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Preface

Machine vision to provide spatial coordinate’s measurement has developed in a wide
range of technologies for multiple fields of applications such as robot navigation,
medical scanning, and structural health monitoring, to mention some. Machine vision
methods also have applications in search, classification, industrial process robotics
(monitoring tools capable of visualizing various phenomena that occur during
industrial process), rescue, vigilance, mapping, dangerous objects/subjects detection,
and other areas where machine control based on vision plays an important role. The
computer vision has guided the machine vision to the tendency of duplicating the
abilities of human vision by electronically perceiving and understanding an image
for high-dimensional data and optimizing the data storage requirement and the time
processing due to the complexity of algorithms to extract important patterns and
trends to understand what data says.

Autonomous mobile robots are every day more common; they can be com-
mercially available dotted with machine vision capabilities for diverse tasks and
applications, like surveillance, 3D model reconstruction, localization and mapping
based on stereo vision, cleaning, medical assistance, and assist handicapped and
elderly people. All these robots missions require to the ability to work interactively
in human environments and with online learning. Mobile robots with machine vision
can be set up to detect, track, and avoid obstacles for optimal navigation. They can
also estimate its pose and construct a 3D structure of a scene. Their vision can be
based on stand-alone sensors or cameras based on sensors, filters, lens, and electronic
and mechanical focus. Everyday cameras are more considered in research projects
because they are affordable, inexpensive, robust, and compact. They capture a large
amount of data reflecting both the photometric and geometric properties of the
observed scene; however, they require considerable computing power and have a
number of limitations related to the used sensors and their whole optical path design.

In this sense, Machine Vision and Navigation is important to modern science
and industrial practical implementation. Hence, it is necessary to create new
algorithms and systems to improve their performance. Although machine vision,
control systems, and navigation applications for research and industrial areas are
the primary interest in exploration, contaminated areas after natural and man-made
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vi Preface

disasters on our planet, as well as of unknown terrains on other planets, are also
important, and the conjunctional use of these technologies and automatic systems is
desirable.

The chapters in this book relate to contributions in machine vision applications.
Each book chapter shows the state of the art in stand-alone sensors, cameras, methods,
and 3D and 2D technologies in machine vision as well as the novel strategies in
navigation performance.

These contributions are focused on optoelectronic sensors, 3D and 2D machine
vision technologies, robot navigation, control schemes, motion controllers, intel-
ligent algorithms, and vision systems, particularly on applications of unmanned
aerial vehicle, autonomous and mobile robots, industrial inspection applications, and
structural health monitoring. Recent advanced research in measurement and others
areas where 3D and 2D machine vision and machine control play an important role
as well as significant surveys and reviews about machine vision applications.

This book covers both theories and application of machine vision and navigation
topics. In our opinion, this book should be attractive for potential consumers/citers
because in our vision it is a well-balanced source of novel technologies in the area of
machine vision and navigation with an explicit overview of recently existing systems,
giving the comparative analysis of its features, advantages, and disadvantages. The
topics are of interest to readers from a diverse audience in different areas of specialty
as electrical, electronics, and computer engineering, technologists, and nonspecialist
readers. The book is intended to be used as a text and reference work on advanced
topics in machine vision and navigation. It is dedicated to academics, researchers,
advanced-level students, and technology developers who will find this text useful
in furthering their research exposure to pertinent topics in Machine Vision and
Navigation and assisting in their future own research efforts in this field.

An Overview of Machine Vision and Navigation

The combination of machine vision and navigation is most promising nowadays, in
recent years, we are finally seeing the full-scale release of daily-use devices, such as
robot cleaners, robot assistants for the elderly, and so on. From previous experience,
this is the best marker of the upcoming boom of demand of novel competitive
technologies in the field. Covering all the topics of study in this book would be
impossible; however, the most significant have been selected. The book contains 26
chapters which have been classified into five parts: (1) Image and Signal Sensors;
(2) Detection, Tracking, and Stereoscopic Vision Systems; (3) Pose Estimation,
Avoidance of Objects, Control, and Data Exchange for Navigation; (4) Aerial Imagery
Processing; and (5) Machine Vision for Scientific, Industrial, and Civil Applications.
These are briefly described in the following.

Chapter 1 is dedicated to image sensors and signal sensors used in current
machine vision systems. Some of them suffer from low dynamic range and poor color
constancy and are brittle and unmalleable, limiting their use in applications for which
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Preface vii

there will be considerable demand in the future. Most approaches aiming to resolve
these inadequacies focus on developing improvements in the lighting, and software
(processing algorithms) or hardware surrounding the photosensor such as filters is
presented. Also discussed are other strategies that involve changing the architecture
of the image sensor and the photo-sensing material; both have experienced recent
success. Although they are yet to break fully into the market, image sensors developed
from alternative solution-processed materials such as organic semiconductors and
organohalide perovskites have immense potential to address the above issues and to
“disrupt” machine vision technology.

Chapter 2 proposes a novelty passive vision sensor with a 360◦ horizontal field
of view for mobile robots. With the implementation of this sensor, the robots can be
provided with the ability of rapid detection of objects with a peripheral and central
vision. The development of this sensor has been inspired by the peripheral/foveal
typical vision in cooperation with the visual perception of vertebrates. It is based on
the exploit of a catadioptric camera, while a rotating perspective camera makes it
possible to measure distances, focusing attention on an already detected object, with
a simple calibration methodology of the hybrid field-of-view vision systems. The
sensor has been set up as a stand-alone and real-time sensor. It is a self-contained unit
hosted in a single-board embedded computer with parallel processing capabilities
that can be installed on any mobile robot, even those that have very limited computing
power.

Chapter 3 focuses on the color and depth sensing technologies and analyzes
how they play an important role in localization and navigation in unstructured
environments. It discusses the important role of scanning technologies in the
development of trusted autonomous systems for robotic and machine vision with
an outlook for areas that need further research and development. A review of
sensor technologies for specific environments is included, with special focus on
the selection of a particular scanning technology to deal with constrained (indoor) or
unconstrained (outdoor) environments. Fundamentals, advantages, and limitations
of color and depth (RGB-D) technologies such as stereo vision, time of flight, and
structured light and shape from shadow are discussed in detail. Strategies to deal with
lighting, color constancy, occlusions, scattering, haze, and multiple reflections are
evaluated in detail. It also introduces the latest developments in this area by discussing
the potential of emerging technologies, such as dynamic vision and focus-induced
photoluminescence.

Chapter 4 is a work developed for the construction of mixed image processor (IP)
and neural networks (NNs) and image intensity transformation and the fundamentals
of continuous logic cell (CLC) design based on current mirrors (CM) with functions
of preliminary analog processing. The intention of the authors is to create video
sensors and processors for parallel (simultaneous by pixel) image processing with
advanced functionality and multichannel picture outputs to work in particular in
hardware with high-performance architectures of neural networks, convolutional
neural structures, parallel matrix-matrix multipliers, and special-processor systems.
The theoretical foundations are analyzed. The mathematical apparatus of the matrix
and continuous logic, their basic operations, and their functional completeness are
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viii Preface

described. The evaluation of their advantages and prospects for application in the
design of biologically inspired devices and systems for processing and analysis of
array signals are presented. It is demonstrated that some functions of continuous
logic, including operations of normalized equivalence of vector and matrix signals,
and the operation of a limited difference in continuous logic are a powerful basis for
designing improved smart micro-cells for analog transformations and analog-digital
encodings.

Chapter 5 proposes the use of a robotic total station assisted with cameras for
detection and tracking of targets that are not signalized by reflectors. It introduces
the principles of standard total stations, defining them as “modern geodetic multi-
sensor systems measuring horizontal and vertical angles as well as distances using
time-of-flight methods, thus delivering 3D-coordinates for static as well as moving
objects.” However, it focuses on the equipment of these systems with cameras and the
application of photogrammetric techniques for the development of robotic image-
assisted total stations for static and kinematic objects. Some examples of applications
are described and a quality control study result is presented.

Chapter 6 offers a clear presentation of the methods and mathematical models
for coordinate estimation using radar technologies and problems related to the
recognition of object characteristics (landmarks) for mobile autonomous robots.
Basically, it is devoted to the actual problem of navigating mobile autonomous robots
on unknown terrains in the absence of GPS. Such a problem is considered solved
if the robot is capable to detect a landmark and estimate own coordinates relative
to the landmark. A reliable method for solving the problem is the simultaneous use
of several measuring systems operating on different physical principles. In classical
radar, the reliable detection of the echo signals from immovable landmark, which
differ little from the echo signals that are reflected from the surrounding area, is
impossible. Comparison of such signals is carried out in the chapter for various
terrains at different lengths of electromagnetic waves. It is found that the only
difference between them is the possible amplitude jump of signal, reflected from
the landmark. This jump occurs during the movement of the robot or scanning the
space by the robot antenna. The probability of detecting such a jump, the accuracy
of the amplitude estimation, and the speed of the device operation are analyzed in
the chapter based on the developed system of stochastic differential equations.

Chapter 7 overviews different machine vision systems in agricultural applications.
Several different applications are presented but a machine vision system which
estimates fruit yield, an example of an orchard management application, is discussed
at length. From the farmer’s perspective, an early yield prediction serves as an early
revenue estimate. From this prediction, resources, such as employees and storage
space, can more efficiently be allocated, and future seasons can be better planned.
The yield estimate is accomplished using a camera with a color filter that isolates
the blossoms on a tree when the tree is in its full blossom. The blossoms in the
resulting image can be counted and the yield estimated. An estimate during the
blossom period, as compared to when the fruit has begun to mature, provides a crop
yield prediction several months in advance. Discussed as well, in this chapter, is a
machine vision system which navigates a robot through orchard rows. This system
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can be used in conjunction with the yield estimation system, but it has additional
applications such as incorporating a water or pesticide system, which can treat the
trees as it passes by. To be effective, this type of system must consider the operating
scene as it can limit or constrain the system effectiveness. Such systems tend to be
unique to the operating environment.

Chapter 8 presents a deep review of stereoscopic vision systems (SVS), and their
description, classification (geometric configuration, quantity of cameras, and other
characteristics related with mathematical and computer processing), advantages,
disadvantages, and applications in the current state of the art are stated. It is also
noted that geometries of the SVS’s shown in this chapter are ideal and are not
considered factors that could affect the accuracy of measurements. The aim of the
chapter is to provide information for everyone who wants to implement an SVS
and needs an introduction to several available options to use the most convenient
according to a specific application.

Chapter 9 is focused on the development of machine vision for robots, robot pose
estimation, and 3D restructure of scenes through a set of matched correspondences
and features extracted from multiple images. It provides modern and advanced
strategies for image filtering and image feature extraction. It concentrates on stereo
vision noise source that results in a 3D reconstruction of a scene. Strategies for image
filtering and feature extraction are described based on techniques, such as Kalman
Filter (KF), extended Kalman filter (EKF), and unscented Kalman filter (UKF).
These filters are presented in order to increase the efficiency of visual simultaneous
localization and mapping (VSLAM) algorithm to increase its efficiency. Practical
examples in the field of robotics vision research are described, like pose tracking
using UKF and stereo vision and localization approach-based 2D-landmarks map.

Chapter 10 is dedicated to the development of mathematical fundamentals for
pose estimation. Pose estimation requires optimally estimating translation and
rotation. The chapter is focused on rotation, since it involves nonlinear analysis.
It is demonstrated how the computation can be done systematically if it is exploited
the fact that the set of rotations forms a group of transformations, called the
“special orthogonal group.” A linear space spanned by infinitesimal rotations
called the “Lie algebra” is defined. A computational procedure for minimizing the
optimization function of a rotation based on Lie algebra formulation is described
and applied to three computer vision problems: (1) Given two sets of 3D points,
it is optimally estimated the translation and rotation between them in the presence
of inhomogeneous anisotropic noise. (2) Given corresponding points between two
images, it is optimally computed the fundamental matrix. (3) It is described the
procedure of bundle adjustment for computing, from images of multiple points in
the scene taken by multiple cameras, the 3D locations of all the points, and the
postures of all the cameras as well as their internal parameters.

Chapter 11 shows a methodology for the accurate generation and tracking of
closed trajectories over arbitrary, large surfaces of unknown geometry, using a robot
whose control is based on the use of a non-calibrated vision system. The proposed
technique referred to as camera-space manipulation is combined with a geodesic-
mapping approach, with the purpose of generating and tracking a trajectory stored as
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a CAD model, over an arbitrarily curved surface, along with a user-defined position
and orientation. A measure used to diminish the distortion caused by the mapping
procedure and a technique for achieving closure of a given closed path, when this is
tracked over large, non-developable surfaces, are presented herein. The performance
of the proposed methodology was evaluated using an industrial robot with a large
workspace whose geometry is not known in advance, combined with structured
lighting used to reduce the complexity of the image analysis process.

Chapter 12 deals with generic image-based visual servoing control structure
with onboard camera, based on the passivity theory and application. It gives a
mathematical approach and a detailed literature research including also contributions
of recent publications. The authors prove the convergence to zero of the control error
and its robustness in the context of L_2-gain performance. A unified passivity-based
visual servoing control structure considering a vision system mounted on the robot
is presented. This controller is suitable to be applied for robotic arms, mobile robots,
as well as mobile manipulators. The proposed control law makes the robot able to
perform a moving target tracking in its workspace. Taking advantage of the passivity
properties of the control system and considering exact knowledge of the target’s
velocity, the asymptotic convergence to zero of the control errors is proved. Later, it
is carried a robustness analysis out based on L_2-gain performance, hence proving
that control errors are ultimately bounded even when there exist bounded errors in
the estimation of the target velocity. Both numerical simulation and experimental
results illustrate the performance of the algorithm in a robotic manipulator, in a
mobile robot, and also in a mobile manipulator.

Chapter 13 is about data exchange and task of navigation for robotic group. Robotic
group collaboration in a densely cluttered terrain is one of the main problems in
mobile robotics control. The chapter describes the basic set of tasks solved in model
of robotic group behavior during the distributed search of an object (goal) with the
parallel mapping. Navigation scheme uses the benefits of authors’ original technical
vision system (TVS) based on dynamic triangulation principles. According to the
TVS output data were implemented fuzzy logic rules of resolution stabilization
for improving the data exchange. The dynamic communication network model was
modified and implemented the propagation of information with a feedback method
for data exchange inside the robotic group. For forming the continuous and energy-
saving trajectory, the authors are proposing to use two-step post-processing method
of path planning with polygon approximation. Combination of our collective TVS
scans fusion and modified dynamic data exchange network forming method with
dovetailing of the known path planning methods can improve the robotic motion
planning and navigation in unknown cluttered terrain.

Chapter 14 proposes a hierarchical navigation system combining the benefits of
perception space local planning and allocentric global planning. Perception space
permits computationally efficient 3D collision checking, enabling safe navigation
in environments that do not meet the conditions assumed by traditional navigation
systems based on planar laser scans. Contributions include approaches for scoring
and collision checking trajectories in perception space. Benchmarking results show
the advantages of perception space collision checking over popular alternatives
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in the context of real-time local planning. Simulated experiments with multiple
robotic platforms in several environments demonstrate the importance of 3D collision
checking and the utility of a mixed representation hierarchical navigation system.

Chapter 15 corresponds to a deep overview regarding autonomous mobile
vehicles for wheeled ground applications. The different autonomy levels of vehicles
are approached. The main concepts from path planning, going through the basic
components that an autonomous vehicle must have, all the way to the perception it
has of its environment, including the identification of obstacles, signs, and routes, are
presented. The most commonly used hardware for the development of these vehicles
is discussed. In the last part of this chapter, a case study, “Intelligent Transportation
Scheme for Autonomous Vehicles in Smart Campus,” is incorporated in order to
help illustrate the goal of the chapter. Finally, an insight is included on how the
innovation on business models can and will change the future of vehicles.

Chapter 16 is devoted to the approach of passive combined correlation-extreme
systems implementing the survey-comparative method for recognition and analysis
of images obtained from the machine vision system of a flying robot, which is able
to significantly improve the correct localization of the objects in the image frame.
A basic model for the radiometric channel operation of the correlation-extreme
navigation systems is proposed. The factors that lead to distortions of the decisive
function formed by the combined correlation-extreme navigation system of flying
robots in a developed infrastructure are allocated. A solution of the problem of
autonomous low-flying flying robots navigation in a developed infrastructure using
the radiometric channel extreme correlation navigation systems (CENS), when the
size of the solid angle of associated object is much larger than the size of the partial
antenna directivity diagram (ADD), is proposed.

Chapter 17 is focused in the description of an analytic image stabilization
approach where pixel information from the focal plane of the camera is stabilized
and georegistered in a global reference frame. The aerial video is stabilized to
maintain a fixed relative displacement between the moving platform and the scene.
The development of the algorithm that is able to stabilize aerial images using its
available weak/noisy GPS and IMU measurements, based on the use of analytically
defined homographies between images and minimizing the cost function on a 2D
equation space, is presented. The algorithm is applied in the Defense Advanced
Research Projects Agency (DARPA) video and image retrieval and analysis tool
(VIRAT) data set and wide area motion images (WAMI).

Chapter 18 describes a visual servo controller designed for an unmanned aerial
vehicle dedicated to tracking vegetable paths. In the inspection and data collection
of large areas as crop fields, where an aerial vehicle should follow an object’s line
accurately, autonomous flight is a desirable feature with unmanned aerial vehicles.
To attain this objective, three visual servo controllers are proposed; one of them is
position based and the other two are image based using inverse Jacobian and concepts
of passivity, respectively. All controllers are developed based on the kinematic
model of the vehicle, and a dynamic compensation is designed to be added in
cascade with the kinematic one. The performance of the control systems is compared
through simulation results. The main contribution is the development of the image-
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based controller using passivity properties of the system, the stability and robustness
analysis, and the comparative performance with other controllers when used for
an unmanned aerial vehicle following vegetal lines. These comparative results are
valuable to choose the appropriate driver for a specific application.

Chapter 19 is the result of a deep study and research of multimedia compression
advances, focusing on the use of the integer discrete cosine transform, the wavelet
transform, and fovea centralis. Data compression is concerned with minimization
of the number of information-carrying units used to represent a given data set.
Such smaller representation can be achieved by applying coding algorithms. Coding
algorithms can be either lossless algorithms that reconstruct the original data set
perfectly or lossy algorithms that reconstruct a close representation of the original
data set. Both methods can be used together to achieve higher compression ratios.
Lossless compression methods can either exploit statistical structure of the data
or compress the data by building a dictionary that uses fewer symbols for each
string that appears on the data set. Lossy compression on the other hand uses a
mathematical transform that projects the current data set onto the frequency domain.
The coefficients obtained from the transform are quantized and stored. The quantized
coefficients require less space to be stored.

Chapter 20 shows a method to solve the stairway localization and recognition
problem for both indoor and outdoor cases by using a convolutional neural network
technique. This work has been motivated because for blind and visually impaired
persons, this assistive technology application has an important impact in their
daily life. The proposed algorithm should be able to solve the problem of stair
classification for indoor and outdoor scenes. The proposed idea describes the strategy
for introducing an affordable method that can recognize stairways without taking into
account the environments. Firstly, this method uses stair features to classify images
by using convolutional neural networks. Secondly, stairway candidate is extracted
by using the Gabor filter, a linear filter. Thirdly, the set of lines belonging to the
ground plane are removed by using the behavioral distance measurement between
two consecutive frames. Finally, it is extracted from this step the tread depth and the
riser height of the stairways.

Chapter 21 gives a deep review of new- and advanced-phase triangulation
methods for 3D-shape measurements in scientific and industrial applications. The
mathematical methods for phase triangulation are presented, which allow the
measurement of 3D data under the conditions of arbitrary light-scattering properties
of the scanning surface, varying measurement setting external illumination and
limited depth of field of optical elements of the source and receiver of optical
radiation. The book chapter provides a deep mathematical approach about the
proposed steady-state method for decoding phase images and presents a method
for nonlinearity compensation of the source-receiver path of optical radiation
in 3D measurements. The application of the proposed methods provides higher
metrological characteristics of measuring systems and expands the functionality and
the range of application of optical-electronic systems for geometric control in the
production environment.
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Chapter 22 presents a thermal image processing method to monitor a moving melt
pool of a blown powder deposition process using infrared thermography. Thereby,
the moving melt pool is created on a substrate material by the use of a laser and
a motorized work table, where the material is (stainless steel 316) deposited in a
layer-by-layer sequence on the substrate material. The steel is placed in powder
form on the substrate and brought to its melting point by means of a 1 kW fiber
laser with a wavelength of 1064 nm. By controlling a fixed melting pot size in
closed-loop configuration, a consistent material deposition and layer thickness of the
deposited material are ensured. For the feedback of the closed-loop control, an energy
management system and a height control system are used to track the total spectral
radiance of the melt pool and to track the top of the deposited material. The chapter
gives a good and practical overview of the blown powder deposition process using
infrared thermography and names the used technologies to implement the melting
and tracking process. It uses Planck’s law to define the spectral radiance of the melt
pool for the energy management system. It also presents infrared thermographs to
detect different temperature regions of the melt pool.

Chapter 23 describes the importances of image processing of measurement
signals that are contaminated with noise for accurate fault detection and isolation
in machines. This chapter presents processing filters to detect step changes in noisy
diagnostic signals of a gas turbine, which the authors use as indicator for an onset
of a single fault of these signals. By using the process filters, the noise of the gas
turbine diagnostic signals is reduced and then examined for a step change. Various
linear and nonlinear process filters are described and compared, where the weighted
recursive median (WRM) filter is highlighted for good noise reduction. Also, the ant
colony optimization (ACO) method is used to calculate the integer weights of the
weighted recursive median filter.

Chapter 24 proposes a new method to control and automatize the position of three-
axis piezoelectric nano-manipulators that handle a GSG nanoprobing to ensure the
precise positioning of the probe on the substrate under test. The method is based on a
measurement setup that consists of a vector network analyzer (VNA) connected
through coaxial cables to miniaturized homemade coplanar waveguide (CPW)
probes (one signal contact and two ground contacts), which are themselves mounted
on three-axis piezoelectric nano-manipulators SmarActTM. The device under test
(DUT) is positioned on a sample holder equipped also with nano-positioners and
a rotation system with μ-degree resolution. The visualization is carried out by
a scanning electron microscope (SEM) instead of conventional optics commonly
found in usual on-wafer probe stations. This study addresses the challenge related
to the control of nano-manipulators in order to ensure precisely the contact between
the probe tips and the DUT to be characterized.

Chapter 25 shows the design of an industrial inspection system for plastic
parts. The development of user-friendly design and training tool for convolutional
neural networks (CNNs) and support vector machines (SVMs) as an application
development environment based on MATLAB is presented. As the first test trial, an
application of deep CNN (DCNN) for anomaly detection is developed and trained
using a large number of images to distinguish undesirable small defects such as crack,
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burr, protrusion, chipping, spot, and fracture phenomena that occur in the production
process of resin molded articles. Then, as the second test trial, a SVM incorporated
with the AlexNet and another SVM incorporated with our original sssNet are,
respectively, designed and trained to classify sample images into accepting as OK or
rejecting as NG categories with high categorization rate. In the case of these SVMs,
the training can be conducted by using only images of OK category. The AlexNet
and the sssNet are different types of DCNNs, whose compressed feature vectors
have 4096 and 32 elements, respectively. The two lengths of compressed feature
vectors are used as the inputs for the two types of SVMs, respectively. The usability
and operability of the developed design and training tool for DCNNs and SVMs are
demonstrated and evaluated through training and classification experiments.

Chapter 26 is dedicated to a structural health monitoring application. It describes
that due to the increase of frequency and weight of commercial ship trips in
waterways, bridges are more vulnerable than ever to ship-bridge collision accidents.
It explains that there are plenty of reports of such cases all over the world, leading
to millions of economic losses. For ancient bridges, irreparable damage might come
in the sense of cultural value except for economic losses. The development of
computer vision-based technology provides an active defense method to prevent
the damage in advance. This chapter presents a computer vision-based method for
ship-bridge collision assessment and warning for an ancient arch bridge over the
Beijing-Hangzhou Grand Canal in Hangzhou, China. The structural characteristic
and current status of the arch bridge were analyzed. The traffic volume and parameters
of passing ships including velocity and weight were investigated. Water area in both
sides of the bridge was divided into three different security districts corresponding
to different warning levels. Image processing techniques were exploited to identify
the types of ships for tracking. The potential of ship-bridge collision was assessed,
and warning was generated according to the security evaluation.

Mexicali, Mexico Oleg Sergiyenko
Mexicali, Mexico Wendy Flores-Fuentes
Lueneburg, Germany Paolo Mercorelli
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Image and Signal Sensors for Computing
and Machine Vision: Developments
to Meet Future Needs

Ross D. Jansen-van Vuuren, Ali Shahnewaz, and Ajay K. Pandey

Acronyms

ADC Analogue-to-digital convertor
ASIC Application-specific integrated circuit
CCD Charge-coupled device
CFA Colour filter array
CIS CMOS image sensors
CMOS Complementary metal-oxide semiconductor
CQDs Colloidal quantum dots
D/A Donor–acceptor
D∗ Specific detectivity
EQE External quantum efficiency
FET Field-effect transistor
FIT Frame interline transfer
FT Frame transfer
FWHM Full width at half maximum
ICP Integrated colour pixel
IoTs Internet of things
IR Infrared
Jd Dark current
Jph Photocurrent
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LDR Linear dynamic range
MVS Machine vision systems
NEP Noise-equivalent power
OFET Organic field-effect transistor
OHP Organohalide perovskite
OLED Organic light-emitting diode
OPD Organic photodiode
OPT Organic phototransistor
OSC Organic semiconductor
PT Phototransistor
RGB Red green blue (referring to a colour filter system)
ROIC Read-out integrated circuitry
TFD Transverse field detector
ToF Time of flight

1.1 Introduction

1.1.1 Image Sensing in Machine Vision Systems

Digital cameras offer many advantages over conventional photo technologies,
including the elimination of film processing, the ease of editing and affordability.
Evidence for their increasing popularity worldwide can be seen in the resultant
consumer success. The market for image sensors has experienced major growth over
recent years with the value predicted to reach USD 23.97 billion by 2023 [1, 2].
This increase is largely due to digital still and video cameras, but also includes the
expansion of digital imaging to cellular phones, laptop and personal computers (e.g.
Internet-based video conferencing), security and surveillance, and the automotive,
medical and entertainment industries. Digital cameras are also used extensively for
image capture in machine vision systems (MVS), which rely upon object recognition
and image analysis/indexing to extract data which is then used to control a process
or activity. The applications of MVS are broad and range from automated industrial
applications such as inspection and quality evaluation of products [3–5] to robotic
guidance and control [6], autonomous vehicles [7–9], precision viticulture [10],
picking and sorting fruit and vegetables [11] and colorimetric sorting systems [12].

Conventional image sensors are generally considered to be sufficient for consumer
digital photography but are limited when meeting the level of imaging required
for MVS applications which demand accurate and rapid colour image capture [6,
13], often in scenes of uncontrolled lighting with a large dynamic light range
[14]. Furthermore, given the conditions under which imaging in rapidly advanced
applications (e.g. self-driving cars, military applications, robotics) occurs, research
is underway to find ways to develop photodetection systems which have the
requisite size, lightness, compatibility with flexible and miniaturized substrates
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and durability, preferably with a reduced cost. In order to try and meet these
requirements, modifications to the sensing systems can be made including the use
of different photodetector materials and/or image processing technologies, changes
to the design and arrangement of the colour separation systems, altering the image
sensor architectures or the individual pixel sensor arrangements (typically passive
or active) or integration of ‘smart functions’ onto the chips of image sensors.

This chapter seeks to review the limitations of current MVS and the research
being carried out to address these. The focus is largely upon applications which
depend on colour image capture for object recognition and image indexing. MVS
depending on colour recognition need to satisfy a vastly more complex requirement
since ‘color images include not only the brightness but also the color information,
such as hue and saturation’ [15, 16]. From the literature, the default approaches to
improving colour recognition in MVS involve either modifying the image processing
algorithms (these could include colour segmentation techniques) [15, 17] or exerting
more control over the environmental conditions under which colour sensing takes
place [3, 7, 18]. A key objective of this chapter is to flesh out two proposed alternative
approaches, namely changes that can be made to the architecture of the image sensor
and the photosensor material within the image sensor.

1.1.2 Image Capture by Digital Cameras

Firstly, consider the general set of operations carried out by a camera in capturing
an image using an image sensor. The basic operations carried out by all digital
cameras, regardless of their specific function and application, are essentially the
same and consist of five separate steps [19]. These include: (1) photon collection,
usually via a lens, which entails focusing the light before transmitting it through the
optical system; (2) separation of the incoming photons by energy/wavelength (colour
discrimination)—typically carried out using colour filter systems, for example Bayer
colour filter array [20]; (3) (a) formation of photocurrent and (b) readout of the
resultant signal (performed by the image sensor); (4) interpretation and processing of
the data—now in digital form—in order to reproduce the colour image and (5) colour
management and image compression processes as carried out by the microprocessor
prior to data storage and export.

The image sensor plays the vital role of capturing the image, and the means by
which this fundamentally occurs can be summarized in four steps [21]. (1) The
absorption of photons by the photoactive material which constitutes the pixels,
generating electron–hole pairs. (2) The electrons and holes are driven by means
of an external electric field towards opposite electrodes, where they are extracted
and give rise to the signal charge, which is collected and accumulated at each
pixel. (3) The accumulated charge is then read out from each pixel in the two-
dimensional array. Various means by which this occurs result in a range of different
architectures giving rise to the range of image sensors on the current market, such as
charge-coupled device (CCD) sensors, complementary metal-oxide semiconductor
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Fig. 1.1 General operation mechanism of a CCD versus that of a CMOS image sensor (image
courtesy of [23])

(CMOS) sensors, MOS x − y using addressed devices and frame transfer (FT)
devices. (4) Finally, the charges are detected, which occurs in a manner that is
essentially independent of the type of sensor. Although the different image sensor
architectures commence at the same point, namely the transduction of photons to
electrons, they differ in how the charge is collected. The most common image sensors
have CCDs and CMOS architectures (Fig. 1.1). In general, CCDs, developed in the
late 1960s, work by transporting the charge (generated through light absorption)
across the chip to one corner of the photodiode array, before an analogue-to-digital
convertor (ADC) transforms this into a digital signal, whereas in CMOS image
sensors (CIS) (developed in the 1990s), photogenerated charge is collected at each
pixel, before being amplified and transferred using traditional wiring (Fig. 1.1) [22].

Thus, CIS offer the following advantages over CCDs: ‘ease of system integration,
low power consumption, and freedom of device architecture’ [22]. In addition,
considering that machine vision systems require high speed with low noise during
imaging, CMOS image sensors ‘can be designed to have much lower noise than
high speed CCDs’, as shown in Fig. 1.1 [23]. There are multiple ways in which
CIS can be configured—the two main approaches differ in the position of the
light-receiving photodiodes: in front-illuminated CIS, the incoming light needs to
pass through the colour filters and metal wiring before reaching the photodiode,
whereas in back-illuminated CIS, the light reaches the photodiode more efficiently
[22, 24]. Initially, due to their simple pixel layout, CCDs enabled more pixels per
unit area and, therefore, higher pixel count and resolution. This was a major reason
for their contribution towards the development and rise in popularity of digital still
cameras [22, 25]. However, when CMOS image sensors made an appearance on the
market, they rapidly gained popularity since the incorporation of ‘in-pixel transistors’
supported rapid image capture with low power consumption [22, 26]. The history
of the development of CCDs and CMOS image sensors has been covered in detail
elsewhere [27–29].

Although a major difference between the structure and operation of the various
sensors lies in the method used to read out the signal produced by the photodetectors,
it is the type of photodetector material and means of colour recognition within the
camera that ultimately defines the quality of the image, since this has the largest
influence over the spectral sensitivity and resolution of the sensor. There are several



1 Image and Signal Sensors for Computing and Machine Vision. . . 7

approaches to capture colour images using conventional (broadband) photosensing
materials. These can generally be classified into two major groupings which include
(1) sensors which make use of an auxiliary structure that does not constitute the
active layer of the pixel, such as a colour filter on top of the sensor cells, and
(2) those in which the colour separation system is integrated within the imaging
array (see Fig. 1.2). (1)(a) Although there are several arrangements of filters whose
selection depends upon the application, a common system employs the Bayer filter
[20], which consists of a mosaic of red (R), green (G) and blue (B) filters such that
there are twice as many Gs as there are R and B to simulate the human visual system.
(1)(b) The second method involves taking three sequential exposures, each with a
different optical filter (RGB) mounted in a colour wheel [30], before combining
the three separate images to form the final picture (Fig. 1.2b). (1)(c) The third
approach involves the use of a beam-splitter, classically a trichroic prism assembly
(Fig. 1.2c), which separates the light into its R, G and B components before these
are focused onto three discrete image sensors (‘3-CCD’ or ‘3-CMOS’). Although
considered somewhat superior in image quality and resolution, 3-CCD cameras are
generally more expensive than single-sensors and the potential for miniaturization
of cameras is somewhat limited [30]. (1)(d) An emerging technology called the
integrated colour pixel (ICP) involves replacement of the colour filter array (CFA)
with an array of metal strips in a specific pattern which enables colour separation
during image capture. The patterned metal layers are placed within each pixel such
that they control the transmission of light to the photodetector within the pixel [31].

In the second group, there are two approaches that can be taken. The first of
these involves the direct absorption of red, green and blue lights at each location
by stacking the colour pixels in a three-layer arrangement [32], as shown in Fig.
1.2. (2)(e). For example, this system is applied within the Foveon X3 direct image
sensor [33, 34] and is similar in many respects to the layers of chemical emulsion
comprising colour film. Foveon X3 image sensors have three layers of pixels, and
each layer is embedded in silicon, taking advantage of the fact that red, green and blue
lights penetrate silicon to different depths, therefore enabling an image sensor that
captures full colour at every point in the captured image. Although stacked image
sensors are able to increase the fill factor of the sensor surface area, as separate
receptors are no longer required for each colour, the spectral sensitivity in these
image sensing devices and the resultant colour reproducibility is insufficient to meet
the demands of modern applications and cross-talk between layers presents a major
device challenge [35, 36]. Finally, (2)(f) shows a method relying on the application
of an electric field across the device, enabling the generation of carriers at varying
but specific depths, subsequent to their collection [37, 38].

1.1.3 Performance Metrics of Image Sensor Photodiodes

Having covered the basic structure of modern image sensors and the various systems
by which colour separation can be carried out, the figures of merit of photodetectors
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Fig. 1.2 The two main approaches for colour separation within broadband inorganic semiconductor
photosensors. Group 1: (a) Bayer filter mosaic; (b) sequential triple exposure with R, G and B
filters; (c) prism separation system and three sensor arrays (3MOS or 3CCD); (d) the Integrated
Colour Pixel (ICP). Group 2—image sensors who achieve colour separation through an internal
mechanism: (e) Foveon X3 image sensor; (f) Transverse Field Detector (TFD). Used with permission
from Jansen-van Vuuren RD, Armin A, Pandey AK, Burn PL and Meredith PM (2016) Organic
Photodiodes: The Future of Full Color Detection and Image Sensing. Advanced Materials, 28,
4766–4802. Copyright (2018) American Chemical Society. Taken from [39], Figure 2

(i.e. performance metrics) now need to be defined (Table 1.1), as these will be referred
to in the text that follows. These metrics apply in general to the photodiodes within
the image sensor, regardless of the material from which they are fabricated. Inorganic
semiconductors are traditionally used, but these have limitations surrounding their
use in MVS.

1.2 Limitations of Current Inorganic-Based Imaging Systems

Current image sensors in MVS are based on traditional silicon- or germanium-
based technologies where silicon, Si (or germanium, Ge), is the material used as
the photosensing material within the image sensor. III–V compounds such as InSb,
GaN, AlN and InN are also used when a different bandgap is required. Si is the most
commonly used semiconductor in optoelectronic devices due to its prevalence and
the well-established technology enabling its integration within devices on large scales
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[40, 41]. Photodetectors used in current colour image-sensing applications are made
from hydrogenated amorphous (a-Si:H) [42] or crystalline (c-Si) silicon [28]. This is
typically deposited on top of the application-specific integrated circuit (ASIC), which
is then responsible for the readout and processing of the photo signals. Photodiodes
convert light into electrical signals by optical absorption resulting in the formation of
electron–hole pairs which subsequently form separated charge carriers across a p-n
junction. The charge separation occurs rapidly and without the need for an additional
driving force, resulting in large charge mobilities (greater than 102 cm2Vs−1) [43]
and nanosecond transient times, which has resulted in very high internal quantum
efficiencies and sensitivities [44]. However, the significant problems with silicon
(both amorphous and crystalline) with respect to photodetection for MVS are outlined
as follows.

1.2.1 Weak Light Absorption

Si absorbs light relatively weakly over the visible spectrum [45], particularly in
the blue region (400–460 nm) [32, 46]. While GaN detectors demonstrate superior
UV light detection to Si, their practical use is still limited by cost and the need for
complex architectures to achieve high detectivities [47]. In extremely low lighting,
conventional PDs require low temperatures to reduce the Jd [48].

1.2.2 Low Dynamic Range

Firstly, image sensors fabricated with silicon photosensors are unable to cope with
a high dynamic range (DR) of lighting. This can be experienced when trying to
capture an image of a scene consisting of a very bright component as well as an
object in complete shadow, resulting in the formation of images saturated either by
bright white or dark black. This can be understood by considering the range in which
the photocurrent generated by the photodiode is linearly dependent on the incident
light power, with a tolerance of ±1%. This range is called the linear dynamic range
(LDR). Outside of the LDR, the device saturates completely at any incident light
power level and the photodiode is said to be non-linear. The LDR depends on the
wavelengths of light absorbed, the inherent properties of the photodiode (carrier
mobility, device thickness and the noise current generated), the reverse bias applied
and the resistance of the circuit in which the photodiode current is generated and
collected. Silicon photodiodes have DRs of 100–120 dB [49], which corresponds
to a Jph/Jd of �6 orders of magnitude. Although this is discussed in more detail in
subsequent sections, the highest value reported for organic photodetectors is 160 dB
[50] and for metal halide perovskite photodetectors is 230 dB [51].
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1.2.3 Incompatibility with Complicated Processing
and Fabrication on Flexible, Miniaturized Devices

For many MVS applications, incompatibility of traditional inorganic semiconductors
with read-out integrated circuitry (ROIC) presents a major obstacle to realizing
compactness (whilst maintaining high detectivity and sensitivity) of light sensing
devices [52]. Furthermore, since conventional inorganic semiconductors absorb
a wide range of wavelengths, they require the use of colour filter arrays (and
wavelength cut-off filters for colour sensing applications), thus complicating the
design of such devices. Photodetectors consisting of c-Si, Si/Ge heterojunctions or
III–V semiconductor alloys (e.g. InGaAs) are usually fabricated on rigid substrates,
which precludes their applications in novel device concepts such as stretchable
devices and bendable cameras [53]. The ability to conform to the various shapes of
surfaces could simplify optical systems and enable the integration of photodiodes
into miniaturized devices and ground robots [54].

1.2.4 Inability to Cope with Illuminant Variation

In general, MVS face a number of challenges when used in outdoor environments
due to unpredictable and uncontrollable changes in the illumination [55–57]. The
core reason for the inability of systems to cope under variable illuminance can
be attributed to deficiencies in the photodetector portion of the image sensors.
Silicon photodetectors are panchromatic and therefore unable to discriminate
between photons having different wavelengths, relying on colour filters or depth-
dependent absorption to form colour images [58], which results in images whose
colour characteristics deviate from reality [7, 59, 60]. The need for colour filters
additionally complicates the architecture and fabrication of imaging devices [61].
Humans possess an in-built capability called ‘colour constancy’ that enables the true
perception of the colour of an object, regardless of illuminant, over a reasonable
range of wavelengths [7]. Much research has focused on the development of image
processing software able to compensate for this limitation by attempting to estimate
the true colours of objects from the captured light through the use of algorithms.
Indeed, there are other physical approaches to coping with illuminant variance, for
example applying a digital filter to the output of the photosensor [62]; however, this
text focuses on the use of a different image sensor material to achieve illuminant
invariant image production.
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1.2.5 Low Bandgap

Silicon also tends to have a smaller bandgap than required for visible detection, and
therefore, the photodetectors require infrared (IR) filters in order to avoid unwanted
IR sensitivity which contributes to excess noise [43, 63]. Group III–V compounds
have different bandgaps, and therefore, wafers fabricated from these compounds offer
variable options; however, these face most of the same issues already highlighted—
lack of flexibility, complicated fabrication onto miniature or curved devices, etc.

1.2.6 Crosstalk

Despite the high mobilities and carrier lifetimes of silicon, this can also be regarded
as disadvantageous as it causes crosstalk and distortion of the optical signals between
neighbouring pixels, placing a high demand on the pixellation procedures, which
are already delicately balanced between resolution and sensitivity [43, 64]. Pixel
crosstalk can be attributed to leakage of photocurrent and/or the deflection and
scattering of photons by adjacent pixels; both the effects (electrical and optical)
contribute to reduction of the resolution of the colour and resolution of the final
image [39].

1.3 Overcoming Limitations of Conventional Imaging
Systems Using Alternative Photosensing Materials

The development of alternative semiconductor materials to fulfil some of the
shortcomings presented by traditional inorganic semiconductors in photodetection
forms a research field in its own right. The materials highlighted in the remainder
of the chapter include semiconductors that can be processed under low-temperature
conditions through ‘wet chemistry’ techniques, which include 3D printing, spray
coating, spin coating, inkjet printing and doctor blading [52]. These approaches
open up the possibility for large-area deposition and compatibility with substrates
of different shapes and sizes and with flexible surfaces [53]. Furthermore, many
of these alternative semiconductors have demonstrated similar and even superior
performance metrics compared with their inorganic counterparts. The two major
classes of materials that have been researched include (1) organic semiconductors
(OSCs), and, more recently, (2) organohalide perovskites (OHPs). Although colloidal
quantum dots (CQDs) have also been given research attention, these are yet to make
meaningful gains in the production of image sensors. Therefore, CQDs will not be
explored in this chapter. Organic semiconductors have been studied in greatest detail
and so will be dealt with followed by OHPs.
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1.3.1 Organic Photodetectors in Image Sensing

Organic semiconductors have already replaced inorganic materials in a range of
applications available on the market, for example photovoltaic cells (NanoFlex
Power Corporation, Infinitypv.com), light-emitting diodes LEDs (Sony OLED TVs,
Panasonic OLED TVs, LG OLED TVs) and thin-film transistors (NeuDrive). The
main reasons include the prospect of cheaper processing methods which involve
solution-deposition or inkjet printing, the fact that they can be lightweight, thin and
flexible, and the existence of a wide selection of organic materials which allows
for tuning of the physical and optoelectronic properties. As a result, OPDs are in
fact a ‘disruptive technology’ for MVS and large-area digital imagers as they enable
‘lightweight, flexible, mechanically robust, and even conformable imagers’ [65].

The first organic photodetector (OPD) was demonstrated in 1981 using dyes [66],
before Yu and colleagues demonstrated a bulk heterojunction OPD with a sensitivity
greater than that of UV-enhanced commercial Si-photodiodes in 1994 [67]. OPDs
have since been developed with figures of metric that are comparable or even superior
to traditional inorganic photodiodes [39, 49, 52, 68–70].

Compared with the three-dimensional networks of covalent bonds found in
inorganic semiconductor structures such as silicon wafers, active films of organic
semiconductors possess covalent intramolecular bonds but weak intermolecular van
der Waals forces. This difference in the bonding systems results in the localization of
the electronic wave function to individual molecules (instead of extending over
the entire structure), which affects the separation of the electron–hole pairs in
organic semiconductors, and their electronic bandwidth [71]. Optical excitation
of organic semiconductors results in the formation of bound electron–hole pairs
(called ‘excitons’) which can only be separated efficiently at a heterojunction of
two materials with differing electron affinities. The energy difference between the
electron affinities needs to be around 0.4–0.5 eV [72] to overcome the exciton-binding
energy [73]. The separated holes and electrons then travel through the electron donor
(D) and electron acceptor (A) materials, respectively, where they are extracted to the
electrodes. For the process to work, the excitons need to diffuse to the D/A interface
(the distance travelled by excitons is referred to as the exciton diffusion length and
is typically 5–10 nm) [74]. During this process, there is a possibility of radiative or
non-radiative recombination of the electron–hole pairs. Hence, exciton diffusion and
separation must proceed more rapidly than the recombination processes. These steps,
illustrated in Fig. 1.3c for the compounds shown in Fig. 1.3a, are fundamental to the
conversion of light into electrical energy within excitonic (organic semiconductor-
based) photodiodes.

Figure 1.3b illustrates the origin of Jd within photodetectors. Organic semicon-
ductors may therefore play a part in reducing inter-pixel crosstalk since the excitonic
movement from one pixel to the next is typically low and easily controlled.

Modifications to the chemical structures of the D or A compounds influence
their packing in a film (morphology) and the electronic and optical energy levels,
which in turn can lead to altered behaviour at the BHJ interfaces and different
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Fig. 1.3 (a) Chemical structures of PCDTBT (electron donor, D), PEDOT:PSS (top electrode),
PEIE (ITO modifier) and PC60BM (electron acceptor, A); (b) Working principle of the
photodetector in dark illustrating the origin of dark current and (c) under illumination showing
the photovoltaic effect. Filled circles are electrons, empty circles represent holes (taken from [85],
Fig 2, used through a Creative Commons Attribution 4.0 International License)

light sensitivities [75]. Thus, OPDs can be tuned, depending on the application
requirements, enabling OPDs to overcome the low bandgap problem that is prevalent
in inorganic semiconductors.

OPDs can be either ‘broadband’ or ‘narrowband’, depending on whether the
semiconductor material absorbs light over a broad spectrum of wavelengths or a more
narrow spectrum (typically absorbing one colour from the spectrum). Broadband
OPDs can be incorporated into colour sensing systems in the same way as inorganic
photosensors—using filters or stacking (or any of the other approaches shown in Fig.
1.2) [76, 77], with the same two major consequences previously described, namely (1)
complicated device fabrication and (2) low colour accuracy under varying illuminant
conditions. Deckman et al. (2018) report how a combination of a broadband OPD and
broadband filters ‘can successfully detect and reconstruct colors in the RGB system,
with an average accuracy of 98.5%’ [78]. Conversely, narrowband absorbing organic
semiconductors enable the construction of filter-free photodetectors [79–81]. The
use of four narrowband absorbers (each having an FWHM <100 nm) was found
to be sufficient for achieving colour constancy for applications involving object
recognition in MVS [82]. Other approaches to achieving narrowband and filter-free
absorption involving the manipulation of the internal quantum efficiency of thick
(μm) OPDs have been developed [50, 83, 84]. Thus, it is in this manner that OPDs are
able to overcome a major limitation faced by traditional inorganic semiconductors—
unable to cope with scenes of uncontrolled and variable illumination (e.g. in outdoor
environments).

Although the concept of using organic materials as photodetectors is still relatively
new, significant progress has been made, with organic semiconductors having
superior photodetectivities, for example 1.03× 1014 J at 735 nm under a positive+1
bias [86], higher linear dynamic responses over a wide spectral range, for example
160 dB for a broadband OPD [86] and 160 dB for a narrowband OPD [50], and
similar Jds (dark currents), for example 1.2 × 10−10 A/cm2 [87], when compared
with conventional inorganic photodiodes [88–92]. Thus, OPDs are able to overcome
the weak light absorption and low dynamic range posed by traditional photodetectors.



1 Image and Signal Sensors for Computing and Machine Vision. . . 15

Furthermore, the electro-optical properties of organic materials can be fine-tuned
through simple modifications made to the chemical structure [93].

Image sensors have been fabricated with organic semiconductors as the
photoactive layer [81, 94–98], demonstrating their applicability and feasibility in
imaging and colour sensing. Samsung has reported the fabrication of image sensors
with colour-selective OPDs [81, 99–101]. Panasonic has reportedly developed
organic photosensing technologies, incorporating OPDs into an AK-SHB 810 model
camera [102]. ISORG (based in Grenoble, France) has pioneered large-area OPDs
and image sensors, collaborating with Plastic Logic in 2013 to co-develop the
first OPD image sensor on plastic (Fig. 1.4) [103]. ISORG recently announced a
substantial sum to be invested in developing value-added applications, ‘primarily
in personal electronic devices such as smartphones, wearables, tablets and laptops,
biometrics for homeland security and medical imaging’ [104].

Finally, OPDs have also been shown to demonstrate superior temperature
stabilities compared with c-Si photodiodes [68]. This is a significant factor in the
design of MVS for the applications in which the camera equipment is exposed to
variable environmental conditions.

1.3.1.1 OPDs Beyond Photodetection

Current machine vision systems exploit CMOS technology for imaging, taking
measurements, locating, identifying, inspecting or navigation. Emerging applications
make use of CMOS image sensors in vision-based aerial imaging and navigation.
In these latter applications, the camera technology has to be lightweight and low
power-consuming to ensure economic viability and to be able to last over long
flight durations. This would need development of new materials beyond discrete
devices to full-fledged imaging systems. The previous section demonstrates that
there is a strong potential for organic semiconductors in further simplifying the
2D layout of current camera technology. In this section, we present an outlook
for organic and other family of advanced materials for their potential application

Fig. 1.4 Organic image
sensor on a flexible organic
thin-film transistor backplane
(image used with permission,
taken from [103])
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in a number of new areas with a particular focus on how the research on this
emerging technology should be aimed at integrating into advanced 3D imaging
systems. The intrinsic advantages of OPD technology has not been realised, and
features associated with spectral selectivity, tenability of multi-colour detection at
relatively small form factors, mechanical flexibility and fabrication advantages are
all poised to add intelligence at the pixel level. The ability to customise the sensor
response without the need of complex fabrication protocols means OPD technology
is suitable for combining shared intelligence at the hardware and software levels.
These are some of the important attributes in achieving the next generation of smart,
intelligent, light-weight and low-power demanding imaging systems for robotics and
IoTs.

The cost of electronics has significantly reduced by integration of the emitter
and receiver systems in integrated circuits. The ability to print light emitting diodes
and organic photodetectors side by side would further allow denser integration of
light signals and their detection. The recent emergence of bi- and multifunctional
performance of organic optoelectronic devices offers great promise in simplifying
the fabrication and integration of emitter and receiver functions by reducing the need
of complex interconnects that reduce the effective form factors [105–109].

Conventional vision technology projects 3D world information into a 2D
plane with no depth information. There is a growing demand for robust imaging
technologies that can extend 2D imaging to 3D view of the scene in real time [110,
111]. For example, a robot with 3D vision can do more than detect the orientation of
an object—it can actually recognize the object. This allows for intelligent, real-time
decision-making and can be used to add intelligence to robot to learn quickly and
be aware of the environment it is placed in [112, 113]. Microsoft has filed a patent
application for a single handheld device that can detect material properties such as
reflectivity, true colour and other properties of surfaces in a real-world environment
[114]. The device exploits known relationships between lighting conditions, surface
normals, true colour and image intensity.

Depth information improves system reliability and efficiency, for example an
autonomous vehicle needs to perceive the objects present in the 3D scene from its
sensors in order to plan its motion safely. It is important to highlight that the current
state of the art imaging technologies still lack the ability to deal with a number of
factors such as objects that have low textures or objects that are soft and deformable.
Lighting conditions play an important role in the ability to image a scene, and the
ability to design detectors that are selective to only a part of spectrum has great
potential in reducing the artefacts introduced by ambient lighting. In this regard,
spectrum or colour-selective OPDs have huge potential in improving image capture
with constrained (indoor) or unconstrained (outdoor) environments. Therefore, OPDs
have desirable attributes that can meet the application-specific requirements for
diverse imaging environments including autonomous systems, mining, medical,
social, aerial and marine robotics.
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Fig. 1.5 Classification of depth measurement technology

Current depth sensor technologies can be classified into two main classes, as
illustrated in Fig. 1.5. Passive estimation technology relies on machine learning
algorithms and mathematical approaches which are used to extrapolate depth
information from 2D image or images. The other class is active depth estimation
technology, which relies on sensor technology or depth sensing devices to estimate
distance. One aim of this section is to provide a path for OPDs and associated
technologies to design devices that can measure or estimate depth using either a
passive or an active approach.

Both passive and active depth measurement technology can provide depth
perceptions of a scene. Active measurement technology is principally limited
to image array size, therefore produces low-resolution images. Passive imaging
technology uses natural or ambient illumination to capture scene. Most of the passive
image sensors are based on charge-coupled device (CCD) or complementary metal-
oxide semiconductor (CMOS).

OPDs for Depth Measurement Using Stereo Vision

Human vision is the most sophisticated and powerful vision solution to observe the
environment and extract location information. Akin to the human visual system,
robotic stereo vision forms a reliable depth perception technique for successful
navigation of robots in unknown and unstructured environments [115]. The stereo
vision technique requires two cameras to observe a scene from different locations
and in turn produces different image locations of the objects. The disparity and
baseline of the system are used for distance estimation and three-dimensional (3D)
reconstruction of the scene. The simplest way to gain depth using OPDs is to fabricate
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a set of OPD array that are separated by a known distance called the ‘baseline’. There
are no stereo cameras based on OPDs yet, but these can be readily fabricated to infer
depth from 2D images. Computer vision algorithms are used to reconstruct depth
from single or multiple images. Single-view 3D reconstruction methodology uses
only one image. On the other side, multi-view 3D construction considers two or more
images to reconstruct depth information. When two images are used, the system is
known as a binocular stereo vision system, and probably it is the most widely focused
research area of computer vision.

Stereo matching is the core technique of the stereo vision. Stereo matching is the
process that matches each pixel from reference image to target and perceives the
depth of each pixel. An intensive comparison takes place to find the corresponding
pixel on the target image. Pre-configuration and pre-processing always take place
before the actual stereo matching. In the stereo vision system, the reference and the
target camera capture same scene point at the same time with a slightly different
viewpoint. Stereo vision algorithms are based on this hypothesis. Therefore, the term
synchronization is always used to convey the sense that the image acquisition system
captures the same scene point at the same time with no time lag. When the object is
in motion, this precondition plays a pivotal role to reduce reconstruction noises.

Calibration is the process that reduces image distortions. Stereo rectification is
a transformation process that aligned two images into the same plane, so that same
horizontal line becomes parallel to both the camera centres. Depth is calculated by
finding the disparity in a pair of images. Disparity refers to the distance between
two corresponding points in the left and right images of a stereo pair. It is inversely
proportional to the depth and vice versa. In a stereo vision system, the relationship
between depth and disparity can be expressed by the following equation:

d = b ∗ f/z (1.1)

where b is the baseline, f is the focal length, z stands for depth and disparity is
expressed by the letter d. The basic idea of the disparity calculation is to match each
pixel from the left image to the right image. In some circumstances, it may happen
that some of the parts of a scene may not be visible through one or two cameras. This
part of a scene is sometimes referred as a missing part. When this match process
ends up, the difference of the pixel position in right image with respect to left image
is known as disparity. Depth is estimated from the disparity by using the geometric
principle of triangulation.

OPDs for Active 3D Imaging

In addition to an imaging array of photodetectors, the active 3D imaging system
consists of a light source known as a projector. The aim of the projector is to emit
signals. Received reflected signals are analysed to construct the 3D structure of the
surrounding environments. Most commonly emitted signals are from a laser light
source, an ultrasound signal or near infrared light. Many terms are used to describe
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3D active imaging technology such as rangefinder, range imaging and 3D scanner.
Several methods are used to measure the distance, but probably the most practiced
principles are time of flight, triangulation and phase shift. This section provides a
brief introduction of these three principles that OLED and OPD technology can use
in inferring depth information from a scene. Dense depth map with less ambiguity
and minimum depth error are the most reported advantages of active 3D imaging
technology. However, the resolution of the depth map is limited. Miniaturized, high-
resolution and low-power active depth sensors have a potential demand in various
fields like medical and aerial robotics.

Among other systems, time-of-flight (ToF) systems measure the distance from the
scanner to surface points through the measure of the time employed by the radiation
to reach the object and come back to the scanner. This technique is very similar to the
mobility measurement in organic semiconductors but albeit used here for imaging
the real-world objects using a set of OPD arrays.

In this section, we focus on the time-of-flight (ToF) principle for OPDs. The
basic idea of the active sensing technology is to emit photons as signal. When a
compatible OLED projector emits the signal, then the clocking system inside the
OPD-based imaging system can be set to start counting. This approach is known as
direct ToF. If the object exists within the range of the imaging system, then it reflects
a potential amount of signal to the camera. When the OPD receiver receives this
signal, it then computes round trip time and from the basic principle of the light or
electromagnetic source, the distance of the object from the camera can be estimated,
using the following relationship:

d = δT ∗ light (1.2)

Within a defined range, ToF provides high-quality depth maps. The precise clock is
the challenging part of this approach, and OPD systems would be limited by intrinsic
mobility of organic materials used in the fabrication of such detectors. For example,
when an object is placed very near to camera, for example in millimetre distance,
it is challenging to design a clock that can measure a time gap in nanoseconds.
OLEDs and OPDs based on high-mobility polymers with very high sensitivities
should therefore be developed to meet the needs of active depth measurements.
However, to keep aside the high-precise clock, the transmitter or projector could
use a modulated signal. This approach is known as indirect time of flight. The
transmitter could contain a signal emitter array of OLEDs to generate a modulated
signal. Different kind of modulations is used such as sine, square, etc. The received
signal is compared to the original signal. Different signal characteristics such as
signal phase can be used to probe distance and resulting phase difference could be
used to measure time and distance. It is a continuous process and more suitable for
OPD and organic optoelectronics. The depth sensing technologies described here is
equally applicable to organohalide perovskite or similar materials.
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1.3.2 Metal Halide Perovskite (MHP)/Organohalide Perovskite
(OHP) Photodetectors

MHPs and OHPs are compounds with a crystalline structure of the form ABX3, where
A and B represent cations of different sizes and X is an anion, typically a halide ion.
In perovskites used to fabricate optoelectronic devices, A can represent an organic
cation (e.g. methylammonium, CH3NH3

+) in the case of OHPs or an inorganic
cation (e.g. Cs+) in the case of MHPs, B is an inorganic cation (usually Pb2+ or
Sn2+), and X is a halide ion (I−, Br− or Cl−). B and X together form an octahedron:
[BX6]4−. A common example is methylammonium lead iodide, CH3NH3PbI3: each
unit cell of this compound consists of a central methylammonium (CH3NH3

+) in
coordination with 12 anions of PbI6 (occupying each corner), as shown in Fig. 1.6i
[116]. Ion ‘A’ (CH3NH3

+) needs to be able to fit into the space between the eight
octahedron, each connected to one another via ‘corner-sharing’ [117]. ‘A’ has a
permanent electric dipole and is able to orient itself within the perovskite structure.

This ability to orient (and reorient) itself contributes to the high dielectric prop-
erties of perovskite materials, conferring upon the perovskites high mobilities and
large diffusion lengths [118–120]. The good solution-processability and relatively
low cost of perovskites, combined with their electric properties, give materials
that are comparable to traditional crystalline Si and group III–V semiconductors
[121]. Furthermore, solution-processable perovskites have absorption coefficients of
≈105 cm−1 in the UV-visible section of the spectrum [122] and can therefore be

Fig. 1.6 (i) Methylammonium cation (CH3NH3
+) occupies the central ‘A’ site surrounded by

12 nearest-neighbour iodide ions in corner-sharing [PbI6]4− octahedron (taken from [116], Fig 1;
used through a Creative Commons Attribution 4.0 International License). (ii) Bandgap tuneability
based on halide composition of the MHP: CsPbX demonstrated by (a) the tuneable absorption
of the MHP within thin-film devices (inset: a photograph of the devices); (b) photoluminescence
spectra of CsPbX3 films and (c) normalized responsivity of CsPbX3 photodetectors. Adapted with
permission from Xue J, Zhu Z, Xu X, Wang S, Xu L, Zou Y, Song J, Zeng H and Chen Q (2018)
Narrowband Perovskite Photodetector-Based Image Array for Potential Application in Artificial
Vision. Nano Letters, 18(12):7628–7634. Copyright (2018) American Chemical Society
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fabricated as thin films, with rapid response times [123]. Perovskites are also capable
of high specific detectivities, and their bandgaps can be tuned based on the halide
ratio (Fig. 1.6ii) [61], making them strong candidates for filter-free narrowband
photodetectors capable of detection of light of specific wavelengths [123–127].

The first OHP photodiodes were only realized in 2015 [51, 128, 129]. In a similar
fashion to OPDs, OHPs have been designed to be either broadband or narrowband
absorbing, with the same implications regarding the use of colour filters as has
been discussed for inorganic semiconductors and OPDs (see Fig. 1.2). Since then,
intensive research has produced photodiodes with figures of merit comparable and
superior to those of OPDs and inorganic photosensors. For example, a broadband
OHP developed by Dou et al. (2014) demonstrated a Jd of 10−10 A/cm2 (at 0 V) and a
detectivity of 1014 Jones [128]. Lin et al. demonstrated narrowband, filter-free OHPs
(absorbing light with wavelengths from 610 to 690 nm) with an LDR = 120 dB,
Jd = 5× 10−8 A/cm2 (at−5 V) and a detectivity of 1.9× 1011 Jones at 650 nm and
under a−0.5 bias [130]. Hu et al. fabricated a flexible OHP using a ‘vapour-solution’
process with a very low Jd (�3 × 10−5 A cm−2 at 1 V), an on/off ratio of 100 at
1 V, D∗ greater than 1011 J and a linear response over 4 orders of magnitude incident
power (at 680 nm and a bias of 1 V) [131].

OHPs have demonstrated the ability to switch between broadband and narrowband
photodetection by changing between bottom and top illumination [118]. Further-
more, and in line with the scope of this article, OHPs have been integrated within
image sensors and demonstrated reasonable performances [132–135]. For example,
Wu and colleagues [133] fabricated a 10 × 10 flexible CH3NH3PbI3−xClx-based
OHP array on a polyethylene terephthalate (PET) substrate as an image sensor
demonstration. This flexible OHP image sensor demonstrated the following: (1) an
on/off current ratio of 1.2× 103 under illumination (38.3 mW/cm2); (2) a detectivity
(D∗ ) of up to 9.4× 1011 Jones at a light intensity of 0.033 mW cm−1 (corresponding
to a responsivity = 2.17 AW−1) and (3) a stable electrical performance and no
visible physical change under repeated bending (from 0◦ to 150◦), with only a slight
decrease observed for the light current (due to an increase in the resistance of the
electrodes with bending).

Although OHPs are still relatively undeveloped (it has only been 4 years since the
first OHP was conceived), large strides have been made, as shown by the performance
metrics that have been achieved. In the same way that OPDs are able to overcome
the limitations faced by inorganic photodetectors, OHPs offer tuneability and the
opportunity to be fabricated on flexible substrates. More importantly, there is still
much to be discovered in the area of organic photodetection using these materials.

1.4 Phototransistors

Until now, we have discussed two-terminal photodiode devices. A second type of
architecture consists of three terminals—this is a phototransistor. The extra terminal
enables the device to sense the level of light and modify the current flowing between



22 R. D. Jansen-van Vuuren et al.

the emitter and the photosensor (and photon collector), based on the level of light
received. Thus, phototransistors (PTs) or field-effect transistors (FETs) combine the
photosensing function of a diode with a high gain, due to the electric field effects of
transistors, making them more sensitive, capable of providing rapid output, and able
to produce a higher current than PDs. PTs are therefore used widely in applications
such as encoders, smart cards, active matrix displays and photodetection for artificial
vision [136–138].

The organic PT (OPT) as a device platform is a natural extension to the more
widely established organic field effect transistor (OFET) devices. First reported by
Tsumura et al. [139] and subsequently developed by Horowitz et al. [140], OFETs are
now used across different device platforms, from developing the basic understanding
of electronic properties of organic semiconductors to chemical and bio-electronic
sensors [141]. Figure 1.7a shows the typical layout of an OPT [105]. Figure 1.7b
shows typical optical absorption spectra of the materials when fabricated as thin-film
devices, demonstrating, in this case, how the absorption profiles evolve with a change
in the proportion of donor and acceptor in the semiconductor blend.

In the operation of OPTs/OFETs, the saturation drain current (Id,sat), which refers
to the maximum current carried by the drain of the OPT when the gate source = 0,
is given by the Horowitz equation [141]:

Id,sat = W

2L
CiμFE

(
Vg − Vt

)2
, (1.3)

Fig. 1.7 (a) Device architecture of a typical OPT, in this case, with the light-absorbing layer consist-
ing of poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]
(PCDTBT) blended with [6,6]-phenyl C61 butyric acid methyl ester (PCBM). (b) Absorption spectra
of the neat polymer PCDTBT, 70-PCBM and PCDTBT/70-PCBM blends (i.e. thin films) in 1:1–1:4
ratios (by weight) on glass substrates (inset shows the absorption profile of the 1:4 blend compared
with that of a neat 70-PCBM thin film on glass). Adapted with permission from Pandey AK, Aljada
M, Pivrikas A, Velusamy M, Burn PL, Meredith P and Namdas EB (2014) Dynamics of Charge
Generation and Transport in Polymer-Fullerene Blends Elucidated Using a PhotoFET Architecture.
ACS Photonics, 1(2):114–120, ref. [105]. Copyright (2014) American Chemical Society
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where W is the width of the channel, L the length of the channel, Ci the capacitance
per unit area of the gate dielectric, μFE the field-effect mobility, Vg the gate voltage
and Vt the so-called threshold voltage.

The photocurrent generated in the presence of light is calculated by taking the
difference of Id under illumination and Id in the dark. The responsivity of OPTs can
be estimated by taking the photocurrent density (Jph) in either the p- or n-channel
mode of OPTs, using the following equation [105]:

Jph = 1

s

∫ λ=700 nm

λ=300 nm
ϕ (λ) · EQE (λ) dλ (1.4)

where s is the active surface area of the photoFET channel, ϕ is the photon-flux from
light source, EQE is the external quantum efficiency of either the p- or the n-channel
operation of the OPT and λ is the absorption onset and cut off wavelengths of the
photosensing material (or composition).

Evidence of significant photosensing in an OPT platform was first reported
by Narayan and Kumar in 2001 [142]. Then, a major boost in the widespread
adoption of OPTs came from the demonstration of ambipolar operation of solution-
processed OFETs by Meijer et al. [143]. Since then, research interest in combining the
photosensing ability of OFETs with their operation has grown significantly, and it has
emerged as a new class of organic optoelectronic device in its own right. Like OPDs,
OPTs usually require a D-A network for efficient photosensing, and these different
components can be fabricated by standard spin coating, inkjet printing or vacuum
sublimation processes (described in previous sections). Lombardo and Dodabalapur
evaluated the non-geminate recombination rate in P3HT:PCBM photovoltaic blends
using an ambipolar OFET geometry [144]. The optical gap and transport properties
of the main absorber usually defines the photosensing efficiency of OPTs. Pandey et
al. demonstrated that some of the most efficient compositions of polymer:fullerene
blends benefit from the light responsive and good charge transporting ability of
fullerenes by operating OPTs in p- and n-channel modes [105]. In OPTs, the surface
states at the organic–dielectric interface play an important role with this interface
property, determining the performance of OFETs and therefore the efficiency of
photosensing in OPTs [105, 145]. Furthermore, the high photoconductive gain
coupled with ‘sublinear responsivity to irradiance’ of OPTs enables a wider LDR
than for photodiode-based image sensors [146, 147], which would be of clear benefit
to machine and robotic vision systems.

Variation to the photosensing layer by the use of organic–inorganic hybrid layer
is seen as yet another extension of OPTs; for example this could include OHP PTs
or hybrid organic–halide perovskite PTs (hybrid OHP PTs) [148, 149].

Baeg et al. provide a concise overview of OPTs [150]. A more comprehensive
review on the diversity of solution-processed materials for photosensing applications
in OPDs as well as OPTs is presented by Pelayo et al. [52] and Gasparini et al. [98].
An impressive photosensing performance under UV light exposure with high gain
was demonstrated using vacuum-sublimed thin films of small molecules (copper
phthalocyanine and para-sexiphenyl) in OPTs by Qian et al. [151]. Li et al. reported



24 R. D. Jansen-van Vuuren et al.

high photoresponsivity (R) values of 320 A/W over a broad range of lighting spectrum
for CH3NH3PbI3-based OPH PTs [148].

OPTs have been integrated within image sensors and have demonstrated
themselves fully capable of overcoming some of the limitations of conventional
inorganic-based image sensors. For example, Pierre et al. developed a solution-
processed OPT on a flexible substrate able to achieve a dynamic range of 103 dB
for a video capture (30 frames/s) [146]. Milvich et al. designed and tested the
performance of an array of 16 OPTs based on dinaphtho[2,3-b:2′,3′-f]thieno[3,2-
b]thiophene covering an area of 2 × 4 cm2 on a flexible PEN substrate [152].

The scope for OPTs in image sensors and MVS is expected to grow, and it will
be interesting to see photosensing and switching functions further refined towards
real-world applications.

1.5 Conclusions and Outlook

Current MVS have been recognized as having severe limitations when it comes to the
demands of modern-day applications involving machine vision and robotics. These
include weak light absorption over the visible range, low dynamic range, existence
of crosstalk, an inability to cope with illuminant variation and incompatibility with
complicated processing and fabrication on flexible, miniaturized devices. Such
limitations could be overcome using alternative photoactive materials fabricated
on the ROIC of the image sensor.

We have presented an outlook for further development of OPD systems for digital
imaging, colour constancy and depth measurements. The soft, conformal and up-
scaling of OPDs allow unparalleled possibilities of designed imaging systems that
are not only low power-consuming and light-weight but highly intelligent in selective
sensing over a range of applications.

While OHPs are still in the early stages of understanding and development, much
has been accomplished already, and their potential for transforming the landscape of
machine vision and artificial vision in robotic systems will surely dawn in the near
future.

Knowledge translation [153, 154] is key to realizing the potential of both OPDs
and OHPs in commercial machine and robotic vision systems. Furthermore, a more
cross-disciplinary approach needs to be implemented to harness the potential of
OPDs and OHPs in MVS; at the moment, the field lacks chemists and material
scientists with a strong knowledge of image sensing, machine vision and future
market trends. Likewise, camera experts are largely ignorant of the advances made
in developing alternative semiconductor materials able to replace Si or InGaAs. The
authors hope that this chapter helps to bridge this gap and initiate conversations
between chemists, physicists, material scientists and mechatronic engineers.
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Chapter 2
Bio-Inspired, Real-Time Passive Vision
for Mobile Robots

Piotr Skrzypczyński, Marta Rostkowska, and Marek Wa̧sik

Acronyms

CPU Central Processing Unit
CUDA Compute Unified Device Architecture
FPS Frames Per Second
GPGPU General Purpose Graphics Processing Unit
HSV Hue-Saturation-Value (color model)
MIPI Mobile Industry Processor Interface
ORB Oriented FAST and Rotated BRIEF
QR-code Quick Response matrix code
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
TFLOPS Tera Floating Point Operations Per Second
USB Universal Serial Bus
VFH Vector Field Histogram

2.1 Introduction

We are witnessing how robots proliferate to everyday life, and the number of
commercially available mobile robots increases gradually. Mobile robots perform
tasks like surveillance, cleaning or they assist handicapped people. However, to have
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a satisfying level of autonomy these robots need to reliably perceive objects and
events in their environment. At the same time robots have to be affordable and easy
to maintain. Hence, the design of sensors adequate for the navigation-related tasks
becomes important.

Nowadays cameras are considered the most compact and affordable exteroceptive
sensors in robotics. Passive vision captures a large amount of data, reflecting
both the photometric and geometric properties of the observed scene, but requires
considerable computing power, and has a number of limitations related to the used
sensors. A monocular camera has a limited field of view, and gives only an angle
to the observed feature/landmark, but no range information. Cameras on a stereo rig
can measure depth in unknown scenes, but their field of view is also limited.

However, natural evolution has developed visual perception systems that perfectly
fit to the needs and environment niches of particular species of animals. Some of them
are incredible, like the visual sense of flying insects [37]. These insects have a wide-
field view and complex eyes, which allow them to navigate efficiently. Similarly, some
mobile robots use omnidirectional cameras, which perceive whole surroundings from
a single view [33]. Such cameras ensure that the robot gathers necessary knowledge
about the environment in reasonable time. Regrettably, it is not easy to calculate
robot’s or objects’ position employing only data from omnidirectional camera. Visual
perception that has developed in more complex animals consists of peripheral and
foveal vision. The brain of an animal can provide a correct interpretation of the
environment employing cues from both systems. In general, it is possible, because
peripheral vision cues are pursued by the eye fixation. However, accurate perception
of distances requires foveal analysis, involving central vision. Eventually, two or
more views of the scene are required to produce 3D location of unknown objects,
which in animals is possible owing to binocular vision.

Following the most efficient biological vision examples, we decided to combine
omnidirectional and peripheral/foveal vision mechanisms in our construction. In
this way, we delivered a system which combines advantages of both camera types:
360◦ field of view and accurate environment’s data (robot’s and objects’ position).
We created a vision sensor having a hybrid field of view through combination of
a camera looking upward into a curved mirror, and a typical perspective camera
mounted on top of this mirror (Fig. 2.1). This sensor was presented for the first time
in [21], while the obstacle detection algorithm was developed separately, using only
the omnidirectional camera [36]. In this chapter we present in a unified way the
peripheral vision part, and the algorithms for distance measurement and obstacle
detection, that are related to foveal vision. Moreover, the new version of the sensor
is presented, which has the perspective camera mounted on a servo. Owing to this
design, the perspective camera can be rotated horizontally, which allowed us to create
new functions of the sensor. Thus, we describe object tracking that in turn makes it
possible to actively select the field of view for the perspective camera, resembling
the natural eye fixation mechanism. In our sensor real-time image processing is
ensured by a Nvidia Jetson embedded computer. The first prototype was based on



2 Bio-Inspired, Real-Time Passive Vision for Mobile Robots 35

Fig. 2.1 Hybrid field of view
passive camera with an
actuated central vision sensor

a b

Fig. 2.2 Mobile robots with the self-contained vision sensor: the first prototype on a small walking
robot (a), and the improved version on a wheeled robot (b)

the TK-1 board [12, 21], while the improved version uses the more recent Jetson
TX-1. Nvidia Jetson computers are energy-efficient, compact, and powerful, making
our sensor a self-contained perception unit. Such a design suits small, low-cost, and
resource-constrained mobile robots (Fig. 2.2).
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2.2 Related Work

Literature brings different examples of visual perception systems inspired by Nature.
The system presented in [30] creates a global description of the scene, and calculates
a coarse localization of the mobile robot. Then the results are improved based on the
extraction of local features from images. This approach takes inspirations from the
peripheral/foveal vision scheme, but still relies on a single camera for perception, and
does not control the field of view. A different foveation implementation is presented
in [34]. This work introduces an active vision system for an anthropomorphic robot
with a pair of cameras located in each of its eyes. This design ensures a wide field
of view, and the observed objects are always maintained in the foveal vision area.
Santos-Victor et al. [24] describe a robot navigation system based on a wide field of
view and simple processing of the optical information, which was directly inspired
by insect vision.

Omnidirectional cameras are popular in various applications for two decades
[38]. They are used for relatively simple robot navigation [39], and more recently,
are combined into multi-camera systems, for example to obtain omnidirectional
stereo images [23]. The concept of combining an omnidirectional and perspective
camera is widely used in the soccer robots. However, in the soccer domain well-
defined visual markers are available in the playing field [15], which are not present
in other application areas.

Also the problem of stereo-based distance measurements using a hybrid system
of cameras was analyzed in the context of mid-size league robotic soccer [11]. It
was demonstrated that stereo-based computation of objects’ positions often results
in highly uncertain measurements if the cameras are poorly calibrated. Hence, a
simple object localization scheme was proposed in [11], combining the bearing
information from the catadioptric, and the distance to a known object (e.g. a ball
used in soccer) from the perspective camera. In [20], we proposed a similar system,
which solves the real-time localization task on a small mobile robot. Our system
uses QR-code landmarks located on objects to simplify the localization task. Those
examples demonstrate that cooperation between cameras of totally different field of
view may be beneficial to various robotic tasks.

In the robotic literature only a few works tackle the problem of integrating the
omnidirectional and perspective cameras in a more tight and direct manner than it is
done in typical soccer robots. Cagnoni et al. [6] present a hybrid omnidirectional pin-
hole sensor, but they focus only on the sensor description and calibration procedure.
A system which supports obstacle detection for mobile robots is shown in [1].
Our hybrid solution presented in this chapter is conceptually similar to the designs
discussed in [6] and [13], but in contrary to our system, the solutions from [6] and
[13] require external processing of the images. Such an approach renders real-time
processing of the omnidirectional images almost impossible. Hence, these sensors
hardly can be applied in mobile robot navigation, which requires real-time response
to various visual stimuli. We have applied the first prototype of our sensor on a
small legged robot, which does not have enough on-board computing power to build
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an environment representation in real time [36]. Although omnidirectional cameras
have been already used on few walking robots [19], our application demonstrates
gains due to the use of a vision sensor with on-board processing. Although the first
version of our peripheral vision software has been already described in our recent
conference paper [22], this chapter not only provides a more detailed description, but
introduces also an object tracking module, based on particle filtering. This module
is a good example of the on-board processing power in our sensor.

2.3 Hardware of the Sensor

Our proposal of the new passive vision sensor consists of three subsystems. The first
subsystem is a single-board computer hosting other components and providing the
on-board computation resources. The second part is an omnidirectional subsystem
consisting of an upward-looking camera with a properly curved mirror. The camera
and its mirror are combined by a transparent tube. The last subsystem is a standard
perspective camera with the USB interface that is rotated by a servo. Two prototypes
of the sensor have been constructed, which share the general design, but differ in
the components being used. In both sensors a hyperbolic mirror machined from
aluminum alloy and then polished manually is used. The shape of the mirrors is
chosen in a way that ensures the single effective viewpoint imaging geometry [2].
With this geometry every pixel in the acquired image receives the light passing
through the common point in one particular direction, which is required to produce
geometrically correct images.

The omnidirectional subsystems in both variants of the sensor use cameras
dedicated to the Jetson single-board computer, and equipped with the CSI-2 MIPI
interface. In the first prototype it was E-Cam130 CUTK1 manufactured by E-Con,
which yields 1920×1080 images at the frame rate of 30 FPS. The second prototype
has the Leopard Imaging LI-IMX274-MIPI-CS camera, with the resolution of
3864×2196 pixels. In both cameras the resolution and frame rate can be changed by
software, but we have chosen the parameters that best suit the application, and are
a trade-off between the high resolution, high frame rate, and compatibility with the
available software.

The most different component in the first and the second prototype is the
perspective camera subsystem. In the older version, a simple webcam is fixed to
the top of the mirror with a printed plastic part. In the upgraded design, the camera
is attached to the small MX12-W servo from Robotis [4]. Thus, the perspective
camera can rotate horizontally. The flexible USB cable makes it possible to cover
full 360◦ field of view, but the camera cannot rotate n×360◦. The first version of the
design uses a Logitech 500 webcam with the resolution 1280×1024 pixels, while
the improved one is equipped with a more compact Microsoft Lifecam, having the
resolution of 1280×720 pixels.

The most important aspect of our sensor design is the use of a modern single-
board computer as the base. The first prototype uses Nvidia Jetson TK-1 with the
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Tegra K1, for which the main computing power is provided by Kepler architecture
graphics cores with compute unified device architecture (CUDA) support. Jetson
TK-1 achieves 300 GFLOP/s in the single-precision mode. The second version is
based on the more recent Jetson TX-1, which has the GPGPU with 256 cores of
the improved Maxwell architecture. The improvements allow the TX-1 version to
produce the computing power of about one TFLOP/s. However, a drawback of
the standard TX-1 model is its increased footprint, which required to increase the
size of the whole sensor unit. Both models of the Jetson board facilitate the CSI-2
MIPI interface for cameras allowing direct data transfer between the camera and the
GPGPU. This interface is used, however, only for the omnidirectional cameras. The
perspective camera is connected via typical USB interface.

2.4 Basic Software and Calibration

The developed sensor requires proper calibration of its components, as well as
parameters calibration for the stereo pair that consists of the perspective camera and
the virtual camera created by software from the omnidirectional image. All extrinsic
parameters (rotations and translations) are estimated with respect to the coordinate
frame of the catadioptric camera, which is considered the reference frame of the
whole sensor.

Calibration for a hybrid system is much more complicated than in a standard stereo
vision systems, because of the geometric distortions in the omnidirectional images.
Before extracting metric information from images acquired by the omnidirectional
part, the geometric distortions must be removed. Calibration of a stereo pair,
where one of the cameras is perspective, and the other one is omnidirectional,
is described in [6]. In this method, both cameras observe calibration patterns on
several parallel surfaces of known relative positions. This assumption is a drawback
of the method, because it makes implementation complicated and vulnerable to
errors due to inaccurate location of the calibration surfaces. Hence, we decided
to use a simpler method based on the existing open-source calibration tools,
which are well-documented and commonly used in vision research. In our method,
the omnidirectional camera and the perspective camera are at first calibrated
independently, and a virtual camera view is defined from the omnidirectional image.
Then, calibration patterns are shown to both cameras (perspective and virtual) in
different positions and angles. When the required number of images is collected,
these two cameras are calibrated as a standard stereo pair.

The calibration procedures for both subsystems and the stereo pair are highly
automated, and do not involve any external equipment other than a simple 63-field
chessboard pattern. We have used the same pattern in all the calibration procedures,
and the same size of the calibration database (20 images).
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2.4.1 Calibration of the Subsystems

Calibration of the perspective camera can be accomplished by using the popular
Matlab toolbox [5] or the OpenCV library procedures [16]. In contrast, the known
calibration methods for omnidirectional vision systems are often particular to
the camera type [3], or require an accurate specification of the mirror geometry
and additional equipment to perform the calibration procedure [10]. Among the
omnidirectional camera calibration methods known from literature the one proposed
by Scaramuzza et al. [26] appears to be the most universal and practical one, as it
uses only a standard chessboard pattern, and does not assume any particular mirror
or camera type. This method is implemented in the OCamCalib toolbox, which we
have used for the presented sensor.

The calibration process starts with determining the model of the perspective
camera. The model of distortions with five coefficients, which describe the radial
and tangential distortions of the image is used. The perspective camera matrix is
calculated from formula:

Kp =
⎡

⎣
fc1 αcfc1 cc1
0 fc2 cc2
0 0 1

⎤

⎦ , (2.1)

where fc1 is the horizontal and fc2 is the vertical focal length, cc1 and cc2 define the
center of the image, and αc is the pixel skew coefficient.

As already mentioned, the omnidirectional camera is calibrated employing the
approach and camera model proposed by Scaramuzza [25]. The geometric model
shown in Fig. 2.3 is represented by the formula:

Fig. 2.3 Geometric model of
the catadioptric camera
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⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
u

v

f (u, v)

⎤

⎦ =
⎡

⎣
u

v

f (ρ)

⎤

⎦ , (2.2)

where u and v represent projection of a 3D point p into the perfect (i.e. undistorted)
image, x, y, and z are image coordinates of this point on the mirror surface, while ρ
is the distance between the projected point p′ and the undistorted image’s center.

To solve the Scaramuzza equations and define the camera model, it is necessary
to calculate z = f (ρ), defined as a fourth order polynomial z = a0 + a1ρ +
a2ρ

2 + a3ρ
3 + a4ρ

4. In order to receive an optimal solution, the coefficients
are computed iteratively and the reprojection errors are observed. We use the
experimental procedure described in [26]. When preparing the calibration data it is
of great importance to cover the whole field of view of the camera by the chessboard
patterns, because the calibration data are used also to compensate any misalignments
existing between the mirror and the center of the camera. The calibration process
has two stages. First, the center of the omnidirectional image oc = [uc, vc]T and
the affine matrix A(2×2) are calculated. The affine matrix A(2×2) determines the
relation between (u, v) coordinates of the idealized image and the actual image
coordinates (u′, v′). Eventually, the calibration results are refined applying the
iterative Levenberg-Marquardt non-linear optimization technique.

2.4.2 Panoramic Images

Typically, a view of the environment, which is seen in a picture from the catadioptric
camera is highly distorted. While objects can be detected and roughly localized
or tracked using raw omnidirectional images, it is not possible to calculate
accurate positions of these objects or point features. For the calculation of the
accurate distances and geometric relations a rectified (i.e. geometrically corrected)
360◦ panoramic image is necessary. With such images, the sensor can not only detect
obstacles, but also measure accurate distances to objects in the wide field of view.

Scaramuzza [25] presents a simple method of the image rectification based on
geometric inverse projection and the calibrated model of the catadioptric camera.
Based on geometry and dimensions of the images (Fig. 2.4), the omnidirectional
image pixel coordinates (u, v) are calculated:

u = 2πvpRmax

h
cos

(
2πup
w

)
, v = 2πvpRmax

h
sin

(
2πup
w

)
, (2.3)

where h is the height of the panorama, and w is the width of the panorama, Rmax
denotes the radius of the omnidirectional image’s outer circle, while (up, vp) are
respective pixels of the reconstructed panoramic image.
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Fig. 2.4 Geometry of the panoramic image surrounding the catadioptric camera

However, the formulas (2.3) do not consider the calibrated parameters of the
catadioptric camera. Because of that the panoramic image is not compatible with
the field of view of the perspective camera image. To achieve this compatibility,
our rectification algorithm has to locate the horizontal line (pc point in Fig. 2.4)
of the panoramic image. The correctly located horizontal line should be on the
same elevation as the optical center of the curved mirror. In practice, it means
that pixels taken from the central row of the panoramic image should have zero z
coordinates. The half-lines p1 and p2 go through the upper and the lower rim of the
cylinder, respectively. For further processing, especially for creation of stereo-pair,
it is very important that the height h of the cylinder (in pixels) equals the height
resolution of the perspective camera image. Next, all pixels (i.e. their coordinates)
from the panorama’s cylindrical surface are re-projected back into the undistorted
omnidirectional image. To achieve this, a method presented in (2.2) is used, which is
based on the inverse mapping. The last step in the corrected procedure for panoramic
image creation is calculation of the pixel coordinates in the omnidirectional image
by formula:

u = ρv(vp) cos

(
2πup
w

)
, v = ρv(vp) sin

(
2πup
w

)
. (2.4)

where ρv = f (vp) denoted the distance between the point’s projection and the center
of the omnidirectional image. This parameter is computed separately for each row
of the panorama. The coordinates u and v are considered in the range between the
Rmin and Rmax radius. The minimal radius Rmin is determined by the blind area in
the omnidirectional picture.
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a b

Fig. 2.5 Rectified panoramic images: constructed using only the inverse projection (a), and
constructed using our improved method (b)

Correct image rectification is a time-consuming process. Hence, to do all
calculation in real-time, the OpenCV function remap() is used, which is supported
by CUDA on the Jetson platform. In this parallelized version the reconstruction
of a panoramic image takes only 0.85 ms. Example results of panoramic image
reconstruction are shown in Fig. 2.5. The image constructed considering the
calibrated parameters of the system and the correct horizontal line location (Fig. 2.5b)
looks more natural, and the relations between the height of particular objects seen
in the image are preserved, unlike in the simple method (Fig. 2.5a).

2.4.3 Virtual Camera

To calculate the distance between the sensor and an object of unknown size, it is
necessary to have two views of this object, which are related by known extrinsic
parameters, i.e. the rotation and translation between the cameras that produced these
views. To accomplish this task we define a virtual camera, which provides the field
of view similar to the actual perspective camera of the hybrid sensor. The coordinate
system of the virtual camera has the origin located in the optical center of the curved
mirror (Fig. 2.6). The focal length and resolution are chosen purposefully to yield
images that are geometrically similar to the perspective ones. While a similar idea
was used in [13], our virtual camera image is defined directly from the panoramic
image constructed in real-time, which makes the computations much faster. We take
advantage from the fact that the panoramic images are reconstructed in real-time in
our sensor, and they make a perspective-like view of the scene readily available in
the 360◦ field of view. Thus, we only need to create from the panorama a virtual
image that is geometrically compatible with the actual perspective image. The virtual
image is created by projecting a ray from the center of the curved mirror towards the
cylindrical surface. This ray determines the area on panoramic image defined by the
requested resolution of the virtual camera (compatible with the physical one). Pixels
from a proper are defined on the panoramic image are taken as a representation of
pixels in the virtual camera image.

The calibration procedure for the virtual camera is the same as the one we use
for the physical perspective camera. We used the same toolbox [5] to get the camera
matrix Kv .
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Fig. 2.6 Geometric relations
between our sensor and the
virtual camera image

2.4.4 Calibration Between the Subsystems

To know the geometric relations between the two subsystems necessary for the stereo
distance measurements we perform extrinsic calibration between the perspective and
the virtual camera. The results are extrinsic parameters of the stereo pair. We treat
the perspective camera and the virtual camera as a stereo pair, unlike [6], where the
perspective and the omnidirectional camera are calibrated together. Our approach
avoids the use of any special calibration equipment, and allows us to use the standard
calibration software. Therefore, having defined the virtual camera, we assume that
we have pair of cameras, which are properly calibrated in terms of their intrinsic
parameters, as the Kp, Kv matrices and distortion models are already computed. The
next step of the calibration is calculation of the extrinsic parameters of the stereo
pair. To accomplish this, we use again the camera calibration toolbox [5]. We take a
new series of images, which contains the chessboard pattern seen in many different
positions over the common field of view of both cameras. The transformation of the
coordinate system between the perspective and the virtual camera is computed from
the corresponding points of the calibration pattern. This relation is described by the
rotation matrix Rs(3×3) and the translation vector ts = [tx, ty, tz]T . The last step of
the hybrid vision sensor calibration is calculation of the essential matrix [9]. The
essential matrix is computed based on rotation and translation between the images
from both cameras:
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E = Rs

⎡

⎢
⎣

0 −tz ty
tz 0 −tx
−ty tx 0

⎤

⎥
⎦ . (2.5)

2.5 Peripheral Vision in the Hybrid Sensor

The concept of a stand-alone passive vision sensor comes from the observation,
that some mobile robots (e.g. small walking machines) cannot allocate enough
computing power to the perception and environment modelling tasks. Therefore,
they may benefit from a sensor that provides the robot with pre-processed navigation
cues, such as location of obstacles or direction of collision-free motion. The software
described so far in this chapter converts raw frames from the omnidirectional camera
into geometrically correct panoramic and virtual camera images, but does not support
navigation directly. Hence, this section describes how the omnidirectional images
can be used to support selected navigation-related functions of the robot, providing
the machine with a rough analogy of the peripheral vision in animals. Our peripheral
vision enables the robot to detect obstacles and moving objects, track objects, and
focus the perspective camera on a selected object. This last function demonstrates
benefits from the cooperation between the peripheral and central vision capabilities
in our hybrid sensor. Although the algorithms behind these functions are simple
in general, we use them to demonstrate that our sensor is an efficient platform to
implement various image processing algorithms, also these that benefit a lot from
parallel processing on a GPGPU.

2.5.1 Detection of Objects

Rapid detection of changes occurring in the environment is crucial to animals, as
it is related to their predatory behaviors or the ability to avoid other predators
and various natural hazards. Also mobile robots may benefit from the ability
to quickly detect changes in the observed scene. Therefore, the main peripheral
vision function implemented in our sensor is detection of moving objects in
the omnidirectional images. Moving objects are segmented from the background
in real-time using the Background Subtraction Library (BGSLibrary) [32]. This
function supports human–robot interaction (e.g. detection of people approaching the
robot), surveillance applications, and multi-robot systems, where quick detection
of obstacles and other robots is required [14, 28]. The BGSLibrary offers an
easy-to-use software framework integrated with OpenCV. It makes possible to
discriminate moving objects from the background, providing that the camera is
static while acquiring a pair of images. The library contains implementation of
several algorithms that support different tasks, such as video analysis. From these
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algorithms, we chose two techniques of relatively low computational complexity,
namely the FrameDifferenceBGS and SigmaDeltaBGS.

FrameDifferenceBGS is very simple, as it only compares the query image to the
one acquired in the previous time instance, and then extracts the moving objects
by marking areas where the difference of color is larger than a given threshold.
SigmaDeltaBGS algorithm is somewhat more complicated, as it attempts to estimate
parameters of the observed background, which is assumed to be approximately
uniform (e.g. a flat floor). This algorithm produces fewer artifacts than the simple
frame difference, but is slightly more computationally demanding. By default the
BGSLibrary is running on a CPU, and it is not compatible with CUDA, hence
it cannot benefit from a GPGPU. Because in the robotic applications real-time
processing is a must, we adapted the used BGSLibrary algorithms to use a version
of OpenCV that is supported by CUDA. Eventually, we were able to exploit the
GPGPU readily available in the Jetson platform.

2.5.2 Tracking of Objects

Some of the moving objects that could be extracted from background by our change
detection functions may be important enough to be tracked for longer time, e.g. to
determine their speed and trajectory. To track an object the sensor has to determine
some of its perceptual properties, to make this object distinguishable among others.
The simplest property that can be easily distinguished is color. An implementation of
this concept on the hybrid field of view sensor was presented in [22]. For the sake of
speed, detection of objects having a specific, user-defined color was implemented on
the raw omnidirectional images applying thresholding in the Hue-Saturation-Value
(HSV) color space. The location of an area of the defined color is then converted
to the polar coordinate system, with the origin in the center of rotation of the
moving camera servo. This gives the perspective camera its reference angle, which
is compared to the current angle of rotation from the camera servo. The computed
rotation angle is the one that brings the camera to the target heading in the shortest
time.

Because the simple tracking procedure can be applied only to bright-colored
objects, its practical use on a mobile robot is limited. Therefore, we implemented on
the hybrid field of view sensor also a more advanced tracker employing optical flow
and particle filter for the tracking procedure. This function makes it possible to track
previously unknown objects having arbitrary shapes and colors, as long as they move
at a reasonable speed and stand out visually from the background (Fig. 2.7). The new
tracker is based on the algorithm presented in [29] with some improvements. The
computation of optical flow is implemented as a parallelized version of the Farnebäck
algorithm [7], which quickly yields a vector field with the detected velocity vectors
of pixels that have moved between two consecutive frames. Then, a filter with 60
particles is initialized around the target object, which has to be designated by the user
with a bounding box. As in the original algorithm [29] the particles are described
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Fig. 2.7 Simple, color-based object tracking: an object (red bucket) detected object in the raw
image (a), a perspective camera image taken after focusing on this object’s location (b)

in polar coordinates that are natural for an omnidirectional image. The weights of
particles are computed taking into account differences between the velocity vectors of
the particles (i.e. image pixels where the particles are located) and the velocity vector
of the target, which is known from the previous iteration. Moreover, the similarity
of the Hue component of the HSV color model is considered when computing the
weights. The resampling step draws a new set of particles from the weighted ones,
favoring particles with higher weights, which replace those of lowest weights. As a
result, the filter converges in few iterations and the best particles track the moving
target.

2.5.3 Avoiding Obstacles

Obstacle avoidance is an essential function in every mobile robot. A robot has to
detect any objects that may pose a danger when it is attempting to move towards the
given goal. Obstacles may be detected by range or visual sensors, but the avoidance
task becomes more efficient if the robot perceive the objects that surround its body
without a need to rotate. Therefore, peripheral vision provided by the omnidirectional
part of our sensor camera is particularly suitable to indicate the presence of obstacles
around the robot in real-time. This concept has been implemented on a compact,
low-cost legged robot [36], which got equipped with the first prototype of our vision
sensor.

The obstacle detection and avoidance method is inspired by the popular vector
field histogram (VFH) algorithm [35]. This algorithm can be directly used for sensors
which measure the distances between the robot and the surrounding objects, for
example sonars or 2D laser scanners. Based on this data, a local map of the local
environment is created. However, our version of the algorithm works using only
data from the omnidirectional part of the hybrid sensor. All calculations should be
performed in real-time, so the robot can pursue the obstacle avoidance task. Potential
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Fig. 2.8 Construction of the occupancy grid from the omnidirectional images: raw image (a), data
projected to a horizontal 2D image (b), final occupancy grid (c), and the binary panoramic image
after filtration (d)

obstacles are recognized on the panoramas rectified in real-time, through background
removal. Next, rough distances to them are calculated directly from these images
to create an occupancy grid representation of the surroundings. This is possible,
because in the panorama objects that are closer to the sensor are located in the lower
part of the image, while the upper part depicts more distant objects.

Also because of speed requirements, the panoramic images are constructed in
a slightly different way than in the general case (see Sect. 2.4.2). Namely, the
background is removed from raw omnidirectional pictures (Fig. 2.8a) using the color
information, and only these pixels that represent obstacles are transferred to the
panorama. Using a defined color in the HSV color space is a very background
removal fast method, and it does not need a good estimate of the robot’s ego-motion,
which is unavailable in a legged robot. On the drawbacks side, we have to assume that
the background is of approximately uniform appearance. Although combining this
function with the BGSLibrary functions is possible, we have found that the simple
method works well indoors, while it is much faster and easier to parallelize using
CUDA. On the legged robot, the areas that can show the body or the swinging legs
of the machine are masked by proper shapes directly on the omnidirectional image
[36]. The omnidirectional images with masked background and the robot’s element
that may be treated as close objects are then binarized and converted to panoramic
images (Fig. 2.8d). The binary panoramas are treated with erosion and then dilation
morphological operators in order to eliminate small, isolated pixel blobs. The next
step is to fill the 2D local occupancy grid of the environment with the information
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Fig. 2.9 Configuration of our sensor on the walking robot (a), panoramic image data projected
into the 2D local environment representation (b)

from the prepared images. In the pictures obstacles are marked as white areas, and
free areas are marked black. The panoramic image coordinates that have to be used
to find information about the occupancy of the cells in the grid are defined as:

[
xp

yp

]
=
[ αwpan

360◦
xpan0 − gpanγ

]
, (2.6)

where: wpan is the width of the panoramic image (pixels), gpan defines the vertical
resolution of the panoramic image (pixels/1◦), and xpan0 defines the elevation of the
horizon line (Fig. 2.9a). The angles α and γ are given by formulas:

α = arctan

(
xmap

ymap

)
, γ = arctan

⎛

⎝ hcamera√
x2

map + y2
map

⎞

⎠ , (2.7)

where xmap and ymap are coordinates of the occupancy grid, and hcamera is the
elevation of the sensor center measured from the floor. This parameter yielded by the
robot’s controller, because in a legged machine it depends on the legs configuration
(Fig. 2.9b).

The local grid map that is a robot-centric representation of the environment
accumulates the occupancy information extracted from the prepared panoramic
images. Using this intermediate representation makes it possible to accumulate
the information related to obstacles in short time windows, and avoids the necessity
to compute the control commands using highly uncertain data. The coordinates
of the pixels that represent obstacles are transformed into an instantaneous and
local horizontal image—a form of simple map (Fig. 2.8b). Next, the coordinates of
obstacles are employed to update the robot-centered occupancy grid. The occupancy
grid is attached in the origin of the vision sensor coordinate frame, and its size is
5 m×5 m, with 0.2 m×0.2 m cells (Fig. 2.8c). Following the idea of original VFH we
increase the cell occupancy by a fixed value (in the experiments the value of 3 was
applied) whenever a pixel representing an occupied area (i.e. obstacle) is transferred
into this particular cell. If the transferred pixel represents an empty area, the cell
occupancy is decreased by a smaller value (value of 1 was used). However, the
occupancy counter is bounded for each cell: it cannot exceed 25 or drop below zero.
Then, the one-dimensional polar histogram is built upon this occupancy grid, exactly
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as in the original VFH. This histogram is also attached in the origin of the sensor
coordinate frame (coincides with the center of the robot), which makes it possible
to select the steering direction that avoids all obstacles, but is the one closest to the
direction to the goal.

2.6 Central Vision in the Hybrid Sensor

The central vision in animals and human beings serves mostly the needs of accurate
interaction with particular objects in the environment, supporting, e.g. grasping of
objects. However, our sensor is dedicated to mobile robots, and the central vision
serves mostly navigation tasks, such as landmark-based localization [20]. Hence, the
main function is accurate measurement of distances to selected objects.

The distances are measured employing an unorthodox stereo vision setup, in
which one image in the stereo pair is yielded by the perspective camera directed
towards the chosen object, but the other one is synthesized from the omnidirectional
image by our virtual camera. Assuming that both cameras are calibrated with respect
to intrinsic parameters, we need to relate the perspective camera coordinates to the
coordinate system of the virtual camera by extrinsic calibration, as described in
Sect. 2.4.4. Once the extrinsic parameters are known, we compute the projection
matrices for both cameras in the stereo pair. The projection matrix of the virtual
camera reduces to Pv = Kv[I|0], because we assume that the coordinate system of
this camera is attached in the origin of the coordinate frame of the stereo pair. Then,
the projection matrix of the perspective camera is calculated. This matrix accounts
for the rotation and translation between the two cameras: Pp = Kp[Rs |ts]. A point
in the 3D scene p is related by the projection matrices to its counterparts p′v and
p′p in the 2D images obtained from the virtual camera, and the perspective camera,
respectively:

p′v = Pvp, p′p = Ppp. (2.8)

Therefore, we can reconstruct the position in 3D of the point p from its projections
on the undistorted images from both cameras. The stereo distance computation is
accomplished using the optimal triangulation method [8], which runs in real-time
on the Jetson board in our sensor. It should be noticed that this method has been
chosen mostly due to its computation speed advantage and simple implementation,
while more recent and advanced methods exist, e.g. based on neural networks [18].
The GPGPU available in our sensor makes it possible to implement such a method
in the future.

Prior to the stereo computations, we have to determine the matching point
features. These features are located on the images from both cameras, but they
represent the same points in 3D. The computer vision literature lists a number of
methods to determine point correspondences in stereo vision [9]. Taking into account
that the images produced by the virtual camera are of relatively low resolution,
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because they are only up-sampled to the resolution compatible with the perspective
camera, we employ the point descriptors to find the corresponding features. The
descriptor vectors catch the appearance of the local neighborhood of each feature.
They are commonly used to match point features in robot navigation, and are
characterized by a good trade-off between the matching efficiency and the computing
power requirements [27]. We have implemented three alternative feature matching
procedures using SIFT, SURF, or ORB detector/descriptor pairs. The use of sparse
point features yields “sparse” stereo information, as the position is computed only
for a certain number of features. This is, however, acceptable for most navigation
algorithms that natively employ sparse feature maps [31].

Point features are detected in both images, and then described using one of the
detector/descriptor pairs. The coordinates of the feature points are undistorted and
normalized. Then, we attempt to match points from both images minimizing the
distances (Euclidean in the case of SIFT and SURF, and Hamming in the case of
ORB) between the descriptor vectors associated with these points. Once the initial
associations are established, the symmetrical reprojection error is calculated:

erep = max{d(ej , (uvi , vvi )), d(ei, (upj , vpj ))}, (2.9)

where uvi and vvi ) denote the normalized coordinates of the i-th p′v point, upj and
v
p
j are coordinates of the j -th p′p point, while the Euclidean distance of a point y

to the line x is denoted by d(x, y), and ei , ej are epipolar lines computed from the
essential matrix (2.5):

[eix , eiy , eiz ]T = E[(uvi , vvi , 1)]T , (2.10)

[ejx , ejy , ejz ] = [(upj , vpj , 1)]E.

If the error erep (2.9) is smaller than a fixed threshold, the match gets accepted. The
paired features are then used to calculate the distances in the 3D scene.

2.7 Experimental Results

2.7.1 Peripheral Vision

Peripheral vision functions have been tested in the tasks of obstacle avoidance, detec-
tion of dynamic objects, and tracking of both specific color and arbitrary shape/color
objects. Some of these experiments are documented on the accompanying video
material.1

1http://lrm.cie.put.poznan.pl/bioinspsens.wmv.

http://lrm.cie.put.poznan.pl/bioinspsens.wmv
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Fig. 2.10 Visualization of the grid maps produced in our sensor while computing a sequence of
steering directions to the goal

The more compact version of the sensor, based on the Jetson TK-1 board was tested
on a legged robot. The robot walked on a flat floor in a lab, avoiding different types of
obstacles, including specially prepared cardboard boxes and tubes, as well as the usual
lab equipment. Robot-centered grid maps updated in sequence during this experiment
is depicted in Fig. 2.10. The direction to the goal defined by the human operator is
shown in Fig. 2.10 by blue arrows, green arrows depict the steering direction obtained
from the VFH algorithm, and distances used in the polar histogram to detect obstacles
are denoted by red circles. An important improvement in the processing speed has
been achieved for this algorithm owing to the use of parallel processing on the
Jetson’s GPGPU. Namely, if projection of the detected obstacles from the panoramic
image to the robot-centered map was implemented on the Jetson’s KT-1 CPU, this
operation took 3.01 ms for a single image, but the CUDA implementation using the
Kepler GPGPU required only 0.45 ms for the same operation.

Also the real-time detection of moving objects through background discrimination
was tested on the Jetson TK-1 variant of the sensor. The FrameDifferenceBGS
algorithm implemented on the Jetson TK-1 CPU required 19.8 ms per frame. This
is enough to detect slowly moving objects, however, the embedded Jetson platform
is much slower in this task than a desktop computer (PC with i7 at 2.3 GHz),
which took only 8.5 ms per frame. Unfortunately, the execution time decreased
only minimally, to 13.7 ms, when the FrameDifferenceBGS algorithm was re-
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Fig. 2.11 Dynamic objects segmented from the background by the SigmaDeltaBGS method: the
panoramic image (a), and the detected objects denoted by white pixels (b). The orange rectangle
surrounds some wrongly identified pixels

implemented using CUDA and ran on the Jetson’s GPGPU. The reason for this
result is a large number of data transfer operations in the considered algorithm,
compared to the relatively simple computations. Such tasks do not benefit much
from parallel processing architecture. For the more complex SigmaDeltaBGS the
difference in processing speed between the Jetson TK-1 implementation and its
desktop PC counterpart was smaller—processing of a single frame took 239.6 and
198.7 ms, respectively. However, in this algorithm data transfer constitutes much
smaller fraction of the operations. Figure 2.11 shows example images with a person
and a toy cart detected by the SigmaDeltaBGS algorithm. Notice that very few
outliers are present (Fig. 2.11b).

Tracking was tested on several objects, including simple balls, toys, and people
surrounding the sensor [17]. Figure 2.12a demonstrates the behavior of the particle
filter: from the computed optical flow field (left) to the converging particles (shown
as pink rectangles). The ability to track an object of complicated shape and color is
shown in Fig. 2.12b, where a toy giraffe (pulled on a rope) is tracked by the filter.
Real-time performance is achieved due to parallel implementation of both the optical
flow and the particle filter on the GPGPU.

2.7.2 Central Vision

For the evaluation of the main central vision function, the stereo-based distance
measurements, we performed a series of experiments in a home-like environment.
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Fig. 2.12 Particle filter tracking a ball (a), and the tracked positions of a toy denoted by bounding
boxes (b)

Fig. 2.13 Different images for one of the scenes: perspective camera image (a), omnidirectional
camera image (b), and panoramic image (c)

At first, the distance measurements accuracy was determined. Then, we tested
extensively the descriptor-based feature matching in sparse stereo to determine which
detector/descriptor pair suits best the requirements of our sensor. We have set up four
simple scenes, gathering furniture pieces and other common objects (boxes, pillows)
into sets of two or three items (Fig. 2.13). The ground truth distances between the
scene objects and the sensor were measured using a meter tape, assuming that the
origin of the coordinates is located in the center of the curved mirror.

At first we evaluated the distance measurements using the SIFT detector/descrip-
tor pair (Fig. 2.14a), because SIFT is considered the “golden standard” of the point
feature descriptors if real-time performance is not a concern [20]. We measured
distances to a number of features detected on the observed objects (Fig. 2.14b). The
objects in the scene had flat front vertical surfaces. Hence, we averaged the distance
measurements for all the features appearing on the particular vertical surface to
produce the quantitative results shown in Fig. 2.15.

