
Chapter 25
Development of Design and Training
Application for Deep Convolutional
Neural Networks and Support Vector
Machines

Fusaomi Nagata, Kenta Tokuno, Akimasa Otsuka, Hiroaki Ochi,
Takeshi Ikeda, Keigo Watanabe, and Maki K. Habib

Abbreviations

AlexNet AlexNet is the name of a well-known convolutional
neural network designed by Alex Krizhevsky, which
is the champion of the competition called ImageNet
Large Scale Visual Recognition Challenge held in
2012

Back Propagation (BP)
algorithm

BP algorithm is a famous method used in artificial
neural networks to calculate weights between a
large number of neurons. The BP algorithm is a
generalized delta rule for multi layered neural net-
works, in which chain rules are applied to iteratively
calculating the weights based on gradients and errors
in the network

F. Nagata (�) · K. Tokuno · A. Otsuka · H. Ochi · T. Ikeda
Sanyo-Onoda City University, Sanyo-onoda, Japan
e-mail: nagata@rs.socu.ac.jp; otsuka_a@rs.socu.ac.jp; ochi@rs.socu.ac.jp; t-ikeda@rs.socu.ac.jp

K. Watanabe
Okayama University, Okayama, Japan
e-mail: watanabe@sys.okayama-u.ac.jp

M. K. Habib
The American University in Cairo, Cairo, Egypt
e-mail: maki@aucegypt.edu

© Springer Nature Switzerland AG 2020
O. Sergiyenko et al. (eds.), Machine Vision and Navigation,
https://doi.org/10.1007/978-3-030-22587-2_25

769

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22587-2_25&domain=pdf
mailto:nagata@rs.socu.ac.jp
mailto:otsuka_a@rs.socu.ac.jp
mailto:ochi@rs.socu.ac.jp
mailto:t-ikeda@rs.socu.ac.jp
mailto:watanabe@sys.okayama-u.ac.jp
mailto:maki@aucegypt.edu
https://doi.org/10.1007/978-3-030-22587-2_25


770 F. Nagata et al.

Caffe Caffe means convolutional architecture for fast
feature embedding, which is one of famous deep
learning frameworks developed at University of
California, Berkeley. Caffe is an open source library
written in C++

Convolutional Neural
Network (CNN)

A convolutional neural network called CNN is a
class of deep neural networks, which has been most
commonly applied to image recognition. The CNNs
are typical applications based on the concept of deep
learning and are known as one of the most powerful
structures for image recognition

MATLAB MATLAB is a high performance computing envi-
ronment provided by MathWorks. In particular,
MATLAB enables us to conduct matrix manipu-
lations, plotting of data, implementation of algo-
rithms, design of user interfaces, and development
of application software written in standard lan-
guages such as C++, C#, Python, and so on

ReLU ReLU means a rectified linear unit function. In the
structure of recent deep neural networks, the ReLU
is one of effective activation functions superior to
conventional sigmoid functions, which is defined
with only positive part of the input argument

Sequential Minimal
Optimization (SMO)
Algorithm

SMO is an effective algorithm to solve quadratic
programming (QP) problems. The QP is one of
nonlinear programming methods. The SMO was
proposed by John Platt in 1998 and has been used
to train support vector machines

Support Vector Machine
(SVM)

In machine learning, the support vector machine
called SVM is one of supervised learning models
associated with learning algorithms which can
analyze training data used for classification and
regression problems. A binary class SVM model is a
hyper plane that can clearly separate two categorized
points in space. The hyper plane is drawn so that the
points can be divided into two domains by a clear
margin as large as possible

TensorFlow TensorFlow is an open source software library which
can be used for the development of machine learning
software such as neural networks. TensorFlow was
developed by Google and released from 2015



