k = 2, . . . ,n. (4)

The objective function of the first player is

I1(t0, x0
1;u(·)) = σ1(x1(T )) +

T∫

t0

g1(t, x1(t), u(t))dt → max
u(·)∈Ũ

,

whereas the k-th player aims to maximize

Ik(t0, x0
1, . . . , x

0
k;u(·), v2(·), . . . , vk(·)) = σk(x1(T ), . . . , xk(T ))

+

T∫

t0

gk(t, x1(t), . . . , xk(t), u(t), v2(t), . . . , vk(t))dt → max
vk(·)∈Ṽk

.
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Let us stress that the dynamics and payoff functional of the leader do not
depend of the actions of the followers. Hence, the leader solves the optimal
control problem. The dynamics and payoff functional of the k-th player depends
on the controls of the leader and k − 1 players of previous levels of hierarchy.
Therefore, we solve the optimal control problem for each player consequently,
substituting the known control u(·) of the leader and vi(·), i = 2, . . . , k − 1 of
(k − 1) players to dynamics and payoff functional of the k-th player.

We denote by symbol yk the vector (x1, . . . , xk) ∈ IRk and by symbol y0
k the

vector (x0
1, . . . , x

0
k) ∈ IRk, k = 1, . . . , n.

We assume that

A1 the function f1 : [0, T ]× IR×U → IR has continuous partial derivatives ∂f1
∂t ,

∂f1
∂x1

satisfying the sublinear condition w.r.t. x1.
A2 the function σ1 : IR → IR is differentiable, the function g1 : [0, T ] × IR ×

U → IR has continuous partial derivatives ∂g1
∂t , ∂g1

∂x1
satisfying the sublinear

condition w.r.t. x1 and the set (f1(t, x1, U), g1(t, x1, U)) is convex for any
(t, x1).

A3 the function fk : [0, T ]× IRk ×U ×V2 × . . .×Vk → IR has continuous partial
derivatives ∂fk

∂t , ∂fk

∂xi
, i = 1, . . . , k satisfying the sublinear condition w.r.t. yk,

k = 2, . . . , n.
A4 the function σk : IRk → IR is differentiable, function gk has con-

tinuous partial derivatives ∂gk

∂t , ∂gk

∂xi
, i = 1, . . . , k satisfying the sublin-

ear condition w.r.t. yk and for k = 2, . . . , n, for any (t, yk) the set
(fk(t, yk, U, V2, . . . , Vk), gk(t, yk, U, V2, . . . , Vk)) is strictly convex.

From assumptions A2, A4 (the convexity of vectogram) and continuity g1, gk

it follows that we can use max instead of sup for I1, Ik, k = 2, . . . , n [9].

3 Optimal Control Problem for the Leader

In this section we construct the open-loop control for the first player, based on
the solution of the Hamilton—Jacobi equation.

Let us consider a map

ϕ1 : [t0, T ] × IR → IR,

defined by
ϕ1(t0, x0

1) = max
u(·)∈Ũ

I1(t0, x0
1;u(·)),

where Ũ is given by (3). The map ϕ1 is called the value function of the first
player. Notice that dynamics (1) and the payoff functional I1 do not depend on
xi, i = 2, . . . , k. Thus ∂ϕ1

∂xi
= 0, i = 2, . . . , k.

We introduce the Hamiltonian for problem (1), (3) with functional I1:

H1(t, x1, p) = max
u∈U

[f1(t, x1, u)p + g1(t, x1, u)]

= f1(t, x1, u
∗(t, x1, p))p + g1(t, x1, u

∗(t, x1, p)), (5)
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where p = ∂ϕ1
∂x1

, u∗ : [0, T ] × IR × IR → U satisfies the condition

u∗(t, x1, p) ∈ arg max
u∈U

{f1(t, x1, u)p + g1(t, x1, u)}. (6)

Since Measurable Maximum theorem and conditions A1, A2 hold a function
u∗ : [0, T ] × IR × IR → U is measurable.

It is known [10] that the value function ϕ1 is the unique minimax/viscosity
solution of Cauchy problem

∂ϕ1(t, x1)
∂t

+ H1(t, x1,Dx1ϕ1(t, x1)) = 0, ϕ1(T, x1) = σ1(x1), (7)

where H1 is given by (5).
We construct the open-loop control with the help of Cauchy method of char-

acteristics [11]. We consider the characteristic system for Bellman equation (7)
of the form:

˙̃x1 =
∂H1(t, x̃1, s̃)

∂s̃
, ˙̃s = −∂H1(t, x̃1, s̃)

∂x̃1
, ˙̃z =

∂H1(t, x̃1, s̃)
∂s̃

s̃ − H1(t, x̃1, s̃)

with a boundary condition

x̃1(T, ξ1) = ξ1, s̃(T, ξ1) = Dx1σ1(ξ1), z̃(T, ξ1) = σ1(ξ1), ξ1 ∈ IR.

The solution (x̃1(·), s̃(·), z̃(·)) is the unique and extendable on time interval [0, T ].
Let us introduce the mapping

(t0, x0
1) → ξ(t0, x0

1) = {ξ1 ∈ IR : x̃1(t0, ξ1) = x0
1, x̃1(T, ξ1) = ξ1,

s̃(T, ξ1) = Dx1σ1(ξ1), z̃(T, ξ1) = σ1(ξ1), z̃(t0, ξ1) = ϕ1(t0, x0
1)} (8)

It follows from [9,11] that for any point (t0, x0
1) ∈ [0, T ] × IR assumption

A1 guarantees the existence of optimal open-loop control u0(·;x0
1) satisfying the

relation
max

u(·)∈Ũ
I1(t0, x0

1;u(·)) = I1(t0, x0
1;u

0(·;x0
1)) = ϕ1(t0, x0

1).

Pontryagin’s Maximum principle implies that the optimal open-loop control
u0(·; t0, x0

1) of the first player for the initial point (t0, x0
1) ∈ [0, T ] × IR is defined

by the rule ∀t ∈ [t0, T ]

u0(t;x0
1) ∈ arg max

u∈U
[s̃(t, ξ01)f1(t, x̃1(t, ξ01), u) + g1(t, x̃1(t, ξ01), u)]. (9)

Here (x̃1(·), s̃(·), z̃(·)) is the solution of the characteristic system for Cauchy
problem (7) for any t ∈ [t0, T ], for any ξ01 ∈ ξ(t0, x0

1) defined by (8).
Denote by U0(t0, x0

1) the set of optimal open-loop controls u(·) ∈ Ũ for
problem (1) with initial condition x1(t0) = x0

1 and payoff functional I1. Designate
by X1(t0, x0

1) the set of trajectories x1(·;x0
1) : [t0, T ] → IR such that

ẋ1(t) = f1(t, x1(t), u(t)), x1(t0) = x0
1, u(·) ∈ U0(t0, x0

1).
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Assumptions A1, A2 imply, that for any compact D0 ⊂ [0, T ]× IR and (t0, x0
1) ∈

D0, we have that, for some constants M0, M1 > 0,

|x1(t)| ≤ M0, |ẋ1(t)| ≤ M1, t ∈ [t0, T ].

Thus, for each (t0, x0
1), the set X1(t0, x0

1) is a compact in C[t0, T ].

4 Optimal Control Problem for the k-th Player

In the previous section we describe the optimal trajectories and optimal control
of the first player. Now we shall construct the open-loop control for the k-th
player. We suppose that we know optimal trajectory xi(·; y0

i ), i = 1, . . . , k − 1
and optimal controls u0, v0

2 , . . . , v
0
k−1 of k−1 players. Further in the paper we fix

the initial point yk(t0) = y0
k for optimal trajectories and controls of the players.

Define

f̃k(t, xk, vk) = fk(t, yk−1(t), xk, u0(t), v0
2(t), . . . , v

0
k−1(t), vk),

g̃k(t, xk, vk) = gk(t, yk−1(t), xk, u0(t), v0
2(t), . . . , v

0
k−1(t), vk), k = 2, . . . , n.

Designate by Yk(t0, y0
k) the set of optimal trajectories yk(·; y0

k) : [t0, T ] → IRk for
problems (2), (4) with payoff functionals I1, . . . , Ik.

Let us consider auxiliary control problem for the k-th player:

ẋk = f̃k(t, xk, vk), xk(t0) = x0
k. (10)

Put

hk(t, xk, qk,k, vk; yk−1(·; y0
k−1)) = f̃k(t, xk, vk)qk,k + g̃k(t, xk, vk).

Here qk,k ∈ IR. The Hamiltonian for control problem with dynamics (10) and
functional Ik under the fixed trajectory yk−1(·; y0

k−1) ∈ Yk−1(t0, y0
k−1) and known

optimal controls u0, v0
2 , . . . , v

0
k−1 has the form

Hk(t, xk, qk,k; yk−1(·; y0
k−1)) = max

vk∈Vk

hk(t, xk, qk,k, vk; yk−1(·; y0
k−1)) = (11)

f̃k(t, xk, v∗
k(t, xk, qk,k; y0

k−1))qk,k + g̃k(t, xk, v∗
k(t, xk, qk,k; yk−1(·; y0

k−1)),

where

v∗
k(t, xk, qk,k; yk−1(·; y0

k−1)) ∈ arg max
vk∈Vk

h(t, xk, qk,k, vk; yk−1(·; y0
k−1)). (12)

Since Measurable Maximum theorem and condition A3, A4 hold function
(t, xk, qk,k) → v∗

k(t, xk, qk,k; y0
k−1)) is measurable. From assumptions A3, A4 we

obtain, that for given yk−1(·; y0
k−1) ∈ Yk−1(t0, y0

i ) and fixed u0(·;x0
1), v0

i (·; y0
i ),

i = 2, . . . , k − 1 the Hamiltonian Hk is Lipschitz continuous function w.r.t.
xk, qk,k.

Let us consider a map

ϕk(·, ·; yk−1(·; y0
k−1)) : [t0, T ] × IR → IR,
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defined by

ϕk(t0, x0
k; yk−1(·; y0

k−1)) = max
vk(·)∈Ṽk

Ik(t0, y0
k;u0(·), v0

2(·), . . . , v0k−1(·), vk(·)),

where Ṽk is given by (4), u0(·;x0
1) ∈ U0(t0;x0

1), v0
i (·; y0

i ), i = 2, . . . , k − 1 are
optimal open-loop controls for previous k − 1 players. The map ϕk is the value
function of the k-th player under the fixed trajectory yk−1(·; y0

k−1) generated by
the control u0(·;x0

1), v0
i (·; y0

i ), i = 2, . . . , k − 1. It is known [10] that the value
function ϕk is the unique minimax/viscosity solution of Cauchy problem

∂ϕk

∂t
+ Hk(t, xk,Dxk

ϕk; yk−1(·; y0
k−1)) = 0, (13)

ϕk(T, xk; yk−1(·; y0
k−1)) = σk(yk−1(T ; y0

k−1), xk).

We construct the open-loop control in the same way as in the previous section.
The characteristic system for Cauchy problem (13) has the form

˙̃xk =
∂Hk(t, x̃k, s̃; yk−1(·; y0

k−1))
∂s̃

, ˙̃s =
∂Hk(t, x̃k, s̃; yk−1(·; y0

k−1))
∂x̃k

,

˙̃z = 〈∂Hk(t, x̃k, s̃; yk−1(·; y0
k−1))

∂s̃
, s̃〉 − Hk(t, x̃k, s̃; yk−1(·; y0

k−1))

with a boundary condition

x̃k(T, ξk) = ξk, s̃(T, ξk) = Dxk
σk(yk−1(T, y0

k−1), ξk),

z̃(T, ξk) = σk(yk−1(T, y0
k−1), ξk), ξk ∈ IR.

The solution (x̃k(·), s̃(·), z̃(·)) is the unique and extendable on time interval [0, T ].
Let us introduce the mapping

(t0, y0
k) → ξ(t0, x0

k; yk−1(·; y0
k−1)) = {ξk ∈ IR : x̃k(t0, ξk) = x0

k, x̃k(T, ξk) = ξk,

s̃(T, ξk) = Dxk
σk(yk−1(T, y0

k−1), ξk), (14)
z̃(T, ξk) = σk(yk−1(T, y0

k−1), ξk), z̃(t0, ξk) = ϕk(t0, x0
k; yk−1(·; y0

k−1))}
It follows from [9,11] that for any point (t0, y0

k) ∈ [0, T ] × IRk assumption A3
guarantees the existence of optimal open-loop control v0

k(·; y0
k) satisfying the

relation

max
vk(·)∈Ṽk

Ik(t0, y0
k;u0(·), v0

2(·), . . . , v0
k−1, vk)

= Ik(t0, y0
k;u0(·), v0

2(·), . . . , v0
k(·)) = ϕk(t0, x0

k; yk−1(·; y0
k−1)).

Pontryagin’s Maximum principle implies that the optimal open-loop control
v0

k(·; y0
k) of the player for the initial point (t0, y0

k) ∈ [0, T ] × IRk is defined by the
rule ∀t ∈ [t0, T ]

v0
k(t; yk−1(·; y0

k−1)) ∈ arg max
vk∈Vk

hk(t, x̃k(t, ξk), s̃(t, ξk), vk; yk−1(·; y0
k−1)),

∀ ξk ∈ ξ(t0, x0
k; yk−1(·; y0

k−1)). (15)

Here (x̃k(·), s̃(·), z̃(·)) is the solution of the characteristic system for problem
(13) for any t ∈ [t0, T ], ξ(t0, x0

k; yk−1(·; y0
k−1)) defined by (14).
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5 Design of a Nash Equilibrium

Further in the paper we show that (u∗, v∗
2 , . . . , v

∗
n) defined by formulas (9), (15)

provide a Nash equilibria. We consider the function x1(·) satisfies (1) with admis-
sible control u(·) ∈ Ũ and initial condition x1(t0) = x0

1; function x∗
1(·) satisfies

(1) with optimal control u∗(·) ∈ U0(t0, x0
1) and initial condition x∗

1(t0) = x0
1;

function ŷk(·) satisfies (2) with optimal controls u∗(·) ∈ U0(t0, x0
1), v∗

2(·) ∈
Ṽ2, . . . , v

∗
k−1(·) ∈ Ṽk−1, and admissible control vk(·) ∈ Ṽk, initial condition

ŷk(t0) = y0
k; function y∗

k(·) satisfies (2) with optimal controls u∗(·) ∈ U0(t0, x0
1),

v∗
2(·) ∈ Ṽ2, . . . , v

∗
k(·) ∈ Ṽk, k = 2, . . . , n and the initial condition y∗

k(t0) = y0
k;

Definition 1 [12]. We say that (u∗, v∗
2 , . . . , v

∗
n), where u∗ : [0, T ] → U and

v∗
k : [0, T ] → Vk, k = 2, . . . , n is an open-loop Nash equilibrium of (t0, x0) if for

any u(·) ∈ Ũ and vk(·) ∈ Ṽk, k = 2, . . . , n

σ1(x1(T )) +

T∫

t0

g1(t, x1(t), u(t))dt ≤ σ1(x∗
1(T )) +

T∫

t0

g1(t, x∗
1(t), u

∗(t))dt,

σk(ŷk(T )) +

T∫

t0

gk(t, ŷk(t), u∗(t), v∗
2(t), . . . , v

∗
k−1(t), vk(t))dt

≤ σk(y∗
k(T )) +

T∫

t0

gk(t, y∗
k(t), u∗(t), v∗

2(t), . . . , v
∗
k(t))dt, k = 2, . . . , n.

Since u∗ is an optimal control of problem (1) with functional I1, the first
inequality is valid. For the following inequalities we have

Ik(t0, y0
k;u∗(·), v∗

2(·), . . . , v∗
k−1(·), vk(·))

= σk(ŷk(T )) +

T∫

t0

gk(t, ŷk(t), u∗(t), v∗
2(t), . . . , v

∗
k−1(t), vk(t))dt

≤ max
vk(·)∈Ṽk

Ik(t0, y0
k;u∗(·), v∗

2(·), . . . , v∗
k−1(·), vk(·))

= σk(y∗
k(T )) +

T∫

t0

gk(t, y∗
k(t), u∗(t), v∗

2(t), . . . , v
∗
k(t))dt.

6 Values of the Players

In this section we shall construct the rewards of the players and connect them
with the system of Hamilton—Jacobi equations.
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6.1 System of Hamilton—Jacobi Equations

We shall construct the payoffs of the players. Put matrix Qk =⎛
⎜⎜⎝

p 0 . . . 0
q2,1 q2,2 . . . 0
. . . . . . . . . . . .
qk,1 qk,2 . . . qk,k

⎞
⎟⎟⎠, qi,j ∈ IR, k = 2, . . . , n, and denote

f̂i(t, yi, Qi) = fi(t, yi, u
∗(t, x1, p), v∗

2(t, y2, q2,2), . . . , v∗
i (t, yi, qi,i)).

Let us introduce the function

Hk(t, yk, Qk) = max
vk∈Vk

[f1(t, x1, u
∗(t, x1, p))qk,1

k−1∑

i=2

f̂i(t, yi, Qi)qk,i

+ fk(t, x, u∗(t, x1, p), v∗
2(t, y2, q2,2), . . . , v

∗
k−1(t, yk−1, qk−1,k−1), vk)qk,k

+ gk(t, x, u∗(t, x1, p), v∗
2(t, y2, q2,2), . . . , v

∗
k−1(t, yk−1, qk−1,k−1), vk)].

Here u∗ is defined by (6), v∗
i , i = 2, . . . , k, is defined by (12). From the properties

of minimax solution ϕk [11] for any (t, yk) ∈ [0, T ] × IRk the subdifferential
D−

x1
ϕ1(t, x1) 	= ∅, D−

xk
ϕk(t, xk; yk−1(·; y0

k−1)) 	= ∅, , k = 2, . . . , n. We substitute
any measurable selector ∂x1ϕ1 : [0, T ]×IR → IR of the map D−

x1
ϕ1 : [0, T ]×IR ⇒

IR, ∂xi
ϕi : [0, T ] × IRi → IR of the map D−

xi
ϕi : [0, T ] × IR ⇒ IR, i = 2, . . . , k − 1

to the matrix Qk instead of p, qi,j , i, j = 2, . . . , k − 1. Denote new matrix Qk by
symbol Q̄k. Further we shall consider the function Ĥk discontinuous w.r.t. yk−1:

Ĥk(t, yk, qk,1, . . . , qk,k) = Hk(t, yk, Q̄k) (16)

We note that function Ĥk defined by (16) is Lipschitz continuous w.r.t. q =
(qk,1, . . . , qk,k) ∈ IRk with Lipschitz constant λ(t, yk). The proof of this assertion
is given in [10].

Consider the discontinuous functions

Hk∗(t, yk, q) = lim
ε→0

inf
(τ,ξk)∈B(t,yk;ε)

Ĥk(τ, ξk, q),

H∗
k(t, yk, q) = lim

ε→0
sup

(τ,ξk)∈B(t,yk;ε)

Ĥk(τ, ξk, q).

Here symbol B(t, yk; ε) denotes the ball with the center at a point (t, yk) and
radius ε.

Lemma 1. Functions H∗
k , Hk∗ are Lipschitz continuous w.r.t. q with Lipschitz

constant λk(t, x).

The proof of lemma is the same as in the work [10].
We consider the Cauchy problems

∂Φk(t, yk)
∂t

+ Ĥk(t, yk,Dyk
Φk(t, yk)) = 0, k = 2, . . . , n, (17)
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with the boundary condition Φk(T, yk) = σk(yk). Here Ĥk is defined by (16). For
the Hamilton—Jacobi equation with discontinuous Hamiltonian A.I. Subbotin
proposed the notion of M-solution [13].

Let us consider the differential inclusion

(ẏk(t), ż(t)) ∈ Ek(t, yk, q) = {(ψ, g) ∈ IRk × IR : ψ = (ψ1, . . . , ψk), (18)

||ψ|| ≤ λk(t, x),
k∑

i=1

ψiqi − g ∈ [Hk∗(t, yk, q),H∗
k (t, yk, q)]}∀ q ∈ IRk.

Recall from [13] that the multivalued map (t, yk, q) ⇒ Ek(t, yk, q) ⊂ IRk × IR
is admissible.

Definition 2 [13]. Let W ⊂ [0, T ]× IRn × IR be a closed set. The set W is viable
w.r.t. differential inclusion (18), if, for any (t0, x0, z0) ∈ W , there exist τ > 0
and a trajectory (x(·), z(·)) of differential inclusion (18) such that (x(t0), z(t0)) =
(x0, z0), (t, x(t), z(t)) ∈ W , when t ∈ [0, τ ].

Definition 3 [13]. A multivalued map W : [0, T ] × IRk ⇒ IR is called an M-
solution of Hamilton—Jacobi equation (17), if the graph W is closed maximal
set and it is viable w.r.t. differential inclusion (18).

The M-solution for Cauchy problem is the M-solution for Hamilton—Jacobi
equation, satisfying the boundary condition W (T, x) = σ(x) for any x ∈ IRn.

6.2 Solution of the System of Hamilton—Jacobi Equations

A.I. Subbotin proved the following theorem [13].

Theorem 1. Let W be a closed set in [0, T ] × IRn × IR. Assume that W (t, x) =
{z ∈ IR : (t, x, z) ∈ W} 	= ∅ and

W∗(t, x) = inf
z∈W (t,x)

z, W ∗(t, x) = sup
z∈W (t,x)

z.

The map W is the M-solution of Eq. (17) iff epi W∗ and hypo W ∗ are the M-
solutions of Eq. (17).

Let us introduce the multivalued map

Φk(t0, y0
k) = cl

⋃
yk−1(·;y0

k−1)∈Yk−1(t0,y0
k−1)

{ϕk(t0, x0
k; yk−1(·; y0

k−1))}. (19)

Here symbol cl A denotes the closure of the set A. We note that the map Φk is
compact-valued by definition.

Theorem 2. The map Φk, k = 2, . . . , n, defined by (19), is the M-solution of
Eq. (17).
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Proof. We fix k. Put Φ∗
k(t, yk) = max

ρ∈Φk(t,yk)
ρ. We shall show that the hypograph

Φ∗
k is viable w.r.t. differential inclusion (18). Choose (t0, y0

k, z0) ∈ hypo Φ∗
k. There

exists an optimal trajectory ξ : [0, T ] → IRk of systems (1), (2) such that z0 ≤
ϕk(t0, x0

k; ξ1(·, x0
1), . . . , ξk−1(·, y0

k−1)), where ϕk is the value function of the k-th
player. From the choice of the point z0 and the dynamic programming principle
we get the following inequality

z0 ≤ ϕk(t0, x0
k; ξ1(·, x0

1), . . . , ξk−1(·, y0
k−1))

= ϕk(t, ξk(t); ξ1(·, x0
1), . . . , ξk−1(·, y0

k−1)) +

t∫

t0

gk(τ, ξ(τ, y0
k), u

∗(τ), v∗
2(τ), . . . , v

∗
k(τ))dτ.

Here optimal open-loop controls u∗(·), v∗
i (·), i = 2, . . . , k generates optimal tra-

jectories ξi(·, y0
i ), i = 1, . . . , k. Further, for any t ∈ [t0, T ], we have

z0 −
t∫

t0

gk(τ, ξ(τ, y0
k), u∗(τ), v∗

2(τ), . . . , v∗
k(τ))dτ

≤ ϕk(t, ξk(t); ξ1(·, x0
1), . . . , ξk−1(·, y0

k−1)).

Hence

z(t) = z0 −
t∫

t0

gk(τ, ξ(τ, y0
k), u∗(τ), v∗

2(τ), . . . , v∗
k(τ))dτ

≤ ϕk(t, ξk(t); ξ1(·, x0
1), . . . , ξk−1(·, y0

k−1)),

that is (t, ξ(t), z(t)) ∈ hypo ϕk and (ξ(·), z(·)) satisfies differential inclusion (18).
Hence, (t, ξ(t), z(t)) ∈ hypo Φ∗

k. Since Φ∗
k is upper semicontinuous function,

we see that hypo Φ∗
k is a closed set. Therefore hypo Φ∗

k is the M-solution of
equation (17).

We consider the case when z0 = Φ∗
k(t0, y0

k). Let us choose the sequence zj
0 →

z0 as j → ∞ and zj
0 < Φ∗

k(t0, y0
k). For each zj

0 the following inequality is valid:

zj
0 −

t∫

t0

gk(τ, ξj(·, y0
k), u∗j(τ), v∗j

2 (τ), . . . , v∗j
k (τ))dτ

≤ ϕk(t, ξj
k(t); ξj

1(·, x0
1), . . . , ξ

j
k−1(·, y0

k−1)).