One can easily deduce from these plots that the range measurement errors depend
on the distance to the observed object. It is also visible that these errors become
minimal in the mid-range of the measured distance. This result coincides with
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Fig. 2.14 Sparse stereo in the same scene: associated SIFT features (a), and 3D feature points
located on the scene (b)
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Fig. 2.15 Dependence between the range measurements and the ground truth distance (a), and the
dependence between the ground truth distance and the distance measurement error (b)

the range, where the interpolation errors in the panoramic images are minimal.
Apparently, the number of correct matches depends on the distance to object. The
number of correctly matched SIFT features varied from 5 to 17 in the scene depicted
in Fig. 2.13. The largest number of correct matches was observed at 1.8 m to the
middle object. The number of matches is largest for the measured distances from 1.6
to 1.8 m, which coincides with the range of minimal distance errors. However, the
number of detected features was typically higher for more distant objects.

Table 2.1 shows the number of correctly matched features for the SIFT, SURF,
and ORB detector/descriptor pairs, four different scenes, and three representative
measurement distances. Example matches are visualized in Fig. 2.16 for the scene
no. 3 at the distance of 1.4 m.

In the same experiments the time needed to process a pair of images (perspective
and virtual) and to compute the distance was evaluated. The measured time (in
seconds) includes creation of the virtual image, point feature detection, description
and matching, and triangulation, but does not cover the reconstruction of the
panoramic image. The processing time tc shown in Table 2.2 was measured on
the Cortex-A15 CPU for all the detector/descriptor pairs. For the SURF and ORB
features, which have OpenCV implementations supporting CUDA, the time tg , also
included in Table 2.2, was measured on the GPGPU. Only the use of GPGPU allowed
the sensor to accomplish the central vision process in real-time. The processing time
depended mostly on the detector/descriptor type, however, the matching time depends
also on the number of detected features.
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Table 2.1 Performance of
the detector/descriptor pairs
in sparse stereo measured by
the number of correct
matches

Detector/descriptor Scene 1 Scene 2 Scene 3 Scene 4
SIFT 1.2 m 5 22 19 33

SURF 1.2 m 7 10 13 9

ORB 1.2 m 3 0 0 3

SIFT 1.6 m 15 36 25 36

SURF 1.6 m 14 21 51 25

ORB 1.6 m 2 3 4 4

SIFT 2.0 m 16 10 24 17

SURF 2.0 m 40 18 8 3

ORB 2.0 m 2 4 1 2

Fig. 2.16 Features
associated using SIFT (a),
SURF (b), and ORB (c) in the
Scene no. 3

2.8 Conclusions

This chapter presents a stand-alone, passive vision sensor of hybrid field of view
that draws inspirations from the vision systems of insects and animals. The sensor
is hosted by a recent single-board computer that provides enough computing power
to implement a wide palette of image processing algorithms supporting robot
navigation. Moreover, the high computing power of the sensor and its open-source
software architecture, exploiting the common CUDA and OpenCV libraries, make
it possible to implement new functions required by the task at hand.
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Table 2.2 Total processing time for stereo-based distance measurements on the Jetson TK-1 CPU
and GPGPU

Detector/ Scene 1 Scene 2 Scene 3 Scene 4
descriptor tc tg tc tg tc tg tc tg

SIFT 1.2 m 7.94 – 7.90 – 7.92 – 7.65 –
SURF 1.2 m 5.70 0.44 2.51 0.22 2.72 0.21 2.99 0.23
ORB 1.2 m 2.75 0.11 0.59 0.02 1.02 0.04 1.00 0.04
SIFT 1.6 m 7.64 – 7.79 – 7.62 – 7.52 –
SURF 1.6 m 2.22 0.17 2.86 0.22 2.45 0.19 2.46 0.19
ORB 1.6 m 1.75 0.07 1.50 0.06 1.27 0.05 1.23 0.04
SIFT 2.0 m 7.68 – 7.54 – 7.54 – 7.54 –
SURF 2.0 m 2.34 0.18 2.35 0.18 2.61 0.20 2.33 0.18
ORB 2.0 m 1.72 0.07 1.25 0.05 1.05 0.04 1.29 0.05

The concept of a sensor integrating an omnidirectional camera and a perspective
camera is not particularly novel, but we contribute new elements:

– software that implements selected functions of the peripheral and central vision
concept on top of the wide field of view vision typical to insects;

– the use of GPGPU for real-time image processing in a low-power, embedded
vision system;

– simple yet efficient calibration methodology of the hybrid field of view vision
system.

Moreover, this chapter contributes also improved algorithms and results of extensive
experimental evaluation. For instance, the reconstruction of panoramic images
has been improved to ensure better compatibility between these images and the
perspective camera images. On the basis of experiments we have selected the SURF
detector/descriptor pair for the sparse stereo vision function in the hybrid field of
view sensor. The efficient OpenCV implementation with CUDA support ensures that
SURF can be used in real-time on the Jetson platform.
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3D Three dimension
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CCD Charge-coupled device
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FW Fixed window
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SLAM Simultaneous localization and mapping
SPAD Single-photon avalanche diodes
SURF Speeded-up robust feature
ToF Time of flight

3.1 Introduction

Conventional vision technology projects 3D world information into 2D plane with
information lacking in Z-axis, that is, the depth information of a scene. Access
to depth information is paramount in capturing the real-world space; therefore,
3D vision systems form important research topic for robotic and autonomous
systems. For instance, path planning and obstacle avoidance form the key aspects of
autonomous vehicles and heavily rely on sensors providing situational awareness for
system accuracy. A large body of research is being conducted on safety and obstacle
avoidance, and 3D vision technologies remain an integral part of robotic systems [1–
3]. It is not surprising that in addition to the usual red, green, and blue (RGB) color
vision, most of the advanced robotic vision systems already deploy a form of active
or passive depth information using the so-called RGB-D vision technology, where D
stands for depth. In robotics, time-of-flight (ToF)-based sensors together with stereo
vision systems are widely used to extract the depth information. ToF sensors are
particularly suited to self-driving cars and autonomous aerial systems or drones. ToF-
based depth sensor is the most promising form of long-range active depth sensing,
and tech giants such as Texas Instruments, Sony, Panasonic, STMicroelectronics,
AMS, etc. are currently developing micro-depth sensor for range imaging in a form
that is compatible with portable device such as smartphones.

Object recognition in real time is yet another active research area in robotic vision,
and use of RGB-D sensors for 3D object reconstruction is common. Information
contained in voxels is used to compare and identify different objects and features
contained within them [4–7]. The advantage of this approach benefits from the fact
that a lot of salient features can be extracted from the 3D space to improve object
recognition performance [4–7]. No wonder the demand for novel and high-resolution
cameras that can provide depth is on the rise. Currently, many commercial 3D image
sensors exist in the market, and imaging system providers are developing a new
generation of 3D image sensors [8–10]. Surveillance system, vehicle identification,
traffic control system, people counting system, activity and gesture identification
etc. are the subdomains of this category where 3D information offers improved
system efficiency [1, 2, 4, 12, 109]. Access to depth information has a big impact on
computer graphics especially in games and in content and image retrieval as well as
in archeology [13–15].

In medical robotics, depth information has a great influence on assigning
perception. In computer-assisted surgery (CAS) or in robotic-assisted minimally
invasive surgery (MIS), depth has an important role. In conventional MIS procedures,
3D surgical world is projected to 2D screen; hence, surgeons performing MIS face
more challenges than open surgery. Surgeon has to operate 3D world in a 2D space
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without haptic sense that makes MIS system more complicated. Unintentional tissue
damage is often reported that may later cause other difficulties such as arthritis or
osteoarthritis. In MIS context, vision is the most crucial factor that improves surgical
outcomes with respect to safety and unintentional injury [11]. Without the depth
information, MIS faces difficulties to track surgical tools within the surgical space.
Promising improvement has been reported when 3D vision is incorporated into the
tracking system [16]. Recent studies show a significant amount of improvement in
MIS procedure by presenting a comprehensive result of 3D MIS versus 2D MIS.
According to their records, median error of MIS in 3D surgery versus 2D is 27 and
105, respectively, that reports 25.72% less median error [17]. Another study shows
that 3D MIS reduces 71% performance time as well as 63% error rate [18, 19].
Therefore, 3D vision systems offer great advantage in countries where the number
of skilled surgeons is limited.

In this chapter, we describe a diverse range of vision technology by reviewing the
current scanning technologies specific to application areas of robotic and machine
vision. We also aim to extend this discussion to capture the advantages and limitations
of active and passive depth sensing technologies using in stereo vision, time of flight,
and structured light with a particular focus on how to deal with constrained (indoor)
or unconstrained (outdoor) environments.

3.2 3D Image Construction

Depth estimation technique mainly faces two big challenges: (1) depth accuracy and
(2) computational cost in terms of time [20–23, 106, 107]. Two different branches,
sensor technology and computer vision, actively involved in research to meet these
constraints. Based on the imaging technology, current depth estimation technologies
can be classified into two main categories, active or passive, as illustrated in
Fig. 3.1. Passive estimation technology relies on machine learning algorithms and

Fig. 3.1 Classification of depth measurement technology
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mathematical approaches to extrapolate depth information from 2D image or images.
Whereas, the other class is referred to as active depth sensing technology which
relies on active controlled signal sources and sensor technology to estimate distance.
The aim of this chapter is to provide a comprehensive review of the various depth
estimation approaches along with their merits and demerits.

3.2.1 Image Sensor

Imaging technology uses natural or ambient illumination to capture the scene. Most
of the image sensors are based on charge-coupled device (CCD) or complementary
metal oxide semiconductor (CMOS). On the other hand, optical scanning sensors are
used to estimate depth [24]. Wendy Flores-Fuentes et al. proposed a novel electronic
sensor that consists of an electronic processing unit along with photodiode. To
measure the distance, their proposed work infers the energy centre of an optical
received signal. In the next section, we are going to introduce the most promising
passive stereo technique to infer 3D structure.

3.2.2 Stereo Vision

Stereo vision is the most common approach to infer depth from a set of images.
Computer vision algorithms are used to reconstruct depth from single or multiple
images. Single-view 3D reconstruction methodology uses only one image. On the
other hand, multi-view 3D construction considers two or more images to reconstruct
depth information. It is also known as stereoscopic vision. When two images are
used, the system is known as a binocular stereo vision system, and probably it is the
most widely focused research area of computer vision.

Binocular stereo vision originally mimics the human vision system. In a binocular
stereo vision, two images are taken from two different cameras at the same time [25].
The basic requirement is that two cameras are placed at a known distance. In this
arrangement, the left camera is denoted as a reference camera where the right camera
is called target camera. The distance between the optical center of these two cameras
is referred as a baseline. Stereo vision system uses the concept of parallax and uses
disparity as a vision cue. Figure 3.2 provides an overview of binocular stereo vision
and how it is used to calculate depth.

As highlighted in Fig. 3.2, stereo matching is the core technique of the stereo
vision. Stereo matching is the process that matches each pixel from the reference
image to the target image to perceive the depth of each pixel [26]. The resulting
output image is often referred as a depth map. An intensive comparison takes place
to find the corresponding pixel in the target image. Offline camera calibration and
pre-processing always take place before the actual stereo matching process [27–29].
Ideally, the reference and the target cameras capture the same scene point at the same
time with a slightly different viewpoint, and this serves the basis for stereo vision
algorithms [28]. Therefore, the term synchronization is always used to convey the
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Le� Image Right Image
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Fig. 3.2 Overview of binocular stereo vision system. Left and right cameras take the same
scene image, then stereo matching is performed to find the corresponding points. The resulting
corresponding points provide disparity information with respect to the left image. Finally, depth
map is calculated from disparity

sense that the image acquisition system captures the same scene point at the same
time with no time lag [30, 31]. When the object is in motion, this precondition plays
a pivotal role to reduce reconstruction noises, and camera calibration process is used
to eliminate image acquisition distortions [27, 32]. Basically, stereo rectification is
a transformation process that aligns two images into the same plane, so that same
horizontal line becomes parallel to both camera centers [33, 34].

Depth is calculated by finding disparity in a pair of images. Disparity refers the
distance between two corresponding points in the left and right images of a stereo
pair. It is inversely proportional to the depth and vice versa. In a stereo vision system,
the relationship between depth and disparity can be expressed as follows [35–37]:

d = bf
Z

(3.1)

Here b is the baseline and f is the focal length. Z stands for depth, and disparity
is expressed by the letter d. When the stereo matching process is completed, the
difference of the pixel position in the right image with respect to the left image is
referred to disparity of that pixel. The basic idea of the disparity calculation is to
match each pixel from the left image to the right image. In some circumstances, parts
of a scene may not be visible to one or both cameras. This part of a scene is known as
a missing part. In other words, stereo matching process fails to find the best match.
These outcomes are often reported as holes [38]. Hence, after calculating depth map,
post processing algorithm are used to refine noises [35]. Depth is estimated from
disparity by using the geometric principle of triangulation, and some of the common
approaches are summarized in Fig. 3.3.

Generally, stereo matching algorithms are classified into two groups. Pixel-
wise matching algorithm is categorized as a correlation-based approach. It is
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Fig. 3.3 Classification of stereo matching algorithm

further grouped into two main groups: (1) local matching and (2) global matching.
Between the local matching and the global matching, semi-global matching resides
that combines the upsides of both the algorithms. Stereo matching becomes
highly ambiguous especially when a single pixel is considered. To alleviate this
characteristic, often fixed or variable length of window is considered. Example of
the local matching algorithm is the sum of absolute differences (SAD), fixed window
(FW), etc. [39, 40].

Local methods can estimate disparity at high speed, but it compromises estimation
accuracy to computational cost. The downside of local matching algorithms is
that the disparity map often contains ambiguity. Though window-based approaches
improve the overall accuracy, defining universal window size to balance both speed
and accuracy is a challenging task. Probably, one of the major limitations of local
matching algorithm is that it is incapable to handle occlusion due to lack of global
information. Moreover, this group of algorithms is often limited to low texture images
because, often, the local windows fail to capture smoothly varying texture features
[13, 21] at low frequency. The rudimentary hypothesis of this group of the algorithm
is that the corresponding pixel exists on the same horizontal scan line. For this
reason, rectification is a crucial step to increase the accuracy of disparity estimation.
However, accurate image rectification in practice is a hard task. Some algorithms
also consider an additional path to estimate disparity [41]. But this additional path
aggregation function again increases the disparity computational cost.

On the other hand, global matching algorithms provide improved and highly
accurate depth map [102]. Instead of the local neighbor pixel, the global method
takes into account all image pixels. Smoothness function is the most pivotal step of
global method. The aim of this step is to minimizes the energy cost of the overall depth
map. The objective is to reconstruct depth map with the lowest energy. Unlike local
stereo matching algorithm, this set of algorithms requires very high computational
cost. Generally, the energy minimization function is defined as [1, 42]:

E(d) = ED(d)+ Es(d) (3.2)

Here, Es(d) is known as a smoothing function.
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Local methods are not robust to noise, and accuracy gets compromised with
respect to speed. On the other hand, global methods consume high computation
cost, are robust to noises, and provide highly accurate results. Adaption of a
global method in a real-time system is a challenging task. The semi-global method
originally proposed by Hirschmuller [41] balances these two approaches. According
to this method, the matching process is performed with a set of pixels that is
basically a window-based approach. So, initially, the stereo matching approach
starts with local stereo matching process. Census transformation and sum of absolute
differences (SAD) are probably the most used algorithms to perform this task. Census
transformation is more robust than SAD [43]. Here, window size or census kernel
size plays an important role in identifying textureless or low texture properties. The
drawback of larger window size is that it increases computational cost. In order
to estimate the matching cost, generally hamming distances are used. The lowest
hamming distance is preferred for each pixel over the total disparity level. This initial
matching cost encounters the same problems of the local matching algorithm. Thus,
it contains wrong correspondences due to limited or low textures. To alleviate these
problems to some extent, the semi-global method introduces further cost aggregation
function which is known as a path cost aggregation. Path cost is calculated from
several directions, and in practice, 8–16 directions are used. Although the semi-
global method improves local method matching accuracy, this method still falls
short in fully overcoming the above-described limitations. Path cost aggregation of
the semi-global method can be described as follows:

E(D)=
∑

p

(
C (p,Dp)+

∑

q∈Np

P1T
[|Dp−Dq | =1

]+
∑

q∈Np

P2T
[|Dp−Dq | > 1

]

(3.3)

Passive stereo matching technology encounters a set of challenges. Image may
be contaminated by noises. Missing point due to occlusions or self-occlusion, the
absence of texture, and the perfection of same horizontal scan line alignment are the
rudimentary problems to reconstruct 3D structure using stereo images. Principally
three pivotal metrics are used to describe a stereo matching algorithm as a whole.
These are (1) robustness, (2) accuracy, and (3) computational cost. Feature matching-
based algorithms are also widely used to estimate passive depth from images. In this
approach, features are calculated to construct feature vectors. This process can be
referred to as a feature descriptor process where features are extracted from the
images. Then feature matching algorithms are used to find the correspondence
feature, and disparity is calculated based on the matching outcomes. The most
common image features are edges and corners. But these features are usually
susceptible to noise but have less computational cost. Other widely used image
features are scale-invariant feature transformation (SIFT), difference of gradient
(DoG), and speeded-up robust feature (SURF) [42, 44–47]. Feature selection is a
crucial process. Robust features are always preferable, but it increases computational
cost. By definition, features are the most interesting points of an image that carries
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important image information. Therefore, feature-based methods create a sparse
matrix. Only partially reconstructed depth can be achieved from feature-based stereo
matching algorithm compared to dense depth map construction.

3.2.3 Shape from Shading

Binocular stereo is based on finding the corresponding problem. However, images
also contain many visual cues such as shading, texture, etc. In computer vision,
these visual cues are used to construct the shape of an object. These are classical
approaches used in monocular stereo system. Among them, shape from shading and
photometric stereo are the most prominent fields which are still viable and probably
the most widely used research approaches to reconstruct 3D structure from a single
image. This approach has many applications. Considering the growing interest of
this approach, we focused on shape from shading and photometric stereo in more
detail.

Originally, shape from shading approach was proposed by Horn [48] and later by
his Ph.D. student Woodham. In his Ph.D. thesis, Woodham proposed a photometric
approach which is the extension of shape from shading [49]. Though it seems a very
old approach, it is still an active research area in computer vision to infer depth from
monocular or single view.

Shading pattern of an object conveys information and visual cues of its surface.
Under controlled lighting source, the reflected light intensity of an object surface
has a sharp relation to its surface shape. It creates a bridge between the shading to
surface slope. However, shape from shading is often marked as an ill-posed problem
that refers to the same numerical solution representing two distinct surfaces, one
is inversion of the other one. Photometric stereo, which is one step further from
the approach of shape from shading, solved this problem using more light sources
[112]. As shown in Fig. 3.4, the idea behind photometric stereo is to estimate surface
reflectance coefficient, albedo, and surface normal. When these are estimated, depth
of a surface is calculated by integrating surface normals or by solving nonlinear
partial derivative equation. One important definition in this context is the surface
albedo. It is the reflectance coefficient that tells the amount of light a surface can
reflect. The value of albedo is between 1 and 0, and it is denoted by ρ. Limitations
of the shape from shading is that this approach is based on some assumptions such
as Lambertian surface, surface smoothness, and discontinuity. On the other hand,
photometric stereo is often limited to complex lighting environment and specular
nature of a surface. Using knowledge of radiometry, numerical solutions, and proper
construction of the system especially known lighting source, photometric stereo is
able to capture depth from textured, untextured, or textureless images.

Surface intensity or surface irradiance can be expressed as

I (x, y) = R (p, q) (3.4)
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Fig. 3.4 Photometric stereo
system. The figure is taken
from S. Ali et al. [50]. Four
images are taken from four
different lighting sources at
different angles. z is the depth
of the point

From the radiometry and back to the literature, Horn used this relation to
model shape from shading. Equation (3.4) tells that the image intensity is directly
proportional to its reflectance (R) map which is also known as irradiance map.
Reflectance map is a relational map which relates scene radiance, surface reflectance
property, surface orientation, and observed brightness [51]. If surface reflectance
property is estimated properly, then surface radiance depends on the surface shape.
Horn approach p and q in Eq. (3.4) represent the surface gradient points and can be
expressed as

p = dz

dx
(3.5)

q = dz

dy
(3.6)

Extension of this shape from shading is photometric stereo. The basic idea is
to infer depth of a scene illuminated at different angle. In photometric stereo, a
camera is placed in a fixed position. Usually, three or more lighting sources are used
to construct photometric stereo. Images are captured one after another by changing
lighting direction from one to another. The idea is to capture surface orientation from
different illumination direction. Collected images are then processed to construct
depth map.

One reflectance map corresponds to one light source. So, l number of light sources
produce l number of reflectance maps. Unlike shape from shading, photometric stereo
calculates surface property such as albedo. Photometric stereo is an overdetermined
system where the number of unknowns is less than the number of equations. Hence, it
eliminates the limitations of shape from shading. The surface normal can be defined
as a vector on a surface in 3D space which is perpendicular to the surface. The basic
principle is based on the radiance by calculating surface normal and the direction of
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light. Suppose s is the light source vector and n denotes surface normal, then image
irradiance can be expressed as follows:

⎡

⎣
I1

I2

I3

⎤

⎦ = ρ
⎡

⎣
sT

1
sT

2
sT

3

⎤

⎦n (3.7)

Finally, the depth map is calculated from the surface normal through numerical
integration. There are some well-known numerical methods that already exist in
literature mainly based on fast marching method and the integration methodology
[52, 53]. According to the integration method, depth can be calculated from the
following equation [54]:

z (x, y) = z (x0, y0)+
∫
p (x0, y0) dx + q (x0, y0) dy (3.8)

Lambertian surface property is the preliminary assumption of the shape from
shading or photometric stereo. Dynamically estimation of a surface property or
photometric stereo for non-Lambertian surface is one of the active areas where a lot
of contribution has been reported. In recent years, many contributions are reported
where structured light, color image intensity, and fusion of photometric stereo with
other approaches are used [55, 56]. The strong point of photometric stereo is that
it provides fine surface shape with fine depth information. Recent patent has been
reported in 2018 where photometric stereo process has been used to reconstruct
3D environment model [57]. The downside of this approach is that, unlike passive
stereo system, it uses external lighting sources to estimate depth. Hence, it is limited
to environmental lighting sources, or complex lighting sources make this approach
hard to estimate depth.

3.2.4 Dynamic Vision

In contrary to other conventional imaging system or camera, the event camera meets
high-speed vision sensor demand. The idea behind the event camera or dynamic
vision sensor is to produce an image when an event has occurred. In other words, even
if the brightness value of a single pixel changes, it produces an image. Event camera
does not produce image at a fixed rate, but based on an event, it generates an image
at high speed. An event can be translated into time series tuple of 〈t k, (X k, Y k), p k〉
[58, 59], where t k expresses time, (X k, Y k) is the coordinate of a pixel that raises
an event, p k defines priority. Event camera can produce an event in some order of
milliseconds [58, 59]. In robotic odometry, event camera provides the ability to solve
many feature-based cutting-edge problems such as visual simultaneous localization
and mapping (SLAM) [60, 61]. On the other hand, the event camera has great
influence on passive depth estimation. Examples of event-based scene detection is
shown in Fig. 3.5.
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Fig. 3.5 Dynamic vision based on events. Events in the scene are captured through dynamic vision
cameras, and depth construction is obtained from the images. (a) Dynamic vision camera-based
stereo system. (b) Output events and captured scene. (c) Extracted neighbourhood that allows to
build the event context. (d) Time context of the most recent events. (e) Exponential decay kernel
for spatial domain. Figure is taken from Ieng et al. [62]
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Fig. 3.6 Dynamic vision
with structured light.
Matching is performed
between two view p1 and p2,
and depth is recovered
through triangulation method
from known optical center C1
and C2. Figure is taken from
T. Leroux et al. [64]

N. Julien et al. estimated depth using dynamic vision sensor using active approach
[63]. In their work, they addressed passive stereo matching problem using event data.
They generated events of an observed scene so-called light spots using lens and laser
light, and scanning was performed by translating laser beam. The Fig. 3.5 shows the
output of a stereo rig consisting of a dynamic vision sensor that produces overlapped
stereo images. Stereo matching is performed over the sparse data at each event. It
alleviates the stereo matching problem. An active pixel array is used to grab a visual
scene. Though this work approaches to solve the stereo matching problem, scanning
all the pixels of the field view area consumes time. Moreover, their approach is
limited to a range in some meters.

T. Leroux et al. in their method used digitized structured light projection with
an event camera to estimate the depth of a scene [64]. Their method as shown in
Fig. 3.6 relies on the use of frequency-tagged light pattern. It generates a continuous
event. Since structured light has a distinguishable property of pattern at a different
frequency, it facilitates matching problem on event-based data.

The fundamental approach is based on the idea that unique projector pixel
triggered a unique scene point that is captured by the image sensor. By knowing
this two center points say C1 and C2, depth is recovered using the triangulation
method.

3.3 Active 3D Imaging

The active 3D imaging system consists of an additional signal source known as a
projector. The aim of the projector is to emit signals. Received reflected signals are
analyzed to construct the 3D structure of the surrounding environments. The emitted
signal can be laser light, ultrasound signal, near infrared light, etc. It is known as a
projector, and its responsibility is to fire signals on the surrounding surface. Many
terms are used to describe 3D active imaging technology such as a rangefinder and
range imaging. Several methods are used to measure distance, but probably the most
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practiced methods are based on time of flight (ToF), triangulation and phase shift.
This section provides a brief introduction of active sensing methods and technique.
Dense depth map with less ambiguity and minimum depth error are the most reported
advantages of active 3D imaging technology. However, the resolution of the depth
map is limited. Miniaturized, high-resolution, and low-power active depth sensor
has a potential demand in various fields like medical robotics.

3.3.1 Time of Flight

Time-of-flight (ToF) systems measure the distance from the scanner to surface points.
The basic idea of the active sensing technology is to emit signal such as from a laser.
When the signal is emitted by the projector, then the clocking system inside the active
imaging system starts counting. This approach is known as direct time of flight. If
the object exists within the range of the imaging system, then it reflects a potential
amount of signal to the receiver. When the receiver part of the camera receives this
signal, it then computes the round-trip time. Then the distance is estimated from the
basic principle of the light or electromagnetic source as follows:

d = 	t ∗ c
2

(3.9)

Here d expresses the distance of an object from the camera, 	t stands for total
travel time, and c is the velocity of the light. Figure 3.7 captures the fundamental
working procedure described above. Direct ToF imaging system consists of four
basic components: (1) light source or transmitter, (2) optics, (3) light detector or
receiver, and (4) electronic timer [65]. Light source or transmitter along with optics
produce a signal transmitting unit for this system. Different light or signal source can
be used such as near infrared or laser. The optical lens is used to diffuse the signal

Distance

Light emitter
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Detector
Timing 
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Single 
Photon 
Arrival 
Time

Light Detector (SPAD)

Start Time

Fig. 3.7 Working principle of ToF-based sensor
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over the surface. The optical lens is also used to collect light and project it to the
receiver. It creates limited field view to avoid other outdoor lighting such as sunlight.

On the other hand, the receiver unit is generally composed with two system
components: (1) photosensor and (2) electronic time counter. Within a defined range,
ToF provides high-quality depth map. High-scale precision clock is the challenging
part of this approach. When an object is placed very near to camera, for example,
in millimeter distance, it is a challenging area to design a clock that can measure a
time gap in nano or pico scale. That makes active direct ToF camera limited to very
short distance.

Photosensor has to sense reflected light within a very short time. Some
semiconductor components such as avalanche photodiode (APD) and single-photon
avalanche diodes (SPADs) show their ability to sense signal within the picosecond
range, and these components are used to fabricated ToF sensor [66]. To improve the
resolution, efficiency, and scale down the dimension of the whole imaging system,
currently leading manufacturers are involved in developing solid-state 3D active
imaging system [9]. In the indirect approach, a continuous signal is sent by the
transmitter or projector instead of the one-shot signal in order to avoid small-scale
clock design. The transmitter contains an array of a signal emitter and generates
the desired signal. Different kind of signals are used such as sine, square, etc. The
received signal is compared to the original signal. Different signal characteristics are
used such as signal phase to estimate distance. It is a continuous process and more
flexible for silicon technology.

One-shot approach can measure both short and long distance with some range
limitations. Long distance measurement requires stronger light source, in most of
the cases coherent light sources, which can be hazardous. Moreover, strong and
complex lighting source can contaminate the reflected signal. In practice, a multi-shot
approach is adopted to overcome this problem. However, still high-power light source
is the main drawback considered in this situation. The continuous pulsed signal is
used to overcome this crucial problem. From the basic theory of signal processing,
the target signal is wrapped into a carrier signal that has relatively low frequency.
Often amplitude-modulated continuous wave (AMCW) or frequency-modulated
continuous wave (FMCW) are used in this domain. In frequency-modulated
continuous wave (FMCW), high-frequency signal is combined to a relatively
low-frequency signal and then transmitted. This mechanism increases the system
robustness. Suppose an emitted signal St x is transmitted and a reflected back signal
Sr x is received. If a sine signal is transmitted, then they can be expressed as

Stx = cos 2πωt (3.10)

Srx = cos (2πωt + ϕ) (3.11)

where ϕ contains phase shift information that eventually expresses the amount of
time and distance that the signal traversed after its emission. Basic electronics and
filter approaches are used that estimate phase shift between transmitted and received
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signal. Multi-path propagation is one of the considered problems of ToF technique.
When light hit a surface point, the scattered light may fall on the detector plane
through different paths. Multiple detection of such event can generate noises.

In single-photon detection, especially in solid state where avalanche photodiodes
are widely used to convert light energy to current energy, strong light source generates
strong current. When light source traverses a long path, the signal becomes weaker
and generates less current. Similarly, when the signal hit a diffuse surface or mat
surface, it reflects weaker signal. The signal is scattered into different directions
when it hits sharp edges and photodiode response becomes weaker. These are well-
addressed problems of ToF technique especially for LiDAR (light detection and
ranging). LiDAR-based system uses the fundamental principle of ToF [67]. Laser is
a more preferable choice as a light source. When laser light is reflected back from a
surface point, LiDAR can estimate the surface distance. Since light is projected on
the surface, the surface property and other factors can also contaminate the reflected
light as it is mentioned in the ToF section.

Spot scanner scans a single point at one time. This type of LiDAR projects laser
light on the surface point. The back-propagated light is captured and projected to
the light detection sensor. Single point distance is measured with this approach. To
recover whole geometry covered by the field of view (FOV), conventional steering
is used to scan all the points.

Apart from the pulsed shot approach, amplitude modulation continuous wave
(AMCW), frequency modulation continuous wave (FMCW), and triangulation
techniques are also adopted. In recent years, a big volume of literature currently exists
which concentrates ToF camera especially LiDAR on solid state. Single photon on
distance measurement technique is widely adopted. Some solid-state materials such
as avalanche photodiode (APD) and single-photon avalanche photodiode (SPAD)
are widely used in this research area to detect incoming light at very small time
gap [68]. With the capability of detecting and discriminating incoming light in the
range of picoseconds, these materials became the state-of-the-art choices to develop
solid-state LiDAR.

Table 3.1 presents a comprehensive list of active depth measurement sensors and
their characteristics

3.3.2 Structured Light

Structured light is used to estimate the depth of a surface. This technology is widely
used to construct 3D image [69–71, 105]. Similar to time-of-flight (ToF) mechanism,
it uses a projector that generates a pattern of light. Considering pattern generation
procedure, structured light can be further categorized into basic two classes: single-
shot structured light and multi-shot structured light. When a pattern is projected, the
surface scene is captured by the image sensor. Based on the number of the image
sensors used, a structured light depth estimation procedure has two well-studied
directions: (1) monocular structured light and (2) binocular structured light [71, 72].
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Table 3.1 List of active depth measurement sensors

Product name Characteristics Vendor
REAL3 Dimensions 68 mm × 17 mm × 7.25 mm

Measurement range 0.1–4 m
Frame rate max 45 fps
Resolution 224 × 172 pixel (38 k)
Viewing angle (H × V) 62◦ × 45◦

Infineon
REAL3™

PMD PhotonICs® 19k-S3 Time-of-flight 3D chip
Dimensions 12 × 12 mm2

Pixel array 160 × 120

PMD

OPT9221, OPT8241,
OPT3101 OPT8320

Time of flight
Long-range distance
Sensor resolution 80 × 60 to 320 × 240
Frame rate 1000–120

Texas
Instruments

PX5 Alternative spatial phase image 3D sensing
Up to 5 MP resolution
Fame rate 90

Photon-x

BORA Time of flight
Resolution 1.3 Megapixel
Distance various range
Minimum range 0.5 m
Maximum 500 m

Teledyne e2v

IMX456QL back-illuminated
ToF

ToF image sensor
VGA resolution
10 μm square pixel
Approx. 30 cm to 10 m distance
measurement

Sony
DepthSense™

(continued)
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Table 3.1 (continued)

Product name Characteristics Vendor
Epc660 Time of flight

Resolution 320 × 240 pixels (QVGA)
1000 ToF images per second in advance
operation mode
Range millimeter to 100 m

ESPROS
Photonics
Corporation

MESA 4000 Time of flight
Distance 0.8–8 m
Resolution 640 × 480

MESA
Imaging

SR300 Structured light (IR)
Distance 0.2–1.5 m
Resolution 640 × 480

Intel
RealSense™

ASUS Xtion Structured light (IR)
Distance 0.8–4 m
Resolution 640 × 4800

Asus

Depth estimation procedure analyzes a captured structured light pattern to estimate
depth. Different methods are already established so far and can be grouped into (1)
spatial neighborhood pattern method, (2) time-multiplexing pattern method, and (3)
direct coding pattern method [23]. The fundamental approach of structured light
depth estimation is to calculate disparity and can be defined as d = Ua − Uc.
Ua comes from the projector coordinate system and Uc comes from the camera
coordinate system.

As shown in Fig. 3.8, in this arrangement, depth estimation can be defined as a
pattern matching problem of the scene that is illuminated by a specific light pattern.

Some approaches are based on deformation of the received pattern. Considering
the correspondence problem of passive stereo vision, it shows a significantly
improved result on a textured and textureless region as well as it reduces ambiguity
[19, 74]. In structured light triangulation method, camera calibration can be the first
building block that estimates camera intrinsic matrix. It is also important to estimate
the extrinsic parameter that maps projector coordinate to camera coordinate system
known as stereo calibration. Encoded light patterns are projected on the surface,
and reflected patterns are captured by the image sensor. Deformation depends on
the surface planar characteristics. Matching is performed on the decoded pattern
by using different approaches such as global optimization [75, 76]. Then depth is



76 A. Shahnewaz and A. K. Pandey

Slits

Expected

Acquired

Image

baseline

Projector

Fig. 3.8 Structured light system architecture [73]

inferred using triangulation [77–79]. Numerous pattern generation and structured
light techniques exist in literature and are used in practice. A comprehensive list of
structured light techniques has been stated by Jason Geng published in Advances in
Optics and Photonics [80]. According to their research, structured light technique
is categorized into five main categories: (1) sequential projections (multi-shots), (2)
continuous varying pattern, (3) stripe indexing, (4) grid indexing, and (5) hybrid
methods.

Structured light and photometric stereo both are active depth sensing technology.
Through the advances of solid-state physics and micro lens technology, miniaturized
depth sensor is now possible, and this technology is expected to improve further in
terms of image resolution. A comprehensive comparison of depth sensing imaging
technology is presented in Fig. 3.9.

Alternatively, the backbone of the image sensing technology beyond CMOS can
also be modified to estimate depth. Recent research shows that new form of image
sensor is capable of estimating depth directly from incident light [81]. Pixel aperture
and depth from defocus are evaluated to construct a camera sensor. One of the merits
of this sensor design is the control of pixel aperture-controlled pixel array design.
Within a single die approach can capture blurred and sharp image. At a certain
distance, a camera can produce a sharp image, which depends on camera focal
setting. Otherwise, it produces a blurred image due to defocus. How much image
blurring has occurred gives a cue to estimate depth [82, 83]. This approach is known
as the depth from defocus. It requires two images, one sharp image and other one is
blur image. Their constructed image sensor uses two different filters. A color filter
is used to construct a blurred image, and a white filter is used to produce a sharp
image. Both these images are then used to estimate depth. Pixel aperture controls
the incident light. It can block, partially block, or pass whole amount of light to the
image plane.
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Fig. 3.9 Comparison of 3D imaging techniques. Figure source is Photon-X [8]

Pekkola Oili et al. presented focus-induced photoresponse technique to measure
distance [84]. Their approach is based on photoresponse materials such as dye-
sensitized solar cells (DSSC) and optics. Photoresponse of a photosensor depends
on the amount of incident photons and the surface area in which they fall [84].
The authors referred it as focus-induced photoluminescence (FIP) effect. In their
technique, they use this property with the combination of lens, and they successfully
derived the distance from the FIP effect. As shown in Fig. 3.10, they presented a
single-pixel measurement technique, and to retrieve full geometry of an object, scan
needs to be performed over the whole surface.

When lights fall on photodiode, it then generates photocurrent. FIP effect
expresses the amount of light in terms of photocurrent. However, ambiguity arises
when light radiant power is unknown. Their system arrangement consists of two
photodiodes, and one lens is placed in front of the system that collects rays as
it is mentioned in the figure. Instead of single photocurrent, their approach uses
photocurrent ratio of two sensors to alleviate this situation. Moreover, their work
shows the quotient changes with distance.
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Fig. 3.10 FIP-based distance measurement technique [84]

Fig. 3.11 Overview of structure from motion incremental pipeline. Input images are captured from
different view angle. Figure is obtained from S. Bianco et al. [87]

3.3.3 Shape from Motion

Structure from motion (SfM) is one of the mature techniques to reconstruct a shape
from a sequence of images. Some commercial 3D rendering softwares already adopt
this approach to construct the 3D shape of an object [11, 85, 86, 103]. In this
technique, motion is used to infer the depth of a scene. The concept behind SfM is
shown in Fig. 3.11. Here motion means a scene is observed from a different angle of
view. Generally, under orthographic camera model, at least three image sequences
are used to estimate depth. Although various shape from motion algorithms exist,
this chapter only focuses on the state of the art of shape from motion pipeline.

Using motion, multi-view images, structure from motion is the technique to
reconstruct 3D shape of an object and simultaneous estimation of camera pose.
SfM takes a series of input images from different camera view (motion). It is a
sequential processing pipeline that iteratively estimates motion and shape. The first



3 Color and Depth Sensing Sensor Technologies for Robotics and Machine Vision 79

stage corresponds to the feature extraction process. Local features are extracted from
every frame, and the extracted features matched within the overlapped image pair.
Correspondence outliers are filtered out via random sample consensus (RANSAC)
and bundle adjustment. Projective geometry is used to verify matched features.
Different geometries and parameters such as homography, camera fundamental
matrix, epipolar geometry, perspective n point, and triangulation are used to
reconstruct shape. Highly overlapped images are a good candidate to improve its
efficiency.

Feature extraction and matching action are then performed over the pair of
overlapped images. Observed images are taken at different angles; hence, view
angle and illumination condition affect the overlapped images. Thus, a feature that is
observed from one view angle may not become visible from another view angle due
to loss of illumination characteristics such as edge property. Moving from one view
angle to another, same features have the probability to compromise its dimensional
characteristics. Scaling factors may affect the matching process. Feature points are the
key elements that describe scene context; hence, more feature points are desirable. In
the last decade, scale-invariant feature transformation [88] approach has been widely
adopted in this context because it is robust to noise.

3.4 Deep Learning Approaches to 3D Vision

Deep learning has gained much success in complex computer vision problems
[86, 89–94]; recently it has been used to solve 3D reconstruction problem [104,
108, 110, 111]. Multilayer perception and its capacity to infer knowledge in 3D
reconstruction domain have been deliberately used to solve different problems
in different approaches. Considering shape from motion approach, features of an
image sequence has great impact. Often low-textured and salient features are hard to
extract. Convolutional neural network (CNN) has been used in this domain, and this
approach significantly shows better performance compared to other feature extraction
methodologies such as SIFT and DoG in a different environment [86]. Similar
problem has been addressed by a deep learning context, and it shows a significant
improvement [89, 93] in estimating pose. However, a more sophisticated approach
has been developed, and a full network has been developed to solve structure from
motion problems [90, 91]. Moreover, these approaches solve conventional structure
from motion such as small camera translation problem [91, 95]. CNN is also used
to infer depth that comes from the technique such as the depth from defocus [95].
Mainly it improves the depth uncertainty problem. Stereo matching problem also
reffered as a finding correspondences. Deep learning has been well studied to solve
both problems related to passive stereo vision: (1) finding feature and (2) finding
correspondences [96–98].

Monocular or single depth image also has a great impact on computer vision
as well as on robotics. SLAM is widely used to solve robot localization problem.
SLAM depth is conventionally based on structure from motions that are limited to
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low texture and small translation [90, 99]. Improvement has been observed when
deep learning is used to estimate depth especially when a low-textured region has
been considered [99]. Convolutional neural network-conditional random field (CNN-
CRF) framework for monocular endoscopy can estimate depth with relative error
0.152 and 0.242 on real endoscopic images [92].

Photometric stereo and structured light have been widely used in many areas.
Moreover, object or camera in motion and surface property estimation such as
Lambertian or non-Lambertian are the challenges and limitations of photometric
stereo. Deep learning has been used to estimate surface normal vector which is the
rudimentary step of photometric stereo before calculating depth [51, 90, 94]. Deep
learning is also used to estimate depth in a supervised and unsupervised manner [51,
90, 94, 100]. In a supervised manner, the network needs to be trained with known
data set and its ground truth depth map. In an unsupervised manner, depth can be
estimated from both monocular and binocular views. It opens a freedom in such a
way that, even if a stereo arrangement fails, network remains active and provides
depth from any single image. The idea of this approach is to predict stereo images in
a sense that for an input image say left image L, a network is trained in such a way
that it can predict a disparity map [101]. Depth can be calculated from predicted
disparity using triangulation method with a known baseline that is used to train the
network. Several smoothing functions are used to reduce prediction error and noises.

Though deep network shows high accuracy [101] result, it cannot predict the depth
of an unknown object shape which is not used during the training [90]. Also, the deep
network needs a well-trained network to estimate depth in real-world environment.

3.5 Conclusion

Current sensors are able to achieve depth resolution from few centimeters to 100 m in
real time, and sensor technologies like ToF, structured light, and stereo vision largely
form the backbone of object detection and range finding applications in robotics
and autonomous systems. Extraction of depth information from computational
techniques is yet another growing area of research, and approaches like shape
from shading and structure from motion offer some advantages in sensor design.
Ambient light spectrum and light intensity planes play an important role in
getting a dense depth map, and often lighting conditions experienced in complex
environments contaminate depth estimation process. Demands on illumination
pattern and computation limit the role of certain depth sensing mechanisms to
static or less mobile platforms, and one sensor might not be a good fit. New
sensing architectures and neuromorphic approaches to sensor design are already
in progress to simplify some of these challenges. Ideally, miniature sensors with low
power consumption and computational demands that can combine depth as well as
accurate color information are preferred. The ability to add multi-spectral imaging
on depth sensors is another area of interest and fusion of depth from different sensor
technologies would solve some of the challenges in achieving robust vision for aerial,
marine, and medical robotics.
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Design and Simulation of Array Cells
of Mixed Sensor Processors for Intensity
Transformation and Analog-Digital
Coding in Machine Vision
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Acronyms

AAM Auto-associative memory
ABC Analog-digital basic cell
ADC Analog–to-digital converter
AM Associative memory
BC Basic cell
BIA Binary image algebra
CCCA Current-controlled current amplifiers on current mirror multipliers
CDNE Complementary double NE
CL Continuous logic
CLC Continuous logic cell
CLEM Continuous logical equivalence model
CLF Continuous logic function
CM Current mirror
CMM Current multiplier mirror
CMOS Complementary metal-oxide-semiconductor
CNN Convolutional neural network
DAC Digital-to-analog converter
DC Digital-analog cell
DOEP Digital optoelectronic processor
EM Equivalence model
EQ_CL Equivalent continuous-logical
FPAA Field-programmable analog array

V. G. Krasilenko (�) · A. A. Lazarev · D. V. Nikitovich
Vinnytsia National Technical University, Vinnytsia, Ukraine

© Springer Nature Switzerland AG 2020
O. Sergiyenko et al. (eds.), Machine Vision and Navigation,
https://doi.org/10.1007/978-3-030-22587-2_4

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22587-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-22587-2_4


88 V. G. Krasilenko et al.

G Gray
HAM Hetero-associative memory
IP Image processor
MAAM Multi-port AAM
MHAM Multi-port hetero-associative memory
MIMO Multi-input and multi-output
MLA Array of microlenses
NE Neural element
NEq Normalized equivalence
NEqs Neuron equivalentors
NN Neural network
NnEq Normalized nonequivalence
NSEqF Normalized spatial equivalence function
OE-VLSI Optoelectronic very large scale integration
SD_NEF Spatially dependent normalized equivalence function
SHD Sample and hold device
SI ¨¯ £M Spatially invariant equivalence model of associative memory
SLECNS Self-learning equivalent convolutional neural structure
SMC_ADC Multichannel sensory analog-to-digital converter
TC Transfer characteristics
TPCA Time-pulse-coded architecture
ULE Universal (multifunctional) logical element
VMO Vector or matrix organization

4.1 Introduction

To create biometric systems, computer vision systems are needed to solve the problem
of recognizing objects in images. There are many known methods and means to
address these problems [1, 2]. In most recognition algorithms, the most frequently
used operation is the comparison of two different images of the same object or its
fragments. The mutual 2D function of correlating a reference fragment with the
current offset image fragment is also most often used as a discriminant measure of
their mutual comparison. With a strong correlation of images in their set to improve
the accuracy and probability, the quality of comparison of the noisy current fragment
and the reference image, as shown in [3], it is desirable to use methods of comparison,
image selection, based on measures of mutually equivalent two-dimensional spatial
functions transformations and adaptive correlation weightings. Various models
of neural networks (NN) are actively used as a tool for image recognition and
clustering. The latter is also widely used for modeling pattern recognition, biometric
identification, associative memory (AM), and control of robotic devices. In [4, 5],
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equivalence models (EM) of auto-associative memory (AAM) and hetero-associative
memory (HAM) were proposed. The EMs have an increased memory capacity (3–4
times higher than the number of neurons) relative to the number of neurons (4096 and
more) and the ability to compare, store, and retrieve to recognize strongly correlated
and noisy images of large dimension, as was shown in [6–8]. These models allow
you to recognize fragments (64 × 64 and more) with a significant percentage (up
to 25–30%) of damaged pixels [5, 7, 9, 10]. Models of multi-port AAM (MAAM)
and multi-port hetero-associative memory (MHAM) for associative image storage
and recognition were investigated in [7, 8], the main idea of which was originally
published in [4]. Mathematical models and AM implementations based on EMs
were initiated in [4] and described in detail in papers [7–9], and their modifications
in [11–13]. For analysis and recognition, the problem of clustering various objects
must be solved. This previous clustering allows you to organize the correct automated
grouping of the processed data, conduct cluster analysis, evaluate each cluster on the
basis of a set of attributes, put a class label, and improve subsequent classification
and recognition procedures. The significant advantages of the EM for creating
MAAM and MHAM on their basis [8, 11, 12] and improved neural networks [5–9],
made it possible to suggest new modifications of MHAM for parallel cluster image
analysis [11, 12] and their hardware implementations on parallel structures, matrix-
tensor multipliers, equivalentors with spatial and temporal integration [8, 9, 12–14].
Spatially non-invariant models and their implementation for image recognition and
clustering were considered in [8, 12], and only in [1, 2, 9, 11], spatial-invariant image
recognition models were considered, but not clustering. More generalized spatially
invariant (SI) equivalence models (EMs) are invariant to spatial displacements and
can be used for clustering images and their fragments, and therefore, the study of
such models is an urgent task [14–17]. In addition, as our analysis shows, these
models, described in our works [1–10] and known for more than 20 years, are very
closely related to the operations of convolution of images. In the most promising
paradigms of convolutional neural networks (CNN) with deep learning [18–24],
the main operation is convolution. But they reveal that regularities on the basis
of existing patterns or filters require complex computational procedures in their
training. Jim Crutchfield of UC Davis and his team are exploring a new approach to
machine learning based on pattern discovery. Scientists create algorithms to identify
previously unknown structures in data, including those whose complexity exceeds
human understanding. New possible ways of self-learning based on such advanced
models were considered in [25]. It explained some important fundamental concepts,
mechanisms of associative recognition and modeling processes of transformation and
learning on the basis of understanding the principles of biological neural structures
functioning. Patterns were identified in such models for binary slices of digitized
multilevel images, and their implementations were proposed, and refer article [26]
for multilevel images without prior binarization. But, as will be explained below, for
all progressive models and concepts and nonlinear transformation of signals, image
pixel intensities are necessary.

The bottleneck between the processor and the memory or processors is very slow
interconnects. The increase in the integration density of devices further aggravates
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the problem, since more channels are required for communication outside the crystal.
The use of optical interconnects is discussed as an alternative to solve the problems
mentioned. The use of optics or optoelectronics for interconnects outside the crystal
and inside the crystal was demonstrated in [27]. This problem in such OE-VLSI is
solved by implementing external interconnects not with the edge of the chip, but with
arrays of optical detectors and light emitters, which allow implementing the stack
architecture of a three-dimensional chip [28]. But in this case, the combination of
various passive optical elements with active optoelectronic and electronic circuits in
one system is also an unsolved problem. Intelligent detector circuits can be thought
of as a subset of OE-VLSI circuits. They consist only of arrays of photodetectors,
which can be monolithically integrated with digital electronics in silicon and circuits
for analog-digital conversion. This greatly simplifies the design of OE-VLSI circuits,
which must additionally contain only light-emitting devices, and the latter can also
be implemented in silicon [29]. Such intelligent detectors with a frame [30] show
a large scope and market potential. In this regard, our approach also relies on an
intelligent pixel-like structure combining parallel detection of signals with parallel
processing of signals in a single circuit. To realize the fastest processing, each pixel
has its own analog and analog-digital node. One of the important directions for
solving various scientific problems is parallel processing of large arrays (1D or
2D) of data using non-traditional computational MIMO-systems and matrix logics
(multi-valued, sign, fuzzy, continuous, neuro-fuzzy, etc.) and the corresponding
mathematics [31–34]. For realizations of optical learning neural networks (NN) with
a two-dimensional structure [31], continuous logical equivalence models (CLEM)
NN [32–34] require elements of matrix logic as well as an adequate structure for
vector matrix computing procedures. Advanced parallel computing structures and
processors with time-pulse signal processing [35] require parallel processing and
parallel inputs/outputs. The generalization of scalar two-valued logic on the matrix
case led to the intensive development of binary image algebra (BIA) [36] and logical
elements of a two-dimensional array for optical and optoelectronic processors [33,
35, 37–39]. One of the promising areas of research is the use of time-pulse-coded
architectures (TPCA), which were considered in papers [40, 41], which, through the
use of two-level optical signals, not only increase functionality (up to universality),
increase noise immunity and stability, and reduce the requirements for alignment
and optical system but also simplify the control circuit and settings for the required
functions and keep intact the entire methodological basis of these universal elements
regardless of the length of the code word and the type of logic. Mathematical
and other theoretical foundations of universal (multifunctional) logical elements
(ULE) of the matrix logical design with a fast programmable setting, where the
unification of functional bases is expedient, and the need to use ADC arrays were
considered in [42, 43]. An ADC is a continuous-discrete automation that performs
the conversion of an analog value x by its interaction with standard sizes in a discrete
output code. Aspects of the theory and practice of designing and using ADCs and
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DACs are so broadly outlined that it is even difficult to choose the most general
works. At the same time, in the last 20–30 years, optical methods and means for
parallel digital image processing have been intensively investigated, which, unlike
analog ones, have high accuracy and a number of significant advantages. Certain
success has been achieved in the field of creating two-dimensional matrix logic
devices, storing image-type data for such parallel information systems and digital
optoelectronic processors (DOEP) [38] with a performance of 1012–1014 bits per
second. Most vector-matrix and matrix-matrix multipliers [39] use 1D linear and
2D matrix multichannel ADC [43–45]. A bottleneck in parallel DOEP is an ADC,
which, unlike traditional input systems with scanning or sequential parallel reading
and output, must in parallel fully perform ADC conversion of a large number of
signals (256 × 256 pixels or more) and provide an input speed of up to 106–107

frames per second. Therefore, there is a need of multichannel ADC with several
parallel inputs and outputs, with vector or matrix organization (VMO) [43–45], and
the channels operate in parallel and provide low power consumption, simple circuit
implementation, short transformation time, low input level, acceptable word length,
etc. In addition, such a VMO ADC can also perform other functions, for example,
the computation of logical matrix operations, digital filtering, and digital addition-
subtraction of images. For multichannel multisensor measuring systems, especially
for wireless ones, ADCs with very low consumption and high accuracy and speed
are required. In papers [46–52] design of ADCs, current comparators, and their
applications were considered. But these comparators are very high speed, consist of
many transistors, and have high consumption power. Equivalent (EQ) continuous-
logical (CL) ADC, which was considered in [43–45, 51], provided high performance
with a smaller amount of equipment since it consisted of n-series-connected analog-
digital basic cells (ABC). Such cells implement CL-functions on CMOS-transistors
operating in the current mode. The parameters and performance of such CL ADCs,
including the type of output codes, are influenced by the selection of the required
continuous logic functions for the analog-digital conversion and the corresponding
ABC scheme. The simplicity of these CL ADCs makes it possible to realize a
significant number of multichannel converters for optical parallel and multisensor
systems. The proposed CL ADC schemes are more preferable specifically for such
applications where parallelism and large size arrays are required. Based on the above,
the purpose of our chapter is to design and simulate various variants of the technical
implementation of continuously logical basic cells (CL BC) based on current mirrors
(CM) and multichannel sensory analog-to-digital converters (SMC ADC) with the
functions of preliminary analog and subsequent analog digital processing for image
processors (IP) and sensor systems. In addition, in our previous works, the accuracy
characteristics of the ADC were not considered, and no estimates of conversion
errors were made for different possible modes and modifications of such basic cells
and ADCs as a whole. That is why the purpose of the present work is also to evaluate
ADC errors, demonstrate them by specific experimental results, and also further
enhancements of such ADCs and their basic cells, which significantly expand their
functionality and the range of problems they solve.
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4.2 Simulation of Array Cells for Image Intensity
Transformations and Theoretical Mathematical
Background

4.2.1 Substantiation of the Need to Design Devices for Parallel
Nonlinear Image Intensity Transformations
in Self-Learning Equivalent Convolutional Neural
Structures (SLECNS)

For neural networks and associative memory systems, generalized equivalence
models using the functions of nonlinear normalized equivalences of matrices and
tensors were developed. They use spatially dependent normalized equivalence
functions (SD_NEF) [6], which are defined as:

ẽ (A,B) = A∗̃B
I × J =

1

I × J
I∑

i=1

J∑

j=1

(
aς+i,η+j ∼ bi,j

)
(4.1)

where ẽ = [
eς,η
] ∈ [0, 1](N−I+1)×(M−J+1) and symbol

(∗̃) indicate a spatial
convolution, but with an element-wise operation of not multiplication, but
“equivalence.” In accordance with the principle “the strongest survives” and the
strengthening of the nonlinear action of the components, depending on the level of
their values, the elements of the matrix ẽ(

∼/
e) and of other intermediate SD_NEF are

transformed using of auto-equivalence operations [13] with different parameters p1,
p2. The higher the parameters p1, p2 in p-step auto-equivalence, that is, the more
“competing” nonlinear transformations, the faster the process of recognition and state
stabilization, as studies show with the help of energy equivalent functions [6, 26, 53].
The number of iterations necessary for successful recognition depends on the model
parameters and, as experiments show, is significantly smaller compared to other
models and does not exceed just a few. Changing the parameters p1, p2 it is possible
to obtain all the previously known EMs [5–13]. To implement the proposed new
subclass of associative neural systems, certain new or modified known devices are
needed that can calculate the normalized spatial equivalence functions (NSEqFs)
with the necessary speed and performance [1, 6, 10]. We called such specialized
devices the image equivalentors [4, 6, 9, 10, 13], which are, in essence, a doubled
correlator [54] or a doubled convolver. For the input image Sinp, learning array
matrix A, which is a set of reference images, the general SI ¨¯ £M is proposed
[11, 14, 15] and modeled, where after the first and the second steps of the algorithm,
the element-wise equivalence convolution and nonlinear transformations were
calculated. Research results of the generalized SI ¨¯ £M confirmed advantages
and improved characteristics and the possibility to recognize with interferences
up to 20–30% [14, 15]. Works [12, 14] described a clustering method based on
the simultaneous calculation of the corresponding distances between all cluster
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neurons and all training vectors using such MAAM and MHAM. As metrics, we
use generalized nonlinear normalized vector equivalence functions, which gives
good convergence and high speed of models, see papers [12, 14–17]. An iterative
learning process that uses a learning matrix and consists of calculating the optimal
set of weight vectors for all cluster neurons is described by the proposed model.
Optimal patterns are formed by such an iterative procedure, based on the search
for patterns and tangible fragments of objects that are in the set of trained images.
Patterns of recognition and clustering of images that combine the learning process
with the process of recognition are proposed in [25, 26]. For our EMs and all known
convolutional neural networks, it is necessary to determine the convolutions of a large
number of patterns from the set of standards with the current image fragment in each
layer in the learning process. Large images require a large number of filters for image
processing, as studies show, and the size of filters, as a rule, is also large. Therefore,
the acute problem is to significantly improve the computational performance of such
CNN. Therefore, the last decade was marked by the activation of work aimed at
creating specialized neural accelerators, which calculate the comparison function
of 2 two-dimensional arrays and use the multiplication and addition accumulation
operations. Unlike most papers, in our works, we use those functions of normalized
equivalence in which there is no multiplication operation. But, as our studies show,
equivalent models also allow us to construct convolutional equivalence structures
and self-learning systems. Therefore, using our approaches to the construction of a
one-dimensional neuron equivalentor [55–58], we considered the structure of a two-
dimensional neuron equivalentor, generalized for processing two-dimensional arrays.
The block diagram of the main unit of self-learning equivalent convolutional neural
structures (SLECNS) [26] is shown in Fig. 4.1a. The required number of convolutions
e0 − en − 1, depending on the number of filter templates W0 − Wn − 1, is formed
from the matrix X. Convolutions are represented by matrices with multilevel values,
unlike binary ones, which we used earlier. Each filter is compared with the current
fragment of the matrix, and equivalent measures of proximity or other measures,
such as a histogram, are used as a measure of the similarity of the fragment of the
matrix X and the filter. Therefore, interpretation method for spatially invariant case

requires the calculation of spatial features convolution-type Em = Wm
t

⊗̃X, where
Emk,l = 1 − mean

(∣∣∣submatrix
−−−−−−−−−−−−−−−−−−−−−−−−−−→
(X, k, k + r0 − 1, l, l + r0 − 1)−Wm

∣∣∣
)
, nonlinear

processing by the expression ENmk,l = G
(
a,Emk,l

)
= 0, 5

[
1+

(
2Emk,l − 1

)a]
, and

comparing each other to determine the winners for indexing expressions: MAXk,l =
max

index m

(
ENm=0

k,l ,ENm=1
k,l . . .ENM−1

k,l

)
and EVmk,l = f activ

nonlinear

(
ENmk,l,MAXk,l

)
.

Thus, in the first and second steps, it is necessary to calculate a large number of
convolutions.

From the above formulas, it follows that it is necessary to calculate the average
value of the component-wise difference of two matrices. Similarly, normalized
nonequivalent functions for all filters are calculated, and their components are
nonlinear transformed: EN0k, l = 0.5[1 + (2E0k, l − 1)α]255, where α is the
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a)

b)

Fig. 4.1 The basic unit (structure) of the SLECNS, which explains the principle of its functioning
of learning neural network model based on the multi-port memory to find centroid cluster elements
(a); the basic unit that uses an array of neuron equivalentors (b)
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nonlinearity coefficient. Based on these transformations for SLECNS, we need to
implement nonlinear transformations for different α. The analysis of this expression
shows that it is necessary to rise to power and multiply, so we propose to approximate
this dependence, for example, by three-piece linear approximation. The experiments
conducted in work [26] show great promise of the proposed methods and models of
self-learning recognition of images, including multilevel and color images. But for
their work in real time, taking into account the large requirements for performance
and the amount of calculations, it is necessary to have appropriate high-performance
and energy-efficient arrays and image processors with parallel principles of operation
and picture input-outputs, whose design was partially considered in papers [9, 12,
13, 58–64]. In Fig. 4.1b a new structure proposed by us in [65] is shown, which may
be promising for use in machine vision and artificial intelligence, neural structures,
in various high-performance measurement systems [66–68]. The presented structure
makes it possible to calculate in parallel the set of all components (elements) of the
equivalent convolution at once in a single cycle at high speed. The cycle time is equal
to the time of selection from the processed image of its shifted current fragment.
The structure of the system that uses an array of neuron equivalents consists of a
microdisplay that dynamically displays the current fragments, an optical node as an
array of microlenses (MLA) with optical lenses (not shown!), and a two-dimensional
array of equivalentors (Eqs) with optical inputs. Each Eq is implemented in a modular
hierarchical manner and can consist of similar smaller sub-pixel, also 2D-type, base
nodes. The equivalentor has a matrix of photodetectors, on which a halftone image
of a fragment is projected using (MLA). The number of electrical analog inputs
is equal to the number of photodetectors, to which the filter components are fed
from a sampling and holding device (SHD) or analog memory with subsequent
digital-analog conversion using any known method.

These components are presented in the form of microcurrents. Each equivalentor
has its own filter mask from the filter set, which is formed as a result of training.
Simulation on 1.5 μm CMOS transistors in various modes showed that such
equivalentors and their basic blocks can operate in low-power and high-speed modes,
their energy efficiency is estimated to be at least 1012 an. op/sec per watt and can
be increased by an order of magnitude, especially considering FPAA [69]. But
much depends on the accuracy of the current mirrors and their characteristics.
Thus, at the inputs of each equivalentor, there are two arrays (vectors) of analog
currents representing the current fragment being compared and the corresponding
filter standard, and the output of the equivalentor is an analog current signal that is
nonlinearly transformed in accordance with the activation function and represents
a measure of their similarity, proximity. Also, as have been shown [65], nonlinear
component-wise transformations allow even without WTA network to allocate the
most NEs with the greatest activity. From the above described, it follows that for
hardware implementations of all the advantages of SI EM, an important issue is the
design of parallel nonlinear transformations, transformations of intensity levels. And,
as will be shown below, the use of an array of cells that perform hardware and not
with PC, nonlinear transformations adequate to auto-equivalence operations, allows
the laborious computational process of searching for extremums in SD_NEF (maps
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for clustering and learning) not to be performed, but to automatically select these
extremums using only several transformation steps and eliminate all unnecessary
levels, making these level pixels neutral for subsequent algorithmic steps.

4.2.2 Brief Review and Background of Mathematical
Operators, Which Are Implemented by Neurons

Almost all concepts, models, and structures of NN and CNN use informational
mathematical models of neurons, which are reduced to the presence of two basic
mathematical component operators: the first component computes a function from
two vectors

−→
X and

−→
W , where

−→
X is the vector of input signals of a neuron,

−→
W is

the vector of weights, and the second component corresponds to some nonlinear
transformation of the output value of the first component to the output signal.
The input operator can be implemented as sum, maximal or minimum value,
a product of the self-weighted inputs [55, 56]. But recently, the set of such
operators has expanded significantly [6, 9, 13, 56]. Equivalence models of neural
networks, which have some advantages, require the computation of such operators:
normalized equivalence (NEq), nonlinear normalized nonequivalence (NnEq), and
autoequivalence of vectors. In [9, 13, 57], we considered how to implement these
input operators for the case when the components of the vectors

−→
X and

−→
W are

both normalized and unipolarly encoded. In work [58], we used just normalized
equivalences, but time-pulse coding was used for analog signals. The positive aspect
of that work was the use of a modular principle that allowed the calculation of the
operator of the normalized equivalence of a vector to the calculation of normalized
equivalent subvectors and their output signals. In paper [58], the mathematical basis
of the creation of neurons of equivalents calculating the function of NEq is described
in detail, using the modular principle. To increase the number of inputs of our
complementary double NE (CDNE) or the dimension of the compared vectors,
you can use the combination of the basic analog CDNE of a smaller dimension.
This greatly expands the functionality of such a basic CDNE, especially when
they are combined in complex hierarchical structures. It shows that all algorithmic
procedures in the equivalence paradigm of NNs and AM on their basis are reduced
to the calculation of NEqs from two vectors or matrices, and the elemental nonlinear
transformations that correspond to the activation functions, and for the above EMs
of NNs, reduce to the calculation of auto-equivalences (auto-non-equivalences). But
in the above works, activation functions were not simulated and shown. A lot of
work has been devoted to the design of hardware devices that realize the functions
of activation of neurons, but they do not consider the design of exactly the auto-
equivalent transformation functions for EMs and the most common arbitrary types
and types of nonlinear transformations. Therefore, the goal of this paper is the design
of cells for hardware parallel transformation of image intensity levels. In work [65],
the question of the simplest approximations of auto-equivalence functions (three-
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piece approximation with a floating threshold) was partially solved. The basic cell
of this approximation consisted of only 18–20 transistors and allowed to work with a
conversion time from 1 to 2.5 μs. At the same time, the general theoretical approaches
to the design of any nonlinear type of intensity transformation were not considered,
and this is the objective of the paper. The operations of addition and subtraction of
currents are most easily performed on current mirrors.

4.2.3 Mathematical Models of Nonlinear Transformations
of Image Intensities

The input analog intensity of the pixel is denoted by x, where x ∈ [0, D], D is
the maximum intensity of the selected range, and denotes the output analogized
transformed intensity by y, where y ∈ [0, D]. Then the operator of the nonlinear
intensity transformation can be written in the form: y = Ftrans(x). As such functions
can be threshold processing functions, exponential, sigmoid, and many others, which,
in particular, are used as activation functions in the construction, synthesis of neural
elements and networks are based on them. To form the required nonlinear intensity
transformations, it is possible to use a piecewise linear approximation of the chosen
functions. For a piecewise-linear approximation, break the range of input levels D
into N equal sub-bands, width p = D/N. Using the function of bounded difference

known from papers [6, 13], defined as a−̇b =
{
a − b, if a > b
0, if a ≤ b . Form for the input

signal x and each upper sub-band level pDi = i · p, where i = 1 . . .N, the following
signals: si =

(
x−̇ (i − 1) p

) −̇ (x−̇i · p). For i= 1 we get s1 = x−̇
(
x−̇p), and this

is the minimum min(x, p), and there is a step signal with height p. For i = 2 we get
s2 =

(
x−̇p) −̇ (x−̇2p

)
, which corresponds to a step in height p, but which begins at

p. For i = N we get sN =
(
x−̇ (N − 1) p

) −̇ (x−̇N · p) = (x−̇ (N − 1) p
)
, which

corresponds to a step in height p, but which begins at (N − 1)p = D − p. Summing
with the weight coefficients ki of these steps, we can form a piecewise approximated
intensity.

ya =
N∑

i=1

kisi =
N∑

i=1

ki
[(
x−̇ (i − 1) p

) −̇ (x−̇i · p)] , (4.2)

For forming ya ∈ [0, D], that is, the normalized range of its levels, the weighting
coefficients of the steps are selected from the condition:

∑N
i=1ki = N . Analysis of

formula (4.1) shows that by changing the gain of the steps, we can form any required
piecewise continuous intensity conversion function. If the coefficient ki is negative,
it means that the corresponding step is subtracted. Thus, in order to implement
the transformations, a set of nodes for realizing operations of bounded difference,
weighting (multiplication), and simple summation are needed. If the input pixel
intensity is set by the photocurrent, then having the current mirrors (CM), by which
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the operations of the limited difference and the summation of the photocurrents are
easily realized, it is sufficient to have a plurality of limited difference schemes and
the specified upper sub-band levels pDi. By choosing the parameters of the current
mirror transistors, operations of dividing or multiplying are currents by the required
fixed ki. If it is necessary to dynamically change the view, the conversion function,
that is, the weight of the components, then you need the coded amplifiers. When
working with currents and CM, a set of keys and a multiplying mirror with discrete
weights (binary) perform the role of code-controlled amplifiers and are essentially
DAC with the only difference that instead of a reference analog signal, an analog
signal si. After some transformations, formula (4.2) is transformed into this form:

ya =
N∑

i=1

ki
[(
x−̇pDi−1

) −̇ (x−̇pDi
)] =

N∑

i=1

ki ·min
(
x−̇pDi−1, p

)
(4.3)

Formula (4.3) indicates that for the implementation of the intensity conversion,
it is necessary to have analogous minimum circuits, but it is realized in the form
of two operations of bounded difference: a−̇ (a−̇b) = min (a, b). In addition to
the formulas (4.2) and (4.3) considered above, it is possible to realize the required
function by means of triangular signals:

ya =
N∑

i=1

ki · ti =
N∑

i=1

ki
[(
x−̇ (i − 1) · p) −̇2

(
x−̇i · p)] (4.4)

For the formation of the constants si or ti, the input signal x can be multiplied
by N, and then all components are simultaneously generated simultaneously in each
sub-assembly. On the other hand, in each sub-assembly, a signal

(
x−̇pDi

)
, this is fed

to the next in the pipeline sub-assembly for the formation of signals and components
from it. This corresponds to a conveyor circuit that will have a large delay but does
not require the multiplication of the input signal. The choice of this or that scheme
and element base depends on the requirements for the synthesized node.

4.2.4 Simulation of Array Cells for Image Intensity
Transformation

4.2.4.1 Simulation of Image Intensity Transformation with Mathcad

Using both the basic components for the composition of the lambda function fsp�s2,
shown in Fig. 4.2 and described by expression:

fsp�s2 (xs,p�x,p�,k) = k× obs (obs (xs,p�x) , obs (xs,p�)× 2) (4.5)
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where xs is the function argument, p�x is the parameter indicating the lower
bound level xs (beginning), p� is the second parameter indicating the level for
the maximum, k is the third parameter indicating the scalar gain multiplier; and
abs (a, b) = a−̇b, we proposed a function composition fsp�sS, which is calculated
by the expression:

fsp�sS (xs,�k,VK) =
�k∑

i=1

fsp�s2
[

xs,
255
�k

× (i− 1) ,
255
�k

(i) ,VKi

]
(4.6)

where �k is the number of components (lambda functions), xs is the argument of the
function, and VK is the vector of gain factors. The result of constructing some types
of transfer characteristics (TC) using these functions in the Mathcad environment is
shown in Fig. 4.2. To approximate auto-equivalence, we also offer simpler (two-step)
basic N-functions:
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Fig. 4.2 Graphs of synthesized transformation functions
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Fig. 4.3 Examples of synthesized transfer characteristics for auto-equivalence functions

af (xs, xp) = [obs (xs, obs (xs, xp))+ obs (xs, (DP− xp))] ·
(

DP
xp · 2

)
(4.7)

and triple their composition:

afS (xs,VaF,KaF) =
2∑

iv=0

af (xs,VaFiv) · (KaFiv) (4.8)

In general, the number of components in a composition can be arbitrary, but
for modeling we used 8- and 16-component compositions and adjustment vectors.
Examples of such functions and compositions for the synthesis of TC are shown in
Fig. 4.3. Another variety of functions is shown in Fig. 4.4, and the results of using
such TCs to prepare the original PIC image are shown in Fig. 4.5.

4.2.4.2 Design and Simulation of Array Cells for Image Intensity
Transformation Using OrCad PSpice

Let us first consider the design and simulation of a single base cell for the
image intensity of an arbitrary transformation, using the example of a four-piece
approximation by triangular signals according to formula (4.4). Figure 4.6 shows
the scheme used for modeling, and Fig. 4.7 shows the schematic of the basic sub-
node. To form four triangular signals from the input signal, we use four identical
sub-nodes, each of which consists of 14 (13) transistors and an additional current
mirror (two transistors Q18 and Q19), and for propagation of the input photocurrent
and threshold levels, the auxiliary circuit consists of 17 (14) transistors.
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Fig. 4.4 Mathcad windows with the formulas and graphs of synthesized transformation functions

The input photocurrent was simulated by a current generator I2. In general, the
cell layout consists of 68 transistors. In this scheme for simulation, we used four fixed
different gain values for each triangular signal. To do this, the output signal of the
sub-node was multiplied using the current multiplier mirror (CMM), and by fixing
the output connections S0–S3 with the summing output current mirror or the power
line, we chose the weights ki. Thus, we modeled different transformation functions
by choosing a set of coefficients ki. The simulation results for various input signals
are shown in Fig. 4.8.

Using a linearly increasing input signal (red solid line) and a conversion function,
the form of which is shown in the green bold line in Fig. 4.8a, and using auxiliary
signals (shown in different colors), we obtained a nonlinear transformation similar
to the ReLu function (with saturation). In Fig. 4.8b, the resultant signal (green bold
line) is shown after a nonlinear conversion by means of this function of the input
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Fig. 4.5 Mathcad windows on which the formulas and results of image intensity transformation are
shown, wherein 2D from left to right: input image PIC, the computed auto-equivalence functions,
nonlinear (after activation) output images (bottom row)

In3

Q3

0

Vdd

Block_1

schematic2

In_A

Thr

Out_Thr

S0

Vdd

S1
S2
S3

Vdd

Q9

Q18

0

Vdd

Q17

Vdd

Vdd

I7
{P2*A}

0

Vdd

Q13

In2

0

Q15

Vdd

Vdd

Q4

In4
Block_3

schematic2

In_A

Thr

Out_Thr

S0

Vdd

S1
S2
S3

Q5

0

Q14

0

1

Vdd

Q6

Block_2

schematic2

In_A

Thr

Out_Thr

S0

Vdd

S1
S2
S3

In1

Q7

0

Q11

2

0

Q10

Q16

4

Q2

In2

3

PARAMETERS:
A = 0.4u
P1 = 5

P2 = 5

Q12

In3

4

Vdd

Q19

3

I2
IOFF = 4u

FREQ = 10k
IAMPL = 4u

V1
2.5Vdc

I1
{P1*A}

Q1

0

1

Block

schematic2

In_A

Thr

Out_Thr

S0

Vdd

S1
S2
S3

In1

Q8

2

In4

Fig. 4.6 Circuit for simulation of nonlinear converter cell on the base of four-piece linear
approximation and four base sub-nodes



4 Design and Simulation of Array Cells of Mixed Sensor Processors for. . . 103

S0

Q7

In_A

Q1

Vdd

Q5Q4

Q2

S1

Q13

S2

Q6

S3

0

Q11

Q3

0

Q10 Q12Q8

Out_Thr

Q9
Thr

Q14

Fig. 4.7 Circuit of base sub-node (schematic 2) for four-piece linear approximations

sinusoidal signal (shown in blue). The power consumption of the cell is 150 μW at
a supply voltage of 2.5 V, Imax = D = 8 μA, N = 4, p = 2 μA, and the periods of
the input signals are 200 and 100 μs. To dynamically switch the view of the image
pixel intensity conversion function, we use the current-controlled current amplifiers
on current mirror multipliers (CCCA) with binary-weighted current outputs (Fig.
4.9). The general scheme of the cell realizing the dynamic intensity conversion with
eight piecewise linear approximation is shown in Fig. 4.10. This circuit contains
170–200 transistors and consists of eight basic nodes (A + CCCA). The Node A
consists of 8 (7) transistors and generates a triangular signal from the input signal at
a given threshold for each sub-band pDi. The auxiliary circuits for generating upper
sub-band levels and subtracting them from the input signals are shown at the left
in Fig. 4.10 and can be implemented in different ways depending on the selected
element base and approach. The processes of formation from the input signal of all
auxiliary components, triangular waveforms, nonlinearly transformed output signal,
and simulation results of this circuit for different modes are shown in Figs. 4.11 and
4.12. For a supply voltage of 2.5 V, Imax = D = 8 μA, N = 8, p = 1 μA and the
period of the input linearly increasing-decreasing triangular signal equal to 1000 μs.

Removing only one transistor in node A of the circuit in Fig. 4.10 allows it
to modify and implement on the basis of tunable nonlinear transformations in
accordance with the formula (4.1), and not (4.3), that is, with the help of si, but
not ti.

The results of modeling such as conversion scheme with the composition of
the basic step signals si are shown in Figs. 4.13, 4.14, and 4.15, and Figs. 4.14
and 4.15 show the case of four-level approximation and Fig. 4.13 the eight-level
approximation. The results confirm the possibility of synthesizing converter cells
with specified or required accuracy characteristics of the transformation laws and,
in particular, auto-equivalence functions, the microvolt level of power consumed by
them, and high speed (microseconds and less). For the simplest and approximate
approximation functions, but often quite sufficient for the selection of the winning
function by the activation function, the cell circuits consist of only 17–20 transistors,
have a very high speed (T = 0.25 μs), and a small power consumption (less than
100 μW). The results of simulating such simple (3–4 piecewise approximation) cells
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Fig. 4.8 Simulation result for the circuit in Fig. 4.6 for input linear rising signal (a) and for input
sinusoidal signal (b)
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Fig. 4.9 Code-controlled current amplifier (CCCA) that consists of current mirror with multipli-
cation (CMM) and set of n keys (K)
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Fig. 4.10 Circuit for simulation of nonlinear converter cell on the base of eight-piece linear
approximation and eight base sub-nodes

(see Fig. 4.16) separately and in the composition with nodes for input operators,
and in small-sized networks of Eq equivalents are presented in Sect. 4.2.4.3 and
are shown in Figs. 4.17 and 4.18. The analysis of the obtained results confirms
the correctness of the chosen concept and the possibility of creating CLCs for
image intensity transformation and MIMO structures on their basis, as hardware
accelerators for compact high-performance systems of machine vision, CNN, and
self-learning biologically inspired devices.
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Fig. 4.11 Simulation result for eight sub-node circuit (Fig. 4.10): up left, formation of triangle
signals for linear rising input signal (red line), output signal (yellow line) (the first four signals);
up right, formation of triangle signals (red line), output signal (yellow line) (the second 4 signals)
and two outputs for two characteristics (blue and green lines); down right, input signal (red line),
output signal (blue line)

4.2.4.3 Simulation of Nonlinear Transformation in Analog 64-Input
and 81-Input Neuron Equivalentor

For the simulation of nonlinear transformation in analog 64-input and 81-input
neuron equivalentor [65], we used a node whose circuit is shown in Fig. 4.16,
which forms the activation function (autoequivalence) in the form of a piecewise
linear approximation. Simulating results of such 64-input NE with the nonlinear
conversion of the output signal response for linearly rising (falling) currents with a
period T = 2.5 μs are shown in Figs. 4.17 and 4.18. In the same place, the results of
modeling the formation processes of linear and nonlinear normalized NEq are shown.
Comparing two vectors with current signals, the 64-input neuron equivalent has a
total power consumption of approximately 2–3 mW at a low supply voltage, contains
less than 1000 CMOS transistors, and provides good temporal characteristics.
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Fig. 4.12 Simulation result for eight sub-node circuit (Fig. 4.10): up left, for linear rising input
signal (red), output signal (green), and corresponds to N-shape transfer characteristic; up right, for
linear rising input (red), output signal (green), and corresponds to the auto-equivalence transfer
characteristic; down left and right, for sinusoidal input signal (red), output signal (green), and
corresponds to the auto-equivalence transfer characteristic for input current range 0–8 μA and
period 500 μs (down left graph), 0–24 μA, and 1 ms (down right graph)

The circuit performs summation, limited subtraction, and multiplication of analog
currents on current mirrors.

4.3 Continuous-Logic (CL) Transformation
and the Equivalently CL ADC

4.3.1 Basic Theoretical Foundations, Equivalence Models,
and Their Modification for SMC_CL_ADC

These converters significantly reduce (or even eliminate) the error of digitization
(quantization) inherent in the classical ADC. The CL transformations are given in
[30, 45, 51], in which the transformation CL functions (CLF) are defined, and it is
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Fig. 4.13 Simulation result for circuit with step signals and eight-level approximation of input
current signal: input signal (green line), output signal (blue line), and other signals (color lines)

Fig. 4.14 Simulation result for four-level approximation, the realized nonlinear transformation is
the normalized auto-equivalence function for self-learning convolutional networks (Imax= 20 μA,
T = 1 μs)

shown that the operation of min and max of continuous logic are the basic operations
of the functions. Using operators of hybrid logic for the formation of CLF, it is
possible: D1[P(x1, x2)]= max (x1, x2), D2[P(x1, x2)]= min (x1, x2) where P and D
are, respectively, threshold and non-threshold operators, which are implemented in
various ways. In many models of neural networks for image recognition, especially
many graded ones, it is desirable to have binary bit-plane images that encode the
image matrix in Gray codes [41]. In addition, in a number of works [32–35, 40, 45,
46], it was shown that some operations of continuous logic, such as equivalence and
nonequivalence, and their generalized family, provide a number of advantages in the
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4uA, 70uW, 2.5us, Vdd=2.5V 20uA, 550uW, 0.25us, Vdd=3.3V

Vdd=1.8V, Imax=6uA, T=50us.

Fig. 4.15 Simulation result for four-level approximation, the realized nonlinear transformation is
the normalized auto-equivalence function for self-learning convolutional networks (for different
input currents and transformation periods): input signal (yellow line), output signal (blue line), and
power consumption (red line)
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Fig. 4.17 The results of modeling the 64-input Eq for current Imax = 5 μ£, and a linearly rising
(falling) currents with a period T = 2.5 μs. On the left two upper signals (pink, maximum; blue,
minimum of two input currents), green, equivalent signal; yellow, nonequivalence, below the signals
after their nonlinear conversion; on the right, the two upper signals are the maximum and minimum,
the lower blue is the normalized equivalence, the yellow is the nonlinear normalized equivalence

Fig. 4.18 The results of modeling the 64-input Eq for current Imax = 5 μ£, and a linearly rising
(falling) currents with a period T = 2.5 μs. On the left: the results of modeling the processes of
formation of linear (green) and nonlinear normalized NEqs (yellow); on the upper graph: the peak
and average consumption powers; on the right: the results of modeling the processes of formation
of linear (yellow on the upper trace) and nonlinear normalized NEqs (green on the bottom trace),
red line shows the power of consumption. Blue, maximum of two signals; green, minimum of two
signals for V = 3.3 V

so-called equivalence paradigm. These scalar operations of equivalence eq(x,y) and
nonequivalence neq(x,y) for x, y∈[0,1] are defined in papers [32, 33], namely

eq (x, y) = x ∧ y + x ∧ y = min (x, y)+min ((1− x) , (1− y)) = 1− |x − y|
(4.9)

neq (x, y) = |x − y| = 1− eq (x, y) = max (x, y)−min (x, y)
= max (x, y)−min (x, y) = (x−̇y)+ (y−̇x) (4.10)



4 Design and Simulation of Array Cells of Mixed Sensor Processors for. . . 111

where
(−̇) is the limited difference operation. If we consider it for y = 1−̇x = x,

these functions are transformed to:

eq (x, x) = 2 (x ∧ x) = 2 min (x, x) (4.11)

neq (x, x) = max (x, x)−min (x, x) = 1− 2 min (x, x) (4.12)

As it has been shown in work [45], these functions can be successfully used
in the CL ADC. For the formation of binary bit planes that correspond to the
categories of images coded in the Gray code, we used for each pixel an iterative
procedure over the matrices of equivalence and nonequivalence obtained in the
previous stages:eqi + 1(eqi( . . . ), neqi( . . . )) and neqi + 1(eqi( . . . ), neqi( . . . )). It is
easy to see that the division of the segment [0, 1] into 2n = N subranges sets each of
them a set, a vector of signs, which corresponds to the Gray code measured by the
scalar size x. Thus, positional digit dn − i of the code is defined as

dn−i
(
eqi−1, neqi−1

) = {1, if eqi−1 > neqi−1, 0, if else
}

(4.13)

where i ∈ 1 . . . n, and eq0 = x, neq0 = x. From this, it is obvious that in order to
realize the ADC for optical signals, we needed to synthesize BC CLs that implement
the required operations eqi, neqi and the threshold operators. We called such ADCs
equivalent to continuously logical, complementary dual ones, since the signals x and
x in them are complementary, and the CL functions are equivalent (nonequivalent),
that is, equivalently CL ADC [45]. Since these ADCs were implemented on current
mirrors (CM), and the input signals of the ADC are currents, we will designate such
an ADC as an ADC CM [30]. In this work, as transformation CLFs, we use the
following functions:

eqi+1
(
eqi , D/2

) = 2
(
eqi−̇2

(
eqi−̇D/2

))
or

neqi+1
(
neqi , D/2

) = 2
∣∣neqi −D/2

∣∣ (4.14)

where eq0 = x, neq0 = x, which allow us to work not with two signals, but with one
signal, thereby simplifying the implementation of the cells. Structure of SMC CL
ADC for IP is shown in Fig. 4.19.

4.3.2 Design of CL ADC CM-6 (8) (G): iv (the Iteration
Variant) Based on DC-(G) (with Gray Code)

Figure 4.20 shows a circuit of one channel of SMC_ADC. The structure is shown
in Fig. 4.20a and the base cell in Fig. 4.20b. The circuit consists of a sample and
hold device (SHD), a single digital-analog DC-(G) cell (block A), and additional
elements (block B). The input analog current signal to be converted is recorded in
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Fig. 4.19 Structure of 2D image sensor with 1D array of CL_ADC and storage or/and digital code
processing unit

the SHD and then transmitted to the analog DC-(G), which will generate the next
digital bit of the output code and the CL function.

This function is fed back to the SHD to form the next consecutive bits. The
device selection and hold (SHD) consists of 18 transistors. DC-(G) consists of 15
or 17 transistors and a reference current generator. Since the circuit of one channel
consists of only 33 (35) transistors, this makes it promising for multisensory systems.
The DC converts the input analog signal to another output current signal, using CLF
(Sect. 4.3.1) overcurrent signals and simultaneously compares it with the threshold
current. The advantage of such continuous logical transformations is that the form
of such transformations can be very diverse, and the operations of continuous logic
used for such transformations themselves are also numerous.

Thus, there is a wide choice for searching and optimizing such cells taking
into account the required goal. To minimize the apparatus costs, cells can be very
simple and consist of 10–20 transistors. In addition, the use of other known, improved
dynamic and accurate indicators of current comparators [50–52], including a floating
gate, etc., significantly expands the range of application of such implementations
of ADC, reduces power consumption to microwatts, or significantly expands the
dynamic range of input signals and maximum conversion frequencies.
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114 V. G. Krasilenko et al.

The advantage of the structure with a serial output of the Gray code is that
increasing the number of iterations increases the bit ADC with an unchanged
structure. To convert a serial Gray code to a binary code, only one modulo adder and
one D flip-flop are required. Figures 4.21 and 4.22 show the results of simulation
of one channel of six bits CL ADC CM-6 (G)-iv with iteration transformation at

Fig. 4.21 (a) Simulation result for two input currents 100 nA and 150 nA, corresponding output
Gray codes {000001} and {000011}; the blue line in the third trace is output current of the block
for six-digit ADC, the violet line is the threshold current; the yellow line in the fourth trace is
the output voltage of the block that corresponds to output code (a time interval for the first code
370–490 μs (six digits by 20 μs), a time interval for the second code 490–610 μs; the red line is the
power consumption of about 40 μW. (b) Simulation result for two input currents and corresponding
output Gray codes {000111} and {010101}; the consumption power is about 40 μW
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Fig. 4.22 Simulation results of the six-digit ADC for a triangular current signal (the yellow line
in the first trace): (a) the whole time interval; (b) for five time intervals with decreasing input
current and corresponding output Gray code {100101}, {100100}, {100100}, {101101}, {101111}
(the yellow line in the fourth trace), the red line is the power consumption of about 70 μW

linearly increasing input current signals. The total power consumption of this ADC-
6 (8) (G)-iv did not exceed 70 μW with a maximum input current of 4 μA and
a conversion period of 120 μS (6 × 20 μS for 6 bits) and a conversion period
of 160 μS (8 × 20 μS for 8 bits). For operating modes with lower currents and
Vdd = 1.5–1.8 V, the power consumption of ADC-6 (8) (G)-iv can be reduced to
10–15 μW.

The drawback of our earlier works is the lack of research on the ultimate
capabilities of such structures and their precision characteristics. Therefore, in
this paper, we pre-observed such a structure in the formation of eight-digit code,
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determined the possibility of operation with very small input currents (10 nA to
1 μA), and adding to the structure of the DAC and converters from the Gray code
to the binary code (Fig. 4.23), and determined the magnitude of ADC errors and its
accuracy characteristics for different modes. By reducing the requirements for high
speed, the proposed diagram allows using analog-to-digital conversions for small-
amplitude input currents, and the power consumption of the such single ADC channel
can be less than 50 μW with Dmax= 1 μA. All the circuits are modeled on 1.5 μm
CMOS transistors. Simulation of analog-to-digital conversion errors is shown in
Fig. 4.24. Simulation is performed for Dmax= 4 μA, 6-bit ADC, conversion period
T = 120 μs. Figure 4.24 shows that the maximum error is about 1 least significant
bit (LSB), and only for the maximum input current, the error is about 2 LSB for the
8-bit ADC. Also, the simulation results showed that when reducing the conversion
time to 10–20 μs, the errors will be the same.

In Fig. 4.23, functional diagram of CL ADC CM-(8) (G)-iv with Gray-to-binary
code transformation and serial/parallel outputs with code converter and DAC for
error calculation is shown. Actually the ADC itself, from which 1D or 2D arrays
will be done for sensors or image processors, in contrast to the circuit in Fig. 4.20,
may additionally comprise some digital elements, for example, a logic element and
a trigger or register. This depends on the possible modes and requirements regarding
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the formats of output and storage of code arrays. Therefore, in Fig. 4.23, these
additional optional units are marked with a dash-dotted line. To test the accuracy and
timing characteristics in the dynamics, we used two registers and DAC. The results of
modeling this circuit with OrCAD are partially shown in Fig. 4.24, and they confirm
the correct operation and analog-to-digital and code conversion, both when linearly
increasing (decreasing) and sinusoidal current signals are applied to the ADC input.
They show that for the 8-bit ADC, even in high speed (Imax = 16–24 μA) and
low-voltage low-frequency energy-efficient modes (with Imax = 1 μ£, 4 μ£), the
maximum error does not exceed 4–5 quantization quanta, and the average error does
not exceed 2 LSB.

4.3.3 Simulating Parallel Conveyor CL_ADC (P_C) Based
on Eight 8-DC-(G) with Parallel Serial Output

The block diagram of parallel conveyor CL_ADC (P_C) based on 8-DC-(G) (with
Gray code) with a parallel serial output is shown in Fig. 4.25. The simulation results
with PSpice OrCAD are shown in Fig. 4.26. Researches have shown that in such
CL_ADC (P_C) 6 (8)-DC-(G) at changing Imax from 16 to 24 μ£, the power
consumption at 3.3 V was from 1 to 2 μW (6 bits) and 3 μW (8 bits). The conversion
frequencies in the experiments were for these currents: 32, 40, and 50 MHz for
16 μA and 64 MHz for 24 μA and 40 μA.

They correspond to different modes: different Imax, namely 1 μ£, 4 μ£, 16 μ£,
24 μ£, 40 μ£; various 1.5 V, 1.8 V, 2.5 V, 3.3 V; various transformation periods μ
(0.02 μS, 0.025 μS, 1 μS, 20 μS, 100 μS), etc. These researches show that power
consumption for ADC for the specified values of Imax (equal 1 μ£ and 1.8 V,
64 n£ and 1.5 V) makes accordingly 40 μW and 2 μW, the quantization step is
15.625 nA for Imax = 4 μ£ and 62.5 nA for Imax = 16 μ£, and quantization
frequency = 40 MHz.

The essence of analog preprocessing is to find the function from the signals of
several adjacent channels for different 1D and 2D windows. In this case, the 1D
window is a size of 3 (may be 5, 7, 9, etc.), and the processing type is the function of
finding the average of the three signals. As a function, any continuous logic functions
of the type max, min, described in Sect. 4.3.1 and in paper [41], can be used.

The analog preprocessing unit (Fig. 4.19) consists of 4 (6) CMOS transistors (Fig.
4.27) in this case. For functions min, max, etc., the Ap-unit consists of about 10–20
CMOS transistors. The consumption power of one-channel 8-bit ADC + Ap-unit
is less than 250 μW. Simulation results of analog signal preprocessing (selecting
average signal out of three neighbor channel signals) for different input signals
(linearly increasing (decreasing) and sinusoidal signals) are shown in Fig. 4.28.
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a) The blue line is the DAC output current, yellow line is the 8 bit ADC input current, the 
red line is the ADC current error (<70nA); Q0..Q7 – output digital signals of the shift 

register, A0-A7 – output digital signals of binary parallel code at the latch register 

b) the blue line is the DAC output current, the yellow line is the ADC input current, the 
green line is the ADC current error (<70nA), A0-A7 – output digital signals of binary 

parallel code, Q0..Q4 – part of output digital signals of the shift register 

c) the blue line is the DAC output current, the yellow line is the ADC input current, the 
green line is the ADC current error (<200nA), A0-A6 – part outputs digital signals of 8 

binary parallel code, Q0..Q5 – part of outputs 8 digital signals of the shift register 

Fig. 4.24 Simulation results of the 8-bit ADC with Gray-to-binary code transformation and
serial/parallel outputs. (a) The blue line is the DAC output current, yellow line is the 8-bit ADC
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Fig. 4.25 Structure of 8-bit ADC: (a) with Gray code parallel outputs (Q0–Q7); (b) with Gray-to-
binary code transformation and parallel outputs (QA0–QA7)

4.4 Conclusions

For the construction of mixed image processor (IP), neural networks (NNs), and
image intensity transformation, the fundamentals of continuous logic cell (CLC)
design based on current mirrors (CM) with functions of preliminary analog
processing are proposed. Several effective schemes have been developed and
modeled for CLC and optoelectronic complement dual analog neuron-equivalentors
as hardware accelerators SLECNS. The proposed CLC have a modular hierarchical
construction principle and are easily scaled. Their main characteristics were
measured. They have a low supply voltage of 1.8–3.3 V, small power consumption of
no more than 1 mW, processing time-conversion 0.1–1 μs, insignificant relative
calculation errors (1–5%), can work in low-power modes (less than 100 μW)

�
Fig. 4.24 (continued) input current, the red line is the ADC current error (<70 nA); Q0–Q7, output
digital signals of the shift register; A0–A7, output digital signals of binary parallel code at the latch
register. (b) The blue line is the DAC output current, the yellow line is the ADC input current,
the green line is the ADC current error (<70 nA); A0–A7, output digital signals of binary parallel
code; Q0–Q4, part of output digital signals of the shift register. (c) The blue line is the DAC output
current, the yellow line is the ADC input current, the green line is the ADC current error (<200 nA);
A0–A6, part of output digital signals of eight binary parallel code; Q0–Q5, part of output eight
digital signals of the shift register
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a) Time diagrams of signals of digit converting cells of 6 bit CL_ADC for mode: converting 
frequency F= 50MHz, input current Imax=16μА, Vdd=3.3V, consumption power P�1mW

b) Time diagrams of signals of digit converting cells of 6 bit CL_ADC for mode: 
converting frequency F= 50kHz, input current Imax=64nA, Vdd=1.5V, consumption 

power P�2μW 

c) Time diagrams of signals of digit converting cells of 8 bit ADC (6 cells out of 8 are shown) 
for mode: converting frequency F= 1MHz, input current Imax=24μA, Vdd=3.3V

Fig. 4.26 Structure of multichannel 8-bit ADC (1D array 8-bit CL_ADC) and simulations results.
(a) Time diagrams of signals of digit converting cells of 6-bit CL_ADC for mode: converting
frequency F = 50 MHz, input current Imax= 16 μ£, Vdd= 3.3 V, power consumption P≈ 1 mW.
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d) Time diagrams of 8 bit parallel CL_ADC signals by simulation for Iinput_max=24μA, ADC 
conversion time is 1μs; the blue line is the DAC output current, the yellow line is the ADC 
input current, the violet line is the average ADC current error (<250nA), the green line is 
the ADC current error; QA0-QA7 – output digital signals of binary parallel code, Q0..Q7 

(Q7=QA7) – output digital signals of Gray parallel code

e) Time diagrams of 8 bit parallel CL_ADC signals by simulation for Iinput_max=24μA;  the 
blue line is the DAC output current, the yellow line is the ADC input current, the violet 

line is the average ADC current error (<250nA), the green line is the ADC current error, 
the blue line is the power consumption (3mW)

Fig. 4.26 (continued) (b) Time diagrams of signals of digit converting cells of 6-bit CL_ADC
for mode: converting frequency F = 50 kHz, input current Imax = 64 nA, Vdd = 1.5 V, power
consumption P ≈ 2 μW.
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f) Time diagrams of 8 bit parallel CL_ADC signals by simulation for Iinput_max=4μA, 
conversion frequency is 10kHz;  the blue line is the DAC output current, the yellow line is 

the ADC input current, the violet line is the average ADC current error (<40nA), the green 
line is the ADC current error, the blue line is the power consumption (1.3mW)

Fig. 4.26 (continued) (c) Time diagrams of signals of digit converting cells of 8-bit ADC
(6 cells out of 8 are shown) for mode: converting frequency F = 1 MHz, input current
Imax = 24 μA, Vdd = 3.3 V. (d) Time diagrams of 8-bit parallel CL_ADC signals by simulation
for Iinput_max = 24 μA, ADC conversion time is 1 μs; the blue line is the DAC output current, the
yellow line is the ADC input current, the violet line is the average ADC current error (<250 nA),
the green line is the ADC current error; QA0–QA7, output digital signals of binary parallel code,
Q0–Q7 (Q7 = QA7), output digital signals of Gray parallel code. (e) Time diagrams of 8-bit
parallel CL_ADC signals by simulation for Iinput_max = 24 μA; the blue line is the DAC output
current, the yellow line is the ADC input current, the violet line is the average ADC current error
(<250 nA), the green line is the ADC current error, the blue line is the power consumption (3 mW).
(f) Time diagrams of 8-bit parallel CL_ADC signals by simulation for Iinput_max = 4 μA, conversion
frequency is 10 kHz; the blue line is the DAC output current, the yellow line is the ADC input
current, the violet line is the average ADC current error (<40 nA), the green line is the ADC current
error, the blue line is the power consumption (1.3 mW)

and high-speed (1–2 MHz) modes. The relative energy efficiency of the CLC and
equivalentors is estimated at a value of not less than 1012 an. op./sec. per watt and
can be increased by an order. The correctness of the chosen concept is confirmed
by the obtained results of the design and creation of neuron equivalentors (NEqs)
and MIMO structures based on them. Such neuron equivalentors can form the
basis of promising self-learning biologically inspired devices SLECNS and CNN, in
which the number of such parallel-running NEqs is 1000. Thus, we have proposed
implementation options for digital-analog cells (DC) and CL structures of the ADC
CM. Such ADCs are simple, and only one DC is required for the iteration type,
supplemented by a sample and hold device. The advantage of the ADC is the ability
to easily implement parallel code, as well as serial parallel output code. Results of
circuit simulation using OrCAD are shown. Such simple structure of CL ADC CM
with low power consumption ≤3 mW and supply voltage 1.8–3.3 V, and at the same
time with good dynamic characteristics (frequency of digitization even for 1.5 μm
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a) simulation results of analog signals preprocessing (selecting average 
signal out of three neighbor channels signals): green, blue, violet lines 

are three input signals, yellow line is the output signal) 

b) simulation results of analog signals preprocessing (selecting average 
signal out of three neighbor channels signals): green, blue, red lines are 

three input signals, yellow line is the output signal)

c) simulation results of analog signals preprocessing (selecting average signal 
out of three neighbor channels signals): green, blue, violet lines are 
three input signals, yellow line is the output signal), light blue is the 

DAC output signal

Fig. 4.28 Structure of multichannel 8-bit ADC (1D array 8-bit CL_ADC) with analog signal
preprocessing. (a) Simulation results of analog signal preprocessing (selecting average signal
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CMOS-technologies is 40 MHz, and can be increased up to ten times) and accuracy
(	 quantization = 15.6–62.5 nA for Imax = 4–16 μA) characteristics are shown.
Taking into account the sensitivity of modern photodetectors, the range of optical
signals can be 1–200 μW. For the ADC of iteration type, one channel consists of
one DC-(G) and SHD, and it has only 35–40 CMOS transistors. Thus, such 1D and
2D arrays of successive ADCs are very promising for sensors and IP. The general
power consumption of one ADC, in this case, is only 50–70 μW, if the maximum
input current is 4 μA. For high performance and frequency of conversions, it is
preferable to use the parallel pipeline CL_ADC (P_C) scheme based on the set of
8-DC-(G) with parallel serial outputs. The maximal error is about 1 LSB, and only
about 2 LSB for 8-bit CL ADC for the maximal input current. CL ADC CM with
analog signal preprocessing opens new prospects for realization linear and matrix
(with picture operands) micro photo-electronic structures which are necessary for
neural networks, digital optoelectronic processors, neuro fuzzy controllers.
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Chapter 5
Image-Based Target Detection
and Tracking Using Image-Assisted
Robotic Total Stations
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Abbreviations

3D Three dimensional
Spatial extent, concerning the three dimensions/axis: x, y, z

ASCII American Standard Code for Information Interchange
CCD Charge-coupled device

Light-sensitive chip
CMOS Complementary metal-oxide-semiconductor

Light-sensitive chip
EDM Electronic distance measurement

Distance measurements based on a modulated infrared light beam
FoV Field of vision

Visible part by the use of a telescope
Hz Horizontal

Concerns the spatial orientation and extension
IATS Image-assisted total station

Geodetic measurement device, extended by camera and laser scanner
ID Identifier

Unique tag feature
LED Light-emitting diode

–
MSAC M-estimator sample consensus

Filtering algorithm to avoid gross errors and increase the robustness
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MPixel Mega pixel
1 × 106 pixel

PC Personal computer
–

RMS Root mean square
–

RTS Robotic total station
Geodetic measurement device

SIFT Scale-invariant feature transform
Image processing algorithm

SURF Speeded-up robust feature
Image processing algorithm

UAV Unmanned air vehicle
–

UGV Unmanned ground vehicle
–

V Vertical
Concerns the spatial orientation and extension

5.1 Introduction

Measuring angles and distances was of interest to mankind since ancient times.
Transforming the geometry from theory (plans) into practice (field) necessitated
instruments and tools that offer a basis or standard for comparison. On the one side,
measurement units had to be defined, and on the other, real instruments capable of
reproducing measurements had to be created. This process took centuries of research
and development; therefore, a brief overview of significant historical steps that led
to the state-of-the-art image-assisted total station is offered.

There are many technical developments that lead to the instrument used for
angle measurement, known as the theodolite. The first description dates back
to 1571, where Leonard Digges used a theodolite for a mapping campaign [1].
Mechanical developments led to constant improvements of these instruments,
reaching a milestone in 1787 with Jesse Ramsden’s great theodolite. Due to its
accurate reading gradation, it is seen as the first modern theodolite [2]. The next
significant step was taken in the early nineteenth century with the help of the transit
theodolite; vertical and horizontal angle measurement were now verified by two-face
measurements. Constant progress in optics and mechanics and the industrialization
of the twentieth century lead to mass production of accurate theodolites. Out of the
producers that stood out, the Swiss engineer Heinrich Wild [3] is worth mentioning.
With the practical implementation of lasers in the late 1960s, the next generation of
theodolites was the equipment with a distance measurement unit. This revolutionized
surveying in many aspects and gave birth to the so-called tachymeter (total station).
One of the first commercially available tachymeter was the Reg Elta 14 produced by
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Carl Zeiss in 1969 [4]. Besides measuring all polar coordinates, it could store data
and perform rudimentary calculations, thus setting a trend for the upcoming total
stations.

Since then, the focus was mainly on improving the accuracy and reducing the
size of these instruments, a fact that has been achieved within a short period. In
the 1970s, automation of the measuring process gained attention. The idea of target
identification and tracking was a highly discussed topic for geodetic instruments
since the 1980s [5] and got to be implemented, to our concern, in several research
projects of universities and industrial measurement systems [6]. One of the reasons
that drove this progress was target identification and tracking for military purposes.
First implementations of such instruments already happened during World War II
with the so-called kinotheodolite Askania used for tracking smooth moving objects
like missiles or airplanes. After the war, similar kinotheodolites were produced by
Contravers (EOS) and are still being used today for similar purposes [7].

For civil purposes, however, a passive or active reflector (prism) in combination
with motorized tachymeters was used in the tracking process. These have seen
applications starting from the mid-1990s in machine control and guidance, defor-
mation monitoring, or robot track definition [8]. Since then, all large manufacturing
companies of geodetic instruments started producing robotic total stations (RTS).
The next prospective improvements started in the year 2000 at different research
institutes by incorporating an external digital camera onto a RTS. This opened a
new spectrum of possibilities with an alternative positioning method that originates
from photogrammetry. This synergy also reminds of the historical phototheodolite
that was developed in Italy in 1865 by Porro [9], which can be considered among
the predecessors of modern Image-Assisted Total Stations (IATS).

After receiving positive outcomes from the science community, incorporation of
coaxial or overview CCD or CMOS sensors into the instrument’s telescope [10] has
become standard for a high-end IATS. This led to a new generation of instruments,
originally called videotheodolites [6], with current state-of-the-art instruments like
the Trimble SX10 that has no eyepiece (optical telescope axis) and totally relies on
several telescope-integrated cameras [11]. These combine the precise 3D positioning
capability of a tachymeter with image capturing systems [12] and through the known
coordinates of the IATS, the orientation of the build-in camera is automatically given
all the time [13]. Figure 5.1 represents a time axis with some of the above-mentioned
generation of instruments.

These are some of the important milestones that led to the further presented IATS.
In the second section, the functional principles of these multi-sensor systems are
briefly explained. Section 5.3 presents the methods of automatic target recognition
and tracking principles while using a reflector. Section 5.4 shows the methods needed
for target identification using images and, further on, target tracking. Afterwards
two applications are presented in Sect. 5.5, and the last section provides a quality
assessment approach for positioning applications.
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Fig. 5.1 Examples of different generation theodolites/total stations

5.2 Principles of Robotic Image-Assisted Total Stations

Robotic total stations are also called tachymeters. According to Joeckel et al.
[14], the assembly architecture is subdivided into following component groups:
sensors, actuators, storage, power supply, and man–machine interfaces (keyboard,
touchscreen, and handhelds). These components are connected to a common
microprocessor, which processes and coordinates various data. Each component
group consists of multiple system items. For example, the component group
“Sensors” contains the angle detection device, distance measurement device, optical
sensor for target tracking, electronic levels, compensators, temperature, and pressure
sensors. In the last evolutionary stage of total stations, the devices have been extended
by cameras and laser scanners. Thus, the total station has become a versatile
instrument and may be used for many applications. It can also be defined as a
multi-sensor system (Fig. 5.2).

Image-assisted total stations (IATS) combine the standard robotic total station
with cameras. Thus, they extend the classical geodetic scope of applications
by photogrammetric techniques. Moreover, the camera module can be used for
documentation purposes. The integrated CCD (charge-coupled device) chip has
been formerly used for the target tracking in order to realize a one-man station.
Within the IATS, an additional CCD undertakes camera functionalities.



5 Image-Based Target Detection and Tracking Using Image-Assisted Robotic. . . 137

Fig. 5.2 Principle layout of a total station (modified from [14])

Fig. 5.3 Coaxial layout (according to [15])

Thereby different assembling layouts of the camera module within the housing of
the total station exist. These are the coaxial layout, the eccentric layout, and the centric
layout, with separate image beam. The layouts are designed by the manufacturers of
the instruments. In the following, the three different layout designs are schematically
depicted.

In the coaxial layout (Fig. 5.3), the optical axis of the telescope is aligned with
the optical axis of the camera. Therefore, a semi-transparent mirror is installed,
according to Fig. 5.3, which deflects the camera axis and consequently bundles the
two beam paths. The advantage of such a realization is that both fields of vision are
centered on each other. The disadvantage is the high optical complexity [15].

In the eccentric layout (Fig. 5.4) the two beam paths are spatially separated. As a
result, the optical camera axis is parallel to the optical telescope axis.