25 Development of Design and Training Application for Deep Convolutional. . . 771

25.1 Introduction

Recently, deep learning techniques are gathering attention from researchers and
engineers all over the world due to the high performance superior to conventional
shallow neural networks. In this decade, several software development environments
for deep neural networks (DNN) such as Caffe [1] and TensorFlow [2] have been
introduced to researchers and engineers. In those development environments, C++ or
Python is well used for development. Deep convolutional neural networks (DCNN)
are typical applications based on the concept of DNN and are known as one of
the most powerful structures for image recognition. However, for example, it may
be difficult for students and junior engineers to develop and implement a practical
DCNN using programming languages such as C++ or Python and to utilize it for
anomaly detection in actual production systems. Generally speaking, it seems that the
availability of user-friendly software that facilitates such applications without using
programming languages skills, such as C++ or Python, have not been sufficiently
developed yet.

Hence, this paper presents the development of user-friendly application develop-
ment environment based on MATLAB system [3, 4] that facilitates two applications
using DCNNs and support vector machines (SVMs). An application of DCNN for
anomaly detection is developed and trained using many images to inspect undesirable
defects such as crack, burr, protrusion, chipping, spot, and fracture phenomena which
appear in the manufacturing process of resin molded articles. Automation of visual
inspection process has been demanded from many different kinds of industrial fields
because it is not easy to reduce the increase of undesirable human error associated
with the length of successive working hours.

Besides DCNN, SVMs are supervised learning models with associated learning
algorithms that analyze data sets used for classification and regression analysis. Not
only have a linear classification ability based on the idea of margin maximized
hyperplanes, but also SVMs have promising characteristics to efficiently perform a
nonlinear classification using what is called the kernel trick, by implicitly mapping
input data into high-dimensional feature spaces [5].

In the fields of measurement systems, for example, Flores-Fuentes et al. proposed
a combined application of power spectrum centroid and SVMs to improve the
measurement capability in optical scanning systems [6]. The energy signal center is
found in the power spectrum centroid, in which the SVM regression method is used
as a digital rectified to increase measurement accuracy for optical scanning system.
Then, a technical research of an opto-mechanical system for 3D measurement was
reported in detail, in which a multivariate outlier analysis was implemented to detect
and remove atypical values, in order to improve the accuracy of artificial intelligence
regression algorithms [7]. Also, although the architecture is not deep structure,
Rodriguez-Quinonez et al. surveyed the dominant laser scanner technologies, gave
a detailed description of their 3D laser scanner, and adjusted their measurement
error by a once trained feed forward back propagation (FFBP) neural network with
a Widrow-Hoff weight/bias learning function [8]. Surface measurement systems
(SMS) allow accurate measurements of surface geometry for three-dimensional



772 F. Nagata et al.

computational models creation. There are cases where contact avoidance is needed;
these techniques are known as non-contact surface measurement techniques. To
perform non-contact surface measurements, there are different operating modes and
technologies, such as lasers, digital cameras, and integration of both. Each SMS is
classified by its operation mode to get the data, so it can be divided into three basic
groups: point-based techniques, line-based techniques, and area-based techniques.
Real et al. provided useful topics about the different types of non-contact surface
measurement techniques, theory, basic equations, system implementation, actual
research topics, engineering applications, and future trends [9]. The description
seems to be particularly beneficial for students, teachers, researchers, and engineers
who want to implement some visual inspection system.

In this paper, two kinds of SVMs are, respectively, incorporated with the two
trained DCNNs to classify sample images with high recognition rate into accept
as OK or reject as NG categories, in which compressed features obtained from the
DCNNs are used as the input for the SVMs. The two types of DCNNs used for
generating feature vectors are our designed sssNet and the well-known AlexNet
[10, 11]. The designed applications of the SVMs and their evaluation are introduced.
The usability and operability of the proposed design and training application for
DCNNs and SVMs are demonstrated and evaluated through design, training, and
classification experiments.

