
Chapter 10
Lie Algebra Method for Pose
Optimization Computation

Kenichi Kanatani

Acronyms

FNS Fundamental Numerical Scheme
GPS Ground Positioning System
SVD Singular Value Decomposition

10.1 Introduction

Computing 3D pose from data provided by camera images and 3D sensors is one of
the most fundamental problems of 3D analysis involving 3D data, including computer
vision and robot control. The problem is usually formulated as minimization of a
function of the form

J = J ( . . . ,R1,R2, . . . ,RM), (10.1)

where R1, R2, . . . , RM are rotation matrices, and “ . . . ” denotes other parameters
that specify translations, object shapes, and other properties. Hereafter, we use
bold uppercases to denote matrices (3 × 3 unless otherwise specified) and bold
lowercases to denote vectors (3D unless otherwise specified). For a matrix A, we
write its determinant and Frobenius norm as |A| and ‖A‖, respectively. For vectors
a and b, we write 〈a, b〉 for their inner product and a × b for their vector product.

K. Kanatani (�)
Professor Emeritus, Okayama University, Okayama, Japan
e-mail: kanata-k@okayama-u.ac.jp

© Springer Nature Switzerland AG 2020
O. Sergiyenko et al. (eds.), Machine Vision and Navigation,
https://doi.org/10.1007/978-3-030-22587-2_10

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22587-2_10&domain=pdf
mailto:kanata-k@okayama-u.ac.jp
https://doi.org/10.1007/978-3-030-22587-2_10


294 K. Kanatani

For minimizing a function J in the form of Eq. (10.1), the standard approach one
can immediately think of is: we first parameterize the rotation matrices in terms of,
say, axis-angle, Euler angles, or quaternions; then we differentiate J with respect
to the parameters and increment them so that J decreases; we iterate this. This
approach is generally known as the “gradient method,” and many variations have
been proposed for improving convergence, including “steepest descent,” “conjugate
gradient,” “Newton iterations,” “Gauss–Newton iterations,” and the “Levenberg–
Marquardt method.”

The purpose of this chapter is to show that for this type of optimization,
parameterization of rotation is not necessary. After all, “differentiation” means
evaluation of the change of the function value for a small variation of the variable.
Hence, for differentiation with respect to rotation R, we only need to evaluate the
change of the function value when a small rotation is added to R. To do this, it
is sufficient to parameterize a small rotation. To be specific, we compute a small
rotation that reduces the function J , add it to the current rotation R, regard the
resulting rotation as a new current rotation R, and iterate this process. As a result,
the matrix R is updated at each iteration in the computer memory, so that there is
no need to parameterize the matrix R itself. We call this the “Lie algebra method”
(this terminology is explained later).

This method has a big advantage over the parameterization approach, because any
parameterization of rotation, such as axis-angle, Euler angles, and quaternions, has
some singularities; if the parameter values happen to be at singularities, though
very rarely, computational problems such as numerical instability may occur.
Using the Lie algebra method, we need not worry about any singularities of the
parameterization, because all we do is to update the current rotation by adding a
small rotation. In a sense, this is obvious, but not many people understand this fact.

We first study the relationship between small rotations and angular velocities.
Then, we derive the exponential expression of rotation and formalize the concept of
“Lie algebra.” We describe the actual computational procedure of some computer
vision problems to demonstrate how the Lie algebra method works in practice.
Finally, we overview the role of Lie algebra in various computer vision applications.

10.2 Small Rotations and Angular Velocity

If R represents a small rotation around some axis by a small angle ��, we can
Taylor-expand it in the form

R = I + A�� + O(��)2, (10.2)

for some matrix A, where I is the identity and O(��)2 denotes terms of second or
higher orders in ��. Since R is a rotation matrix,



10 Lie Algebra Method for Pose Optimization Computation 295

RR� = (I + A�� + O(��)2)(I + A�� + O(��)2)� (10.3)

= I + (A + A�)�� + O(��)2

must be identically equal to I for any ��. Hence, A + A� = O, or

A� = −A. (10.4)

This means that A is an antisymmetric matrix, so we can write it as

A =
⎛
⎝

0 −l3 l2

l3 0 −l1

−l2 l1 0

⎞
⎠ (10.5)

for some l1, l2, and l3. If a vector a =
(
ai

)
(abbreviation of a vector whose ith

component is ai) is rotated to a′ by the rotation of Eq. (10.2), we obtain

a′ =
(
I + A�� + O(��)2

)
a = a +

⎛
⎝

0 −l3 l2

l3 0 −l1

−l2 l1 0

⎞
⎠

⎛
⎝

a1

a2

a3

⎞
⎠ �� + O(��)2

= a +
⎛
⎝

l2a3 − l3a2

l3a1 − l1a3

l1a2 − l2a1

⎞
⎠ �� + O(��)2 = a + l × a�� + O(��)2, (10.6)

where we let l =
(
li

)
. Suppose this describes a continuous rotational motion over a

small time interval �t . Its velocity is given by

ȧ = lim
�t→0

a′ − a

�t
= ωl × a, (10.7)

where we define the angular velocity ω by

ω = lim
�t→0

��

�t
. (10.8)

Equation (10.7) states that the velocity ȧ is orthogonal to both l and a and that its
magnitude equals ω times the area of the parallelogram made by l and a. From
the geometric consideration, the velocity ȧ is orthogonal to the axis of rotation and
a itself (Fig. 10.1). If we let θ be the angle made by a and that axis, the distance
of the endpoint of a from the axis is ‖a‖ sin θ , and the definition of the angular
velocity ω implies ‖ȧ‖ = ω‖a‖ sin θ . Since ȧ is orthogonal to l and a and since ‖ȧ‖
= ω‖a‖ sin θ equals the area of the parallelogram made by l and a, we conclude that
l is the unit vector along the axis of rotation. In physics, the vector ω = ωl is known



296 K. Kanatani

Fig. 10.1 Vector a is rotating
around an axis in the
direction of the unit vector l

with angular velocity ω. Its
velocity vector is ȧ.

�l
a

a

O

as the angular velocity vector. Using this notation, we can write Eq. (10.7) as

ȧ = ω × a. (10.9)

10.3 Exponential Expression of Rotation

If we write Rl(�) to denote the rotation around axis l (unit vector) by angle �,
Eq. (10.2) equals Rl(��). If we add it to rotation Rl(�), their composition is
Rl(��)Rl(�) = Rl(� + ��). Hence, the derivative of Rl(�) with respect to � is

dRl(�)

d�
= lim

��→0

Rl(� + ��) − Rl(�)

��
= lim

��→0

Rl(��)Rl(�) − Rl(�)

��

= lim
��→0

Rl(��) − I

��
Rl(�) = ARl(�). (10.10)

Differentiating this repeatedly, we obtain

d2Rl

d�2 = A
dRl

d�
= A2Rl,

d3Rl

d�2 = A2 dRl

d�
= A3Rl, · · · , (10.11)

where the argument (�) is omitted. Since Rl(0) = I , the Taylor expansion of Rl(�)

around � = 0 is given by

Rl(�) = I + dR

d�

∣∣∣
�=0

� + 1

2

d2R

d�2

∣∣∣
�=0

�2 + 1

3!
d3R

d�3

∣∣∣
�=0

�3 + . . .

= I + �A + �

2
A2 + �

3!A
3 + . . . = e�A, (10.12)

where we define the exponential of matrix by the following series expansion:

eX =
∞∑

k=0

Xk

k! . (10.13)



10 Lie Algebra Method for Pose Optimization Computation 297

In Eq. (10.12), the matrix A specifies the axis direction in the form of Eq. (10.5).
Hence, Eq. (10.12) expresses the rotation Rl(�) in terms of its axis l and angle
�. An explicit expression for such a rotation, called the Rodrigues formula, is well
known (see, e.g., [11, 14]):

Rl(�)

=
⎛
⎝

cos � + l2
1(1 − cos �) l1l2(1 − cos �) − l3 sin � l1l3(1 − cos �) + l2 sin �

l2l1(1 − cos �) + l3 sin � cos � + l2
2(1 − cos �) l2l3(1 − cos �) − l1 sin �

l3l1(1 − cos �) − l2 sin � l3l2(1 − cos �) + l1 sin � cos � + l2
3(1 − cos �)

⎞
⎠ .

