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FWT Fast wavelet transform
FVHT Fovea centralis hierarchical trees
GIF Graphics interchange format
HEVC High efficiency video coding
HVS Human visual system
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iDCT Integer discrete cosine transform
iSPECK Inverse SPECK
iLWT Inverse LWT
JBIG Joint bi-level image group
JPEG Joint photographic experts group
JPEG2000 Joint photographic experts group 2000
LCL Lossless compression limit
LIP List of insignificant pixels
LIS List of insignificant sets
LSP List of significant pixels
LWT Lifting wavelet transform
MPEG Moving picture experts group
MSE Mean squared error
PCX Personal computer exchange
pixel Picture element
PNG Portable network graphics
ppi Pixels per inch
PSNR Peak signal to noise ratio
RAR Roshal archive file format
RGB Red green blue color space
RLE Run length encoding
ROI Region of interest
SPECK Set partitioned embedded block codec
SPIHT Set partitioning in hierarchical tree
sRGB Standard red green blue color space
SSIM Structural similarity index
WebP WebP
WT Wavelet transform
Y’CBCR Luma chrominance color space
ZIP .ZIP file format

19.1 Introduction

The problem of storing images appeared along with the devices that allowed to
capture and represent data in the form of visual information. Devices like image
scanners (1950) and graphic processing units (1984) along with graphic manipulation
software made possible to capture, create, and display images as digital images on
a computer. A digital image is a numeric representation of a captured or software
created image. This numeric representation is a discretization value made from a
digital scanner device. The digital image can be represented as a two-dimensional
numeric matrix. Each element of the matrix represents a small picture element
(pixel). Such images are also known as raster images. Computer software such
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as Adobe Photoshop1 or Gimp2 allow to create raster images. Also, most capturing
devices like cameras and image scanners capture the image as a raster image [38, 39].

Compression algorithms are encapsulated with its decompression counterpart on
digital image formats. A digital image format or standard specifies the following:
a compression algorithm, a decompression algorithm, which color space is used
for representing the image, how the data is stored inside a binary file and headers
with metadata for image software [28]. Digital image formats that use only one
two-dimensional matrix are used for storing black and white images or gray scale
images. Digital color images on the other hand require more than one matrix in order
to represent color. Usually, the number of matrices used are three for color spaces
such as Red Green Blue color space (RGB) [20], Luma Chrominance color space
(Y ′CBCR) [33], and derivatives or four matrix for spaces such as Cyan Magenta
Yellow Black color space (CMYK) [47]. Each matrix is known as a color channel. A
common practice when using integer representation is to use one matrix of elements
of 32 bits. The bits of each 32-bit element are split into four sets of 8 bits. Each 8-bit
set is related to one color channel. When using a three channel color space, usually
the four most significant bits set is either discarded as in RGB (or Blue Green Red
color space (BGR) representation [62]) or used as a transparency information as
in the Standard Red Green Blue color space (sRGB) format [20]. There are other
digital image representations of an image such as vector images [48, 57]. However,
this chapter will be focused only on raster type images. From now on the term image
will be used to refer to digital raster images unless otherwise stated. Usually, the
quality of an image grows as the amount of pixels taken per inch grows. This is
known as pixels per inch (ppi).

Lossless compression is the best way to reduce the space needed to store a high
quality image. Examples of such lossless compression algorithms are the Personal
Computer Exchange (PCX) file format and the Graphics Interchange Format (GIF)
file format. Nevertheless, it has been shown that the upper limit for an ideal lossless
compression algorithm is around 30% [28]. Therefore, image file formats based
on lossless compression algorithms are less convenient as the image increases
in size. In consequence, new file formats were designed that take advantage of
lossy compression algorithms. Lossy compression algorithms take into account the
sensibility of the human visual system (HVS) in order to drop some of the details
of the image when compressing. As a result, the reconstructed image is not the
original image but a close representation of it. The aim of lossy compression is
to build an algorithm that when reconstructing the image using the compressed
stream, the reconstructed image will look almost the same for the user. Several lossy
compression algorithms for images have been proposed; however, most of them are
based on mathematical transformations that take the image matrix of color intensities
and map it into a different space. The most common space used is the frequency
space also known as frequency domain. When using the frequency domain, a matrix

1http://www.adobe.com.
2http://www.gimp.org.
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representing the intensity of each pixel of an image is considered to be in a spatial
domain.

The Joint Photographic Experts Group (JPEG) and the JPEG2000 standards
are examples of image lossy compression using a transform function [1, 50, 59].
Hybrid codecs based on the discrete cosine transform (DCT) are designed to attain
higher compression ratios by combining loss and lossless compression algorithms.
A modified version of the DCT is used in H.264/AVC (Advanced Video Coding)
and H.265/HEVC (High Efficiency Video Coding) standards [6, 60, 63]. Algorithms
based on the DCT are the one used in the JPEG file format [59] and the one used in
the lossy definition of the WebP file format.3 The DCT is widely used because of its
low computational complexity and its high quality when used for lossy compression.
However, the wavelet transform (WT) shows better image reconstruction quality
when used for lossy compression [5, 30]. By using the HVS based on fovea centralis,
coding the quality of the reconstruction may be improved [12, 24, 40, 41]. Nowadays,
few image formats use the WT for image compression. An example of these formats
is the JPEG2000 file format [1].

