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7.1 Introduction

Machine vision is a technology that provides a visual sensor to machine systems.
There are several industries where machine vision can be applied, such as agriculture
[1], automotive [2], and industrial [3], each with its own set of applications. The first
industrial applications focused on quality inspection and manipulator control while
agriculture used machine vision for tractor navigation, product inspection, and fruit
harvesting. This chapter focuses on the development of machine vision for orchard
management applications and is ordered as follows:

1. Definition of machine vision
The four main elements of a machine vision system are:

• Scene Constraints—the physical constraints of the environment in which the
machine vision system operates. There are several factors to consider when
evaluating the scene constraints which include lighting and the color of the
work plane as well as other factors [4].

• Image Acquisition—the properties and characteristics of the camera being
used. There include color cameras, stereo cameras, NIR cameras, IR cameras,
and others. Each of these camera types has different characteristics, so the
decision of which camera employed depends on the application.

• Image Processing and Analysis—the process of modifying the acquired
image to extract the desired information. There are several sub-steps in the
image processing and analysis element, which include preprocessing the
image, segmenting the region to useful regions, extracting useful features
and classifying those features.

• Actuation—the physical action the system will take in response to an identified
object. In agricultural applications, examples include picking fruit off the tree,
sorting already picked fruit by their grade and weed control [5, 6].

2. Machine vision applications in different areas of agriculture
As mentioned in the abstract, there are several different fields for which machine
vision can be applied and different applications within each field. Specifically,
within the field of agriculture, three primary applications exist. They are:

• Plant Identification—analyzes the color, size, and shape of the object within
the image to classify the plant type.

• Process Control—common application for machine vision and in agriculture
tends to focus on evaluating fruit. This evaluation uses the size, shape, and
color of the fruit to determine quality for grading and sorting.

• Machine Guidance and Control—the most common thought of process for an
application of machine vision. Though many forms exist, a common example is
a ground vehicle, which could be either manned or unmanned. In an agricultural
application, this vehicle would run through a field or an orchard employing
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several different inputs and sensors such as GPS, ultrasonic sensors, and a
vision system [5]. The vision system could determine what object is in front of
the ground vehicle and helps determine what action the ground vehicle should
take.

3. Orchard management machine vision system
This example of a machine vision system in an orchard application demonstrates
different analysis techniques of images in order to extract useful information.
There are several different steps involved when analyzing images for a machine
vision system, and these are dependent on the task at hand. The goal, for the
example discussed in this chapter, is a machine vision system that can predict
a fruit yield of apple and peach trees when the tree is in full blossom. It was
hypothesized that the crop yield could be estimated by determining the number of
blossoms on the tree, so a machine vision system needed to be created which could
count the number of blossoms on a tree. Because every blossom on a fruit tree was
essentially the same color, the RGB data from an acquired image could be used
to filter out of the scene everything but the blossoms. The remaining information,
the blossoms, are then counted and processed to determine the overall yield of the
particular tree. Again, depending on the goal of the project, a different application
of machine vision may need to be applied, but the method reviewed in this chapter
provides various applications which can be extended outside of agriculture.

4. Stereo imaging to identify tree structure and improve individual tree
detection
One of the main problems with the machine vision system used to estimate the
yield of apple and peach trees is the inclusion of blossoms from multiple trees
as each blossom in the acquired image would be counted even if it was on a
tree behind the tree of interest. This is because the vision system developed used
only the image RGB data to remove the scene. An additional filter, one which
focuses on distance, needs to be added. Stereo imaging can be used to address
this problem because now the acquired image has both the RGB parameter and
the distance parameter. With this distance parameter, trees which are farther away
from the tree of interest can be eliminated, so blossoms only from the tree of
interest can be counted, thereby increasing the accuracy of the yield estimation.

5. Machine vision system that navigates a robot within orchard rows
Another application for a machine vision system is implementation on a ground
vehicle which can navigate through the rows of an orchard. When applying
machine vision for this configuration, the scene constraints become extremely
important. To successfully navigate the rows of an orchard, the system must
account for the symmetry of the rows, the size of the trees, and row separation.
The ground vehicle is sized to fit and operate within these constraints. For example,
a small ground vehicle can use the sky visible between rows of trees for navigation
if the trees are relatively large and the rows are adequately spaced.
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7.2 The Machine Vision System

Awcock and Thomas [7] defined a general machine vision system that is shown
in Fig. 7.1. The defined system consists of four elements that could be found in
a typical machine vision system in any field of application. The four elements are
scene constraints, image acquisition, image processing and analysis, and actuation.

7.2.1 Scene Constraints

The scene constraint refers to the environment wherein the machine vision equipment
is to be placed, and it is where the information is to be taken. The main aim
of this system is to extract from the environment the desired information by the
proper controlling of factors that affect the acquisition of data like lighting and the
proper installation of the machine vision equipment. Some of the environment may
be controlled such as in the sorting lines for product inspection [8] while other
environmental parameters such as lighting conditions, fruit location on a tree, and
the unstructured nature of the branches are difficult to control in an apple orchard [9].

7.2.2 Image Acquisition

Image acquisition is the element that converts light falling onto the photosensors of a
camera into a digitized data, typically a 512 × 512 pixel image, which is then able to

Scene Constraints

Actuator

PC

Image
Acquisition

Fig. 7.1 A generic machine vision system
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be processed. The camera may be a black and white video camera that is dependent
on light intensity, a colored video camera that is dependent on the visible spectrum,
or an infrared camera with the selection being based on the relevant information
needed. With the advancement of sensor technologies, cameras sensitive beyond
the visible spectrum are also available. Hyperspectral and multispectral imaging
techniques have emerged as important tools for the safety and quality inspection of
food and agricultural products [1].

7.2.3 Image Processing

Image processing deals with the acquired digital image as input and outputs an image
that has been enhanced so that the desired information can be extracted. Several steps
are involved in the extraction of the data each of which is discussed in the following
sections.

7.2.3.1 Preprocessing

Images are preprocessed to modify and prepare the pixel values of the digitized image
to produce an output that can be more easily analyzed in subsequent operations. This
may consist of contrast enhancement, filtering to remove the noise of the hardware,
and correction for camera distortion [10].

7.2.3.2 Segmentation

Segmentation is the process wherein the digitized image is broken down into
meaningful regions. It is considered the first step of image analysis because the
decision-making process of identifying the foreground and background has already
been conducted. The simplest segmentation process is the identification of the
foreground and background regions which is often easily achieved by thresholding.
A very popular thresholding technique is the Ohtsu method [11].

7.2.3.3 Feature Extraction

After the image is divided into regions, the feature extraction process identifies
objects in the region using descriptors. Basic descriptors are typically scalars that
include area, centroid, perimeter, major diameter, compactness, and thinness [12].
These descriptors are often used simultaneously providing a good description of the
object of interest.
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7.2.3.4 Classification

Classification is the task of putting the objects in the image into some predefined
categories. This process may be done by template matching or by a statistical method.
Template matching is the comparison of the unknown objects to a set of known
templates so as to identify the object.

Artificial intelligence, or machine learning, is being used more frequently in image
classification in agricultural applications. In many of these applications, supervised
machine learning is being used, where the user would enter and label several “training
samples,” then the neural network would recognize connections between them. The
neural network is then tested with “test samples” which it has not seen before,
and the network is evaluated. Agricultural applications so far have primarily been
concerned with plant identification, where plants were segmented under different
lighting conditions [13], and it has been applied in weed management [14].

