
Chapter 2
Bio-Inspired, Real-Time Passive Vision
for Mobile Robots
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Acronyms

CPU Central Processing Unit
CUDA Compute Unified Device Architecture
FPS Frames Per Second
GPGPU General Purpose Graphics Processing Unit
HSV Hue-Saturation-Value (color model)
MIPI Mobile Industry Processor Interface
ORB Oriented FAST and Rotated BRIEF
QR-code Quick Response matrix code
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
TFLOPS Tera Floating Point Operations Per Second
USB Universal Serial Bus
VFH Vector Field Histogram

2.1 Introduction

We are witnessing how robots proliferate to everyday life, and the number of
commercially available mobile robots increases gradually. Mobile robots perform
tasks like surveillance, cleaning or they assist handicapped people. However, to have
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a satisfying level of autonomy these robots need to reliably perceive objects and
events in their environment. At the same time robots have to be affordable and easy
to maintain. Hence, the design of sensors adequate for the navigation-related tasks
becomes important.

Nowadays cameras are considered the most compact and affordable exteroceptive
sensors in robotics. Passive vision captures a large amount of data, reflecting
both the photometric and geometric properties of the observed scene, but requires
considerable computing power, and has a number of limitations related to the used
sensors. A monocular camera has a limited field of view, and gives only an angle
to the observed feature/landmark, but no range information. Cameras on a stereo rig
can measure depth in unknown scenes, but their field of view is also limited.

However, natural evolution has developed visual perception systems that perfectly
fit to the needs and environment niches of particular species of animals. Some of them
are incredible, like the visual sense of flying insects [37]. These insects have a wide-
field view and complex eyes, which allow them to navigate efficiently. Similarly, some
mobile robots use omnidirectional cameras, which perceive whole surroundings from
a single view [33]. Such cameras ensure that the robot gathers necessary knowledge
about the environment in reasonable time. Regrettably, it is not easy to calculate
robot’s or objects’ position employing only data from omnidirectional camera. Visual
perception that has developed in more complex animals consists of peripheral and
foveal vision. The brain of an animal can provide a correct interpretation of the
environment employing cues from both systems. In general, it is possible, because
peripheral vision cues are pursued by the eye fixation. However, accurate perception
of distances requires foveal analysis, involving central vision. Eventually, two or
more views of the scene are required to produce 3D location of unknown objects,
which in animals is possible owing to binocular vision.

Following the most efficient biological vision examples, we decided to combine
omnidirectional and peripheral/foveal vision mechanisms in our construction. In
this way, we delivered a system which combines advantages of both camera types:
360◦ field of view and accurate environment’s data (robot’s and objects’ position).
We created a vision sensor having a hybrid field of view through combination of
a camera looking upward into a curved mirror, and a typical perspective camera
mounted on top of this mirror (Fig. 2.1). This sensor was presented for the first time
in [21], while the obstacle detection algorithm was developed separately, using only
the omnidirectional camera [36]. In this chapter we present in a unified way the
peripheral vision part, and the algorithms for distance measurement and obstacle
detection, that are related to foveal vision. Moreover, the new version of the sensor
is presented, which has the perspective camera mounted on a servo. Owing to this
design, the perspective camera can be rotated horizontally, which allowed us to create
new functions of the sensor. Thus, we describe object tracking that in turn makes it
possible to actively select the field of view for the perspective camera, resembling
the natural eye fixation mechanism. In our sensor real-time image processing is
ensured by a Nvidia Jetson embedded computer. The first prototype was based on
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Fig. 2.1 Hybrid field of view
passive camera with an
actuated central vision sensor

a b

Fig. 2.2 Mobile robots with the self-contained vision sensor: the first prototype on a small walking
robot (a), and the improved version on a wheeled robot (b)

the TK-1 board [12, 21], while the improved version uses the more recent Jetson
TX-1. Nvidia Jetson computers are energy-efficient, compact, and powerful, making
our sensor a self-contained perception unit. Such a design suits small, low-cost, and
resource-constrained mobile robots (Fig. 2.2).
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2.2 Related Work

Literature brings different examples of visual perception systems inspired by Nature.
The system presented in [30] creates a global description of the scene, and calculates
a coarse localization of the mobile robot. Then the results are improved based on the
extraction of local features from images. This approach takes inspirations from the
peripheral/foveal vision scheme, but still relies on a single camera for perception, and
does not control the field of view. A different foveation implementation is presented
in [34]. This work introduces an active vision system for an anthropomorphic robot
with a pair of cameras located in each of its eyes. This design ensures a wide field
of view, and the observed objects are always maintained in the foveal vision area.
Santos-Victor et al. [24] describe a robot navigation system based on a wide field of
view and simple processing of the optical information, which was directly inspired
by insect vision.

Omnidirectional cameras are popular in various applications for two decades
[38]. They are used for relatively simple robot navigation [39], and more recently,
are combined into multi-camera systems, for example to obtain omnidirectional
stereo images [23]. The concept of combining an omnidirectional and perspective
camera is widely used in the soccer robots. However, in the soccer domain well-
defined visual markers are available in the playing field [15], which are not present
in other application areas.

Also the problem of stereo-based distance measurements using a hybrid system
of cameras was analyzed in the context of mid-size league robotic soccer [11]. It
was demonstrated that stereo-based computation of objects’ positions often results
in highly uncertain measurements if the cameras are poorly calibrated. Hence, a
simple object localization scheme was proposed in [11], combining the bearing
information from the catadioptric, and the distance to a known object (e.g. a ball
used in soccer) from the perspective camera. In [20], we proposed a similar system,
which solves the real-time localization task on a small mobile robot. Our system
uses QR-code landmarks located on objects to simplify the localization task. Those
examples demonstrate that cooperation between cameras of totally different field of
view may be beneficial to various robotic tasks.