There are several proposals for improving classic algorithms for current wavelet-
based image compression methods such as the ones proposed in [13, 25]. However,
there is no ideal algorithm that produces the best image reconstruction quality for
any kind of image in any given application [3]. The reason is that when doing lossy
compression, the algorithm must choose which details must be dropped in order to
reach a given compression ratio. The main problem lies in which details to drop. For
video compression, the problem of storage increases because a digital video is a set
of several images, called frames, that represent a state of a taken video at a specific
instant. Also, video file formats must store the information of sound, increasing the
need of efficient lossy compression algorithms for images even if the sound is also
compressed. Because sound compression is a related but different problem to image
compression, from now on the rest of this chapter the term video compression will
be used to refer only to the compression of the visual information or frames.

19.2 Data Compression

Lossless compression algorithms exploit the statistical behavior of the data to be
compressed. The original data can be recovered perfectly after decompression.
Lossless compression is used for generic data compression regardless of what
the data represents images, sound, text, and so on. Current formats for data
file compression like .Zip file format (ZIP) [44] and Roshal Archive file format
(RAR) [45] use lossless compression algorithms. There are two main classifications
of lossless compression: dictionary and statistical methods. These methods require
data information. Information is an intuitive concept that deals with the acquisition

3https://developers.google.com/speed/webp/?csw=1.

https://developers.google.com/speed/webp/?csw=1
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of knowledge. This acquisition can be done in several ways such as through study,
experience of past events, or in the form of a collation of data [3]. Thereof, an
important aspect to take into account is how to measure data. Quantifying information
is based on the observation of the content of a given message and evaluating how
much it is learned from a previous pool of knowledge. The value of how much
information is gained depends on the context. Claude Shannon, the precursor of
information theory [18], proposed a way to measure how much information is
transmitted or gain after transmitting a string of characters. Given an alphabet �,
the amount of information H (entropy) from a string s is expressed in terms of the
probability of each symbol where each symbol can be seen as a value of a random
variable. The amount of information indicates how easily a set of data, in this case
the given string, can be compressed. The entropy is expressed as

H(s) = −
n∑

i=1

Pi log2 Pi (19.1)

where n is the amount of symbols in the alphabet of s calculated as n = |�| and Pi

is the probability of the i-th symbol.
Equation (19.1) can be interpreted as the amount of information gained from

a string. This is known as the data entropy. The term entropy was coined by
Claude Shannon [45]. The name entropy was chosen because the same term is
used in thermodynamics to indicate the amount of disorder in a physical system. The
meaning in the thermodynamics field can be related to the information theory field
by expressing the information gained from a string s as the different frequencies each
symbol of the alphabet appears on the string s. Using Eq. (19.1), the redundancy of
R in the data is defined by the difference between the largest entropy of a symbol set
and its actual entropy [44] defined by

R(s) = log2 n + H(s). (19.2)

How much a data stream can be compressed is defined in terms of its redundancy
R. If the stream has a redundancy R = 0, the data cannot be further compressed.
Thus, the aim of a lossless compression algorithm is, from a given data stream with
R > 0, to create a compressed data stream where its redundancy R = 0. The main
theorem of Shannon of source coding states that [45] a stream of data cannot be
compressed further to a limit without lossless. Such limit defined in this chapter by
lossless compression limit (LCL) denoted by ρ is defined using Eq. (19.1) as follows.

ρ(s) = mH(s) (19.3)

where m is the amount of different symbols that appear on string s.
Dictionary and statistical coding algorithms use different approach to reduce

the redundancy of a data stream. Dictionary methods encode the data by choosing
strings and encoding them with a token. Each token is stored in a dictionary and is
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associated with a particular string. An example of this is to use a numerical index
for each word on a dictionary. For a dictionary of length of N , it will be needed
an index with a size close to �log2 N� bits. Dictionary methods perform better
as the size of the data stream to be compressed tends to infinity [46]. There are
popular methods of dictionary source coding such as LZ77, LZ78, and LZW [43].
A common implementation of LZ77 is the DEFLATE algorithm used by the Unix
operating system. The statistical methods for compression use a statistical model of
the data to be compressed. It assigns a code to each of the possible symbols of the
stream. The performance of the algorithms is determined by how such codes are
assigned. These codes are variable in size, and usually the shortest one is assigned
to the symbol with the higher frequency on the data stream. There are different
variable size codes that allow to assign codes to each symbol without ambiguity.
One of the most popular methods is the Huffman code. The Huffman code uses
the statistical model of the data in order to assign a unique variable size code to
each symbol. Huffman code is used in current standards such as JPEG and Portable
Network Graphics (PNG). However, Huffman code only produces ideal size codes
when the probabilities of each symbol are a negative power of two [45]. Arithmetic
encoding on the other hand is known for its better performance against the Huffman
codes [44].

The main disadvantage of lossless coding is that it is bounded by Shannon’s
theorem (see Eq. (19.3)). However, a consequence of the Shannon’s theorem is that
if a data stream is compressed beyond the LCL, the new data stream begins to lose
information and a reconstruction of the original data cannot be made [46]. As a
result, lossy algorithms must be designed in order to select which data will be lost
in the compression and how to get a close representation of the original data using
the compressed data stream. The data selected to be discarded is usually the one that
contains the fewer information possible about the data stream. Thereof, lossy coding
algorithms are designed for specific data sets in order to be able to select which data
is significant and which data will be discarded. There are several ways to design lossy
compression algorithms. There are lossy algorithms that operate over the original
mathematical domain of the given stream such as the run-length encoding (RLE) for
images. However, the best algorithms known are those that its output is calculated
when using a mathematical transform.

