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3D Three dimensional
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21.1 Introduction

Methods of complex 3D object geometry measurement via the triangulation principle
using phase triangulation and structured illumination are actively developed and
improved [1]. A wide range of practical application of methods in such areas as
mechanical engineering, medicine, biology, archeology, and modeling [2–8] is due
to the low cost of the optical-electronic components of the system and its high
reliability.

At the same time, modern development of phase triangulation methods focuses on
different areas, including reducing measurement time [9, 10] to enable measurement
of the geometry of moving objects [11, 12], developing fast and convenient
calibration methods [13–15], and increasing the measurement accuracy using various
methods and approaches [16].

Nevertheless, there are a number of problems associated with the complexity
of using the existing phase triangulation methods for high-precision measurements
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under varying ambient light, narrow dynamic range of sources and receivers of
optical radiation, limited depth of field image of a photodetector, and arbitrary light
scattering of the measured object surface properties. A review of new methods of
phase triangulation is presented. These methods allow measuring three-dimensional
geometry under conditions of arbitrary measured object surface light scattering
properties, varying measurement setting external illumination, and optical elements
limited depth of field of the optical radiation source and receiver. There are five
sections in the chapter. The first section presents the steady method for decoding
phase images via arbitrary phase shifts. The second section describes the method
for the optical radiation source–receiver path nonlinearity compensation in 3D
measurements based on phase triangulation. The third section contains methods
comparison for structured images decoding under conditions of nonlinearity of
the optical radiation source–receiver path. The fourth section includes methods for
expanding the dynamic range of phase triangulation measurements. The fifth section
describes the method for estimating the spatial modulation optimal frequency in
phase triangulation measurements.

21.2 The Steady Method for Decoding Phase Images
with Arbitrary Phase Shifts

The intensity of the observed image at implementing the phase triangulation method
may be described by the following expression:

I (x, y) = A (x, y) (1 + V (x, y) cos ϕ (x, y)) , (21.1)

where I(x, y) is the phase image intensity distribution; A(x, y) is the distribution
of background intensity; V(x, y) is the average visibility; and ϕ(x, y) is the desired
distribution of the wave fronts phase difference. The illumination intensity in each
point of the structured image is a function of three unknown parameters: background
intensity A(x, y), average visibility V(x, y), and difference in phase between wave
fronts ϕ(x, y).

To decode phase images with arbitrary incremental shifts, there are several
known approaches, based on solving a system of transcendental equations [17, 18].
Expression (21.1) in vector form is as follows:

I = AR + (AV cos φ) C + (AV sin φ) S, (21.2)

where R = (1, . . . , 1)T, C = (cosδ0, . . . , cosδN − 1)T, S = (sinδ0, . . . , sinδN − 1)T,
and the vector dimensions can be determined by the quantity of phase shifts. It can
be shown that

AV sin φ = I · C⊥

S · C⊥ , (21.3)
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AV cos φ = I · S⊥

C · S⊥ , (21.4)

where S⊥ and C⊥ are the vectors orthogonal to vectors S, R and C, R, respectively.
Given the properties of the scalar product, we obtainS · C⊥ = C · S⊥. Then

φ = arc tan
I · C⊥

I · S⊥ (21.5)

or

φ = arc tan
I⊥ · C

I⊥ · S
. (21.6)

In the latter case, the vector I⊥ is only needed. The matrix operator I⊥ = M · I is
an appropriate use in this case. The transformation matrixM must meet the following
requirements: (M�I)I = 0 and M�R = 0.

For example, with three phase shifts, the skew symmetric matrix satisfies these
conditions:

M =
⎡
⎣

0 1 −1
− 1 0 1
1 −1 0

⎤
⎦ . (21.7)

Then from (21.6), we obtain the following decoding algorithm:

φ = arc tan
(MI) · C

(MI) · S
= arc tan

(I1 − I2) c0 + (I2 − I0) c1 + (I0 − I1) c2

(I1 − I2) s0 + (I2 − I0) s1 + (I0 − I1) s2
,

(21.8)

where ci = cos δi, si = sin δi are the corresponding components of vectors C and S.
The matrix M is obtained by symmetrically continuing the matrix (21.8) for an

odd number of phase shifts larger than 3:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1
− 1 0 1
1 −1 0

...

...

...

1 −1 1
− 1 1 −1
1 −1 1

. . . . . . . . . . . . . . . . . . . . .

−1 1 −1
1 −1 1
− 1 1 −1

...

...

...

0 1 −1
− 1 0 1
1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21.9)
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With an even number of phase shifts, the matrix M may be represented as:

M =
[

0 B

− B 0

]
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
1 −1

...

...

−1 1
1 −1

. . . . . . . . . . . . . . .

−1 1
1 −1

...

...

−1 1
1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21.10)

With four phase shifts, we obtain the following algorithm:

φ = arc tan
(I2 − I3) (c1 − c0) + (I1 − I0) (c2 − c3)

(I2 − I3) (s1 − s0) + (I1 − I0) (s2 − s3)
. (21.11)

The described algorithm for decoding phase images with a step-by-step shift
provides interpretation of phase images at arbitrary phase shifts. However, this
method does not fully take into account the additive and multiplicative noise in phase
patterns. Therefore, this method cannot minimize the error of phase determination
in the presence of noise in the analyzed images. For practical application of this
method, the authors, as a rule, use preliminary filtering of the initial phase images,
or this method is used for a limited class of objects.

To solve the scientific and technical problem of measuring three-dimensional
geometry of large-sized objects by triangulation methods with structured lighting,
it is necessary to develop robust approaches for processing and decoding structured
images. The authors propose a new method for decoding phase images that minimizes
inaccuracy in phase calculation in structured images.