7.2.4 Actuation

Once the machine has identified the object, the decision on what the machine will
do is known as the actuation process. This is the interaction of the machine with
the environment or the original scene either directly or indirectly. This closes the
machine vision system shown in Fig. 7.1. Usually, the machine vision is linked to a
robotic system which is the basic component of automated operations [15].

7.3 Agricultural Machine Vision Applications

Machine vision systems typically use complex electronic sensors. The rapid
development of computer technology and the photosensor has widened the field
for machine vision applications. Currently, industries occupy most of the field
of usage focusing mainly on product inspection, but other areas such as military
science, astronomy, medicine, and the field of agriculture are now investigating the
uses for machine vision [16]. For agriculture, researchers have been studying the
potentials of machine vision in enhancing production which can be classified into
three categories:

1. Plant identification
2. Process control
3. Machine guidance and control

The recent applications developed in these categories are described below.
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7.3.1 Plant Identification

Plant identification refers to the process of classifying a certain plant by accurately
identifying its component geometrical shape, size, and color. Figure 7.2 shows a
schematic diagram of a machine vision system that is used for plant identification.
Important parameters analyzed by the system are size, color, shape, and surface
temperatures. Making measurements of these parameters by noncontact visual means
is an advantage of machine vision as identification and classification can be done
without the risk of damage to the plant.

Several research projects on plant identification using machine vision have been
conducted. Guyer et al. [17] developed a machine vision system that identifies plant
species such as corn, soybeans, tomatoes, and some weed species at early growth
stages using spatial parameters. The image processing stage evaluated the differences
in the reflection of radiation from leaves and soil surface and the differences in
the number of leaves and the shapes of the different weed species. This plant
identification visual system could thus be used for selective herbicide application. A
robotic vision-based system was developed to detect crop and weed locations, kill
weeds, and thin crop plants [18]. This vision system identified different plant leaves
using shape features that included area, major axis, minor axis, area to length ratio,
compactness, elongation, length to perimeter ratio, and perimeter to broadness ratio.
The system could then differentiate between tomato cotyledons and weeds when
attached to a ground vehicle such as a tractor, and the prototype robotic weed control
system could identify and treat weeds simultaneously.

With the advancement of aerial systems, a machine vision system can also be
attached to an unmanned aerial vehicle (UAV) for the purpose of plant identification.
Crop monitoring and assessment platform were developed to identify apple trees
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Fig. 7.2 Machine vision system for plant identification
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and monitor irrigation types [19]. This UAV machine vision system was composed
of a multispectral camera (near-infrared, green, blue) and an image processing and
analysis unit. The image processing calculated the enhanced normalized difference
vegetation index to identify the tree crops and estimate the irrigation level and
was able to differentiate between the full drip and 50% sprinkler irrigated trees.
When identifying plants on a UAV system, the images will likely be acquired with a
color camera, but using a color camera for the navigation of the UAV has potential
problems. Concerning the navigation, using a laser triangulation system has several
advantages compared to the color camera navigation. The main advantage is distance
measurement, which can be measured to a high degree of accuracy, where a color
camera system would estimate the distance [20]. Of course, there are errors when
using a laser triangulation system for UAV navigation, such as the static and dynamic
friction within the DC motors used in the system; but these errors can be estimated
and accounted for, thus increasing the overall accuracy of the system [21].

7.3.2 Process Control

Industrial applications rely on visual systems for process control when the control
is dependent on a visual parameter, for example, the inspection of circuit boards
in a production line [22]. The system is able to make an intelligent action spotting
and removing abnormal products. Generally, in visual sensing, the parameters being
assessed are color, shape, and size.

In agriculture, evaluation of the color information indicates qualities such as
maturity, sweetness, and wholesomeness. As shown in Fig. 7.3, a machine vision
system may be used for the inspection of fruits by allowing the fruits to pass in front
of a camera so that its quality may be evaluated.

Fig. 7.3 Machine vision for
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Miller and Delwiche [23] studied a color vision system that inspects and grades
fresh market peaches. Digital color images of the peaches taken as the fruit moved
on a conveyor belt analyzed the peach for color, size, and surface characteristics.
Compared to visual inspection by human senses, this system gave a high output rate,
high reliability, and high uniformity and was additionally capable to make critical
measurements.

There are machine vision systems that can detect wavelengths outside the visible
electromagnetic spectrum. Bulanon et al. [24] developed a machine vision system to
detect citrus black spot using hyperspectral imaging. Hyperspectral imaging allows
the acquisition of spatial information across a sequence of individual bands covering
a broad wavelength range, resulting in a three-dimensional image data with a very
high spectral resolution. In the study, five different surface conditions including
citrus black spot were evaluated. Linear discriminant analysis and an artificial neural
network were then developed using wavelengths of 493 nm, 629 nm, 713 nm, and
781 nm. Both pattern recognition approaches had an overall detection accuracy of
92%. Rehkugler and Throop [25] developed a machine vision system that detects
the defects in an apple.

In addition to the spectral properties of agricultural products, size, shape, form,
freshness condition, and absence of visual defects are normally evaluated. Costa et al.
[26] developed an automated shape processing system which could be used for both
scientific and industrial purposes. This tool would be very useful for grading and
sorting agricultural products especially if they were coupled with pattern recognition
techniques [27]. It offers many advantages over conventional and mechanical sorting
devices. Furthermore, evaluating the shape of agricultural products is a key parameter
for allocating packaging and shipping resources [28].

7.3.3 Machine Guidance and Control

One of the important features of a robotic harvesting system is recognizing and
locating a fruit. The commonly used camera gives a two-dimensional picture. Since
three coordinates are required to fully locate the object, the distance dimension is
lacking. This third dimension is typically acquired through the use of another sensor
such as a range finding sensor, acoustics, radio frequency, or a stereographic vision
system.

Researchers are trying to eliminate the need for an additional sensor by developing
the range of information utilizing the object’s geometric shape property, reflectance
intensity, chrominance, and emissivity. The goal is to take a digital image of the
object and then use image processing to identify and locate the position of the
objects. Parrish and Goksel [29] conducted the first experimental system for an apple
harvesting system. A black and white video camera was used to detect the apples. The
image coordinates of the apple and its centroid were determined by image processing,
and then the trajectory planning and the actuation routines directed the robotic arm
to the apple. Figure 7.4 shows the generic machine vision system applied to fruit
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Fig. 7.4 Machine vision for fruit harvesting

harvesting. Similar to the development made by Parrish and Goksel, the features
that are extracted from the image included color, shape, centroid location, and depth
information. These features were then used to guide a robotic arm toward the fruit
and pick it. Slaughter and Harrel [30] later improved the black and white video
camera by using a colored video camera. This time, the detection of apples was
dependent not only on gray-level intensity but also on color. The color factor is
an important parameter in differentiating the object from its background. Another
example of machine vision-based fruit harvesting is the apple robotic harvesting
system developed by Bulanon and Kataoka [9]. The segmentation method was based
on the chromaticity coefficients red and green combined with a decision-theoretic
approach method to threshold the apple fruits from the background under variable
lighting conditions. The vision system was used to guide a customized end effector
that picked the fruit in a manner similar to the way a human would pick the apple.

