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Abbreviations

3D Three dimension
AMCW Amplitude-modulated continuous wave
APD Avalanche photodiode
CAS Computer-assisted surgery
CCD Charge-coupled device
CMOS Complementary metal oxide semiconductor
CNN Convolutional neural network
CNN-CRF Convolutional neural network-conditional random field
DoG Difference of gradient
DSSC Dye-sensitized solar cells
FIP Focus-induced photoluminescence
FMCW Frequency-modulated continuous wave
FOV Field of view
FW Fixed window
LiDAR Light detection and ranging
MIS Minimally invasive surgery
RANSAC Random sample consensus
RGB Red green blue
RGB-D Red green blue depth
SAD Sum of absolute differences
SfM Structure from motion
SIFT Scale-invariant feature transformation
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SLAM Simultaneous localization and mapping
SPAD Single-photon avalanche diodes
SURF Speeded-up robust feature
ToF Time of flight

3.1 Introduction

Conventional vision technology projects 3D world information into 2D plane with
information lacking in Z-axis, that is, the depth information of a scene. Access
to depth information is paramount in capturing the real-world space; therefore,
3D vision systems form important research topic for robotic and autonomous
systems. For instance, path planning and obstacle avoidance form the key aspects of
autonomous vehicles and heavily rely on sensors providing situational awareness for
system accuracy. A large body of research is being conducted on safety and obstacle
avoidance, and 3D vision technologies remain an integral part of robotic systems [1–
3]. It is not surprising that in addition to the usual red, green, and blue (RGB) color
vision, most of the advanced robotic vision systems already deploy a form of active
or passive depth information using the so-called RGB-D vision technology, where D
stands for depth. In robotics, time-of-flight (ToF)-based sensors together with stereo
vision systems are widely used to extract the depth information. ToF sensors are
particularly suited to self-driving cars and autonomous aerial systems or drones. ToF-
based depth sensor is the most promising form of long-range active depth sensing,
and tech giants such as Texas Instruments, Sony, Panasonic, STMicroelectronics,
AMS, etc. are currently developing micro-depth sensor for range imaging in a form
that is compatible with portable device such as smartphones.

Object recognition in real time is yet another active research area in robotic vision,
and use of RGB-D sensors for 3D object reconstruction is common. Information
contained in voxels is used to compare and identify different objects and features
contained within them [4–7]. The advantage of this approach benefits from the fact
that a lot of salient features can be extracted from the 3D space to improve object
recognition performance [4–7]. No wonder the demand for novel and high-resolution
cameras that can provide depth is on the rise. Currently, many commercial 3D image
sensors exist in the market, and imaging system providers are developing a new
generation of 3D image sensors [8–10]. Surveillance system, vehicle identification,
traffic control system, people counting system, activity and gesture identification
etc. are the subdomains of this category where 3D information offers improved
system efficiency [1, 2, 4, 12, 109]. Access to depth information has a big impact on
computer graphics especially in games and in content and image retrieval as well as
in archeology [13–15].

In medical robotics, depth information has a great influence on assigning
perception. In computer-assisted surgery (CAS) or in robotic-assisted minimally
invasive surgery (MIS), depth has an important role. In conventional MIS procedures,
3D surgical world is projected to 2D screen; hence, surgeons performing MIS face
more challenges than open surgery. Surgeon has to operate 3D world in a 2D space
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without haptic sense that makes MIS system more complicated. Unintentional tissue
damage is often reported that may later cause other difficulties such as arthritis or
osteoarthritis. In MIS context, vision is the most crucial factor that improves surgical
outcomes with respect to safety and unintentional injury [11]. Without the depth
information, MIS faces difficulties to track surgical tools within the surgical space.
Promising improvement has been reported when 3D vision is incorporated into the
tracking system [16]. Recent studies show a significant amount of improvement in
MIS procedure by presenting a comprehensive result of 3D MIS versus 2D MIS.
According to their records, median error of MIS in 3D surgery versus 2D is 27 and
105, respectively, that reports 25.72% less median error [17]. Another study shows
that 3D MIS reduces 71% performance time as well as 63% error rate [18, 19].
Therefore, 3D vision systems offer great advantage in countries where the number
of skilled surgeons is limited.

In this chapter, we describe a diverse range of vision technology by reviewing the
current scanning technologies specific to application areas of robotic and machine
vision. We also aim to extend this discussion to capture the advantages and limitations
of active and passive depth sensing technologies using in stereo vision, time of flight,
and structured light with a particular focus on how to deal with constrained (indoor)
or unconstrained (outdoor) environments.

3.2 3D Image Construction

Depth estimation technique mainly faces two big challenges: (1) depth accuracy and
(2) computational cost in terms of time [20–23, 106, 107]. Two different branches,
sensor technology and computer vision, actively involved in research to meet these
constraints. Based on the imaging technology, current depth estimation technologies
can be classified into two main categories, active or passive, as illustrated in
Fig. 3.1. Passive estimation technology relies on machine learning algorithms and

Fig. 3.1 Classification of depth measurement technology
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mathematical approaches to extrapolate depth information from 2D image or images.
Whereas, the other class is referred to as active depth sensing technology which
relies on active controlled signal sources and sensor technology to estimate distance.
The aim of this chapter is to provide a comprehensive review of the various depth
estimation approaches along with their merits and demerits.