25.2 Design and Training Application for DCNNs and SVMs

A large number of image files with different kinds of defect features and their
paired labels for classification are needed to construct a reliable DCNN-based
anomaly detection system with generalization ability. To deal with this serious need,
a dialogue-based application named the similar image generator was first developed
that can easily produce a lot of similar images with sequential number from an
original image for training. For example, similar images with fracture defect can be
generated as shown in Fig. 25.1 by rotating, translating, scaling an original image,
changing the brightness, the resolution, or the file format such as JPG, BMP, PNG,
and so on.

Then, a DCNN and SVM design application as shown in Fig. 25.2 was developed
using App Designer provided by MATLAB. Deep Learning Toolbox (Neural
Network Toolbox), Statistics and Machine Learning Toolbox, Parallel Computing
Toolbox, Computer Vision System Toolbox, and Image Processing Toolbox were
optionally installed for the development on MATLAB. Main DCNN design
parameters on number of layers, filter size, pooling size, padding size, and width of
stride can be easily given through the user-friendly dialogue. As an example, Fig. 25.3
shows a designed DCNN composed of three convolution layers. The first layer is
positioned for input images with a resolution of 200×200×1 given by a matrix



25 Development of Design and Training Application for Deep Convolutional. . . 773

Fig. 25.1 Examples of generated images with a defect of fracture for training

Fig. 25.2 The developed design and training application for DCNNs and SVMs



774 F. Nagata et al.

Fig. 25.3 An example of DCNN for five classifications designed by using the application shown
in Fig. 25.2

with zerocenter normalization. The second, fifth, and eighth layers are convolution
ones which severally have 32 filters. It is known that convolution layers perform
the translation invariance and compositionality required for computer vision. In the
convolution layers, the filters are applied to each image while sliding from the left
top to the right bottom in the image based on the value of the stride. Note that each
filter has channels as many as the number of feature maps in the previous layer.
Activation functions called rectified linear unit (ReLU) are located at third, sixth,
ninth, and twelfth layers. The ReLUs are given by

f (u) = max(0, u) (25.1)

f ′(u) =
{

1 (u > 0)

0 (u ≤ 0)
(25.2)

In the context of deep neural networks, ReLU have been actively used as one of the
most effective activation functions for back propagation algorithms. The 4th, 7th,
and 10th layers are max pooling ones to reduce the dimensions of feature maps for
computational efficiency. The sizes of pooling, stride, and padding are given as [3
3], [2 2], and [0 0 0 0], respectively. If the nth image for training is given to the
input layer, then the 14th softmax layer produces the probability pni(i = 1, 2, . . . , 5)

called the score for five categories. The probability pni(i = 1, 2, . . . , 5) generated
from the 14th softmax layer for five categories is calculated by

pni = eyni∑5
k=1 eynk

(25.3)



25 Development of Design and Training Application for Deep Convolutional. . . 775

where yn = [yn1 yn2 yn3 yn4 yn5]T is the output vector from the 13th fully connected
layer corresponding to the nth input image. In this case, the loss function called cross
entropy is calculated by

Ē = − 1

N

N∑
n=1

5∑
k=1

tnklog(ynk) (25.4)

where tn = [tn1 tn2 tn3 tn4 tn5]T means the nth desired output vector for five
categories, i.e., [1 0 0 0 0]T , [0 1 0 0 0]T , [0 0 1 0 0]T , [0 0 0 1 0]T , or [0 0 0 0 1]T .
N is the total number of image samples in the training set. The cross entropy is also
used to tune the values in each filter in back propagation algorithm during iterative
training process.