One of the problems encountered in a robotic vision system is the similarity of the
spectral reflectance between the object and its background specifically the leaves of
the tree. Recent studies have focused on using the thermal characteristics of the fruit
to separate it from the foliage. Bulanon et al. [31] studied the thermal characteristics
of the citrus tree. A 24-hour temperature profile between the fruits and the leaves
was obtained, and it was found that the fruits had a higher surface temperature than
the leaves during the nighttime. Thus a unique image processing approach which
combined color and thermal images using fuzzy logic was developed.

Another robotic system that could be guided by machine vision is an agricultural
ground vehicle. The vehicle could be manned or unmanned. If the vehicle is manned,
the machine vision system is used to assist the driver in steering the system while
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an unmanned vehicle would be fully autonomous. The last section of this chapter
discusses the development of a machine vision system for steering an unmanned
ground vehicle in a commercial peach orchard.

7.4 Machine Vision Development for Fruit Yield Estimation:
An Example of Plant Identification Application

Section 7.3 discussed the different applications of machine vision, those being
plant identification, process control, and machine guidance and control. This section
will discuss a plant identification application of machine vision specific to orchard
management. This development was created under a research project of the Robotics
Vision Lab at Northwest Nazarene University, where the goal of the project was
early fruit yield estimation. Yield estimates are important for growers to help in the
production planning and marketing of the fruits. There are several ways of estimating
fruit yield [32, 33], and machine vision is one of the popular tools available [34–
38]. Most of these vision-based yield estimators [39] count the fruits when they are
almost ready to harvest; however, an early yield estimate [40] is more important
to the growers. The hypothesis of the project was that by counting the number of
blossoms of a fruit tree, an early yield estimate could be derived. The fruits of interest
in this project were apples and peaches: specifically, Pink Lady apples grown in a
high-density orchard and Snow Giant peaches grown in a standard orchard. Both
orchards were located in Caldwell, Idaho, and were planted in a north-south direction.
Thirty trees were selected randomly from a block in each orchard and photographed
throughout the blossom period during the 2018 growing season. A 12-megapixel
24-bit digital color camera was used to photograph each tree on the east and west
sides. Later in the season when the fruits were mature, a ground truth yield was
obtained by manually counting the fruits on the selected trees.

The images were processed using MATLAB and its Digital Image Processing
Toolbox [41]. Figure 7.5 displays a sample image of a blossoming apple tree in a
high-density orchard. The height of each apple tree is approximately 8 ft, and there
are approximately 4 ft between each tree. In this orchard, images were acquired
approximately 10 ft from the tree. Figure 7.6 displays a blossoming peach tree in
a standard orchard. The height of each peach tree is approximately 15 ft, and there
is approximately 10 ft between each tree. In this orchard, images were acquired
approximately 13 ft from the tree.

7.4.1 Image Processing for Blossom Isolation

With image acquisition completed, the next step is to isolate and count the blossoms
for each apple and peach tree.
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Fig. 7.5 Sample image of a blossoming apple tree in a high-density orchard

Fig. 7.6 Sample image of a blossoming peach tree in a standard orchard

7.4.1.1 Methods of Data Transformations

Before the blossoms could be isolated, a set of sample data needed to be collected
to determine the color properties of each category in the image, so that a color filter
can be created from this data, which will isolate the blossoms. This sample data was
collected manually, where 600 different pixels for each category of the image were
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manually selected, and the RGB values of those pixels were recorded. Within the 600
pixels selected for each category, 300 pixels were selected from images taken from
the east side of the tree, and 300 pixels were selected from the images taken from
the west side of the tree. The five main categories of classification in each image for
both the apple and peach images are the sky, blossoms, leaves/grass, branches, and
dirt. A 3D scatterplot displaying the recorded RGB values for the apple images is
displayed in Fig. 7.7. As seen in Fig. 7.7, the RGB values of the sky is not included.
This is because by manually analyzing the images, it has been noticed that the sky
is a relatively large category in size and that the pixels are all connected. Because
the pixels of the sky are all connected, an area feature extraction method, which is
explained later in this section, can easily be implemented, which will remove the sky
from the image.

The goal is to isolate the red circle data points, which represent the blossom’s
RGB values, so that when analyzing the entire image, the blossoms can be isolated.
There are several image analysis functions in MATLAB that could be used to isolate
the blossoms, but because MATLAB is not an open source software, it is preferred
to use a method of isolation not using these functions.

One method of blossom isolation investigated was to apply a transformation
matrix to each sample data point, written mathematically as

Ax = b (7.1)

where b is the new value of the sample data point, A is the transformation matrix,
and x is the red, green, and blue values of the sample data point. In this form, these
matrices have the form:

Fig. 7.7 Sample RGB values of objects in the apple orchard
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A =
⎡
⎢⎣

a1,1 a1,1 a1,3
...

...
...

an,1 an,1 an,3

⎤
⎥⎦ (7..2)

x =
⎡
⎣

R

G

B

⎤
⎦ (7.3)

b =

⎡
⎢⎢⎢⎣

Ra1,1 + Ga1,2 + Ba1,3

Ra2,1 + Ga2,2 + Ba2,3
...

Ran,1 + Gan,2 + Ban,3

⎤
⎥⎥⎥⎦ (7.4)

where the element an, 3 is an element in A occupying the nth row and 3rd column.
When transformation matrix A is applied to the sample data matrix x, the image is
R
n.
An example of a transformation T : R3 → R

1 defined by T(x) = Ax would be
a summative transformation that adds the red, green, and blue values of each pixel.
The matrix A would take the form seen in Eq. (7.5).

A = [1, 1, 1] (7.5)

Applying this matrix to the scatterplot displayed in Fig. 7.7 results in the data
points being transformed to a single axis. This is difficult to display because the data
points are clustered, so the results transformation are displayed with a histogram in
Fig. 7.8.

An example of a transformation T : R3 → R
2 defined by T(x) = Ax is to rotate

the 3D scatterplot displayed in Fig. 7.7 such that only two of the axes can be seen. If
it was desired to display the red and blue axes, matrix A would take the form

A =
[

1 0 0
0 0 1

]
(7.6)

Applying this matrix to the scatterplot displayed in Fig. 7.7, the result is a 2D
scatterplot displayed in Fig. 7.9.

A transformation T : R3 → R
3 defined by T(x) = Ax is to move the data points

in the 3D scatterplot to a different location on the same 3D scatterplot. An example
of this is to take a ratio transformation, that is, to take the red, green, and blue
components of each pixel and divide it by the sum of its respective red, green, and
blue components. The matrix A would take the form
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Fig. 7.8 Histogram of the summative transformation of the sample RGB values

Fig. 7.9 Rotation transformation of the sample RGB values

A =
⎡
⎣

(R + G + B)−1 0 0
0 (R + G + B)−1 0
0 0 (R + G + B)−1

⎤
⎦ (7.7)

This transforms each sample data point onto the plane

x + y + z = 1 (7.8)
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Fig. 7.10 Ratio transformation of the sample RGB values

Applying this matrix to the scatterplot displayed in Fig. 7.7, the result is the 3D
scatterplot displayed in Fig. 7.10.