3.2.1 Image Sensor

Imaging technology uses natural or ambient illumination to capture the scene. Most
of the image sensors are based on charge-coupled device (CCD) or complementary
metal oxide semiconductor (CMOS). On the other hand, optical scanning sensors are
used to estimate depth [24]. Wendy Flores-Fuentes et al. proposed a novel electronic
sensor that consists of an electronic processing unit along with photodiode. To
measure the distance, their proposed work infers the energy centre of an optical
received signal. In the next section, we are going to introduce the most promising
passive stereo technique to infer 3D structure.

3.2.2 Stereo Vision

Stereo vision is the most common approach to infer depth from a set of images.
Computer vision algorithms are used to reconstruct depth from single or multiple
images. Single-view 3D reconstruction methodology uses only one image. On the
other hand, multi-view 3D construction considers two or more images to reconstruct
depth information. It is also known as stereoscopic vision. When two images are
used, the system is known as a binocular stereo vision system, and probably it is the
most widely focused research area of computer vision.

Binocular stereo vision originally mimics the human vision system. In a binocular
stereo vision, two images are taken from two different cameras at the same time [25].
The basic requirement is that two cameras are placed at a known distance. In this
arrangement, the left camera is denoted as a reference camera where the right camera
is called target camera. The distance between the optical center of these two cameras
is referred as a baseline. Stereo vision system uses the concept of parallax and uses
disparity as a vision cue. Figure 3.2 provides an overview of binocular stereo vision
and how it is used to calculate depth.

As highlighted in Fig. 3.2, stereo matching is the core technique of the stereo
vision. Stereo matching is the process that matches each pixel from the reference
image to the target image to perceive the depth of each pixel [26]. The resulting
output image is often referred as a depth map. An intensive comparison takes place
to find the corresponding pixel in the target image. Offline camera calibration and
pre-processing always take place before the actual stereo matching process [27–29].
Ideally, the reference and the target cameras capture the same scene point at the same
time with a slightly different viewpoint, and this serves the basis for stereo vision
algorithms [28]. Therefore, the term synchronization is always used to convey the
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Fig. 3.2 Overview of binocular stereo vision system. Left and right cameras take the same
scene image, then stereo matching is performed to find the corresponding points. The resulting
corresponding points provide disparity information with respect to the left image. Finally, depth
map is calculated from disparity

sense that the image acquisition system captures the same scene point at the same
time with no time lag [30, 31]. When the object is in motion, this precondition plays
a pivotal role to reduce reconstruction noises, and camera calibration process is used
to eliminate image acquisition distortions [27, 32]. Basically, stereo rectification is
a transformation process that aligns two images into the same plane, so that same
horizontal line becomes parallel to both camera centers [33, 34].

Depth is calculated by finding disparity in a pair of images. Disparity refers the
distance between two corresponding points in the left and right images of a stereo
pair. It is inversely proportional to the depth and vice versa. In a stereo vision system,
the relationship between depth and disparity can be expressed as follows [35–37]:

d = bf

Z
(3.1)

Here b is the baseline and f is the focal length. Z stands for depth, and disparity
is expressed by the letter d. When the stereo matching process is completed, the
difference of the pixel position in the right image with respect to the left image is
referred to disparity of that pixel. The basic idea of the disparity calculation is to
match each pixel from the left image to the right image. In some circumstances, parts
of a scene may not be visible to one or both cameras. This part of a scene is known as
a missing part. In other words, stereo matching process fails to find the best match.
These outcomes are often reported as holes [38]. Hence, after calculating depth map,
post processing algorithm are used to refine noises [35]. Depth is estimated from
disparity by using the geometric principle of triangulation, and some of the common
approaches are summarized in Fig. 3.3.

Generally, stereo matching algorithms are classified into two groups. Pixel-
wise matching algorithm is categorized as a correlation-based approach. It is
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Fig. 3.3 Classification of stereo matching algorithm

further grouped into two main groups: (1) local matching and (2) global matching.
Between the local matching and the global matching, semi-global matching resides
that combines the upsides of both the algorithms. Stereo matching becomes
highly ambiguous especially when a single pixel is considered. To alleviate this
characteristic, often fixed or variable length of window is considered. Example of
the local matching algorithm is the sum of absolute differences (SAD), fixed window
(FW), etc. [39, 40].

Local methods can estimate disparity at high speed, but it compromises estimation
accuracy to computational cost. The downside of local matching algorithms is
that the disparity map often contains ambiguity. Though window-based approaches
improve the overall accuracy, defining universal window size to balance both speed
and accuracy is a challenging task. Probably, one of the major limitations of local
matching algorithm is that it is incapable to handle occlusion due to lack of global
information. Moreover, this group of algorithms is often limited to low texture images
because, often, the local windows fail to capture smoothly varying texture features
[13, 21] at low frequency. The rudimentary hypothesis of this group of the algorithm
is that the corresponding pixel exists on the same horizontal scan line. For this
reason, rectification is a crucial step to increase the accuracy of disparity estimation.
However, accurate image rectification in practice is a hard task. Some algorithms
also consider an additional path to estimate disparity [41]. But this additional path
aggregation function again increases the disparity computational cost.