Here ϕk(·, ·; ξj
1(·, x0

1), . . . , ξ
j
k−1(·, y0

k−1)) is the value function of the k-th player
when the previous players choose trajectories ξj

1(·, x0
1), . . . , ξ

j
k−1(·, y0

k−1).
The sets Yi(t0, y0

i ), i = 2, . . . , k, are compacts because there exist constants
M2, M3:

|ξi(t)| < M2, |ξ̇i(t)| ≤ M3, ∀ t ∈ [t0, T ], ∀ ξi(·, y0
i ) ∈ Yi(t0, y0

i ), i = 2, . . . , k.
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Since X1(t0, x0
1), Yi(t0, y0

i ), i = 2, . . . , k, are compacts and Arzela—Ascoli the-
orem hold, we obtain ξj(t) → ξ(t), as j → ∞. Besides ξ satisfies differential
inclusion (18). Hence,

lim
j→∞

[zj
0 −

t∫

t0

gk(τ, ξj(τ, y0
k), u∗j(τ), v∗j

2 (τ), . . . , v∗j
k (τ))dτ ]

≤ lim
j→∞

ϕk(t, ξj
k(t); ξj

1(·, x0
1), . . . , ξ

j
k−1(·, y0

k−1)),

z(t) = z0 −
t∫

t0

gk(τ, ξ(τ, y0
k), u∗(τ), v∗

2(τ), . . . , v∗
k(τ))dτ

≤ lim
j→∞

ϕk(t, ξj
k(t); ξj

1(·, x0
1), . . . , ξ

j
k−1(·, y0

k−1)) ≤ Φ∗
k(t0, y0

k).

The convergence u∗j → u∗, v∗j
i → v∗

i , i = 2, . . . , k is proved in the same way as
in work [14]. Therefore, (t, ξ(t), z(t)) ∈ hypo Φ∗

k.
Put Φ∗k(t, yk) = min

ρ∈Φ(t,yk)
ρ. Choose a point (t0, y0

k, z0) ∈ epi Φ∗k. Let tra-

jectory (ξ(·), ζ(·)) be a solution of differential inclusion (18) satisfying the ini-
tial condition ξ(t0) = y0

k, ζ(t0) = z0. We fix such optimal trajectory ξi(·, y0
i ),

i = 1, . . . , k − 1 and optimal controls u∗(·, x0
1), v∗

i (·; y0
i ), i = 2, . . . , k − 1, of

optimal control problem (1)–(4) with payoff functionals Ii, i = 1, . . . , k − 1 that
z0 ≥ ϕk(t, x0

k; ξ1(·;x0
1), . . . , ξk−1(·; y0

k−1)). For solution ξk(·) of control problem
(2), (4) with payoff functional Ik we have

ϕk(t, ξk(t); ξ1(·;x0
1), . . . , ξk−1(·; y0

k−1))

+

t∫

t0

gk(τ, ξ(τ ; y0
k), u∗(τ), v∗

2(τ), . . . , v∗
k−1(τ), vk(τ))dτ

≤ ϕk(t0, y0
k; ξ1(·;x0

1), . . . , ξk−1(·; y0
k−1)) ≤ z0, vk(·; y0

k) ∈ Ṽk.

Therefore

ϕk(t, ξk(t); ξ1(·;x0
1), . . . , ξk−1(·; y0

k−1))

≤ z0 −
t∫

t0

gk(τ, ξ(τ ; y0
k), u∗(τ), v∗

2(τ), . . . , v∗
k−1(τ), vk(τ)dτ = ζ(t).

This means that the trajectory (ξ(·), ζ(·)) lies in epigraph ϕk. Hence, (ξ(·), ζ(·))
lies in epigraph Φ∗k. Since the function Φ∗k is low semicontinuous, we see that
epi Φ∗k is a closed set and it is viable w.r.t. differential inclusion (18). Hence
epi Φ∗k is the M-solution of Eq. (17).
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Consider the case z0 = Φ∗k(t0, y0
k). Let us choose the sequence zj

0 → z0 as
j → ∞ and zj

0 > Φ∗k(t0, y0
k). For each zj

0 the following inequality is valid:

ϕk(t, ξj
k(t); ξj

1(·;x0
1), . . . , ξ

j
k−1(·; y0

k−1))

≤ zj
0 −

t∫

t0

gk(τ, ξj(τ ; y0
k), u∗j(τ), v∗j

2 (τ), . . . , v∗j
k−1(τ), vj

k(τ))dτ,

where ϕk(·, ·; ξj
1(·;x0

1), . . . , ξ
j
k−1(·; y0

k−1)) is the value function for the k-th player
under the fixed trajectories ξj

i (·; y0
i ), i = 1, . . . , k − 1 and optimal controls

u∗j(·), v∗j
2 (·; y0

2), . . . , v
∗j
k−1(·; y0

k−1). Consider

lim
j→∞

ϕk(t, ξj
k(t); ξj

1(·;x0
1), . . . , ξ

j
k−1(·; y0

k−1))

≤ lim
j→∞

zj
0 −

t∫

t0

gk(τ, ξj(τ ; y0
k), u∗j(τ), v∗j

2 (τ), . . . , v∗j
k−1(τ), vj

k(τ))dτ.

Hence,

Φ∗k(t, ξ(t)) ≤ z0 −
t∫

t0

g2(τ, ξ(τ ; y0
k), u∗(τ), v∗

2(τ), . . . , v∗
k−1(τ), vk(τ))dτ.

Here ξj → ξ as j → ∞. The convergence u∗j → u∗, v∗j
i → v∗

i , i = 2, . . . , k is
proved in the same way as in work [14]. From Theorem 1 we get that Φk is the
M-solution of Eq. (17).

Note that epi Φ∗k(T, yk)
⋂

hypo Φ∗
k(T, yk) = {σk(yk)} = Φk(T, yk), yk ∈ IRk,

k = 2, . . . , n.
Based on these results we introduce the notion of solution for the system of

Hamilton—Jacobi equations.

Definition 4. The map (ϕ1, Φ2, . . . , Φn), ϕ1 : [0, T ] × IR → IR, Φk : [0, T ] ×
IRk ⇒ IR, k = 2, . . . , n is said to be the generalized solution for the system of
Hamilton—Jacobi equations (7), (17), if ϕ1 is the minimax/viscosity solution of
(7) and Φk is the M-solution of (17).

6.3 Link of the Solution of the System for Hamilton—Jacobi
Equations with Nash Equilibria

Corollary 1. Let (ϕ1, Φ2, . . . , Φn) is the solution of the system of Hamilton—
Jacobi equations (7), (17). Then for any point (t0, y0

k), βk ∈ Φk(t0, y0
k), k =

2, . . . , n there exists a Nash equilibrium strategies (u∗, v∗
2 , . . . , v

∗
n), where u∗ is

defined by (9), v∗
k, k = 2, . . . , n, is defined by (15). The payoffs of players equal

(ϕ1(t0, x0
1), β2, . . . , βn).
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Indeed, the control u∗ defined by (9) maximizes the functional I1. Hence the
payoff of the first player equals

max
u(·)∈Ũ

I1(t0, x0
1;u(·)) = I1(t0, x0

1;u
∗(·)) = ϕ1(t0, x0

1).

Let βk ∈ Φk(t0, y0
k). Hence

βk ∈ cl
⋃

yk−1(·;y0
k−1)∈Yk−1(t0,y0

k−1)

ϕk(t0, x0
k; yk−1(·; y0

k−1)).

There exist xi(·; y0
i ) ∈ Xi(t0, y0

i ), i = 1, . . . , k − 1 such that

βk = ϕk(t0, x0
k; yk−1(·; y0

k−1)).

From definition v∗
k we obtain that

βk = max
vk(·)∈Ṽk

Ik(t0, y0
k;u∗, v∗

2 , . . . , v
∗
k−1, vk) = Ik(t0, y0

k;u∗, v∗
2 , . . . , v

∗
k)

= ϕk(t0, x0
k; yk−1(·; y0

k−1)).

If βk ∈ cl
⋃

yk−1(·;y0
k−1)∈Yk−1(t0,y0

k−1)

ϕk(t0, x0
k; yk−1(·; y0

k−1)) then there exists

the sequence {βj
k} such that limj→∞ βj

k = βk and βj
k = ϕk(t0, x0

k; yj
k−1(·; y0

k−1)).
Consider

lim
j→∞

ϕk(t0, x0
k; y

j
k−1(·; y0

k−1))

= lim
j→∞

Ik(t0, y0
k;u

∗j , v∗j
2 , . . . , v∗j

k ) = lim
j→∞

σk(y
j
k(T )) +

T∫

t0

gk(t, y
j
k(t), u

∗j , v∗j
2 , . . . , v∗j

k )dt.

From Arzela—Ascoli theorem we obtain that

lim
j→∞

yj
k(t) = yk(t).

The convergence u∗j → u∗, v∗j
i → v∗

i , i = 2, . . . , k is proved in the same way as
in work [14]. Hence,

lim
j→∞

ϕk(t0, x
0
k; yj

k−1(·; y0k−1)) = σk(yk(T )) +

T∫

t0

gk(t, yk(t), u∗(t), v∗
2(t), . . . , v∗

k(t))dt

= Ik(t0, y
0
k; u∗, v∗

2 , . . . , v∗
k).

The following inequality is valid:

Ik(t0, y0
k;u∗j , v∗j

2 , . . . , v∗j
k ) ≥ Ik(t0, y0

k;u∗, v∗
2 , . . . , v

∗
k−1, vk) ∀vk(·) ∈ Ṽk,
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then

lim
j→∞

Ik(t0, y0
k;u∗j , v∗j

2 , . . . , v∗j
k ) ≥ lim

j→∞
Ik(t0, y0

k;u∗, v∗
2 , . . . , v

∗
k−1, vk) ∀vk(·) ∈ Ṽk.

Therefore, we have

Ik(t0, y
0
k; u∗, v∗

2 , . . . , v∗
k) ≥ Ik(t0, y

0
k; u∗, v∗

2 , . . . , v∗
k−1, vk) ∀vk(·) ∈ Ṽk, k = 2, . . . , n.

7 Conclusion

We constructed the open-loop Nash equilibria and values of the players in
nonzero-sum differential game with multilevel hierarchy. We proved that the
solution of corresponding system of Hamilton—Jacobi equations describes the
values of the players. Moreover, this solution belongs to the class of multivalued
maps. Notice that we derive all open-loop Nash equilibria. This result is based
on the fact that differential game (1)–(4) is reduced to the sequence of n optimal
control problems.
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Abstract. The subject of this paper is a linear quadratic case of a dif-
ferential game model with continuous updating. This class of differential
games is essentially new, there it is assumed that at each time instant,
players have or use information about the game structure defined on a
closed time interval with a fixed duration. As time goes on, informa-
tion about the game structure updates. Under the information about
the game structure we understand information about motion equations
and payoff functions of players. A linear quadratic case for this class
of games is particularly important for practical problems arising in the
engineering of human-machine interaction. The notion of Nash equilib-
rium as an optimality principle is defined and the explicit form of Nash
equilibrium for the linear quadratic case is presented. Also, the case of
dynamic updating for the linear quadratic differential game is studied
and uniform convergence of Nash equilibrium strategies and correspond-
ing trajectory for a case of continuous updating and dynamic updating
is demonstrated.
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1 Introduction

Most of the real-life conflict-driven processes evolve continuously in time, and
their participants continuously receive updated information and adapt. Main
models considered in the classical differential game theory are associated with
problems defined on a fixed time interval (players have all the information on
a closed time interval) [6], problems defined on an infinite time interval with
discounting (players have all the information specified on an infinite time inter-
val) [1], problems defined on a random time interval (players have information
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on a given time interval, but the duration of this interval is a random variable)
[14]. One of the first works in the theory of differential games is devoted to
the differential pursuit game (the player’s gain depends on the time of capture
of the opponent) [12]. In all the above models and approaches it is assumed
that at the beginning of the game players know all information about the game
dynamics (equations of motion) and about player’s preferences (cost functions).
However, these approaches do not take into account the fact that in many real
conflict-controlled processes, players at the initial time instant do not have all
information about the game. Therefore classical approaches for defining in some
sense optimal strategies (for example, Nash equilibrium), such as Hamilton-
Jacobi-Bellman equation [2] or the Pontryagin maximum principle [13], cannot
be directly used to construct a large range of real game-theoretic models.

In this paper, we apply the approach of continuous updating to a special class
of dynamic games, where the environment can be modeled by a set of linear dif-
ferential equations and the objectives can be modeled by the functions containing
affine and quadratic terms. The popularity of the so-called linear quadratic dif-
ferential games [4] on one hand can be explained by practical applications in
engineering. To some extent, this kind of differential games is analytically and
numerically solvable. On the other hand, this linear quadratic problem setting
naturally appears if the agents’ objective is to minimize the effect of a small
perturbation of their nonlinear optimally controlled environment. By solving a
linear quadratic control problem, and using the optimal actions implied by this
problem, players can avoid most of the additional cost incurred by this pertur-
bation.

Most of the real conflict-driven processes are continuously evolving over time,
and their participants constantly adapt. This paper presents the approach of
constructing Nash equilibrium for game models with continuous updating. In
the game models with continuous updating, it is assumed that players

– have information about motion equations and payoff functions only on [t, t +
T ], where T – information horizon, t – current time instant.

– receive updated information about motion equations and payoff functions as
time t ∈ [t0,+∞) evolves.

In the general form, it is supposed that motion equations and payoff functions
explicitly depend on the time parameter. Therefore, in the general form of the
differential game with continuous updating information about motion equations
and payoff functions updates, because its form changes as the current time t ∈
[t0,+∞) evolves. In this paper, we consider a particular class of linear quadratic
differential games with continuous updating, where motion equations and payoff
functions do not explicitly depend on time parameter t, but the meaning of the
updating procedure is not missed, because the main goal of modeling of behavior
of players with continuous updating is reached.

Obviously, it is difficult to obtain Nash equilibrium due to the lack of
fundamental approaches to control problems with moving information horizon.
Classical methods such as dynamic programming and Hamilton-Jacobi-Bellman
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equation do not allow to directly construct Nash equilibrium in problems with
moving information horizon.

In the framework of dynamic updating approach the following papers were
published [5,7–11,15]. Their authors laid a foundation for further study of a
class of games with dynamic updating. It is assumed that the information about
motion equations and payoff functions is updated in discrete time instants and
interval on which players know the information is defined by the value of the
information horizon. However, the class of games with continuous updating pro-
vides with the new theoretical results.

For the linear quadratic game models with continuous updating Nash equilib-
rium in closed-loop form are constructed and it is proved that Nash equilibrium
in the corresponding linear quadratic game with dynamic updating uniformly
converges to the constructed controls. This approach allows concluding that the
constructed control indeed is optimal in the game model with continuous updat-
ing, i.e. in the case when the length of updating interval converges to zero. The
similar procedure is performed for the corresponding trajectory.

The paper is structured as follows. In Sect. 2, a description of the initial dif-
ferential game model and corresponding game model with continuous updating
as well as the concept of a strategy for it are presented. In Sect. 3, the concept
of Nash equilibrium is adapted for a class of games with continuous updating
and the explicit form of it for a class of linear quadratic differential games is pre-
sented. In Sect. 4, the description of the game model with dynamic updating and
the form of Nash equilibrium with continuous updating is presented. In Sect. 5,
the convergence of Nash equilibrium strategies and corresponding trajectories
for a case of dynamic and continuous updating is demonstrated. The illustrative
model example and corresponding numerical simulation are presented in Sect. 6.
Demonstration of convergence result is as well presented in the numerical simu-
lation part. In Sect. 7, the conclusion is drawn.

2 Game Model

In this section description of the initial linear quadratic game model and corre-
sponding game model with continuous updating are presented.

2.1 Initial Linear Quadratic Game Model

Consider n-player (|N | = n) linear quadratic differential game Γ (x0, T − t0)
defined on the interval [t0, T ]:

Motion equations have the form

ẋ(t) = Ax(t) + B1u1(t, x) + . . . + Bnun(t, x),
x(t0) = x0,
x ∈ R

l, u = (u1, . . . , un), ui = ui(t, x) ∈ Ui ⊂ compRk, t ∈ [t0, T ].
(1)
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Payoff function of player i ∈ N is defined as

Ki(x0, t0, T ;u) =

T∫

t0

⎛
⎝x′(t)Qix(t) +

n∑
j=1

u′
j(t, x)Rijuj(t, x)

⎞
⎠ dt, i ∈ N, (2)

where Qi, Rij are assumed to be symmetric, Rii is positive defined, ( · )′ means
transpose here and hereafter.

2.2 Linear Quadratic Game Model with Continuous Updating

Consider n-player differential game Γ (x, t, T ), t ∈ [t0,+∞) defined on the inter-
val [t, t + T ], where 0 < T < +∞.

Motion equations of Γ (x, t, T ) have the form

ẋt(s) = Axt(s) + B1u
t
1(s, x

t) + . . . + Bnut
n(s, xt),

xt(t) = x,
xt ∈ R

l, ut = (ut
1, . . . , u

t
n), ut

i = ut
i(s, x

t) ∈ Ui ⊂ compRk, t ∈ [t0,+∞).
(3)

Payoff function of player i ∈ N in the game Γ (x, t, T ) is defined as

Kt
i (x

t, t, T ;ut) =

t+T∫

t

⎛
⎝(

xt(s)
)′

Qix
t(s) +

n∑
j=1

(
ut

j(s, x
t)

)′
Riju

t
j(s, x

t)

⎞
⎠ ds, (4)

where xt(s), ut(s, x) are trajectory and strategies in the game Γ (x, t, T ).
Differential game with continuous updating evolves according to the rule:
Time parameter t ∈ [t0,+∞) evolves continuously, as a result players contin-

uously receive updated information about motion equations and payoff functions
under Γ (x, t, T ).

Strategies u(t, x) in the game model with continuous updating are defined in
the following way:

u(t, x) = ut(t, x), t ∈ [t0,+∞), (5)

where ut(s, x), s ∈ [t, t + T ] are some fixed strategies defined in the subgame
Γ (x, t, T ).

State x(t) in the model with continuous updating is defined according to

ẋ(t) = Ax(t) + B1u1(t, x) + . . . + Bnun(t, x),
x(t0) = x0,
x ∈ R

l
(6)

with strategies with continuous updating u(t, x) involved.
Essential difference between the game model with continuous updating and

classic differential game Γ (x0, T − t0) with prescribed duration is that players
in the initial game are guided by the payoffs that they will eventually receive
on the interval [t0, T ], but in the case of a game with continuous updating, at
the time instant t they orient themselves on the expected payoffs (4), which are
calculated using information about the game structure defined on the interval
[t, t + T ].
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3 Nash Equilibrium with Continuous Updating in LQ
Differential Games

3.1 Concept of Nash Equilibrium for Games with Continuous
Updating

Within the framework of continuously updated information in this class of dif-
ferential games it is interesting to understand of how to model the behavior of
players. To do this, we use the concept of Nash equilibrium in feedback strate-
gies. However, for the class of differential games with continuous updating, we
would like uNE(t, x) = (uNE

1 (t, x), . . . , uNE
n (t, x)) for each fixed t ∈ [t0,+∞) to

coincide with the feedback Nash equilibrium in the game (6), (4) defined on the
interval [t, t + T ] at the instant t.

Consider two time intervals [t, t+T ] and [t+ ε, t+T + ε], ε << T . According
to the problem statement, uNE(t, x) at the instant t should coincide with the
Nash equilibrium in the game defined on the interval [t, t + T ] and uNE(t + ε, x)
at instant t+ε should coincide with the Nash equilibrium in the game defined on
the interval [t + ε, t + ε + T ]. Therefore direct application of classical approaches
for determining Nash equilibrium in feedback strategies is not possible.

In order to construct such a strategy profile, we define the concept of gener-
alized Nash equilibrium in feedback strategies as an optimality principle:

ũNE(t, s, x) = (ũNE
1 (t, s, x), . . . , ũNE

n (t, s, x)), t ∈ [t0, T ], s ∈ [t, t + T ], (7)

which we further use to construct desired strategy profile uNE(t, x).

Definition 1. Strategy profile ũNE(t, s, x) = (ũNE
1 (t, s, x), . . . , ũNE

n (t, s, x)), t ∈
[t0,+∞), s ∈ [t, t+T ] is a generalized Nash equilibrium in the game with contin-
uous updating, if for any fixed t ∈ [t0,+∞) strategy profile ũNE(t, s, x) is Nash
equilibrium in feedback strategies in the game Γ (x, t, T ), 0 < T < ∞.

Using generalized feedback Nash equilibrium it is possible to define solution
concept for a game model with continuous updating.

Definition 2. Strategy profile uNE(t, x) is called the Nash equilibrium with con-
tinuous updating, if it is defined in the following way:

uNE(t, x) = ũNE(t, s, x)|s=t = (ũNE
1 (t, s, x)|s=t, . . . , ũ

NE
n (t, s, x)|s=t), (8)

where t ∈ [t0,+∞), ũNE(t, s, x) is the generalized feedback Nash equilibrium
defined above.

Strategy profile uNE(t, x) will be used as a solution concept in the game with
continuous updating.
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3.2 Theorem on Nash Equilibrium with Continuous Updating
for LQ Differential Games

Here we present the explicit form of Nash equilibrium with continuous updating
for a two-player differential game.

Theorem 1. The two-player linear quadratic differential game Γ (x0, t0, T ) with
continuous updating has, for every initial state, a linear feedback Nash equilib-
rium, if and only if the following set of coupled Riccati differential equations has
a set of symmetric solutions K1, K2 on the interval [0, 1]:

K̇i(τ) = −(AT − SjKj(τ))′Ki(τ) − Ki(τ)(AT − SjKj(τ))
+ Ki(τ)SiKi(τ) − Qi − Kj(τ)SjiKj(τ),

Ki(1) = 0, i �= j ∈ N, (9)

where
Si = T

2
BiR

−1
ii B′

i, Sij = T
2
BiR

−1
ii RjiR

−1
ii B′

i, i �= j ∈ N. (10)

In this case there is a unique feedback Nash equilibrium with continuous updating,
which has the form:

uNE
i (t, x) = −R−1

ii B′
iKi(0)Tx, i ∈ N. (11)

Proof. In order to prove the Theorem we introduce the following change of vari-
ables

s = t + Tτ,

y(τ) = x(t + Tτ),

vi(τ, y) = ui(t + Tτ, x), i ∈ N.

(12)

By substituting (12) to the motion equations (3), payoff function (4) we obtain

ẏ(τ) = TAy(s) + TB1v1(τ, y) + TB2v2(τ, y) (13)

and

Ki(y, τ ; v) =

1∫

0

y′(s)Qiy(s) +
2∑

j=1

(vj( s, y))′
Rijvj(s, y)ds, i ∈ N. (14)

It is known [4] that the criterion for existence of feedback Nash equilibrium is
the existence of symmetric solution for the system of differential Eq. (9). Accord-
ing to [4] feedback Nash equilibrium strategies have the form

vNE
i (τ, y) = −R−1

ii B′
iKi(τ)Ty. (15)

From (12) we have

τ =
s − t

T
,
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returning to original variables we obtain the following strategies

ut
i(s, x) = −R−1

ii B′
iKi

(
s − t

T

)
Tx.

These strategies are Nash equilibrium in feedback strategies in the subgame
Γ (x, t, T ) by construction.

Task (13), (14) and solution (15) have the same form for all values t in
original game with continuous updating. Then a generalized Nash equilibrium
in the game with continuous updating has the form

ũNE
i (t, s, x) = −R−1

ii B′
iKi

(
s − t

T

)
Tx. (16)

Apply the procedure (8) to determine Nash equilibrium with continuous
updating using generalized Nash equilibrium (16), s = t:

uNE
i (t, x) = −R−1

ii B′
iKi(0)Tx, t ∈ [t0,+∞), i ∈ N. (17)

This proves the theorem.

4 LQ Differential Game with Dynamic Updating

In this section, we define a game model with dynamic updating in order to later
demonstrate the convergence of Nash equilibrium strategies and corresponding
trajectories for a case of dynamic and continuous updating.

4.1 LQ Game Model with Dynamic Updating

In papers [5,7–11,16] the method for constructing differential game model with
dynamic updating is described. There it is assumed that players have information
about the game structure only over a truncated interval and, based on this,
make decisions. In order to model the behavior of players in the case, when
information updates dynamically, consider the case when information is updated
every Δt > 0 and the behavior of players on each segment [t0+jΔt, t0+(j+1)Δt],
j = 0, 1, 2, . . . is modeled using the notion of truncated subgame:

Definition 3. Let j = 0, 1, 2, . . .. Truncated subgame Γ̄j(x
j
0, t0 + jΔt, t0 + jΔt+

T ) is the game defined on the interval [t0 + jΔt, t0 + jΔt + T ] in the following
way. On the interval [t0 + jΔt, t0 + jΔt + T ] payoff function, motion equation
in the truncated subgame and initial game model Γ (x0, T − t0) coincide:

ẋj(s) = Axj(s) + B1u
j
1(s, x

j) + . . . + Bnuj
n(s, xj),

xj(t0 + jΔt) = xj
0,

xj ∈ R
n, uj = (uj

1, . . . , u
j
n), uj

i = uj
i (s, x

j) ∈ Ui ⊂ compRk, t ∈ [t0,+∞).
(18)
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Kj
i (xj , t0 + jΔt, t0 + jΔt + T ; uj) =

t0+jΔt+T∫

t0+jΔt

(
xj(s)

)′
Qix

j(s)

+

n∑
k=1

(
uk(s, xj)

)′
Rikuk(s, xj)ds, i ∈ N,

(19)

At any instant t = t0 + jΔt information about the game structure updates,
and therefore players adapt to it. This class of game models is called differential
games with dynamic updating.

