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Acronyms

2D, 3D Two- and three-dimensional space
4WDDMR Four-wheeled differential drive mobile robot
AO Absolute orientation
BA Bundle adjustment
Bel Degree of belief
EKF Extended Kalman filter
EO Exterior orientation
GRV Gaussian random variable
IO Interior orientation
KF Standard Kalman filter
MAP Maximize the posterior estimation
MLE Maximum likelihood estimator
pdf Probability density function
RANSAC Random sample consensus
RO Relative orientation
SFM Structure from motion problem
SIFT Scale invariant feature transform
SURF Speeded up robust features
UKF Unscented Kalman filter
VSLAM Visual simultaneous localization and mapping
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9.1 Introduction

Recently, techniques for solving the problem of reconstructing a 3D model of
the environment have drawn significant attention from both the robotics vision
communities and computer vision. Many variants of these techniques have started
to make an impact in a wide range of robotics applications such as robot navigation,
obstacle avoidance, and visual simultaneous localization and mapping (VSLAM)
based on stereo vision [1]. Structure from motion problem (SFM) is defined as a
technique for 3D reconstruction from a set of 2D images and some geometrical
constraints [2].

SFM methods perform a bundle adjustment (BA) optimization of the total
geometry in order to obtain an accurate 3D model of the scene. However, this is
computationally very expensive and cannot be implemented in a real-time application
[3]. On the other hand, simultaneous localization and mapping (SLAM) is a problem
faced recently in robotics community, essentially addressing the hard real-time
mapping and navigation problem by “sequential” interactive local estimation of
the structure and motion [4].

The SLAM problem tries to answer the following central question: “Is it possible
for an autonomous robot starting at an unknown location in an unknown environment
to build a map of the environment while simultaneously using this map to compute
the vehicle’s location?” Solving this problem allows to develop a truly autonomous
robot and navigate safely around the environment [5].

The stochastic nature of the mobile robot motion with noisy measurement data
complicates the coupling between navigation and mapping that is inherent SLAM
[6]. Many successful SLAM algorithms address these issues by formulating the
problem in a probabilistic manner, tracking the joint posterior over the robot pose
and map.

Probabilistic Bayesian filter is the strategy to incorporate uncertainty for all
possible robot poses with a probability density function (pdf), which is the degree
of belief (Bel) of the robot moves [7].

The estimation problem can be solved by KF-based approaches or particle filter
(i.e., online VSLAM) for real-time application or bundle adjustment (i.e., standard
SFM) for an offline application [7]. In the medical field, stereo vision obtained a
3D vision, which improved the accuracy of surgery and reduced the time required
for surgery and errors that may occur. A novel SLAM algorithm proposed by [8]
aimed at advancing the state-of-art in image-guided surgery using stochastic models
and KF framework to recursively estimate the configuration of the high degree of
freedom snake surgical robot using stereo vision. VSLAM estimates the camera pose
by implementing epipolar geometry on the static feature correspondences as shown
in Fig. 9.1. The dynamic features are regarded as outliers and excluded from the
computation.

From Fig. 9.1, the static corner has been extracted as a correspondence point
in order to estimate the camera orientation. The computer vision community has
developed a large number of feature extraction techniques (e.g., Harris corner
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Fig. 9.1 Feature correspondence extraction

detector, scale invariant feature transform (SIFT), and speeded-up robust features
(SURF)). Unfortunately, these feature-matching techniques do not guarantee perfect
correspondences, especially when the data contains outliers [3]. Implementation of
robust estimators RANSAC (random sample consensus) is useful to reject outliers
and handle false correspondences. On the other hand, deep learning techniques
can process the image sequences directly to compute the correspondences in real
time [3].

This chapter is structured as follows: Sect. 9.1 introduces the basic estimation
techniques; Sect. 9.2 presents the brief of stereo vision, camera calibration,
projection, and epipolar function; Sect. 9.3 exhibits the uncertainties and error
source in vision system; finally, Sect. 9.4 shows examples of VSLAM based on
UKF algorithm and stereo vision.

9.2 Kalman Filter Framework-Based Probabilistic Inference

The following problem commonly recurs in Computer Vision and Autonomous
Robotics algorithms: estimate the values of unknown parameters (robot posture,
camera orientation, etc.), given a number of measurements (sensory data, images,
feature points, etc.). These kinds of problems are called inverse problem because
they involve in estimating unknown model parameters instead of simulating the
forward formation equations [9]. However, a model of uncertainty sources needs to
be introduced in order to have a reasonable algorithm. Such inference problems from
noisy data are called probabilistic inference [10]. In this section, the measurement
update equation for the KF, EKF, and UKF is derived starting from the maximum
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likelihood (the joint probability density function (pdf)), work through Bayesian
rule, Gauss–Newton iterated nonlinear least squares method, and practical nonlinear
Bayes filter (i.e., standard Kalman filter (SKF), extended Kalman filter (EKF)-
based Taylor linearization, and unscented Kalman filter (UKF)-based stochastic
linearization).