There are infinitely many transformations that can be applied to the set of sample
data, such as transformation matrix A yielding a new data point b

A =
⎡
⎣

2 3 7
5 8 1
4 6 9

⎤
⎦ (7.9)

b =
⎡
⎣

2R + 3G + 7B

5R + 8G + 1B

4R + 6G + 9B

⎤
⎦ (7.10)

As mentioned previously, the dimension of b can extend past three. If A is a 4 × 3
matrix, then b is in R

4. Though these can often be difficult to describe graphically,
so examples of this and higher dimensions of b will not be presented in this chapter.

7.4.1.2 Testing Blossom Isolation

Recall that the goal of applying a transformation matrix is to isolate the red circle
data points in the sample data. Looking back at Fig. 7.9, two lines can be drawn
which separates the blossom sample data points from the other categories, as seen
in Fig. 7.11.
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Fig. 7.11 Blossom isolation in the rotation transformation

The equation of these lines is the color filter that will be used to isolate the
blossoms from the other objects when filtering an entire image. By using the
equations, the points above or below the line can be set to zero, thus isolating a
section of the data.

For example, the equations of the lines in Fig. 7.11 are

7 × Red − 9 × Blue − 135 = 0 (7.11)

and

Blue = 155 (7.12)

Thus, the red circle data points can be isolated by applying the pseudocode:

if ((7 × Red − 9 × Blue − 135 > 0) && (Blue < 155))
{

Red = 0
Blue = 0}

Applying this code to the data set on Fig. 7.11 yields the plot displayed in Fig.
7.12.
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Fig. 7.12 Results of the blossom isolation color filter

7.4.1.3 Tree Isolation

As noticed by the sample image of the apple tree displayed in Fig. 7.5, there are three
trees present in the foreground of the image with multiple others in the background.
This is common for this style of high-density orchard as the trees are only separated
by approximately 4 ft. Because the goal is to count the blossoms on the center tree,
a method of isolating the center tree must be derived. Figure 7.8 shows a large
clustering of data in the lower region of the histogram, RGB values less than 100
after applying the summative transformation, which is classified as either branches or
dirt. This implies the branches can be used as a method of tree isolation, specifically
the trunks can be used because they are the most isolated from each other.

Using a copy of the image, a tree isolation algorithm can be created. The results
of this algorithm will be applied to the original image before the blossom isolation
algorithm is applied. Because the trunks are the means of tree isolation, the first step
of the trunk isolation algorithm is to crop out the top two thirds of the copied image.
As explained in Sect. 7.2, this first step is the preprocessing in the tree trunk image
processing algorithm. The next step of the algorithm is to isolate the trunks, which
can be done by applying the following pseudocode to each pixel of the image:

if (Red + Green + Blue < 100)
{

Red = 0
Green = 0
Blue = 0}
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This results in the image displaying the trunks of each tree, but there is some
noise, as some dirt samples remain. To remove these samples, a size filter can be
applied because the number of dirt pixels passing through the transformation filter
is much less than the number of branch pixels passing through the transformation
filter. With this process what mostly remains are the three foreground tree trunks.

The next step then is to isolate the central tree trunk. For this task, a MATLAB
data structure called “regionprops” was used. This function was used even though it
was earlier stated that the use of MATLAB specific features was undesirable. This
is because this function is also available through open source methods, such as the
OpenCV library [42] or the ImageJ package, Fiji [43].

MATLAB’s regionprops measured the properties of an image’s regions—area,
centroid, major and minor axis lengths—and then applied a bounding box to the
region. The centroid feature of regionprops can be used to determine the location
of each trunk, thereby giving the center position of each tree. Due to the nature
of high-density orchards, where the trees tend to be vertical with little overlap of
branches, the center tree can now be isolated. Using the position of the trees, the left
and right trees can be cropped out by drawing a vertical line at the midpoint of the
center tree and trees to the left and right of center.

This method works with the apple trees because they are in a high-density orchard,
but peach trees are planted farther apart. Three trunks are not always seen in each
image as previously shown in Fig. 7.6. Vertical line trunk isolation is not a viable
option as there is no “center” tree. Instead, the natural geometry of the peach tree is
used as a method of isolation.

Peach trees have four main branches that stem from the trunk, which makes a
shape similar to an upside-down pyramid in the empty space within the four main
branches. So, when an image of the tree is taken, the four main branches have a “V”
shape. Thus, the tree of interest can be isolated by drawing a line from the top corners
of the image to the bottom center, cropping out the bottom two corners. Figure 7.13
displays the result of the tree isolation algorithm applied to the original apple and
peach tree images.

Fig. 7.13 Tree isolation process results for an apple and peach trees
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7.4.1.4 Blossom Isolation and Counting for Apple Trees

Now that the center tree is isolated, the blossom filter described in Sect. 7.4.1.2 can be
applied to each pixel in the apple image. Referring to Fig. 7.11, the line that isolates
the blossoms from the other categories in the image is very close to including data
points of the other categories. Because there is no significant gap in the separation of
the blossoms and the other categories, a significant amount of noise in the resulting
image after applying the color filter can be anticipated, which is exactly what is seen
in Fig. 7.14, after the blossom isolation color filter is applied to the image.

As seen in Fig. 7.14, several of the pixels from the leaves passed through the
color filter as has the entire sky. Both issues can be resolved by applying a size
filter focusing on removing small and large groups of pixels. This size filter uses
the regionprops data structure mentioned earlier in Sect. 7.4.1.3, where if the area is
outside of the range of a specified pixel count, then the pixels are set to zero. It should
be noted that the specific range which will allow an area to pass through the size filter
varies depending on the size of the image. There are more pixels in a 12-megapixel
camera (which was used in acquiring these images) than an 8-megapixel camera, so
the allowable area of an image from a 12-megapixel camera should be higher than
the allowable area of an image from an 8-megapixel camera. Because of this, care
needs to be taken to match the filter parameters to the number of pixels in an image.
After applying the size filter, the resulting binary image is displayed in Fig. 7.15.

The remaining areas are the identified blossoms on the tree. The regionprops
data structure will now be used to label each area and to obtain a count for the total
blossoms. In addition, a bounding box around each area can be applied, and the
boxes can be overlaid over the original image to visually check the accuracy of the

Fig. 7.14 Color filter applied to an image of an apple tree
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Fig. 7.15 Size filter applied to the apple tree image

Fig. 7.16 Bounding boxes of the identified blossoms overlaid on the original image

program. This image is displayed in Fig. 7.16, where it can be seen that there are
very few false positives and false negatives in the image.
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7.4.1.5 Blossom Isolation and Counting for Peach Trees

The process for identifying the blossoms on a peach tree is virtually the same as
the process for the apple tree. The largest difference is that different transformation
matrices may be applied and there will be a different equation applied to each pixel
to apply the color filter. In the case of blossom identification, the transformation
matrix which was applied is

A =
[

1 0 0
0 1 0

]
(7.13)

which rotated the 3D scatterplot to display the red and green color values. Figure
7.17 through Fig. 7.20 displays the overall process of blossom isolation for a peach
tree. The rotation transformation of the sample RGB data and the line displaying the
color filter are displayed in Fig. 7.17, the tree isolation algorithm and the color filter
applied to the sample image seen in Fig. 7.6 are displayed in Fig. 7.18, the result of
the size filter to remove the noise is displayed in Fig. 7.19, and the bounding boxes
overlaid on the original image is displayed in Fig. 7.20.