(10.14)

In the following, we combine the axis l and angle �, as in the case of the angular
velocity vector, as a single vector in the form of

� = �l, (10.15)

which we call the rotation vector. We also write the matrix that represents the
corresponding rotation as R(�). Since �1 = �l1, �2 = �l2, and �3 = �l3, Eq. (10.5)
is rewritten as

�A = �1A1 + �2A2 + �3A3, (10.16)

where we define the matrices A1, A2, and A3 by

A1 =
⎛
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎠ , A2 =

⎛
⎝

0 0 1
0 0 0

−1 0 0

⎞
⎠ , A3 =

⎛
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎠ . (10.17)

Hence, Eq. (10.12) is also written as

R(�) = e�1A1+�2A2+�3A3 , (10.18)

which express the Rodrigues formula of Eq. (10.14).

10.4 Lie Algebra of Infinitesimal Rotations

Consider a rotation R(t) continuously changing with parameter t , which can be
interpreted as time or angle of rotation or some control parameter. We assume it
as a dimensionless parameter with appropriate normalization. We regard t = 0 as
corresponding to the identity I . We call a “linear” variation of R(t) around t = 0
an infinitesimal rotation. To be specific, we expand R(t) for the small change δt of



298 K. Kanatani

t and ignore terms of order two and higher in δt . From Eq. (10.2), we see that an
infinitesimal rotation is expressed in the form

I + Aδt, (10.19)

for some antisymmetric matrix A, which we call the generator of the infinitesimal
rotation. If we accumulate this infinitesimal rotation continuously, we obtain a finite
rotation etA as shown in the preceding section.

Note that any multiple of an infinitesimal rotation is also an infinitesimal rotation.
This may sound counterintuitive, but this is the consequence of our defining
infinitesimal rotations as “linear” variations of rotations. If the parameter t is regarded
as time, multiplication of a generator by a constant c means multiplication of the
instantaneous velocity by c.

We also see that the composition of infinitesimal rotations is also an infinitesimal
rotation. In fact, if infinitesimal rotations I + Aδt and I + A′δt are composed, we
obtain

(I + A′δt)(I + Aδt) = I + (A + A′)δt (= (I + Aδt)(I + A′δt)). (10.20)

Recall that terms of order two and higher in δt are always ignored. From this, we see
that, unlike finite rotations, the composition of infinitesimal rotations is commutative,
i.e., it does not depend on the order of composition; the generator of the composed
infinitesimal rotation is the sum of their generators. If we identify an infinitesimal
rotation with its generator, we see that the set of infinitesimal rotations constitutes a
linear space.

A linear space is called an algebra if it is closed under some product operation.
The set of all the generators of infinitesimal rotations can be regarded as an algebra
if we define a product of generators A and B by

[A,B] = AB − BA, (10.21)

called the commutator of A and B. By definition, this is anticommutative:

[A,B] = −[B,A]. (10.22)

The commutator is bilinear:

[A + B,C] = [A,C] + [B,C], [cA,B] = c[A,B], c ∈ R, (10.23)

and the following Jacobi identity holds:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = O. (10.24)

An operation [ · , · ] which maps two elements to another element is called a Lie
bracket if the identities of Eqs. (10.22), (10.23), and (10.24) hold. Evidently, the



10 Lie Algebra Method for Pose Optimization Computation 299

commutator of Eq. (10.21) defines a Lie bracket. An algebra equipped with a Lie
bracket is called a Lie algebra.

Thus, the set of infinitesimal rotations is a Lie algebra under the commutator. Since
the generator A is an antisymmetric matrix, it has three degrees of freedom. Hence,
the Lie algebra of infinitesimal rotations is three-dimensional with the matrices A1,
A2, and A3 in Eq. (10.17) as its basis. It is easy to see that they satisfy

[A2,A3] = A1, [A3,A1] = A2, [A1,A2] = A3. (10.25)

In terms of this basis, an arbitrary generator A is expressed in the form

A = ω1A1 + ω2A2 + ω3A3, (10.26)

for some ω1, ω2, and ω3. From the definition of A1, A2, and A3 in Eq. (10.17),
Eq. (10.26) is rewritten as

A =
⎛
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ . (10.27)

This defines a 1-to-1 correspondence between a generator A and a vector ω =
(
ωi

)
.

Let ω′ =
(
ω′

i

)
be the vector that corresponds to generator A′. Then, the commutator

of A and A′ is

[A,A′] =
⎛
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠

⎛
⎝

0 −ω′
3 ω′

2
ω′

3 0 −ω′
1

−ω′
2 ω′

1 0

⎞
⎠

−
⎛
⎝

0 −ω′
3 ω′

2
ω′

3 0 −ω′
1

−ω′
2 ω′

1 0

⎞
⎠

⎛
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠

=
⎛
⎝

0 −(ω1ω
′
2 − ω2ω

′
1) ω3ω

′
1 − ω1ω

′
3

ω1ω
′
2 − ω2ω

′
1 0 −(ω2ω

′
3 − ω3ω

′
2)

−(ω3ω
′
1 − ω1ω

′
3) ω2ω

′
3 − ω3ω

′
2 0

⎞
⎠ , (10.28)

which shows that the vector product ω × ω′ corresponds to the commutator [A,A′].
Evidently, all the relations of Eqs. (10.22), (10.23), and (10.24) hold if the

commutator [A,B] is replaced by the vector product a × b. In other words, the
vector product is a Lie bracket, and the set of vectors is also a Lie algebra under the
Lie bracket [a, b] = a × b. As shown above, the Lie algebra of vectors is the same
as or, to be precise, isomorphic to the Lie algebra of infinitesimal rotations. Indeed,
the matrices A1, A2, and A3 in Eq. (10.17) represent infinitesimal rotations around



300 K. Kanatani

the x-, y-, and z-axes, respectively, and Eq. (10.25) corresponds to the relationships
e2 × e3 = e1, e3 × e1 = e2, and e1 × e2 = e3 among the coordinate basis vectors e1 =
(1, 0, 0)�, e2 = (0, 1, 0)�, and e3 = (0, 0, 1)�. The argument in Sects. 10.2 and 10.3
implies that identifying the generator A of Eq. (10.27) with the vector ω =

(
ωi

)

is nothing but identifying an infinitesimal rotation with an instantaneous angular
velocity vector. In other words, we can think of the Lie algebra of infinitesimal
rotations as the set of all angular velocity vectors. For more general treatments of
Lie algebras, see [11].

10.5 Optimization of Rotation

Given a function J (R) of rotation R, we now consider how to minimize it, assuming
that the minimum exists. In general, the solution can be obtained by differentiating
J (R) with respect to R and finding the value of R for which the derivative vanishes.
But how should we interpret differentiating with respect to R?

As is well known, the derivative of a function f (x) is the rate of change of the
function value f (x) when the argument x is infinitesimally incremented to x + δx.
By “infinitesimal increment,” we mean considering the “linear” variation, ignoring
higher order terms in δx. In other words, if the function value changes to f (x + δx)

= f (x) + aδx + . . ., we call the coefficient a of δx the differential coefficient, or
the derivative, of f (x) with respect to x and write a = f ′(x). This is equivalently
written as a = limδx→0(f (x+δx)−f (x))/δx. Evidently, if a function f (x) takes its
minimum at x, the function value does not change by infinitesimally incrementing
x; the resulting change is of a high order in the increment. This is the principle of
how we can minimize (or maximize) a function by finding the zero of its derivative.
Thus, in order to minimize J (R), we only need to find an R such that its infinitesimal
variation does not change the value of J (R) except for high order terms.