On the other hand, global matching algorithms provide improved and highly
accurate depth map [102]. Instead of the local neighbor pixel, the global method
takes into account all image pixels. Smoothness function is the most pivotal step of
global method. The aim of this step is to minimizes the energy cost of the overall depth
map. The objective is to reconstruct depth map with the lowest energy. Unlike local
stereo matching algorithm, this set of algorithms requires very high computational
cost. Generally, the energy minimization function is defined as [1, 42]:

E(d) = ED(d) + Es(d) (3.2)

Here, Es(d) is known as a smoothing function.
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Local methods are not robust to noise, and accuracy gets compromised with
respect to speed. On the other hand, global methods consume high computation
cost, are robust to noises, and provide highly accurate results. Adaption of a
global method in a real-time system is a challenging task. The semi-global method
originally proposed by Hirschmuller [41] balances these two approaches. According
to this method, the matching process is performed with a set of pixels that is
basically a window-based approach. So, initially, the stereo matching approach
starts with local stereo matching process. Census transformation and sum of absolute
differences (SAD) are probably the most used algorithms to perform this task. Census
transformation is more robust than SAD [43]. Here, window size or census kernel
size plays an important role in identifying textureless or low texture properties. The
drawback of larger window size is that it increases computational cost. In order
to estimate the matching cost, generally hamming distances are used. The lowest
hamming distance is preferred for each pixel over the total disparity level. This initial
matching cost encounters the same problems of the local matching algorithm. Thus,
it contains wrong correspondences due to limited or low textures. To alleviate these
problems to some extent, the semi-global method introduces further cost aggregation
function which is known as a path cost aggregation. Path cost is calculated from
several directions, and in practice, 8–16 directions are used. Although the semi-
global method improves local method matching accuracy, this method still falls
short in fully overcoming the above-described limitations. Path cost aggregation of
the semi-global method can be described as follows:

E(D)=
∑

p

(
C (p, Dp) +

∑

q∈Np

P1T
[|Dp−Dq | =1

] +
∑

q∈Np

P2T
[|Dp−Dq | > 1

]

(3.3)

Passive stereo matching technology encounters a set of challenges. Image may
be contaminated by noises. Missing point due to occlusions or self-occlusion, the
absence of texture, and the perfection of same horizontal scan line alignment are the
rudimentary problems to reconstruct 3D structure using stereo images. Principally
three pivotal metrics are used to describe a stereo matching algorithm as a whole.
These are (1) robustness, (2) accuracy, and (3) computational cost. Feature matching-
based algorithms are also widely used to estimate passive depth from images. In this
approach, features are calculated to construct feature vectors. This process can be
referred to as a feature descriptor process where features are extracted from the
images. Then feature matching algorithms are used to find the correspondence
feature, and disparity is calculated based on the matching outcomes. The most
common image features are edges and corners. But these features are usually
susceptible to noise but have less computational cost. Other widely used image
features are scale-invariant feature transformation (SIFT), difference of gradient
(DoG), and speeded-up robust feature (SURF) [42, 44–47]. Feature selection is a
crucial process. Robust features are always preferable, but it increases computational
cost. By definition, features are the most interesting points of an image that carries
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important image information. Therefore, feature-based methods create a sparse
matrix. Only partially reconstructed depth can be achieved from feature-based stereo
matching algorithm compared to dense depth map construction.

3.2.3 Shape from Shading

Binocular stereo is based on finding the corresponding problem. However, images
also contain many visual cues such as shading, texture, etc. In computer vision,
these visual cues are used to construct the shape of an object. These are classical
approaches used in monocular stereo system. Among them, shape from shading and
photometric stereo are the most prominent fields which are still viable and probably
the most widely used research approaches to reconstruct 3D structure from a single
image. This approach has many applications. Considering the growing interest of
this approach, we focused on shape from shading and photometric stereo in more
detail.

Originally, shape from shading approach was proposed by Horn [48] and later by
his Ph.D. student Woodham. In his Ph.D. thesis, Woodham proposed a photometric
approach which is the extension of shape from shading [49]. Though it seems a very
old approach, it is still an active research area in computer vision to infer depth from
monocular or single view.

Shading pattern of an object conveys information and visual cues of its surface.
Under controlled lighting source, the reflected light intensity of an object surface
has a sharp relation to its surface shape. It creates a bridge between the shading to
surface slope. However, shape from shading is often marked as an ill-posed problem
that refers to the same numerical solution representing two distinct surfaces, one
is inversion of the other one. Photometric stereo, which is one step further from
the approach of shape from shading, solved this problem using more light sources
[112]. As shown in Fig. 3.4, the idea behind photometric stereo is to estimate surface
reflectance coefficient, albedo, and surface normal. When these are estimated, depth
of a surface is calculated by integrating surface normals or by solving nonlinear
partial derivative equation. One important definition in this context is the surface
albedo. It is the reflectance coefficient that tells the amount of light a surface can
reflect. The value of albedo is between 1 and 0, and it is denoted by ρ. Limitations
of the shape from shading is that this approach is based on some assumptions such
as Lambertian surface, surface smoothness, and discontinuity. On the other hand,
photometric stereo is often limited to complex lighting environment and specular
nature of a surface. Using knowledge of radiometry, numerical solutions, and proper
construction of the system especially known lighting source, photometric stereo is
able to capture depth from textured, untextured, or textureless images.