As a solution concept in the differential game model with dynamic updating
we will use feedback Nash equilibrium. In the same way as in Sect. 3 we will
need to define a special form of it. According to the approach described above,
at any time instant t ∈ [t0,+∞), players have or use truncated information about
the game structure Γ (x0, T − t0), therefore classical approaches for determining
optimal strategies (cooperative and noncooperative) cannot be directly applied.
In order to determine the solution for games with dynamic updating, the notion
of resulting feedback Nash equilibrium is introduced:

Definition 4. Resulting feedback Nash equilibrium

ûNE(t, x) = (ûNE
1 (t, x), . . . , ûNE

n (t, x))

of players in the game model with dynamic updating have the form:

{ûNE(t, x)}∞
t=t0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uNE
0 (t, x), t ∈ [t0, t0 + Δt],

· · ·
uNE

j (t, x), t ∈ (t0 + jΔt, t0 + (j + 1)Δt],
· · ·

(20)

where uNE
j (t, x) = (uj,NE

1 (t, x), . . . , uj,NE
n (t, x)) is some fixed feedback Nash equi-

librium in the truncated subgame Γ̄j(x
j,NE
0 , t0+jΔt, t0+jΔt+T ), j = 0, 1, 2, . . .

starting along the equilibrium trajectory of the previous truncated subgame:
xj,NE
0 = xj−1,NE(t0 + jΔt).

Trajectory obtained by using motion equation (1) and the resulting feedback
Nash equilibrium ûNE(t, x) = (ûNE

1 (t, x), . . . , ûNE
n (t, x)) we denote by x̂NE(t)

and call the resulting equilibrium trajectory.

4.2 Resulting Feedback Nash Equilibrium with Dynamic Updating

Firstly, consider Nash Equilibrium in truncated subgame Γ̄j(x
j
0, t0 + jΔt, t0 +

jΔt + T ).
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Theorem 2. The two-player linear quadratic differential game Γ̄j(x
j
0, t0 +

jΔt, t0 + jΔt + T ) has, for every initial state, a linear feedback Nash equilib-
rium if and only if the following set of coupled Riccati differential equations has
a set of symmetric solutions K1, K2 on the interval [0, 1]:

K̇i(τ) = −(AT − SjKj(τ))′Ki(τ) − Ki(τ)(AT − SjKj(τ))
+ Ki(τ)SiKi(τ) − Qi − Kj(τ)SjiKj(τ),

Ki(1) = 0, i �= j, (21)

where
Si = T

2
BiR

−1
ii B′

i, Sij = T
2
BiR

−1
ii RjiR

−1
ii B′

i, i �= j ∈ N. (22)

In that case there is a unique equilibrium. The equilibrium strategies are

uj,NE
i (t, x) = −R−1

ii B′
iKi

(
t − (t0 + jΔt)

T

)
Tx. (23)

Proof. To prove this theorem we use similar change of variables as in (12) for
each truncated subgame:

τ =
t − (t0 + jΔt)

T
. (24)

According to (20) Nash equilibrium for the game model with dynamic updat-
ing ûNE

i (t, x) can be constructed using the Nash equilibrium defined in each
truncated subgame uj,NE

i (t, x). Corresponding trajectory x̂NE(t) is constructed
using ûNE

i (t, x) and (1).

5 Convergence of Resulting Nash Equilibrium Strategies
and Trajectory

Theorem 3. For Δt → 0 and x ∈ X (X—limited set) resulting feedback Nash
equilibrium strategies ûNE

i (t, x) in the game with dynamic updating uniformly
converge to feedback Nash equilibrium with continuous updating ũNE

i (t, x):

ûNE
i (t, x) ⇒

[t0,+∞)
ũNE

i (t, x), i ∈ N. (25)

Proof. Introduce the notation: tj
def= t0 + jΔt and let t ∈ [tj , tj+1] for some

j. According to the definition of ûNE(t, x) (20) we will need to show that
‖ũNE

i (t, x) − uj,NE
i (t, x)‖ → 0, when Δt → 0.

Consider the expressions for ũNE
i and uj,NE

i :

ũNE
i (t, x) = −R−1

ii B′
iKi(0)Tx,

uj,NE
i (t, x) = −R−1

ii B′
iKi

(
t − tj

T

)
Tx.



644 I. Kuchkarov and O. Petrosian

From Taylor decomposition for K(t) at the point t = 0 we obtain:

‖ũNE
i (t, x) − uj,NE

i (t, x)‖ ≤ ‖R−1
ii B′

i‖‖x‖
(∥∥∥K̇(0)

∥∥∥ Δt

T
+ o(Δt)

)
. (26)

When Δt → 0 the right hand side of (26) converges to zero and as a result the
left hand side of (26) also converges to zero. This completes the proof.

Theorem 4. Equilibrium trajectory in the game with dynamic updating x̂NE(t)
pointwise converges to the equilibrium trajectory x̃NE(t) in the game with con-
tinuous updating x̃NE(t) for Δt → 0:

x̂NE(t) →
[t0,+∞)

x̃NE(t). (27)

Proof. Let t ∈ [tj , tj+1] for some j. According to the definition of x̂NE(t) we will
need to show that ‖x̃NE(t) − xNE

j (t)‖ → 0 when Δt → 0.
Trajectories x̃NE(t) and xNE

j (t) satisfy the differential equations respectively

˙̃x(t) =
(
A − B1R

−1
11 B′

1K1(0)T − B2R
−1
22 B′

2K2(0)T
)
x̃(t),

ẋj(t) =
(

A − B1R
−1
11 B′

1K1

(
t − tj

T

)
T − B2R

−1
22 B′

2K2

(
t − tj

T

)
T

)
xj(t).

Notice that

Ki(0)x̃ − Ki

(
t − tj

T

)
xj = Ki(0)(x̃ − xj) +

(
Ki(0) − Ki

(
t − tj

T

))
xj .

Let yNE
j (t) = x̃NE(t) − xNE

j (t), Ã = A − B1R
−1
11 B′

1K1(0)T − B2R
−1
22 B′

2K2(0)T
and

fj(t) = −B1R
−1
11 B′

1

[
K1(0) − K1

(
t − tj

T

)]
Txj(t)

− B2R
−1
22 B′

2

[
K2(0) − K2

(
t − tj

T

)]
Txj(t).

Then yNE
j (t) satisfies following differential equation

ẏj(t) = Ãyj(t) + fj(t).

Consider

y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y0(t), t ∈ [t0, t0 + Δt],
· · ·
yj(t), t ∈ (t0 + jΔt, t0 + (j + 1)Δt],
· · ·

(28)

and

f(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f0(t), t ∈ [t0, t0 + Δt],
· · ·
fj(t), t ∈ (t0 + jΔt, t0 + (j + 1)Δt],
· · ·
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then (28) satisfies following differential equation

ẏ(t) = Ãy(t) + f(t).

with initial state y(t0) = 0, since x̂NE(t0) = x̃NE(t) = x0.
By the Cauchy formula we have for any t ≥ t0

y(t) =

t∫

t0

e
˜A(t−s)f(s)ds.

Taking this into account we have for fixed t

lim
Δt→0

‖y(tj)‖ ≤ lim
Δt→0

‖e
˜A(t−t0)‖(t − t0)β

(
Δt

T
+ o(Δt)

)
= 0, (29)

where

β =
(
‖B1R

−1
11 B′

1‖
∥∥∥K̇1(0)

∥∥∥ + ‖B2R
−1
22 B′

2‖
∥∥∥K̇2(0)

∥∥∥
)

TM(t),

M(t) = max
τ∈[t0,t]

‖x̂NE(τ)‖.

According to (29) y(t) →
[t0,+∞)

0, when Δt → 0. This proves the theorem.

6 Example Model

6.1 Common Description

Consider the model in which there are two individuals investing in a public stock
of knowledge (see also Dockner et al. [3]). Let x(t) be the stock of knowledge
at time t and ui(t) – the investment of player i in public knowledge at time
t. Assume that the stock of knowledge evolves according to the accumulation
equation

ẋ(t) = −βx(t) + u1(t, x) + u2(t, x), x(0) = x0, (30)

where β is the depreciation rate. Assume that each player derives quadratic
utility from the consumption of the stock of knowledge and that the cost of
investment increases quadratically with the investment effort. That is, the cost
function of both players is given by

Ki(x0, t0, T ;u) =
∫ T

0

( − qix
2(t) + riu

2
i (t, x)

)
dt, i = 1, 2. (31)

Consider the initial game (30), (31) in the terms of LQ-games theory [4]. To
find a feedback Nash equilibrium, we need to solve the following set of coupled
Riccati differential equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k̇1(t) = −2(−β − 1
r2

k2(t))k1(t) + 1
r1

k2
1(t) + q1,

k̇2(t) = −2(−β − 1
r1

k1(t))k2(t) + 1
r2

k2
2(t) + q2,

k1(T ) = 0,

k2(T ) = 0.

(32)
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As an example consider the symmetric case r1 = r2 = r, q1 = q2 = q. Let
k(t) = k1(t) = k2(t). We obtain the following differential equation:

{
k̇(t) = 2βk(t) + 3k2(t)

r + q,

k(T ) = 0.
(33)

The solution of Cauchy problem (33) is

k(t) =
βr + v

3

(
2v

(v − βr)e
2v
r (t−T ) + v + βr

− 1
)

,

where v =
√

β2r2 − 3qr. According to [4] feedback Nash equilibrium for the
initial game model will have the form:

uNE
i (t, x) = −k(t)x

r
, i = 1, 2. (34)

By substituting the value for k(t) in (34) we obtain:

uNE
i (t, x) =

βr + v

3r

(
1 − 2v

(v − βr)e
2v
r (t−T ) + v + βr

)
x(t).

6.2 Game Model with Continuous Updating

Now consider the case of continuous updating. Here we suppose that two individ-
uals at each time instant t ∈ [t0,+∞) use information about motion equations
and payoff functions on the interval [t, t + T ]. As the current time t evolves the
interval, which defines the information shifts as well. Motion equations for the
game model with continuous updating have the form

ẋt(s) = −βxt(s) + ut
1(s, x) + ut

2(s, x), xt(t) = x, t ∈ [t0,+∞). (35)

Payoff function of player i ∈ N for the game model with continuous updating
is defined as

Kt
i (x

t, t, T ;ut) =

t+T∫

t

(
− (

xt(s)
)2

qi +
(
ut

i(s, x)
)2

ri

)
ds, i = 1, 2. (36)

According to the Theorem 2 defining the form of feedback Nash equilibrium
with continuous updating on the first step we need to solve the following differ-
ential equation: {

k̇(τ) = 2βTk(τ) + 3Tk2(τ)
r + Tq,

k(1) = 0.
(37)

The solution of (37) is

k(τ) =
βr + v

3

(
2v

(v − βr)e
2vT
r (τ−1) + v + βr

− 1

)
, (38)
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where v =
√

β2r2 − 3qr. According to (23) feedback Nash equilibrium with
continuous updating has the form:

ũNE
i (t, x) = −k(0)xT

r
. (39)

By substituting (38) in (39) we obtain:

ũNE
i (t, x) =

βr + v

3r

(
1 − 2v

(v − βr)e− 2vT
r + v + βr

)
Tx, (40)

by substituting (40) in (30) we obtain x̃NE(t) as solution of equation

˙̃x
NE

(t) = −βx̃NE(t) + ũNE
1 (t, x) + ũNE

2 (t, x), x̃NE(0) = x0. (41)

6.3 Game Model with Dynamic Updating

Perform similar calculations for the resulting Nash equilibrium for a game with
dynamic updating based on the calculations for the original game and the app-
roach described in Sect. 4.1 and obtain

ũNE
i (t, x) = −

k
(

t−ti
T

)
xT

r
, t ∈ [ti, ti+1]. (42)

By substituting (38) in (42) we obtain:

ûNE
i (t, x) =

βr + v

3r

(
1 − 2v

(v − βr)e
2v(t−ti−T )

r + v + βr

)
Tx, t ∈ [ti, ti+1],

(43)
by substituting (43) in (30) we obtain x̂NE(t) as solution of equation

˙̂xNE(t) = −βx̂NE(t) + ûNE
1 (t, x) + ûNE

2 (t, x), x̂NE(0) = x0. (44)

6.4 Game Model on Infinite Interval

Consider classic approach for Nash equilibrium for the game on infinite interval
[0,+∞). Motion equations have the form

ẋ(t) = −βx(t) + u1(t, x) + u2(t, x), x(0) = x0. (45)

Payoff function of player i ∈ N is defined as

Ki(x0;u) = lim
T→∞

∫ T

0

( − qix
2(t) + riu

2
i (t, x)

)
dt, i = 1, 2. (46)

According to [4] feedback Nash equilibrium strategies have the form

uNE(t, x) = −kx

r
(47)
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in our symmetric case (r1 = r2 = r, q1 = q2 = q), where k is solution of

3k2

r
+ 2βk + q = 0.

By substituting (47) in (45) we obtain xNE(t) as solution of equation

ẋNE(t) =
(

−β − 2k

r

)
xNE(t), xNE(0) = x0. (48)

6.5 Numerical Simulation

Consider the results of numerical simulation for the game model presented above
on the interval [0, 8], i.e. t0 = 0, T = 8. At the initial instant t0 = 0 the stock
of knowledge is 100, i.e. x0 = 100. The other parameters of models: β = 0.9,
r = 6, q = 1. Suppose that for the case of a dynamic updating (blue solid and
dotted lines Figs. 1 and 2), the intervals between updating instants are Δt = 2,
therefore l = 4. In Fig. 1 the comparison of resulting Nash equilibrium in the
game with dynamic updating (blue line) and Nash equilibrium with continuous
updating (red lines) is presented. In Fig. 2 similar results are presented for the
strategies.

In order to demonstrate the results of Theorems 3 and 4 on convergence
of resulting equilibrium strategies and corresponding trajectory to the equilib-
rium strategies and trajectory with continuous updating, consider the simulation
results for a case of frequent updating, namely l = 20. Figures 3 and 4 represent
the same solutions as in Figs. 1 and 2, but for the case, when Δt = 0.4. There-
fore, convergence results are confirmed by the numerical experiments presented
below.

Fig. 1. x̃NE(t) (41) - red upper line,
x̂NE(t) (44) - blue broken line, xNE(t)
(48) - green lower line. (Color figure online)

Fig. 2. ũNE(t) (40) - red upper line,
ûNE(t) (43) - blue broken line, uNE(t)
(47) - green lower line. (Color figure online)
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Fig. 3. x̃NE(t) (41) - red upper line,
x̂NE(t) (44) - blue broken line, xNE(t)
(48) - green lower line. (Color figure online)

Fig. 4. ũNE(t) (40) - red upper line,
ûNE(t) (43) - blue broken line, uNE(t)
(47) - green lower line. (Color figure online)

7 Conclusion

The concept of feedback Nash equilibrium for the class of linear quadratic dif-
ferential games with continuous updating is constructed and the corresponding
Theorem is presented. The form of feedback Nash equilibrium for a game model
with dynamic updating is also presented and convergence of resulting feedback
Nash equilibrium with dynamic updating to the feedback Nash equilibrium with
continuous updating as the number of updating instants converges to infinity
is proved. The results are demonstrated using the differential game model of
knowledge stock. Obtained results are both fundamental and applied in nature
since they allow specialists from the applied field to use a new mathematical
tool for more realistic modeling of engineering system describing human-machine
interaction.
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Abstract. It studies the problem of immigration proof partition for
communities (countries) in a multidimensional space. This is an exis-
tence problem of Tiebout type equilibrium, where migration stability
suggests that every inhabitant has no incentives to change current juris-
diction. In particular, an inhabitant at every frontier point has equal
costs for all available jurisdictions. It is required that the inter-country
border is represented by a continuous curve.

The paper presents the solution for the case of the costs described as
the sum of the two values: the ratio of total costs on the total weight
of the population plus transportation costs to the center presented as a
barycenter of the state. In the literature, this setting is considered as a
case of especial theoretical interest and difficulty. The existence of equi-
librium division is stated via an approximation reducing the problem to
the earlier studied case, in which centers of the states never can coincide:
to do this an earlier proved a generalization of conic Krasnosel’skii fixed
point theorem is applied.

Keywords: Migration stable partitions · Barycenter ·
Tiebout equilibrium · Generalized fixed point theorems

1 Introduction

In a seminal paper [1] a basic model of country formation was offered. In this
model, the cost of the population is described as the sum of the two values—the
ratio of total costs on the total weight of the population plus transportation costs
to the center of the state. This model has been studied in a number of subsequent
studies, but the majority of them considered the case of a one-dimensional region
and the interval-form “countries” (country formation on an interval). The first
progress in the resolution of the problem of existence was obtained in [4,10],
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where well-known Gale–Nikaido–Debreu lemma was applied to state the exis-
tence of nontrivial immigration proof partition for interval countries, i.e. such
that no one has an incentive to change their country of residence. However, in
the proof of [4] rather strong assumptions were made. Mathematical part of
this approach was significantly strengthened in [6,7], where the modeling was
extended to the population distribution, described as a Radon measure (proba-
bility measure defined on the Borel σ-algebra); this approach incorporates cities
into the model. In [11] (initial version of 2016) a new significant advancement
appears, it disseminates the result (existence theorem) to the case of 2 or more
dimensional region. The proof of [11] is rather elegant and is based on the appli-
cation of KKM-lemma (Knaster–Kuratowski–Mazurkiewicz), but the result is
essentially limited by the presence of fixed location of the capitals.1

Papers [8,9] further develop this approach letting the “capitals” (or other
relevant parameters) and individual costs to be changed continuously in space
depending on some specific parameters, which is important for example in the
context of party formation. The presented proof is based on an original gen-
eralization of Brouwer and Kakutani fixed point theorems for the case when a
mapping can act outside the domain. However the results of [8,9] still do not
cover the model in which the costs are described in a “classical style”, as the
sum of the two values: the ratio of total costs on the total weight of the popula-
tion plus transportation costs to the center presented as a barycenter (center of
mass) of the state. In the literature, this setting is considered a case of especial
theoretical interest and difficulty. The present paper fills this gap. The existence
of equilibrium division is stated via an approximation, reducing the problem to
the earlier studied case, in which centers of the states can never coincide. After
that, the limit is carried out, and the desired division is achieved.

The paper is organized as follows. In the second section, I present a theo-
retical problem and formulate some preliminary results that are the basis for
the subsequent considerations. In the third one, I present the main result: a
new existence theorem the proof of which involves several auxiliary lemmas and
so on. The forth section presents a survey of generalized fixed point theorems
applied for earlier studied cases; it requires the existence theorem of Sect. 2 to
be proved.

2 The Model of Spatial Equilibrium: Preliminary
Analysis and Results

One of the central problems of general spatial equilibrium theory is the existence
of an immigration proof partition into n communities, the number of which is
initially presented, not only on the plane but in a multidimensional space. This
is not just a possible generalization of the one-dimensional case, but also an
opportunity to consider in this context more general problems, for example, the

1 As far as I know, the last version of the paper is more general and admits flexible
centers, but still not general enough.
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division of society by party affiliation. This is an existence problem for Tiebout
type equilibrium [12],2 that is quite important in the context of various economic
theories, e.g. the theory of local provision of public goods or a problem of a
society partition according to party affiliation in political sciences and so on.
The principle of migration stability of “countries” suggests that the inhabitants
have no incentives to change jurisdiction and, in particular, at every frontier
point inhabitant has equal (and minimal) costs for all available jurisdictions.

So we need to divide a compact area A ⊂ R
l into n counties, N = {1, . . . , n}.

In addition, it is also required that the inter-country border was represented
by a continuous curve (surface). Here migration stability may be also treated
as there is no nonzero mass of the population such that its members benefit
from a continuous (gradual transformation, homotopy) change of the current
inter-country boundary.

The division into the countries can significantly depend on how the popula-
tion is distributed in a given area of space. A correct mathematical model for this
is its description by means of some nonnegative countably additive measure μ,
defined on a Borel σ-algebra. Assume that for each country i ∈ N cost function
ci(·) is specified; this function may depend on the mass δi ∈ [0, 1] of country i
and masses of other countries, individual location x ∈ A of an inhabitant and
also on additional parameters y ∈ Y that can be changed according to a parti-
tion configuration. In particular, y can be used to specify a center of the country
as well as other parameters important for country formation.

An initial basic model for these cost functions is

ci(x, y, δi, rc(Si)) =
gi

δi
+ ρ(x, rc(Si)), gi > 0, i ∈ N. (1)

Here Si ⊂ A is i’s jurisdiction which has a weight of population δi = μ(Si),
rc(Si) is a location of its center (fixed or variable), ρ(·, ·) is a metric—to deter-
mine the distance to the center and the individual location specified by coordi-
nates x ∈ A. The scalar value gi > 0 presents an aggregated payment (taxes?)
for country i ∈ N formation (price for the government), which has to be paid
by country citizens in equal shares. So individual costs are divided into two
kinds: equal payment for every inhabitant of the country and individualized
costs specified as the distance from inhabitant location to the capital. Notice
that assumption (C) below is fulfilled now for l ≥ 2 and if l = 2: then for
Euclidean metric possible frontier between countries is a branch of hyperbola
intersected with A. Now let us consider the concept of spatial equilibrium that
is applied in the paper.

2 The general idea of this equilibrium is that individuals can “vote with their feet”
by leaving situations they do not like or going to situations they believe to be more
beneficial, i.e. the inhabitants of countries or municipalities are able to move and
to choose the place of residence which is more suitable for them. And perhaps it is
not necessary to physically move—for example, it is so in the formation of football
fans clubs—sometimes it is enough to register and then “consume” the benefits and
disadvantages of this membership.
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Definition 1. Let A ⊂ R
l be an area in a finite-dimensional space. A collection

of closed subsets Si ⊂ A, i ∈ N is called migration-consistent equilibrium, if it
satisfies the requirements:

(i) ∪NSi = A, δi = μ(Si) > 0, i ∈ N ,
∑

N δi = 1 and ∃ y ∈ Y such that
(ii) ∀i �= j, ci(x, y, δ1, . . . , δn) = cj(x, y, δ1, . . . , δn) ∀x ∈ Si ∩ Sj,
(iii) ∀i ∈ N Si ⊇ {x ∈ A | ci(x, y, δ1, . . . , δn)<cj(x, y, δ1, . . . , δn) ∀j ∈ N, j �= i}.

The requirements presented in this definition mean that: (i)—subsets Si ⊂ A
form a nontrivial division of the area A into jurisdictions such that each indi-
vidual is assigned to some jurisdiction and the number of those that have the
nationality of several countries is negligible; (ii)—border residents of several
countries have the same costs; (iii)—each jurisdiction includes all those resi-
dents who are most profitable to be its members.

In general setting we certainly have to be assumed that the cost functions
depend continuously on δ ∈ Δ(n−1) (standard simplex in R

n) and y ∈ Y ; more-
over Y —the range of y—is convex and compact subset of R

m for a natural
m > 0. More specifically, assume that
(P) The distribution of population on A is described by an absolutely contin-
uous probability measure μ.

(C) For each i ∈ N costs ci(·) are defined and continuous on

A × Y × (Δ(n−1) \ Fi), where Fi = {δ ∈ Δ(n−1) | δi = 0},

and obey

(i) ci(x, y, δ1, . . . , δn) → +∞ ∀(x, y, δi, δ−i) → (x̄, ȳ, 0, δ̄−i), i.e. δ̄i = 03;
(ii) the set of indifferent agents

Aij(y, δ) = {x ∈ A | ci(x, y, δ) = cj(x, y, δ)}
has zero Lebesgue measure ∀j �= i, and for all fixed (y, δ) ∈ Y × Δ(n−1).

The assumptions (C) is now presented in a strongest form which was applied
in previous papers [11], [5] where in addition there was assumed supp(μ) = A.4

Later analysis presented in [9] avoided (C)(ii) and supp(μ) = A. For the case
we are interested in supp(μ) = A does not matter, and assumption (C)(ii) is
invalid but for an intermediate approximating model it is true by construction.

In the seminal works devoted to the analysis of Tiebout equilibrium, special
attention is paid to the case of an inter-country division under the individual
costs ci(·) defined in (1) in which metric is Euclidean and centers rc(Si) are spec-
ified as the centers of mass of countries Si ⊂ A, i ∈ N . For a multi-dimensional
figure Si the center of mass (barycenter of i-th country) is defined as

rc(Si) =
1

μ(Si)

∫

Si

xdμ(x), Si ⊂ A ⊂ R
l. (2)

3 Here δ−i = (δj)j∈N\{i}.
4 This means that μ(B) > 0 ⇐⇒ ∫

B
dxdy > 0 for every measurable B ⊆ A.
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It will be so if the distribution of the population is put on the basis of the concept.
However, if we want the center of the territory to be understood without taking
into account the population, then we arrive at the concept defined by formulas

rc(Si) =
1

m(Si)

∫

Si

xdx, m(Si) =
∫

Si

dx.

Here m(Si) is Lebesgue measure of Si, i ∈ N . Clearly, this is a particular
case relative to the previous one. Of course, we must take care that considered
point-to-set mappings are continuous in some sense in order to ensure the conti-
nuity of rc(Si(δ, y)). Moreover, it is necessary to carefully consider the case of a
potentially possible match of capitals at the domain. This is not trivial, because
the assumption that sets Aij(y, δ) are negligible is violated now. Apparently, this
problem can be sorted out by passing to the limit over the family of the indi-
vidual costs functions that approximate the original ones and obey all necessary
properties.