A mathematical transform is a function that maps a set into either another set or
itself. Mathematical transforms used in lossy compression, specifically on sound and
image compression, are projections from one space to another. The inverse of the
chosen transform must be invertible in order to reconstruct a close approximation of
the original data. The use of mathematical transform for compression is also known as
transform coding. Transform coding is widely used in multimedia compression and is
known as perceptual coding. The preferred transformations for perceptual coding are
the ones that present graceful degradation [3]. This property allows to discard some
of the data on the projected space while the inverse of the transform can reconstruct a
close approximation of the original data. The most common functions for perceptual
coding are the ones related to the Fourier transform. When using a Fourier-related
transform, it is said that the transform translates the original data from the spatial
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Fig. 19.1 Structure of the human eye

or time domain into the frequency domain. Being the data on the frequency domain
which allows to discard some of the frequencies that are imperceptible to human
perception. Hence the name of perceptual coding. Also, Fourier-related transforms
degrade gracefully when decimal precision of some coefficients is lost. This allows
to reduce the arithmetic precision of certain coefficients, thus reducing the number
of bits required for its representation while retaining the most of the information of
the original data. This process is known as quantization. The quantization method
depends on how the data is represented by the transform on the frequency domain.
There are several quantization algorithms for a given transform. The performance
of the lossy compression algorithm depends on its transform and the quantization
method. Several transforms have been proposed for multimedia coding such as the
previously discussed DCT or the discrete WT (DWT).

Another common method used in lossy compression is the selection of regions
of interest (ROIs) at different compression ratios. This feature mitigates such loss
by conserving the details over a specific area. The ratio between the size of the
compressed stream and the uncompressed stream is known as compression ratio
[44]. In current standards such as MPEG4 and JPEG2000, ROIs can be defined
[1, 19]. ROI-based algorithms are commonly used on image and video compression,
and their main purpose is to assign more screen resources to a specific area [10]. ROIs
are areas defined over an image selected by a given characteristic. ROI compression
is when areas of the image are isolated using different desired final quality [19].

19.2.1 Fovea Centralis

The structure of the human eye (see Fig. 19.1) can also be exploited for compression.
In applications wherever ROI is isolated, a selected part of the human eye called
fovea centralis is utilized to increase the image quality for the human eye around ROI
areas [49]. There are two main bodies on the tissue layer, particularly cones and rods.
The number of cones in every eye varies between half a dozen and seven million.
They are placed primarily within the central portion of the tissue layer, referred
to as the fovea centralis, and are highly sensitive to color. The number of rods is
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much larger, some seventy five to one hundred fifty million are distributed over the
retinal surface. In Fig. 19.1, the circle between the points b′ and c′ marks wherever
the cones reside, such area is termed fovea centralis. The larger area of distribution
and the fact that several rods are connected to a single nerve reduce the amount of
detail discernible by these receptors. The distance x in Fig. 19.1 is the area where
the perception of an user would be the most acute, where the size of x is determined
by the distance d between the observer and the image, and the distance d ′ between
the retina and the back of the eye where the rods and cones reside. Anything outside
of such area will be perceived with fewer details. This aliasing is exploited in fovea
centralis compression. Fovea centralis compression can be applied over images with
ROI; the use of fovea centralis around defined ROI improves the image quality for
the human eye [15, 16, 24].

19.3 Wavelet Transforms

Fourier analysis is an useful tool for signal analysis. Fourier analysis is the study
of general functions represented by using the Fourier transform [34]. The analysis
is done by representing any periodic function as series of harmonically related
sinusoids. It is useful in numerous fields, however it has some limitations [14].
Many of these limitations come from the fact that the Fourier basis elements are not
localized in space. It is said that the basis of a transform is localized in space when
its energy is concentrated around a given point. Accordingly, elements of the basis
beyond certain radius will be 0 valued or close to 0. A basis that is not localized
does not give information about how the frequency changes in relation to its position
in time or space. There are refined tools that extend the capabilities of the Fourier
transform in order to cover its weakness such as the windowed Fourier transform [27].
One mathematical tool that is able to analyze a signal and the structure of a signal at
different sizes, thus yielding into information about the changes of frequency related
to its position in time or space is the wavelet transform [2]. Time-frequency atoms
are mathematical constructions that help to analyze a signal over multiple sizes.
Time-frequency atoms are waveforms that are concentrated in time and frequency.
The set of time-frequency atoms used for analyzing a signal is known as dictionary
of atoms denoted by D. The wavelet transform builds this dictionary from a function
ψ(t) ∈ L2(R), where L2 is the Lebesgue space at power of 2, R is the set of real
numbers, and ψ(t) denotes a wavelet function. ψ has several properties, it has zero
average [27]

∫ ∞

−∞
ψ(t)dt = 0. (19.4)

It is normalized ||ψ || = 1 and centered in the neighborhood of t = 0. ψ is
known as the mother wavelet. In order to create a dictionary D, ψ is scaled by � and
translated by u, namely [27]
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D =
{
ψ�,u(t) = 1√

�
ψ

(
t − u

�

)}

u∈R,�>0
(19.5)

The atoms remain normalized ||ψ�,u|| = 1. The constant 1√
�

is for energy
normalization. The continuous wavelet transform (CWT) ω of f (t) ∈ L2(R) at
time u and scale � is

ω�,u(f ) = 〈f,ψ�,u〉 =
∫ ∞

−∞
f (t)

1√
�
ψ∗

(
t − u

�

)
dt (19.6)

where ψ∗ is the complex conjugate of the mother wavelet ψ and 〈·, ·〉 denotes an
inner product.