Surface intensity or surface irradiance can be expressed as

I (x, y) = R (p, q) (3.4)



3 Color and Depth Sensing Sensor Technologies for Robotics and Machine Vision 67

Fig. 3.4 Photometric stereo
system. The figure is taken
from S. Ali et al. [50]. Four
images are taken from four
different lighting sources at
different angles. z is the depth
of the point

From the radiometry and back to the literature, Horn used this relation to
model shape from shading. Equation (3.4) tells that the image intensity is directly
proportional to its reflectance (R) map which is also known as irradiance map.
Reflectance map is a relational map which relates scene radiance, surface reflectance
property, surface orientation, and observed brightness [51]. If surface reflectance
property is estimated properly, then surface radiance depends on the surface shape.
Horn approach p and q in Eq. (3.4) represent the surface gradient points and can be
expressed as

p = dz

dx
(3.5)

q = dz

dy
(3.6)

Extension of this shape from shading is photometric stereo. The basic idea is
to infer depth of a scene illuminated at different angle. In photometric stereo, a
camera is placed in a fixed position. Usually, three or more lighting sources are used
to construct photometric stereo. Images are captured one after another by changing
lighting direction from one to another. The idea is to capture surface orientation from
different illumination direction. Collected images are then processed to construct
depth map.

One reflectance map corresponds to one light source. So, l number of light sources
produce l number of reflectance maps. Unlike shape from shading, photometric stereo
calculates surface property such as albedo. Photometric stereo is an overdetermined
system where the number of unknowns is less than the number of equations. Hence, it
eliminates the limitations of shape from shading. The surface normal can be defined
as a vector on a surface in 3D space which is perpendicular to the surface. The basic
principle is based on the radiance by calculating surface normal and the direction of
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light. Suppose s is the light source vector and n denotes surface normal, then image
irradiance can be expressed as follows:

⎡

⎣
I1

I2

I3

⎤

⎦ = ρ

⎡

⎣
sT

1
sT

2
sT

3

⎤

⎦ n (3.7)

Finally, the depth map is calculated from the surface normal through numerical
integration. There are some well-known numerical methods that already exist in
literature mainly based on fast marching method and the integration methodology
[52, 53]. According to the integration method, depth can be calculated from the
following equation [54]:

z (x, y) = z (x0, y0) +
∫

p (x0, y0) dx + q (x0, y0) dy (3.8)

Lambertian surface property is the preliminary assumption of the shape from
shading or photometric stereo. Dynamically estimation of a surface property or
photometric stereo for non-Lambertian surface is one of the active areas where a lot
of contribution has been reported. In recent years, many contributions are reported
where structured light, color image intensity, and fusion of photometric stereo with
other approaches are used [55, 56]. The strong point of photometric stereo is that
it provides fine surface shape with fine depth information. Recent patent has been
reported in 2018 where photometric stereo process has been used to reconstruct
3D environment model [57]. The downside of this approach is that, unlike passive
stereo system, it uses external lighting sources to estimate depth. Hence, it is limited
to environmental lighting sources, or complex lighting sources make this approach
hard to estimate depth.

3.2.4 Dynamic Vision

In contrary to other conventional imaging system or camera, the event camera meets
high-speed vision sensor demand. The idea behind the event camera or dynamic
vision sensor is to produce an image when an event has occurred. In other words, even
if the brightness value of a single pixel changes, it produces an image. Event camera
does not produce image at a fixed rate, but based on an event, it generates an image
at high speed. An event can be translated into time series tuple of 〈t k, (X k,Y k), p k〉
[58, 59], where t k expresses time, (X k, Y k) is the coordinate of a pixel that raises
an event, p k defines priority. Event camera can produce an event in some order of
milliseconds [58, 59]. In robotic odometry, event camera provides the ability to solve
many feature-based cutting-edge problems such as visual simultaneous localization
and mapping (SLAM) [60, 61]. On the other hand, the event camera has great
influence on passive depth estimation. Examples of event-based scene detection is
shown in Fig. 3.5.