In the robotic literature only a few works tackle the problem of integrating the
omnidirectional and perspective cameras in a more tight and direct manner than it is
done in typical soccer robots. Cagnoni et al. [6] present a hybrid omnidirectional pin-
hole sensor, but they focus only on the sensor description and calibration procedure.
A system which supports obstacle detection for mobile robots is shown in [1].
Our hybrid solution presented in this chapter is conceptually similar to the designs
discussed in [6] and [13], but in contrary to our system, the solutions from [6] and
[13] require external processing of the images. Such an approach renders real-time
processing of the omnidirectional images almost impossible. Hence, these sensors
hardly can be applied in mobile robot navigation, which requires real-time response
to various visual stimuli. We have applied the first prototype of our sensor on a
small legged robot, which does not have enough on-board computing power to build
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an environment representation in real time [36]. Although omnidirectional cameras
have been already used on few walking robots [19], our application demonstrates
gains due to the use of a vision sensor with on-board processing. Although the first
version of our peripheral vision software has been already described in our recent
conference paper [22], this chapter not only provides a more detailed description, but
introduces also an object tracking module, based on particle filtering. This module
is a good example of the on-board processing power in our sensor.

2.3 Hardware of the Sensor

Our proposal of the new passive vision sensor consists of three subsystems. The first
subsystem is a single-board computer hosting other components and providing the
on-board computation resources. The second part is an omnidirectional subsystem
consisting of an upward-looking camera with a properly curved mirror. The camera
and its mirror are combined by a transparent tube. The last subsystem is a standard
perspective camera with the USB interface that is rotated by a servo. Two prototypes
of the sensor have been constructed, which share the general design, but differ in
the components being used. In both sensors a hyperbolic mirror machined from
aluminum alloy and then polished manually is used. The shape of the mirrors is
chosen in a way that ensures the single effective viewpoint imaging geometry [2].
With this geometry every pixel in the acquired image receives the light passing
through the common point in one particular direction, which is required to produce
geometrically correct images.

The omnidirectional subsystems in both variants of the sensor use cameras
dedicated to the Jetson single-board computer, and equipped with the CSI-2 MIPI
interface. In the first prototype it was E-Cam130 CUTK1 manufactured by E-Con,
which yields 1920×1080 images at the frame rate of 30 FPS. The second prototype
has the Leopard Imaging LI-IMX274-MIPI-CS camera, with the resolution of
3864×2196 pixels. In both cameras the resolution and frame rate can be changed by
software, but we have chosen the parameters that best suit the application, and are
a trade-off between the high resolution, high frame rate, and compatibility with the
available software.

The most different component in the first and the second prototype is the
perspective camera subsystem. In the older version, a simple webcam is fixed to
the top of the mirror with a printed plastic part. In the upgraded design, the camera
is attached to the small MX12-W servo from Robotis [4]. Thus, the perspective
camera can rotate horizontally. The flexible USB cable makes it possible to cover
full 360◦ field of view, but the camera cannot rotate n×360◦. The first version of the
design uses a Logitech 500 webcam with the resolution 1280×1024 pixels, while
the improved one is equipped with a more compact Microsoft Lifecam, having the
resolution of 1280×720 pixels.

The most important aspect of our sensor design is the use of a modern single-
board computer as the base. The first prototype uses Nvidia Jetson TK-1 with the
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Tegra K1, for which the main computing power is provided by Kepler architecture
graphics cores with compute unified device architecture (CUDA) support. Jetson
TK-1 achieves 300 GFLOP/s in the single-precision mode. The second version is
based on the more recent Jetson TX-1, which has the GPGPU with 256 cores of
the improved Maxwell architecture. The improvements allow the TX-1 version to
produce the computing power of about one TFLOP/s. However, a drawback of
the standard TX-1 model is its increased footprint, which required to increase the
size of the whole sensor unit. Both models of the Jetson board facilitate the CSI-2
MIPI interface for cameras allowing direct data transfer between the camera and the
GPGPU. This interface is used, however, only for the omnidirectional cameras. The
perspective camera is connected via typical USB interface.

2.4 Basic Software and Calibration

The developed sensor requires proper calibration of its components, as well as
parameters calibration for the stereo pair that consists of the perspective camera and
the virtual camera created by software from the omnidirectional image. All extrinsic
parameters (rotations and translations) are estimated with respect to the coordinate
frame of the catadioptric camera, which is considered the reference frame of the
whole sensor.

Calibration for a hybrid system is much more complicated than in a standard stereo
vision systems, because of the geometric distortions in the omnidirectional images.
Before extracting metric information from images acquired by the omnidirectional
part, the geometric distortions must be removed. Calibration of a stereo pair,
where one of the cameras is perspective, and the other one is omnidirectional,
is described in [6]. In this method, both cameras observe calibration patterns on
several parallel surfaces of known relative positions. This assumption is a drawback
of the method, because it makes implementation complicated and vulnerable to
errors due to inaccurate location of the calibration surfaces. Hence, we decided
to use a simpler method based on the existing open-source calibration tools,
which are well-documented and commonly used in vision research. In our method,
the omnidirectional camera and the perspective camera are at first calibrated
independently, and a virtual camera view is defined from the omnidirectional image.
Then, calibration patterns are shown to both cameras (perspective and virtual) in
different positions and angles. When the required number of images is collected,
these two cameras are calibrated as a standard stereo pair.