Because images are two-dimensional signals, a two-dimensional wavelet trans-
form is needed. Let ψ̄�,u be

ψ̄�,u(t) = 1√
�
ψ∗

(
t − u

�

)
, (19.7)

extending Eq. (19.6) to two dimensions, the wavelet transform at parameters uv , �v ,
uh, �h of f (t, x) ∈ L2(R2) yields into

ω2
�v,uv,�h,uh

(f ) = 〈〈f, ψ̄�v,uv 〉, ψ̄�h,uh
〉

=
∫ ∞

−∞

∫ ∞

−∞
f (t, x)ψ̄�v,uv ψ̄�h,uh

dtdx.
(19.8)

where ω is the wavelet operator. Also, because digital images are stored as a discrete
finite signal, a discrete version of the CWT is needed. Let f [n] be a discrete signal
obtained from a continuous function f defined on the interval [0, 1] by a low-pass
filtering and uniform sampling at intervals N−1. The DWT can only be calculated
at scales N−1 < � < 1. Also, let ψ(n) be a wavelet with a support included in
[−K/2,K/2]. For 1 ≤ � = aj ≤ NK−1, a discrete wavelet scaled by aj is defined
by [27]

ψj [n] = 1√
aj

ψ
( n

aj

)
. (19.9)

The DWT is defined by a circular convolution with ψ̄j [n] defined as ψ̄j [n] =
ψ∗

j [−n] with DWT described as

ωaj f [n] =
N−1∑

m=0

f [m]ψ∗
j [m − n] = f ∗ ψ̄j [n] (19.10)

where ∗ is the convolution operator. Also, signal f is assumed to be periodic of
length N in order to avoid border problems.
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In order to speed up the computation of the wavelet coefficients, a second approach
that simplifies the DWT is referred to as the lifting scheme. The lifting scheme [32, 51]
is another way of looking at the DWT, where all the operations are performed in
the time domain [1]. Computing the wavelet transform using lifting steps consists of
several stages. The idea is to compute a trivial wavelet transform (the lazy wavelet)
and then improve its properties by alternating the dual lifting or prediction step and
the primal lifting or updating step [44]. The lazy wavelet only splits the signal into
its even and odd indexed samples, namely

(even[n − 1], odd[n − 1]) = Split (f [n]). (19.11)

where f [n] is a given discrete signal, even and odd are the even and odd signals
of the lazy wavelet, and Split is the split function. A dual lifting step consists of
applying a filter to the even samples and subtracting the result from the odd ones.
This is based on the fact that each value f [n]2�+1 of the next decomposition level in
the odd set is adjacent to the corresponding value f [n]2� in the even set, where � is
the decomposition level. Thus, the two values are correlated and any can be used to
predict the other. The prediction step is given by

d[n − 1] = odd[n − 1] − P(even[n − 1]). (19.12)

where d is the difference signal of the odd part of the lifting wavelet and the result
of the prediction P operator applied to the even part of the lazy wavelet. A primal
lifting step does the opposite: applying a filter to the odd samples and adding the
result to the even samples. The update operation U follows the prediction step. It
calculates the 2[n − 1] averages s[n − 1]� as the sum

s[n − 1] = even[n − 1] + U(d[n − 1]). (19.13)

where U is defined by

s[n − 1]� = f [n]2� + d[n − 1]�
2

. (19.14)

The process of applying the prediction and update operators is repeated as many
times as needed. Each wavelet filter bank is categorized by its own U operator and the
amount of rounds of the process. The calculation process of U is described in [26].
This scheme often requires far fewer computations compared to the convolution-
based DWT, and its computational complexity can be reduced up to 50% [1, 11, 53].
As a result, this lifting approach has been recommended for implementation of the
DWT in the JPEG2000 standard.4

4JPEG2000 draft at http://www.jpeg.org/public/fcd15444-1.pdf.

http://www.jpeg.org/public/fcd15444-1.pdf
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19.4 Image Compression

Image data compression is concerned with coding of data to minimize the number
of bits used to represent an image. Current image compression standards use a
combination of lossless and lossy algorithms. These can be used over the same
data set because both algorithms exploit different properties of the image. On the
one hand, lossless-based compression exploits data redundancy, but on the other
hand, lossy-based compression exploits its transform properties and quantization.
The simplest quantization equation used in image coding is defined as [4, 17]

Cq =
⌊

1

�q
C

⌋
(19.15)

where �· is the floor operation, �q > 1 is known as the quantization delta, C is
the matrix of coefficients obtained from applying a transform to the given image,
and Cq is the matrix of quantized coefficients. Spatial redundancy takes a variety
of different forms in an image. For example, it includes strongly correlated repeated
patterns in the background of the image and correlated repeated base shapes, colors,
and patterns across an image. The combination of lossy and lossless compression
allows achieving lower compression ratios. Figure 19.2 shows a block diagram of
the classic lossy/lossless image coding scheme [4, 17].