The advantage of this layout is the simple optical arrangement, in contrast to
the coaxial layout. The disadvantage is caused by the eccentricity, which induces
a distance-dependent direction error. To correct this error, the measurements in
the pixel domain (Sect. 5.4.5) must be extended by correction terms or functions
in row and column directions. These terms and functions are either given by the



138 V. Schwieger et al.

Fig. 5.4 Eccentric layout (according to [15])

Fig. 5.5 Differences between cross-hair and image center [16]

manufacturer or must be determined by calibration. The calibration is valid for one
particular instrument and cannot be generalized.

The difference between the cross-hair targeted point and the camera center has to
be known for each zoom level. In Fig. 5.5, an example is given for one resolution of
an overview camera and three distances.

It can be seen that with increasing distance, the difference caused by the parallax
decreases.

A correction term has been exemplarily determined for a Trimble S7 total station
which works with the eccentric layout. The calibration procedure reveals a constant
offset kh = − 6 pixel in the row-direction (horizontal) and a function of shape
kv = a · xb + c in the column direction (vertical). After the estimation of the
parameters a, b, and c by calibration measurements, the following correction function
could be established:
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Fig. 5.6 Correction function for vertical direction in the pixel domain

kv(s) = −278.8 · s−1,051 + 27.61 (5.1)

with

kv: correction term
s: distance

Figure 5.6 depicts the course of the correction value, dependent on the measured
target distance.

In order to gain benefits of the eccentric layout, without dealing with the pre-
described distance-dependent direction error, a third layout may be realized. Thereby
the two optical axes are tilted to each other by the angle	 (Fig. 5.7). The intersection
point of the two axes is located at the telescope’s tilting point (axis). The included
angle 	 induces a height index error. The error is defined as the deviation in the
vertical graduated disk reading of the tachymeter if it points to the zenith. A further
disadvantage is that the two beam paths imaging different fields of vision (FoV).
Depending on the aperture angles, it may happen that the FoVs are different [15].

5.2.1 Working Principles of Standard Total Station

The basic components regarding the classical (not image-based) determination
of positions are the electronic theodolite, providing horizontal and vertical angle
measurements and the distance measurement device. The combination of angle and
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Fig. 5.7 Centric layout, with separate image beam (according to [15])

distance measurements allows the calculation of 3D point coordinates. However, the
same principles are valid for IATS.

5.2.1.1 Electronic Distance Measurement

The electronic distance measurement (EDM) is based on time-of-flight measurement
of a signal emitted from a transmitter and received by the receiver [8]. The signals
may be infrared light, laser light, or micro waves. These signals are modulated with
information [14]. Among different distance measurement procedures, two procedures
are the most common for total stations: the pulse method and the phase-based method.
In modern total stations, both methods are used separately. However, the interference
measurement by the use of an interferometer is the most accurate method, but will
not be presented in detail within the frame of this contribution, since total stations
do not work with this principle.

Pulse Method

The pulse method is based on a sharp defined pulse, which is modulated and emitted.
The time difference between the signal emission and its receipt is defined as signal
propagation time t (Fig. 5.8). The distance d is calculated by the propagation speed
of the wave c and the exactly measured signal propagation time [14].

d = c · t
2

(5.2)
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Fig. 5.8 Principle of pulse method [17]

Fig. 5.9 Principle of phase-based method [17]

with

d: distance
c: speed of light
t: propagation time

The denominator factor 2 is justified by the fact that the emitted signal travels
to the target and back to the instrument. Hence, the measured result represents the
double distance.

Phase-Based Method

In this method, the carrier wave of the signal is modulated by a long-periodic
oscillation. The distance d is defined by an unknown number n of complete waves,
or oscillations of length λ and the remaining wave piece of length	λ (Fig. 5.9).	λ
is measured by a precise phase meter. Hence, the distance is obtained by Eq. (5.3)
[14].

d = n · λ+	λ
2

(5.3)
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where

n: number of waves
λ: wave length
	λ: remaining wave fraction

The determination of n is based on the combined measure, consisting of rough and
fine measurements, with different wavelengths λ1 and λ2. The rough measurement,
with the wave fraction	λ2, is used to determine the number of complete wavelengths
or phase shifts of λ1. For the distance, the following relationship is valid [14]:

2 · d = n · λ1 +	λ1 (5.4)

2 · d ≈ 	λ2 (5.5)

Thus the number of waves can be approximated as follows [14]:

n ≈ 	λ2 −	λ1

λ1
(5.6)

For n, the closest number to the approximated value is valid.

5.2.1.2 Electronic Angle Measurement

The angle measurement takes place by manual or automatic target aiming of the
telescope and subsequent readings of the directions at the graduated disk. The
reading is realized by different methods, described in the following.

Code-Based Method

Within the code-based method, the graduated disk is encoded (Fig. 5.10). Thus,
to each disk position, a unique coded output signal is allocated [8]. The division
consists of one or multiple adjoining radial lanes. The lanes consist of alternating
translucent and opaque fields. Hence, the division is binary coded. The reading is
realized by an above-located light-emitting diode (LED) and a subjacent photodiode,
which receives the signal and converts it to an electrical signal.

Incremental Method

This method works with relative angles. The graduated disks are painted with radial
gridlines, representing a sequence of transparent and opaque fields (increments).
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Fig. 5.10 Left: encoded graduated disk; right: binary code example [14]

Fig. 5.11 Incremental
method (modified from [14])

The distance between those fields is called the grid constant. The sequenced number
of bright and dark fields is captured and counted by the scanning system, consisting
of LED and photodiode.

Additionally, the disk turning direction is important, in order to have the unique
directions to be set in relation to each other. Thus a direction discriminator, consisting
of two reading devices, is required [14] (Fig. 5.11).

Nowadays most of the total stations work with the incremental method.
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5.3 Automated Reflector-Based Target Recognition
and Target Tracking

5.3.1 Automated Target Recognition and Detection

The aim of automated target recognition is to enable the total station to measure
targets autonomously. Thus the main advantage is the revolution of the workflow
resulting in a one-man station. Moreover, the observer-dependent focus errors are
eliminated. Before the automatic target recognition can be realized, some pre-
conditions, listed below, have to be fulfilled up to now:

• The total station has to be motorized.
• The target has to be signalized by the reflector.
• Special sensors (image-based or others) are required.
• In some cases, a wireless connection is required.

The complete procedure consists of two steps which are sequenced in rough
pointing/coarse search and fine pointing/fine aiming.

5.3.1.1 Rough Pointing/Coarse Search

The rough pointing requires no pre-information and is finished if the target is in the
range of vision of the telescope. There are different realizations of rough pointing
methods.

Method A requires special sensors for rough pointing within the tachymeter and
a passive target reflector. The technique is based on the reflections of the reflector at
the instrument. For this purpose, a laser plane fanned out vertically, with an opening
angle of approximately 36◦. At the same time, the instrument performs a horizontal
rotation. The rotation stops, as soon as the instrument detects the reflected light
of the reflector. In the following, the instrument begins with a vertical movement,
where the laser beam is focused. The vertical movement stops if the reflection of the
reflector is detected by the instrument again. Subsequently, the set horizontal and
vertical angles can be tapped.

Method B is similar to method A, but the laser is fanned out with an opening
angle of 10◦. Thus more revolutions per scan are required. After each horizontal
revolution, the vertical angle is changed.

Method C is similar to method A, but an active reflector emits a rectangular fan
(60.3◦ × 19.8◦) to the instrument via a modulated laser or infrared signal. The signal
also contains information about the reflector’s unique ID (Fig. 5.12).
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Fig. 5.12 Principle sketch of rough pointing; (a) methods A + B using passive prism; (b) method
C using active prism (modified from [18])

5.3.1.2 Fine Pointing/Fine Aiming

The aim of the fine pointing is the determination of deviation between the telescope’s
crosshair and the center of the reflector. The pre-conditions are that the target is
signalized by a reflector and that the reflector is inside the field of vision of the
telescope. Thereby the second pre-condition is already fulfilled by rough pointing.
Two general procedures, dependent on the manufacturer of the instrument, are
implemented. These procedures are the image processing and the quadrant detector.

Procedure A is based on the detection of the reflected infrared light of a passive
reflector by the instrument using a CCD array or a complementary metal-oxide-
semiconductor (CMOS) array. The localization of the reflector’s center is established
by the determination of the geometric center within the image of the reflection. The
geometric center is derived from the weighted intensity values of the illuminated
cells. Therefore, the center of the reflector is determined in the optical system, and
the CCD array system X′, Y ′ respectively. The difference between the crosshairs in
the tachymeter’s V-Hz system and the CCD array system X′, Y ′ is known in advance
from calibration and is expressed by transformation parameters. This calibration is
conducted by the manufacturer beforehand. By the use of the known transformation
parameters, a transformation is carried out between the Y ′-X′ and the V-Hz system.
As a result, the deviations	V and	Hz with respect to the known crosshair positions
V and Hz are determined (Fig. 5.13).

Procedure B is based on the detection of the infrared light at the instrument
emitted by an active reflector. For this, a quadrant or double-quadrant detector is
used. Therefore, each quadrant needs to acquire light. After the light spot is visible
in all quadrants, the direction of the prism center can be calculated by a linear
function of the detected intensities. The alignment of the telescope and the prism is
finished, if all quadrant intensities are equal. The double-quadrant detector enhances
the target search and aiming operations. Therefore, the fine quadrants q1, q2, q3, and
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Fig. 5.13 Principle sketch of
V-Hz system and CCD
system (procedure A)
(modified from [14])

Hz

�Hz

�y

V

centre of reflector / target

Fig. 5.14 Principle sketch of
double-quadrant detector
(procedure B) [18]

q4 (cf. Fig. 5.14) allow fine aiming of targets at longer distances (>25 m), because
of their narrow field of view. Whereas the coarse quadrants Q1, Q2, Q3, and Q4 (cf.
Fig. 5.14) are used for search and fine aiming of targets close to the instrument [18].

The procedure also allows the use of passive reflectors, where an infrared laser
light is emitted from the total station and is reflected by the passive reflector [18].

After the determination of 	V and 	Hz, the reading for V and Hz may be
corrected, if deviations are greater than a specified threshold [18].

In general, servomotors realize a precise adjustment of the telescope for the target
because first, a visual control by the observer becomes possible and second, distance
measurements are possible. This is valid for both presented fine pointing procedures.
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5.3.2 Target Tracking

Within the frame of this contribution, the meaning of the term “target tracking” is
referred to the ability of the instrument to track the target with a pre-defined sampling
rate. This is valid for reflector-based as well as reflector-less tracking procedure.

For target tracking procedure, active or passive targets may be used [8]. During
the automatic tracking, the telescope permanently follows the target. The measured
deviations 	V and 	Hz of the prism referred to the tachymeter’s axes system
(crosshair) (Fig. 5.15) are minimized by the horizontal and vertical movements of
the telescope, induced by the actuators [8].

The tracking mode is realized by a closed-loop system, including fine pointing
procedure and actuators operations.

The sequence of actions within the closed loop, depicted in Fig. 5.16, is as follows:
the deviations are determined by use of fine pointing procedures. The controller
calculates the regulating variables for the motors to eliminate the deviation, which
is the difference between the crosshair and the reflector center.

If the connection between the instrument and the reflector is interrupted and a
subsequent loss of the target occurs, caused by obstacles, the deviations cannot be
determined anymore. In that case, the controller calculates the regulating variable
by the use of a prediction model for the movement, for example, by the use of

Fig. 5.15 Principle of target tracking (modified from [19])

Determination of
Deviation

Controller

optical transmission

processor
for fine pointing

> 50 Hz
theodolite processor

50 Hz
control
variable

regulating variable Theodolite
Motor

Fig. 5.16 Tracking mode closed-loop system [20]
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Fig. 5.17 Events order in the tracking process [21]

constant velocity information for the horizontal and vertical direction. The velocity
information is derived from movements before target loss. By that procedure, it is
possible to conduct a prediction for some seconds. If the prediction has not succeeded,
a rough pointing is required a new [8].

5.3.3 Time Aspects in Object Tracking

Most developments make use of reflective corner-cube prisms that are used for
finding and tracking an object. Furthermore, if the prism is followed with the aid of
a target recognition device, measuring a distance between reflector and instrument
is possible; therefore, polar coordinates are directly available.

It has been seen in Sect. 5.3.1 how a reflector is identified and tracked. One
important aspect that influences all tracking processes is time synchronization of
the individual measurements. Retrieving an angle reading, measuring a distance,
and computing 3D coordinates are events that require time, and synchronizing these
events is crucial for an accurate position. Similarly, acquiring images, processing
the image coordinates, and transforming them into angular increments for the
servomotors require time. Nowadays, even if processing power reached astonishing
levels, latency still applies for state-of-the-art IATS, and the general latency scheme
(Fig. 5.17) is available.

Another aspect is that many kinematic applications involve slow moving objects;
therefore, the aforementioned effects become negligible. Some examples that use
these principles are mostly found in guidance and control of construction machines.

5.4 Image-Based Object Recognition, Position
Determination, and Tracking

This section treats the usage of an image-assisted total station (IATS) in order to
perform static object recognition, position determination, and tracking. Within this
context, the potential of the integrated photo module of the IATS should be fully
exploited and not be limited to documentation purposes only.
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5.4.1 Image Processing Fundamentals

According to Luhmann [22], the digital image processing can be subdivided into
different steps: image capturing, pre-processing, segmentation, detection, clustering,
configuration, and result assessment.

The pixel coordinate system has a fundamental function in the image processing
task. It is defined as a left-handed two-dimensional x–y coordinate system, described
by rows and columns, whereby the x-axis pointing into the direction of rows and the
y-axis into the direction of columns [23]. In general, an object in the image covers
multiple pixels in the image. These covered pixels are coherent and their gray values
are rather similar.

To increase the efficiency of image processing, image pyramids are used. An
image pyramid is a series of images, where the next following image is reduced
in resolution and size by factor n, compared with its predecessor. Additionally, the
reduced image is smoothed by filter. Thus with decreasing resolution, small image
structures disappear because of the informational content decreases [22]. This allows
to first search for rough features in images with decreased resolution. Afterward the
search can be focused on previously found, interesting areas of the image, by the use
of images of the pyramid with higher resolution.

Filtering can be realized by convolutions in the spatial domain and multiplications
in the frequency domain. For frequency domain operations, the image must be first
transformed into the frequency domain, for example, by Fourier transformation
[22, 23].

The convolution is realized by a stepwise “sliding” of the convolution kernel
across the image. The pixel value beneath the kernel is multiplied by the
corresponding filter kernel value. These products are subsequently summed and
multiplied by the sum of the kernel values. The resulting value is then allocated to
the pixel, which best corresponds to the mean value of the filter kernel [22].

There are different smoothing filter used in digital image processing. The
most import smoothing filters are the Box filter and the Gaussian filter. Detailed
information on smoothing filters may be found in Luhmnann [22].

Besides smoothing filters, edge detector filters play a superior role in image
processing. They are based on numerical derivations of gray value functions and are
used to locate sharp changes in gray values, which in turn, indicate edges. Edges are
pixels, where the first derivative of the gray value function changes abruptly [23].

The simplest edge detector is the Roberts detector, based on the first derivative of
the pixel plane in x and y directions [24]. The Sobel operator combines a derivation
with a smoothing. This helps to counteract the amplification of noise induced by
the derivation. To obtain further information about the edge curvature, the Laplace
operator can be applied. It is based on the second derivative of the gray value function.
Thereby the edges are represented by significant changes. On the other hand, the
second-order derivative negatively affects the noise sensitivity. To counteract this
adverse effect, the image can be smoothed by the Gaussian filter before derivation.
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The combination of smoothing and differentiation leads to the Laplacian of Gaussian
operator.

The main disadvantage of edge detectors is the instability of their position. Edges
are stable in only one direction. In contrast, most image processing algorithms need
features with stable positions. Therefore, corners are more suitable because of their
fix localization in both directions. One of the most common corner detectors is the
Hessian detector. The detector is based on the usage of the determinant of the Hessian
matrix [25]. The Hessian matrix is defined as follows [26]:

Hf = ∂2f

∂xi∂xj
(x) =

⎛

⎜⎜
⎝

∂2f
∂x1∂x1

(x) · · · ∂2f
∂x1∂xn

(x)

...
...

∂2f
∂xn∂x1

(x) . . .
∂2f
∂xn∂xn

(x)

⎞

⎟⎟
⎠ (5.7)

The feature detection is accomplished by the analysis of the determinant. The
feature is located at the position where the determinant indicates a maximum.
According to Merziger and Wirth [26], the determinant is defined as follows:

det H = Dxx ·Dyy −
(
w ·Dxy

)2 (5.8)

The elements Dxx, Dyy, and Dxy are so-called Blob filter responses at image point
x. They represent a 9 × 9 Box filter. w represents the weighting factor.

In the next section, the usage of the presented image processing tools will be
illustrated within common image processing algorithms.

5.4.2 Image Processing Algorithms for Feature Extraction

There are many possibilities of image processing that originate from the field of
computer vision [27] and are used for such purposes, but these can be grouped in
three classes: edge-based, template-based, and point-based [12]. As the name already
suggests, edge-based implies identifying edges of an object and then computing, if
necessary, its geometrical center. In this way, if the geometry does not change and
the background shows contrast, objects can be easily detected based on their edges.
Template-based involves using a pre-known pattern that the algorithm recognizes.
Therefore, patterns are always compared with the reference pattern, and if a match
is found, the object is considered to be the searched one. Point-based implies finding
certain features (points) that, similarly to the template-based, match a pre-known
image. Two well-known point-based feature extraction algorithms will be detailed
in the following sections. The process of feature extraction generally consists of two
steps: detection and description.
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5.4.2.1 SIFT (Scale-Invariant Feature Transform) Algorithm

According to Lowe [28], the requirements for image-based object recognition from
real world are that image objects, so-called features, that are randomly arranged in
space and partly covered, are identified and detected uniquely. The features shall be
invariant with respect to translations, rotations, scaling, and changes in illuminance.
Furthermore, the features shall be unaffected by image distortions and noise. To
fulfill the requirements, the image features must possess characteristic shapes, in
order to be identified uniquely. The SIFT algorithm decomposes the image into a
finite number of objects, which are described by local descriptor vectors.

The required processing step after image capturing is the localization of the
characteristic image features. Their positions, identified in the space domain, must
fulfill the invariance properties. The requisite mathematical steps are comprised in
the so-called detector.

The detector is based on two convolutions of the image with the Gaussian kernel
and a subsequent forming of Gaussian difference in order to detect curvatures (cf.
Sect. 5.4.1). The Gaussian difference approximates the Laplacian of Gaussian in
order to shorten the processing time. After resampling the image by the use of
bilinear interpolation [22], the search for local maxima and minima within different
levels of image pyramids is conducted, where the neighboring pixels of the image
are compared with each other.

The detector step is followed by the descriptor step in order to characterize the
image. For this purpose, the feature gradient and orientation are calculated. This is
done for each pixel Ai,j by the calculation of the gradient magnitude Mi, j and the
orientation Ri, j.

Mi,j =
√(
Ai,j − Ai+1,j

)2 + (Ai,j − Ai,j+1
)2 (5.9)

Ri,j = arctan

(
Ai,j − Ai+1,j

Ai,j+1 − Ai,j
)

(5.10)

Figure 5.18 exemplarily depicts the descriptor.
The descriptor vector is created for each feature and is of dimension n = 128.

It contains the feature’s stable position in the image, the scale, and the orientation.
Optionally, the descriptor might additionally contain colors or textures.

Detailed inside view into the SIFT algorithm is provided by Lowe [28].

5.4.2.2 SURF (Speeded-Up Robust Feature) Algorithm

According to Bay et al. [25], the most important property of the detector is the
repeatability. In this context, repeatability means the reliability of the detector



152 V. Schwieger et al.

Fig. 5.18 Feature descriptor;
yellow: orientation Ri, j;
green: magnitude Mi, j

to identify and find the same physical object under changing visual conditions.
Therefore, the neighborhood of each relevant image point is described by the
descriptor. The descriptor must be distinctive and robust toward noise, translations,
as well as geometric deformations and photogrammetric distortions. By the use of
feature descriptors from two different images, these features and even the images
(usage of multiple features) can be allocated to each other. For example, the allocation
is based on the Euclidean distance between the two descriptors. The dimension of
the descriptor has a direct impact on the allocation time and thus on the computation
duration. Hence, small dimensions of the descriptor vector are desirable on the one
hand. On the other hand, small descriptor dimensions are less unique and thus less
distinctive [25]. SURF algorithm offers a good compromise between short processing
times and sufficient descriptor dimension in order to ensure distinctiveness. SURF
uses the scale- and rotation-invariant detectors and descriptors. No color information
is used.

The detector is based on the usage of the determinant of the Hessian matrix (cf.
Sect. 5.4.1). Therefore, integral images are introduced. Integral images serve for
fast computations of pixel sums within rectangular sections [25]. The input of the
integral image I� (x) =∑i≤x

i=0

∑j≤y
j=0I (i, j) at position x = (x, y)T is the sum of all

pixels of the input image I within a rectangular region, spanned between the image
origin and image point x.

Now the Blob filter responses, which can be used to calculate maxima and minima,
are stored in a Blob response map. The map represents the image scale space. The
scale space is implemented by image pyramids and is divided into octaves. The
octaves represent series of filter responses, determined by convolution. Each octave
is subdivided into a constant number of scaling levels. Hence, the detector contains
the steps of suppression of the input image and the determination of the features by
the described procedure, using the Hessian determinant. The use of integral images
increases the computational speed and enhances the robustness [25].
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The descriptor uses the intensity values to characterize the features. It is based on
the distribution of the first-order responses of the Haar wavelet in x and y directions.
Details on Haar wavelets can be extracted from Talukder and Harada [29]. For the
descriptor, based on the Haar wavelet, first a rectangular region around the point of
interest is built. The determination of orientation of each region is accomplished by
the detector step. Then, the regions are subdivided into smaller rectangular regions.
The Haar wavelet responses of these smaller regions are calculated, where dx is the
response in x direction and dy is the response in y direction. Information about the
polarity and change of intensity is obtained from |dx| and |dy|. For the description of
the intensity structure of each subpixel region, a four-dimensional descriptor vector,
shaped as v = (

∑
dx,
∑

dy,
∑|dx|,∑|dy|), is then established. The local sub-region

descriptor vector is then calculated for all sub-regions, which are 4× 4= 16 in total.
Hence the descriptor vector for each feature is of dimension n = 16 × 4 = 64.

More detailed information on SURF algorithm may be extracted from Bay et al.
[25] (Table 5.1).

5.4.3 Object Recognition and Matching

After the extraction of the features is accomplished by one of the pre-described
algorithms of Sect. 5.4.2, the next operation, in the sequence of image processing, is
object recognition. This procedure is based on a comparison between the reference
image and the test image and is defined as matching step. In detail, the extracted key
points (cf. Sect. 5.4.2) of the reference and test image are compared with each other.
For the comparison, n-dimensional feature vector (SIFT n = 128, SURF n = 64)
is defined as the position of the key points in n-dimensional space. The task to be
solved is the finding of next neighbors between the two feature vectors (reference and
test image) by the use of the Best Bin First algorithm, according to Muja and Lowe
[30]. Best Bin First algorithm is suitable to efficiently find an approximate solution
to the nearest neighbor search problem in very-high-dimensional spaces [31]. The
procedure is based on a binary-coded description of the feature vector. It has to be
stated that this solution provides an approximate solution only.

Table 5.1 Comparison between SIFT and SURF

SIFT SURF
Algorithm input Grayscale images Intensity images
Used filter Original filter Approximated filter
Structure of the scale space
pyramid

Different resolutions of the
image

Different resolutions of the
filter

Base of the descriptor Gradients Haar wavelet filter response
Descriptor dimension 128-dimensional 64-dimensional
General property More reliable Faster
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The key points, expressed by the feature vector created by SIFT or SURF, that are
passed to the algorithm are subdivided in k clusters. Therefore, k randomly chosen
points form the cluster center. The remaining points are allocated to the particular
cluster, to which their distance is minimal. If the cluster is larger than a predefined
threshold, new cluster centers are chosen, and the algorithm starts anew. This helps
to prevent different cluster sizes, if unfavorable cluster centers have been chosen
beforehand. Each cluster forms a k-dimensional tree, the so called k-d tree. The
algorithm is advantageous in tree building and during search operations, because
of the parallel and simultaneous processing of different trees. The search for the
nearest neighbor in the tree is conducted from top to bottom, where at each branch
the nearest node to the starting point is marked. Non-marked nodes are stored in a
separate priority list. After all trees are searched once, the search proceeds from the
next point which is nearest to the starting point. Now the next nearest neighbors of
particular k-d trees from the priority list are compared. The points with the minimal
distance are chosen. The number of chosen points defines the approximation grade.
The higher the grade, the more neighbors are found, though the processing time
increases.

By the use of the recognized point pairs, the transformation matrix between the
two images can be determined. The matrix allows transformations of pixels/points
with respect to points from the reference image into test image. This procedure is
called pixel-to-pixel transformation.

To avoid gross errors in the point cloud and to increase the robustness, a
filtering by the MSAC (M-estimator sample consensus) algorithm is applied. Detailed
information on MSAC may be found in Torr and Zisserman [32]. The transformation
itself can be expressed by an affine transformation according to Lowe [28]:

[
u

v

]
=
[
m1 m2

m3 m4

]
·
[
x

y

]
+
[
tx

ty

]
(5.11)

where
u, v: test image point coordinates
x, y: reference image point coordinates
tx,ty: translation parameters
m1, m2, m3, m4: rotation and scale parameters
Thus, two tasks have to be solved. The first task is the determination of the

transformation parameters. These are determined by the least squares method
according to Niemeier [33]. In order to estimate the six parameters, the minimum
number of requisite matches between the reference and the test image must be three.
In the second task, all points of the reference image can be transformed into the test
image by the estimated transformation parameters.
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5.4.4 Object Position Determination

After the successful matching and identification of the object in the test image
according to Sect. 5.4.3, the next challenge is the position determination of the
specific object.

In general, the determination of object positions in the target coordinate system,
which is the tachymeter system in this specific case, requires horizontal and vertical
telescope angles, as well as a distance measurement, obtained by the reflector-less
distance measurement (EDM). Hence, the obtainment of the horizontal and vertical
telescope angles from images is necessary and will be elaborated in the following.

In each reference, image key points are defined, of which the pixel coordinates
in the reference image, as well as their coordinates in the object coordinate system
are known. The geometry of the object is also fully known in the object coordinate
system. By using the pre-described pixel-to-pixel transformation from Sect. 5.4.3,
the transformation parameters between the reference and the test image can be
obtained. The next step is the transition from the image system into the tachymeter
system. Therefore, determination of the telescope’s aiming direction, expressed by
Hz and V angles, from the present pixel coordinate of the appropriate point must be
determined. For this, the relation between pixel and angle is required. This relation,
described by the transfer factor i, is different for each instrument and is either given
or must be determined by calibration. The relation describes the function between
a specific telescope angle α and the induced shift p in the pixel system. Thus the
transfer factor i can be expressed as follows:

i = p
α

(5.12)

Reconsidering the correction terms, introduced for the eccentric camera-telescope
layout in Sect. 5.2 (cf. Fig. 5.4), the calculation of the horizontal and vertical telescope
angles from the present image point is carried out by using Eq. (5.13) and Eq. (5.14).

Hz = i ·
(

hpixg −
(
hpixm + kh

))
(5.13)

V = i ·
(

vpixg −
(
vpixm + kv

))
(5.14)

where

hpixg, vpixg: pixel coordinates (row and column) of the measured
object in the image

hpixm, vpixm: pixel coordinates (row and column) of the image center
Hz: horizontal telescope angle
V: vertical telescope angle
kh: horizontal correction term (valid for eccentric layout only)
kv: vertical correction term (valid for eccentric layout only)
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By using Eq. (5.13), the telescope directions of the key point can now be
calculated. These directions can be adjusted by the tachymeter’s actuators. By the
additional use of the reflector-less distance measurement s, all required elements for
the coordinate calculation are available. According to Torge [34], the coordinates are
calculated as follows:

x = s · cos Hz · sin V (5.15)

y = s · sin Hz · sinV (5.16)

z = s · cos V (5.17)

5.4.5 Principles of Image-Based Object Tracking

Basically, when using images, a certain object of interest must be identified, and
some features need to be extracted for further processing. In Sects. 5.4.2.1 and
5.4.2.2, SIFT and SURF, which are point-based algorithms, were described in detail
and further emphasis will not be put here. The main difference between different
algorithms is the computation time, which plays an important role in the image-based
tracking process.

Similar to a reflector tracking process, the difference between the crosshair point
and object center needs to be constantly minimized. Therefore, if change or movement
of the object is detected, the telescope is guided until the before-mentioned difference
(cf. Sect. 5.3.2) is reduced to zero. Applying this in a continuous sequence creates
the image-based tracking process. The quality of this process is mainly dictated by
image resolution, optical zoom capacity, data transfer rate, processing speed, object
speed, and telescope rotations speed.

5.5 Applications

5.5.1 Example of Static Object Recognition and Positioning

In this example, the position of an unmanned ground vehicle (UGV) should be
determined by the presented image-based method. The concerned object is a model
of a tracked loader at scale 1:14 (Fig. 5.19).
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Fig. 5.19 Tracked loader model (units are given in millimeter)

The used instrument is the Trimble S7 robotic total station, including a digital
camera which has a field of view of 20.3◦ × 15.2◦ [35].

The following presented steps are embedded within a control program, in order to
automatically steer the total station. Most state-of-the art total stations can be steered
externally by receiving commands from laptops or PCs via defined interfaces. This
allows the user to create application and problem oriented programs. The steering
possibilities concern almost every component group of the tachymeter (cf. Sect.
5.2). The interfaces also allow outsourcing image processing algorithms and others
to external devices, in order to not overstrain the internal processor of the total
station. In the current configuration, the steering program for the Trimble S7 total
station is implemented in the programming language C#. The image processing
algorithms are implemented in Matlab©. The superordinate control program, which
coordinates and synchronizes the data flow between the individual programming
components, is realized in the graphical programming language LabView from
National Instruments.

The implemented steering program let the total station automatically move the
telescope by pre-defined angles in vertical and horizontal directions, capture images,
and deploy reflector-less distance measurements.

The flowchart of the specific total station steering program for object recognition
and positioning is depicted in Fig. 5.20.
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Fig. 5.20 Flowchart of static, image-based object recognition

After the image has been captured by the camera module, the feature extraction by
the use of the SURF algorithm, according to Sect. 5.4.2, is conducted. The extraction
result in the reference image is depicted in Fig. 5.21.

Accordingly, Fig. 5.22 shows the extraction result in the test image. The image was
captured from another perspective than the reference image. This should underline
the performance of the SURF algorithm, where test images might be taken from a
different perspective, but the matching robustness is still given.

It can also be seen in Fig. 5.22 that features that are neither part of the object nor
part of the reference image have been detected and extracted.

Subsequently the matching step, according to Sect. 5.4.3 is performed. The
matching result is shown in Fig. 5.23.
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Fig. 5.21 Detected and extracted features in the reference image (green circles)

Fig. 5.22 Detected and extracted features in the test image (green circles)

It can be seen that many features are matched faulty. Therefore, the MSAC
algorithm is applied to the first matching result. After the MSAC filtering, clearly
fewer matches are left. These matches are unique and correct (Fig. 5.24).

Now the object recognition can be followed up by the use of the pixel-to-pixel
transformation, described in Sect. 5.4.3. After this step, the object is uniquely
identified in the test image (Fig. 5.25).
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Fig. 5.23 Matching result before MSAC filtering (left: reference image; right: test image)

Fig. 5.24 Matching result after MSAC filtering (left: reference image; right: test image)

Fig. 5.25 Object identified in the test image
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In the last step, telescope Hz and V angles are calculated from the pixel coordinates
of the test image, according to Sect. 5.4.4. After the automatic aiming (setting of
Hz and V angles by the servomotors), the reflector-less distance measurement is
triggered, and the position is obtained by Eqs. (5.4)–(5.9).

5.5.2 Example of Kinematic Image-Based Object Tracking

Tracking is generally understood in engineering geodesy as the process of
following moving objects with a certain sampling rate. The complete process is
comprehensively explained in Sect. 5.3, and further on, emphasis on the same
process will be extended with the use of images. In contrast to using a reflector
to signalize the object, using images offers versatility and flexibility of choosing
which object should be tracked just by acquiring an image of it. This means that the
object does not necessarily need to be accessible. First similar attempts and principle
descriptions can be found in Bayer et al. [36].

Specifically, in the case of IATS used for object tracking, images are processed to
constantly identify and track the desired object. Further on, this section will provide
an insight into the image-based tracking principles that uses a SURF algorithm to
identify the object in each frame (image) and then track it.

Recently, a system comprised of a Leica TS16i IATS and the control software
running under Matlab© was developed at the Institute of Engineering Geodesy. The
TS16i is a high precision tachymeter that includes an overview camera with a 5
MPixel CMOS sensor. For object identification and tracking, a SURF algorithm is
used. The camera has a 15.5◦ × 11.7◦ field of view and is capable of capturing up
to 30 frames per second. Four optical zoom levels are available in this case and can
be used for tracking at different distances.

Processing of the frames (images) takes place on an external computer that
constantly receives and sends data to the IATS. The physical connection is realized
through a wireless network, and the developed program uses functions from the
Image Processing Toolbox in Matlab. Examples of some of these functions are
image read, detect SURF features, extract features, and match features.

Leica instruments can be controlled from an external source only with the use of
special commands, sent as an ASCII message and defined by the GeoCOM Protocol
[37]. Depending on the hardware integrated into the IATS, only some commands
are available. In the present, the CAM and MOT commands are used for controlling
the camera and servomotors of the IATS.

In the first phase, the user needs to select the object that is going to be tracked.
This can be done either by directly capturing an image of it and then cropping the
area with the object or from a previously taken image.
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Fig. 5.26 Original image (left) and identified feature points (right)

Once the object is selected, unique features (points) are identified on the object
and will serve as a basis for the tracking loop. Objects with a rich texture and varying
geometry are the best suited in this case. This fact may be observed in Fig. 5.26,
where the letters in the IIGS logo do not have the same amount of feature points as
the building in the logo center.

The object center is then determined, and from this point, the telescope is guided
based on each processed frame. From the hardware point of view, this can happen at
a rate of 30 fps or 30 Hz, but due to practical reasons for processing speed, a rate of
10 fps has been chosen. Additionally, a distance measurement can be made (without
reflector) and the absolute coordinates of the object are obtained. This whole tracking
process is currently limited to a 0.5 Hz update rate, mainly caused by transfer and
processing speed. Finally, the process can be summarized as seen in Fig. 5.27.

5.6 Quality Control of Total Stations in Kinematic Mode
Using a Laser Tracker

During total station measurements, the measurement quality and accuracy cannot
be internally evaluated. Therefore, external measurements, by instruments with
higher accuracy are required. One such instrument is the laser tracker. Different
manufacturers offer laser tracker systems, often in combination with an additional
accessory.

The laser tracker API Radian has been used for the following experiment
examples. The distance measurement accuracy of the laser tracker is 250 times
higher in kinematic mode and 500 times higher in static mode than that of the used
robotic total station. The angle measurement accuracy is about 1.5 times better.
The active target has the ability to permanently align with the tracker’s laser beam
and thus always keep the line of sight, independently of platform’s orientation. The
mechanical realization of the alignment is based on two servo actuators for setting
the horizontal and vertical directions. Figure 5.28 depicts both instruments and their
properties.
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Fig. 5.27 Tracking process
flowchart

Example 5.1 is conducted in combination with an active target, whereas Example
5.2 uses the regular laser tracker reflector SMR (Spherical Mounted Reflector) [38].

Detailed descriptions on the functionality of the active target are not published
by the manufacturer. However, Kyle [40] presents an approach on the alignment
functionality. The author describes an optical approach for the determination of the
orientation of the active target for indoor scenarios. This method is based on the
use of a pinhole reflector and a CCD array. Thereby a part of the incident laser ray
passes the pinhole reflector and hits the CCD array. The x, y coordinate of the CCD,
which was encountered by the ray, is depending on the direction of the emitted light
source. Hereby the position of the reflector as well as the coordinate system of the
laser tracker is known and can be determined or measured directly [40].
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Fig. 5.28 Overview of the measuring systems used for quality evaluation [38, 39]

Example 5.1
One application scenario is the quality control of a robotic total station in the field
of guidance of unmanned ground or air vehicles (UGV, UAV). In such a scenario,
an unmanned vehicle is controlled by the total station, which operates in kinematic
mode within a closed-loop system. The total station serves as a sensor. In this specific
experiment, reflector-based distance measurements have been performed. The total
station provides the positions for the control algorithm. Within the control algorithm,
these positions serve as controlled variables. The resulting guidance performance is
dependent on the control quality, mainly influenced by the guidance algorithm and
the measurement accuracy of the total station. The resulting combined accuracy is
the quadratic sum of the two quantities. Hence, neither the quality of the guidance
algorithm performance nor information about the measurement accuracy is known.
Without an external, high accuracy measurement device, it is not possible to split up
these two quantities from the combined measure. The laser tracker helps to overcome
this drawback.

Figure 5.29 exemplarily depicts the measurement setup to solve the underlying
problem.

The loop performs as follows: the tachymeter measures the position of the prism,
mounted on the UGV, and sends it to the control computer. The computer calculates
the perpendicular distance/lateral deviation between the UGV position and the
reference trajectory. Based on this information, the algorithm calculates the best
steering angle to get the UGV back on the reference trajectory as fast as possible.
The UGV is equipped with an active laser tracker target and additionally with a 360◦
passive tachymeter reflector (Fig. 5.30).

The 360◦ reflector in combination with the total station provides the positions
for the vehicle’s guidance system. The active target in combination with the laser
tracker provides external, independent position measurements. The two reflectors
are arranged one above the other in a vertical line. Thus, the recorded horizontal



5 Image-Based Target Detection and Tracking Using Image-Assisted Robotic. . . 165

Fig. 5.29 Measurement setup for quality control [41]

Fig. 5.30 Active target and
360◦ passive reflector
combination [41]

coordinates are referenced to one unique reference point. The two quality parameters,
namely the control quality and the measurement accuracy, may be expressed as root
mean square values (RMS).

To perform the separation between the measurement accuracy and the guidance
quality, the following definitions have been made according to Beetz [42]:

• The measurement accuracy is the RMS between the tachymeter trajectory and the
laser tracker trajectory.
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Fig. 5.31 Moving trolley with laser tracker reflector (SMR) (left) and the target with feature points
as identified by the IATS (right)

• The control quality is the RMS between the reference trajectory and the recorded
laser tracker trajectory.

• The combined measure, the RMS between the reference trajectory, and the
recorded tachymeter trajectory can be determined, too.

The results for the Example 5.1 reveal an RMS of 0.0028 mm for the tachymeter
measurement accuracy and an RMS of 0.0031 mm for the control quality for the
UGV [41].

Example 5.2
In order to test the system’s performance, a target has been placed on a small
trolley that is moving on a miniature railway and tracked during the movement. The
reference is given by a laser tracker measurement of a reflector placed on the exact
same axis of the trolley (Fig. 5.31). For both kinematic measurements, the object
was manually shifted.

The results are further presented, and the differences between the coordinates
obtained from laser tracker and IATS can be observed in Fig. 5.32. A systematic
deviation is first noticeable in comparison to the tracker measurement. After shifting
the tracker coordinates by 5 mm in the X direction, which is a manual correction, a
plausible comparison may be conducted. Consequently, the tracker coordinates were
fitted to a fourth-degree polynomial function, and the individual distances from the
IATS coordinates to this regression line were computed. A mean value of 0.6 mm
for lateral deviation was achieved.

Future improvements foresee the identification of this systematic effect and the
usage of more efficient image processing tools in combination with a real-time
industrial controller unit like the CompactRIO System from National Instruments
that would help reduce latency time.
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Fig. 5.32 Differences between IATS and laser tracker measurement of the same reference line

5.7 Conclusion

The contribution aimed at advertising the geodetic instrument tachymeter, sometimes
also called total station, to the machine vision community. The authors focused on
the automated version, the robotic total station that may track moving objects without
intervention of the user. The limitation up to now is that the tracked object needs to be
equipped with a mirror (reflector) that reflects a transmitted laser beam transmitted
by the tachymeter. These principles are described in an overview before the new
features like built-in cameras are highlighted. These cameras open the way to image
processing and object recognition or, with other words, to machine vision. In this
contribution, the advances in object detection and tracking using image processing
techniques like the well-known SURF and the SIFT algorithm are presented. The
algorithms have been implemented on high-end total stations available on the market.
The results are encouraging, especially with respect to the measurement accuracy.

The expected accuracy will be less than 1 mm in tracking mode if the systematic
effects of the evaluation procedure are eliminated. The measurement accuracy is
determined using a laser tracker delivering accuracies around 10μm level for distance
measurements. The tracking rate needs to be increased in the future to assure a
continuous homogeneous real-time tracking. When the algorithms will run in real-
time with a tracking rate of 10–20 Hz, any objects, even if they are not equipped
with a reflector, may be tracked.

A remaining challenge is the synchronization of the total stations with other
sensors within sensor fusion algorithms. The authors will further work on the open
issues and see the results as a valuable input for the research within the DFG
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Research Cluster of Excellence “Integrative Computational Design and Construction
for Architecture” that will start in 2019 at the University of Stuttgart.
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Chapter 6
The Methods of Radar Detection
of Landmarks by Mobile Autonomous
Robots

Oleksandr Poliarus and Yevhen Poliakov

Abbreviations

GPS Global Positioning System
MAR Mobile autonomous robots
EMW Electromagnetic waves
AP Antenna pattern
RCS Radar cross section

6.1 Introduction

The development of the theory and practice of modern mobile autonomous robots
(MAR) involves providing the necessary accuracy of their navigation in unknown
terrain of the earth or another planet. The robot’s position on the earth surface is
qualitatively determined by the GPS or other navigation system, but in some cases, the
efficiency of the GPS can be reduced, for example, due to the limited visibility of the
satellites. In such situations, it is convenient to use on-board sensors of various types
to determine the coordinates of various objects of the environment [1] or important
navigating landmarks. These landmarks are used to measure the angular coordinates
of a robot and to solve the problem of its localization [2]. The logical approach
is to place on-board sensors in different ranges of electromagnetic waves (EMW)
(microwave, optical range, etc.). They scan the surrounding space and find obstacles
that appear on the way of the robot. Not all objects outside the robot’s path may
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represent much interest for it, but if some of these objects are clearly distinguished
above the ground and have the known coordinates, they are potential landmarks
for the robot. If the robot reliably detects them and determines their coordinates
with the desired accuracy, then the practical use of landmarks becomes real. As a
rule, these landmarks are passive ones, that is, they only reflect the electromagnetic
waves generated by the radar transmitter that is located at the robot. Near them, there
are many secondary emitters (separate dimensional objects, trees, dense bushes,
vegetation, the earth’s surface irregularities, etc.) that create the background of
reflected signals whose amplitudes may exceed the amplitude of the signal reflected
from the landmark. The sounding of the surrounding space by a robot is often
performed in the range of light wavelengths [3, 4] or in other bandwidths of the
frequencies [5]. The chapter discusses only the radiofrequency range of waves in the
interest of detecting landmarks and determining their coordinates. This wavelength
range may be basic or additional one depending on the tasks facing the robot. The
possibilities of simultaneous use of different wavelength ranges for solving the main
objectives of the robot are also discussed in the chapter. In conditions where it is
impossible to detect the echo signal from the landmark, a method for detecting the
abrupt changes in signal amplitude during the scanning of landmarks of a special
form is proposed.

6.2 The Navigation Problem of Mobile Autonomous Robots

Let the mobile autonomous robot navigate in unknown terrain in the absence of GPS
signals on it. A radar or several small radars operating at different frequencies, which
differ significantly, are mounted on a robot’s board. The system can operate together
with laser, ultrasound, and other measuring systems and can duplicate the capabilities
of the technical vision system. Information from all measurers is processed by the
system of intellectual data analysis, which makes the decision on the robot’s position
on the ground, as well as the type of terrain, the shape of the relief, which is
also necessary for navigation. The chapter deals with a comprehensive approach to
radio navigation problems and discusses some issues related to the integration of
measuring information.

We believe that a robot scans the surrounding space for determining the position
of the robot on the terrain, classification of the type of terrain, and the shape of the
relief. All surrounding objects are divided into concentrated and distributed ones.
The examples of concentrated objects are objects of human activity (cars, pillars,
separate buildings), as well as natural ones (a separate tree, a hill in plain terrain).
The distributed objects are almost all the continuous buildings in the city, forest,
cross-country, etc.). Radio navigation of mobile robots, as a rule, can be done using
concentrated objects with known coordinates. If the coordinates of a single object
are determined in the process of measurement, then in some cases, this object can be
considered as reference one. The distributed objects of a specific form that clearly
stood out against a background of the environment can also be used to navigate
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the robots. The radar method involves radiation of the objects by EMW of different
frequency. Let us consider the top view on the edge of an even surface without
vegetation, which is irradiated by a radar of a robot (Fig. 6.1).

Reflected electromagnetic waves are formed on even surfaces, the centers of
which are points A, B, C, D, but in the direction toward the radar antenna, the
reflected signal (echo signal) comes only from point B. It carries information about
the distance from the radar to point B, but for the conditions of Fig. 6.1, this is the
distance to the entire surface.

If the flat (in global sense) surface has a small-scale irregularity with mean height
h or vegetation (grass, bushes), etc., the reflected signals reach the antenna radar
from all points of this surface (Fig. 6.2).

The signal reflected at point B has the greatest amplitude. At the input of the
receiver of the radar in the process of scanning, there will be a random process of
amplitudes of echo-signals with an abrupt increase of amplitude at the moment of
passing the direction of the main lobe of the radar antenna pattern (AP) through this
point. Such a sharp increase of random amplitude at a certain point in time is called
the “jump” of the amplitude. The analysis of such jumps is carried out further, where
the possibility of their application for navigating robots is also estimated.

Fig. 6.1 The scheme of reflection signal formation during scanning an even surface

Fig. 6.2 The scheme of the echo signal formation from the even surface with small-scale
irregularities
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The scheme, shown in Fig. 6.2, is transformed into a scheme (Fig. 6.1) in cases
where Rayleigh’s criterion is fulfilled [6]

h <
λ

8 cos θi
, (6.1)

where h is the largest height of small-scale surface roughness, λ is the wavelength
of radiation, θ i is the incidence angle of the wave on the surface at a certain point i
(Fig. 6.2).

At point B, the incidence angle of the wave θ i = 0 and then h < λ
8 . Hence, the

EMW reflection at point B is a mirrored one if the maximum height of the surface
irregularities does not exceed eighth of the wavelength. At λ = 1 m, this height
reaches 12.5 cm, and from such an uneven surface, there is a mirror reflection. The
domains around other points A, C, and D (usually this is the first Fresnel zone)
form a diffuse reflection of the EMW in the direction toward the receiving radar
antenna of the robot. For convenience and simplicity of the terminology, we will
call the domain around point B, which reflects EMW in the direction of the radar
antenna, a mirror point. If the Rayleigh criterion is not satisfied, the EMW reflection
at point B is diffuse and the amplitude of the echo signal, as well as the probability
of an amplitude jump, can be substantially reduced. Reflection of waves with small
lengths from a flat surface, as a rule, is diffuse, since on a real surface, small-
scale irregularities and vegetation exist almost always. Thus, in accordance with the
Rayleigh criterion, it is necessary to use radiation with a relatively long wavelength
λ > 8h cos θ i to obtain a mirror reflection of the EMW from a rough surface. For
the conditions shown in Figs. 6.1 and 6.2, the mirror points from the domains A,
C, and D cannot be obtained; however, if the earth or other surface is a curved one,
then the appearance of echo signals from similar points becomes possible if θ i = 0,
that is, the part of the curved surface is flat and perpendicular to the wave vector of
the incident waves. Moreover, there may be several points B1, B2, and B3, in which
there is a mirror EMW reflection in the direction toward the radar antenna, which is
installed on the mobile robot (Fig. 6.3).

Fig. 6.3 The scheme of formation of echo signals from an uneven smooth surface
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There are two main cases here. In the first case, the robot scans the surrounding
space by antenna with a narrow antenna pattern (AP). This can be achieved using
a small wavelength (centimeter or millimeter wavelength range). The irradiation of
the points B1, B2, and B3 is carried out sequentially, and the radar receiver takes the
echo signal from each mirror point at different moments of time, and these points
are distinguished by angular coordinates. In the second case, EMW with a large
wavelength is used and the antenna has a wide AP.

EMW reflection from the points B1, B2, and B3 becomes mirrored, but the echo
signals are not distinguished by angular coordinates. In the antenna aperture, there is
an interference electromagnetic field. By using this field, it is difficult to distinguish
information about the reflected signal from each mirror point, the number of which
may not be known. Determining the angular position in many cases needs a radar
with a narrow AP antenna. Although the diffusive EMW scattering prevails, the
mirror component of the signal’s amplitude may be enough to distinguish a mirror
point in the process of scanning against the background of diffuse reflection of the
electromagnetic waves.

Previously, a heuristic analysis of the process of waves scattering from the earth’s
surface was carried out. There are various methods for calculating the characteristics
of scattered waves, but it is impossible to use them in practice since it is difficult
to describe the estimated situation because of changes in location conditions in the
process of scanning and movement of the robot. However, during robot’s navigation,
it is expedient to get the maximum information about the surrounding area, especially
when a priori information about the area is limited, for example, when a robot moves
on another planet. The echo signals from the terrain contain information about the
shape of the relief, the presence of vegetation, forests, and concentrated objects
of artificial and natural origin. The characteristics of signals can be calculated in
advance for the typical conditions of robot navigation using modern methods of
analysis. Further, the intelligent systems that are installed at a robot will likely be
able to determine the nature of the area on which it moves.

According to Rischka and Conrad [7], the landmark is a physical object created
by man or nature, which is easily recognized by technical means. A landmark
recognition by mobile robots involves the use of sequential comparison of the
landmark video images with the reference images previously recognized [8]. Strict
geometric methods of determining the landmark shape are not rational, since its
real form can be blurred, for example, a pillar covered with trees, and the number
of different landmarks can be large. In [7], it is reported that a database of 900
landmarks has been created. It is important here to determine the characteristic
features of the landmark and to attribute it to any group, unless, of course, it is
not unique. Consequently, there is a problem of constructing landmark models, as
well as models of unknown terrain, which can be used to construct a map. The
landmarks and unknown environmental models can be built not only based on video
observations but also with radar observations, because in many cases it is difficult
to obtain high-quality video images of landmarks and the surrounding terrain, for
example, at night, fog, etc.
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Currently, self-controlled robots have already been created. They can detect
obstacles and automatically eliminate the possibility of collision with them. To do
this, at a robot, ultrasound and other sensors are used together with the corresponding
software [9]. The range of these sensors is small, and, therefore, they are compact and
consume insignificant energy. Increasing the range of sensors is not required, which
is due to the low speed of robots. For high-speed robots, for example, automatic
cars, the requirements for the range of obstacles are increasing. A reliable means of
implementing these requirements is the use of radars at robots.

A more powerful means of obtaining reliable and qualitative information about
the surrounding space is the association of measurement information obtained by
different types of sensors, for example, ultrasonic, radar, and mechanical. This is the
problem of collecting measurers or mixing information from sensors built on various
physical principles [10]. Localization of mobile robots on the ground most often
uses triangulation methods [11], which also use radiation in different wavelengths,
in particular laser, based on dynamic triangulation [12] and neural network for
improving 3D laser scanner measurements [13]. Naturally, for the analysis of radar
information, it is necessary to know the reflection properties of the surrounding area.

6.3 EMW Reflection from the Surrounding Area in Different
Frequency Ranges

There are many scientific papers in which methods of calculating the parameters
of scattered waves from the objects are analyzed. Let us consider them briefly and
make the main conclusions from the results of theoretical and experimental studies,
which may be useful for the robots’ navigation.

The method of calculating the characteristics of scattered waves should be chosen
based on the frequency range of the EMW, the polarization of the waves, the shape
and state of the reflection surface, and some other factors that are not considered
here. To calculate the characteristics of scattered waves on a surface with small-scale
irregularities, the method of small perturbations is used, and if the radius of curvature
of the surface is considerably greater than the wavelength, Kirchhoff’s approximation
is preferred [6]. To determine the required characteristics, it is necessary to have
information about the coefficients of reflection of the EMW from the surface, which,
in turn, depend on the complex dielectric permittivity ε̇ = ε− j60λσ of the surface,
where ε is the real value of the dielectric permittivity of the soil, λ is the wavelength,
and σ is the specific conductivity of the soil. For different types of soil, they are
presented in Table 6.1 [14].

Table 6.1 presents the electrical characteristics of some homogeneous soils. In
the presence of heterogeneous distributed objects on the ground, the electrical
characteristics of a complex system are replaced by equivalent or effective values. If
there is a vegetative cover on the black earth surface, then the effective value of the
permittivity for the wavelength λ= 3.2 cm is εef = 4–9.5 in summer and εef = 12 in
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Table 6.1 The values of components of the complex permittivity for different types of soils

The values of the components of dielectric permittivity

No. Kind of soil
The real part of dielectric
permittivity, ε

Specific conductivity of the
soil σ , Cm

m

1 Snow 1.2 2 · 10−4

2 Dry soil 2.5–4 10−2–10−1

3 Wet soil 4–20 10−2–3
4 Crystalline rocks 5–10 10−6–10−4

5 Water 60 10−3–10
6 Seawater 80 4–6.6

winter. Similar characteristics at the same wavelength for meadows with shrubs are
εef = 10–12 in summer and εef = 2.3–2.7 in winter, and for forest areas εef = 2.5–5
at wavelengths from 1.25 to 70 cm. The specific conductivity of soil with abundant
vegetation is very difficult to simulate, as many factors are affected on it.

From the given data, the electrical characteristics of the soil are diverse, and
therefore, it is difficult to create a single model. As a result, after applying Maxwell’s
equations, we usually pass to the estimation of the fields of scattered waves, using
the transport equation, the Green’s functions, and approximate solutions of integral
equations for the surface current [14]. The electromagnetic field of waves reflected
from an arbitrary surface is determined as the sum of the field reflected from some
average smooth surface (not necessarily equal), and the perturbation fields caused
by the scattering of waves by small-scale irregularities. The boundary conditions
are transferred from the general surface to an averaging smooth surface, which is a
complicated procedure. Thus, in determining the general scattered field, the method
of small perturbations and the Kirchhoff method are used simultaneously.

The concepts of small-scale and large-scale irregularities are closely related to
the wavelength, as can be seen from the Rayleigh criterion. The surface shape,
which is determined by a certain complex function h(x, y), can be represented as the
sum of the products of orthogonal functions on random coefficients, for example,
coefficients of the Fourier series. For each type of surface, the random coefficients are
distributed according to some law. For practical purposes, a function that describes
the shape of a surface is often represented as the sum of three functions [15]. The
first function describes large-scale irregularities, the second one small-scale, and
the third one the effective height of the structure, which is formed by elements of
vegetation. For navigation of robots, the reflection of the waves from the surface
toward the radar antenna requires information on the reflection coefficient of the
EMW in this direction. The surface in this case is modeled in the form of a set
of facets, each of which is covered by small-scale irregularities [15]. The resulting
field is the sum of the coherent and incoherent representations of all facets. The
main factor determining the wave field is the phase relationship between the partial
reflected waves, especially when the number of these waves is small.

The specific effective EMW reflection surface (scattering surface) of statistically
rough isotropic surfaces at angles of falling close to zero (the wave vector
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perpendicular to the plane tangent to the surface at a given point) is determined
by the expression [15]

σ0 = K2
f0

l2h

4σ 2
h

e
− l2

h

4σ2
h

tg2θ

, (6.2)

whereKf0 is the complex coefficient of the mirror reflection of EMW with frequency
f0, σ 2

h is the variance of heights of small-scale irregularities, lh is the radius of
correlation of these irregularities, θ is the incidence angle of the wave to the surface
(it is known that θ = 0, if the waves reflect in the direction of the radar antenna).

The analysis of scattered waves by different structures of the surface has shown
[15] that σ 0 depends on a complicated way on the frequency of the EMW. At
large-scale irregularities of the surface, the specific reflection area is practically
independent of frequency. Since the scale of irregularities substantially exceeds
the wavelength, the mirror reflection of the waves dominates. It is the reason that
with the increase of the angle of incidence of the wave on the surface, the part of
mirror reflection toward radar and σ 0 sharply decreases rapidly. The presence of
small-scale irregularities causes the change in the specific effective surface of the
scattering, depending on the frequency of the laws from λ0 to λ−4. Thus, the radar
of a robot can distinguish the presence of type of irregularities on the surface if it
is equipped with transmitters and receivers operating at different frequencies. After
calibration of the radar equipment, the reflected signals at different frequencies will
be close in amplitude, if the waves reflect from mirror points, and on the surface,
there are large-scale irregularities of the relief. During the robot movement, the
nature of the terrain and the amplitude of the echo signals can vary, which is due to
a significant dependence σ 0 on the presence of distributed objects on the surface.
Table 6.2 describes some specific effective areas of wave reflection from the surface
of the earth for different wavelengths [15].

Table 6.2 Specific effective areas of wave reflection from the earth’s surface

No. Type of terrain Parameter values
Wavelength, λ, Ôm Specific effective area, σ 0

1 Dense forest 3.2 0.1–0.8 (in summer)0.6–0.7 (in winter)
2 Woodland 0.86 0.08

1.25 0.02–0.05
3.3 0.003–0.06

3 Forest 8 0.8
70 0.6

4 Meadow with shrubs 3.2 3–7 (in summer)
5 Inhomogeneous terrain 0.32 0.4

0.86 0.9
6 Desert 8 2.2

70 0.5
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Thus, on the basis of the frequency dependence of the amplitudes of echo
signals from the surface type, the nature of the roughness on it can be determined
(large-scale and small-scale). More information on irregularities based on this
approach is difficult to obtain. If during the scanning the domains of the surface are
heterogeneous, then the analysis of the echo signals can lead to erroneous conclusions
about the change of the irregularity’s nature, whereas really the type of the terrain
has changed. For example, the specific area of scattering at a wavelength of 0.86 cm
is an order of magnitude smaller for wooded area than for inhomogeneous terrain
without forest [15]. There are some important features for the practice of reflecting
millimeter waves from the surface, which are considered, for example, in [16]).

In the optical range, waves dissipate diffusely from objects which are important
for robot’s navigation. The energy of the reflected waves is directly proportional to
the diffuse scattering coefficient ρd, that is, to the ratio of the reflected and falling
light flux [17].

In most cases, the lower values ρd correspond to smaller wavelengths of the
optical range, and the upper values to the largest lengths of this range. Reflection
from coniferous trees does not have such dependence. So, in the range λ = 0.6–
0.7 μm with increasing wavelength, the coefficient ρd first decreases, and then
increases again.

The summarized information of this section can be used to construct models of
random processes of echo signal amplitudes that arise during the scanning of surface
by a radar antenna of a robot.

6.4 Mathematical Models of Random Processes Describing
the Amplitudes of Echo Signals from the Distributed
Objects

Random processes of amplitude of echo signals at the input of the radar receiver
are formed during scanning the surrounding space by an antenna of the radar while
a robot moves. Even for a static robot, a random process is created after the radar
antenna irradiates a certain part of the surface of distributed and concentrated objects.
During scanning, the type of the surface is changed randomly for the observer due
to changes in the relief, vegetation, and so on. Correspondingly, the characteristics
of random echo signals are changed at the input and output of the radar receiver.

The size of the irradiated part of the surface depends on the width of the radar
AP and distance between the robot and surface (Fig. 6.4). Reflected signals come to
the antenna from all irradiated areas of the surface. Their amplitude is determined
by the width of the AP and the type of the surface with small-scale irregularities and
vegetation. With uniformly distributed characteristics of irregularities and vegetation,
there is a certain stationary random process (Fig. 6.5) of amplitudes of echo signals
at the receiver input. The wider the AP, the more reflective elements of the irradiated
surface are involved into the echo signal creation in a certain direction, which leads
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Fig. 6.4 A scheme of rough surface area irradiation by radar antenna with narrow antenna pattern

Fig. 6.5 An example of the realization of a stationary random process of amplitudes of echo signals
that reflect from the rough surface during its scanning

Fig. 6.6 An example of the realization of a random process of amplitudes of echo signals reflected
from the rough surface during its scanning in the presence of mirror points on the surface

to the averaging of the amplitudes and a decrease of variance of the echo signal
fluctuations. If the terrain changes radically, for example, there is a transition from
the steppe to the wooded area, the variance of the echo signals can be substantially
changed. This is an important feature for binding the robot to landmarks in navigation
of the robots.

The process described above refers to the diffuse reflection of signals from the
surface. In the presence of mirror points on the surface at certain moments of time
due to the mirror component, the amplitude of the echo signal from the surface in a
certain direction may increase sharply, that is, a jump of amplitude (Fig. 6.6) occurs.
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This phenomenon can also be used for robot navigation. The amplitude of the
jump is completely determined by the mirror component of the reflected signal, and
the latter depends on the type of the surrounding area. The duration of the jump is
determined by the scanning speed of space by the antenna. The shape of amplitude
jump in simulation can be described by the Gaussian law. For reliable detection of a
jump, it must have good energy characteristics, that is, amplitude and duration. The
duration of the jump is determined by the nature of the transition from the completely
diffuse reflection of the EMW from the surface to the mixed diffuse-mirror reflection
and, naturally, the speed of space scanning. With a fast scan, the amplitude jump is
difficult to detect against the background of diffuse reflected signals and interference.
Slow scanning allows us to create conditions for detecting a amplitude jump.

Thus, in the scanning sector of an antenna with a narrow AP, the random process
is represented by the sum of the stationary random process and random functions
that at random moments describe the jumps of the amplitudes (Fig. 6.7).

If the length of the EMW is large (decimeter, meter waves), that is, the condition
of mirror reflection (6.1) is executed, diffusely reflected echo signals will have a
small amplitude in comparison with mirror signal amplitude, and in some cases,

Fig. 6.7 A scheme of formation of a total random process of amplitudes of echo signals, reflected
from a rough surface during its scanning, in the presence of three mirror points on the surface
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they can be ignored. The radar AP at a robot of small size cannot be narrow, since
its width is proportional to the wavelength and inversely proportional to the linear
antenna size. Consequently, the antenna irradiates a large area of the surface. The
echo signals from the surface are formed in the direction of the radar only from the
mirror points. The number of these points is determined by the width of the AP and
the type of large-scale irregularities on the surface, which, in general, determine its
shape. For a flat surface, one should expect one mirror point. For a complex form
surface, the number of mirror points can reach several units. If the mirror point is
one, then diffuse signals are observed at the receiver input, the amplitude of which
depends on the roughness, and on a large amplitude jump that can be easily found.
In the presence of two mirror points, an interference pattern of two oscillations with
different phases is formed, that is, the total oscillation may have amplitudes from
zero to double amplitude from two mirror points. In this case, in the process of
scanning within the width of AP, we can first get one mirror point, then two, then
again one mirror point. Other variants of forming a total echo signal are possible. A
similar picture is observed for cases of falling several mirror points into the width
of the AP. A random process describing the echo signal from a rough surface in this
case may be nonstationary. It can have a significant change in the mean value, but
variance can behave in a complicated way: on the one hand, due to small diffuse
scattering, it should be small, and on the other hand, due to random interference
effects with deep fading, it can reach large values.

There is another option of EMW reflection from the surface when the number
of mirror points is zero. This corresponds to the situation (Fig. 6.8) of scanning an
oblique surface, when at the input of the receiver only diffuse reflected signals will
be present. This is another feature of surface recognition by a radar of robot, but it
is possible only with the use of large wavelengths in relation to the size of surface
roughness.

Note that the characteristics of such waves are not distorted in the troposphere
of the earth, that is, the influence of the medium on the propagation of radio waves
can be neglected. Otherwise, it occurs with optical, millimeter, and even centimeter
EMW, which are distorted in the troposphere due to the influence of precipitation,

Fig. 6.8 Illustration of the absence of mirror points on an irradiated flat surface
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fog, gases, etc. We will assume that the range of the location is relatively small, so
that at distances such distortions of the characteristics of the echo signals do not
reach large values, that is, they should not be considered.

Now let us consider the effective surface area of distributed and concentrated
(point) objects, that is, backscatter echo area of these objects. The radar of a robot
irradiates the surrounding area in angular range, which is determined by the angles
θ , ϕ in two orthogonal planes. The transmitter power is P, transmitter antenna gain
is G = GmF2(θ , ϕ), where Gm is the maximum antenna gain and F2(θ , ϕ) is the
normalized antenna pattern. The receiving antenna has the maximum value of the
effective aperture area Aefm .

Using [18], one can obtain the formula for the radar cross section (RCS) σ e of
a diffusely scattering surface when it irradiates by EMW along the normal. At an
angle θ from the normal, we have

σe (θ) = 4SeRh,vcos2θ, (6.3)

where irradiated area on the scattering surface on the range r within the width of the
AP in two orthogonal planes 2θ0.5P and 2ϕ0.5P

Se ≈ r2 · 2θ0.5P · 2ϕ0.5P (6.4)

The coefficients of EMW reflection from the surface Rh, v are the effective
coefficients, that is, they consider the presence of vegetation on the surface, etc.
If the maximum value of the effective aperture area of the receiving antenna is Aefm ,
the signal power at the receiver output

Pr = PGmAefmF
4 (θ, ϕ) Rh,v2θ0.5P2ϕ0.5P cos θ

(4πr)2
. (6.5)

We consider that the domain of the surrounding area is simultaneously irradiated
by two antennas at different frequencies with the same width of the antenna. It
is easy to pick up by selecting the size of the antennas and the amplitude–phase
distribution of the electromagnetic field in their aperture. Before use, the measuring
channels at both frequencies are calibrated by changing the parameters P,Gm, Aefm

during irradiation of an even conductive surface from the same range. The result of
the calibration is the uniformity of the amplitudes of the reflected signals in both
frequency channels from the direction of the main lobes of the APs.

Let us consider the following model situation. The robot scans the surrounding
area at two different frequencies that are significantly different. Let, for example, the
wavelength of horizontal polarization in the first frequency channel does not exceed
3 cm, and the second frequency channel is in the meter range. As a result of scanning
a flat surface by EMW at two frequencies, the time dependences of the amplitude
realization of the reflected signal at the input of a radar receiver are shown in
Fig. 6.9.
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Fig. 6.9 The examples of the time dependences of the normalized amplitudes of signals, reflected
from the even rough surface: the red line shows the amplitude of the signal in the first frequency
channel; blue, in the second one

The time dependence of the amplitudes completely repeats the form of APs, and
in the meter range (second channel), the field amplitude is greater than that in the first
one, since the module of the coefficient of EMW reflection from the soil in the meter
range is higher than that in the centimeter one. When the soil moisture increases, the
difference between the red and the blue curves in the amplitude decreases. Because
of the diffuse scattering of the centimeter EMW, the zero amplitude values in the
first frequency channel (red line) disappear and the amplitude falls in the direction
of the main maximum of the AP. Thus, the presence of small-scale roughness on a
surface can be recognized qualitatively by the presented feature.

In the presence of mirror points on the surface, the above dependence A(t) is
destroyed (Fig. 6.10). In the meter range, the condition for mirror reflection of the
EMW (Rayleigh criterion) is still preserved, and therefore, in some directions, there
arise interference extrema of the field. In the centimeter band of the EMW, the
dependence of the total field on time is complex and differs essentially from the
previously deduced dependencies (Fig. 6.10).

It is easy to see that the reflection of an EMW from an uneven rough surface
forms the complicated structure of electromagnetic field at both frequencies. This
kind of dependence is exactly the evidence of a substantially uneven surface. Here,
however, it should be noted that if the correlation radius of large-scale irregularities
is significantly greater than the value r · 2θ0.5P or r · 2ϕ0.5P, for example, in Fig.
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Fig. 6.10 The examples of the time dependences of the signal amplitudes reflected from the rough
surface with three mirror points: the brown signal shows the amplitude of the signal in the first
frequency channel; blue, in the second one

Fig. 6.11 The examples of the time dependences of the signal amplitudes reflected from the rough
surface: the red signal shows the amplitude of the signal in the first frequency channel; blue, in the
second frequency

6.4, this case is similar to the previous situations, since the number of mirror points
tends to one.

In practice, the situation is often encountered, as shown in Fig. 6.8. In this case,
the EMW of meter band almost does not reflect in the direction of the radar if the
Rayleigh criterion is fulfilled. On the contrary, the centimeter EMW diffusely scatter
in the direction of the radar, as shown in Fig. 6.11.

The analysis of the figures shows that the comparison of the amplitudes of the
signals of two frequencies reflected from the surface allows to estimate approximately
the type of terrain of the surrounding area. The obtained results form a priori
information for the robots about the environment.

Until now, the time dependences of the amplitudes of signals reflected from the
terrain during the process of its scanning were considered. Echo signals can also be
obtained without scanning the environment. In this case, the antenna of a robot is
stationary, and the maximum of the AP is directed perpendicular to the line of the
robot’s motion. As a result, it should be expected that dependencies (Fig. 6.9) would
be converted into other ones similar to Fig. 6.5.
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Consequently, the presence on the ground of concentrated objects, which can serve
as landmarks for autonomous mobile robots, challenges the detection of such objects
and their coordinates with respect to other landmarks. Immobility of most landmarks
prevents the use of Doppler methods for separating echo signals from landmarks in
the presence of signals that are reflected from stationary terrain. The only approach
is to develop methods for detecting abrupt changes in the energy characteristics of
echo signals from the terrain that arise during scanning the surrounding area or
moving the robot along this area with fixed antenna. If the landmark is located on
the background of a complicated relief of the terrain, then scanning the terrain will
indeed lead to sharp changes in the amplitude of the echo signals (“jumps”) as under
the influence of interference effects in the adding of signals, reflected from the mirror
points and as a result of appearance of concentrated objects within the irradiated
region that can be used as landmarks. Reliable detection of amplitude jump signals
in this case is impossible. However, for the case presented in Fig. 6.10, the level
of the reflected signals from the terrain in both frequency channels is significantly
reduced. Thus, the most convenient situation in which the possibility of detecting
ground landmarks is possible is the location in the direction of the sloping terrain,
which has little forest and shrubs. This case can be considered as the main one for
navigating the robots. Hence, it is necessary to estimate the radar cross section of
concentrated objects and decide whether their choice can be used as landmarks.

Let us divide conditionally all practical situations into two groups. The first
group includes all cases in which a significant part of the energy of EMW from
the reflecting surface is directed to the antenna radar of a robot (e.g., Figs. 6.1 and
6.2). The second group covers cases of only diffuse reflection of EMW from the
surface (e.g., Fig. 6.8). The simplest mathematical model of the complex amplitude
of reflected monochromatic signals is

Ȧ(t) =
m∑

k=1

Ȧk(t)e
jϕk(t) + n(t) (6.6)

where Ȧk(t), ϕk(t) are respectively random complex amplitudes and phases of the
echo signals, reflected from the kth mirror point at the input of the radar receiver, m
is the random number of such mirrored points, n(t) is the white noise.

The model (6.3) describes the amplitude of the reflected signals in the first group.
In the second group, there is a sum of many diffuse components with low energetic
characteristics. For physical reasons, reliable detection of abrupt changes in the
amplitude of echo signals is possible only in the second group. For a numerical
estimation of this possibility, it is necessary to know the model of the echo signals
from the landmark as a concentrated object.
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6.5 Mathematical Models of Random Processes Describing
Amplitudes of Echo Signals from Concentrated Objects

The different concentrated objects of natural and artificial origin with various
scattering properties can be used as a landmark. Sometimes they are called the
point objects, because their size is much smaller than the size of distributed objects.

The radar cross section (RCS) of concentrated objects is given, for example, in
[19]. Therefore, RCS of a ball with perfectly conducting surface and radius r� λ is

σ = πr2 (6.7)

The RCS of a circular cylindrical metal pillar with radius r and length L is
determined by the formula [20]

σmax = 2πrL2

λ
(6.8)

RCS of a metal rectangular plate with dimensions a and b, which is much larger
wavelength, is

σp = 4πS2

λ2
(6.9)

where S is the area of the plate, the largest size of which is significantly smaller than
the distance r between the robot and the plate. The formula (6.9) is given for the
direction of the radar—the domain of the surface.

The analysis of formulas (6.7)–(6.9) shows that the RCS of the concentrated
objects varies depending on the wavelength of the EMW. This may be the basis for
the previous robot recognition of the landmark type. However, the main task is to
recognize the situation that is peculiar for the first and second group of reflected
signals. As previously indicated, this can be done on the basis of the use of essential
differences in random processes describing echo signals at different frequencies that
are significantly different. The robot’s decision about existence of the second group in
the given time range leads to the need for analysis of echo signals from useful objects,
that is, landmarks. It turns out that the RCS of these objects in the centimeter range
exceeds a similar index in the meter range, as can be seen from the formulas (6.4)–
(6.9). For the signals of the first group, everything was the opposite. Consequently,
this feature of RCS can be used to identify a situation that is characteristic of the first
group.

The dependence of the RCS of the concentrated objects on the angular coordinates
most often takes the form of a type sinα

α
, that is, it has a main lobe and several side

lobes. To detect the amplitude jumps of the echo signals, only the main lobe has the
actual value. Note that the AP of the radar also has a similar shape. Then the angle
α can be represented as a product� · t, where� is an angular scanning speed of the
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antenna. That is why the amplitude of the echo signal from the landmark should be
approximated by the Gaussian dependence

A(t) = A0

σα
√

2π
e
− (�·t)2

2σ2
α (6.10)

where A0 is some amplitude of the reflected signal, chosen during the simulation
or determined in the process of experimental research, and σα is a parameter
characterizing the width of the Gaussian dependence. It should also be considered
that α ≤ αmax, where αmax is the maximum value of the angle within which the
radiation and the reception of echo signals occur.

Hence, the maximum jump of the amplitude of the echo signal is proportional to
the maximum RCS value σmax and is frequency dependent. In the first and second
frequency channels of the receiver, the statistical characteristics of the echo signals
from the environment should be described by white noise, the level of which in
the centimeter range will most often be higher than in the meter range. The ratio
of amplitude jumps of the echo signals from the cylindrical metal pillar in the first
and second frequency channels are evaluated by the receiver measuring system and
estimated by the formula

	A1

	A2
≈ f1

f2
(6.11)

where f1 and f2 are the frequency of signals in the first and second frequency channels,
respectively. If the landmark is a flat rectangular plate, the ratio of the amplitudes of
these echo signals in both frequency channels is

	A1

	A2
≈
(
f1

f2

)2

(6.12)

which follows from a formula like (6.11) [20].
The described method makes it possible not only to recognize the landmarks

in some cases but also to find a connection of the MAR coordinates with these
landmarks. If the robot’s trajectory lies not far from the landmarks L1 and L2 (Fig.
6.12), then at the points S1 and S2 at different times the robot can detect these
landmarks. Since the distance d between these points and the angles β ij are known
in advance, the distance to the landmarks at each point of the robot’s trajectory is
determined by the methods of triangulation. Here the index i shows the number of
the current position on the trajectory of the robot, and the index j is the landmark
number.

Assume that the error of determining the distance d between the current points
of the robot’s trajectory is small. Then, the precision of estimating the position of
the robot relative to the landmark is determined by the errors of measuring the angle
coordinates β ij. As a result, the spatial errors of the determination of the working
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Fig. 6.12 Trajectory of the robot’s motion relative to two landmarks

robot’s position will be distributed within the ellipse with the axes kσ ξ and kση [21],
where k = √−2 ln (1− p0) and p0 is a probability of getting the robot’s position
errors into the ellipse with the indicated axes. The coefficient k = 2.15 for p0 = 0.90
and k = 3 for p0 = 0.99. The dimension of the error ellipse for one landmark is
estimated by the formulas [21]

σξ =
(

2∑

i=1

cos2 βi

ρ2
i σ

2
i

)−0.5

(6.13)

ση =
(

2∑

i=1

sin2 βi

ρ2
i σ

2
i

)−0.5

(6.14)

where ρi is the distance from the robot’s antenna (point S1 or S2) to the landmark, σ 2
i

is the variance of the errors of angle coordinate determination by the robot antenna.
The spatial errors σ ξ , ση of robot’s positions essentially depend on the distance

ρi between the robot and the landmark and are reduced at short distances. If, at
a distance ρi ≈ 300 m, the landmark orientation is determined with errors not
exceeding 10 m, then the measurement error of the angular coordinate is about 1◦,
which is not a problem for the radio engineering system of the robot.

The use of two frequency channels or channels with the processing of
fundamentally different signals (microwave, ultrasound, laser, etc.) provides the
mutual processing of measurement information that is hidden in the echo signals.
The development of optimal systems for measuring the echo signal parameters and
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the object coordinates useful for the robots is a very important problem, but usually
the classical schemes perceive the signal amplitude jumps as interfering spikes and
smooth them out.

6.6 Measurement of Amplitude Jump of Signals for
Landmark Detection by Mobile Autonomous Robots

Since the signal reflected from the landmark often has no peculiarities compared
to the background signal, its reliable detection by traditional methods is practically
impossible. However, there are opportunities to detect some landmarks. During
scanning the surrounding space by an antenna of the robot, a random process of the
amplitude of echo signal from the area irradiated by the transmitter is observed at the
input of the on-board receiver. The realizations of this process contain fluctuation
components, the nature of which is due to the conditions of EMW reflection from
the background elements of the terrain. The reflected signal from a landmark may be
hidden in these fluctuations, unless there is a resonance scattering of the EMW from
this landmark. In this case, during the terrain scanning, a amplitude jump may occur
that exceeds the background reflection of the waves and the internal and external
noise acting on the receiver input. The duration of the jump depends on the speed of
the scanning. The jump of the echo signal amplitude can also occur if, in a short time,
the nature of the area on which the robot moves essentially changes. The section
deals with the method of detecting jumps of the echo signals, which allows, in some
cases, to use this jump to identify a possible landmark by a mobile robot.

Detailed approaches to detecting abrupt changes in the dynamical system
occurring in unknown moments of time are set out in [1] (abrupt changes at an
unknown time point). In order to determine the abrupt (sharp) changes in [1], a unified
approach is proposed within the general statistical theory of quality control, signal
processing, automatic signal segmentation, and navigation monitoring systems. It is
based on the use of the likelihood ratio algorithm and estimation of the statistical
properties of the system. Before and after an abrupt change, two major models of
the stochastic process are analyzed, and Kullbek’s information is determined. To
detect abrupt changes, a non-parametric Bayesian approach is used. The value of
the signal parameter after the change is considered as known, and the probabilistic
characteristics of this change are not evaluated.

In the general case, obtaining an estimation of the signal parameter is carried out
by observing the maximum of the conditional a posteriori probability density of the
parameter described, for example, by the Fokker–Planck–Kolmogorov equation. This
stochastic equation in partial derivatives describes the evolution of the conditional
a posteriori probability density for the Markov process. It is very complex and
cannot be solved analytically [22]. A similar equation for high-frequency signals
was obtained by [23]. Maltsev and Silaev [24, 25] developed optimal algorithms
for evaluating the state of a dynamic system and identifying random jump-like
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variations of its parameters and determining the moments of their occurrence. The
systems of differential equations for a posteriori density of the probabilities of the
parameters of random processes, the solution of which by the approximate methods
leads to obtaining current estimates of parameters in a real time scale and the
median estimation of the jump moment, are obtained. The analysis is carried out
for the system described by the autoregressive process with a correlation coefficient
jump at a random moment of time. In [26], an optimal system for detecting and
estimating the sharp changes (jumps) of the amplitude of vibrations of machines in
real time was developed. The main aspects of this approach to detecting landmarks
for mobile robots are published in [27–29].

According to [1], the change in the signal parameter can be considered as abrupt
change if it occurs almost instantaneously or less than the sampling period, which for
MAR depends on the antenna rotational speed. The robot’s antenna scans the terrain
in a wide range of angles. The angular size of a landmark is small, and the time of
its radiation by this antenna is also little. This indicates that the signal reflected from
the landmark exists for a short time interval, that is, it generates a signal with a sharp
amplitude change, which we call the jump. The form of the amplitude jump is like
the shape of the antenna pattern, and, in the simulation, it will be represented by
a Gaussian impulse reflected from a metal pillar, for example. The electromagnetic
wave will be observed against the background of echo signals from the environment.
Their amplitude in time is described by some random processes. For simulation, we
will use reference random processes that characterize the reflection properties of a
certain terrain and are described by known stochastic differential equations (SDRs),
for example, of the following type:

dA(t)

dt
= −α · t + n(t), (6.15)

dA(t)

dt
= a (A, t)+ b (A, t) · n(t). (6.16)

In these equations, the parameter α characterizes the correlation properties and
the spectrum width of the random process, n(t) is a white noise, and the functions
a(A, t), b(A, t) are used to form a nonstationary random process. All functions must
be selected so that the random process is like the behavior of the reflected signals
from the terrain.

The amplitude of the reflected signals from the terrain depends on many factors,
for example, transmitter power and receiver sensitivity, antenna characteristics, range
to reflecting elements of the terrain, effective surface of the scattering of objects in
the area, etc. In order not to deal with a wide range of amplitudes of echo signals,
we will normalize the obtained amplitude values to unity and accordingly simulate
jumps of different intensity, duration, which occur at random moments of time at
different levels of noise n(t). The jumps should not significantly exceed the echo
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signal background. The time scale should be consistent with the speed of scanning
the surrounding area. A various number of jumps can be used to conduct the study.

The usual optimal system of signal amplitude measurement is not capable of
qualitatively estimating rapid sudden changes of amplitudes (jumps of amplitudes).
It is necessary to synthesize an optimal system that considers the peculiarities
of the jumps of amplitudes in an unknown (in advance) instant of time. Such a
system is based on the Fokker–Planck differential equation. Derivation of the system
of stochastic differential equations for estimating amplitudes of jumps and their
variances is presented in [27], and the final result is described by Eqs. (6.17)–(6.20).

dp1

dt
= Pτjump(t) · e−z

+ 1

N
· p1 · (1− p1)

{
A ·	A1 [1− cos (ϕ0 − ϕ1)]+ 1

2

(
A2

1

)−
− σ 2

	A1
+ 2 · n(t) ·	A1 · sin (ω · t + ϕ1)

}

(6.17)

dz

dt
= p1

N

{
A ·	A1 [1− cos (ϕ0 − ϕ1)]+
+ 1

2

(
	A2

1A− σ 2
	A1

)
+ 2 · n(t) · (A1) · sin (ω · t + ϕ1)

}

(6.18)

d	A1

dt
= 1

p1
· Pτjump(t) · e−z · (	A0 −	A1)

+ V1(t) · 1

N
· [2 · y(t) · sin (ω · t + ϕ1)− A · cos (ϕ0 − ϕ1)−	A1]

(6.19)

dV1

dt
= 1

p1
· Pτjump(t) · e−z ·

[
(	A0 −	A1)

2 + V0 − V1

]
− 1

N
· V 2

1 (6.20)

where

p1—a posteriori probability of detecting the signal amplitude jump
z—relative speed operation of the system
	A0, 	A1—a priori and a posteriori amplitude jump estimations
V1(t)—variance of a posteriori amplitude jump distribution
V0(t) —variance of a priori amplitude jump distribution
t—time
τ jump—the moment of the signal amplitude jump from the value A0(τ jump) to another

value A1(τ jump)
ϕ0(t), ϕ1(t)—the phase of the signal before and after the jump, respectively
n(t)—white Gaussian noise with zero mean and spectral intensity N
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Fig. 6.13 The probability of detecting the amplitude jump for the random process when the
amplitude jump is absent (dotted line) and if it exists (solid line)
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Fig. 6.14 The probability of detecting a jump of amplitude from the ratio of the amplitude of this
jump to the mean amplitude of the echo signals from the terrain

The solution of the system of differential Eqs. (6.17)–(6.20) under the
corresponding initial conditions allows to obtain the important characteristics of
the landmarks detection system. The dependence of the probability of detecting the
amplitude of the signal jump from time is shown in Fig. 6.13. If the jump is absent,
then the probability is close to zero (Fig. 6.13, dotted line), and if it really exists, this
probability for this example is closer to 1 (Fig. 6.13, solid line).

The probability of amplitude jump detection essentially depends on the energy
characteristics of the jump, that is, its amplitude and duration. Figure 6.14 describes
the dependence of this probability on the amplitude jump of constant duration. For
the conditions given earlier, the probability 0.8 is achieved even when the amplitude
jump exceeds half the mean amplitude of the signal that is reflected from the terrain
(Fig. 6.14).

The estimation of the amplitude jump obtained as a result of the solution of the
system of Eqs. (6.17)–(6.20) is presented in Fig. 6.15. The system is not able to
determine the jump shape, but the value of this jump determines well.

The accuracy of estimating the jump of the amplitude is determined from the
variance equation (fourth Eq. 6.20) of the system (6.17)–(6.20). The time dependence
of the variance is shown in Fig. 6.16.
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Fig. 6.15 The realization of random process with amplitude jump (solid line) and result of its
estimate (dotted line)
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Fig. 6.16 An example of the time dependence of the amplitude jump variance
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Fig. 6.17 An example of time dependence of operation system rate

Only after a while the variance of the amplitude jump decreases to small values.
This time depends on the operating speed of the system, which is determined from
the second equation of the system (6.17)–(6.20) and is shown in Fig. 6.17.

So, determining the amplitude jump takes some time which is not critical for
relatively slow MAR. The results of the simulation are obtained for the case of the
absence of a priori information about the time of an amplitude jump occurrence,
which means that the given numerical results characterize the worst properties of
the system of detection and evaluation of amplitude jumps of echo signals from
landmarks. The presence of any information about jumps increases the quality of
their detection and extends the scope of the method. For example, the navigation
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systems described in [1, 4] can provide a priori information about the robot’s position,
which increases the probability of detecting landmarks and increases the accuracy
of the estimation of the amplitudes of jumps and the accuracy of the coordinate
measurement of the robot.

It should be emphasized that the detection of amplitude jumps of echo signals
from landmarks is based on the evaluation of energy characteristics, regardless of the
physical nature of such jumps. That is why it is possible to detect noise surges that
are similar to jumps in signal amplitudes and, as a result, to reduce the probability
of correct identification of landmarks. Hence, the requirements for the reliabilities
of detected jump parameters, which differ significantly from the parameters of noise
surges, increase.

The developed approach to detecting jumps of the echo signal amplitude is based
on the use of the Fokker–Planck–Kolmogorov equations that have a wide application.
For example, we have developed a similar method for detecting sudden changes in
economic processes [27].
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7.1 Introduction

Machine vision is a technology that provides a visual sensor to machine systems.
There are several industries where machine vision can be applied, such as agriculture
[1], automotive [2], and industrial [3], each with its own set of applications. The first
industrial applications focused on quality inspection and manipulator control while
agriculture used machine vision for tractor navigation, product inspection, and fruit
harvesting. This chapter focuses on the development of machine vision for orchard
management applications and is ordered as follows:

1. Definition of machine vision
The four main elements of a machine vision system are:

• Scene Constraints—the physical constraints of the environment in which the
machine vision system operates. There are several factors to consider when
evaluating the scene constraints which include lighting and the color of the
work plane as well as other factors [4].

• Image Acquisition—the properties and characteristics of the camera being
used. There include color cameras, stereo cameras, NIR cameras, IR cameras,
and others. Each of these camera types has different characteristics, so the
decision of which camera employed depends on the application.

• Image Processing and Analysis—the process of modifying the acquired
image to extract the desired information. There are several sub-steps in the
image processing and analysis element, which include preprocessing the
image, segmenting the region to useful regions, extracting useful features
and classifying those features.

• Actuation—the physical action the system will take in response to an identified
object. In agricultural applications, examples include picking fruit off the tree,
sorting already picked fruit by their grade and weed control [5, 6].

2. Machine vision applications in different areas of agriculture
As mentioned in the abstract, there are several different fields for which machine
vision can be applied and different applications within each field. Specifically,
within the field of agriculture, three primary applications exist. They are:

• Plant Identification—analyzes the color, size, and shape of the object within
the image to classify the plant type.

• Process Control—common application for machine vision and in agriculture
tends to focus on evaluating fruit. This evaluation uses the size, shape, and
color of the fruit to determine quality for grading and sorting.

• Machine Guidance and Control—the most common thought of process for an
application of machine vision. Though many forms exist, a common example is
a ground vehicle, which could be either manned or unmanned. In an agricultural
application, this vehicle would run through a field or an orchard employing
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several different inputs and sensors such as GPS, ultrasonic sensors, and a
vision system [5]. The vision system could determine what object is in front of
the ground vehicle and helps determine what action the ground vehicle should
take.

3. Orchard management machine vision system
This example of a machine vision system in an orchard application demonstrates
different analysis techniques of images in order to extract useful information.
There are several different steps involved when analyzing images for a machine
vision system, and these are dependent on the task at hand. The goal, for the
example discussed in this chapter, is a machine vision system that can predict
a fruit yield of apple and peach trees when the tree is in full blossom. It was
hypothesized that the crop yield could be estimated by determining the number of
blossoms on the tree, so a machine vision system needed to be created which could
count the number of blossoms on a tree. Because every blossom on a fruit tree was
essentially the same color, the RGB data from an acquired image could be used
to filter out of the scene everything but the blossoms. The remaining information,
the blossoms, are then counted and processed to determine the overall yield of the
particular tree. Again, depending on the goal of the project, a different application
of machine vision may need to be applied, but the method reviewed in this chapter
provides various applications which can be extended outside of agriculture.

4. Stereo imaging to identify tree structure and improve individual tree
detection
One of the main problems with the machine vision system used to estimate the
yield of apple and peach trees is the inclusion of blossoms from multiple trees
as each blossom in the acquired image would be counted even if it was on a
tree behind the tree of interest. This is because the vision system developed used
only the image RGB data to remove the scene. An additional filter, one which
focuses on distance, needs to be added. Stereo imaging can be used to address
this problem because now the acquired image has both the RGB parameter and
the distance parameter. With this distance parameter, trees which are farther away
from the tree of interest can be eliminated, so blossoms only from the tree of
interest can be counted, thereby increasing the accuracy of the yield estimation.

5. Machine vision system that navigates a robot within orchard rows
Another application for a machine vision system is implementation on a ground
vehicle which can navigate through the rows of an orchard. When applying
machine vision for this configuration, the scene constraints become extremely
important. To successfully navigate the rows of an orchard, the system must
account for the symmetry of the rows, the size of the trees, and row separation.
The ground vehicle is sized to fit and operate within these constraints. For example,
a small ground vehicle can use the sky visible between rows of trees for navigation
if the trees are relatively large and the rows are adequately spaced.
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7.2 The Machine Vision System

Awcock and Thomas [7] defined a general machine vision system that is shown
in Fig. 7.1. The defined system consists of four elements that could be found in
a typical machine vision system in any field of application. The four elements are
scene constraints, image acquisition, image processing and analysis, and actuation.

7.2.1 Scene Constraints

The scene constraint refers to the environment wherein the machine vision equipment
is to be placed, and it is where the information is to be taken. The main aim
of this system is to extract from the environment the desired information by the
proper controlling of factors that affect the acquisition of data like lighting and the
proper installation of the machine vision equipment. Some of the environment may
be controlled such as in the sorting lines for product inspection [8] while other
environmental parameters such as lighting conditions, fruit location on a tree, and
the unstructured nature of the branches are difficult to control in an apple orchard [9].

7.2.2 Image Acquisition

Image acquisition is the element that converts light falling onto the photosensors of a
camera into a digitized data, typically a 512× 512 pixel image, which is then able to

Scene Constraints

Actuator

PC

Image
Acquisition

Fig. 7.1 A generic machine vision system
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be processed. The camera may be a black and white video camera that is dependent
on light intensity, a colored video camera that is dependent on the visible spectrum,
or an infrared camera with the selection being based on the relevant information
needed. With the advancement of sensor technologies, cameras sensitive beyond
the visible spectrum are also available. Hyperspectral and multispectral imaging
techniques have emerged as important tools for the safety and quality inspection of
food and agricultural products [1].

7.2.3 Image Processing

Image processing deals with the acquired digital image as input and outputs an image
that has been enhanced so that the desired information can be extracted. Several steps
are involved in the extraction of the data each of which is discussed in the following
sections.

7.2.3.1 Preprocessing

Images are preprocessed to modify and prepare the pixel values of the digitized image
to produce an output that can be more easily analyzed in subsequent operations. This
may consist of contrast enhancement, filtering to remove the noise of the hardware,
and correction for camera distortion [10].

7.2.3.2 Segmentation

Segmentation is the process wherein the digitized image is broken down into
meaningful regions. It is considered the first step of image analysis because the
decision-making process of identifying the foreground and background has already
been conducted. The simplest segmentation process is the identification of the
foreground and background regions which is often easily achieved by thresholding.
A very popular thresholding technique is the Ohtsu method [11].

7.2.3.3 Feature Extraction

After the image is divided into regions, the feature extraction process identifies
objects in the region using descriptors. Basic descriptors are typically scalars that
include area, centroid, perimeter, major diameter, compactness, and thinness [12].
These descriptors are often used simultaneously providing a good description of the
object of interest.
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7.2.3.4 Classification

Classification is the task of putting the objects in the image into some predefined
categories. This process may be done by template matching or by a statistical method.
Template matching is the comparison of the unknown objects to a set of known
templates so as to identify the object.

Artificial intelligence, or machine learning, is being used more frequently in image
classification in agricultural applications. In many of these applications, supervised
machine learning is being used, where the user would enter and label several “training
samples,” then the neural network would recognize connections between them. The
neural network is then tested with “test samples” which it has not seen before,
and the network is evaluated. Agricultural applications so far have primarily been
concerned with plant identification, where plants were segmented under different
lighting conditions [13], and it has been applied in weed management [14].

7.2.4 Actuation

Once the machine has identified the object, the decision on what the machine will
do is known as the actuation process. This is the interaction of the machine with
the environment or the original scene either directly or indirectly. This closes the
machine vision system shown in Fig. 7.1. Usually, the machine vision is linked to a
robotic system which is the basic component of automated operations [15].

7.3 Agricultural Machine Vision Applications

Machine vision systems typically use complex electronic sensors. The rapid
development of computer technology and the photosensor has widened the field
for machine vision applications. Currently, industries occupy most of the field
of usage focusing mainly on product inspection, but other areas such as military
science, astronomy, medicine, and the field of agriculture are now investigating the
uses for machine vision [16]. For agriculture, researchers have been studying the
potentials of machine vision in enhancing production which can be classified into
three categories:

1. Plant identification
2. Process control
3. Machine guidance and control

The recent applications developed in these categories are described below.
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7.3.1 Plant Identification

Plant identification refers to the process of classifying a certain plant by accurately
identifying its component geometrical shape, size, and color. Figure 7.2 shows a
schematic diagram of a machine vision system that is used for plant identification.
Important parameters analyzed by the system are size, color, shape, and surface
temperatures. Making measurements of these parameters by noncontact visual means
is an advantage of machine vision as identification and classification can be done
without the risk of damage to the plant.

Several research projects on plant identification using machine vision have been
conducted. Guyer et al. [17] developed a machine vision system that identifies plant
species such as corn, soybeans, tomatoes, and some weed species at early growth
stages using spatial parameters. The image processing stage evaluated the differences
in the reflection of radiation from leaves and soil surface and the differences in
the number of leaves and the shapes of the different weed species. This plant
identification visual system could thus be used for selective herbicide application. A
robotic vision-based system was developed to detect crop and weed locations, kill
weeds, and thin crop plants [18]. This vision system identified different plant leaves
using shape features that included area, major axis, minor axis, area to length ratio,
compactness, elongation, length to perimeter ratio, and perimeter to broadness ratio.
The system could then differentiate between tomato cotyledons and weeds when
attached to a ground vehicle such as a tractor, and the prototype robotic weed control
system could identify and treat weeds simultaneously.

With the advancement of aerial systems, a machine vision system can also be
attached to an unmanned aerial vehicle (UAV) for the purpose of plant identification.
Crop monitoring and assessment platform were developed to identify apple trees
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Fig. 7.2 Machine vision system for plant identification
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and monitor irrigation types [19]. This UAV machine vision system was composed
of a multispectral camera (near-infrared, green, blue) and an image processing and
analysis unit. The image processing calculated the enhanced normalized difference
vegetation index to identify the tree crops and estimate the irrigation level and
was able to differentiate between the full drip and 50% sprinkler irrigated trees.
When identifying plants on a UAV system, the images will likely be acquired with a
color camera, but using a color camera for the navigation of the UAV has potential
problems. Concerning the navigation, using a laser triangulation system has several
advantages compared to the color camera navigation. The main advantage is distance
measurement, which can be measured to a high degree of accuracy, where a color
camera system would estimate the distance [20]. Of course, there are errors when
using a laser triangulation system for UAV navigation, such as the static and dynamic
friction within the DC motors used in the system; but these errors can be estimated
and accounted for, thus increasing the overall accuracy of the system [21].

7.3.2 Process Control

Industrial applications rely on visual systems for process control when the control
is dependent on a visual parameter, for example, the inspection of circuit boards
in a production line [22]. The system is able to make an intelligent action spotting
and removing abnormal products. Generally, in visual sensing, the parameters being
assessed are color, shape, and size.

In agriculture, evaluation of the color information indicates qualities such as
maturity, sweetness, and wholesomeness. As shown in Fig. 7.3, a machine vision
system may be used for the inspection of fruits by allowing the fruits to pass in front
of a camera so that its quality may be evaluated.

Fig. 7.3 Machine vision for
process control shape
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Miller and Delwiche [23] studied a color vision system that inspects and grades
fresh market peaches. Digital color images of the peaches taken as the fruit moved
on a conveyor belt analyzed the peach for color, size, and surface characteristics.
Compared to visual inspection by human senses, this system gave a high output rate,
high reliability, and high uniformity and was additionally capable to make critical
measurements.

There are machine vision systems that can detect wavelengths outside the visible
electromagnetic spectrum. Bulanon et al. [24] developed a machine vision system to
detect citrus black spot using hyperspectral imaging. Hyperspectral imaging allows
the acquisition of spatial information across a sequence of individual bands covering
a broad wavelength range, resulting in a three-dimensional image data with a very
high spectral resolution. In the study, five different surface conditions including
citrus black spot were evaluated. Linear discriminant analysis and an artificial neural
network were then developed using wavelengths of 493 nm, 629 nm, 713 nm, and
781 nm. Both pattern recognition approaches had an overall detection accuracy of
92%. Rehkugler and Throop [25] developed a machine vision system that detects
the defects in an apple.

In addition to the spectral properties of agricultural products, size, shape, form,
freshness condition, and absence of visual defects are normally evaluated. Costa et al.
[26] developed an automated shape processing system which could be used for both
scientific and industrial purposes. This tool would be very useful for grading and
sorting agricultural products especially if they were coupled with pattern recognition
techniques [27]. It offers many advantages over conventional and mechanical sorting
devices. Furthermore, evaluating the shape of agricultural products is a key parameter
for allocating packaging and shipping resources [28].

7.3.3 Machine Guidance and Control

One of the important features of a robotic harvesting system is recognizing and
locating a fruit. The commonly used camera gives a two-dimensional picture. Since
three coordinates are required to fully locate the object, the distance dimension is
lacking. This third dimension is typically acquired through the use of another sensor
such as a range finding sensor, acoustics, radio frequency, or a stereographic vision
system.

Researchers are trying to eliminate the need for an additional sensor by developing
the range of information utilizing the object’s geometric shape property, reflectance
intensity, chrominance, and emissivity. The goal is to take a digital image of the
object and then use image processing to identify and locate the position of the
objects. Parrish and Goksel [29] conducted the first experimental system for an apple
harvesting system. A black and white video camera was used to detect the apples. The
image coordinates of the apple and its centroid were determined by image processing,
and then the trajectory planning and the actuation routines directed the robotic arm
to the apple. Figure 7.4 shows the generic machine vision system applied to fruit
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Fig. 7.4 Machine vision for fruit harvesting

harvesting. Similar to the development made by Parrish and Goksel, the features
that are extracted from the image included color, shape, centroid location, and depth
information. These features were then used to guide a robotic arm toward the fruit
and pick it. Slaughter and Harrel [30] later improved the black and white video
camera by using a colored video camera. This time, the detection of apples was
dependent not only on gray-level intensity but also on color. The color factor is
an important parameter in differentiating the object from its background. Another
example of machine vision-based fruit harvesting is the apple robotic harvesting
system developed by Bulanon and Kataoka [9]. The segmentation method was based
on the chromaticity coefficients red and green combined with a decision-theoretic
approach method to threshold the apple fruits from the background under variable
lighting conditions. The vision system was used to guide a customized end effector
that picked the fruit in a manner similar to the way a human would pick the apple.

One of the problems encountered in a robotic vision system is the similarity of the
spectral reflectance between the object and its background specifically the leaves of
the tree. Recent studies have focused on using the thermal characteristics of the fruit
to separate it from the foliage. Bulanon et al. [31] studied the thermal characteristics
of the citrus tree. A 24-hour temperature profile between the fruits and the leaves
was obtained, and it was found that the fruits had a higher surface temperature than
the leaves during the nighttime. Thus a unique image processing approach which
combined color and thermal images using fuzzy logic was developed.

Another robotic system that could be guided by machine vision is an agricultural
ground vehicle. The vehicle could be manned or unmanned. If the vehicle is manned,
the machine vision system is used to assist the driver in steering the system while
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an unmanned vehicle would be fully autonomous. The last section of this chapter
discusses the development of a machine vision system for steering an unmanned
ground vehicle in a commercial peach orchard.

7.4 Machine Vision Development for Fruit Yield Estimation:
An Example of Plant Identification Application

Section 7.3 discussed the different applications of machine vision, those being
plant identification, process control, and machine guidance and control. This section
will discuss a plant identification application of machine vision specific to orchard
management. This development was created under a research project of the Robotics
Vision Lab at Northwest Nazarene University, where the goal of the project was
early fruit yield estimation. Yield estimates are important for growers to help in the
production planning and marketing of the fruits. There are several ways of estimating
fruit yield [32, 33], and machine vision is one of the popular tools available [34–
38]. Most of these vision-based yield estimators [39] count the fruits when they are
almost ready to harvest; however, an early yield estimate [40] is more important
to the growers. The hypothesis of the project was that by counting the number of
blossoms of a fruit tree, an early yield estimate could be derived. The fruits of interest
in this project were apples and peaches: specifically, Pink Lady apples grown in a
high-density orchard and Snow Giant peaches grown in a standard orchard. Both
orchards were located in Caldwell, Idaho, and were planted in a north-south direction.
Thirty trees were selected randomly from a block in each orchard and photographed
throughout the blossom period during the 2018 growing season. A 12-megapixel
24-bit digital color camera was used to photograph each tree on the east and west
sides. Later in the season when the fruits were mature, a ground truth yield was
obtained by manually counting the fruits on the selected trees.

The images were processed using MATLAB and its Digital Image Processing
Toolbox [41]. Figure 7.5 displays a sample image of a blossoming apple tree in a
high-density orchard. The height of each apple tree is approximately 8 ft, and there
are approximately 4 ft between each tree. In this orchard, images were acquired
approximately 10 ft from the tree. Figure 7.6 displays a blossoming peach tree in
a standard orchard. The height of each peach tree is approximately 15 ft, and there
is approximately 10 ft between each tree. In this orchard, images were acquired
approximately 13 ft from the tree.

7.4.1 Image Processing for Blossom Isolation

With image acquisition completed, the next step is to isolate and count the blossoms
for each apple and peach tree.
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Fig. 7.5 Sample image of a blossoming apple tree in a high-density orchard

Fig. 7.6 Sample image of a blossoming peach tree in a standard orchard

7.4.1.1 Methods of Data Transformations

Before the blossoms could be isolated, a set of sample data needed to be collected
to determine the color properties of each category in the image, so that a color filter
can be created from this data, which will isolate the blossoms. This sample data was
collected manually, where 600 different pixels for each category of the image were
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manually selected, and the RGB values of those pixels were recorded. Within the 600
pixels selected for each category, 300 pixels were selected from images taken from
the east side of the tree, and 300 pixels were selected from the images taken from
the west side of the tree. The five main categories of classification in each image for
both the apple and peach images are the sky, blossoms, leaves/grass, branches, and
dirt. A 3D scatterplot displaying the recorded RGB values for the apple images is
displayed in Fig. 7.7. As seen in Fig. 7.7, the RGB values of the sky is not included.
This is because by manually analyzing the images, it has been noticed that the sky
is a relatively large category in size and that the pixels are all connected. Because
the pixels of the sky are all connected, an area feature extraction method, which is
explained later in this section, can easily be implemented, which will remove the sky
from the image.

The goal is to isolate the red circle data points, which represent the blossom’s
RGB values, so that when analyzing the entire image, the blossoms can be isolated.
There are several image analysis functions in MATLAB that could be used to isolate
the blossoms, but because MATLAB is not an open source software, it is preferred
to use a method of isolation not using these functions.

One method of blossom isolation investigated was to apply a transformation
matrix to each sample data point, written mathematically as

Ax = b (7.1)

where b is the new value of the sample data point, A is the transformation matrix,
and x is the red, green, and blue values of the sample data point. In this form, these
matrices have the form:

Fig. 7.7 Sample RGB values of objects in the apple orchard
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A =
⎡

⎢
⎣

a1,1 a1,1 a1,3
...

...
...

an,1 an,1 an,3

⎤

⎥
⎦ (7..2)

x =
⎡
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R
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B

⎤

⎦ (7.3)
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⎢
⎣

Ra1,1 +Ga1,2 + Ba1,3

Ra2,1 +Ga2,2 + Ba2,3
...

Ran,1 +Gan,2 + Ban,3

⎤

⎥⎥
⎥
⎦

(7.4)

where the element an, 3 is an element in A occupying the nth row and 3rd column.
When transformation matrix A is applied to the sample data matrix x, the image is
R

n.
An example of a transformation T : R3 → R

1 defined by T(x) = Ax would be
a summative transformation that adds the red, green, and blue values of each pixel.
The matrix A would take the form seen in Eq. (7.5).

A = [1, 1, 1] (7.5)

Applying this matrix to the scatterplot displayed in Fig. 7.7 results in the data
points being transformed to a single axis. This is difficult to display because the data
points are clustered, so the results transformation are displayed with a histogram in
Fig. 7.8.

An example of a transformation T : R3 → R
2 defined by T(x) = Ax is to rotate

the 3D scatterplot displayed in Fig. 7.7 such that only two of the axes can be seen. If
it was desired to display the red and blue axes, matrix A would take the form

A =
[

1 0 0
0 0 1

]
(7.6)

Applying this matrix to the scatterplot displayed in Fig. 7.7, the result is a 2D
scatterplot displayed in Fig. 7.9.

A transformation T : R3 → R
3 defined by T(x) = Ax is to move the data points

in the 3D scatterplot to a different location on the same 3D scatterplot. An example
of this is to take a ratio transformation, that is, to take the red, green, and blue
components of each pixel and divide it by the sum of its respective red, green, and
blue components. The matrix A would take the form
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Fig. 7.8 Histogram of the summative transformation of the sample RGB values

Fig. 7.9 Rotation transformation of the sample RGB values

A =
⎡

⎣
(R +G+ B)−1 0 0

0 (R +G+ B)−1 0
0 0 (R +G+ B)−1

⎤

⎦ (7.7)

This transforms each sample data point onto the plane

x + y + z = 1 (7.8)
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Fig. 7.10 Ratio transformation of the sample RGB values

Applying this matrix to the scatterplot displayed in Fig. 7.7, the result is the 3D
scatterplot displayed in Fig. 7.10.

There are infinitely many transformations that can be applied to the set of sample
data, such as transformation matrix A yielding a new data point b

A =
⎡

⎣
2 3 7
5 8 1
4 6 9

⎤

⎦ (7.9)

b =
⎡

⎣
2R + 3G+ 7B
5R + 8G+ 1B
4R + 6G+ 9B

⎤

⎦ (7.10)

As mentioned previously, the dimension of b can extend past three. If A is a 4× 3
matrix, then b is in R

4. Though these can often be difficult to describe graphically,
so examples of this and higher dimensions of b will not be presented in this chapter.