A general idea of the proof is similar to presented in [5,9,11]: for a col-
lection (δ1, . . . , δn, y) of nominal parameters one can put into correspondence
similar collection of real parameters, calculated for an immigration-stable parti-
tion defined by nominal ones. In so doing a mapping is defined the fixed point
of which obeys all requirements of a country partition that we are looking for.
Now we consider this construction in more details.

Recall that

Δ(n−1) = {δ ∈ R
n |

∑
δi = 1, δi ≥ 0 ∀i ∈ N}

is called a standard simplex. Let us specify the mappings

Si : (δ, y) → Si(δ, y) ⊂ A, (δ, y) ∈ Δ(n−1) × Y, i ∈ N

and mapping F : (Si)i∈N → (μi)∈N , defined by formulas:

Si(δ, y) = {x ∈ A | ci(x, δ, y) = min
j∈N

cj(x, δ, y)}, μi(δ, y) = μ(Si(δ, y)), i ∈ N.

The following Lemma 1 has been proved in different contexts in [5,9,11] and it
specifies a crucial property of the constructed map.

Lemma 1. Let (P) and (C) be fulfilled. Then for some 0 < ε < 1
n :

(i) F(·) defined on Δ
(n−1)
ε × Y is a Kakutani map5 and

(ii) ∀y ∈ Y F(·, y) maps the ε-sub-simplex

Δ(n−1)
ε = {δ ∈ R

n |
∑

δi = 1, δi ≥ ε ∀i ∈ N}

so that the facets of Δ
(n−1)
ε pass into the facets of initial simplex, i.e.

[δ = (δi, δ−i) ∈ Δ(n−1)
ε & δi = ε] ⇒

μi(δ, y) = 0, F(δ, y) = (μ1(δ, y), . . . , μn(δ, y)).
5 This is a point-to-set mapping having closed graph and nonempty, convex values,

see Sect. 4 and Definition 3 below.
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There is also presented a continuous M : Δ(n−1)×Y → Y and now the resulting
map is

[F × M](δ, y) = F(δ, y) × M(δ, y), (δ, y) ∈ Δ(n−1) × Y.

Clearly, it suffices to find a nontrivial fixed point δ̄ = (δ̄1, . . . , δ̄n) ∈ Δ(n−1),
ȳ ∈ Y of this map, i.e.

ȳ = M(δ̄, ȳ), μi(δ̄, ȳ) = δ̄i,∀i ∈ N such that δ̄ = (δ̄1, . . . , δ̄n) � 0.

In [5,9] this fact is established applying generalized Kakutani fixed point theo-
rem. This is Theorem 7 from Sect. 4 below and its corollary, Theorem 9.

Now we formulate the theorem from [8,9] that is general enough and can be
applied to establish the main result of the current paper.

Theorem 1 (Marakulin, 2017). Let A be a compact subset of a finite-di-
mensional linear space and μ be a measure on A. If assumptions (P), (C) are
fulfilled then the area A can be nontrivially partitioned into any number of immi-
gration proof communities of non-zero volume. This partition can also obey any
consistent continuous requirements.

Now we state a new theorem in which countries are centered at the center of
population mass; it is proved in the next section. First, we consider a particular
case of 2-communities, which technical proof can be extended to a general one.

Theorem 2. In a finite-dimensional space, any compact convex domain
equipped with the measure of population absolute continuous relative to Lebesgue
measure, can be divided into two immigration proof communities with costs (1)
and centered at the center of their mass.

Now the main result is formulated as follows.

Theorem 3. In a finite-dimensional space, any compact convex region, with a
measure of a population, that is absolutely continuous with respect to Lebesgue
measure, can be nontrivially divided into any number of immigration proof com-
munities with costs (1) and centered at the center of their mass. Moreover, these
centers are located in the limit of the community.

3 Partition into Communities Centered in a Barycenter

According to the logic of the previous constructions, in order to include the
requirement that the capitals should be at the barycenter, one needs to put

M(δ1, . . . , δn, y1, . . . , yn) = (rc(S1(δ, y)), . . . , rc(Sn(δ, y))) ∈ An = Y.

However, a major difficulty appears here: there is a potential possibility of
coincidence of capitals, which leads to a violation of the basic assumption (C).
Precisely, if a point (yi)i∈N in An is such that some of its components are equal
one to another—there are i, j such that yi = yj—then it is not clear how one
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can determine the countries i, j, what are their masses and where the centers of
mass are located.

To simplify the problem, let us consider the case of two countries and a convex
compact region A. Indeed, if centers are equal each other, i.e. r1 = rc(S1(δ, y)) =
rc(S2(δ, y)) = r2, then the equation defining the inter-country border in the form

||x − r1||2 − ||x − r2||2 =
g2
δ2

− g1
δ1

does not depend on x and, therefore, A coincides with one country (the other
one is empty set) or, if g2

δ2
− g1

δ1
= 0, then the whole A is the “inter-country

border”. In the latter case, there are infinitely many variants of inter-country
division, which does not allow to specify the centers of countries, etc. To resolve
the collision, consider the following approximation.

As a new area to be divided into two countries, consider the convex hull of
three sets from R

l+2: choose arbitrary noncollinear a, b ∈ R
l, a, b �= 0, a real

ε > 0 and specify

B0 = A × (0, 0), B1 = B0 + (a, 1, 0), B2 = B0 + (b, 0, 1).

Next, we consider the convex hull of the union of these sets, whence, because of
their convexity, one has

B = co{B0,B1,B2} =
⋃

λ≥0:λ0+λ1+λ2=1

(λ0B0 + λ1B1 + λ2B2) ⇒

B = {B0 + [α(a, 1, 0) + β(b, 0, 1)] | α, β ∈ R+ : α + β ≤ 1}.

Now we specify
� = {(s, t) ∈ R

2
+ | s + t ≤ 1}

and will identify compactum B with the set A × � ⊂ R
l+2. We determine the

population distribution using the density Hε : B → R+, specified as

Hε(x, s, t) = w(x) · γε(s, t),

where w : A → R+ is the density of “initial” distribution μ, and a simple function
γε : � → R for some ε > 0, d > 0 is defined in the following way. Specify

�ε = {(s, t) ∈ � | s, t ≤ ε}

and define γε(·) by formula

γε(s, t) =
{

ε2, (s, t) ∈ � \ �ε,
d, (s, t) ∈ �ε,

(3)

and satisfying a condition
∫

�
γε(s, t)dsdt = 1.
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Now let νε be a measure on B, specified by density Hε(·). Due to construction
and Fubini theorem we have νε(B) = μ(A) = 1.

Now consider two projection mappings from B on its faces:

Pr1(x, s, t) = (x + (2ε − s)a − tb, 2ε, 0), P r2(x, s, t) = (x + (2ε − t)b − sa, 0, 2ε),

where (x, s, t) ∈ B, and vectors a, b ∈ R
l are chosen as above. Now we specify a

convex compactum

X = Δ1×Y1×Y2, Y1 = Pr1(B) = B0+2ε(a, 1, 0), Y2 = Pr2(B) = B0+2ε(b, 0, 1),

where we will look for a fixed point at the first stage of the proof.
For B we introduce a metric

ρ′(κ, κ′) =
√

〈x − x′, x − x′〉+ |s−s′|+ |t− t′|, κ = (x, s, t), κ′ = (x′, s′, t′) ∈ B.

Now for a given y1 ∈ Y1, y2 ∈ Y2 and nominal (δ1, δ2) ∈ Δ1 for B we specify cost
functions

ci(κ, δi, yi) =
gi

δi
+ ρ′(κ, yi), gi > 0 , δi > 0 i = 1, 2, κ ∈ B,

which define in B two “countries”

Sε
i (δ1, δ2, y1, y2) = {κ ∈ B | ci(κ, δi, yi) ≤ cj(κ, δj , yj)}, i �= j, i, j = 1, 2. (4)

Notice that by construction y1 �= y2 is always true and the set Sε
1(δ, y)∩Sε

2(δ, y),
i.e. inter-country border is negligible by Lebesgue measure and condition (C)(ii)
is satisfied. As usual further we find country masses νε(Sε

i ) = νi(δ, y) and their
centers of mass rc(Sε

i ) ∈ B, where for νε(Si) = 0 we put rc(Sε
i ) = B.

Lemma 2. The map (δ, y) → νi(δ, y) = νε(Sε
i (δ, y)), i = 1, 2 is continuous on

Δ1 ×Y and for νi(δ, y) = νε(Sε
i ) > 0 a value rc(Sε

i ) ∈ B is correctly defined and
the function (δ, y) → rc(Sε

i (δ, y)) is continuous at this point.

Proof. Standardly. Notice that the point-to-set mapping (δ, y) ⇒ Sε
i (δ, y) is

continuous at the point (δ′, y′) if νi(δ′, y′) = νε(Sε
i ) > 0 because it implies

int Sε
i (δ′, y′) �= ∅ and, therefore, Slater condition [∃x ∈ A | ci(x, δ, y) <

cj(x, δ, y)] holds. �

Further let us consider a map R : Δ1 × Y1 × Y2 → Y1 × Y2, specifying new
centers of countries: if νi(δ, y) = νε(Sε

i (δ, y)) > 0 then

Ri(δ1, δ2, y1, y2) = Pri(rc(Sε
i )),

and Ri(δ, y) = Yi if νi(δ, y) = νε(Sε
i (δ, y)) = 0, i = 1, 2.

Specify also F : Δ × Y → Δ by formula

F(δ1, δ2, y1, y2) = (ν1(δ, y), ν2(δ, y)).

The crucial properties of the mapping F × R are described in the following
Lemma 3, which is similar to Lemma 1 presented above, but now it has already
been established in the specific context of this section.
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Lemma 3. For any real 0 < ε < 1 the mapping F × R : X ⇒ X is a Kakutani
map and, moreover, there is  > 0 such that ∀y ∈ Y F(·, y) maps faces of
subsimplex

Δ1
� = {δ ∈ R

2 | δ1 + δ2 = 1, δi ≥ , i = 1, 2}
to appropriate faces of initial Δ1, i.e. for i = 1, 2

[δ = (δ1, δ2) ∈ Δ1
� & δi = ] ⇒ νi(δ, y) = 0, F(δ, y) = (ν1(δ, y), ν2(δ, y)).

Proof. Checking of the Kakutani map properties is easy. Let us consider the
second part of the lemma statement. Let D = maxκ,κ′∈B ||κ−κ′|| be a diameter
of B. Then supposition

g2
δ2

− g1
δ1

> 2D > ||κ − y1|| − ||κ − y2||, ∀κ ∈ B,

implies c2(κ, δ2, y2) > c1(κ, δ1, y1) ∀κ ∈ B. Therefore one has νε(Sε
2) = 0. Hence

if δ2 ≤ 1
2 (i.e. δ1 ≥ 1

2 ) for νε(Sε
2) > 0 to be executed one needs

g2
δ2

≤ 2D +
g1
δ1

≤ 2(D + g1) ⇒ δ2 ≥ g2
2(D + g1)

> 0.

A similar assessment is easy to get also for the first country. Ultimately, one can
put

 = min
{

g1
2(D + g2)

,
g2

2(D + g1)

}

> 0.

By construction,  > 0 does not depend on the choice 0 < ε < 1. �

Combining the statement of the Lemma 3 with the Theorem 9 and via
described construction we arrive at

Corollary 1. For any 0 < ε < 1 the mapping F × R : X ⇒ X for some real
 > 0 has a fixed point ((δε

1, δ
ε
2), (y

ε
1, y

ε
2)) ∈ X = Δ1 × Y1 × Y2 such that

(i) for some real  > 0 independently on ε > 0 one has δε
i > , i = 1, 2,

(ii) for ε → +0 the centers of mass κε
i = (xε

i , s
ε
i , t

ε
i ) ∈ B of states Sε

i obey

(sε
i , t

ε
i ) ≤ (ε + o(ε), ε + o(ε)), i = 1, 2.

Proof. (i) Constructed above mapping F satisfies assumption (C) in a strong
form, i.e. for all (δ, y) ∈ Δ1 × Y the set

{κ ∈ B | c1(κ, δ1, y1) = c2(κ, δ2, y2)}

is negligible by Lebesgue measure. Therefore due to Theorem 9 and Lemma 3
the map F × R has a fixed point ((δ1, δ2), (y1, y2)) ∈ F × R((δ1, δ2), (y1, y2))
such that (δ1, δ2) � (, ), for some real  > 0 which does not depend on the
choice of ε.
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(ii) Let i = 1. Separate Sε
1 into subsets:

S0
1 = {(x, s, t) ∈ Sε

1 | (s, t) ∈ � \ �ε}, S1
1 = {(x, s, t) ∈ Sε

1 | (s, t) ∈ �ε}.

Now for a given ε > 0 the center of mass can be calculated as

rc(Sε
1) =

1
νε(Sε

1)

[∫

S0
1

(x, s, t)dνε +
∫

S1
1

(x, s, t)dνε

]

.

Due to (3), if D = max ||B|| then the first addend can be evaluated as
∥
∥
∥
∥
∥

∫

S0
1

(x, s, t)dνε

∥
∥
∥
∥
∥

≤ D · ν(A × [� \ �ε]) < D · μ(A)
∫

�
ε2dsdt = D · μ(A)

ε2

2
.

Thus the center of mass of S1 differs from the center of mass for the state S1
1 by

the value of degree ε2, i.e.

||rc(Sε
1) − rc(S1

1)|| = o(ε).

In turn, the country S1
1 is defined on B under the additional constraint (0, 0) ≤

(s, t) ≤ (ε, ε), and hence the corresponding components of the center of mass S1
1

will also be within these bounds, but they differ from the original one by a value
of degree not more than o(ε). �

The first part of the next lemma can be proven via Theorem1, but below we
especially need in the second one, which is very specific and allows us to state
the result.

Lemma 4. For any 0 < ε < 1 there is an equilibrium partition of the area B on
two communities, according to the costs

c1(κ, yε
1) =

g1
δ1

+ ρ′(κ, yε
1), yε

1 = (rε
c(S1), 2ε, 0),

c2(κ, yε
2) =

g2
δ2

+ ρ′(κ, yε
2), yε

2 = (rε
c(S2), 0, 2ε).

Centers yε
i ∈ Sε

i obey yε
i = Pri(κε

i ), where κε
i are the centers of mass by the

measure νε of Sε
i ⊂ B. Moreover rε

c(S1) �= rε
c(S2) and νε(Sε

i ) = δi >  > 0,
i = 1, 2.

Proof. We apply Corollary 1 and fix ε > 0. One can find a fixed point

((δε
1, δ

ε
2), (y

ε
1, y

ε
2)) ∈ X = Δ1 × Y1 × Y2

of the map F × R : X ⇒ X such that (δε
1, δ

ε
2) ≥ (, ) � (0, 0). Due to

construction we have yε
1 = Pr1(κε

1), yε
2 = Pr2(κε

2), where κε
i are the centers of

mass of Sε
i ⊂ B by the measure νε, and therefore

κε
1 = (xε

1, s
ε
1, t

ε
1) ⇒ yε

1 = (xε
1 + (2ε − sε

1)a − tε1b, 2ε, 0),
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κε
2 = (xε

2, s
ε
2, t

ε
2) ⇒ yε

2 = (xε
2 + (2ε − tε2)b − sε

2a, 0, 2ε),

for some xε
i ∈ A, sε

i , t
ε
i ∈ (0, 1), i = 1, 2.

Let us show that rε
1 = xε

1 + (2ε − sε
1)a − tε1b �= xε

2 + (2ε − tε2)b − sε
2a = rε

2.
Indeed, assuming the opposite we have rε = rε

1 = rε
2 and

||(x, s, t) − (rε, 2ε, 0)|| = ||x − rε||2 + |2ε − s| + t,

||(x, s, t) − (rε, 0, 2ε)|| = ||x − rε||2 + s + |2ε − t|.
Consequently, the inequality determining the first (second) country is

c1(x, s, t) − c2(x, s, t) = t − s + |2ε − s| − |2ε − t| +
g1
δ1

− g2
δ2

≤ 0 ⇒

Sε
1 =

{

(x, s, t) ∈ B | t − s + |2ε − s| − |2ε − t| ≤ g2
δ2

− g1
δ1

}

.

Hence, by virtue of (2) and due to construction (3), one can conclude that the
center of mass of country Sε

1 has the form

κε
1 = (rc(A),m�

st), m�
st =

∫

�′
(s, t)γε(s, t)dsdt,

where rc(A) is a center of mass A by the measure μ and

�′ =
{

(s, t) ∈ R
2
+ | t − s + |2ε − s| − |2ε − t| ≤ g2

δ2
− g1

δ1

}

.

For the second country, the center of mass can be found similarly, except the
fact that now the second component is obtained by integrating over a set

�′′ =
{

(s, t) ∈ R
2
+ | t − s + |2ε − s| − |2ε − t| ≥ g2

δ2
− g1

δ1

}

.

Hence, we conclude that the components xε
1, x

ε
2 ∈ A of centers of gravity of

Sε
i ⊂ B are equal to each other: xε

1 = xε
2. Therefore, from the assumed equality

rε
c(S1) = rε

c(S2) one concludes (2ε − sε
1)a − tε1b = (2ε − tε2)b − sε

2a, that implies

(2ε − sε
1 + sε

2)a = (2ε − tε2 + tε1)b.

By choice, vectors a, b are non-collinear, that means the latter equality is possible
only if the coefficients vanish, i.e. if sε

1 = 2ε+ sε
2 > 2ε and tε2 = 2ε+ tε1 > 2ε, but

this is impossible since via (3) for ε > 0 small enough one has 0 ≤ sε
i � ε and

0 ≤ tεi � ε, i = 1, 2. So the original supposition leads to a contradiction. �

Proof of Theorem 2. Without loss of generality, one can think that A is a solid set,
i.e. int A �= ∅. Now we apply Corollary 1, Lemma 4 and for real ε > 0 we consider
a fixed point ((δε

1, δ
ε
2), (y

ε
1, y

ε
2)) ∈ X = Δ1 × Y1 × Y2 for any real ε > 0. One has
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(δε
1, δ

ε
2) ≥ (, ) � (0, 0) and, by virtue of the compactness of X, without loss of

generality, one can think that

((δε
1, δ

ε
2), (y

ε
1, y

ε
2)) → ((δ1, δ2), (y1, y2)) = (δ, y),

for ε → +0 and (δ1, δ2) ≥ (, ) � (0, 0). In addition, we recall that

yε
1 = (xε

1 + (2ε − sε
1)a − tε1b, 2ε, 0) →

ε↓0
y1 = (r1, 0, 0), r1 ∈ A,

yε
2 = (xε

2 + (2ε − tε2)b − sε
2a, 0, 2ε) →

ε↓0
y2 = (r2, 0, 0), r2 ∈ A.

Let us further study a type of inter-country borders that can be formed
between the countries defined by the limiting values of the determining parame-
ters. We want to show that r1 �= r2 and, therefore, the boundary is a hyperbolic
one. To this end, we assume r1 = r2, i.e. 0 �= Δrε = rε

1 − rε
2 → 0 for ε → +0.

Here we have

rε
1 = xε

1 + (2ε − sε
1)a − tε1b, rε

2 = xε
2 + (2ε − tε2)b − sε

2a.

It obviously follows from the construction (since the center of mass of B is located
on a linear segment [yε

1, y
ε
2]), that

r1 = lim
ε→+0

rε
1 = lim

ε→+0
xε
1 = x1 = x2 = r2 = rc(A),

where rc(A) is a center of mass of A by measure μ. Recall that due to center of
mass definition (2) for any measurable T1, T2 ⊂ A, T1 ∩ T2 = ∅, T1 ∪ T2 = A one
has

rc(A) =
μ(T1)
μ(A)

rc(T1) +
μ(T2)
μ(A)

rc(T2). (5)

Define σε = g1
δ1

− g2
δ2

, hε
r = Δrε/||Δrε||, f(s, t) = (s − t) − |2ε − s| + |2ε − t|, and

transform states Sε
1 , S

ε
2 ⊂ B specification:

c1(x, s, t) − c2(x, s, t) = ||x − rε
1|| − ||x − rε

2|| − f(s, t) + σε ≤ 0 ⇒

(x, s, t) ∈ Sε
1 ⇐⇒ ||x − rε

1|| − ||x − rε
2|| ≤ f(s, t) − σε = gε(s, t).

Now we divide Sε
1 into subsets:

S−
1 = {(x, s, t) ∈ Sε

1 | (s, t) ∈ � : gε(s, t) ≤ 0},

S+
1 = {(x, s, t) ∈ Sε

1 | (s, t) ∈ � : gε(s, t) ≥ 0}.

Without loss of generality one thinks that νε(S−
i )→δ−

i > 0 and νε(S+
i )→δ+i > 0

for ε → +0, i = 1, 2. Now for a given real ε > 0 the center of mass of the country
can be calculated in the following way:

rc(Sε
1) =

1
νε(Sε

1)

[∫

S−
1

(x, s, t)dνε +
∫

S+
1

(x, s, t)dνε

]

,
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here the first term on the right hand side can be found as

∫

S−
1

(x, s, t)dνε =
∫

�

[∫

S−
1 (st)

(x, s, t)dμ(x)

]

γε(s, t)dsdt,

where for fixed (s, t) ∈ � we define

S−
1 (st) = {x ∈ A | ||x − rε

1|| − ||x − rε
2|| ≤ gε(s, t)}.

Now if gε(s, t) ≤ 0, the set S−
1 (st) is convex, and if its mass is nonzero then this

set center of gravity is placed in its interior; the functional hε
r separates the set

from the center rε
1+rε

2
2 of the hyperboloid:

〈S−
1 (st), hε

r〉 <

〈
rε
1 + rε

2

2
, hε

r

〉

.

Consequently, integrating the inequality, we obtain
〈∫

S−
1 (st)

xdμ(x), hε
r

〉

< μ(S−
1 (st))

〈
rε
1 + rε

2

2
, hε

r

〉

⇒ 〈rc(S−
1 (st)), hε

r〉 <

〈
rε
1 + rε

2

2
, hε

r

〉

.

Once again integrating, but now by measure with the density γε(s, t), applying
standard argumentation one can prove the existence of a real τ > 0 such that

〈∫

�

[∫

S−
1 (st)

xdμ(x)

]

γε(s, t)dsdt, hε
r

〉

+ τ

<

〈
rε
1 + rε

2

2
, hε

r

〉∫

�
μ(S−

1 (st))γε(s, t)dsdt.

Here real value τ > 0 does not depend on ε for all ε > 0 small enough. As a
result we have got an estimation

〈∫

S−
1

xdνε, hε
r

〉

+ τ < νε(S−
1 )

〈
rε
1 + rε

2

2
, hε

r

〉

. (6)

Similar reasoning, but now with regard to the second country and if gε(s, t) ≥ 0
and

S−
2 (st) = {x ∈ A | ||x − rε

1|| − ||x − rε
2|| > gε(s, t)} = A \ S+

1 (st).

we obtain 〈∫

S−
2 (st)

xdμ(x), hε
r

〉

> μ(S−
2 (st))

〈
rε
1 + rε

2

2
, hε

r

〉

.
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Now applying (5)6 and due to μ(S−
2 (st))rc(S−

2 (st)) =
∫

S−
2 (st)

xdμ(x) we obtain

〈[

rc(A) −
∫

S+
1 (st)

xdμ(x)

]

, hε
r

〉

> (1 − μ(S+
1 (st)))

[

〈rc(A), hε
r〉 +

〈
rε
1 + rε

2

2
− rc(A), hε

r

〉]

,

that implies
〈∫

S+
1 (st)

xdμ(x), hε
r

〉

<

〈

rc(A) − rε
1 + rε

2

2
, hε

r

〉

+ μ(S+
1 (st))

〈
rε
1 + rε

2

2
, hε

r

〉

.

Next, we again integrate the inequality, at the same time evaluating the first
term on the right by the value ||rc(A) − rε

1+rε
2

2 || → 0, we come to an estimate
〈∫

S+
1

xdνε, hε
r

〉

+ τ ′ < νε(S+
1 )

〈
rε
1 + rε

2

2
, hε

r

〉

+
∥
∥
∥
∥rc(A) − rε

1 + rε
2

2

∥
∥
∥
∥ .

It holds for some real τ ′ > 0, which is independent of the choice of ε > 0
sufficiently small. Summing this inequality with (6) we obtain: for sufficiently
small ε > 0 and some τ ′′ > 0, that does not dependent of ε > 0
〈∫

S−
1

xdνε, hε
r

〉

+

〈∫

S+
1

xdνε, hε
r

〉

+ τ ′′ < (νε(S−
1 ) + νε(S+

1 ))
〈

rε
1 + rε

2

2
, hε

r

〉

.

Finally if one divides this inequality onto νε(S1) = νε(S−
1 ) + νε(S+

1 )), then due
to previous constructions and for some τ ′′′ > 0 we obtain

〈xε
1, h

ε
r〉 + τ ′′′ <

〈
rε
1 + rε

2

2
, hε

r

〉

.

Conducting similar reasoning for the second country, we come to inequality

〈xε
2, h

ε
r〉 >

〈
rε
1 + rε

2

2
, hε

r

〉

+ τ iv,

that being subtracted the latter one produces

〈xε
2 − xε

1, h
ε
r〉 > d = τ ′′′ + τ iv > 0.