This consideration implies that “differentiation” of J (R) with respect to R means
evaluation of the rate of the change of J (R) when an infinitesimal rotation is added
to R. If an infinitesimal rotation of Eq. (10.19) is added to R, we obtain

(I + Aδt)R = R + ARδt. (10.29)

The generator A is represented by a vector ω via Eq. (10.27). In the following, we
combine the vector ω and the parameter δt of infinitesimal variation as a single
vector

�ω = ωδt, (10.30)

which we call the small rotation vector, an infinitesimal version of the finite rotation
vector � of Eq. (10.15). We also denote the antisymmetric matrix A corresponding



10 Lie Algebra Method for Pose Optimization Computation 301

to vector ω = (ω1, ω2, ω3)
� via Eq. (10.27) by1 A(ω). As shown in Eq. (10.6), the

following identity holds for an arbitrary vector a:

A(ω)a = ω × a. (10.31)

Using this notation, we can write Eq. (10.29) as R + A(�ω)R in terms of a small
rotation vector �ω. We substitute this into J (R). If J (R + A(�ω)R) is written in
the form

J (R + A(�ω)R) = J (R) + 〈g,�ω〉, (10.32)

for some vector g by ignoring higher order terms in �ω (recall that 〈a, b〉 denotes
the inner product of vectors a and b), we call g the gradient, or the first derivative,
of J (R) with respect to R.

Since g should vanish at R for which J (R) takes its minimum, we need to solve
g = 0, but this is not easy in general. So, we do iterative search, starting from an
initial value R and successively modifying it so that J (R) reduces. Note that the
value of the gradient g depends on R, i.e., g is a function of R. If, after substituting
R + A(�ω)R for R in g(R), we can write

g(R + A(�ω)R) = g(R) + H�ω, (10.33)

for some symmetric matrix H by ignoring higher order terms in �ω, we call the
matrix H the Hessian, or the second derivative, of J (R) with respect to R. If
the gradient g and the Hessian H are given, the value of J (R + A(�ω)R) is
approximated in the form

J (R + A(�ω)R) = J (R) + 〈g,�ω〉 + 1

2
〈�ω,H�ω〉 (10.34)

by ignoring higher order terms in �ω.
Now, we regard the “current” R as a fixed constant and regard the above expression

as a function of �ω. Since this is a quadratic polynomial in �ω, its derivative with
respect to �ω is g + H�ω. Hence, this polynomial in �ω takes its minimum for

�ω = −H−1g. (10.35)

Namely, the rotation for which Eq. (10.34) takes its minimum is approximately (I +
A(�ω))R for that �ω (recall that the current value R is regarded as a fixed constant).
However, I + A(�ω) is not an exact rotation matrix, although the discrepancy is
of higher order in δt . To make it an exact rotation matrix, we add higher order
correction terms as an infinite series expansion in the form of Eq. (10.12). Thus,

1Some authors write this as [ω]× or (ω×).



302 K. Kanatani

the rotation matrix for which Eq. (10.34) takes its minimum is approximated by
eA(�ω)R. Regarding this as the “new” value of the current rotation, we repeat this
process. The procedure is described as follows.

1. Provide an initial value for R.
2. Compute the gradient g and the Hessian H of J (R).
3. Solve the following linear equation in �ω:

H�ω = −g. (10.36)

4. Update R in the form

R ← eA(�ω)R. (10.37)

5. If ‖�ω‖ ≈ 0, return R and stop. Else, go back to Step 2.

This is nothing but the well-known Newton iterations. For Newton iterations, we
approximate the object function by a quadratic polynomial in the neighborhood of
the current argument, proceed to the value that gives the minimum of that quadratic
approximation, and repeat this. The difference of the above procedure from the usual
Newton iterations is that we analyze the minimum of the quadratic approximation
not in the space of the rotation R but in the Lie algebra of infinitesimal rotations. As
we noted earlier, the space of R and its Lie algebra are not the same, having higher
order discrepancies.

We can think of this situation as follows. Imagine the set of all rotations, defined
by the “nonlinear” constraint R�R = I and |R| = 1 (recall that |R| denotes the
determinant), which is called the special orthogonal group2 of dimension 3, or
the group of rotations for short, and denoted by SO(3). This is a “curved space”
in the 9-dimensional space of the elements of R. The Lie algebra of infinitesimal
rotations defined by the “linear” constraint A+A� = O can be thought of as a “flat”
tangent space to it at the current R, which we denote by TR(SO(3)), parameterized
by (�ω1,�ω2,�ω3) with the origin (0, 0, 0) at R. We “project” a point in the
Lie algebra TR(SO(3)) to a nearby point of SO(3) by the exponential mapping
eA(�ω) of Eq. (10.12) (Fig. 10.2) (see, e.g., [11]). Hereafter, we call this scheme of
optimization the Lie algebra method.

Note that in actual computation, we need not compute the series expansion of
Eq. (10.12) in Eq. (10.37). Let �� = ‖�ω‖ and l = N[�ω], where N[a] denotes
normalization to unit norm: N[a] ≡ a/‖a‖. As mentioned in Sect. 10.3, we can
write eA(�ω) = Rl(��), i.e., the rotation of angle �� around axis l, which can be
computed using the Rodrigues formula of Eq. (10.14).

The criterion ‖�ω‖ ≈ 0 for convergence is set by a predetermined threshold. If
�ω is 0, Eq. (10.35) implies g = 0, producing a local minimum of J (R). In general,
iterative methods of this type are not necessarily guaranteed to converge when started

2The term “special” means that the determinant is constrained to be 1.



10 Lie Algebra Method for Pose Optimization Computation 303

R
��

e         RA����

SO���

T �SO����R

Fig. 10.2 The Lie algebra of infinitesimal rotations can be thought of as the tangent space
TR(SO(3)) to the group of rotations SO(3) at R. The increment �ω in the Lie algebra is projected
to the point eA(�ω)R of S0(3)

Fig. 10.3 Observing N

points {xα} moving to {x′
α},

we want to know their
translation t and the rotation
R

R

t

x

x’

�

�

from an arbitrary initial value (some methods are guaranteed, though). Hence, we
need to start the iterations from a value close to the desired solution.

10.6 Rotation Estimation by Maximum Likelihood

Given two sets of 3D points x1, . . . , xN and x′
1, . . . , x′

N obtained by 3D sensing,
we want to know the rigid (or Euclidean) motion between them (Fig. 10.3). A rigid
motion consists of a translation t and a rotation R. Translation is easily computed
by comparing the centroids of the N points before and after the motion:

xC = 1

N

N∑
α=1

xα, x′
C = 1

N

N∑
α=1

x′
α. (10.38)

Let aα and a′
α be the displacements of xα and x′

α from their respective centroids:

aα = xα − xC, a′
α = x′

α − x′
C. (10.39)

The translation is given by t = x′
C − xC , and the rotation R is estimated so that a′

α

≈ Raα , α = 1, .., N , holds as accurately as possible. We formulate this problem as
follows.

We regard the data vectors aα and a′
α as displaced from their true values āα and

ā′
α by noise and write

aα = āα + �aα, a′
α = ā′

α + �a′
α. α = 1, . . . , N. (10.40)



304 K. Kanatani

We view �aα and �a′
α as independent Gaussian random variables with mean 0 and

covariance matrices V [aα] and V [a′
α], respectively. We write

V [aα] = σ 2V0[aα], V [a′
α] = σ 2V0[a′

α], (10.41)

and call V0[aα] and V0[a′
α] the normalized covariance matrices and σ the noise

level. The normalized covariance matrices describe the directional noise properties
that reflect the characteristics of the 3D sensing, which we assume is known, while
the noise level, which indicates the absolute noise magnitude, is unknown. Thus, the
probability density of �aα , �a′

α , α = 1, .., N , is written as

p =
N∏

α=1

e−〈�aα,V0[aα]−1�aα〉/2σ 2

√
(2π)3|V0[aα]|σ 3

e−〈�a′
α,V0[a′

α]−1�aα′ 〉/2σ 2

√
(2π)3|V0[aα]′|σ 3

= e−∑N
α=1(〈aα−āα,V0[aα](aα−āα)〉+〈a′

α−ā′
α,V0[aα](a′

α−ā′
α)〉)/2σ 2

∏N
α=1(2π)3

√|V0[aα]||V0[aα]′|σ 6
. (10.42)

When regarded as a function of observations aα , a′
α , α = 1, . . . , N , this expression is

called their likelihood. Maximum likelihood estimation means computing the values
āα , ā′

α , α = 1, .., N , and R that minimize this subject to

ā′
α = Rāα, α = 1, . . . , N. (10.43)

This is equivalent to minimizing

J = 1

2

N∑
α=1

(〈aα − āα, V0[aα](aα − āα)〉+〈a′
α − ā′

α, V0[aα](a′
α − ā′

α)〉), (10.44)

which is called the Mahalanobis distance, often called the reprojection error in the
computer vision community, subject to Eq. (10.43). Introducing Lagrange multipliers
for the constraint of Eq. (10.43) and eliminating āα and ā′

α , we can rewrite Eq. (10.44)
in the form

J = 1

2

N∑
α=1

〈a′
α − Raα,Wα(a′

α − Raα)〉, (10.45)

where we put

V α = RV0[aα]R� + V0[a′
α], (10.46)



10 Lie Algebra Method for Pose Optimization Computation 305

and define the matrix Wα by

Wα = V −1
α . (10.47)

We see that for maximum likelihood estimation, we need not know the unknown
noise level σ , i.e., it is sufficient to know the covariance matrices up to scale.