Expression (21.1) can be written in the form:

Ii = A + B · sin (δi) + C · cos (δi) , (21.12)

ϕ = −arc tan

(
B

C

)
, (21.13)

V =
√

B2 + C2

A
. (21.14)

The coefficients A, B, and C can be calculated from finding the functional
minimum of the discrepancy between the experimental and theoretical data S(A,
B, C):

S (A,B,C) =
N∑

i=1

(Ii − A − B · sin (δi) − C · cos (δi))
2. (21.15)
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The minimization condition for S(A, B, C) is the equality of all partial derivatives
to zero:

∂S

∂A
= 0,

∂S

∂B
= 0,

∂S

∂C
= 0. (21.16)

As a result, we have the system of three linear equations:

⎧⎨
⎩

k1 · A + k2 · B + k3 · C = k7

k2 · A + k4 · B + k5 · C = k8

k3 · A + k5 · B + k6 · C = k9

, (21.17)

where k1 . . . k9 can be determined from the following equations:

k1 = N;
k2 = ∑N

i=1 cos (δi) ;
k3 = ∑N

i=1 sin (δi) ;

k4 = ∑N
i=1cos2 (δi) ;

k5 = ∑N
i=1 cos (δi) · sin (δi) ;

k6 = ∑N
i=1sin2 (δi) ;

(21.18)

k7 = ∑N
i=1Ii

k8 = ∑N
i=1Ii · cos (δi) ;

k9 = ∑N
i=1Ii · sin (δi) ;

Solving the system of linear Eq. (21.17), we obtain the following expressions for
A, B, and C:

A = −k2
5 · k7 − k4 · k6 · k7 − k3 · k5 · k8 + k2 · k6 · k8 + k3 · k4 · k9 − k2 · k5 · k9

−k2
3 · k4 + 2 · k2 · k3 · k5 − k1 · k2

5 − k2
2 · k6 + k1 · k4 · k6

,

(21.19)

B = −k3 · k5 · k7 − k2 · k6 · k7 − k2
3 · k8 + k1 · k6 · k8 + k2 · k3 · k9 − k1 · k5 · k9

k2
3 · k4 − 2 · k2 · k3 · k5 + k1 · k2

5 + k2
2 · k6 − k1 · k4 · k6

,

(21.20)

C = −−k3 · k4 · k7 − k2 · k5 · k7 − k2 · k3 · k8 + k1 · k5 · k8 + k2
2 · k9 − k1 · k4 · k9

k2
3 · k4 − 2 · k2 · k3 · k5 + k1 · k2

5 + k2
2 · k6 − k1 · k4 · k6

,

(21.21)

where ϕ is calculated from expression (21.13). Standard deviation of the measured
intensity S(A,B,C) and that of the phase σ (A,B,C) can be estimated by the following
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equations:

S (A,B,C) = 1

N

√
N

�
i=1

(Ii − A − B · sin (δi) − C · cos (δi))
2, (21.22)

σ (A,B,C) = 1

N

√
N

�
i=1

(
arc cos

(
Ii − A√
A2 + B2

)
+ arc tan

(
B

C

)
− δi

)2

.

(21.23)

The method of determining the phase shift is based on the classical harmonic
regression. The harmonic regression is a variation of the least squares method.
The least squares method is based on minimizing the functional of the discrepancy
between experimental and theoretical data by varying the desired parameters in
a limited range of their possible values. Therefore, the proposed method for
determining the phase shift gives a stable solution of the system of Eq. (21.3).
That is, it guarantees the minimization of the phase calculation error even in the
presence of noise, having zero expectation M and constant variance D in the sample
corresponding to certain coordinates (x, y):

M (x, y) = M ({Ii (x, y)} , i ∈ 1 . . . N) = 0 (21.24)

D (x, y) = D ({Ii (x, y)} , i ∈ 1 . . . N) = const (21.25)

From expression (21.13), it follows that phase ϕ does not depend on the
distribution of background intensity A. That is why the proposed method minimizes
the determination error ϕ in the presence of noise with constant expectation and
variance.

A necessary and sufficient condition for determining the phase ϕ is the non-
degeneracy of the system of linear Eq. (21.17) is:

rank

⎛
⎝

N
∑N

i=1 cos (δi)
∑N

i=1 sin (δi)∑N
i=1 cos (δi)

∑N
i=1cos2 (δi)

∑N
i=1 cos (δi) · sin (δi)∑N

i=1 sin (δi)
∑N

i=1 cos (δi) · sin (δi)
∑N

i=1sin2 (δi)

⎞
⎠ = 3.

(21.26)

Since expression (21.26) depends only on δi and N, it determines the necessary
and sufficient conditions for finding the solution of the system of Eq. (21.3) by
the proposed method depending on the values of the introduced shifts δi and their
number N.

The algorithmic complexity of the proposed method for determining the phase
shift depending on the parameter N is the sum of the complexity of all the steps in
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determining the phase. Given that there is a linear dependence on N in the formulas
for coefficients, the complexity of the whole method can be estimated as O(N).

Next, we verify the proposed method. To do this, we compare the result of the
presented method for determining the phase shift based on harmonic regression
and the generalized algorithm for decoding phase images based on the vector
representation of expression (21.3) [19]. The result of the work based on the deviation
of the phase measured value from the known initial value can be calculated as:

ε = ψ − ϕ, (21.27)

where ε is the discrepancy between the measured phase and the original one; ψ

is the phase value obtained using the corresponding method; and ϕ is the initial
phase. The initial phase is set by simulating the typical intensity distribution in
phase patterns. The shifts in the generation of phase patterns are calculated like a
set of random variables with a uniform distribution in the interval [0, 2π ). Phase
patterns are maiden with background intensity A = 10 and visibility V = 0.5. The
phase pattern intensity distribution is set according to Eq. (21.2) with the addition
of noise (Figs. 21.1 and 21.2). Noise has Gaussian distribution. The noise level is
presented by the background intensity standard deviation.

Let us examine whether the error of both methods depends on the value of the
found phase ϕ with constant noise and the same number of phase patterns N. To do
this, we build the dependence of deviation ε between the measured phase value and
the initial phase for different values of ϕ given in the interval [0, 2π ). The number
of phase patterns N = 50. Standard deviation of the noise is 1% of the value of the
background intensity A in expression (21.2).

Two hundred different sets of phase patterns were used for the reducement of
the stochastic nature of the graphs. The calculated deviations of the measured phase
maximum were recorded in the graph. Figure 21.3 shows the obtained dependences

Fig. 21.1 Dependence of
intensity in the phase image
on the phase shift without
adding noise
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Fig. 21.2 Dependence of
intensity in the phase image
on the phase shift with added
noise

Fig. 21.3 Deviation of the
phase, measured by the
method of processing phase
images, based on the vector
representation of the system
of equations (dashed line) and
a steady method for
determining the phase shift
based on harmonic regression
(solid line) at different values
of the phase ϕ

0.5 1 1.5 2 2.5 3

10-2







of ε on ϕ. It can be seen that the proposed stable method provides at least an order
of magnitude smaller deviation of the obtained phase, independent of the measured
value of the initial phase ϕ.

In practice, phase patterns, as a rule, contain noises of additive nature. Therefore,
it is useful to estimate the phase error, depending on the level of additive noise in
phase images.