9.2.1 Maximum Likelihood Estimator (MLE)

The general form of noisy measurement model is given by (9.1):

zk = h (xk) + vk (9.1)

where zk is the noisy measurement vector, xk is the unknown state vector, h(·) is
the associated nonlinear measurement model, which maps the unknown into that
particular measurement, and νk � N(0,R) is a normal Gaussian random variable
(GRV) with zero mean and covariance matrixR. Given all of the noisy measurements
z = {zk}, the likelihood of having the observed {zk} given a particular value of x is
given by (9.2):

L = p (z|x) =
∏

k

p (zk|xk) =
∏

k

p (zk|h (xk)) =
∏

k

p (νk) (9.2)

where p(z| x) is the joint probability distribution of the measurements z with the
unknown vector x. To solve the inverse problem (if the distribution is unimodal
Gaussian), the optimal estimate value for the unknown state vector x in the absence
of any prior model is that maximizes the likelihood function. if the distribution is
unimodal Gaussian. However, if the probability is multimodal, it has several local
maxima in likelihood, much more care is required [11].

The likelihood function can be written for the Gaussian noise as (9.3):

L = ∏
k

|2πR|−1/2 exp
(
− 1

2 (zk − h (xk))T R−1 (zk − h (xk))
)

= ∏
k

|2πR|−1/2 exp
(
− 1

2‖zk − zk‖2
R−1

) (9.3)

The norm ‖zk − zk‖2
R−1 is called the Mahalanobis distance [9]. It is used to

measure the distance between the measurement zk with step time k and the mean of
Gaussian distribution zk. Usually, it is more convenient to work with the negative
log-likelihood, as a cost function [12] (9.4):

E = − log L = 1

2

∑

k

(zk − zk)T R−1 (zk − zk) + log |2πR|

= 1

2

∑

k

‖zk − zk‖2
R−1 + K

(9.4)
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where K = ∑
k log |2πR| is a constant independent of x and can be dropped. The

inverse covariance matrix R−1 weights each measurement error residuals (i.e., the
difference between the real measurement zk and the predicted mean value ẑk = zk).

Another form of negative log-likelihood can be written as (9.5):

E = − log L =
∑

k

∥∥zk − ẑk
∥∥

R−1 (9.5)

Consider the measurement noise is Gaussian and the measurement equation is
linear (9.6):

zk = h (xk) = Hxk (9.6)

whereH is the measurement matrix; in this case, the maximum likelihood estimate is
given by the minimization of the quadratic function (9.7), which is a simple quadratic
form in xk solved using linear least square algorithm:

E =
∑

k

‖zk − h (xk)‖R−1 =
∑

k

(zk − Hxk)T R−1 (zk − Hxk) (9.7)

9.2.2 Probabilistic Inference and Bayesian Rule

In some cases, the range of possible solution consistent with the measurements is
too large to be useful, and any progress cannot be made [11]. For example, MLE
estimates each pixel separately based on just its noisy version to solve the problem
of image filtering [13]. The difference between the Bayesian inference and the MLE
method in that the starting point of Bayesian inference is to formally consider the
unknown vector xk as a random vector with a prior distribution p(xk), which is called
the degree of belief (Bel), then the posterior distribution of xk can be computed by
multiplying the measurements likelihood p(zk| xk) by the prior Bel [14].

Consider the noisy measurement model given by (9.8):

zk = h (xk) + νk (9.8)

where xk ∼ N (x, P) is the unknown Gaussian random state vector with mean x and
state covariance matrix P. The form of Bayesian rule is given by (9.9):

p (xk|zk) = ηp (zk|xk) p (xk) (9.9)
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where η is the normalizing constant [10]. The problem is to find xk that maximizes
the posterior estimation (MAP).

Assume that the distributions of xk and zk are Gaussian (9.10):

p (zk|xk) = |2πR|−1/2 exp
(
− 1

2 (zk − h (xk))T R−1 (zk − h (xk))
)

p (xk) = |2πPk|−1/2 exp
(
− 1

2

(
x̂k − x̂−

k

)T
P−1

k

(
x̂k − x̂−

k

)) (9.10)

The solution that maximizes p(xk| zk) is the most probable value of the random
vector and is equivalent to minimize its negative log, which reduces to the quadratic
form [11] (9.11):

L = 1

2

(
(zk − h (xk))T R−1 (zk − h (xk)) + (

x̂k − x̂−
k

)T
P−1

k

(
x̂k − x̂−

k

))

(9.11)

An algebraic equivalent way to maximize the posterior likelihood is to consider
the prior estimate as a pseudo-observation and write a new observation vector [12]
(9.12):

Zk =
[

zk

x̂k

]
, g (xk) =

[
h (xk)

x̂−
k

]
, C =

[
R 0
0 Pk

]
(9.12)

which gives (9.13):

L = 1

2
(Zk − g (xk))T C−1 (Zk − g (xk)) (9.13)

This is a nonlinear least squares problem of the form (9.14):

E = − log L =
∑

k

∥∥zk − ẑk
∥∥2

R−1 (9.14)

A useful approximation for small residual problems is the online stochastic Gauss–
Newton method, which defines the sequence of iterates as [12] (9.15):

x̂k = x̂−
k −

(
GT

k C−1Gk

)−1
GT

k C−1 (zk − h (xk)) (9.15)

where Gk = ∂g(xk)
∂xk

∣∣∣
x=x

the Jacobian of g(xk) with respect to the state vector xk.
The Gauss–Newton method is simply using the matrix inversion lemma [11]

(9.16):

(
HTR−1H + P−1

k

)−1
HTR−1 = PkHT

(
HPkHT + R

)−1

(
HTR−1H + P−1

k

)−1 = Pk − PkHT
(
HPkHT + R

)−1
HPk

(9.16)
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Using (9.16), the Kalman equation is given by (9.17):

x̂k = x̂−
k − K (zk − h (xk)) (9.17)

where Kk is the Kalman gain (9.18):

Kk = PkHT
(

HPkHT + R
)−1

(9.18)

The update covariance matrix is approximated using (9.19):

Pk+1 =
(

GT
k C−1Gk

)−1 =
(

HTR−1H + P−1
k

)−1
(9.19)

where the Hessian Hk = ∂h(xk)
∂xk

∣∣∣
x=x

is the Jacobian of h(xk) with respect to the state
vector xk.