7.4.1.2 Testing Blossom Isolation

Recall that the goal of applying a transformation matrix is to isolate the red circle
data points in the sample data. Looking back at Fig. 7.9, two lines can be drawn
which separates the blossom sample data points from the other categories, as seen
in Fig. 7.11.
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Fig. 7.11 Blossom isolation in the rotation transformation

The equation of these lines is the color filter that will be used to isolate the
blossoms from the other objects when filtering an entire image. By using the
equations, the points above or below the line can be set to zero, thus isolating a
section of the data.

For example, the equations of the lines in Fig. 7.11 are

7× Red− 9× Blue− 135 = 0 (7.11)

and

Blue = 155 (7.12)

Thus, the red circle data points can be isolated by applying the pseudocode:

if ((7× Red− 9× Blue− 135 > 0)&& (Blue < 155))
{

Red = 0
Blue = 0}

Applying this code to the data set on Fig. 7.11 yields the plot displayed in Fig.
7.12.
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Fig. 7.12 Results of the blossom isolation color filter

7.4.1.3 Tree Isolation

As noticed by the sample image of the apple tree displayed in Fig. 7.5, there are three
trees present in the foreground of the image with multiple others in the background.
This is common for this style of high-density orchard as the trees are only separated
by approximately 4 ft. Because the goal is to count the blossoms on the center tree,
a method of isolating the center tree must be derived. Figure 7.8 shows a large
clustering of data in the lower region of the histogram, RGB values less than 100
after applying the summative transformation, which is classified as either branches or
dirt. This implies the branches can be used as a method of tree isolation, specifically
the trunks can be used because they are the most isolated from each other.

Using a copy of the image, a tree isolation algorithm can be created. The results
of this algorithm will be applied to the original image before the blossom isolation
algorithm is applied. Because the trunks are the means of tree isolation, the first step
of the trunk isolation algorithm is to crop out the top two thirds of the copied image.
As explained in Sect. 7.2, this first step is the preprocessing in the tree trunk image
processing algorithm. The next step of the algorithm is to isolate the trunks, which
can be done by applying the following pseudocode to each pixel of the image:

if (Red+ Green+ Blue < 100)
{

Red = 0
Green = 0
Blue = 0}
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This results in the image displaying the trunks of each tree, but there is some
noise, as some dirt samples remain. To remove these samples, a size filter can be
applied because the number of dirt pixels passing through the transformation filter
is much less than the number of branch pixels passing through the transformation
filter. With this process what mostly remains are the three foreground tree trunks.

The next step then is to isolate the central tree trunk. For this task, a MATLAB
data structure called “regionprops” was used. This function was used even though it
was earlier stated that the use of MATLAB specific features was undesirable. This
is because this function is also available through open source methods, such as the
OpenCV library [42] or the ImageJ package, Fiji [43].

MATLAB’s regionprops measured the properties of an image’s regions—area,
centroid, major and minor axis lengths—and then applied a bounding box to the
region. The centroid feature of regionprops can be used to determine the location
of each trunk, thereby giving the center position of each tree. Due to the nature
of high-density orchards, where the trees tend to be vertical with little overlap of
branches, the center tree can now be isolated. Using the position of the trees, the left
and right trees can be cropped out by drawing a vertical line at the midpoint of the
center tree and trees to the left and right of center.

This method works with the apple trees because they are in a high-density orchard,
but peach trees are planted farther apart. Three trunks are not always seen in each
image as previously shown in Fig. 7.6. Vertical line trunk isolation is not a viable
option as there is no “center” tree. Instead, the natural geometry of the peach tree is
used as a method of isolation.

Peach trees have four main branches that stem from the trunk, which makes a
shape similar to an upside-down pyramid in the empty space within the four main
branches. So, when an image of the tree is taken, the four main branches have a “V”
shape. Thus, the tree of interest can be isolated by drawing a line from the top corners
of the image to the bottom center, cropping out the bottom two corners. Figure 7.13
displays the result of the tree isolation algorithm applied to the original apple and
peach tree images.

Fig. 7.13 Tree isolation process results for an apple and peach trees
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7.4.1.4 Blossom Isolation and Counting for Apple Trees

Now that the center tree is isolated, the blossom filter described in Sect. 7.4.1.2 can be
applied to each pixel in the apple image. Referring to Fig. 7.11, the line that isolates
the blossoms from the other categories in the image is very close to including data
points of the other categories. Because there is no significant gap in the separation of
the blossoms and the other categories, a significant amount of noise in the resulting
image after applying the color filter can be anticipated, which is exactly what is seen
in Fig. 7.14, after the blossom isolation color filter is applied to the image.

As seen in Fig. 7.14, several of the pixels from the leaves passed through the
color filter as has the entire sky. Both issues can be resolved by applying a size
filter focusing on removing small and large groups of pixels. This size filter uses
the regionprops data structure mentioned earlier in Sect. 7.4.1.3, where if the area is
outside of the range of a specified pixel count, then the pixels are set to zero. It should
be noted that the specific range which will allow an area to pass through the size filter
varies depending on the size of the image. There are more pixels in a 12-megapixel
camera (which was used in acquiring these images) than an 8-megapixel camera, so
the allowable area of an image from a 12-megapixel camera should be higher than
the allowable area of an image from an 8-megapixel camera. Because of this, care
needs to be taken to match the filter parameters to the number of pixels in an image.
After applying the size filter, the resulting binary image is displayed in Fig. 7.15.

The remaining areas are the identified blossoms on the tree. The regionprops
data structure will now be used to label each area and to obtain a count for the total
blossoms. In addition, a bounding box around each area can be applied, and the
boxes can be overlaid over the original image to visually check the accuracy of the

Fig. 7.14 Color filter applied to an image of an apple tree
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Fig. 7.15 Size filter applied to the apple tree image

Fig. 7.16 Bounding boxes of the identified blossoms overlaid on the original image

program. This image is displayed in Fig. 7.16, where it can be seen that there are
very few false positives and false negatives in the image.
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7.4.1.5 Blossom Isolation and Counting for Peach Trees

The process for identifying the blossoms on a peach tree is virtually the same as
the process for the apple tree. The largest difference is that different transformation
matrices may be applied and there will be a different equation applied to each pixel
to apply the color filter. In the case of blossom identification, the transformation
matrix which was applied is

A =
[

1 0 0
0 1 0

]
(7.13)

which rotated the 3D scatterplot to display the red and green color values. Figure
7.17 through Fig. 7.20 displays the overall process of blossom isolation for a peach
tree. The rotation transformation of the sample RGB data and the line displaying the
color filter are displayed in Fig. 7.17, the tree isolation algorithm and the color filter
applied to the sample image seen in Fig. 7.6 are displayed in Fig. 7.18, the result of
the size filter to remove the noise is displayed in Fig. 7.19, and the bounding boxes
overlaid on the original image is displayed in Fig. 7.20.

After analyzing Fig. 7.20, there appears to be a significant number of false
negatives. This observation may lead to the conclusion that the algorithm is not
very successful in identifying peach blossoms; however, the false negatives seen
in Fig. 7.20 were intentionally produced. This particular type of peach undergoes
an intensive thinning process. Thus, to produce a better final yield estimate, fewer
regions were desired. If an orchard were to not be significantly thinned, then a
different size filter should be applied.

Fig. 7.17 Blossom isolation process for a peach tree
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Fig. 7.18 Color filter applied to the peach tree

Fig. 7.19 Size filter applied to the peach tree

7.4.2 Results of Yield Estimation

So far, an algorithm has been developed which isolates and counts the number of
blossoms on an apple and peach trees. There still remains steps to produce the final
result of fruit yield estimate.
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Fig. 7.20 Bounding boxes of the identified blossoms overlaid on the original image of the peach
tree

7.4.2.1 Transition from Blossom Count to Yield Estimation

Once the blossom isolation process for each image has been applied, a blossom count
for each side of the tree has been obtained. Recall from the beginning of Sect. 7.4, it
was explained that two images of the tree of interest were acquired, one image from
the east side and one from the west side. This is significant because the blossom
count from each side of the tree cannot simply be added together to obtain a total fruit
yield estimation, because there is a significant risk of double-counting blossoms.

Consider this question, “What if on the east side of the tree, the blossom count
is consistent between each tree, but there is a large variance in the blossom count
between each tree on the west side?” Intuition would say the blossom count from
the east side should play a larger role in the yield estimation, because of the more
consistent blossom count. Consistency in the blossom count is important because
hypothetically there should only be a small difference in the total blossom count
from tree to tree as each tree in a section of an orchard is of the same age and same
size.

This is a case where intuition is correct, because the correct method of determining
a yield from a set of two blossom counts is to calculate a weight that will be applied to
blossom counts from the east side, and a different weight from blossom counts taken
on the west side. The derivation for the two weights is described in Sect. 7.4.2.2, and
it will be seen that the two weights depend on the variances and covariances [44] of
the blossom counts from the east side, blossom count from the west side, and ground
truth number of fruits.



7 Machine Vision System for Orchard Management 221

7.4.2.2 Derivation of Weight Values

In the following derivation, random variables are denoted by capital letters, actual
values of those variables by lowercase letters, and vectors by boldface type. The
correlation between the blossom count from the images and the actual fruit count
was determined. There are 30 selected trees, which are numbered #1 through #30.
For tree #i, there are

XE = xE,i (7.14)

blossoms visible from the East and

XW = xW,i (7.15)

blossoms visible from the West. The eventual fruit yield of tree #i is

Y = yi. (7.16)

The data is represented by vectors in R
n

xE =
(
xE,1, xE,2, . . . , xE,n

)
, (7.17)

xW = (xW,1, xW,2, . . . , xW,n
)
, (7.18)

y = (y1, y2, . . . , yn) . (7.19)

Choose weights αE and αW, with αE, αW ≥ 0, and with αE + αW = 1. Then
construct an equation of the form

Y ′ = m(αEXE + αWXW)+ c (7.20)

which will be the least-squares regression line of

X = αEXE + αWXW. (7.21)

The RMS error of Y ≈ Y′ will be

sY

√
1− r2

x,y′ (7.22)

where rx, y is the correlation coefficient of the data x = αExE + αWxW with y.
Accordingly, the RMS error of the linear model will be minimized if αE and αW are
chosen to maximize the correlation coefficient rx, y.
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Writing

xi = αExE,i + αWxW,i , (7.23)

x = (x1, . . . , xn) , (7.24)

and

x = αExE + αWxW, (7.25)

define the means

xE =

n∑

i=1
xE,i

n
(7.26)

xW =

n∑

i=1
xW,i

n
(7.27)

x =

n∑

i=1
xi

n
(7.28)

y =

n∑

i=1
yi

n
(7.29)

the mean vectors

xE = (xE, . . . , xE) (7.30)

xW = (xW, . . . , xW) (7.31)

x = (x, . . . , x) (7.32)

y = (y, . . . , y) , (7.33)

and the deviation vectors

∼
xE = xE − xE (7.34)
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∼
xW = xW − xW (7.35)

∼
x = x− x (7.36)

∼
y = y− y (7.37)

so that

x = αExE + αWxW, (7.38)

and

∼
x = αE

∼
xE + αW

∼
xW. (7.39)

Then

rx,y =
∼
x • ∼y

√
∼
x • ∼x •

√∼
y • ∼y

, (7.40)

while

∼
x = αE

∼
xE + αW

∼
xW. (7.41)

The first expression is the cosine of the angle

θ∼
x,
∼
y

(7.42)

between
∼
x and

∼
y, all vectors

∼
x in the plane spanned by

∼
xE and

∼
xW need to be

maximized. To do this,
∼
y must be projected into this plane, and an orthogonal basis

for the plane is desired. Using the Gram–Schmidt Method [45] on the
∼
xE and

∼
xW an

orthogonal basis
{∼

xE,
(∼

xE • ∼xE

)∼
xW −

(∼
xE • ∼xW

)∼
xE

}
(7.43)

is obtained for

span
{
x̃E, x̃W

}
. (7.44)
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Project
∼
y onto each of these two orthogonal basis vectors, and add the projections

to obtain

∼
xE • ∼y
∼
xE • ∼xE

∼
xE

+
(∼

xE • ∼xE

) (∼
xW • ∼y

)
−
(∼

xE • ∼xW

) (∼
xE • ∼y

)

(∼
xE • ∼xE

)2 (∼
xW • ∼xW

)
− 2

(∼
xE • ∼xE

) (∼
xE • ∼xW

)2 +
(∼

xE • ∼xW

)2 (∼
xE • ∼xE

)

((∼
xE • ∼xE

)∼
xW −

(∼
xE • ∼xW

)∼
xE

)

=
∼
xE • ∼y
∼
xE • ∼xE

∼
xE +

(∼
xE • ∼xE

) (∼
xW • ∼y

)
−
(∼

xE • ∼xW

) (∼
xE • ∼y

)

(∼
xE • ∼xE

)2 (∼
xW • ∼xW

)
−
(∼

xE • ∼xE

) (∼
xE • ∼xW

)2

((∼
xE • ∼xE

)∼
xW −

(∼
xE • ∼xW

)∼
xE

)
.

(7.45)

Since r∼
x,
∼
y

will be unaffected by multiplying
∼
x by a scalar, multiply the last vector

by the denominator

(∼
xE • ∼xE

)2 (∼
xW • ∼xW

)
−
(∼

xE • ∼xE

) (∼
xE • ∼xW

)2
(7.46)

to simplify the expression
((∼

xE • ∼xE

) (∼
xW • ∼xW

) (∼
xE • ∼y

)
−
(∼

xE • ∼xW

)2 (∼
xE • ∼y

)

−
(∼

xE • ∼xW

) (∼
xE • ∼xE

) (∼
xW • ∼y

)
+
(∼

xE • ∼xW

)2 (∼
xE • ∼y

))∼
xE

+
((∼

xE • ∼xE

)2 (∼
xW • ∼y

)
−
(∼

xE • ∼xE

) (∼
xE • ∼xW

) (∼
xE • ∼y

))∼
xW

(7.47)

Two terms may be canceled to obtain the following:
((∼

xE • ∼xE

) (∼
xW • ∼xW

) (∼
xE • ∼y

)
−
(∼

xE • ∼xW

) (∼
xE • ∼xE

) (∼
xW • ∼y

))∼
xE

+
((∼

xE • ∼xE

)2 (∼
xW • ∼y

)
−
(∼

xE • ∼xE

) (∼
xE • ∼xW

) (∼
xE • ∼y

))∼
xW

(7.48)
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Finally, divide by the scalar n2∼xE • ∼xE

((∼
xW • ∼xW

n

)(∼
xE • ∼y
n

)

−
(∼

xE • ∼xW

n

)(∼
xW • ∼y
n

))
∼
xE

+
((∼

xE • ∼xE

n

)(∼
xW • ∼y
n

)

−
(∼

xE • ∼xW

n

)(∼
xE • ∼y
n

))
∼
xW

(7.49)

Then let

βE =
(∼

xW • ∼xW

n

)(∼
xE • ∼y
n

)

−
(∼

xE • ∼xW

n

)(∼
xW • ∼y
n

)

= var [xW] cov [xE, y]− cov [xE, xW] cov [xW, y] (7.50)

and

βW =
(∼

xE • ∼xE

n

)(∼
xW • ∼y
n

)

−
(∼

xE • ∼xW

n

)(∼
xE • ∼y
n

)

= var [xE] cov [xW, y]− cov [xE, xW] cov [xE, y] (7.51)

Setting

αE = βE

βE + βW
(7.52)

and

αW = βW

βE + βW
(7.53)

yields the desired vector

x = αExE + αWxW, (7.54)

and of course

x = αExE + αWxW, (7.55)

with αE + αW = 1. To finish, take the least-squares regression line of y on x. Writing

m = cov [x, y]

var [x]
(7.56)
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for its slope, the line is

y′ = m(x − x)+ y. (7.57)

Given the counts XE from the East and XW from the West, the prediction for the
fruit yield Y is

Y ′ = m(αEXE + αWXW − x)+ y. (7.58)

7.4.2.3 Statistical and Probabilistic Results

The values of the weights (αE and αW) for the apple and peach orchard are displayed
in Table 7.1. As seen from this table, the weights applied to the peach blossom count
are very similar, where the weights applied to the apple blossom count have a large
difference. This is because the images were acquired at 9 a.m., and there was slight
overcast when acquiring the peach orchard images, where there were clear skies when
acquiring the apple orchard images. So for the apple orchard, images from the west
side were looking into the sun, thus increasing the blossom count variance between
each tree, and lowering the weight. For the peach orchard, there was overcast, so
the images from the east and west sides were consistent, thus resulting in consistent
weights.

Table 7.2 elaborates on the results for the apple and peach orchards. In this
table, the probability of underestimation is the confidence which the program will
not overestimate the number of fruit. This number was calculated by performing a
right-tailed binary hypothesis test, by using the two averages of each orchard along
with the sample standard deviation to determine a Z-score, which then can be used
to determine a significance level [44]. It is important to have a high probability
of underestimation, so the farmer is not misled in the number of fruit he/she has,
while maintaining a low percent error, so the farmer can have an accurate revenue
estimation and be accurate in resource allocation.

Table 7.1 Value of weight
applied to the blossom counts

Apple orchard Peach orchard
East side 0.639 0.475
West side 0.361 0.525

Table 7.2 Additional results of the early yield estimation program

Apple orchard Peach orchard
Coefficient of correlation between ground truth yield and
predicted yield

0.699 0.606

Ground truth average fruit per tree 114.17 66.733
Estimated average fruit per tree 103.47 61.440
Percent error −9.37% −7.93%
Probability of underestimation 97.19% 95.25%
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7.4.3 General Image Processing Techniques for Other Projects

What are the main points which can be taken away from the process which was
described in the previous sections? If the images which are being processed have the
same set of objects, the RBG data can be used to isolate the objects in the image. By
manually collecting a set of sample data and applying different transformations to
them, the transformation which best isolates the object of interest can be determined.
Then after applying an n-dimensional transformation matrix to the sample data, an
equation with n independent variables can be determined that filters out the other
objects in the image.

In the example of isolating the blossoms in apple and peach trees, which was
presented in Sect. 7.4.1, a transformation T : R3 → R

2 was applied to the data set.
This transformation greatly depends on the scene constraints and the application
of the system. Zhang et al. [46] used a transformation T : R3 → R

1, where they
monitored tea leaves to determine the optimal time for harvesting. In this study, the
blue plane was subtracted from the green plane. The primary reason why theR3→R

1

transformation worked better than the R3 → R
2 or a R3 → R

3 transformation is the
scene constraints. So when applying machine vision to a system, the scene constraints
should have a large influence on which types of transformation is applied.

7.4.3.1 Potential Problems with Over-Constraining the Sample Data

Elaborating more on the equation with n independent variables to isolate the object
of interest, this equation can be very involved, but it is often better to use a simple,
linear equation. As with the example that isolates blossoms, a linear equation was
used because if a parabolic equation with a high degree is used, there is a chance
of over constraining the sample data, which may not be useful when applied to the
entire image.

Suppose there is a set of images with two objects. A set of RGB sample data is
taken, and a rotation transformation to display the red and green values is applied. In
this hypothetical situation, this 2D scatterplot may look like the scatterplot displayed
in Fig. 7.21. At this point, a line separating the two objects would be drawn, and the
equation of this line is the color filter which would be applied to the entire image.

If a straight line is drawn in the sample data set in Fig. 7.21, there is some error,
which can be seen in Fig. 7.22. So it would be very tempting to draw a high-degree
parabolic function, to get complete separation between the two objects. This high
degree polynomial line, which also can also be seen in Fig. 7.22, is an example of
over constraining the sample data, and it may have less success when applied to the
image because of its complexity.

Suppose the RGB values of each pixel of both objects were known. Of course, this
is an impossible task because each individual pixel would have to be analyzed for
each image in the set, determining which category the pixel belonged to, and this is
potentially millions of pixels. Regardless, suppose these data set exists. If the linear
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Fig. 7.21 Sample data set of a hypothetical situation

Fig. 7.22 Over constrained and linear equations applied to the sample data set

and parabolic function was applied to this complete data set, seen in Fig. 7.23, it is
seen why it is better to use the linear equation compared to the parabolic equation.

But this is just a hypothetical situation used to prove the point of how linear
equations are sometimes better than a parabolic equation. How is this proved?
Looking back at Fig. 7.21, there are not a lot of sample data points, compared to the
complete data set seen in Fig. 7.23. The small sample data size is the reason for the
error when applied to the complete data set. The more sample data points which are
collected, the higher the confidence which can be had in a complex, nonlinear filter.
Going back to the apple and peach trees, there are 12 million pixels in the image and
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Fig. 7.23 Over-constrained and linear equations applied to the “complete” dataset

60 pictures for each orchard. From this, it is very easy to see it would be extremely
time intensive to gather enough pixels to have enough confidence to use an advanced
function, which is why it is better to use a simple, linear function.

7.5 An Alternate Method of Object Isolation

7.5.1 Introduction

One of the biggest challenges in using machine vision for agriculture is object
isolation. The background for an image or video captured outdoors is seldom uniform.
There are always objects and features surrounding the object of interest. For example,
when capturing an image of an orchard tree, adjacent trees or trees from different
rows will appear in the background. If one was taking a picture of a corn field,
adjacent fields with different crops could appear in the background. In any case most
of the images will have the sky or the ground in them, and these unwanted elements
present unique challenges to image processing.

Humans are easily able to identify and isolate objects in an image; however,
machines must be given a little more guidance. For instance, consider the car in Fig.
7.24. A simple method of isolating the car from the building in the background is
to apply a color threshold filter. However, this method requires fixed RGB threshold
values, and depending on the lighting (or the color of the car and building), the
thresholds might need to be adjusted for each image to effectively isolate the object.
Furthermore, if the car and the background are similar colors, it is even harder to
distinguish the two. Notice that in the top right corner of the image there is a portion
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Fig. 7.24 Car in front of a building

of gray sky. The sky color closely matches that of the car, and a simple color filter
likely would not differentiate the two. For the car in Fig. 7.24, isolation would be
possible by using an area or size filter of some kind. However, if the sky and car
had similar pixel areas, image processing might classify the sky as a silver car. Of
course, in agriculture, a corn stalk or orchard tree might be pictured instead of a car,
but the concepts are the same.

7.5.2 Spatial Mapping

A more effective way to isolate an object from its background than using a color
filter is by using spatial mapping. Spatial mapping is the process of creating a three-
dimensional map of a given environment from sensor data. This sensor data most
often come in the form of an image or an array of distance measurements from some
arbitrary point to different points in the environment. For example, a stereo camera
would produce sensor data in the form of two images and a light detection and
ranging device (LIDAR) would produce an array of distance measurements [47].

Spatial mapping can be used to isolate an object from its background by using
the physical geometry of the object. For instance, the car in the image is closer to
the camera than the building in the background, thus if a 3D map of the image
was available, a distance filter could be applied, and the car could be isolated.
Furthermore, the dimensions of the car such as length, width, and height could be
used to further isolate or to classify the car.

In order to use spatial mapping, a 3D map of the image must be acquired. As
previously mentioned, a 3D map can be obtained from a stereo camera or by using
LIDAR technology. Both technologies are useful, depending on the application.
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Fig. 7.25 ZED stereo camera

However, for this section, the focus will be on the stereo camera. Figure 7.25 shows
an example of a stereo camera. The camera pictured is the ZED camera designed by
Stereolabs.

7.5.3 Stereo Camera Operation

Stereo cameras are devices that use two fixed RGB cameras to generate a 3D map of
an image. The general concept behind stereo cameras is that objects that are close
will have a large pixel shift between the two cameras, and objects that are far away
will have very little pixel shift between the two cameras. In addition to the 3D map,
an RGB image is obtained from a stereo camera. Normally each pixel in the RGB
image will be assigned an X-Y-Z Cartesian values, and from those values, a 3D
map in the form of a point cloud can be generated. Stereo cameras can perform 3D
rendering very quickly, and so they are favorable in real-time applications such as
robotics and machine vision [48, 49].

Stereo cameras are particularly effective at isolating trees in a fruit orchard. When
photographing a tree in an orchard, the center tree (the tree of interest), as well as the
tree to the left and to the right, and parts of trees in one row down are unintentionally
included in the image as seen in Fig. 7.26, which shows an unfiltered picture of an
apple orchard. By applying a simple distance filter, the sky and background trees can
be removed from the image without any manual selecting. The filtered image can
then be processed without encountering any negative effects from the background.
Stereo cameras are advantageous because they do not rely on pixel color values
for their object isolation. If image processing was being used to isolate the trees
in Fig. 7.26, then the color thresholds might have to be adjusted to account for the
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Fig. 7.26 (a) Unfiltered orchard photo. (b) Background filtered orchard photo

overcast sky or for the way the sun reflects off the leaves at different times during
the day. Using a distance filter with a stereo camera, however, depends solely on
the distance from the camera to the tree and operates independently of the changing
light conditions.

Notice in Fig. 7.26b how the trees in the background have been filtered out leaving
just the trees in the row of interest. It would have been difficult to isolate the two
rows using color and area filters. This is because the two rows are the same color and
the trees in the two rows blend together, making it very hard to differentiate them.
However, the stereo camera provides spatial information on the location of the trees
and makes differentiating between the two rows a relatively simple task.

A further advantage of the stereo camera is that it can obtain basic dimensions
of the trees such as height and width. This information can be used to determine the
health and canopy volume of a given tree [50]. Tree geometry is also useful when
calculating a fruit yield estimate.

7.5.4 Difficulties of Using Spatial Mapping to Isolate Objects

Using stereo cameras for special mapping and object isolation presents a few unique
challenges. For instance, there are intrinsic errors associated with using stereo
cameras, and one should always check the device specifications and preform some
basic tests to verify that the camera meets the design criteria. Mapping objects that
are far away will introduce larger error than objects that are close.

In addition, stereo cameras will occasionally measure a few points that have a
dramatically large error. This will create data spikes in the 3D array and if not
accounted for can have a huge detrimental effect. To reduce the effect of these data
spikes, it is recommended to take many snapshots or even a video of the environment
and average together the data that is collected. Some stereo cameras are even able to
track the location of the camera with respect to the environment. If that capability is
available, it is helpful to move the camera and take measurements at different angles.

Furthermore, stereo cameras work best when imaging objects that have a lot
of complexity. Complexity helps the stereo camera determine how much an object
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shifts between its two RGB cameras. For example, consider using a stereo camera
to measure the distance to a blank white wall. If the two RGB cameras on the stereo
imager collect identical images, then the camera will determine that the wall is far
away since it was not able to detect any shift between the two RGB cameras. This is
a completely unreliable measurement because camera could be an inch away from
the wall, and the camera would still determine that the wall is far away. Complexity
is important; however, it does not have to come in the form of geometric or texture
complexity. Simple color complexity will enable a stereo camera to work properly.
For instance, if there were green stripes painted on the white wall, the camera would
be able to detect how the stripes shifted between the two RGB cameras and an
accurate 3D map of the wall could be made.

7.5.5 Object Isolation Conclusion

In this section, a novel method of object isolation was introduced. Traditional
methods of object isolation use color and area filters to uncover objects of interest.
The method proposed in this section uses the spatial information of an environment
to differentiate between objects. This method isolates objects without relying on the
color of the object. It is especially advantageous when the object of interest is a
similar color to its background as occurs often in agriculture applications.

7.6 A Machine Vision for Peach Orchard Navigation

7.6.1 Introduction

The process of automating an agricultural operation such as pruning or harvesting
in fruit orchards requires a platform that is able to autonomously navigate the
orchard. Research on autonomous navigation for an agricultural application was
started by using guides that are embedded on the ground [51, 52]. With the
development of computer and sensor technologies, autonomous navigation utilized
sensors such as limit switches, ultrasonic sensor, lidar, machine vision, and Global
Positioning System [53]. In this section, the development of a machine vision system
for autonomously navigating a peach orchard is presented. Previous research on
navigation using machine vision relied on ground features to use as navigation
guides. In this study, a unique approach of an upward looking camera was used
to take advantage of the sky features to use as directrix for the unmanned ground
vehicle.
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7.6.2 Visual Feedback System for Navigation

The block diagram of the visual feedback system of the unmanned ground vehicle
(UGV) seen in Fig. 7.27 has three main components: the unmanned ground vehicle
platform, the vision sensor, and the controller. The input for navigation is the desired
vehicle position, and the visual feedback system is used to correct the position of the
vehicle. The error between the desired position and the current position is used by
the controller to calculate the position of the vehicle as it moves in between the tree
rows.

The visual feedback control system was an image-based position servoing system
[12], where features of the image were used as control variables to estimate the
vehicle’s heading. The image processing of this visual feedback system did not rely
on ground features but on sky features. This method is a sky-based approach [54], and
the image processing is shown in Fig. 7.28. After acquiring an image, the image was
cropped to remove the portion of the sky in the field of view that was closest to the
camera. This was done to improve the sensitivity of the control system. It was found
that slight changes in the direction of the vehicle were magnified when using the
centroid of a point that was further away from the camera. Furthermore, cropping the
image reduced the data needing to be processed, resulting in faster processing time
and more rapid response of the ground vehicle platform. Since the green color plane
provided the higher contrast between the sky and the tree canopy, the green plane was
extracted to use for segmentation. A simple thresholding approach was employed to
extract the path plane of the vehicle because of the high contrast between the canopy
and the sky. The “salt-and-pepper” noise was removed by filtering the thresholded
image. Finally, the vehicle’s heading was calculated by finding the centroid of the
path plane.

After the path plane was extracted, the path plane was inverted and used the
position of the difference between the centroid and the set point to find the vehicle’s
heading and used it to drive the motor actuators, seen in Fig. 7.29. The Proportional-
plus-Integral (PI) controller was used to handle the position error and used it to
differentially steer the vehicle. The proportional and integral constants, KP and KI,
of the PI controller were determined by first setting the integral gain to zero and
adjusting the proportional gain until the system’s response was slightly overdamped

Controller Unmanned Ground
Vehicle

Machine Vision

Desired Vehicle Path

Current Vehicle Path

Error

Fig. 7.27 Visual feedback system for unmanned ground vehicle navigation
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Raw Image

Crop Image

Green Plane
Extraction

Thresholding

Filtering &
Finding Centroid

Fig. 7.28 Image processing for finding the centroid of path plane

Fig. 7.29 Path plane manipulation and the PI controller for navigation

[55]. The integral gain was adjusted to remove the steady-state error. Once the PI
controller had been tuned, a forward speed adjusted to 30% of the maximum value
was used as the forward control signal.



236 D. M. Bulanon et al.

7.6.3 Experimental Ground Vehicle Platform

The navigation control system was evaluated in a commercial peach orchard located
in Caldwell, Idaho, USA. The orchard is well maintained, and one of the rows was
randomly selected as a test row. To evaluate the performance of the visual feedback
system, the distance from the vehicle to one of the tree rows was measured using an
ultrasonic sensor, and cardboard boxes were positioned at a fixed distance from one
row of trees. As the vehicle traveled down the row, the distance from the cardboard
box was measured via the ultrasonic sensor. Ultrasonic measurements were taken
over the first 27 m of travel, and visual observation of the vehicle was done as it
finished the whole length of the row.

Figure 7.30 shows that the UGV deviated a maximum of 3.5 cm from its starting
point over the 27 m traveled. Based on the test results, it was determined that the
image processing algorithm for the vehicle guidance system was sufficient for guiding
the vehicle down the orchard row.

The challenges in developing a machine vision system for outdoor application
include inconsistent lighting, shadows, and color similarities in features. These
difficulties were eliminated by using the sky-based approach where the image
contained only the canopy and the sky, thus simplifying the segmentation process.
This is a very good example of simplifying the scene constraint, the first component
of the machine vision model, to aid segmentation. A simple and effective image
segmentation facilitates feature detection. In addition to the test in which ultrasonic
data was taken over a set distance, the vehicle was allowed to run the entire length
of the row. The vehicle completed the entire row with very little error; however, it
was observed that there were larger deviations from the center of the row when the
vehicle approached sections where there was a break in the canopy either due to a
missing tree or a tree with limited leaf growth. These breaks in the canopy caused the
UGV to move away from the center of the row, but when the vehicle would move past
that section, it would correct itself and return to the center. The result of a missing
tree affected the shape of the path plane. This means that the shape of the path plane

Fig. 7.30 Deviation from starting point for the peach orchard evaluation
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could be used to determine a missing tree or end of the row conditions. The result
of the test run in the field showed that the sky-based approach in combination with
the PI controller was effective in guiding the vehicle down the row.

The sky-based approach machine vision for orchard navigation demonstrated the
potential of guiding a ground vehicle in a straightline motion. However, there are
some drawbacks to the sky-based approach. It is only effective when the trees have
fully developed canopies. Fruit trees that have canopies year-round such as citrus will
greatly benefit from this system. On the other hand, fruit trees that lose their leaves
in the winter and remain dormant until the spring season will have no canopy during
this season. Pruning and other orchard operations are conducted during the dormant
period of the trees. To help automate these operations, the ground vehicle should
rely on ground features. In this case, a ground-based image processing would be
effective. Furthermore, the problems with shadows when the canopy is present can
be disregarded. Therefore, for orchards that have deciduous trees, an adaptive image
processing approach could be developed to deal with the changing environmental
condition. For example, a sky-based image processing will be used when canopies
are present, and a ground-based approach will be employed when there are no leaves.
The other drawback of the proposed approach is that it only tackles the straightline
motion down the row but not the end-of-the-row condition. The end-of-the-row
condition could be handled in several ways. An ultrasonic sensor could be used to
detect the absence of a series of trees. Another approach would be to observe the
path plane of the sky-based approach. The shape of the path plane will be different
at the end of the row, and this can be used to trigger the vehicle that it is at the end of
the row. Future research would include dealing with a changing environment such
as with canopy and without canopy conditions, detecting end-of-the-row conditions,
and translating to the next row.

7.7 Conclusion

In this chapter, the different applications of machine vision in agriculture were
presented. The vision applications are classified into the following groups: plant
identification, process control, and machine control. Concerning plant identification,
a machine vision system developed to estimate fruit yield early in the season was
discussed. The developed fruit yield estimator identified and counted blossoms and
correlated it with the total number of fruits on the tree. A coefficient of correlation of
approximately 0.70 was obtained for both apple and peach orchards. An individual
tree recognition algorithm combined with stereo-imaging was also discussed. This
algorithm removed trees in the background, which could provide false positives of
the blossom count. Concerning machine control, a machine vision system to navigate
an unmanned ground vehicle prototype was described. The ground vehicle was able
to successfully navigate an entire row of commercial peach trees autonomously.
These application examples display the potential of machine vision in the field of
orchard production. The future of the automation of production agriculture is very
bright with machine vision as one of its tools.
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SLAM Simultaneous localization and mapping
SVM Support vector machine
SVS Stereoscopic vision systems

8.1 Introduction

Nowadays, there are several methods for digital scene reconstruction to perform
accurate measurements of surface geometry, object detection, and other application
in the area of research and engineering. Most of these methods can be identified as
active or passive methods, where active methods act externally over the scene and
passive methods do not act over the scene [1]. One example of the active methods
is the flight time rangefinders; based on a laser or ultrasound, it finds the distance
of the objects by measuring the return time of the wave. An example of the passive
methods is the vision systems, which are used in applications that require to analyze
specific objectives in particular scenes, where the analysis objects can leave the scene
or not, for example, pedestrian detection and traffic control, among others. Vision
systems have been used on different areas such as robot vision, automatic navigation,
object recognition, material inspection, structural health monitoring, and especially
in 3D coordinates measuring, which has gained considerable attention over the last
decades [2].

In 3D coordinate measurement applications, different technologies are used such
as inertial measurement units (IMU), which use inertial sensors (accelerometers and
gyroscopes) to calculate 3D coordinates from mobile objects [3, 4], dynamics laser
scanners, which applies the principle of dynamic triangulation [5–7], and multi-
camera technique, where the images are analyzed and processed to get the shape of
objects, which is determined by the distance and angles of the objects with respect
to the vision system [8]. One of the particular vision systems which constitute the
study of this chapter is the stereoscopic vision systems (SVS). The SVS get three-
dimensional information from multiple visual inputs (two or more cameras). This is
performed through the search of similarities in the digital images and determining
corresponding points or homologous objects between scenes [9].

The process of SVS consists of five main steps [10]:

Images Acquisition
Consists of taking images of each camera used in a particular SVS and considering
the same scene in each image, and the images will have a slight difference of the
scene due to the relative displacement between the cameras.

System Geometry
Consists of the SVS design determined by the number of cameras and the position
where they are located.

Feature Extraction
Consists of finding similarities between the images that will be used in the pattern
matching. The techniques of feature extraction can be area based, where similarities
are sought in the pixels intensity of the images. Another technique is based on
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characteristics, where the information is extracted from isolated edge points, edge
point’s chains, or regions delimited by edges in the images.

Pattern Matching
It is the process by which the projection of a point in the 3D scene is localized in
each image taken from different cameras of the particular SVS.

Distance Calculation
It is the process where the pattern matching information is used to find the relations
of measurements between the points of the 3D scene and the two-dimensional
projections of those points in the images.

This chapter provides useful information about the currently developed SVS,
dividing them into two main groups: the binocular vision systems and the multivision
systems. The theory, geometry, and basic equations of each system are explained,
as well as the applications that these systems have had in the different areas of
engineering.

8.2 Binocular Vision Systems

The depth information is an important feature in the scene reconstructions. It loses
when capturing the scene through a camera due to the integration that occurs in
each pixel of solid angle information and the physical limits of the pixel in the
photosensitive device. This depth information can be retrieved through SVS. This
section explains the SVS where the visual information is obtained by two cameras,
beginning with the artificial biological vision model and continuing with other
binocular vision model, often used in the literature. Binocular vision systems have
been the most used SVS with several applications in the areas of research and
engineering that will be shown in the binocular vision system applications section.

8.2.1 Artificial Biological Vision Model

The SVS simulates the biological stereopsis processes of depth perception derived
from two eyes, normally developed by biological organisms with binocular vision.
However, organisms with binocular vision have particular differences between them,
mainly in the horizontal position of the eyes on the head, resulting in different
perceptions of the image. An example is described in Fig. 8.1a, where the biological
SVS obtain the images of the objects at different depths in each eye. If the images
projected to the eyes’ retinas are overlapped (Fig. 8.1a), an inverse relation of relative
position is obtained, as can be appreciated in Fig. 8.1b [11].

To simulate the biological SVS, the artificial biological SVS uses two cameras that
are placed in different points of view, causing changes in the system characteristics,
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Fig. 8.1 (a) Biological SVS observing objects at different depths of a 3D scene; (b) images overlap
of both eyes

for example, field of view, yield depth perception, and horizontal disparities, among
others. Commonly, the artificial biological SVS use the pinhole camera geometry
model. Consider an enclosure that only light coming through the pinhole can reach
the image plane in such a way that the rays of light emitted or reflected by an object
pass through the pinhole and form an inverted image of that object on the image
plane.

This model defines the geometric relationship between a 3D point and its 2D point
projection on the image plane. Figure 8.2 shows the geometry model of a pinhole
camera. The geometric mapping from 3D to 2D in the pinhole camera model is
called a perspective projection which consists of an image plane and the optical
center point C on the focal plane. The distance between the point C and the image
plane is the focal length f, and the optical axis is the line going through point C and
perpendicular to the image plane [11]. The pinhole camera model is used to find the
projection of the 3D coordinates in each point of the image by passing them through
the optical center point C.

To analyze the geometry of the pinhole camera model with one particular point
in the scene, Fig. 8.3 shows the model in a 2D plane. Imagine a real point P in the
scene and its projection point Q in the image which are united by a projection lane
between the scene and the image plane. In this projection, it is possible to appreciate
two similar triangles sharing the projection line as hypotenuse. The cathetus of the
triangle on the left side of C is given by f and oc′ (opposite cathetus), while on the
right side of C is given by d and oc. Equation (8.1) shows the relation in the scene
of the triangle on the left side of C and the triangle on the right side of C, where the
negative sign represents the inverted image. The length oc depends on the distance d
and the distance CP (hypotenuse), while the length oc′ depends on the focal length f
and the distance between the optical center C and the projection point Q.
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Fig. 8.2 The pinhole camera model

Fig. 8.3 Pinhole camera
model in 2D perspective

oc

d
= −oc

′

f
(8.1)

Considering a homogeneous coordinate system, Fig. 8.4 shows a perspective
projection of a 3D point using an ideal pinhole camera model. The optical center
C is located at the origin of a 3D coordinate system with (u, v) representing the
projection point coordinates of a point with coordinates (X, Y, Z) in the scene.

Equations (8.2) and (8.3) show the projection of a 3D point (X, Y, Z) onto the
image plane at pixel position (u, v) [12].

u = Xf
Z

(8.2)

v = Yf
Z

(8.3)
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Fig. 8.4 Perspective projection of a 3D point using an ideal pinhole camera model

Using the projective geometry, the previous relation can be formulated and
expressed in matrix notation as shown in Eq. (8.4).

λ

⎡

⎣
u

v

1

⎤

⎦ = P n

⎡
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⎦

⎡
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X

Y

Z

1

⎤

⎥⎥
⎦ (8.4)

where λ is the homogeneous scaling factor, and Pn is the perspective projection
matrix of the camera [12].

Another geometry to consider is the epipolar geometry shown in Fig. 8.5.
Epipolar geometry is the intrinsic projective geometry between two images, which
is independent of the scene structure and depends only on the internal parameters of
the camera and its relative position. Essentially, the epipolar geometry between two
images is given by the intersection of the plane of each image with a set of planes,
where all the planes of this set contain a baseline that joins the optical centers of the
cameras.

This geometry is used in the artificial biological SVS, and it consists of the optical
centers C1 and C2 of the first and second cameras, respectively. Points m1 and m2
denote the projection of a point M on the 3D real scene, and the distance b is the
baseline. Most important feature in the epipolar geometry is that the projection points
m1 and m2, optical centers C1 and C2, and the point M are in a same plane called
epipolar plane [13].

The artificial biological SVS have their optical axes parallel or convergent between
them. In these systems, the displacement among cameras allows obtaining the depth
of the objects through a triangulation process with visual information generated from
the scene objects in each camera [14]. Figure 8.6 shows an original pair of images
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Fig. 8.5 The epipolar geometry

Fig. 8.6 (a) Original stereoscopic left image; (b) original stereoscopic right image

from an artificial biological SVS with two cameras aligned horizontally in which
only a horizontal displacement of the objects and not vertical is appreciated.

These displacements are called disparities and are used by artificial biological
SVS to find the depth of a real 3D point [15]. Figure 8.7 shows the localization of
a particular 3D point using an artificial biological SVS and epipolar geometry. The
coordinates (xL, yL) and (xR, yR) are the locations of the projection points in the left
and right cameras, respectively, over the 3D point denoted by the coordinates (X, Y,
Z). The geometric model of this SVS makes possible a triangulation process for the
location of the 3D point coordinates on the real scene.

Equations (8.5)–(8.7) show the relation of the angles B, C, and β with the
coordinates X, Y, and Z of the 3D point which are derived from the law of sines [16].

X = a sin C ∗ sin B

sin (B + C) (8.5)

Y = a
(

1

2
− sin C ∗ cos B

sin (B + C)
)

(8.6)
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Fig. 8.7 Angles and coordinates obtained by artificial biological SVS

Z = a sin C ∗ sin B ∗ tan β

sin (B + C) (8.7)

8.2.2 Other Binocular Vision Model

A different approach for SVS is using cameras in two different planes to obtain 3D
point clouds with reference to a Cartesian space (Fig. 8.8). Consider a point in the
Cartesian space given by (x, y, z) projected over a screen in an image plane. The
projections will have two coordinates of the real 3D point corresponding at one
camera located parallel to the plane (x, z) and a second camera located parallel to the
plane (x, y). In this way, with the first camera, the projection coordinates (y1, y2) and,
with the second camera, the projection coordinates

(
y′1, y3

)
of the real 3D point are

obtained, notice y1 and y′1 share the same projection axis [17]. The advantage of this
configuration is a wide field of view avoiding occlusions in the scene. Occlusions
occur in SVS when a particular region of the scene is observed in one image but not
in the other [18].

With the geometry model of the camera 1, the projection coordinates (y1, y2) of
the real 3D point is shown in Eq. (8.8).

[
y1

y2

]
= αλ1

[ − cos (θ1) sen (θ1)

− sen (θ1) − cos (θ1)

] [
x −Oc11

z−Oc13

]
+
[
u01

v01

]
(8.8)

where α is a factor conversion of meters to pixels, λ1 is the focal length in image
1, θ1 is the angle rotation of camera 1, and the vector

[
u01 v01

]
is the shift in the

image of the optical center of camera 1. Therefore, αλ1 is calculated using Eq. (8.9).
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Fig. 8.8 Binocular vision model with two cameras in different planes

αλ1 = α1λ1

OC12 − y − λ1
(8.9)

The projection coordinates
(
y′1, y3

)
of the real 3D point with respect to the

geometry model of camera 2 is shown in Eq. (8.10).
[
y´1
y3

]
= αλ2

[− cos (θ2) 0
0 −1

] [
x −Oc21

y −Oc23

]
+
[
v02

u02

]
(8.10)

where λ2 is the focal length in image 1, θ2 is the rotation angle of camera 2, and the
vector

[
u02 v02

]
is the shift in the image of the optical center of camera 2. Therefore,

αλ2 is calculated using Eq. (8.11).

αλ2 = α2λ2

OC23 − z− λ2
(8.11)

Combining Eqs. (8.8) and (8.10), Eqs. (8.12)–(8.14) are obtained to describe the
geometry model of the two cameras and the relation of the projection coordinates
with the coordinates of the real 3D point [19].

y1 = −αλ1 cos (θ1)
(
x −Oc11

)+ αλ1 sen (θ1)
(
z−Oc13

)+ u01 (8.12)
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y2 = −αλ1 sen (θ1)
(
x −Oc11

)+ αλ1 cos (θ1)
(
z−Oc13

)+ v01 (8.13)

y3 = −αλ2
(
y −Oc22

)
u02 (8.14)

where, λ1, λ2, and λ3 represent the coordinates x, z, and y in the image planes,
respectively.

8.3 Multivision Systems

This section explains the SVS in which the visual information is obtained from three
or more cameras. In the literature, a great number of multivision models can be
found; this is due to the number of geometrical configurations. This section divides
the multivision systems into two groups: trinocular vision models that consist of
SVS of three cameras and multivision systems that consist of SVS with more than
three cameras.

8.3.1 Trinocular Vision Models

Trinocular vision models are SVS that use three cameras to obtain the visual
information of a real scene. Unlike binocular SVS, trinocular SVS makes the
correspondence problem easier to solve and overcome the limitations of the binocular
systems in the pattern matching due to the acquisition of more visual information by
the use of the third camera [20]. This section shows trinocular vision models which
are divided into five groups: right triangular, parallel, surrounding, divergent, and
arbitrary.

8.3.1.1 Right Triangular Model

The right triangular model sets three cameras on the vertices of a right angle triangle.
This ensures that the epipolar lines for the center image are perpendicular to the
right and the top cameras [21]. Figure 8.9 shows the right triangular vision model,
where C1, C2, and C3 are the optical center of the upper, corner, and right cameras,
respectively. I1, I2, and I3 are the projection points of a real 3D point P. f1, f2, and f3
are the focal length of the cameras. The projection of each point P in the corner image
I2 has disparities dr and du with respect to the right and the upper cameras, where
dr is the difference between dr3 and dr2. Otherwise, du is the difference between du1
and du2. The baseline distances buc and brc of the upper-corner and the right-corner
cameras, respectively, are equal.



8 Stereoscopic Vision Systems in Machine Vision, Models, and Applications 251

Fig. 8.9 Right triangular
vision model

In this configuration, a 3D point of the scene produces three pairs of homologous
epipolar lines. The main features of the right triangular vision model are its flexibility
to allow arbitrary positions of three different cameras and the reliability due to the use
of a third camera, which reinforces the geometric constraints, reducing the influences
of heuristics in the matching process, improving system accuracy [22].

8.3.1.2 Parallel Model

Parallel trinocular vision model considers three cameras with a distance between
them, and their optical axes are parallel to the X-axis of a spatial reference system
[23]. Figure 8.10 shows the parallel trinocular vision model used for the localization
of a 3D point in a real scene. Distances h1 and h2 are the gaps of the cameras. The
coordinates (xl, yl), (xm, ym), and (xr, yr) are the projection points in the left, middle,
and right image planes, respectively. The variable f is the focal length of the cameras,
and P is a particular 3D point in the real scene. Since the cameras are arranged in
a parallel trinocular configuration, the three images lie in the same XZ plane, and
the y-coordinate values of corresponding projection points on each image plane are
identical.

Equations (8.15)–(8.18) show the relation of any point P with coordinates (X, Y,
Z) on the left, middle, and right image planes.

xm − xl = hlf
Z

(8.15)
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Fig. 8.10 Parallel trinocular vision model

xr − xm = h2f

Z
(8.16)

xr − xl = h3f

Z
(8.17)

yl = ym = yr = y (8.18)

where the distance h3 is equal to the sum of the distances h1 and h2. Z is the depth
of the 3D point [24].
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8.3.1.3 Surrounding Model

Surrounding trinocular vision model consists of a sequence of three cameras that
surrounds an object to be modeled. To generate dense accurate depth maps of the
scene, this model is divided into two independent pairs, using a left and center
cameras like pair 1 and the center and right cameras like pair 2, where each pair
of cameras have their epipolar lines parallel. Figure 8.11 shows the surrounding
trinocular vision model. Pair 1 is denoted by L and CL representing the left and
center cameras, respectively, and pair 2 is denoted by RL and R representing the
center and right cameras, respectively. The variable bL is the baseline between the
left and the center cameras, and bR is the baseline between the center and the left
cameras. The coordinates (uL, vL) and (uR, vR) are the projection points in the left
and right cameras. A disparity dL in the left camera pair and a disparity dR in the
right camera pair can be projected into the C and CL images. The objective of the
model is to compute the corresponding [uR, vR, dR] for each [uL, vL, dL] concerning
at the points of projection and disparities of each camera pairs [25].

8.3.1.4 Divergent Model

This camera system consists of three cameras, where the edge cameras have divergent
optical axes and wide-angle lenses that provide an overview of the scene. The center
camera has a long focus lens and is used to obtain more detailed information in the
central field of view. Figure 8.12 shows the divergent trinocular vision model. FOVL,
FOVC, and FOVR denote the field of vision in the left, center, and right cameras,
respectively. FOVLCR is the overlapping area seen by the three cameras and where
the stereo triangulation is possible [26].

This model improves the accuracy of the 3D point localization in the scene
because features used for triangulation are closer in the image border than in the
center. Pixels in the image border achieve a smaller sector in the field of view which
improves the measurements and calculation [27].

Fig. 8.11 Surrounding
trinocular vision model
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Fig. 8.12 Divergent trinocular vision model

8.3.1.5 Arbitrary Model

Trinocular vision systems seen above have a defined geometry in comparison with
the arbitrary trinocular vision model. The geometry of these models is specific for
each particular purpose. In [28], an arbitrary trinocular vision model called CardEye
system is used to mimic the functionality of the human vision system without
being restricted to its components. The geometry model of the CardEye system is
shown in Fig. 8.13. The system uses an active lighting device to assist in surface
reconstruction process and employs techniques to improve the machine perception.
The three cameras are coupled together to perform the same motion, to fixate to a
point, or to change the baseline of the cameras. Applications using arbitrary trinocular
models are explained in the “Trinocular SVS Applications” section.

8.3.2 Multi-Camera Models

Unlike the binocular or trinocular SVS, the multivision systems with four or more
cameras can be set in a configuration that maximizes the field of view. To visualize
all the environment means that more image features can be detected and tracked.
The metric scale in the multi-camera system can be directly obtained from the
epipolar geometry, where there is a great flexibility in this configuration because an
overlapping field of view is not necessary to retrieve the metric scale [29].
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Fig. 8.13 CardEye system
model

The main difference between the multi-camera system and the standard pinhole
camera is the absence of a single center of projection, so the light rays that pass
through these systems have a non-central projection. Vision systems with non-central
projection cameras allow a greater freedom in system design because they eliminate
the challenging task of constructing a system of cameras which share a nodal point.
Figure 8.14 shows a multivision system that covers a panoramic environment of
360◦.

For a scene point PFc with coordinates
[
X Y Z

]T in reference to frame Fc, its
projection can be transformed into another reference frame Fo with magnitude M,
as shown in Eq. (8.19).

PF0 = PFc
PFc

+ [ 0 0 M
]T (8.19)

By projecting PF0 onto the normalized undistorted image plane and computing
the coordinates (xu, yu), the image point is obtained, as shown in Eq. (8.20).

[
X Y Z

]T = PF0

ZPF0

(8.20)

where ZPF0 is the z component of PF0. Thereby, the point coordinates are projected
to a panoramic environment of 360◦.
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Fig. 8.14 Multivision system with 360◦ panoramic coverage

8.4 Applications

In this section, some applications of the SVS mentioned in this chapter are presented.
For each application, the research area, the researchers who participated, and a brief
description of how they implemented the SVS are mentioned.

8.4.1 Binocular Vision System Applications

8.4.1.1 Artificial Biological SVS Applications

Currently, applications in automatic navigation use the binocular SVS to solve
different problems. The researchers Emiliano Statello et al. realized a method
for real-time visual odometry, using stereo images combined with information
obtained by a GPS system, performing localization in a geo-referenced map [30].
Also, the researchers Monica Ballesta et al. created a multi-robot map alignment
in visual simultaneous localization and mapping (SLAM). The researchers use
SVS in multiple robots, and each robot builds its own map of the scene, then
the data maps are merged into a global one to obtain a wide information of the
environment [31].

In the area of artificial vision for robotics applications, the researchers Kwang
Ho Park et al. realized a multi-range approach of stereo vision that is useful in



8 Stereoscopic Vision Systems in Machine Vision, Models, and Applications 257

uncertain environments where the detection of obstacles is an essential function of
visual-based mobile robot [32]. The researchers Calixia Cai, Nikhil Somani, and
Alois Knoll present an approach to control a six degrees of freedom manipulator
using an active SVS that addresses the challenges of choosing proper image features
for object detection and perform the tracking process [33].

In 3D measuring, the researchers J. C. Rodriguez Quiñonez et al. presented a 3D
distance measurement accuracy improvement for SVS using optimization methods.
They extracted 3D information from multiple 2D images, performing a pattern
match to find the corresponding points between the images taken by the left and
right cameras. The corresponding point position was used to perform a triangulation
process to obtain the real 3D coordinates, and with neural networks, the measurement
accuracy of the 3D coordinates is improved [16].

In computer vision, the researchers U. Castellani et al. presented a new method
using SVS for 3D face recognition, where the 3D face image was modeled using
multilevel B-splines coefficients and was used subsequently for a classification
system with support vector machine [34].

In object recognition, the researchers Ling Cai et al. presented a novel method for
SVS for multi-object detection and object tracking for surveillance application. The
model solves problems of illumination variations, shadow interference, and object
occlusion, locates objects by the foreground volume projected on the ground plane,
and searches the density space of projected points [35].

In manufacturing process, the researchers Sotiris Malassiotis and Michael G.
Strintzis presented an SVS for the high-accuracy 3D measurement of holes on
the surface of industrial components. This application is useful for inline quality
inspection in assembly plant [36].

In structural health monitoring, SVS is used to measure 3D structural displace-
ment, as is the case of the researchers Kim et al. who monitor vibration measurement
in the civil engineering constructions [37]. In the same area, researchers P.F. Luo
and F.C. Huang presented an SVS to evaluate the fracture parameters of materials
subjected to stress [38].

In agriculture, the researchers Francisco Rovira-Más, Qin Zhang, and John F.
Reid described a method to create 3D terrain maps by combining the information
captured with an SVS, a localization sensor, and an inertial measurement unit,
all installed on a mobile equipment platform. The perception engine comprises a
compact stereo camera that captures field scenes and generates 3D point clouds,
which are transformed to geodetic coordinates and assembled in a global field
map [39].

In automatic navigation, the researchers Zhang Shuo et al. presented a tractor path
tracking control using binocular SVS. The system controls a tractor which realizes
crop recognition and path planning [40].

For microsurgeries, the researchers S. Rodríguez Palma, B. C. Becker, and C.
N. Riviere implemented a simultaneous calibration of stereo vision and 3D optical
tracker for robotic microsurgery. They applied the calibration in two cameras with
approximately 2× 3 mm mounted in a handheld micromanipulator with piezoelectric
actuators called micron to realize the microsurgery [41].
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In robotics, the researchers Walter A. Aprile et al. built a mobile robotic platform
that features an active robotic head with two high-resolution cameras that produce a
panoramic virtual environment and stereoscopic images [42].

In biomedical, the researchers Ki-Chul Kwon et al. developed a high-definition
three-dimensional stereoscopic imaging display system for operating a microscope
or experimenting on animals. The system consists of a stereoscopic camera part,
an image processing device for stereoscopic video recording, and stereoscopic
display [43].

For laparoscopic surgery, the researchers Xin Kang et al. developed a real-time
stereoscopic augmented reality system which realizes a live laparoscopic ultrasound
with stereoscopic video. The system creates the perception of true depth with an
understanding of 3D spatial relationships among anatomical structures and visualizes
internal structures along with a more comprehensive visualization of the operating
field [44].

8.4.1.2 Other Binocular Vision Model Applications

A model with different geometry that the biological artificial SVS is used in the area of
visual servoing control. In this area, there are systems that use the visual information
obtained from one or several cameras to control the position or orientation of a
robot with respect to an object or a set of visual characteristics according to the
task that it must perform. The researchers M. A. Pérez and M. Bueno developed a
3D visual servoing control for robot manipulators. The main characteristic of the
proposed model is that it does not need any dynamic model of the system, and image
coordinates are employed directly for feedback, while an observer is designed for
velocity estimation [17].

8.4.2 Multivision System Applications

8.4.2.1 Trinocular SVS Applications

In automatic navigation, the researchers Don Murray and James J. Little presented
a vision-based mobile robot that autonomously explores its environment while
is building the occupancy grid maps of the environment using trinocular stereo
algorithm. The trinocular SVS developed by Don Murray and James J. Little has
three identical wide-angle cameras. The camera coordinate frames are co-planar
and aligned, so that the epipolar lines of the camera pairs are along the rows and
columns of the images [45]. In the same area, the researcher A. Rieder creates a
trinocular divergent SVS which is mounted on a pan and tilt platform over a vehicle.
The SVS covers all the important parts of the environment, has a wide look-ahead
range, high resolution in special areas of interest, and a good range estimation for all
distances [26].
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In object recognition, the researchers Yasushi Sumi et al. proposed a new method
for 3D object recognition which uses SVS with three cameras. The recognition can
be planar, polyhedral, or free forms, and the matching is performed by calculating
candidates for the object position and orientation using local features, achieving
the position and orientation by an iteration method. Trinocular stereo images are
obtained from a stereo camera module which has three precisely calibrated CCD
cameras. The third camera is for testing stereo correspondences and for improving
the accuracy of 3D measurements using a double-baseline stereo algorithm [46].

In robot vision, the researchers Jens Christian Andersen, Nils A. Andersen, and
Ole Ravn describe a vision sensor that extracts visible features of objects using a
trinocular SVS for intelligent robot navigation. They focused on autonomous robot
navigation in an indoor human environment, where the robot is able to find and
recognize some basic types of objects. The project uses three cameras in a right
angle triangular configuration to remove false correlations, pre-extracts a number of
features, and stores these points for the ongoing navigation [47].

In computer vision, the object location and object tracking are major issues;
therefore, the trinocular SVS has been used to solve these problems. The researchers
Rafael Garcia, Joan Batlle, and Joaquim Salvi considered a trinocular SVS to estimate
both the position and velocity of known objects with no use of the image-plane
coordinates of the object’s features. A position measurement tool uses the apparent
area captured by every camera to locate the object, and finally, a prediction tool
improves the estimation in locating the object [48].

In robotics, the researchers Elsayed Hemayed, Moumen Ahmed, and Aly Farag
design an arbitrary trinocular vision model called CardEye which is used to control
a robotic arm. The system has the basic mechanical properties of active vision
platforms: pan, tilt, roll, focus, zoom, aperture, vergence, and baseline [28].

In metrology, the researchers A. Blake et al. designed a trinocular SVS for
mechanical scanning and rapid image capture. The advantage of this SVS is to
minimize the incidence of false matching, predict image measurement tolerances,
and maintain the elimination of ambiguity [49].

In human motion analysis, the researchers Shoichiro Iwasawa et al. proposed a
new real-time method for estimating human postures in 3D using trinocular SVS.
They estimated the major joint positions based on a genetic algorithm by learning
procedure [50].

8.4.2.2 Multivision SVS Applications

In autonomous navigation, the researchers Christian Häne et al. implemented a multi-
camera system to cover the full 360◦ field of view around the car. They adapted
standard vision pipelines for 3D mapping, visual localization, and obstacle detection
to take full advantage of the availability of multiple cameras. The vision system is
able to precisely calibrate multi-camera systems, build sparse 3D maps for visual
navigation, visually localize the car with respect to these maps, generate accurate
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dense maps, as well as detect obstacles based on real-time depth map extraction [29].
Other applications on autonomous navigation are found in [51–55].

In computer vision, the researchers Andreas Geiger et al. presented a toolbox with
a web interface for automatic camera-to-range calibration. The system is easy to set up
and recovers intrinsic and extrinsic camera parameters as well as the transformation
between cameras and range sensors [56]. In the same area, the researchers Megumu
Ueda et al. proposed a system generating free viewpoint video using multiple cameras
and a PC cluster in real time. The system reconstructs a shape model of objects by the
visual cone intersection method, transforms the shape model represented in terms of
a voxel form into a triangular patch form, and finally displays the shape-color model
from the virtual viewpoint directed by a user [57].

In 3D reconstruction, the researchers Kensuke Hisatomi et al. realized a method of
3D reconstruction using graph cuts to preserve the intangible cultural heritage. They
used a system of 24 HD cameras to capture multi-videos, and then they performed a
3D reconstruction method based on the graph-cut that uses photo consistency with
constraints by silhouette edges and the core obtained by the adaptive erosion process
on the volume intersection [58].

In object recognition, the researchers Kuan-Wen Chen et al. proposed an
adaptative learning method for target tracking across multiple cameras. The method
performs target tracking across multiple cameras while also considering the
environment changes, such as sudden lighting changes. Also, the method improves
the estimation of spatio-temporal relationships by using the prior knowledge of
camera network topology [59].

8.5 Conclusion

There are many SVS that have been developed at the moment, all with the objective
to use the visual information to model-specific features of a real 3D scene. In
this chapter, different SVS models seen in the literature focusing on the basic
configuration schemes and principal geometry equations have been provided. It
is important to note that the geometry of the presented SVS is ideal. In these
cases, factors that affect the accuracy of the measurements are not considered. To
improve the accuracy of the measurement and calculation, it is necessary to perform
calibration processes in which the external and internal parameters of the cameras
are modeled. In the internal parameters, the focal distance and optical distortions
of the cameras (radial and tangential distortion) are modeled, while in the external
parameters, the position and orientation of the cameras are modeled. To know more
about camera calibration methods, Refs. [60–63] are recommended for binocular
SVS and [64, 65] for multivision SVS.

A fundamental problem in the SVS is how to identify and solve the occlusion
relationships, so that image regions are correctly partitioned between surfaces at
different depths. In [66], the authors focus on the problem of occlusion and provide
a solution to avoid them through a novel modified geometric mapping technique.
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Other problems that occur in the SVS are the illumination factors, image quality, and
digital noise which can cause difficulties in the search of pattern matching between
the images. These problems are solved using pre-processing image techniques; an
example is shown in [67] where a decomposition of the image is made, separating
its structure, texture, and digital noise to independently improve each one of
them and finally joining them to get a corrected resulting image. As it could be
appreciated, there are several advantages and disadvantages of each SVS, for example,
the binocular models have a simpler geometry with respect to the trinocular or
multivision systems, which leads to a simpler analysis and a lower computational
processing; however, the presence of occlusions in these systems make it very difficult
to locate the characteristics at a certain moment in the scene. On the other hand,
trinocular and multivision models cover the problems of occlusions due to the greater
amount of visual information in comparison with the binocular models.

Another advantage of multivision system is the wide field of view that can cover up
to 360◦ of the environment. However, the used geometry leads to a more exhaustive
analysis and high levels of processing. As seen above, SVS have been included
in many applications, solving problems in a practical way, making it a common
topic in research and engineering areas, where the performance of these systems is
continuously updated and improved.
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2D, 3D Two- and three-dimensional space
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KF Standard Kalman filter
MAP Maximize the posterior estimation
MLE Maximum likelihood estimator
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SFM Structure from motion problem
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SURF Speeded up robust features
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VSLAM Visual simultaneous localization and mapping
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9.1 Introduction

Recently, techniques for solving the problem of reconstructing a 3D model of
the environment have drawn significant attention from both the robotics vision
communities and computer vision. Many variants of these techniques have started
to make an impact in a wide range of robotics applications such as robot navigation,
obstacle avoidance, and visual simultaneous localization and mapping (VSLAM)
based on stereo vision [1]. Structure from motion problem (SFM) is defined as a
technique for 3D reconstruction from a set of 2D images and some geometrical
constraints [2].

SFM methods perform a bundle adjustment (BA) optimization of the total
geometry in order to obtain an accurate 3D model of the scene. However, this is
computationally very expensive and cannot be implemented in a real-time application
[3]. On the other hand, simultaneous localization and mapping (SLAM) is a problem
faced recently in robotics community, essentially addressing the hard real-time
mapping and navigation problem by “sequential” interactive local estimation of
the structure and motion [4].

The SLAM problem tries to answer the following central question: “Is it possible
for an autonomous robot starting at an unknown location in an unknown environment
to build a map of the environment while simultaneously using this map to compute
the vehicle’s location?” Solving this problem allows to develop a truly autonomous
robot and navigate safely around the environment [5].

The stochastic nature of the mobile robot motion with noisy measurement data
complicates the coupling between navigation and mapping that is inherent SLAM
[6]. Many successful SLAM algorithms address these issues by formulating the
problem in a probabilistic manner, tracking the joint posterior over the robot pose
and map.

Probabilistic Bayesian filter is the strategy to incorporate uncertainty for all
possible robot poses with a probability density function (pdf), which is the degree
of belief (Bel) of the robot moves [7].

The estimation problem can be solved by KF-based approaches or particle filter
(i.e., online VSLAM) for real-time application or bundle adjustment (i.e., standard
SFM) for an offline application [7]. In the medical field, stereo vision obtained a
3D vision, which improved the accuracy of surgery and reduced the time required
for surgery and errors that may occur. A novel SLAM algorithm proposed by [8]
aimed at advancing the state-of-art in image-guided surgery using stochastic models
and KF framework to recursively estimate the configuration of the high degree of
freedom snake surgical robot using stereo vision. VSLAM estimates the camera pose
by implementing epipolar geometry on the static feature correspondences as shown
in Fig. 9.1. The dynamic features are regarded as outliers and excluded from the
computation.

From Fig. 9.1, the static corner has been extracted as a correspondence point
in order to estimate the camera orientation. The computer vision community has
developed a large number of feature extraction techniques (e.g., Harris corner
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Fig. 9.1 Feature correspondence extraction

detector, scale invariant feature transform (SIFT), and speeded-up robust features
(SURF)). Unfortunately, these feature-matching techniques do not guarantee perfect
correspondences, especially when the data contains outliers [3]. Implementation of
robust estimators RANSAC (random sample consensus) is useful to reject outliers
and handle false correspondences. On the other hand, deep learning techniques
can process the image sequences directly to compute the correspondences in real
time [3].

This chapter is structured as follows: Sect. 9.1 introduces the basic estimation
techniques; Sect. 9.2 presents the brief of stereo vision, camera calibration,
projection, and epipolar function; Sect. 9.3 exhibits the uncertainties and error
source in vision system; finally, Sect. 9.4 shows examples of VSLAM based on
UKF algorithm and stereo vision.

9.2 Kalman Filter Framework-Based Probabilistic Inference

The following problem commonly recurs in Computer Vision and Autonomous
Robotics algorithms: estimate the values of unknown parameters (robot posture,
camera orientation, etc.), given a number of measurements (sensory data, images,
feature points, etc.). These kinds of problems are called inverse problem because
they involve in estimating unknown model parameters instead of simulating the
forward formation equations [9]. However, a model of uncertainty sources needs to
be introduced in order to have a reasonable algorithm. Such inference problems from
noisy data are called probabilistic inference [10]. In this section, the measurement
update equation for the KF, EKF, and UKF is derived starting from the maximum
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likelihood (the joint probability density function (pdf)), work through Bayesian
rule, Gauss–Newton iterated nonlinear least squares method, and practical nonlinear
Bayes filter (i.e., standard Kalman filter (SKF), extended Kalman filter (EKF)-
based Taylor linearization, and unscented Kalman filter (UKF)-based stochastic
linearization).

9.2.1 Maximum Likelihood Estimator (MLE)

The general form of noisy measurement model is given by (9.1):

zk = h (xk)+ vk (9.1)

where zk is the noisy measurement vector, xk is the unknown state vector, h(·) is
the associated nonlinear measurement model, which maps the unknown into that
particular measurement, and νk � N(0, R) is a normal Gaussian random variable
(GRV) with zero mean and covariance matrix R. Given all of the noisy measurements
z = {zk}, the likelihood of having the observed {zk} given a particular value of x is
given by (9.2):

L = p (z|x) =
∏

k

p (zk|xk) =
∏

k

p (zk|h (xk)) =
∏

k

p (νk) (9.2)

where p(z| x) is the joint probability distribution of the measurements z with the
unknown vector x. To solve the inverse problem (if the distribution is unimodal
Gaussian), the optimal estimate value for the unknown state vector x in the absence
of any prior model is that maximizes the likelihood function. if the distribution is
unimodal Gaussian. However, if the probability is multimodal, it has several local
maxima in likelihood, much more care is required [11].

The likelihood function can be written for the Gaussian noise as (9.3):

L =∏
k

|2πR|−1/2 exp
(
− 1

2 (zk − h (xk))
TR−1 (zk − h (xk))

)

=∏
k

|2πR|−1/2 exp
(
− 1

2‖zk − zk‖2
R−1

) (9.3)

The norm ‖zk − zk‖2
R−1 is called the Mahalanobis distance [9]. It is used to

measure the distance between the measurement zk with step time k and the mean of
Gaussian distribution zk. Usually, it is more convenient to work with the negative
log-likelihood, as a cost function [12] (9.4):

E = − logL = 1

2

∑

k

(zk − zk)
TR−1 (zk − zk)+ log |2πR|

= 1

2

∑

k

‖zk − zk‖2
R−1 +K

(9.4)
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where K =∑k log |2πR| is a constant independent of x and can be dropped. The
inverse covariance matrix R−1 weights each measurement error residuals (i.e., the
difference between the real measurement zk and the predicted mean value ẑk = zk).

Another form of negative log-likelihood can be written as (9.5):

E = − logL =
∑

k

∥∥zk − ẑk
∥∥

R−1 (9.5)

Consider the measurement noise is Gaussian and the measurement equation is
linear (9.6):

zk = h (xk) = Hxk (9.6)

where H is the measurement matrix; in this case, the maximum likelihood estimate is
given by the minimization of the quadratic function (9.7), which is a simple quadratic
form in xk solved using linear least square algorithm:

E =
∑

k

‖zk − h (xk)‖R−1 =
∑

k

(zk −Hxk)
TR−1 (zk −Hxk) (9.7)

9.2.2 Probabilistic Inference and Bayesian Rule

In some cases, the range of possible solution consistent with the measurements is
too large to be useful, and any progress cannot be made [11]. For example, MLE
estimates each pixel separately based on just its noisy version to solve the problem
of image filtering [13]. The difference between the Bayesian inference and the MLE
method in that the starting point of Bayesian inference is to formally consider the
unknown vector xk as a random vector with a prior distribution p(xk), which is called
the degree of belief (Bel), then the posterior distribution of xk can be computed by
multiplying the measurements likelihood p(zk| xk) by the prior Bel [14].

Consider the noisy measurement model given by (9.8):

zk = h (xk)+ νk (9.8)

where xk ∼ N (x,P) is the unknown Gaussian random state vector with mean x and
state covariance matrix P. The form of Bayesian rule is given by (9.9):

p (xk|zk) = ηp (zk|xk) p (xk) (9.9)
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where η is the normalizing constant [10]. The problem is to find xk that maximizes
the posterior estimation (MAP).

Assume that the distributions of xk and zk are Gaussian (9.10):

p (zk|xk) = |2πR|−1/2 exp
(
− 1

2 (zk − h (xk))
TR−1 (zk − h (xk))

)

p (xk) = |2πPk|−1/2 exp
(
− 1

2

(
x̂k − x̂−k

)T
P−1

k

(
x̂k − x̂−k

)) (9.10)

The solution that maximizes p(xk| zk) is the most probable value of the random
vector and is equivalent to minimize its negative log, which reduces to the quadratic
form [11] (9.11):

L = 1

2

(
(zk − h (xk))

TR−1 (zk − h (xk))+
(
x̂k − x̂−k

)T
P−1

k

(
x̂k − x̂−k

))

(9.11)

An algebraic equivalent way to maximize the posterior likelihood is to consider
the prior estimate as a pseudo-observation and write a new observation vector [12]
(9.12):

Zk =
[

zk

x̂k

]
, g (xk) =

[
h (xk)

x̂−k

]
,C =

[
R 0
0 Pk

]
(9.12)

which gives (9.13):

L = 1

2
(Zk − g (xk))

TC−1 (Zk − g (xk)) (9.13)

This is a nonlinear least squares problem of the form (9.14):

E = − logL =
∑

k

∥∥zk − ẑk
∥∥2

R−1 (9.14)

A useful approximation for small residual problems is the online stochastic Gauss–
Newton method, which defines the sequence of iterates as [12] (9.15):

x̂k = x̂−k −
(

GT
k C−1Gk

)−1
GT

k C−1 (zk − h (xk)) (9.15)

where Gk = ∂g(xk)
∂xk

∣∣∣
x=x

the Jacobian of g(xk) with respect to the state vector xk.
The Gauss–Newton method is simply using the matrix inversion lemma [11]

(9.16):

(
HTR−1H+ P−1

k

)−1
HTR−1 = PkHT

(
HPkHT + R

)−1

(
HTR−1H+ P−1

k

)−1 = Pk − PkHT
(
HPkHT + R

)−1
HPk

(9.16)
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Using (9.16), the Kalman equation is given by (9.17):

x̂k = x̂−k −K (zk − h (xk)) (9.17)

where Kk is the Kalman gain (9.18):

Kk = PkHT
(

HPkHT + R
)−1

(9.18)

The update covariance matrix is approximated using (9.19):

Pk+1 =
(

GT
k C−1Gk

)−1 =
(

HTR−1H+ P−1
k

)−1
(9.19)

where the Hessian Hk = ∂h(xk)
∂xk

∣
∣∣
x=x

is the Jacobian of h(xk) with respect to the state
vector xk.

The posterior covariance matrix using matrix inversion lemma (9.16) is given by
(9.20):

Pk+1 = (I−KkH)Pk (9.20)

Many applications require an estimate for the uncertainty in this estimate such
as KF, which require the computation of this uncertainty as posterior covariance
matrix in order to optimally integrate new measurements with previously computed
estimates [9].

9.2.3 Bayes Filter and Belief Update

In this section, the formulation of optimal recursive discrete time Bayesian filters
(e.g., KF, EKF, and UKF) is presented as a practical estimator in terms of Bayes
filter.

The basic elements of Bayesian filter are the initial belief Bel(xk − 1) con-
taining preliminary information on the unknown vector xk − 1, the motion model
p(xk| xk − 1, uk) as a probabilistic model of the discrete time state space, and the
measurement model p(zk| xk) determining the stochastic mapping from the state
vector to the measurement, where

• xk ∈ �n is the unknown state space vector on time step k.
• uk ∈ �L is the control vector on time step k.
• zk ∈ �m is the observation vector on time step k.

Using Markov assumption, these vectors are conditionally independent of past
values. Bayes filter applies two rules successively to predict the system state [10]
(9.21):
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Prediction : Bel (xk) =∑
k

p (xk|xk−1,uk)Bel (xk−1)

correction : Bel (xk) = ηp (zk|xk)Bel (xk)
(9.21)

The prior predictive Bel (xk) is calculated just before the measurement zk using
the control vector uk; this step is called prediction (or action phase). Next, the state
estimate belief given in the action phase is corrected using sensor measurement; this
step is called correction (or perception phase).

9.2.3.1 KF Framework

In many vision applications, the object is tracked from frame to frame as it moves.
Kalman Filter (1960) has been regarded as the optimal solution to many visual
motion tracking and data prediction tasks [13].

The standard KF derivation is given here in the practical use of probabilistic
inference [15]. Consider a noisy linear system given by (9.22):

xk = Axk−1 + B1uk + B2ωk

zk = Hxk + νk
(9.22)

where xk, xk − 1 are the current and previous state vector, An × n is the linear state
transition matrix of the dynamic model, B1n × L is the control matrix, B2n × L is the
input noise matrix, Hn × m is the measurement model matrix, ωk � N(0, Q) is an
additive Gaussian state noise, and νk � N(0, R) is the Gaussian measurement noise.
The KF equations can be derived as follows [16]:

1. Prediction phase: The motion model causes a drift in the previous estimate,
while the additive noise increases the system disbelief.

First, apply the motion model and compute the joint distribution of the Gaussian
state xk given the initial state xk−1 ∼ N (xk−1,Pk−1) and the input uk by (9.23):

x̂−k ∼ N
(

Axk−1 + Buk,APk−1AT +Q
)

(9.23)

Then, apply the measurement model and compute the joint distribution of the
measurement zk given the predicted state x̂−k by (9.24):

ẑk ∼ N
(

Hx̂−k ,HP−k HT + R
)

(9.24)

2. Correction phase: New measurements from the current frame introduce
additional information that updates the prior estimate x̂−k and restores some of the
belief, by computing Kalman gain Kk and updating the covariance matrix (9.25):
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Kk = P−k HT
[
HP−k HT + R

]−1

x̂k = x̂−k +Kk
(
zk − ẑk

)

Pk = (I−KkH)P−k

(9.25)

9.2.3.2 EKF Linearization Technique

For nonlinear problems, such as SLAM, an EKF, which linearizes the motion and
measurement model around the current estimate, is used. The important drawback
of the EKF approach is that it uses the Taylor linearization dynamic model [17].
However, if the robot drives along a straight path, the distribution of mobile model in
a plane has been observed by “Banana Shape distribution.” As uncertainty increases,
the algorithm becomes inconsistent due to the normality assumption breaking down
[18]. Consider a noisy nonlinear system given by (9.26):

xk = f (xk−1,uk,ωk)

zk = h (xk)+ νk
(9.26)

where f (·) is the nonlinear motion model, noisy by non-additive Gaussian noise
ωk � N(0, Q) and h(·) is the nonlinear measurement model, noisy by νk � N(0, R).

Table 9.1 illustrates the pseudo code for EKF algorithm as Bayes filter.

9.2.3.3 UKF Stochastic Linearization Technique

The UKF is a Gaussian recursive Bayesian filtering algorithm to solve the
probabilistic inference practically. It propagates and updates the system state using
a set of deterministically chosen points called sigma points [11]. These points
capture the mean and covariance of the state distribution. Filter each point using
unscented transform through the nonlinear motion and measurement models [14],
and determine the posterior state mean and state covariance to the third order of the
nonlinear system. This is a form of statistical local linearization, which produces
more accurate estimates than the analytic local linearization employed by the EKF
[19]. The UKF algorithm includes three main stages. Table 9.2 shows the pseudo
code for the UKF algorithm [16].

9.3 Stereo Vision System

Stereo vision is considered one of the most important recent applications [21]. It is
still developing especially in the robotics vision application [22]. Stereo vision is
used to form a 3D map of the robot environment, and landmarks are used in this map
for localization and exploration [21].
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Table 9.1 Extended Kalman filter (xk − 1, Pk − 1, uk, zk)

Initialization:
Initialize the prior knowledge xk − 1, Pk − 1, Q, R:
xk−1 = [x0]T

Pk−1 = diag (P0) ∈ �n,Q = diag (Q) ∈ �L,R = diag (R) ∈ �m
For each sample time k, do:
Prediction:

1. Apply the motion model and compute the mean and covariance:
x̂−k = f (xk−1,uk,wk) ; wk ∼ N (0,Q)
P−k = JxPk−1JT

x + JuQJT
u

where the Jacobian matrices Jx, Ju are obtained by differentiating f (xk − 1, uk, wk) with
respect to xk − 1 and uk, respectively:
Jx = ∂f (xk−1,uk,wk)

∂xk−1

∣
∣∣
x=x̂
, Ju = ∂f (xk−1,uk,wk)

∂uk

∣
∣∣
u=û

2. Apply the measurement model:
ẑk = h

(
x̂−k , νk

) ; νk ∼ N (0,R)
Correction:
The EKF gain Kk which minimizes the errors and updates the posterior mean and covariance(
x̂k,Pk

)
is given by:

Kk = P−k HT
[
HP−k HT + R

]−1

x̂k = x̂−k +Kk
(
zk − ẑk

)

Pk = (I−KkH)P−k
return

(
x̂k,Pk

)

Compute the Degree of Belief (Bel):
The determinant Pk provides a good measure of uncertainty [10].

Belk = 1− ‖Pk‖0.5
2 ; 0 ≤ Bel ≤ 1

end function

Figure 9.2 explains a low- and high-level image processing stages. In the low-level
image processing stage, a camera calibration with distortion removal is carried out.
Camera calibration includes the determination of the camera’s intrinsic and extrinsic
parameters. Accurate estimates of this geometry are necessary in order to relate image
information to an external world coordinate system. On the other hand, in the high-
level image processing stage, certain correspondence points are determined based
on advanced algorithms for feature extraction [23]. These points are hence used to
calculate the relative orientation (RO) as well as the absolute orientation (AO) using
a set of control points whose relative coordinates and corresponding image points
are known. Stereo vision-based system with SLAM algorithm is used to enable the
robot to percept the environment around and within the robot playing area [24]. The
computation of relative camera pose can be done using 7-point correspondences for
an uncalibrated camera or 5-point for a calibrated camera from two views under by
enforcing epipolar geometry. If the image correspondences are known, the relative
pose between two images can be recovered up to a scale factor [13]. When the
camera pose is recovered, one can easily reconstruct 3D points of the scene by
intersecting two projection ray lines through triangulation [25]. As the rays do not
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Table 9.2 Unscented Kalman filter (χk − 1, Pk − 1, uk, zk)

Initialization:
Initialize the state space vector χ0 and covariance matrix Pk − 1, Q, R:
χ0 = [x0 0 0]T

Pk−1 = diag (P0,Q,R)
For each sample time k do:
Prediction:

1. Compute 2n − 1 sigma points:

χk−1 =
[

xk−1 xk−1 + γ
√

Pk−1 xk−1 − γ
√

Pk−1

]T

where γ is a scalar parameter that determines how far the sigma points are dispersed
away from the mean, and

√
Pk−1 is computed using Cholesky decomposition [20].

2. Apply the motion model:
χk = f (χk − 1, uk, wk); wk � N(0, Q)

3. Compute the predicted sigma points mean χ̂
−
k and covariance P−χχ:

χ̂
−
k =

2n∑

i=0

ω[i]
m χ

[i]
k

P−χχ =
2n∑

i=0

ω[i]
c

(
χ

[i]
k − χ̂

−
k

) (
χ

[i]
k − χ̂

−
k

)T

where ω
[i]
m ,ω

[i]
c are defined by the algorithm.

4. Propagate the new sigma points through the measurement model:
zk = h

(
χ

[i]
k , νk

)
; νk ∼ N (0,R)

5. Compute the new sigma points mean ẑk, the predicted measurement covariance Pzz, and
the state and measurement cross-covariance Pχz:

ẑk =
2n∑

i=0

ω[i]
m z[i]

k

Pzz =
2n∑

i=0

ω[i]
c

(
z[i]

k − ẑk

) (
z[i]

k − ẑk

)T

Pχz =
2n∑

i=0

ω[i]
c

(
χ

[i]
k − χ̂

−
k

) (
z[i]

k − ẑk

)T

Correction:
1. Compute the innovation υk from the current and predicted measurement zk, ẑk,

respectively:
νk = zk − ẑk

2. Update Kalman gain matrix:
Kk = PχzP−1

zz
3. Update the posterior mean and covariance

(
χ̂k,Pχχ

)
:

χ̂k = χ̂
−
k +Kk

(
zk − ẑk

)

Pχχ = P−χχ −KkPzzKT
k

return
(
χ̂k,Pχχ

)

Compute the Degree of Belief (Bel):
Belk = 1− ∥∥Pχχ

∥∥0.5
2 ; 0 ≤ Bel ≤ 1

end function



278 A. Joukhadar et al.

Fig. 9.2 Stereo vision 3D reconstruction stage

always intersect due to erroneous correspondences, the midpoint method or least
square based method is proposed to estimate the intersection. Then to avoid the
drifting problem, UKF is employed to refine both the camera pose and 3D points by
minimizing re-projection errors [26].

9.3.1 Perspective Projection and Collinearity Constraint

The process by which the 3D objects are mapped onto an image by a camera is
approximated by collinearity constraint [13].

Figure 9.3 shows the perspective projection geometry.
As seen from Fig. 9.3, light falling on the image plane is assumed to have passed

through a small pinhole. Therefore, each object point Pω maps to a single point on
the image plane Pu. Three-coordinate systems are necessary to define a perspective
camera model [23]: (a) The 3D world coordinate system {W}. (b) The camera
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Fig. 9.3 Perspective projection model

coordinate system {C}; it is attached to the projection center of the camera. The
sensor plane is parallel to its xy plane and displaced in a positive z direction. This
axis pierces the image plane at the principal point (u0, ν0) which acts as the origin of
the image plane. (c) The 2D image coordinate system {I}; its origin lies at the upper
left corner of the image. Two sets of parameters are used for perspective camera
modeling [13]:

• Extrinsic Parameters (Extrinsics): These parameters describe the camera pose
in the environment. Extrinsics contain six parameters of the exterior orientation
(EO) of the projection center (i.e., three parameters for the translation and three
other parameters for the rotation). They all vary with the camera motion in the
environment.

• Intrinsic Parameters (Intrinsic): These parameters model the camera physics
and describe the interior orientation (IO) of the camera. The intrinsic parameters
are determined by calibration and are usually fixed. The parameters are now in
place to define perspective projection mathematically. The mapping with an ideal
perspective camera can be decomposed into two steps [23]:

1. Exterior orientation: Given the 3D object’s position in world frame wPω =[
wxω

wyω
wzω

]T , the 3D object’s position with respect to the camera
frame using homogeneous notation CTW4 × 4 (rotation matrix CRW3 × 3 and
translation matrix CDW3 × 1) is given by (9.27):
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CPω = CTW
WPω (9.27)

2. Interior orientation: A projection from camera frame to image frame using the
calibration matrix κ and intrinsic parameters (the focal length f, the horizontal
and vertical scale vector ku, kν) is given by (9.28):

κ =
⎛

⎝
αu 0 u0 0
0 αν ν0 0
0 0 1 0

⎞

⎠ (9.28)

where αu = − kuf, αν = − kν f. If the shear parameter s and the scale
difference m are present, they amount to an affine distortion of the image
frame. It is useful to model the distortions as corrections	u,	ν of the image
coordinates of a perspective camera, and the calibration matrix becomes (9.29):

κ =
⎛

⎝
αu sαν u0 +	u 0
0 αν (1+m) ν0 +	ν 0
0 0 1 0

⎞

⎠ (9.29)

If κ is known, then the camera is considered to be calibrated. The
final mathematical formation of the collinearity constraint for a perspective
projection with distortion from object to image frame is given by (9.30):

IPu = κCPω (9.30)

9.3.2 Epipolar Geometry and Coplanarity Constraint

A 3D measurement cannot be derived from a single image of an unknown scene,
because the depth along the Z axis is lost during projection. The principle to solve
this problem is to measure the corresponding points acquired from two different
viewpoints and reconstruct the 3D coordinates via triangulation. Some of these
points are considered as control points [27]. Now, two problems need to be solved:

1. Determination of the image pair orientation (relative and absolute orientations).
2. Reconstruction of the 3D scene coordinates.

Figure 9.4 shows what is known as epipolar geometry. eL is the epipole which
is the image of the right camera center in the left camera. eR is the epipole of the
left camera center in the right camera. The plane formed by P and the two camera
centers OL, OR is the epipolar plane.

This plane intersects the image planes in the epipolar line lL, lR; these lines can
be used for matching points, and B is the baseline, which is the distance between
the projection center, OR and OL. All epipolar lines converge at the epipole. First,
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Fig. 9.4 Epipolar geometry

it seems that the matching process requires cross image searching, but epipolar
restrictions reduce this search to a single line [13]. The two projection rays must be
coplanar because they intersect in the 3D point P. For any corresponding point P,
triple product coplanarity can be expressed by (9.31):

[
OLPL OLOR ORPR

] = 0 (9.31)

That is, the three rays are in one plane. The third dimension is extracted from a
pair of images using the coplanarity constraint given for the uncalibrated camera as
follow (9.32):

pTRκ−T
R R−T

R SbR−1
L κ−1

L︸ ︷︷ ︸
F

pL = 0 (9.32)

where Sb is a skew-symmetric matrix resulting from the triple product given in
(9.31), κR, κL are the right and left calibration matrix, and RR, RL are the rotation
matrix of the right and left camera. The fundamental matrix F3×3 sums up everything
that can be known about the relationship between two uncalibrated cameras. Using
F3×3, it is possible to calculate the positions of the epipoles and the epipolar line
in one image associated with a point in the other one. An alternative form for the
epipolar geometry in case of the calibrated camera using the essential matrix E3×3
is given by (9.33):

pTRRRSbRTL︸ ︷︷ ︸
E

pL = 0 (9.33)

The depth of the 3D point is calculated using the triangulation principle as shown
in Fig. 9.5.
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Fig. 9.5 Stereo vision
triangulation [13]

The 3D coordinates of a landmark can be computed from two matched points in
the left and right images by (9.34):

X = xR B
px
, Y = yL + yR

2

B

px
,Z = f B

px
(9.34)

where xR, L, yR, L are the interest coordinate points in the images, X, Y, Z represent
the object coordinates in the word frame, B is the baseline, and f is the focal length.
The x-parallax px = xR − xL is the distance between identical pixels when two
images are mounted on top of each other [13].

9.4 Uncertainties in Stereo Vision System

Uncertainties are always present in the image acquisition and processing steps.
Images are distorted due to various types of random noises such as Gaussian noise,
Poisson noise, Quantization noise, Salt and paper noise, etc. These noises may be
introduced from noise sources, for example, inaccurate image capturing devices like
cameras, misaligned lenses, weak focal length, faulty memory location, etc. [28].
There are two main error categories, namely deterministic and nondeterministic [29].
The camera intrinsic parameter uncertainties are deterministic since the camera is
supposed to be calibrated. In a stereo vision system with parallel optical axis as
shown in Fig. 9.6, the epipolar constraint reduces to check that both the features
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Fig. 9.6 Stereo vision uncertainty

are in the same row of the image. Consider the uncertainty in the 3D landmark
position due to errors in the image quantization and in the feature detection process.
Once the matching has been established, the most likely 3D coordinates of the
landmark are estimated by projecting them back to the environment [30]. Refer to
Eq. (9.34), error in the variables x, y, px are usually modeled as uncorrelated zero-
mean Gaussian random variables [13]. Using the first-order error propagation to
approximate the distribution of the variables in (9.34) as multivariable Gaussian, the
following covariance matrix for the x, y, z coordinates has been obtained (9.35):

� ≈ J diag
(
σ 2
x , σ

2
x , σ

2
x

)
JT (9.35)

where J represents the Jacobian matrix of the functions in (9.34), and
(
σ 2
x , σ

2
x , σ

2
x

)

are the variances of the corresponding variables.
The theoretical precision of 3D points depends on the uncertainty of the relative

orientation and the uncertainty of measured corresponding points. Assume that the
uncertainty of the relative orientation is negligible. By variance propagation using
(9.36)

σ 2
X =

Z

px
σpx = fB

p2
x

σpx = Z2

fB
σpx = Z

f

1

B/Z
σpx (9.36)
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Fig. 9.7 Stereo vision

where Z coordinate is the distance of the point P from the principal plane, B is the
baseline, f is the focal length, px is the x-parallax, and σpx is the standard deviation
of the point P. The result shows the uncertainty proportional to Z2 of the distance
from the baseline B for a given geometry point P as shown in Fig. 9.7.

9.5 Examples

9.5.1 Pose Tracking Using UKF and Stereo Vision

An important improvement of the surgical robot is to extract pose information about
the robot relative position to the patient. The absolute pose of the surgical robot
relative to the patient cannot be observed directly due to the highly dynamic nature
of the operating environment and uncertainties in the robot kinematics model [31].
To solve this problem, VSLAM is applied using the endoscopic stereo camera to
estimate the robot motion. In many applications, KF framework is used to estimate
the motion of the target object from the previous frame to the new frame [32]. In
this example, a UKF approach is used to estimate the pose of the robot. Assuming
that the feature points are observable throughout the sequence, the formulation of
the UKF is as follows:

The state vector Xk is given by (9.37):

Xk =
[

xk ẋk yk ẏk zk żk αk α̇k βk β̇k ϕk ϕ̇k
]T (9.37)

where xk, yk, zk, αk, βk, ϕk are the object’s pose and orientation along the x, y, and
z axes, respectively, and ẋk, ẏk, żk, α̇k, β̇k, ϕ̇k are their corresponding velocities.
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The dynamic system equation is given by (9.38):

Xk = AXk−1 + ωk

A = diag

[[
1 Ts
0 1

]
, . . . ,

[
1 Ts
0 1

]]
(9.38)

where Ts is the sample time, and ωk is zero-mean Gaussian noise.
The nonlinear measurement model is defined as (9.39):

zk = h (Xk)+ νk (9.39)

where νk is a 4m × 1 zero-mean Gaussian noise vector imposed on the images
captured. m is the number of feature points extracted from the tracked robot. h(Xk) is
the 4m× 1 output stereo image pair point transfer function. The estimated coordinates
of the feature points at the sample time k is given by (9.40):

h (Xk) =
[
uL1,k v

L
1,k · · · uLm,k vLm,k · · · uR1,k vR1,k · · · uRm,k vRm,k

]T
(9.40)

The corresponding points have the following coplanarity constraint (9.41):

pTREpL = 0 (9.41)

The standard perspective projection for a single feature point is given by (9.42):

zk =

⎡

⎢⎢
⎣

uLk
vLk
uRk
vRk

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

f xx/zx

fyx/zx

f (B − xx) /zx
fyx/zx

⎤

⎥⎥
⎦ (9.42)

where zk =
[
uLk v

L
k u

R
k v

R
k

]T are the measurement pixels in the left and right
images, B is the baseline, and f is the focal length. The UKF algorithm can be
derived using Table 9.2, giving the motion model (9.38) and the measurement model
(9.39). As shown in Fig. 9.8, the robot is captured using the stereo camera with a
location sensor.

The important features of the robot are then extracted and passed to the deep
learning network. The robot pose with respect to the image frame is then matched
with the predicted pose using UKF approach. The algorithm is initialized using
epipolar geometry of the first two images and computes the essential matrix E using
5-point algorithm plus robust estimator deep learning network. The initial pose
parameters are then extracted from E [33]. This is an initial guess of the pose and
will be used in UKF approach.
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Fig. 9.8 Using UKF and stereo vision for robot tracking

Fig. 9.9 Robot
localization-based landmarks
[35]

9.5.2 Localization Approach-Based 2D Landmark Map

Landmarks are natural or artificial environment features which a robot can recognize
from its sensory input and keep the uncertainty bounded [34]. Consider 4-WDDMR
moves in the predefined environment in the global frame {G} as shown in Fig. 9.9.
Stereo vision system is used as an exterior receptive sensor to enable the robot to
recognize the landmarks [36]. The predefined landmarks in the global frame {G} help
the robot to localize itself correctly. The 4-WDDMR discrete kinematic equation is
given by (9.43):

xk = f (xk−1,uk) =
⎡

⎣
xk−1 + νkTs cos (θk−1)

yk−1 + νkTs sin (θk−1)

θk−1 + ωkTs

⎤

⎦ (9.43)

where Ts is the sample time and f (xk − 1, uk) is a nonlinear function and relates
the 4-WDDMR’s pose xk =

[
xk yk θk

]T in {G} frame, with the input vector uk =
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[
νk ωk

]T , which represents the translation and angular velocities in the robot frame
{L}. However, the noisy 4-WDDMR motion model with non-additive Gaussian noise
wk is written as follows (9.44):

xk = f (xk−1,uk,wk) (9.44)

In the authors’ previous work [37], it is assumed that landmarks have a fixed and
known position (mx, my).

The measurement model of the location zk of the landmark mk from the viewpoint
of the robot given the location of the robot xk is defined as follows (9.45):

zk = h (xk,mk) =
[
hx (xk,mk)

hy (xk,mk)

]

=
[
(mxk − xk) cos (θk)+

(
myk − yk

)
sin (θk)

− (mxk − xk) sin (θk)+
(
myk − yk

)
cos (θk)

] (9.45)

where h(xk, mk) is the nonlinear measurement function for the correction stage.

9.6 Conclusion

This book chapter has provided modern and advanced strategies for image filtering
and image feature extraction. Kalman filter including EKF and UKF has been
described in detail and implemented for pose tracking and localization-assisted 2D
landmark map of a mobile robot. This chapter has contributed to the community
of mobile robot localization and mapping, with detailed information on different
modern approaches for vision-based localization and mapping. It has been pointed
out that UKF algorithm is superior to EKF one in terms of bias cancellation and
providing higher accuracy of mobile robot pose estimation.
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Chapter 10
Lie Algebra Method for Pose
Optimization Computation

Kenichi Kanatani

Acronyms

FNS Fundamental Numerical Scheme
GPS Ground Positioning System
SVD Singular Value Decomposition

10.1 Introduction

Computing 3D pose from data provided by camera images and 3D sensors is one of
the most fundamental problems of 3D analysis involving 3D data, including computer
vision and robot control. The problem is usually formulated as minimization of a
function of the form

J = J ( . . . ,R1,R2, . . . ,RM), (10.1)

where R1, R2, . . . , RM are rotation matrices, and “ . . . ” denotes other parameters
that specify translations, object shapes, and other properties. Hereafter, we use
bold uppercases to denote matrices (3 × 3 unless otherwise specified) and bold
lowercases to denote vectors (3D unless otherwise specified). For a matrix A, we
write its determinant and Frobenius norm as |A| and ‖A‖, respectively. For vectors
a and b, we write 〈a, b〉 for their inner product and a × b for their vector product.
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For minimizing a function J in the form of Eq. (10.1), the standard approach one
can immediately think of is: we first parameterize the rotation matrices in terms of,
say, axis-angle, Euler angles, or quaternions; then we differentiate J with respect
to the parameters and increment them so that J decreases; we iterate this. This
approach is generally known as the “gradient method,” and many variations have
been proposed for improving convergence, including “steepest descent,” “conjugate
gradient,” “Newton iterations,” “Gauss–Newton iterations,” and the “Levenberg–
Marquardt method.”

The purpose of this chapter is to show that for this type of optimization,
parameterization of rotation is not necessary. After all, “differentiation” means
evaluation of the change of the function value for a small variation of the variable.
Hence, for differentiation with respect to rotation R, we only need to evaluate the
change of the function value when a small rotation is added to R. To do this, it
is sufficient to parameterize a small rotation. To be specific, we compute a small
rotation that reduces the function J , add it to the current rotation R, regard the
resulting rotation as a new current rotation R, and iterate this process. As a result,
the matrix R is updated at each iteration in the computer memory, so that there is
no need to parameterize the matrix R itself. We call this the “Lie algebra method”
(this terminology is explained later).

This method has a big advantage over the parameterization approach, because any
parameterization of rotation, such as axis-angle, Euler angles, and quaternions, has
some singularities; if the parameter values happen to be at singularities, though
very rarely, computational problems such as numerical instability may occur.
Using the Lie algebra method, we need not worry about any singularities of the
parameterization, because all we do is to update the current rotation by adding a
small rotation. In a sense, this is obvious, but not many people understand this fact.

We first study the relationship between small rotations and angular velocities.
Then, we derive the exponential expression of rotation and formalize the concept of
“Lie algebra.” We describe the actual computational procedure of some computer
vision problems to demonstrate how the Lie algebra method works in practice.
Finally, we overview the role of Lie algebra in various computer vision applications.

10.2 Small Rotations and Angular Velocity

If R represents a small rotation around some axis by a small angle 	�, we can
Taylor-expand it in the form

R = I +A	�+O(	�)2, (10.2)

for some matrix A, where I is the identity and O(	�)2 denotes terms of second or
higher orders in 	�. Since R is a rotation matrix,
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RR� = (I +A	�+O(	�)2)(I +A	�+O(	�)2)� (10.3)

= I + (A+A�)	�+O(	�)2

must be identically equal to I for any 	�. Hence, A+A� = O, or

A� = −A. (10.4)

This means that A is an antisymmetric matrix, so we can write it as

A =
⎛

⎝
0 −l3 l2

l3 0 −l1
−l2 l1 0

⎞

⎠ (10.5)

for some l1, l2, and l3. If a vector a =
(
ai

)
(abbreviation of a vector whose ith

component is ai) is rotated to a′ by the rotation of Eq. (10.2), we obtain

a′ =
(
I +A	�+O(	�)2

)
a = a +

⎛

⎝
0 −l3 l2

l3 0 −l1
−l2 l1 0

⎞

⎠

⎛

⎝
a1

a2

a3

⎞

⎠	�+O(	�)2

= a +
⎛

⎝
l2a3 − l3a2

l3a1 − l1a3

l1a2 − l2a1

⎞

⎠	�+O(	�)2 = a + l × a	�+O(	�)2, (10.6)

where we let l =
(
li

)
. Suppose this describes a continuous rotational motion over a

small time interval 	t . Its velocity is given by

ȧ = lim
	t→0

a′ − a

	t
= ωl × a, (10.7)

where we define the angular velocity ω by

ω = lim
	t→0

	�

	t
. (10.8)

Equation (10.7) states that the velocity ȧ is orthogonal to both l and a and that its
magnitude equals ω times the area of the parallelogram made by l and a. From
the geometric consideration, the velocity ȧ is orthogonal to the axis of rotation and
a itself (Fig. 10.1). If we let θ be the angle made by a and that axis, the distance
of the endpoint of a from the axis is ‖a‖ sin θ , and the definition of the angular
velocity ω implies ‖ȧ‖ = ω‖a‖ sin θ . Since ȧ is orthogonal to l and a and since ‖ȧ‖
= ω‖a‖ sin θ equals the area of the parallelogram made by l and a, we conclude that
l is the unit vector along the axis of rotation. In physics, the vector ω = ωl is known
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Fig. 10.1 Vector a is rotating
around an axis in the
direction of the unit vector l

with angular velocity ω. Its
velocity vector is ȧ.

	l
a

a

O

as the angular velocity vector. Using this notation, we can write Eq. (10.7) as

ȧ = ω × a. (10.9)

10.3 Exponential Expression of Rotation

If we write Rl(�) to denote the rotation around axis l (unit vector) by angle �,
Eq. (10.2) equals Rl(	�). If we add it to rotation Rl(�), their composition is
Rl(	�)Rl(�) = Rl(�+	�). Hence, the derivative of Rl(�) with respect to� is

dRl(�)

d�
= lim
	�→0

Rl(�+	�)−Rl(�)

	�
= lim
	�→0

Rl(	�)Rl(�)−Rl(�)

	�

= lim
	�→0

Rl(	�)− I

	�
Rl(�) = ARl(�). (10.10)

Differentiating this repeatedly, we obtain

d2Rl

d�2 = A
dRl

d�
= A2Rl,

d3Rl

d�2 = A2 dRl

d�
= A3Rl, · · · , (10.11)

where the argument (�) is omitted. Since Rl(0) = I , the Taylor expansion of Rl(�)

around � = 0 is given by

Rl(�) = I + dR

d�

∣∣
∣
�=0

�+ 1

2

d2R

d�2

∣∣
∣
�=0

�2 + 1

3!
d3R

d�3

∣∣
∣
�=0

�3 + . . .

= I +�A+ �
2

A2 + �
3!A

3 + . . . = e�A, (10.12)

where we define the exponential of matrix by the following series expansion:

eX =
∞∑

k=0

Xk

k! . (10.13)
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In Eq. (10.12), the matrix A specifies the axis direction in the form of Eq. (10.5).
Hence, Eq. (10.12) expresses the rotation Rl(�) in terms of its axis l and angle
�. An explicit expression for such a rotation, called the Rodrigues formula, is well
known (see, e.g., [11, 14]):

Rl(�)

=
⎛

⎝
cos�+ l21(1− cos�) l1l2(1− cos�)− l3 sin� l1l3(1− cos�)+ l2 sin�
l2l1(1− cos�)+ l3 sin� cos�+ l22(1− cos�) l2l3(1− cos�)− l1 sin�
l3l1(1− cos�)− l2 sin� l3l2(1− cos�)+ l1 sin� cos�+ l23(1− cos�)

⎞

⎠ .

(10.14)

In the following, we combine the axis l and angle �, as in the case of the angular
velocity vector, as a single vector in the form of

� = �l, (10.15)

which we call the rotation vector. We also write the matrix that represents the
corresponding rotation as R(�). Since�1 =�l1,�2 =�l2, and�3 =�l3, Eq. (10.5)
is rewritten as

�A = �1A1 +�2A2 +�3A3, (10.16)

where we define the matrices A1, A2, and A3 by

A1 =
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , A2 =
⎛

⎝
0 0 1
0 0 0
−1 0 0

⎞

⎠ , A3 =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ . (10.17)

Hence, Eq. (10.12) is also written as

R(�) = e�1A1+�2A2+�3A3 , (10.18)

which express the Rodrigues formula of Eq. (10.14).

10.4 Lie Algebra of Infinitesimal Rotations

Consider a rotation R(t) continuously changing with parameter t , which can be
interpreted as time or angle of rotation or some control parameter. We assume it
as a dimensionless parameter with appropriate normalization. We regard t = 0 as
corresponding to the identity I . We call a “linear” variation of R(t) around t = 0
an infinitesimal rotation. To be specific, we expand R(t) for the small change δt of



298 K. Kanatani

t and ignore terms of order two and higher in δt . From Eq. (10.2), we see that an
infinitesimal rotation is expressed in the form

I +Aδt, (10.19)

for some antisymmetric matrix A, which we call the generator of the infinitesimal
rotation. If we accumulate this infinitesimal rotation continuously, we obtain a finite
rotation etA as shown in the preceding section.

Note that any multiple of an infinitesimal rotation is also an infinitesimal rotation.
This may sound counterintuitive, but this is the consequence of our defining
infinitesimal rotations as “linear” variations of rotations. If the parameter t is regarded
as time, multiplication of a generator by a constant c means multiplication of the
instantaneous velocity by c.

We also see that the composition of infinitesimal rotations is also an infinitesimal
rotation. In fact, if infinitesimal rotations I + Aδt and I + A′δt are composed, we
obtain

(I +A′δt)(I +Aδt) = I + (A+A′)δt (= (I +Aδt)(I +A′δt)). (10.20)

Recall that terms of order two and higher in δt are always ignored. From this, we see
that, unlike finite rotations, the composition of infinitesimal rotations is commutative,
i.e., it does not depend on the order of composition; the generator of the composed
infinitesimal rotation is the sum of their generators. If we identify an infinitesimal
rotation with its generator, we see that the set of infinitesimal rotations constitutes a
linear space.

A linear space is called an algebra if it is closed under some product operation.
The set of all the generators of infinitesimal rotations can be regarded as an algebra
if we define a product of generators A and B by

[A,B] = AB − BA, (10.21)

called the commutator of A and B. By definition, this is anticommutative:

[A,B] = −[B,A]. (10.22)

The commutator is bilinear:

[A+ B,C] = [A,C] + [B,C], [cA,B] = c[A,B], c ∈ R, (10.23)

and the following Jacobi identity holds:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = O. (10.24)

An operation [ · , · ] which maps two elements to another element is called a Lie
bracket if the identities of Eqs. (10.22), (10.23), and (10.24) hold. Evidently, the
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commutator of Eq. (10.21) defines a Lie bracket. An algebra equipped with a Lie
bracket is called a Lie algebra.