Let us estimate the deviation of the measured phase value from the initial ε,
depending on the level of noise superimposed on the intensity distribution in the
phase pattern with a constant number of shifts. Since the value of the initial phase
ϕ does not affect ε, it is chosen equal to 0.5 radians. The number of phase patterns
N = 50. H is noise standard deviation from the applied to the intensity distribution.
H takes values in the range of 0–100% of the background intensity A(2).



21 Advanced Phase Triangulation Methods for 3D Shape Measurements. . . 683

The resulting dependence of the measured phase deviation on the noise level
is shown in Fig. 21.4. For the method of phase images processing, based on the
vector representation of the system of Eq. (21.3), the error exceeds 100% with noise
variance of more than 10%. The method of phase pattern processing based on the
vector representation of the system of Eq. (21.3) gives unreliable results when the
noise dispersion is over 10% of the background intensity. The proposed method for
determining the phase shift based on harmonic regression provides an error of less
than 50% for noise variance of less than 20%.

The number of implementations of phase images N is always limited in the
experiment. The optimal number of realizations is required for decoding phase
patterns with a given error. We conduct a comparative analysis of the methods in
the case of phase recovery from a set of N phase image realizations. The error in
determining the phase ψ is analyzed depending on the number N. The additive noise
level was set constant with the standard deviation of 5% background intensity level.
The phase value to be determined is unchanged and is set at 0.5 radians.

The results of the analysis methods are presented in Fig. 21.5. The error
in determining the phase by an algorithm based on the vector representation
of a system of transcendental equations does not qualitatively decrease with
increasing N.

Even for smallN (N > 5), the error of the method of decoding phase patterns based
on the vector representation of the system of Eq. (21.3) is several times higher than
that of the presented steady method based on harmonic regression. The simulation

Fig. 21.4 Deviation of the
measured phase: the image
processing method based on
the vector representation of
the system of Eq. (21.3)
(dashed line) and a steady
method for determining the
phase shift based on harmonic
regression (solid line)

Fig. 21.5 Deviation of the
measured phase from the
number of shifts: the method
of image processing based on
the vector representation of
the system of Eq. (21.3)
(dashed line) and the steady
method for determining the
phase shift based on harmonic
regression (solid line)
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results generally demonstrate the stability of the proposed method to noise, its small
error when working with a limited set of phase images and practical value.

Thus, a steady method for decoding the structured images has been proposed. It
minimizes the measurement error of three-dimensional geometry in the presence of
noise in the analyzed images. We consider a generalized algorithm that allows us
to obtain a solution to the system of transcendental Eq. (21.3) with arbitrary phase
shifts of the probing signal.

The stability of the method is shown in the presence of noise in a series of
measurements of intensity of structured images at one point with constant variance
and mathematical expectation. An estimate of the standard and measured deviations
of the observed image is given to evaluate the reliability of the results. The necessary
and sufficient condition for solving the problem by the proposed method is shown.
The complexity of the algorithm is estimated depending on the number of photos
with various structured images. A comparative analysis of the method presented in
this work and the generalized algorithm for decoding phase images based on the
vector representation of a system of transcendental equations is carried out. The
results of the analysis demonstrate several times lower measurement error when
working with a limited set of images.

The proposed method for processing images with spatially modulated phase
illumination allows minimizing the error in determining the shift of the initial
phase of the probing sinusoid. The received images of the measured object have
the form of phase images with a stepwise shift of the initial phase of the probing
sinusoid. The steady method for decoding the structured images allows minimizing
the measurement error of three-dimensional geometry by the triangulation method
with object surface arbitrary light scattering properties measured in a phase-
inhomogeneous medium.

21.3 Method for Nonlinearity Compensation
of the Source–Receiver Path of Optical Radiation in 3D
Measurements Based on Phase Triangulation

The power characteristics of many input devices, printing, or visualization of images
corresponds to a power law:

s = crγ , (21.28)

where Ô and γ are the positive constants. Often, Eq. (21.28) is written as

s = c(r + ε)γ , (21.29)

in order to introduce the shift, that is, the initial brightness, when the photodetector
input receives a zero optical signal. Devices used by the author as a source and



21 Advanced Phase Triangulation Methods for 3D Shape Measurements. . . 685

receiver of optical radiation also have a power type of energy characteristics. The
graphs of dependences of s on γ for various values are shown in Fig. 21.6.

Most modern imaging devices have power dependence with an exponent ranging
from 1.8 to 2.5. This trend originates from cathode ray tube monitors, in which the
luminance brightness has power dependence on voltage. Figure 21.7 shows an image
of a linear halftone wedge, which is fed to the monitor input. The image on the
monitor screen is darker than it should be.

Obviously, when using the method based on phase triangulation, it is necessary
to control the linearity of the receiving-transfer path between the source of optical
radiation and the image receiver. The presence of a nonlinear receiving-transfer
characteristic of the path between the source and the receiver of spatially modulated
illumination can cause difficult-to-predict systematic errors, which will depend on
the magnitude of the phase shift (Fig. 21.8).

Now there are compensation methods that are based on serial or parallel
compensating nonlinearity inclusion, introduction of the compensating nonlinear
feedback and linear corrective devices synthesized on the invariance theory.

Fig. 21.6 Graphs for
equations s = crγ , for
different values of γ (Ô = 1 in
all cases)

Fig. 21.7 Halftone image with linear wedge (left) and monitor response to linear wedge (right)
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Fig. 21.8 Type of sinusoidal
signal after power conversion

The simplicity of implementation is advantage of sequential or parallel inclusion
of compensating nonlinearity method. However, this method assumes the availability
of information about the nonlinearity of characteristics of the receiving-transfer path,
which in our case depends on the measured object reflective properties, external
lighting, and the internal parameters of the optical radiation source and receiver.
Therefore, the method of nonlinearity compensation on the basis of sequential or
parallel inclusion of compensating nonlinearity is not applicable in our case.

The nonlinearity compensation method based on compensating nonlinear
feedback is inappropriate to our problem. The feedback implies the presence of
information about the distribution of structured illumination in the received images.
The definition of illumination is the primary task of the optical triangulation method.

The method of modification by additional correction is proposed for compensation
for the source–receiver path nonlinearity of optical radiation in 3D phase
triangulation measurements.

The dependence of the intensity observed in the image on the intensity emitted
by the light source can be represented by some nonlinear function K as follows:

I = K(U). (21.30)

where U is the spatially modulated light intensity emitted to a small area of the
investigated object; and I is the pixel intensity of the image the center of this small
area is projected into.

If the object light scattering properties, the ambient lighting parameters, and the
internal parameters of the structured illumination modulator and receiver do not
change during the measurement process, the K function is identical for each pixel in
the image. The inverse function K−1 can be calculated if K is smooth and continuous
in the accepted values range.