25.3 Review of Back Propagation Algorithm for
Implementation

The authors of this chapter have implemented the back propagation algorithm into
some systems [12–15]. The first system designed for a feedforward force controller
learned the contact motion which was the relation between the contact force and
the velocity at the tip of robot arm[12]. The second system named the effective
stiffness estimator was developed for a desktop NC machine tool with a compliant
motion capability. The estimator finally allowed the machine tool to generate a
desired damping needed for a stable force control system without undesirable large
overshoots and oscillations [13, 14]. Further, the third system was considered to
deal with the problem concerning the learning performance to large scale teaching
signals, so that a simple and adaptive learning technique for sigmoid functions could
be proposed. The validity and control effectiveness of the learning technique were
verified through simulation experiments using the dynamic model of PUMA560
manipulator with six degrees of freedoms. In this section, the important back
propagation (BP) algorithm for training is reviewed for an easy implementation in
software development using a simple three-layered neural network with two inputs
and two outputs as shown in Fig. 25.4, in which a standard sigmoid function is
applied as an activation function of each neuron. It is known that BP algorithms
are also applied to the training of filters in CNNs. The sigmoid function and its
derivative are generally given by

f (s) = 1

1 + e−s
(25.5)

f ′(s) = f (s){1 − f (s)} (25.6)



776 F. Nagata et al.

Fig. 25.4 Three-layered neural network to review the back propagation algorithm

where s is the state of a neuron. Weights between the last hidden layer and the output
layer are updated through the calculations based on the generalized delta rule. The
weights in this example are actually updated based on the rule as written by

e31 = d1 − y31 (25.7)

e32 = d2 − y32 (25.8)

w23
11 = w23

11 + ηf (s21)f (s31){1 − f (s31)}e31 (25.9)

w23
12 = w23

12 + ηf (s21)f (s32){1 − f (s32)}e32 (25.10)

w23
21 = w23

21 + ηf (s22)f (s31){1 − f (s31)}e31 (25.11)

w23
22 = w23

22 + ηf (s22)f (s32){1 − f (s32)}e32 (25.12)

w23
31 = w23

31 + ηf (s23)f (s31){1 − f (s31)}e31 (25.13)

w23
32 = w23

32 + ηf (s23)f (s32){1 − f (s32)}e32 (25.14)

where d1 and d2 are the components in the desired output vector to be trained.
y3 = [y31 y32]T is an output vector from the network. e3 = [e31 e32]T is the error
vector between the desired and the actual outputs. wpq

ij is the weight between the ith
unit in pth layer and the j th unit in qth layer. x1 = [x11 x12]T is the input vector
to be directly s1 = [s11 s12]T . η is the learning rate. Also, for example, the state s31
and s32 are linearly calculated by



25 Development of Design and Training Application for Deep Convolutional. . . 777

s31 = w23
11f (s21) + w23

21f (s22) + w23
31f (s23) (25.15)

s32 = w23
12f (s21) + w23

22f (s22) + w23
32f (s23) (25.16)

Next, update process of weights between the hidden layer and the input layer is
explained. The calculation of error epi for pth layer, ith unit in the hidden layer is a
little bit more complex. For example, e21, e22, and e23 are obtained by

e21 = w23
11f (s31){1 − f (s31)}e31 + w23

12f (s32){1 − f (s32)}e32 (25.17)

e22 = w23
21f (s31){1 − f (s31)}e31 + w23

22f (s32){1 − f (s32)}e32 (25.18)

e23 = w23
31f (s31){1 − f (s31)}e31 + w23

32f (s32){1 − f (s32)}e32 (25.19)

so that, the weight w12
11 , w12

12 , w12
13 , w12

21 , w12
22 , and w12

23 are calculated by

w12
11 = w12

11 + ηf (s11)f (s21){1 − f (s21)}e21 (25.20)

w12
12 = w12

12 + ηf (s11)f (s22){1 − f (s22)}e22 (25.21)

w12
13 = w12

13 + ηf (s11)f (s23){1 − f (s23)}e23 (25.22)

w12
21 = w12

21 + ηf (s12)f (s21){1 − f (s21)}e21 (25.23)

w12
22 = w12

22 + ηf (s12)f (s22){1 − f (s22)}e22 (25.24)

w12
23 = w12

23 + ηf (s12)f (s23){1 − f (s23)}e23 (25.25)