After analyzing Fig. 7.20, there appears to be a significant number of false
negatives. This observation may lead to the conclusion that the algorithm is not
very successful in identifying peach blossoms; however, the false negatives seen
in Fig. 7.20 were intentionally produced. This particular type of peach undergoes
an intensive thinning process. Thus, to produce a better final yield estimate, fewer
regions were desired. If an orchard were to not be significantly thinned, then a
different size filter should be applied.

Fig. 7.17 Blossom isolation process for a peach tree
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Fig. 7.18 Color filter applied to the peach tree

Fig. 7.19 Size filter applied to the peach tree

7.4.2 Results of Yield Estimation

So far, an algorithm has been developed which isolates and counts the number of
blossoms on an apple and peach trees. There still remains steps to produce the final
result of fruit yield estimate.
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Fig. 7.20 Bounding boxes of the identified blossoms overlaid on the original image of the peach
tree

7.4.2.1 Transition from Blossom Count to Yield Estimation

Once the blossom isolation process for each image has been applied, a blossom count
for each side of the tree has been obtained. Recall from the beginning of Sect. 7.4, it
was explained that two images of the tree of interest were acquired, one image from
the east side and one from the west side. This is significant because the blossom
count from each side of the tree cannot simply be added together to obtain a total fruit
yield estimation, because there is a significant risk of double-counting blossoms.

Consider this question, “What if on the east side of the tree, the blossom count
is consistent between each tree, but there is a large variance in the blossom count
between each tree on the west side?” Intuition would say the blossom count from
the east side should play a larger role in the yield estimation, because of the more
consistent blossom count. Consistency in the blossom count is important because
hypothetically there should only be a small difference in the total blossom count
from tree to tree as each tree in a section of an orchard is of the same age and same
size.

This is a case where intuition is correct, because the correct method of determining
a yield from a set of two blossom counts is to calculate a weight that will be applied to
blossom counts from the east side, and a different weight from blossom counts taken
on the west side. The derivation for the two weights is described in Sect. 7.4.2.2, and
it will be seen that the two weights depend on the variances and covariances [44] of
the blossom counts from the east side, blossom count from the west side, and ground
truth number of fruits.
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7.4.2.2 Derivation of Weight Values

In the following derivation, random variables are denoted by capital letters, actual
values of those variables by lowercase letters, and vectors by boldface type. The
correlation between the blossom count from the images and the actual fruit count
was determined. There are 30 selected trees, which are numbered #1 through #30.
For tree #i, there are

XE = xE,i (7.14)

blossoms visible from the East and

XW = xW,i (7.15)

blossoms visible from the West. The eventual fruit yield of tree #i is

Y = yi. (7.16)

The data is represented by vectors in R
n

xE = (
xE,1, xE,2, . . . , xE,n

)
, (7.17)

xW = (
xW,1, xW,2, . . . , xW,n

)
, (7.18)

y = (y1, y2, . . . , yn) . (7.19)

Choose weights αE and αW, with αE, αW ≥ 0, and with αE + αW = 1. Then
construct an equation of the form

Y ′ = m (αEXE + αWXW) + c (7.20)

which will be the least-squares regression line of

X = αEXE + αWXW. (7.21)

The RMS error of Y ≈ Y′ will be

sY

√
1 − r2

x,y′ (7.22)

where rx, y is the correlation coefficient of the data x = αExE + αWxW with y.
Accordingly, the RMS error of the linear model will be minimized if αE and αW are
chosen to maximize the correlation coefficient rx, y.
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Writing

xi = αExE,i + αWxW,i , (7.23)

x = (x1, . . . , xn) , (7.24)

and

x = αExE + αWxW, (7.25)

define the means

xE =

n∑
i=1

xE,i

n
(7.26)

xW =

n∑
i=1

xW,i

n
(7.27)

x =

n∑
i=1

xi

n
(7.28)

y =

n∑
i=1

yi

n
(7.29)

the mean vectors

xE = (xE, . . . , xE) (7.30)

xW = (xW, . . . , xW) (7.31)

x = (x, . . . , x) (7.32)

y = (y, . . . , y) , (7.33)

and the deviation vectors

∼
xE = xE − xE (7.34)
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∼
xW = xW − xW (7.35)

∼
x = x − x (7.36)

∼
y = y − y (7.37)

so that

x = αExE + αWxW, (7.38)

and

∼
x = αE

∼
xE + αW

∼
xW. (7.39)

Then

rx,y =
∼
x • ∼

y√
∼
x • ∼

x •
√∼

y • ∼
y

, (7.40)

while

∼
x = αE

∼
xE + αW

∼
xW. (7.41)

The first expression is the cosine of the angle

θ∼
x,

∼
y

(7.42)

between
∼
x and

∼
y, all vectors

∼
x in the plane spanned by

∼
xE and

∼
xW need to be

maximized. To do this,
∼
y must be projected into this plane, and an orthogonal basis

for the plane is desired. Using the Gram–Schmidt Method [45] on the
∼
xE and

∼
xW an

orthogonal basis
{∼

xE,
(∼

xE • ∼
xE

) ∼
xW −

(∼
xE • ∼

xW

) ∼
xE

}
(7.43)

is obtained for

span
{
x̃E, x̃W

}
. (7.44)
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Project
∼
y onto each of these two orthogonal basis vectors, and add the projections

to obtain

∼
xE • ∼

y
∼
xE • ∼

xE

∼
xE

+
(∼

xE • ∼
xE

) (∼
xW • ∼

y
)

−
(∼

xE • ∼
xW

) (∼
xE • ∼

y
)

(∼
xE • ∼

xE

)2 (∼
xW • ∼

xW

)
− 2

(∼
xE • ∼

xE

) (∼
xE • ∼

xW

)2 +
(∼

xE • ∼
xW

)2 (∼
xE • ∼

xE

)

((∼
xE • ∼

xE

) ∼
xW −

(∼
xE • ∼

xW

) ∼
xE

)

=
∼
xE • ∼

y
∼
xE • ∼

xE

∼
xE +

(∼
xE • ∼

xE

) (∼
xW • ∼

y
)

−
(∼

xE • ∼
xW

) (∼
xE • ∼

y
)

(∼
xE • ∼

xE

)2 (∼
xW • ∼

xW

)
−

(∼
xE • ∼

xE

) (∼
xE • ∼

xW

)2

((∼
xE • ∼

xE

) ∼
xW −

(∼
xE • ∼

xW

) ∼
xE

)
.