Let us consider the nonlinearity compensation method of the optical radiation
source–receiver path in 3D phase triangulation measurements. First, the calibration
of the specified path is carried out. Then, to determine the function K, the measured
object is lightened with a series of parallel halftone sinusoidal bands. The object
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under study is consistently illuminated, providing uniform spatial modulation of the
radiation source (the illumination intensity is uniform over the entire area of the
radiator). The illumination intensity is changed linearly:

U0(i) = U0
0 + (i − 1) dU0 (21.31)

where i is the serial number of uniform illumination, i = 1 . . . .M; U0
0 is the

intensity of the first implementation of illumination; and dU0 is the increment step
of illumination intensity.

The dependence of the intensity of the optical radiation source on the observed
intensity in such an image is constructed for each point on the received images:

I (x, y) = K (x, y,U) . (21.32)

A function characterizing the nonlinearity of the source–receiver path of optical
radiation is obtained. Then, the inverse function K−1 is built to restore the radiation
intensity true value by the value of the registered intensity of the image at the point:

U = K−1 (x, y, I (x, y)) . (21.33)

It is possible to restore the intensity of the modulated optical radiation on the
basis of the function K−1, after obtaining investigation object images which are
illuminated by parallel sinusoidal bands,

Y (x, y) = K−1 (x, y, I (x, y)) . (21.34)

Here Y(x, y) is the light intensity distribution that is projected onto the measured
object. The use of function Y(x, y) instead of I(x, y) in the decoding phase images
method in phase triangulation eliminates the systematic phase measurement error of
the testing sinusoid.

For the verification of the proposed method, we compare the results obtained
by the steady decoding phase image method with and without compensation of the
optical radiation source–receiver path. The results of the measured phase deviation
from the known initial phase is estimated:

ε = |ψ − ϕ| , (21.35)

where ψ is the phase found by compensation method.
Let us set the phase ϕ at initial position with taking into account typical intensity

distribution in the phase images. Since the compared methods can work at arbitrary
δt, shifts in the generation of phase images will have the format of an occasional set
in the interval [0, 2π ). Phase images are formed with intensity of background A= 10
and visibility V = 0.5.
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The intensity distribution in the phase images is set according to (21.28) with the
addition of noise. Noise has random character with normal distribution. The level
of noise will be estimated by the mean square deviation (RMS) from the intensity
of background. We introduce a new parameter T: window width, where we will set
different phase shifts in (0, 2π ) interval. At T = 2π , the phase shift can take all
possible values. The introduction of the parameter T is due to the limitations of the
photodetector range, which in the presence of non-switchable hardware and software
adaptation automata can lead to uncertain results of intensity measurement in some
areas of the formed phase shift values (see Fig. 21.9).

In practice, phase images, as a rule, contain noise of additive nature, imposed
by the recording photodetector and elements of the receiving path. Therefore, it is
useful to estimate the accuracy of phase determination depending on the level of
additive noise.

Let us try to find the deviation ε of the phase from the initial one depending on
the noise level imposed on the distribution of the intensity in the recorded phase
images with known shift number and T = 0.875π . Recorded phase pattern number
N = 50; parameter γ = 1.5; and RMS noise H imposed on the distribution of
intensity is 0–100% of intensity of background. To decrease the stochastic character
of the presented graphs, we use 200 different sets of recorded phase images and put
the maximum acquired errors of the measured phase on the graph. Such procedure
is followed in all the experiments described below.

The results presented in Fig. 21.9 show that in both cases the character of the
phase error growth depending on the noise level ε(H) in the interference patterns has
a linear trend. However, at small values of noise level, this error taking into account
the path nonlinearity compensation tends to zero, in contrast to the error of phase
definition without compensation. If we do not compensate for the nonlinearity of the
source–receiver path of optical radiation, then at µ < 2π the method of decoding
phase images with arbitrary step-by-step shifts can give unreliable estimates.

Different sources and receivers of optical radiation have different parameters
γ , determining the energy characteristics of the device according to (21.28). We

Fig. 21.9 Deviation of the
value of phase from the level
of noise in the distribution of
intensity: the method of
decoding images without
nonlinearity compensation
(dashed line) and that with
nonlinearity compensation of
the source–receiver path of
optical radiation (solid line)
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estimate the deviation ε depending on the level γ at constant number of shifts
N = 50, noise level H = 10%, and the parameter T = 0.875π .

Dependence ε(γ ) (see Fig. 21.10) shows that applying the method of the path
nonlinearity compensation allows obtaining reliable values of the measured phase
at any γ . In addition, from Fig. 21.11, it follows that in the vicinity of γ = 1, the
compensation method cannot be used since in this vicinity the signal type after the
power conversion remains unchanged (Fig. 21.12).

In experiments, the phase image realization number N is always limited. It is
important to know the required number N for decoding phase images with a given
accuracy. We perform a comparative analysis of methods in the case of phase recovery
from a limited number of images N. We analyze the accuracy of phase determination
depending on N (Fig. 21.10). The noise level will be a constant variable equal to
10% of background intensity of a standard deviation, the phase window T = 0.875π ,
and the parameter γ = 1.5. From graphs in Fig. 21.10, it follows that when using
the method of decoding phase images without compensation for nonlinearity of
the source–receiver path of optical radiation, the phase measurement error (i.e.,
deviation ε) decreases with increasing N, but converges to a value of about 0.34
radians, which is more than 10% of the measurement range. When compensating

Fig. 21.10 Deviation of the
phase for various number of
shifts: the method of
decoding images without
nonlinearity compensation
(dashed line) and that with
nonlinearity compensation of
the source–receiver optical
radiation path (solid line)

Fig. 21.11 Deviation of the
phase from the value γ : the
method of decoding images
without nonlinearity
compensation (dashed line)
and that with nonlinearity
compensation of the
source–receiver path of
optical radiation (solid line)
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Fig. 21.12 Deviation of the
measured phase at different
window sizes T: the method
of decoding phase images
without compensation of the
path nonlinearity γ 1 = 1.5
(large dotted line), γ 2 = 2.5
(small dotted line) and that
with compensation for
nonlinearity of the
source–receiver path of
optical radiation (solid line)

for the path nonlinearity, ε converges to a value of about 0.05 radians or 1.5% of the
measuring range.