However this contradicts to the supposition rε
1 − rε

2 = Δrε → 0, since by Corol-
lary 1(ii) (via (3)) we have 0 ≤ sε

i � ε, 0 ≤ tεi � ε, i = 1, 2 and therefore for
ε → 0

xε
2 − xε

1 = (sε
1 − sε

2 − 2ε)a + (2ε + tε1 − tε2)b − Δrε → 0.

6 Recall that we assumed μ(A)=1.
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So, the points r1, r2 obey r1 �= r2 and by construction they are the centers
of the limiting countries and, at the same time, represent their centers of mass.
Wherein

S1 =
{

x ∈ A | ||x − r1||2 +
g1
δ1

≤ ||x − r2||2 +
g2
δ2

}

, δ1 = μ(S1), S2 = A \ S1.

Theorem 2 is proved. �

Proof of Theorem 3. We consider a generalization of the approach outlined in the
proof of Theorem 2. Let it be necessary to divide the region A on n countries.
Let us consider a family of nonzero pairwise noncollinear vectors ai ∈ R

l, real
ε > 0 and a family of convex compacts from R

l+n:

B0 = A × (0, 0, . . . , 0), Bi = B0 + (ai, ei), i = 1, . . . , n,

where ei is a unit vector in R
n. Next, we consider the convex hull of the union

of these sets

B =

{

B0 +
n∑

i=1

αi(ai, ei) | αi ≥ 0, i = 1, . . . , n,

n∑

i=1

αi ≤ 1

}

.

We identify B with the set A × �,

� =

{

(s1, . . . , sn) ∈ R
n
+ |

n∑

i=1

si ≤ 1

}

.

The population distribution is determined via the density H : B → R+, defined
by

H(x, s1, . . . , sn) = w(x) · γ(s),

where w : A → R+ is the density of the measure μ and a simple function
γ : � → R+ is specified for ε > 0 and d > 0 by formula

γ(t) =
{

εn, s ∈ � \ �ε,
d, s ∈ �ε,

�ε =
n∏

i=1

[0, ε]

and satisfies ∫

�
γ(s)

n⊗

i=1

dsi = 1.

Now let νε be the measure on B, defined by density H(·). We have νε(B) =
μ(A) = 1.

Consider further the projecting mappings Pri : B → Bi, i ∈ N acting as:

Pri(x, s) = (x + nεai −
n∑

j=1

sjaj , nεei),
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where (x, s) ∈ B, s = (s1, s2, . . . , sn) ∈ R
n, and vectors ai ∈ R

l were chosen
above. Next we define a convex compactum

X = Δn−1 ×
n∏

i=1

Yi, Yi = Pri(B) = B0 + nε(ai, ei), i = 1, 2, . . . , n,

in which we are looking for a fixed point at an initial stage of the proof.
For the set B let us consider a metric: for κ = (x, s), κ′ = (x′, s′, ) ∈ B one

puts

ρ′(κ, κ′) = ||x − x′||2 + ||s − s′||1 =
√

〈x − x′, x − x′〉 +
n∑

i=1

|si − s′
i|.

Now for any y ∈ ∏n
i=1 Yi and nominal δ ∈ Δn−1 for the set B one can define

costs

ci(κ, δi, yi) =
gi

δi
+ ρ′(κ, yi), gi > 0 , δi > 0 i = 1, 2, . . . , n, κ ∈ B,

which specify n “countries” in B:

Sε
i (δ, y) = {κ ∈ B | ci(κ, δi, yi) ≤ min

j 	=i,j∈N
cj(κ, δj , yj)}, i ∈ N. (7)

Note that for i �= j it is always true yi �= yj and the set Sε
i (δ, y) ∩ Sε

j (δ, y)
is negligible by Lebesgue measure. So, in (7) countries are defined correctly,
although they can be represented by empty set. Moreover, the statement of
Lemma 2 is extended to a current case: the mapping

Fi : (δ, y) → νi(δ, y) = νε(Sε
i (δ, y)), i ∈ N

is continuous on Δ × Y and if νi(δ, y) = νε(Sε
i ) > 0 then the centers of mass

rc(Sε
i ) ∈ B are defined correctly and, moreover, the function Fi is continuous at

this point.
Let us consider also a mapping R : Δn−1 × Y → Y , specifying new centers

of countries: for νi(δ, y) = νε(Sε
i (δ, y)) > 0 define

Ri(δ, y) = Pri(rc(Sε
i )), rc(Sε

i ) =
1

νε(Sε
i )

∫

Sε
i

(x, s)dνε(x), Sε
i ⊂ B ⊂ R

l+n

and put Ri(δ, y) = Yi if νi(δ, y) = νε(Sε
i (δ, y)) = 0, i ∈ N . We define also

F : Δ × Y → Δ by formula

F(δ, y) = (Fi(δ, y))i∈N = (νi(δ, y))i∈N .

The key properties of the map F × R are the same as in two countries case
and stated above Lemmas 3, 4, Corollary 1 can now be easily extended to the
general case of n countries. Moreover, the proof of Theorem2 is also workable:
assuming that the centers of gravity of any two countries coincide, we come to a
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contradiction with the fact that the center of gravity of a convex solid set must
be located in its interior.

In conclusion, a small remark about the centers of the countries. Like in the
two countries case, in general, the capitals, represented as centers of the masses,
are located on the territory of their own country—despite the fact that they
form non-convex figures! To make sure of this, we will arrange the countries
in descending order of individual contribution. Let us assume, without loss of
generality, that

g1
μ(S1)

≥ g2
μ(S2)

≥ · · · ≥ gn

μ(Sn)
.

Now one can conclude that the border between the countries i < j is given by
the hyperbola branch, which defines a convex fragment in A that contains the
center of the country i and does not contain the center of j, this is so due to the
equation

||x − ri||2 − ||x − rj ||2 =
gj

μ(Sj)
− gi

μ(Si)
≤ 0.

Thus, the territory of the 1st country is the intersection of convex regions from A,
each of them contains the center r1 ∈ A and their intersections cannot include
the centers of other countries. Similarly for the 2nd country r2 ∈ A \ S1 and
ri /∈ S2 ∀i ≥ 3 etc. Theorem 3 is proved. �

4 Appendix: Generalized Fixed Point Theorems

In this section I summarize some results obtained in [5,8,9], which are important
for our analysis; all proofs are omitted (the comprehensive source is [9]). I am
presenting a series of theorems generalizing both classical Brouwer and Kakutani
fixed point theorems and Krasnosel’skii results [2,3].

Below we shall assume that X ⊂ R
n is a convex compact set and f : X → R

n.
For a first view one can assume, without loss of generality, that int X �= ∅.

We now consider two conditions on the map f : X → R
n: for every boundary

x ∈ ∂X and every linear functional h �= 0, which supports X at the point x, i. e.
if 〈h,X〉 ≤ 〈h, x〉, the following takes place

〈h, f(x)〉 < 〈h, x〉 (8)

or
〈h, f(x)〉 > 〈h, x〉. (9)

The first requirement I called a “strongly compressive” property, and the second
one as a “strongly expanding” one, see Fig. 1.

Theorem 4. Let X ⊂ R
n be a convex compactum and intX �= ∅. Then every

continuous map f : X → R
n having a strongly compressing or expanding property

has a fixed point in X.
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f(x)

x + α(x − f(x))

h

x

Fig. 1. Strongly expanding property (9).

Based on this result there was obtained the following generalization of Brouwer’s
theorem. Recall that in the linear space L the affine hull aff(X) of the set X ⊂ L
is specified as

aff(X) = {
∑

Ξ

λξxξ | xξ ∈ X,λξ ∈ R ∀ξ ∈ Ξ, |Ξ| < ∞,
∑

Ξ

λξ = 1}.

The affine hull can also be described as aff(X) = x+L(X −x), where L(X −x)
is the linear hull of (X − x) for an arbitrarily chosen x ∈ X. Below ∂X is the
boundary of the set X in its affine hull, i.e. ∂X = X \ riX, where riX is the
relative interior of the closed convex set X ⊂ L.

Theorem 5. Let X ⊂ R
n be a convex compactum and f : X → aff(X) be a

continuous map with values in the affine hull of X. Suppose that f satisfies one
of the following conditions:

(i) Compression

∀x ∈ ∂X,∀h ∈ R
n [〈h, x〉 ≥ 〈h,X〉 ⇒ 〈h, f(x)〉 ≤ 〈h, x〉]. (10)

(ii) Expansion

∀x ∈ ∂X,∀h ∈ R
n [〈h, x〉 ≥ 〈h,X〉 ⇒ 〈h, f(x)〉 ≥ 〈h, x〉]. (11)

Then f has a fixed point in X.

Remark 1. The statement of Theorem 5 can be generalized to the case of the
Cartesian product of mappings, the first of which satisfies the hypothesis of
Theorem 5, and the second—to the conditions of Brouwer theorem or it is
reducible to it: for example, the conditions (i) or (ii) are satisfied.
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The content of Theorem 5 can be reformulated in a little bit different form.
We recall that in a convex analysis with a convex closed subset X of a linear
space L and any x∗ ∈ X two kinds of cones are customary associated. First, it
is normal cone

NX(x∗) = {h ∈ L∗ | 〈h, x∗ − X〉 ≥ 0},

where L∗ is dual space for L. Second, tangent cone:

TX(x∗) = {y ∈ L | 〈h, x∗ − y〉 ≥ 0 ∀h ∈ NX(x∗)} = cl

(
⋃

λ>0

λ(X − x∗)

)

.

Now applying tangent cone, condition (10) can be rewritten in the following
way: ∀x∗ ∈ ∂X (f(x∗) − x∗) ∈ TX(x∗). If one take into account that affX =
TX(x∗) for x ∈ riX and TX(x∗) ⊂ affX for x∗ ∈ ∂X, then one can conclude
that (10) is equivalent to

∀x∗ ∈ X (f(x∗) − x∗) ∈ TX(x∗).

Similar conclusions can be done for condition (11). As a result we are going
to the following reformulation of Theorem5:

Theorem 6. Let X ⊂ R
n be a convex compactum and f : X → R

n be a contin-
uous map. Assume that f obeys one of the following conditions:

(i) Compression: (f(x∗) − x∗) ∈ TX(x∗) ∀x∗ ∈ X.
(ii) Expansion: (x∗ − f(x∗)) ∈ TX(x∗) ∀x∗ ∈ X.

Then f has a fixed point in X.

Below I show that classical Kakutani’s theorem about multivalued mappings
also can be generalized applying more or less similar method.

Kakutani theorem generalizes Brouwer’s theorem to multivalued (point-to-
set) mappings. Here it is allowed that the values of the mapping are sets, but they
are necessarily non-empty convex compact sets, a kind of “generalized point”.
The requirement of continuity of a mapping is replaced by the closeness of the
graph or by its equivalent, upper semicontinuity. However, similarly the Brouwer
theorem, the classical version of Kakutani’s theorem assumes that the values of
the mapping must be subsets of its (convex and compact) domain. In this section,
it will be shown that similarly to Brouwer’s theorem, Kakutani’s theorem on the
existence of a fixed point for a point-to-set mapping can be generalized to the
case when the last requirement is violated, i.e., the mapping may act beyond the
scope of the domain.

As before, we assume that X ⊂ R
n is a convex compact set and, without

loss of generality, int X �= ∅. However, now we consider point-to-set mapping
(correspondence) F : X ⇒ R

n. We recall the following classical definition of
upper semicontinuity.
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Definition 2. A point-to-set mapping F : X ⇒ Y ⊂ R
n is called upper semi-

continuous at the point x ∈ X if F (x) �= ∅ and for each open U ⊃ F (x) there
is a neighborhood Vx of the point x such that F (z) ⊂ U ∀z ∈ Vx.

A mapping F : X ⇒ Y ⊂ R
n is called upper semicontinuous if it is upper

semicontinuous at every point of X.

In the literature one can find also the concept of “Kakutani map”.

Definition 3. A point-to-set mapping F : X ⇒ Y ⊂ R
n is called a Kakutani

map if its graph GrF = {(x, y) ∈ X × Y | y ∈ F (x)} is closed and for every
x ∈ X the value F (x) ⊆ Y is non-empty and convex.

It is known that if X×Y is a compact set, the map F : X ⇒ Y ⊂ R
n has a closed

graph and F (x) �= ∅ ∀x ∈ X, then this map is upper semicontinuous. Thus, if
X ×Y is a compact set, then the Kakutani map is always upper semicontinuous.

We now consider additional boundary conditions for F (·). If x ∈ ∂X, one
can need compressive condition:

∃y ∈ F (x),∀h ∈ R
n [〈h, x〉 ≥ 〈h,X〉 ⇒ 〈h, y〉 ≤ 〈h, x〉], (12)

or expansive one:

∃y ∈ F (x),∀h ∈ R
n [〈h, x〉 ≥ 〈h,X〉 ⇒ 〈h, y〉 ≥ 〈h, x〉]. (13)

The Kakutani mapping for which requirement (12) is fulfilled at every bound-
ary point of X is called compressing. Similarly, if at every boundary point the
mapping satisfies (13), then we call it expanding.

Theorem 7. Let X,Y ⊂ R
n be convex compact sets, Y ⊂ aff(X) and

F : X ⇒ Y be a point-to-set Kakutani mapping. Now if the mapping F (·) is
compressing or alternatively, is expanding, then F has a fixed point in X.

Similarly to the case of one-to-one map the last theorem can be reformulated
for multivalued case in terms of tangent cones.

Theorem 8. Let X ⊂ R
n be a nonempty convex compact set and

F : X ⇒ Y ⊂ R
n be a point-to-set Kakutani mapping. Assume that F obeys

one of the following conditions:

(i) Compression: (F (x∗) − x∗) ∩ TX(x∗) �= ∅ ∀x∗ ∈ X.
(ii) Expansion: (x∗ − F (x∗)) ∩ TX(x∗) �= ∅ ∀x∗ ∈ X.

Then F has a fixed point in X.

The following theorem has applications in the theory of spatial equilibrium
and is a direct consequence of Theorem 7.

Let M ⊂ R
n be a convex bounded polyhedron (polytope) and aff(M) be

its affine hull. Let d ∈ riM be some point in the relative interior of a polyhe-
dron M , and Ft, t = 1, . . . , k be its non-trivial faces of a maximum dimension



Immigration-Consistent Division into Countries Centered at Barycenter 671

(one less than the dimension of M). With every facet a cone Kt ⊂ aff(M) with
a vertex at d is associated:

Kt = {d + λ(κ − d) | κ ∈ Ft, λ ≥ 0} ⇒ aff(M) = ∪
t=1,...,m

Kt.

Theorem 9. Let F : M ⇒ aff(M) be a Kakutani mapping defined on a polyhe-
dron M and d ∈ riM , aff(M), Ft, Kt be defined as described above. Let one of
the conditions hold:

(i) Compressive form: F(Ft) ⊂ M, ∀t = 1, . . . ,m.
(ii) Expansive form: F(Ft) ⊂ Kt \ riM, ∀t = 1, . . . , m.

Then F(·) has a fixed point in M .

The result of Theorem 9 in its expansive form is illustrated in Fig. 2. Here f

continuously maps a smaller simplex Δ
(n−1)
ε onto its extension Δ(n−1) and obeys

condition (ii). The proof of Theorem 9 follows from Theorem 7 and characteri-
zation of boundary points of the polyhedron in terms of supporting hyperplanes.

Fig. 2. Initial and embedded sub-simplex Δ
(n−1)
ε and the mapping f(·).
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Abstract. The paper considers the model of opinion dynamics in the
network having a star structure. An opinion about an event is distributed
among network agents restricted by the network structure. The agent in
the center of the star is influenced by all other agents with equal intensity.
The agents located in non-center nodes are influenced only by the agent
located in the center of the star. Additionally, it is assumed that there
are two players who are not located in the considered network but they
influence the agents’ opinions with some intensities which are strategies
of the players. The goal of any player is to make opinions of the network
agents be closer to the initially given value as much as possible in a finite
time interval. The game of competition for opinion is linear-quadratic
and is solved using the Euler-equation approach. The Nash equilibrium
in open-loop strategies is found. A numerical simulation demonstrates
theoretical results.

Keywords: Opinion dynamics · Consensus ·
Game of competition for opinion

1 Introduction

In modern society informational technologies allow to influence the society opin-
ion on key events. Different centers would like to reach different opinions on
the same event and the influence process may be competitive. We introduce a
simple model of competition for the society opinion based on DeGroot’s model
of information diffusion [8], which is represented as a dynamic process where an
agent of the society influence each other opinion with the same intensity at any
time period. In the paper, the conditions of reaching a consensus are found.

In our paper, we consider a society which is represented by a set of agents
who are the nodes in a given network which structure is known. It is assumed the
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agents exchange information via network and their opinions are influenced by
the other agents who have direct connection with them according to the network
structure. The intensity of influence does not change over time and is given by a
matrix. We propose to consider a star graph as a network. Therefore, there is an
agent who is located at the center and any other agent has a unique link with him.
All non-central agents are symmetric which means their influence on the central
agent and reverse are the equivalent among non-central agents. The star graph
of communication may represent the relations in small working societies with a
unique leader [17]. Game-theoretical models with given network structures are
introduced in [15]. The problem of network partitioning with different approaches
is examined in [1,16].

Moreover, we suppose that there exist two players who are not represented
in the given network. The players aim society to have an opinion the closest to
the given ones. The players may have different target opinions and the prob-
lem becomes competitive. The players are also different in costs of influence on
the agents and the set of agents they may communicate with. The first player
may directly affect only the central agent opinion and the second player may
directly affect any non-central agent. We suppose that agents form their opin-
ions with both influence of the neighbours according to communication structure
and influence of player 1 (2) if the agent is central or not. The state of the game
in discrete time t is represented by a vector of agents’ opinions in this period.
The state dynamics is linear with respect to the previous period state and play-
ers’ strategies. As the costs of the players are linear quadratic functions of state
and strategies, the game is classified as a linear-quadratic dynamic game. For
algorithms of finding solutions of such a class of games see [9–11]. The Euler
equation approach of solving liner-quadratic games is described in [12].

The models of reaching a consensus become actual when the variety of social
networks like Facebook, Vkontakte, LinkedIn appears and has a popularity in
the Internet. The models of informational influence on population and informa-
tion control models are introduced and examined in the papers [2,14] and in the
books [7,13]. A model of opinion dynamics with two principals is presented in
[6], in which dynamic process is examined and the limit opinions are obtained
for a given matrix of influences. There is a series of papers in which the problem
of reaching a consensus is considered as a repeated game [3], a mean field game
[4] and an evolutionary game [20]. In the latter paper, several consensus mod-
els in which agents have different levels of susceptibility to the inputs received
from their neighbours are considered, and the equilibrium points are found.
Together with game theoretical models, there exist imitation models of opinion
dynamics [5].

In the paper we propose a model of two-player dynamic game of competition
for opinion and find the Nash equilibrium in case the players have different target
opinions on some event. The competitive models of opinion dynamics are also
considered in [18,19]. In the paper [18], the cooperative version of the game is
considered and the optimal strategies with open- and closed-loop information
structure are found.
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In Sect. 2, we describe the model of a game of competition on opinion. In
Sect. 3, we formulate the main result of the Nash equilibrium existence. We
provide the system of equation to find the players’ equilibrium strategies. In
Sect. 4, we define a steady state. A numerical simulation is presented in Sect. 5.
We briefly conclude in Sect. 6.

2 Game of Competition for Opinion

Let there be a network consisting of an n + 1 agent with a star structure (see
Fig. 1). This network represents how the communication between the agents
takes place. In the network, agent 1 is connected to all other agents, and agents
2, . . . , n + 1 are not directly connected to each other. Assume the agents i =
2, . . . , n + 1 are symmetric.

11
n+1

32

4

5

Fig. 1. A communication graph.

We assume that all agents have an opinion on a certain topic. Opinion varies
in time, which is assumed to be discrete and finite, t = 0, 1, . . . , T . Opinion of
agent i at time t is xi(t) ∈ R, i = 2, . . . , n + 1.

Suppose there are two centers of opinion control (players 1 and 2) whose
goal is to get an opinion as close as possible to x̂ ∈ R and ŷ ∈ R for all agents,
respectively. The set of agents’ opinions (xi(t) : i = 1, . . . , n + 1) determines the
state x(t) ∈ R

n at time t. Define the dynamics of agents’ opinions. Agents in
the network affect each other’s opinions at any time with constant intensity, i.e.
the matrix the intensity of the impact of player j on player’s opinion i, which is
A = {ai,j}i,j=1,...,n+1, where ai,j ∈ [0, 1], is given. We assume matrix A is of the
form:

A =

⎛
⎜⎜⎜⎝

0 1
n . . . 1

n
1 0 . . . 0
...

...
. . .

...
1 0 . . . 0

⎞
⎟⎟⎟⎠
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We notice that agent 2, . . . , n + 1 affects the opinion of agent 1 with equal
intensity which follows from matrix A form. The opinion of agents 2, . . . , n + 1
are influenced only by the opinion of agent 1.

We define the dynamics of the agents’ opinions, taking into account the
impact of players 1 and 2 on the network agents. The opinion of agent 1 at time
t + 1 is influenced with probability α by the opinion of other network agents
according to matrix A and with probability ᾱ = 1 − α by the opinion of player
1 who influences on agent 1 with intensity u1(t) ∈ R at time t. Thus, player 1
directly affects only agent 1, but its goal is to make the opinions of all network
agents to x̂ as closer as possible. The opinion of any agent i = 2, . . . , n + 1 is
formed by the influence of the opinion of agent 1 with probability β according to
matrix A and with probability β̄ = 1 − β by the opinion of the player 2, which
affects the agent i’s opinion with the intensity u2(t) ∈ R at time t. The state
dynamics is

x1(t + 1) = α

n+1∑
j=2

xj(t)

n
+ ᾱu1(t), (1)

xi(t + 1) = βx1(t) + β̄u2(t), i = 2, . . . , n + 1. (2)

The initial state x(0) = (x1(0), . . . , xn+1(0)), where x2(0) = . . . = xn+1(0),
is given. Taking into account that agents 2, . . . , n + 1 are symmetric we suppose
that xi(t) = xj(t) for any i, j = 2, . . . , n + 1 and t = 0, . . . , T .

The cost functions of players 1 and 2 are

J1(u1, u2) =
T−1∑
t=0

(
n+1∑
i=1

(xi(t) − x̂)2 + c1u
2
1(t)

)
+

n+1∑
i=1

(xi(T ) − x̂)2, (3)

J2(u1, u2) =
T−1∑
t=0

(
n+1∑
i=1

(xi(t) − ŷ)2 + nc2u
2
2(t)

)
+

n+1∑
i=1

(xi(T ) − ŷ)2, (4)

where ci is costs of player i per unit of influence intense.
We define a game of competition for opinion as a normal form game of two

players with the set of players’ strategies U1, U2, where Uj = (uj(t) ∈ R : t =
0, . . . , T − 1), j = 1, 2, players’ cost functions J1, J2, defined by formulas (3),
(4) s.t. state Eqs. (1), (2) with initial state x(0) = (x1(0), . . . , xn+1(0)). The
game of competition for opinion belongs to the class of linear-quadratic games
because the right hand side of Eqs. (1), (2) is linear with players’ strategies and
cost functions are quadratic with strategies and states.
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3 Nash Equilibrium in a Game of Competition
for Opinion

We consider the Nash equilibrium as a solution of the game which is the strategy
profile (u∗

1, u
∗
2) such that the inequalities

J1(u∗
1, u

∗
2) � J1(u1, u

∗
2),

J2(u∗
1, u

∗
2) � J2(u∗

1, u2)

hold for any u1 ∈ U1 and u2 ∈ U2.
The following theorem provide conditions to find the Nash equilibrium in

a game of competition for opinion which is defined by two players, the set of
strategies U1 and U2 and cost functions (3) and (4) to be minimized.

Theorem 1. Let (u∗
1, u

∗
2) be the Nash equilibrium and {x∗(t) : t = 0, . . . , T}

be the corresponding state trajectory in a game of competition for opinion, then
they satisfy the systems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1x1(t) + B1u2(t) − D1βx1(t + 2) − D1x2(0) − (1 + nβ)x̂ = 0, t = 1,

A1x1(t) + B1u2(t) − D1βx1(t + 2) − D1βx1(t − 2) − D1β̄u2(t − 2)
−(1 + nβ)x̂ = 0, t = 2, . . . , T − 2,

C1x1(t) + nββ̄u2(t) − D1βx1(t − 2) − D1β̄u2(t − 2) − (1 + nβ)x̂ = 0,

t = T − 1,(C1 − nβ2
)
x1(t) − D1βx1(t − 2) − D1β̄u2(t − 2) − x̂ = 0, t = T,

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2x2(t) + B2u1(t) − D2αx2(t + 2) − D2x1(0) − (n + α)ŷ = 0, t = 1,

A2x2(t) + B2u1(t) − D2αx2(t + 2) − D2αx2(t − 2) − D2ᾱu1(t − 2)
−(n + α)ŷ = 0, t = 2, . . . , T − 2,

C2x2(t) + αᾱu1(t) − D2αx2(t − 2) − D2ᾱu1(t − 2) − (n + α)ŷ = 0,

t = T − 1,(C2 − α2
)
x2(t) − D2αx2(t − 2) − D2ᾱu1(t − 2) − nŷ = 0, t = T

(6)
where
A1 = 1 + nβ2 + c1(1+α2β2)

ᾱ2 , A2 = n + α2 + nc2(1+α2β2)

β̄2 ,

B1 = ββ̄
(
n + c1α2

ᾱ2

)
, B2 = αᾱ

(
1 + nc2β2

β̄2

)
,

C1 = 1 + nβ2 + c1
ᾱ2 , C2 = n + α2 + nc2

β̄2

D1 = c1α
ᾱ2 , D2 = nc2β

β̄2 ,
taking into account the state Eqs. (1) and (2) and initial state x(0) =
(x1(0), . . . , xn+1(0)) with x2(0) = . . . = xn+1(0).