Thus, the set of infinitesimal rotations is a Lie algebra under the commutator. Since
the generator A is an antisymmetric matrix, it has three degrees of freedom. Hence,
the Lie algebra of infinitesimal rotations is three-dimensional with the matrices A1,
A2, and A3 in Eq. (10.17) as its basis. It is easy to see that they satisfy

[A2,A3] = A1, [A3,A1] = A2, [A1,A2] = A3. (10.25)

In terms of this basis, an arbitrary generator A is expressed in the form

A = ω1A1 + ω2A2 + ω3A3, (10.26)

for some ω1, ω2, and ω3. From the definition of A1, A2, and A3 in Eq. (10.17),
Eq. (10.26) is rewritten as

A =
⎛

⎝
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎠ . (10.27)

This defines a 1-to-1 correspondence between a generator A and a vector ω =
(
ωi

)
.

Let ω′ =
(
ω′i
)

be the vector that corresponds to generator A′. Then, the commutator
of A and A′ is

[A,A′] =
⎛

⎝
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎠

⎛

⎝
0 −ω′3 ω′2
ω′3 0 −ω′1
−ω′2 ω′1 0

⎞

⎠

−
⎛

⎝
0 −ω′3 ω′2
ω′3 0 −ω′1
−ω′2 ω′1 0

⎞

⎠

⎛

⎝
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎠

=
⎛

⎝
0 −(ω1ω

′
2 − ω2ω

′
1) ω3ω

′
1 − ω1ω

′
3

ω1ω
′
2 − ω2ω

′
1 0 −(ω2ω

′
3 − ω3ω

′
2)

−(ω3ω
′
1 − ω1ω

′
3) ω2ω

′
3 − ω3ω

′
2 0

⎞

⎠ , (10.28)

which shows that the vector product ω×ω′ corresponds to the commutator [A,A′].
Evidently, all the relations of Eqs. (10.22), (10.23), and (10.24) hold if the

commutator [A,B] is replaced by the vector product a × b. In other words, the
vector product is a Lie bracket, and the set of vectors is also a Lie algebra under the
Lie bracket [a, b] = a × b. As shown above, the Lie algebra of vectors is the same
as or, to be precise, isomorphic to the Lie algebra of infinitesimal rotations. Indeed,
the matrices A1, A2, and A3 in Eq. (10.17) represent infinitesimal rotations around
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the x-, y-, and z-axes, respectively, and Eq. (10.25) corresponds to the relationships
e2× e3 = e1, e3× e1 = e2, and e1× e2 = e3 among the coordinate basis vectors e1 =
(1, 0, 0)�, e2 = (0, 1, 0)�, and e3 = (0, 0, 1)�. The argument in Sects. 10.2 and 10.3
implies that identifying the generator A of Eq. (10.27) with the vector ω =

(
ωi

)

is nothing but identifying an infinitesimal rotation with an instantaneous angular
velocity vector. In other words, we can think of the Lie algebra of infinitesimal
rotations as the set of all angular velocity vectors. For more general treatments of
Lie algebras, see [11].

10.5 Optimization of Rotation

Given a function J (R) of rotation R, we now consider how to minimize it, assuming
that the minimum exists. In general, the solution can be obtained by differentiating
J (R) with respect to R and finding the value of R for which the derivative vanishes.
But how should we interpret differentiating with respect to R?

As is well known, the derivative of a function f (x) is the rate of change of the
function value f (x) when the argument x is infinitesimally incremented to x + δx.
By “infinitesimal increment,” we mean considering the “linear” variation, ignoring
higher order terms in δx. In other words, if the function value changes to f (x + δx)
= f (x) + aδx + . . ., we call the coefficient a of δx the differential coefficient, or
the derivative, of f (x) with respect to x and write a = f ′(x). This is equivalently
written as a = limδx→0(f (x+δx)−f (x))/δx. Evidently, if a function f (x) takes its
minimum at x, the function value does not change by infinitesimally incrementing
x; the resulting change is of a high order in the increment. This is the principle of
how we can minimize (or maximize) a function by finding the zero of its derivative.
Thus, in order to minimize J (R), we only need to find an R such that its infinitesimal
variation does not change the value of J (R) except for high order terms.

This consideration implies that “differentiation” of J (R)with respect to R means
evaluation of the rate of the change of J (R) when an infinitesimal rotation is added
to R. If an infinitesimal rotation of Eq. (10.19) is added to R, we obtain

(I +Aδt)R = R +ARδt. (10.29)

The generator A is represented by a vector ω via Eq. (10.27). In the following, we
combine the vector ω and the parameter δt of infinitesimal variation as a single
vector

	ω = ωδt, (10.30)

which we call the small rotation vector, an infinitesimal version of the finite rotation
vector � of Eq. (10.15). We also denote the antisymmetric matrix A corresponding
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to vector ω = (ω1, ω2, ω3)
� via Eq. (10.27) by1 A(ω). As shown in Eq. (10.6), the

following identity holds for an arbitrary vector a:

A(ω)a = ω × a. (10.31)

Using this notation, we can write Eq. (10.29) as R + A(	ω)R in terms of a small
rotation vector 	ω. We substitute this into J (R). If J (R + A(	ω)R) is written in
the form

J (R +A(	ω)R) = J (R)+ 〈g,	ω〉, (10.32)

for some vector g by ignoring higher order terms in 	ω (recall that 〈a, b〉 denotes
the inner product of vectors a and b), we call g the gradient, or the first derivative,
of J (R) with respect to R.

Since g should vanish at R for which J (R) takes its minimum, we need to solve
g = 0, but this is not easy in general. So, we do iterative search, starting from an
initial value R and successively modifying it so that J (R) reduces. Note that the
value of the gradient g depends on R, i.e., g is a function of R. If, after substituting
R +A(	ω)R for R in g(R), we can write

g(R +A(	ω)R) = g(R)+H	ω, (10.33)

for some symmetric matrix H by ignoring higher order terms in 	ω, we call the
matrix H the Hessian, or the second derivative, of J (R) with respect to R. If
the gradient g and the Hessian H are given, the value of J (R + A(	ω)R) is
approximated in the form

J (R +A(	ω)R) = J (R)+ 〈g,	ω〉 + 1

2
〈	ω,H	ω〉 (10.34)

by ignoring higher order terms in 	ω.
Now, we regard the “current” R as a fixed constant and regard the above expression

as a function of 	ω. Since this is a quadratic polynomial in 	ω, its derivative with
respect to 	ω is g +H	ω. Hence, this polynomial in 	ω takes its minimum for

	ω = −H−1g. (10.35)

Namely, the rotation for which Eq. (10.34) takes its minimum is approximately (I +
A(	ω))R for that	ω (recall that the current value R is regarded as a fixed constant).
However, I + A(	ω) is not an exact rotation matrix, although the discrepancy is
of higher order in δt . To make it an exact rotation matrix, we add higher order
correction terms as an infinite series expansion in the form of Eq. (10.12). Thus,

1Some authors write this as [ω]× or (ω×).
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the rotation matrix for which Eq. (10.34) takes its minimum is approximated by
eA(	ω)R. Regarding this as the “new” value of the current rotation, we repeat this
process. The procedure is described as follows.

1. Provide an initial value for R.
2. Compute the gradient g and the Hessian H of J (R).
3. Solve the following linear equation in 	ω:

H	ω = −g. (10.36)

4. Update R in the form

R ← eA(	ω)R. (10.37)

5. If ‖	ω‖ ≈ 0, return R and stop. Else, go back to Step 2.

This is nothing but the well-known Newton iterations. For Newton iterations, we
approximate the object function by a quadratic polynomial in the neighborhood of
the current argument, proceed to the value that gives the minimum of that quadratic
approximation, and repeat this. The difference of the above procedure from the usual
Newton iterations is that we analyze the minimum of the quadratic approximation
not in the space of the rotation R but in the Lie algebra of infinitesimal rotations. As
we noted earlier, the space of R and its Lie algebra are not the same, having higher
order discrepancies.

We can think of this situation as follows. Imagine the set of all rotations, defined
by the “nonlinear” constraint R�R = I and |R| = 1 (recall that |R| denotes the
determinant), which is called the special orthogonal group2 of dimension 3, or
the group of rotations for short, and denoted by SO(3). This is a “curved space”
in the 9-dimensional space of the elements of R. The Lie algebra of infinitesimal
rotations defined by the “linear” constraint A+A� = O can be thought of as a “flat”
tangent space to it at the current R, which we denote by TR(SO(3)), parameterized
by (	ω1,	ω2,	ω3) with the origin (0, 0, 0) at R. We “project” a point in the
Lie algebra TR(SO(3)) to a nearby point of SO(3) by the exponential mapping
eA(	ω) of Eq. (10.12) (Fig. 10.2) (see, e.g., [11]). Hereafter, we call this scheme of
optimization the Lie algebra method.

Note that in actual computation, we need not compute the series expansion of
Eq. (10.12) in Eq. (10.37). Let 	� = ‖	ω‖ and l = N[	ω], where N[a] denotes
normalization to unit norm: N[a] ≡ a/‖a‖. As mentioned in Sect. 10.3, we can
write eA(	ω) = Rl(	�), i.e., the rotation of angle 	� around axis l, which can be
computed using the Rodrigues formula of Eq. (10.14).

The criterion ‖	ω‖ ≈ 0 for convergence is set by a predetermined threshold. If
	ω is 0, Eq. (10.35) implies g = 0, producing a local minimum of J (R). In general,
iterative methods of this type are not necessarily guaranteed to converge when started

2The term “special” means that the determinant is constrained to be 1.
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Fig. 10.2 The Lie algebra of infinitesimal rotations can be thought of as the tangent space
TR(SO(3)) to the group of rotations SO(3) at R. The increment	ω in the Lie algebra is projected
to the point eA(	ω)R of S0(3)

Fig. 10.3 Observing N
points {xα} moving to {x′α},
we want to know their
translation t and the rotation
R

R

t

x

x’

�

�

from an arbitrary initial value (some methods are guaranteed, though). Hence, we
need to start the iterations from a value close to the desired solution.

10.6 Rotation Estimation by Maximum Likelihood

Given two sets of 3D points x1, . . . , xN and x′1, . . . , x′N obtained by 3D sensing,
we want to know the rigid (or Euclidean) motion between them (Fig. 10.3). A rigid
motion consists of a translation t and a rotation R. Translation is easily computed
by comparing the centroids of the N points before and after the motion:

xC = 1

N

N∑

α=1

xα, x′C =
1

N

N∑

α=1

x′α. (10.38)

Let aα and a′α be the displacements of xα and x′α from their respective centroids:

aα = xα − xC, a′α = x′α − x′C. (10.39)

The translation is given by t = x′C − xC , and the rotation R is estimated so that a′α
≈ Raα , α = 1, .., N , holds as accurately as possible. We formulate this problem as
follows.

We regard the data vectors aα and a′α as displaced from their true values āα and
ā′α by noise and write

aα = āα +	aα, a′α = ā′α +	a′α. α = 1, . . . , N. (10.40)
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We view	aα and	a′α as independent Gaussian random variables with mean 0 and
covariance matrices V [aα] and V [a′α], respectively. We write

V [aα] = σ 2V0[aα], V [a′α] = σ 2V0[a′α], (10.41)

and call V0[aα] and V0[a′α] the normalized covariance matrices and σ the noise
level. The normalized covariance matrices describe the directional noise properties
that reflect the characteristics of the 3D sensing, which we assume is known, while
the noise level, which indicates the absolute noise magnitude, is unknown. Thus, the
probability density of 	aα , 	a′α , α = 1, .., N , is written as

p =
N∏

α=1

e−〈	aα,V0[aα]−1	aα〉/2σ 2

√
(2π)3|V0[aα]|σ 3

e−〈	a′α,V0[a′α]−1	aα′ 〉/2σ 2

√
(2π)3|V0[aα]′|σ 3

= e−
∑N
α=1(〈aα−āα,V0[aα](aα−āα)〉+〈a′α−ā′α,V0[aα](a′α−ā′α)〉)/2σ 2

∏N
α=1(2π)

3
√|V0[aα]||V0[aα]′|σ 6

. (10.42)

When regarded as a function of observations aα , a′α , α = 1, . . . ,N , this expression is
called their likelihood. Maximum likelihood estimation means computing the values
āα , ā′α , α = 1, .., N , and R that minimize this subject to

ā′α = Rāα, α = 1, . . . , N. (10.43)

This is equivalent to minimizing

J = 1

2

N∑

α=1

(〈aα− āα, V0[aα](aα− āα)〉+〈a′α− ā′α, V0[aα](a′α− ā′α)〉), (10.44)

which is called the Mahalanobis distance, often called the reprojection error in the
computer vision community, subject to Eq. (10.43). Introducing Lagrange multipliers
for the constraint of Eq. (10.43) and eliminating āα and ā′α , we can rewrite Eq. (10.44)
in the form

J = 1

2

N∑

α=1

〈a′α −Raα,Wα(a
′
α −Raα)〉, (10.45)

where we put

V α = RV0[aα]R� + V0[a′α], (10.46)
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and define the matrix Wα by

Wα = V −1
α . (10.47)

We see that for maximum likelihood estimation, we need not know the unknown
noise level σ , i.e., it is sufficient to know the covariance matrices up to scale.

If the noise characteristics are the same for all the data, the distribution is said
to be homogeneous, otherwise it is inhomogeneous. If the noise occurrence is
the same in all directions, the distribution is said to be isotropic, otherwise it is
anisotropic. When the noise distribution is homogeneous and isotropic, we can let
V0[aα] = V0[a′α] = I , which means V α = 2I and Wα = I/2. Hence, minimizing
Eq. (10.45) is equivalent to minimizing

∑N
α=1 ‖a′α − Raα‖2, which is known as

least-squares estimation or the Procrustes problem. In this case, the solution can be
analytically obtained. For nondegenerate data distributions, Arun et al. [1] showed
that the solution is directly given using the singular value decomposition (SVD), and
Kanatani [12] generalized it to include degenerate distributions. Horn [10] showed
an alternative method, using the quaternion representation of rotations, which also
works for degenerate distributions.

However, the noise distribution of 3D sensing for computer vision applications
is hardly homogeneous or isotropic. Today, various types of 3D sensor are
available including stereo vision and laser or ultrasonic emission, and they are
used in such applications as manufacturing inspection, human body measurement,
archeological measurement, camera autofocusing, and autonomous navigation
[3, 20, 21]. Recently, an easy-to-use device called “kinect” is popular. For all such
devices, the accuracy in the depth direction (e.g., the direction of the camera lens
axis or laser/ultrasonic emission) is different from that in the direction orthogonal to
it. The covariance matrix of 3D sensing by stereo vision can be analytically evaluated
from the camera setting configuration. Many 3D sensor manufacturers provide
the covariance of their devices. Here, we consider minimization of Eq. (10.45)
for inhomogeneous and anisotropic noise distribution with known (up to scale)
covariance matrices.

This problem was first solved by Ohta and Kanatani [18] by combining
the quaternion representation of rotations and a scheme of iterating eigenvalue
computation called renormalization. Later, Kanatani and Matsunaga [15] solved the
same problem by a method called extended FNS (Fundamental Numerical Scheme),
which also iterates eigenvalue computation but can be applied not to just rotation but
to all subgroups of affine transformations including rigid motions and similarities.
They used their scheme for land deformation analysis, using GPS measurement. The
GPS land surface measurement data and their covariance matrices are available on
the websites of government agencies. Here, we show how the Lie algebra method
works for minimizing Eq. (10.45).

Replacing R by R+A(	ω)R in Eq. (10.45), we see that the linear increment of
J is given by
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	J = −
N∑

α=1

〈A(	ω)Raα,Wα(a
′
α −Raα)〉

+1

2

N∑

α=1

〈a′α −Raα,	Wα(a
′
α −Raα)〉, (10.48)

where we have noted that the right side of Eq. (10.45) is symmetric with respect to
the two R’s in the expression so that we only need to consider the increment of one
R and multiply the result by 2. Using the identity of Eq. (10.31), we can write the
first term on the right side of Eq. (10.48) as

−
N∑

α=1

〈	ω ×Raα,Wα(a
′
α −Raα)〉 = −〈	ω,

N∑

α=1

(Raα)×Wα(a
′
α −Raα)〉,

(10.49)
where we have used the identity 〈a × b, c〉 = 〈a, b× c〉. For evaluating 	Wα in the
second term on the right side of Eq. (10.48), we rewrite Eq. (10.47) as WαV α = I ,
from which we obtain 	WαV α +Wα	V α = O. Using Eq. (10.47) again, we can
write 	Wα as

	Wα = −Wα	V αWα. (10.50)

From Eq. (10.46), we obtain

	Wα = −Wα(A(	ω)RV [aα]R� +RV [aα](A(	ω)R)�)Wα, (10.51)

which we substitute into the second term on the right side of Eq. (10.48). Note that
the two terms on the right side of Eq. (10.51) are transpose of each other and that
the second term on the right side of Eq. (10.48) is a quadratic form in a′α − Raα .
Hence, we only need to consider one term of Eq. (10.51) and multiply the result by
2. Then, the second term on the right side of Eq. (10.48) is written as

−
N∑

α=1

〈a′α −Raα,WαA(	ω)RV [aα]R�Wα(a
′
α −Raα)〉

= −
N∑

α=1

〈Wα(a
′
α −Raα),	ω ×RV [aα]R�Wα(a

′
α −Raα)〉

=
N∑

α=1

〈	ω, (Wα(a
′
α −Raα))×RV [aα]R�Wα(a

′
α −Raα)〉. (10.52)

Combining this with Eq. (10.49), we can write Eq. (10.48) as
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	J = −
N∑

α=1

〈	ω, (Raα)×Wα(a
′
α −Raα)

−(Wα(a
′
α −Raα))×RV [aα]R�Wα(a

′
α −Raα)〉 (10.53)

Hence, from Eq. (10.32), the gradient of the function J (R) of Eq. (10.45) is given
by

g = −
N∑

α=1

(
(Raα)×Wα(a

′
α −Raα)− (Wα(a

′
α −Raα))

×RV [aα]R�Wα(a
′
α −Raα)

)
. (10.54)

Next, we consider the linear increment resulting from replacing R by R+A(	ω)R

in this equation. Since we are computing an R such that a′α − Raα ≈ 0, we can
ignore the increment of the first R in the first term on the right side of Eq. (10.54),
assuming that a′α −Raα ≈ 0 as the iterations proceed. The second term is quadratic
in a′α − Raα , so we can ignore it. Only considering the increment of the second R

in the first term, we obtain

	g =
N∑

α=1

(Raα)×WαA(	ω)Raα) =
N∑

α=1

(Raα)×Wα(	ω × (Raα))

= −
N∑

α=1

(Raα)×Wα((Raα)×	ω). (10.55)

Now, we introduce new notations. For a vector ω and a matrix T , we define

ω × T ≡ A(ω)T , T × ω ≡ T A(ω)�, ω × T × ω ≡ A(ω)T A(ω)�.
(10.56)

The last one is the combination of the first two; whichever × we evaluate first, we
obtain the same result. From Eq. (10.31), it is easily seen that ω × T is “the matrix
whose columns are the vector products of ω and the three columns of T ” and that
T × ω is “the matrix whose rows are the vector products of the three rows of T and
ω” (see [13, 16] for more about this notation). Using this notation and Eq. (10.31),
we can write Eq. (10.55) as

	g = −
N∑

α=1

(Raα)×WαA(Raα)	ω =
N∑

α=1

(Raα)×Wα×(Raα)	ω, (10.57)

where we have noted that A(ω) is antisymmetric: A(ω)� =−A(ω). Comparing this
and Eq. (10.33), we obtain the Hessian in the form
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H =
N∑

α=1

(Raα)×Wα × (Raα). (10.58)

Now that the gradient g and the Hessian H are given by Eqs. (10.54) and (10.58),
we can minimize J (R) by Newton iterations as described in the preceding section.

However, we have approximated the Hessian H by letting some quantities be zero
in the course of the computation for minimizing those quantities. This convention
is called Gauss–Newton approximation, and the Newton iterations using Gauss–
Newton approximation are called Gauss–Newton iterations. From Eq. (10.35), we
see that if	ω is 0 at the time of convergence, g = 0 holds irrespective of the value of
H , returning an exact solution. In other words, as long as the gradient g is correctly
computed, the Hessian H need not be exact. However, the value of H affects the
speed of convergence.

If the Hessian H is not appropriate, we may overstep the minimum of J (R) and
the value of J (R) may increase. Or we may proceed too slowly to reduce J (R)
meaningfully. A well-known measure to cope with this is add to H a multiple of the
identity matrix I and adjust the constant c of H + cI . To be specific, we decrease
c as long as J (R) decreases and increase c if J (R) increases. This modification
is known as the Levenberg–Marquardt method. The procedure is written as follows
(see, e.g., [19]).

1. Initialize R, and let c = 0.0001.
2. Compute the gradient g and the (Gauss–Newton approximated) Hessian H of
J (R).

3. Solve the following linear equation in 	ω:

(H + cI )	ω = −g. (10.59)

4. Tentatively update R to

R̃ = eA(	ω)R. (10.60)

5. If J (R̃) < J (R) or J (R̃) ≈ J (R) is not satisfied, let c ← 10c and go back to
Step 3.

6. If ‖	ω‖ ≈ 0, return R̃ and stop. Else, update R ← R̃, c← c/10 and go back to
Step 2.

If we let c = 0, this reduces to Gauss–Newton iterations. In Steps 1, 5, and 6, the values
0.0001, 10c, and c/10 are all empirical. To start the iterations, we need appropriate
initial values, for which we can use the analytical homogeneous and isotropic noise
solution [1, 10, 12]. The initial solution is sufficiently accurate in most practical
applications, so the above Levenberg-Marquardt iterations usually converge after a
few iterations.



10 Lie Algebra Method for Pose Optimization Computation 309

10.7 Fundamental Matrix Computation

Consider two images of the scene taken by two cameras. Suppose a point in the scene
is imaged at (x, y) in the first camera image and at (x′, y′) in the second camera
image. From the geometry of perspective imaging, the following epipolar equation
holds [9]:

〈⎛

⎝
x/f0

y/f0

1

⎞

⎠ ,F

⎛

⎝
x′/f0

y′/f0

1

⎞

⎠

〉

= 0, (10.61)

where f0 is an arbitrary scale constant; theoretically, we could set it to one, but
it is better to let it have the magnitude of x/f and y/f for numerical stability of
finite length computation [8]. The matrix F is called the fundamental matrix and
is determined from the relative configuration of the two cameras and their internal
parameters such as the focal length.

Computing the fundamental matrix F from point correspondences (xα, yα) and
(x′α, y′α), α = 1, . . . , N , is one of the most fundamental steps of computer vision
(Fig. 10.4). From the computed F , we can reconstruct the 3D structure of the scene
(see, e.g., [9, 16]). The basic principle of its computation is minimizing the following
function:

J (F ) = f
2
0

2

N∑

α=1

〈xα,Fx′α〉2
‖P kFx′α‖2 + ‖P kF

�x′α‖2
, (10.62)

where we define

xα =
⎛

⎝
xα/f0

yα/f0

1

⎞

⎠ , x′α =
⎛

⎝
x′α/f0

y′α/f0

1

⎞

⎠ , P k =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ . (10.63)

By minimizing Eq. (10.62), we can obtain a maximum likelihood solution to a high
accuracy, assuming that the noise terms	xα ,	yα ,	x′α , and	y′α in the coordinates
(xα, yα) and (x′α, y′α) are Gaussian variables of mean 0 with a constant variance.
The function J (F ) of Eq. (10.62) is called the Sampson error [9, 16].

Fig. 10.4 We compute the
fundamental matrix F from
point correspondences of two
images

(x , y )� �

(x ’, y ’)� �
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Evidently, the fundamental matrix F has scale indeterminacy: Eqs. (10.61) and
(10.62) are unchanged if F is multiplied by an arbitrary nonzero constant. We
normalized it to ‖F‖2 (≡∑3

i,j=1 F
2
ij ) = 1. Besides, there is an important requirement,

called the rank constraint ([9, 16]): F must have rank 2. Many strategies have been
proposed to impose this constraint (see [16]), but the most straightforward one is to
express F via the SVD in the form

F = U

⎛

⎝
σ1 0 0
0 σ2 0
0 0 0

⎞

⎠V �, (10.64)

where U and V are orthogonal matrices, and σ1 ≥ σ2 (> 0) are the singular values;
letting the third singular value σ3 be 0 is the rank constraint. From the normalization
‖F‖2 = 1, we have σ 2

1 + σ 2
2 = 1, so we can let

σ1 = cosφ, σ2 = sinφ. (10.65)

Substituting Eq. (10.64) into Eq. (10.62), we minimize J (F ) with respect to U , V ,
and φ. This parameterization was first proposed by Bartoli and Sturm [2], to which
Sugaya and Kanatani [25] applied the Lie algebra method.

Note that U and V are orthogonal matrices; they may not represent rotations
depending on the sign of the determinant. However, a small variation of an
orthogonal matrix is a small rotation. Hence, we can express the small variations of
U and V in the form

	U = A(	ωU)U , 	V = A(	ωV )U , (10.66)

in terms of small rotation vectors 	ωU =
(
	ωiU

)
and 	ωV =

(
	ωiV

)
.

Incrementing U , V , and φ to U + 	U , V + 	V , and φ + 	φ in Eq. (10.64),
we can write the linear increment of F , ignoring higher order terms, in the form

	F = A(	ωU)Udiag(cosφ, sinφ, 0)V � + Udiag(cosφ, sinφ, 0)(A(	ωV )V )
�

+Udiag(− sinφ, cosφ, 0)V �	φ. (10.67)

Taking out individual elements, we obtain

	F11 = 	ω2UF31 −	ω3UF21 +	ω2V F13 −	ω3V F12

+(U12V12 cosφ − U11V11 sinφ)	φ,

	F12 = 	ω2UF32 −	ω3UF22 +	ω3V F11 −	ω1V F13

+(U12V22 cosφ − U11V21 sinφ)	φ,

...
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	F33 = 	ω1UF23 −	ω2UF13 +	ω1V F32 −	ω2V F31

+(U32V32 cosφ − U31V31 sinφ)	φ. (10.68)

We identify	F with a 9-dimensional vector consisting of components	F11,	F12,
. . . , 	F33 and write

	F = FU	ωU + F V	ωV + θφ	φ, (10.69)

where we define the 9× 3 matrices FU and F V and the 9-dimensional vector θφ by

FU =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

0 F31 −F21

0 F32 −F22

0 F33 −F23

−F31 0 F11

−F32 0 F12

−F33 0 F13

F21 −F11 0
F22 −F12 0
F23 −F13 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

, F V =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

0 F13 −F12

−F13 0 F11

F12 −F11 0
0 F23 −F22

−F23 0 F21

F22 −F21 0
0 F33 −F32

−F33 0 F31

F32 −F31 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

, (10.70)

θφ =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

σ1U12V12 − σ2U11V11

σ1U12V22 − σ2U11V21

σ1U12V32 − σ2U11V31

σ1U22V12 − σ2U21V11

σ1U22V22 − σ2U21V21

σ1U22V32 − σ2U21V31

σ1U32V12 − σ2U31V11

σ1U32V22 − σ2U31V21

σ1U32V32 − σ2U31V31

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

. (10.71)

Then, the linear increment 	J of the function J (F ) of Eq. (10.62) is given by

	J = 〈∇F J,	F 〉 = 〈∇F J,FU	ωU 〉 + 〈∇F J,F V	ωV 〉 + 〈∇F J, θφ	φ〉
= 〈F�U∇F J,	ωU 〉 + 〈F�V∇F J,	ωV 〉 + 〈∇F J, θφ〉	φ, (10.72)

where ∇F J is the 9-dimensional vector consisting of components ∂J/∂Fij . From
this, we obtain the gradients of J with respect to UU , UV , and φ as follows:

∇ωU J = F�U∇F J, ∇ωV J = F�V∇F J,
∂J

∂φ
= 〈∇F J, θφ〉. (10.73)
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Next, consider the second derivatives ∂2J/∂Fij ∂Fkl of Eq. (10.62). We adopt the
Gauss–Newton approximation of ignoring terms containing 〈xα,Fx′α〉, i.e., the left
side of the epipolar equation of Eq. (10.61). It follows that we need not consider
terms containing 〈xα,Fx′α〉2 in the first derivative, i.e., we need not differentiate the
denominator in Eq. (10.62). Hence, the first derivative is approximated to be

∂J

∂Fij
≈

2∑

α=1

f 2
0 xiαx

′
jα〈xα,Fx′α〉

‖P kFx′α‖2 + ‖P kF
�x′α‖2

, (10.74)

where xiα and x′jα denote the ith components of xα and x′α , respectively. For
differentiating this with respect to Fkl , we need not differentiate the denominator
because the numerator contains 〈xα,Fx′α〉. Differentiating only the numerator, we
obtain

∂2J

∂Fij ∂Fkl
≈

2∑

α=1

f 2
0 xiαx

′
jαxkαx

′
lα

‖P kFx′α‖2 + ‖P kF
�x′α‖2

. (10.75)

Let us count the pairs of indices (i, j) = (1,1), (1,2), . . . , (3,3), using a single running
index I = 1, . . . , 9. Similarly, we use a single running index J = 1, . . . , 9 for pairs
(k, l) and regard the right side of the above equation as the (I, J ) element of a
9× 9 matrix, which we write as ∇2

F J . Then, as in Eq. (10.72), we can write, using
Eq. (10.69), the second derivation of J with respect to U , V , and φ in the form

	2J = 〈	F ,∇2
F J	F 〉

= 〈FU	ωU + F V	ωV + θφ	φ,∇2
F J (FU	ωU + F V	ωV + θφ	φ〉

= 〈	ωU ,F
�
U∇2

F JFU	ωU 〉 + 〈	ωU ,F
�
U∇2

F JF V	ωV 〉
+〈	ωV ,F

�
V∇2

F JFU	ωV 〉 + 〈	ωV ,F
�
V∇2

F JF V	ωV 〉
+〈	ωU ,F

�
U∇2

F J θφ〉	φ + 〈	ωV ,F
�
V∇2

F J θφ〉	φ
+〈	ωU ,F

�
U∇2

F J θφ〉	φ + 〈	ωV ,F
�
V∇2

F J θφ〉	φ
+〈θφ,∇2

F J θφ〉	φ2, (10.76)

from which we obtain the following second derivatives of J :

∇ωUωU J = F�U∇2
F JFU , ∇ωV ωV J = F�V∇2

F JF V , ∇ωUωV J = F�U∇2
F JF V ,

∂∇ωU J

∂φ
= F�U∇2

F J θφ,
∂∇ωV J

∂φ
= F�V∇2

F J θφ,
∂2J

∂φ2 = 〈θφ,∇2
F J θφ〉.

(10.77)
Now that the first and second derivatives are given, the Levenberg–Marquardt
procedure for minimizing J goes as follows:
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1. Provide an initial value of F such that |F | = 0 and ‖F‖ = 1, and compute the
SVD of Eq. (10.64). Evaluate the value J of Eq. (10.62), and let c = 0.0001.

2. Compute the first and second derivatives ∇F J and (Gauss–Newton approxi-
mated) ∇2

F J of J with respect to F .
3. Compute the 9× 3 matrices FU and F V of Eq. (10.70) and the 9-dimensional

vector θφ of Eq. (10.71).
4. Compute the first derivatives ∇ωU J , ∇ωV J , and ∂J/∂φ in Eq. (10.73) and the

second derivatives ∇ωUωU J , ∇ωV ωV J , ∇ωUωV J , ∂∇ωU J/∂φ, ∂∇ωV J/∂φ, and
∂2J/∂φ2 in Eq. (10.77) of J .

5. Solve the following linear equation in 	ωU , 	ωV , and 	φ:

⎛

⎝

⎛

⎝
∇ωUωU J ∇ωUωV J ∂∇ωU J/∂φ

(∇ωUωV J )
� ∇ωV ωV J ∂∇ωV J/∂φ

(∂∇ωU J/∂φ)
� (∂∇ωV J/∂φ)

� ∂2J/∂φ2

⎞

⎠+ cI
⎞

⎠

⎛

⎝
	ωU

	ωV

	φ

⎞

⎠

= −
⎛

⎝
∇ωU J

∇ωV J

∂J/∂φ

⎞

⎠ . (10.78)

6. Tentatively update U , V , and φ to

Ũ = eA(	ωU )U , Ṽ = eA(	ωV )V , φ̃ = φ +	φ. (10.79)

7. Tentatively update F to

F̃ = Ũ

⎛

⎝
cos φ̃ 0 0

0 sin φ̃ 0
0 0 0

⎞

⎠ Ṽ
�
. (10.80)

8. Let J̃ be the value of Eq. (10.62) for F̃ .
9. If J̃ < J or J̃ ≈ J is not satisfied, let c← 10c and go back to Step 5.

10. If F̃ ≈ F , return F̃ and stop. Else, update F ← F̃ ,U ← Ũ ,V ← Ṽ , φ̃ ←
φ, c← c/10, and J ← J ′ and go back to Step 2.

We need an initial value of F for starting these iterations. Various simple schemes
are known. The simplest one is the “least squares” that minimizes the square sum of
the left side of the epipolar equation of Eq. (10.61), which is equivalent to ignoring
the denominator on the left side of Eq. (10.62). Since the square sum is quadratic
in F , the solution is immediately obtained by eigenanalysis if the rank constraint is
not considered. The rank constraint can be imposed by computing the SVD of the
resulting F and replacing the smallest singular value by 0. This scheme is known
as Hartley’s 8-point method [8]. Hartley’s 8-point method is sufficiently accurate
in most practical applications, so the above iterations usually converge after a few
iterations. See Kanatani et al. [16] for experimental comparisons of how the above
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method improves the accuracy over Hartley’s 8-point method; often the number of
significant digits increases at least by one.

10.8 Bundle Adjustment

We consider the problem of reconstructing the 3D structure of the scene from
multiple images taken by multiple cameras. One of the most fundamental methods
is bundle adjustment: we optimally estimate all the 3D positions of the points we are
viewing and all the postures of the cameras as well as their internal parameters, in
such a way that the bundle of rays, or lines of sight, will piece through the images
appropriately.

Consider points (Xα, Yα, Zα), α = 1, . . . , N , in the scene. Suppose the αth point
is viewed at (xακ , yακ) in the image of the κth camera, κ = 1, . . . ,M (Fig. 10.5). The
imaging geometry of most of today’s cameras is sufficiently modeled by perspective
projection, for which the following relations hold [9]:

xακ = f0
Pκ(11)Xα + Pκ(12)Yα + Pκ(13)Zα + Pκ(14)

Pκ(31)Xα + Pκ(32)Yα + Pκ(33)Zα + Pκ(34)
,

yακ = f0
Pκ(21)Xα + Pκ(22)Yα + Pκ(23)Zα + Pκ(24)

Pκ(31)Xα + Pκ(32)Yα + Pκ(33)Zα + Pκ(34)
, (10.81)

where f0 is the scale constant we used in Eq. (10.61), and Pκ(ij) are constants
determined by the position, orientation, and internal parameters (e.g., the focal
length, the principal point position, and the image distortion description) of the κth
camera. We write the 3 × 4 matrix whose (i, j) element is Pκ(ij) as P κ and call it
the camera matrix of the κth camera. From the geometry of perspective projection,
we can write this in the form

P κ = KκR
�
κ

(
I −tκ

)
, (10.82)

where Kκ is the 3 × 3 matrix, called the intrinsic parameter matrix, consisting of
the internal parameters of the κth camera [9]. The matrix Rκ specifies the rotation

Fig. 10.5 N points in the
scene are viewed byM
cameras. The αth point
(Xα, Yα, Zα) is imaged at
point (xακ , yακ ) in the κth
camera image

(X  ,Y  ,Z  )

(x   ,y   )

���

� �
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of the κth camera relative to the world coordinate system fixed to the scene, and tκ is
the position of the lens center of the κth camera. The principle of bundle adjustment
is to minimize

E =
N∑

α=1

M∑

κ=1

((xακ
f0
− Pκ(11)Xα + Pκ(12)Yα + Pκ(13)Zα + Pκ(14)

Pκ(31)Xα + Pκ(32)Yα + Pκ(33)Zα + Pκ(34)

)2

+
(yακ
f0
− Pκ(21)Xα + Pκ(22)Yα + Pκ(23)Zα + Pκ(24)

Pκ(31)Xα + Pκ(32)Yα + Pκ(33)Zα + Pκ(34)

)2)
, (10.83)

with respect to all the 3D positions (Xα, Yα, Zα) and all the camera matrices P κ
from observed (xακ , yακ),α = 1, . . . ,N , κ = 1, . . . ,M , as the input so that Eq. (10.81)
holds as accurately as possible. The expression E, called the reprojection error [9],
measures the square sum of the discrepancies between the image positions predicted
by the perspective projection geometry and their actually observed image positions.

Various algorithms have been proposed for bundle adjustment and are now
available on the Web. The best known is the SBA of Lourakis and Argyros [17].
Snavely et al. [23, 24] combined it with an image correspondence extraction process
and offered a tool called bundler. Here, we slightly modify these algorithms, based
on Kanatani et al. [16], to explicitly use the Lie algebra method for camera rotation
optimization.

Letting

pακ = Pκ(11)Xα + Pκ(12)Yα + Pκ(13)Zα + Pκ(14),

qακ = Pκ(21)Xα + Pκ(22)Yα + Pκ(23)Zα + Pκ(24),

rακ = Pκ(31)Xα + Pκ(32)Yα + Pκ(33)Zα + Pκ(34), (10.84)

we rewrite Eq. (10.83) in the form

E =
N∑

α=1

M∑

κ=1

((pακ
rακ

− xακ
f0

)2 +
(qακ
rακ

− yακ
f0

)2)
. (10.85)

Using a single running index k = 1, 2, . . . for all the unknowns, i.e., all the 3D
positions (Xα, Yα, Zα), α = 1, . . . , N , and all the camera matrices P κ , κ = 1, . . . ,
M , we write all the unknowns as ξ1, ξ2, . . . . The first derivative of the reprojection
error E with respect to ξk is

∂E

∂ξk
=

N∑

α=1

M∑

κ=1

2

r2
ακ

((pακ
rακ

− xακ
f0

)(
rακ
∂pακ

∂ξk
− pακ ∂rακ

∂ξk

)

+
(qακ
rακ

− yακ
f0

)(
rακ
∂qακ

∂ξk
− qακ ∂rακ

∂ξk

))
. (10.86)
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Next, we consider second derivatives. Noting that as Eq. (10.85) decreases in the
course of iterations, we expect thatpακ/rακ−xακ/f0 ≈ 0 and qακ/rακ−yακ/f0 ≈ 0.
So, we adopt the Gauss–Newton approximation of ignoring them. Then, the second
derivative of E is written as

∂2E

∂ξk∂ξl
= 2

N∑

α=1

M∑

κ=1

1

r4
ακ

((
rακ
∂pακ

∂ξk
− pακ ∂rακ

∂ξk

)(
rακ
∂pακ

∂ξl
− pακ ∂rακ

∂ξl

)

+
(
rακ
∂qακ

∂ξk
− qακ ∂rακ

∂ξk

)(
rακ
∂qακ

∂ξl
− qακ ∂rακ

∂ξl

))
. (10.87)

As a result, for computing the first and second derivatives ∂E/∂ξk and ∂2E/∂ξk∂ξl of
E, we only need to evaluate the first derivatives ∂pακ/∂ξk , ∂qακ/∂ξk , and ∂rακ/∂ξk
of pακ , qακ , and rακ .

Now, we apply the Lie algebra method to differentiation with respect to the rotation
Rκ in Eq. (10.82)3; to other unknowns (the 3D positions (Xα, Yα, Zα), the camera
positions tκ , and all the parameters contained in the intrinsic parameter matrix Kκ ),
we can apply the usual chain rule straightforwardly.

The linear increment 	P κ of Eq. (10.82) caused by a small change A(	ωκ)Rκ
of Rκ is written as

	P κ = Kκ(A(	ωκ)Rκ)
� ( I −tκ

) = KκR
�
κ

(
A(	ωκ)

� −A(	ωκ)
�tκ

)

= KκR
�
κ

⎛

⎝
0 	ωκ3 −	ωκ2 	ωκ2tκ3 −	ωκ3tκ2

−	ωκ3 0 	ωκ1 	ωκ3tκ1 −	ωκ1tκ3

	ωκ2 −	ωκ1 0 	ωκ1tκ2 −	ωκ2tκ1

⎞

⎠ , (10.88)

where 	ωκi and tκi are the ith components of 	ωκ and tκ , respectively. Rewriting
the above equation in the form

	P κ = ∂P κ

∂ωκ1
	ωκ1 + ∂P κ

∂ωκ2
	ωκ2 + ∂P κ

∂ωκ3
	ωκ3, (10.89)

we obtain the gradients ∂P κ/∂ωκ1, ∂P κ/∂ωκ2, and ∂P κ/∂ωκ3 of P κ with respect to
the small rotation vector	ωκ . Letting the components of the vector ωκ be included
in the set of ξi , we obtain the first derivatives ∂pακ/∂ξk , ∂qακ/∂ξk , and ∂rακ/∂ξk
of Eq. (10.84) for the rotation. Note that the value of ωκ is not defined but its
differential is defined. Using Eqs. (10.86) and (10.87), we can compute the first
and second derivatives ∂E/∂ξk and ∂2E/∂ξk∂ξl of the reprojection error E. The
Levenberg–Marquardt bundle adjustment procedure has the following form:

3The quaternion representation of rotations is used in most of the currently available open software.
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1. Initialize the 3D positions (Xα, Yα, Zα) and the camera matrices P κ , and compute
the associated reprojection error E. Let c = 0.0001.

2. Compute the first and second derivatives ∂E/∂ξk and ∂2E/∂ξk∂ξl for all the
unknowns.

3. Solve the following linear equation for 	ξk , k = 1, 2, . . . :

⎛

⎜
⎜⎜
⎝

∂2E/∂ξ2
1 + c ∂2E/∂ξ1∂ξ2 ∂2E/∂ξ1∂ξ3 . . .

∂2E/∂ξ2∂ξ1 ∂
2E/∂ξ2

2 + c ∂2E/∂ξ2∂ξ3 . . .

∂2E/∂ξ3∂ξ1 ∂2E/∂ξ3∂ξ2 ∂
2E/∂ξ2

3 + c . . .
...

...
...

. . .

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

	ξ1

	ξ2

	ξ3
...

⎞

⎟
⎟⎟
⎠
= −

⎛

⎜
⎜⎜
⎝

∂E/∂ξ1

∂E/∂ξ2

∂E/∂ξ3
...

⎞

⎟
⎟⎟
⎠
.

(10.90)
4. Tentatively update the unknowns ξk to ξ̃k = ξk + 	ξk except the rotations Rκ ,

which are updated to R̃κ = eA(	ωκ )Rκ .
5. Compute the corresponding reprojection error Ẽ. If Ẽ > E, let c← 10c and go

back to Step 3.
6. Update the unknowns to ξk← ξ̃k . If |Ẽ−E| ≤ δ, then stop (δ is a small constant).

Else, let E← Ẽ and c← c/10 and go back to Step 2.

In usual numerical iterations, the variables are successively updated until they
no longer change. However, the number of unknowns for bundle adjustment is
thousands or even tens of thousands, so an impractically long computation time
would be necessary if all variables were required to converge over significant digits.
On the other hand, the purpose of bundle adjustment is to find a solution with a small
reprojection error. So, it is a practical compromise to stop if the reprojection error
almost ceases to decrease, as we describe in the above procedure.

For actual implementation, many issues arise. One of them is the scale and
orientation indeterminacy. This is a consequence of the fact that the world coordinate
system can be arbitrarily defined and that imaging a small object by a nearby camera
will produce the same image as imaging a large object by a faraway camera. To
resolve this indeterminacy, we usually define the world coordinate system so that it
coincides with the first camera frame and fix the scale so that the distance between
the first and second cameras is unity. Normalization like this reduces the number
of unknowns of Eq. (10.90). Also, all the points in the scene are not necessarily
seen in all the images, so we must adjust the number of equations and unknowns of
Eq. (10.90), accordingly.

Another issue is the computation time. Directly solving Eq. (10.90) would require
hours or days of computation. One of the well-known techniques for reducing this
is to separate the unknowns to the 3D point part and the camera matrix part; we
solve for the unknowns of one part in terms of the unknowns of the other part and
substitute the result into the remaining linear equations, which results in a smaller-
size coefficient matrix known as the Schur complement [26]. The memory space is
another issue; we need to retain all relevant information in the course of the iterations
without writing all intermediate values in memory arrays, which might exhaust the
memory resource. See [16] for implementation details and numerical examples using
real image data.
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10.9 Summary

We have described how we can optimize the pose computation involving rotations
using image and sensor data. We have pointed out that we do not need any
parameterization of the rotation (axis–angle, Euler angles, quaternions, etc.); we only
need to parameterize infinitesimal rotations, which form a linear space called the Lie
algebra. We have shown how the rotation matrix R is successively updated without
involving any parameterization in the Levenberg–Marquardt framework. We have
demonstrated our Lie algebra method for maximum likelihood rotation estimation,
fundamental matrix computation, and bundle adjustment for 3D reconstruction.

The problems we have shown here have been well known and solved by many
other methods, often with heuristics and ad-hoc treatment. Software tools for them
are available on the Web, and their performance is usually satisfactory. We are not
asserting that the use of Lie algebra improves their performance greatly. Our aim
here is to emphasize the role Lie algebra plays in vision applications, because it is a
fundamental mathematical principle that can be applied to a wide range of nonlinear
optimization problems.

Lie algebra has been used for robotics control of continuously changing 3D
postures [4, 6]. Recently, some researchers are using the Lie algebra method
for “motion averaging”: the 3D posture is computed by different methods and
sensors, resulting in different values, and their best average is computed by iterative
optimization [5, 7]. A similar approach was used to create a seamless circular
panorama by optimizing the camera orientations [22]. In Sect. 10.7, we showed
how to optimally compute the fundamental matrix. If the camera internal parameters
are all known, the fundamental matrix is called the “essential matrix,” and the Lie
algebra method is also used to optimize it [27].

Thus, Lie algebra plays an important role in a wide range of computer vision
problems. This chapter is aimed to help deepening its understanding.
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Chapter 11
Optimal Generation of Closed
Trajectories over Large, Arbitrary
Surfaces Based on Non-calibrated Vision

Emilio J. Gonzalez-Galvan, Ambrocio Loredo-Flores, Isela Bonilla-Gutierrez,
Marco O. Mendoza-Gutierrez, Cesar Chavez-Olivares, Luis A. Raygoza,
and Sergio Rolando Cruz-Ramírez

Acronyms

3D Three dimensional
CAD Computer-aided design
CSM Camera-space manipulation
TCP/IP Transmission Control Protocol/Internet Protocol
TM Trademark

11.1 Introduction

A large number of relevant robotic manufacturing applications demand a known
trajectory to be precisely traced over a large surface whose geometry is not known in
advance. This type of demanding tasks includes cutting and welding over the surface
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of large containers, required for installing attachments like man-holes or flanges.
Additionally, they include the cutting of arbitrary shapes over extensive commercial
plates and the covering of melted metal over a worn surface [24]. Contributions
related to the problem of automating the teach stage, required in a typical industrial-
robot application [17], rely on a precise geometrical description of the part to be
processed. However, in the cases presented above, such an accurate knowledge of the
workpiece geometry is not a viable alternative. As such, the considerable disparity
in geometry of a commercially-available plate, produced mainly by bending, the
uncertainty in the contour of a worn surface or the permissible range of variation in a
dimension, allowed in the fabrication of a large vessel, larger than the one allowed for
the placement of a cutting or welding tool, requires a demanding robot-programming
procedure, different for each task. In the case of laser and plasma-cutting using robots,
the level of precision required for the location of the tool over the surface is about
1◦ for the orientation and 1 mm for positioning of the cutting-nozzle, relative to the
surface (Cisneros, 2003, Engineering manager, Yaskawa-Motoman Mexico, Personal
communication). The ideas presented herein can be used to reduce the complexity
involved in the robot programming process.

The problem of tracking a given path over large surfaces is found in the
case of autonomous mobile robots, which are expected to travel in unknown
environments without supervision [8]. Such a capability is enabled by using vision-
based techniques like the one referred to as visual simultaneous localization and
mapping [2]. Other applications, such as train cab front cleaning [13], require
accurate robot positioning over large surfaces of unknown geometry. Although
accurate robot positioning in large workspace areas is a challenging maneuver, the
opposite in terms of trajectory planning and maneuvering in a reduced workspace
represents also a relevant task, as presented in [10].

Related to the ideas presented herein, the accuracy of a robotic vision-based
maneuver, when performed over large surfaces, depends on several factors. One of
them is the camera resolution per unit physical space. Another aspect is related to the
distortion of a previously-planned trajectory when mapped over the arbitrarily curved
surface. When the tracking of a closed path is required, such a distortion may restrict
the robot from achieving closure. For the maneuvers mentioned above, especially
cutting, achieving closure represents an indispensable requirement. Reported works
[4] have demonstrated successful implementation of a method based on the use of
cameras applied to the solution of the problem of generating and tracking paths
over an arbitrarily curved surface. This methodology considered the idea of applying
geodesic-mapping with the purpose of transferring a known trajectory stored as a
CAD model, over a curved surface. Such a methodology was successfully developed
and validated using an industrial robot, which achieved closure of a closed path in the
case of a developable surface. Initial results in the case of a closed path being traced
over non-developable surfaces were also reported [6]. In this context, several aspects
that have a negative effect in achieving closure of a closed path, when traced over
this kind of surfaces, were analyzed. Among them, the proposed geodesic mapping
is incapable of achieving closure [11, 15] when a mapping is sought between a
virtual, flat surface (a CAD model in this case) and a non-developable surface.
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Furthermore, the integration process involved in the mapping procedure caused an
error accumulation as the path advances. In order to reduce these negative effects,
two algorithms are proposed herein in the following sections. In order to face the
problem associated with camera resolution, several solutions can be considered.
For example, the application of a reduced number of sensors in combination with
mirrors is presented in [12]. Other solutions [3] consider multiple cameras or the
use of several, calibrated sensors located on pan/tilt units [25], applied to traffic
monitoring [26]. In this chapter, multiple, fixed sensors are applied in order to
perform path-tracking tasks over extensive surfaces.

It is worth mentioning that some of the maneuvers cited above tend to produce
heat-induced deformations in the workpiece. This effect may affect the manufacturing
maneuver and restrict the use of the vision-control strategy while the task is
executed, mainly because of the smoke and light produced during, for instance,
a welding or cutting process. In this context, the relevance of determining an
optimal robot trajectory prior to the actual execution of the industrial maneuver
may be underestimated. Nevertheless, there exist in the market devices that take into
consideration not only the deformations produced by heat but also the effect of smoke
and light emitted during the execution of the task. For example, Fanuc Robotics
developed the Adaptive Welding™ tool (https://www.fanucamerica.com/products/
robots/other-robot-options. Accessed in 2018). Details regarding this particular
device are not available, however, it is known that the tool uses a laser-joint scanner in
order to adjust welding parameters like travel speed, weaving, voltage, and wire-feed
speed, with the purpose of filling the joints to be welded. These commercially-
available tools require a robot path defined in advance, which is modified according
to the requirements of the welding procedure. Such a path is the one that results from
the use of the methodology presented herein. Therefore, the proposed technique is
capable of working together with commercial tools designed for correcting the robot-
path, according to the changing geometry of the workpiece during task execution.
Additionally, the proposed strategy can be included as part of a library for a robot-
trajectory generation, as proposed in [16] for a particular brand of robots, different
from the robot used as our experimental platform.

11.2 General Aspects Associated with a Path-Generation
and Tracking Maneuver

The vision-control methodology proposed herein demands the path-generation and
path-tracking processes to be performed simultaneously. This is presented in the
flow diagram of Fig. 11.1, which depicts the event in which a trajectory known in
advance and stored as a CAD file is followed only once.

A sequence of robot configurations that enables the successful execution of the
maneuver is obtained once the depicted algorithm is finished. Prior to the execution
of the program, a set of vision parameters must first be defined. These parameters

https://www.fanucamerica.com/products/robots/other-robot-options
https://www.fanucamerica.com/products/robots/other-robot-options
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Fig. 11.1 Flow-diagram of a
path generation and tracking
task
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pertain to a camera model that correlates the arm configuration with the presence,
in the images obtained from the camera sensors, of a series of visual marks that are
fixed to the tool of the robot. These marks are easily identified by using an image-
analysis algorithm. Such a relationship is known as camera-space kinematics and is
presented in the following section.
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Manipulated
visual features

Camera 1

Camera 2

Camera n

Fig. 11.2 Control cameras used in the maneuver

Next, the workpiece is placed in an arbitrary location and orientation, inside of the
workspace of the robot. The cameras used to control the maneuver point to different
regions within the workpiece, as depicted in Fig. 11.2.

The following sections will address additional aspects associated with the
maneuver for tracing the path, presented in the flow diagram of Fig. 11.1.

11.3 Camera-Space Kinematics

The camera-space manipulation (CSM) method is based on the use of non-calibrated
cameras as primary sensors. This method has been applied to robot positioning and
path-tracking tasks that require high precision. The objectives of the maneuver are
defined within the images obtained from the sensors which remain fixed between the
instant in which the target is detected until maneuver termination. The correlation
between robot configuration and the location of manipulated visual features within
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Fig. 11.3 Industrial robot
used to validate the proposed
approach

the images obtained from the cameras, like those shown in Fig. 11.3, is known
as camera-space kinematics. Such a relationship is achieved by determining seven
parameters included in the following model of camera:

fx (x, y, z, xc;C) = Ox (x, y, z;C)− Px (x, y, z, xc;C)

fy (x, y, z, yc;C) = Oy (x, y, z;C)− Py (x, y, z, yc;C)
(11.1)

where (fx, fy) represents the perspective projection of a point with coordinates
(x, y, z). Each expression fx and fy consists of two components. The first
Ox (x, y, z;C) and Oy (x, y, z;C) constitutes an orthographic projection, while the
second componentPx (x, y, z, xc;C) andPy (x, y, z, yc;C) constitutes a correction
of the orthographic component, which completes the perspective projection, as
follows:

Ox (x, y, z;C) = g1 (C) x + g2 (C) y + g3 (C) z+ g4 (C)

Px (x, y, z, xc;C) = g9 (C) xxc + g10 (C) yxc + g11 (C) zxc

Oy (x, y, z;C) = g5 (C) x + g6 (C) y + g7 (C) z+ g8 (C)

Py (x, y, z, yc;C) = g9 (C) xyc + g10 (C) yyc + g11 (C) zyc

(11.2)

where g1, . . . , g11 depend on C which is a vector containing seven independent
parameters, as follows:
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g1 (C) = C2
1 + C2

2 − C2
3 − C2

4
g2 (C) = 2 (C2C3 + C1C4)

g3 (C) = 2 (C2C4 − C1C3)

g4 (C) = C5

g5 (C) = 2 (C2C3 − C1C4)

g6 (C) = C2
1 − C2

2 + C2
3 − C2

4
g7 (C) = 2 (C1C2 + C3C4)

g8 (C) = C6

g9 (C) = 2C7 (C2C4 + C1C3)

g10 (C) = 2C7 (C3C4 − C1C2)

g11 (C) = C7(C
2
1 − C2

2 − C2
3 + C2

4)

(11.3)

The parameters in C are defined as follows:

C2
i = f

Z0
e2
i ; i = 1, . . . , 4

C5 = f X0
Z0
; C6 = f Y0

Z0
; C7 = − 1

f

(11.4)

where, as shown in Fig. 11.4, xyz is a coordinate frame associated with the base of
the robot whose origin is (X0, Y0, Z0)with respect to the coordinate system attached
to the camera; e1 . . . , e4 are the Euler parameters that define the relative orientation

Fig. 11.4 Reference coordinate systems associated with the camera model
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between these two coordinate systems. Finally, f represents the focal distance of the
camera. The coordinate frames are related as follows:

[X Y Z 1]T = T(e1, e2, e3, e4, X0, Y0, Z0)[x y z 1]T (11.5)

where

T(e1, e2, e3, e4, X0, Y0, Z0) =

⎡

⎢⎢
⎣

t11 t12 t13 X0

t21 t22 t23 Y0

t31 t32 t33 Z0

0 0 0 1

⎤

⎥⎥
⎦ (11.6)

and

t11 = e2
1 + e2

2 − e2
3 − e2

4 t23 = 2(e1e2 + e3e4)

t12 = 2(e2e3 + e1e4) t31 = 2(e2e4 + e1e3)

t13 = 2(e2e4 − e1e3) t32 = 2(e3e4 − e1e2)

t21 = 2(e2e3 − e1e4) t33 = e2
1 − e2

2 − e2
3 + e2

4
t22 = e2

1 − e2
2 + e2

3 − e2
4

(11.7)

The camera parameters are calculated in such a way that they minimize the following
scalar function J :

J (C) =
m∑

i=1

{[
xci − fx

(
xi, yi, zi, xci ;C

)]2

+ [yci − fy
(
xi, yi, zi , yci ;C

)]2}
Wi

(11.8)

for m camera-space samples (xci , yci ) whose three-dimensional location is
(xi, yi, zi) with respect to a coordinate system attached to the base of the robot.
These coordinates are obtained by considering the nominal kinematic model of the
robot; fx(. . .) and fy(. . .) are included in Eq. (11.1), while Wi is a weight given to
each sample. It is worth mentioning that the parameters within the camera model
are continuously updated, by considering samples obtained during the execution of
the task. The weight assigned to each sample is increased as the robot approaches
maneuver culmination. This measure is applied in order to ensure that the camera
model is locally valid in the region where the task is ended. The configuration of
the robot is estimated by using the most updated parameters. The procedure for
estimating the view parameters is presented in [19].
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11.4 Characterization of Surface

The characterization of the surface requires, among other aspects, the employment
of structured lighting as a matrix array of laser beams. The use of laser has, among
others, the advantage that the detection of the center of laser spots in the images
obtained from the sensors can be made through simple image-analysis algorithms
like those presented in [14, 23]. Figure 11.5 presents a picture of the structured
lighting used for surface characterization. The image-plane information obtained
from the projection of structured lighting is restricted, as presented in [4], based on
ideas presented in [27]. Figure 11.6 depicts the detected laser spots that are projected
within a region defined by the user, which corresponds to the surface of interest.

As mentioned before, a perspective camera model is used for the experiments
reported herein. The estimation of the 3D location of the laser spots projected over
the surface is performed by considering this model and the parameters associated
with each control camera. Since the geometry of the surface is not previously
known, the visual features projected over the workpiece are used for determining
such a geometry. Applications for accurate three-dimensional distance measurement
[21] have been developed and successfully applied to surface measurement [22]. In
the case of the surface characterization presented here, an approximate location is
obtained and accuracy is only required relative to the spots near the location where
the task is being executed. This is because the parameters associated with the control
cameras, used for the estimation of the 3D coordinates, are continuously updated
while the task is performed and have a local validity, near the location where the
maneuver is performed.

Laser spots have been used as visual features [3] because they have the advantage
of not being permanent while enabling detection by using relatively simple image-
analysis processes. When a laser spot is seen by at least two cameras, the model in
Eq. (11.1) can be used to produce a linear estimation of the nominal 3D coordinates of

Fig. 11.5 Projection of a
matrix array of laser spots
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Fig. 11.6 Polygon defined by the user used to delimit the surface of interest

the centroid of the laser spot, relative to a coordinate frame attached to the robot. The
approach used for matching the location of a given laser point among the different
images obtained from the cameras is detailed in [20]. The linear estimation of the
3D coordinates consists of minimizing the following scalar function:

ψ =
nd∑

i=1

[
x(i)c − fx

(
x, y, z, x(i)c ;C(i)

)]2 +
[
y(i)c − fy

(
x, y, z, y(i)c ;C(i)

)]2

(11.9)

which considers nd (nd ≥ 2) control cameras that detect a single laser spot, whose
3D coordinates are (x, y, z). The definition of fx and fy is given in Eq. (11.1).
The corresponding two-dimensional location of the spot is (x(i)c , y(i)c ) for the ith
camera, while the associated parameters are C(i). This procedure is equivalent to
a triangulation method when the number of control cameras is 2, however it has
the advantage that the three-dimensional coordinates of the laser spot can be easily
determined when more than two cameras are involved in the positioning task. The
necessary condition for the minimization of ψ produces the following solution for
(x, y, z):

⎡

⎣
x

y

z

⎤

⎦ = A−1B (11.10)
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where

A =
⎡

⎣
a11 a12 a13

a12 a22 a23

a13 a23 a33

⎤

⎦ ; B =
⎡

⎣
b1

b2

b3

⎤

⎦ (11.11)

Each term in these two matrices is given by:

a11 =
nd∑

i=1

(
g
(i)
1 + g(i)9 x

(i)
c

)2 +
(
g
(i)
5 + g(i)9 y

(i)
c

)2

a12 =
nd∑

i=1

(
g
(i)
1 + g(i)9 x

(i)
c

) (
g
(i)
2 + g(i)10 x

(i)
c

)

+
(
g
(i)
5 + g(i)9 y

(i)
c

) (
g
(i)
6 + g(i)10 y

(i)
c

)

a13 =
nd∑

i=1

(
g
(i)
1 + g(i)9 x

(i)
c

) (
g
(i)
3 + g(i)11 x

(i)
c

)

+
(
g
(i)
5 + g(i)9 y

(i)
c

) (
g
(i)
7 + g(i)11 y

(i)
c

)

a22 =
nd∑

i=1

(
g
(i)
2 + g(i)10 x

(i)
c

)2 +
(
g
(i)
6 + g(i)10 y

(i)
c

)2

a23 =
nd∑

i=1

(
g
(i)
2 + g(i)10 x

(i)
c

) (
g
(i)
3 + g(i)11 x

(i)
c

)

+
(
g
(i)
6 + g(i)10 y

(i)
c

) (
g
(i)
7 + g(i)11 y

(i)
c

)

a33 =
nd∑

i=1

(
g
(i)
3 + g(i)11 x

(i)
c

)2 +
(
g
(i)
7 + g(i)11 y

(i)
c

)2

(11.12)

and

b1 =
nd∑

i=1

(
x
(i)
c − g(i)4

) (
g
(i)
1 + g(i)9 x

(i)
c

)

+
(
y
(i)
c − g(i)8

) (
g
(i)
5 + g(i)9 y

(i)
c

)

b2 =
nd∑

i=1

(
x
(i)
c − g(i)4

) (
g
(i)
2 + g(i)10 x

(i)
c

)

+
(
y
(i)
c − g(i)8

) (
g
(i)
6 + g(i)10 y

(i)
c

)

b3 =
nd∑

i=1

(
x
(i)
c − g(i)4

) (
g
(i)
3 + g(i)11 x

(i)
c

)

+
(
y
(i)
c − g(i)8

) (
g
(i)
7 + g(i)11 y

(i)
c

)

(11.13)

in these expressions, the parameters corresponding to the ith camera are included in
g
(i)
1 , . . . , g

(i)
11 , as presented in Eq. (11.3). Such an estimation procedure is performed

for each of the laser spots projected over the surface. As described in [5], the accuracy
in the positioning of the robot depends on a detailed representation of the geometry
of the surface, which in turn is enabled by the projection of a large amount of these
visual features over the surface.
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11.5 Path Tracking

An effective means used to maintain a given ratio between camera-resolution
and observed workspace size is the use of multiple cameras. In the proposed
methodology, the cameras remain static during the execution of the maneuver, being
the only restriction that all different regions within the workspace of the robot have
to be observable by at least two cameras. The following scalar function is defined
in order to take into consideration the presence of maneuver objectives in several
camera-images used to encompass a large region,

J (�) =
nc∑

i=1

nt (i)∑

j=1

{[
x
(j)
ti
− fx

(
t
(j)
xi (�), r

(j)
yi (�), r

(j)
zi (�), x

(j)
ti
;C(i)

)]2

+
[
y
(j)
ti
− fy

(
r
(j)
xi (�), r

(j)
yi (�), r

(j)
zi (�), y

(j)
ti
;C(i)

)]2
}
δ
j
i (11.14)

this function is minimized for the joint coordinates of the robot included in�. In the
previous function, δji can be defined as follows:

δ
j
i =

{
1 if the j th target is to be achieved in the ith camera
0 otherwise

(11.15)

As detailed in [4], the procedure for defining maneuver objectives in each of the
control cameras is facilitated by the use of laser points projected over the surface.
In this case, a path defined in advance as a database is projected over an arbitrary
surface. The information in this database is schematically shown in Fig. 11.7. In this
figure, the path to be projected is separated into a series of straight-line segments with
associated coordinates (ri ,θi ,zi), relative to the preceding segment. Also, associated
with each portion of the path is the tool speed and a signal used for establishing if a
given action, like cutting, welding, etc., is executed or not in the segment.

Once the surface-characterization process described in the preceding section is
completed, a starting point and a direction of reference over the surface is selected
by the user in one image obtained from a camera. This selection is made by using
a graphical user interface like the one shown in Fig. 11.8. Such a starting point and
direction are compatible with those stored in the database, as depicted in Fig. 11.7.

The projection of the path over the arbitrary surface is based on a geodesic
projection. As such, it can be considered optimal as it satisfies the optimality
conditions and restrictions that a line has to satisfy in order to be considered a
geodesic line. In this case, each straight-line segment like the ones shown in Fig. 11.7
is projected as a geodesic line along the arbitrary surface. As discussed in [1], if the
equation of the surface is presented in the form z = f (x, y), the differential equation
that represents a geodesic line is
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Fig. 11.7 Structure of path stored as a database (CAD model)

Fig. 11.8 Graphical user interface
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(1+ s2 + t2)d
2y

dx2 = sw
(
dy

dx

)3

+ (2sv − tw)
(
dy

dx

)2

+(su− 2tv)
dy

dx
− tu

(11.16)

where

s = ∂z

∂x
; t = ∂z

∂y
; u = ∂2z

∂x2
; v = ∂2z

∂x∂y
; w = ∂2z

∂y2
(11.17)

Function z = f (x, y) is locally defined as a second-order polynomial as

z = p0 + p1x + p2y + p3x
2 + p4xy + p5y

2 (11.18)

where parameters p0 to p5 are estimated in such a way that they best fit the 3D
coordinates of the laser points located within a restricted area, like the one presented
in Fig. 11.6. Once this fit is achieved, the second-order differential equation (11.16)
is solved using the fourth-order Runge-Kutta integration method [18]. Considering
Fig. 11.7, the integration is performed along the direction of the ith segment, until
length ri is achieved. Once the integration is finished along this segment, the 3D
location of the ending point becomes the initial point of the following segment. The
next integration is performed along a direction rotated an angle θi with respect to
the ending direction of the previous segment. The process is performed for all the
straight-line segments included in the database. Reference [6] presents the procedure
for evaluating the robot configuration that permits accurate positioning of the tool
held by the robot along the geodesic lines defined above. This procedure requires
the selection of coordinate systems attached both to the work surface and to the
robot-held tool, as depicted in Fig. 11.9.

A fundamental requirement for the mapping of the previously-defined closed
trajectory, stored in a database, over the arbitrary surface, is that closure must be
accomplished. This condition is particularly important when applied to an industrial
maneuver like metal-cutting. The solution presented herein for achieving such a
closure restriction resides in the mapping of two different paths over the surface.
One in the direction indicated in the CAD model, as depicted in Fig. 11.7 and the
second one in the opposite direction. This is presented schematically in Fig. 11.10.
The second path in the reverse direction is defined by using the following recursive
formulas:

r ′i = rn−i+1 ; i = 1 . . . n
z′i = zn−i+1 ; i = 1 . . . n

θ ′1 =
n∑

j=1

θj − 180◦

θ ′i = 360◦ − θn−i+2 ; i = 2 . . . n

(11.19)
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Fig. 11.9 Coordinate systems associated with the path-following task

each element in these formulas corresponds to the ith segment, as shown in
Fig. 11.7 while the ()′ values correspond to the second trajectory in the opposite
direction. Since the surface is non-developable, both trajectories do not overlap. An
interpolation of the vertexes associated with the same point of each trajectory is
used to generate a third path. For example, Fig. 11.10 shows the interpolated points
between vertexes A and A′, B and B ′, etc. If (Xi, Yi, Zi) are the three-dimensional
coordinates of a given vertex in the first trajectory while (X′i , Y ′i , Z′i ) the coordinates
of the corresponding vertex in the second trajectory, a linear interpolation is proposed
as follows:

Xpi = Xi +Ki(X′i −Xi)
Ypi = Yi +Ki(Y ′i − Yi)
Zpi = Zi +Ki(Z′i − Zi)

(11.20)
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Fig. 11.10 Interpolation between two paths in opposite directions

The three-dimensional coordinates of the vertexes are obtained by minimizing
(11.9), which will produce a position with respect to a coordinate frame fixed to the
base of the robot. In the previous formula (Xpi, Ypi, Zpi) represents the coordinates
of the interpolated vertex. The interpolation factorKi is related with the ith segment
and takes into consideration the error that accumulates with the integration of the
geodesic lines. In this chapter a simple approach is defined and consists of calculating
the interpolation factor as

Ki = i − 1

n
(11.21)

where n is the number of segments of the path. In essence, this factor takes into
consideration that the interpolated vertex is closer to the corresponding location of
the trajectory with the smaller accumulation of integration error. It is considered that
such error growth is proportional to the ith segment along the trajectory.

Once the interpolated vertexes are calculated, the final path over the surface
is evaluated by solving the geodesic projection equation (11.16) as a boundary-
value problem. The integration begins at the starting point (X0, Y0, Z0), shown in
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Fig. 11.11 Simulated path through interpolated points

Fig. 11.10. The shooting method [18] is used with the purpose of reaching the first
interpolated point (Xp1, Yp1, Zp1) as close as possible. The integration continues
with the following segment of the path by considering as a starting location of the
integration procedure, the ending point of the previous segment. Finally, the last
segment is integrated considering the end point as the initial location (X0, Y0, Z0).
This procedure guarantees closure of the path while maintaining a reduced amount
of distortion in the resulting closed path. Using this procedure, Fig. 11.11 shows a
simulation of how a simple path is produced.

In addition to the geodesic projection, a mapping procedure that considers a virtual
projection is used with the purpose of mapping a previously-defined path onto the
arbitrary surface. Such a procedure is schematically shown in Fig. 11.12 and is based
on the determination of a plane that fits the location of the laser points placed over
the surface, using a least-squares estimation procedure. The 3D coordinates of the
laser points projected over the surface are obtained as presented in the section where
the surface-characterization process is explained. Each vertex of the path stored in
the database is projected and the mapped path is obtained as the intersection of the
arbitrary surface, whose equation is obtained locally by using Eq. (11.18) and an
imaginary line at each vertex whose orientation is perpendicular to the estimated
plane.

11.6 Experimental Validation

With the purpose of validating the methodology proposed in this chapter, an industrial
Fanuc M16iB 20T robot was used. This device has a tool with known geometry,
depicted in Fig. 11.3, with manipulated features that are used to facilitate the image-
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Fig. 11.12 A graphical representation of the virtual-projection mapping

Fig. 11.13 Regions encompassed by each control camera

analysis process. The manipulator has six joints; the first one is prismatic, capable
of a 3.6 m displacement. The rest of the joints permits that the robot reaches 1.5 m in
a plane perpendicular to the first axis. With this configuration, the large workspace
of the robot is roughly a cylinder with a diameter of 3 m and a length of 3.6 m.

The communication that links the computer that includes the control algorithms
with the robot is based on a TCP/IP protocol. For the experiments presented herein,
such a communication link is needed to obtain samples of the robot pose while
approaching its destination. It is also needed for commanding the robot to the
estimated configuration obtained from the minimization of the scalar function J
included in Eq. (11.14).

Four uEye UI-1540-C control cameras were used and located at a distance of
about 5 meters away from the testing surface. Also, a Lasiris laser diode of 5 mW
and 635 nm is used with the purpose of projecting marks over the surface which
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in turn, as explained in [4], are used for characterizing the working surface. This
laser works together with a diffraction head that splits the laser beam into a matrix
of 7 × 7 laser beams. This approach for structured lighting provides a measure for
placing a large number of laser spots over the surface. However, there exist in the
literature other approaches [7, 9] that take advantage of continuous laser scanning.
Such technology has the advantage of improving the resolution associated with the
characterization of the surface, however, it is left as a future consideration for the
case of the experiments presented herein.

With the purpose of testing the use of a number of fixed camera sensors to
encompass a large region of the workspace of the robot, a total of 150 positioning
tasks were executed by using the four cameras cited above. As mentioned, the sensors
are located in such a way that at least two cameras have visual contact with a particular
region of the surface. This surface has a rectangular shape with a length of 2400 mm
and a width of 800 mm, and is made out of clay. The approximate region covered by
the cameras is depicted in Fig. 11.13 as a shaded area. In this figure, the 150 laser
points used for testing the positioning of the robot are seen as dots. In this case, the
objective of the task consisted of reaching the centroid of each projected laser spot.
The results of the maneuver are shown in Fig. 11.14, which presents the Euclidean
distance between the tip of a needle located at the end of the robot-held tool and the
centroid of the laser, for each positioning task. In the experiments, we obtained a
mean error of 0.62 mm and a standard deviation of 0.34 mm.

In order to validate the capability of the proposed methodology to trace a given
path over a large, arbitrary surface, a rectangle of 2000 mm long and 400 mm wide
was used. Such a path is comprised of 240, 20 mm long straight-line segments
included in a database. As a measure of the error present in the maneuver, the
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Fig. 11.14 Positioning errors measured during positioning maneuvers
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Fig. 11.15 Testing path traced over a soft surface. Left, flat surface, right, curved surface

4800 mm perimeter of the path was used. The path was traced first on top of the
surface made of clay that was previously used for the positioning tasks. Then,
the geometry of the surface was modified in such a way that it is no longer flat
and the difference between the top and the bottom of the surface is approximately
60 mm. In both cases, the corner of the path where it begins and ends is shown
in Fig. 11.15 and the path was traced using only a simple geodesic mapping. In
the left, the figure presents the trace over the flat surface and in the right, over
the curved surface. From the figure is evident that closure is not achieved and
also that the error in the closure is aggravated in the case of the non-flat surface.
This result is consistent with the fact that in the case of non-developable surfaces,
geodesic mapping does not enable closure. Also, it illustrates the effect of integration
errors increasing during the tracing of paths over large surfaces. In contrast, as
seen in Fig. 11.16, closure is achieved when a combination of geodesic mapping
and a weighted interpolation between two opposite paths is used. The closure was
also achieved in the case of virtual projection. This result was validated with a
total of 20 paths that were traced over the deformed surface, achieving a mean
perimeter of 4814.7 mm with a standard deviation of 4.0 mm, when the non-closure
simple geodesic mapping is used. In contrast, the closure was achieved in every
attempt, with a mean perimeter of 4808.9 mm and standard deviation of 5.4 mm,
when using the interpolated-path approach. In the case of virtual projection, a mean
perimeter of 4811.2 mm with standard deviation of 3.8 mm was obtained. As can
be seen from these tests, more accurate results were obtained from the combination
of interpolated-path with the geodesic-mapping approach. Nevertheless, although
slightly less accurate, the virtual-projection approach was easier to implement. It
is important to mention that, in the reported experiments, the minimum radius of
curvature of the deformed surface was approximately 30 cm. It was also observed
that the regions behind the bent surface were not visible to the cameras when larger
curvatures were considered, which is an aspect that may restrict the application of
the proposed vision method.
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Fig. 11.16 Comparison of closed paths traced by simple geodesic mapping (1), interpolated
geodesic mapping (2), and virtual projection (3)

Fig. 11.17 A CAD representation of a Last Supper painting

As a final test, a challenging maneuver consisting of the tracking of a contoured
version of the Last Supper painting (http://www.coloringpages101.com/religions-
coloring-pages/4450-jesus-is-talking-at-last-supper-coloring-page. Accessed in
2018), over the large non-flat surface cited above, was performed. A video presenting
the execution of this maneuver can be found in (https://youtu.be/AxvLrqkl2Hg.
Published on November 2018). The painting divided into 10 mm straight-line
segments is shown in Fig. 11.17. The 2400 mm long and 800 mm wide surface
made of clay, with an elevation of about 60 mm, is shown in Fig. 11.18; such a
surface representation was obtained after completing the characterization process.
For this maneuver, the virtual projection approach was used in order to project the
drawing over the surface and the results are depicted in Figs. 11.19 and 11.20. It
took approximately five hours, from the initial calculation of camera parameters,
surface characterization, etc., until the Last Supper drawing is fully transferred
over the large, curved surface. Such an extent of time, which may seem excessive,

http://www.coloringpages101.com/religions-coloring-pages/4450-jesus-is-talking-at-last-supper-coloring-page
http://www.coloringpages101.com/religions-coloring-pages/4450-jesus-is-talking-at-last-supper-coloring-page
https://youtu.be/AxvLrqkl2Hg
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Fig. 11.19 A picture of the Last Supper painting

Fig. 11.20 Another picture of the Last Supper painting, obtained from a different perspective

can be contrasted with the time that programming such a maneuver may take which,
according to experts in the programming of industrial robots, is in the order of days,
without the advantages of optimal tracking with reduced distortion, as enabled by
the method proposed herein.
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11.7 Conclusions

The experiments presented in this chapter show that the proposed methodology is a
feasible alternative to project an arbitrary, closed path over a large, curved surface
of unknown geometry. As presented, the use of fixed cameras pointing at different
regions of the large work-envelope of the robot also enables accurate positioning and
path-tracking maneuvers that involve the closure of a closed path.

From a broader perspective, the method proposed herein can be considered as
a viable alternative for the self-programming of an industrial manipulator. In this
case, the methodology presented here facilitates the programming of the robot,
and the maneuver can be repeated once or multiple times. This fact contrasts with
the applications given to most industrial robots where a single task is repeated on
numerous occasions even during the whole useful operating life of the robot.

Finally, once an initial set of robot configurations that enable a closed path is
defined, it is expected that an industrial maneuver like the welding or cutting of
metal plates would follow. Such maneuvers can be executed by defining in advance
adequate process parameters like traveling speed, voltage, etc. This is especially
important in cases where a user, without special qualifications in robotics or in the
particular industrial task, will be able to successfully achieve the maneuver.
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Chapter 12
Unified Passivity-Based Visual Control
for Moving Object Tracking

Flavio Roberti, Juan Marcos Toibero, Jorge A. Sarapura, Víctor Andaluz,
Ricardo Carelli, and José María Sebastián

Acronym

DOF Degree of freedom

12.1 Introduction

Robots can be defined as mechatronic devices, capable to perform some specific tasks
in a workspace in an autonomous or semiautonomous way. Autonomy is related to
the skill of getting environmental information by using some kind of exteroceptive
sensors. Examples of these external sensors are proximity sensors, range finders, or
vision systems. Present-day researches in the field of robot control are orientated to
combine exteroceptive sensors with advanced control algorithms, making the robots
capable of carrying out different tasks in unknown or semistructured environments,
thus expanding the possible applications. Even when laser rangefinders are the most
usually used sensors [1–3], visual sensing has increased in last years because of the
quality and amount of information that images can bring [4–6].
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In accordance with the classification presented in Weiss et al. [7], visual servoing
systems can be classified into image-based [8–10], when definition of control errors is
made on the image plane; or position-based [6, 11], when definition of control errors
is made on the 3D Cartesian space. Another classification of the visual servoing
systems is based on the location of the vision system. Cameras can be “on-board”
[2, 5, 11, 12], when they are located on the robot; or they can be located on a fixed
position in the workspace [8, 13, 14]. Regarding the control algorithm design, visual
servoing systems are classified into kinematics-based when the control algorithm
design considers only the kinematic models [2, 5, 10, 15] or dynamics-based when
the development of the control law considers also the dynamic model of the robot
[8, 13, 16]. Even when kinematics-based control laws generally have an adequate
performance, dynamic models have to be included in the control law design in
order to achieve design specifications in high-speed motion tasks or transportation
of weighty loads.

Usually, stability analysis of visual servoing systems is addressed in the context
of Lyapunov theory [16–18]. Analysis based on the passivity properties represents
an alternative possibility, habitually used in the analysis of manipulators’ controllers
[19–22]. However, in [23], the passivity property of an interesting dynamic model of
the unicycle-like mobile robots has been proved. In addition, some articles present
passivity-based control laws for mobile robots [24, 25]. Solutions for the problem
of path following control [26], pose problem [27], multi-robot coordination problem
[28–30], and biped robot locomotion problem [31] have been proposed. Regarding
artificial vision for mobile robot applications, Fujita et al. [32] and Kawai et al. [33]
propose a visual motion observer based on passivity properties for being used in
mobile platform control systems.

Concerning previously mentioned articles about passivity-based proposals, Fujita
et al. [19] is one of the most valuable articles in visual servoing control based on
passivity theory. Nevertheless, even when the stability analysis uses the system
passivity properties, it is addressed in the Lyapunov theory framework. In the field
of mobile robots, in [26] the problem of path planning control is addressed. One of
the principal shortcomings of the work is that it represents a solution only for circular
paths, and validation is made only through numerical simulations. As cited, Igarashi
et al. [29] proposes an interesting solution for 3D attitude coordination of muti-robot
systems. A heading velocity controller, allowing the robots to reach the desired
relative orientation among them in 3D space, is presented. Validation is performed
by both real experiments and numerical simulations. Kawai et al. [33] has reported a
significant contribution in the area of visual sensing applied to mobile robots. Even
when the visual motion observer represents the principal contribution, a pose control
law for a mobile robot with a catadioptric on-board camera is also reported. The
stability analysis is made in the context of Lyapunov theory by supposing a static
target. Conclusion is supported by experimental data only for the visual observer.

This chapter presents a unified passivity-based visual control structure for robots
with on-board camera. The proposed control law makes the robot able to perform
a moving target tracking in its workspace. The control structure presented in this
chapter can be applied not only for robotic arms but also for mobile robots and for
mobile manipulators. Taking advantage of the passivity properties of the control
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system and considering exact knowledge of the target velocity, the asymptotic
convergence of the control errors to zero is proved. Later, a robustness analysis
based on L2-gain performance is performed, thus proving that control errors are
ultimately bounded even when bounded errors exist in the estimation of the target
velocity. A key aspect of the chapter is that the complete theoretical analysis is
made in an input-output system context, in lieu of using the passivity properties in
a Lyapunov framework. In addition, the presented control system consists of a real
tracker instead of a robust position control law; therefore, the velocity of the target is
considered in whole system analysis. Finally, dynamic model of the robot is included
in the control design, making the proposed control structure appropriate for robotic
applications where high performances are required.

The rest of the chapter is organized as follows. Section 12.2 presents the kinematic
and the dynamic models used along this chapter. Section 12.3 describes the proposed
unified control structure, where the stability and the robustness analysis are included.
Section 12.4 presents the numerical simulation and experimental results for all
considered robotic systems, and finally, Sect. 12.5 states the conclusions.

12.2 System Models

This section presents the dynamic models of the considered robotic systems, as well
as the kinematic model of the vision system when it is mounted on-board the robots.

Before starting with the chapter development, it would be useful to define the
main variables that will be used in the next sections. In Table 12.1, a list of symbols
adopted for these main variables is presented.

Table 12.1 Nomenclature used for main variables

Symbol Variable description
ξ Vector of image features
J Total image Jacobian matrix
μ Vector of the robot velocities
JT Target Jacobian matrix
VT Cartesian velocities of the target
ξ̃ Vector of image feature errors defined as ξ̃(t) = ξ(t)− ξd

J† Inverse or pseudo-inverse of J
vξ Auxiliary variable defined as νξ = JTξ

ν
ξ̃

Auxiliary variable defined as ν
ξ̃
= JTK

(
ξ̃
)

ξ̃

μc
r Kinematic control law

μ̃ Robot velocity error defined as μ̃ = μ− μc
r

w External disturbance
v̂T Estimation of vT
ṽT Estimation errors of vT
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12.2.1 Dynamic Model of the Robotic Manipulator

If friction or any other disturbances are not considered, the dynamic model of an
n-link rigid robot manipulator can be written as

M (q) q̈+ C (q, q̇) q̇+ g (q) = τr (12.1)

where M(q)∈Rn × n is the inertia matrix; C (q, q̇) ∈ R
n×1 is the vector of centripetal

and Coriolis torques; q ∈R
n × 1 is the vector of joint displacements; g(q) ∈R

n × 1 is
the vector of gravitational torques; τr ∈ R

n × 1 is the vector of applied joint torques.

12.2.2 Dynamic Model of the Mobile Robot

The mathematical model that represents the dynamics of a mobile robot is [23]

Hu̇+ C (u)u+ F (u) u = ur (12.2)

where u ∈ R
2 × 1 is a vector containing the linear velocity and rotational velocity

of the mobile robot and ur ∈ R
2 × 1 represents the vector of velocity input signals.

Matrix H ∈ R
2 × 2 is diagonal, constant, and positive definite; matrix C(u) ∈ R

2 × 2

is skew symmetric; matrix F(u) ∈ R
2 × 2 is (considering realistic assumptions [23])

symmetric, lower bounded, and positive definite. Additionally, mapping ur → u is
strictly output passive. For extra details related to model (12.2), readers can refer
to [23].

12.2.3 Dynamic Model of the Mobile Manipulator

The mathematical representation of the mobile manipulator’s dynamics used along
this chapter is obtained from the dynamic model presented in [34], but including
low-level controllers for the actuators. These controllers consist of PD-like velocity
controllers, thus obtaining velocity references as input of this new dynamic
model [35]

M (q) u̇+ C (q,u) u+ g (q) = ur (12.3)

where u ∈ R
n is the vector of velocities of the mobile manipulator (which includes

the linear velocity and the angular velocity of the mobile platform and the arm’s joint
velocities), M(q)∈Rn × n is a positive definite matrix, C(q, u)u∈Rn, g(q)∈Rn, and
ur ∈R

n is the vector of input signals (velocity references). q = [q1 q2 . . . qm
]T =
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[
qT

p qT
a

]T ∈ R
m represents the generalized coordinates of the mobile manipulator,

where qp ∈ R
mp represents the generalized coordinates of the mobile platform and

qa ∈ R
ma represents the generalized coordinates of the robotic arm. For extra details

related to model (12.3), readers can refer to [35].

12.2.4 Kinematic Model of the Vision System

A single camera projects the 3D space onto the 2D image plane, where the vision
sensor is placed. Researchers have proposed numerous projection models that
represent the process of image formation [36]. Perspective projection model is one
of the most used. In this projection model, a 3D orthogonal coordinate system
associated with the camera is defined such that Xmc and Ymc axes are a base for the
image plane, and Zmc axis coincides with the optical axis, as depicted in Fig. 12.1.
The origin of the orthogonal Cartesian system is placed at the camera lens focus.
Therefore, a point P in the 3D space described by P = [

xmc ymc zmc
]T on the

coordinate system associated with the vision camera will be mapped onto the image
plane as a 2D point with coordinates

(
xm ym

)
given by [36]

xm = f xmc

zmc
; ym = f ymc

zmc
(12.4)

where f is the camera’s focal length, expressed in pixels.
Therefore, if we consider an on-board vision system, taking into account the pin-

hole camera model (12.4) and the kinematic model of the used robot and defining
some convenient set of image features ξ, the time variation of these image features
can be expressed as a function of the movement of both the target and the robot as

Fig. 12.1 Camera projection
model
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ξ̇ = Jμ+ JTvT (12.5)

where μ represents the vector of the robot’s velocities (linear velocity and angular
velocity of the mobile platform; and/or joint velocities of the robotic arm); vT
represents the Cartesian velocities of the target; J is the total Jacobian matrix, and
JT is the object Jacobian matrix. It is important to remark that J includes not only
the image Jacobian of the vision camera but also the kinematic models of the robot
(with its corresponding nonholonomic or holonomic constraints). As an example,
Appendix 1 shows mathematical derivations to obtain the kinematic model (12.5)
for the mobile robot with an on-board camera.

12.3 Passivity-Based Visual Controller Design

This section of the chapter addresses the design of a visual controller based on image
feature errors (image-based control) to make a robot with an on-board camera able
to perform a moving object tracking task on the 3D workspace, while the image
feature errors ξ̃(t) asymptotically converge to zero. Therefore, control objective can
be defined as

lim
t→∞ξ̃(t) = 0 (12.6)

First, a visual controller based on the kinematic model is designed, and by
assuming that the velocity of the moving object is perfectly known and perfect
velocity tracking, it is proved that image feature errors asymptotically converge to
zero. Next, assumption of perfect velocity tracking is disregarded, and new conditions
for the dynamics-based controller are obtained to prove that image feature errors
asymptotically convergence to zero as well under this realistic consideration.

As mentioned before, full design of the proposed controller is addressed in the
framework of the input-output system theory, specifically by taking advantage of
the system’s passivity properties. These passivity properties have been generally
used for the nonlinear system stability analysis [37], principally for interconnected
and cascade structured systems [38–40], and represent an alternative analysis to the
Lyapunov theory. Formal definitions associated with input-output system theory and
passivity properties of functional space operators used in this chapter are given in
Appendix 2.

12.3.1 Passivity Property of the Vision System

Previous works have proved that a perspective projection vision system placed at the
end effector of a robotic arm is passive when considering a static object in the 3D
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space [19]. Now, if a moving object is considered, that is, by modeling the vision
system as in (12.5), the passivity property of the vision system can also be proved.

Proposition 1 Mapping (μ + J†JTvT) → νξ, which represents the vision system
(12.5), is passive.

Proof Let us consider the positive function Vξ = 1
2ξTξ. Then, calculating its

derivative and introducing (12.5), the following expression is obtained

V̇ξ = 1

2
ξTξ̇ = ξT (Jμ+ JTvT) (12.7)

Now, integrating (12.7) over [0, T],

∫ T
0 V̇ξ dt =

∫ T
0

(
ξT (Jμ+ JTvT)

)
dt

∫ T
0

(
JTξ
)T (

μ+ J†JTvT
)
dt = Vξ(T )− Vξ(0) ≥ −Vξ(0)

(12.8)

where J† represents the inverse or pseudo-inverse of J. Defining νξ = JTξ and
according to Definition 6, it can be concluded that mapping (μ + J†JTvT) → νξ is
passive. �

12.3.2 Design of the Kinematic-Based Controller

Considering at this point the regulation problem on the image plane, the vector of
image features error is defined as ξ̃(t) = ξ(t)− ξd, where ξd represents the desired
feature vector on the image plane. In this context, the proposed kinematic control
structure is shown in the block diagram of Fig. 12.2.

Vision
System

Kinematic 
ControllerRobot+   +

_
 + 

† −

+
_

Fig. 12.2 Block diagram of the proposed kinematic visual control system
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Proposition 2 Let us consider the kinematic control system represented in the block
diagram of Fig. 12.2, where the “vision system” block is modeled as (12.5) and
assuming perfect velocity tracking by the robot, that is, μ ≡ μc

r (kinematic-based
controller). If K

(
ξ̃
)

is a positive definite gain matrix designed such that ν
ξ̃
∈ L∞ for

any values of image features and μc
r = −Kcνξ̃

−J†JTvT = −KcJTK
(
ξ̃
)

ξ̃−J†JTvT

with Kc > 0, then mapping
(
μ+ J†JTvT

)→ ν
ξ̃

(representing the upper sub-system
of block diagram of Fig. 12.2) is passive, and mapping −ν

ξ̃
→ (

μ+ J†JTvT
)

(representing the lower sub-system of block diagram of Fig. 12.2) is strictly input
passive.

Proof First, the passivity property of the vision system when considering the
regulation problem on the image plane is addressed. With this aim, let us take
the following positive definite function:

V
ξ̃
=
∫ ξ̃T

0
ηTK (η) dη (12.9)

Then, the time derivative of functionV
ξ̃

is V̇
ξ̃
= ξ̃

T
K
(
ξ̃
) ˙̃

ξ = ξ̃
T

K
(
ξ̃
)
(Jμ+ JTvT).

Integrating V̇
ξ̃

over the interval [0, T],

∫ T

0
V̇

ξ̃
dt =

∫ T

0
ξ̃

T
K
(
ξ̃
)
(Jμ+ JTvT) dt (12.10)

and defining

ν
ξ̃
= JTK

(
ξ̃
)

ξ̃ (12.11)

the following expression is obtained:

∫ T

0
ν
ξ̃

(
μ+ J†JTvT

)
dt ≥ −V

ξ̃
(0) (12.12)

concluding that the mapping
(
μ+ J†JTvT

)→ ν
ξ̃

is passive.
Now, recalling the perfect velocity tracking assumption, that is, μ ≡ μc

r , and the
definition of the control law,

μc
r = −Kcνξ̃

− J†JTvT = −KcJTK
(
ξ̃
)

ξ̃− J†JTvT;Kc > 0 (12.13)

and substituting (12.13) in (12.12), the following expression is obtained
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∫ T
0 νT

ξ̃

(
μ+ J†JTvT

)
dt = ∫ T

0 νT
ξ̃

(
−Kcνξ̃

− J†JTvT + J†JTvT

)
dt =

− ∫ T
0 νT

ξ̃
Kcνξ̃

dt ≤ −λmin (Kc)
∫ T

0 νT
ξ̃
ν
ξ̃
dt

(12.14)

or
∫ T

0
− νT

ξ̃

(
μ+ J†JTvT

)
dt ≥ λmin (Kc) ‖νξ̃

‖2
2,T (12.15)

concluding that the mapping −ν
ξ̃
→ (

μ+ J†JTvT
)
, that is, control law defined in

(12.13), is strictly input passive (see Definition 7). �
Therefore, the control system proposed, represented in Fig. 12.2, is composed of

the interconnections of passive subsystems.

12.3.2.1 Analysis of the Kinematic Control System

In order to analyze the proposed kinematic control system, let us add the expressions
that define its passivity properties (12.12) and (12.15)

0 ≥ −V
ξ̃
(0)+ λmin (Kc)

∥
∥∥νξ̃

∥
∥∥

2

2,T∥∥∥νξ̃

∥∥∥
2

2,T
≤ V

ξ̃
(0)

λmin(Kc)

(12.16)

which implies that ν
ξ̃
∈ L2e. Also, recall that K

(
ξ̃
)

is designed such that ν
ξ̃
∈ L∞

and ν̇
ξ̃
∈ L∞ since robot velocities are also bounded (by definition of the control

law (12.13)). Then, Barbalat’s lemma [41] allows to conclude that

ν
ξ̃
→ 0 with t →∞ (12.17)

Then, assuming that the target is out of any singular position and recalling that
ν
ξ̃
= JTK

(
ξ̃
)

ξ̃, the condition (12.17) implies that

ξ̃→ 0 with t →∞ (12.18)

thus achieving the control objective.

12.3.2.2 Particular Consideration for the Mobile Manipulator

In case of considering a mobile manipulator, an extra term can be added to the
kinematic control law (12.13) without altering previous analysis, since J(I− J†J)= 0
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μc
r = −Kcνξ̃

− J†JTvT +
(

I− J†J
)

k1tan h (k2�) (12.19)

So, taking advantage of the redundancy of mobile manipulators, additional
performances can be successfully achieved, namely obstacle avoidance, singular
configuration avoidance, keeping image features in the field of view, or several
performance criteria optimization.

With the aim of illustrating the previous concept, this chapter considers two
independent secondary objectives: obstacle avoidance by the mobile platform and
the prevention of singular configuration by controlling the system’s manipulability
[42]. Therefore, a suitable definition for � is [35]

� =
[
−uobs ωobs f1

(
θ̃1

)
. . . fna

(
θ̃na

)]T
(12.20)

uobs and ωobs are the linear velocity and the rotational velocity of the mobile
platform which make the robot able to achieve the obstacle avoidance objective,
when the obstacles do not interfere with the robotic arm. So, the arm can deal
with the main objective while the platform deals with the obstacle avoidance by
resourcing to the null space configuration. uobs and ωobs are calculated as a function
of a fictitious repulsion force [35]. This fictitious force is defined by the relative
distance between the robot and the obstacle d, and the angle of incidence to the
obstacle α. Therefore, control laws are defined as [35]

uobs = Z−1
(
kuobs (d0 − d)

[
π
2 − |α|

])

ωobs = Z−1
(
kωobs (d0 − d) sgn (α)

[
π
2 − |α|

]) (12.21)

where d represents the relative distance from robot to obstacle, d0 is the distance at
which the obstacle starts to be avoided, kuobs and kωobs are positive design constants,
Z is the mechanical impedance that defines the interaction between the robot and the
environment, and α is the angle of incidence to the obstacle.

12.3.3 Dynamic Compensation Controller

Passivity properties of previous kinematic control system have been obtained by
assuming perfect velocity tracking, that is, μ ≡ μc

r . However, when the robotic
task requires, for example, high-speed movements or transportation of heavy loads,
dynamic effects could not be ignored making previous assumption to be invalid. In
this context, robot dynamics has to be considered in the control system design to
achieve acceptable performances. Hence, the main goal of this new control law is
to compensate robot dynamics in order to reduce the difference between the desired
velocity and the robot’s real velocity. Inputs of this dynamic control law are the
desired velocities generated by the kinematic control law, and it calculates the new
control actions to be sent to the robot (Fig. 12.3).



12 Unified Passivity-Based Visual Control for Moving Object Tracking 357

Vision
System

Kinematic 
ControllerRobot+   +

† −Dynamic 
compensation

+

+
_

_

Fig. 12.3 Block diagram of the proposed control system with dynamic compensation

Therefore, disregarding perfect velocity tracking assumption, a velocity error will
exist, which is expressed as μ̃(t) = μ(t)−μc

r (t), motivating the design of a dynamic
compensation control law.

The dynamic compensation controller μr has to be designed for μ̃ ∈ L2 ∩ L∞,
which implies that μ ∈ L∞ since μc

r ∈ L∞ has been proved. For example, a
controller based on feedback linearization can be used, which allows to easily prove
the conditions for μ̃.

Then, the behavior of control error ξ̃ should be studied. With this purpose,
introducing the error μ̃(t) previously defined and the kinematic control law (12.13)
into (12.14), the following expression is obtained:

−
∫ T

0
νT
ξ̃

(
μ+ J†JTvT

)
dt =

∫ T

0
νT
ξ̃

Kcνξ̃
dt −

∫ T

0
νT
ξ̃
μ̃ dt (12.22)

Then, by adding (12.22) with (12.12) and after some mathematical operations, we
obtain

λmin (Kc)

∫ T

0
νT
ξ̃
ν
ξ̃
dt ≤ V

ξ̃
(0)+

∫ T

0
νT
ξ̃
μ̃ dt (12.23)

λmin (Kc)

∥∥∥νξ̃

∥∥∥
2

2,T
≤ V

ξ̃
(0)+

∥∥∥νξ̃

∥∥∥
2,T

∥∥∥μ̃
∥∥∥

2,T
∀T ∈ [0,∞) (12.24)

By recalling the restriction imposed on the dynamic compensation controller
μ̃ ∈ L2, inequality (12.24) holds only for

∥
∥∥νξ̃

∥
∥∥

2,T
<∞, which implies that ν

ξ̃
∈ L2.

This result implies that the property ν
ξ̃
∈ L2 holds after including the dynamical

controller. So, recalling that ν
ξ̃
∈ L∞ and ν̇

ξ̃
∈ L∞, the control objective is fulfilled,

that is,

ξ̃→ 0 with t →∞ (12.25)
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12.3.4 Robustness Analysis

Kinematic controller (12.13) supposes the exact knowledge of target velocity vT;
however, this is not true in practice, where it should be estimated from visual sensing
of the target by using, for example, an α − β filter [43]. This estimation of vT can
produce undesirable effects on the control error behavior. Therefore, it is necessary
to carry out a robustness analysis in the context of the L2-gain performance criterion.
Hence, an external disturbance w is defined as a function of the estimation error of
ṽT and velocity error μ̃, and it has to be proved that [44]

∫ T

0

∥∥
∥ξ̃
∥∥
∥

2
dt ≤ γ 2

∫ T

0
‖w‖2dt; ∀T > 0 (12.26)

which means that mapping from w to ξ̃ has finite L2-gain.
Let us define w = μ̃ + J†JTṽT, where ṽT = vT − v̂T, and suppose that w

is bounded. Considering now that the control law (12.13) is calculated with the
estimated value of the object velocity v̂T, (12.22) is modified as follows:

∫ T
0 νT

ξ̃

(
μ+ J†JTvT

)
dt = ∫ T

0 νT
ξ̃

(
μ̃(t)+ μc

r (t)+ J†JTvT
)
dt =

∫ T
0 νT

ξ̃
μ̃ dt − ∫ T

0 νT
ξ̃

Kcνξ̃
dt + ∫ T

0 νT
ξ̃

(−J†JTv̂T + J†JTvT
)
dt

(12.27)

∫ T

0
νT
ξ̃

(
μ+ J†JTvT

)
dt = −

∫ T

0
νT
ξ̃

Kcνξ̃
dt +

∫ T

0
νT
ξ̃
μ̃ dt +

∫ T

0
ν̃T
ξ̃

J†JTṽT dt

(12.28)

∫ T

0
νT
ξ̃

(
μ+ J†JTvT

)
dt = −

∫ T

0
νT
ξ̃

Kcνξ̃
dt +

∫ T

0
νT
ξ̃

w dt (12.29)

By subtracting (12.29) from the expression that defines the passivity property of the
vision system (12.12), we obtain

0 ≥ −V
ξ̃
(0)+

∫ T

0
νT
ξ̃

Kcνξ̃
dt −

∫ T

0
νT
ξ̃

w dt (12.30)

Then

λmin (Kc)

∫ T

0
νT
ξ̃
ν
ξ̃
dt ≤ V

ξ̃
(0)+

∫ T

0
νT
ξ̃

w dt (12.31)

or by defining ε = λmin(Kc) and reminding the inner product in the space L2e
(Definition 5),
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ε

∥∥∥νξ̃

∥∥∥
2

2,T
≤
〈
νT
ξ̃
,w
〉

T
+ V

ξ̃
(0) (12.32)

Now, by adding the positive term 1
2

〈
1√
ε
w−√ε νT

ξ̃
, 1√

ε
w−√ε νT

ξ̃

〉

T
to the second

member of (12.32), the inequality holds. After some mathematical operations, the
following expression is obtained:

ε

∥∥∥νξ̃

∥∥∥
2

2,T
≤
〈
νT
ξ̃
,w
〉

T
+ 1

2

1

ε
〈w,w〉T + ε2

〈
νT
ξ̃
, νT

ξ̃

〉

T
−
〈
νT
ξ̃
,w
〉

T
+ V

ξ̃
(0) (12.33)

∥∥∥νξ̃

∥∥∥
2

2,T
≤ 1

ε2
‖w‖2

2,T + Vξ̃
(0) (12.34)

Now, for ‖w‖2
2 such that

∥∥
∥νξ̃

∥∥
∥

2

2
be bounded away from its saturation value, and after

introducing (12.11) into (12.34) it can be concluded that

∥∥∥ξ̃T
∥∥∥

2

2,T
≤ 1

λmin (M) ε2
‖w‖2

2,T + Vξ̃
(0) (12.35)

where M = KT
(
ξ̃
)

JJTK
(
ξ̃
)
.

Finally, after integrating (12.35) over the interval [0, T], it can be concluded that
the mapping w → ξ̃ has finite L2-gain≤ γ , with γ = 1

ε
√
λmin(M)

. That is, the proposed
control system is robust to disturbance w in accordance with L2-performance
criterion (disturbance attenuation in L2-gain norm or energy attenuation). In this
context, the parameter γ can be understood as a quantitative performance index of
the proposed control system when estimation errors exist.

12.4 Simulation and Experimental Results

The passivity-based control structure showed in this chapter has been evaluated
through both simulations and real experiments in the three different considered
robots. The first robotic system is a mobile robot Pioneer 3DX manufactured by
MobileRobots Inc., with a monocular vision system (f = 850 pixels) mounted on-
board. The moving object consists of a cylindrical target placed on another mobile
robot Pioneer 3AT. The experimental equipment is shown in Fig. 12.4a.

Then, some experiments were performed with a mobile manipulator. It consists
of a mobile robot Pioneer 3AT and a robotic arm CYTON Alpha 7 degrees of
freedom (DOF) (only 3 DOF are used in the experiment). The mobile base has a
laser rangefinder only for the obstacle detection, and a JMK Mini Camera (model:
JK-805) is placed at the end effector of the robotic arm. The moving object to be
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Fig. 12.4 Experimental setup. (a) Laboratory robots used in experiments described in Sect. 12.4.1.
(b) Laboratory robots used in experiments described in Sect. 12.4.2. (c) Robotic manipulator Bosch
SR-800 considered in simulation results described in Sect. 12.4.3

tracked is placed on another mobile robot Pioneer 3AT. The experimental equipment
is shown in Fig. 12.4b.

Finally, the dynamic and kinematic models of the Bosch SR-800 robot manipulator
(Fig. 12.4b) with an eye-in-hand stereo vision system is considered.

12.4.1 Mobile Robot

In order to implement and evaluate the passivity-based controller in a mobile robot,
the feature selection described in Appendix 1 is used. In all experiments, vT is
unknown for the control system and its estimation is carried out by an α − β filter
[43]. However, any other adequate estimation algorithm could be used.

Matrix K
(
ξ̃
)

is defined such that ν
ξ̃
∈ L∞

K
(
ξ̃
)

= diag

⎛

⎝ k1(
a1 +

∣∣
∣ξ̃1
∣∣
∣
)
(b1 + dm)

(
c1 + |xm|2

) ,
k2(

a2 +
∣∣
∣ξ̃2
∣∣
∣
) (
b2 + d2

m

)
(c2 + |xm|)

⎞

⎠

(12.36)

ki, ai, bi, ci > 0

Note that definition of matrix K
(
ξ̃
)

is related to the Jacobian matrix associated
with the definition of image features.

The design constants of the control law are k1 = 0.25, k2 = 15, a1 = 70, b1 = 20,
c1= 30, a2= 100, b2= 30, c2= 20, Kc= diag (70, 4); and the desired image features
are ξd =

[
0 270

]T for the first experiment and ξd =
[

0 170
]T for the second and
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third experiments. Note that these desired image features can be transformed into
robot–target relative posture obtaining d= 0.63m and ϕ= 0◦ for the first experiment;
and d = 1m and ϕ = 0◦ for the second and third ones. Although relative posture
values are not needed in control laws, they are useful for interpreting the experimental
results.

Experiment 12.4.1.1 In this experiment, the mobile robot has to navigate from an
initial position to a final destination relative to the target, since a static object is
considered. This final position is defined by the image features. Experimental results
are shown in Figs. 12.5, 12.6, 12.7, and 12.8. Figure 12.5 illustrates control errors,
in terms of image features, Fig. 12.6 represents the velocity commands sent to the
mobile robot, Fig. 12.7 shows the robot trajectory during the experiment, and finally,
Fig. 12.8 depicts the robot–target relative position.

Experiment 12.4.1.2 In this experiment, the object moves along a straight-line
path with a fixed linear velocity. Hence, the mobile platform has to track the object
while maintaining a constant robot–object relative position. Similar to previous
experiment, the results are shown in Figs. 12.9, 12.10, 12.11, and 12.12. Figure 12.9
illustrates control errors, in terms of image features, Fig. 12.10 represents the velocity
commands sent to the mobile robot, Fig. 12.11 shows the robot trajectory during the
experiment, and finally, Fig. 12.12 depicts the robot–target relative position.

Experiment 12.4.1.3 In this final test, the object moves with nonconstant linear and
angular velocities. Figure 12.13 illustrates control errors, in terms of image features,
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Fig. 12.5 Time evolution of the image features error
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Fig. 12.6 Time evolution of the control commands

Fig. 12.14 represents the velocity commands sent to the mobile robot, Fig. 12.15
shows the robot trajectory during the experiment, and finally, Fig. 12.16 depicts the
robot–target relative position.