The posterior covariance matrix using matrix inversion lemma (9.16) is given by
(9.20):

Pk+1 = (I − KkH) Pk (9.20)

Many applications require an estimate for the uncertainty in this estimate such
as KF, which require the computation of this uncertainty as posterior covariance
matrix in order to optimally integrate new measurements with previously computed
estimates [9].

9.2.3 Bayes Filter and Belief Update

In this section, the formulation of optimal recursive discrete time Bayesian filters
(e.g., KF, EKF, and UKF) is presented as a practical estimator in terms of Bayes
filter.

The basic elements of Bayesian filter are the initial belief Bel(xk − 1) con-
taining preliminary information on the unknown vector xk − 1, the motion model
p(xk| xk − 1,uk) as a probabilistic model of the discrete time state space, and the
measurement model p(zk| xk) determining the stochastic mapping from the state
vector to the measurement, where

• xk ∈ �n is the unknown state space vector on time step k.
• uk ∈ �L is the control vector on time step k.
• zk ∈ �m is the observation vector on time step k.

Using Markov assumption, these vectors are conditionally independent of past
values. Bayes filter applies two rules successively to predict the system state [10]
(9.21):
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Prediction : Bel (xk) = ∑
k

p (xk|xk−1, uk) Bel (xk−1)

correction : Bel (xk) = ηp (zk|xk) Bel (xk)
(9.21)

The prior predictive Bel (xk) is calculated just before the measurement zk using
the control vector uk; this step is called prediction (or action phase). Next, the state
estimate belief given in the action phase is corrected using sensor measurement; this
step is called correction (or perception phase).

9.2.3.1 KF Framework

In many vision applications, the object is tracked from frame to frame as it moves.
Kalman Filter (1960) has been regarded as the optimal solution to many visual
motion tracking and data prediction tasks [13].

The standard KF derivation is given here in the practical use of probabilistic
inference [15]. Consider a noisy linear system given by (9.22):

xk = Axk−1 + B1uk + B2ωk

zk = Hxk + νk
(9.22)

where xk, xk − 1 are the current and previous state vector, An × n is the linear state
transition matrix of the dynamic model, B1n × L is the control matrix, B2n × L is the
input noise matrix, Hn × m is the measurement model matrix, ωk � N(0,Q) is an
additive Gaussian state noise, and νk � N(0,R) is the Gaussian measurement noise.
The KF equations can be derived as follows [16]:

1. Prediction phase: The motion model causes a drift in the previous estimate,
while the additive noise increases the system disbelief.

First, apply the motion model and compute the joint distribution of the Gaussian
state xk given the initial state xk−1 ∼ N (xk−1, Pk−1) and the input uk by (9.23):

x̂−
k ∼ N

(
Axk−1 + Buk, APk−1AT + Q

)
(9.23)

Then, apply the measurement model and compute the joint distribution of the
measurement zk given the predicted state x̂−

k by (9.24):

ẑk ∼ N
(

Hx̂−
k , HP−

k HT + R
)

(9.24)

2. Correction phase: New measurements from the current frame introduce
additional information that updates the prior estimate x̂−

k and restores some of the
belief, by computing Kalman gain Kk and updating the covariance matrix (9.25):
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Kk = P−
k HT

[
HP−

k HT + R
]−1

x̂k = x̂−
k + Kk

(
zk − ẑk

)

Pk = (I − KkH) P−
k

(9.25)

9.2.3.2 EKF Linearization Technique

For nonlinear problems, such as SLAM, an EKF, which linearizes the motion and
measurement model around the current estimate, is used. The important drawback
of the EKF approach is that it uses the Taylor linearization dynamic model [17].
However, if the robot drives along a straight path, the distribution of mobile model in
a plane has been observed by “Banana Shape distribution.” As uncertainty increases,
the algorithm becomes inconsistent due to the normality assumption breaking down
[18]. Consider a noisy nonlinear system given by (9.26):

xk = f (xk−1, uk,ωk)

zk = h (xk) + νk
(9.26)

where f (·) is the nonlinear motion model, noisy by non-additive Gaussian noise
ωk � N(0,Q) and h(·) is the nonlinear measurement model, noisy by νk � N(0,R).

Table 9.1 illustrates the pseudo code for EKF algorithm as Bayes filter.

9.2.3.3 UKF Stochastic Linearization Technique

The UKF is a Gaussian recursive Bayesian filtering algorithm to solve the
probabilistic inference practically. It propagates and updates the system state using
a set of deterministically chosen points called sigma points [11]. These points
capture the mean and covariance of the state distribution. Filter each point using
unscented transform through the nonlinear motion and measurement models [14],
and determine the posterior state mean and state covariance to the third order of the
nonlinear system. This is a form of statistical local linearization, which produces
more accurate estimates than the analytic local linearization employed by the EKF
[19]. The UKF algorithm includes three main stages. Table 9.2 shows the pseudo
code for the UKF algorithm [16].