25.4 Design and Training Experiments of Designed DCNN

25.4.1 Test Trial of Design and Training of a DCNN for Binary
Classification

Table 25.3 tabulates the main parameters of DCNN training in case of two categories,
which are non-defective and defective articles named OK and NG, respectively. The
category of NG includes the defects of burr, protrusion, and crack. The training was
conducted by using a single PC with a Core i7 CPU and a GPU (NVIDIA GeForce
GTX 1060). In this DCNN training, it first took about several minutes until the
categorization accuracy reached to 0.95. The accuracy is the result of discriminant
analysis obtained by dividing the number of correctly classified images by that
of images in the entire data set. Then, the DCNN was additionally fine-trained to
enhance the accuracy to 1. It also took several minutes to the completion. After the
DCNN was trained, the classification result of the training set was checked based on
the scores from the softmax layer. Figure 25.5 shows the scores of classification of
OK and NG using all the images in training set (total number of images is 2040).



778 F. Nagata et al.

Table 25.3 Parameters
designed for DCNN training

Filter size in convolution layers 5 × 5 × 1
Padding of convolution layers [2 2 2 2]
Stride of convolution layers [1 1]
Pooling size [3 3]
Padding of max pooling layers [0 0 0 0]
Stride of max pooling layers [2 2]
Max epochs 30
Mini batch size 200
Learning rate 0.002 to 0.0001
Desired categorization accuracy 0.999
Number of OK images 1020
Number of NG images 1020

Fig. 25.5 Scores of classification of OK and NG using the all images in the training set (the total
number of images = 1020 + 1020)

As can be seen, it is observed that all the 2040 images in the training set can be well
discriminated with each score more than 0.97. Next, the generalization of the trained
DCNN was simply evaluated using the test images with a feature of burr, protrusion,
or crack as shown in Fig. 25.6 which were not included in the training set. Figure 25.7
shows the classification scores evaluated using the ten test images including a feature
of defect, in which it is observed that “image2.jpg” and “image9.jpg” are not well
categorized. To cope with this problem, we considered to pinpointedly improve the
recognition ability to these two types of defects. Figure 25.8 shows the additional 10
training images a little bit deformed from “image2.jpg” in Fig. 25.6.

To enhance the classification ability further to the images shown in Figs. 25.6
and 25.8, the pretrained DCNN was additionally retrained using the reorganized
training set consisting of original 2040 images, additional 20 OK ones, 10 NG ones
in Fig. 25.6, and 10 NG ones in Fig. 25.8. After the additional training, the training



25 Development of Design and Training Application for Deep Convolutional. . . 779

Fig. 25.6 Test images with a feature of NG which were not included in the training images

Fig. 25.7 Scores of classification of NG test images shown in Fig. 25.6

Fig. 25.8 Additional 10 training images with a protrusion which is a little bit deformed from
“image2.jpg” shown in Fig. 25.6



780 F. Nagata et al.

Fig. 25.9 Check of scores of categorization OK and NG using the images in training set (total
number of images = 1040 + 1040), in which images shown in Figs. 25.6 and 25.8 are included

situation was checked based on the scores of categorization OK and NG using the
images in reorganized training sets (total number of images = 1040 + 1040) including
the images in Figs. 25.6 and 25.8. Figure 25.9 shows the result. It is observed that the
recognition ability to additional images can be improved efficiently and pinpointedly.
The additional training function introduced in this section is effective to reconstruct
an updated DCNN when miscategorized images are found in training test process.