12.4.2 Mobile Manipulator

In order to implement and evaluate the passivity-based controller in a mobile
manipulator, it is considered as the object to be tracked consisting of two
spheres vertically aligned. Diameter of these spheres is known and denoted as D.
Additionally, the image characteristics are defined as ξ = [u1 v1 v2

]T (Fig. 12.17).
In all experiments, vT is unknown for the control system, and its estimation is

carried out by an α − β filter [43]. In these experiments, controller (12.19) is used in
order to consider two secondary objectives: obstacle avoidance by the mobile base,
and the prevention of singular configuration by controlling the manipulability of the
system.
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Fig. 12.7 Trajectory described by the mobile robot in the workspace

Matrix K
(
ξ̃
)

was defined such that ν
ξ̃
∈ L∞

K
(
ξ̃
)
= diag

⎛

⎝ ki

1+
∣
∣∣ξ̃i
∣
∣∣

⎞

⎠ (12.37)

The arm joints’ angles which maximize the manipulability of the arm are found
through offline simulation. Hence, the desired joint positions are θ1d = 0 rad,
θ2d = 0.6065 rad, and θ3d = 1.2346 rad. For all the experiments the initial robot

configuration is q =
[

0 m 0 m 0 rad 0 rad 0 rad 0 rad
]T

. Finally, gain matrices
and gain constants of the controller are set as Kc = I; k�i = 1; kuobs = 0.5;
kωobs = 0.9; k1 = diag

(
0.7 1 0.1 0.1 0.1

)
; k2 = diag

(
0.2 0.2 0.2 0.2 0.2

)
;

and ki = 0.15.

Experiment 12.4.2.1 In this experiment, the target moves to describe a rectilinear
path for about 20 s and after that it abruptly stops. This experiment intents to
test the control system performance when high errors in the estimation of vT

exist. Initial and desired image feature vectors are ξ(0) = [−150 20 −100
]T and

ξd =
[

0 60 −60
]T, respectively, both of them expressed in pixels. Results of this

experiment are shown in Figs. 12.18, 12.19, 12.20, and 12.21. Behavior of control



364 F. Roberti et al.

0 1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5
R

el
at

iv
e 

di
st

an
ce

 [m
]

0 1 2 3 4 5 6 7 8
-0.1

0

0.1

0.2

0.3

Time [s]

R
el

at
iv

e 
or

ie
nt

at
io

n 
[ra

d]

Fig. 12.8 Relative posture between the mobile robot and the target
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Fig. 12.9 Time evolution of the image features error
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Fig. 12.10 Time evolution of the control commands

Fig. 12.11 Trajectory described by the mobile robot in the workspace
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Fig. 12.12 Relative posture between the mobile robot and the target
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Fig. 12.13 Time evolution of the image feature error



12 Unified Passivity-Based Visual Control for Moving Object Tracking 367

0 5 10 15 20 25 30 35 40 45
-0.2

-0.1

0

0.1

0.2

0.3
Li

ne
ar

 v
el

oc
ity

 c
om

m
an

d 
[m

/s
]

0 5 10 15 20 25 30 35 40 45
-0.2

-0.1

0

0.1

0.2

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 c
om

m
an

d 
[ra

d/
s]

Fig. 12.14 Time evolution of the control commands

error ξ̃(t) is shown in Fig. 12.18. It can be seen that ξ̃(t) is ultimately bounded,
reaching final values of max

(∣∣∣ξ̃i
∣∣∣
)
< 8 pix. Figures 12.19 and 12.20 illustrate the

velocity commands for the mobile platform as well as for the robotic arm; finally, Fig.
12.21 shows the norm of the estimated object velocity. It is important to highlight that
image feature errors remain bounded even when high errors in velocity estimation
exist, such as the estimation errors which can be appreciated when the experiment
begins.

Experiment 12.4.2.2 The complexity of the experiment is now increased. The
object moves to describe a non-rectilinear path, and the mobile platform has to
avoid an unexpected static obstacle. The obstacle does not restrict visual sensing;
therefore, the robotic arm is able to continue performing the object tracking while
the mobile base avoids the obstacle. Initial and desired image feature vectors are
ξ(0) = [−150 20 −115

]T and ξd =
[

0 60 −60
]T, respectively, both of them

expressed in pixels. Experimental results are shown in Figs. 12.22, 12.23, 12.24, and
12.25. Behavior of control error ξ̃(t) is shown in Fig. 12.22. Figures 12.23 and 12.24
illustrate the velocity commands for the mobile platform as well as for the robotic
arm. Figure 12.25 illustrate trajectories described by both the robot and the target in
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Fig. 12.15 Trajectory described by the mobile robot in the workspace
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Fig. 12.16 Relative posture between the mobile robot and the target
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Fig. 12.17 Feature selection for the mobile manipulator

Fig. 12.18 Time evolution of control errors ξ̃(t)

the workspace. Figures 12.22, 12.23, and 12.24 (for 17s < t < 32 s approximately)
show the evolution of involved signals of the control system which make the robot
to avoid the obstacle while following the object. In Fig. 12.25 at position labeled as
3, the obstacle avoidance action can also be observed. It is important to notice that
when the obstacle is surpassed, maximum manipulability configuration is reached
again by the robotic manipulator, fulfilling this specific secondary objective. Figure
12.22 also allows to observe that the image feature errors maintain bounded even
during the obstacle avoidance task and in spite of the estimation errors of vT.

Experiment 12.4.2.3 Numerical simulation is carried out for the system perfor-
mance evaluation when the object describes trajectories in the 3D space. That is,
it also modifies its z-coordinate while performing a movement in the X − Y plane.
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Fig. 12.19 Velocity commands to the mobile platform
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Fig. 12.20 Joint velocity commands to the robotic arm

Simulation considers the robot dynamics and the perfect knowledge of vT. Initial and
desired image feature vectors are ξ(0) = [212 −50 120

]T and ξd =
[

0 50 −50
]T,

respectively, both of them expressed in pixels. Results of this experiment are shown
in Figs. 12.26, 12.27, 12.28, and 12.29. Behavior of control error ξ̃(t) is shown in
Fig. 12.26. As expected for a simulation, control errors asymptotically converge to
zero. Figure 12.27 illustrates trajectories described by both the robot and the target
in the 3D workspace. Finally, Figs. 12.28 and 12.29 illustrate the velocity commands
for the mobile platform as well as for the robotic arm.
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Fig. 12.21 Norm of the estimated object velocity

Fig. 12.22 Time evolution of control errors ξ̃(t)

12.4.3 Robotic Manipulator

For the evaluation of the passivity-based controller in the industrial manipulator,
simulations considering the dynamic and kinematic models of the Bosch SR-800
robot manipulator (Fig. 12.4c) with an eye-in-hand stereo vision system have been
carried out. Additionally, a moving target formed by a single sphere is considered;
therefore, the image feature vector is defined as ξ = [ul ur vl

]T (Fig. 12.30). In all
experiments, vT is unknown for the control system, and its estimation is carried out
by an α − β filter [43].
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Fig. 12.23 Velocity commands to the mobile platform
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Fig. 12.24 Joint velocity commands to the robotic arm

For the experiments, the initial robot configuration is q=
⎡

⎣
0.1396rad

1.117rad
−0.01rad

⎤

⎦

T

.

Matrix K
(
ξ̃
)

is defined such that ν
ξ̃
∈ L∞,

K
(
ξ̃
)
= diag

⎛

⎝ ki

a +
∣∣
∣ξ̃ i

∣∣
∣

⎞

⎠ ; a, ki > 0; with i = 1, 2, 3. (12.38)

And gain matrices and gain constants of the controller are set as Kc = I; a = 100;
k1 = 0.16; k2 = 0.16 and k3 = 0.008.

Experiment 12.4.3.1 The first experiment is performed by considering that the
target is moving, describing a straightline trajectory in the 3D space defined as
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Fig. 12.25 Described trajectories of the mobile manipulator and the target. The positions of both
the target and the mobile manipulator at the same time instants are depicted. Seven different time
instants are shown

P(0) = [2m 0.2m 0.57m
]T

Ṗ =
[
−0.025m

/

s −0.035m
/

s −0.0071m
/

s

] (12.39)

expressed in the coordinate system attached to the robot base. Additionally, the
desired image features are defined as ξd =

[
400 240 160

]T. Figures 12.31, 12.32,
and 12.33 show the results obtained for this experiment. Figure 12.31 shows the time
evolution of the image feature errors, and Fig. 12.32 illustrates the trajectories in the
3D space described by both the robot’s end effector and the moving target. Finally,
Fig. 12.33 shows the evolution of the image features in the image planes of the stereo
vision system.

Experiment 12.4.3.2 In this experiment, a complex scenario is considered. The
target is moving to describe a helical trajectory in the 3D space defined as
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Fig. 12.26 Time evolution of control error ξ̃ (t)

P(0) = [2m 0.1m 0.57m
]T

Ṗ =
[
−0.225× sin (1.5t) 0.025m

/

s 0.225× cos (1.5t)m
/

s −0.007m
/

s

]

(12.40)

expressed in the coordinate system attached to the robot base Additionally, the desired
image features are defined as ξd =

[
400 240 160

]T. Figures 12.34, 12.35, and 12.36
show the results obtained for this experiment. Figure 12.34 shows the time evolution
of the image feature errors, and Fig. 12.35 illustrates the trajectories in the 3D space
described by both the robot’s end effector and the moving target. Finally, Fig. 12.36
shows the evolution of the image features in the image planes of the stereo vision
system.

Experimental and simulation results demonstrate the viability of implementing
the proposed control structure based on the passivity theory, and they also show
its good performance not only for two different classes of mobile robots but also
for robotic manipulators. Experimental data show that the proposed control system
makes the robot capable to achieve and keep the desired posture with respect to a
moving object, reaching high performances, even when the velocity of the moving
object is nonconstant.

An important issue to remark is that, notwithstanding the unknown velocity of
the moving object, the passivity-based control law decreases the image feature errors
to values near to zero. These results confirm the theoretical conclusions about not
only the asymptotic convergence to zero of the control errors but also the robustness
property of the proposed control system against the estimation errors of the object’s
velocity.
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Fig. 12.27 Described trajectories of the mobile manipulator and the target. The position of both
the target and the mobile manipulator at the same time instants are depicted. Five different time
instants are shown
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Fig. 12.28 Velocity commands to the mobile platform
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Fig. 12.29 Joint velocity commands to the robotic arm

12.5 Conclusions

This chapter has addressed the problem of moving target tracking for robots with
on-board vision system by designing an image-based visual controller in the context
of the passivity theory. The entire control system design was based on two cascaded
subsystems. Initially, a control law has been proposed by considering only the
kinematic model of the robotic system, which means that perfect velocity tracking
is considered, proving the asymptotic convergence to zero of the control errors.
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Fig. 12.31 Time evolution of feature errors

Then, it has been considered that dynamic model cannot be disregarded, and
the convergence to zero of the control error has been proved again under some
conditions to be fulfilled by a dynamic compensation controller. The analysis of
the control system was completely performed in the context of the input-output
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Fig. 12.32 Trajectories described by the robot’s end effector and the target in 3D space
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Fig. 12.33 Evolution of image features in the image planes

system theory, specifically by taking advantage of its passivity properties. Finally,
since the velocity of the moving object is usually unknown, estimation errors of
this velocity have been taken into account on a robustness analysis, concluding that
image feature errors are ultimately bounded. Even more, robustness analysis allows
to conclude that the control system has L2-gain after a finite time by considering
the velocity of the target as an external disturbance. Therefore, after a finite time,
the proposed control system will be robust to this external disturbance following
the L2-gain performance criterion. The good performance of the proposed control
system is concluded through both real experimental data and numerical simulations
with three different classes of robots.
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Fig. 12.34 Time evolution of feature errors

Fig. 12.35 Trajectories described by the robot’s end effector and the target in 3D space
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A.1 Appendix 1

A.1.1 Mobile Robot Model

This chapter considers a unicycle-like robot, consisting of two self-driven wheels
located on the same axle and a castor wheel, as Fig. 12.37 shows. Therefore, if the
robot is considered as a concentrated mass placed in the point C at the middle of the
wheel’s axle, the kinematic model that represents the pose of the robot in the plane
are

ẋ = u cosφ
ẏ = u sinφ
φ̇ = ω

(12.41)

where (x, y) represents the position of the robot, φ represents the robot’s orientation,
u is the linear velocity of the robot, and ω is the angular velocity of the robot.

This type of robots has a non-holonomic constraint given by
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Fig. 12.38 Image features

ẏ cosφ − ẋ sinφ = 0 (12.42)

This restriction states that the robot is not able to move laterally but it is able only
to navigate in the perpendicular direction to the wheels’ axle.

A.1.2 Feature Selection

Without loss of generality for the control laws proposed in this chapter, a cylindrical
object is selected, defining the vector of image features as ξ = [

ξ1 ξ2
]T =

[
xm dm

]T, where xm is the projection of the cylinder middle point x-coordinate
on the image plane; and dm represents the projection of the actual width D of
the cylinder on the image plane [25]. This feature definition is depicted in Fig.
12.38. According to the camera projection model (12.4), the image features are
straightforwardly obtained as

xm = f xTmc

zTmc
; dm = f D

zTmc
(12.43)

Now, the problem consists of obtaining the vision system model. This model has
to describe the time variation of the image characteristics ξ̇ as a function of both the
robot motion

[
u ω

]T and the target velocity vT. For this purpose, the pose of the
target on the Xmc − Zmc plane with respect to the vision system can be written as
a function of the distance d and the angle ϕ, defined as depicted in Fig. 12.39, as
follows:
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Fig. 12.39 Relative posture
between the target and the
robot

xTmc = d sinϕ
zTmc = d cosϕ

(12.44)

Replacing (12.44) with (12.43), the vector of image characteristics is expressed
as a function of the relative pose between the target and the camera

ξ =
[
f tanϕ f D

d cosϕ

]T
(12.45)

and the time derivative of (12.45) is

ξ̇ = ∂ (ξ1, ξ2)
∂ (ϕ, d)

[
ϕ̇ ḋ

]T = J1
[
ϕ̇ ḋ

]T (12.46)

with

J1 =
[

f sec2ϕ 0
fD
d

sec (ϕ) tan (ϕ) −fD
d2 sec (ϕ)

]

(12.47)

The variation in relative position between the robot and the target is due to both
the robot motion and the target motion:

[
ϕ̇ ḋ

]T = [ ϕ̇ ḋ ]TR +
[
ϕ̇ ḋ

]T
T
. Now, from

the kinematic model of the mobile robot in polar coordinates (see Fig. 12.39) and
first considering a static object, the time variation of the relative posture between the
target and the robot (time variation of d and ϕ) is obtained as a function of the linear
and angular velocities of the robot μ = [u ω ]T as follows:

[
ϕ̇

ḋ

]

R

=
[ sin(ϕ)

d
1

− cos (ϕ) 0

] [
u

ω

]
= J2μ (12.48)
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Now consider a static position for the robot, that is, constant values for x, y, φ;
obtaining the time derivative of (12.44), the target velocity vT =

[
ẋTmc żTmc

]T =
A
[
ϕ̇ ḋ

]T
T

is expressed as

vT =
[
d cos (ϕ) sin (ϕ)
− d sin (ϕ) cos (ϕ)

] [
ϕ̇

ḋ

]

T

(12.49)

Then, as A is invertible, the following expression can be obtained
[
ϕ̇

ḋ

]

T

=
[ 1
d

cos (ϕ) − 1
d

sin (ϕ)
sin (ϕ) cos (ϕ)

]
vT

[
ϕ̇

ḋ

]

T

= J0vT

(12.50)

Finally, by introducing the motions of both the robot (12.48) and the target (12.50)
into (12.46), the model of the vision system is obtained

ξ̇ = J1 (J2μ+ J0vt) (12.51)

Defining

J = J1J2

JT = J1J0
(12.52)

a compact form for the vision system model is obtained

ξ̇ = Jμ+ JTvt (12.53)

where

J =
⎡

⎣
xmdm
fD

f 2+x2
m

f
d2

m
fD

xmdm
f

⎤

⎦ (12.54)

JT =
[
dm
D
− xmdm

fD

0 − d2
m
fD

]

(12.55)
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B.1 Appendix 2

Formal definitions associated with passivity of operators relating functional spaces,
used in this work, follow [44].

Definition 1 Lp signal spaces.
For all p ∈ [1,∞), Lp signal spaces are defined as

Lp =
{
f : R+ → R/

∫ ∞

0
|f (t)|pdt <∞

}
.

Lp are the Banach spaces with respect to the norm

‖f ‖p =
(∫ ∞

0
|f (t)|pdt

) 1
p

.

Definition 2 L∞ signal spaces.
L∞ signal spaces are defined as

L∞ =
{

f : R+ → R/ sup
t∈R+

|f (t)| <∞
}

.

L∞ are the Banach spaces with respect to the norm

‖f ‖∞ = sup
t∈R+

|f (t)| .

Definition 3 Truncated function.
Let f : R+ → R. Then, for each T ∈ R+, the function fT : R+ → R is defined by

fT(t) =
{
f (t) 0 ≤ t < T
0 t ≥ T

Definition 4 Extended Lp signal spaces.
Extended Lp spaces are defined as

Lpe =
{
f/fT ∈ Lp ∀T <∞} .

Definition 5 Given g, h ∈ L2e, the inner product and the norm ‖•‖2e in the set L2e
are defined as

〈g, h〉T =
∫ T

0g(t)h(t) dt ∀T ∈ [0,∞)
‖g‖2,T = 〈g, g〉

1
2
T =

(∫ T
0g(t)g(t) dt

) 1
2
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Definition 6 Let G : L2e → L2e be an input-output mapping. Then, G is passive if
there exists some constant β such that

〈Gx, x〉T ≥ β ∀x ∈ L2e ∀T ∈ [0,∞)

Definition 7 Let G : L2e → L2e be an input-output mapping. Then, G is strictly
input passive if there exists some constants β ∈ R and δ > 0 such that

〈Gx, x〉T ≥ β + δ ‖x‖2
2,T ∀x ∈ L2e

Definition 8 Let G : L2e → L2e be an input-output mapping. Then, G is strictly
output passive if there exists some constants β ∈ R and δ > 0such that

〈Gx, x〉T ≥ β + δ ‖Gx‖2
2,T ∀x ∈ L2e
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UABC Universidad Autonoma de Baja California
UAV Unmanned Aerial Vehicle

13.1 Introduction

Nowadays, the use of swarm intelligence systems can be found in research papers of
civil-related tasks, such as autonomous cars, UAVs, etc. Driven by scientific research,
swarm intelligence systems are prevalent and specialized for multipurpose tasks that
require a group of robots to cover different types of unknown environments (cluttered
or rugged terrains, indoor premises, etc.). In articles such robotic groups are referred
to as swarm robotics [1–3].

Swarm robotics is a promising technology that can be deeply involved in daily
human life. As an example, smart autonomous vehicles can be found by the use of
Google [4], Tesla, Uber, etc. Right now they are not so affordable, however in future
they will be a huge part of social life from smart cities and campuses with autonomous
personal mobility vehicles [5] to simple use in smart buildings as janitors.

In these matters exist two principle tasks—navigation and communication. First
is used for obstacle avoidance and moving to the target location, and second is to give
the robot a tool to “talk.” Communication helps a swarm to achieve more complete
and structured information about the surroundings and improve their navigation as
individuals.

Current chapter will consider a solution for such problem and reviewed the
influence of data exchange on the path planning in terms of unknown surroundings.

13.2 Swarm Robotics

Development of distributed artificial intelligence [6] (republished [7]) is a subject
of many complex researches related to the multi-agent systems [8]. The behavior
models used in these systems take their origin in adoption of social animal group
activities. In bacteria colonies, fish schooling, animal herding, ants, etc. (Fig. 13.1)
individuals have primitive abilities, but while in-group they become a complex
organization with improved surrounding interactions, signaling communication, and
data transmission [9]. Such natural swarms are based on simple set of rules used
by each individual. As the result with common efforts, the homogeneous groups
can complete complex tasks. Transferring of this behavior created the principles of
swarm intelligence [10, 11].

13.2.1 Nature Swarm Adaption

Primates usually have complex collaboration inside the group, they can have
different types of social interactions [12], recognize their relatives [13] and some of
the species can use some of the human language aspects.
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(a) (b)

(c) (d)

Fig. 13.1 Natural swarms. (a) Fish schooling. (b) Ant colonies. (c) Bird crowds. (d) Human beings

Bacteria and their colonies are usually functioning as biofilms. They have an ability
to cell communication [14] and use benefits of task distribution, collective defense,
etc. The bacterial colony has higher resistance to antibacterial agents than individuals
of the same type of bacteria [15].

Bird Crowds during the migration can locate their destination point according to
inner sensing, landmarks, etc. [16].

Ant and Bee Colonies Communication in such type of colonies is based mostly on
pheromones [17]. Ants are able to path planning by leaving a pheromone trail, where
in case of optimal route, more and more ants are using it [18]. According to suggestion
in [19], ants implement role distribution based on their previous performance during
foraging.

Locusts while increasing amount of insects in-group convert their type on chaotic
movement to align with ability to transfer rapidly directional information [20].

Fish Schools Each fish by analyzing the neighbors’ movement can avoid collision
while swimming in phalanxes [21]. Fish schools are better in foraging [22] and
predator evasion [23].
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Human Beings Dyer et al. in [24] have shown that in the group of humans can occur
leadership without any verbal communication or other obvious types of signals.
Such behaviorism shows the hierarchical structure with role distribution. In case
of growing down of the population, collaboration within the group becomes more
complex and each role becomes more important. A swarm of individuals in this case
can solve complex tasks easily while individual cannot.

According to the brief review of natural swarms can be found a list of tasks that
robotic swarm can be capable for. As an example: Aggregation, Flocking, Foraging,
Object clustering and sorting, Navigation, Path formation, etc. Next section will
describe them more detailed.

13.2.2 Tasks of Swarm Robotics

Swarm robotics has a variety of tasks that can be done. The next list presents some
examples according to their recursivity in descending order.

Navigation is a task where robot needs to find location of an object using his sensing
capabilities and the help of other robots. In this category, studies consider where
object to be reached by individual robot but not a group.

Foraging is another scenario studied in swarm robotics where group needs to find
food source. It takes origin in the behavior of ants in colonies. Evolving robots [25]
is a perfect example of this behavior implementation.

Multi-Foraging is more complex type of foraging task. Robotic group during the
task need to find and collect different types of objects and after bring them to a
specific place for this objects type. These task has an application in warehouses,
rescue missions, hazardous terrain cleanups, etc.

Odor Source Localization is aimed to solve the problem of odor source search. In
[26], was described a project where robots are using binary odor sensor.

Collective Decision-Making is a study of many researches like [27] (authors
proposed decision-making based on majority rule model), [28] (charges of preferred
labors), [29] (site selection). Collective decision-making applied to swarm robotics
during the flocking, path formation, clustering, etc.

Object Clustering and Sorting are similar to foraging task, but in this case the
goal is to find objects in environment and to place objects near to each other.

Object Assembly is a task related to construction problems. The task has a
relationship with clustering, but in this case it is focused on relationship and physical
connections between objects (robots have to create an object of predefined shape).
In [30] describes an example of wall constructing by robots, in [31] robots were
trying to figure out if the block they use can be attached or not with help of local
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communication, in [32] were modeled a process of building using blocks with
attached LEDs.

Collaborative Manipulation refers to a task where robotic swarms have to interact
with objects. For achieving this task and avoiding centralized coordination (control),
robots can use simple behavior rules. Ant colonies can be used as an example.

Self-Assembly is a task of local interaction within the group, where robots need
to establish physical connection to each other. The examples can be found in [33]
(swarm-bots project), authors of [34] used s-bots with ability to decide who will use
its grip to attach to other s-bot. Self-assembly also takes its place during the hole
avoidance [35] and navigation in hazardous terrains [36].

Human-Swarm Interaction task is devoted to increase performance of robotic
swarms. The task can be described in the next way: if human operation have an
information that can help robotic swarm to achieve their goal he can share it, but
it cannot be interpreted as a direct controlling. In [37] authors proposed method
where by starting direct control over one robot can have an influence on a group by
changing robot behavior. In [38] were used a similar method but with leader system
implementation. Kolling et al. [39] proposed methods of robots behavior switch and
in second method involved manipulation with environment to force robot to change
its behavior.

Deployment is a scenario where group of robots must autonomously enter to the
environment. Task is useful for the unknown terrain mapping.

Path Formation is a process that refers to a collective movement formation from
point to point while minimizing the time to reach the destination. This task usually
occurs during the foraging and chain formations.

Coordinated Motion is used during the modular robotic structure to achieve
coordinated movement to common direction.

Flocking is a task of swarm to “stay together.” It is based on local interaction within
the group. Robots’ sensing systems (vision, laser range finding, sonar, infrared
or tactile sensors) and communication abilities use to keep group as a compact
formation. Such behaviorism adopted from birds, fish schools, etc.

Morphogenesis exists as an extension of self-assembly. In case of morphogenesis,
robots are tasked to create a specific shape. For example [40], s-bots attached to
structure used LEDs for communication to tell how other should be attached.

Aggregation is a task of grouping the individual robots in a dedicated place. The
behavior model is based according to animal species observation.

Task Allocation is a process of labor division within the group. This ability helps
to increase efficiency of work done by a swarm.

Group Size Estimation is a “sub-task” for different applications of swarm robotic,
used to coordinate movement, self-assembly, morphogenesis, etc. Authors in [41]



394 M. Ivanov et al.

describe method using the propagation of information throw the group in case of
impossible direct communication within the group.

More detailed review of the mentioned tasks with their solutions can be found
in [42].

13.2.3 Swarm Robotics Projects

During the last decade, the growth of small and mobile computing devices
capabilities increased the interest in swarm robotics research topic. Yet still many
of the swarm robotics projects are on the development or even modeling stage [43].
Earlier in the 1980s existed other attempts to create robotic groups like SWARMS
[44] and ACTRESS [45]. This section will review some of the existing project and
their design.

Pheromone Robotics Project (Fig. 13.2a) was initiated in 2000 [46]. The idea of
the project is to use a large number of small robots for different tasks by achieving a
swarm behaviorism [47]. In robots was implemented the pheromone idea, by using
beacons and sensors mounted on robots.

iRobot Swarm Project (Fig. 13.2b) was made by MIT. Swarm includes more than
100 cooperating robots [48, 49].The main idea is to create the solution for graceful
degradation of the swarm.

E-Puck Education Robots is a group of small robots (Fig. 13.2c) that were made
for educational purpose like programming, humane-machine interaction, signal and
image processing. They are cheap, have a simple structure, and have possibilities to
use extensions [50].

Kobot Project (Fig. 13.2d) consists of mobile robotic platforms equipped with IR
range finder system for obstacle detection [51].

Kilobot Project (Fig. 13.2e) is aimed to create the collective behaviorism with
hundreds or more individuals in swarm [52]. Robots are easy to assemble and have
capabilities for some simple operations like charging, moving, updating programs,
etc.

I-Swarm (Fig. 13.2f) came from University of Karlsruhe in Germany [53]. Swarm
consists of micro-robots with the abilities of “collective thinking” and to recognize
its kin.

Multi Robot Systems (Fig. 13.2g) [54] initially were developed in University of
Alberta in Edmonton, USA, studies robots collective behavior. This institution has
several robots systems (Multi Robot Systems (MRS)) in development. The project
is devoted to problems of collective decision-making.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 13.2 Swarm robotics projects. (a) Pheromone robot. (b) iRobot swarm project. (c) E-puck
education robot. (d) Kobot project. (e) Kilobot project. (f) I-Swarm project. (g) Multi robot systems.
(h) Project SwarmBot. (i) Project Centibots. (j) Project Swarmanoid. (k) Evolving robots. (l) Robot
scout
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Project SwarmBot (Fig. 13.2h) was made by iRobot company [55]. Swarm uses
small robots that can work together to carry out certain actions. It is expected that the
SwarmBot robots can join a group of up to 10,000 and perform tasks such as search
for mines, research of unknown territory (including on other planets), detection of
harmful substances, etc.

Project Centibots (Fig. 13.2i) uses small robots that can work in-group and
autonomously [56], they are not using a centralized management system. Their
goal is to map the enclosed space and perform some tasks. Robots are using the roles
distribution system based on interaction and depending on the circumstances.

Project Swarmanoid (Fig. 13.2j) studies the behavior of inhomogeneous groups
of robots [57]. The considered task was in which a team of wheeled robots, a flying
robotic spy, and the handling robot jointly found the object (book) and manipulated
it.

Evolving Robots (Fig. 13.2k) were created in Swiss Laboratory of Intelligent
Systems (Polytechnic School, Lausanne) during the “evolution” of robots studies
[25]. Robots were evolving gene that determines behavior. A group of ten robots
competed for food. The challenge was to find robots “food source,” which is a
luminous ring on one end of the arena. Robots can “communicate” with each other
by light signals. The evolution of robots in experiments sometimes leads that even
the robots were taught to deceive opponents, letting the “wrong” light, being near
the trough.

Robots Scouts (Fig. 13.2l) were designed for intelligence [58]. Project was
developed in the distribution centers of robotics, University of Minnesota, USA,
the robot is a very high quality from a technical point of view device. The robot can
work in a team. Its design allows you to “shoot” using a device resembling automatic
grenade launcher. The robot is designed to help the police and rescue services in
carrying out dangerous operations. There is a central control unit, which receives
information obtained by robots, and which controls the robot, the basic mode of
operation is to control the robot operator.

According to the mentioned projects, [9] and [59] the next advantages of swarm
robotics can be described:

• Parallel processing—swarm can perform various tasks simultaneously (each of
swarm can perform its scheduled task), this would save time for achieving a
common goal.

• Scalable group—including a new individual to a swarm can be performed without
any modification of the software or hardware.

• Tasks enlargements—swarm robotics systems can solve the tasks that are
impossible for individuals.

• Fault tolerance (graceful degradation)—swarm can continue performing its tasks
even what the part of the swarm unable to work. Useful during the tasks in a
hazardous environment.



13 Data Exchange and Task of Navigation for Robotic Group 397

• Distributed sensing and action—distributed on the terrain swarm robotics system
can be used as a sensing network for data accumulation and action performing
system.

However, can be allocated a number of specific problems that need to be resolved.
Among them are:

• Unpredictable environmental dynamics;
• Imperfect and inconsistent knowledge of the environment;
• Variety of options to achieve the goal, the team structures, roles, etc.;
• A complex behavior pattern of teamwork;
• Problems related to the territorial distribution of swarm and its localization;
• Communication problems or data exchange (network architecture, protocols, etc.);
• Data loss and storage redundancy.

Next sections will cover possible solutions for each of the problem and review
their implementation according to the machine vision selection, methods of data
transferring (communication), and navigation.

13.3 Robotics Vision Systems

Each mathematical/computing unit in the conventional algorithm of autonomous
robot (Fig. 13.3) during its work is basing on data obtained from its sensors.

For the task of navigation are generally used sonars as a basic solution, laser
rangefinders as more accurate alternative for sonars, LIDARs (can return the detailed
surroundings, but depends on its form factor), camera-based robots [60, 61] and
drones [62], or more expensive equipment like ToF (Time-of-Flight) cameras [63].
For some tasks, it is possible to use only inertial navigation system [64].

Plenty of the researches and solutions in the field of obstacle detection and
navigation, as mentioned before, are based on cameras and laser systems. As an
advances will be revived some works.

In [65] authors presenting a lightweight, inexpensive insect-based stereo-vision
system. They used two cameras placed very similar to honey bee eyes and received

Fig. 13.3 Autonomous
robotic system
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a field-of-view around 280° by 150°. In [66] authors are using camera vision for
real-time obstacle avoidance with biped robots. Article [67] describes the obstacle
avoidance for the pocket drone based on data from stereo camera. In [68] solution uses
Arduino with pixy camera by wheeled robot for the task line tracking and obstacle
avoidance. Solution mentioned in [69] can be applied for autonomous cars and shows
a method of vehicle detection system design based on stereo vision sensors.

Article [70] describes a benefits of use of long-wavelength infrared stereo vision
and 3D-LIDAR combination in case of fire environments. Another publication
[71] presenting a MEMS-based LIDAR systems for use in autonomous vehicle.
In [72] were proposed method of real-time LIDAR odometry and mapping and its
application on drones and cars.

Also such systems can be used for similar tasks in other areas. Authors of [73]
used industrial robotic hand with mounted 3D camera-based vision system for
object scanning, similar to them in [74] are using industrial robots with camera
to track motions of the second robot, in [75] position of the robot is controlled
by tracking marker with LEDs and in [76] were proposed human posture tracking
and classification using cameras stereo vision and 3D model matching. Also can be
mentioned [77] stereo vision-based automation for a bin-picking solution

As can be seen, laser-based systems are more suitable for automobile navigation
purpose. It is explained by their surrounding representation principles that help to
avoid long post processing like in cameras.

Next section will provide a detailed description of the real-time vision system
used for the current solution.

13.3.1 Technical Vision System

13.3.1.1 Historical Background

All the solutions are based on the novel author’s technical vision system (TVS) that
uses a dynamic triangulation principle [78]. In [79] proposed method for improving
resolution of 3D TVS and its implementation for surface recognition. This approach
to obstacle recognition was implemented for the single robot navigation in work
[80]. The concepts of data transferring within robotic group firstly presented in [81]
Further advances of author’s 3D TVS found its use and development in works [82]
and [83]. Here system received its internal changings and appliance as a machine
vision system for UAV. Despite all of researches and results presented in these
articles still exist a common problem: all of them are dedicated to one problem at
a time. That is why current paper is aimed to present a joint solution taking into
consideration problems of machine vision, path planning, and data transferring using
the mentioned earlier 3D TVS.
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13.3.1.2 Structure and Working Principles

According to current task, robotic group move in low light conditions with a large
number of obstacles, the aforementioned vision systems may not always give the
correct results during post processing. Therefore, when working in such difficult
conditions, authors TVS [78] can satisfy with its accuracy and data representation.
3D TVS (Fig. 13.4a) is able to work in complete darkness and can obtain the real 3D
coordinates of any point highlighted by laser ray on real, not imaginable, surfaces.
The theory is based on a dynamic triangulation method. The main components of
the TVS are the positioning laser (PL) and the scanning aperture (SA) (Fig. 13.4b).

System works in the following way: the laser emits its beam toward a fixed 45◦
mirror than makes orthogonal redirection of the beam into a rotating 45◦ mirror
driven by a stepper motor. For the guaranteed positioning of the laser direction, PL
is driven by a stepper motor. SA receive the reflected laser rays, this indicates that
system had detected an obstacle. However, stepper motor has one weak point: on the
long distances of scanning dead-zones between two adjacent points of scanning are
provoked. Solution of the problem can be found in [84] and [85].

Dynamic triangulation [86, 87] consists of detection of laser instantly highlighted
point coordinates based on two detected angles Bij and Cij and fixed distance
between projector and receptor. Here ij means the number of horizontal and vertical
scanning steps consequently. In such triangle (Fig. 13.4b), if three parameters are
known, it makes possible to calculate all others. Angle Bij is calculated as simple
ratio of two counters codes: number of clock pulses between two home pulses and
in interval “home pulse – spot pulse” (Fig. 13.4c) (Eq. (13.1)).

Bij = 2πNA
N2π

(13.1)

where NA is the number of reference pulses when laser rays are detected by the stop
sensor and N2π is the number of reference pulses when the 45° mirror completes a
360° turn detected by the zero sensor. To calculate x, y, and z coordinates, the next
equations are used (Eqs. (13.2)–(13.5)):

Fig. 13.4 (a) Technical vision system. (b) Dynamic triangulation method. (c) Principle of codes
N forming in laser scanning TVS
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xij = a
sinBij · sinCij · cos

j∑

j=1
βj

sin[180◦ − (Bij + Cij )] (13.2)

yij = a
(

1

2
− sinBij · sinCij

sin[180◦ − (Bij + Cij )]
)

at Bij ≤ 90◦ (13.3)

yij = −a
(

1

2
+ sinBij · sinCij

sin[180◦ − (Bij + Cij )]
)

at Bij ≥ 90◦ (13.4)

zij = a
sinBij · sinCij · cos

j∑

j=1
βj

sin[180◦ − (Bij + Cij )] (13.5)

13.3.1.3 Data Reduction

According to the specifics of proposed TVS, it returns the scanned surface as a point
cloud (Fig. 13.5). On short distances, it gives high detailed object, while on a distance
it loses its resolution depending to the opening angle of each step of scanning.

In the memory of a robot, each point obtained by TVS is represented with three
variables—x, y, z of Cartesian coordinate system. Each of them stored using double
data type that is equal to 64 bit per number, so to store one point of environment
192 bit of memory is used. During the movement and mapping of environment, the
data that need to be processed can reach gigabytes. For the navigation, robots need
a minimum amount of points to describe an object. That is why it is necessary to
implement the method of low density scanning for dead reckoning and to use high
density scanning on demand.

Fig. 13.5 Examples of
scanned object; Scan of
“Mayan pyramid,” on sides
the point cloud density is less
than a part of a cloud with
stairs has. To store this object
75.14 kB of memory is used
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Fig. 13.6 Field of view fragmentation

In previous work [88] were described the method of real-time data reduction
during robots’ movement. According to the allocated accuracy zones (Fig. 13.6) were
determined an opening angle [89] equivalent to store points on detected obstacles.

As a starting point will be used an arc of one meter according to possible 160° FOV
of TVS. Using the research data and type of robots described in work [80], the cloud
point density (ρ) of image is 11 points per meter.

ρ = λ

βp
, (13.6)

where λ—FOV angle, β—opening angle equivalent (14.5636° for initial calcula-
tions), p—length of an arc (1 m for initial calculations). In general the length of an
arc can be calculated as follows:

p = πrλ
180

, (13.7)

where r is radius of an arc (striking distance). To prevent the changes in selected
resolution, the opening angle will be calculated using Eq. (13.8):

β = 180

ρπr
, (13.8)

Average opening angle for each of the striking distance zone:
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(a)

(b)

Fig. 13.7 Opening angle equivalents. (a) Dependencies of opening angle, striking distance and
point cloud density. (b) Averaged values of point cloud density

βi =

n∑

j=0
βij

n
, (13.9)

where βi is an opening angle for each accuracy zone, βij is an opening angle for
each striking distance in zone i.

According to the calculation, the average angles based on the initial point cloud
density (11 points/meter) are 10.059° for “Low accuracy zone,” 3.011° for “Average
accuracy zone,” and 1.34° for “High accuracy zone.” The average angle for the “Low
accuracy zone” range will give a small resolution equal to 5–6 points per meter. So
the low edge value of an opening angle for “Low accuracy zone” was taken. The set
of angles changed to 5.209°, 3.011°, 1.34° (Fig. 13.7).

13.4 Path Planning Methods

Motion planning is one of the key tasks in robotics. In mathematics, there
are well-developed algorithms for finding the way in an unknown or partially
known environment (optimal and heuristic algorithms). For this purpose, discrete
mathematics (graph theory) and linear programming are usually used. Tasks of the
shortest path search in the graph are known and studied (for example, Dijkstra’s,
Floyd-Warshell’s, Prim’s, Kruskal’s, algorithms, etc. [90] and [55]).

Exists many types of researches in the frame of path-planning. For example [91]
where authors represented an approach that uses motion primitive libraries. In [92],
representing an attempt to implement animal motion for robot behavior, or [93]
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suggested an algorithm of collision free trajectory for robots. The articles cover
some aspects of certain sub-tasks and widely describe special cases of behavior in
a group of robots. However, no one has considered the task from the point of view
of the interconnected global approach. It must include the correlation of robots’
technical vision systems with communication and navigation rules in defined group
of n-agents.

13.4.1 Path Planning Using Technical Vision System

The task of path-planning can be presented the next way:

• Robot is deployed in an unknown environment;
• Its current position marked as a starting point and target location as an end point;
• Robot calculates the heuristic route and starts movement towards the target;
• In case of obstacle detection by vision system, robot updates his navigation map

and recalculates the route;
• processes of obstacle detection and path update continue until the target is reached.

Additionally the obtained path should be approximated to obtain a continuous
and energy saving trajectory (Fig. 13.8).

Fig. 13.8 Path planning
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As was mentioned, each iteration of the heuristic path is calculated according to
the current position of the robot and its surroundings. During the path calculation,
robot will place additional shape points (where the direction of movement is
changed). To avoid the collision, robot should take into consideration safe distance
to an obstacle (Fig. 13.9).

According to the principles of TVS and previous research [88] were decided to
use algorithm A* [94] for the tool of obstacle avoidance in this research. Terrain will
be represented as matrix where each cell will have a size of robot’s half diagonal.
Cells are having two states: reachable and unreachable. Initially, all cells in the matrix
(map) have the reachable state. After detecting an obstacle, the corresponding cell
changes its own state to unreachable. The states of all surrounding cells are also set
as unreachable to create a safe zone and avoid collisions during turns Fig. 13.10a.

Fig. 13.9 Obstacle avoidance

Fig. 13.10 (a) World representation and dead reckoning with two-step post processing. (b) Clear
A*. (c) First step of post processing. (d) Second step of post processing
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A* returns each cell that has to be visited during the movement Fig. 13.10b. To
perform the post processing for receiving continuous trajectories in first step from
the trajectory will be removed all unnecessary nodes keeping nodes where direction
of movement is changed (Fig. 13.10c). On the second step of post processing should
be made path approximation (Fig. 13.10d) for selecting the method of individual
trajectory approximation to improve robot movement smoothness. It describes
coherence between the decisions interrelation of the navigation system actions and
the ability to anticipate and provide feedback to events with sufficient speed.

One of the brief solutions is to achieve approximated trajectory is to use
Bezier curve. Such approach is useful and found its application in various tasks
of path-planning for autonomous vehicles [95] and [96]. Mathematical parametric
representation of a Bezier curve has the form:

P(t) =
n∑

i=0

BiJn,i(t), 0 ≤ t ≤ 1 (13.10)

where t is a parameter, n is the degree of Bernstein’s polynomial basis, i is the
summation index, and Bi represents the i-th vertex of the Bezier polygon.

13.4.2 Secondary Objectives Placement for Surface Mapping

For the task of terrain mapping, it is necessary to locate additional points to visit.
Solution can be adopted from surface mapping using UAV [97] or other autonomous
surface vehicles [98]. These solutions are based on Dubins car principles [99, 100].

According to the Dubins principles, for the case of terrain mapping with single
robot (Fig. 13.11a), territory is covered with pre-calculated trajectory. In place where
the trajectory is changing its state (straight to round and round to straight), secondary

(a) (b) (c)

Fig. 13.11 Secondary objectives placement. (a) Single robot. (b) Group vertical movement.
(c) Group horizontal movement
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points are placed (light gray dots on Fig. 13.11). Terrain mapping using a group of
robots can be separated in two types: vertical movement (Fig. 13.11b) and horizontal
movements (Fig. 13.11c). In both types, territory is sliced into sectors (amount
of sectors depends on amount of robots). Advantages of sectoring the terrain are
described in [88].

These methods, in total, solve the task of motion planning for the independent
robot in-group. It is obvious that data exchange between the robots in group is a
good tool for generalized information obtaining with the aim of more complete
implementation of all mentioned above methods.

13.5 Data Transferring Networks and Local Exchange of
Information for Robotic Group

Communication within the robotic group is one of the main tasks in swarm robotics.
Its implementation helps to expand the possibilities of a swarm by improving task
of flocking, foraging, navigation, etc. Exists two types of communication, it can be
with global or local interaction. During the global communication, received message
contains local information of the sender. In most cases, this information is useless. In
swarm or group robotics is used local communication. This type of communication
takes its origin in nature (herding is a good example, where the local interaction
helps to survive the predators attacks by signaling to their kin with movement or
sounds).

In its turn, local communication can be direct and indirect. Direct communication
is a real-time data transferring within the group. In this case, robot sends message
to the group and they have to process it immediately. For the direct communication
can be used WiFi connection, Bluetooth, or more primitive types of communications
like light and sound. Indirect communications use different types of medium that can
be used for late access information storing (mail services). For example, in swarm
robotics it is implemented during the task of SLAM by living NFC card on detected
landmark (implementation of pheromones used by ants).

Chapter considers two models of data transferring: information exchange with
centralized management (Fig. 13.12a) and strategies of centralized hierarchical
control (Fig. 13.12b).

In next sections will be presented solutions for data transferring task in swarm
robotics. Solutions are inspired by Spanning Tree Protocol (STP) [101] and Shortest
Path Bridging(SPB) [102].

Spanning Tree Protocol is a channel protocol. The main task of STP is to eliminate
loops in the topology of an arbitrary Ethernet network, in which there is one or
more network bridges connected by redundant connections. STP solves this problem
by automatically blocking connections that are currently redundant for the full
connectivity of switches.
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(a) (b)

Fig. 13.12 Models of data transferring. (a) Information exchange with centralized management.
(b) Information exchange using strategies of centralized hierarchical control

Shortest Path Bridging is a standardized IEEE as 802.1aq is a network technology
that simplifies the building and networks configuration while taking advantage of
multipath routing.

13.5.1 Spanning Tree Forming for Swarm Robotics

Consider a general case of swarm can be proposed a method of network forming
based on creating a spanning tree. Algorithm consists of seven steps and includes the
use of classical approaches. Steps of dynamic network forming for robotic swarm
are next:

• Build a fully connected network graph;
• Use the Kruskal algorithm to build the minimum spanning tree;
• In the obtained tree, use the Floyd–Warshall algorithm to receive the list of all

possible routes in the network;
• Calculate the average route length for each node;
• Select the node with the lowest average length and configure it as a high level

node;
• Nodes with “one side” connection configured as low level nodes;
• Other nodes configured as mid-level nodes.

Applying this method, it is possible to obtain both of the networks types
automatically (depends on the robots placements, their amount, and signal of the
network). In particular cases (Fig. 13.13) in calculations is considered open space
without obstacles, so the distances between nodes were used. In scenarios, that are
more complicated, distances should be replaced with the wireless network signal
levels.
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Fig. 13.13 Calculated networks. (a) 5 nodes network. (b) 10 nodes network. (c) 20 nodes network.
(d) 30 nodes network. (e) 40 nodes network. (e) 50 nodes network

This method is useful for large swarm, but in case of a small group can be used
methods that include more behavior control and solve several tasks simultaneously.

13.5.2 Leader Based Communication

One of the models that describe the locally interacting robots organization is static
swarm [91]. It is characterized by the absence of a given control center and is some
kind of a fixed network—a set of agents. The basic properties of static swarm are
activity, local interactions, and functional heterogeneity. That is why will be reviewed
the method of role distribution based on the task of selecting a leader. Under the
term “Leader,” we will understand the central node of data exchange (robot for a
short period of time will become server to store and merge data). For choosing a
leader, robots will be using a voting process. Each robot can be described as a set of
parameters:
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R = (I, L,E,N) (13.11)

where I—identifier of robot, L—identifier of voted leader, E—evaluation of the
leaderL (amount of voices that have to be given for a leader),N—list of connections
available for robot (its neighbors).

The voting process on the initial step goes the following way: each robot
evaluates his neighbors for the role of leader according to the set of previously
defined characteristics; each of these characteristics has their own weight; using the
membership function, robot selects the neighbor with the highest value. For the vote,
value will be implemented a linguistic variable e = “evaluation of robot.” Its value
is based on the scale of M = “very low,” “low,” “medium,” “high,” “very high” or it
can have a digit equivalent M = 1, 2, 3, 4, 5. After voting process, many alternatives
for E will be generated, so it will have next form:

E = {e1, e2, . . . , en} (13.12)

where ei—alternative “candidate” at and n is amount of visible neighbors. For robot
evaluation are offered following characteristics: (1) surroundings: c1 = “the number
of neighbors evaluable for candidate”; (2) territorial: c2 = “the distances to the
neighbors or levels of signals”; (3) status: c3 = “the physical state of the robot.” Each
of these characteristics is estimated by a voting robot for each of its neighbors:

Ci = {ci1, ci2, . . . , cik} (13.13)

where cj—characteristic value of i-th “candidate” at j = 1 . . . k. Each of the
characteristics has its weight:

W = {w1, w2, . . . , wk} (13.14)

where—the j -th characteristics weighting
∑
wi = 1, evaluation of the i-th

neighbors uses the following formula:

ei =
k∑

j=1

wjcij (13.15)

To determine the value of linguistic variable, we use three types of membership
functions (Eqs. (13.16)–(13.18)), where a general view represented on Fig. 13.14.

fvl(ei) =

⎧
⎪⎨

⎪⎩

1, x < vle
1
2 + 1

2 cos
(
ei−vle
vl−vle

)
, vle ≤ x ≤ vl

0, x > vl

⎫
⎪⎬

⎪⎭
(13.16)
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Fig. 13.14 Membership functions

where vle—the threshold to which the membership function is equal “1”, vl—a
threshold, after which the membership function is equal “0”.

fvh(ei) =

⎧
⎪⎨

⎪⎩

1, ei > vhs
1
2 + 1

2 cos
(
ei−vhs
vhs−vhπ

)
, vh ≤ ei ≤ vhs

0, ei < vh

⎫
⎪⎬

⎪⎭
(13.17)

where similar to Eq. (13.16) vhs—threshold for “1” and vh—for “0”.

fgb(ei) = 1

1+ ∣∣ ei−c
a

∣
∣2b

(13.18)

where c—middle part of a membership function, a—value at which fgb(c+ a) = 1
and fgb(c − a) = 1, b—the value of function smooth regulation.

13.5.3 Feedback Implementation

In the case where some of the information need to be transferred between all robots
within the group based on that certain of them (robots) have to be notified that
transfer is complete. This task is the dissemination of information feedback (PIF—
propagation of information with feedback) is formulated as follows: a subset is
formed by robots of those which know message M (the same for all robots) which
should be spread, that is, all robots must take M. Certain processes must be notified
of the transfer is complete, a special event notification must be done, and it can only
be done when all processes have already received the M. Alert in PIF-algorithm can
be viewed as a return (OK) event.
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Any wave algorithm can be used as PIF-algorithm. For example, let A be a wave
algorithm. To use A as a PIF-algorithm, we take the robots, initially knowing the M
is an initiators of A. Information M is added to each message A. This is possible
because, by construction, starters of A know M initially, and the followers do not
send messages until they receive at least one message, that is, until they get M. When
return (OK) events occur, each process knows the M, and return event (OK) can be
considered as the required notify event in PIF-algorithm.

Two models of data transferring were reviewed previously: information exchange
with centralized management (Fig. 13.12a) and strategies of centralized hierarchical
control (Fig. 13.12b). When using the strategy of centralized management of a robotic
group R, every robot ri (i = 1, 2, . . . , N) of group transmits data about its state and
information obtained about the environment in the central control device (robot
chosen by the estimation process).

Hierarchical strategy of centralized management network between robots can
be represented with layers. Layers can be separated into three types: top layer is a
single central control device which merges data and initiates backwards propagation;
middle layer is a group of control devices for existing to send their data and data from
lower levels (layers) to top layer; low layer can communicate only with the elements
of middle layer, sending the data and receiving the data after merging.

Leader-changing method can be simplified for the layers distribution inside the
group. To define network roles will be implementing linguistic variable p = “pattern
of layer.” It uses three levels scale of M = “lower layer,” “middle layer,” “top layer”.
Correspondingly, many alternatives of P can be represented in the following form:

To determine the value of linguistic variable (Fig. 13.15), we use three types
of membership functions [103], where the extreme values (“Low level” and “Top
level”) will determine Z- shaped (31) and the S-shaped (32) functions, the degree of
belonging to the “Middle level” value is based on trapeze-like membership function
(33) (general formulas are represented).

flow =
⎧
⎨

⎩

1, ei ≤ a
b−ei
b−a , a < x ≤ b
0, x > b

⎫
⎬

⎭
(13.19)

Fig. 13.15 Functions for network layer determination
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ftop =
⎧
⎨

⎩

0, ei ≤ c
ei−a
b−a , c < ei ≤ d
1, x > d

⎫
⎬

⎭
(13.20)

fmid =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, ei ≤ a
ei−a
b−a , a < ei ≤ b
1, b < ei ≤ c
d−ei
d−c , c < ei ≤ d
0, ei > d

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(13.21)

where ei is evaluation of the i-th robot takes the following form

ei =
k∑

j=1

wjcij (13.22)

In terms of fuzzy logic, it can be described using next IF—THEN rules type:

IF robot evaluation IS top level,
THEN network level EQUALS host

IF robot evaluation IS mid level,
THEN network level EQUALS level 1

IF robot evaluation IS low level,
THEN network level EQUALS level 2

where “NET HOST”—robot becomes a host for data transferring (top level), “NET
LVL 1” and “NET LVL 2” for determining the network level for communication
(middle and low levels), and n—fixing statement.

Schematic representation of PIF for the current case is in Fig. 13.16.
Proposed dynamic data exchange network forming method extends the potential

of our novel TVS. It overlaps an ability of single robot navigation with a cloud-like
common knowledge base within the robotic group to improve the efficiency of dead
reckoning.

The proposed methods allow the elimination of topological loops in the data
network in a group of robots. A fully connected graph of a real network with
a high probability leads to endless repetitions of the same messages in a group,
while network bandwidth is almost completely occupied by these useless replays.
In these conditions, formally the network can continue to operate but in practice its
performance becomes so low that may lead to a complete network failure. Therefore,
the proposed methods ensure the full propagation of information within the group
and help to improve the movement coordination of a robotic group by exchanging
information about the missing sectors.



13 Data Exchange and Task of Navigation for Robotic Group 413

Fig. 13.16 Margin data
about environment (sequence
diagram). Data transferring
initiation period is at a state
when one of the robots in
group sends messages to
others to start data
transferring, and occurs
when: (1) robot needs
additional data for further
navigation, or (2) robot has
collected enough of a portion
of information from TVS that
seems to be transferred to
others in group. The voting
process period is used for
evaluation of each robot in
group. Compilation of data
transferring channels happens
at network forming period.
The data exchange period is
used to interchange the
accumulated data according
to the topological structure of
the network. After this comes
the data merge. The last two
periods have floating time
depending on the amount of
data accumulated by each
robot

13.6 Surface Mapping

13.6.1 Simulation Frameworks

Before every complex mechanical system practical implementation, it has to go throw
two stages: theoretical justification and realistic simulation. Create a digital model of
the entire system significantly affects the overall efficiency of the project. Process of
simulation gives an opportunity to reduce the mistakes during the development,
improve the output of the system according to the changes in environmental
conditions, and reduce costs of technical issues. Among other benefits of simulation
are:
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• Reduce the cost of manufacturing robots;
• Resource management and source code diagnostics;
• Simulate different alternatives;
• Before the implementation of the robot, its components can be verified;
• Modeling can be done in stages, for complex projects favor;
• To determine the viability of the system;
• Compatibility with a wide range of programming languages;

However, disadvantages of simulation also can be found. An application can
simulate the robotic behavior model only with predefined rules, it will not mimic
factors that are not taken into account in the development phase. Real world
experience can provide more scenarios than the computational model.

Nowadays, simulation platforms cover a lot of tools and features that can provide
close to real life simulations. Most of them use different C/C++ like algorithmic
languages, LabVIEW, MATLAB, etc. In this section, several used simulation
platforms are summarized.

Player/Stage [104] is a project under which three robotics-related software
platforms are currently being developed. It consists of the Player network robotics
server, the Stage-2D robot simulation environment, and the Gazebo-3D robot
simulation environment. The project was founded in 2000 by Brian Gerkey, Richard
Vaughan, and Nathan Koenig at the University of Southern California in Los Angeles
and is widely used in research and training within robotics.

The UberSim [105] is a simulator designed for quick testing before uploading
program to football robot. UberSim uses the ODE physics engine. Software supports
custom robots and sensors.

USARSim [106] is a simulation of urban search and rescue. It is based on Unreal
Engine 2.0. USARSim can be interfaced with Player and runs on Windows, Linux,
and Mac OS.

Breve [107] is a 3D simulation environment for distributed artificial life systems.
Behavioral models are defined using Python. Like UberSim, Breve uses ODE physics
engine and OpenGL for 3D graphical representation.

V-REP [108] is a useful 3D simulator for educational process, allows modeling of
complex systems, individual sensors, mechanisms, and so on.

Webots [109] is a software product of Swiss company Cyberbotics. It provides
supports of different programming languages like C/C++, Java, Python, URBI, and
MATLAB. Moreover is compatible with third-party software through TCP/IP.

Gazebo [110] can simulate complex systems and a variety of sensor components.
It is helpful in developing robots used in interaction, to lift or grab objects, to push
and activities that require recognition and localization in space.
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ARGoS [111] is a modular, multi-engine simulator for heterogeneous swarm
robotics. System is able to use about 10,000 wheeled robots in real-time during
the simulation.

TeamBots [112] is a multi-agent simulation program for robots that allows you to
create multi-agent control systems in dynamic environments with visualization. You
can develop your control system and implement it in a simulation program, and then
test your control system in a real mobile robot.

13.6.2 Modeling System Structure

To prove the theoretical basis of presented questions was used developed software
for the simulation and robotic group collaboration. Presented framework has been
developed in Unity 5 [59, 113], it is a multiplatform engine provided with different
features and tools. Software was developed using programming language C# in
MonoDevelop integrated development environment (IDE) for Windows 10. Software
(Fig. 13.17) has three operating modes “Without common knowledge,” “Pre-known
territory,” “With common knowledge.” First two use only part of decision-making
system for path planning and obstacle avoidance. The third one implements full stack
of decision-making process. In the end, system returns data about environment and
state of each robot in moment of time.

Fig. 13.17 System structure
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Fig. 13.18 Robot entity

Main object of the system is robot. It can be described with a set of variables
(rotation speed, speed of movement, current position, and spatial orientation), goal
position, and decision-making system (Fig. 13.18).

In simulation were used four different random scenes presented in Fig. 13.19, the
modeling results of with will be presented in next section.

13.6.3 Influence of Data Exchange on Path Planning

To receive the results for each scene were made three modeling scenarios. In first
scenario, robots are moving independently from each other (no knowledge sharing
and data exchange). In second scenario, three robots are fusing obtained information
and are using common knowledge of terrain for path planning (implemented data
exchange method). In last one scenario, robot is moving in pre-known terrain. In
each case, robots have to reach their personal goals and then get to the common
point.

Modeling includes the group of three robots using Pioneer 3-AT and TVS
(Fig. 13.20). This robotic platform is reviewed previously in work [80], also this
article describes kinematic of the platform.

For all of the scenarios in each scene were made 100 simulations. Results of
the modeling and aggregated data are represented in Figs. 13.21, 13.22, 13.23, and
13.24. The first thing that becomes visible on the graphs is that the trajectory lengths
deviation of “No common knowledge” and “With common knowledge.”

The decreasing of deviation in case of “With common knowledge” signifies that
trajectories forms are strive to the optimal (not taking into account the individual
anomalies that have occurred).

The summary of the modeling presented in Fig. 13.25. Comparing averaged
distances obtained during the modeling can be seen that use common knowledge
base have advantages in all of the scenes. Result shows that robotic group with
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(a) (b)

(c) (d)

Fig. 13.19 Scenes used for modeling. (a) Scene #1. (b) Scene #2. (c) Scene #3. (d) Scene #4

Fig. 13.20 Pioneer 3-AT
mobile robotic platform
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Fig. 13.21 Length of trajectories: Scene #1

Fig. 13.22 Length of trajectories: Scene #2
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Fig. 13.23 Length of trajectories: Scene #3

Fig. 13.24 Length of trajectories: Scene #4
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Fig. 13.25 Comparing trajectory lengths for each of the scenes in percent

implemented data exchange system has averaged group trajectory length 6.2–10%
better comparing to distances of autonomous robotic movement (outside of group).
Scaling the results for individual robots in group the improvement of trajectories can
reach up to 21.3%.

13.6.4 Objects Extraction

Density-based spatial clustering of applications with noise (DBSCAN) [114]
algorithm was proposed by Martin Esther, Hans-Peter Kriegel, and colleagues in
1996 as a solution to the problem of splitting (initially spatial) data into clusters of
arbitrary shape. Most algorithms that produce a flat partition create clusters that are
close to spherical in shape, since they minimize the distance of the documents to the
center of the cluster. DBSCAN authors experimentally showed that their algorithm
is able to recognize clusters of various shapes.

The idea of the algorithm is that inside each cluster there is a typical density of
points, which is noticeably higher than the density outside the cluster, as well as the
density in areas with noise below the density of any of the clusters. For each point
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Fig. 13.26 DBSCAN
clustering illustration

of the cluster, its neighborhood of a given radius must contain at least some number
of points, this number of points is specified by a threshold value (Fig. 13.26).

The algorithm can be presented as next:

1. Given the dataset
2. Label all points as core or non core
3. Until all core points are visited:

(a) Add one of non visited core point P to a new cluster
(b) Until all points in cluster are visited:

• For each non visited core point P within the cluster:

– Add all core points within boundary of P to the cluster
– Mark P as visited

4. Until all non-core points are visited:

(a) If a non-core point P has a core point within its boundary, add it to the cluster
corresponding to that core point

(b) Else ignore

Example of algorithm implementation presented in Fig. 13.27. Here can be seen
a scanned environment using the group of robots and TVS (Fig. 13.27a). After
implementation of DBSCAN can be seen clustered objects (Fig. 13.27b).

According to the clustered data set objects can be extracted for further analysis
(Fig. 13.28). Obtained data can be used in many applications like object classification
and recognition, surface reconstruction, etc.

One of the main sub applications is to use data for structural health monitoring.
The scanned surface (Fig. 13.29a) can be analyzed and reconstructed to detect crack
(Fig. 13.29b) or other problems that can accrue.
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Fig. 13.29 Implementation of approach for structural health monitoring. (a) Scan of cracked
surface. (b) Detected crack
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13.6.5 Effectiveness of Robotic Group

Let us review effectiveness of robots based on the “Scene #4” (Fig. 13.29). As
effectiveness will be understood, the amount of unique data obtained by robot
comparing to common data fusion. On Fig. 13.30 are shown four different binary
maps that in the end were known to robotic group (three individual maps for each
robot and fused map).

Overlapping one individual binary map on other is possible to say that some
sectors were detected only by one robot, other by two or three robots (Fig. 13.31).

Besides the overlapped data can be allocated another characteristic—ratio of
individual data obtained by robot to total data.

Subtracting overlapped data from each individual scan returns unique data of
each robot in group. In this case, ratio equals to 0.58 for Robot #1, 0.486 for Robot
#2, and 0.486 for Robot #3. Comparing it to fused data will give the effectiveness

Fig. 13.30 Binary maps of environment

Fig. 13.31 Overlapped individual binary maps
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Fig. 13.32 Unique and general data comparison for each robot in group

of each of the robot. Here results are 0.332, 0.153, and 0.14 for first to third robot,
respectively (Fig. 13.32).

13.7 Conclusions

Chapter offers an original solution that improves robotic group teamwork. The
implementation of communication within the group as the result gave a decreased
trajectory length (up to 21.3%) for individual navigation. Other benefit presented
in chapter is field of view sectoring. It gives the possibility to free a significant
part of memories on individual robot for complementary task solution in real time
and use the data only needed for navigation task. Simulations have shown that the
use of mentioned improvements applied to behavior of robotic group allows stable
functioning of the group at lower energy costs of motion (bending energy) and
decreases trajectories length. Presented approach can be applied to the various tasks
like surroundings mapping after natural or human-caused disaster, indoor navigation,
etc. while the reconstructed 3D image in its turn is possible to use for structural health
monitoring.
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NCC Normalized Cross-Correlation
ND Nearness Diagram
PCL Point Cloud Library
PiPS Planning in Perception Space
PRM Probabilistic Road Map
ROS Robot Operating System
RRT Rapidly Exploring Random Tree
SAD Sum of Absolute Differences
SE(2) Special Euclidean Group for 2-Dimensional Space
SE(3) Special Euclidean Group for 3-Dimensional Space
SGBM Semi-Global Block Matching
SSD Sum of Squared Differences
TEB Timed-Elastic-Bands
TO Time-Out
ToF Time-of-Flight
VFH Vector Field Histogram
VPH Vector Polar Histogram

14.1 Introduction

Navigation is an essential computational component of autonomous mobile robots,
ensuring that the robot gets from one point in space to another. When deployed, it is
commonly implemented as a two time-scale solution involving planning with real-
time constraints on decision-making. The longer (or slower) time-scale process aims
to find a global path from the current robot location to the desired terminal location
and relies on a valid or sufficiently complete map of the world to navigate. The
shorter (or faster) time-scale process maneuvers the robot within the world avoiding
obstacles while striving to follow the global path. It is common for the global path
to be approximately realizable due to uncertainty in the global map. Uncertainty
arises from missing map data or modified world structure due to moved, introduced,
or removed objects. In dynamic environments, the maneuvering should avoid other
moving objects, which would typically be people, animals, cars, or robots, depending
on the application. The faster process detects and adjusts the trajectory in response
to deviations between locally sensed world geometry and presumed world map
geometry, especially when the global trajectory violates the collision-free trajectory
constraints based on the local sensor data. Given the domain and source of the map
data used, the slower and faster planning processes are often called the global and
local planners. A navigation system modulates and coordinates the information flow
between the two planning processes. Figure 14.1 depicts a sample scenario with
the robot starting on the left (black dot) and tasked to move to the right (red dot).
The global path planner generates a candidate trajectory at the onset (solid green)
based on available map information. In this case, only the walls are known. The
local planner strives to match the global path, but must detour as unknown obstacles
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Fig. 14.1 Depiction of the
complementary roles of the
global planner (green
trajectory) and local planners
(blue and yellow trajectories)
in the context of navigation

are identified. Depicted are two paths, one of which is realizable by a thinner robot
(solid blue), and the other which is realizable by a wider robot (solid yellow). The
wider robot would not be aware of the infeasibility of the plan until arriving at the
impasse. A global re-plan would then provide a new, potentially feasible path based
on the additional map information gained during navigation. This new path would
be followed and modified as potential collision points are identified and avoided.

Important considerations associated with a navigation system include the rate
at which the global path is recomputed based on locally sensed information or
state triggers, what information is shared between the two processes, what world
representation is chosen, and what planning strategies are employed for the global
and local planners. This chapter summarizes the research and findings related to the
global planner and techniques for the local planner. For the latter, the discussion
focuses on developments related to the contemporary availability of dense visual
measurements of the 3D world structure as compared to the predominantly 2D laser
scan measurements used by classical planning algorithms and employed in many
local planning methods. The use of image-based measurements that provide depth
or range information increases the cardinality of the data to process by two orders
of magnitude or more. Classical laser scanning methods do not translate to or do
not scale well with the increased sensory data when going from planar to spatial
measurements (2D to 3D). This chapter describes alternative data representation,
trajectory scoring, and collision detection schemes that improve on the weaknesses
of classical methods while striving to be as compatible as possible with them. In
doing so, we anticipate that many classical and modern navigation methods can be
modified to work with modern dense imaging systems that provide depth or range
information.

The chapter is organized to first cover global planning strategies (Sect. 14.2),
followed by local planning methods (Sect. 14.3). The review of local planning
methods discusses implementation modifications due to advances in robot sensing
from laser scanners to dense 3D range-based sensors. Purely monocular, color camera
sensing is excluded due to the loss of depth information and the inability of these
methods to guarantee collision-avoidance when traveling within the field of view.
Findings from neuroscience covered in Sect. 14.4 motivate a mixed method solution,
whereby the global world representation and the local world representations differ.
In particular, the local representation minimally processes the sensory data and
operates in Marr’s mid-level visual representation. The result is a perception space
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local planner whose design and integration with a global planner is described in
Sect. 14.5 and contrasted to existing strategies described in the literature. Prior to
implementing and evaluating the PiPS approach, Sect. 14.6 describes a navigation
benchmark for evaluating mobile robot navigation algorithms. The experimental
outcomes in Sect. 14.7 cover range-based navigation strategies using two mobile
robot platforms and multiple environments. Experimental Monte-Carlo runs quantify
the success of these methods relative to traditional approaches. Finally, Sect. 14.8
summarizes the chapter contents and provides concluding remarks.

14.2 Global Planning

Planning a robot trajectory, or synthesizing a control signal whose application leads
to a robot trajectory, requires a representation of the world within the computer
proper [1–3]. Initially, representation strategies may be split into those that attempt
to preserve the underlying continuity or those that discretize the world for easier
processing. The latter approach is most often taken on account of simplifications
afforded by discretization.

14.2.1 Planning in Discrete Spaces

Prevalent discretizations involve conversion of the world into a grid structure or a
graph structure. Occupancy maps or occupancy grids are one common grid-based
data structure. Ultimately, however, planning on grid-like structures gets reduced to
planning on the equivalent graph structure with spatially determined connectivity
(e.g., neighbor connectivity). One popular discrete planner is A* [4], a heuristic-
informed extension of Dijkastra’s algorithm [5] balancing depth versus breadth based
search. If any part of the environment changes, the search must start over. The desire
to admit re-planning from a previous invocation led to Dynamic A* (also known as
D*) [6], which reduces the cost of replanning by performing local modifications of
past searches. D* Lite [7] is a simpler and more efficient version, while Anytime
D* (AD*) [8] is both anytime and incremental. Figure 14.2a depicts a grid-based
planning scheme with the associated Manhattan world path, which uses only the 4
neighbors (up, down, left, right). Grid-based methods are constrained by the curse
of dimensionality, whereby the search space grows exponentially with its dimension.
Resolving fine details in a world requires exponentially more memory and results
in longer planning times than using a coarser representation. The granularity of the
grid implicitly discretizes obstacle and robot dimensions, which may render feasible
trajectories infeasible. Adaptive gridding structures and graphical processing unit
(GPU) computation overcome the limitations of fixed grid world models and speed
up planning time [9].

An alternative strategy to gridded world methods is to employ a sparse graph
structure [10]. One such representation is the Voronoi graph of a world. The
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(a) (b) (c)

Fig. 14.2 Discretization schemes and plans generated from then. For the grid-based method (left),
the plan follows connected discretized volume elements marked as empty. For the Voronoi method
(middle), the plan connects to the nearest graph point, traverses the graph, then connects to the
terminal point at its nearest graph point. The RRT (right) is like the Voronoi, but with the graph
generated through a sampling process. (a) Grid world and path. (b) Voronoi graph world. (c) RRT
graph with path

generalized Voronoi diagram (GVD) is a representation of free space consisting
of the locus of points equidistant to obstacle boundaries, see Fig. 14.2b. Graph
search algorithms and heuristics can be used to find the shortest path through the
GVD [11]. Given that the calculation of a GVD may be computationally prohibitive,
an alternative graph creation method is probabilistic road maps (PRM). The PRM
algorithm constructs a graph of feasible paths during a preprocessing phase and
uses this graph to find paths between desired points. It is probabilistically complete
with established performance bounds [2, 12]. Lazy PRM decreases the runtime of
the algorithm by only performing collision checks when searching for the shortest
solution to a query [13], making the planner more suitable for single queries. PRMs
have been extended for efficient replanning in dynamic environments by combining
concepts from Lazy PRM and AD* [14, 15].

The PRM is an example of a sample-based planner where the sampling is done
in advance. Instead of spending time generating the PRM, rapidly exploring random
trees (RRT) are likewise probabilistically complete but perform minimal exploration,
encouraging fast and efficient planning [16]. These properties are achieved by
combining graph creation with plan search by building out the graph in a goal-
directed manner through a combination of randomized sampling and heuristic or
greedy (go-to-goal) sampling. An RRT planning instance is depicted in Fig. 14.2c.
Extensions to the basic RRT method include bi-directional search [17] and continued
search to improve optimality [18]. Usually path smoothing is needed after identifying
a solution due to the potential jaggedness of paths obtained from random steps. RRTs
have been used for the path planning of autonomous vehicles [19]. They have also
been extended for more efficient replanning in dynamic environments [20–22]. RRT-
X is a recent extension that maintains and updates a single search graph throughout
navigation and makes no distinction between local and global planning [23].

Motion planners can also be based on motion primitives. Sample-based planners
that incorporate dynamic constraints include kino-dynamic planners, whereby
connected nodes are reachable through a feasible control or constraint satisfying
trajectory [24–27]. In [28], such a planner permits aircraft to navigate through a
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dense forest. It uses one primitive to link any two points in space through constant
control inputs and another to perform an aggressive turn. Since the primitives account
for the dynamics of the aircraft, the planner only has to find a sequence of points for
the aircraft to travel through and then use the appropriate primitives.

14.2.2 Planning in Continuous Spaces

Rather than converting the spatial representation of the world into a graph then
inducing the same representation on the sought trajectories, one may seek to preserve
the continuous structure of trajectories. If the control dynamics are ignored, then
these strategies seek out continuous curves connecting the start and goal points. The
simplest of such approaches is the potential field method, which employs potential
functions to define a gradient-based vector field [29]. Following the potential field
gradient as a differential equation yields the trajectory to follow. Since potential field
methods have problems with local minima, extensions exist to arrive at formulations
whose solutions are true global minima or have no local minima [30–32]. The same
conversion applies to fast marching methods on a grid world [33, 34], which provide
a more continuous trajectory versus the equivalent Dijkstra implementation over the
underlying grid.

More complex approaches seek an actual trajectory by optimizing over the
trajectory function space. The infinite-dimensional nature of trajectories requires
finite-dimensional, parametric representations of curves to be used [35, 36]. If
the actual control signals are also sought, then the problem becomes an optimal
control problem, for which there are many solution strategies [37–42]. The main
drawback to these methods is the computational cost associated with finding a
feasible trajectory, especially when there are many obstacles. For computational
efficiency, these methods are often iterative or gradient based in nature. They benefit
from pre-conditioning the initial condition via a discrete planning method. If the
overall problem has not varied significantly from the previous invocation, then the
previous solution serves as a good initialization for iterative solvers [40].

A major issue for all global planners is the speed with which sensed data can be
assimilated into the global map. For the slow global planners, global map updates are
not the main bottleneck. However, for global planners that assert real-time operation,
usually the cost to transfer sensor data to the internal representation and to update
any important map data structures or cost functions far exceeds the plan update rate
(by 1 to 3 orders of magnitude). Local planners exist to speed up this process by
limiting what data is considered in the fast path updates. Following rapidly updated
local plans gives the global planner time to generate an update based on the newly
integrated information.
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14.3 Local Planning

The need to augment global planning with local planning follows from the inability
of global planners to re-plan at a rate compatible with the incoming sensory data
and the underlying trajectory tracking controller. The purpose of the local planner
is to generate real-time updates to the global plan, usually at the control feedback
rate or close to it, in order to compensate for map errors, new objects, or moving
objects. A common approach is to employ a hierarchical planner, in which the global
and local levels use the same world representation though not necessarily the same
data structure. Doing so means that a single method may serve two roles, however it
requires that the conversion of sensory data to the world model occur faster than the
sensory rate.

Early research on navigation primarily emphasized ultrasonic and laser scan
methods since these sensors provided direct measurements of the external
environment, as opposed to vision-based methods which required costly, at the
time, processing to convert the raw visual signals into spatial data regarding the
local environment. The dense 1D measurement signal provided from a laser scanner
is sufficient for navigating through structured worlds where the scan plane provides
correct information regarding collisions. With computing and sensory hardware
improvements, navigation with dense 2D range or disparity image signals has started
to become the norm. However, there are limitations to literally translating laser scan
methods to admit dense imagery. Many of the existing solutions cannot scale with
the data cardinality. This section covers the above history and topics.

Reactive Methods
Reactive methods use the locally sensed obstacle space and the current goal point
to identify an immediately applied control policy. For ground vehicles, the control
consists of a speed and steering command, though some methods assume a constant
velocity model and simply steer. The potential field method [29] described earlier,
due to its gradient following approach, is implementable as a reactive method. The
virtual force field method is one such implementation [43]. Sensor readings are used
to update a global certainty grid of obstacles which is then used to calculate the
repulsive forces of obstacles.

Rather than use point representations in a local Cartesian grid, the vector field
histogram (VFH) [44] method uses a local polar (histogram) representation for local
points in the global map relative to the current robot pose. Processing of the polar
histogram generates new steering commands, with an additional processing step to
establish speed changes. The steering commands aim towards the best free-space
option consistent with the current goal point. Improvements to the reactive policy
include VFH* [45], which performs look-ahead verification using a short horizon
forward time search with A*. It hypothesizes future polar histograms from the
global map. Integration into a hierarchical planner for navigation was performed
with VFH+ as the local policy [46]. The VFH approach was modified to apply to
dense laser scanning sensors by processing directly on the sensor data in the vector
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polar histogram approach (VPH) [47, 48]; it classifies travel directions into blocked
and unblocked prior to determine the steering direction and the speed update.

Due to specific issues that arise from single policy reactive strategies, the
nearness diagram navigation (ND) method [49–51] first classifies the polar data
into distinct environmental conditions. Each class is assigned a reactive, or sensor-
driven feedback, policy for more robust and consistent navigation. The intent is to
avoid the local minima and unstable motion sometimes exhibited by single policy
reactive approaches. The ND navigation method factors the width of the robot into
its reasoning. A hierarchical navigation implementation with global planning exists
[52]. ND navigation is one of the early instances of gap-based navigation. Other
gap-based approaches include [53–55] as well as [56] which considers the robot
shape and kinematic constraints.

Velocity or Control Space Methods
The approaches considered up to now have not taken into account the vehicle’s
dynamics. Approaches operating in velocity space, in contrast, are able to
accommodate nonholonomic kinematic constraints. For example, rather than look at
instantaneous angles, or radial directions relative to the robot, the steer angle field [57]
algorithm evaluates forward integrated circular paths, discretized by steering angle.
These sampled paths get checked for collisions, with the forward speed modulated
by the existence—or lack thereof—of feasible paths. The method was integrated
with a hierarchical navigation system [58]. Likewise, [59] performs local reactive
obstacle avoidance by considering various circular trajectories and selecting one that
maximizes the translational velocity, minimizes the angle to the target point, satisfies
the robot’s dynamics, and avoids collision for at least 2 s. A later implementation
called the dynamic window approach (DWA) [60] samples from a discrete set of
relative control or velocity changes from the current control or velocity. It operates
on a 2D occupancy grid model of the world and is capable of incorporating planar
robot geometry into the collision checking. Like VFH, DWA has been extended
to incorporate look-ahead searching [61], best suited for dynamic obstacles. DWA
methods exist which integrate with a global planner or into a hierarchical navigation
strategy [62, 63].

A similar velocity space approach is curvature velocity method (CVM) [64]. In
this approach, obstacle avoidance is solved as a constrained optimization in velocity
space. This allows speed and heading to be solved simultaneously and constraints to
be added easily. These include robot velocity and acceleration as well as any specific
application constraints (safety vs speed, etc.). The lane curvature method (LCM)
[65] addresses some shortcomings of CVM. It selects a lane based on collision-free
distance and width and computes a local heading to guide the robot into the lane.
CVM is then used to generate the necessary translational and rotational velocities.
Since openings are chosen based on the width of the lane rather than angular width
of the opening (as in VFH), the paths generated by LCM may be safer.

Optimal Trajectory Synthesis
Bridging the gap between reactive planners and velocity space planners are
continuous trajectory synthesis implementations on the local map. On sufficiently
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small domains, they can run in real-time when capable of using the grid-based
costmaps for cost and constraint evaluation. The elastic bands (EB) [66] planner
generates a free-path (the elastic) in C-Space. This elastic deforms based on external
repelling forces generated by obstacles as well as internal contracting forces for
path length minimization. The EB approach has extensions for handling kinematic
constraints [67]. The timed-elastic-bands (TEB) [68] adds dynamic constraints. TEB
has also been extended to maintain and optimize multiple candidate trajectories of
distinct topologies [69].

14.3.1 Moving to 3D Environment Representation

A 2D environmental representation was sufficient when the primary sources of
sensor data were planar, such as when using sonar, fixed (horizontal) laser scanning
sensors, or other laser ranging methods [70, 71]. Dense sources of 3D points provide
the opportunity to detect and avoid collisions with obstacles that planar sensors
might miss, such as obstacles that protrude from the side or hang down from above.
As a result, there is a motivation to utilize dense 3D sensor data when it is available.
Common 3D dense data sources include time-of-flight (ToF) cameras, depth cameras,
LIDAR, and triangulating scanners [72]. Stereo vision sensors also apply by simply
generating a dense depth or disparity map.

One approach for utilizing 3D data with classical planning approaches is to
project the data down to a 2D representation and run the planners as normal [63, 73],
or performing a column-wise min operation over depth images for planar world
information [74]. Generally, points are filtered in order to only consider those within
the height of the robot. Though easy to implement and computationally cost efficient,
there are some downsides to simplifying the environmental representation in this way.
Unless the robot’s cross-sectional geometry is constant with height, the simplified
representation will be overly conservative; valid configurations may be detected as
in collision with the environment.

Another approach is to maintain a 3D world model and use this for planning.
However, there are several challenges with doing this. First, not all local planning
approaches are readily adaptable in this way. For example, gap aiming (directional)
approaches [53] are explicitly designed to process a 1D list of measurements (such
as from a laser scan). Indeed, only recently have gap aiming approaches explicitly
considered non-point, non-holonomic robots [56]. Sampling-based approaches, on
the other hand, have an explicit trajectory scoring step which can be modified to
perform collision checking against a 3D environmental representation. Such a tactic
is taken with discrete steering directions checked against a filtered point cloud model
of the world [75]. Likewise [76] compares a fixed set of sample trajectories against
a local point cloud. Using stereo the aerial robot detects points at a given range, and
propagates them in time for a richer world model. The range-filtered measurements
keep the point cloud model sparse enough for real-time operation on lightweight
computing platforms.



440 J. S. Smith et al.

Another challenge is selecting the environmental representation to use. One of
the simplest is the voxel grid (a 3D cartesian occupancy grid), however memory
requirements for voxel grids are high due to the curse of dimensionality. Variable
resolution structures can significantly reduce the amount of memory required using
data structures such as octrees [77]. For aerial vehicles, the volumetric map can
be height filtered for more efficient processing [78]. Rather than employ efficient
occupancy data structures, efforts have considered alternative point cloud data
structures with efficient query times. Points can be stored in sorted data structures
such as kd-trees to allow faster nearest-neighbor queries [79]. The method is very
efficient when the sensor data is of low cardinality, the local volume is restricted,
and the robot model is a point. There is an added computational cost to build and
maintain these data structures.

Even if the planning algorithm itself could operate in real time, the process of
updating the world representation introduces latency between sensing and planning.
An alternative approach is to avoid the reconstruction process and perform planning
in an earlier visual representation. For navigation strategies using stereo camera
systems, this involves planning directly in disparity space [80–82] or planning using
combinations of optical flow and stereo disparity [83, 84]. After gathering dense data
from sensors, these approaches explore C-Space trajectory sampling and collision
checking in the perception space. Local path options are mapped into the image
space for evaluation [85, 86], where the objective is to follow the path generated
by a global planner such as A* while avoiding unmodeled obstacles. Perception
space approaches improve time performance by reducing the delays associated with
populating and maintaining in-memory data structures.

14.4 Neuroscience Research Related to Navigation

The compartmentalized structure of robotic navigation algorithms is likewise
reflected in the human brain. Though different from engineered systems, cognitive
and behavioral neuroscientists and researchers have identified distinct processing
regions and characteristics regarding navigation via controlled experiments [87–93].
The findings suggest that perception for navigation involves both egocentric (or
viewer-centric) models for decision-making and object-centric (or world-centric)
models, sometimes also referred to as allocentric. The former corresponds to visual
understanding relative to the human’s reference frame, whereas the latter is relative to
an external reference frame usually belonging to an object receiving attention. Similar
structural differences in computation have been proposed by Marr when describing
a representational framework for vision [94] and its computational aspects. In
particular, from low-level to high-level, he described four primary components as
depicted in Fig. 14.3. The first is the raw information associated with the sensed
scene, the input image. The second, called the primal sketch, consists of basic signal
processing transformations of this image that extract geometric volumetric primitives
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Input Image Primal Sketch 2.5D Sketch 3D Model

intensities,
colors

edges, blobs, bars,
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line segments,
boundaries, etc.

surface normals,
depth layering,
discontinuties

3D model,
surface info,
volume info,
location, etc.

Viewer Centered Object Centered

Fig. 14.3 Marr’s representational framework for visual processing. Of the four stages depicted,
three are in viewer centered representations, with the fourth in an object centered representation

from the image proper (lines, areas, blobs, etc.). The third, called the 2.5D sketch,
reflects higher level interpretation and analysis of the image and its low-level features.
The representation of information is still at the image level, however depth data or
depth-dependent information exists as a layered representation. The layered images
contain information about the distal ordering of the scene relative to the viewer.
Represented internally using image-based data structures, these three initial levels
are viewer-centric. The last layer reconstructs or generates a richer 3D model of the
objects sensed within the scene. At this level the reference frame or viewpoint shifts
away from the viewer and to a global reference frame or an object-centered reference
frame. In this manner, the reconstructed model is independent of the user’s view and
may persist as it changes in response to relative motion between the viewer and the
object. Naturally, missing from this description is the agent’s memory of past scenes
or locations. However, it is sensible to imagine that both egocentric and allocentric
memory and predictive models exist [87, 88].

Though distinct regions and reference frame processing paradigms have been
discovered, there is still coupling between them. The research suggests that early
computation may primarily rely on egocentric models with some influence from
allocentric models [90, 91]. Likewise, information related to egocentric navigation
appears to be important for detecting or estimating important allocentric states
or collision informing properties [87, 95]. Thus, within the neural processing
hierarchy, egocentric processing happens earlier than allocentric processing but can
be influenced by earlier allocentric outcomes expected to persist into the near future.
With regard to objects, Marr’s framework predicts that object information would
primarily be encoded allocentrically. However, since evidence for an object arises
from lower level evidence, we should expect that some information regarding objects
exists in an egocentric representation. There is indeed evidence that egocentric
representations are used for object locations [96] as well as for navigation goal
states [97]. There is also support for brain regions that translate between the two
representations, such as from egocentric to allocentric representations (ex: what is



442 J. S. Smith et al.

my current position on this map given my current view) and vice versa (ex: in order
to head west, I need to turn left) [98]. Rat studies have shown that the same stimuli
will affect different regions based on their egocentric or allocentric properties [99].

The research suggests that both representational forms for modeling the world
should exist within a navigation pipeline. In particular, methods employing only
world-centric models at all levels of the navigation hierarchy may be misguided.
Yet many navigation frameworks are characterized by this property. Instead, viewer-
centric models should be incorporated and prioritized within components requiring
fast decision-making and low latency from the sensory input to the controlled
response. Additionally, world-centric models should be prioritized for slower
decision-making and reasoning that operates beyond the local frame or requires
an external frame to simplify processing. Furthermore, the two processes should be
coupled at a rate consistent with navigational decision-making.

14.5 PiPS: An Ego-Centric Navigation Framework

This section introduces and expands upon a local planning method employing
perception space (PiPS) [100]. In relation to Marr’s visual framework, PiPS operates
in the mid-level 2.5D representation whereas it is assumed that the global planning
method will operate in the world representation. This section first covers the structure
of the navigation system, including general details on how the global and local
planners integrate. It then covers the collision checking process of PiPS and compares
the time costs of various data structures used for collision checking against local 3D
environment models. Extensions to PiPS for integration into a hierarchical navigation
system are covered in the remaining sections. In particular, the original memoryless
PiPS is augmented both with memory and a local cost-map component. These
augmented data structures are called the egocylinder and egocircle. They provide
means to perform collision checking and trajectory scoring, respectively. The final
integrated, PiPS-based navigation system results in a mixed representation navigation
scheme with linear scaling properties in the data cardinality and real-time obstacle
avoidance properties. Navigation simulations and visualizations are created using
Gazebo and RViz.

Navigation Using Move Base
The ROS Move Base package provides an API for hierarchical goal directed
navigation of planar robots. Its design enables the incorporation of different global
and local planners. These are connected by a trajectory synthesis module and several
scoring systems that evaluate or influence the final local trajectory chosen.

Move Base, like many other navigation frameworks, operates under the
assumption that the global and local planning representations will be the same,
e.g., grid-based. As a consequence, the scoring mechanisms fundamentally rely on
costmaps.
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Costmaps are 2D grids populated with travel cost or other scalar value for
assigning a cost to each grid cell. These costs inform the Move Base planners.
There are several different sources for the costs, with one being the occupancy grid.
An occupancy grid keeps track of navigable space and non-navigable space (or
occupied space) associated to obstacles. Obstacles are added to the occupancy grid
from sensor data such as laser scans or point clouds. Grid points between the sensor
location and detected obstacles are marked as unoccupied via ray tracing. To factor in
the robot’s radius, inflating each occupied cell through dilation techniques generates
an inflated occupancy grid (usually by the smaller radius if the robot is not circular).
Generating the obstacle distance map involves assigning each unoccupied cell the
distance to the nearest occupied grid cell. This obstacle distance map informs the
creation of path scoring costmaps. There is a global costmap used for global planning.
It covers the entire region of known space within which planning occurs. If a prior
model for the environment is available, it can be used to initialize the global costmap.
Otherwise, the entire costmap is initialized as unknown and considered traversable
for the purposes of global planning. In addition, there is a local occupancy grid
that tracks occupancy information in a robot centered local Cartesian grid whose
orientation is fixed relative to the initial orientation of the robot. Figure 14.4 depicts
such a local map where the initial robot orientation differs from the current robot
orientation and the world orientation, hence the rotated projection of the local map
onto the world. The local nature of the grid means that costmaps generated from the
local occupancy grid are only defined for a fixed Cartesian domain centered on the
origin. The domain dimensions are set to be comparable in size to the sensing region
of the robot (though they could be set smaller if desired). The local costmap is key
to local planning and must update faster than the sensor rate to admit the real-time
synthesis of new local paths. Figure 14.5 depicts key costmaps associated with local
planning. Low cost regions are red, while high cost regions tend to blue/purple.
The obstacle cost penalizes robot trajectories that pass too close to obstacles. The
local goal cost penalizes sample robot pose locations based on the minimum travel
distance to the local goal point, which is the point of the global trajectory (marked
as a black curve in the costmaps) at the boundary of the local map. Basically, it
penalizes trajectories for ending away from the local goal. The path cost penalizes
robot pose points based on their distance to the nearest global path point. Higher

Fig. 14.4 Mobile robot
navigation with visualization
of the local map as a square
centered on the robot
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(a) (b) (c)

Fig. 14.5 Visualization of the trajectory scoring as cost maps computed on an occupancy grid.
Low cost is red and high cost is blue/purple. The black curve is the global path to follow. (a)
Obstacle cost. (b) Local goal cost. (c) Path cost

costs are associated to trajectories straying from the global path. The time to populate
these costs from the occupancy grid varies from O(n) to O(n log n) where n is the
grid area [33, 101].

The global planner in Move Base uses a variant of Dijkstra’s algorithm to find
a path from the robot’s current pose to the specified goal, while the local planner
generates velocity commands to direct the robot along this path. The default local
planner provided with Move Base is the DWA local planner (DLP), which invokes
DWA [60] to sample velocity commands. Sampled velocities are forward simulated
to create trajectories. Each trajectory is scored based on a weighted sum of costs for
the described cost functions: the obstacle cost, the goal cost, and the path cost. The
local and global planners run at specified frequencies. If the local planner fails to
find a valid velocity command, global replanning is triggered. If the local or global
planner fails for longer than its specified time limit, a recovery behavior rotates the
robot in an effort to clear obstacles from the local costmap. If all recovery behaviors
have run and the planner is still unsuccessful, navigation aborts.

PiPS Modifications to Move Base
The principal components of Move Base are depicted in the data flow diagram of
Fig. 14.6. Not depicted is the robot pose information generated by the odometry
or localization process, which is required to propagate forward in time past
measurements. This estimated pose update will be denoted gmove. The traditional
DLP implementation involves the blue blocks, the black blocks, and the dashed
block. We will modify the local planner to employ an egocentric representation
for the world based on distal information of obstacles and global path points and
maintained in a 2D or 1D array, thereby operating in perception space rather than in
world space. These are the red blocks labeled Ego-Circle and Ego-Cylinder, which
correspond to the propagation of perceptual memory regarding the local egocentric
representation of occupied space. Additional important modules include collision
checking and path scoring, which are both parts of the local planner. Employing a
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Fig. 14.6 Block diagram depicting processing and data flow for the PiPS-based navigation strategy.
Design considerations for the critical components are covered in this section. The blue components
are unchanged, the red components are PiPS enhancements. The dashed component is only used
by the traditional Move Base pipeline. The “Cost Functions” block is also modified for PiPS

mixed representation requires extensive modification of the existing scoring methods,
especially those linking the local path to the global path.

14.5.1 Collision Checking in Perception Space

Rather than map the sensor data regarding the local world into a world centric
representation, PiPS keeps the sensor data in a viewer centric representation.
Collision checking requires mapping the robot model into the same viewer centric
representation and comparing the robot model’s distal properties to those of the
surrounding environment. Thus, rather than evaluating collisions using 2D or 3D
world maps, we evaluate collisions using 2D images. Collisions occur when the robot
model maps to depth layers that lie further away from sensed world depth layers in
a given region of space. In the opposite case, if the robot geometry of a test pose
maps to image regions whose obstacle depth layers are further away than the robot
depth layers, then the test pose is considered safe. In this manner, PiPS switches the
main collision-checking computations from relying on the transformation of sensory
data to world data for collision checking of the robot in the world, to relying on the
transformation of the robot world model to the sensor representation for collision
checking in image-space.

Mapping of the robot to the sensor representation requires modifying the graphics
z-buffer rendering pipeline. To render an object model, the traditional approach to
graphics considers all object points that project to the image then chooses at each
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pixel only the closest point projecting to it as the measurement source. The remaining
points that project to the camera at that pixel are ignored. This is a closest point model.
Given closed mesh models of all objects in the world, the set of projection points
that may realistically project to the camera are those whose outward normal to the
mesh points toward the camera. For collision checking we wish to synthesize not the
closest point to the camera, but the furthest point from the camera (with a normal
vector pointing in agreement with the camera optical axis vector).

Given a surface mesh model of the robot, synthesis of the collision depth image
of a hallucinated robot in an empty world will select the furthest points. Let the set{
(qi, n̂i )

}
of robot points with associated outward surface normals be those that

project to the camera at pixel r . Then the chosen point to be used for the synthesized
depth image is the one with the index

i∗ = arg max
i
D(qi) subject to

[
n̂i

0

]
· qi > 0 ∧ z > 0, (14.1)

whereD : R3 → R
+ maps points to depths. The depth of point qi∗ is placed at pixel

r . All points in the image of the hallucinated robot that do not have a projected point
are simply set to 0.

As the hallucinated robot pose g ∈ SE(3) changes, the collection of surface
points and normals will change under g, leading to different depth images. This
robot pose is in collision with actual objects in the real world if the sensor image
Dm has a value less than that of the hallucinated robot image DH = D ◦ g(MR),
whereMR is the mesh model of the robot (simplified to a set of points and outward
normals). Simply put, a hallucinated robot pose is collision-free if

Dm(r) > DH(r) ∀r ∈ I, (14.2)

where I is the image coordinate domain. A collision-free, hallucinated robot pose
is called a safe pose.

Figure 14.7 depicts the process just described. Viewing from left to right, the top
row consists of the world view for a pose testing scenario. The real robot (black)
contemplates itself at a future trajectory pose (red) that is not safe. Collision checking
is not performed with the more complex true model, but rather with a cylindrical
simplification (red cylinder in second column). For collision purposes in depth space,
only the far sides of the robot matter (cyan surface in third column). A portion of the
robot collides with walls in the real world (yellow surface in fourth column). The
blue volume depicts the projection cone associated to the tested robot pose. Image
depth values indicating world point within this cone indicate a robot collision at
the hallucinated robot pose. PiPS does not perform the collision checking from the
world (or third person perspective). Rather it performs the collision checking in the
viewer-centric perception space (or from the first person perspective) as depicted in
the second row. From left to right, the first person views are visualized. The right-
most column actually involves the overlay of the two depth images, as can be seen
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Fig. 14.7 Each column illustrates a conceptual step of PiPS. The top image depicts the scene from a
third person perspective, while the bottom image depicts it from the robot’s first person perspective.
From left to right: hallucinate the robot at a pose (red); Replace the robot with a simplified geometric
representation (red); Find the far surface of the robot (light blue); Detect collisions (yellow)

by the gray depth values corresponding to the robots far cylindrical surface patch.
The yellow region contains robot depth values that are greater than the measurement
depth image values.

Efficiency of Perception-Space Collision Checking
The PiPS local planner in [100] sampled from a pre-determined set of trajectories
that remained in the field of view relative to the robot’s current perspective, then
selected the longest non-colliding trajectory. It was capable of real-time operation
on embedded processors with the computational power of circa 2014 cell phones,
thereby demonstrating favorable processing properties. It can run in real-time
on today’s embedded system-on-a-chip processors, such as those using the latest
Arm Cortex chips. Here, we explore more deeply the computational cost of PiPS.
The asserted value of a perception space approach to collision checking is that
conversion of the sensory data to alternative world representations incurs a time
cost that determines the minimal response latency of the local navigation policy.
This section performs a collision check time cost comparison for several world
model data structures and collision query strategies. The data structures chosen for
comparison are depth image (PiPS), point cloud, octree, and k-d tree. With reference
to Fig. 14.6, the latter data structures would require swapping out the “PiPS Collision
Checker” block with the appropriate collision checking implementation, and would
involve programming alternatives to the Ego-Circle and Ego-Cylinder blocks. The
first evaluation metric of interest is the time cost of initializing the data structure
from a new sensor input. This value is significant because it represents the minimum
latency between receiving environmental information and being able to act on it.
The second evaluation metric is the time cost of performing a collision check with a
given robot pose. Together, these impact the time cost of collision-checking a single
trajectory or a set of trajectories. The timing experiments were performed on an
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Intel Xeon E5-2640 @ 2.50 GHz processor with single-thread Passmark score of
1468 and multi-threaded score of 9512. All reported timings are for single-threaded
collision checks.

The investigated data structures require different amounts of processing to
initialize from sensor data. For the PiPS depth image process, the only processing
performed is transposition of the incoming depth image for more efficient pixel-
wise comparisons during collision checking. The point cloud approach requires
converting the incoming point cloud sensor message to a point cloud library (PCL)
[102] data structure. The k-d tree and octree approaches also require the input depth
image to be converted to a point cloud for populating the data structures. The k-d tree
implementation is from the Point Cloud Library (PCL) [102]. The implementation
used for the octree is octomap [77]. An octree with 5 cm resolution is created from
a point cloud using code derived from the Octomap Server ROS package [103].

The time required to perform the preparatory conversions is listed in Table 14.1.
Conversions are performed using nodelets from the depthimage_to_laserscan,
depth_image_proc, and image_proc packages. Depth images from a ROS/Gazebo
simulated environment pass through the Decimation nodelet and on to the PointCloud
and LaserScan nodelets. Custom timing nodelets record the time required for
conversion and are enabled for only one conversion nodelet at a time. Measurements
are collected until the average value is stable to at least two significant digits.

Across the board, the depth image decimation time remains lower than the other
conversion strategies. The non-zero cost of the 640 × 480 decimation approach
represents the overhead of passing an image on without any processing.

We also measured the average time required to populate each data structure from
new sensor inputs of several different resolutions and report the results in Table 14.2.
The per-frame and per-pose computation cost is calculated using a collection of 791
depth images captured while the robot wandered through a ROS/Gazebo simulated
environment. A set of 200 poses, representing a set of trajectories, was also generated.
In order to evaluate how computational requirements scale with the size of sensor
data, each set of tests is repeated with the depth image decimated to the following
sizes 640× 480, 640× 240, 320× 240, 320× 120, 160× 120. All of the collision

Table 14.1 Average times
(in ms) for data
preparation/conversion to
necessary input format

Resolution 640× 480 320× 240 160× 120

Depth image to
PointCloud

2.2 0.61 0.21

Depth image to
LaserScan

0.66 0.35 0.22

Decimate 0.084 0.31 0.20

Table 14.2 Average times
for initializing data structures
from an input (in ms)

Resolution 640× 480 320× 240 160× 120

Depth image 0.64 0.14 0.048
Point cloud 6.67 2.74 0.59
K-d tree 34.0 7.8 3.7
Octree 245 88 42.7
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checkers are tested using the exact same series of sensor data and candidate poses.
The collision checkers are evaluated offline one after the other, each testing all poses
on all images.

The table demonstrates that the data structures have poor scaling properties when
increasing the amount of data to process. Real-time operation requires significant
decimation of the input data, thereby losing important structural knowledge of
the local environment. Though the decimation enables real-time processing for
small compute platforms as would be deployed on weight restricted robots, like
quadcopters, it does not scale well for mobile robots without these restrictions. At
full resolution, the time cost of conversion can exceed the data arrival times for
sensors operating at typical frame rates (presumed to be around 30 Hz).

The next performance metric is the average time required to collision check a
single candidate pose of a robot. All else being equal, a smaller value will allow
more poses to be tested in a given time frame. For the purposes of these tests,
we assume a cylindrical robot. Depth image collision checking uses the approach
described in Sect. 14.5.1. The point cloud approach naively iterates through the points
in the point cloud, checking if any lie inside the specified cylindrical region. The
k-d tree approach first queries the tree for any points lying within a sphere bounding
the candidate robot pose cylinder and then checks if any of these are within the
cylinder. The octree approach uses the flexible collision library (FCL) [104] to
check for collisions between the populated octomap and a cylinder. We measure the
average times required to collision check a candidate robot pose for several candidate
resolutions and report the results in Table 14.3. The table demonstrates why some
researchers choose to employ specialized data structures, as their collision checking
time cost can be quite low and nearly constant versus image resolution. Once the data
structure has been populated, collision checking is the lowest cost and practically
negligible in comparison with the preparation time. The PiPS depth image approach,
on the other hand, has a larger resolution dependent time cost. The value of a PiPS
approach lies in the total cost.

The results in the tables indicate that using the depth image approach can result
in significant time savings, so long as the number of collisions tested can be kept low
enough. While the per-collision check time of the depth image approach is not as low
as that of the k-d tree, the initialization time of the depth image data structure is much
lower than that of the k-d tree. For example, with 640×480 sensor data, a depth image

Table 14.3 Average times
for collision checking a pose
(μs)

Resolution 640× 480 320× 240 160× 120

Depth image 55.0 31.6 19.6
Point cloud 882 450 118
K-d tree 8.9 7.4 6.9
Octree 11.4 11.6 11.6
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Fig. 14.8 Semilog plots of the total time to initialize data structures with one sensor input and to
perform N collision checks. From left to right, the methods tested are depth image (PiPS), kd-tree,
octree, and point cloud

approach can initialize its data structure and then perform over 600 collision checks
in the time it takes the k-d tree to just initialize. The graphs in Fig. 14.8 compare
the total time for initializing the data structure and performing a given number of
collision checks across the different approaches. Both axes have log spacing. The
value of the k-d tree and octree approaches lies in the near flat curves for less than
100 collision checks, and the relatively low slopes after that. In contrast, the PiPS
depth image approach has a mostly linear curve, just like the point cloud approach,
albeit with an improved base cost. When the expected number of collision checks is
relatively low, the depth image approach is significantly faster. Identifying where the
depth image curves cross a comparison strategy indicates how many collision checks
should be performed to achieve an equal compute time. Similar findings should hold
for robots with different geometries, however the slopes may differ.

Importantly, during actual deployment, the robot will not be evaluating new
trajectories at every frame. Rather, the first step in the process is to test the current
local path for feasibility. If it is feasible, then the navigation system continues to
drive along the local path. New path sampling, scoring, and testing happen when
an obstacle is detected along the current local path or the robot nears the terminal
point of the given path. Evaluating the time cost to collision check the current path,
it is clear that the PiPS approach has a significant advantage as it can perform
this check and determine the feasibility of the current path before any of the other
methods can even initialize, even if the comparison is between a full resolution PiPS
implementation and most decimation levels for the alternative implementations. The
time cost for PiPS to perform this check is 6.2, 3.6, and 1.3 ms across the resolutions
evaluated, for the case that the number of robot poses to test in the current trajectory
is 100. This time will decrease as the robot moves along the current trajectory.
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14.5.2 Egocylindrical Perception Space for Enhanced
Awareness

Though navigating with PiPS using trajectories that map into the current sensing
image domain is collision free [100], the published approach employs simple straight
line trajectories. Except for the floor space immediately in front of the robot, the
sampled trajectories map the robot into the depth image. However, visual sensors
have a limited field of view when compared to laser scanners (usually around
60–90◦ horizontally versus 270–330◦ horizontally), thus restricting trajectories to
the field-of-view is quite limiting. DWA and many other local planners sample a
richer trajectory space whereby some trajectories leave the visual sensor’s FOV. Not
factoring in these trajectory segments for trajectory scoring or collision checking
leads to unsafe navigation. Much like a local cost-map accumulates and propagates
occupied points, the local PiPS module requires the ability to accumulate, propagate,
and retain previously seen perceptual information lying outside of the current FOV.
This will be done using the egocylindrical image space [105], another 2.5D image
space representation whose theoretical domain extents surround the robot. Due to
the nature of camera projection equations, which require positive z-values in the
camera frame, traditional depth images cannot retain information of world geometry
behind the robot. Furthermore, the homographic projection involved in traditional
pinhole models requires an infinite image region to map the forward-facing half-
plane to an image. The egocylindrical perception-space representation avoids these
modeling degeneracies. World points from sensors are projected onto a virtual
cylinder surrounding the robot and are propagated as the robot moves. The surface
of the cylinder is discretized into a 2D grid.

Whereas the egocylindrical image in [105] stores stereo disparity values, the
egocylindrical image here stores the ranges corresponding to each point on the
virtual cylinder. In relation to the previous section, Sect. 14.5.1, the only modification
required is on the image domain and the projection equations for rendering the depth
image measurement (now as an egocylindrical image). The left side of Fig. 14.9
visualizes the egocylindrical (image or perceptual) representation. The color coding
indicates distance of world points from the sensor’s optical origin. The right side
provides a third person view of the scenario, simulated using ROS/Gazebo. The
simulated sensor in this scenario has a forward facing field of view of 60◦.

When the sensor is a depth sensor, then the pixel depth data is based on the ray
projecting out from that pixel. Mapping the depth value to a range value requires
factoring in the ray information. Using the homogeneous image ray representation
with unit z-coordinate, the egocylindrical range is

ρ = Dm(rim)
∣∣∣
∣∣∣

∣∣∣
∣∣∣

⎡

⎣
xray(rim)

yray(rim)

1

⎤

⎦

∣∣∣
∣∣∣

∣∣∣
∣∣∣
= Dm(rim)ρray(rim), (14.3)
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Fig. 14.9 Gazebo/RViz visualization of virtual egocylinder (left) and the environment it represents.
Range colormapped from near to far goes from red to blue/purple

where (xray, yray) are the important ray coordinates obtained from the image pixel
coordinates rim, and ρray is the corresponding length of the ray when treated as
a vector. For efficiency purposes, the function values ρray : I �→ R

+ should be
precomputed and stored in an image whose dimension is the same as the depth
image for direct lookup. Note that the camera convention is for the z-coordinate
to point along the optical axis and for the x-coordinate to be horizontal with the
y-coordinate pointing downwards.

The mapping of the depth value to the egocylinder coordinates involves computing
the angle coordinate θ and the height value zcyl , as per

θ = Arg(xray(rim)+ j) = θim(rim)
zcyl = Dm(rim)yray(rim)

(14.4)

where the constant imaginary term j is due to the unit z-coordinate in the ray
representation. As above, for computational efficiency, the θim : I �→ R and yim :
I �→ R functions should be precomputed over the image domain. If the sensor is
a range sensor, the ray will have unit length rather than a unit z-coordinate. The
appropriate modifications of the above equations will be needed.

These points then get mapped to egocylinder image coordinates rcyl ∈ Icyl using
the homogeneous egocylinder projection matrix Kcyl ,

rcyl = Kcyl
⎡

⎣
θ

zcyl

1

⎤

⎦ where Kcyl =
[
fh 0 hc

0 fv vc

]
, (14.5)

for fh = fv = cot(2π/ncols), hc = ncols/2, and vc = nrows/2, where nrows × ncols
are the egocylinder image dimensions (note that vc can be shifted if the domain is
biased upwards or downwards). To identify the appropriate bin to map the point
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into, the decimal coordinates rcyl should be discretized to whole numbers. The
Cartesian coordinates of the point are stored in the bin B = Bego(rcyl) contained
at the discretized coordinate location �rcyl�, where Bego consists of all bins in the
egocylindrical map representation indexed by discretized coordinate locations.