If the noise characteristics are the same for all the data, the distribution is said
to be homogeneous, otherwise it is inhomogeneous. If the noise occurrence is
the same in all directions, the distribution is said to be isotropic, otherwise it is
anisotropic. When the noise distribution is homogeneous and isotropic, we can let
V0[aα] = V0[a′

α] = I , which means V α = 2I and Wα = I/2. Hence, minimizing
Eq. (10.45) is equivalent to minimizing

∑N
α=1 ‖a′

α − Raα‖2, which is known as
least-squares estimation or the Procrustes problem. In this case, the solution can be
analytically obtained. For nondegenerate data distributions, Arun et al. [1] showed
that the solution is directly given using the singular value decomposition (SVD), and
Kanatani [12] generalized it to include degenerate distributions. Horn [10] showed
an alternative method, using the quaternion representation of rotations, which also
works for degenerate distributions.

However, the noise distribution of 3D sensing for computer vision applications
is hardly homogeneous or isotropic. Today, various types of 3D sensor are
available including stereo vision and laser or ultrasonic emission, and they are
used in such applications as manufacturing inspection, human body measurement,
archeological measurement, camera autofocusing, and autonomous navigation
[3, 20, 21]. Recently, an easy-to-use device called “kinect” is popular. For all such
devices, the accuracy in the depth direction (e.g., the direction of the camera lens
axis or laser/ultrasonic emission) is different from that in the direction orthogonal to
it. The covariance matrix of 3D sensing by stereo vision can be analytically evaluated
from the camera setting configuration. Many 3D sensor manufacturers provide
the covariance of their devices. Here, we consider minimization of Eq. (10.45)
for inhomogeneous and anisotropic noise distribution with known (up to scale)
covariance matrices.

This problem was first solved by Ohta and Kanatani [18] by combining
the quaternion representation of rotations and a scheme of iterating eigenvalue
computation called renormalization. Later, Kanatani and Matsunaga [15] solved the
same problem by a method called extended FNS (Fundamental Numerical Scheme),
which also iterates eigenvalue computation but can be applied not to just rotation but
to all subgroups of affine transformations including rigid motions and similarities.
They used their scheme for land deformation analysis, using GPS measurement. The
GPS land surface measurement data and their covariance matrices are available on
the websites of government agencies. Here, we show how the Lie algebra method
works for minimizing Eq. (10.45).

Replacing R by R + A(�ω)R in Eq. (10.45), we see that the linear increment of
J is given by



306 K. Kanatani

�J = −
N∑

α=1

〈A(�ω)Raα,Wα(a′
α − Raα)〉

+1

2

N∑
α=1

〈a′
α − Raα,�Wα(a′

α − Raα)〉, (10.48)

where we have noted that the right side of Eq. (10.45) is symmetric with respect to
the two R’s in the expression so that we only need to consider the increment of one
R and multiply the result by 2. Using the identity of Eq. (10.31), we can write the
first term on the right side of Eq. (10.48) as

−
N∑

α=1

〈�ω × Raα,Wα(a′
α − Raα)〉 = −〈�ω,

N∑
α=1

(Raα) × Wα(a′
α − Raα)〉,

(10.49)
where we have used the identity 〈a × b, c〉 = 〈a, b × c〉. For evaluating �Wα in the
second term on the right side of Eq. (10.48), we rewrite Eq. (10.47) as WαV α = I ,
from which we obtain �WαV α + Wα�V α = O. Using Eq. (10.47) again, we can
write �Wα as

�Wα = −Wα�V αWα. (10.50)

From Eq. (10.46), we obtain

�Wα = −Wα(A(�ω)RV [aα]R� + RV [aα](A(�ω)R)�)Wα, (10.51)

which we substitute into the second term on the right side of Eq. (10.48). Note that
the two terms on the right side of Eq. (10.51) are transpose of each other and that
the second term on the right side of Eq. (10.48) is a quadratic form in a′

α − Raα .
Hence, we only need to consider one term of Eq. (10.51) and multiply the result by
2. Then, the second term on the right side of Eq. (10.48) is written as

−
N∑

α=1

〈a′
α − Raα,WαA(�ω)RV [aα]R�Wα(a′

α − Raα)〉

= −
N∑

α=1

〈Wα(a′
α − Raα),�ω × RV [aα]R�Wα(a′

α − Raα)〉

=
N∑

α=1

〈�ω, (Wα(a′
α − Raα)) × RV [aα]R�Wα(a′

α − Raα)〉. (10.52)

Combining this with Eq. (10.49), we can write Eq. (10.48) as



10 Lie Algebra Method for Pose Optimization Computation 307

�J = −
N∑

α=1

〈�ω, (Raα) × Wα(a′
α − Raα)

−(Wα(a′
α − Raα)) × RV [aα]R�Wα(a′

α − Raα)〉 (10.53)

Hence, from Eq. (10.32), the gradient of the function J (R) of Eq. (10.45) is given
by

g = −
N∑

α=1

(
(Raα) × Wα(a′

α − Raα) − (Wα(a′
α − Raα))

×RV [aα]R�Wα(a′
α − Raα)

)
. (10.54)

Next, we consider the linear increment resulting from replacing R by R + A(�ω)R

in this equation. Since we are computing an R such that a′
α − Raα ≈ 0, we can

ignore the increment of the first R in the first term on the right side of Eq. (10.54),
assuming that a′

α −Raα ≈ 0 as the iterations proceed. The second term is quadratic
in a′

α − Raα , so we can ignore it. Only considering the increment of the second R

in the first term, we obtain

�g =
N∑

α=1

(Raα) × WαA(�ω)Raα) =
N∑

α=1

(Raα) × Wα(�ω × (Raα))

= −
N∑

α=1

(Raα) × Wα((Raα) × �ω). (10.55)

Now, we introduce new notations. For a vector ω and a matrix T , we define

ω × T ≡ A(ω)T , T × ω ≡ T A(ω)�, ω × T × ω ≡ A(ω)T A(ω)�.

(10.56)
The last one is the combination of the first two; whichever × we evaluate first, we
obtain the same result. From Eq. (10.31), it is easily seen that ω × T is “the matrix
whose columns are the vector products of ω and the three columns of T ” and that
T × ω is “the matrix whose rows are the vector products of the three rows of T and
ω” (see [13, 16] for more about this notation). Using this notation and Eq. (10.31),
we can write Eq. (10.55) as

�g = −
N∑

α=1

(Raα)×WαA(Raα)�ω =
N∑

α=1

(Raα)×Wα ×(Raα)�ω, (10.57)

where we have noted that A(ω) is antisymmetric: A(ω)� = −A(ω). Comparing this
and Eq. (10.33), we obtain the Hessian in the form



308 K. Kanatani

H =
N∑

α=1

(Raα) × Wα × (Raα). (10.58)

Now that the gradient g and the Hessian H are given by Eqs. (10.54) and (10.58),
we can minimize J (R) by Newton iterations as described in the preceding section.

However, we have approximated the Hessian H by letting some quantities be zero
in the course of the computation for minimizing those quantities. This convention
is called Gauss–Newton approximation, and the Newton iterations using Gauss–
Newton approximation are called Gauss–Newton iterations. From Eq. (10.35), we
see that if �ω is 0 at the time of convergence, g = 0 holds irrespective of the value of
H , returning an exact solution. In other words, as long as the gradient g is correctly
computed, the Hessian H need not be exact. However, the value of H affects the
speed of convergence.