25.4.2 Test Trial of Design and Training for Five Categories

The DCNN designed for the binary classification of resin molded articles is extended
and applied to classifying images into typical five defective categories as shown in
Fig. 25.3, in which the category of NG is subdivided into typical defects seen in resin
molding process such as crack, burr, protrusion, and chipping. An epoch means a
full pass through the entire training data set, i.e., 5100×5 = 25,500 images are
used for training process. First, a pretraining using randomly initialized weights is
conducted through the period from the first epoch to sixth one, where the desired
categorization accuracy is set to 0.999. Then, a fine training using the pretrained
weights is successively conducted through the period from the seventh epoch to
tenth one, where the desired categorization accuracy is increased to 0.9999. After
the fine training, it is confirmed from the experiments that the designed DCNN with
15 layers shown in Fig. 25.3 can be well trained to classify resin molded articles into
five categories, through the training process using 25,500 gray scale image samples
with the resolution of 200×200.



25 Development of Design and Training Application for Deep Convolutional. . . 781

Fig. 25.10 Examples of four kinds of defects which are seen in production process of resin molded
articles

Finally, after further adding 300 images with different features into each training
set, the trained DCNN is additionally trained, i.e., by using the 5400×5 = 27,000
images. Then, to simply check the generalization ability of the trained DCNN, a
training test set consisting of 100 images×5 categories are prepared. Figure 25.10
shows some of the images in the training test set. After the testing, it is confirmed
that the categorization accuracy to the test images is 492/500 = 98%, so that it is
concluded that the obtained DCNN can perform satisfactory generalization.

25.5 Support Vector Machines Based on Trained DCNNs

In the previous section, two types of DCNNs for two or five classification are
designed, trained, and evaluated using the proposed DCNN design application. In
this section, another approach using two types of support vector machines (SVMs)
is introduced. It is expected that the DCNN designed in the previous section may
be able to give more characterized feature vectors to the SVMs. Actually, the most
important function which is required to a defect inspection system is to remove
defective products from all products. It is not allowed that any defective product is
mixed into lots of non-defective products. To cope with this serious need, two types
of SVMs shown at the lower parts in Figs. 25.11 and 25.12 are tried to be designed
and trained using the proposed application shown in Fig. 25.2. It is expected that the
trained SVMs will be able to classify input images into OK or NG category including
a small defect such as crack, burr, protrusion, chipping, spot, and fracture.

As for the first SVM, our designed DCNN named sssNet is used to extract the
feature vector x = [x1, x2, x3, . . . , x32]T from each inputted image. Figure 25.11
illustrates the designed SVM for binary classification whose input is the feature vector



782 F. Nagata et al.

Fig. 25.11 The proposed SVM for binary classification to which feature vectors generated from
our designed DCNN named sssNet are given

Fig. 25.12 The proposed SVM for binary classification to which feature vectors generated from
AlexNet are given

generated from the 1st fully connected layer (11th layer) in the sssNet. Gaussian
kernel function is used for one class unsupervised training of the SVM, in which 5100
OK images used in the pretraining in the Sect. 25.4.2 are reused. Sequential minimal
optimization (SMO) algorithm [16] is applied to solve the quadratic programming
(QP) of SVM. It took about several minutes for training the SVM. After training
the SVM, a classification experiment was conducted to check the generalization
ability to unlearned NG images. Figure 25.13 shows the classification results using



25 Development of Design and Training Application for Deep Convolutional. . . 783

Fig. 25.13 Classification results using the SVM shown in Fig. 25.11, in which horizontal and
vertical axes denote the output from the SVM trained with our designed sssNet and the number of
image samples, respectively

the SVM shown in Fig. 25.11. The horizontal and vertical axes denote the output
values from the SVM trained with our designed sssNet and the number of image
samples, respectively. It is observed from Fig. 25.13 that the SVM can discriminate
NG images from OK ones.