We estimate the phase measurement error for different window sizes T and
constant values γ 1 = 1.5; γ 2 = 2.5; H = 10%, N = 50. The results of estimations
are shown in Fig. 21.10. At T < 1 rad, ε tends to 50% of the measurement range with
and without nonlinearity compensation. At the given parameters H, N, and T < 1, the
system (21.3) becomes degenerate and has no stable solution. At T > 4.8 radians, the
error in determining the phase with and without compensation is almost the same.
At 2 < T < 5, the decoding phase image method without nonlinearity compensation
leads to obtaining significant systematic errors.

Thus, the proposed method of nonlinearity compensation of the source–receiver
path of radiation in 3D optic measurements based on structured light and phase
triangulation minimizes the error of the phase measurements with arbitrary stepwise
shifts in the presence of noise and power characteristics of the receiving-transfer
devices. Comparison of the steady method of decoding interferograms and method
proposed above shows that for T in the range 2 < T < 5, the nonlinearity compensation
improves the accuracy of phase triangulation at accidental phase shifts and random
noise. The method of nonlinearity compensation allows to reduce the error in several
times and to significantly increase the safety of 3D measurement results based on
optical phase triangulation with structured light. It allows using modern inexpensive
household devices, including those equipped with non-switchable hardware and
software adaptation machines, as sources and receivers.

21.4 Comparing Methods of Structured Image Decoding
at Nonlinearity of the Source–Receiver Path of Optical
Radiation

In the measurement of a 3D profile using the phase triangulation in the images, there
is often additive noise. In addition, most modern devices used to generate and input
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images have an amplitude characteristic corresponding to the power law, often called
“gamma correction” (21.28).

Several approaches are used to compensate for the nonlinearity of the source–
receiver path of optical radiation in 3D measurements based on phase triangulation.
The first is the use of a matched pair of the source and receiver of optical radiation,
for which the nonlinearity of the transfer function is obviously absent, that is, γ = 1
in (21.28). This approach is found in specialized optoelectronic devices that use a
single-frame decoding of a three-dimensional setting.

Another and more common approach is based on the application of the four-step
phase triangulation method. The method works as follows. Four illuminations are
projected on the surface of the measured object. The linear phase shift by adjacent
images is π /2. Without taking into account the power transfer function, we obtain:

In (x, y) = Ib (x, y) + Im (x, y) · cos
(
ϕ (x, y) + (n − 1)

π

2

)
, n = 1 . . . .4.

(21.36)

The phase ϕ(x, y) can be calculated by the formula:

ϕ (x, y) = arc tan

(
I4 − I2

I1 − I3

)
. (21.37)

Next, we take into account the power transfer function in the form of a second-
degree polynomial

In (x, y) = a0 + a1Sn (x, y) + a2S
2
n (x, y) + α, (21.38)

where a0, a1, a2, and α are the coefficients and S is the received intensity of the phase
image with power correction of brightness in accordance with expression (21.28).
Given the properties of trigonometric functions, from expressions (21.35), (21.37),
(21.38), the following can be obtained:

ϕ (x, y) = arc tan

(
S4 − S2

S1 − S3

)
. (21.39)

This method is resistant to additive noise and automatically compensates for
nonlinear distortions in the measurement results. The disadvantage of the method is
the need for all four measurements to fit in the dynamic range of the optical radiation
receiver, which is not always possible. For example, in the case of measuring objects
with complex profiles and arbitrary light scattering properties in a wide range of
values, it is almost impossible to match the source and receiver of radiation. In
practice, the used number of phase shifts is often larger than 4. In this case, the
obtained phase images are analyzed in fours having successive shifts by π /2 relative
to each other, and the results of the measured phase are averaged. The result will be
a fairly accurate and reliable measurement method.



692 S. V. Dvoynishnikov et al.

The third approach is more universal. It is based on the phase image decoding
method, which allows discarding unreliable measurements and performing phase
recovery in the images at an arbitrary set of phase shifts of the probing phase image
[20]. The phase value φ(x, y) can be represented as

φ (x, y) = ϕ (x, y) + δ (x, y) , (21.40)

where δ(x, y) is the initial phase shift at the formed spatial illumination. Then the
expression (21.2) can be presented as:

I (x, y) = Ib (x, y) + Icos (x, y) cos (δ) + Isin (x, y) sin (δ) , (21.41)

ϕ (x, y) = −arc tan

(
Isin (x, y)

Icos (x, y)

)
. (21.42)

The value of the phase ϕ(x, y) is determined from the condition of minimization
of the residual function between theoretical and experimental data:

S (Ib, Isin, Icos) =
N∑

i=1

Ii − Ib − Icos cos (δi) + Isin sin (δi) , (21.43)

∂S

∂Ib

= 0; ∂S

∂Isin
= 0; ∂S

∂Icos
= 0. (21.44)

This method requires direct compensation for nonlinearity of the source–receiver
path of optical radiation. Otherwise, its application will lead to systematic deviations
of the measured phase [21]. With the help of calibration of the source–receiver path
of optical radiation, the transfer function is set in the form of dependence:

Y (x, y) = K−1 (x, y, I (x, y)) , (21.45)

where Y(x, y) is the light intensity distribution that is projected onto the measured
object. The use of function Y(x, y) instead of I(x, y) allows excluding the systematic
measurement error of the phase of the probing sinusoid. Since the dependence Y(x, y)
automatically compensates for the background illumination Ib(x, y), the expressions
(21.43) and (21.44) will be reduced to the following form:

S (Isin, Icos) =
N∑

i=1

(
K−1 (x, y, Ii (x, y)) − Icos (x, y) cos (δi) + Isin (x, y) sin (δi)

)
,

(21.46)
∂S

∂Isin
= 0; ∂S

∂Icos
= 0. (21.47)
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This method is much more laborious, since it requires an additional procedure of
calibration of the source–receiver path of optical radiation, but it is more versatile and
reliable compared to the four-step method.

For its substantiation, it is required to analyze the error of phase determination in
decoding phase images on the basis of iterative four-step method and steady method
of decoding phase images with compensation of nonlinearity of the source–receiver
path of optical radiation.

The main sources of measurement error of the phase triangulation method are
noise on phase images and insufficient dynamic range of the optical radiation receiver.
Since in the case of radiation intensity that does not fall within the dynamic range, the
recorded intensity in the phase image is unreliable, such data will be discarded, and
the phase shift will be calculated from the rest set of reliable measurements.

It is shown in [22] that the phase determination error can be estimated as:

θ = �I√
N · I

, (21.48)

where N is the number of phase shifts, and �I/I is the relative error of the intensity
measurement by the optical radiation receiver.