If the Hessian H is not appropriate, we may overstep the minimum of J (R) and
the value of J (R) may increase. Or we may proceed too slowly to reduce J (R)

meaningfully. A well-known measure to cope with this is add to H a multiple of the
identity matrix I and adjust the constant c of H + cI . To be specific, we decrease
c as long as J (R) decreases and increase c if J (R) increases. This modification
is known as the Levenberg–Marquardt method. The procedure is written as follows
(see, e.g., [19]).

1. Initialize R, and let c = 0.0001.
2. Compute the gradient g and the (Gauss–Newton approximated) Hessian H of

J (R).
3. Solve the following linear equation in �ω:

(H + cI )�ω = −g. (10.59)

4. Tentatively update R to

R̃ = eA(�ω)R. (10.60)

5. If J (R̃) < J (R) or J (R̃) ≈ J (R) is not satisfied, let c ← 10c and go back to
Step 3.

6. If ‖�ω‖ ≈ 0, return R̃ and stop. Else, update R ← R̃, c ← c/10 and go back to
Step 2.

If we let c = 0, this reduces to Gauss–Newton iterations. In Steps 1, 5, and 6, the values
0.0001, 10c, and c/10 are all empirical. To start the iterations, we need appropriate
initial values, for which we can use the analytical homogeneous and isotropic noise
solution [1, 10, 12]. The initial solution is sufficiently accurate in most practical
applications, so the above Levenberg-Marquardt iterations usually converge after a
few iterations.



10 Lie Algebra Method for Pose Optimization Computation 309

10.7 Fundamental Matrix Computation

Consider two images of the scene taken by two cameras. Suppose a point in the scene
is imaged at (x, y) in the first camera image and at (x′, y′) in the second camera
image. From the geometry of perspective imaging, the following epipolar equation
holds [9]:

〈⎛
⎝

x/f0

y/f0

1

⎞
⎠ ,F

⎛
⎝

x′/f0

y′/f0

1

⎞
⎠

〉
= 0, (10.61)

where f0 is an arbitrary scale constant; theoretically, we could set it to one, but
it is better to let it have the magnitude of x/f and y/f for numerical stability of
finite length computation [8]. The matrix F is called the fundamental matrix and
is determined from the relative configuration of the two cameras and their internal
parameters such as the focal length.

Computing the fundamental matrix F from point correspondences (xα, yα) and
(x′

α, y′
α), α = 1, . . . , N , is one of the most fundamental steps of computer vision

(Fig. 10.4). From the computed F , we can reconstruct the 3D structure of the scene
(see, e.g., [9, 16]). The basic principle of its computation is minimizing the following
function:

J (F ) = f 2
0

2

N∑
α=1

〈xα,Fx′
α〉2

‖P kFx′
α‖2 + ‖P kF

�x′
α‖2

, (10.62)

where we define

xα =
⎛
⎝

xα/f0

yα/f0

1

⎞
⎠ , x′

α =
⎛
⎝

x′
α/f0

y′
α/f0

1

⎞
⎠ , P k =

⎛
⎝

1 0 0
0 1 0
0 0 0

⎞
⎠ . (10.63)

By minimizing Eq. (10.62), we can obtain a maximum likelihood solution to a high
accuracy, assuming that the noise terms �xα , �yα , �x′

α , and �y′
α in the coordinates

(xα, yα) and (x′
α, y′

α) are Gaussian variables of mean 0 with a constant variance.
The function J (F ) of Eq. (10.62) is called the Sampson error [9, 16].

Fig. 10.4 We compute the
fundamental matrix F from
point correspondences of two
images

(x , y )� �

(x ’, y ’)� �



310 K. Kanatani

Evidently, the fundamental matrix F has scale indeterminacy: Eqs. (10.61) and
(10.62) are unchanged if F is multiplied by an arbitrary nonzero constant. We
normalized it to ‖F‖2 (≡∑3

i,j=1 F 2
ij ) = 1. Besides, there is an important requirement,

called the rank constraint ([9, 16]): F must have rank 2. Many strategies have been
proposed to impose this constraint (see [16]), but the most straightforward one is to
express F via the SVD in the form

F = U

⎛
⎝

σ1 0 0
0 σ2 0
0 0 0

⎞
⎠ V �, (10.64)

where U and V are orthogonal matrices, and σ1 ≥ σ2 (> 0) are the singular values;
letting the third singular value σ3 be 0 is the rank constraint. From the normalization
‖F‖2 = 1, we have σ 2

1 + σ 2
2 = 1, so we can let

σ1 = cos φ, σ2 = sin φ. (10.65)

Substituting Eq. (10.64) into Eq. (10.62), we minimize J (F ) with respect to U , V ,
and φ. This parameterization was first proposed by Bartoli and Sturm [2], to which
Sugaya and Kanatani [25] applied the Lie algebra method.

Note that U and V are orthogonal matrices; they may not represent rotations
depending on the sign of the determinant. However, a small variation of an
orthogonal matrix is a small rotation. Hence, we can express the small variations of
U and V in the form

�U = A(�ωU)U , �V = A(�ωV )U , (10.66)

in terms of small rotation vectors �ωU =
(
�ωiU

)
and �ωV =

(
�ωiV

)
.

Incrementing U , V , and φ to U + �U , V + �V , and φ + �φ in Eq. (10.64),
we can write the linear increment of F , ignoring higher order terms, in the form

�F = A(�ωU)Udiag(cos φ, sin φ, 0)V � + Udiag(cos φ, sin φ, 0)(A(�ωV )V )�

+Udiag(− sin φ, cos φ, 0)V ��φ. (10.67)

Taking out individual elements, we obtain

�F11 = �ω2UF31 − �ω3UF21 + �ω2V F13 − �ω3V F12

+(U12V12 cos φ − U11V11 sin φ)�φ,

�F12 = �ω2UF32 − �ω3UF22 + �ω3V F11 − �ω1V F13

+(U12V22 cos φ − U11V21 sin φ)�φ,

...



10 Lie Algebra Method for Pose Optimization Computation 311

�F33 = �ω1UF23 − �ω2UF13 + �ω1V F32 − �ω2V F31

+(U32V32 cos φ − U31V31 sin φ)�φ. (10.68)

We identify �F with a 9-dimensional vector consisting of components �F11, �F12,
. . . , �F33 and write

�F = FU�ωU + F V �ωV + θφ�φ, (10.69)

where we define the 9 × 3 matrices FU and F V and the 9-dimensional vector θφ by

FU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 F31 −F21

0 F32 −F22

0 F33 −F23

−F31 0 F11

−F32 0 F12

−F33 0 F13

F21 −F11 0
F22 −F12 0
F23 −F13 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 F13 −F12

−F13 0 F11

F12 −F11 0
0 F23 −F22

−F23 0 F21

F22 −F21 0
0 F33 −F32

−F33 0 F31

F32 −F31 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10.70)

θφ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1U12V12 − σ2U11V11

σ1U12V22 − σ2U11V21

σ1U12V32 − σ2U11V31

σ1U22V12 − σ2U21V11

σ1U22V22 − σ2U21V21

σ1U22V32 − σ2U21V31

σ1U32V12 − σ2U31V11

σ1U32V22 − σ2U31V21

σ1U32V32 − σ2U31V31

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.71)

Then, the linear increment �J of the function J (F ) of Eq. (10.62) is given by

�J = 〈∇F J,�F 〉 = 〈∇F J,FU�ωU 〉 + 〈∇F J,F V �ωV 〉 + 〈∇F J, θφ�φ〉
= 〈F�

U∇F J,�ωU 〉 + 〈F�
V ∇F J,�ωV 〉 + 〈∇F J, θφ〉�φ, (10.72)

where ∇F J is the 9-dimensional vector consisting of components ∂J/∂Fij . From
this, we obtain the gradients of J with respect to UU , UV , and φ as follows:

∇ωU
J = F�

U∇F J, ∇ωV
J = F�

V ∇F J,
∂J

∂φ
= 〈∇F J, θφ〉. (10.73)