(7.45)

Since r∼
x,

∼
y

will be unaffected by multiplying
∼
x by a scalar, multiply the last vector

by the denominator

(∼
xE • ∼

xE

)2 (∼
xW • ∼

xW

)
−

(∼
xE • ∼

xE

) (∼
xE • ∼

xW

)2
(7.46)

to simplify the expression
((∼

xE • ∼
xE

) (∼
xW • ∼

xW

) (∼
xE • ∼

y
)

−
(∼

xE • ∼
xW

)2 (∼
xE • ∼

y
)

−
(∼

xE • ∼
xW

) (∼
xE • ∼

xE

) (∼
xW • ∼

y
)

+
(∼

xE • ∼
xW

)2 (∼
xE • ∼

y
))

∼
xE

+
((∼

xE • ∼
xE

)2 (∼
xW • ∼

y
)

−
(∼

xE • ∼
xE

) (∼
xE • ∼

xW

) (∼
xE • ∼

y
))

∼
xW

(7.47)

Two terms may be canceled to obtain the following:
((∼

xE • ∼
xE

) (∼
xW • ∼

xW

) (∼
xE • ∼

y
)

−
(∼

xE • ∼
xW

) (∼
xE • ∼

xE

) (∼
xW • ∼

y
)) ∼

xE

+
((∼

xE • ∼
xE

)2 (∼
xW • ∼

y
)

−
(∼

xE • ∼
xE

) (∼
xE • ∼

xW

) (∼
xE • ∼

y
))

∼
xW

(7.48)
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Finally, divide by the scalar n2∼
xE • ∼

xE

((∼
xW • ∼

xW

n

) (∼
xE • ∼

y
n

)
−

(∼
xE • ∼

xW

n

)(∼
xW • ∼

y
n

))
∼
xE

+
((∼

xE • ∼
xE

n

) (∼
xW • ∼

y
n

)
−

(∼
xE • ∼

xW

n

) (∼
xE • ∼

y
n

))
∼
xW

(7.49)

Then let

βE =
(∼

xW • ∼
xW

n

) (∼
xE • ∼

y
n

)
−

(∼
xE • ∼

xW

n

)(∼
xW • ∼

y
n

)

= var [xW] cov [xE, y] − cov [xE, xW] cov [xW, y] (7.50)

and

βW =
(∼

xE • ∼
xE

n

) (∼
xW • ∼

y
n

)
−

(∼
xE • ∼

xW

n

)(∼
xE • ∼

y
n

)

= var [xE] cov [xW, y] − cov [xE, xW] cov [xE, y] (7.51)

Setting

αE = βE

βE + βW
(7.52)

and

αW = βW

βE + βW
(7.53)

yields the desired vector

x = αExE + αWxW, (7.54)

and of course

x = αExE + αWxW, (7.55)

with αE + αW = 1. To finish, take the least-squares regression line of y on x. Writing

m = cov [x, y]

var [x]
(7.56)
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for its slope, the line is

y′ = m (x − x) + y. (7.57)

Given the counts XE from the East and XW from the West, the prediction for the
fruit yield Y is

Y ′ = m (αEXE + αWXW − x) + y. (7.58)

7.4.2.3 Statistical and Probabilistic Results

The values of the weights (αE and αW) for the apple and peach orchard are displayed
in Table 7.1. As seen from this table, the weights applied to the peach blossom count
are very similar, where the weights applied to the apple blossom count have a large
difference. This is because the images were acquired at 9 a.m., and there was slight
overcast when acquiring the peach orchard images, where there were clear skies when
acquiring the apple orchard images. So for the apple orchard, images from the west
side were looking into the sun, thus increasing the blossom count variance between
each tree, and lowering the weight. For the peach orchard, there was overcast, so
the images from the east and west sides were consistent, thus resulting in consistent
weights.

Table 7.2 elaborates on the results for the apple and peach orchards. In this
table, the probability of underestimation is the confidence which the program will
not overestimate the number of fruit. This number was calculated by performing a
right-tailed binary hypothesis test, by using the two averages of each orchard along
with the sample standard deviation to determine a Z-score, which then can be used
to determine a significance level [44]. It is important to have a high probability
of underestimation, so the farmer is not misled in the number of fruit he/she has,
while maintaining a low percent error, so the farmer can have an accurate revenue
estimation and be accurate in resource allocation.

Table 7.1 Value of weight
applied to the blossom counts

Apple orchard Peach orchard
East side 0.639 0.475
West side 0.361 0.525

Table 7.2 Additional results of the early yield estimation program

Apple orchard Peach orchard
Coefficient of correlation between ground truth yield and
predicted yield

0.699 0.606

Ground truth average fruit per tree 114.17 66.733
Estimated average fruit per tree 103.47 61.440
Percent error −9.37% −7.93%
Probability of underestimation 97.19% 95.25%
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7.4.3 General Image Processing Techniques for Other Projects

What are the main points which can be taken away from the process which was
described in the previous sections? If the images which are being processed have the
same set of objects, the RBG data can be used to isolate the objects in the image. By
manually collecting a set of sample data and applying different transformations to
them, the transformation which best isolates the object of interest can be determined.
Then after applying an n-dimensional transformation matrix to the sample data, an
equation with n independent variables can be determined that filters out the other
objects in the image.

In the example of isolating the blossoms in apple and peach trees, which was
presented in Sect. 7.4.1, a transformation T : R3 → R

2 was applied to the data set.
This transformation greatly depends on the scene constraints and the application
of the system. Zhang et al. [46] used a transformation T : R3 → R

1, where they
monitored tea leaves to determine the optimal time for harvesting. In this study, the
blue plane was subtracted from the green plane. The primary reason why theR3 →R

1

transformation worked better than the R3 → R
2 or a R3 → R

3 transformation is the
scene constraints. So when applying machine vision to a system, the scene constraints
should have a large influence on which types of transformation is applied.

7.4.3.1 Potential Problems with Over-Constraining the Sample Data

Elaborating more on the equation with n independent variables to isolate the object
of interest, this equation can be very involved, but it is often better to use a simple,
linear equation. As with the example that isolates blossoms, a linear equation was
used because if a parabolic equation with a high degree is used, there is a chance
of over constraining the sample data, which may not be useful when applied to the
entire image.

Suppose there is a set of images with two objects. A set of RGB sample data is
taken, and a rotation transformation to display the red and green values is applied. In
this hypothetical situation, this 2D scatterplot may look like the scatterplot displayed
in Fig. 7.21. At this point, a line separating the two objects would be drawn, and the
equation of this line is the color filter which would be applied to the entire image.

If a straight line is drawn in the sample data set in Fig. 7.21, there is some error,
which can be seen in Fig. 7.22. So it would be very tempting to draw a high-degree
parabolic function, to get complete separation between the two objects. This high
degree polynomial line, which also can also be seen in Fig. 7.22, is an example of
over constraining the sample data, and it may have less success when applied to the
image because of its complexity.

Suppose the RGB values of each pixel of both objects were known. Of course, this
is an impossible task because each individual pixel would have to be analyzed for
each image in the set, determining which category the pixel belonged to, and this is
potentially millions of pixels. Regardless, suppose these data set exists. If the linear
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Fig. 7.21 Sample data set of a hypothetical situation

Fig. 7.22 Over constrained and linear equations applied to the sample data set

and parabolic function was applied to this complete data set, seen in Fig. 7.23, it is
seen why it is better to use the linear equation compared to the parabolic equation.

But this is just a hypothetical situation used to prove the point of how linear
equations are sometimes better than a parabolic equation. How is this proved?
Looking back at Fig. 7.21, there are not a lot of sample data points, compared to the
complete data set seen in Fig. 7.23. The small sample data size is the reason for the
error when applied to the complete data set. The more sample data points which are
collected, the higher the confidence which can be had in a complex, nonlinear filter.
Going back to the apple and peach trees, there are 12 million pixels in the image and
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Fig. 7.23 Over-constrained and linear equations applied to the “complete” dataset

60 pictures for each orchard. From this, it is very easy to see it would be extremely
time intensive to gather enough pixels to have enough confidence to use an advanced
function, which is why it is better to use a simple, linear function.