As for the second SVM, well-known DCNN called AlexNet is used to extract
the feature vector x = [x1, x2, x3, . . . , x4096]T from each inputted image. The
AleNnet trained using one million images can classify test images into 1000 object
categories such as a keyboard, mug, pencil, many kinds of animals, and so on.
It is known that the AlexNet learned abundant feature representations of images
covering a wide range of objects. If the trained AlexNet receives an image with
the resolution of 227×227×3, then the label of an object featuring in the image
and the probability, i.e., score of the categorized object, are produced. Figure 25.12
illustrates another binary class SVM whose input is the feature vector generated from
the 2nd fully connected layer (20th layer) in the AlexNet. Similarly, 5100 OK images



784 F. Nagata et al.

Fig. 25.14 Classification results using the SVM shown in Fig. 25.12, in which horizontal and
vertical axes denotes the output from the SVM trained using AlexNet and the number of image
samples, respectively

used in the pretraining in the Sect. 25.4.2 were reused for one class unsupervised
training of the SVM. It also took about several minutes for training. After training
the SVM, a classification experiment was conducted to check the generalization
ability to unlearned NG images. Figure 25.14 shows the classification results using
the SVM shown in Fig. 25.12. It is observed from Fig. 25.14 that the SVM with
AlexNet can also discriminate NG images from OK ones with the almost same
reliability as the SVM with sssNet. Actually, lengths of feature vectors generated
from sssNet and AlexNet are quite different as 32 and 4096; however, almost the
same discrimination ability can be obtained. In the case of the target features as
shown in Figs. 25.1, 25.6, 25.8, and 25.10, the feature vector with 4096 components
given to SVM seems to be somewhat redundant.



25 Development of Design and Training Application for Deep Convolutional. . . 785

25.6 Conclusions

In this decade, deep learning, in particular, DCNN has been eagerly focused on
by researchers and engineers in order to apply to various kinds of inspection
systems. However, it seems that user-friendly design and training tools without using
programming languages such as C++ and Python have not been well provided yet. In
this chapter, a design and training application for DCNNs with multiple classification
and SVMs with binary classification is presented. As the first application test trial,
a DCNN is designed using the application to detect defects such as crack, burr,
protrusion, chipping, and fracture phenomena seen in the manufacturing process
of resin molded articles. A similar image generator is also proposed to efficiently
generate a large number of images transformed from original ones by rotating,
scaling, and changing brightness, etc. After the designed DCNN is pretrained using
those images, classification experiments are conducted using test images in order
to simply check the generalization. Based on the results, an additional fine training
method is applied and evaluated to cope with mis-classified images, so that the
classification ability can be efficiently and pinpointedly improved to a desired
level of categorization accuracy. Generally, the objective of training in machine
learning is to enhance the ability of generalization to unlearned environments. The
additional training introduced in this chapter may proceed to the opposite direction
of the objective of training or cause different kinds of problems. However, in daily
production process, it will be effective for the construction of a practical visual
inspection system. Here, the practicality means that the additionally trained DCNN
will never miss the defects which have been misrecognized once. As the second
application test trial, two kinds of SVMs with trained DCNNs, i.e., our designed
sssNet and well-known AlexNet, for binary classification are designed, trained, and
evaluated to discriminate NG sample images from OK ones, so that it is confirmed
that the SVM with our designed sssNet can perform almost the same recognition
ability as that with AlexNet in spite of the much shorter feature vector.

Finally, the authors apologize that unfortunately this chapter cannot show real
photos including defective plastic parts due to the obligation of confidentiality with
a joint research and development company.

References

1. Cengil, E., Cnar, A., & Ozbay, E. (2017). Image classification with caffe deep learning frame-
work. In Proceedings of 2017 International Conference on Computer Science and Engineering
(UBMK), Antalya (pp. 440–444).

2. Yuan, L., Qu, Z., Zhao, Y., Zhang, H., & Nian, Q. (2017). A convolutional neural network based
on tensorflow for face recognition. In Proceedings of 2017 IEEE 2nd Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC), Chongqing (pp. 525–
529).



786 F. Nagata et al.

3. Nagata, F., Tokuno, K., Tamano, H., Nakamura, H, Tamura, M., Kato, K., et al. (2018).
Basic application of deep convolutional neural network to visual inspection. In Proceedings of
International Conference on Industrial Application Engineering (ICIAE2018), Okinawa (pp.
4–8).