312 K. Kanatani

Next, consider the second derivatives ∂2J/∂Fij ∂Fkl of Eq. (10.62). We adopt the
Gauss–Newton approximation of ignoring terms containing 〈xα,Fx′

α〉, i.e., the left
side of the epipolar equation of Eq. (10.61). It follows that we need not consider
terms containing 〈xα,Fx′

α〉2 in the first derivative, i.e., we need not differentiate the
denominator in Eq. (10.62). Hence, the first derivative is approximated to be

∂J

∂Fij

≈
2∑

α=1

f 2
0 xiαx′

jα〈xα,Fx′
α〉

‖P kFx′
α‖2 + ‖P kF

�x′
α‖2

, (10.74)

where xiα and x′
jα denote the ith components of xα and x′

α , respectively. For
differentiating this with respect to Fkl , we need not differentiate the denominator
because the numerator contains 〈xα,Fx′

α〉. Differentiating only the numerator, we
obtain

∂2J

∂Fij ∂Fkl

≈
2∑

α=1

f 2
0 xiαx′

jαxkαx′
lα

‖P kFx′
α‖2 + ‖P kF

�x′
α‖2

. (10.75)

Let us count the pairs of indices (i, j) = (1,1), (1,2), . . . , (3,3), using a single running
index I = 1, . . . , 9. Similarly, we use a single running index J = 1, . . . , 9 for pairs
(k, l) and regard the right side of the above equation as the (I, J ) element of a
9 × 9 matrix, which we write as ∇2

F J . Then, as in Eq. (10.72), we can write, using
Eq. (10.69), the second derivation of J with respect to U , V , and φ in the form

�2J = 〈�F ,∇2
F J�F 〉

= 〈FU�ωU + F V �ωV + θφ�φ,∇2
F J (FU�ωU + F V �ωV + θφ�φ〉

= 〈�ωU ,F�
U∇2

F JFU�ωU 〉 + 〈�ωU ,F�
U∇2

F JF V �ωV 〉
+〈�ωV ,F�

V ∇2
F JFU�ωV 〉 + 〈�ωV ,F�

V ∇2
F JF V �ωV 〉

+〈�ωU ,F�
U∇2

F J θφ〉�φ + 〈�ωV ,F�
V ∇2

F J θφ〉�φ

+〈�ωU ,F�
U∇2

F J θφ〉�φ + 〈�ωV ,F�
V ∇2

F J θφ〉�φ

+〈θφ,∇2
F J θφ〉�φ2, (10.76)

from which we obtain the following second derivatives of J :

∇ωU ωU
J = F�

U∇2
F JFU , ∇ωV ωV

J = F�
V ∇2

F JF V , ∇ωU ωV
J = F�

U∇2
F JF V ,

∂∇ωU
J

∂φ
= F�

U∇2
F J θφ,

∂∇ωV
J

∂φ
= F�

V ∇2
F J θφ,

∂2J

∂φ2 = 〈θφ,∇2
F J θφ〉.

(10.77)
Now that the first and second derivatives are given, the Levenberg–Marquardt
procedure for minimizing J goes as follows:



10 Lie Algebra Method for Pose Optimization Computation 313

1. Provide an initial value of F such that |F | = 0 and ‖F‖ = 1, and compute the
SVD of Eq. (10.64). Evaluate the value J of Eq. (10.62), and let c = 0.0001.

2. Compute the first and second derivatives ∇F J and (Gauss–Newton approxi-
mated) ∇2

F J of J with respect to F .
3. Compute the 9 × 3 matrices FU and F V of Eq. (10.70) and the 9-dimensional

vector θφ of Eq. (10.71).
4. Compute the first derivatives ∇ωU

J , ∇ωV
J , and ∂J/∂φ in Eq. (10.73) and the

second derivatives ∇ωU ωU
J , ∇ωV ωV

J , ∇ωU ωV
J , ∂∇ωU

J/∂φ, ∂∇ωV
J/∂φ, and

∂2J/∂φ2 in Eq. (10.77) of J .
5. Solve the following linear equation in �ωU , �ωV , and �φ:

⎛
⎝

⎛
⎝

∇ωU ωU
J ∇ωU ωV

J ∂∇ωU
J/∂φ

(∇ωU ωV
J )� ∇ωV ωV

J ∂∇ωV
J/∂φ

(∂∇ωU
J/∂φ)� (∂∇ωV

J/∂φ)� ∂2J/∂φ2

⎞
⎠ + cI

⎞
⎠

⎛
⎝

�ωU

�ωV

�φ

⎞
⎠

= −
⎛
⎝

∇ωU
J

∇ωV
J

∂J/∂φ

⎞
⎠ . (10.78)

6. Tentatively update U , V , and φ to

Ũ = eA(�ωU )U , Ṽ = eA(�ωV )V , φ̃ = φ + �φ. (10.79)

7. Tentatively update F to

F̃ = Ũ

⎛
⎝

cos φ̃ 0 0
0 sin φ̃ 0
0 0 0

⎞
⎠ Ṽ

�
. (10.80)

8. Let J̃ be the value of Eq. (10.62) for F̃ .
9. If J̃ < J or J̃ ≈ J is not satisfied, let c ← 10c and go back to Step 5.

10. If F̃ ≈ F , return F̃ and stop. Else, update F ← F̃ ,U ← Ũ ,V ← Ṽ , φ̃ ←
φ, c ← c/10, and J ← J ′ and go back to Step 2.

We need an initial value of F for starting these iterations. Various simple schemes
are known. The simplest one is the “least squares” that minimizes the square sum of
the left side of the epipolar equation of Eq. (10.61), which is equivalent to ignoring
the denominator on the left side of Eq. (10.62). Since the square sum is quadratic
in F , the solution is immediately obtained by eigenanalysis if the rank constraint is
not considered. The rank constraint can be imposed by computing the SVD of the
resulting F and replacing the smallest singular value by 0. This scheme is known
as Hartley’s 8-point method [8]. Hartley’s 8-point method is sufficiently accurate
in most practical applications, so the above iterations usually converge after a few
iterations. See Kanatani et al. [16] for experimental comparisons of how the above



314 K. Kanatani

method improves the accuracy over Hartley’s 8-point method; often the number of
significant digits increases at least by one.

10.8 Bundle Adjustment

We consider the problem of reconstructing the 3D structure of the scene from
multiple images taken by multiple cameras. One of the most fundamental methods
is bundle adjustment: we optimally estimate all the 3D positions of the points we are
viewing and all the postures of the cameras as well as their internal parameters, in
such a way that the bundle of rays, or lines of sight, will piece through the images
appropriately.

Consider points (Xα, Yα, Zα), α = 1, . . . , N , in the scene. Suppose the αth point
is viewed at (xακ , yακ) in the image of the κth camera, κ = 1, . . . , M (Fig. 10.5). The
imaging geometry of most of today’s cameras is sufficiently modeled by perspective
projection, for which the following relations hold [9]:

xακ = f0
Pκ(11)Xα + Pκ(12)Yα + Pκ(13)Zα + Pκ(14)

Pκ(31)Xα + Pκ(32)Yα + Pκ(33)Zα + Pκ(34)

,

yακ = f0
Pκ(21)Xα + Pκ(22)Yα + Pκ(23)Zα + Pκ(24)

Pκ(31)Xα + Pκ(32)Yα + Pκ(33)Zα + Pκ(34)

, (10.81)

where f0 is the scale constant we used in Eq. (10.61), and Pκ(ij) are constants
determined by the position, orientation, and internal parameters (e.g., the focal
length, the principal point position, and the image distortion description) of the κth
camera. We write the 3 × 4 matrix whose (i, j) element is Pκ(ij) as P κ and call it
the camera matrix of the κth camera. From the geometry of perspective projection,
we can write this in the form

P κ = KκR�
κ

(
I −tκ

)
, (10.82)

where Kκ is the 3 × 3 matrix, called the intrinsic parameter matrix, consisting of
the internal parameters of the κth camera [9]. The matrix Rκ specifies the rotation