7.5 An Alternate Method of Object Isolation

7.5.1 Introduction

One of the biggest challenges in using machine vision for agriculture is object
isolation. The background for an image or video captured outdoors is seldom uniform.
There are always objects and features surrounding the object of interest. For example,
when capturing an image of an orchard tree, adjacent trees or trees from different
rows will appear in the background. If one was taking a picture of a corn field,
adjacent fields with different crops could appear in the background. In any case most
of the images will have the sky or the ground in them, and these unwanted elements
present unique challenges to image processing.

Humans are easily able to identify and isolate objects in an image; however,
machines must be given a little more guidance. For instance, consider the car in Fig.
7.24. A simple method of isolating the car from the building in the background is
to apply a color threshold filter. However, this method requires fixed RGB threshold
values, and depending on the lighting (or the color of the car and building), the
thresholds might need to be adjusted for each image to effectively isolate the object.
Furthermore, if the car and the background are similar colors, it is even harder to
distinguish the two. Notice that in the top right corner of the image there is a portion
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Fig. 7.24 Car in front of a building

of gray sky. The sky color closely matches that of the car, and a simple color filter
likely would not differentiate the two. For the car in Fig. 7.24, isolation would be
possible by using an area or size filter of some kind. However, if the sky and car
had similar pixel areas, image processing might classify the sky as a silver car. Of
course, in agriculture, a corn stalk or orchard tree might be pictured instead of a car,
but the concepts are the same.

7.5.2 Spatial Mapping

A more effective way to isolate an object from its background than using a color
filter is by using spatial mapping. Spatial mapping is the process of creating a three-
dimensional map of a given environment from sensor data. This sensor data most
often come in the form of an image or an array of distance measurements from some
arbitrary point to different points in the environment. For example, a stereo camera
would produce sensor data in the form of two images and a light detection and
ranging device (LIDAR) would produce an array of distance measurements [47].

Spatial mapping can be used to isolate an object from its background by using
the physical geometry of the object. For instance, the car in the image is closer to
the camera than the building in the background, thus if a 3D map of the image
was available, a distance filter could be applied, and the car could be isolated.
Furthermore, the dimensions of the car such as length, width, and height could be
used to further isolate or to classify the car.

In order to use spatial mapping, a 3D map of the image must be acquired. As
previously mentioned, a 3D map can be obtained from a stereo camera or by using
LIDAR technology. Both technologies are useful, depending on the application.
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Fig. 7.25 ZED stereo camera

However, for this section, the focus will be on the stereo camera. Figure 7.25 shows
an example of a stereo camera. The camera pictured is the ZED camera designed by
Stereolabs.

7.5.3 Stereo Camera Operation

Stereo cameras are devices that use two fixed RGB cameras to generate a 3D map of
an image. The general concept behind stereo cameras is that objects that are close
will have a large pixel shift between the two cameras, and objects that are far away
will have very little pixel shift between the two cameras. In addition to the 3D map,
an RGB image is obtained from a stereo camera. Normally each pixel in the RGB
image will be assigned an X-Y-Z Cartesian values, and from those values, a 3D
map in the form of a point cloud can be generated. Stereo cameras can perform 3D
rendering very quickly, and so they are favorable in real-time applications such as
robotics and machine vision [48, 49].

Stereo cameras are particularly effective at isolating trees in a fruit orchard. When
photographing a tree in an orchard, the center tree (the tree of interest), as well as the
tree to the left and to the right, and parts of trees in one row down are unintentionally
included in the image as seen in Fig. 7.26, which shows an unfiltered picture of an
apple orchard. By applying a simple distance filter, the sky and background trees can
be removed from the image without any manual selecting. The filtered image can
then be processed without encountering any negative effects from the background.
Stereo cameras are advantageous because they do not rely on pixel color values
for their object isolation. If image processing was being used to isolate the trees
in Fig. 7.26, then the color thresholds might have to be adjusted to account for the
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Fig. 7.26 (a) Unfiltered orchard photo. (b) Background filtered orchard photo

overcast sky or for the way the sun reflects off the leaves at different times during
the day. Using a distance filter with a stereo camera, however, depends solely on
the distance from the camera to the tree and operates independently of the changing
light conditions.

Notice in Fig. 7.26b how the trees in the background have been filtered out leaving
just the trees in the row of interest. It would have been difficult to isolate the two
rows using color and area filters. This is because the two rows are the same color and
the trees in the two rows blend together, making it very hard to differentiate them.
However, the stereo camera provides spatial information on the location of the trees
and makes differentiating between the two rows a relatively simple task.

A further advantage of the stereo camera is that it can obtain basic dimensions
of the trees such as height and width. This information can be used to determine the
health and canopy volume of a given tree [50]. Tree geometry is also useful when
calculating a fruit yield estimate.

7.5.4 Difficulties of Using Spatial Mapping to Isolate Objects

Using stereo cameras for special mapping and object isolation presents a few unique
challenges. For instance, there are intrinsic errors associated with using stereo
cameras, and one should always check the device specifications and preform some
basic tests to verify that the camera meets the design criteria. Mapping objects that
are far away will introduce larger error than objects that are close.

In addition, stereo cameras will occasionally measure a few points that have a
dramatically large error. This will create data spikes in the 3D array and if not
accounted for can have a huge detrimental effect. To reduce the effect of these data
spikes, it is recommended to take many snapshots or even a video of the environment
and average together the data that is collected. Some stereo cameras are even able to
track the location of the camera with respect to the environment. If that capability is
available, it is helpful to move the camera and take measurements at different angles.

Furthermore, stereo cameras work best when imaging objects that have a lot
of complexity. Complexity helps the stereo camera determine how much an object
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shifts between its two RGB cameras. For example, consider using a stereo camera
to measure the distance to a blank white wall. If the two RGB cameras on the stereo
imager collect identical images, then the camera will determine that the wall is far
away since it was not able to detect any shift between the two RGB cameras. This is
a completely unreliable measurement because camera could be an inch away from
the wall, and the camera would still determine that the wall is far away. Complexity
is important; however, it does not have to come in the form of geometric or texture
complexity. Simple color complexity will enable a stereo camera to work properly.
For instance, if there were green stripes painted on the white wall, the camera would
be able to detect how the stripes shifted between the two RGB cameras and an
accurate 3D map of the wall could be made.

7.5.5 Object Isolation Conclusion

In this section, a novel method of object isolation was introduced. Traditional
methods of object isolation use color and area filters to uncover objects of interest.
The method proposed in this section uses the spatial information of an environment
to differentiate between objects. This method isolates objects without relying on the
color of the object. It is especially advantageous when the object of interest is a
similar color to its background as occurs often in agriculture applications.