To generate a range map using the egocylindrical representation, it suffices to
compute the range of the point in each bin. For shorthand, we write

Dm(rcyl) = ρ(Bego(rcyl)) (14.6)

which then renders an egocylindrical range image of all points stored in memory.
When updating the egocylindrical representation with recently sensed depth or range
information, the new data overwrites the stored data.

Synthesis of a hallucinated egocylindrical image employs the egocylindrical
projection equations instead of the standard pinhole projection equations. Collision
checks involve the same conceptual procedure described in Sect. 14.5.1, but with
egocylindrical range values instead of depth values. The time cost to perform collision
checking with egocylindrical images is close to that of traditional depth images, thus
the egocylindrical collision time cost curves resemble those of Fig. 14.8.

Egocylinder Propagation
Propagation of the stored points involves transforming them under the motion
induced pose change gmove ∈ SE(2) ⊂ SE(3) from one time point to the next,
where gmove gives the coordinate frame of the old robot pose relative to the
new robot pose. Define the egocylindrical coordinate vector pcyl = (ρ, θ, zcyl)

T

and the Cartesian coordinate vector p = (x, y, z)T . Consider the mapping from
egocylindrical coordinates to Cartesian coordinates Te2c and vice versa Tc2e,

p = Te2c(pcyl) =
⎡

⎣
ρ cos(θ)
ρ sin(θ)
zcyl

⎤

⎦ and pcyl = Te2c(p) =
⎡

⎣

√
x2 + z2

Arg(x + jz)
y

⎤

⎦ ,

(14.7)
both with reference to the viewer/camera frame. The new egocylindrical coordinates
p′cyl of a stored point pcyl are:

p′cyl = Tc2e ◦ gmove ◦ Te2c(pcyl). (14.8)

Identifying the new bin that the point should be moved to involves applying the
projection matrix Kcyl to the last two coordinates in pcyl mapped to homogeneous
form, then discretizing the resulting coordinate outputs. In the event that multiple
points map to the same bin, only the point with the lowest range is kept. To speed
up calculations, our implementation only keeps track of p, using pcyl solely to
determine in which bin to store p.

With propagated and depth image updated egocylindrical data, synthesis of
the egocylindrical range image contains historical knowledge regarding the local
environment, thereby mitigating the FOV issues of depth images. The egocylindrical
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(a) (b) (c)

Fig. 14.10 Visualization of an out-of-FOV obstacle scenario. The robot needs to turn right to
avoid colliding with the signpost, which is currently outside the FOV of the depth sensor. Since the
signpost was visible to the depth sensor previously and is in the egocylinder, it can be avoided. (a)
Gazebo world. (b) Depth camera. (c) Egocylinder points

image enhances collision-checking and collision-free navigation when performing
tight cornering and maneuvering around obstacles. Figure 14.10 depicts a scenario
whereby the mobile robot is close to a signpost and with the signpost outside of the
field of view, as noted by the lack of a signpost in the depth camera image. However,
the egocylindrical data structure does contain points from the signpost’s pole. It is the
small blue point cloud near the robot in Fig. 14.10c. The point cloud was generated
from the egocylindrical data (using Te2c). The egocylindrical representation is not
guaranteed to be correct, as world geometry that was never seen does not exist in
the model and is not propagated. Thus it is possible to conclude that a trajectory
is safe though it may not be. Forward navigating mobile robots usually exhibit this
problem at the beginning of a global trajectory and less so later on due to the fact
that forward travel will propagate the seen world out into the unseen portions of the
egocylindrical image. The main danger lies when performing high angle turning into
unsensed world regions. The role of the global path and the local planner scoring
functions is to prevent these situations from happening by giving preference to safer
trajectories.

14.5.3 Egocircular Representation and Trajectory Scoring

The egocylindrical perception space representation provides an efficient viewer-
centric means to collision check based on current and previous perception space
measurements (e.g., depth, range, or disparity). However, it is not an efficient means
to score trajectories for collision assessment purposes. The relatively high slope of
the PiPS collision-checking cost means that only a small set of trajectories should be
tested for collision checking. Thus, the typically large set of trajectories sampled in
sample-based methods should be rank ordered with only the top few being evaluated.
Additionally, the PiPS approach can only give an indication of safe or unsafe. It
cannot score based on proximity to obstacles or other pertinent geometry or goal
information. In traditional local planners, the transformation of sensor-based obstacle



14 Real-Time Egocentric Navigation Using 3D Sensing 455

geometry to occupancy grids occurs because of the ease with which distance or
proximity information can be generated (though there is a significant time cost if
the occupancy grid is 3D). The distance information is essential to scoring and rank
ordering the sampled trajectories.

For fast trajectory scoring, a more compact and efficient representation of the local
collision space is necessary. For that we employ an egocircle, which can be thought
of as a flattening of the egocylinder image model to a 1D space or laser scanner type
of space; the true calculations will be different but the conceptual idea is correct.
The egocircle is an egocentric polar obstacle data structure reminiscent of the data
structure used in polar based methods [44, 45, 47, 48]. Its purpose is to populate,
propagate, and store the local environmental history necessary for approximately
and efficiently scoring candidate trajectories relative to obstacle proximity, goal
point proximity, and global path following. These scores provide ranked orderings
of the sampled trajectories.

The local planner block depicted in Fig. 14.6 initially samples a rich set of
trajectories, scores them according to predetermined criteria using the egocircle data,
then collision checks them according to their score ranking using the egocylindrical
representation and PiPS collision-checking. The first sample to pass the collision-
check module is the trajectory to follow for the next local planning period. Because
collision checking occurs using the egocylindrical representation, the egocircle
scoring does not need to be a strict or conservative scoring method. Rather it can
be liberal and admit collision inducing trajectories. Its design is meant to provide
efficient scoring, data storage, and propagation implementations.

Egocircle Measurements, Storage, and Propagation
Since the egocircle collapses the 3D information down to 2D information (angle
and range), the data format of the egocircle measurement module is compatible
with a laser scan. The laser scan information populates the egocircle data structure,
whose contents get propagated and updated as the robot maneuvers. Similar to
a laser scanner, the egocircle evenly divides the angular space into ncirc cells or
buckets, with each containing a list of 2D points that fall within the cell’s angular
range. Generating an egocircular map from the stored data entails performing a min
operation over all egocircle buckets individually. For shorthand, we write

Lm(rcir ) = min(ρ(Lego(rcir ))), (14.9)

where rcir is the coordinate indexing into the egocircle structure, and Lego is the
collection of buckets. The process above renders a 1D measurement “image” Lm
from all points stored in memory. It is equivalent to a 360◦ laser scan sensor reading
whose angular resolution is ncirc/(2π).

Following Sect. 14.5.2, propagation of the stored points involves transforming
them under the motion induced pose change gmove ∈ SE(2) from one time point to
the next, where gmove gives the coordinate frame of the old robot pose relative to
the new robot pose. Define the egocircular coordinate vector pcir = (ρ, θ)T and the
Cartesian coordinate vector p = (x, y)T . Consider the mapping from egocircular
coordinates to planar Cartesian coordinates Tl2p and vice versa Tp2l ,
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p = Tl2p(pcir ) =
[
ρ cos(θ)
ρ sin(θ)

]
and pcirc = Tp2l (p) =

[ √
x2 + y2

Arg(x + jy)
]
,

(14.10)
both with reference to the viewer/camera frame modeled as an SE(2) frame. The
new egocircular coordinates p′cir of a stored point pcir are:

p′cir = Tl2p ◦ gmove ◦ Tp2l (pcir ). (14.11)

Identifying the new bucket that the point should be moved to involves partitioning
the angular values according to the egocircle’s angular resolution. To speed up
calculations, our implementation stores points using Cartesian coordinates and keeps
track of the minimum range per cell. Points are removed once they lie outside the
radius ρmax associated with the local egocircular map. When incorporating new
measurements from the most recent depth image, range-based clearing occurs with
the stored egocircle data.

This design allows the egocircle to track multiple points in each direction and
to quickly return the distances to the nearest obstacle in each direction. With
propagated and depth image updated egocircle data, synthesis of the 1D range
image per Eq. (14.9) contains historical knowledge regarding the local environment.
Figure 14.11 depicts a navigation scenario for a simulated Turtlebot mobile robot.

Fig. 14.11 Visualizations of the egocircle measurement predictions based on the stored data. The
top row depicts the egocircle measurements where only those points that would be visible to a laser
scanner are plotted (occluded points are not). The origin corresponds with the camera origin, but
the orientation of the egocircle measurement has been adjusted to roughly align with the global
overhead views of the bottom row. The red lines are FOV limits
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The robot travels upwards relative to the overhead views in the bottom row, turns
right, then proceeds rightwards. Visualizations of egocircle generated measurements
are in the top row (but with a coordinate system orientation roughly matching that
of the world). The red lines delineate the FOV of the mobile robot. Historical data
sensed by the robot is contained in the egocircle measurements outside of the FOV.
Note that, in the rightmost egocircle measurement, a section of the upper surface
of the wall (just below and to the left of the robot) does not exist in the egocircle
data structure. As the robot turns towards the right, FOV limitations mean that this
small portion of the wall never gets sensed, hence the missing data. By maintaining
a local, approximate cost map in planar space, the egocircle provides a means to
rapidly score candidate robot trajectories. The following subsections describe the
different cost functions evaluated and contributing to the total score of a candidate
trajectory.

14.5.3.1 Egocircle Trajectory-Based Cost Functions

The purpose of the egocircle representation is to replace the grid-based cost functions
utilized by DLP and many other non-perception space methods. Figure 14.12 depicts
a navigation scenario with the global trajectory (in color green), the actual navigated
trajectory (in color red), and a candidate future trajectory (in color yellow). This
candidate trajectory should be scored in order to identify an appropriate fitness
relative to the constraints of following the established trajectory and avoiding

Fig. 14.12 Local egocircular representation with global path (green), sampled local path (yellow),
local goal (orange arrow), and odometry (red arrows). The robot moves leftwards
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collisions. The local egocircle map contains only the world sensed information within
the depicted radius. It generates a local egocircular range scan from the information
(color blue), which is used to calculate some of the trajectory costs. The particular
costs needed for a functional Move Base implementation include the obstacle cost
function, the go-to-goal cost function, and the path comparison cost function. These
costs were depicted earlier in Fig. 14.5 based on a local occupancy grid. A description
of these costs and the analogous egocircle implementation representation will be
given below.

The trajectory scoring is meant to provide a rank ordering of the sampled
trajectories from best to worst for prioritizing collision checking and trajectory safety
assessment. It does not need to involve a precise representation of the robot model
nor scoring functions, as long as the model is approximately correct and the scoring
functions are monotonically correct over large swaths of the local area around the
mobile robot. Therefore several simplifications are made to improve computational
runtime.

An important simplification is using an inflated egocircle range scan in order to
treat the robot as a point for certain tasks. Conceptually, a circle of radius rins is
placed at the location of each point represented by Lm and a new egocircle scan is
generated based on the ranges to these inflated points (see Fig. 14.13). The inscribed
radius rins of the robot is used to ensure that the result is liberal. This requires first
finding the subset of points in the egocircular map within a specified distance ds of
a given pose ps = (ρs, θs)T . We approximate this as:

β(ps, ds) =
{
pb ∈ Lm

∣∣∣
∣ (θs − θd) � θb � (θs + θd)

}
(14.12)

(a) (b)

Fig. 14.13 Overhead views showing the simulated environment (left) and the egocircle represen-
tation (right). The original egocircle is shown in black while the inflated egocircle is shown in cyan.
(a) Simulated environment. (b) Original and inflated egocircles
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where θd = ds/ρs .
Let Tm2p(L, i) map the ith element of egocircle range scan L to egocircular

coordinates. The inflated egocircle can then be expressed as follows:

Linf l(i) = min
j∈B(i) Lm(j)− rins,where

B(i) =
{
j ∈ ncirc

∣∣
∣∣ Tm2p(Lm, i) ∈ β(Tm2p(Lm, j), rins)

}
(14.13)

Obstacle Cost Function
The obstacle cost function reflects the cost of traveling close to obstacles. The
obstacle cost of a trajectory is a function of the obstacle costs of the poses in the
trajectory. The obstacle cost of query point p is a function of the distance to the
nearest obstacle point, represented as dmin(p). The obstacle cost cobs is

cobs(p) = cobs ◦ dmin(p)

=

⎧
⎪⎪⎨

⎪⎪⎩

−1, if d < rins

c̄obs exp−w(d−rins ), if rins ≤ d < rmax

0, otherwise

(14.14)

where d = dmin(p), and c̄obs is a predetermined constant cost. The values rins and
rmax represent the nearest permissible distance and the distance beyond which an
obstacle has no cost. An obstacle cost of −1 means that a pose definitely collides.
Depending on the geometry of the robot (i.e., if it is elongated or otherwise not a
circle), it is possible for colliding poses to receive nonfatal obstacle costs. If any pose
in a trajectory collides, the trajectory is assigned the fatal cost of−1. Otherwise, the
trajectory is assigned the obstacle cost of the last pose in the trajectory.

The standard costmap-based obstacle cost function uses a distance map to
implement dmin. The distance map is computed such that each cell contains the
Euclidean distance to the nearest occupied cell in the occupancy grid. The egocircular
representation does not admit such a calculation since it is a boundary based polar
model of 3D space (it does not measure space according to discretized area or
volume). Instead, dmin is brute force computed between the query pose and a local
subset of the egocircle as follows:

dmin(p) = min
b∈B distp(p, b)) (14.15)

where B = β(p, rmax) and distp returns the distance between polar points p and b
using the law of cosines.

To understand this distance based cost function, it is best to examine the first
column of costmap images in Fig. 14.14. The red regions correspond to 0 values as
those locations are far from the obstacles, which are the black regions in the image.
The coloring trend goes to blue/purple as the distance from the query location to the
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(a) (b) (c)

(d) (e) (f)

Fig. 14.14 Visualization of the trajectory scoring as cost maps computed on an occupancy grid
(top row) and from egocircle (bottom row). The grid points are converted to polar representation and
scored according to the described scoring functions. Low cost is red and high cost is blue/purple.
Points lethally close to obstacles are black in the occupancy grid and purple in the egocircle. The
brown curve is the global path to follow. (a), (d) Obstacle cost. (b), (e) Local goal cost. (c), (f) Path
cost

nearest obstacle point lowers to be within the interval [rins, rmax]. The black obstacle
regions would give −1 values. These should be very large or infinite costs, however
the Move Base implementation checks for—and rejects trajectories with—negative
scores. The top image, Fig. 14.14a, is the grid-based costmap while the bottom image,
Fig. 14.14d, is the egocircle costmap evaluated using Eq. (14.14) over the same grid
as the costmap, where each point in the 2D grid is converted to polar representation.
The two functions have similar scores outside of the occupied regions. The pairwise
computations for the egocircle implementation, per pose tested, are quadratic but
based on two low cardinality point sets. The grid-based distance computing scheme
is linear in the local occupancy grid area [101], thus it too is quadratic in time cost but
with larger base values. Once computed, grid-based trajectory costs are constant per
robot pose tested. As with collision checking, the data preparation time cost is near
zero for the perception space approach but has a high slope in per pose scoring time.
The world centric model has a non-negligible time cost to build the scoring maps and
a small constant cost to score per pose. The perception space method will be faster
than the grid-based approach until a large enough quantity of poses is sampled. The
number of poses to score grows linearly with the number of trajectories to score.
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Goal Point Cost Function
The purpose of this cost is to reward candidate trajectories whose terminal points
are close to the local goal point. In a grid-based scoring strategy, the local goal is
selected as the first pose on the global path that exits the local costmap. The distance
map for the go-to-goal cost warps around obstacles and reflects the true cost-to-go if
the occupancy map is correct (see Fig. 14.14b). Under an egocircle representation,
two deficiencies occur: (1) the true cost-to-go requires more computation when there
is an obstacle between the evaluation point pcir,i and the local goal p∗loc, and (2)
the true cost-to-go cannot be ascertained when there is an obstacle between the
robot’s camera (located at the origin) and the local goal. For the first case, we simply
compute the distance as though there were no obstacles. We avoid the second case by
selecting local goal as the last unobstructed pose on the global path that lies within
the egocircle. Poses are classified as obstructed or unobstructed by using the inflated
egocircle rinf lated .

Let the index set J be defined as follows:

J =
{
j ∈ N

∣∣∣∣ g
∗
j = g∗(tj ) for tj ∈ R

+
}

(14.16)

where g∗(t) is the global path and tj indexes into it to create a set of global path
waypoints.

Pose ploc is unobstructed if ρloc < rinf lated(Angle(ploc)). Poses that are less
than 2 ∗ rins behind an inflated point are definitely in collision, but poses further
behind may simple be occluded. Consequently, we classify each pose as either safe,
colliding, or occluded. If g∗tj is safe and g∗tj+1 is colliding, the global path leads to
collision and replanning is triggered. Otherwise, the local goal is selected as follows:

p∗loc = g∗(tj )max
j∈J j

∣∣∣∣ dist(grobot , g
∗(tj )) < ρcirc

and Lm ◦ Linf l
(

Angle(g−1
robotg

∗(tj ))
)
> dist(grobot , g

∗(tj ))
(14.17)

where g* is the global path and grobot is the SE(2) pose of the robot in the world
frame.

Figure 14.15 summarizes the different cases determining the selection of the local
goal. If there are no occluding obstacles, the local goal is the last pose on the global
path that lies within the egocircle radius (Fig. 14.15a). Otherwise, the local goal is
the last unobstructed pose on the global path (Fig. 14.15b). However, if the global
path definitely collides (Fig. 14.15c), local planning is aborted and global replanning
occurs.

This cost function is adapted to the star-like free space region associated to the
current robot pose and based on its local environment, as captured byLm. It employs
the line-of-sight visibility property, from the robot pose (the origin of the egocircle)
to the goal point, to establish the scoring.
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(a) No obstacle (b) Occluding Obstacle (c) Global Path Collision.

Fig. 14.15 Selection of local goal for goal point cost function without (a) and with (b) an occluding
obstacle. The right-most plot (c) depicts a scenario that would trigger global replanning.

Visualization of the go-to-goal cost function is given in the second column of
Fig. 14.14 for the grid-based method (top) and the proposed heuristic (bottom). The
grid point values would be the scores associated to the point pcir,i if it were located at
those grid points. Note that the location of the goal point p∗ differs between the two
methods. The important characteristic is that the proposed heuristic approximately
matches the monotonic increase in the go-to-goal cost of the equivalent occupancy
grid cost (see Fig. 14.5b versus Fig. 14.5e). The difference in the shape of the cost
level sets is due to the grid-based method using Manhattan distance rather than
Euclidean distance.

Path Cost Function
In addition to the go-to-goal cost, there is another cost associated to the global
path. This one scores the sample trajectory’s terminal point against the global path
to identify how close it is to a point on said path. Relying again on the star-like
properties of the free-space region described by the polar egocircle estimate Lm, any
point on the global path that is obscured by a point on the inflated egocircle is not
considered as reachable from the terminal point of the candidate trajectory. With the
index set J defined as in Eq. (14.16), the local set of visible points on the global path
is the subset:

Jlocal =
{
j ∈ J

∣∣
∣∣ dist(grobot , g

∗(tj )) < ρcirc

and Lm ◦ rinf lated
(

Angle(g−1
robotg

∗(tj ))
)
> dist(grobot , g

∗(tj ))
}

(14.18)
where grobot is the SE(2) pose of the robot in the world frame. The set consists
of indices to unobstructed global path poses within the egocircle domain. Pose
obstruction is evaluated as in the goal cost function. The path cost is then

Cpath(p, Jlocal) = min
j∈Jlocal

dist(p,Pos(g−1
robotg

∗(tj ))), (14.19)
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where Pos(g) grabs the translational coordinates of the SE(2) element g. Again,
the distance calculation in the above equation uses the law of cosines to generate
the distance using polar representation for point positions. The cost is basically the
straight path length from the trajectory terminal point given byp to the path waypoint
in the robot’s frame given by Pos(g−1

robotg
∗(tj )). Global path waypoints obscured by

an obstacle do not factor into the cost. The third column of Fig. 14.14 depicts the
traditional grid-based path cost (top) and the heuristic polar path cost (bottom). For
the latter, regions occluded by obstacles and lacking line of sight have a cost based
on the nearest visible path point. As with the previous cost comparison, the overall
trend matches between the two implementations in the free-space regions, with the
level sets once again having different shapes due to the different distance metrics
utilized.

14.5.4 Working with Stereo Cameras

With additional processing, stereoscopic camera configurations provide similar
structural information as depth or range sensors (as can multi-camera setups involving
more than two cameras with overlapping fields of view). The process for estimating
depth, triangulation, requires matching pixels on the left camera to those of the
right camera (the two pixels should represent the same world point, usually on
an object surface). A popular stereo configuration for robotic systems offsets two
cameras horizontally to provide image pairs similar to human binocular vision (see
Fig. 14.16).

In the parallel stereo configuration, epipolar lines are horizontal lines in the
image plane (e.g., dash dotted line in the figure). For each pixel in the left image, the
corresponding pixel in the right image is on the epipolar line. Limiting the search to

Fig. 14.16 Stereo camera
model [106]. (r1

L, r
2
L) and

(r1
R, r

2
R) are coordinate

systems of two image planes.
b is the baseline of stereo
camera model. I1 and I2 are
pixel values of the same target
point in the left and right
image planes
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a vicinity of the epipolar line constrains the pixel matching search space for more
efficient stereo matching. Image rectification can be applied first to transform them
into one common image plane so that all epipolar lines are horizontal. When rectified,
matching pixels are displaced horizontally between the left and right rectified images.
The disparity measures the pixel horizontal distance, usually in the r1 coordinate,
between two corresponding points in the left (L) and right (R) images, δ = r1

L− r1
R .

The depth value z is a function of the disparity and camera model parameters.

z = b f
1

δ
(14.20)

where b is the baseline representing the distance between two camera centers, f 1 is
the focal length of the horizontal coordinate, and δ is the disparity.

Following the taxonomy of stereo matching algorithms [107], approaches are
divided into local and global methods. The traditional block matching algorithm
is one of the local methods. This algorithm first extracts a small patch around the
pixel in the left image, and horizontally shifts the patch along the epipolar line by
candidate distance values (in a predefined disparity range) in the right image. The
estimated disparity is the one that minimizes the difference between the patch in the
left image and the shifted patch region in the right image. This difference can be
represented by cost function. One traditional cost is the sum of squared differences
(SSD).

∑

(ζ 1,ζ 2)∈N(r1,r2)

(I1(ζ
1, ζ 2)− I2(ζ 1 + δ, ζ 2))2 (14.21)

where I1(ζ 1, ζ 2) is a pixel value in the left image and I2(ζ 1+δ, ζ 2) is a pixel value in
the right image. Several alternative cost functions exist for the matching optimization,
such as normalized cross-correlation (NCC), sum of absolute differences (SAD),
mean of absolute differences (MAD), etc. [107]. Hirschmuller [108] also introduces
the semi-global block matching algorithm that integrates local pixelwise matching
and global smoothness constraints. This approach has better performance when
dealing with varied illuminations, occlusions, and low texture surfaces. Moreover,
in order to reduce computational complexity and obtain smoother disparity, some
optimization and refinement techniques are integrated [107]. Real-time disparity
estimation implementations exist based on specialized hardware approaches, such as
via onboard FPGA [109, 110] or graphical processing units [111]. Once the disparity
image is estimated, generation of the depth image using Eq. (14.20) is immediate and
can be used within the PiPS local planner. Though [105] employs disparity space for
navigation, we advocate its conversion to depth space due to the fact that calculation
of the equivalent Cartesian point representation is more efficient for propagation of
the points in the egocylindrical and egocircular representations (and easier to write
as a set of operations).
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14.6 Benchmarking Navigation Methods

To aid in the evaluation and comparison of navigation frameworks and strategies,
this section describes a set of ROS/Gazebo based environments and associated
initial/terminal point synthesis methods for generating repeatable navigation
scenarios. While it is preferable to deploy in real-world scenarios, doing so is more
difficult due to the need for the other components of a robotic navigation system
to be working perfectly, the setup and real-estate costs of creating and maintaining
the environment, the lack of configuration flexibility [112]. Plus more universal
evaluation by other researchers in these actual environments would be difficult.
The value of ROS/Gazebo is that highly repeatable experiments are possible in
a diverse array of worlds. The same experiments can be performed by anyone
with access to a system configured with ROS/Gazebo and to our publicly available
benchmark worlds and testing configurations [113]. Furthermore, in our experience
developing the original local PiPS algorithm [100], we found little difference in
performance between deploying in a well-designed Gazebo world and in our actual
office environment.

The testing protocol for the benchmark scenarios includes Monte Carlo runs
employing multiple point-to-point navigation instances that generate statistical
outcome models for comparison purposes. Important metrics include completion
rate, path length, and travel time. Though Gazebo simulations are not perfectly
deterministic, the outcomes should be close enough that the final Monte Carlo
statistics will have low variation (i.e., inter-experiment variance is low).

14.6.1 World Synthesis

Because navigation is a generic capability expected of mobile robots, the
environments where robots may be deployed will vary in scale, structure, and obstacle
density. The proposed benchmark consists of several synthetic worlds modeled after
environments observed to exist here on our university campus. These synthetic
worlds are called sector world, campus world, and office world.

1. Sector World (Fig. 14.17a). The sector world consists of a single large room,
partially divided in the middle by a wall running from left to right. It is intended
to represent locations that are essentially large open areas dotted with a wide
assortment of obstacles. The lack of known obstacles means that the global
planner will generate simple piecewise linear paths from a start pose to a target
goal pose.

2. Campus World (Fig. 14.17b). The campus world is intended to model the outdoor
free space of a university campus, where adjacent structures and landscaping force
one to follow specific paths, and open areas admit more free form movement across
them. Consequently, it consists of several relatively large open areas connected
by narrower corridors. The narrow corridors are well defined and generally clear
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(a) (b) (c)

Fig. 14.17 Overhead views of the benchmark worlds. The 10 m yellow bar provides a means to
assess the scaling of the three worlds. The office world is rotated. (a) Sector world. (b) Campus
world. (c) Office world

of miscellaneous obstacles. The open areas (e.g., open quads) are presumed
to have multiple purposes and therefore will contain a randomized assortment
of obstacles. When considering particular global planning or world modeling
strategies, some areas of this world are best simplified through a graph-based
or topological model of the space (e.g., corridors linking open spaces), whereas
other areas benefit from spatial world models.

3. Office World (Fig. 14.17c). The office world is based on digital architectural
floor plans of the fourth-floor of the building containing our lab, provided by the
interior designers of the building after it was remodeled. It serves as an example
of a real office indoor scenario, with long hallways connecting open cubicle areas,
enclosed offices, and larger conference rooms and laboratory spaces. While halls
are narrow enough to be easily blocked, there are generally alternate routes
available. Doors that are usually closed have been replaced with walls.

For each of these worlds, there is an associated global map containing only the
permanent structural elements (the walls). Global paths generated from the map
will typically be infeasible due to unmodeled obstacles. Some paths may be blocked
for the narrower passages, should there be objects (randomly) placed within them.
The next section describes how specific navigation scenarios are configured and
instantiated.

14.6.2 Scenario Configuration

Monte Carlo runs provide statistical insight on the performance outcomes from
a large sample of data. In each Monte Carlo run, one or more characteristics
of the experiment are determined by a provided random seed. The seed ensures
that experimental conditions are variable and repeatable. An important aspect of a
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Fig. 14.18 The left area depicts laser safe obstacles while the right area depicts laser unsafe
obstacles. The top-right obstacle is a custom box with very short height that cannot be detected by
the laser scan.

scenario configuration is the type and placement of obstacles. We distinguish between
two general categories of obstacles: laser safe and laser unsafe. Laser safe obstacles
have vertical sides or an invariant occupancy profile from the floor up to the height of
the robot. This property ensures constant cross-sectional geometry and satisfies the
assumptions of laser-scan based planning approaches regarding world geometry for
successful collision avoidance. Laser scan approaches should be able to safely avoid
laser safe obstacles but may not be able to avoid laser unsafe obstacles. Figure 14.18
depicts some of the safe and unsafe obstacles available for the scenarios, as available
through the Gazebo model database. The specific randomized configurations for
each world are as follows:

1. Sector World (Fig. 14.19a). Starting poses are sampled from a line (depicted in
red) running inside and parallel to the north wall of the world and place the robot
facing inwards. The coordinates for this region are x ∈ [−9, 9] and y = −9. Goal
poses are sampled from a parallel line just inside the south wall (depicted as the
green line), whose coordinates are x ∈ [−0, 9] and y = 9. All navigation tasks
require traveling from one side of the world to the other. The area between the start
and goal lines is populated by laser safe obstacles at fixed locations in the world.
Low and medium density configurations exist. Manual placement of the obstacles
was done with the aim of creating an approximately uniform distribution with
moderate clearance between obstacles. If desired, laser unsafe obstacles can also
be randomly placed throughout the same area of the environment.

2. Campus World (Fig. 14.19b). For the campus world, there is one start pose (the
red dot) and seven candidate goal poses. A given scenario will randomly select one
of these predefined goal poses. A specified number of obstacles are uniformly
distributed among the primary open areas of the world (random position and
orientation). The obstacle type is randomly chosen as either a blue cylinder (laser
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(a) (b) (c)

Fig. 14.19 Worlds annotated with start (red) and goal (green) points or regions. For sector world,
the start and final points are selected from regions. The campus world has a single start point
(larger red circle) and multiple goal points (green circles). The office world start and goal points
are randomly chosen from the red circles in the map. The worlds also show examples of random
positions populated with obstacles. The blue objects are randomly placed laser safe obstacles. The
smaller red dots are laser unsafe obstacles. (a) Sector world. (b) Campus world. (c) Office world

safe) or a small red box (laser unsafe). As obstacles are placed, a minimum
obstacle-spacing threshold ensures that the navigation task remains feasible.

3. Office World (Fig. 14.19c). In the office world, there is a fixed set of locations
(the red points). Start and goal poses are randomly selected from a list of locations
around office. In order to reduce the duration of experiments in this significantly
larger world, the goal pose is randomly selected from only the three poses nearest
to the start pose. Obstacles are randomly placed in designated regions (free space
between start/goal poses and corridors) using the same approach as in Campus
World.

14.6.3 Benchmarking

Benchmarking a particular navigation strategy involves multiple runs with a pre-
determined set of random seeds. Comparison with another navigation method
requires using the same random seed set. An experiment instance proceeds through
four stages:

1. World Setup: The test Gazebo world is loaded and a given robot model is placed
within in it.

2. Task Setup: The robot is moved to the starting pose and all obstacles are added
to the environment. The specified robot navigation method is then initialized.

3. Navigation: The goal pose is sent to the robot controller and a timer is started. The
experiment remains in this stage until one of the following conditions is met:
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a. Succeed: the robot reaches the goal without collisions;
b. Bumper Collision: the robot bumps into an obstacle en route to the goal;
c. Aborted: the controller reports that planning has failed;
d. Timed out: the timer reaches 10 min.

During execution of the navigation scenario, pertinent scoring metrics are
maintained or accumulated as needed.

4. End: The value of the timer is saved as “path time.” The final path length is also
saved, along with the condition that ended Navigation. The controller is shutdown.

To compare performance, several metrics are calculated and stored for each
experimental instance. Popular metrics for evaluating robot navigation frameworks
include success rate, defined as the number of successful runs divided by the total
number of runs; path distance, defined as the robot path length travelled from start
to goal; and path time, defined as the time required for robot to reach the goal. The
latter two statistics are computed from the subset of successful runs. These metrics
measure the performance of planners from different perspective including robustness,
efficiency, and optimality. A good planner should perform well in these metrics.
Potential navigation parameters to consider or configure include the replanning rate,
the recovery behaviors, and the local map radius.

14.7 Navigation Experiments

Evaluation of the described perception space approach to navigation (PiPS DLP) will
consist of Monte Carlo testing on the benchmark navigation scenarios. Comparison
will be made with the standard Move Base implementation (baseline DLP), designed
for use with a laser scanner. The first scenario will test in the sector world,
with both laser-scan friendly and laser-scan unfriendly sector world instances.
No laser unsafe obstacles are added to friendly instances, while 30 are added to
unfriendly instances. The purpose of the experiment is to show that the perception-
space approach performance matches the classical methods under environmental
conditions appropriate for laser scanners and outperforms the classical methods
under more general conditions. The second set of scenarios will test the perception
space and classical navigation algorithms on the other two benchmark worlds,
campus world and office world.

An additional experimental variable will be the mobile robot type, where the
robot geometry will vary. The two robots will be the Turtlebot, Fig. 14.20a, and the
Pioneer mobile robot, Fig. 14.20b. The Turtlebot is a two-wheel differential drive
robot platform with cylindrical robot configuration and a circular base. For collision
checking purposes, it is modeled as a cylinder with 0.2 m radius. Depth images on
the Turtlebot are captured by a Kinect camera. The Pioneer is a four-wheel skid-steer
drive robot platform with a non-circular base, and non-cylindrical configuration.
The robot is modeled as a 0.56 m× 0.5 m rectangular box and configured to have
a Realsense R200 depth camera. Since we are only evaluating the ability of the
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(a) (b)

Fig. 14.20 Robot models used in the experiments. Green boundaries are footprints of robots. (a)
Turtlebot. (b) Pioneer

Table 14.4 Common
parameters

Goal Goal Global
position orientation replanning Controller
tolerance tolerance frequency patience
1 m 2π 1 3

Local
Planner planning #v #ω
patience frequency samples samples
5 5 6 20

controllers to handle the changed geometry, the Pioneer is simulated as a Turtlebot
base with the Pioneer’s chassis geometry on top. Since neither of these robots is
equipped with a laser scanner, we use the Depth Image to Laser Scan ROS package
[114] to create virtual scans based on the 10 rows of pixels nearest the optical center
of the depth camera. Each scenario involves 50 Monte Carlo experimental runs for
each local planner and each robot model.

Global replanning and recovery behaviors (see section “Navigation Using Move
Base”) are both enabled in all experiments. The time threshold of recovery behavior
is defined as controllerpatience. The purpose of the recovery behavior for baseline
DLP is to clear space in the local costmap. Since PiPS DLP does not use a local
costmap, its recovery behavior is altered to rotate the robot in 90◦ increments in an
attempt to point the robot away from whatever was obstructing it. Recovery behaviors
are also used if plannerpatience elapses without a valid global plan being found.
The size of the local region considered during local planning is also an important
parameter. A 5 m× 5 m square costmap with 5 cm resolution is used in baseline
DLP, while an egocircle with 512 cells and a radius of 3 m is used in PiPS DLP.
Common parameter values are given in Table 14.4. The forward sim time values are
different: 1 s for baseline DLP, 2 s for PiPS DLP. Though PiPS DLP can be run with
a local planning frequency of nearly 30 Hz, here we use the default frequency value
of baseline DLP (5 Hz) for all experiments. The global costmaps of both approaches
are populated using the virtual laser scans described above. The global costmap of
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PiPS DLP is also populated with the locations of collisions detected by the collision
checker. The values for all customized parameters are available in the configuration
files at [113].

14.7.1 Sector World with Laser Safe and Unsafe Obstacles

In the medium density sector world with laser safe obstacles, both baseline laser
scanner DLP and Ego-Centric perception-space planning have nearly 100% success
rates (see Table 14.5), which shows that our approach has similar performance under
normal environments. The failure case abbreviations are bumper collision (BC),
aborted (AB), and time-out (TO). The Pioneer and Turtlebot robots each only had
one AB out of 50 runs, with the rest being successful. The path lengths taken by all
of the robots were within 2% of each other, indicating that they all found comparable
paths. The completion times of the PiPS approach were close to but a few seconds
more than the laser scan baseline.

After randomly adding 30 laser unsafe obstacles with 1 and 1.2 m minimum
distance between each other for the Turtlebot and Pioneer robots, respectively, the
success rate of the baseline laser scanner DLP drops to 40% and 24%. The ego-
centric PiPS approach still has good performance with a success rate of 94% and
84%, see Table 14.6. Again, the average path lengths and completion times of both
methods are similar, except for PiPS approach with Pioneer robot. The additional
maneuvers necessary for keeping clear of laser unsafe obstacles led to reduced
forward speeds for PiPS, yielding completion times 30% larger than the baseline.
The success rate of Pioneer PiPS DLP is lower than that of Turtlebot. Most of the
additional failure cases are caused by bumper collision. Due to the geometry of
Pioneer and the programming of the recovery behavior, it can collide with obstacles
while executing the recovery behavior.

Table 14.5 Results for sector world with laser safe obstacles

Sector world with laser safe obstacles
Success Completion Path

Approach rate time length Failures (BC/AB/TO)
Turtlebot

Baseline DLP 100% 40.98 s 19.62 m 0%/0%/0%
PiPS DLP 98% 42.96 s 19.47 m 0%/2%/0%

Pioneer
Baseline DLP 100% 43.42 s 20.03 m 0%/0%/0%
PiPS DLP 98% 46.36 s 19.74 m 0%/2%/0%



472 J. S. Smith et al.

Table 14.6 Results for sector world with laser safe and randomly placed laser unsafe obstacles

Sector world with laser unsafe obstacles
Success Completion Path

Approach rate time length Failures (BC/AB/TO)
Turtlebot

Baseline DLP 40% 43.62 s 19.68 m 58%/2%/0%
PiPS DLP 94% 46.37 s 19.68 m 0%/6%/0%

Pioneer
Baseline DLP 24% 43.45 s 19.76 m 76%/0%/0%
PiPS DLP 84% 56.64 s 20.51 m 8%/8%/0%

Table 14.7 Results of campus world with randomly placed laser safe and unsafe obstacles

Campus world with randomly selected laser safe and unsafe obstacles
Success Completion Path

Approach rate time length Failures (BC/AB/TO)
Turtlebot

Baseline DLP 68% 38.82 s 18.44 m 30%/2%/0%
PiPS DLP 80% 50.03 s 20.37 m 0%/20%/0%

Pioneer
Baseline DLP 50% 40.17 s 19.26 m 48%/2%/0%
PiPS DLP 88% 49.27 s 21.43 m 8%/4%/0%

14.7.2 Campus World and Office World

In campus world and office world, 50 obstacles are randomly selected from laser
safe and unsafe obstacles with the same minimum distance offsets as in sector world.
In all cases, the PiPS modification has improved success rates versus the equivalent
baseline implementation (Tables 14.7 and 14.8). Furthermore, the success rate of
the baseline navigation scheme decreases when switching from the cylindrical robot
to the rectangular box robot while the success rate of PiPS DLP does not. PiPS
completion times continue to be a few seconds longer, as seen in the Sector world
cases, while the path lengths remain similar to those of the baseline cases. Having
roughly comparable path lengths indicates that the scoring system of the egocircle
representation is capable of providing a ranked ordering of the sampled trajectories
similar to that of the baseline local planner. In campus world, the completion rates
of Pioneer PiPS DLP are larger than those of Turtlebot. One reason could be the
different minimum distances between obstacles (1.2 m for Pioneer, 1 m for Turtlebot).
Though the distances are designed to give similar clearance to both robots, the
greater spacing may disproportionately reduce the problem of local minima for the
Pioneer (see Sect. 14.7.3). It should also be noted that the majority of failures are
due to aborted navigation as opposed to collisions. The PiPS method is successful
at avoiding collisions. The abort outcomes reveal failure modes of the hierarchical
planner.



14 Real-Time Egocentric Navigation Using 3D Sensing 473

Table 14.8 Experiment results of office world with randomly placed laser safe and unsafe obstacles

Office world with randomly selected laser safe and unsafe obstacles
Success Completion Path

Approach rate time length Failures (BC/AB/TO)
Turtlebot

Baseline DLP 72% 100.93 s 51.03 m 28%/0%/0%
PiPS DLP 92% 103.54 s 48.70 m 0%/8%/0%

Pioneer
Baseline DLP 66% 98.18 s 64.25 m 34%/0%/0%
PiPS DLP 96% 104.96 s 61.21 m 2%/2%/0%

Fig. 14.21 Visualizations of
the navigation process of
baseline DLP (left) and
perception-space DLP (right).
The top row has
visualizations in the 3D world
space from an external
reference frame. The bottom
row has visualizations of the
same information overlaid on
the robot’s camera view

14.7.3 Review of Outcomes

Here, we look a little more closely at the two different hierarchical navigation
implementations and also review the causes of failure. First, we review how
the baseline and PiPS navigation methods compare. The navigation information
associated to the two implementations is shown in Fig. 14.21. The top row provides
an overhead view of the mobile robot during navigation past and around a wall,
with the local segment of the global path also plotted. Due to the expansion of the
occupancy grid by the robot radius, the occupied regions are slightly thicker than the
true occupancy. The blue curve segments on the plots are from the sensor information
(laser scan or egocircle) and indicate the true locations of the obstacle surfaces. The
depicted occupancy grids communicate the information that the baseline DLP system
would have during planning, while the red and magenta points are sampled and scored
robot poses. The magenta poses correspond to trajectories with collisions, while the
red poses correspond to safe trajectories. The thick green curve is the chosen local
path to follow. It is the trajectory with the lowest weighted sum of obstacle cost, local
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go-to-goal cost, and path cost. In the case of the PiPS approach, it was also deemed
to be collision free based on the egocylindrical model. The baseline DLP system is
depicted by the left column images, and the PiPS DLP system is depicted by the
right column images. For the PiPS approach, the visualization is augmented with
the egocylindrical image, which contains memory of historical depth information
to reduce the effect of the sensor’s limited field of view. The wall data points to
the left of the robot are colored red, indicating close proximity to the robot. The
other obstacles in front of, to the right of, and behind the robot are colored green
to blue, indicating larger distances from the robot. Also depicted is the egocircle
(colored blue) which shows that the navigation system has good knowledge of the
local surroundings for informing the path scoring component of the local planner.

Failure Cases
Next, we explore the failure cases for the PiPS DLP navigation method. The two
failure case types experienced were bumper collisions and aborts.

Bumper collisions occur much more frequently with the Pioneer than with the
Turtlebot. The main source of bumper collisions with the Pioneer is rotating in place
near an obstacle since unlike with the Turtlebot this can cause the Pioneer to go
from a noncolliding state to a colliding state. This happens most frequently if a laser
unsafe obstacle is directly on the global path. Such obstacles are represented in the
egocylindrical model but not in the egocircle. As a result, evaluation of the cost
functions prioritizes trajectories that stick close to the global path (see Fig. 14.22a).
The trajectory accepted by collision checking will therefore be the one that gets the
robot as close to the obstacle as possible the obstacle. Similar behavior is exhibited by
the Turtlebot, but the Turtlebot is able to safely rotate in place to follow a replanned
global path while the Pioneer cannot (see Fig. 14.22b). Even if the local planner

(a) Total Costs (b) Too Close

Fig. 14.22 (a) Visualization of approximate total costs associated with trajectories ending at each
point on the grid (red = low, blue = high). A laser unsafe obstacle can be seen in front of the robot
(colored red). (b) Visualization of robot’s state a short time later; attempts to turn will result in
collision
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Fig. 14.23 Approximate
total cost values of a scenario
with a local minimum
(red = low, blue = high). Also
visualized: local goal (tan
arrow), global path (brown
curve), egocircle (black
points)

correctly concludes that it cannot safely turn, this may result in the execution of
a recovery behavior and still result in a collision. Incorporating collision checking
information into the egocircle should help to prevent the planner from taking the
robot so close to obstacles. Another option may be to permit the robot to drive
backwards if it is unable to go forwards or turn in place.

Local planning can also fail by getting stuck in a local minimum. Figure 14.23
depicts a scenario where the Turtlebot must pass between two obstacles in order
to follow the global path (brown). As shown by the color coded total cost values
(red = low, blue = high), there is a local minimum on the near side of the obstacles that
prevents the robot from traveling into the gap. Since the gap is sufficiently wide for
the Turtlebot to safely enter it, global replanning does not provide an alternative path
and navigation ultimately aborts. Tuning cost function parameters is only a partial
solution since different situations may require different sets of parameters to achieve
the desired behavior [61]. Incorporating concepts from gap-based approaches may
help to prevent problems related to local minima.

14.7.4 Implementation Using Stereo Camera

We now explore the performance of PiPS DLP when using a stereo camera.
As mentioned in Sect. 14.5.4, the depth images required by the PiPS system
can be produced by stereo matching algorithms. For these experiments, a stereo
camera is attached 20 cm in front of the Kinect on the Turtlebot and at the same
position as the Realsense on the Pioneer. A stereo camera is simulated using
gazeborosmulticamera Gazebo plugin with 7 cm baseline, 60◦ field of view,
640× 480 resolution, and 30 Hz frame rate.

The ROS stereo image processing package [115] generates disparity maps from
stereo image pairs. Depth images can be easily computed from these disparity maps
per Eq. (14.20). Traditional block matching (BM) and semi-global block matching
(SGBM) are both implemented in the ROS package. Figure 14.24 shows the results
of these methods on a simulated scene after parameter tuning. The first column
(Fig. 14.24a, d) depicts the simulated scene. In order to improve the performance
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Fig. 14.24 Visualization of stereo implementation. (a) A simulated world with textured ground
plane and Turtlebot; (d) The textured box and cylinder obstacles used in experiments; (b) and (e)
The pointclouds and depth image generated with the traditional block matching (BM) method; (c)
and (f) The pointclouds and depth image generated with the semi-global block matching (SGBM)
approach

of stereo matching, texture has been added to the ground plane as well as to the
randomly placed obstacles used in the experiments. The middle column (Fig. 14.24b,
e) shows the stereo matching results from BM for the scene in Fig. 14.24a. The
right column (Fig. 14.24c, f) displays the results from SGBM for the same scene.
BM and SGBM represent different trade-offs between speed and accuracy in stereo
processing. BM is significantly faster than SGBM (approximately 25 ms vs 120 ms on
the test machine), potentially enabling faster planning rates. However, the additional
processing performed by SGBM results in smoother, higher quality depth estimates.
The difference is especially apparent when looking at each algorithm’s depth estimate
of the white cube in Fig. 14.24a: BM was only able to estimate depth along the edges
of the cube and the number ‘1’ printed on it while SGBM was able to generate an
accurate estimate for most of the face of the cube. Since the local planning rate used
in the previous experiments was only 5 Hz, the superior quality of SGBM’s depth
images outweighs its longer processing time.

Apart from the depth image (and consequently the virtual laser scan) being
derived from stereo matching rather than a depth camera, the stereo implementation
experiments are identical to the previous experiments. The experiment results are
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Table 14.9 Results for sector world with laser safe obstacles using stereo implementation

Sector world with laser safe obstacles
Success Completion Path

Approach rate time length Failures (BC/AB/TO)
Turtlebot

Baseline DLP 100% 41.90 s 19.63 m 0%/0%/0%
PiPS DLP 90% 44.85 s 19.53 m 0%/10%/0%

Pioneer
Baseline DLP 100% 44.04 s 20.00 m 0%/0%/0%
PiPS DLP 82% 46.49 s 19.74 m 4%/14%/0%

Table 14.10 Results for sector world with laser safe and randomly placed laser unsafe obstacles
using stereo implementation

Sector world with laser unsafe obstacles
Success Completion Path

Approach rate time length Failures (BC/AB/TO)
Turtlebot

Baseline DLP 34% 41.90 s 19.63 m 66%/0%/0%
PiPS DLP 72% 51.58 s 19.83 m 6%/22%/0%

Pioneer
Baseline DLP 22% 443.45 s 20.44 m 76%/2%/0%
PiPS DLP 74% 56.69 s 20.61 m 8%/18%/0%

Table 14.11 Results of campus world with randomly placed laser safe and unsafe obstacles using
stereo implementation

Campus world with randomly selected laser safe and unsafe obstacles
Success Completion Path

Approach rate time length Failures (BC/AB/TO)
Turtlebot

Baseline DLP 64% 38.58 s 18.43 m 34%/2%/0%
PiPS DLP 84% 49.83 s 20.67 m 8%/8%/0%

Pioneer
Baseline DLP 46% 41.09 s 19.50 m 50%/4%/0%
PiPS DLP 86% 48.10 s 20.88 m 6%/8%/0%

shown in Tables 14.9, 14.10, 14.11, and 14.12. In all cases, the success rate of
the stereo implementation is equal or slightly lower than the success rate of the
corresponding depth image implementation. The stereo implementation is vulnerable
to all of the failure cases described in Sect. 14.7.3 in addition to stereo-related sources
of failure (noise, occlusion, featureless surfaces, etc.).
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Table 14.12 Results of office world with randomly placed laser safe and unsafe obstacles using
stereo implementation

Office world with randomly selected laser safe and unsafe obstacles
Success Completion Path

Approach rate time length Failures (BC/AB/TO)
Turtlebot

Baseline DLP 72% 101.09 s 60.50 m 28%/0%/0%
PiPS DLP 88% 115.52 s 48.38 m 4%/8%/0%

Pioneer
Baseline DLP 66% 100.55 s 75.94 m 34%/0%/0%
PiPS DLP 90% 104.33 s 70.63 m 4%/4%/2%

14.8 Conclusion

Modern hierarchical navigation methods mostly rely on laser scan sensor measure-
ments due to the computational cost of processing the depth or range imagery signals
generated from contemporary sensors. Approaches geared towards resolving this
problem rely on data structures that are efficient for low resolution imagery but do not
scale well for higher resolution imagery. Modifying the internal world representation
of the local planner to a viewer-centric or perception-space world representation
avoids the cost of mapping the data to data structures with poor scaling and grants
linear scaling properties as a function of the image resolution. A local planning
pipeline for trajectory scoring and collision checking using perception space has the
potential to replace the existing laser scan inspired strategies while preserving real-
time operation. This chapter described a set of modifications employing perception
space for a classical hierarchical navigation system. When evaluated on a described
navigation benchmark, the perception space navigation system had comparable
or better performance to the original laser scan implementation. Deficiencies of
the system were found to be a result of the local planner scoring system rather
than of the perception space modifications. Analysis and improvement of the
scoring functions and the recovery behaviors should resolve the identified issues.
Alternatively, exploring perception-space implementations of other local planning
strategies might lead to improved performance. Future work aims to do so.
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MUTCD Manual on uniform traffic control devices
OD Obstacle detection
PPR Pulses per revolution
RADAR Radio detection and ranging
ROV Remotely operated vehicle
SAE Society of Automotive Engineers
SLAM Simultaneous localization and mapping
SoC System on a chip
S/R Storage and retrieval
ToF Time of flight
TSR Traffic sign recognition
UL Unit load
VO Visual odometry

15.1 Introduction

We are in the era of liquid modernity [1], where the fragility of markets lays on
the power of the will of new generations. Post-centennial generation who will be
born around 2020 or even already were born will grow up with the speed of 5G,
Internet of things, and augmented reality, between other disruptive technologies yet
unknown. In the era of innovation, products will be mostly services [2, 3] based on
value propositions [4] that fit with the profile of a market that will use disruptive
technologies. The use of autonomous electric cars depends on the evolution of
business models based on open services. Clearly, with the advent of 5G technology,
disruptive technologies will define the future market trends. One of those disruptive
technologies will be autonomous electric cars.

Why electric autonomous cars? First off because autonomous cars or self-driving
cars have all the features of business trends. Those businesses will be ruled by IT
platforms and consumer profiles of the markets. Innovation is changing the future
of successful business models. The next generations, after Z generation, will choose
to buy or rent products and services online. Business based on IT platforms will
ease the use of autonomous electric cars, in an era when big and expensive cars
will be obsolete. Perhaps an icon like Amazon which has no factories can teach us
the generational path to the new generation practices of individual transport. We
understand why people prefer buying online. It is easier, cheaper, faster, and even
functional. A single place to pick up from a variety of choices.

Individual transport as a service will change in the next 15 years, because
of the natural timeline of future drivers. According to H. Chesbrough, the next
generations of entrepreneurs will embrace new paradigms to develop businesses. So
the commitment to the future of cars is a combination of two generations, centennials
and post-centennials, and the use of business models based on IT platforms. The
innovative business committed to fit customer needs that use to buy or rent online
but with a power one thousand times faster than their previous generation because
of 5G technologies. In the near future, innovation on products as a service will be
a practice on a regular basis, so autonomous electric cars are in the center of the
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trend. Products as a service are a trend in the business model of a lot of companies.
Nowadays more and more, most of the revenues for enterprises come from services
instead of products. Of course, technology is important, but the way the value
proposition is delivered is more important.

So, at the end of the day, owning a product in the era of liquid modernity will
not be relevant, but the service delivery will be. Perhaps disruptive business models
in the near future will change the way people transport or get things transported on
each day basis, leaving behind the madness of gasoline cars as a heavy, huge, and
polluting artifact for museums. That day is not way long far, as well as future drivers
will be born around 2020, or even were already born and right now are preparing to
ask for a lift from an autonomous electric car through a 5G-IoT graphene device.

Therefore, the following sections present an introduction to what is considered
an autonomous vehicle, its main components and applications. Afterward, more
in-depth topics are addressed, such as perception (sensors), self-localization,
environment mapping, trajectories planning; along with a case study of an electric
autonomous vehicle which is currently in development at CETYS University
Mexicali Campus in México, for transportation of people inside the campus. And in
the end, a perspective on how innovative business models will change the future of
cars and transport, along with our conclusions, is provided.

15.2 Fundamentals of Autonomous Mobile Vehicles

15.2.1 Levels of Automation

The current taxonomy and definitions of the automation of an on-road motor
vehicle are governed by the J3016 standard, originally published by the Society
of Automotive Engineers (SAE International) in 2014 and revised in 2016 and 2018
[5]; they are organized in a classification system consisting of six different levels
(see Fig. 15.1):

• Level 0, No Automation: In this level of automation, the entire performance of the
motor vehicle is under the authority of a human driver, this including all the tasks
related to driving, such as the execution of steering, acceleration/deceleration
maneuvers, monitoring and sensing the driving environment, and the fallback
performance of the dynamic driving task, which is the operational and tactical
aspects of driving a car, but not the strategic ones, such as choosing a destination.
Most commercial motorized vehicles fall under this category of being driven fully
by humans.

• Level 1, Driver Assistance: in this level of automation, the entire performance of
the motor vehicle still falls under the authority of a human driver, but under certain
circumstances, and using information of the driving environment, an integrated
assistance system can aid the human driver in certain tasks such as steering, or
accelerating/decelerating, all under the assumption the driver will take care of the
remaining aspects of the drive. It must be noted that a motor vehicle may have
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Fig. 15.1 Levels of driving automation by SAE [5]

one or more tasks aided by said systems, depending on the number of system
capabilities, or driving modes.

• Level 2, Partial Automation: In this level of automation, a driving mode executes
a specific task of the steering, and acceleration/deceleration ADAS capabilities.
Certain parts of the driving experience can be automated in this level, with systems
such as self-parking, following a car at a certain distance and staying in lane. The
driver is always in control of the car.

• Level 3, Conditional Automation: In this level of automation, there is an
autonomous driving mode which uses data of the driving environment obtained
through an array of advanced sensors, typically ultrasonic, RADARs, LiDARs,
and machine vision. These cars can make decisions and perform the same and
more advanced tasks than the previous level. Nevertheless, this level is still not
fail-safe, and drivers must be ready to take control of the vehicle at all times if
the situation requires it.

• Level 4, High Automation: In this level of automation, all capabilities of the
previous level are available, the difference is that these systems possess more
advanced technology, that is, redundant systems which allows the vehicle to
handle any situation or system failure on its own. Passengers are not required to
supervise but may take control of the vehicle if desired or preferred. These features
are limited only to certain areas or conditions and if the required conditions are
not met, autonomous features will be limited or will not engage.

• Level 5, Full Automation: In this level of automation (which is the highest),
similarly to level 4, passengers do not need to supervise and the vehicle can
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perform full autonomous driving in any conditions while adapting to any driving
situation and guaranteeing the safety of passengers, pedestrians, and other drivers.
These features are not limited to specific areas or conditions. These vehicles can
drive everywhere while offering a more responsive and refined experience for the
passenger on board.

Currently, there is no autonomous vehicle that is level 5 but companies such as
Google Waymo and Tesla (among others) are working hard to reach this level and it
is only a matter of time before they do. See Sect. 15.2.3 for a commercial autonomous
vehicle application, the Google Waymo’s self-driving taxi.

15.2.2 Main Components

The components of an autonomous vehicle vary depending on the application of the
vehicle; however, there are certain main components that are indispensable inside a
vehicle to be able to achieve a level of autonomy.

Central or main computer: This computer can be from a microcontroller or a Field
Programmable Gate Array (FPGA) to a complete computer or a mini computer. It
should be mentioned that depending on the design architecture implemented in the
vehicle, it is possible to find more than one computer connected and working for
the central computer. Additionally, it is responsible for communications between
electronic devices, sensor reading, data processing, trajectory calculation, control of
vehicle actuators, among other functions.

Some designs of autonomous low-end and low-cost vehicles that are in
development can get to use mini or micro computers such as the raspberry pi [6]
or the zini [7]. However most of the designs of autonomous vehicles for industry or
commercial use full computers on board, with multicore processors and dedicated
graphics cards.

The sensors are some of the indispensable and most important components of
an autonomous vehicle because the sensors perform the function of measuring
physical variables or desired parameters such as angular position, speed, temperature,
acceleration, position, distance, among others. The measurement of these parameters
and the analysis of the information they provide is called perception and is basically
the ability of a vehicle to be aware of itself and what is happening around it, this
being the first step to move toward the autonomy.

The most important sensors found in autonomous vehicles are the following:
Odometry sensors that can be optical or magnetic encoders to measure the angular

position and speed of the vehicle’s wheels, in order to have the ability to calculate
the displacement of the vehicle in real time.

Inertial measurement unit (IMU) is a device that can hold up to three sensors of
three dimensions each simultaneously, commonly to each dimension of measurement
known as degree of freedom (DoF). The sensors contained in an IMU are a three-axis
gyroscope, a three-axis accelerometer, and a three-axis magnetometer. The signals
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provided by these sensors are used to calculate the angular position and orientation
of the vehicle.

Light Detection and Ranging or LiDAR is an advanced sensor used to create
digital maps of the surrounding environment of the vehicle, these sensors are complex
optoelectronic systems that use moving mechanical parts to control the rotation and
speed of 1–128 lasers that are inside the device. The signals of the lasers are emitted
and reflected by obstacle surfaces or objects in the field of view of the device;
afterward, the reflection is detected and through the technique time of flight or ToF,
the distance from the emitting device to the laser reflexion point (on the object
surface) is calculated, allowing effectively the use of this information to create
digital maps or point clouds of the environment surrounding the LiDAR (see Fig.
15.2). Later, in the perception section of this chapter, the use, advantages, most
common models of LiDAR employed in the autonomous vehicle industry, and its
characteristics are studied.

The video cameras, similar to the LiDAR, are used to perceive the environment
surrounding the vehicle; however, due to the nature of how a video camera operates,
the information that can be extracted from the data of the same is very different,
and although there are techniques to calculate the depth of some feature of an
image, such as stereovision [8], the LiDAR is the most appropriate and fastest to
perform the task of creating digital maps of the environment. The main function of
a camera is to detect features and patterns within the images captured in video and
the identification, location, and classification of objects or figures of interest such as
people, other vehicles, and dynamic objects, the lines that divide the lanes in a street
or highway, the traffic signals, or landmarks used by the vehicle for the correction of
its position, among others.

Ultrasonic sensors are mainly used to measure distances or detect the presence of
objects within a range of vision. These sensors use a transmitter and an ultrasonic
wave receiver and the ToF principle to calculate the distance of the detected object(s).
Its main advantage is its wide field of view, which makes this type of sensor able to
detect obstacles in close proximity to the vehicle.

Infrared sensors have various applications, but their main function is to detect
the presence of objects at a predefined distance using an emitter or transmitter and
the detection of the reflection of light as a signal. In Fig. 15.3 the basic principle of
operation is shown.

Fig. 15.2 Simplified diagram of how automotive lidar works
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Fig. 15.3 Infrared sensor
basic operation principle

Fig. 15.4 Satellite GPS III launched in 2018 [9]

As a disadvantage, these sensors have by nature a limited range of vision, unlike
ultrasonic sensors. However, they also have a great advantage, and this is their high
response speed compared to other sensors such as those based on a principle of
resistive transduction. Because of this, these types of sensors are a viable option to
quickly detect obstacles in a limited range of vision.

The Global Positioning System or GPS is fundamental in an autonomous vehicle
because this system, as its name indicates, is able to calculate its current position in
any part of the world, using satellites as a reference (see Fig. 15.4).
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Fig. 15.5 Twenty-four-slot satellite constellation, as defined in the GPS Performance Standard [9]

Devices equipped with GPS receive signals from a constellation of satellites
which contains at least 24 operational satellites that are flying in medium earth orbit
(MEO), at approximately 20,000 km altitude (see Fig. 15.5).

As of January 9, 2019, there were a total of 31 operational satellites in the GPS
constellation. The GPS satellite expansion gave as a result improved coverage in
most parts of the world [9].

The term GPS is owned by the United States; however, there are other satellite
navigation systems which use their own satellite constellation such as BeiDou
Navigation Satellite System (BDS) from China [10], the Indian Regional Navigation
Satellite System (IRNSS) [11], Galileo from the European Union [12], among others.

Radio Detection and Ranging (RADAR or radar) is a well-known and studied
technology developed originally for military applications during the Second World
War. In autonomous vehicles, radars are active radio frequency devices used to
determine the location, speed, and direction of obstacles or targets of interest within
its coverage area [13].

Radars work similar to the LiDAR sensors, the main difference between these
systems is that radars use radio waves instead of laser; however, there are advantages
and disadvantages between them. LiDARs can detect smaller objects and can build
an exact 3D image of an object, while RADARs cannot. On the other hand, RADARs
can operate in cloudy weather conditions and possess a longer operating distance,
whereas LiDARs have greater difficulty in these conditions [14]. In Fig. 15.6, a
dual RADAR configuration for an autonomous vehicle is shown; this configuration
combines two RADARs in one, which generates some advantages such as a broader
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Fig. 15.6 Dual RADAR configuration for autonomous vehicle [15]

Fig. 15.7 Detection coverage of the dual RADAR configuration [15]

coverage, fault detections, and an improved signal processing due to the overlap of
both sensors [15] (see Fig. 15.7).

The components mentioned above are the most important or indispensable in any
autonomous vehicle development that wants to achieve a high level of autonomy;
however, they are not the only ones and new solutions, and technologies for
autonomous vehicles are constantly being developed. In the next sections of this
chapter, you will find more detailed and in-depth information on the functioning of
these components.
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15.2.3 Applications

Due to the fact that autonomous vehicles are wheeled mobile platforms, they share
some of the applications that conventional land vehicles, such as automobiles,
tuggers, cranes, and carts have, with the added benefits that automation brings in
specific scenarios, such as higher precision, endurance, worker safety, and efficiency,
among others. This section will explore common modern autonomous vehicle
applications across different industries.

15.2.3.1 Automated Storage and Retrieval System (AS/RS)

Unit load (UL) and storage and retrieval (S/R) systems are a critical link for supply
chains in global markets. The introduction of crane and tugger-based technologies
allowed for automated vehicle systems to be introduced in UL S/R system
configurations, such as the one presented in Fig. 15.8, finding wide implementation
in modern storage facilities, built or renovated after 1994, year in which AS/RS
systems had a significant increase in implementation in distribution environments
in the United States [17]. The main benefits of AS/RS over conventional UL R/S
systems are:

• Considerable savings in labor costs.
• Higher efficiency of floor space and storage layout configuration.
• Increased working reliability.
• Reduced error rates and product waste.

Nevertheless, it must be noted that since AS/RS has a higher level of technology
integration than conventional UL R/S systems, they tend to be significantly costlier, as
a high investment is needed in order to establish the desired level of automation, and
a proper closed loop control system; similarly, because of the systematic approach

Fig. 15.8 Distribution center with an implemented AS/RS [16]
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that automation entails, it tends to be significantly less flexible than conventional,
non-automated systems [17, 18].

15.2.3.2 Mobile Industrial Robots

Mobile industrial robots are cooperative robots that are specifically programmed to
work in an industrial setting (see Fig. 15.9). Their main functionalities are focused on
increasing efficiency of industrial processes and low-value logistics tasks, increasing
the speed of internal transportation through the use of automation and deep learning,
and providing a cost-efficient solution for improving the overall reliability of the
industrial environment by using a set of very powerful and precise sensors.

15.2.3.3 Commercial Autonomous Vehicles

One of the most common applications of autonomous vehicles, “self-driving cars”
are modern solutions that are commercially available with the implementation of
automation up to a certain degree. Most commercially available self-driving vehicles
fall between the second and third level of automation, with some vehicles in the fourth
level currently undergoing trial sessions [19] (see Fig. 15.10). Due to the sensibility
of the working environment of these vehicles, namely the fact that human lives are

Fig. 15.9 MiR500 Mobile
Robot for industrial
applications [16]

Fig. 15.10 Google Waymo’s
self-driving taxi is in service
in Arizona in December 2018
[19]
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at stake, the trial period of these systems are considerably more rigorous than for
other autonomous land vehicle applications, this with the intention of having greater
passenger security, and reducing the amount of disengage incidents, when the driver
has to take control of the autonomous system. Due to current level of automation of
commercially available self-driving vehicles, it must be noted that, for safety reasons,
the driver must be alert during the entire driving task, in case a disengage incident
occurs.

15.2.3.4 Autonomous Vacuum Cleaners

Robotic vacuum cleaners, such as the Roomba i7 from iRobot (see Fig. 15.11), have
gone from simple closed loop systems to full-fledged deep learning autonomous
systems. These autonomous robotic systems use an integrated array of specialized
sensors that allow them to navigate through cleaning environments, focusing on
avoiding obstacles, such as furniture, while maximizing the efficiency of surface-
cleaning through the use of proprietary algorithms. Modern iterations of autonomous
vacuum cleaning robots include smart mapping features that automatically generate
a layout of the cleaning environment, and labels it accordingly for future cleaning
tasks; these systems typically have some degree of IoT integration in the form of an
application or through communication with dedicated personal home assistants such
as Google Home or Amazon’s Alexa.

It must be noted that the applications explored in this section were chosen based
on relevance, and notability among the general public. As more levels of automation
are achieved, more relevant applications of autonomous systems will emerge; as
such, there are other relevant applications currently in development for autonomous
land vehicles in sectors such as agriculture, logistics, entertainment, and healthcare.

Fig. 15.11 iRobot Roomba
i7, autonomous robotic
vacuum [20]
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15.3 Perception

15.3.1 Environment Sensing

In a general perspective, sensors can be grouped according to the functions
they provide. Internal vehicle state sensors provide information about the current
operation and state of the vehicle, including lower-level functions such as engine
operations and higher-level states such as vehicle motion and position. External
environment sensors provide information about the world outside the vehicle,
potentially including road and lane information, the location and motion of other
vehicles, and stationary physical objects in the world. Finally, driver state and
intention sensors provide information about the state or intentions of the driver.
These sensors can include seat occupancy and passenger weight (pressure or infrared
sensors), audio sensors, internal cameras, eye trackers, breath alcohol sensors, and
haptic transducers [21].

There are a number of issues when designing the external environment sensing
suite for an autonomous vehicle. The system objectives and requirements are
obviously a direct influence in the design process. For example, highway driving
is a much more structured environment than off-road driving, and that structure
can be exploited in sensor and control system design. On the other hand, the
urban environment, which may consist of irregular and changing road networks
and vehicles and pedestrians behaving unpredictably, is much less structured than
highway driving and may require significantly more sensing capability. Robustness
and safe performance of hardware and software are obviously required for both off-
road driving and on-road production automobiles. Redundancy in sensing modalities
is also a highly desired feature, especially in a less structured, more uncertain
environment, but the cost of many of the sensors used on research vehicles would be
prohibitive for a commercial passenger vehicle application. The level of autonomy
with respect to the human driver is also a significant design issue in a passenger
vehicle system. The degree to which the driver is to be part of the sensing and
control loop is a design decision driven by both technical and nontechnical (i.e.,
marketing and legal) considerations.

A number of different sensors have been developed for sensing the external
environment of an autonomous vehicle. Many have been developed initially for
safety warning or safety augmentation systems that are now being deployed on some
high-end vehicles. Among the array of different sensors available for establishing an
environment sensing system, the following are worth mentioning:

15.3.1.1 LiDAR Sensor

In principle, a LiDAR consists of a transmitter and a receiver. Short light pulses with
lengths of a few to several hundred nanoseconds and specific spectral properties are
generated by the laser. Many systems apply a beam expander within the transmitter
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unit to reduce the divergence of the light beam before it is sent out into the
atmosphere. At the receiver end, a telescope collects the photons backscattered
from the atmosphere. It is usually followed by an optical analyzing system which,
depending on the application, selects specific wavelengths or polarization states out
of the collected light. The selected radiation is directed onto a detector, where the
received optical signal is converted into an electrical signal. The intensity of this
signal in its dependence on the time elapsed after the transmission of the laser pulse
is determined electronically and stored in a computer [22].

LiDARs carry out sensing by using their own emitted light, and therefore, they
are not sensitive to environmental illumination. Road detection systems that rely on
this type of sensor can then, in principle, provide the same level of accuracy across
the full spectrum of light conditions experienced in daily driving; therefore, they are
particularly suitable for achieving higher levels of driving automation [23].

Among the existing commercial LiDAR, the following devices are worth
mentioning:

• Velodyne VLP-16 LiDAR
Capable of delivering the most accurate real-time 3D data that consists of the

creation of a full 360◦ environmental point cloud view (Fig. 15.12).
• Velodyne HDL-64E

The HDL-64E LiDAR sensor includes 64 channels with an accuracy of
±2 cm and a 100–120 m range, designed for obstacle detection and navigation of
autonomous ground vehicles and marine vessels (Fig. 15.13).

Recently a new LiDAR technology arrived, solid state LiDARs, which have
the advantage that they are smaller and, importantly, they eliminate moving parts
involved in the optical mechanisms as seen in Fig. 15.14, which may enable their
mass manufacture thereby bringing manufacturing costs down [27].

One of the most remarkable solid-state LiDARs InnovizOne with a detection
range of 250 m, a horizontal field of view of 120◦ and a vertical field of view of 25◦
which comes at a fraction of the cost of the equivalent electromechanical solution
(Fig. 15.15).

Fig. 15.12 Velodyne
VLP-16 LiDAR [24]
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Fig. 15.13 Velodyne
HDL-64E LiDAR [25]

Fig. 15.14 Diagram of the LiDAR optics and encoders [26]

Fig. 15.15 InnovizOne
solid-state LiDAR [28]

15.3.1.2 Kinect Sensor

The Kinect device is a horizontal bar composed of multiple sensors connected to a
base with a motorized pivot. Looking at the Kinect sensor from the front, from the
outside, it is possible to identify the infrared radiation (IR) projector, the RGB camera,
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Fig. 15.16 Kinect sensor
[29]

and the depth camera. An array of four microphones, a three axis accelerometer, and
the tilt motor are arranged inside the plastic case (Fig. 15.16).

The device is connected to a PC through a USB 2.0 cable. It needs an external
power supply in order to work because USB ports do not provide enough power. The
IR projector is the device that Kinect uses for projecting the IR rays that are used
for computing the depth data. The IR projector, which from the outside looks like a
common camera, is a laser emitter that constantly projects a pattern of structured IR
dots at a wavelength around 830 nm [30].

15.3.2 Obstacle Detection and Tracking

Obstacle detection (OD) is one of the main control system components in
autonomous vehicles, since a reliable perception of the real world is a key-feature of
any obstacle detection system for dynamic environments. In recent years, most of the
historical approaches in literature have been readjusted in the framework of stereo
vision and other 3D perception technologies (e.g., LiDAR), and important results
have been provided by several experiments on autonomous ground vehicles.

In order to achieve a good performance, most of the OD algorithms take some
assumptions about the ground or about the approximated free space on it. Algorithms
based on stereo vision and other 2D/3D sensors. Each obstacle detection system
is focused on a specific tessellation or clustering strategy; hence, they have been
categorized into four main models [31].

15.3.2.1 Probabilistic Occupancy Map

Occupancy grid maps address the problem of generating consistent maps from noisy
and uncertain measurement data, under the assumption that the robot pose is known.
The basic idea of the occupancy grids is to represent the map as a field of random
variables arranged in an evenly spaced grid [32]. As seen in Fig. 15.17, each random
variable is binary and corresponds to the occupancy of the location it covers.
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Fig. 15.17 Occupancy grid
map obtained from ultrasound
data [33]

Fig. 15.18 Landscape digital
elevation map [35]

15.3.2.2 Digital Elevation Map

The concept of digital terrain model was defined as a digital (numerical)
representation of the terrain. Other alternatives to this term have been used like
digital elevation models, digital height models, digital ground models, as well as
digital terrain elevation models [34]. Figure 15.18 shows the case of specific digital
elevation models which refers to a digital representation of the terrain on a height
above a given level, especially that of the sea.

15.3.2.3 Scene Flow Segmentation

Scene flow estimation is the challenging problem of calculating geometry and motion
at the same time. By considering images from one view point, scene flow estimation
is underdetermined. Also, a moving camera still creates ambiguities between camera
and scene motion. Only after introducing additional cameras, this situation can be
resolved and increase the robustness of the system [36]. Figure 15.19 shows the
application of scene segmentation techniques on vehicle detection.
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Fig. 15.19 Scene flow segmentation obstacle detection [37]

Fig. 15.20 Epipolar geometry-based clustering applied to an urban traffic scene [39]

15.3.2.4 Geometry-Based Clusters

These algorithms are based on a search method that clusters the sensor measurements
using a specific geometry model like the double-cone model [38]. As seen in
Fig. 15.20, geometry-based clustering techniques can be applied to cities to detect
obstacles.

15.3.3 Traffic Signs

Traffic signs are markers placed along roads to inform drivers about either road
conditions and restrictions or which direction to go. They communicate a wealth of
information but are designed to do so efficiently and at a glance. This also means that
they are often designed to stand out from their surroundings, making the detection
task fairly well defined. The designs of traffic signs are standardized through laws
but differ across the world. In Europe, many signs are standardized via the Vienna
Convention on Road Signs and Signals. In the United States, traffic signs are regulated
by the Manual on Uniform Traffic Control Devices (MUTCD).

While signs are well defined through laws and designed to be easy to spot, there
are still plenty of challenges for Traffic Sign Recognition (TSR) systems [40].
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1. Signs are similar within or across categories.
2. Signs may have faded or are dirty so they are no longer their original color.
3. The sign post may be bent, and therefore, the sign is no longer orthogonal to the

road.
4. Lighting conditions may make color detection unreliable.
5. Low contrast may make shape detection hard.
6. In cluttered urban environments, other objects may look very similar to signs.
7. There may be varying weather conditions.

Among the challenges that must be considered for the adequate detection of traffic
signs, lighting, viewpoints, and weather conditions are present. These considerations
suggest that relying solely on color is problematic; therefore, shape information is
useful for sign detection. An example of the use of shape information is seen in [41].

Traffic sign detection methods include the following [40]:

• Learning-based traffic sign detectors
• Segmentation methods
• Hough transform derivatives

15.3.4 Landmarks

Landmarks are features of an environment or scenery that can be easily recognized
and thus can enable someone to locate his or her spatial position within a given
location. Landmarks in an urban environment tend to be human-made features,
including but not limited to:

• Street name signs
• House number plates
• Sidewalk symbology
• Traffic signs
• Billboards
• Buildings
• Monuments
• Other easily recognizable urban features

This is due to the fact that, in urban environments, human-made features tend to
be more permanently established and recognizable than nature-based features [42].

Autonomous vehicles often include landmark-based navigation systems.
Landmark-based navigation systems serve to complement the data obtained from
the main perception and environment sensing system to determine the vehicle
positioning within a known environment or to determine the most efficient route to
a specific landmark; this can be done by establishing spatial relationships, with their
corresponding constraints. Constraints can be established through the measurement
of the spatial relationship between a known landmark and the vehicle itself or
through a geometric relationship such as collinearity or coplanarity [42, 43].



504 L. C. Básaca-Preciado et al.

Vision systems are often implemented to recognize landmarks in an urban
environment; the algorithms used for this purpose execute feature extractions using
resources such as the bag-of-words framework. Data obtained from the vision system
can be then compared to images in a cloud-based database server to recognize a
specific landmark. The reliability of this method and the integrity of the data reported
to the server can be further improved through the integration of other sensor systems;
an example would be the validation of the outlines provided by the vision system
through correction using LiDAR point clouds [43, 44].

It must be noted that the main limitation of autonomous navigation using a
landmark-based system is the lack of a comprehensive and readily available database
of every single landmark in a city and the fact that its query accuracy relies solely
on the validity and actualization of entries in the database. While companies such as
Google and Waze resort to user-fed databases that are continuously being updated,
it is important to note that they can be immediately accurate only up to a certain
extent because of factors such as human error, deliberated entry of false data due to
malicious intent, landmark update time, or simply the sheer amount of landmarks in
a city [44].

15.4 Localization and Map Building

In an autonomous vehicle, perception is the process to extract different features or
elements from the sensors that can describe the environment so we can make a
model (map). But what if we have additional information from a knowledge base
that can be related to the map of where the robot is located, we can use all this
information from the sensors, and the map to determine robot real location. Thus we
can describe Mobile Robot Localization as a process used to figure out the pose of a
robot; the pose of a robot is the position and orientation, with respect to a model of
the environment, and this process is also known as position estimation or position
tracking [28].

Mobile Robots have sensors which are usually affected by noise, that is why the
robot must be capable of processing uncertainty affected data, and errors detected in
sensor readings due to noise are not statistically independent. Actually these errors
increase their appearance as long as the number of measurements increases, and the
correspondence problem and data association problem raise the question whether
the taken measurements are from the same place or object. Correspondence problem
can be produced by similarities in the environment or sensor range limits [45].

The concept of robot state is used to describe its pose and also some other
magnitudes like robot velocity, sensor biases, and calibration. The map is a
description of important features like landmark positions and different physical
constraints like obstacles in the environment in which the robot is moving [46].

The process of localization starts by assigning a coordinate system to a map
which is called a global frame, another coordinate system that is assigned to a
mobile robot whose position and orientation moves along with the robot’s pose;
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this is called local frame. We have to establish a relationship between the local and
the global frames, and this is expressed as a transformation matrix. If we know this
coordinate transformation, we can locate position of different objects like landmarks
and obstacles with respect to a robot local frame or a global frame, which is a
necessary task for robot navigation.

This transformation matrix can be easily obtained if we know the mobile robot’s
pose with respect to the global frame as can be shown at Eq. (15.1), as a function of
coordinates x, y and orientation θ .

MG
L = (x, y, θ)T (15.1)

The problem is that robot’s pose cannot be obtained directly from sensors, and
it has to be estimated from data measurements taken from the environment [28].
This is because all measurements are affected by sensors noise, aliasing, and also
the actuators that carry some noise and inaccuracies.

A general schematic for the mobile robot localization is presented in Fig. 15.21.
Position estimation is carried out by probabilistic algorithms, and these types of
processes have received a great research attention over the last years [47].

Localization is enforced with a collection of map representations; some of these
are [28]:

(a) Feature-based maps. Specify the shape of the environment at the specific
locations, this means the location of the objects contained in the maps.

(b) Location-based maps. These are volumetrics, they offer a label for any location
in the environment, also have information about objects and absences of objects
contained in the map.

Fig. 15.21 Schematic for mobile robot localization process [47]
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Fig. 15.22 Examples of maps used for robot localization process: (a) 2D metric map, (b) graph
topological map, and (c) mosaic from ceiling [28]

(c) Occupancy grid maps. This is a type of location-based map, they assign a binary
value to a x-y coordinate grid associated in order to know if it is occupied with
an object. Some instances used by this representation are shown at Fig. 15.22:
a 2D metric map at (a), Graph-like topological map at (b), and Image Mosaic
from ceiling at (c).

There are many types of maps used for localization and navigation algorithms.
The localization problem assumes that an accurate map is available.

Localization problem challenge can be classified by the nature of the environment
and the initial knowledge that a robot possesses about its localization. So we present
four different criteria considered to solve the location problem [28].

(a) Local and global localization. Localization problems can be classified by the
type of information that is available initially or during navigation.

• Local localization assumes that the initial pose of robot is known so the
difference between real robot pose and calculated is small.

• Global localization. The initial pose of the robot is unknown. The robot is
placed somewhere in its environment but does not know where.

(b) Static and dynamic environments. If the robot is the only object moving on its
environment, then it is called static; hence, dynamic environments consist of
multiple objects moving during robot navigation.

(c) Passive and active localization approaches.

• Passive localization approach consists of a robot navigation which is not
aimed to improve localization algorithm.

• Active localization approach controls the robot navigation in order to
minimize localization error, but in practice these algorithms combine
designated tasks fulfillment with localization goals.

(d) Single and multi-robot localization.
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15.4.1 Mapping Sensors

15.4.1.1 LiDAR Sensor

As seen in Sect. 15.3.1, a LiDAR (also known as optical radar) is also known as a
ToF sensor that consists of a transmitter that illuminates a target with a laser beam,
and there is a receiver capable of detecting the returning component of light coaxial
with the transmitted light [47]. The transmitter produces a pulse of light aimed at
the environment; if there is a target, a component of the pulse returns, a mechanical
mirror system is implemented to sweep the light beams and scan a required space
which can be planar or three dimensional. The range between source and target can
be measured by different methods:

(a) ToF, this is sending the pulse beam and detecting the time it takes to be reflected
and returned to the receiver. The range R is calculated by the following expression
at Eq. (15.2) [48].

R = 1

2
c	t (15.2)

where c is the speed of light and 	t is the ToF of the pulse
(b) Measure the beat frequency between a Frequency Modulated Continuous Wave

(FMCW) and its received reflection [47].
(c) Measure the phase shift of the reflected light. Phase shift laser scanners are more

accurate, but range is shorter [48].

The phase shift measurement sensor transmits an amplitude modulated of light
at a known frequency, the wavelength of the modulating signal posses the next
relationship with the speed of light expressed at Eq. (15.3) [47].

c = f · λ (15.3)

where c = speed of light
λ = wavelength of the modulating signal
f = modulating frequency
The total distance covered by the emitted light is given by Eq. (15.4):

D′ = L+ 2D = L+ θ

2π
λ (15.4)

where D′ = total distance covered by the emitted light

L = distance between transmitter and phase measurement sensor
D = distance from beam splitter and the target
θ = electronically measured phase difference
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Fig. 15.23 Phase shift measurement [47]

The required distance beam between the beam splitter and the target is given by
Eq. (15.5):

D = λ

4π
θ (15.5)

Figure 15.23 shows a schematic of a laser range measurement system using the
method of phase shift; a light beam is collimated and transmitted from the transmitter,
and hits the target point P in the environment and is reflected back to a receiver.

Multi-beam laser scanners are used in robot mobile applications; these systems
use an array of sensor applying the method of ToF measurement, and this array of
laser beams scan and measure simultaneously and generate in parallel a wide amount
of coordinate points which is called point cloud and represent the environment with
high fidelity. As a consequence multi-beam laser scanners are used to capture wide
regions and landscapes and are used for mapping applications. The laser pulse
repetition rate (RRR), in combination with the scanning mirror deflecting pattern,
determines the LiDAR data collection rate [48].

15.4.1.2 Kinect Sensor

Laser scanners have obtained great relevance, making 3D models of the environment.
Some parameters of laser scanners are very important to differentiate one system or
another, parameters such as measurement rate, range, and accuracy are considered
for this task. Autonomous mobile vehicles use laser scanners to obtain a model of
their environment. Since this task is performed in real time, they need a high scanning
speed and also require a medium range (30 m maximum) and low accuracy (3–5 cm)
capabilities. Video Game industry has made a contribution to the autonomous robots,
since they have developed the so-called gaming sensors, which are devices that have
a high measurement speed and an intermediate range (between 1 and 5 m) [49].

Asus and Microsoft companies have developed Xtion and Kinect systems,
respectively; both use the triangulation method for measuring targets and have
become very popular due to the large number of developers who have done projects
with these systems and have extended the potential of their applications to other fields
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different from entertainment, such as facial recognition, virtual learning, forensic
science, and of course navigation of autonomous vehicles [49].

The “range sensors” provide a way to capture measurements of space and objects
from mobile robot’s environment. Some important requirements must be considered
to select this type of sensors, that is, size, weight, resolution, refresh rate, field of
view, and robustness to external light conditions.

Kinect is a high-speed sensor for 3D measurement applications and has a fairly
accurate resolution and many applications in robotics and navigation. The first
generation of Kinect uses triangulation technologies to make the measurement;
however, the fundamental structure of this technology is not suitable in sunlight
conditions, and this limits its scope only for indoor application [50].

A second generation of these sensors arose with the appearance of the Kinect v2,
which is based on the ToF measurement principles (like LiDAR), which allows it to
be used outdoors and in sunlight. It offers higher resolution and a larger field of view
compared to that of the first generation.

The Kinect v2 depth sensor has a strobe IR light which illuminates the scene
and is reflected by obstacles, and the ToF for each pixel is registered by an IR
camera. Figure 15.24 shows the whole system, which includes illumination, sensor

Fig. 15.24 3D image perception system [51]. The system comprises the sensor chip, camera SoC,
illumination, and sensor optics
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optics, sensor chip, and a camera with System on a Chip (SoC) technology. The SoC
function is to communicate with the computer or Xbox for gaming applications. The
ToF measurement system sends a modulated square wave signal to the light source
driver in order to measure the time it takes to travel from diode optics to the target
and returns back to the sensor optics, and this is used to calculate distance. The
timing generator creates a modulation square signal, which is used to synchronize
light source driver transmitter generation and the pixel array receiver detection. Light
hits the object and comes back to the sensor optics in time	t, the system calculates
	t estimating phase shift between received light signal at each pixel and the known
synchronization signal (indirect ToF) [51]. Due to the intensity of the signal emitted
to determine the ToF, the sensor can be used outdoors.

A mathematical model of noise can be obtained, which can be used in post-
processing tasks in the depth image filtering stages for any application. Different
measured characteristic parameters can be analyzed to determine the qualities of
Kinect v2 in robot navigation, for example, systematic and non-systematic error,
measurement capabilities in short ranges, and the influence of ambient light for
indoor, cloudy, and direct sunlight applications. The noise model can be a function
of the distance of measurement and the angle of the observed figure; however, the
model should include conditions of extreme solar luminosity, overcast, and interiors
[50].

In order to integrate Kinect v2 to a robotic system, it is necessary to associate a
coordinate frame system with the depth measurements in terms of a global coordinate
frame which describes the environment or a local coordinate frame associated with
robot pose. Measurements collected are processed and can be rendered as robust
maps which have a lot of data which describes the environment and objects around.

15.4.2 Localization Sensors

15.4.2.1 Wheel Encoders

Wheel/motor sensor has a wide history being used to measure internal state and
dynamics of motor powered systems. These types of sensors offer an excellent
resolution at a very low cost. These sensors are usually located at the shaft of the
motor drive or at a steering mechanism attached to the motor.

Optical encoders can be classified due to the way it presents the data in:

(a) Absolute encoders. Represent a position with a unique digital code, this means
that if the encoder has a resolution up to 16 bits, has a span of 216 different codes
to represent a physical position.

(b) Incremental encoder. Generates an output signal every time the mechanism
moves, the number of signals per revolution or in a span of distance defines the
resolution of the device.
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In mobile robotics, incremental encoders are the most common device, used to
measure speed and position within a motor drive or at the shaft of a wheel, steering
mechanism, or another joint mechanism. The sensors are proprioceptive so their
estimation of position has the best performance in the reference frame of the robot
and need corrections when applied to mobile robot localization.

An optical encoder produces a number of pulses sine or square for each shaft
revolution, and it has the next elements.

• Illumination source
• A fixed grating that masks the light
• A rotary disc with a fine optical grid that rotates with the shaft
• A fixed optical detector

As the motor shaft moves, the amount of light varies based on the alignment of
fixed and moving gratings. In robotics, the resulting sine wave is transformed into a
square wave.

As the motor shaft moves, the amount of light that reaches the optical detectors
varies based on the alignment of the fixed and moving grids. In the robotics, the
resulting sine wave is transformed into a square wave using a threshold value to
differentiate the values that represent the light and dark states [47].

Resolution is measured in pulses per revolution (PPR) or cycles per revolution
(CPR). A typical encoder in mobile robotic applications may have 2000 PPR, while
the optical encoder industry can reach up to 10,000 PPR sensors. Also, the sample
rate needed for detecting shaft spin’s speed can easily be achieved by commercial
encoders, so there is no bandwidth limitation for mobile robot applications.

Quadrature encoders are another version of these sensors modified in order to
obtain more data from an incremental encoder. This device has two pairs of emitter-
detector instead of one, both detectors are 90◦ shifted with respect to each other in
terms of the rotary disc grid. The resulting output signal is a pair of square wave
shifted the same 90◦ as can be seen in Fig. 15.25, both signals receive the name
channel A and channel B. A third pair emitter-detector is included in order to detect
one unique position called index, which is used as a reference to count revolutions or
finding home position. As it can be seen in Fig. 15.25, this index sensor pair has only
one slot clear position in the outer track, and thus, it is only one pulse in the whole

Fig. 15.25 Quadrature optical incremental encoder [47]
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turn. Channel A and channel B signals provide more information such as direction
of rotation (if we detect which signal rises first). In addition, a different combination
of channel states causes different detectability states which increase resolution by
four. This means that a sensor with 2000 PPR hence in quadrature yields 8000 PPR.

The systematic errors and the cross sensitivity inherent to encoders can be
eliminated using engineering tools such as filters and probabilistic methods.
The accuracy of optical encoders is usually considered 100% for mobile robot
applications, and any error due to any optical encoder failure is minimized by errors
caused by motor shaft or actuator.

15.4.2.2 Global Positioning System (GPS)

Historically humans have used beacons, like stars, mountains, guide posts, and
lighthouses for navigation, a modern approach involves the use of emitters located
far away from a receiver which is situated at the mobile vehicle. This sensory setup
makes available accurate outdoor localization, with some limitations due to the
nature of the technology used.

GPS is a modern beacon system instrument used nowadays for outdoor navigation
and localization of air and land vehicles.

Twenty-four satellites are available for free GPS service, and they orbit every
12 h. Four satellites are located in each of six inclined planes, 55◦ with respect to
the plane of the equator [47] (see Fig. 15.26).

Fig. 15.26 Calculation of position and direction based on GPS usually requires more than three
satellites [47]
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GPS are passive and exteroceptive sensors. Satellites with GPS service are
synchronized, so their transmission signals are sent at the same time. A GPS receiver
reads the transmission of two or more satellites, the time difference between these
transmissions can be used as an indicator to the receiver about its relative distance
to each satellite. By combining the information of the position of each satellite and
the delay of arrival times, the receiver can calculate its own position.

This operation requires only three satellites, but as long as there are more
transmitting to the receiver, position calculus becomes more accurate. The arrival
time delay ranges are of the order of nanoseconds; that is why signals from satellites
must be perfectly synchronized. In order to achieve this, satellite timing register is
refreshed by ground stations routinely and also an atomic clock is implemented on
satellite’s circuitry [47].

GPS receiver clock timing is Quartz crystal based, that is why often needs more
than three satellites to have an acceptable location reading, that is the main reason
for GPS limitations on cramped spaces like those surrounded by tall buildings, big
trees, or mountains and places where reading more than three signals at the same
time becomes impossible, and position calculus is inaccurate, that is also why indoor
applications for GPS fail to provide a reliable position sensing.

GPS performance is also affected by other different factors like the orbital path
which is not a straight line, but a curve, and therefore, resolution is not uniform on all
earth regions, having a lot of variations and uncertainties away from the terrestrial
equator.

GPS satellite information can be obtained by implementing different techniques
in order to get better resolution. Some of these techniques are pseudo-range which
usually has a resolution of 15 m; another technique is the so-called differential GPS
(DGPS), which uses a second receiver located at a reference place to correct position
and can have resolution of less than 1 m; and one last technique is used measuring
phase of the carrier signal from satellites transmission, this GPS receiver can achieve
1 cm resolution for point position [47].

One last consideration must be taken into account when using GNSS receiver with
automated mobile robots, which is update rates. Usually 5Hz GNSS updates rates
are obtained, that is why GNSS are used with other types of sensor and navigation
algorithms.

15.4.3 Navigation Control

15.4.3.1 Simultaneous Localization and Mapping (SLAM)

On a day-to-day basis, we make use of navigation control when we drive our cars or
when we navigate inside of schools or buildings. But unless we have a map, we must
always do an exploration previously. Nowadays we have applications to guide us
anywhere in the world (such as Google Maps and Waze). Accordingly, autonomous
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vehicles need these requirements too; they need to have a predetermined map of their
work area or they need to create one while exploring their environments.

The process of simultaneous localization and mapping (SLAM) is sometimes
called the concurrent mapping and localization (CML) process. This is the
continuous construction of a map and the computation of the state of the robot
within its environment [46].

The maps give a human operator an intuitive perception of the environment, but
also it is essential to create location maps for the navigation control of autonomous
robots, several types of maps can be generated (e.g., feature based or location based)
[28]. These can be used for route program and the correction of the calculation error
produced by estimating the state of the robot. When the hardware and software are
more complex, robots can even be programed to make their own decisions in real
time in order to avoid any collision or path planning. If we do not have a map, the
navigation estimation would lose its path and the vehicle would drift. But if we have
a map, the robot can correct its location error by returning to the same areas; this
process is also called loop closure [46].

SLAM can be used in applications in which a map is not available and requires
to be created, that is, in SLAM the trajectory of the vehicle and the location of
all landmarks are estimated online without the need for any a priori knowledge of
location [52]. Sometimes SLAM may not be required, like in applications in which
an accurate prebuilt map describing fixed physical constraints of the environment
is provided, that is, an autonomous vehicle operating in an indoor facility with a
manually built map and also in applications in which the robot has access to a GPS
(the GPS satellites can be considered as moving beacons at known locations) [46].

In most of the projects, different types of sensors were used to cover the widest
range of visibility and scope possible, from ultrasonic sensors to RGB-D cameras,
LiDAR, and IMU such as accelerometers, encoders, and GPS. All of these are
necessary to be able to map and make decisions for the robot in navigation control,
in addition to having algorithms to represent the 3D and 6D maps for vehicles.

The autonomous navigation of a robot is a complicated task which leads to
several problems that need to be solved. Nowadays, the articles written on projects
or advances on this subject are more concurrent specific, and with more diversity on
how to apply the hardware to the software in order to achieve a great improvement in
performance. Hence, we will see some case projects related to an area as important
as is the control of navigation for autonomous robots.

In most of the investigations about autonomous robots’ navigation, the SLAM
used is made by LiDAR (Fig. 15.27). Its use can be divided into two categories:
first, to make an initial map sample of the area where the robots will be used and,
second, also [53] can be used on top of a robot to continue building maps while the
robot interacts with its environment and, thus, be able to have a better response to
certain situations. Other projects generate different types of mappings with different
resolutions for certain specific tasks that they want to solve. For example, in [53],
to maintain high performance and low memory consumption, they used multi-
resolution maps, such as maps based on octrees (Octomap) which are a structure of
information for multiple storage resolutions in 3D, how you can see at Fig. 15.28.
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Fig. 15.27 Aligned scans from parking garage [53]

Fig. 15.28 (a) Explorer, Schadler team robot for DLR SpaceBot Cup (upper left image). (b)
SpaceBot Cup Arena (upper right image). (c) 3D scans of the arena taken by Schadler (lower
image) [53]
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In other autonomous robots, we can find [54] cameras and IMUs (barometers,
gyroscopes, accelerometer, and Global Navigation Satellite System (GNSS)) in
addition to having a LiDAR. The cameras can rotate to have an omnidirectional
vision, or stereo configurations as can be seen in Fig. 15.29, depending on their
locations in the vehicle. All of this to be able to obtain 6D maps based on maps
in SLAMs. In environments where it is not possible to use GNSS, all of the other
components can give estimated location coordinates to be able to general mapping
in 6D (Fig. 15.30).

Fig. 15.29 Mounting of the cameras in micro aerial vehicles (MAV). (a) Triple stereo
configuration. (b) Omnidirectional configuration [54]

Fig. 15.30 (a) Picture taken when testing the MAV with a person. (b) Scan from the MAV, where
the MAV is pushed away from approaching a person [54]
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Once having the mapping of the area where the tests and activities are to be carried
out, in addition to having SLAM as well, a big problem that presents itself in an
autonomous robot will arise since the pre-established map will be compared with the
route in real time. Therefore, obstacles or uncertain situations can be presented, and it
is here when it is of the utmost importance for the robot to have a navigation control,
so that it will be able to dodge the aforementioned obstacles and to select other routes
with better times or that are clearer. For decision-making, various algorithms and
logics accompanied by hardware in order to be able to enter data for feedback are
incorporated. And so, all this can be used in various ways, such as in 2D maps, 3D,
and 6D being the main modes of mapping. This means that the equations that are
designed to be used in robots are different. The design of their flow diagrams also has
an effect consequently; these two are going to determine all of their model decisions.
Currently, there is a project [55] in which the images captured by the cameras of the
robots pass through filters which can see each step of the robot. With the application
of equations, the free areas that lie ahead can be predicted. In addition, a 2D map
is generated in which their layers are completely connected. For this reason, their
decision-making is based on networks of value interactions that work, in turn, to a
neural network (Fig. 15.31).

In another case [55], they generate SLAM to see their environment in real time,
thereby knowing if there are variations, such as temporary or permanent obstacles,
changes in their work environment, with their predetermined mapping or with
previous interactions with their journey. In addition, they make cells (grid cell)
in 2D and group them to evaluate the drivable areas, all of this to avoid complicated
areas where it is not optimal for the robot to move (Fig. 15.32). In this last case [54],

Fig. 15.31 Overall network architecture from S. Gupta [55]
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Fig. 15.32 Navigation planning [53]

Fig. 15.33 Overall schematic for MAV [54]

an autonomous MAV uses cameras to classify objects but also uses a SLAM (3D
lasers) to create 3D maps. Also, with both technologies, they can create environments
in 6D, which allows them to identify the obstacles to redo a new route to reach the
destination. Apart from this, GNSS is used for outdoor environments, but for interior
use, a visual odometry (VO) is used as well as components that integrate an IMU in
order to be able to know their location in the 3D and 6D planes (state estimation and
flight control). All of this information passes through usb hub 3.0 and 2.0 for it to be
processed in a computer center inside the vehicle and to send information to another
computer via WiFi for monitoring (Fig. 15.33), which shows an overall schematic.
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15.5 Path Planning

When we address any topic related to autonomous transportation, often many doubts
arise, that is because there are several factors that must be taken into consideration
in order to successfully reach our desired destination; being the motion or path
planning, one of those factors, and that is what this section is oriented to.

As humans, most of the time, we do not even need to worry about getting from
point A to point B, as a result of our capabilities in identifying the answers to the
questions: where am I? Where do I want to go? How do I get there? And what are
the obstacles or dangers in the path to my objective?

In order for a robot to answer the questions shown previously, a certain kind
of intelligence might be integrated into it; in consequence, many kinds of research
have been done in subjects such as mapping, localization, and path planning. The
objective of this last subject is the minimization of the distance the vehicle needs to
travel, and to accomplish that, an efficient path planning algorithm is necessary.

Some years ago the computational power available could not handle the
requirements for online path planning algorithms, and researches opted for rule-
based algorithms that gave good results in indoor controlled environments [56].

15.5.1 Algorithms

15.5.1.1 A∗ Algorithm

The A∗ algorithm belongs to the graph search group, and it shares several similarities
with the Dijkstra’s algorithm. A∗ is one of the most efficient algorithms in solving
the problem of path planning; however, in scenarios with a high density of obstacles,
it might not be the ideal algorithm to implement due to its high time consumption
when it i’s dealing with a hard to process situation.

f (n) = g(n)+ h(n) (15.6)

A∗ is based on the evaluation function presented in Fig. 15.34, where g(n) is the
distance from the current node to the node n. On the other hand, h(n) is the distance
from our goal position to the node n. The distance can often be called “cost” or
“heuristic.”

The way A∗ works is simple yet brilliant. The algorithm starts by identifying the
nodes that already have a direct path to the starting position, following the example
in Fig. 15.34. Those nodes would be F, E, B, and D, then the algorithm evaluates the
already mentioned nodes with Eq. (15.6) (see Table 15.1).
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Fig. 15.34 A∗ algorithm example

Table 15.1 A∗ algorithm
node evaluation example

f (F) = 2 + 15 = 17
f (E) = 2 + 25 = 27
f (B) = 3 + 27 = 30
f (D) = 5 + 35 = 40

15.5.1.2 Field D∗ Algorithm

In mobile robot navigation, a representation of the environment is needed, generally
divided in cells. Depending on the environment, the representation could be binary,
obstacle, or free, or it could have an associated cost for each cell, g(s). Most algorithms
like Dijkstra, A∗ , or D∗ are limited by the small set of possible transitions; they plan
from center of cell to center of cell resulting in paths that are not optimal and difficult
to follow in practice [57].

Traditional algorithms compute the path cost assuming that the only possible
transition from one cell to another is a straight line from the cell to one of its
neighbors. If this restriction is relaxed and the path can go from the cell to any
point in the border of the neighbor cell, a minimal cost trajectory can be calculated.
Unfortunately, there are an infinite number of points, and calculation of all the
possible trajectories is not possible.

It is possible to provide an approximation for each boundary point by using
interpolation. In order to do this, it is necessary to assign nodes to the corner of each
cell, with this the cost of traversing two equal length segments of an edge will be
the same, this is shown in Fig. 15.35. This solves the cost problem when a segment
crosses two cells, each with different cost. The nodes in the graph are used as sample
points of a continuous cost field. The optimal path from a node must pass through
an edge connecting two consecutive neighbors.
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Fig. 15.35 Solution of the cost problem

To calculate the cost efficiently, assume the path cost of any point sy residing on
the edge between nodes s1 and s2, which is a linear combination of their cost.

g
(
sy
) = yg (s1)+ (1− y) g (s2) (15.7)

Equation (15.7) is not perfect, and the path cost may not be a linear combination
of g(s1) and g(s2), but it is sufficiently exact to be practical.

The path cost, given s1 and s2 and cell costs b and c, can be calculated by Eq.
(15.8):

min
[
bx + c sqrt

(
(1− x)2 + y2

)
+ yg (s2)+ (1− y) g (s1)

]
(15.8)

where x is the distance traveled along the bottom of cell s before turning the center
cell to reach the right side at a distance y.

Because a linear interpolation is used, it is less expensive to cut through the cell
than following the boundaries. If there is a component of the cheapest solution that
goes through the center of the cell, then it will be as large as possible forcing x = 0
and y = 1. If there is no component through the center, then y = 0.

Assuming that the optimal path is as shown in Fig. 15.36a, it travels along x axis
to a certain point and then crosses diagonally to a point y and finally to the upper
right node. Clearly this path is shorter than going horizontal all the way to lower
right node and then up to upper right node. Scaling the resulting triangle so that the
upper vertex is now located in the upper right node, maintaining the slope will be
shorter than the previous path as seen in Fig. 15.36b.

Thus, the path will travel a distance over the x axes and then go straight to the
upper right node, or it can go directly from the origin node diagonally to some point
on the right edge and then up to the upper right node depending on the costs b and c.

Once the cost of the path from the initial position to the goal is calculated, the
path is determined by interactively computing the cell boundary point to the next.
Because of the interpolation technique, it is possible to calculate the cost of any point
inside a cell, not just the corners.
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Fig. 15.36 (a) Optimal shortest path solution. (b) Simplified path with same slope solution

15.6 Case Study: Intelligent Transportation Scheme for
Autonomous Vehicles in Smart Campus

Nowadays, diverse autonomous vehicle designs are used to assist in various daily
tasks, for example, in smart farming, smart industry, among others. The self-driving
vehicles positively impact on economy and environment, as well as the completion of
tasks efficiently. Similarly, the use of autonomous vehicles on Smart Campus could
increase student and worker satisfaction at universities as it is the case of the intel-
ligent transportations scheme for autonomous vehicles in CETYS University [58].

To introduce this case study, it is essential to understand the context. CETYS
University Mexicali Campus is located at the capital city of the Mexican State of
Baja California, which is a US–Mexico border city. Mexicali city has a warm and arid
climate; in consequence, walking in summer could be very dangerous. According to
the National Institute of Ecology, the fatality rates caused by heat waves in Mexico
were presented in Mexicali [58]. Likewise, the Mexicali’s General Hospital reported
72 patients with heat waves symptoms, and 23 of them died during the period from
2006 to 2010 [59].

Consequently, autonomous vehicles in the campus will possibly be a solution to
reduce the risk that heat waves affect the students, professors, and administrative
personnel during their movement inside the university. Additionally, above all
population inside the campus, a significant number are elderly people, and studies
have shown that elderly population is more vulnerable to heat waves and elevated
temperatures [60, 64], given the previously mentioned statistics.

Moreover, seeking the well-being of people with mobility or visual impairment
in the campus, self-driving vehicles benefit their transportation inside the university.
As the parking and buildings inside the campus are separated by long distances, the
possibility to have a qualified transportation system improves the life quality and
inclusivity inside the campus.

The previous context description stands for the motivation to develop an
intelligent transportation system implemented in an automobile structure capable
to transport passengers between buildings inside the campus and from the parking
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to a building. The design of the vehicle includes the artfulness to avoid obstacles
(i.e., people walking through the path). Hence, the design of the vehicles included
the development of a 3D vision system [61] capable of detecting the road, potential
static, and dynamic obstacles (or dangerous conditions), among other variables.
Then, design an autonomous navigation system capable of safely traversing a path
from point A to B using the 3D vision system data and re-route the vehicle if needed
to achieve the desired location. Also, build a sustainable electrical system for the
vehicle, with a battery capable of recharging itself through solar energy. Finally,
design a network infrastructure to suffice the whole communication scheme and
fulfill the requirements of a Smart Campus.

The term Smart Campus refers to a university campus capable to keep all the data
infrastructure and offer different services to the students and to all people inside the
campus. Hence, to develop a smart agent inside a smart network, some technologies
should be adopted as a standard, for example, the sample rate for sensors, the
data communication scheme, how systems interact with each other, how all the
microcontrollers behave as master and slave depending on the network itself, etc.
One of the agents interacting in this Smart Campus would be the autonomous vehicle.
To achieve an effective interaction inside the system, the vehicle must be capable to
respond to user’s requests, to navigate avoiding obstacles and leave the passengers
at their selected endpoint. The steps taken for the design of the autonomous vehicle
are described in overall terms.

15.6.1 Applied Simultaneous Localization and Mapping
(SLAM)

In order to map the surroundings accurately and to properly move along the
different route traced by the system, an efficient mapping algorithm known as SLAM
(simultaneous localization and mapping) must be implemented (see Fig. 15.37). This
algorithm is implemented to provide autonomy to the vehicle.

As Fig. 15.37 shows, the design includes some sensor inputs such as a LIDAR
and Kinect Frame, both described in previous sections. Odometry readings change
according to the vehicle movement. The uncertainty from these lectures is treated
by the odometry update algorithm. The re-observation process is essential to map
construction. All the elements improve the accuracy of the vehicle movement.

Figure 15.38 shows the control flow process for the autonomous vehicle. The
vehicle starts the movement after getting current location and the calculus of the
initial trajectory. The sensors are implemented to detect obstacles. If an obstacle
is detected, the vehicle reduces its speed or stops. The map construction process
intended for scanning the environment and analyzing data is performed during all
the trajectory in order to control correct navigation through map corrections based
on the obstacles’ position. A GPS is available to give information about vehicle’s
location and to correct initial trajectory or re-route if necessary. The sensors described
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Fig. 15.37 Diagram of a
SLAM algorithm [58]

Fig. 15.38 Control flow process for the autonomous vehicle [58]

below should behave synchronously in order to maintain consistency in the whole
scheme and for the system to choose the best route to take, and how to re-route
correctly taking into account all the obstacles in the vehicle’s line of vision.
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15.6.2 Mechanical Design and Kinematic Model

Our mechanical design takes into account the vehicle’s chassis, gearboxes, motors,
wheels, sensors, batteries, computer, Ethernet switch, cable management, and
airflow. The whole autonomous system (vision and control) is mounted on
an aluminum chassis with 4′′ Omni directional wheels in order to satisfy the
requirements of forces applied to the base of the vehicle, so all forces can be dissipated
and damped. This type of drive allows linear and rotary motion through space which
provides the specific advantage of maneuvering in all directions without steering
the wheels, which allow for more accurate control and precise movements (see Fig.
15.39).