In Fig. 19.2, the image is interpreted as a matrix I, then the coefficients matrix
C of the chosen transform is calculated. Subsequently, the quantized coefficient
matrix Cq is calculated and the final lossless compressed stream S is calculated
on the entropy coding block. The color space used for image compression is often
the Y ′CBCR color space. This color space is chosen because it has been found
that the human eye is more sensitive to changes on the luma channel (Y’) than on
the color channels (CBCR) [33]. This allows compressing at lower ratios the color
channels than the luma channel. As a result, compression algorithms are evaluated
over the luma channel only. Thereof, all the analyses of the algorithms presented in
this chapter are evaluated on the luma channel. The equation used for calculating
Y ′CBCR from other common color space RGB suggested in [17] is the following:

⎡

⎣
Y ′
CR

CB

⎤

⎦ =
⎡

⎣
0.299 0.587 0.114

−0.147 −0.289 0.436
0.615 0.515 0.100

⎤

⎦

⎡

⎣
R

G

B

⎤

⎦ (19.16)

Fig. 19.2 Block diagram of the classic image coding scheme [17]
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where R,G,B are the values for each channel on the RGB color space of a given
pixel. From Eq. (19.16), the luma is calculated as

Y ′ = 0.299R + 0.587G + 0.114B. (19.17)

One of the foremost image compression algorithms is the JPEG image coding
standard (see Fig. 19.3). Outlined in [59], JPEG framework defines a lossy
compression and a lossless compression algorithm used in tandem. The lossy
compression algorithm of JPEG uses the DCT. However, in order to reduce the
complexity of the algorithm [4], the image is split into non overlapping blocks of
8×8 pixels. Each block is referred to as macroblock. Processing macroblocks requires
less computation and allows the algorithm to optimize transmission by sending the
data of processed macroblocks while processing the rest of the images [19].

In Fig. 19.3, the RGB image is transformed into the Y ′CBCR color space. Then, the
image is split into macroblocks. Then, the DCT macroblock applies the transform to
each macroblock individually. After the transformation of a macroblock is calculated,
the coefficients are quantized by a fixed ratio. JPEG standard defines a quantization
matrix. Because each coefficient has a different significance on the reconstruction
of the image, the quantization matrix stores a quantization ratio for each of the
coefficient of a macroblock. The standard provides with values for the quantization
matrix. However, some manufacturers defined its own quantization matrices in order
to improve the quality of the algorithm. After quantization, the next step is resorting
each macroblock into zigzag order. This allows to exploit the entropy of the lower
diagonal of the macroblocks [1]. The last block of the algorithm applies lossless
compression to the quantized sorted coefficients. Early versions of the algorithm
define RLE and Huffman coding as the lossless algorithms for JPEG. However,
the last version of JPEG [45] also includes arithmetic coding in order to reduce
the compression ratio. The final overall quality of JPEG is mostly given by the

Fig. 19.3 Block diagram of the JPEG2000 standard [59]
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quantization matrix, however it is not possible to precalculate the final compression
ratio [43].

It is well-known that in compression applications, wavelet-based approaches
outperform the block-DCT methods [22, 35]. This is due to the fact that
wavelet-based approaches can reduce the blocking artifacts, provide better energy
compaction because of the multi-resolution feature of wavelet basis, and have better
correspondence with the HVS system [58]. Therefore, wavelet-based compression
algorithms have been recommended for the JPEG2000 standard [17, 45].

19.4.1 Foveated Images

Images with a non-uniform resolution that have been used in image and video
compression are known as foveated images. Equation (19.18) shows a representation
of a foveated image [9].

I 0
x =

∫
Ixc

−1(x)s

(
t − x

ω(x)

)
dt (19.18)

where c(x) =
∥∥∥s

( −x
ω(x)

)∥∥∥, Ix is the pixel at position x of a given image, ω(x) is
a weight function, and I 0

x is the foveated image. The function s is known as the
weighted translation of s by x [24]. A variation of the fast wavelet transform (FWT)
is reported in [7] that operates over the wavelet transform. For an image I , its
foveation is given by

I 0 = 〈I,��0,0,0〉 +
∑

uv,�v,uh,�h

ck
j [�v, uh]〈I,	uv

�v,uh,�h
〉	uv

�v,uh,�h
(19.19)

where ��0,0,0 is the father wavelet, and 	
uv

�v,uh,�h
is the mother wavelet scaled and

translated with uv = {h, v, d} and the operator 〈·, ·〉 is the convolution operator.
ck
j [�v, uh] is defined as

ck
j [�v, uh] = 〈T 	

uv

0,�v,uh
, 	

uv

0,�v,uh
〉

=
∫ ∞

−∞
dy

∫ ∞

−∞
dx	

uv

0,�v,uh
(x, y)

∫ ∞

−∞
dt

∫ ∞

−∞
ds	

uv

0,�v,uh
(s, t)gω(x,y)(s, t)

(19.20)
where T is the fovea centralization operator and gω(x,y)(s, t) is the smoothing
function defined as

gω(x,y)(s, t) := 1

ω(x, y)2 g

(
s − x

ω(x, y)
,

t − y

ω(x, y)

)
. (19.21)
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where the weight function ω(x, y) is defined by

ω(x, y) = α||(x, y) − (γ1, γ2)||2 + β (19.22)

where α is the rate, γ = (γ1, γ2) is the fovea centralis, and β is the fovea centralis
resolution [7].

19.5 Video Compression

Because video is just a sequence of several images called frames, video coding
algorithms or video codecs use image compression extensively. To achieve high
compression ratios is suitable to combine lossy and lossless compression algorithms.
Classic video coding frameworks have three main algorithms (see Fig. 19.4), namely
intra-frame coding (spatial transform and inverse spatial transform), inter-frame
coding (motion estimation and compensation), and variable length coding (variable
length coder).