9.3 Stereo Vision System

Stereo vision is considered one of the most important recent applications [21]. It is
still developing especially in the robotics vision application [22]. Stereo vision is
used to form a 3D map of the robot environment, and landmarks are used in this map
for localization and exploration [21].
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Table 9.1 Extended Kalman filter (xk − 1, Pk − 1, uk, zk)

Initialization:
Initialize the prior knowledge xk − 1, Pk − 1, Q, R:
xk−1 = [x0]T

Pk−1 = diag (P0) ∈ �n, Q = diag (Q) ∈ �L, R = diag (R) ∈ �m

For each sample time k, do:
Prediction:

1. Apply the motion model and compute the mean and covariance:
x̂−
k = f (xk−1, uk, wk) ; wk ∼ N (0, Q)

P−
k = JxPk−1JT

x + JuQJT
u

where the Jacobian matrices Jx, Ju are obtained by differentiating f (xk − 1,uk,wk) with
respect to xk − 1 and uk, respectively:
Jx = ∂f (xk−1,uk,wk)

∂xk−1

∣∣∣
x=x̂

, Ju = ∂f (xk−1,uk,wk)
∂uk

∣∣∣
u=û

2. Apply the measurement model:
ẑk = h

(
x̂−
k , νk

) ; νk ∼ N (0, R)

Correction:
The EKF gain Kk which minimizes the errors and updates the posterior mean and covariance(
x̂k, Pk

)
is given by:

Kk = P−
k HT

[
HP−

k HT + R
]−1

x̂k = x̂−
k + Kk

(
zk − ẑk

)

Pk = (I − KkH) P−
k

return
(
x̂k, Pk

)

Compute the Degree of Belief (Bel):
The determinant Pk provides a good measure of uncertainty [10].

Belk = 1 − ‖Pk‖0.5
2 ; 0 ≤ Bel ≤ 1

end function

Figure 9.2 explains a low- and high-level image processing stages. In the low-level
image processing stage, a camera calibration with distortion removal is carried out.
Camera calibration includes the determination of the camera’s intrinsic and extrinsic
parameters. Accurate estimates of this geometry are necessary in order to relate image
information to an external world coordinate system. On the other hand, in the high-
level image processing stage, certain correspondence points are determined based
on advanced algorithms for feature extraction [23]. These points are hence used to
calculate the relative orientation (RO) as well as the absolute orientation (AO) using
a set of control points whose relative coordinates and corresponding image points
are known. Stereo vision-based system with SLAM algorithm is used to enable the
robot to percept the environment around and within the robot playing area [24]. The
computation of relative camera pose can be done using 7-point correspondences for
an uncalibrated camera or 5-point for a calibrated camera from two views under by
enforcing epipolar geometry. If the image correspondences are known, the relative
pose between two images can be recovered up to a scale factor [13]. When the
camera pose is recovered, one can easily reconstruct 3D points of the scene by
intersecting two projection ray lines through triangulation [25]. As the rays do not
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Table 9.2 Unscented Kalman filter (χk − 1, Pk − 1, uk, zk)

Initialization:
Initialize the state space vector χ0 and covariance matrix Pk − 1, Q, R:
χ0 = [x0 0 0]T

Pk−1 = diag (P0, Q, R)

For each sample time k do:
Prediction:

1. Compute 2n − 1 sigma points:

χk−1 =
[

xk−1 xk−1 + γ
√

Pk−1 xk−1 − γ
√

Pk−1

]T

where γ is a scalar parameter that determines how far the sigma points are dispersed
away from the mean, and

√
Pk−1 is computed using Cholesky decomposition [20].

2. Apply the motion model:
χk = f (χk − 1,uk,wk); wk � N(0,Q)

3. Compute the predicted sigma points mean χ̂
−
k and covariance P−

χχ:

χ̂
−
k =

2n∑

i=0

ω[i]
m χ

[i]
k

P−
χχ =

2n∑

i=0

ω[i]
c

(
χ

[i]
k − χ̂

−
k

) (
χ

[i]
k − χ̂

−
k

)T

where ω
[i]
m ,ω

[i]
c are defined by the algorithm.

4. Propagate the new sigma points through the measurement model:
zk = h

(
χ

[i]
k , νk

)
; νk ∼ N (0, R)

5. Compute the new sigma points mean ẑk, the predicted measurement covariance Pzz, and
the state and measurement cross-covariance Pχz:

ẑk =
2n∑

i=0

ω[i]
m z[i]

k

Pzz =
2n∑

i=0

ω[i]
c

(
z[i]

k − ẑk

) (
z[i]

k − ẑk

)T

Pχz =
2n∑

i=0

ω[i]
c

(
χ

[i]
k − χ̂

−
k

) (
z[i]

k − ẑk

)T

Correction:
1. Compute the innovation υk from the current and predicted measurement zk, ẑk,

respectively:
νk = zk − ẑk

2. Update Kalman gain matrix:
Kk = PχzP−1

zz
3. Update the posterior mean and covariance

(
χ̂k, Pχχ

)
:

χ̂k = χ̂
−
k + Kk

(
zk − ẑk

)

Pχχ = P−
χχ − KkPzzKT

k
return

(
χ̂k, Pχχ

)

Compute the Degree of Belief (Bel):
Belk = 1 − ∥∥Pχχ

∥∥0.5
2 ; 0 ≤ Bel ≤ 1

end function
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Fig. 9.2 Stereo vision 3D reconstruction stage

always intersect due to erroneous correspondences, the midpoint method or least
square based method is proposed to estimate the intersection. Then to avoid the
drifting problem, UKF is employed to refine both the camera pose and 3D points by
minimizing re-projection errors [26].