Below are the results of analysis of the phase measurement error in decoding phase
images based on iterative four-step method and steady method of phase image decoding
with compensation for nonlinearity of the source–receiver path of optical radiation.
The analysis was performed at different noise levels in phase images, different values of
the gamma correction coefficient, and different consistency parameters for sensitivities
of the source and receiver of optical radiation.

Let the intensity of the radiation source scattered on the surface of the measured
object vary in the range [0 . . . 1] in relative dimensionless units. The operating range
of the optical radiation receiver is [a, b]. Parameter a takes the values [−1 . . . 1], and
parameter b takes the values [0 . . . 2]. Figure 21.13 gives examples of the source
intensity (a) and the observed receiver intensity (b, c, d) at different values of
parameters a and b and at the noise level of 5% on the received images. Changes
in all parameters allow estimating the measurement error at different light scattering
properties of the measured object surface.

Figure 21.14 presents the theoretical error of phase measurement in the absence of
noise in phase images. It is obvious that under ideal conditions the measurement error
will be zero. In addition, the graph shows that in the area where the inequality a > b is
performed, the measurements lose their physical meaning because the dynamic range
of the radiation receiver takes an incorrect value.

Figures 21.15, 21.16, 21.17, and 21.18 show estimates of the error of phase
determining at the noise level of 5% in the phase images and Figs. 21.19, 21.20,
21.21, and 21.22 at a noise level of 10%. Each graph shows measurement errors by
a four-step method (darker surface) and a steady method of decoding phase images
(lighter surface). The vertical axis and the surface color indicate the standard deviation
of the measured phase, and the horizontal axes show the values of parameters A and B,
reflecting characteristics of consistency of the source and receiver of optical radiation
at the measurement point. Errors are shown at parameter γ = 0.25, γ = 0.5, γ = 1,
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Fig. 21.13 Examples of intensity of the source (a) and the observed intensity of the receiver with
various values of parameters a and b (b, c, d)
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source of radiation A and B in the absence of noise in the phase patterns
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Fig. 21.15 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in phase images of 5%,
γ = 0.25
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Fig. 21.16 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 5%,
γ = 0.5
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Fig. 21.17 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 5%,
γ = 1
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Fig. 21.18 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 5%,
γ = 2
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Fig. 21.19 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 10%,
γ = 0.25
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Fig. 21.20 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 10%,
γ = 0.5
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Fig. 21.21 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 10%,
γ = 1
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Fig. 21.22 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 10%,
γ = 2
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and γ = 2. The measurement results show that in the region where the operating range
of the optical radiation receiver is consistent with the range of the emitted intensity,
the error of the methods is approximately the same. When leaving the consistency
area, the error of the four-step method increases significantly faster than that of the
steady method of decoding phase images.

Figures 21.23, 21.24, 21.25, and 21.26 show three-dimensional surface sections
(Fig. 21.22) at γ = 2 and the noise level of 10% in phase images. The results in the
graphs show that for all the values of consistency parameters of the receiver and the
radiation source, the method based on the steady decoding of phase images provides
the measurement error that is, at least, not worse than that in the four-step method.

Figures 21.27 and 21.28 show the accuracy of phase determination by the four-
step method and the steady method of phase image decoding at different consistency
parameters of the receiver and source of radiation A and B, for small values of noise
of 2% and 10% in the phase images. These graphs show that the error of the measured
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Fig. 21.23 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation by four-step method
(solid line) and steady method
of phase image decoding
(dashed line). Noise level in
the phase images of 10%,
γ = 2, B = 1

-1 -0.5 0 0.5 1
A

0

0.01

0.02

0.03

0.04

0.05

E
rr
or

Fig. 21.24 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation by four-step method
(solid line) and steady method
of phase image decoding
(dashed line). Noise level in
the phase images of 10%,
γ = 2, ¥ = 1.5
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Fig. 21.25 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation by four-step method
(solid line) and steady method
of phase image decoding
(dashed line). Noise level in
the phase images of 10%,
γ = 2, £ = 0

10.50 1.5 2
B

0

0.02

0.06

0.08

0.04

0.1

E
rr
or



21 Advanced Phase Triangulation Methods for 3D Shape Measurements. . . 699

Fig. 21.26 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation by four-step method
(solid line) and steady method
of phase image decoding
(dashed line). Noise level in
the phase images of 10%,
γ = 2, £ = −0.5
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Fig. 21.27 An error of phase
determination by four-step
method (solid line) and steady
method of phase image
decoding (dashed line) from
the consistency parameters of
the receiver and source of
radiation A and B at noise
level in the phase images of
2%

0.1

0.08

0.06

0.04

0.02

0
-1

0

1 0

1

2

B
A

E
rr
or

0.02

0.04

0.1

0.06

0.08

Fig. 21.28 An error of phase
determination by four-step
method (solid line) and steady
method of phase image
decoding (dashed line) from
the consistency parameters of
the receiver and source of
radiation A and B at noise
level in the phase images of
10%
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phase depends on the noise level in the phase patterns. Moreover, in the field of
consistency, both methods have almost identical level of error. This is confirmed by
the graphs in Figs. 21.3 and 21.4.

Based on the results obtained and the experiments carried out, the following
conclusion can be drawn. It is necessary to calculate the initial phase shift only
by a set of reliable measurements when measuring by phase triangulation in a limited
dynamic range of the receiver and with arbitrary light scattering properties of the
measured object surface.

21.5 Methods for Expanding the Dynamic Range of Phase
Triangulation Measurements

One of the disadvantages of the phase step method is the limited range of measured
coordinates. Phase values over the image can be unambiguously restored only within
the period.

Currently, the problem of phase ambiguity has not been solved. There are many
known phase field expansion algorithms [23], using known data on the investigated
phase field to calculate the full phase, that is, full period number corresponding to the
wave path difference, for example:

– Sign of phase change in the transition through the period
– Approximate values of the full phase obtained from other measurement sources

and type of measured wave front (smoothness, continuity of derivatives)
– Change in the band color in interferometers with the same wave paths, change in

the band contrast, etc.
– Difference in phases obtained from several measurements of one object with

changed band value

Most of the phase ambiguity elimination algorithms are based on the analysis of
the spatial structure of the phase field. The full phase is determined by its expansion,
that is, by successive addition or subtraction of 2π to or from the phase value at the
adjacent point, if the difference between them exceeds a certain threshold (Fig. 21.29).
This procedure is based on the assumption that there are no sharp jumps (more than a
period) at the points of transition through the period. To trace the transition boundary,
the number of periods has to be an order of magnitude smaller than that of points in
the detector array. This is only possible when analyzing a smooth phase front. The
addition of 2π can be considered as an extrapolation process. At that phase shift at the
previous restored points is considered for determining the phase shift at the following
points. The hypothesis of the phase transition existence at some point of the phase
field is accepted depending on the results of the analysis of its vicinity.