In intra-frame coding, which uses the information of previous or future frames, a
frame of a video stream is normally compressed using lossy algorithms. The encoder
should work out the variations (prediction error) between the expected frame and
the original frame. The first step in the motion compensated video coder is to
create a motion compensated prediction error of the macroblocks. This calculation
requires only a single frame to be stored in the receiver. Notice that for color
images, motion compensation is performed only for the luma component of the
image. The decimated motion vectors obtained for luma are then exploited to form
motion compensated chroma components. The resulting error signal for each of the
components is transformed using DCT, quantized by an adaptive quantizer, entropy

Video
Source

Motion
Compensation

Motion
Estimation

Variable Length
Coder

Variable Length
Coder

Transmission

Inverse Spatial
Transform

Spatial
Transform

+

–
Prediction

Prediction
Error

Fig. 19.4 Block diagram of the classic video coding framework [6]
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encoded using a variable length coder, and buffered for transmission over a fixed-rate
channel. The main problem of the block matching motion compensation is its high
computational complexity.

Most video coding standards such as the H.264 [36] or the newest proposed
standard H.265/HEVC codec [52] rely on the DCT for lossy intra-frame coding
applied to macroblocks of a dimension of 4 × 4. The smaller macroblock allows
reducing artifacts on the reconstructed image [37]. However, in order to improve the
speed of the algorithm, the transform used is the integer discrete cosine transform
(IDCT) [8]. The IDCT is an approximation of the DCT used in JPEG standard.
Instead of calculating a convolution, two different matrices are defined that are an
approximation of the base of the DCT.

19.6 An Approach to Image Compression Based on ROI and
Fovea Centralis

Image compression within the frequency domain based on real-valued coefficients
is carried out through coefficient quantization. In this process of quantization, these
coefficients become integer-valued for further compression employing either a RLE
or an arithmetic encoding algorithms, which are known as variable quantization
algorithms. The variable quantization algorithm exploits the fovea centralis result
of the HVS based on a fovea centralis window, which is focused at a given fixation
point to see a way to quantize each wavelet coefficient [15]. A modified version of
the set partitioning in hierarchical tree (SPIHT) algorithm is utilized to quantize and
compress these coefficients.

Figure 19.5 shows the block diagram of the compression approach based on ROIs
and fovea centralis called here fovea centralis hierarchical tree (FVHT) algorithm.
Assuming a video stream with frames Fi , the applied blocks can be described as
follows [15]. In the Motion estimation block, the fovea centralis points are estimated
using video frames Fi and Fi−1. The ROI estimation block outputs an array of
fovea centralis points as ROIi , where each pixel different of 0 is taken as a fovea
centralis. The fovea centralis cutoff window is described in [15]. The Lifting Wavelet
Transform (LWT) block generates the coefficients denoted as C(·)i (see Sect. 19.3).
The Quantization block maps to integers the coefficients C(·)i into C(·)qi using a
fixed quantization for compression. Finally, the FVHT block outputs a compressed
stream of the quantized coefficients C(·)qi using the information of the estimated
fovea centralis points ROIi .

Note that the fovea centralis points ROIi are input parameters to the FVHT rather
than using the motion estimation block. The window parameters and the cutoff
window are calculated as long as there is a fixation point [15, 24]. The reported
method permits defining ROIs of variable size around the fixation point that retains
the best quality. Further details on the approach described here can be found in [15].
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Fig. 19.5 Block diagram of compression approach based on ROI and fovea centralis [15]

19.6.1 FVHT Algorithm

The compression bit rate can be computed by assessing the decaying window function
on each algorithm pass at each coefficient coordinate as it is proposed in the FVHT
algorithm [15]. First, the coefficient is encoded whether the current bit rate is lower
than wavelet subband, otherwise it is discarded. The sorting pass is modified in
order to classify the coefficients according to its distance to the scaled fovea centralis
and the cutoff window. Each time an attempt to add a coefficient to the list of
significant pixels (LSP ) is done, the assigned bits per pixel (bpp) is calculated, and
the coefficient is classified. However, it should be noted that on the significance pass,
the positions of the coefficients are discarded from the list of insignificant pixels
(LIP ) and on the refinement pass, they are discarded from the LSP . The list of
insignificant sets (LIS) will remain the same as in the SPIHT algorithm [15, 42]. The
execution time of the algorithm was analyzed using Big O notation, concluding that
the complexity of the algorithm is linear (O(n)) [15]. The memory usage was also
analyzed, yielding a size of 71

64n. The FVHT is memory intensive when compared
with classic methods based on the DCT transform that can be computed using no
extra storage.

19.6.2 Simulation Results

The FVHT algorithm is assessed using standard non-compressed 512×512 images.
The fovea centralis is defined at the center pixel (256,256) with two parameters,
namely a radius of the ROI and the power law function (the ramp function), which
are defined in [15]. As stated in the JPEG2000 standard and for a fair comparison,
the biorthogonal Cohen–Daubechies–Feauveau (CDF) 9/7 is considered using four
levels of decomposition [1]. The reported results are compared against the SPIHT
algorithm. Figures 19.6 and 19.7 show the reconstructed wavelet coefficients of the
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Fig. 19.6 Reconstructed
image (“cameraman”) using
SPIHT algorithm at 1 bpp
compression ratio [15]