3 Color and Depth Sensing Sensor Technologies for Robotics and Machine Vision 69

Fig. 3.5 Dynamic vision based on events. Events in the scene are captured through dynamic vision
cameras, and depth construction is obtained from the images. (a) Dynamic vision camera-based
stereo system. (b) Output events and captured scene. (c) Extracted neighbourhood that allows to
build the event context. (d) Time context of the most recent events. (e) Exponential decay kernel
for spatial domain. Figure is taken from Ieng et al. [62]
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Fig. 3.6 Dynamic vision
with structured light.
Matching is performed
between two view p1 and p2,
and depth is recovered
through triangulation method
from known optical center C1
and C2. Figure is taken from
T. Leroux et al. [64]

N. Julien et al. estimated depth using dynamic vision sensor using active approach
[63]. In their work, they addressed passive stereo matching problem using event data.
They generated events of an observed scene so-called light spots using lens and laser
light, and scanning was performed by translating laser beam. The Fig. 3.5 shows the
output of a stereo rig consisting of a dynamic vision sensor that produces overlapped
stereo images. Stereo matching is performed over the sparse data at each event. It
alleviates the stereo matching problem. An active pixel array is used to grab a visual
scene. Though this work approaches to solve the stereo matching problem, scanning
all the pixels of the field view area consumes time. Moreover, their approach is
limited to a range in some meters.

T. Leroux et al. in their method used digitized structured light projection with
an event camera to estimate the depth of a scene [64]. Their method as shown in
Fig. 3.6 relies on the use of frequency-tagged light pattern. It generates a continuous
event. Since structured light has a distinguishable property of pattern at a different
frequency, it facilitates matching problem on event-based data.

The fundamental approach is based on the idea that unique projector pixel
triggered a unique scene point that is captured by the image sensor. By knowing
this two center points say C1 and C2, depth is recovered using the triangulation
method.

3.3 Active 3D Imaging

The active 3D imaging system consists of an additional signal source known as a
projector. The aim of the projector is to emit signals. Received reflected signals are
analyzed to construct the 3D structure of the surrounding environments. The emitted
signal can be laser light, ultrasound signal, near infrared light, etc. It is known as a
projector, and its responsibility is to fire signals on the surrounding surface. Many
terms are used to describe 3D active imaging technology such as a rangefinder and
range imaging. Several methods are used to measure distance, but probably the most
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practiced methods are based on time of flight (ToF), triangulation and phase shift.
This section provides a brief introduction of active sensing methods and technique.
Dense depth map with less ambiguity and minimum depth error are the most reported
advantages of active 3D imaging technology. However, the resolution of the depth
map is limited. Miniaturized, high-resolution, and low-power active depth sensor
has a potential demand in various fields like medical robotics.

3.3.1 Time of Flight

Time-of-flight (ToF) systems measure the distance from the scanner to surface points.
The basic idea of the active sensing technology is to emit signal such as from a laser.
When the signal is emitted by the projector, then the clocking system inside the active
imaging system starts counting. This approach is known as direct time of flight. If
the object exists within the range of the imaging system, then it reflects a potential
amount of signal to the receiver. When the receiver part of the camera receives this
signal, it then computes the round-trip time. Then the distance is estimated from the
basic principle of the light or electromagnetic source as follows:

d = �t ∗ c

2
(3.9)

Here d expresses the distance of an object from the camera, �t stands for total
travel time, and c is the velocity of the light. Figure 3.7 captures the fundamental
working procedure described above. Direct ToF imaging system consists of four
basic components: (1) light source or transmitter, (2) optics, (3) light detector or
receiver, and (4) electronic timer [65]. Light source or transmitter along with optics
produce a signal transmitting unit for this system. Different light or signal source can
be used such as near infrared or laser. The optical lens is used to diffuse the signal

Distance

Light emitter

Object

Detector
Timing 
Circuit

Single 
Photon 
Arrival 
Time

Light Detector (SPAD)

Start Time

Fig. 3.7 Working principle of ToF-based sensor
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over the surface. The optical lens is also used to collect light and project it to the
receiver. It creates limited field view to avoid other outdoor lighting such as sunlight.

On the other hand, the receiver unit is generally composed with two system
components: (1) photosensor and (2) electronic time counter. Within a defined range,
ToF provides high-quality depth map. High-scale precision clock is the challenging
part of this approach. When an object is placed very near to camera, for example,
in millimeter distance, it is a challenging area to design a clock that can measure a
time gap in nano or pico scale. That makes active direct ToF camera limited to very
short distance.

Photosensor has to sense reflected light within a very short time. Some
semiconductor components such as avalanche photodiode (APD) and single-photon
avalanche diodes (SPADs) show their ability to sense signal within the picosecond
range, and these components are used to fabricated ToF sensor [66]. To improve the
resolution, efficiency, and scale down the dimension of the whole imaging system,
currently leading manufacturers are involved in developing solid-state 3D active
imaging system [9]. In the indirect approach, a continuous signal is sent by the
transmitter or projector instead of the one-shot signal in order to avoid small-scale
clock design. The transmitter contains an array of a signal emitter and generates
the desired signal. Different kind of signals are used such as sine, square, etc. The
received signal is compared to the original signal. Different signal characteristics are
used such as signal phase to estimate distance. It is a continuous process and more
flexible for silicon technology.