There is a known method for measuring the phase shift on interferograms using
an equivalent wavelength. Information about the wavelength of light sources is used a
priori.
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Fig. 21.29 Wave front
measured on module 2π

Optical differences of wave path at any point of the field (x, y) are determined from
expressions:

�a + 2πn = 2π

λa

OPX, (21.49)

at wavelength λa and

�b + 2πn = 2π

λb

OPX, (21.50)

at wavelength λb. Deducting (21.50) from (21.49) and selecting the optical difference
of wave path, we obtain:

OPX = �a − �b

2π
λeq + (na − nb) λeq, (21.51)

where

λeq = λaλb

|λa − λb| . (21.52)

Thus, it is possible to determine the phase front with a period equal to the equivalent
wavelength λeq.

The above-mentioned methods of increasing the measurement range are not suitable
for the problem of measuring 3D geometry of large objects based on the spatiotemporal
modulation of the optical radiation source, since there is no a priori information about
the 3D geometry of the measured object.

Below we consider the method of the full phase recovery using the integer analysis,
which does not use a priori information about the measured object. The method is
based on a series of measurements at different values of interference bands. The band
value is determined by the difference in the optical wave path, in which the interference
bands change for a period. The band value depends on the angle between the interfering
beams, the transmittance of the medium, or the wavelength of the light source.

This work applies a modification of the full phase recovery method using the integer
analysis.
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The modification consists of the fact that the measured object is consecutively
illuminated by a series of phase images with a multiple of the phase period. The phase
transition is sought only within one period. Then, in the presence of a set of phase
images with multiple periods and images where the phase shift does not transit through
the period (this is determined by the depth of the measuring setting), it is possible to
restore the value of the phase shift in the phase images with the smallest period.

Let the phase images be measured and the phase values are decoded for five fields
that have multiple periods N1 . . .N5 of a probing sinusoid:

N2 = 2N1, N3 = 2N2, N4 = 2N3, N5 = 2N4. (21.53)

Let ϕ1 . . . ϕ5 be phase values at one point in five fields corresponding to different
periods of the probing sinusoid N1 . . .N5. Then the value of the resulting phase φres
can be calculated by the following algorithm:

φ2 = ϕ2 + 2π · INT

(
(2 · ϕ1) − ϕ2

2π

)
, (21.54)

φ3 = ϕ3 + 2π · INT

(
(2 · φ2) − ϕ3

2π

)
, (21.55)

φ4 = ϕ4 + 2π · INT

(
(2 · φ3) − ϕ4

2π

)
, (21.56)

φres = ϕ5 + 2π · INT

(
(2 · φ4) − ϕ5

2π

)
, (21.57)

where function INT(Ø) takes the following values:

⎧⎨
⎩

INT(x) = 1, 0.5 ≤ x < 1
INT(x) = 0, −0.5 < x < 0.5
INT(x) = 1, −0.5 > x ≥ −1

. (21.58)

The obtained phase field φres provides a measurement range to correspond to the
period of the probing sinusoid N5 and the sensitivity to correspond to the period N1.

The proposed method of expanding the dynamic range of phase measurements
provides an increase in the dynamic range to the limits due to the resolution of the
source and receiver of spatially modulated optical radiation.
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21.6 Method for Estimating the Optimal Frequency
of Spatial Modulation in Phase Triangulation
Measurements

In the phase triangulation method, the phase error depends on the number of phase
images N and the relative error of the photodetector �I/I. The measurement error of
Z coordinate (setting depth), according to [24], can be estimated as follows:

�z = �ϕ · p

2π · tan θ
= �I · p

2π · I · √
N · tan θ

, (21.59)

where p is the spatial modulation period of radiation, and θ is the angle of triangulation.
It follows from expression (21.59) that the error in determining the z coordinate is

proportional to spatial modulation period of radiation. To minimize the measurement
error by the phase triangulation method, it is necessary to minimize the spatial
modulation period of optical radiation.

It is obvious that as the spatial modulation period of radiation decreases, the range
of the setting depth measurement decreases as well. Over the image, the phase values
can be unambiguously restored only within one period. To increase the measurement
range by the phase triangulation method, various methods of phase field expansion are
actively used in interferometry. There are known algorithms for phase field expansion,
using a priori data on the object under study to determine the full phase, that is, the
number of full periods [18]. There are also some known algorithms for restoring the
full phase using integer analysis when the object is illuminated by phase image series
with different multiples of the spatial modulation of radiation [19]. The most coming
triangulation methods for 3D measurements using structured light illumination are
the methods of expanding the measurement range using phase steps and the method
of binary coding of pixels [25, 26]. These approaches provide the best measurement
accuracy when projecting the least number of structured illuminations.

There are fundamental limitations on the resolution of the image formed by the
optical elements of the measuring system. Due to the nonlinear distortion of the optical
elements of the measuring system, the limited depth of field of the optical elements
of the system, it is impossible to obtain an absolutely sharp image. Therefore, it is
necessary to choose the frequency of spatial modulation of radiation based on the
following considerations. First, the maximum frequency of spatial modulation in the
received image must be less than the frequency of the equivalent low-pass filter,
which is the optical system of the meter. Second, in order to achieve the minimum
measurement error, the frequency should be maximized.

This chapter presents a method for estimating the optimal frequency of spatial
modulation of radiation for three-dimensional measurements based on phase
triangulation, which provides the smallest error in measuring a given depth z.

The dependence of the image on the photodetector on the intensity distribution
formed on the object surface by the radiation source can be represented as a convolution
of the pulse response function of the system and the intensity distribution function of
the image formed on the surface of the measured object by the radiation source:
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g (x, y) =
∫∫

h (x − x1, y − y1) f (x1, y1) dx1dy1 + n (x, y), (21.60)

where g is the image formed on the photodetector, h is the pulse response of the optical
system or the scattering function of the point source, f is the distribution function of
the intensity of the image formed on the surface of the measured object by the radiation
source, and n is the noise in the image. The noise function n in the image in addition
to the noise of the photodetector includes the background brightness distribution of
the measured object. Since the intensity of the generated illumination is significantly
higher than the background brightness of the measured object and, especially, than the
noise of the photodetector, the inequality is performed:

∫∫ ∫∫
h (x − x1, y − y1) f (x1, y1) dx1dy1dxdy �

∫∫
n (x, y) dxdy,

(21.61)

where integration is done throughout the image. In the frequency space, expression
(1.19) takes the form:

G(u, v) = H (u, v) F (u, v) + N (u, v) . (21.62)

Since the formed structured illumination has a pronounced modulation direction
(the radiation intensity is modulated along the selected, as a rule, horizontal
coordinate), then we limit ourselves to considering the one-dimensional case.