Fig. 19.7 Reconstructed
image (“cameraman”) using
FVHT compression algorithm
at 0.06–1 bpp compression
ratio [15]. Fovea centralis at
(256,256)

cameraman image at 1 bit per pixel (bpp) with both SPIHT and FVHT, respectively.
The same reconstructed wavelet coefficients at 1 bpp as its higher compression ratio
and 0.06 bpp as its lower compression ratio are shown in Fig. 19.7. It is observed that
the FVHT algorithm has better performance than SPIHT algorithm particularly over
small areas around the fovea centralis or those closer to the fixation point. Further
details on this approach can be found in [15].
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19.7 Wavelet-Based Coding Approaches: SPECK-Based
Codec and Adaptive Wavelet/Fovea Centralis-Based
Codec

Two wavelet-based coding approaches based on the LWT [27] are described in
this section [16]. The first called Set Partitioned Embedded bloCK (SPECK)-based
codec (SP-Codec) is shown in Fig. 19.8 [31]. In the Z-order block, all coefficients
position are organized and mapped from 2D to 1D using the Z-transform. The
quantization step is carried out on LWT and SPECK blocks. The adaptive binary
arithmetic coding (ABAC) block, which is a lossless compression algorithm, allows
compressing a data stream while at the same time computes the statistical model
(see Sect. 19.7.1) [31]. The inverse LWT (iLWT) and inverse SPECK (iSPECK) are
applied to the compressed stream generated in the SPECK block, and finally the
motion compensation and estimation blocks compute the motion vectors based on
the block matching algorithm for each inter-frame.

The second proposal referred to as adaptive wavelet/fovea centralis-based codec
(AWFV-Codec) reported in [16] aims to further increase the quality of the decoded
frames (see Fig. 19.9). The reported adaptive fovea centralis-SPECK (AFV-SPECK)
algorithm defines a center, a ROI area radius, and a decaying window [15, 16] and
as a result various compression ratios may be considered. An external subsystem
is assumed that computes the fovea centralis point of one observer, which is later
provided to the AFV-SPECK coding algorithm.

19.7.1 Adaptive Binary Arithmetic Coding

The adaptive binary arithmetic coding (ABAC) is a version of the arithmetic coding
algorithm applied to an alphabet with only two elements � = 0, 1 [64]. This
application is commonly used for bi tonal images [23]. Also, it does not require a
previously calculated statistical model. Each time a symbol is read, the statistical

Fig. 19.8 Video coding framework SPECK-based codec (SP-Codec) [16]
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Fig. 19.9 Video coding framework AWFV-Codec [16]

model is updated. The adaptive part of the algorithm decreases its performance
when compared against a static approach. However, the main advantage is that the
input data is not preprocessed. As a result, the efficiency of the transmission of the
compressed stream increases because there is no wait time for the calculation of
the statistical model. There are several applications for ABAC as in JPEG and Joint
Bi-level Image Group (JBIG)5 when dealing with black and white images. However,
because SPECK encodes per bit, it makes ABAC suitable to compress the output
of SPECK. In order to increase the computing time performance of the proposed
framework, ABAC is included as its variable length encoder. Listing 19.1 shows the
pseudocode for adaptive binary arithmetic coding.

Listing 19.1 ABAC algorithm
f u n c t i o n Ar i t hme t i cCod i ng ( s )

f q ← 1
r ← 0
l ← 0
u ← 1
f o r a l l s ∈ s do

r ← r + 1
i f s = 0 t h en

l′ ← 0
u′ ← P

r

f q ← f q + 1
e l s e

l′ ← f q
r

u′ ← 1

5http://jpeg.org/jbig/index.html.

http://jpeg.org/jbig/index.html
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end i f
d = u − l

u = l + d · u′
l = l + d · l′

end f o r
r e t u r n l

end f u n c t i o n
In classic arithmetic coding, the interval used for arithmetic compression is [0, 1).

The function receives a string s to be compressed. The variable fq will store the
frequency of the symbol 0. Because there are only two symbols on the alphabet, it
is only needed to store one of the frequencies and compute the other by

P1 = 1 − P0 (19.23)

where P1 is the probability of the symbol i. The probability of the symbol 0 is given
by

P0 = f q

r
(19.24)

where r is the amount of read symbols. The algorithm stores the lower bound of the
main interval on l and the upper bound on u. Each time a symbol is read, the counter
r is increased on 1 and the interval for the input symbol is updated by using the
frequency of the symbol 0 stored on f q. If a 0 is read, the frequency f q is increased
in 1. After updating the statistical model, the new main interval is computed and the
next symbol is read. The process stops when there are no more symbols to read on s
and the statistical model P . P is a set that contains the probabilities of all different
symbols s of the alphabet of s.

19.7.2 AFV-SPECK Algorithm

In the AFV-SPECK algorithm, every time a new coefficient is categorized as
significant it will also be tested for its individual compression ratio using the cutoff
window for each wavelet decomposition subband [16] (see Fig. 19.10). Note that
the main loop remains the same as with SPECK. The input is the set of quantized
coefficients, while the output is stored on S (assessed for significance by the function
ProcessS), and the sorting of the LSP set is also added. If S is significant and only
has one element (x, y), the sign of quantized coefficient is stored on S and the set
is removed from LIS. The function ProcessI evaluates I for its significance. As with
FVHT, the computational complexity of AFV-SPECK will be expressed in terms
of the Big O notation. The AFV-SPECK algorithm has a computational complexity
of O(n). The analysis of the memory usage yielded that AFV-SPECK uses more
memory when implemented as proposed in [31]. Further details can be found in [16].