One-shot approach can measure both short and long distance with some range
limitations. Long distance measurement requires stronger light source, in most of
the cases coherent light sources, which can be hazardous. Moreover, strong and
complex lighting source can contaminate the reflected signal. In practice, a multi-shot
approach is adopted to overcome this problem. However, still high-power light source
is the main drawback considered in this situation. The continuous pulsed signal is
used to overcome this crucial problem. From the basic theory of signal processing,
the target signal is wrapped into a carrier signal that has relatively low frequency.
Often amplitude-modulated continuous wave (AMCW) or frequency-modulated
continuous wave (FMCW) are used in this domain. In frequency-modulated
continuous wave (FMCW), high-frequency signal is combined to a relatively
low-frequency signal and then transmitted. This mechanism increases the system
robustness. Suppose an emitted signal St x is transmitted and a reflected back signal
Sr x is received. If a sine signal is transmitted, then they can be expressed as

Stx = cos 2πωt (3.10)

Srx = cos (2πωt + ϕ) (3.11)

where ϕ contains phase shift information that eventually expresses the amount of
time and distance that the signal traversed after its emission. Basic electronics and
filter approaches are used that estimate phase shift between transmitted and received
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signal. Multi-path propagation is one of the considered problems of ToF technique.
When light hit a surface point, the scattered light may fall on the detector plane
through different paths. Multiple detection of such event can generate noises.

In single-photon detection, especially in solid state where avalanche photodiodes
are widely used to convert light energy to current energy, strong light source generates
strong current. When light source traverses a long path, the signal becomes weaker
and generates less current. Similarly, when the signal hit a diffuse surface or mat
surface, it reflects weaker signal. The signal is scattered into different directions
when it hits sharp edges and photodiode response becomes weaker. These are well-
addressed problems of ToF technique especially for LiDAR (light detection and
ranging). LiDAR-based system uses the fundamental principle of ToF [67]. Laser is
a more preferable choice as a light source. When laser light is reflected back from a
surface point, LiDAR can estimate the surface distance. Since light is projected on
the surface, the surface property and other factors can also contaminate the reflected
light as it is mentioned in the ToF section.

Spot scanner scans a single point at one time. This type of LiDAR projects laser
light on the surface point. The back-propagated light is captured and projected to
the light detection sensor. Single point distance is measured with this approach. To
recover whole geometry covered by the field of view (FOV), conventional steering
is used to scan all the points.

Apart from the pulsed shot approach, amplitude modulation continuous wave
(AMCW), frequency modulation continuous wave (FMCW), and triangulation
techniques are also adopted. In recent years, a big volume of literature currently exists
which concentrates ToF camera especially LiDAR on solid state. Single photon on
distance measurement technique is widely adopted. Some solid-state materials such
as avalanche photodiode (APD) and single-photon avalanche photodiode (SPAD)
are widely used in this research area to detect incoming light at very small time
gap [68]. With the capability of detecting and discriminating incoming light in the
range of picoseconds, these materials became the state-of-the-art choices to develop
solid-state LiDAR.

Table 3.1 presents a comprehensive list of active depth measurement sensors and
their characteristics

3.3.2 Structured Light

Structured light is used to estimate the depth of a surface. This technology is widely
used to construct 3D image [69–71, 105]. Similar to time-of-flight (ToF) mechanism,
it uses a projector that generates a pattern of light. Considering pattern generation
procedure, structured light can be further categorized into basic two classes: single-
shot structured light and multi-shot structured light. When a pattern is projected, the
surface scene is captured by the image sensor. Based on the number of the image
sensors used, a structured light depth estimation procedure has two well-studied
directions: (1) monocular structured light and (2) binocular structured light [71, 72].
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Table 3.1 List of active depth measurement sensors

Product name Characteristics Vendor
REAL3 Dimensions 68 mm × 17 mm × 7.25 mm

Measurement range 0.1–4 m
Frame rate max 45 fps
Resolution 224 × 172 pixel (38 k)
Viewing angle (H × V) 62◦ × 45◦

Infineon
REAL3™

PMD PhotonICs® 19k-S3 Time-of-flight 3D chip
Dimensions 12 × 12 mm2

Pixel array 160 × 120

PMD

OPT9221, OPT8241,
OPT3101 OPT8320

Time of flight
Long-range distance
Sensor resolution 80 × 60 to 320 × 240
Frame rate 1000–120

Texas
Instruments

PX5 Alternative spatial phase image 3D sensing
Up to 5 MP resolution
Fame rate 90

Photon-x

BORA Time of flight
Resolution 1.3 Megapixel
Distance various range
Minimum range 0.5 m
Maximum 500 m

Teledyne e2v

IMX456QL back-illuminated
ToF

ToF image sensor
VGA resolution
10 μm square pixel
Approx. 30 cm to 10 m distance
measurement

Sony
DepthSense™

(continued)
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Table 3.1 (continued)

Product name Characteristics Vendor
Epc660 Time of flight

Resolution 320 × 240 pixels (QVGA)
1000 ToF images per second in advance
operation mode
Range millimeter to 100 m

ESPROS
Photonics
Corporation

MESA 4000 Time of flight
Distance 0.8–8 m
Resolution 640 × 480

MESA
Imaging

SR300 Structured light (IR)
Distance 0.2–1.5 m
Resolution 640 × 480

Intel
RealSense™

ASUS Xtion Structured light (IR)
Distance 0.8–4 m
Resolution 640 × 4800

Asus

Depth estimation procedure analyzes a captured structured light pattern to estimate
depth. Different methods are already established so far and can be grouped into (1)
spatial neighborhood pattern method, (2) time-multiplexing pattern method, and (3)
direct coding pattern method [23]. The fundamental approach of structured light
depth estimation is to calculate disparity and can be defined as d = Ua − Uc.
Ua comes from the projector coordinate system and Uc comes from the camera
coordinate system.