The calibration procedures for both subsystems and the stereo pair are highly
automated, and do not involve any external equipment other than a simple 63-field
chessboard pattern. We have used the same pattern in all the calibration procedures,
and the same size of the calibration database (20 images).
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2.4.1 Calibration of the Subsystems

Calibration of the perspective camera can be accomplished by using the popular
Matlab toolbox [5] or the OpenCV library procedures [16]. In contrast, the known
calibration methods for omnidirectional vision systems are often particular to
the camera type [3], or require an accurate specification of the mirror geometry
and additional equipment to perform the calibration procedure [10]. Among the
omnidirectional camera calibration methods known from literature the one proposed
by Scaramuzza et al. [26] appears to be the most universal and practical one, as it
uses only a standard chessboard pattern, and does not assume any particular mirror
or camera type. This method is implemented in the OCamCalib toolbox, which we
have used for the presented sensor.

The calibration process starts with determining the model of the perspective
camera. The model of distortions with five coefficients, which describe the radial
and tangential distortions of the image is used. The perspective camera matrix is
calculated from formula:

Kp =
⎡
⎣

fc1 αcfc1 cc1

0 fc2 cc2

0 0 1

⎤
⎦ , (2.1)

where fc1 is the horizontal and fc2 is the vertical focal length, cc1 and cc2 define the
center of the image, and αc is the pixel skew coefficient.

As already mentioned, the omnidirectional camera is calibrated employing the
approach and camera model proposed by Scaramuzza [25]. The geometric model
shown in Fig. 2.3 is represented by the formula:

Fig. 2.3 Geometric model of
the catadioptric camera
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where u and v represent projection of a 3D point p into the perfect (i.e. undistorted)
image, x, y, and z are image coordinates of this point on the mirror surface, while ρ

is the distance between the projected point p′ and the undistorted image’s center.
To solve the Scaramuzza equations and define the camera model, it is necessary

to calculate z = f (ρ), defined as a fourth order polynomial z = a0 + a1ρ +
a2ρ

2 + a3ρ
3 + a4ρ

4. In order to receive an optimal solution, the coefficients
are computed iteratively and the reprojection errors are observed. We use the
experimental procedure described in [26]. When preparing the calibration data it is
of great importance to cover the whole field of view of the camera by the chessboard
patterns, because the calibration data are used also to compensate any misalignments
existing between the mirror and the center of the camera. The calibration process
has two stages. First, the center of the omnidirectional image oc = [uc, vc]T and
the affine matrix A(2×2) are calculated. The affine matrix A(2×2) determines the
relation between (u, v) coordinates of the idealized image and the actual image
coordinates (u′, v′). Eventually, the calibration results are refined applying the
iterative Levenberg-Marquardt non-linear optimization technique.

2.4.2 Panoramic Images

Typically, a view of the environment, which is seen in a picture from the catadioptric
camera is highly distorted. While objects can be detected and roughly localized
or tracked using raw omnidirectional images, it is not possible to calculate
accurate positions of these objects or point features. For the calculation of the
accurate distances and geometric relations a rectified (i.e. geometrically corrected)
360◦ panoramic image is necessary. With such images, the sensor can not only detect
obstacles, but also measure accurate distances to objects in the wide field of view.

Scaramuzza [25] presents a simple method of the image rectification based on
geometric inverse projection and the calibrated model of the catadioptric camera.
Based on geometry and dimensions of the images (Fig. 2.4), the omnidirectional
image pixel coordinates (u, v) are calculated:

u = 2πvpRmax

h
cos

(
2πup

w

)
, v = 2πvpRmax

h
sin

(
2πup

w

)
, (2.3)

where h is the height of the panorama, and w is the width of the panorama, Rmax
denotes the radius of the omnidirectional image’s outer circle, while (up, vp) are
respective pixels of the reconstructed panoramic image.
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Fig. 2.4 Geometry of the panoramic image surrounding the catadioptric camera

However, the formulas (2.3) do not consider the calibrated parameters of the
catadioptric camera. Because of that the panoramic image is not compatible with
the field of view of the perspective camera image. To achieve this compatibility,
our rectification algorithm has to locate the horizontal line (pc point in Fig. 2.4)
of the panoramic image. The correctly located horizontal line should be on the
same elevation as the optical center of the curved mirror. In practice, it means
that pixels taken from the central row of the panoramic image should have zero z

coordinates. The half-lines p1 and p2 go through the upper and the lower rim of the
cylinder, respectively. For further processing, especially for creation of stereo-pair,
it is very important that the height h of the cylinder (in pixels) equals the height
resolution of the perspective camera image. Next, all pixels (i.e. their coordinates)
from the panorama’s cylindrical surface are re-projected back into the undistorted
omnidirectional image. To achieve this, a method presented in (2.2) is used, which is
based on the inverse mapping. The last step in the corrected procedure for panoramic
image creation is calculation of the pixel coordinates in the omnidirectional image
by formula:

u = ρv(vp) cos

(
2πup

w

)
, v = ρv(vp) sin

(
2πup

w

)
. (2.4)

where ρv = f (vp) denoted the distance between the point’s projection and the center
of the omnidirectional image. This parameter is computed separately for each row
of the panorama. The coordinates u and v are considered in the range between the
Rmin and Rmax radius. The minimal radius Rmin is determined by the blind area in
the omnidirectional picture.
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a b

Fig. 2.5 Rectified panoramic images: constructed using only the inverse projection (a), and
constructed using our improved method (b)

Correct image rectification is a time-consuming process. Hence, to do all
calculation in real-time, the OpenCV function remap() is used, which is supported
by CUDA on the Jetson platform. In this parallelized version the reconstruction
of a panoramic image takes only 0.85 ms. Example results of panoramic image
reconstruction are shown in Fig. 2.5. The image constructed considering the
calibrated parameters of the system and the correct horizontal line location (Fig. 2.5b)
looks more natural, and the relations between the height of particular objects seen
in the image are preserved, unlike in the simple method (Fig. 2.5a).