4. Nagata, F., Tokuno, K., Otsuka, A., Ikeda, T., Ochi, H., Tamano, H., et al. (2018) Design
tool of deep convolutional neural network for visual inspection. In Proceedings of The Third
International Conference on Data Mining and Big Data (DMBD2018), Springer-Nature LNCS
Conference Proceedings 10943, Shanghai (pp. 604–613).

5. Cristianini, N., & Shawe-Taylor, J. (2000) An introduction to support vector machines and other
kernel-based learning methods. Cambridge: Cambridge University Press.

6. Flores-Fuentes, W., Rivas-Lopez, M., Sergiyenko, O., Gonzalez-Navarro, F. F., Rivera-Castillo,
J., Hernandez-Balbuena, D., et al. (2014). Combined application of power spectrum centroid
and support vector machines for measurement improvement in optical scanning systems. Signal
Processing, 98, 37–51.

7. Flores-Fuentes, W., Sergiyenko, O., Gonzalez-Navarro, F. F., Rivas-Lopez, M., Rodriguez-
Quinonez, J. C., Hernandez-Balbuena, D., et al. (2016). Multivariate outlier mining and
regression feedback for 3D measurement improvement in opto-mechanical system. Optical
and Quantum Electronics, 48(8), 403.

8. Rodriguez-Quinonez, J. C., Sergiyenko, O., Hernandez-Balbuena, D., Rivas-Lopez, M., Flores-
Fuentes, W., & Basaca-Preciado, L. C. (2014). Improve 3D laser scanner measurements
accuracy using a FFBP neural network with Widrow-Hoff weight/bias learning function. Opto-
Electronics Review, 22(4), 224–235.

9. Real, O. R., Castro-Toscano, M. J., Rodriguez-Quinonez, J. C., Serginyenko, O., Hernandez-
Balbuena, D., Rivas-Lopez, M., et al. (2019). Surface measurement techniques in machine
vision: Operation, applications, and trends. InOptoelectronics in machine vision-based theories
and applications (pp. 79–104). Hershey: IGI Global.

10. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. In Proceedings of the 25th International Conference on Neural
Information Processing Systems, Lake Tahoe, NV (pp. 1097–1105).

11. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep
convolutional neural networks. Communications of the ACM, 60(6), 84–90.

12. Nagata, F., & Watanabe, K. (2002). Learning of contact motion using a neural network and its
application for force control. In Proceedings of the 4th Asian Control Conference (ASCC2002)
(pp. 420–424).

13. Nagata, F., Mizobuchi, T., Tani, S., Watanabe, K., Hase, T., & Haga, Z. (2009). Impedance
model force control using neural networks-based effective stiffness estimator for a desktop NC
machine tool. Journal of Manufacturing Systems, 28(2/3), 78–87.

14. Nagata, F., Mizobuchi, T., Hase, T., Haga, Z., Watanabe, K., & Habib, M. K. (2010). CAD/CAM-
based force controller using a neural network-based effective stiffness estimator. Artificial Life
and Robotics, 15(1), 101–105.

15. Nagata, F., & Watanabe, K. (2011). Adaptive learning with large variability of teaching signals
for neural networks and its application to motion control of an industrial robot. International
Journal of Automation and Computing, 8(1), 54–61.

16. Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector
machines. Technical Report MSR-TR-98-14 (pp. 1–24).


	25 Development of Design and Training Application for Deep Convolutional Neural Networks and Support Vector Machines
	Abbreviations
	25.1 Introduction
	25.2 Design and Training Application for DCNNs and SVMs
	25.3 Review of Back Propagation Algorithm for Implementation
	25.4 Design and Training Experiments of Designed DCNN
	25.4.1 Test Trial of Design and Training of a DCNN for Binary Classification
	25.4.2 Test Trial of Design and Training for Five Categories

	25.5 Support Vector Machines Based on Trained DCNNs
	25.6 Conclusions
	References