Fig. 10.5 N points in the
scene are viewed by M

cameras. The αth point
(Xα, Yα, Zα) is imaged at
point (xακ , yακ ) in the κth
camera image

(X  ,Y  ,Z  )

(x   ,y   )

���

	� 	�



10 Lie Algebra Method for Pose Optimization Computation 315

of the κth camera relative to the world coordinate system fixed to the scene, and tκ is
the position of the lens center of the κth camera. The principle of bundle adjustment
is to minimize

E =
N∑

α=1

M∑
κ=1

((xακ

f0
− Pκ(11)Xα + Pκ(12)Yα + Pκ(13)Zα + Pκ(14)

Pκ(31)Xα + Pκ(32)Yα + Pκ(33)Zα + Pκ(34)

)2

+
(yακ

f0
− Pκ(21)Xα + Pκ(22)Yα + Pκ(23)Zα + Pκ(24)

Pκ(31)Xα + Pκ(32)Yα + Pκ(33)Zα + Pκ(34)

)2)
, (10.83)

with respect to all the 3D positions (Xα, Yα, Zα) and all the camera matrices P κ

from observed (xακ , yακ), α = 1, . . . , N , κ = 1, . . . , M , as the input so that Eq. (10.81)
holds as accurately as possible. The expression E, called the reprojection error [9],
measures the square sum of the discrepancies between the image positions predicted
by the perspective projection geometry and their actually observed image positions.

Various algorithms have been proposed for bundle adjustment and are now
available on the Web. The best known is the SBA of Lourakis and Argyros [17].
Snavely et al. [23, 24] combined it with an image correspondence extraction process
and offered a tool called bundler. Here, we slightly modify these algorithms, based
on Kanatani et al. [16], to explicitly use the Lie algebra method for camera rotation
optimization.

Letting

pακ = Pκ(11)Xα + Pκ(12)Yα + Pκ(13)Zα + Pκ(14),

qακ = Pκ(21)Xα + Pκ(22)Yα + Pκ(23)Zα + Pκ(24),

rακ = Pκ(31)Xα + Pκ(32)Yα + Pκ(33)Zα + Pκ(34), (10.84)

we rewrite Eq. (10.83) in the form

E =
N∑

α=1

M∑
κ=1

((pακ

rακ

− xακ

f0

)2 +
(qακ

rακ

− yακ

f0

)2)
. (10.85)

Using a single running index k = 1, 2, . . . for all the unknowns, i.e., all the 3D
positions (Xα, Yα, Zα), α = 1, . . . , N , and all the camera matrices P κ , κ = 1, . . . ,
M , we write all the unknowns as ξ1, ξ2, . . . . The first derivative of the reprojection
error E with respect to ξk is

∂E

∂ξk

=
N∑

α=1

M∑
κ=1

2

r2
ακ

((pακ

rακ

− xακ

f0

)(
rακ

∂pακ

∂ξk

− pακ

∂rακ

∂ξk

)

+
(qακ

rακ

− yακ

f0

)(
rακ

∂qακ

∂ξk

− qακ

∂rακ

∂ξk

))
. (10.86)



316 K. Kanatani

Next, we consider second derivatives. Noting that as Eq. (10.85) decreases in the
course of iterations, we expect that pακ/rακ−xακ/f0 ≈ 0 and qακ/rακ−yακ/f0 ≈ 0.
So, we adopt the Gauss–Newton approximation of ignoring them. Then, the second
derivative of E is written as

∂2E

∂ξk∂ξl

= 2
N∑

α=1

M∑
κ=1

1

r4
ακ

((
rακ

∂pακ

∂ξk

− pακ

∂rακ

∂ξk

)(
rακ

∂pακ

∂ξl

− pακ

∂rακ

∂ξl

)

+
(
rακ

∂qακ

∂ξk

− qακ

∂rακ

∂ξk

)(
rακ

∂qακ

∂ξl

− qακ

∂rακ

∂ξl

))
. (10.87)

As a result, for computing the first and second derivatives ∂E/∂ξk and ∂2E/∂ξk∂ξl of
E, we only need to evaluate the first derivatives ∂pακ/∂ξk , ∂qακ/∂ξk , and ∂rακ/∂ξk

of pακ , qακ , and rακ .
Now, we apply the Lie algebra method to differentiation with respect to the rotation

Rκ in Eq. (10.82)3; to other unknowns (the 3D positions (Xα, Yα, Zα), the camera
positions tκ , and all the parameters contained in the intrinsic parameter matrix Kκ ),
we can apply the usual chain rule straightforwardly.

The linear increment �P κ of Eq. (10.82) caused by a small change A(�ωκ)Rκ

of Rκ is written as

�P κ = Kκ(A(�ωκ)Rκ)�
(
I −tκ

) = KκR�
κ

(
A(�ωκ)� −A(�ωκ)�tκ

)

= KκR�
κ

⎛
⎝

0 �ωκ3 −�ωκ2 �ωκ2tκ3 − �ωκ3tκ2

−�ωκ3 0 �ωκ1 �ωκ3tκ1 − �ωκ1tκ3

�ωκ2 −�ωκ1 0 �ωκ1tκ2 − �ωκ2tκ1

⎞
⎠ , (10.88)

where �ωκi and tκi are the ith components of �ωκ and tκ , respectively. Rewriting
the above equation in the form

�P κ = ∂P κ

∂ωκ1
�ωκ1 + ∂P κ

∂ωκ2
�ωκ2 + ∂P κ

∂ωκ3
�ωκ3, (10.89)

we obtain the gradients ∂P κ/∂ωκ1, ∂P κ/∂ωκ2, and ∂P κ/∂ωκ3 of P κ with respect to
the small rotation vector �ωκ . Letting the components of the vector ωκ be included
in the set of ξi , we obtain the first derivatives ∂pακ/∂ξk , ∂qακ/∂ξk , and ∂rακ/∂ξk

of Eq. (10.84) for the rotation. Note that the value of ωκ is not defined but its
differential is defined. Using Eqs. (10.86) and (10.87), we can compute the first
and second derivatives ∂E/∂ξk and ∂2E/∂ξk∂ξl of the reprojection error E. The
Levenberg–Marquardt bundle adjustment procedure has the following form:

3The quaternion representation of rotations is used in most of the currently available open software.



10 Lie Algebra Method for Pose Optimization Computation 317

1. Initialize the 3D positions (Xα, Yα, Zα) and the camera matrices P κ , and compute
the associated reprojection error E. Let c = 0.0001.

2. Compute the first and second derivatives ∂E/∂ξk and ∂2E/∂ξk∂ξl for all the
unknowns.

3. Solve the following linear equation for �ξk , k = 1, 2, . . . :

⎛
⎜⎜⎜⎝

∂2E/∂ξ2
1 + c ∂2E/∂ξ1∂ξ2 ∂2E/∂ξ1∂ξ3 . . .

∂2E/∂ξ2∂ξ1 ∂2E/∂ξ2
2 + c ∂2E/∂ξ2∂ξ3 . . .

∂2E/∂ξ3∂ξ1 ∂2E/∂ξ3∂ξ2 ∂2E/∂ξ2
3 + c . . .

...
...

...
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

�ξ1

�ξ2

�ξ3
...

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

∂E/∂ξ1

∂E/∂ξ2

∂E/∂ξ3
...

⎞
⎟⎟⎟⎠ .

(10.90)
4. Tentatively update the unknowns ξk to ξ̃k = ξk + �ξk except the rotations Rκ ,

which are updated to R̃κ = eA(�ωκ )Rκ .
5. Compute the corresponding reprojection error Ẽ. If Ẽ > E, let c ← 10c and go

back to Step 3.
6. Update the unknowns to ξk ← ξ̃k . If |Ẽ −E| ≤ δ, then stop (δ is a small constant).

Else, let E ← Ẽ and c ← c/10 and go back to Step 2.

In usual numerical iterations, the variables are successively updated until they
no longer change. However, the number of unknowns for bundle adjustment is
thousands or even tens of thousands, so an impractically long computation time
would be necessary if all variables were required to converge over significant digits.
On the other hand, the purpose of bundle adjustment is to find a solution with a small
reprojection error. So, it is a practical compromise to stop if the reprojection error
almost ceases to decrease, as we describe in the above procedure.