9.3.1 Perspective Projection and Collinearity Constraint

The process by which the 3D objects are mapped onto an image by a camera is
approximated by collinearity constraint [13].

Figure 9.3 shows the perspective projection geometry.
As seen from Fig. 9.3, light falling on the image plane is assumed to have passed

through a small pinhole. Therefore, each object point Pω maps to a single point on
the image plane Pu. Three-coordinate systems are necessary to define a perspective
camera model [23]: (a) The 3D world coordinate system {W}. (b) The camera
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Fig. 9.3 Perspective projection model

coordinate system {C}; it is attached to the projection center of the camera. The
sensor plane is parallel to its xy plane and displaced in a positive z direction. This
axis pierces the image plane at the principal point (u0, ν0) which acts as the origin of
the image plane. (c) The 2D image coordinate system {I}; its origin lies at the upper
left corner of the image. Two sets of parameters are used for perspective camera
modeling [13]:

• Extrinsic Parameters (Extrinsics): These parameters describe the camera pose
in the environment. Extrinsics contain six parameters of the exterior orientation
(EO) of the projection center (i.e., three parameters for the translation and three
other parameters for the rotation). They all vary with the camera motion in the
environment.

• Intrinsic Parameters (Intrinsic): These parameters model the camera physics
and describe the interior orientation (IO) of the camera. The intrinsic parameters
are determined by calibration and are usually fixed. The parameters are now in
place to define perspective projection mathematically. The mapping with an ideal
perspective camera can be decomposed into two steps [23]:

1. Exterior orientation: Given the 3D object’s position in world frame wPω =[
wxω

wyω
wzω

]T , the 3D object’s position with respect to the camera
frame using homogeneous notation CTW4 × 4 (rotation matrix CRW3 × 3 and
translation matrix CDW3 × 1) is given by (9.27):
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CPω = CTW
WPω (9.27)

2. Interior orientation: A projection from camera frame to image frame using the
calibration matrix κ and intrinsic parameters (the focal length f, the horizontal
and vertical scale vector ku, kν) is given by (9.28):

κ =
⎛

⎝
αu 0 u0 0
0 αν ν0 0
0 0 1 0

⎞

⎠ (9.28)

where αu = − kuf, αν = − kν f. If the shear parameter s and the scale
difference m are present, they amount to an affine distortion of the image
frame. It is useful to model the distortions as corrections 	u, 	ν of the image
coordinates of a perspective camera, and the calibration matrix becomes (9.29):

κ =
⎛

⎝
αu sαν u0 + 	u 0
0 αν (1 + m) ν0 + 	ν 0
0 0 1 0

⎞

⎠ (9.29)

If κ is known, then the camera is considered to be calibrated. The
final mathematical formation of the collinearity constraint for a perspective
projection with distortion from object to image frame is given by (9.30):

IPu = κCPω (9.30)

9.3.2 Epipolar Geometry and Coplanarity Constraint

A 3D measurement cannot be derived from a single image of an unknown scene,
because the depth along the Z axis is lost during projection. The principle to solve
this problem is to measure the corresponding points acquired from two different
viewpoints and reconstruct the 3D coordinates via triangulation. Some of these
points are considered as control points [27]. Now, two problems need to be solved:

1. Determination of the image pair orientation (relative and absolute orientations).
2. Reconstruction of the 3D scene coordinates.

Figure 9.4 shows what is known as epipolar geometry. eL is the epipole which
is the image of the right camera center in the left camera. eR is the epipole of the
left camera center in the right camera. The plane formed by P and the two camera
centers OL, OR is the epipolar plane.

This plane intersects the image planes in the epipolar line lL, lR; these lines can
be used for matching points, and B is the baseline, which is the distance between
the projection center, OR and OL. All epipolar lines converge at the epipole. First,
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Fig. 9.4 Epipolar geometry

it seems that the matching process requires cross image searching, but epipolar
restrictions reduce this search to a single line [13]. The two projection rays must be
coplanar because they intersect in the 3D point P. For any corresponding point P,
triple product coplanarity can be expressed by (9.31):

[
OLPL OLOR ORPR

] = 0 (9.31)

That is, the three rays are in one plane. The third dimension is extracted from a
pair of images using the coplanarity constraint given for the uncalibrated camera as
follow (9.32):

pT
Rκ−T

R R−T
R SbR−1

L κ−1
L︸ ︷︷ ︸

F

pL = 0 (9.32)

where Sb is a skew-symmetric matrix resulting from the triple product given in
(9.31), κR, κL are the right and left calibration matrix, and RR, RL are the rotation
matrix of the right and left camera. The fundamental matrixF3×3 sums up everything
that can be known about the relationship between two uncalibrated cameras. Using
F3×3, it is possible to calculate the positions of the epipoles and the epipolar line
in one image associated with a point in the other one. An alternative form for the
epipolar geometry in case of the calibrated camera using the essential matrix E3×3
is given by (9.33):

pT
RRRSbRT

L︸ ︷︷ ︸
E

pL = 0 (9.33)

The depth of the 3D point is calculated using the triangulation principle as shown
in Fig. 9.5.