As shown in Fig. 3.8, in this arrangement, depth estimation can be defined as a
pattern matching problem of the scene that is illuminated by a specific light pattern.

Some approaches are based on deformation of the received pattern. Considering
the correspondence problem of passive stereo vision, it shows a significantly
improved result on a textured and textureless region as well as it reduces ambiguity
[19, 74]. In structured light triangulation method, camera calibration can be the first
building block that estimates camera intrinsic matrix. It is also important to estimate
the extrinsic parameter that maps projector coordinate to camera coordinate system
known as stereo calibration. Encoded light patterns are projected on the surface,
and reflected patterns are captured by the image sensor. Deformation depends on
the surface planar characteristics. Matching is performed on the decoded pattern
by using different approaches such as global optimization [75, 76]. Then depth is
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Fig. 3.8 Structured light system architecture [73]

inferred using triangulation [77–79]. Numerous pattern generation and structured
light techniques exist in literature and are used in practice. A comprehensive list of
structured light techniques has been stated by Jason Geng published in Advances in
Optics and Photonics [80]. According to their research, structured light technique
is categorized into five main categories: (1) sequential projections (multi-shots), (2)
continuous varying pattern, (3) stripe indexing, (4) grid indexing, and (5) hybrid
methods.

Structured light and photometric stereo both are active depth sensing technology.
Through the advances of solid-state physics and micro lens technology, miniaturized
depth sensor is now possible, and this technology is expected to improve further in
terms of image resolution. A comprehensive comparison of depth sensing imaging
technology is presented in Fig. 3.9.

Alternatively, the backbone of the image sensing technology beyond CMOS can
also be modified to estimate depth. Recent research shows that new form of image
sensor is capable of estimating depth directly from incident light [81]. Pixel aperture
and depth from defocus are evaluated to construct a camera sensor. One of the merits
of this sensor design is the control of pixel aperture-controlled pixel array design.
Within a single die approach can capture blurred and sharp image. At a certain
distance, a camera can produce a sharp image, which depends on camera focal
setting. Otherwise, it produces a blurred image due to defocus. How much image
blurring has occurred gives a cue to estimate depth [82, 83]. This approach is known
as the depth from defocus. It requires two images, one sharp image and other one is
blur image. Their constructed image sensor uses two different filters. A color filter
is used to construct a blurred image, and a white filter is used to produce a sharp
image. Both these images are then used to estimate depth. Pixel aperture controls
the incident light. It can block, partially block, or pass whole amount of light to the
image plane.
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Fig. 3.9 Comparison of 3D imaging techniques. Figure source is Photon-X [8]

Pekkola Oili et al. presented focus-induced photoresponse technique to measure
distance [84]. Their approach is based on photoresponse materials such as dye-
sensitized solar cells (DSSC) and optics. Photoresponse of a photosensor depends
on the amount of incident photons and the surface area in which they fall [84].
The authors referred it as focus-induced photoluminescence (FIP) effect. In their
technique, they use this property with the combination of lens, and they successfully
derived the distance from the FIP effect. As shown in Fig. 3.10, they presented a
single-pixel measurement technique, and to retrieve full geometry of an object, scan
needs to be performed over the whole surface.

When lights fall on photodiode, it then generates photocurrent. FIP effect
expresses the amount of light in terms of photocurrent. However, ambiguity arises
when light radiant power is unknown. Their system arrangement consists of two
photodiodes, and one lens is placed in front of the system that collects rays as
it is mentioned in the figure. Instead of single photocurrent, their approach uses
photocurrent ratio of two sensors to alleviate this situation. Moreover, their work
shows the quotient changes with distance.
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Fig. 3.10 FIP-based distance measurement technique [84]

Fig. 3.11 Overview of structure from motion incremental pipeline. Input images are captured from
different view angle. Figure is obtained from S. Bianco et al. [87]

3.3.3 Shape from Motion

Structure from motion (SfM) is one of the mature techniques to reconstruct a shape
from a sequence of images. Some commercial 3D rendering softwares already adopt
this approach to construct the 3D shape of an object [11, 85, 86, 103]. In this
technique, motion is used to infer the depth of a scene. The concept behind SfM is
shown in Fig. 3.11. Here motion means a scene is observed from a different angle of
view. Generally, under orthographic camera model, at least three image sequences
are used to estimate depth. Although various shape from motion algorithms exist,
this chapter only focuses on the state of the art of shape from motion pipeline.