7.6 A Machine Vision for Peach Orchard Navigation

7.6.1 Introduction

The process of automating an agricultural operation such as pruning or harvesting
in fruit orchards requires a platform that is able to autonomously navigate the
orchard. Research on autonomous navigation for an agricultural application was
started by using guides that are embedded on the ground [51, 52]. With the
development of computer and sensor technologies, autonomous navigation utilized
sensors such as limit switches, ultrasonic sensor, lidar, machine vision, and Global
Positioning System [53]. In this section, the development of a machine vision system
for autonomously navigating a peach orchard is presented. Previous research on
navigation using machine vision relied on ground features to use as navigation
guides. In this study, a unique approach of an upward looking camera was used
to take advantage of the sky features to use as directrix for the unmanned ground
vehicle.
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7.6.2 Visual Feedback System for Navigation

The block diagram of the visual feedback system of the unmanned ground vehicle
(UGV) seen in Fig. 7.27 has three main components: the unmanned ground vehicle
platform, the vision sensor, and the controller. The input for navigation is the desired
vehicle position, and the visual feedback system is used to correct the position of the
vehicle. The error between the desired position and the current position is used by
the controller to calculate the position of the vehicle as it moves in between the tree
rows.

The visual feedback control system was an image-based position servoing system
[12], where features of the image were used as control variables to estimate the
vehicle’s heading. The image processing of this visual feedback system did not rely
on ground features but on sky features. This method is a sky-based approach [54], and
the image processing is shown in Fig. 7.28. After acquiring an image, the image was
cropped to remove the portion of the sky in the field of view that was closest to the
camera. This was done to improve the sensitivity of the control system. It was found
that slight changes in the direction of the vehicle were magnified when using the
centroid of a point that was further away from the camera. Furthermore, cropping the
image reduced the data needing to be processed, resulting in faster processing time
and more rapid response of the ground vehicle platform. Since the green color plane
provided the higher contrast between the sky and the tree canopy, the green plane was
extracted to use for segmentation. A simple thresholding approach was employed to
extract the path plane of the vehicle because of the high contrast between the canopy
and the sky. The “salt-and-pepper” noise was removed by filtering the thresholded
image. Finally, the vehicle’s heading was calculated by finding the centroid of the
path plane.

After the path plane was extracted, the path plane was inverted and used the
position of the difference between the centroid and the set point to find the vehicle’s
heading and used it to drive the motor actuators, seen in Fig. 7.29. The Proportional-
plus-Integral (PI) controller was used to handle the position error and used it to
differentially steer the vehicle. The proportional and integral constants, KP and KI,
of the PI controller were determined by first setting the integral gain to zero and
adjusting the proportional gain until the system’s response was slightly overdamped

Controller Unmanned Ground
Vehicle

Machine Vision

Desired Vehicle Path

Current Vehicle Path

Error

Fig. 7.27 Visual feedback system for unmanned ground vehicle navigation
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Raw Image

Crop Image

Green Plane
Extraction

Thresholding

Filtering &
Finding Centroid

Fig. 7.28 Image processing for finding the centroid of path plane

Fig. 7.29 Path plane manipulation and the PI controller for navigation

[55]. The integral gain was adjusted to remove the steady-state error. Once the PI
controller had been tuned, a forward speed adjusted to 30% of the maximum value
was used as the forward control signal.
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7.6.3 Experimental Ground Vehicle Platform

The navigation control system was evaluated in a commercial peach orchard located
in Caldwell, Idaho, USA. The orchard is well maintained, and one of the rows was
randomly selected as a test row. To evaluate the performance of the visual feedback
system, the distance from the vehicle to one of the tree rows was measured using an
ultrasonic sensor, and cardboard boxes were positioned at a fixed distance from one
row of trees. As the vehicle traveled down the row, the distance from the cardboard
box was measured via the ultrasonic sensor. Ultrasonic measurements were taken
over the first 27 m of travel, and visual observation of the vehicle was done as it
finished the whole length of the row.

Figure 7.30 shows that the UGV deviated a maximum of 3.5 cm from its starting
point over the 27 m traveled. Based on the test results, it was determined that the
image processing algorithm for the vehicle guidance system was sufficient for guiding
the vehicle down the orchard row.

The challenges in developing a machine vision system for outdoor application
include inconsistent lighting, shadows, and color similarities in features. These
difficulties were eliminated by using the sky-based approach where the image
contained only the canopy and the sky, thus simplifying the segmentation process.
This is a very good example of simplifying the scene constraint, the first component
of the machine vision model, to aid segmentation. A simple and effective image
segmentation facilitates feature detection. In addition to the test in which ultrasonic
data was taken over a set distance, the vehicle was allowed to run the entire length
of the row. The vehicle completed the entire row with very little error; however, it
was observed that there were larger deviations from the center of the row when the
vehicle approached sections where there was a break in the canopy either due to a
missing tree or a tree with limited leaf growth. These breaks in the canopy caused the
UGV to move away from the center of the row, but when the vehicle would move past
that section, it would correct itself and return to the center. The result of a missing
tree affected the shape of the path plane. This means that the shape of the path plane

Fig. 7.30 Deviation from starting point for the peach orchard evaluation
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could be used to determine a missing tree or end of the row conditions. The result
of the test run in the field showed that the sky-based approach in combination with
the PI controller was effective in guiding the vehicle down the row.

The sky-based approach machine vision for orchard navigation demonstrated the
potential of guiding a ground vehicle in a straightline motion. However, there are
some drawbacks to the sky-based approach. It is only effective when the trees have
fully developed canopies. Fruit trees that have canopies year-round such as citrus will
greatly benefit from this system. On the other hand, fruit trees that lose their leaves
in the winter and remain dormant until the spring season will have no canopy during
this season. Pruning and other orchard operations are conducted during the dormant
period of the trees. To help automate these operations, the ground vehicle should
rely on ground features. In this case, a ground-based image processing would be
effective. Furthermore, the problems with shadows when the canopy is present can
be disregarded. Therefore, for orchards that have deciduous trees, an adaptive image
processing approach could be developed to deal with the changing environmental
condition. For example, a sky-based image processing will be used when canopies
are present, and a ground-based approach will be employed when there are no leaves.
The other drawback of the proposed approach is that it only tackles the straightline
motion down the row but not the end-of-the-row condition. The end-of-the-row
condition could be handled in several ways. An ultrasonic sensor could be used to
detect the absence of a series of trees. Another approach would be to observe the
path plane of the sky-based approach. The shape of the path plane will be different
at the end of the row, and this can be used to trigger the vehicle that it is at the end of
the row. Future research would include dealing with a changing environment such
as with canopy and without canopy conditions, detecting end-of-the-row conditions,
and translating to the next row.

7.7 Conclusion

In this chapter, the different applications of machine vision in agriculture were
presented. The vision applications are classified into the following groups: plant
identification, process control, and machine control. Concerning plant identification,
a machine vision system developed to estimate fruit yield early in the season was
discussed. The developed fruit yield estimator identified and counted blossoms and
correlated it with the total number of fruits on the tree. A coefficient of correlation of
approximately 0.70 was obtained for both apple and peach orchards. An individual
tree recognition algorithm combined with stereo-imaging was also discussed. This
algorithm removed trees in the background, which could provide false positives of
the blossom count. Concerning machine control, a machine vision system to navigate
an unmanned ground vehicle prototype was described. The ground vehicle was able
to successfully navigate an entire row of commercial peach trees autonomously.
These application examples display the potential of machine vision in the field of
orchard production. The future of the automation of production agriculture is very
bright with machine vision as one of its tools.
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