282 A. Joukhadar et al.

Fig. 9.5 Stereo vision
triangulation [13]

The 3D coordinates of a landmark can be computed from two matched points in
the left and right images by (9.34):

X = xR

B

px

, Y = yL + yR

2

B

px

,Z = f
B

px

(9.34)

where xR, L, yR, L are the interest coordinate points in the images, X, Y, Z represent
the object coordinates in the word frame, B is the baseline, and f is the focal length.
The x-parallax px = xR − xL is the distance between identical pixels when two
images are mounted on top of each other [13].

9.4 Uncertainties in Stereo Vision System

Uncertainties are always present in the image acquisition and processing steps.
Images are distorted due to various types of random noises such as Gaussian noise,
Poisson noise, Quantization noise, Salt and paper noise, etc. These noises may be
introduced from noise sources, for example, inaccurate image capturing devices like
cameras, misaligned lenses, weak focal length, faulty memory location, etc. [28].
There are two main error categories, namely deterministic and nondeterministic [29].
The camera intrinsic parameter uncertainties are deterministic since the camera is
supposed to be calibrated. In a stereo vision system with parallel optical axis as
shown in Fig. 9.6, the epipolar constraint reduces to check that both the features
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Fig. 9.6 Stereo vision uncertainty

are in the same row of the image. Consider the uncertainty in the 3D landmark
position due to errors in the image quantization and in the feature detection process.
Once the matching has been established, the most likely 3D coordinates of the
landmark are estimated by projecting them back to the environment [30]. Refer to
Eq. (9.34), error in the variables x, y, px are usually modeled as uncorrelated zero-
mean Gaussian random variables [13]. Using the first-order error propagation to
approximate the distribution of the variables in (9.34) as multivariable Gaussian, the
following covariance matrix for the x, y, z coordinates has been obtained (9.35):

� ≈ J diag
(
σ 2

x , σ 2
x , σ 2

x

)
JT (9.35)

where J represents the Jacobian matrix of the functions in (9.34), and
(
σ 2

x , σ 2
x , σ 2

x

)

are the variances of the corresponding variables.
The theoretical precision of 3D points depends on the uncertainty of the relative

orientation and the uncertainty of measured corresponding points. Assume that the
uncertainty of the relative orientation is negligible. By variance propagation using
(9.36)

σ 2
X = Z

px

σpx = f B

p2
x

σpx = Z2

f B
σpx = Z

f

1

B/Z
σpx (9.36)
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Fig. 9.7 Stereo vision

where Z coordinate is the distance of the point P from the principal plane, B is the
baseline, f is the focal length, px is the x-parallax, and σpx is the standard deviation
of the point P. The result shows the uncertainty proportional to Z2 of the distance
from the baseline B for a given geometry point P as shown in Fig. 9.7.

9.5 Examples

9.5.1 Pose Tracking Using UKF and Stereo Vision

An important improvement of the surgical robot is to extract pose information about
the robot relative position to the patient. The absolute pose of the surgical robot
relative to the patient cannot be observed directly due to the highly dynamic nature
of the operating environment and uncertainties in the robot kinematics model [31].
To solve this problem, VSLAM is applied using the endoscopic stereo camera to
estimate the robot motion. In many applications, KF framework is used to estimate
the motion of the target object from the previous frame to the new frame [32]. In
this example, a UKF approach is used to estimate the pose of the robot. Assuming
that the feature points are observable throughout the sequence, the formulation of
the UKF is as follows:

The state vector Xk is given by (9.37):

Xk = [
xk ẋk yk ẏk zk żk αk α̇k βk β̇k ϕk ϕ̇k

]T (9.37)

where xk, yk, zk, αk, βk, ϕk are the object’s pose and orientation along the x, y, and
z axes, respectively, and ẋk, ẏk, żk, α̇k, β̇k, ϕ̇k are their corresponding velocities.
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The dynamic system equation is given by (9.38):

Xk = AXk−1 + ωk

A = diag

[[
1 Ts

0 1

]
, . . . ,

[
1 Ts

0 1

]]
(9.38)

where Ts is the sample time, and ωk is zero-mean Gaussian noise.
The nonlinear measurement model is defined as (9.39):

zk = h (Xk) + νk (9.39)

where νk is a 4m × 1 zero-mean Gaussian noise vector imposed on the images
captured. m is the number of feature points extracted from the tracked robot. h(Xk) is
the 4m× 1 output stereo image pair point transfer function. The estimated coordinates
of the feature points at the sample time k is given by (9.40):

h (Xk) =
[
uL

1,k vL
1,k · · · uL

m,k vL
m,k · · · uR

1,k vR
1,k · · · uR

m,k vR
m,k

]T
(9.40)

The corresponding points have the following coplanarity constraint (9.41):

pT
REpL = 0 (9.41)

The standard perspective projection for a single feature point is given by (9.42):

zk =

⎡

⎢⎢⎣

uL
k

vL
k

uR
k

vR
k

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

f xx/zx

fyx/zx

f (B − xx) /zx

fyx/zx

⎤

⎥⎥⎦ (9.42)

where zk = [
uL

k vL
k uR

k vR
k

]T are the measurement pixels in the left and right
images, B is the baseline, and f is the focal length. The UKF algorithm can be
derived using Table 9.2, giving the motion model (9.38) and the measurement model
(9.39). As shown in Fig. 9.8, the robot is captured using the stereo camera with a
location sensor.