Using motion, multi-view images, structure from motion is the technique to
reconstruct 3D shape of an object and simultaneous estimation of camera pose.
SfM takes a series of input images from different camera view (motion). It is a
sequential processing pipeline that iteratively estimates motion and shape. The first
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stage corresponds to the feature extraction process. Local features are extracted from
every frame, and the extracted features matched within the overlapped image pair.
Correspondence outliers are filtered out via random sample consensus (RANSAC)
and bundle adjustment. Projective geometry is used to verify matched features.
Different geometries and parameters such as homography, camera fundamental
matrix, epipolar geometry, perspective n point, and triangulation are used to
reconstruct shape. Highly overlapped images are a good candidate to improve its
efficiency.

Feature extraction and matching action are then performed over the pair of
overlapped images. Observed images are taken at different angles; hence, view
angle and illumination condition affect the overlapped images. Thus, a feature that is
observed from one view angle may not become visible from another view angle due
to loss of illumination characteristics such as edge property. Moving from one view
angle to another, same features have the probability to compromise its dimensional
characteristics. Scaling factors may affect the matching process. Feature points are the
key elements that describe scene context; hence, more feature points are desirable. In
the last decade, scale-invariant feature transformation [88] approach has been widely
adopted in this context because it is robust to noise.

3.4 Deep Learning Approaches to 3D Vision

Deep learning has gained much success in complex computer vision problems
[86, 89–94]; recently it has been used to solve 3D reconstruction problem [104,
108, 110, 111]. Multilayer perception and its capacity to infer knowledge in 3D
reconstruction domain have been deliberately used to solve different problems
in different approaches. Considering shape from motion approach, features of an
image sequence has great impact. Often low-textured and salient features are hard to
extract. Convolutional neural network (CNN) has been used in this domain, and this
approach significantly shows better performance compared to other feature extraction
methodologies such as SIFT and DoG in a different environment [86]. Similar
problem has been addressed by a deep learning context, and it shows a significant
improvement [89, 93] in estimating pose. However, a more sophisticated approach
has been developed, and a full network has been developed to solve structure from
motion problems [90, 91]. Moreover, these approaches solve conventional structure
from motion such as small camera translation problem [91, 95]. CNN is also used
to infer depth that comes from the technique such as the depth from defocus [95].
Mainly it improves the depth uncertainty problem. Stereo matching problem also
reffered as a finding correspondences. Deep learning has been well studied to solve
both problems related to passive stereo vision: (1) finding feature and (2) finding
correspondences [96–98].

Monocular or single depth image also has a great impact on computer vision
as well as on robotics. SLAM is widely used to solve robot localization problem.
SLAM depth is conventionally based on structure from motions that are limited to
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low texture and small translation [90, 99]. Improvement has been observed when
deep learning is used to estimate depth especially when a low-textured region has
been considered [99]. Convolutional neural network-conditional random field (CNN-
CRF) framework for monocular endoscopy can estimate depth with relative error
0.152 and 0.242 on real endoscopic images [92].

Photometric stereo and structured light have been widely used in many areas.
Moreover, object or camera in motion and surface property estimation such as
Lambertian or non-Lambertian are the challenges and limitations of photometric
stereo. Deep learning has been used to estimate surface normal vector which is the
rudimentary step of photometric stereo before calculating depth [51, 90, 94]. Deep
learning is also used to estimate depth in a supervised and unsupervised manner [51,
90, 94, 100]. In a supervised manner, the network needs to be trained with known
data set and its ground truth depth map. In an unsupervised manner, depth can be
estimated from both monocular and binocular views. It opens a freedom in such a
way that, even if a stereo arrangement fails, network remains active and provides
depth from any single image. The idea of this approach is to predict stereo images in
a sense that for an input image say left image L, a network is trained in such a way
that it can predict a disparity map [101]. Depth can be calculated from predicted
disparity using triangulation method with a known baseline that is used to train the
network. Several smoothing functions are used to reduce prediction error and noises.

Though deep network shows high accuracy [101] result, it cannot predict the depth
of an unknown object shape which is not used during the training [90]. Also, the deep
network needs a well-trained network to estimate depth in real-world environment.

3.5 Conclusion

Current sensors are able to achieve depth resolution from few centimeters to 100 m in
real time, and sensor technologies like ToF, structured light, and stereo vision largely
form the backbone of object detection and range finding applications in robotics
and autonomous systems. Extraction of depth information from computational
techniques is yet another growing area of research, and approaches like shape
from shading and structure from motion offer some advantages in sensor design.
Ambient light spectrum and light intensity planes play an important role in
getting a dense depth map, and often lighting conditions experienced in complex
environments contaminate depth estimation process. Demands on illumination
pattern and computation limit the role of certain depth sensing mechanisms to
static or less mobile platforms, and one sensor might not be a good fit. New
sensing architectures and neuromorphic approaches to sensor design are already
in progress to simplify some of these challenges. Ideally, miniature sensors with low
power consumption and computational demands that can combine depth as well as
accurate color information are preferred. The ability to add multi-spectral imaging
on depth sensors is another area of interest and fusion of depth from different sensor
technologies would solve some of the challenges in achieving robust vision for aerial,
marine, and medical robotics.
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