2.4.3 Virtual Camera

To calculate the distance between the sensor and an object of unknown size, it is
necessary to have two views of this object, which are related by known extrinsic
parameters, i.e. the rotation and translation between the cameras that produced these
views. To accomplish this task we define a virtual camera, which provides the field
of view similar to the actual perspective camera of the hybrid sensor. The coordinate
system of the virtual camera has the origin located in the optical center of the curved
mirror (Fig. 2.6). The focal length and resolution are chosen purposefully to yield
images that are geometrically similar to the perspective ones. While a similar idea
was used in [13], our virtual camera image is defined directly from the panoramic
image constructed in real-time, which makes the computations much faster. We take
advantage from the fact that the panoramic images are reconstructed in real-time in
our sensor, and they make a perspective-like view of the scene readily available in
the 360◦ field of view. Thus, we only need to create from the panorama a virtual
image that is geometrically compatible with the actual perspective image. The virtual
image is created by projecting a ray from the center of the curved mirror towards the
cylindrical surface. This ray determines the area on panoramic image defined by the
requested resolution of the virtual camera (compatible with the physical one). Pixels
from a proper are defined on the panoramic image are taken as a representation of
pixels in the virtual camera image.

The calibration procedure for the virtual camera is the same as the one we use
for the physical perspective camera. We used the same toolbox [5] to get the camera
matrix Kv .
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Fig. 2.6 Geometric relations
between our sensor and the
virtual camera image

2.4.4 Calibration Between the Subsystems

To know the geometric relations between the two subsystems necessary for the stereo
distance measurements we perform extrinsic calibration between the perspective and
the virtual camera. The results are extrinsic parameters of the stereo pair. We treat
the perspective camera and the virtual camera as a stereo pair, unlike [6], where the
perspective and the omnidirectional camera are calibrated together. Our approach
avoids the use of any special calibration equipment, and allows us to use the standard
calibration software. Therefore, having defined the virtual camera, we assume that
we have pair of cameras, which are properly calibrated in terms of their intrinsic
parameters, as the Kp, Kv matrices and distortion models are already computed. The
next step of the calibration is calculation of the extrinsic parameters of the stereo
pair. To accomplish this, we use again the camera calibration toolbox [5]. We take a
new series of images, which contains the chessboard pattern seen in many different
positions over the common field of view of both cameras. The transformation of the
coordinate system between the perspective and the virtual camera is computed from
the corresponding points of the calibration pattern. This relation is described by the
rotation matrix Rs(3×3) and the translation vector ts = [tx, ty, tz]T . The last step of
the hybrid vision sensor calibration is calculation of the essential matrix [9]. The
essential matrix is computed based on rotation and translation between the images
from both cameras:
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E = Rs

⎡
⎢⎣

0 −tz ty

tz 0 −tx

−ty tx 0

⎤
⎥⎦ . (2.5)

2.5 Peripheral Vision in the Hybrid Sensor

The concept of a stand-alone passive vision sensor comes from the observation,
that some mobile robots (e.g. small walking machines) cannot allocate enough
computing power to the perception and environment modelling tasks. Therefore,
they may benefit from a sensor that provides the robot with pre-processed navigation
cues, such as location of obstacles or direction of collision-free motion. The software
described so far in this chapter converts raw frames from the omnidirectional camera
into geometrically correct panoramic and virtual camera images, but does not support
navigation directly. Hence, this section describes how the omnidirectional images
can be used to support selected navigation-related functions of the robot, providing
the machine with a rough analogy of the peripheral vision in animals. Our peripheral
vision enables the robot to detect obstacles and moving objects, track objects, and
focus the perspective camera on a selected object. This last function demonstrates
benefits from the cooperation between the peripheral and central vision capabilities
in our hybrid sensor. Although the algorithms behind these functions are simple
in general, we use them to demonstrate that our sensor is an efficient platform to
implement various image processing algorithms, also these that benefit a lot from
parallel processing on a GPGPU.

2.5.1 Detection of Objects

Rapid detection of changes occurring in the environment is crucial to animals, as
it is related to their predatory behaviors or the ability to avoid other predators
and various natural hazards. Also mobile robots may benefit from the ability
to quickly detect changes in the observed scene. Therefore, the main peripheral
vision function implemented in our sensor is detection of moving objects in
the omnidirectional images. Moving objects are segmented from the background
in real-time using the Background Subtraction Library (BGSLibrary) [32]. This
function supports human–robot interaction (e.g. detection of people approaching the
robot), surveillance applications, and multi-robot systems, where quick detection
of obstacles and other robots is required [14, 28]. The BGSLibrary offers an
easy-to-use software framework integrated with OpenCV. It makes possible to
discriminate moving objects from the background, providing that the camera is
static while acquiring a pair of images. The library contains implementation of
several algorithms that support different tasks, such as video analysis. From these
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algorithms, we chose two techniques of relatively low computational complexity,
namely the FrameDifferenceBGS and SigmaDeltaBGS.