For actual implementation, many issues arise. One of them is the scale and
orientation indeterminacy. This is a consequence of the fact that the world coordinate
system can be arbitrarily defined and that imaging a small object by a nearby camera
will produce the same image as imaging a large object by a faraway camera. To
resolve this indeterminacy, we usually define the world coordinate system so that it
coincides with the first camera frame and fix the scale so that the distance between
the first and second cameras is unity. Normalization like this reduces the number
of unknowns of Eq. (10.90). Also, all the points in the scene are not necessarily
seen in all the images, so we must adjust the number of equations and unknowns of
Eq. (10.90), accordingly.

Another issue is the computation time. Directly solving Eq. (10.90) would require
hours or days of computation. One of the well-known techniques for reducing this
is to separate the unknowns to the 3D point part and the camera matrix part; we
solve for the unknowns of one part in terms of the unknowns of the other part and
substitute the result into the remaining linear equations, which results in a smaller-
size coefficient matrix known as the Schur complement [26]. The memory space is
another issue; we need to retain all relevant information in the course of the iterations
without writing all intermediate values in memory arrays, which might exhaust the
memory resource. See [16] for implementation details and numerical examples using
real image data.



318 K. Kanatani

10.9 Summary

We have described how we can optimize the pose computation involving rotations
using image and sensor data. We have pointed out that we do not need any
parameterization of the rotation (axis–angle, Euler angles, quaternions, etc.); we only
need to parameterize infinitesimal rotations, which form a linear space called the Lie
algebra. We have shown how the rotation matrix R is successively updated without
involving any parameterization in the Levenberg–Marquardt framework. We have
demonstrated our Lie algebra method for maximum likelihood rotation estimation,
fundamental matrix computation, and bundle adjustment for 3D reconstruction.

The problems we have shown here have been well known and solved by many
other methods, often with heuristics and ad-hoc treatment. Software tools for them
are available on the Web, and their performance is usually satisfactory. We are not
asserting that the use of Lie algebra improves their performance greatly. Our aim
here is to emphasize the role Lie algebra plays in vision applications, because it is a
fundamental mathematical principle that can be applied to a wide range of nonlinear
optimization problems.

Lie algebra has been used for robotics control of continuously changing 3D
postures [4, 6]. Recently, some researchers are using the Lie algebra method
for “motion averaging”: the 3D posture is computed by different methods and
sensors, resulting in different values, and their best average is computed by iterative
optimization [5, 7]. A similar approach was used to create a seamless circular
panorama by optimizing the camera orientations [22]. In Sect. 10.7, we showed
how to optimally compute the fundamental matrix. If the camera internal parameters
are all known, the fundamental matrix is called the “essential matrix,” and the Lie
algebra method is also used to optimize it [27].

Thus, Lie algebra plays an important role in a wide range of computer vision
problems. This chapter is aimed to help deepening its understanding.

References

1. Arun, K. S., Huang, T. S., & Blostein, S. D. (1987). Least-squares fitting of two 3-D point sets.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5), 698–700.

2. Bartoli, A., & Sturm, P. (2004). Nonlinear estimation of fundamental matrix with minimal
parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(3), 426–432.

3. Básaca-Preciado, L. C., Sergiyenko, O. Y., Rodríguez-Quinonez, J. C., García, X., Tyrsa, V.
V., Rivas-Lopez, M., & et al. (2014). Optical 3D laser measurement system for navigation of
autonomous mobile robot. Optics and Lasers in Engineering, 54, 159–169.

4. Benhimane, S., & Malis, E. (2007). Homography-based 2D Visual tracking and servoing.
International Journal of Robotics Research, 26(7), 661–676.

5. Chatterjee, A., & Govindu, V. M. (2018). Robust relative rotation averaging. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 40(4), 958–972.

6. Drummond, T., & Cipolla, R. (2000). Application of Lie Algebra to visual servoing.
International Journal of Computer Vision, 37(1), 65–78.



10 Lie Algebra Method for Pose Optimization Computation 319

7. Govindu, V. M. (2018). Motion averaging in 3D reconstruction problems. In P. K. Turaga & A.
Srivastava (Eds.), Riemannian computing in computer vision, (pp. 145–186). Cham: Springer.

8. Hartley, R. (1997). In defense of the eight-point algorithm. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(6), 580–593

9. Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision (2nd ed.).
Cambridge: Cambridge University Press.

10. Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit quaternions.
Journal of the Optical Society of America A, 4(4), 629–642.

11. Kanatani, K. (1990). Group-theoretical methods in image understanding. Berlin: Springer.
12. Kanatani, K. (1994). Analysis of 3-D rotation fitting. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 16(5), 543–549.
13. Kanatani, K. (1996). Statistical optimization for geometric computation: Theory and practice.

Amsterdam: Elsevier. Reprinted Dover, New York, 2005.
14. Kanatani, K. (2015). Understanding geometric algebra: Hamilton, Grasmann, and Clifford for

computer vision and graphics. CRC: Boca Raton
15. Kanatani, K., & Matsunaga, C. (2013). Computing internally constrained motion of 3-D sensor

data for motion interpretation. Pattern Recognition, 46(6), 1700–1709.
16. Kanatani, K., Sugaya, Y., & Kanazawa, Y. (2016). Guide to 3D vision computation: Geometric

analysis and implementation. Springer: Cham.
17. Lourakis, M. I. A., & Argyros, A. A. (2009). SBA: A software package for generic sparse

bundle adjustment. ACM Transactions on Mathematical Software, 36(1), 21–30.
18. Ohta, N., & Kanatani, K. (1998). Optimal estimation of three-dimensional rotation and

reliability evaluation. IEICE Transactions on Information and Systems, E81-D(11), 1243–1252.
19. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes:

The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press.
20. Rodriguez-Quinonez, J. C., Sergiyenko, O., Gonzalez-Navarro, F. F., Basaca-Preciado, L.,

Tyrsa, V. (2013). Surface recognition improvement in 3D medical laser scanner using Levenberg
Marquardt method. Signal Processing, 93(2), 378–386.

21. Rodríguez-Quiñonez, J. C., Sergiyenko, O., Flores-Feuntes, W., Rivas-lopez, M., Hernandez-
Balbuena, D., Rascón, R., & Mercorelli, P. (2017). Improve a 3D distance measurement accuracy
in stereo vision systems using optimization methods’ approach. Opto-Electronics Review, 25(1),
24–32.

22. Sakamoto, M., Sugaya, Y., & Kanatani, K. (2006). Homography optimization for consistent
circular panorama generation. In Proceeding 2006 IEEE Pacific-Rim Symposium Image Video
Technology, Hsinchu, Taiwan (pp. 1195–1205)

23. Snavely, N., Seitz, S., & Szeliski, R. (1995). Photo tourism: Exploring photo collections in 3D.
ACM Transactions on Graphics, 25(8), 835–846.

24. Snavely, N., Seitz, S., & Szeliski, R. (2008). Modeling the world from internet photo collections.
International Journal of Computer Vision, 80(22), 189–210

25. Sugaya, Y., & Kanatani, K. (2007). High accuracy computation of rank-constrained fundamental
matrix. In Proceeding 18th British Machine Vision Conference, Coventry, U.K. (vol. 1, pp. 282–
291).

26. Triggs, B., McLauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. (2000). Bundle adjustment—A
modern synthesis. In B. Triggs, A. Zisserman, & R. Szeliski (Eds.), Vision algorithms: Theory
and practice (pp. 298–375). Berlin: Springer.

27. Tron, R. & Daniilidis, K. (2017). The space of essential matrices as a Riemannian quotient
manifold. SIAM Journal on Imaging Sciences, 10(3), 1416–1445.


	10 Lie Algebra Method for Pose Optimization Computation
	Acronyms
	10.1 Introduction
	10.2 Small Rotations and Angular Velocity
	10.3 Exponential Expression of Rotation
	10.4 Lie Algebra of Infinitesimal Rotations 
	10.5 Optimization of Rotation 
	10.6  Rotation Estimation by Maximum Likelihood 
	10.7 Fundamental Matrix Computation 
	10.8 Bundle Adjustment 
	10.9 Summary 
	References