The important features of the robot are then extracted and passed to the deep
learning network. The robot pose with respect to the image frame is then matched
with the predicted pose using UKF approach. The algorithm is initialized using
epipolar geometry of the first two images and computes the essential matrix E using
5-point algorithm plus robust estimator deep learning network. The initial pose
parameters are then extracted from E [33]. This is an initial guess of the pose and
will be used in UKF approach.
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Fig. 9.8 Using UKF and stereo vision for robot tracking

Fig. 9.9 Robot
localization-based landmarks
[35]

9.5.2 Localization Approach-Based 2D Landmark Map

Landmarks are natural or artificial environment features which a robot can recognize
from its sensory input and keep the uncertainty bounded [34]. Consider 4-WDDMR
moves in the predefined environment in the global frame {G} as shown in Fig. 9.9.
Stereo vision system is used as an exterior receptive sensor to enable the robot to
recognize the landmarks [36]. The predefined landmarks in the global frame {G} help
the robot to localize itself correctly. The 4-WDDMR discrete kinematic equation is
given by (9.43):

xk = f (xk−1, uk) =
⎡

⎣
xk−1 + νkTs cos (θk−1)

yk−1 + νkTs sin (θk−1)

θk−1 + ωkTs

⎤

⎦ (9.43)

where Ts is the sample time and f (xk − 1,uk) is a nonlinear function and relates
the 4-WDDMR’s pose xk = [

xk yk θk

]T in {G} frame, with the input vector uk =
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[
νk ωk

]T , which represents the translation and angular velocities in the robot frame
{L}. However, the noisy 4-WDDMR motion model with non-additive Gaussian noise
wk is written as follows (9.44):

xk = f (xk−1, uk, wk) (9.44)

In the authors’ previous work [37], it is assumed that landmarks have a fixed and
known position (mx,my).

The measurement model of the location zk of the landmark mk from the viewpoint
of the robot given the location of the robot xk is defined as follows (9.45):

zk = h (xk, mk) =
[

hx (xk, mk)

hy (xk, mk)

]

=
[

(mxk − xk) cos (θk) + (
myk − yk

)
sin (θk)

− (mxk − xk) sin (θk) + (
myk − yk

)
cos (θk)

] (9.45)

where h(xk,mk) is the nonlinear measurement function for the correction stage.

9.6 Conclusion

This book chapter has provided modern and advanced strategies for image filtering
and image feature extraction. Kalman filter including EKF and UKF has been
described in detail and implemented for pose tracking and localization-assisted 2D
landmark map of a mobile robot. This chapter has contributed to the community
of mobile robot localization and mapping, with detailed information on different
modern approaches for vision-based localization and mapping. It has been pointed
out that UKF algorithm is superior to EKF one in terms of bias cancellation and
providing higher accuracy of mobile robot pose estimation.

References

1. Goliaei, S., Ghorshi, S., Manzuri, M. T., & Mortazavi, M. (2011). A Kalman filter techniques
applied for medical image reconstruction. In 8th International Multi-Conference on Systems,
Signals & Devices.

2. Ling, L. (2013). Dense real time 3D reconstruction from multiple images. PhD thesis, College
of Science, Engineering and Health, RMIT University.

3. Saputra, M. R. U., Markham, A., & Trigoni, N. (2018). Visual SLAM and structure from motion
in dynamic environments: A survey. ACM Computing Surveys, 51, 2.

4. Klančar, G., Teslic, L., & Skrjanc, I. (2014). Mobile robot pose estimation and environment
mapping using an extended Kalman filter. International Journal of Systems Science, 45(12),
2603–2618.



288 A. Joukhadar et al.

5. Basaca-Preciado, L. C., Sergiyenko, O. Y., Rodríguez-Quinonez, J. C., Garcia, X., Tyrsa, V. V.,
Rivas-Lopez, M., & Tabakova, I. (2014). Optical 3D laser measurement system for navigation
of autonomous mobile robot. Optics and Lasers in Engineering, 54, 159–169.

6. Park, J., & Lee, S. (2009). Correction robot pose for SLAM based on extended Kalman filter in
rough surface environment. International Journal of Advanced Robotic System, 6(2), 67–72.

7. Moreno, F. A., Blanco, J. L., & Gonzalez, J. (2009). Stereo vision-specific models for particle
filter-based SLAM. Robotics and Autonomous Systems, 57(9), 955–970.

8. Tully, S. T. (2012). BodySLAM: Localization and mapping for surgical guidance. PhD thesis,
Garnegir Mellon University, Pittsburgh.

9. Szeliski, R. (2010). Computer vision: Algorithms and applications. Springer.
10. Thrun, S., Fox, D., & Burgard, W. (2006). Probabilistic robotics. Massachusetts Institute of

Technology.
11. Merwe, R. (2004). Sigma point Kalman Filter for probabilistic inference in dynamic state space

models. PhD thesis, Oregon Health & Science University.
12. Sibley, G., Sukhatme, G., & Matthies, L. (2006). The iterated sigma point Kalman filter with

applications to long range stereo. Robotics Science and Systems.
13. Förstner, W., & Wrobel, B. P. (2016). Photogrammetric computer vision statistics, geometry,

orientation and reconstruction. Cham, Switzerland: Springer.
14. Särkkä, S. (2011). Bayesian filtering and smoothing (Vol. 3). Cambridge University Press.
15. Corke, P. (2011). Robotics vision and control fundamental algorithms in MATLAB. In Springer

tracts in advanced robotics (Vol. 73). Springer.
16. Haykin, S. M. (2001). Kalman filtering and neural networks. Wiley.
17. Joukhadar, A., & Kass Hanna, D., (2018). UKF and adaptive optimal control-based localization

enhancement of 4WDDMR, ROS framework-based design and implementation. In Cogent
engineering, System and Control Research Article.