FrameDifferenceBGS is very simple, as it only compares the query image to the
one acquired in the previous time instance, and then extracts the moving objects
by marking areas where the difference of color is larger than a given threshold.
SigmaDeltaBGS algorithm is somewhat more complicated, as it attempts to estimate
parameters of the observed background, which is assumed to be approximately
uniform (e.g. a flat floor). This algorithm produces fewer artifacts than the simple
frame difference, but is slightly more computationally demanding. By default the
BGSLibrary is running on a CPU, and it is not compatible with CUDA, hence
it cannot benefit from a GPGPU. Because in the robotic applications real-time
processing is a must, we adapted the used BGSLibrary algorithms to use a version
of OpenCV that is supported by CUDA. Eventually, we were able to exploit the
GPGPU readily available in the Jetson platform.

2.5.2 Tracking of Objects

Some of the moving objects that could be extracted from background by our change
detection functions may be important enough to be tracked for longer time, e.g. to
determine their speed and trajectory. To track an object the sensor has to determine
some of its perceptual properties, to make this object distinguishable among others.
The simplest property that can be easily distinguished is color. An implementation of
this concept on the hybrid field of view sensor was presented in [22]. For the sake of
speed, detection of objects having a specific, user-defined color was implemented on
the raw omnidirectional images applying thresholding in the Hue-Saturation-Value
(HSV) color space. The location of an area of the defined color is then converted
to the polar coordinate system, with the origin in the center of rotation of the
moving camera servo. This gives the perspective camera its reference angle, which
is compared to the current angle of rotation from the camera servo. The computed
rotation angle is the one that brings the camera to the target heading in the shortest
time.

Because the simple tracking procedure can be applied only to bright-colored
objects, its practical use on a mobile robot is limited. Therefore, we implemented on
the hybrid field of view sensor also a more advanced tracker employing optical flow
and particle filter for the tracking procedure. This function makes it possible to track
previously unknown objects having arbitrary shapes and colors, as long as they move
at a reasonable speed and stand out visually from the background (Fig. 2.7). The new
tracker is based on the algorithm presented in [29] with some improvements. The
computation of optical flow is implemented as a parallelized version of the Farnebäck
algorithm [7], which quickly yields a vector field with the detected velocity vectors
of pixels that have moved between two consecutive frames. Then, a filter with 60
particles is initialized around the target object, which has to be designated by the user
with a bounding box. As in the original algorithm [29] the particles are described
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a ba b

Fig. 2.7 Simple, color-based object tracking: an object (red bucket) detected object in the raw
image (a), a perspective camera image taken after focusing on this object’s location (b)

in polar coordinates that are natural for an omnidirectional image. The weights of
particles are computed taking into account differences between the velocity vectors of
the particles (i.e. image pixels where the particles are located) and the velocity vector
of the target, which is known from the previous iteration. Moreover, the similarity
of the Hue component of the HSV color model is considered when computing the
weights. The resampling step draws a new set of particles from the weighted ones,
favoring particles with higher weights, which replace those of lowest weights. As a
result, the filter converges in few iterations and the best particles track the moving
target.

2.5.3 Avoiding Obstacles

Obstacle avoidance is an essential function in every mobile robot. A robot has to
detect any objects that may pose a danger when it is attempting to move towards the
given goal. Obstacles may be detected by range or visual sensors, but the avoidance
task becomes more efficient if the robot perceive the objects that surround its body
without a need to rotate. Therefore, peripheral vision provided by the omnidirectional
part of our sensor camera is particularly suitable to indicate the presence of obstacles
around the robot in real-time. This concept has been implemented on a compact,
low-cost legged robot [36], which got equipped with the first prototype of our vision
sensor.

The obstacle detection and avoidance method is inspired by the popular vector
field histogram (VFH) algorithm [35]. This algorithm can be directly used for sensors
which measure the distances between the robot and the surrounding objects, for
example sonars or 2D laser scanners. Based on this data, a local map of the local
environment is created. However, our version of the algorithm works using only
data from the omnidirectional part of the hybrid sensor. All calculations should be
performed in real-time, so the robot can pursue the obstacle avoidance task. Potential
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Fig. 2.8 Construction of the occupancy grid from the omnidirectional images: raw image (a), data
projected to a horizontal 2D image (b), final occupancy grid (c), and the binary panoramic image
after filtration (d)

obstacles are recognized on the panoramas rectified in real-time, through background
removal. Next, rough distances to them are calculated directly from these images
to create an occupancy grid representation of the surroundings. This is possible,
because in the panorama objects that are closer to the sensor are located in the lower
part of the image, while the upper part depicts more distant objects.