Proof. The game of competition for opinion is a dynamic game with finite hori-
zon and state dynamics Eqs. (1) and (2) whose right-hand sides are linear with
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states and strategies. The cost functions are linear-quadratic functions with
states and quadratic functions with strategies. To find the Nash equilibrium in
the game of competition for opinion we use the Euler method and write down the
conditions defining the strategy of player 1 as a function of player 2’s strategy:

u1(0) =
1
ᾱ

(x1(1) − αx2(0)) , (7)

u1(t) =
1
ᾱ

(
x1(t + 1) − αβx1(t − 1) − αβ̄u2(t − 1)

)
, (8)

t = 1, . . . , T − 1,

and the strategy of player 2 as a function of player 1’s strategy:

u2(0) =
1
β̄

(xi(1) − βx1(0)) , (9)

u2(t) =
1
β̄

(xi(t + 1) − αβxi(t − 1) − ᾱβu1(t − 1)) , (10)

t = 1, . . . , T − 1.

In expressions (9) and (10), the states xi(t) are used. As the initial state is such
that x(0) = (x1(0), . . . , xn+1(0)), where x2(0) = . . . = xn+1(0) and the agents
2, . . . , n + 1 are symmetric, we use notation x2(t) for any i, j = 2, . . . , n + 1,
because xi(t) = xj(t) for any i �= j, i, j = 2, . . . , n + 1 and any t = 0, . . . , T .

First, substitute expressions (7) and (8) into cost function J1(u1, u2)
defined by (3) and consider it as a function of x1(t), t = 1, . . . , T , and u2(t),
t = 0, . . . , T − 1:

J1(x1, u2) = (x1(0) − x̂)2 + n (x2(0) − x̂)2 +
c1
ᾱ2

(x1(1) − αx2(0))2

+
T−1∑
t=1

(x1(t) − x̂)2 + n

T−1∑
t=1

(
βx1(t − 1) + β̄u2(t − 1) − x̂

)2

+
c1
ᾱ2

T−1∑
t=1

(
x1(t + 1) − αβx1(t − 1) − αβ̄u2(t − 1)

)2

+ (x1(T ) − x̂)2 + n
(
βx1(T − 1) + β̄u2(T − 1) − x̂

)2
.

Taking the derivative of J1(x1, u2) over x1(1) and equate it to zero, we obtain
the first equation of system (5). Taking the derivative of J1(x1, u2) over x1(t),
t = 2, . . . , T − 2, and equate it to zero, we obtain the second group of equations
of system (5). The third and the fourth equations of system (5) are obtained by
equity of a derivative of J1(x1, u2) over x1(T − 1) and x1(T ), correspondingly,
to zero.
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Second, substitute expressions (9) and (10) into cost function J2(u1, u2)
defined by (4) and consider it as a function of x2(t), t = 1, . . . , T , and u1(t),
t = 0, . . . , T − 1:

J2(x2, u1) = (x1(0) − ŷ)2 + n (x2(0) − ŷ)2 +
nc2
β̄2

(x2(1) − βx1(0))2

+ n
T−1∑
t=1

(x2(t) − ŷ)2 +
T−1∑
t=1

(αx2(t − 1) + ᾱu1(t − 1) − ŷ)2

+
nc2
β̄2

T−1∑
t=1

(x2(t + 1) − αβx2(t − 1) − ᾱβu1(t − 1))2

+ n (x2(T ) − ŷ)2 + (αx2(T − 1) + ᾱu1(T − 1) − ŷ)2 .

Taking the derivative of J2(x2, u1) over x2(1) and equate it to zero, we obtain
the first equation of system (6). Taking the derivative of J2(x2, u1) over x2(t),
t = 2, . . . , T − 2, and equate it to zero, we obtain the second group of equations
in system (6). The third and forth equations of system (6) are obtained by equity
of a derivative of J2(x2, u1) over x2(T − 1) and x2(T ), correspondingly, to zero.

The solution of the systems (5) and (6) taking into account the state dynamics
Eqs. (1) and (2) with a given initial state x(0) = (x1(0), . . . , xn+1(0)), x2(0) =
. . . = xn+1(0) provides the Nash equilibrium in the game of competition for
opinion. We can easily prove that the systems (5) and (6) and state dynamics
equations form a linear system with respect to x1(t), x2(t), t = 1, . . . , T and
u1(t), u2(t), t = 0, . . . , T − 1, which has a unique solution.

4 Steady State

Suppose there exists a steady state (x1, x2) for dynamics (5), (6) when t → ∞.
From (8) and (10) we find the limit values for optimal controls:

u1 =
1
ᾱ

(
x1 − αβx1 − αβ̄u2

)
,

u2 =
1
β̄

(xi − αβxi − ᾱβu1) ,

which yields

u1 =
x1 − αx2

ᾱ
, (11)

u2 =
x2 − βx1

β̄
, (12)
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where (x1, x2) satisfy the equations:

x1

(
1 + nβ2 +

c1(1 + α2β2)
ᾱ2

)
− x1

c1αβ

ᾱ2
+ u2ββ̄

(
n +

c1α
2

ᾱ2

)

− x1
c1αβ

ᾱ2
− u2

c1αβ̄

ᾱ2
= x̂(1 + nβ),

x2

(
n + α2 +

nc2(1 + α2β2)
β̄2

)
− x2

nc2αβ

β̄2
+ u1αᾱ

(
1 +

nc2β
2

β̄2

)

− x2
nc2αβ

β̄2
− u1

nc2ᾱβ

β̄2
= ŷ(n + α).

Simplifying we obtain

x1

(
1 + nβ2 +

c1(1 − αβ)2

ᾱ2

)
+ u2β̄

(
nβ − c1α(1 − αβ)

ᾱ2

)
= x̂(1 + nβ),

x2

(
n + α2 +

nc2(1 − αβ)2

β̄2

)
+ u1ᾱ

(
α − nc2β(1 − αβ)

β̄2

)
= ŷ(n + α).

Substituting u1, u2 from (11) and (12), we obtain the system of equations:

x1

(
1 +

c1(1 − αβ)
ᾱ2

)
+ x2

(
nβ − c1α(1 − αβ)

ᾱ2

)
= x̂(1 + nβ),

x2

(
n + n

c2(1 − αβ)
β̄2

)
+ x1

(
α − nc2β(1 − αβ)

β̄2

)
= ŷ(n + α).

The solution of the latter system is a steady state given by

x1 =
1
Q

(
x̂n(1 + nβ)

(
1 +

c2(1 − αβ)
β̄2

)
− ŷ(n + α)

(
nβ − c1α(1 − αβ)

ᾱ2

))
,

(13)

x2 =
1
Q

(
−x̂(1 + nβ)

(
α − nc2β(1 − αβ)

β̄2

)
+ ŷ(n + α)

(
1 +

c1(1 − αβ)
ᾱ2

))
,

(14)

where

Q =n

(
1 +

c1(1 − αβ)
ᾱ2

) (
1 +

c2(1 − αβ)
β̄2

)

−
(

nβ − c1α(1 − αβ)
ᾱ2

) (
α − nc2β(1 − αβ)

β̄2

)
.

We notice that the steady state does not depend on initial state x(0).

Remark 1. If we consider the case when α = β = 0, i.e. the agents are not influ-
enced by the other agents and influenced only by the players. Then the steady
state is (x1, x2, . . . , xn+1) coincide with ( x̂

1+c1
, ŷ
1+c2

, . . . , ŷ
1+c2

). All agents will
have the same opinion only if the players’ target opinions satisfy the condition
x̂
ŷ = 1+c1

1+c2
.
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Remark 2. We may consider the case when α = β = 1, i.e. the agents are
not influenced by the players and influenced only by the agents in the network
according matrix A. The model represents DeGroot model of opinion dynamics
[8]. And we notice that the consensus in this network is not reached because
lim

t→∞ At does not exist. In particular, matrix At takes one of the forms:

At =

⎛
⎜⎜⎜⎝

0 1
n . . . 1

n
1 0 . . . 0
...

...
. . .

...
1 0 . . . 0

⎞
⎟⎟⎟⎠ , if t = 2k + 1, k = 0, 1, . . .

At =

⎛
⎜⎜⎜⎝

1 1
n . . . 1

n

0 1
n . . . 1

n
...

...
. . .

...
0 1

n . . . 1
n

⎞
⎟⎟⎟⎠ , if t = 2k, k = 1, 2, . . .

Considering the networks, in which the consensus is not reached the role of the
players is significant.

In the next section we consider a numerical example for which we find equilib-
rium strategies, corresponding state trajectories and players’ payoffs when they
use equilibrium strategies.

5 Numerical Simulation

We consider a game with 41 time periods starting from 0. In a star network
represented in Fig. 1 there are 7 non-central nodes. Therefore the number of
agents n + 1 is eight. The initial opinion state is x(0) = (0.3, 0.7, . . . , 0.7), i.e.
x1(0) = 0.3 and xi(0) = 0.7 for any i = 2, . . . , 8. The probabilities that agent 1
and agent i are influenced by other agents according to matrix A are α = 0.3
and β = 0.4, respectively.

The unit costs for influence intense are c1 = 0.1 for player 1 and c2 = 0.05
for player 2. Their target opinions are x̂ = 0.7 and ŷ = 0.9 respectively.

Using Theorem 1 we find the equilibrium strategies represented in Fig. 2. The
second player’s intense (blue dots) is larger than the first player’s one and may
be explained by the higher target opinion 0.9 of player 2 contrary to 0.7 of player
1 and smaller unit costs 0.05 contrary to the unit costs 0.1 of player 1. The state
trajectories corresponding to the Nash equilibrium are presented in Fig. 3. The
steady state is (0.304164, 0.837986, . . . , 0.837986) and is depicted by red (for x1)
and blue (for any xi, i = 2, . . . , 8) lines. As one can notice, the equilibrium state
trajectory (red dots — for x1(t), and blue dots — for xi(t), i = 2, . . . , 8) almost
everywhere coincide with the steady state. There are 7 non-central agents, and
for the players it is more important to make opinion of these agents closer to
the target one rather than to make the opinion of a central agent closer to the
target one. The reason is in the form of the total cost functions (3) and (4).
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Fig. 2. Strategy trajectories (red — u1(t),
blue — u2(t)). (Color figure online)

Fig. 3. State trajectories (red — x1(t),
blue — xi(t), i = 2, . . . , n + 1). Red and
blue lines are steady states x1 and x2 cor-
respondingly. (Color figure online)

In these functions the differences between agent’s and target opinions are taken
into account with the same weight 1. One may consider cost functions in which
these weights are different.

Next, we calculate the total costs of the players defined by formulas (3) and
(4) when players use their equilibrium strategies. In Fig. 4 we introduce the
total costs J1(u∗

1, u
∗
2) (in red color) and J2(u∗

1, u
∗
2) (in blue color) as functions

of the number of agent n. We can easily notice that the costs of the players are
increasing functions of the number of agents in the network but they are not
linear. Although player 1 has larger unit costs than player 2, his total costs are
smaller than the ones of player 2. It may be explained by the closeness of his
target opinion x̂ to the opinions of all non-central agents.

Fig. 4. Players’ total costs as functions of the number of agents in the network (red —
J1(u

∗
1, u

∗
2), blue — J2(u

∗
1, u

∗
2)). (Color figure online)
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6 Conclusions

In the paper we propose a model of a competition for opinion in which two
players choose an intense of influence on the agents’ opinions at each time period
to make their opinions closer to the target opinions of the players. Players may
have different target opinions and this fact is a basis of a competition. The
players may directly influence different agents in the network. The state of the
system is the profile of agents’ opinions. We obtain the necessary conditions of
the Nash equilibrium, find the steady state for a given state dynamics. Numerical
simulations demonstrate the theoretical results. Any other opinion dynamics may
be considered to define the game of competition for opinion and it is left for a
future research.
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Abstract. In the paper a two-level infinitely repeated hierarchical game
with one player (center) C0 on the first level and S1, . . . , Sn subordinate
players on the second is considered. On each stage of the game player C0

selects vector x = (x1, . . . , xn) from a given set X, in which each compo-
nent represents vector of resources delivered by C0 to one of subordinate
players, i.e. xi = (xi1, . . . , xim). At the second level, Si, i = 1, 2, . . . , n,
choose the controls yi ∈ Yi(xi), where Yi(xi) depends upon the choice of
player C0.

In this game, a set of different Nash equilibrium also based on threat
and punishment strategies is obtained.

In one case, the center enforces special behavior of subordinate firms
(vector of manufactured goods), threatening to deprive them of resources
on the next steps if the subordinate firms refuse to implement the pre-
scribed behavior.

In another case, the subordinate firms can force the center to use a
certain resource allocation threatening to stop production.

Using different combinations of such behaviors on different stages of
the game, we obtain a wide class of Nash equilibrium in the game under
consideration.

The cooperative version of the game is also considered. The conditions
are derived under which the cooperative behavior can be supported by
Nash Equilibrium or Strong Nash Equilibrium (Nash Equilibrium stable
against deviations of coalitions).

Keywords: Repeated hierarchical game · Nash equilibrium ·
Cooperation

1 Introduction

There exists an important subclass of multistage nonzero-sum games, referred to
as hierarchical games. Hierarchical games model conflict controlled systems with
a hierarchical structure. This structure is determined by a sequence of control
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levels ranking in particular priority order. Mathematically, it is convenient to
classify hierarchical games according to the number of levels and the nature
of vertical relations. In this paper, we investigate repeated hierarchical games.
Using the Folk Theorem’s approach [3,5] the different classes of Nash equilibrium
are proposed with punishment and threat strategies, which often occurs in real
life situation.

The cooperative version of the game is also considered and conditions are
formulated under which the cooperative behavior can be supported by Strong
Nash equilibrium.

The basic difficulty in constructing the corresponding Strong Nash equilib-
rium consists in the fact that it is not easy to apply “punishment” for the
coalitions deviating from cooperation. In the simple case when only one shot
deviations and only of one coalition are allowed the result is published in [3,8].
But the approach which was presented in [3,8] cannot be extended for the gen-
eral case when different members of deviating coalitions deviate in different time
instants, because immediately after the first deviation the no deviating players
cannot identify the deviating coalition and thus cannot realize the “punishment”
against the coalition which decides to end up with cooperation. To solve this
problem we introduce the new “punishment” strategies for players: if they (for
instance player i) see the first time (on the next step after deviation) the devia-
tion of one or more players the non-deviating players start to use their optimal
strategies in a zero sum game, playing against the coalition of all players (except
himself). Which in practice means that each non-deviating player have to start
the play against all others immediately after the first deviation by someone take
place. We derive conditions under which this way of behavior guarantees that
each coalition deviating from cooperation will lose.

2 Two-Level Hierarchical Game

In the beginning, we consider a two-level hierarchical game with one center C0

and production firms S1, . . . , Sn.
Define a two-level hierarchical game:

– At the first level, the (coordinating) center C0 selects the control vector x =
(x1, . . . , xn) from a given set of controls X, where xi is a control influence
of center on its subordinate divisions Si, i = 1, . . . , n standing at the second
level of the hierarchy. Under xi we can understand a set of resources of m
kinds, i.e. xi = (xi1, . . . , xim). In other words the components of the control
vector xi characterize the impact of the center on its subordinate units.

– At the second level, Si, i = 1, 2, . . . , n, choose the controls yi ∈ Yi(xi), where
Yi(xi) is the set of controls of firm Si.

Thus, the center has the right of the first move and can limit the possibility
of subordinate firms, directing their actions on track.

We can formalize this problem as a noncooperative (n+1)-person game Γ (a
coordinating center C0 and production division S1, . . . , Sn) in normal form [4].
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The set of strategies of the player C0 is

X = {(x1, . . . , xn) : xi ≥ 0, xi ∈ Rm, i = 1, . . . , n,

n∑

i=1

xi ≤ q, q ≥ 0},

where q ∈ Rm can be interpreted as vector of available resources.
The vector xi, i = 1, . . . , n is interpreted as vector of resources of m items

allocated by center C0 to the ith production division.
We consider the case of complete information, i.e. each firm Si knows the

selection of C0 and in accordance with this knowledge selects the vector yi from
some set Yi(xi) that has the following form

Yi(xi) = {yi ∈ Rk, yiPi ≤ xi, yi ≥ 0},

where Pi = pi
lj is interpreted as a technological matrix of the (division) company,

pi
lj ≥ 0, l = 1, . . . , k, j = 1, . . . ,m. Under yi we understand a production program

of ith production division for different types of products.
Under the strategy of the company Si we understand the function yi(xi),

which corresponds to each element xi vector from the set Yi(xi). The set of all
such functions is denoted by Ȳi, i = 1, 2, . . . , n.

Define the players’ payoff functions in the game Γ .
The payoff function of player C0 equals to the sum of inner products

H0(x, y1(x1), . . . , yn(xn)) =
n∑

i=1

(αi, yi(xi)),

where αi ≥ 0, αi ∈ Rk, i = 1, . . . , n is a fixed vector.
The payoff function of player Si is a inner product of vectors βi and yi(xi),

i.e.
Hi(x, y1(x1), . . . , yn(xn)) = (βi, yi(xi)),

where βi ≥ 0, βi ∈ Rk is a fixed vector.
The goal of center C0 is to maximize the functional H0(x, y1, . . . , yn) choosing

x, and the goal of the subordinate companies Si is maximization of Hi(x, yi), by
choosing yi, i = 1, 2, . . . , n.

In general case, we suppose αi �= βi, i = 1, . . . , n.
Thus, we construct a game Γ in normal form

Γ = (C0, S1, . . . , Sn;X, Ȳ1, . . . , Ȳn, ;H0,H1, . . . , Hn).

In this game, a Nash equilibrium can be constructed [4,8].

2.1 Nash Equilibrium in a Two-Level Hierarchical Game

In game Γ the strategy profile (x∗, y∗
1(·), . . . , y∗

n(·)) is a Nash equilibrium [6,7]
where y∗

i (xi) ∈ Yi(xi) is the solution to a following linear parametric program-
ming problem (where vector xi as a parameter)

max
yi∈Y (xi)

(βi, yi) = (βi, y
∗
i (xi)), i = 1, . . . , n (1)
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and x∗ ∈ X is a solution to following maximization problem

max
x∈X

H0(x, y∗
1(x), . . . , y∗

n(x)). (2)

For simplicity assume that the maximum in (1) and (2) are achieved. Note
that (2) is a nonlinear programming problem with an essentially discontinuous
objective function (maximization is taken over x, and y∗

i (xi) are generally discon-
tinuous functions of the parameter xi). Show that the point (x∗, y∗

1(·), . . . , y∗
n(·))

is an equilibrium in the game Γ . Indeed,

H0(x∗, y∗
1(x1), . . . , y∗

n(xn)) ≥ H0(x, y∗
1(x1), . . . , y∗

n(xn)), x ∈ X.

Further, for all i = 1, . . . , n the inequality

Hi(x∗, y∗
1(x1), . . . , y∗

n(xn)) = (βi, y
∗
i (x∗

i )) ≥ (βi, yi(xi))
= Hi(x∗, y∗

1(x1), . . . , y∗
i−1(xi−1), yi(xi), y∗

i+1(xi+1), . . . , y∗
n(xn))

holds for any yi(xi) ∈ Yi(xi). Thus, it is not advantageous for every player C0,
S1, . . ., Sn to deviate individually from the profile (x∗, y∗

1(x1), . . . , y∗
n(xn)), i.e.

it is an equilibrium. Note that this profile is also stable against deviations from
it of any coalition S ⊂ {S1, . . . , Sn}, since the payoff Hi to the ith player does
not depend on strategies yj(xj), j ∈ {1, . . . , n}, j �= i.

3 Repeated Game

Consider now an infinitely repeated game G with finite game Γ played on each
stage [2].

If on stage l (1 ≤ l < ∞) the n + 1 tuple of strategies

(xl, yl
1(x

l
1), . . . , y

l
n(xl

n))

is used the payoff of player C is defined as

H∞
0 =

∞∑

l=1

δl−1

(
n∑

i=1

(αi, y
l
i(x

l
i))

)

and the payoff of player Si (i = 1, . . . , n), as

H∞
i =

∞∑

l=1

δl−1(βi, y
l
i(x

l
i)), δ ∈ (0, 1).

Denote by x̄ = (x1, . . . , xl, . . .), where xl = (xl
1, . . . , x

l
i, . . . , x

l
n) and by

ȳi(x̄) = (y1
i (x1), . . . , yl

i(x
l), . . .) the strategies of players C0 and Si, i = 1, . . . , n

in repeated game G.
One can write

H∞
0 = H∞

0 (x̄, ȳ1(x̄1), . . . , ȳn(x̄n)) =
∞∑

l=1

δl−1

(
n∑

i=1

(αi, y
l
i(x

l
i))

)
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and

H∞
i = H∞

i (x̄, ȳ1(x̄1), . . . , ȳn(x̄n)) =
∞∑

l=1

δl−1(βi, y
l
i(x

l
i))

As in the case of finitely repeated game in the game G there is a reach variety
of Nash equilibrium [11]. One of them is repetition of the equilibrium (x∗, y∗(x))
in each stage game. Denote this equilibrium by E1.

As well as the equilibrium based on the strategies of threats or punishment.

– In one case, the center imposes his behavior on subordinate firms (vector of
manufactured goods), threatening to deprive them of resources on the next
step if the subordinate firms deviate from the prescribed behavior (E2).

– In another case, the subordinate firms can impose on center a certain alloca-
tion of resources, threatening to stop production at the same step in case of
failure to comply with their requirements (E3).

– Different combinations of these equilibriums.

Consider now the case E2.
In infinitely repeated game G consider in stage game Γ l the following strategy

profile for players C0, S1, . . . , Sn

(x̃l, ỹl
1(x̃

l), . . . , ỹl
m(x̃l))

Player C0 solves the following maximisation problem

max H0(xl, yl
1(x

l), . . . , yl
n(xl)) = max

n∑

i=1

(αi, y
l
i(x

l
i)) (3)

under conditions
n∑

i=1

xl
i ≤ q

yl
iPi ≤ xl

i

xl
i ≥ 0, yl

i ≥ 0, i = 1, . . . , n

Suppose that maximum in (3) is attained in the point (x̃l, ỹl
1(x̃

l), . . . , ỹl
m(x̃l)).

One can see that this profile can be taken the same for all l = 1, . . . ,∞ and we
can write it as (x̃, ỹ1(x̃), . . . , ỹm(x̃)).

Derive now the conditions under which C0 can prescribe other players S1,
. . ., Sn, the behavior ỹl

1, . . . , ỹ
l
m, which together with x̃l is maximizing his payoff.

Can this way of behavior form a Nash Equilibrium? It is clear that after getting
the resource x̃l

i, i ∈ N player Si can instead of following the instructions made
by C0 (choose ỹl

i(x̃
l)) improve his payoff by choosing ˜̃yl

i(x̃
l) such that

Ĥi = max
yl
i∈Yi(x̃)

Hi(x̃l, ỹl
1(x̃

l), . . . , ỹl
i−1(x̃

l), yl
i, ỹ

l
i+1(x̃

l), . . . , ỹl
n(x̃l)) =

Hi(x̃l, ỹl
1(x̃

l), . . . , ỹl
i−1(x̃

l), ˜̃yl
i(x̃

l), ỹl
i+1(x̃

l), . . . , ỹl
n(x̃l)) ≥

Hi(x̃l, ỹl
1(x̃

l), . . . , ỹl
i−1(x̃

l), ỹl
i(x̃

l), ỹl
i+1(x̃

l), . . . , ỹl
n(x̃l)) = Hi
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But on the next stage and always after (in the infinite game) C0 can punish
Si by sending him the resource ˜̃x = 0.

Thus we can now define the Nash equilibrium E2.

Definition 1. In each stage game, players chose strategy profile (x̃, ỹ1(x̃), . . . ,
ỹm(x̃)) if on the previous stage the same profile was chosen. If on the previous
stage one of the players Si chooses yl

i, yl
i �= ỹl

i(x̃) then x̃l
k = 0, for all k ≥ l.

Prove that there always exist such δ̄, that for δ ∈ (δ̄, 1) player Si deviating
from the prescribed behavior ỹl

i(x̄) will loose in the infinitely repeated game.
The proof is very similar to the standard proof of Folk theorem. We present it
here for better understanding of what follows.

Deviating on stage l player Si can get at most Ĥi, but in all other stages he
will be punished by C0 by sending him the resource xi = 0.

This can be seen from the following inequalities. If player Si does not deviate
he gets

H∞
i =

∞∑

m=1

δm−1(βi, ỹi(x̃i)) = (βi, ỹi(x̃i))
1

1 − δ
.