A standard approach can be used to experimentally determine the pulsed response
function of the optical system. Spatial low-frequency binary grid in the form of several
wide white light lines is projected on the surface of the object. The photodetector
detects the brightness distributionG0(u). The functionF0(u) characterizes the intensity
distribution on the surface of the measured object in the absence of noise and any
optical distortion. The value of the function F0(u) is obtained from a priori information
about the illumination formed on the surface of the measured object using the obtained
functionG0(u).

For example, the function F0(u) can be obtained as follows:

F0(u) = sign (φLow (G0(u))) , (21.63)

where the function sign gives 1, if the value is positive, and −1 if it is not positive. The
function φLow is the linear low-frequency filter whose cutoff frequency is obviously
higher than the spatial frequency of the observed binary grid, projected onto the surface
of the measured object.

Then the function H can be defined as:

H(u) = G0(u) − N(u)

F0(u)
. (21.64)

http://dx.doi.org/10.1007/978-3-030-22587-2_1
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According to expression (21.59), the optimal spatial period of radiation modulation
will be at the minimum value (p/I) or (1/wI), where w is the frequency of spatial
modulation of radiation, and I is the amplitude of the signal in the received images.
Since the ideal infinite harmonic signal in the frequency representation is expressed
by the delta-function, then

Gw(u) = H(u)δw(u) = H(w), (21.65)

δw(u) is the delta function equal to 1 at point w, and Gw(u) is the intensity
dependence formed on the photodetector at illumination in the form of a harmonic
signal with frequency w. Then the amplitude of the harmonic signal with frequency
w, observed in the images, will be proportional to the value of H(w). The problem
of determining the optimal spatial frequency of radiation modulation is reduced to
determining the frequency w, at whichH(w) · w → max.

Since the noise frequency distribution N(w) is unknown, it is impossible to
calculate the function H(w) using expression (21.64). Ignoring the noise in this case is
impossible, because high-frequency components will inevitably increase when divided
into high-frequency component of the “ideal” signal F0(u).

The following approach is used to estimate the function H(w). The point blur
function, which describes the dependence H(w), has to sufficiently accurately repeat
the normal distribution:

H(u) = Ae
− u2

σ2 . (21.66)

Then expression H(w) · w → max at

w = σ√
2
. (21.67)

From (21.64), we obtain:

G0(u)

F0(u)
= Ae

− u2

σ2 + N(u)

F0(u)
. (21.68)

We further assume that the noise distribution N(u) has a substantially smaller
amplitude than H(u). Then the expression N(u)

F0(u)
in the low-frequency region will be

significantly less than H(w). Therefore, in the low-frequency domain, a function G0(u)
F0(u)

can be used to estimate H(u).
Based on the assumption that the parameter A in expression (21.66) is equal to

H(0), and using the least squares method, we obtain:

σ =
∫ √

log
(

G0(0)
F0(0)

)
− log

(
G0(u)
F0(u)

)
· du

∫
u · du

. (21.69)
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Here integration is carried out only over the low-frequency part of the spectrum.
On the basis of expressions (21.67) and (21.69), we can obtain an estimate of the
optimum frequency of the harmonic signal.

The practical implementation and verification of the proposed adaptive phase
triangulation method for 3D measurements based on structured lighting were
performed experimentally. NEC VT570 digital projector with a spatial resolution
of 1024 × 768 was used as a source of spatially modulated radiation. Digital camera
Logitech C910 with a resolution of 1920 × 1080 was used as a receiver of optical
radiation. The projector formed illumination on the surface of the measured object in
the form of a set of several light lines equidistant on the flat surface. The aim of the
experiment was to determine the optimal spatial frequency of the projected signal for
this measurement scheme based on the adaptive phase triangulation method.

As a result of the analysis of the recorded images on the surface of the measured
object, the function G(u)/F(u) has been obtained and the point blur function H(u) has
been found (Fig. 21.30). The optimal period of the probing signal for this measuring
configuration has been found to be 38 pixels in our experiments.

Then a similar experiment was carried out, but with especially decreased sharpness
of the optical recording system. The analyzed signals in the first and second
experiments are shown in Fig. 21.31. It can be seen that the brightness signal fronts
along the horizontal direction in the images in the second experiment are substantially
tumbled down. The optimal period of the harmonic signal for this configuration of the
optical measuring circuit should be significantly longer than in the first case.

The obtained function G(u)/F(u) and the found point blur function H(u) are
presented in Fig. 21.32. The optimal period of the harmonic signal observed by
the photodetector for this configuration of the optical system was 105 pixels.

The results shown prove the usefulness and availability of the proposed method for
estimation of the best radiation modulation frequency for measuring three-dimensional
geometry using phase triangulation and structured radiation. In the case of defocusing
the optical elements of the measuring system, the optimal spatial modulation frequency
of the radiation will be significantly lower than in the case of a well-coordinated and
focused optical system of the meter.

Fig. 21.30 Dependence
G(u)/F(u) in the frequency
representation (solid line) and
the found blur function of the
system point (dotted line)
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Fig. 21.31 Fragments of the
analyzed intensity
dependences in the case of a
well-focused system (solid
line) and in the case of a
defocused system (dotted
line)

Fig. 21.32 Dependence
G(u)/F(u) in the frequency
representation (solid line) and
the found blur function of the
system point (dotted line) for
the case of defocused optical
system

21.7 Conclusion

This section presents the methods of phase triangulation, providing higher metrological
characteristics of measuring systems, as well as expansion of the functionality and
range of applications of optoelectronic systems for geometric control in production
conditions. The use of a steady method of phase image decoding will minimize
the measurement error of three-dimensional geometry by phase triangulation using
structured lighting. The method of nonlinearity compensation reduces the error several
times and significantly increases the reliability of the results of 3D measurements
based on phase triangulation and allows using modern inexpensive household devices,
including those equipped with non-switchable hardware and software adaptation
machines, as sources and receivers. The proposed method of expanding the dynamic
range of phase measurements provides an increase in the dynamic range to the
limits conditioned by the resolution of the source and receiver of spatially modulated
optical radiation. The proposed method for estimating the optimal frequency of spatial
radiation modulation for 3D measurements based on phase triangulation and structured
lighting minimizes the error of phase determination for the used optoelectronic
elements.
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