Also because of speed requirements, the panoramic images are constructed in
a slightly different way than in the general case (see Sect. 2.4.2). Namely, the
background is removed from raw omnidirectional pictures (Fig. 2.8a) using the color
information, and only these pixels that represent obstacles are transferred to the
panorama. Using a defined color in the HSV color space is a very background
removal fast method, and it does not need a good estimate of the robot’s ego-motion,
which is unavailable in a legged robot. On the drawbacks side, we have to assume that
the background is of approximately uniform appearance. Although combining this
function with the BGSLibrary functions is possible, we have found that the simple
method works well indoors, while it is much faster and easier to parallelize using
CUDA. On the legged robot, the areas that can show the body or the swinging legs
of the machine are masked by proper shapes directly on the omnidirectional image
[36]. The omnidirectional images with masked background and the robot’s element
that may be treated as close objects are then binarized and converted to panoramic
images (Fig. 2.8d). The binary panoramas are treated with erosion and then dilation
morphological operators in order to eliminate small, isolated pixel blobs. The next
step is to fill the 2D local occupancy grid of the environment with the information
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Fig. 2.9 Configuration of our sensor on the walking robot (a), panoramic image data projected
into the 2D local environment representation (b)

from the prepared images. In the pictures obstacles are marked as white areas, and
free areas are marked black. The panoramic image coordinates that have to be used
to find information about the occupancy of the cells in the grid are defined as:

[
xp

yp

]
=

[ αwpan
360◦

xpan0 − gpanγ

]
, (2.6)

where: wpan is the width of the panoramic image (pixels), gpan defines the vertical
resolution of the panoramic image (pixels/1◦), and xpan0 defines the elevation of the
horizon line (Fig. 2.9a). The angles α and γ are given by formulas:

α = arctan

(
xmap

ymap

)
, γ = arctan

⎛
⎝ hcamera√

x2
map + y2

map

⎞
⎠ , (2.7)

where xmap and ymap are coordinates of the occupancy grid, and hcamera is the
elevation of the sensor center measured from the floor. This parameter yielded by the
robot’s controller, because in a legged machine it depends on the legs configuration
(Fig. 2.9b).

The local grid map that is a robot-centric representation of the environment
accumulates the occupancy information extracted from the prepared panoramic
images. Using this intermediate representation makes it possible to accumulate
the information related to obstacles in short time windows, and avoids the necessity
to compute the control commands using highly uncertain data. The coordinates
of the pixels that represent obstacles are transformed into an instantaneous and
local horizontal image—a form of simple map (Fig. 2.8b). Next, the coordinates of
obstacles are employed to update the robot-centered occupancy grid. The occupancy
grid is attached in the origin of the vision sensor coordinate frame, and its size is
5 m×5 m, with 0.2 m×0.2 m cells (Fig. 2.8c). Following the idea of original VFH we
increase the cell occupancy by a fixed value (in the experiments the value of 3 was
applied) whenever a pixel representing an occupied area (i.e. obstacle) is transferred
into this particular cell. If the transferred pixel represents an empty area, the cell
occupancy is decreased by a smaller value (value of 1 was used). However, the
occupancy counter is bounded for each cell: it cannot exceed 25 or drop below zero.
Then, the one-dimensional polar histogram is built upon this occupancy grid, exactly
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as in the original VFH. This histogram is also attached in the origin of the sensor
coordinate frame (coincides with the center of the robot), which makes it possible
to select the steering direction that avoids all obstacles, but is the one closest to the
direction to the goal.

2.6 Central Vision in the Hybrid Sensor

The central vision in animals and human beings serves mostly the needs of accurate
interaction with particular objects in the environment, supporting, e.g. grasping of
objects. However, our sensor is dedicated to mobile robots, and the central vision
serves mostly navigation tasks, such as landmark-based localization [20]. Hence, the
main function is accurate measurement of distances to selected objects.

The distances are measured employing an unorthodox stereo vision setup, in
which one image in the stereo pair is yielded by the perspective camera directed
towards the chosen object, but the other one is synthesized from the omnidirectional
image by our virtual camera. Assuming that both cameras are calibrated with respect
to intrinsic parameters, we need to relate the perspective camera coordinates to the
coordinate system of the virtual camera by extrinsic calibration, as described in
Sect. 2.4.4. Once the extrinsic parameters are known, we compute the projection
matrices for both cameras in the stereo pair. The projection matrix of the virtual
camera reduces to Pv = Kv[I|0], because we assume that the coordinate system of
this camera is attached in the origin of the coordinate frame of the stereo pair. Then,
the projection matrix of the perspective camera is calculated. This matrix accounts
for the rotation and translation between the two cameras: Pp = Kp[Rs |ts]. A point
in the 3D scene p is related by the projection matrices to its counterparts p′

v and
p′

p in the 2D images obtained from the virtual camera, and the perspective camera,
respectively:

p′
v = Pvp, p′

p = Ppp. (2.8)

Therefore, we can reconstruct the position in 3D of the point p from its projections
on the undistorted images from both cameras. The stereo distance computation is
accomplished using the optimal triangulation method [8], which runs in real-time
on the Jetson board in our sensor. It should be noticed that this method has been
chosen mostly due to its computation speed advantage and simple implementation,
while more recent and advanced methods exist, e.g. based on neural networks [18].
The GPGPU available in our sensor makes it possible to implement such a method
in the future.

Prior to the stereo computations, we have to determine the matching point
features. These features are located on the images from both cameras, but they
represent the same points in 3D. The computer vision literature lists a number of
methods to determine point correspondences in stereo vision [9]. Taking into account
that the images produced by the virtual camera are of relatively low resolution,
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because they are only up-sampled to the resolution compatible with the perspective
camera, we employ the point descriptors to find the corresponding features. The
descriptor vectors catch the appearance of the local neighborhood of each feature.
They are commonly used to match point features in robot navigation, and are
characterized by a good trade-off between the matching efficiency and the computing
power requirements [27]. We have implemented three alternative feature matching
procedures using SIFT, SURF, or ORB detector/descriptor pairs. The use of sparse
point features yields “sparse” stereo information, as the position is computed only
for a certain number of features. This is, however, acceptable for most navigation
algorithms that natively employ sparse feature maps [31].