18. Long, A. W., Wolfe, K. C., Mashner, M. J., & Chirikjian, G. S. (2013). The banana distribution
is Gaussian: A localization study with exponential coordinates (pp. 265–272). Cambridge, MA:
Robotics: Science and Systems VIII; MIT Press.

19. Mahmoudi, Z., Poulsen, N. K., Madsen, H., & Jorgensen, J. B. (2017). Adaptive unscented
Kalman filter using maximum likelihood estimation. IFAC-Papers Online, 50(1), 3859–3864.
https://doi.org/10.1016/j.ifacol.2017.08.356.

20. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes.
The art of scientific computing. Cambridge, UK: Cambridge University Press.

21. Rodríguez-Quiŕíonez, J. C., Sergiyenko, O., Flores-Fuentes, W., Rivas-lopez, M., Hernandez-
Balbuena, D., Rascón, R., & Mercorelli, P. (2017). Improve a 3D distance measurement accuracy
in stereo vision system using optimization methods’ approach. Opto-Electronics Review, 25(1),
24–32.

22. Hu, Y., Chen, Q., Feng, S., Tao, T., Asundi, A., & Zuo, C. (2019). A new microscopic telecentric
stereo vision system—Calibration, rectification, and three-dimensional reconstruction. Optics
and Lasers in Engineering, 113, 14–22.

23. Bergamini, M. L., Ansaldo, F. A., Bright, G., & Zelasco, J. F. (2017). Digital camera calibration,
relative orientation and essential matrix parameters. WSEAS Transaction on Signal Processing,
13.

24. Hayet, J. B., Lerasle, F., & Devy, M. (2002). A visual landmark framework for indoor mobile
robot navigation. In International Conference on Robotics & Automation. Washington, DC.

25. Florczyk, S. (2005). Video-based indoor exploration with autonomous and mobile robots.
Wiley.

26. Hartmann, G., Huang, F., & Klette, R. (2013). Landmark initialization for unscented Kalman
filter sensor fusion in monocular camera localization. Auckland, New Zealand: The University
of Auckland.

27. Parnian, N., & Golnaraghi, F. (2010). Integration of multi-camera vision system and strap down
inertial navigation system (SDINS) with a modified Kalman filter. Sensors Journal, 10(6),
5378–5394.

http://dx.doi.org/10.1016/j.ifacol.2017.08.356


9 UKF-Based Image Filtering and 3D Reconstruction 289

28. Boyat, A. K., & Joshi, B. K. (2015). A review paper: Noise models in digital image processing.
Signal & Image Processing: An International Journal (SIPIJ), 6(2).

29. Siegwart, R., & Noubakhsh, I. R. (2004). Introduction to autonomousmobile robots. Cambridge,
MA, London: The MIT Press.

30. Beinhofer, M. Müller, J., Krause, A., & Burgard, W. (2013). Robust landmark selection for
mobile robot navigation. In Intelligent Robots and Systems (IROS), IEEE/RSJ International
Conference.

31. Haghighipanah, M., Miyasaka, M., Li, Y., & Hannaford, B. (2016). Unscented Kalman filter
and vision to improve cable driven surgical robot joint angle estimation. In IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden.

32. Yu, Y. K., Wong, K. H., Or, S. H., & Chang, M. M. Y. (2006). Recursive camera motion
estimation with trifocal tensor. IEEE Transaction on System, Man and Cybernetics B, 36(5),
1081–1090.

33. Yu, Y. K., Wong, K. H., Or, S. H., & Chang, M. M. Y. (2008). Robust 3D motion tracking from
stereo images: A model-less method. IEEE Transaction on Instrumentation and Measurement,
57(3).

34. Negenborn, R. (2003). Robot localization and Kalman Filters on finding your position in a
noisy word. MSc thesis, Utrecht University.

35. Joukhadar, A., Kass Hanna, D., Müller, A., & Stöger, C., (2017). UKF-Assisted SLAM for
4WDDMR Localization and Mapping. In 1st International Congress for the Advancement of
Mechanism, Machine, Robotics and Mechatronics Sciences, Beirut, Lebanon, 17–19 October.

36. Kelly, J., & Sukhatme, G. S. (2009). Visual-inertial simultaneous localization, mapping and
sensor-to-sensor self-calibration. Korea: CIRA.

37. Kass Hanna, D., & Joukhadar, A. (2015). A novel control-navigation system-based adaptive
optimal controller & EKF localization of DDMR. International Journal of Advance Research
in Artificial Intelligence, 4(25), 29–37.


	9 UKF-Based Image Filtering and 3D Reconstruction
	Acronyms
	9.1 Introduction
	9.2 Kalman Filter Framework-Based Probabilistic Inference
	9.2.1 Maximum Likelihood Estimator (MLE)
	9.2.2 Probabilistic Inference and Bayesian Rule
	9.2.3 Bayes Filter and Belief Update
	9.2.3.1 KF Framework
	9.2.3.2 EKF Linearization Technique
	9.2.3.3 UKF Stochastic Linearization Technique


	9.3 Stereo Vision System
	9.3.1 Perspective Projection and Collinearity Constraint
	9.3.2 Epipolar Geometry and Coplanarity Constraint

	9.4 Uncertainties in Stereo Vision System
	9.5 Examples
	9.5.1 Pose Tracking Using UKF and Stereo Vision
	9.5.2 Localization Approach-Based 2D Landmark Map

	9.6 Conclusion
	References