If Si deviates of stage l, he will get at most

l−1∑

t=1

δt−1(βi, ỹi(x̃i)) + δlĤi = Ĥ∞
i .

We have

H∞
i =

l−1∑

t=1

δt−1(βi, ỹi(x̃i)) +
∞∑

t=l

δt−1(βi, ỹi(x̃i))

the payoff of Si if he follows the behavior prescribed by C0. To prove that
H∞

i ≥ Ĥ∞
i we have to show that

δlĤi ≤ δl−1
∞∑

l=1

δl−1(βi, ỹi(x̃i)) = δl−1H∞
i

δĤi ≤ H∞
i = (βi, ȳi(x̄i))

1
1 − δ

The last inequality proves the theorem, since δ ∈ (0, 1) and the existence of δ̄
follows from previous inequality.

Thus the following theorem holds.

Theorem 1. In two-level infinite repeated game Γ∞ there exists such δ̄ ∈ (0, 1),
that for all δ ∈ (δ̄, 1), the strategy profile (x̃(·), ỹ1(·), . . . , ỹn(·)) will be Nash
equilibrium.
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It is possible to modify this Nash equilibrium when the player C0 dictates
his conditions for the first k stages, and the rest of the stages use the Nash
equilibrium E1 strategies in stage game we considered earlier.

Another type of Nash equilibrium E3 consists of using “’threat” strategies
by players S1, . . . , Si, . . . , Sn. They have the following form in each stage game
fix a resource vector ¯̄x = (¯̄x1, . . . , ¯̄xi, . . . , ¯̄xn), and define

¯̄yi(xi) =
{

y∗
i (¯̄xi), xi = ¯̄xi

0, x �= ¯̄x

Here y∗
i is solution of (1). Players Si, i = 1, . . . , n can declare in the beginning

of stage game, that they will use strategies ¯̄yi(xi), i = 1, . . . , n. Then feeling
the threat C0 will be forced to use ¯̄x = (¯̄x1, . . . , ¯̄xi, . . . , ¯̄xn), in either case he
can get zero payoff. In this Nash equilibrium C0 is forced to deliver resources
¯̄x = (¯̄x1, . . . , ¯̄xi, . . . , ¯̄xn) to players S1, . . . , Si, . . . , Sn, since in either case his
payoff will be 0.

Theorem 2. The strategy profile (¯̄x, ¯̄y1(x), . . . , ¯̄yi(x), . . . , ¯̄yn(x)) is Nash equi-
librium in Γ and the repetition of it in each stage in infinitely repeated game G
is Nash equilibrium in G.

Proof. Since ¯̄yi( ¯̄xi) = y∗
i (¯̄xi) is strategy of player Si which maximaze his payoff

under the condition that he gets the resource ¯̄xi (see (1)), the individual deviation
of Si from ¯̄yi( ¯̄xi) cannot increase his payoff. If C0 deviates from ¯̄x (if C0 will not
follow the prescribed by S1, . . . , Si, . . . , Sn behavior ¯̄x) he will get zero payoff
since in this case player Si will stop production by putting ¯̄yi(x) = 0, x �= ¯̄x.

4 Cooperation in Infinitely Repeated Game

Consider now the cooperation in infinitely repeated stage game G. Suppose that
players decide to cooperate and maximize the sum of their payoffs in G, this is
equivalent to the maximization of joint payoff in each stage game. Denote the
corresponding strategy profile by

(˜̃x, ˜̃y1(x), . . . , ˜̃yi(x), . . . , ˜̃yn(x)).

We have

max
x,y1(x),...,yn(x)

[
n∑

i=1

(αi, yi(xi)) +
n∑

i=1

(βi, yi(xi))

]
=

n∑

i=1

(αi, ˜̃yi(˜̃xi))+
n∑

i=1

(βi, ˜̃yi(˜̃xi))

under conditions
n∑

i=1

xi ≤ q

yiPi ≤ xi

xi ≥ 0, yi ≥ 0, i = 1, . . . , n.
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The cooperative payoff in infinitely repeated game G will be

∞∑

l=1

n∑

i=1

δl−1((αi, ˜̃yi(˜̃xi)) + (βi, ˜̃yi(˜̃xi))) =
∞∑

l=1

n∑

i=1

δl−1((αi + βi), ˜̃yi(˜̃xi))

= V (C0, S1, . . . , Sn)

Denote by N̄ = {C0, S1, . . . , Sn} the set of players in game G. Introduce
the following notations. Let S ⊂ N̄ , C0 /∈ S denote by ȳS = {ȳi, i ∈ S} and
similarly ȳN\S = {ȳi, i ∈ N\S}. The strategy profile (x̄, ȳ(x̄)) can be written as
(x̄, ȳS , ȳN\S).

Now we can give the definition of Strong Nash equilibrium (see [1,13]).

Definition 2. The strategy profile (x̄∗, ȳ∗
1(x̄), . . . , ȳ∗

n(x̄)) is called strong Nash
equilibrium if for all S ⊂ N̄ , ȳS, x̄ the following inequalities hold

∑

i∈S

H∞
i (x̄∗, ȳ∗(x̄)) ≥

∑

i∈S

H∞
i (x̄∗, ȳS(x̄), ȳ∗̄

N\S(x̄)), if C0 /∈ S,

and

H∞
0 (x̄∗, ȳ∗(x̄)) +

∑

i∈S\C0

H∞
i (x̄∗, ȳ∗(x̄)) ≥ H∞

0 (x̄, ȳS\C0(x̄), ȳ∗̄
N\S(x̄))

+
∑

i∈S\C0

H∞
i (x̄, ȳS\C0(x̄), ȳ∗̄

N\S(x̄)), if C0 ∈ S.

Can this cooperative payoff be attained as a payoff in some specially con-
structed Nash equilibrium or Strong Nash Equilibrium [9]?

The construction of such Nash equilibrium or Strong Nash equilibrium is
based on the so-called “punishment” strategies which will “punish” the deviating
player for the deviation from cooperation. The case when the deviating player
on stage l became known on next stage is easier to investigate, and classical Folk
theorem approaches can be used to construct such type of Nash Equilibrium (see
the proof of Theorem 1). But if the deviating player or the deviating coalition is
not known, the construction of punishment strategies is more complicated (see
[9,10]).

Consider for C0 ∈ N̄ , and Si ∈ N̄ , i ∈ 1, . . . , m a family of zero-sum stage
games ΓN̄\C0,C0

(ΓN̄\Si,Si
) based on stage game Γ between coalition N̄\C0

(N̄\Si) as a first player and coalition consisting from a single player {C0} ({Si})
as a second. The payoff of coalition N̄\C0 (N̄\Si) is equal to the sum of payoffs
of players from this coalition. Denote by x̂(ŷi) minmax strategy of player C0 (Si)
in this game. Consider the strategy profile

(x̂, ŷ1, . . . , ŷi, . . . , ŷn)

and define for each S ⊂ N̄

W̄ (S) = max
yS\C0 ,x

∑

i∈S

Hi(x, ŷN̄\S , yS), C0 ∈ S,
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where ŷN̄\S = {ŷi, i ∈ N̄\S}, yS = {yi, i ∈ S}, and

W̄ (S) = max
yS

n∑

i=0

Hi(x̂, ŷN̄\S , yS), C0 /∈ S,

where ŷN̄\S = {ŷi, i ∈ N̄\S}, yS = {yi, i ∈ S\C0}.
Now we shall use the results from [10].
Suppose that there exist solution of the following inequalities

∑

i∈S

αi > W̄ (S), S ⊂ N̄ , S �= N̄ ,

∑

i∈N̄

αi = W̄ (N) = V (C0, S1, . . . , Sn).
(4)

Consider the modification Gα of game G. The difference between these two
games consists only in stage game Γ which is realized on each stage of the game.
If the cooperative strategies

˜̃x, ˜̃y1(x1), . . . , ˜̃yi(xi), . . . , ˜̃yn(xn)

are used the payoffs in stage game of game Gα are equal to α = (α1, . . . , αn),
where α satisfies (4). For other strategy profiles in stage games in G and Gα the
payoffs coincide [9].

Theorem 3. Suppose the condition (4) holds and the deviation of a player from
cooperation became known to non-deviating players on next stage (but the devi-
ating player may not be identified), then there exists δ̄ ∈ (0, 1) such that for all
δ ∈ (δ̄, 1) in the game Gα there exist a strong Nash equilibrium with payoffs
αi

1
1−δ . These payoffs coincide with payoffs in the game Gα when corresponding

strategies are played.

For the proof of the theorem, the following “punishment” strategies for play-
ers C0, S1, . . . , Sn are proposed. They include the “punishment” of all players
(except themselves) in case the deviation from cooperation by someone became
clear, and continue this behavior in all remaining stage games. For example if C0

on stage l is informed about the deviation of someone he plays xi ≡ 0, i ∈ N , in
all stage games in stages l+1, . . . , l+k, . . .. If Si is informed about the deviation
of someone he plays yi(xi) ≡ 0 in all stage games on stages l + 1, . . . , l + k, . . ..

This way of behavior generates a Nash equilibrium and also strong Nash
equilibrium in the infinitely repeated game Gα and strategically supports the
cooperation because if this strategy profile is played the players not deviating
from cooperation will get αi

1
1−δ , which is the allocation of cooperative pay-

off V (C0, S1, . . . , Sn). Denote this strong Nash equilibrium by E4 (which is, of
course, Nash equilibrium).

Consider now the cooperative version of stage game Γ , Γ̄ . Denote by V (S),
S ⊂ N̄ characteristic function in cooperative stage game Γ̄ defined as value of
zero-sum game Γ̄S,N̄\S played between coalition S as first player and N̄\S as
second with payoff of coalition S equal to the sum of payoffs of players from S.
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If S ⊂ {S1, . . . , Sn}, then V (S) = 0, since player C0 ∈ N̄\S can always
send zero resources to players from S making their payoff equal to zero. Suppose
now that C0 ∈ S. In this case, the optimal strategy of coalition N̄\S playing in
ΓS,N̄\S against S will be to put the production vector yi(x) ≡ 0, i ∈ N̄\S. In
this case V (S) will be equal to

max
x,yi(x),i∈S

∑

i∈S

((αi + βi), yi(xi)) (5)

under conditions ∑

i∈S

xi ≤ q

yiPi ≤ xi

xi ≥ 0, yi ≥ 0, i ∈ S.

(6)

It is clear that the minmax strategy of player Si ∈ N̄\S in the game ΓS,N̄\S

yi(x) ≡ 0, coincides with the minmax strategy ŷi(x) = 0 in the game ΓN̄\Si,Si

when Si plays against coalition N̄\Si. Then the value of W̄ (S), if C0 ∈ S,
as maximal guaranteed payoff of coalition S against players from N̄\S playing
ŷi(x) ≡ 0, i ∈ N̄\S, will coincide with V (S) defined by (5) and (6). Also in the
case when C0 /∈ S, x̂0 = 0, which gives us W̄ (S) = 0, since in this case C0 can
deliver zero resources to all players Si, i ∈ N̄\C0 (playing the game ΓN̄\C0,C0

).
Thus also in this case W̄ (S) = V (S). This gives us the following theorem.

Theorem 4. In the cooperative game Γ , the function W̄ (S), S ∈ N̄ coincides
with characteristic function V (S).

If vector α = (α1, . . . , αn) satisfies (4), then since W̄ (S) = V (S) (S ⊂ N̄)
this means that α belongs to the core of cooperative version of the game Γ , Γ̄ .
Then Theorem 3 can be rewritten in the form.

Theorem 5. Suppose in game Γ the core is not empty and contains an inner
point α, then there exist δ ∈ (0, 1) such that in game Gα there exist strong Nash
equilibrium with payoffs αi

1
1−δ . These coincide with payoffs in game Gα when

cooperative strategies are played.

5 Conclusion

In the paper, we defined different types of Nash Equilibrium in the infinitely
repeated hierarchical game (E1, E2, E3, E4). It is interesting to investigate
Subgame Perfectness of defined equilibriums. Remind that the Equilibrium is
called Subgame Perfect [12] if its truncation on the subgame is equilibrium in
this subgame.

If the behavior of players in the equilibrium is changing when the game passed
from one stage to another the subgame perfectness property may not hold.

It is trivial that the equilibrium E1 is subgame perfect, but E2 is not since in
case of deviation of one of players Si, player C0 will use on the next stages (in next
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stage games) “punishment” strategy against the deviator and this combination
of “punishment” and deviation is not an equilibrium in the subgame starting
from the next stage game. The same is true also for the E4 which strategically
supports the cooperation. But it is interesting to mention that the E3 in which
“threat” strategies are used by players Si (i = 1, . . . , n), is subgame perfect.
Indeed in any next stage game independent of the behavior of players on the
previous stage (was the threat realized or not, was the deviation or not) the E3
suggests the same behavior of players in all following stage games. This implies
subgame perfectness of E3.

If players decide to use E1 on some stages of the game and E3 in all other
cases (in other stages) one can easily verify that this kind of behavior also will be
subgame perfect Nash equilibrium in the infinitely repeated hierarchical game.
It seems that it is not possible to construct a Strong Nash Equilibrium (or even
Nash Equilibrium) which strategically supports the cooperation in the infinitely
repeated hierarchical game and in the same time is subgame perfect.

The results of this paper can be extended to the wide class of multistage
hierarchical games when the next stage game is not necessary the repetition of
the previous one, but the hierarchical game in which the parameters depend
on strategies chosen in previous stage game. It seems that the results may be
similar.

The considered games are simple game-theoretic models of social behav-
ior and interactions between the government and the population, between the
administration and the employers, the chief company and subordinate firms.
We can see the realization of E1, E2, E3 and E4 in many real life situations
around us.
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Abstract. We consider a dynamic, discrete-time, game model where
the players use a common resource and have different criteria to opti-
mize. The coalition formation process in dynamic multicriteria games
is considered. The characteristic function is constructed in two unusual
forms under the assumption of informed players: all players decide simul-
taneously or members of coalitions are assumed to be the leaders and
players decide sequentially. Internal and external stability concepts are
adopted for dynamic multicriteria games to obtain new stability condi-
tions. To illustrate the presented approaches a multicriteria bioresource
management problem with a finite horizon is investigated.

Keywords: Dynamic games · Multicriteria games ·
Nash bargaining solution · Internal and external stability ·
Coalition stability

1 Introduction

Mathematical models involving more than one objective seem more adherent to
real problems. Often players have more than one goal which are often not com-
parable. These situations are typical for game-theoretic models in economics
and ecology. For example, in bioresource management problems the players wish
to maximize their exploitation rates and to minimize the harm to the envi-
ronment. Hence, a multicriteria game approach [11] helps to make decisions in
multi-objective problems.

In this paper, we consider a dynamic, discrete-time, game model where the
players use a common resource and have different criteria to optimize. First,
we construct a multicriteria Nash equilibrium applying the bargaining concept
(via Nash products) [6]. Then, we obtain multicriteria cooperative behavior as
a solution of a Nash bargaining scheme with the multicriteria Nash equilibrium
payoffs playing the role of status quo points [7].
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The coalition formation process in multicriteria dynamic games is consid-
ered. Two ways to construct the players’ strategies are presented: all players
decide simultaneously (Nash-Cournot strategies) or members of coalitions are
assumed to be the leaders and players decide sequentially (Stackelberg strate-
gies). Furthermore, the characteristic function is constructed in an unusual form:
the players outside the coalition S determine new Nash strategies in the game
with N\S players. This case corresponds to the situation when players know
that coalition S was formed.

We extend the internal and external stability concepts [3] to multicriteria
dynamic games. The conditions for coalition stability are presented.

To illustrate the presented approaches a multicriteria bioresource manage-
ment problem with the finite horizon is investigated. In harvesting problems
cooperation (partial cooperation) is very important for minimizing the load on
the stock. As it was shown (for example, see [8,9]) cooperative behavior is prof-
itable for the players and improves the ecological situation. Hence, from the
social point of view, the coalitions that are internally stable are more preferable.

Further exposition has the following structure. Section 2 describes the non-
cooperative and cooperative solution concepts for a finite horizon multicrite-
ria dynamic game with many players in discrete time. The coalition formation
process and coalition stability conditions for a multicriteria dynamic game are
presented in Sect. 3. A bicriteria discrete-time game-theoretic bioresource man-
agement model (harvesting problem) with a finite planning horizon is treated in
Sect. 4. Finally, Sect. 5 provides the basic results and their discussion.

2 Dynamic Multicriteria Game with the Finite Horizon

Consider a multicriteria dynamic game with the finite horizon in discrete time.
Let N = {1, . . . , n} players exploit a common resource and each of them wishes
to optimize k different criteria. The state dynamics is in the form

xt+1 = f(xt, u1t, . . . , unt), x0 = x, (1)

where xt ≥ 0 is the resource size at time t ≥ 0, f(xt, u1t, . . . , unt) denotes the
natural growth function, and uit ≥ 0 gives the exploitation rate of player i at
time t, i ∈ N .

Denote ut = (u1t, . . . , unt). Each player has k goals to optimize. The players’
payoffs on finite planning horizon [0,m] are defined as

Ji =

⎛
⎜⎜⎜⎝

J1
i =

m∑
t=0

δtg1i (ut)

. . .

Jk
i =

m∑
t=0

δtgki (ut)

⎞
⎟⎟⎟⎠ , i ∈ N, (2)

where gji (ut) ≥ 0 gives the instantaneous utility, j = 1, . . . , k, i ∈ N , δ ∈ (0, 1)
denotes the discount factor.
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2.1 Multicriteria Nash Equilibrium

We design the noncooperative behavior in dynamic multicriteria game applying
the Nash bargaining products [6]. Therefore, we begin with the construction of
guaranteed payoffs which play the role of status quo points.

The possible concepts to determine the guaranteed payoffs for the game with
two players were presented in [6]. It was shown that the variant where the guar-
anteed payoffs are determined as Nash equilibrium is beneficial for both players
and, moreover, improves the ecological situation. Therefore, for the multicri-
teria game with n players, we adopt this concept of guaranteed payoff points
construction. Namely,

G1
1, . . . , G

1
n are the Nash equilibrium payoffs in the dynamic game

〈x,N, {Ui}ni=1, {J1
i }ni=1〉,

. . .
Gk

1 , . . . , G
k
n are the Nash equilibrium payoffs in the dynamic game

〈x,N, {Ui}ni=1, {Jk
i }ni=1〉,

where the state dynamics is in the form (1).
To construct multicriteria payoff functions, we adopt the Nash products. The

role of the status quo points belongs to the guaranteed payoffs of the players:

H1(u1t, . . . , unt) = (J1
1 (u1t, . . . , unt) − G1

1) · . . . · (Jk
1 (u1t, . . . , unt) − Gk

1),
. . .

Hn(u1t, . . . , unt) = (J1
n(u1t, . . . , unt) − G1

n) · . . . · (Jk
n(u1t, . . . , unt) − Gk

n).

Definition 1. A strategy profile uN
t = (uN

1t, . . . , u
N
nt) is called a multicriteria

Nash equilibrium [6] of the problem (1), (2) if

Hi(uN
t ) ≥ Hi(uN

1t, . . . , u
N
i−1 t, uit, u

N
i+1 t, . . . , u

N
nt) ∀uit ∈ Ui, i ∈ N. (3)

2.2 Multicriteria Cooperative Behavior

The multicriteria cooperative strategies are obtained as a solution of a Nash
bargaining scheme with the multicriteria Nash equilibrium payoffs playing the
role of status quo points [7].

First, we have to determine noncooperative payoffs as players’ gains when
they apply multicriteria Nash equilibrium strategies uN

t :

JN
1 =

⎛
⎜⎜⎜⎝

J1N
1 =

m∑
t=0

δtg11(u
N
t )

. . .

JkN
1 =

m∑
t=0

δtgk1 (uN
t )

⎞
⎟⎟⎟⎠ , . . . , JN

n =

⎛
⎜⎜⎜⎝

J1N
n =

m∑
t=0

δtg1n(uN
t )

. . .

JkN
n =

m∑
t=0

δtgkn(uN
t )

⎞
⎟⎟⎟⎠ .
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Then, we construct a Nash product where the sum of players’ noncooperative
payoffs plays a role of the status quo point. To design the cooperative behavior we
adopt a Nash bargaining solution, hence it is required to solve the next problem:

(
n∑

i=1

J1c
i (uc

t) −
n∑

i=1

J1N
i (uN

t )) · . . . · (
n∑

i=1

Jkc
i (uc

t) −
n∑

i=1

JkN
i (uN

t ))

= (
m∑
t=0

δt
n∑

i=1

g1i (u
c
t) −

n∑
i=1

J1N
i (uN

t )) · . . .

·(
m∑
t=0

δt
n∑

i=1

gki (uc
t) −

n∑
i=1

JkN
i (uN

t )) → max
uc
t

. (4)

Definition 2. A strategy profile uc
t = (uc

1t, . . . , u
c
nt) is called a multicriteria

cooperative equilibrium [7] of the problem (1), (2) if it solves the problem (4).

3 Coalition Formation Process

We consider a coalition formation process in dynamic multicriteria games. Let
assume that a coalition S is formed. Two ways to construct the players’ strate-
gies are considered: all players decide simultaneously (Nash-Cournot strategies)
or members of coalitions are assumed to be the leaders and players decide
sequentially (Stackelberg strategies). Moreover, the characteristic function is
constructed in an unusual form: players outside the coalition S determine new
Nash strategies in the game with N\S players. This case corresponds to the
situation when players know that coalition S was formed. The sizes of stable
coalitions are the subjects of investigation.

3.1 Nash-Cournot Strategies

Under the first approach, players decide simultaneously. Hence, to determine the
cooperative behavior of coalition S and the singletons’ strategies uN

it , i ∈ N\S,
it is required to solve the next problems:

(
∑
i∈S

J1S
i (ũt) −

∑
i∈S

J1N
i (ũt)) · . . . · (

∑
i∈S

Jkc
i (ũt) −

∑
i∈S

JkN
i (ũt))

= (
m∑
t=0

δt
∑
i∈S

g1i (ũt) −
∑
i∈S

J1N
i (ũt)) · . . .

·(
m∑
t=0

δt
∑
i∈S

gki (ũt) −
∑
i∈S

JkN
i (ũt))→ max

uit, i∈S
, (5)

(J1
i (ũt) − G1

i ) · . . . · (Jk
i (ũt) − Gk

i ) −→ max
uN
it , i∈N\S

, i ∈ N\S (6)

under the dynamics:
xt+1 = f(ũt), x0 = x,
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where

ũt =
{

uit, i ∈ S,
uN
it , i ∈ N\S.

Denote the cooperative strategies of the coalition S’s members as uS
t =

(uS
it)i∈S and the strategies of singletons as uNS

t = (uN
it )i∈N\S .

3.2 Stackelberg Strategies

We assume that members of coalitions are the leaders and players decide sequen-
tially. So, at first, singletons determine the Nash equilibrium strategies under
the assumption that cooperative strategies are known. After that, the coalition
members determine their behavior.

(I) Coalition members’ strategies us
it, i ∈ S are fixed. Singletons solve the

next problems:

(J1
i (ũt) − G1

i ) · . . . · (Jk
i (ũt) − Gk

i ) −→ max
uit, i∈N\S

, i ∈ N\S, (7)

where

ũt =
{

us
it, i ∈ S,

uit, i ∈ N\S,

under the dynamics:
xt+1 = f(ũt), x0 = x.

Denote the obtained strategies as ũN
it , i ∈ N\S.

(II) To determine the cooperative behavior of coalition S, it is required to
solve the next problem:

(
∑
i∈S

J1S
i (ũt) −

∑
i∈S

J1N
i (ũt)) · . . . · (

∑
i∈S

JkS
i (ũt) −

∑
i∈S

JkN
i (ũt))

= (
m∑
t=0

δt
∑
i∈S

g1i (ũt) −
∑
i∈S

J1N
i (ũt)) · . . .

·(
m∑
t=0

δt
∑
i∈S

gki (ũt) −
∑
i∈S

JkN
i (ũt))→ max

uit, i∈S
, (8)

where

ũt =
{

uit, i ∈ S,
ũN
it , i ∈ N\S.

Denote the cooperative strategies of the coalition S’s members as uS
t =

(ũS
it)i∈S and the strategies of singletons as uNS

t = (ũN
it )i∈N\S .

Note that under presented concepts there is no need to distribute cooper-
ative payoff of coalition S among its members as the vector payoff JS

i (·) =
(J1S

i (·), . . . , JkS
i (·)) of coalition member i ∈ S is directly obtained from the

schemes of characteristic function construction.
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3.3 Coalition Stability

The stability concept (internal and external stability) was presented in [3].
Here we adopt these concepts for multicriteria dynamic games to define stable
coalitions.

Definition 3. Coalition S is internally stable if ¬∃i ∈ S:

JS
i (uS

t , uNS
t ) < JN

i (uS\{i}
t , u

NS\{i}
t ). (9)

Coalition S is externally stable if ¬∃i ∈ N\S:

JN
i (uS

t , uNS
t ) < J

S∪{i}
i (uS∪{i}

t , u
NS∪{i}
t ). (10)

Here a < b ⇔ aj < bj , ∀j = 1, . . . , k.
Internal stability means that no coalition member wishes to leave the coali-

tion and become a singleton. External stability means that no singleton wishes
to join the coalition.