19 Advances in Image and Video Compression Using Wavelet Transforms. . . 649

Fig. 19.10 Flowchart of the
main AFV-SPECK algorithm
loop [16]

19.7.3 Simulation Results

To assess the reviewed video coding frameworks, SP-Codec and AWFV-Codec
standard test images and video sequences were used6 [16]. For intra-frame coding,
H.265 standard based on the IDCT using a 4×4 pixel block size is compared against
SPECK and AFV-SPECK algorithms. Both binary streams were further compressed
using the ABAC algorithm. The delta used for quantization was set to � = 40, see
e.g.,[52]. Note that the chosen quantization delta and other parameters were used as
input for SPECK and AFV-SPECK algorithms [16]. This is due to the fact that the
compression ratio of the H.265 cannot be specified beforehand.

It is well-known that there is no analytic method to represent the exact perception
of the HVS [56]. As a result, there are different metrics for image quality metrics [55].
In this work, the peak signal-to-noise ratio (PSNR) is used as performance metric
[37]. The PSNR is defined in terms of the mean squared error (MSE) given by the
equation

6https://media.xiph.org/video/derf/.

https://media.xiph.org/video/derf/
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MSE(I,K) = 1

mn

m−1∑

i=0

n−1∑

j=0

[
Ii,j − Ki,j

]2 (19.25)

where m denotes the rows and n the columns of original image matrix, I is the
matrix of the original image, and K represents the reconstructed image matrix.
Using Eq. (19.25), the PSNR is given by

PSNR(I,K) = 10 log10

[
MAX2

I

MSE(I,K)

]
(19.26)

where MAX2
I is the square of the maximum value that a pixel of the image I can

take. Such value depends on the amount of bits used per channel. Commonly, an
image of 8 bits per channel has MAX2

I = 2552. PSNR is measured in decibels (dB).
Usually, it is considered that a reconstructed image with a PSNR of 40 dB or higher
is of good quality for an average user [44]. However, trained users should require
higher PSNR values. The 40 dB threshold is only a convention and has not been
proved. Expected values of good reconstructions are between 20 dB and 50 dB [44].

As stated in the standard JPEG2000 and for a fair comparison, we use the
biorthogonal CDF9/7 with four levels of decomposition [1]. Two metrics are
used to assess the performance of the reported algorithms, namely PSNR and
structural similarity index (SSIM) [54, 61]. This metric indicates that a reconstructed
image with high quality should give a SSIM index closer to 1. Table 19.1 depicts
comparisons in images for various video sequences using H.265, SPECK and AFV-
SPECK algorithms, where CIF stands for common intermediate format. This table
shows that the SPECK algorithm has a high PSNR (see e.g., [29]). It also observed
that since the reported AFV-SPECK algorithm is based on ROIs and fovea centralis,
it is expected that the result of these metrics to be equal or lower than the SPECK
algorithm. Further details on these comparisons and other sequences are reported
in [16].

Table 19.1 Comparisons between SPECK, AFV-SPECK and H.265 (see [16])

H.265 SPECK AFV-SPECK
Name BPP PSNR SSIM PSNR SSIM PSNR SSIM
Lena gray 512 1.32 29.37 0.83 37.07 0.96 35.00 0.95
Lake 1.33 29.24 0.83 32.93 0.93 31.56 0.91
Peppers gray 1.27 29.31 0.81 34.04 0.92 32.77 0.90
Cameraman 1.28 28.93 0.75 40.07 0.97 34.59 0.94
Akiyo cif 1.19 28.96 0.78 35.42 0.94 33.12 0.92
Paris cif 1.28 28.79 0.76 30.45 0.85 29.53 0.83
Soccer cif 1.37 29.33 0.74 34.89 0.93 32.23 0.92
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19.8 Conclusions

In this chapter, two wavelet-based algorithms were reviewed, namely FVHT and
AFV-SPECK. Such algorithms exploit the HVS in order to increase the quality
of the reconstructed image for an observer. The algorithms were assessed against
classic compression algorithms such as the JPEG base algorithm and the algorithm
used on the H.265 standard. Simple wavelet compression shows better performance
when compressing images allowing to reach compression ratios of 0.06 bpp while
retaining a good visual quality. The reported algorithms show similar behavior
while increasing the quality of the compressed image over designed areas. However,
when evaluated for overall quality, the reported algorithms show less performance
than its non-fovea-based counterparts. This makes necessary an external subsystem
that calculates the fixation point of the observers. Additionally, two wavelet-based
video coding frameworks were surveyed, namely SP-Codec and AWFV-Codec [16].
The revised video frameworks increase the key frame reconstruction using wavelet-
based compression that is also applied to motion compensation reconstruction. Fovea
centralis coding also increases the quality of the reconstructed video as in AWFV-
Codec, and in some cases, increases the quality of the reconstructed frames against
non-fovea-based frameworks like SP-Codec. The reported AWFV-Codec is a viable
choice for fast video streaming but it also reduces the utility of the stream when
recorded. This is due to the fact that the video would be recorded without possibility
of recovering the information discarded outside the fovea centralis. However, when
stream recording is needed SP-Codec yields into better reconstruction quality than
classic methods such as the H.265/HEVC video coding frameworks [15, 16]. The
reported image compression algorithms FVHT and spatial transform AFV-SPECK
require extra storage besides the wavelet coefficients. Methods will be investigated
for in place computation for quantization in order to decrease the memory usage of
both reported algorithms and for automatic foveation such as in [21].
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