Point features are detected in both images, and then described using one of the
detector/descriptor pairs. The coordinates of the feature points are undistorted and
normalized. Then, we attempt to match points from both images minimizing the
distances (Euclidean in the case of SIFT and SURF, and Hamming in the case of
ORB) between the descriptor vectors associated with these points. Once the initial
associations are established, the symmetrical reprojection error is calculated:

erep = max{d(ej , (u
v
i , v

v
i )), d(ei, (u

p
j , v

p
j ))}, (2.9)

where uv
i and vv

i ) denote the normalized coordinates of the i-th p′
v point, u

p
j and

v
p
j are coordinates of the j -th p′

p point, while the Euclidean distance of a point y

to the line x is denoted by d(x, y), and ei , ej are epipolar lines computed from the
essential matrix (2.5):

[eix , eiy , eiz ]T = E[(uv
i , v

v
i , 1)]T , (2.10)

[ejx , ejy , ejz ] = [(up
j , v

p
j , 1)]E.

If the error erep (2.9) is smaller than a fixed threshold, the match gets accepted. The
paired features are then used to calculate the distances in the 3D scene.

2.7 Experimental Results

2.7.1 Peripheral Vision

Peripheral vision functions have been tested in the tasks of obstacle avoidance, detec-
tion of dynamic objects, and tracking of both specific color and arbitrary shape/color
objects. Some of these experiments are documented on the accompanying video
material.1

1http://lrm.cie.put.poznan.pl/bioinspsens.wmv.

http://lrm.cie.put.poznan.pl/bioinspsens.wmv
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Fig. 2.10 Visualization of the grid maps produced in our sensor while computing a sequence of
steering directions to the goal

The more compact version of the sensor, based on the Jetson TK-1 board was tested
on a legged robot. The robot walked on a flat floor in a lab, avoiding different types of
obstacles, including specially prepared cardboard boxes and tubes, as well as the usual
lab equipment. Robot-centered grid maps updated in sequence during this experiment
is depicted in Fig. 2.10. The direction to the goal defined by the human operator is
shown in Fig. 2.10 by blue arrows, green arrows depict the steering direction obtained
from the VFH algorithm, and distances used in the polar histogram to detect obstacles
are denoted by red circles. An important improvement in the processing speed has
been achieved for this algorithm owing to the use of parallel processing on the
Jetson’s GPGPU. Namely, if projection of the detected obstacles from the panoramic
image to the robot-centered map was implemented on the Jetson’s KT-1 CPU, this
operation took 3.01 ms for a single image, but the CUDA implementation using the
Kepler GPGPU required only 0.45 ms for the same operation.

Also the real-time detection of moving objects through background discrimination
was tested on the Jetson TK-1 variant of the sensor. The FrameDifferenceBGS
algorithm implemented on the Jetson TK-1 CPU required 19.8 ms per frame. This
is enough to detect slowly moving objects, however, the embedded Jetson platform
is much slower in this task than a desktop computer (PC with i7 at 2.3 GHz),
which took only 8.5 ms per frame. Unfortunately, the execution time decreased
only minimally, to 13.7 ms, when the FrameDifferenceBGS algorithm was re-
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Fig. 2.11 Dynamic objects segmented from the background by the SigmaDeltaBGS method: the
panoramic image (a), and the detected objects denoted by white pixels (b). The orange rectangle
surrounds some wrongly identified pixels

implemented using CUDA and ran on the Jetson’s GPGPU. The reason for this
result is a large number of data transfer operations in the considered algorithm,
compared to the relatively simple computations. Such tasks do not benefit much
from parallel processing architecture. For the more complex SigmaDeltaBGS the
difference in processing speed between the Jetson TK-1 implementation and its
desktop PC counterpart was smaller—processing of a single frame took 239.6 and
198.7 ms, respectively. However, in this algorithm data transfer constitutes much
smaller fraction of the operations. Figure 2.11 shows example images with a person
and a toy cart detected by the SigmaDeltaBGS algorithm. Notice that very few
outliers are present (Fig. 2.11b).

Tracking was tested on several objects, including simple balls, toys, and people
surrounding the sensor [17]. Figure 2.12a demonstrates the behavior of the particle
filter: from the computed optical flow field (left) to the converging particles (shown
as pink rectangles). The ability to track an object of complicated shape and color is
shown in Fig. 2.12b, where a toy giraffe (pulled on a rope) is tracked by the filter.
Real-time performance is achieved due to parallel implementation of both the optical
flow and the particle filter on the GPGPU.

2.7.2 Central Vision

For the evaluation of the main central vision function, the stereo-based distance
measurements, we performed a series of experiments in a home-like environment.
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Fig. 2.12 Particle filter tracking a ball (a), and the tracked positions of a toy denoted by bounding
boxes (b)

Fig. 2.13 Different images for one of the scenes: perspective camera image (a), omnidirectional
camera image (b), and panoramic image (c)

At first, the distance measurements accuracy was determined. Then, we tested
extensively the descriptor-based feature matching in sparse stereo to determine which
detector/descriptor pair suits best the requirements of our sensor. We have set up four
simple scenes, gathering furniture pieces and other common objects (boxes, pillows)
into sets of two or three items (Fig. 2.13). The ground truth distances between the
scene objects and the sensor were measured using a meter tape, assuming that the
origin of the coordinates is located in the center of the curved mirror.