Definition 4. Coalition S is stable if conditions (9), (10) are fulfilled.

Next, we consider a dynamic multicriteria model related with the bioresource
management problem (harvesting) to show how the suggested concepts work.

4 Dynamic Multicriteria Bioresource Management Model

Consider a bicriteria discrete-time dynamic bioresource management model with
n players and fixed harvesting times. Suppose that the players (countries or
fishing firms) harvest a fish stock during finite time horizon [0,m]. The fish
population evolves according to the equation

xt+1 = εxt − u1t − . . . − unt, x0 = x, (11)

where xt ≥ 0 is the population size at time t ≥ 0, ε ≥ 1 denotes the natural birth
rate, and uit ≥ 0 gives the catch of player i at time t ≥ 0, i ∈ N = {1, . . . , n}.

Each player has two goals to optimize: they wish to maximize their profit
from selling fish and minimize the catching cost. Suppose that the market price
of the resource differs for the players, but their costs are identical and depend on
players’ catches. Specifically, the payoff functions of the players over the finite
time horizon are defined by

J1 =

⎛
⎜⎝

J1
1 =

m∑
t=0

δtp1u1t

J2
1 = −

m∑
t=0

δtcu2
1t

⎞
⎟⎠ , . . . , Jn =

⎛
⎜⎝

J1
n =

m∑
t=0

δtpnunt

J2
n = −

m∑
t=0

δtcu2
nt

⎞
⎟⎠ , (12)

where, for i ∈ N , pi ≥ 0 is the market price of the resource for player i, c ≥ 0
indicates the catching cost, and δ ∈ (0, 1) denotes the discount factor.
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4.1 Multicriteria Nash Equilibrium

We begin with the construction of guaranteed payoffs applying one of the vari-
ants of their determination [6]. Under this approach, the guaranteed payoff
points G1

1, . . . , G
1
n are defined as the Nash equilibrium in the dynamic game

〈x,N, {Ui}ni=1, {J1
i }ni=1〉. As this game is linear the equilibrium exists and is

unique. Applying the Bellman principle and assuming the value functions and
the strategies have the linear forms, we get the solution

u1t = . . . = unt =
ε − 1
n − 1

xt,

and the dynamics becomes

xt =
(n − ε

n − 1

)t

x0.

Hence, the guaranteed payoff points take the forms

G1
1 = p1Ax0, . . . , G

1
n = pnAx0, (13)

where

A =
ε − 1
n − 1

(δ(n − ε))m+1 + (n − 1)m+1

(n − 1)m(δ(n − ε) − n + 1)
.

By analogy, determining the Nash equilibrium in the dynamic (linear-
quadratic) game with the second criteria of all players 〈x,N, {Ui}ni=1, {J2

i }ni=1〉
(linear-quadratic, hence the equilibrium exists and is unique), we get n more
guaranteed payoff points

G2
1 = . . . = G2

n = Gx2
0, (14)

where

G = −c
(2n − ε2 + ε

√
4n2 + ε2 − 4n

n(−ε +
√

4n2 + ε2 − 4n)

)2

·

(2δn)m+1 − (ε − √
4n2 + ε2 − 4n)m+1

(ε − √
4n2 + ε2 − 4n)m(2δn − ε +

√
4n2 + ε2 − 4n)

.

According to Definition 1, in order to determine the multicriteria Nash equi-
librium of problem (11), (12) it is required to solve the next problem:

p1(
m∑
t=0

δtu1t − Ax)(−c

m∑
t=0

δtu2
1t − Gx2) → max

u1t
,

. . .

pn(
m∑
t=0

δtunt − Ax)(−c

m∑
t=0

δtu2
nt − Gx2) → max

unt

.

Considering the process starting from one-step till m-step game and seeking
the strategies in linear form, we get the multicriteria Nash equilibrium.
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Proposition 1. The multicriteria Nash equilibrium strategies in the problem
(11), (12) have the forms uN

it = γN
it xt, i ∈ N ,

γN
1t = . . . = γN

nt = γN
t =

εt−1γ1

1 + nγ1
t−2∑
j=0

εj
. (15)

The players’ strategy on the last step γN
1 is determined from the next equation

−2cγ1

m∏
i=2

(ε − nγi)
[m−1∑
i=0

δiγm−i

m∏
j=m+1−i

(ε − nγj) − A
]

+
[
−c

m−1∑
i=0

δiγ2
m−i

m∏
j=m+1−i

(ε − nγj)2 − G
]

= 0.

4.2 Cooperative Behavior

To construct the cooperative payoffs and strategies the Nash bargaining solution
is applied [7]. First, we have to determine noncooperative payoffs as the players’
gains when they apply multicriteria Nash strategies. Then, we construct a Nash
product where the sum of players’ noncooperative payoffs plays a role of the
status quo points.

According to Proposition 1, the noncooperative payoffs have the forms

J1N
i (x) =

m∑
t=0

δtpiγ
N
t x0, i ∈ N,

J2N
1 (x) = . . . = J2N

2 (x) = −c

m∑
t=0

δtγN
t x2

0.

According to Definition 2, in order to construct the cooperative strategies it
is required to solve the problem (4). Hence,

(
m∑
t=0

δt(p1uc
1t+. . .+pnuc

nt)−Px)(−c

m∑
t=0

δt((uc
1t)

2+. . .+(uc
nt))

2−Kx2)→ max
uc
1t,...,u

c
nt

,

where P = (p1 + . . . + pn)
m∑
t=0

δtγN
t , K = −nc

m∑
t=0

δt(γN
t )2.

Considering the process starting from one-step till m-step game and seeking
the strategies in linear form, we construct cooperative behavior.

Proposition 2. The multicriteria cooperative strategies in the problem (11),
(12) take the forms uc

it = γc
itxt, i ∈ N ,

γc
1t =

p1ε
t−1γc

11

p1 + γc
11

t−2∑
j=0

εj
p∑

i=1

pi

, t = 2, . . . ,m,

γc
jt =

pj
p1

γc
1t, j = 2, . . . , n, t = 1, . . . ,m, (16)
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and the first player’s strategy on the last step γc
11 is determined from the equation

p1

[
−c

m∑
i=2

δm−i
n∑

l=1

(γc
li)

2
m∏

j=i+1

(ε −
n∑

l=1

γc
lj)

2 − K
]

−2cγc
11

m∏
j=2

(ε −
n∑

l=1

γc
lj)

[ m∑
i=1

δm−i
n∑

l=1

plγ
c
li

m∏
j=i+1

(ε −
n∑

l=1

γc
lj) − P

]
= 0.

Let’s consider the asymptotic values of the players’ strategies and the size of
the resource under noncooperative and cooperative behavior.

Applying Nash equilibrium strategies as t tends to ∞ we get

γN
t → ε − 1

n
,

and for cooperative behavior –

γc
it → pi

n∑
i=1

pi

(ε − 1), i ∈ N.

Hence, in both cases, xt → x0 and the difference is only a distribution of the
total exploitation rate among the players.

The players extract exactly the natural growth increase of the resource
(ε − 1)xt, but in Nash equilibrium it is distributed uniformly and under cooper-
ative behavior – proportionally to players’ market prices for the resource.

4.3 Coalition Formation

Nash-Cournot Strategies
Under the first approach, players decide simultaneously. Hence, to determine the
cooperative behavior of coalition S it is required to solve the problem (5):

(
m∑
t=0

δt
∑
i∈S

piu
s
it − PSx)(−c

m∑
t=0

δt
∑
i∈S

(us
it)

2 − KSx2)→ max
us
it, i∈S

,

where PS =
∑
i∈S

pi
m∑
t=0

δtγN
t , KS = −|S|c

m∑
t=0

δt(γN
t )2, and the singletons’ strate-

gies uit, i ∈ N\S, are defined from the maximization problems (6):

(
m∑
t=0

δtpiuit − G1
i ) · . . . · (−c

m∑
t=0

δt(uit)2 − Gk
i ) −→ max

uit, i∈N\S
, i ∈ N\S

under the next dynamics

xt+1 = εxt −
∑
i∈S

us
it −

∑
i∈N\S

uit, x0 = x.

Similarly to full cooperative case, continuing the process from one-step till
m-step game and seeking the strategies in linear forms, we obtain
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Proposition 3. The strategies of coalition S’s members in the problem (11),
(12) take the forms uS

it = γS
itxt, i ∈ S,

γS
st =

psε
t−1γS

s1

ps +
t−2∑
j=0

εj(γS
s1

∑
i∈S

pi + ps(n − |S|)γN
1 )

, t = 2, . . . ,m,

γs
jt =

pj
ps

γc
st, j ∈ S, j �= s, t = 1, . . . ,m, (17)

and the strategy of player s ∈ S on the last step γs
s1 is determined from the

equation

ps

[
−c

m∑
j=1

δm−j
∑
i∈S

(γS
ij)

2
m∏

l=j+1

(ε −
∑
i∈S

γS
il − (n − |S|)γN

l )2 − KS
]

−2cγS
s1

m∏
j=2

(ε −
∑
i∈S

γS
ij − (n − |S|)γN

j )

·
[ m∑
j=1

δm−j
∑
i∈S

piγ
S
ij

m∏
l=j+1

(ε −
∑
i∈S

γs
il − (n − |S|)γN

l ) − PS
]

= 0. (18)

The singletons’ strategies in the problem (11), (12) coincide and take the
forms uN

it = γN
t xt, i ∈ N\S,

γN
t =

psε
t−1γN

1

ps +
t−2∑
j=0

εj(γS
s1

∑
i∈S

pi + ps(n − |S|)γN
1 )

, t = 2, . . . ,m, (19)

and the strategy on the last step γN
1 is determined from the equation

[
−c

m∑
j=1

δm−j(γN
j )2

m∏
l=j+1

(ε −
∑
i∈S

γS
il − (n − |S|)γN

l )2 − G
]

−2cγN
1

m∏
j=2

(ε −
∑
i∈S

γs
ij − (n − |S|)γN

j )

·
[ m∑
j=1

δm−jγN
j

m∏
l=j+1

(ε −
∑
i∈S

γs
il − (n − |S|)γN

l ) − A
]

= 0. (20)

Stackelberg Strategies
We assume that members of coalitions are the leaders and players decide sequen-
tially. As before, we seek for linear strategies uit = γitxt, i ∈ N \ S, uit = γs

itxt,
i ∈ S.

(I) Coalition members’ strategies us
it, i ∈ S are fixed. Singletons solve the

problems (7):

pi(
m∑
t=0

δtuit − Ax)(−c

m∑
t=0

δtu2
it − Gx2) → max

uit

, i ∈ N\S
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under the dynamics

xt+1 = εxt −
∑
i∈S

us
it −

∑
i∈N\S

uit, x0 = x.

As in previous case, we obtain that singletons’ strategies coincide

γit = γN
t =

γN
1

t∏
j=2

(ε − ∑
l∈S

γs
lj)

1 + (n − |S|)γN
1 (1 +

t−1∑
j=2

(ε − ∑
l∈S

γs
lj))

, t = 2, . . . ,m,

and the strategy on the last step γN
1 is determined from one of the first order

conditions.
Denote the obtained strategies as ũN

it = γ̃N
t xt, i ∈ N\S.

(II) To determine the cooperative behavior of coalition S it is required to
solve the problem (8):

(
m∑
t=0

δt
∑
i∈S

piu
s
it − PSx)(−c

m∑
t=0

δt
∑
i∈S

(us
it)

2 − KSx2)→ max
us
it, i∈S

,

where PS =
∑
i∈S

pi
m∑
t=0

δtγN
t , KS = −|S|c

m∑
t=0

δt(γN
t )2, under the dynamics

xt+1 = εxt −
∑
i∈S

us
it −

∑
i∈N\S

ũN
it , x0 = x.

Continuing the process from one-step till m-step game and seeking the strate-
gies in linear forms, we obtain

Proposition 4. The strategies of coalition S’s members in the problem (11),
(12) take the forms ũS

it = γS
itxt, i ∈ S,

γS
st =

psγ
S
s1ε

t−1(1 + (n − |S|)γ̃N
1 )

ps +
t−2∑
j=0

εj(γS
s1

∑
i∈S

pi + ps(n − |S|)γ̃N
1 )

, t = 2, . . . ,m,

γS
jt =

pj
ps

γS
st, j ∈ S, j �= s, t = 1, . . . , m, (21)

and the strategy of player s ∈ S on the last step γS
s1 is determined from the

Eq. (18) with γN
i = γ̃N

i , i ∈ N\S.
The singletons’ strategies in the problem (11), (12) coincide and take the

forms ũN
it = γ̃N

t xt, i ∈ N\S,

γ̃N
t =

psγ̃
N
1 εt−1

ps +
t−2∑
j=0

εj(γS
s1

∑
i∈S

pi + ps(n − |S|)γ̃N
1 )

, t = 2, . . . ,m, (22)

and the strategy on the last step γ̃N
1 is determined from the Eq. (20) with

γN
i = γ̃N

i , i ∈ N\S.
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Let’s consider the asymptotic values of the players’ strategies and the size of
the resource under both types of coalition formation.

If the players decide simultaneously as t tends to ∞ we get

γN
t → ε − 1

n − |S| , γs
it → 0, i ∈ S. (23)

Hence, in the asymptotic case under Nash-Cournot strategies, cooperative
players don’t extract the resource. It means that it is not profitable to form a
coalition and the players prefer noncooperative behavior.

If the players decide sequentially as t tends to ∞ we get

γ̃N
t → 0, γs

it → pi
n∑

i=1

pi

(ε − 1), i ∈ S. (24)

Hence, in the asymptotic case under Stackelberg strategies, the opposite
result is valid: only cooperative players extract the resource. It means that this
type of coalition formation stimulates cooperative behavior that is very impor-
tant in ecological problems.

As before, in both cases, xt → x0 and the difference is only a distribution of
the total exploitation rate among the players. The players extract the natural
growth increase of the resource (ε − 1)xt, but under Nash-Cournot strategies
it is distributed uniformly among singletons and under Stackelberg strategies –
proportionally to the market prices for the resource among cooperative players.

4.4 Coalition Stability

Denote the cooperative strategies of the coalition S’s members as uS
t = (uS

it)i∈S

and the strategies of singletons as uNS
t = (uN

it )i∈N\S (Nash-Cournot strategies)
or uS

t = (ũS
it)i∈S and uNS

t = (ũN
it )i∈N\S (Stackelberg strategies).

The internal stability conditions take the forms:

J1S
i (uS

t , uNS
t ) ≥ J1N

i (uS\{i}
t , u

NS\{i}
t ),

J2S
i (uS

t , uNS
t ) ≥ J2N

i (uS\{i}
t , u

NS\{i}
t ), ∀i ∈ S.

The external stability conditions take the forms:

J1N
i (uS

t , uNS
t ) ≥ J

1S∪{i}
i (uS∪{i}

t , u
NS∪{i}
t ),

J2N
i (uS

t , uNS
t ) ≥ J

2S∪{i}
i (uS∪{i}

t , u
NS∪{i}
t ), ∀i ∈ N\S.
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Nash-Cournot Strategies
The internal stability conditions take the forms:

(γS
s1 − γN

1 )

·(ps +
t−2∑
j=0

εj(γS
s1

∑
i∈S

pi + ps(n − |S|)γN
1 )) +

t−2∑
j=0

εjγS
s1(psγ

N
1 − piγ

S
s1) ≥ 0,

((γS
s1)

2 − (γN
1 )2)(ps +

t−2∑
j=0

εj(γS
s1

∑
i∈S

pi + ps(n − |S|)γN
1 ))2 + (γS

s1)
2
t−2∑
j=0

εj

·(psγN
1 − piγ

S
s1)(2ps +

t−2∑
j=0

εj((2(n − |S|) + 1)psγN
1 + (2

∑
i∈S

pi − pi)γS
s1)) ≤ 0.

The external stability conditions take the forms:

(γS
s1 − γN

1 )

·(ps +
t−2∑
j=0

εj(γS
s1

∑
i∈S

pi + ps(n − |S|)γN
1 )) +

t−2∑
j=0

εjγN
1 (psγN

1 − piγ
S
s1) ≤ 0,

((γS
s1)

2 − (γN
1 )2)(ps +

t−2∑
j=0

εj(γS
s1

∑
i∈S

pi + ps(n − |S|)γN
1 ))2 + (γN

1 )2
t−2∑
j=0

εj

·(psγN
1 − piγ

S
s1)(2ps +

t−2∑
j=0

εj((2(n − |S|) − 1)psγN
1 + (2

∑
i∈S

pi + pi)γS
s1)) ≥ 0.

Consider the symmetric case p1 = . . . = pn. The internal stability conditions
take the forms

(γS
s1 − γN

1 )(1 +
t−2∑
j=0

εj((|S| − 1)γS
s1 + (n − |S|)γN

1 )) ≥ 0,

(γS
s1 − γN

1 )
(
(γS

s1 + γN
1 )(1 +

t−2∑
j=0

εj((|S| − 1)γS
s1 + (n − |S|)γN

1 ))2

−
t−2∑
j=0

εj(γS
s1)

2(2 +
t−2∑
j=0

εj((2|S| − 1)γS
s1 + (2n − 2|S| + 1)γN

1 ))
)

≤ 0, (25)

and external –

(γS
s1 − γN

1 )(1 +
t−2∑
j=0

εj((|S|)γS
s1 + (n − |S| + 1)γN

1 )) ≤ 0,

(γS
s1 − γN

1 )
(
(γS

s1 + γN
1 )(1 +

t−2∑
j=0

εj((|S| − 1)γS
s1 + (n − |S|)γN

1 ))2

−
t−2∑
j=0

εj(γN
1 )2(2 +

t−2∑
j=0

εj((2|S| − 1)γS
s1 + (2n − 2|S| + 1)γN

1 ))
)

≤ 0. (26)
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As γS
s1 ≤ γN

1 in symmetric case, only the coalition of size 1 is internally stable
and external stability conditions are fulfilled for all coalition sizes. This fact
stresses that under Nash-Cournot coalition formation process it is not profitable
for players to join coalition. Hence, this concept doesn’t stimulate cooperative
behavior.

Stackelbers Strategies
We give the results for the symmetric case. The internal stability conditions take
the forms

(γS
s1 − γ̃N

1 )(1 +
t−2∑
j=0

εj((|S| − 1)γS
s1 + (n − |S|)γ̃N

1 (1 − γS
s1))

+(n − |S|)γS
s1γ̃

N
1 (1 +

t−2∑
j=0

εj(|S|γS
s1 + (n − |S|)γ̃N

1 )) ≥ 0,

(γS
s1 − γ̃N

1 )
(
(γS

s1 + γ̃N
1 )(1 +

t−2∑
j=0

εj((|S| − 1)γS
s1 + (n − |S|)γ̃N

1 ))2

−
t−2∑
j=0

εj(γS
s1)

2(2 +
t−2∑
j=0

εj((2|S| − 1)γS
s1 + (2n − 2|S| + 1)γ̃N

1 ))
)

− (n − |S|)

·(γS
s1)

2γ̃N
1 (2 + (n − |S|)γ̃N

1 )(1 +
t−2∑
j=0

εj((|S| − 1)γS
s1 + (n − |S| + 1)γ̃N

1 )2 ≤ 0,

and external stability conditions have the forms

−(γS
s1 − γ̃N

1 )(1 +
t−2∑
j=0

εj((|S|)γS
s1 + (n − |S| + 1)γ̃N

1 ))

−(n − |S|)γS
s1γ̃

N
1 (1 +

t−2∑
j=0

εj(|S|γS
s1 + (n − |S|)γ̃N

1 )) ≥ 0,

(γS
s1 − γ̃N

1 )
(
(γS

s1 + γ̃N
1 )(1 +

t−2∑
j=0

εj((|S| − 1)γS
s1 + (n − |S|)γ̃N

1 ))2

+
t−2∑
j=0

εj(γS
s1)

2(2 +
t−2∑
j=0

εj((2|S| − 1)γS
s1 + (2n − 2|S| + 1)γ̃N

1 ))
)

+ (n − |S|)

·(γS
s1)

2γ̃N
1 (2 + (n − |S|)γ̃N

1 )(1 +
t−2∑
j=0

εj((|S| − 1)γS
s1 + (n − |S| + 1)γ̃N

1 )2 ≤ 0.

As γS
s1 ≥ γ̃N

1 in symmetric case, the internal stability conditions are always
valid and the external stability conditions are not fulfilled for any coalition. This
fact stresses that Stackelberg coalition formation process stimulates cooperative
behavior and the players have an incentive to join the coalition of large size.
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Let’s consider the stability conditions in the asymptotic case.
If the players decide simultaneously as t tends to ∞ applying (23) we con-

clude that internal stability conditions are not fulfilled, but external stability
conditions are valid for all the parameters.

Hence, in the asymptotic case under Nash-Cournot strategies, there are no
internally stable coalitions at all. It means that it is not profitable to form a
coalition and the players prefer noncooperative behavior.

If the players decide sequentially as t tends to ∞ applying (24) we conclude
that external stability conditions are not fulfilled, but internal stability condi-
tions are valid for all the parameters.

Hence, in the asymptotic case under Stackelberg strategies, the opposite
result is valid: there are no externally stable coalitions. But as the coalitions are
internally stable it is not profitable for the players to leave the formed coalition.
It means that this type of coalition formation stimulates cooperative behavior.
The absence of external stability is not important in the case of formed coalitions.
Therefore, from a social point of view, this scheme is more preferable.

4.5 Modelling

We have performed numerical simulation for symmetric case with the following
parameters:

m = 20, n = 10, ε = 1.3, p1 = . . . = p10 = 100, c = 50, δ = 0.8,

and the size of the formed coalition is 5.
Figure 1 shows the dynamics of the population size for noncooperative, full

cooperative (grand coalition formation) and partial cooperative (coalition S is
formed under Stackelberg concept) cases. As one can notice even partial coop-
eration improves the ecological situation as it limits bioresource exploitation.

Fig. 1. Population size: dark – full cooperation, dotted – coalition S, light – Nash
equilibrium

Figures 2 and 3 show the difference in the players’ strategies for two variants
of coalition formation. As one can notice, the coalition member’s exploitation
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Fig. 2. Nash-Cournot strategies: dark –
coalition member, light – singleton

Fig. 3. Stackelberg strategies: dark –
coalition member, light – singleton

rate is lower than the singleton’s one under Nash-Cournot strategies. For the
Stackelberg coalition formation process the opposite result is valid.

Numerical calculations of coalition stability conditions confirm the analytical
results: a coalition of size 5 is not internally, but externally stable for Nash-
Cournot strategies. For Stackelberg strategies the opposite result is valid. It again
stresses that the second variant of coalition formation stimulates cooperation and
hence more preferable.

5 Conclusions

The approaches to design cooperative behavior in multicriteria dynamic games
with finite horizon are presented. First, we have evaluated the multicriteria Nash
equilibrium strategies. Second, we have constructed the multicriteria cooperative
strategies and payoffs via the bargaining scheme.

Then we have studied the coalition formation processes in multicriteria
dynamic games. Two ways to construct the players’ strategies were considered:
all players decide simultaneously (Nash-Cournot strategies) or members of coali-
tions are assumed to be the leaders and players decide sequentially (Stackelberg
strategies).

Internal and external stability concepts were adopted for dynamic multicri-
teria games to obtain new stability conditions.

We have studied a bicriteria discrete-time bioresource management problem,
where the players differ in their aims and have finite planning horizons. Multicri-
teria Nash and cooperative strategies were derived analytically in linear forms.
The players’ strategies in two variants of coalition formation were also derived
analytically. Coalition stability conditions have been analyzed in the case of
symmetric players and in the asymptotic case.

It was shown that under Nash-Cournot strategies only coalitions of size 1
are internally stable and external stability conditions are fulfilled. This is the
classical result in the literature on IEAs (for example, see [1,2]) that the internal
stability concept is valid only for small sized coalitions.

For Stackelberg strategies the opposite result is valid: coalitions are internally,
but not externally stable.
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In harvesting problems, the cooperative behavior improves the ecological sit-
uation. From a social point of view, internally stable coalitions are more prefer-
able. Hence, the Stackelberg scheme of coalition formation is more applicable in
bioresource management problems.

The results of numerical modelling showed that the presented approaches
stimulate cooperation. Moreover, that is important for ecological systems, even
partial cooperative behavior improves the ecological situation.

To minimize the load on the stock the coalition should consist of large num-
ber of players and be stable. Here are some advices for ecological managers to
improve populations’ growth. For Nash-Cournot strategies we cannot guarantee
internal stability, but for Stackelberg strategies coalitions are internally stable,
but not externally.

That is why the manager first should determine the coalition formation pro-
cess and then:

if it is Nash-Cournot, then the manager (referee) should use some mecha-
nisms to internally stabilize the coalitions: it can be fines for breaking off the
cooperative agreement, punishment schemas like incentive equilibrium [4] or
transfers schemas;
if it is Stackelberg, the manager should not worry about the external stability
because the more players decide to enter coalitions the larger population size
will be.

According to aforesaid, there is a need for other stability concepts that
enable the formation of coalitions of larger sizes. Hence, future research will
consider intercoalition and coalition stability (see [2,5,10]) in dynamic multicri-
teria games.
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