At first we evaluated the distance measurements using the SIFT detector/descrip-
tor pair (Fig. 2.14a), because SIFT is considered the “golden standard” of the point
feature descriptors if real-time performance is not a concern [20]. We measured
distances to a number of features detected on the observed objects (Fig. 2.14b). The
objects in the scene had flat front vertical surfaces. Hence, we averaged the distance
measurements for all the features appearing on the particular vertical surface to
produce the quantitative results shown in Fig. 2.15.

One can easily deduce from these plots that the range measurement errors depend
on the distance to the observed object. It is also visible that these errors become
minimal in the mid-range of the measured distance. This result coincides with
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Fig. 2.14 Sparse stereo in the same scene: associated SIFT features (a), and 3D feature points
located on the scene (b)
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Fig. 2.15 Dependence between the range measurements and the ground truth distance (a), and the
dependence between the ground truth distance and the distance measurement error (b)

the range, where the interpolation errors in the panoramic images are minimal.
Apparently, the number of correct matches depends on the distance to object. The
number of correctly matched SIFT features varied from 5 to 17 in the scene depicted
in Fig. 2.13. The largest number of correct matches was observed at 1.8 m to the
middle object. The number of matches is largest for the measured distances from 1.6
to 1.8 m, which coincides with the range of minimal distance errors. However, the
number of detected features was typically higher for more distant objects.

Table 2.1 shows the number of correctly matched features for the SIFT, SURF,
and ORB detector/descriptor pairs, four different scenes, and three representative
measurement distances. Example matches are visualized in Fig. 2.16 for the scene
no. 3 at the distance of 1.4 m.

In the same experiments the time needed to process a pair of images (perspective
and virtual) and to compute the distance was evaluated. The measured time (in
seconds) includes creation of the virtual image, point feature detection, description
and matching, and triangulation, but does not cover the reconstruction of the
panoramic image. The processing time tc shown in Table 2.2 was measured on
the Cortex-A15 CPU for all the detector/descriptor pairs. For the SURF and ORB
features, which have OpenCV implementations supporting CUDA, the time tg , also
included in Table 2.2, was measured on the GPGPU. Only the use of GPGPU allowed
the sensor to accomplish the central vision process in real-time. The processing time
depended mostly on the detector/descriptor type, however, the matching time depends
also on the number of detected features.
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Table 2.1 Performance of
the detector/descriptor pairs
in sparse stereo measured by
the number of correct
matches

Detector/descriptor Scene 1 Scene 2 Scene 3 Scene 4
SIFT 1.2 m 5 22 19 33

SURF 1.2 m 7 10 13 9

ORB 1.2 m 3 0 0 3

SIFT 1.6 m 15 36 25 36

SURF 1.6 m 14 21 51 25

ORB 1.6 m 2 3 4 4

SIFT 2.0 m 16 10 24 17

SURF 2.0 m 40 18 8 3

ORB 2.0 m 2 4 1 2

Fig. 2.16 Features
associated using SIFT (a),
SURF (b), and ORB (c) in the
Scene no. 3

2.8 Conclusions

This chapter presents a stand-alone, passive vision sensor of hybrid field of view
that draws inspirations from the vision systems of insects and animals. The sensor
is hosted by a recent single-board computer that provides enough computing power
to implement a wide palette of image processing algorithms supporting robot
navigation. Moreover, the high computing power of the sensor and its open-source
software architecture, exploiting the common CUDA and OpenCV libraries, make
it possible to implement new functions required by the task at hand.
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Table 2.2 Total processing time for stereo-based distance measurements on the Jetson TK-1 CPU
and GPGPU

Detector/ Scene 1 Scene 2 Scene 3 Scene 4
descriptor tc tg tc tg tc tg tc tg

SIFT 1.2 m 7.94 – 7.90 – 7.92 – 7.65 –
SURF 1.2 m 5.70 0.44 2.51 0.22 2.72 0.21 2.99 0.23
ORB 1.2 m 2.75 0.11 0.59 0.02 1.02 0.04 1.00 0.04
SIFT 1.6 m 7.64 – 7.79 – 7.62 – 7.52 –
SURF 1.6 m 2.22 0.17 2.86 0.22 2.45 0.19 2.46 0.19
ORB 1.6 m 1.75 0.07 1.50 0.06 1.27 0.05 1.23 0.04
SIFT 2.0 m 7.68 – 7.54 – 7.54 – 7.54 –
SURF 2.0 m 2.34 0.18 2.35 0.18 2.61 0.20 2.33 0.18
ORB 2.0 m 1.72 0.07 1.25 0.05 1.05 0.04 1.29 0.05

The concept of a sensor integrating an omnidirectional camera and a perspective
camera is not particularly novel, but we contribute new elements:

– software that implements selected functions of the peripheral and central vision
concept on top of the wide field of view vision typical to insects;

– the use of GPGPU for real-time image processing in a low-power, embedded
vision system;

– simple yet efficient calibration methodology of the hybrid field of view vision
system.

Moreover, this chapter contributes also improved algorithms and results of extensive
experimental evaluation. For instance, the reconstruction of panoramic images
has been improved to ensure better compatibility between these images and the
perspective camera images. On the basis of experiments we have selected the SURF
detector/descriptor pair for the sparse stereo vision function in the hybrid field of
view sensor. The efficient OpenCV implementation with CUDA support ensures that
SURF can be used in real-time on the Jetson platform.
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