The proposed architecture scheme is shown in Fig. 15.40. The design achieves
the automation goals. The communication between all the elements is established,
closing the loop for a complete automation and control scheme.

This case study is an example of how technology contributes to improving
the well-being of students, professors, and administrative personnel in universities.
Autonomous vehicle must respond needs in Mexicali where the weather conditions
affect the health of several people.

Fig. 15.39 Autonomous vehicle scale prototype [58]
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Fig. 15.40 General interconnection scheme for the autonomous vehicle system [58]

15.7 How Innovation in Business Models Will Change
the Future of Cars

Electric cars are the future. We all perceive that. It is a topic that resonates in our
daily life. But electric cars do not have the same features as gasoline cars, which
are more powerful, bigger, heavier and more expensive. Generations in the last one
hundred years have seen the evolution of cars, from de T model of Ford to the latest
Tesla model. But from the silence generation passing through the baby boomers,
generation X, millennials, and finally generation Z, things have changed mainly
in the business models, those businesses that are ruled by the consumer profiles
of the biggest market segments. Nowadays innovation is changing the rules of the
business models. People have the chance to choose between different services online,
Amazon, Google, Airbnb, and HostaPet. New business is based on IT platforms
where innovation allows the idea to do services online between people around the
world. Our generations are in the era of open innovation [3, 62]. This is the time
when Amazon has no factories, Airbnb has no hotels, and Uber has no cars. But
people can get better services because Internet and smartphones make easier trading.

In the era of open innovation [3, 62], the future of the automobile lays over the
profile trends of generation Z. While businesses like Kodak took one hundred years
to experience a change in their business model, and lost the battle [62] of the digital
camera in the early 2000s, other enterprises like Procter & Gamble have understood
market trends to change their business models in order to sustain competitiveness. In
that sense, Henry Chesbrough refers to the use of the automobile as an opportunity.
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15.7.1 The Misuse of Expensive Vehicles

Think about the number of hours your vehicle takes to take you anywhere at any
time you want during a regular day. Let us say, it is about 2.5 h of use each day.
That means you are using your car a little more than 10% of time, but you paid for
100% of the time you really need that good. Assume an average cost of a car as
around $15,000. This means that you paid ten times more of the use of your vehicle,
because you only need it 10% of the time. From a business point of view, there is a
chance to make business to take advantage of that extra cost between 10% of usage
and $15,000.00.

15.7.2 Generation Z Consumer Profile and the Future
of Vehicle

The business model canvas of Alexander Osterwalder and Yves Pigneur [4] spins
around the value proposition for a market segment. Watching consumer profile for
generation Z, it can be seen that generation Z or centennials are also considered
a better version of millennials. They are digital natives. They do not know a
world without Internet. Generation Z will be around 30% of the world population
with a very important percentage of purchasing power for 2020 (see Table 15.2).
Generations are really fuzzy to define, but this generation locates between 1995 and
2010. For generation Z, value is the number one need as a consumer. This means,
as they have many options to choose from, they are not people of one brand. So, for
them value is the most important thing about a product or a service. Centennials trust
youtubers more than a celebrity, because youtubers are people like them without
makeup. It means that they trust authenticity more than appearance. They use to
watch at reviews on social media and in general generation Z communicate with
their friends, families, and also with brands.

Analyzing the three core concepts of the consumer profile defined by Alexander
Osterwalder, it can be expected from the consumer profile of centennials generation
that they expect products or services to fulfill its purpose, they appreciate value. So

Table 15.2 Population resident in the USA in 2017 [63]

Generation Population (millions) Percentage Time range
Greatest 2.57 1 Before 1928
Silent 25.68 8 1928–1945
Baby boomers 73.47 23 1946–1964
X 65.71 20 1965–1980
Millennials 71.86 22 1981–1996
Centennials 86.43 27 1997–2016

325.72 100
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as they are not loyal to a brand and appreciate authenticity, their consumer profile is
practical. So when they spend money, they commit with those products and services
that are good about achieving functional jobs over the ones that achieve emotional
or social needs. That means, although also as millennials, property is not their first
concern, function is the most important thing for centennials as well as for millennials
when they buy a car. So in this stage, two of the relevant concepts from the definition
of value proposition canvas from Alexander Ostewalder for the consumer profile
pointed as pain relievers and gain creators for the generation Z are each day more
relevant. From all these generation behavior and trends from a business model point
of view, it can be expected that eventually as well as the use of electric cars, new and
innovative business models around the consumer profile drivers will be met in the
next years.

15.7.3 Business Model Canvas for Car to Go

In 2008 Daimler Chrysler launched their program Car2Go (www.car2go.com). Their
value proposition (see Table 15.3) for the market segment is as follows: (a) Use by
the minute. With car2go, driver is in control of every mile and every minute. Unlike
other car sharing services, drivers pay only for how long they actually using the car
and (b) one-way trips. Start at point A and end at point B without returning the car to
point A. Pick up from the street and get going, (c) on demand. Drivers can get going
without prior reservations. Drivers can use their smartphones to find and drive on
the spot or reserve for up to 30 min (for free) before beginning.

Table 15.3 Value proposition canvas [4]

Value proposition Customer segment
Gain creators
Easy localization of an electric vehicle
Quick instructions to use vehicle
Vehicles registered on Google maps

Gains
Quick finding of vehicle
Want to pay only by minute
Easy finding of the vehicle
Smartphone localization

Pain relievers
Use of Google map to find easy and quick all
the vehicles of the company
Battery charged
Electric charge stations

Pains
Cannot find a car close to the area
Easy use of the vehicle
Low-battery electric car
Sanitized vehicle

Products and services
Electric car easy to use rated by minute and
registered on Google maps

Customer Jobs
Use of a car only for the time the customer
needs

http://www.car2go.com
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15.7.4 Autonomous Car as an Innovative Business Model

Market trends in recent years formed by the consumer profiles of millennials and
centennials open the possibilities for the use of autonomous cars. Evolution of
business models based on open services innovation in the era of 5G technology
may in the near future set the bases for the use of autonomous electric cars. Clearly,
technology has reached a new level with the advent of 5G technology. And innovation
on business models, mainly in open services are becoming a very important part of
the economies. On this stage, it could happen that new generations will use to buy
services online through their 5G technology smartphones, including autonomous
electric cars.

Analyzing the value proposition of the business model Car2Go, it could be a
natural evolution to scale for autonomous cars. In a first approach, the business
model of an autonomous electric car meets all tasks for the profile of the customer.
And more, business model of the autonomous car exceeds the expectations defined
as gain creators for a value proposition of the Car2Go model. An autonomous car
eliminates the need for an easy localization of the vehicle. The autonomous car can
go to meet the customer. Being autonomous also discards the need for understanding
how to use the vehicle. And of course, autonomous vehicle needs only a button
to know where to go. Of course, 5G technology in a smartphone makes easier for
customer to command tasks to vehicle. It can be found that autonomous cars can
also program electric charge timing.

Finally, it can be concluded that latest technologies and evolution of business
models on open services meet profiles of customer segments for new generations.

15.8 Conclusions

In this work, we have reviewed the fundamentals of autonomous vehicles, from
automation concepts going through the standard for on-road vehicles defined by the
Society of Automotive Engineers, to novel sensors and image processing techniques,
including some other commercial products, that is, mobile robots for industry and
other small devices as a mobile vacuum. Modernity offers plenty of technology,
and beyond an autonomous electric car itself, the disruption line in the advent of
autonomous electric cars to be used on a regular basis depends more from the future
drivers or even users of autonomous electric cars as a service.

New generations have left the typical profile of a consumer. So, the next step in the
business of individual transport is more about the needs of the future driver or user.
It seems that at least for high-density population cities, there are still new innovative
ways to get from one location to another. Post-centennial generations will use faster
technologies and will define market trends. The use of autonomous electric cars in
the near future will be a reality when disruptive technologies meet disruptive models
for individual transport committed to relief the needs of the customer. Autonomous
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electric cars will be in the center of business trends ruled by IT platforms, which will
catalyze autonomous electric cars as regular transport. In the near future, innovation
on services will take the use of autonomous electric cars to the next level.

The future driver or user profile of centennials will appreciate the value
proposition of the autonomous electric car. There will not be need of finding parking,
neither need to pay for it. An autonomous car will meet the user in the place and
time that the user needs. It is estimated that as well as millennials, for centennials
and next generations property is not in the first row of their needs, but the work to
be done by the service is the most important thing when younger generations buy or
rent a service. So, it seems that for future generations of drivers, those autonomous
electric cars paid as a service, by minute, will be a reality.

Acknowledgments The authors would like to thank Center of Innovation and Design (CEID) of
CETYS University Mexicali Campus for all facilities to perform the research and for providing
the necessary resources to develop this project. Also, special thanks to the image illustrators Luis
Esquivel, Alexa Macías, and Valeria Muñoz.

References

1. Bauman, Z. (2000). Liquid modernity. Cambridge, UK: Polity Press.
2. Chesbrough, H. W. (2003). Open innovation: The new imperative for creating and profiting

from technology. Boston: Harvard Business School Press.
3. Chesbrough, H. W. (2003). The era of open innovation. MIT Sloan Management Review, 44(3),

35–41.
4. Alexander, O., & Pigneur, Y. (2010). Business model generation. Hoboken, NJ: Wiley.
5. Taxonomy and definitions for terms related to driving automation systems for on-road

motor vehicles J3016_201806. (2018). Retrieved February 5, 2019, from https://www.sae.org/
standards/content/j3016_201806/

6. Raspberry Pi. (2019). Retrieved February 5, 2019, from https://www.raspberrypi.org/
7. Zini 1880. (2019). Retrieved February 5, 2019, from https://zareason.com/zini-1880.html
8. Al-Muteb, K., Faisal, M., Emaduddin, M., et al. (2016). An autonomous stereovision-

based navigation system (ASNS) for mobile robots. Intelligent Service Robotics, 9, 187.
https://doi.org/10.1007/s11370-016-0194-5.

9. What Is GPS? (2019). Retrieved February 5, 2019, from https://www.gps.gov/systems/gps/
10. BeiDou Navigation Satellite System. (2019). Retrieved February 6, 2019, from http://

en.beidou.gov.cn/
11. Indian Regional Navigation Satellite System (IRNSS). (2019). Retrieved February 6, 2019,

from https://www.isro.gov.in/irnss-programme
12. European Global Satellite-Based Navigation System. (2019). Retrieved February

6, 2019, from https://www.gsa.europa.eu/european-gnss/galileo/galileo-european-global-
satellite-based-navigation-system

13. Graham, A. (2010). Communications, radar and electronic warfare. Hoboken: Wiley. Available
from: ProQuest Ebook Central. [7 February 2019].

14. LIDAR vs RADAR Comparison. Which System is Better for Automotive? (2018). Retrieved
February 7, 2019, from https://www.archer-soft.com/en/blog/lidar-vs-radar-comparison-which-
system-better-automotive

15. Winner, H. (2016). Automotive RADAR. In H. Winner, S. Hakuli, F. Lotz, & C. Singer (Eds.),
Handbook of driver assistance systems. Cham: Springer.

https://www.sae.org/standards/content/j3016_201806/
https://www.raspberrypi.org/
https://zareason.com/zini-1880.html
http://dx.doi.org/10.1007/s11370-016-0194-5
https://www.gps.gov/systems/gps/
http://en.beidou.gov.cn/
https://www.isro.gov.in/irnss-programme
https://www.gsa.europa.eu/european-gnss/galileo/galileo-european-global-satellite-based-navigation-system
https://www.archer-soft.com/en/blog/lidar-vs-radar-comparison-which-system-better-automotive


15 Autonomous Mobile Vehicle System Overview for Wheeled Ground Applications 531

16. Mobile Industrial Robots. (2019). Retrieved February 11, 2019, from http://www. jacobsencon-
struction.com/projects/dabc-asrs-expansion-warehouse-remodel/

17. Ekren, B. Y., & Heragu, S. S. (2012). A new technology for unit-load automated storage
system: Autonomous vehicle storage and retrieval system. In R. Manzini (Ed.), Warehousing in
the global supply chain. London: Springer. https://doi.org/10.1007/978-1-4471-2274-6_12.

18. Kuo, P.-H., et al. (2007). Design models for unit load storage and retrieval
systems using autonomous vehicle technology and resource conserving storage
and dwell point policies. Applied Mathematical Modelling, 31(10), 2332–2346.
https://doi.org/10.1016/j.apm.2006.09.011.

19. Waymo unveils self-driving taxi service in Arizona for paying customers. (2018). Retrieved
February 11, 2019, from https://www.reuters.com/article/us-waymo-selfdriving-focus/waymo-
unveils-self-driving-taxi-service-in-arizona-for-paying-customers-idUSKBN1O41M2

20. iRobot. (2019). Retrieved February 11, 2019, from https://store.irobot.com/default/home
21. Özgüner, U., Acarman, T., & Redmill, K. (2011). Autonomous ground vehicles (pp. 69–106).

Boston: Artech House.
22. Weitkamp, C. (2005). Lidar (pp. 3–4). New York, NY: Springer.
23. Caltagirone, L., Scheidegger, S., Svensson, L., & Wahde, M. (2017). Fast LIDAR-based

road detection using fully convolutional neural networks. In 2017 IEEE Intelligent Vehicles
Symposium (IV).

24. Velodyne VLP-16. (2019). Retrieved February 27, 2019, from https://velodynelidar.com/vlp-
16.html/

25. Velodyne HDL-64E. (2019). Retrieved February 27, 2019, from https://velodynelidar.com/hdl-
64e.html/

26. Renishaw plc. Optical Encoders and LiDAR Scanning. (2019). Retrieved February 27, 2019,
from https://www.renishaw.it/it/optical-encoders-and-lidar-scanning%2D%2D39244/

27. YeeFen Lim, H. (2018). Autonomous vehicles and the law: Technology, algorithms and ethics
(p. 28). Edward Elgar Publishing.

28. InnovizOne. (2019). Retrieved February 27, 2019, from https://innoviz.tech/innovizone/
29. Kinect Sensor. (2019). Retrieved February 27, 2019, from Amir, S., Waqar, A., Siddiqui,

M. A., et al. (2017). Kinect controlled UGV. Wireless Personal Communications 95, 631.
https://doi.org/10.1007/s11277-016-3915-3.

30. Giori, C., & Fascinari, M. (2013). Kinect in motion (pp. 9–10). Birmingham, UK: Packt Pub..
31. Bernini, N., Bertozzi, M., Castangia, L., Patander, M., & Sabbatelli, M. (2014). Real-time

obstacle detection using stereo vision for autonomous ground vehicles: A survey. In 17th
International IEEE Conference on Intelligent Transportation Systems (ITSC).

32. Thrun, S., Burgard, W., & Fox, D. (2006). Probabilistic robotics (p. 221). Cambridge, MA:
MIT Press.

33. Siciliano, B., & Khatib, O. (2008). Springer handbook of robotics (p. 857). Berlin: Springer.
34. Li, Z., Zhu, Q., & Gold, C. (2004). Digital terrain modeling (p. 7). Boca Raton: CRC Press.
35. Mach, R., & Petschek, P. (2007). Visualization of digital terrain and landscape data (p. 38).

Berlin: Springer.
36. Hernandez-Aceituno, J., Arnay, R., Toledo, J., & Acosta, L. (2016). Using Kinect on an

autonomous vehicle for outdoors obstacle detection. IEEE Sensors Journal, 16(10), 3603–
3610.

37. Wedel, A., & Cremers, D. (2011). Stereo scene flow for 3D motion analysis (p. 89). Springer.
38. Plemenos, D., & Miaoulis, G. (2013). Intelligent computer graphics 2012 (pp. 243–263). Berlin:

Springer.
39. Schaub, A. (2017). Robust perception from optical sensors for reactive behaviors in autonomous

robotic vehicles (p. 161). Springer.
40. Jensen, M., Philipsen, M., Mogelmose, A., Moeslund, T., & Trivedi, M. (2016). Vision for

looking at traffic lights: Issues, survey, and perspectives. IEEE Transactions on Intelligent
Transportation Systems, 17(7), 1800–1815.

http://www.jacobsenconstruction.com/projects/dabc-asrs-expansion-warehouse-remodel/
http://dx.doi.org/10.1007/978-1-4471-2274-6_12
http://dx.doi.org/10.1016/j.apm.2006.09.011
https://www.reuters.com/article/us-waymo-selfdriving-focus/waymo-unveils-self-driving-taxi-service-in-arizona-for-paying-customers-idUSKBN1O41M2
https://store.irobot.com/default/home
https://velodynelidar.com/vlp-16.html/
https://velodynelidar.com/hdl-64e.html/
https://www.renishaw.it/it/optical-encoders-and-lidar-scanning%2D%2D39244/
https://innoviz.tech/innovizone/
http://dx.doi.org/10.1007/s11277-016-3915-3


532 L. C. Básaca-Preciado et al.

41. Mogelmose, A., Trivedi, M., & Moeslund, T. (2012). Vision-based traffic sign detection and
analysis for intelligent driver assistance systems: Perspectives and survey. IEEE Transactions
on Intelligent Transportation Systems, 13(4), 1484–1497.

42. Trepagnier, P., Nagel, J., & McVay Kinney, P. Navigation and control system for autonomous
vehicles. US Patent 8,050,863 B2.

43. Cox, I., & Wilfong, G. (1990). Autonomous robot vehicles. New York, NY: Springer.
44. Jiang, X., Hornegger, J., & Koch, R. (2014). Pattern recognition (p. 4). Cham: Springer.
45. Dhiman, N. K., Deodhare, D., & Khemani, D. (2015). Where am I? Creating Spatial awareness

in unmanned ground robots using SLAM: A survey. Sadhana Academy Proceedings in
Engineering Sciences, 40(5), 1385–1433. https://doi.org/10.1007/s12046-015-0402-6.

46. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., & Leonard,
J. J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the
robust perception age. IEEE Transactions on Robotics, 32(6), 1309–1332. Retrieved from https:/
/ieeexplore.ieee.org/document/7747236.

47. Siegwart, R., & Nourbakhsh, I. R. (2004). Introduction to autonomous mobile robots.
Cambridge, MA: MIT Press.

48. Puente, I., González-Jorge, H., Martínez-Sánchez, J., & Arias, P. (2013). Review of mobile
mapping and surveying technologies. Measurement, 46(7), 2127–2145. Retrieved from https:/
/www.sciencedirect.com/science/article/pii/S0263224113000730.

49. Gonzalez-Jorge, H., Rodríguez-Gonzálvez, P., Martínez-Sánchez, J., González-Aguilera, D.,
Arias, P., Gesto, M., & Díaz-Vilariño, L. (2015). Metrological comparison between Kinect I
and Kinect II sensors. Measurement, 70, 21–26.

50. Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R., Hutter, M., & Siegwart, R. (2015,
July). Kinect v2 for mobile robot navigation: Evaluation and modeling. In 2015 International
Conference on Advanced Robotics (ICAR), Istanbul, pp. 388–394. Retrieved from https://
ieeexplore.ieee.org/document/7251485

51. Sell, J., & O’Connor, P. (2014). The Xbox one system on a chip and Kinect sensor. IEEE Micro,
34(2), 44–53. Retrieved from https://ieeexplore.ieee.org/document/6756701.

52. Durrant-Whyte, H., & Bailey, T. (2016). Simultaneous localisation and mapping (SLAM): Part
I the essential algorithms. IEEE Robotics and Automation Magazine, 13(2), 99–110. Retrieved
from https://ieeexplore.ieee.org/document/1638022.

53. Schadler, M., Stückler, J., & Behnke, S. (2014). Rough terrain 3D mapping and navigation
using a continuously rotating 2D laser scanner. Künstliche Intelligenz, 28(2), 93–99.
https://doi.org/10.1007/s13218-014-0301-8.

54. Beul, M., Krombach, N., Zhong, Y., Droeschel, D., Nieuwenhuisen, M., & Behnke, S. (2015,
July). A high-performance MAV for autonomous navigation in complex 3D environments. In
2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO. https://
ieeexplore.ieee.org/document/7152417

55. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., & Malik, J. (2017, November). Cognitive
mapping and planning for visual navigation. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI. Retrieved from https://ieeexplore.ieee.org/
document/8100252

56. Lacaze, A., Moscovitz, Y., DeClaris, N., & Murphy, K. Path planning for autonomous vehicles
driving over rough terrain. In Proceedings of the 1998 IEEE International Symposium on
Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational
Intelligence in Robotics and Automation (CIRA) Intell.

57. Ferguson, D., & Stentz, A. The Field D∗ algorithm for improved path planning and replanning
in uniform and non-uniform cost environments. Technical Report CMU-TR-RI-05-19, Carnegie
Mellon University.

58. Básaca-Preciado, L. C., Orozco-Garcia, N. A., & Terrazas-Gaynor, J. M., et al. (2018). Intelligent
transportation scheme for autonomous vehicle in smart campus. IEEE, pp. 3193–3199.

59. Martinez-Austria, P. F., Bandala, E. R., & Patiño-Gómez, C. (2016). Temperature and heat wave
trends in northwest Mexico. Physics and Chemistry of the Earth, Parts A/B/C, 91, 20–26.

http://dx.doi.org/10.1007/s12046-015-0402-6
https://ieeexplore.ieee.org/document/7747236
https://www.sciencedirect.com/science/article/pii/S0263224113000730
https://ieeexplore.ieee.org/document/7251485
https://ieeexplore.ieee.org/document/6756701
https://ieeexplore.ieee.org/document/1638022
http://dx.doi.org/10.1007/s13218-014-0301-8
https://ieeexplore.ieee.org/document/7152417
https://ieeexplore.ieee.org/document/8100252


15 Autonomous Mobile Vehicle System Overview for Wheeled Ground Applications 533

60. Åström, D. O., Bertil, F., & Joacim, R. (2011). Heat wave impact on morbidity and mortality
in the elderly population: A review of recent studies. Maturitas, 69, 99–105.

61. Básaca-Preciado, L. C., et al. (2014). Optical 3D laser measurement system for nav-
igation of autonomous mobile robot. Optics and Laser in Engineering, 54, 159–169.
https://doi.org/10.1016/j.optlaseng.2013.08.005.

62. Lucas, H. C., Jr., et al. (2009). Disruptive technology: How Kodak missed the digital
photography revolution. Journal of Strategic Information Systems, 18, 46–55.

63. Resident population in the United States in 2017, Statista. (2018). The Statistics Portal. Retrieved
from January 25, 2019, from https://www.statista.com/statistics/797321/us-population-by-
generation/

64. Díaz Caravantes, R. E., Castro Luque, A. L., & Aranda Gallegos, P. (2014). Mortality by
excessive natural heat in Northwest Mexico: Social conditions associated with this cause of
death. Front Norte, 26, 155–177.

http://dx.doi.org/10.1016/j.optlaseng.2013.08.005
https://www.statista.com/statistics/797321/us-population-by-generation/


Part IV
Aerial Imagery Processing



Chapter 16
Methods for Ensuring the Accuracy
of Radiometric and Optoelectronic
Navigation Systems of Flying Robots
in a Developed Infrastructure

Oleksandr Sotnikov, Vladimir G. Kartashov, Oleksandr Tymochko,
Oleg Sergiyenko, Vera Tyrsa, Paolo Mercorelli, and Wendy Flores-Fuentes

Abbreviations

ACS Automated control systems
ADD Antenna directivity diagram
CAF Correlation analysis field
CCC Coefficient of cross correlation
CENS Channel extreme correlation navigation systems
CENS-I CENS in which information is currently removed at a point
CENS-II CENS in which information is currently removed from a line
CENS-III CENS in which information is currently removed from an area (frame)
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CI Current image
CS Control systems
DF Decision function
EMR Electromagnetic radiation
FO False object
FR Flying robots
FW-UAV Fixed wings unmanned aerial vehicle
IF Informational field
INS Inertial navigation system
LPF Low-pass filter
NS Navigation system
OB Object of binding
PM Propagation medium
RI Reference image
RM Radiometric
RMI Radiometric imaging
RW-UAV Rotary wings unmanned aerial vehicle
SD Standard deviation
SDPN Sensors of different physical nature
SI Source image
SS Sighting surface
TNM Technical navigation means
UAV Unmanned aerial vehicle

16.1 Introduction

Recently, robotics is one of the most promising and extensively developing areas
worldwide. The advances in robotics theory and practice are the evident mainstream
in national priority development program of the main industrial countries. On the
other hand, in robotics one of the newest and complex high-tech branches is the
flying robot theory. Many different types of flying robots [1] like RW-UAV (rotary
wings unmanned aerial vehicle) [2], Bioinspired [3], and FW-UAV [4] (fixed wings
UAV) exist. These apparatus are used in very versatile practical applications, such
as industrial and agricultural inspections [5, 6], search and rescue [7], environment
monitoring [7, 8], security surveillance [7, 9, 10], and automated mapping [11–13].

The main difference of FR over other robots subject to automatic navigation
is the significantly higher speed of change of environmental situation and, as a
consequence, the enhanced requirements to the efficiency and fastness of processing
algorithms.
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16.1.1 Autonomous and Noise-Cancel FR Navigation Systems

Modern FR control systems are designed to control complex multifunctional objects
that operate in a complex environment. FR flight control can be carried out by using
autonomous, automated, and nonautonomous navigation systems. The purpose of
autonomous navigation systems is reduced to the most effective detection of certain
location objects, their classification (identification) within the established classes,
and the issuance of appropriate commands to the executive control system [14, 15].

In FR automated navigation systems, control tasks are solved by a human operator
according to the information of the processing and integrating system [15].

The FR autonomous navigation systems operate on the basis of determining the
coordinates of the system’s signals that accumulate errors over time (inertial, course-
Doppler, etc.), with subsequent correction of the FR flight path by signals from radio
navigation systems, airborne radar stations, and sight target devices [15].

Some of the core problems for the single flying robot are navigation and obstacle
avoidance. Novel methods can be found in articles of authors J. Keller et al. [16]
where the method of coordinated path planning for fixed-wing unmanned aerial
systems was used, in [17] using computer simulations confirmed their theory of
wireless network system use for collision avoidance by flying robot, and article
[18] considered some principal problems on precise attitude determination of the
free-flying robots and their maneuvering.

In most of cases, the main navigation system of the aircraft autonomous control
system is the inertial navigation system (INS). The current position of the navigation
object in the INS is established indirectly based on its initial positioning and the
double integration result of the acceleration vector or single integration of the velocity
vector.

Systems that implement an overview and comparative method of navigation—
extreme correlation navigation systems—carry out the correction of INS errors at
selected points of the movement trajectory [19].

The NS possesses the highest autonomy level, which operates without the
participation of the operator at a large “over-the-horizon” range. The SN data is
divided into direction finding systems that navigate small, high-contrast objects and
CENS, which navigate the aircraft in two-dimensional and three-dimensional object
images.

The main task in navigation of a moving object, the FR in particular, is to ensure
its accurate movement along a given trajectory and accurate output to a given point at
the appointed time in the most favorable way for given conditions [1, 19]. Each stage
of the navigation process corresponds to the navigation mode, which is understood to
be the preservation/maintenance of the direction, speed, and altitude of the FR flight.
The navigation mode is determined by the combination of a large navigation element
number, which represents geometric or mechanical quantities and characterizes the
object movement and position.

The definition of the specified navigation elements is made on the basis of
measurements using various technical navigation means (TNM), based on various
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principles and intended to measure navigation parameters, which are a geometric
value or one of its derivatives. The navigation parameter either coincides with the
navigation element, or is associated with it by a simple relation.

Recently, autonomous systems have been increasingly used for FR navigation,
the main principle of which is based on determining the navigation parameters
of an object by examining information on natural geophysical fields, such as the
field of relief, the field of optical, radar, and radiometric contrast, the anomalous
magnetic field of the earth, the gravitational field and others [20], and using measured
navigation parameters to generate correction signals for a coarse navigation system.

The navigation parameters are determined by comparing the current image (CI),
which is the distribution of the physical field in the system view area, with one or
several copies of pre-stored images, called reference image (RI), based on a certain
statistical criterion, at which most often the reciprocal (mutual) correlation function
serves. Such corrective systems are called correlation-extreme navigation systems,
even in cases where an image matching criterion different from the correlation
function is used.

According to the volume and nature of information removed from the physical
field at each time point, CENS is classified into systems in which information is
currently removed at a point (CENS-I), from a line (CENS-II), and from an area
(frame) (CENS-III) [19]. Systems of the first type can use both surface fields (relief
field, optical, radio location and radiometric contrast fields; such systems belong to
the TNM type 2) and spatial fields (anomalous magnetic and gravitational fields
of the TNM type 1). CENS-II and CENS-III can work only on surface fields, as
usually FRs are small in comparison to the correlation radius of the spatial field.
These systems closely adjoin the image recognition systems and image combining
systems. Forming an image line in CENS-II or a frame in CENS-III is performed by
scanning the field sensor or by using the horizontal component of the aircraft speed.

Further division of CENS sub-classes can be made according to the storing and
processing method of a priori and working information. From this point of view,
they are divided into analog (continuous), digital, and analog-digital (mixed).

According to the method for determining the deviation from the extreme, the
criterion for comparing images of CENS are divided into search, search-free, and
combined.

Search-free CENSes are tracking systems. For their operation, at each correction
session, one copy of RI is required, and it is necessary that the mismatch (shift)
of CI relative to RI does not exceed the correlation interval of the surface field
[15]. Correlation processing in such systems is carried out under the condition of
homogeneity and ergodicity of the surface field, and the dimensions of the field of
view of sensor must significantly exceed the field correlation interval. Search-free
CENSes are suitable to use when these conditions are met in the capture mode
of a ground object—the navigation guideline. It is assumed that in this mode, the
probability of missing a navigation landmark is small, and the main characteristic of
the quality of the system is the accuracy of the controlled object (FR navigation) on
a given trajectory.
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In the search ACS [19], the extreme position of the image matching criterion is
carried out by searching for it, which, unlike tracking systems, requires performing
test motions necessary to determine the direction of movement to the extreme. This
is achieved by shifting the field of view of the sensor. In CENS, it is more convenient
to use different fragments from the RI set that differ from each other in shear when
comparing test motions. As a result, the RI fragment, which corresponds to the
greatest degree of CI, is recognized, and the value of the shift vector is determined
at the same time as the image sampling interval on the ground, which is determined
by the impulse spatial characteristic of the field sensor. The main characteristic of
the quality of the system at this stage is the probability of correct recognition of the
ground object, and the accuracy of determining the navigation parameters plays a
secondary role.

The combined (recurrent-search) [19] are automated control systems (ACS) that
combine the principles of Kalman filtering with the theory of statistical solutions,
more precisely, its branch testing statistical hypothesis. The instance of RI choice
acts as a hypothesis, which differs by a certain shift. As a comparison criterion of CI
and RI, the conditional relative to observation joint probability density of the shift
parameter and the hypothesis appears.

Depending on the type of physical field used, CENSes are subdivided into radar,
optoelectronic, radiometric, relief-based, etc.

Depending on the used physical field formation method, CENS can be active,
passive, and semi-active (passive-active).

16.1.2 A Formalized Basic Description Model for
the Functioning Process of the FR
with Correlation-Extreme Navigation Systems
and Radiometric and Optoelectronic Sensors

The basic model of the combined CENSes functioning process, we will understand as
some idealized model of the system, describes the conversion signal patterns arising
from the solvable tasks, but does not take into account the interference characteristic
specifics of radiometric reception or reception by optoelectronic sensors. It is
assumed that the only interference of receiving signals is the internal noise of
the receiver, and various destabilizing factors distorting the CI structure (changing
weather conditions, underlying surface conditions, etc.) are absent.

16.1.2.1 The Main Objectives and Model of Signal Processing in the RM
Channel CENS

In accordance with the theory of thermal radiation in the radiometric (RM)
channel, the selection of information about the object of binding (OB) is based
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on the difference in emissivity of materials and underlying surfaces. Therefore,
the recorded (informative) signal parameter used for detection, identification,
recognition, mapping, etc., is the intensity of the received signal.

The main problem solved by the RM channel at each session of the binding
trajectory is to estimate the coordinates of the OB characteristic point (XOB, YOB)
based on the processing of the heat thermal relief T(x, y) in the view field S ⊂ R2

and using a priory information in the form of RI about one of the view field parts,
that is, display formation S → (XOB, YOB). This task is divided into a number of
sub-tasks:

1. Review of the underlying surface in the OB area
2. Formation in a certain subject plane associated with the FR coordinate system,

a radio-thermal relief of the area within the field of view, that is, radiometric
imaging (RMI)

3. RMI analysis in order to identify anomalies due to the presence of the OB,
based on its comparison with the RI, determining the coordinates of the selected
anomaly characteristic point, and issuing target indications of the CS.

On the basis of these data and information about the height at the time of the
frame pickup received from the altimeter, the coordinates for the FR mass center and
the mismatch angles of the FR velocity vector with the OB direction are calculated.
This information, in the form of target indications, enters the control system and is
used to correct the FR trajectory.

Let in the coordinate system (x, y) on the earth surface be given the field of
the heat (radio) thermal relief T(x, y). £ multi-path antenna converts radiothermal
radiation with an intensity T(x, y) into a combination of processes

{
uSij (t)

}N1,N2

i=1,j=1
with two-sided spectral power densities

Ssij (f ) = kT sij /2, (16.1)

and the antenna temperature Tsij for each channel is determined by the expression

Tsij =
∞∫

−∞

∞∫

−∞
T (x, y)G

(
xij − x, yij − y

)
dxdy, i ∈ 1, N1, j ∈ 1, N2,

(16.2)

where G(xij − x, yij − y) is the function describing the ij-th partial ADD, converted
to a coordinate system on the surface of the earth, in which the axis intersects the
earth surface at a point (xij, yij).

Thus, the heat radiothermal relief distribution undergoes the information loss due
to image discretization following the finiteness of the processing channel number
and the image “blurring” of the final width of each partial ADD, which leads to a
decrease in the accuracy and reliability of the positioning.
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Let further signals be processed by a multichannel matrix radiometer, which
uses independent radiometric channels. In each channel, the signal is amplified in
the amplification path to the level necessary for normal operation of the quadratic
detector. Before amplification, the signal is summed with interference due to the
antenna noise, the input circuits, and the intrinsic noise of the amplification path.
Assuming that the frequency path response is rectangular with a bandwidth 	f and
center frequency f0, the signal at its output can be represented as

uij (t) = usij (t)+ unij (t), (16.3)

where usij (t), unij (t) are the band Gaussian random processes with spectral power
densities

Ssij (f ) = kT sij
[
rect (f + f0,	f )+ rect

(
f − f0,	f

)]
/2;

Snij (f ) = kT nij
[
rect (f + f0,	f )+ rect

(
f − f0,	f

)]
/2,

(16.4)

where k = 1.38 · 10−23 J.K−1 is the Boltzmann constant,

rect (f,	f ) =
{

1, |f | ≤ 	f/2,
0, |f | > 	f/2, (16.5)

Tnij is the equivalent temperature of internal noise.
The signal processing algorithm, for example, in an ideal compensation matrix

radiometer is as follows:

{
uij (t) �→ T̂sij

}
; T̂sij =

1

k	f τ

τ∫

0

u2
ij (t)dt − Tnij ; i ∈ 1, N1, j ∈ 1, N2,

(16.6)

where T̂sij is the antenna temperature estimate for the ij-th channel.
In the signal optimal reception theory with fluctuation noise, it is customary to

use the square root of the mean square deviation of the measured value (estimate) of
the antenna temperature T̂sij from its true value as an indicator of noise immunity
Tsij , that is,

δTij =
[

M
(
T̂sij − Tsij

)2
]1/2

. (16.7)

By a direct averaging of expression (16.6), we can verify that the estimate T̂sij
is unbiased, that is, MT̂sij = Tsij . Then the noise immunity index (16.7) coincides
with the standard deviation T̂sij
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δTij =
(

DT̂sij
)1/2

. (16.8)

Using (16.6), direct calculations can show that

δTij =
Tsij + Tnij√
	f τ

. (16.9)

Thus, the signal at the output of the radiometric channel can be represented as

T̂sij = Tsij + nij , (16.10)

where nij is the fluctuation component of the output signal. Since the integrator in
(16.6) is a low-pass filter, by virtue of the well-known theorem on the random process
normalization at the output of a narrow-band filter, nij is a Gaussian random variable
with zero mean value and standard deviation (16.9).

The set of output signals of radiometric channels forms N1 × N2 CI matrix{
T̂sij

}
, on the basis of comparing fragments with the RI matrix E = [eij

]
, i ∈

1,M1, j ∈ 1,M2, M1 < N1, M1 < N1, in the secondary processing device
using an appropriate algorithm, and it is decided to localize the OB by searching for
the CI fragment most relevant to RI.

Fragment by the author is called the fragment CI, which actually corresponds to
RI. For this fragment, the relation (16.10) takes the form

T̂ klsij = eij + nklij , (16.11)

where (k, l) are the coordinates of the author fragment.
The coordinates of the author fragment it is a value that determines the position

of the current image quote on the anchoring area plane on the surface of the earth.
The coordinates are known in advance as far as the reference image of the anchoring
area (object) is forming beforehand.

Thus, the secondary processing system of the RM channel forms the mapping{
T̂sij

}
�→
(
k̂, l̂
)

of the CI matrix into the coordinate estimate of the author fragment.
As the indicator of a secondary processing device noise immunity, we will use

the probability of the OB correct localization P´L. Let us reveal the meaning of this
concept.

On the i-th session of the trajectory binding (i ∈ 1, Nt, Nt the total number of bind-
ing sessions (frames)), the RI estimated position k̂i , l̂i is obtained relative to CI, and
the true values are equal to ki, li ,

(
ki ∈ 1, N1 −M1 + 1, li ∈ 1, N2 −M2 + 1

)
.

Let us denote by the Ai event that the i-th binding session for the absolute error
(	ki = k̂i − ki, 	li = l̂i − li) satisfies the condition

|	ki | < 1, |	li | < 1. (16.12)
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Then this event will be called the correct localization of the OB at the i-th session
of the trajectory binding. When this event is performed, the accuracy of the trajectory
reference will be no worse than the resolution element on the ground, determined by
the width of the beam, the height of the FR at the time of the shot, and the angle of
OB sight.

For the first binding session, we have PCL1 = P (A1). In the second session, the
correct localization probability of the correct OB is the probability of combining
events A1 and A2, which is determined by the multiplication rule of probabilities

PCL2 = P (A1 ∩ A2) = P (A1) P (A2 |A1 ) .

Similarly, at the i-th session

PCLi = P
(

i∩
j=1
Aj

)
= P (A1) P (A2 |A1 ) · · ·P

(
Ai

∣∣∣∣
i−1∩
j=1
Aj

)
.

Then the final probability of the correct OB localization will be determined by
the expression:

PCL = PCL Nt = P
(
Nt∩
j=1
Aj

)
= P (A1) P (A2 |A1 ) · · ·P

(
ANt

∣∣∣∣
Nt−1∩
j=1
Aj

)
.

(16.13)

Let us estimate the signal influence and interference components in the image
(16.10) on the probability of the correct OB localization. For simplicity, we will
consider events Ai mutually independent. Then (16.23) takes the form

PCL =
Nt∏

i=1

P (Ai) . (16.14)

We will accept next suppositions and assumptions:

1. RI is a sample of a one-dimensional Gaussian ergodic process with zero mean
and variance σ 2

e .
2. An additive model of CI interaction with the kind of noise (16.11) is applied

zi = ei + ni;

3. The noise ni has the same characteristics as RI, except for dispersion, which is
equal to σ 2

n and it is the same for all channels.
4. The processes z and n are independent.
5. To compare the fragments of RI with CI, the mean absolute difference algorithm

is used, whose criterion function is
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Dj = 1

N

N∑

i=1

∣∣ei+j − zi
∣∣ , (16.15)

where N is the number of elements CI.
For these suppositions and assumptions the probability of correct±B localization

during single act of object binding will be determined by the following expression:

PCL = 1

2M
√
π

∫ ∞

−∞
e−x2

⎡

⎣1+ erf

⎛

⎝
x +

√
N
π−2

(√
2q + 1− 1

)

√
2q + 1

⎞

⎠

⎤

⎦

M

dx,

(16.16)

where M is the number of independent samples of the criterion function
N is the number of independent images samples
q = σ 2

e /σ
2
n is the signal-to-noise ratio

erf(x) = 2√
π

x∫

0

e−t2dt.

From expression (16.16), it follows that

1. The probability of the correct localization of the OB increases with increasing
signal-to-noise ratio.

2. The probability of correct localization of OB increases with increasing N and
decreases with increasing M.

However, the expression (16.16) does not take into account a number of factors
that will lead to a decrease in the probability of correct OB localization.

16.1.3 Analysis of Factors That Lead to Distortions
in a Decisive Function Formed
by a Correlation-Extreme Navigation System

The task solution of high-precision FR autonomous positioning that uses combined
CENS should be carried out primarily in the informative parameter bundle of the
system “three-dimensional shape of objects on CI—sensors of different physical
nature (SDPN)—geometric position of FR, taking into account its random change”
under the influence of

– Various types of CI interference and distortion, which may be natural or artificial
– Propagation medium (PM) of radio waves and the interference effect on the state

of the navigation system (NS)



16 Methods for Ensuring the Accuracy of Radiometric and Optoelectronic. . . 547

The CENS FR efficiency functioning is determined by the decisive function (the
term for the correction of the spatial FR position) and is estimated by the accuracy
parameters and positioning probability [21].

The FR locating probability using the CENS in the k-th session of the binding is
determined by the expression:

Pmi = PCLi · PCi , (16.17)

where PCLi is the probability of the correct OB localization on the CI.

PCi = PW ·PIP ·PCS is the performing probability of the FR flight path correction at
the k-th session of the binding, which is determined by the following parameters:

PW is the influence probability of weather conditions on the control system (CS) LR.
PIP is the interference possibility on the FR (CS) functioning.
PCS is the failure-free operation probability of the FR CS.

The accuracy index (positioning error) of the CENS is characterized by the
standard deviation (SD) of the real FR coordinates after performing the k-th
correction with respect to the given one [19, 21].

Accuracy index CENS FR can be represented by the expression:

σk =
√
σ 2

CLi
+ σ 2

Ck
+ σ 2

CSk
, (16.18)

where σCLi = f
(
σCI, σxiyizi

)
is the SD of the OB localization on the CI at the

k-th binding session, which depends on the RI manufacturing accuracy σRI and the
errors in determining the spatial position of the FR, arising under the influence of
random factors σxiyizi .

σCk is the deviation of the coordinates after performing the correction in the k session
of the reference CENS.

σCSk is the SD of testing control signals after the correction FR flight path.

The random factor influence that leads to errors in determining the FR spatial
position requires the appropriate method development on the formation of the CENS
DF and the FR positioning.

Probability σCLi is determined by many factors. The probability is determined
by many factors, such as three-dimensional form of objects of SS, the influence of
FR spatial position instability, that determine the quality of SI, and is formed by the
sensors of CENS [22].

The need to take into account the three-dimensional shape of SS objects, especially
in conditions of the sight geometry changes, is caused by the object-saturated images
of SS. Such images are very characteristic for the developed infrastructure, shadows
and blurring contours. These factors, as well as the rapid change in the spatial position
of the FR due to the wind gusts, air holes and air flows, can also contribute to the
distortion of the DF, which in its turn leads to a decrease of the CENS operation
efficiency.
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16.1.4 The Changes Impact Analysis in the FR Spatial Position
on the CI Formation

Preserving the reasoning integrity intact, we will refine the ´I model, which is
formed by the channels of the combined CENS using the example of an RM
channel with an informative parameter—a radiobrightness temperature, followed
by the generalization to an optoelectronic channel [23].

The CI model building will be carried out taking into account the following
conditions:

1. The FR flies evenly and straightforwardly at speed V at an angle ϕ to the vertical.
2. The ADD is approximated by a Gaussian surface.
3. The CI frame formation is carried out by a multi-path (matrix) system.
4. The CI is formed in accordance with (16.11) in each channel under the influence

of additive noise.
5. The effect of changing the FR spatial position on the CI is carried out by the yaw

angle ψ ′ = ψ ± 	ψ .
6. The angles of pitch and roll do not change.

The first condition of the current image modeling indicates that the flying robot
does not make the maneuver while forming the image frame. That is why there will
be no immediate changes in roll and pitch angles. In addition, the orienting system
that provides constant roll and pitch angles is a part of the flying robots’ strapdown
inertial reference systems. That is why roll and pitch angles do not affect the image
frame forming. So the sixth condition about consistency of roll and pitch angles
reflects reality.

Suppose that the FR moves in the xz plane of the z, y, z coordinate system
associated with the SS (Fig. 16.1a). The position of each partial ADD is characterized
by angles β and α. The aperture angle of the ADD at the half power level is θx in the
plane along the elevation angle and θy in the azimuth plane. For the ADD Gaussian
approximation, its section by the yx plane is an ellipse.

The CI is formed as a matrix of M rows and N columns. The inclination of the
plane in which the ADD are located along the axes is given by the angle βi,j ∈ 1, M
relative to the velocity vector V, and the position of the axis of each ADD in the row
is characterized by the angle αij.

The distortions of the CI frame can be found from the motion equation of the
centers and sizes of the principal semi-axes of half-power ellipses for each beam of
the ADD.

In accordance with the motion direction (Fig. 16.1), the FR spatial position at the
moment of time t is represented as:

⎧
⎨

⎩

x(t) = x0 + V · (t − t0) sinφ;
y(t) = 0;
z(t) = z0 − V · (t − t0) sinφ.

(16.19)
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Fig. 16.1 Geometric conditions for the formation of CENS CI

In view of (16.19), the motion equation of the ellipse center for the ij-th partial
ADD is written as

{
xij (t) = kij x′ij (t);
yij (t) = kij y′ij (t),

(16.20)

where x′ij (t) = x0 + z0tg (φ − βi)+ V (t − t0) sinβi sec (φ − βi)

y′ij (t) = z(t)tg
(
αij
)

sec (φ − βi) ; [0, 1]
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kij =
⎧
⎨

⎩
1−

[
sin
(
θxij /2

)

cosαij cos (φ − βi)

]2
⎫
⎬

⎭

−1

The dimensions of the main ellipse semi-axes are determined by the relations:

1. In a plane that passes through points (x0, 0, z0), (x0, 0, 0), (xij, yij, 0)

	xi,j (t) = z(t)
(
ki,j (t)− 1

)
ctg
(
θxi,j /2

) ; (16.21)

2. In the orthogonal plane

	yij (t) = z(t)tg
θyij

2

√
(
kij − 1

) (
kij ctg2

θxij

2
− 1

)
. (16.22)

Assume that the principal axes of the half-power ellipses are parallel to the x, y
axes. For these conditions, the normalized ADD at a point (x0, 0, z0), in which the
axis intersects the xz plane at a point

(
x0
ij , y

0
ij

)
, can be represented as follows [19]:

G
(
x, y, x0

ij , y
0
ij

)
= 1

2πδxij δyij
exp

⎧
⎪⎨

⎪⎩
−
⎡

⎢
⎣

(
x − x0

ij

)2

2δ2
xij

+
(
y − y0

ij

)2

2δ2
yij

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
.

(16.23)

We select the parameters δxij , δyij , so that the main ellipse semi-axes dimensions
of the ADD half-power coincide with the dimensions that are determined by the
formulas (16.21) and (16.22):

(
x − x0

ij

)2

2 ln 2 δ2
xij

+
(
y − y0

ij

)2

2 ln 2 δ2
yij

= 1. (16.24)

As a result, we get

δxij =
	xij√
2 ln 2

; δyij =
	yij√
2 ln 2

. (16.25)

Let us find the dependence of the brightness temperature in time at the output
of a separate RM channel. To do this, suppose there are K zones with brightness
temperatures Tm, on the CI that are distributed on a uniform background with
the temperature TB. Then, in the xy plane, the following brightness distribution
temperatures will occur:
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TBr (x, y) =
⎧
⎨

⎩

Tm, x, y ∈ Sm, m ∈ 1, K

TB, x, y /∈ Sm =
K∪
m=1
Sm

, (16.26)

where Sm ∩ Sn = ∅ , m #= n.
Let us take into account that the radiometer low-pass filter (LPF) has an impulse

response hij (t) = 1
τij

exp
(−t/τij

)
. Then the signal at the output of the RM channel

is represented in the form:

T rSi,j = e−(t−t0)/τi,j
⎡

⎣TSeff (t0)+
1

τij

t∫

t0

eη/τijTSeff ij (η − t0) dη

⎤

⎦ , (16.27)

where TSeff ij is the antenna temperature at the ij-th input

τ ij is the time constant of the ij-th channel

Taking into account that the antenna system parameters TSij can be represented
as follows [19]:

TSij (t) =
∫

R2

TSeff (x, y)G
(
x, y, xi,j (t) , yi,j (t)

)
dxdy. (16.28)

Taking into account (16.26), we write (16.28) as follows:

TSij (t) = Tф +
R∑

m=1

(
Tm − Tф

)∫

Sm

G
(
x, y, xi,j (t) , yi,j (t)

)
dxdy. (16.29)

Taking into account (16.23), (16.27), and (16.28), after integration in the range
from t0 = t − 3τ to t, we obtain:

T rSij
(t) =Tф +

K∑

m=1

(
Tm − Tф

)
�

(
x − yij (t0)

dy

) ∣∣
∣∣
dm

x = cm
[
�

(
x − xij (t)

dx

)
− Bij (t, x)

] ∣∣∣∣
bm

x = am ,
(16.30)

where Bij (t, x) = exp

(
r2
ij

2 + x−xij (t0)
dx

rij − t−t0
tij

) [
�
(
x−xij (h)
dx

+ rij
)]t

h=t0
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rij =
δxij

Vxij τij

� (ξ) = 1√
2π

ξ∫

−∞
e−θ2/2dθ

i ∈ 1, M; j ∈ 1, N

Expression (16.30) is a signal model that is formed by a separate RM channel
depending on the spatial position of the FR and its orientation, without taking into
account the channel noise.

The expression that describes the CI model taking into account the noise in the
radiometric channel can be represented as [23]:

SRM =
∥∥SRMi,j

∥∥
i = 1 . . .M
j = 1 . . . N

, (16.31)

where

SRM (i, j) =Tb +
K∑

m=1

(Tm − Tb)�
(
ξ − yij (t0)

δy

)

∣
∣∣∣
dm

ξ = cm
[
�

(
ξ − xij (t)
δx

)
− Bij (t, ξ)

] ∣
∣∣∣
bm

ξ = am + n(t).

The CI model in the optoelectronic channel in accordance with (16.31) can be
represented as follows:

SOE =
∥∥SOEi,j

∥∥
i = 1 . . .M
j = 1 . . . N

, (16.32)

where
SOE (i, j) =Bb +

K∑

m=1

(
BBrm − BBrb

)
�

(
ξ − yi,j (t0)

δy

)

∣∣
∣∣
dm

ξ = cm
[
�

(
ξ − xi,j (t0)

δx

)
− Bi,j (t, ξ)

] ∣∣
∣∣
bm

ξ = am + n(t)
.
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The signal brightness BBr(i, j, t, ε,μ, 
) which is received by the CENS OE sensor
from the SS element at a point (i, j) in time t is described by the expression [6]

BBr (i, j, t, ε, μ,�) = E (i, j, t, ε, μ,�) rBr (i, j, t, ε, μ,�) , (16.33)

where E(i, j, t, ε,μ, 
) is the spectral illumination field, which is created by the image
element (i, j)

rBr(i, j, t, ε,μ, 
) is the spectral brightness coefficient

 is the observation and illumination condition vector

� = ‖φ ϕ ω ψ Edir/Edif‖ (16.34)

φ and ϕare the angles of the SS element observation

ω and ψ are the angles of the SS element illumination
¨dir and Edif are random illumination fields, which are created by direct and diffuse

radiation

Taking into account (16.33), the model of the image of the SS formed by the OE
sensor can be represented as:

SSSOE (i, j) = BBr (i, j, t, ε, μ, φ, ϕ, ω,ψ,Edir, Edif) , (16.35)

where ε, μ are the dielectric and magnetic permeability of covers and SS materials.
The PM distortion effect leads to the modulation of the informational field (IF)

parameters and can be described by the functional [20].

SPMk
(t) = BPM

(
SSSk (t)

)
, (16.36)

where BPMk

(
SSSk (t)

)
is the image conversion operator by the EMW propagation

medium.
The FR can be exposed to the natural noises, intentional interference, and high-

power electromagnetic radiation (EMR).
As a result, the input k-th channel signal of a sensor of different physical nature

(SDPN) SSDPNk can be represented in the form:

SSDPNk (t) = SPMk
(t)+ NFRk (t), (16.37)

where

NFRk (t) = nk(t)+ NINk (t)+ NEMRk (t) (16.38)
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NFRk (t) is the FR additive effect matrix on the k-th reception channel

nk(t) is the receiver’s own noise matrix and artificial noise in the k-th reception
channel

NINk (t) is the active and passive interference affecting the receiver’s path in the k-th
channel of the SDPN

NEMRk (t) is the EMR impact on the channel

The result of the primary information processing in the CENS, which consists of
CI set formation, noise filtering, as well as noise compensation, in general terms can
be represented by the relation:

SCIk = Fprek

(
SSDPNk (t)

)
, (16.39)

where Fprek is an operator that describes the process of preprocessing informative
fields in the k-th SDPN.

Taking into account the RI presence setup in advance for each SDPN, that is
SRI1 ,SRI2 , . . . ,SRIG ∈ SRI, the DF CENS in a general form can be represented as
the result of an RI correlation comparison SRIg from the formed aggregate SRI with
the CI which are formed by the SDPN

(
S′RI1

,S′RI2
, . . . ,S′RIK

)
.

RDF (t, r) = Fsp
(
S′RI1

(t),S′RI2
(t), . . . ,S′RIK (t);SRI

)
, (16.40)

where Fsp is the secondary processing system operator.
Because of the mentioned above, the block diagram of the model of DF formation

process in the operator form can be presented as shown in Fig. 16.2.
With the sequential use of CENS sensors, DF is determined by one of the sensors

operating at a given point in time. This means that the DF corresponds to one of the
private DFs that are formed by the separate CI channels.

RDF (t, r) = Fspk

(
S′CIk (t),SRIk

)
. (16.41)
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Fig. 16.2 Block diagram of a generalized model of the formation of the DF
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16.2 Formation Features of a Crucial Function
by a Radiometric CENS Channel When Navigating
Low-Flying FR in Terms of Three-Dimensional Object
Binding

The autonomous navigation solution of low-flying flying robots in the conditions
of a developed infrastructure using the CENS makes it necessary to clarify the
description of both the RI set and the CI three-dimensional objects. This is due to
the fact that the solid OB angle can significantly exceed the size of the partial ADD.
As a result, depending on the sighting geometry within the OB, various differences
in the brightness temperature can occur, which in turn will lead to the formation
of a nonstationary CI. Thus, a structural discrepancy arises between the RI and CI,
which necessitates the use of other additional invariant OB image features. In this
regard, ensuring the required accuracy of determining the OB coordinates requires
the development of appropriate methods for the RI formation. It should be considered
that the RI constructing principles by the informative features must comply with the
CI.

The CI quality can also be affected by various interference, seasonal factors and
adverse weather conditions, which lead to a change in the image structure.

16.2.1 Formation of Reference Images of Three-Dimensional
Form Object Binding

The task of development of the method and algorithm for the formation of reference
images of three-dimensional objects of sight will be solved with the following
assumptions [24–26]:

1. The effect of distortion factors on the sighting surface objects is absent.
2. The size of the source image (SI) of the sighting surface: M1 × M2, the size of

the slide window SSW ∈ SSI – N1 × N2 with coordinates of the upper corner (i, j).
3. Each i-th, j-th element of the CI is a normally distributed magnitude with a

dispersion σ2
ij and an average radiobrightness temperature S(i, j).

4. Noise of the CENS channels is not taken into account.
5. Comparison of SI of SS SSI with the formed image fragment will be carried out

at a maximum value of the coefficient of cross correlation (CCC), Kmax (i, j).

CCC of SI and the formed image fragment for all i = 1 . . .M1 – N1 and
j = 1 . . .M2 – N2 forms a correlation analysis field (CAF). The formed CAF
characterizes the degree of similarity of informative fields of the SS image fragment
with the IF of other image fragments.
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Let us analyze the possibility of using radio brightness contrasts between objects
in a CI as an informative attribute used to form zonal structure of the image in
conditions when spatial angle of the object of sight exceeds the size of partial ADD.
Taking into account influence of radiobrightness temperature of atmospheric column,
Tatm, reflected by visible parts of the three-dimensional object, radiobrightness
temperature of the object of sighting, Tm (16.26), will be determined by temperatures
of its individual visible surfaces. Proceeding from this, the expression for determining
radiobrightness temperature of the object of a complex three-dimensional form can
be represented as [23]:

Tm = T0
∑
χiSi(χ) + Tatm

∑
kjSi(k)

S0
, (16.42)

where S0 =
n∑

i=1
Si(c)+

m∑

j=1
Sj(k) is the area of visible sections of surface of the object

of sighting which is characterized by emissivity and reflectivity

kj is the coefficient of reflection
T0 is the thermodynamic temperature of the object

Relation (16.42) makes it possible to calculate the value of radiobrightness
temperature in individual elements of the object of sighting taking into account
its configuration.

For this purpose, perform simulation of distribution of radiobrightness tem-
perature between the object elements depending on sighting angles for the
three-dimensional object shown in Fig. 16.3.

Simulation terms are [23]:

1. Sighting altitude: 500 m
2. Radiobrightness temperature of the sky: 50 K
3. Thermodynamic temperature: 300 K
4. Angles of opening of radiometer ADD: 30◦ × 40◦
5. Width of partial ADD: 1◦
6. Working wavelength: 3.2 mm (frequency 94 GHz)
7. Sighting corners: 90◦, 60◦, 45◦
8. Pixel dimensions in the image: 8 × 8 m

Parameters of the object of sighting:

1. Three-dimensional object of a complex form (Fig. 16.1)
2. Dimensions of the object of sighting (in nadir) 10 × 30 m
3. The area of individual object elements varies according to the sighting angles
4. Emissivity of the object elements:

– Horizontal platforms (concrete): 0.76
– Vertical platforms (brick): 0.82
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Fig. 16.3 Radiobrightness temperature distribution among the object elements depending on the
sighting angle

Background parameters:

1. Material: asphalt
2. Emissivity: 0.85

According to the results of simulation, it was found that different radiobrightness
temperature gradients can be observed within one object at different sighting
angles. These gradients lead to disappearance of existing and emergence of new
radiobrightness contrasts and, accordingly, boundaries and contours in the object
images. Thus, formation of RI with the use of boundaries and contours as invariants
is inappropriate in conditions of developed infrastructure. Therefore, a necessity of
search for additional informative attributes for the formation of RI of SS arises.

It is suggested to use geometric attributes of the set of the most bright stationary
objects of SS as such attributes. To this end, it is necessary to introduce the concept of
geometrically connected objects through their contouring and subsequent definition
of an average radiobrightness temperature for such equivalent object.

This approach makes it possible to refuse from transformation of similarity in
the reference space for a large number of shifted and turned RIs to select an RI
which corresponds most closely to the compared fragment when comparing with CI
fragment.

Figure 16.4 shows SI fragment and the objects that are defined for the formation
of an equivalent OR based on three bright areas of the terrain.
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Fig. 16.4 Source image: full-size image (a); a fragment of SI and the objects that are defined for
the formation of an equivalent OR (b)

Fig. 16.5 Image of SI fragment: with contoured objects of OR (a); with average radiobrightness
temperature within the contour (b)

Let us use average radiobrightness temperature for the radiometric channel as an
informative attribute of the OR introduced in this way. The contoured object and its
selective image are shown in Fig. 16.5.

Perform formation of CAF of the contoured object and SI at radiobrightness
temperature μBr(i, j).

Calculate the maximum value of CCC, Kmax(i, j), corresponding to the selected
images in accordance with the classical correlation algorithm for each (k, l) by the
expressions [26]:

Ki,j (k, l) = 1

N1N2

N1∑

m=1

N2∑

n=1

SCOij (m, n)× SOI (m+ k − 1, n+ l − 1) ,

(16.43)
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where

Kij =
∥∥Kij (k, l)

∥∥ when k = 1 . . .M1 −N1, l = 1 . . .M2 −N2.

(16.44)

The maximum value of each resulting Kij matrix which is ensured at a complete
coincidence of SCOij and SOI is determined:

Kmax (i, j) = max
kl

∥∥Kij (k, l)
∥∥ , (16.45)

where i = 1 . . .M1 − N1, j = 1 . . .M2 − N2

SCOi,j (m, n) ∈ SPM and SOI(m + k − 1, n + l − 1) ∈ SOI.

The matrix with dimensions (M1 – N1) × (M2 – N2) which characterizes
distribution of Kmax(i, j) is CAF with brightness (CAFBr).

The CCC resulting from comparison of the source image and the image fragment
with an equivalent OR is shown in Fig. 16.6 [4].

Comparison of RI with the source image was carried out in accordance with the
classical correlation algorithm. During simulation of SI, a radiometric image was
taken. It was obtained by radiometric channel from altitude of 1000 m at sighting
angle of 60◦.

It has been established that in the case of the use of an equivalent OR, the DF is
unimodal. At the same time, complete coincidence of RI fragment with SI ensures
that there is no impact of scale and perspective distortions of the SS objects on the

Fig. 16.6 CCC of the formed equivalent OR and SI
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Fig. 16.7 Factors influencing accuracy of superposition: perspective distortion (a); CI bias relative
to RI (b); turn of CI relative to RI (c); scale changes of CI (d)

comparison results. This is confirmed by the geometric construction of shift, scale
change, perspective distortions, and SI turn with an equivalent OB relative to RIs
shown in Fig. 16.7.

16.2.2 Formation of unimodal decision function
of the radiometric CENS

Formation of a unimodal DF requires CI preprocessing in order to reduce the latter
to a form close to RI.

According to radiometric CI, this means that its processing results in a necessity
of determining a set of objects in the image with the highest value of radiobrightness
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temperature TBr(i, j)max. On the basis of the set, an equivalent OB will be formed
later as shown above and accordingly a new CI.

To do this, determine the average value of radiobrightness temperature of the
background part of the image, TBr av, and quantize radiobrightness temperatures of
the objects in the current image taking into account radiometer sensitivity, 	T, and
dynamic range TBr(i, j)max – TBr(i, j)min. When quantizing, the values of the selected
gray levels will be determined by the number of selected intervals, k.

The quantization of radiobrightening object temperature on the image (radiance
temperature) has no influence on the resolution and operating speed of the
radiometric channel. The quantization is determined by the radiometer’s sensitivity.
It allows to arrange the objects by radiobrightening temperature points and relatively
to the background.

Let us quantize radiobrightness temperatures of CI by breaking the temperature
range TBr(i, j)max – TBr(i, j)min in even intervals, 	TBr:

	TBr = TBr(i, j)max − TBav

k
, (16.46)

where k = 10–20 is the number of quantization levels; 	TBr > 	T.
In accordance with the defined maximum values of radiobrightness of the objects,

form the current image of SCI(M1, M2) which will be considered the source image.
Calculate the average value of radiobrightness temperature for a set of bright objects
and represent geometrically related objects in the image in the form of an equivalent
OB with a value of brightness averaged over its plane. It is the completion of
preliminary processing of CI.

Next, transform CI of SCI(M1, M2) into a binary image, H, according to the rule
[20, 23]:

Hi =
{

1, Si ∈ Smax;
0, Si ≤ Sρ; i ∈ 1, F0, (16.47)

where i is the number of CI fragment occupied by OB; ρ is the number of CI fragment
occupied by background; F0 is the size of the sample that forms two classes ofωi that
do not intersect each other and correspond to the signals of the object of reference,
ωu, and background, ωρ .

Solve the problem of OB selection in a binary image as follows. According to the
selected threshold of values of radiobrightness temperature, compare fragments of
the layered current image, Hi ⊂ H, with the reference image and find the fragment
of CI which will have the greatest number of coincidences.

The decision rule that defines the DF consists of the following:
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Rj = sup
i∈0,M

Ri (16.48)

As a result, a unimodal DF R(x, y, t) of radiometric CENS will be formed.
The index i takes as many values of M as possible fragments are shifted one relative

to the other with the set configuration in frame H. If the rule (16.48) corresponds to
several fragments, then decision on OR localization is not made.

Probability of correct OB localization will be determined as follows when using
rule (16.48) [20, 27]:

PCL =
Fu∑

j=1

C
j
Fu
(1− α)jαFu−j

⎡

⎣
j−1∑

m=0

CmFu
βm(1− β)Fu−m

⎤

⎦

M

(16.49)

where α, β are errors of the first and second kind which are determined by the value
of the signal-to-noise ratio; Fu is the sample size corresponding to OB; m ∈ 0,M .

The results of estimation of probability of correct OB localization using an
equivalent OB with brightness averaging in accordance with a set of geometrically
related objects are shown in Fig. 16.8. The shown dependences were constructed for
OB with area of 5–50% of the total image area [23].

In order to the verify effectiveness of the proposed approach, a statistical test of
the DF formation algorithm of radiometric CENS with the use of the RI built using a
set of geometrically related objects was performed. The algorithm of DF formation
of radiometric CENS is shown in Fig. 16.9 [23].

The following assumptions were taken in simulation:

1. The SS scene is photographed in nadir.
2. Quantization of gradations of gray levels of OB and background is completed.
3. There are no mutual turns, geometric and scale distortions of CI and RI.

Fig. 16.8 Dependence of
probability of correct OB
localization on the
signal-to-noise ratio for
equivalent OB of various
sizes
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Fig. 16.9 Block diagram of
the algorithm of formation of
DF of radiometric (RM)
CENS

Source data, R(r) 
ΔR(x,y,t)

The RI set 

CI of RM 
channel, SRM

Start

Level of quantizing and 
formation of CI with objects 
having the highest brightness

Formation of a new binary CI

Comparison of CI with the RI 

Determining coordinates of the 
DF extremum and displacement 

vector estimation

Finish

Formation of DF, R=sup Ri

Calculation of mean brightness 

for the defined set of CI objects

4. The nodes of CI and RI matrices coincide.
5. OB is located in the center of RI.

Source data of the simulation algorithm:
Matrix of RI:

1. Size: 8 × 8 elements
2. Informational content: binary image, OB corresponds to “1” and background to

“0”
3. OB size: 3 × 3 elements
4. OB form: conventional square

Matrix of CI:

1. Size: 16 × 16 elements
2. The number of levels of gray quantization: OB: 5 levels, background: 0–7 levels
3. OB size: 9 elements
4. OB form: inscribed in a conventional square with the size of 3 × 3

The simulation results are presented in Figs. 16.10 and 16.11 [23].
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Fig. 16.10 CCC of CI and RI
(a) ratio of signal/noise = 10;
(b) ratio of signal/noise = 5

Fig. 16.11 The result of DF
formation at signal/noise ratio
of 5–10

Thus, it was established that the use of an auxiliary geometric attribute in the
CI makes it possible to ensure probability of OB localization close to unity at a
signal-to-noise ratio of 3–4. In this case, the area of OB must not exceed 30% of the
entire CI area.
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16.3 Features of the Formation of the CENS Decisive
Function When Navigating Flying Robots in the Case
of the Appearance of False Objects in the Current Image

When solving navigation tasks for flying robots equipped with CESN with reference
to terrain sections with high object saturation, when other bright objects that are
close to the binding object occur and are close in parameters (geometric dimensions
and brightness), false objects may appear on CI depending on the sighting geometry.
As a result, the efficiency of CENS may be insufficient, due to the complexity of the
formation of a unimodal decisive function.

In many practical cases, other researchers are recommending the use of dynamic
filtering in image processing. Solutions of dynamic filtering can be found in [28]
where authors presented solutions of principal component analysis use for speeding
up image filtering, in [29] where the authors used algorithm based on block
coordinate descent, and article [30, 31] proposes an SD (for static/dynamic) filter.

However, all these methods are more proper for standardized/converted computer
format images. We are still in search of continued idea of natural image on camera
output processing.

16.3.1 Models of Current and Reference Images: Statement
of the Task of Developing a Method for Localizing
an Object Binding on Image

The CI Model SCI. To describe an SS, we will adopt a model in which the undistorted
initial image SII is described by the brightness values of the corresponding objects
and SS backgrounds in the resolution elements [20, 25]:

SCI = SOI = ‖S (i, j)‖ , (16.50)

where S (i, j) =
{
Sv (i, j) , at S (i, j) ∈ Sv
Sw (i, j) , at S (i, j) ∈ Sw

Sv(i, j) is the brightness of the image element of the w-th object of Sv
Sw(i, j) is the brightness of the image element of the w-th background of Sw
V and W are, respectively, the numbers of objects and backgrounds of different

brightness and shape in the SI

In accordance with (16.50), let us make the following assumptions for the CI
model of the viewing surface:

– The current and initial images have the same size of N1 × N2 pixels.
– The SS objects have significant brightness values relative to the background. The

OB of the CENS has the greatest brightness.
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– The OB and the background within the resolution element are uniforms in
brightness.

– Each i,j-th element of the CI is a normally distributed value with the variance σ 2
ij

and the average luminance value S(i, j). In the absence of interference, S(i, j) can
take one of the two values: Sv(i, j) or Sw(i, j). The contrast of the OB relative to
the ambient background is defined as 	S = Sv(i, j) − Sw(i, j).

– The dispersion of noise in the receiving channels of the CENS is the same,
that is,

σ 2
ij = σ 2, i ∈ 1, N1, j ∈ 1, N2

– For the number of the background elements belonging to the set of Sw, and the
objects belonging to the set of Sv, the valid relation is V $ W.

Taking into account the assumptions made, the density distributions of the
brightness S of the background and object elements are determined by the expressions
[20]:

ww(S) = 1√
2πσ

exp
[
−(S − Sw)2/2σ 2

]
, (16.51)

wv(S) = 1√
2πσ

exp
[
−(S − Sv)2/2σ 2

]
. (16.52)

Concerning the signals of other objects of Sρ , close in brightness and
commensurable with the reference object, hereinafter referred to as false objects
(FOs), we make the following assumptions:

– The maximum size of Sρ does not exceed the diameter De of the resolution
element on the terrain; otherwise, such an FO can be considered stable and as
usable as a reference object.

– The equivalent diameters of Sρ are distributed according to an exponential law.

The latter assumption makes it possible to take into account only one distribution
parameter—the average diameter Sρ D0, in the formulation of the problem and also
to assume that for a known mean value, the maximum entropy is revealed by the
following exponential distribution [20]:

w(D) =
{

1
D0

exp (−D/D0) , D ≤ De;
0, D > De.

(16.53)
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The signal from Sρ with the equivalent diameter De taking into account the
fill factor of the image resolution element has a luminance value determined in
accordance with the expression:

S (i, j) = Sρ D
De
+ Sw (i, j)

(
1− D

De

)
= Sw (i, j)− D

De

(
Sw (i, j)− Sρ

)
,

where Sρ is the average brightness of an FO.
The density of the distribution of the probability of a signal from an FO with

allowance for distribution (16.53) has the form:

ωρ(S) =
{
λeλ(Sω−Sρ) S ≤ Sρ;
0, S > Sρ,

(16.54)

where λ = De
D0(Sw−Sρ) .

Let us assume that the signals from an FO in the area of the CI frame are randomly
distributed and represented by a Poisson flow, possessing the property of stationarity
and ordinariness without any aftereffect.

Description of the RI. Because of the instability of both the absolute values of the
brightness of the individual elements of the SS and the contrast of objects and the
background, we will assume that the RI is given by the sign of the contrast and the
geometric shape of the object. That is, we represent the RI as a binary image. The
elements of the object have the value of 1, and the background elements have the
value of 0.

Statement of the problem. To consider the CI model with several objects that are
close in brightness and geometric form with the OB, it is necessary to solve the
problem of localizing the reference object.

Let us denote by Fρ the number of cells in the frame with signals from the F0,
so [20]:

Fρ + Fv + Fw = F0, (16.55)

where F0 is the total number of frame elements that hit the camera’s field of viewFv
and Fw are the numbers of frame elements taken by the reference object and the
backgroundUsing the assumptions that σ $ ΔS, Fv/F0 > 0.5 makes it possible to
split the solution of the problem of localizing the OB in the CI into several stages.
The first stage is to detect the object, whereas the second consists of its preliminary
selection against the background of the FO. The third stage consists of finding the

maximum DF value of Rj from the aggregateRj =
L∑

ς=1
Ri (i, j), which is determined

by a layer-by-layer analysis of the number of DF cross sections ζ and the search for
its single value corresponding to the maximum.
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16.3.2 The Solution of the Detection Problem
and Multi-Threshold Selection of the OB in a Current
Image with Bright False Objects

The current image in the line-by-line expansion in accordance with (16.55) represents
a vector of the dimension F0. As a result, we have a sample of the volume F0, which
forms three disjoint classes of ωi, corresponding to signals from the background
ωw, F± ωρ and OB ωv, and the density of the sample distribution is given by the
expression [20]:

w(S) =
3∑

i=1

piwi(S), (16.56)

where pi = Fi
F0
, i = 1, 2, 3 are a priori probabilities of the classeswi(S)= w(S|ωi)

means the conditional probability densities of a random variable S under the
condition that S belongs to a class of ωi, defined by expressions (16.51), (16.52),
(16.54)

In order to isolate the signals of the OB from the background signals, we split the
sample consisting of the elements of the three classes into two classes with respect
to the quality index, which is defined further.

Let us set quantization threshold l of the sample to two classes, according to
which we assign the signals of the OB to one of them and the signals of the FO to
the second class. In this case, the probabilities of errors of the first and second kinds
are determined by the expressions [20]:

α =
∞∫

Sw−l
wv(S)dS, (16.57)

β = 1

1+K
Sw−l∫

−∞

[
wρ(S)+Kww(S)

]
dS, (16.58)

where K = Fρ
Fw

.
By the probabilities α and β in the second stage, we can determine the probability

of the correct localization of the OB, which, in accordance with (16.57) and (16.58),
can be considered a function of threshold l and can be maximized by choosing
the corresponding threshold l = lopt. Since the distribution parameters of mixture
(16.57) are unknown, the first step is to estimate the unknown parameters, which
include 	S, Sw, pw. The parameter λ is uniquely determined by expression (16.56).
The number of the OB elements Fv is known; hence, the probability is known as
pv = F0

Fv
, pρ = 1 − pw − pv.
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By applying a nonlinear transformation to the original sample, we can construct
a histogram of the distribution of the transformed random variable. The nonlinear
transformation best emphasizes the “center” of the background distribution ww(S).
By comparing the central parts of the histogram and the theoretical probability
density, we determine the mean value of the background

!

Sw.
During the transformations, the dynamic range of 	S was divided into intervals

of the σ length, and the center of the interval with the largest number of sample
values was taken as a rough estimate of the mean value of Sw.

By performing the appropriate transformations and substituting the parameter
estimates in expressions (16.57) and (16.58), we obtain estimates of the error
probabilities !α,

!

β [20]:

!
α =

∞∫

!
Sw−l

wv

(
S

∣
∣∣∣
!

Sw

)
dS, (16.59)

!

β = 1

1+ !

K

!

Sw−l∫

−∞

(
ww

(
S

∣
∣∣∣
!

Sw

)
+ !

Kwρ

(
S

∣
∣∣∣
!

Sw

))
dS, (16.60)

where
!

K = !
pρ/

!
pw,

!
pv = 1− !

pw − pρ .
For the given threshold l, we transform the initial SCI of the CI into a binary image

H according to the rule (16.47).
The quantization threshold determines the probability of occurrence of errors of

the first α and the second β kinds. In turn, the values of α and β determine the
minimum value of the signal-to-noise parameter q = qmin, at which the required
probability of the correct localization of the OB is reached:

qmin = �−1 (1− α)+�−1 (1− β) ,

where �(x) = 1√
2π

x∫

0
e−t2/2dt the probability integral.

Now it is necessary to solve the task of selecting an object in a binary CI against
the background of the MO, using a priori information in the form of a binary RI.

The algorithm for processing the binary CI for the purpose of solving the problem
of selecting the OB is as follows. For each fragment Hi ⊂ H, of the CI, having a
certain configuration and size of the object, a comparison is made with the RI, which
consists entirely of single units. The operation of comparing the binary images
consists of adding, “according to module two,” image elements and forming the DF
by using the formula [20]:
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Ri =
Fρ∑

k=1

(
SRIm ⊕

mod 2
Him

)
, (16.61)

where Him is the m-th element of the i-th fragment of the CI

SRIm is the m-th element of the reference image SRI

The decision rule is that the fragment Hj ⊂ H, for which [20]:

Rj = inf
i
Ri, (16.62)

is declared to coincide with the RI. The index i takes as many values of M, as all
possible fragments are shifted with respect to each other with a given configuration
in the frame H. If the property of (16.62) is true for several fragments, then the
decision to localize the OB is not accepted.

To compare Hi with the RI consisting of units, it is more convenient to operate
with numbers:

zi = Fρ − si, i ∈ 0,M,

each of them represents the number of units in the Hi fragment. Then the decision
rule is that the fragment Hj ⊂ H, for which [20]:

zj = sup
i∈0,M

zi, (16.63)

is declared to coincide with the RI.
To estimate the probability of the correct localization of an object, we proceed

as follows. Let the size of the object be T1 × T2 cells. We divide the CI matrix into
rectangular T1 × T2 sub-matrices.

If sub-matrix amount is not an integer, it will be necessary to increase the frame
size, thus an integer number of sub-matrices (mark it M + 1) fit in it.

In this case, the estimates of the probability of the correct localization of the OB
will be obtained as underestimated due to the increase in the frame. Suppose that
the true position of the object falls into one of the sub-matrices, then we denote the
fragment of the CI corresponding to the RI by H0 ⊂ H and we shall denote the
fragments placed in the remaining sub-matrices by Hi , i ∈ 1,M .

Let the probability of occurrence of 1 in Hi be equal to ri. Then the numbers of
zi are distributed according to the binomial law [19, 20]:

P (zi) = CziFv r
zi
i (1− ri)Fv−zi , zi ∈ 0, Fv. (16.64)
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The probability of the correct localization of the OB by using decision rule
(16.64) is equal to the probability that the number of units in z0, corresponding to the
coincidence of the RI and the object, will exceed all other numbers of zi, i ∈ 1,M .

We denote an event consisting of the appearance of z0 = j ∈ 1, Fv units in H0 by
A
j

0 , and the event consisting of the fact that the number of units in zi does not exceed
j – 1 by Aji , i ∈ 1,M . The events Aji , i ∈ 1,M are independent in aggregate
because Hi ∩ Hm = ∅ ∀i, m ∈ 0,M . In accordance with formula (16.64), the
probabilities of the events Aji are determined by the expressions:

P
(
A
j
i

)
=

⎧
⎪⎨

⎪⎩

C
j
Fv
r
j

0 (1− r0)Fv−j , i = 0;
j−1∑

m=1
CmFv r

m
i (1− ri)Fv−m, i ∈ 1,M.

(16.65)

Then, by the probability multiplication theorem, the probability of the event

Lj =
M∩
i=0
A
j
i is equal to

P
(
Lj
) =

M∏

i=0

P
(
A
j
i

)
, j ∈ 1, Fv.

Since the events in the aggregate are incompatible, the probability that the number
of units in H0 exceeds the number of units in all other fragments of Hi is determined
by the expression for the probability of the correct localization [2]:

PCL =
Fv∑

j=1

P
(
Lj
) =

Fv∑

j=1

M∏

i=0

P
(
A
j
i

)
, (16.66)

where the probabilities are determined by formula (16.66).
Considering that

ri =
{

1− α, i = 0;
β, i ∈ 1,M,

(the probabilities α and β are given by relations (16.57) and (16.58)), for
the probability of the correct localization of the object, we obtain the final
expression [2]:

PCL =
Fv∑

j=1

C
j
Fv
(1− α)jαFv−j

⎡

⎣
j−1∑

m=0

CmFvβ
m(1− β)Fv−m

⎤

⎦

M

. (16.67)



572 O. Sotnikov et al.

In order to ensure unambiguous decisions, it is necessary to develop an algorithm
that performs an iterative process of processing with a varying threshold before
obtaining a single solution.

One of the possible variants of such an algorithm is as follows. After calculating
the average value estimate

!

Sw, the initial value of the threshold l0 = ασ is set (the
algorithm tests showed that it is expedient to choose α ∈ 1.8 . . . 2.2), with respect to
which the CI:

SCI = ‖S (i, j)‖ ,

is transformed into a binary image, which we denote by H0. By comparing this image
with the RI in accordance with criterion (16.63), the matrix of the decision function∥∥
∥z0
ij

∥∥
∥ is calculated, and the set is found as follows:

M0 =
{
(k, l) ∈ 1, N1 × 1, N2

∣∣∣∣zkl = max
i,j
zij

}

Moreover, the maximum of the decision function z0
max is not necessarily equal

to Fv, but it is possible that z0
max < Fv . If the set M0 consists of one element, that

is, M0 = {1(m, l)}, then the decision is made that the coordinates of the reference
element of the object relative to the CI are m, l.

16.3.3 Solution to the Problem of Forming a Unimodal
Decision Function

Expression (16.67) for the probability of the correct localization of the object is
suitable for evaluating the effectiveness of applying the CENS in the areas of the SS
with the reference object by a uniquely determined system. In this case, the system
forms a unimodal DF. If reference is made to an SS with several objects that are
comparable in parameters to the OB, it becomes necessary to refine the result of
the reference. For this, in the third stage, the search is performed for the largest DF
value, corresponding to the complete coincidence of the CI with the RI.

The essence of the method is to form a set of matrices Gi of the DF with
the subsequent determination of the largest number of units in the summary
representation of the DF as

∑U
i=1Gi .

The decision rule is that the fragment Gj ⊂ G, for which [2]:

Gj = sup
i∈0,U

Gi, (16.68)

is declared to coincide with the RI.
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The index i assumes as many values as there are cuts U of the fragments Gj ⊂ G
by the time of determining the cut with the greatest number of units.

As a criterion for localizing the RO, we choose an integral indicator of relative
brightness, the values of which are formed as independent samples of Q in the
elements of the DF matrices Gi. All the resulting matrices Gi are summed together
element-wise. The resulting matrix Gi consists of the elements Gj(i, j), the values of
the independent samples in the form of integrated luminance indices. The matrix Gi,
with the largest number of units written as (

∑U
i=1Gi = max) is taken as the result

of localizing the required reference object.
The probability of the correct localization of the RO in accordance with the

described algorithm is determined by the expression [2, 4]:

PCL = 1−
⎛

⎜
⎝1−

Fv∑

j=1

C
j
Fv
(1− α)jαFv−j

⎡

⎣
j−1∑

m=0

CmFvβ
m(1− β)Fv−m

⎤

⎦

Q
⎞

⎟
⎠

U

.

(16.69)

The results of estimating the probability of the correct localization and the DF
formation for two values of the signal-to-noise ratio are shown in Figs. 16.12, 16.13,
16.14, and 16.15.

The analysis of the results of estimating the probability of the correct localization
of the RO (Figs. 16.12 and 16.14) and the formation of the DF (Figs. 16.13 and
16.15) with the use of the SS with FOs has revealed that the application of the
detection procedure and the multi-threshold selection of the RO in the image allows
ensuring the probability of the correct localization of the object that is close to 1.
At the same time, the presence of false objects in the image of the SS, comparable
in parameters with the RO, does not affect the formation of the unimodal DF. Thus,
the algorithm for implementing the developed method is distortion-proof, and it can
be used in the CENS to ensure efficient functioning in the conditions of a complex
background-object situation.

Fig. 16.12 The result of
estimating the probability of
localizing the RO in the CI
with a signal-to-noise ratio
q ≈ 10
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Fig. 16.13 The result of the
DF formationwith a
signal-to-noise ratio q ≈ 10
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Fig. 16.14 The result of
estimating the probability of
localizing the RO in the CI
with a signal-to-noise ratio
q ≈ 20
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Fig. 16.15 The result of the
DF formation with a
signal-to-noise ratio q ≈ 20
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16.4 Conclusions

Assuming all points mentioned above, we could conclude that the offered
approach of passive combined correlation-extreme systems implementing the survey-
comparative method for recognition and analysis of images obtained from machine
vision of a FR, significantly improves the correct localization of the objects in the
image. This process has the potential to improve the quality of the control decisions
during the navigation of the FR. It is important to note that this approach with only
small corrections implemented through additional constraints of the bearing surface
to the framework could target a variety of novel applications for terrestrial mobile
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robots and platforms [5, 32–48]. The results from the performed simulations show
that they can be compatible with recognized robot simulation frameworks [47–49]
after slight modification and assimilation.
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Chapter 17
Stabilization of Airborne Video Using
Sensor Exterior Orientation with
Analytical Homography Modeling

Hadi Aliakbarpour, Kannappan Palaniappan, and Guna Seetharaman

Acronyms

GPS The Global Positioning System
IMU Inertial measurement unit
RANSAC RANdom SAmple Consensus
VIRAT DARPA Video and Image Retrieval and Analysis Tool
WAMI Wide Area Motion Imagery
WAAS wide area aerial surveillance
WAPS wide-area persistent surveillance
WFOV wide field-of-view
UAV Unmanned Aerial Vehicles
GSD Ground Sampling Distance
SfM Structure-from-Motion
BA Bundle Adjustment
NEU North-East-Up

17.1 Introduction

Wide area motion imagery (WAMI), also known as, wide area aerial surveillance
(WAAS), wide-area persistent surveillance (WAPS), or wide field-of-view (WFOV)
imaging is an evolving imaging capability that enables persistent coverage of large

H. Aliakbarpour (�) · K. Palaniappan
Computational Imaging and VisAnalysis (CIVA) Lab, EECS, University of Missouri,
Columbia, MO, USA
e-mail: akbarpour@missouri.edu

G. Seetharaman
Advanced Computing Concepts, U.S. Naval Research Laboratory, Washington, DC, USA

© Springer Nature Switzerland AG 2020
O. Sergiyenko et al. (eds.), Machine Vision and Navigation,
https://doi.org/10.1007/978-3-030-22587-2_17

579

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22587-2_17&domain=pdf
mailto:akbarpour@missouri.edu
https://doi.org/10.1007/978-3-030-22587-2_17


580 H. Aliakbarpour et al.

geographical regions on the order of a few to tens of square miles [1] at tens of
centimeter resolution, or very small areas such as bridges and construction projects
at very high resolution from closer range using the same sensor package. It has
become even more popular due to performance advances in sensor technologies,
computing hardware, battery performance, and reduction in size, weight, and cost of
these components. WAMI sensors can be placed on many types of airborne platforms
including fixed wing or multi-rotor unmanned aerial vehicles (UAVs)—both fixed
wing and multi-rotor drones, small (manned) aircraft and helicopters [2]. Depending
on the imaging sensor characteristics and aircraft altitude, these systems can cover
a small city-sized area with an approximate ground sampling distance (GSD) of
10–30 cm per pixel, tens to hundreds of megapixels at the focal plane using single or
multiple optical systems (e.g. 6600×4400 RGB color) with a frame rate of 1–10 Hz.

Detection of small and distant moving objects, e.g. cars or pedestrians, in a scene
which is observed by a camera that by itself undergoes motions and jitters is extremely
challenging. This can be even more challenging considering that small objects like
cars may appear as 10–25 pixels in their length. To improve detection and tracking in
aerial imagery [3–5] in which videos are captured on a moving platform, the images
are stabilized (registered) to maintain the relative movement between the moving
platform and the scene fixed. An accurate image stabilization in such scenarios can
be important for both higher level video analytics and visualization. Traditionally,
aerial image registration methods are performed through applying 2D homography
transformations in the image space [6–8]. Aerial image registration is challenging
for urban scenes where there are large 3D structures (tall buildings) causing high
amount of occlusion and parallax. In such situations, the presence of parallax can
lead to significant error when inter-image 2D registration approaches are used [9].

In this paper, a method to register aerial images is proposed which utilizes
available (noisy or approximate) GPS and IMU measurements from the airborne
platform and robustly stabilizes images by optimizing camera 3D poses using a
homography-based cost function. Unlike most existing methods, the homography
transformations in our approach are not estimated using any image-to-image
estimation techniques, but directly derived as a closed-form analytic expression
from the 3D camera poses. In our previous work, we leveraged our fast structure-
from-motion (SfM) technique (BA4S [10, 11]) to derive a novel georegistration
approach that did not need to estimate local patch-based homographies and used
an analytical model that was both accurate and fast [12]. Although that approach
was fast and globally accurate, its cost function is defined over the full 3D space in
order to optimize the retinal plane reprojection pixel error over the full 3D scene as
required by most SfM downstream applications (e.g. dense 3D reconstruction [13–
16]). However, as an alternative to full SfM-based georegistration, we propose to
stabilize an image sequence or remove jitter, with the objective of deriving a smooth
motion trajectory over the sequence of images such that the dominant ground plane
is stabilized minimizing a 2D metric distance-based error function. Therefore, in this
paper, we propose an alternative approach for the parameter optimization with an
emphasize on stabilizing the geoprojected aerial imagery by defining a cost function
over a single dominant 2D Euclidean world plane. The points that do not lie on
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the dominant are automatically marginalized during the optimization process. In the
experiments, we will show that the method proposed in this paper is more robust
in situations where the available camera sensor pose measurements are extremely
inaccurate.

17.1.1 Related Work

The majority of approaches for image stabilization use pairwise and combinatorial
matching and warping transformation for stabilizing the ground plane prior to moving
object detection [6–8, 17–26]. Aerial image registration is challenging for urban
scenes where there are large 3D structure and tall buildings causing high amount of
occlusion and parallax [9, 12, 27]. An aerial image registration method was proposed
in [6, 28] which uses a multi-layer (coarse to fine) homography estimation approach
to deal with parallax and occlusions. Although using a hierarchical homography
estimation helped to reduce false registration, their approach still suffer from the
presence of strong parallax, as it was not able to seamlessly register all images
within a dataset altogether. By observing Table-I in their paper [6], one can see that
each dataset was broken into several segments in the registration process, due to
an inability to faithfully handle strong parallax. Molina and Zhu [17] proposed a
method to register nadir aerial images in which a pyramid block-based correlation
method was used to estimate inter-frame affine parameters. They stated [17] not
being able to use available GPS/INS measurements [1, 29–31] and just relying on
the imagery itself: the measures made by GPS/INS devices come with errors due to
hardware, and [if] used directly will produce panoramas with large apparent errors
and discontinuities. Their approach requires persistent (multiple) cyclic video data
collections to work. Moreover their approach has been only tested on nadir imagery
with negligible parallax issues, while in oblique imagery (WAMI) the parallax is
significantly stronger.

Direct georeferencing of high resolution unmanned aerial vehicles (UAV) imagery
was discussed in [32] while performances of different SfM softwares (Photoscan [33],
Pix4D [34] and Bundler [35, 36]) were evaluated. Pritt [37] proposed a fast
orthorectification method for registration of thousands of aerial images (acquired
from small UAVs). The author argued that BA is not able to handle hundreds of
aerial images and therefore it is not scalable. Notice that the results presented in [37]
appear to be tested over relatively flat terrain with negligible parallax. In [38],
IMU was used to register laser range measurements to the images captured from
a stereo camera. Crispell et al. introduced an image registration technique to deal
with parallax, assuming to have a dense 3D reconstructed model of the scene [9]. In
[39], GPS and IMU were used to perform an initial (coarse) orthorectification and
georeferencing of each image in an aerial video. Then a RANSAC-based method
was used to find optimal affine transformations in 2D image space. A method for
registering and mosaicking multi-camera images was proposed in [7]. In the proposed
method, registration is achieved using control points and projective image-to-image
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transformations (using a variation of RANSAC). Among the corresponding control
points found in overlapping images, those that best satisfy the projective constraint
are used to register the images. A technique for optimal feature matching was
recently proposed in [40], called locally linear transforming (LLT), which tries
to tackle outliers using the consistency of local features within a neighborhood. A
local geometrical constraint was developed that can preserve local structures among
neighboring feature points which is also robust to a large number of outliers. It
has a relatively high complexity and also uses exhaustive iterative methods; two
drawbacks in the feature matching stages of a SfM pipeline which we are avoiding in
our proposed approach. A similar algorithm, called restricted spatial order constraints
(RSOC), was proposed in [41] to deal with outliers for registering aerial images.
Both local structure and global information were considered in RSOC. It assumes
that neighbor spatial order is preserved after rigid and affine transformation and
based on that an affine invariant descriptor was defined. However, such assumption
for oblique aerial imagery of urban scenes is not held, due to existence of high
parallax. Recently, some image-based methods for robust registration (mosaicking)
of long aerial video sequences have been introduced in [42–44].

17.2 Feature Track Building

In persistent aerial imagery, images are sequentially acquired meaning that one knows
that what frame is adjacent to which one. By leveraging the temporal consistency of
the images and using them as a prior information, the time complexity of matching
can be reduced toO(n). Interest points are extracted from each image using a proper
feature extraction method. Starting from the first frame, for each two successive image
frames, the descriptors of their interest points are compared. While successively
matching them along the sequence, a set of feature tracks are generated. A track
basically indicates that a potentially unique 3D point in the scene has been observed
in a set of image frames.

17.3 Imaging Model

Figure 17.1 shows a world coordinate system W and a dominant ground plane π
spanning through itsX and Y axes. The scene is observed by n airborne cameras C1,
C2 . . . Cn. To make the notations succinct, we will omit the camera indices from
now on unless otherwise stated. The image homogeneous coordinate of a 3D point
X = [x y z]ᵀ from the world reference system W projected on the image plane of
camera C is obtained as

x̃ = K(RX+ t) (17.1)
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single camera onto π , all merge together and converge to the same identical 3D point X1, whereas
for an off-the-plane 3D point such as X2, its homographic transformations are spread out (diverged)

where K is the calibration matrix (intrinsics), R and t are, respectively, the rotation
matrix and translation vector from W to C. For a 3D point X lying on π , its Z
component is zero:

x̃ = K
(
[
r1 r2 r3

]
⎡

⎣
x

y

0

⎤

⎦+ t
))

(17.2)

r1, r2, and r3 being the first, second, and third columns of R, respectively. After
simplification, we have

x̃ = K
[
r1 r2 t

]
π x̃ (17.3)

where π x̃ = [x y 1]ᵀ represent the 2D homogeneous coordinates of the 3D point X
on π . One can consider the term K[r1 r2 t] as a 3× 3 homography transformation
matrix which maps any 2D point from π onto the camera image plane as:

x̃ = Hπ→c
π x̃. (17.4)

Likewise, a homogeneous image point x̃ can be mapped on π as:
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π x̃ = Hc→π x̃ (17.5)

where Hc→π is the inverse of Hπ→c and is equal to:

Hc→π =
[
r1 r2 t

]−1
K−1. (17.6)

Assuming T = [r1 r2 t
]
, f as the focal length in pixel, and (u, v) as the camera

image principal point, (17.6) can be expressed as:

Hc→π = T−1

⎡

⎣
f 0 u
0 f v
0 0 1

⎤

⎦

−1

(17.7)

Hc→π = 1

λ

⎡

⎣
m11 −m21 [−m11 m21 m31] v
−m12 m22 [ m12 −m22 −m32] v
r13 r23 − rᵀ3 v

⎤

⎦ (17.8)

where v = [u v f ]ᵀ and λ is a scalar defined as

λ = f rᵀ3 t, (17.9)

and mij is the minor(i, j) of matrix T. One can omit λ in (17.8) as a homography
matrix is defined up-to-scale, yielding:

Hc→π =
⎡

⎣
m11 −m21 [−m11 m21 m31] v
−m12 m22 [ m12 −m22 −m32] v
r13 r23 − rᵀ3 v

⎤

⎦ (17.10)

17.4 Optimization

Suppose our global reference system W in Fig. 17.1 is aligned with NEU (North-
East-Up). Reminding that π is the dominant ground plane in the scene, and there
are n cameras (or one camera in n different poses) observing the scene. The pose
of each camera Ci is defined by a rotation matrix Ri and ti which are defined from
the global coordinate system to the camera local coordinate system. Also suppose to
have m feature tracks in the scene. A feature track is basically a sequence of feature
points which are matched across the sequence of image frames. All features within
a track are the observations corresponding to a hypothetically identical 3D point in
the scene. The homogeneous image coordinates of a 3D point Xj on the image plane
of camera Ci are expressed as x̃ij , and it can be mapped from image plane to the
Euclidean plane π as
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π x̃ij = Hi→π x̃ij . (17.11)

Ideally, if 3D point Xj lies on the plane π , then mapping of all its corresponding
image observations (x̃1

j , x̃2
j , . . . x̃nj ) onto the plane, using (17.11), have to merge to

an identical 2D point on π , which also coincides on the 3D point Xj itself (see
Fig. 17.1):

π x̃1
j = π x̃2

j = · · · = π x̃nj & Xj (17.12)

However, it is not the case in real scenarios due to different source of errors such
as inaccuracy in the measured camera poses (e.g. from GPS/IMU). Therefore, the
set of mapped 2D points,

{
π x̃ij | i = 1 . . . n

}
, corresponding to 3D point Xj , will be

dispersed around the actual point π x̃j on π . One can consider, π x̂j , the centroid of
the distribution of 2D projected points, as an estimate for the actual point:

π x̂j = 1

n

n∑

i=1

π x̃ij (17.13)

The Euclidean distance between each mapped point π x̃ij and the estimated centroid
is considered as an error metric:

ej =
n∑

i=1

‖F(Hi→π x̃ij )−F(π x̂j )‖2 (17.14)

Overall error for all points and cameras can be used as a cost function to optimize
Ri , ti , and π x̂j (see Fig. 17.2):

E = min
Ri ,ti ,π x̂j

n∑

i=1

m∑

j=1

‖F(Hi→π x̃ij )−F(π x̂j )‖2 (17.15)

where F(.) designates a function that returns the Euclidean coordinates from
2D homogeneous ones. Such a minimization can be done through using various
iterative optimization techniques among which Levenberg–Marquardt methods are
well known and popular in the literature [45]. Here, total number of parameters
to be optimized is 6n + 2m, where n is the number of views and m is number of
tracks. Basically, each view i has six parameters including three for the rotation and
three for the translation components. Likewise, each track j is represented by the
2D mean position vector, π x̂j , as expressed by (17.13). Total number of parameters
in the observation space is � 2× n×m. Note that the length of each track is � n.

The introduced mathematical model for image registration is held only if all 3D
points to be imaged lie on the reference ground plane π (assuming to have perfect
features correspondences). However, in WAMI and particularly in urban scenarios,



586 H. Aliakbarpour et al.

Y

Z X

X (E)

Y(N)

Z 
(U

)

 x j
1

π

x j
1

 x̂ j

x j
n

Y
Z

X

x j
1

 x j
n

Z
X

x j
n

Pose of adjusted 
to minimize 

H1→

1→
Hn→

n→

Fig. 17.2 The optimization scheme: two matched image points in a features track j , x1
j from C1

and xnj from Cn, are available as the observations corresponding to hypothetically an identical 3D
point Xj in the scene. The features points are projected on π using the analytical homographies
defined in (17.10), where π is the dominant ground plane of the scene. If the 3D point Xj lies on
π , its corresponding mapped homography points should be all close by each other. Indeed, in an
ideal case where the camera poses are accurate, all such mapped points on π have to merge and
coincide to a single point, however it is not often the case due to different source of noise in IMU
and GPS measurements. Here, we use the mean of the homographic transformed points on π as an
estimate to initialize the optimization. e1

j and enj are the Euclidean distances between each projected
point and the mean. The optimization defined in (17.15) aims to minimize these distance errors
by adjusting the camera poses. Notice that if 3D point Xj does not lie on π , its error values are
automatically marginalized during the optimization process, thanks to the used robust functions

the presence of 3D structures/buildings is highly expected. The observed 3D points
from such structures once imaged and mapped onto plane π , their corresponding 2D
points would not coincide on π and will be dispersed. This phenomenon is known as
parallax, and its magnitude gets stringer as the 3D point get farther from the plane
(π ) which induces the homography. For example, in Fig. 17.1, consider X2 as a 3D
point which is off-the-plane. It is imaged as x1

2, x2
2, and xn2 on the image planes of

cameras C1, C2, and Cn. Mapping them on π using homography transformations
will result πx1

2, πx2
2, and πxn2 . As illustrated in Fig. 17.1, these mapped points are all

spread out on π , and the radius of distribution is proportional to the magnitude of
parallax.

There is another type of noise which is likely to exist in the tracks of feature
correspondences along the image sequence. The source of such noise can be from
the precision of the feature extraction algorithm or errors in the feature matching
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algorithm which could lead to many mismatches or outliers. In real scenarios, one
can expect to have a considerable percentage of outliers. To deal with outliers, mostly
RANSAC (or its variations) is used in the literature. In this context, a RANSAC-
based approach tries to (jointly) estimate a homography model and at the same
time to eliminate the outliers, by looping through a hundreds of iterations. In each
iteration of RANSAC, a subset of correspondence candidates is randomly chosen, a
homography model is estimated for the chosen population, and then the fitness of the
whole population of the correspondences is measured using the estimated model. In
this randomly exhaustive process, a model that provides the most consensus result
would be chosen and at the same time, the feature matches which do not obey the
estimated model within a threshold will be identified as outliers. Notice that in our
work, the homographies are analytically derived and no RANSAC estimation is
used and instead the inaccurate sensor measurements from the platform are directly
incorporated. Not using RANSAC gives the advantage of avoiding any adverse
random behavior in the model estimation. However, as a consequence of eliminating
RANSAC, the existing outliers cannot be explicitly identified. In order to address
this issue, we propose to use a robust error function in an appropriate formulation of
the problem.

Robust functions also known as M-estimators are popular in robust statistics and
reduce the influence of outliers in estimation problems. We have observed that not
every choice of a robust function works well [46] and a proper robust function is
critical for achieving a robust minimization of the reprojection error when the initial
parameters are too noisy and outliers are not explicitly eliminated beforehand. Two
commonly used robust statistics functions are the Cauchy (or Lorentzian) and Huber
[45] measures:

– Cauchy or Lorentzian cost function

ρ(s) = b2 log(1+ s2/b2) (17.16)

– Huber cost function

ρ(s) =
{
s2 if |s| < b
2 b |s| − b2 otherwise

(17.17)

where s is the residual (i.e. reprojection error) in (17.15) and b is usually one or
a fixed user defined value. We have chosen Cauchy robust function since it down-
weights the residuals more rigidly [47]. This characteristic of Cauchy is appropriate
for our purpose especially because there expect to be enormous number of large
residuals due to potential parallaxes in the scene. One can consider using other
types of robust functions such as a generalization of the Cauchy/Lorentzian, Geman-
McClure, Welsch, and generalized Charbonnier loss functions [48].

The proposed optimization method is presented in a pseudo code form in
Algorithm 1. This method is an alternative approach for the parameter optimization
with an emphasize on stabilizing the geoprojected aerial imagery by defining a
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Algorithm 1 Analytical airborne video stabilization
Input : A set of camera parameters acquired from inaccurate platform sensors, e.g. IMU and

GPS: (Ri , ti , f ), i = 1 . . . n, n being number of cameras/images.
m sets of tracked features along the sequence.

Output : Optimized homography matrices to robustly stabilize the imagery
1: v ← [

u v f
]ᵀ

2: for i = 1 to n do
3: Ti ←

[
r1,i r2,i ti

]

4: Assign mbc,i as the minor(b,c) of matrix Ti

5: Hi→π ←
⎡

⎣
m11,i −m21,i

[−m11,i m21,i m31,i
]

v
−m12,i m22,i

[
m12,i −m22,i −m32,i

]
v

r13,i r23,i − rᵀ3,iv

⎤

⎦

6: end for
7: for j = 1 to m do
8: for i = 1 to n do
9: π x̃ij ← Hi→π x̃ij

10: end for
11: π x̂j ← 1

n

∑n
i=1

π x̃ij
12: end for
13: E←∑n

i=1
∑m
j=1 ‖F (Hi→π x̃ij )−F (π x̂j )‖2

14: Optimize Ri , ti and π x̂j to minimize the cost function E
15: for i = 1 to n do
16: T̂i ←

[
r̂1,i r̂2,i t̂i

]

17: Assign m̂bc,i as the minor(b,c) of matrix T̂i

18: Ĥi→π ←
⎡

⎣
m̂11,i −m̂21,i

[−m̂11,i m̂21,i m̂31,i
]

v
−m̂12,i m̂22,i

[
m̂12,i − m̂22,i − m̂32,i

]
v

r̂13,i r̂23,i − r̂ᵀ3,iv

⎤

⎦

19: end for
20: return optimized homography matrices Ĥi→π , i = 1 . . . n

cost function over a single dominant 2D Euclidean world plane. The points that
do not lie on the dominant ground plane are automatically marginalized during
the optimization process, thanks to the used robust functions, instead of using a
RANSAC-based outlier elimination approach.

17.5 Experiments

The proposed method was applied to the DARPA Video and Image Retrieval and
Analysis Tool (VIRAT) dataset and several WAMI datasets provided by Transparent-
Sky (http://www.transparentsky.net). The introduced sequential feature tracking
method was used to track the identified SIFT features over each video sequence,
followed by applying the proposed optimization method. The top images in Fig. 17.3
are some sample frames from a shot in the sequence “flight2Tape1_2” of VIRAT
dataset which contains 2400 images. The metadata that comes with the images is

http://www.transparentsky.net
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(a)

(b)

Fig. 17.3 Stabilized sequence of VIRAT dataset using the proposed method. We used a full shot
from “flight2Tape1_2” which contains 2400 frames of 720 × 480 pixels. The camera metadata in
all VIRAT datasets is extremely inaccurate. Our approach managed to perform the georegistration
and stabilization on this long sequence without any jump or jitter in the result. (a) Original images
(frame numbers: 3615, 4610, 5351, and 5901). (b) Stabilized and geoprojected images (frame
numbers: 3615, 4610, 5351, and 5901)

extremely inaccurate. To the best of our knowledge, these metadata have not been
of use in any SfM, stabilization, and geoprojection project. However, our approach
managed to seamlessly register the full video shot, smoothly with no jitter or jump.
The results corresponding to the frames of the first row are shown in Fig. 17.3 bottom.

Figure 17.4 shows the result of running our method on a WAMI aerial imagery. The
metadata and images were provided by Transparent-Sky (http://www.transparentsky.
net) via flying a fixed wing airplane over the downtown of Berkeley in California.
Two exemplary images, with about 45◦ difference in their viewing angle along (200
frames apart along the sequence), are shown in Fig. 17.4-top. Their corresponding
georegistered frames are plotted in Fig. 17.4-middle. The bounding boxes of the
regions of the interest from the two frames are zoomed and shown in Fig. 17.4-
Bottom. The rectified epipolar line (yellow dotted line) demonstrates the alignments
for an exemplary pair of corresponding points (in red) in the two frames after
stabilization. A similar evaluation is demonstrated for ABQ (Albuquerque downtown
area) WAMI dataset, in Fig. 17.5. Figure 17.6 depicts the original and stabilized
images from another WAMI dataset, LA downtown area. As one can see, everything
from the dominant ground plane is well aligned between the two registered views,
and just the building and off the ground objects were wobbled which is due to the
existence of parallax. Despite the presence of strong parallax, the method succeeded
to seamlessly stabilize the images without any jitter. It is worth to remind that no
RANSAC or any other random-based method has been used in the proposed.

http://www.transparentsky.net
http://www.transparentsky.net
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Fig. 17.4 Stabilization result of Berkeley dataset. Top: two raw WAMI images, with size of
6600×4400 pixels (frame #0 at left, frame #200 at right). Middle: geoprojection of the raw frames
after stabilization using the proposed approach. Bottom: Zoomed-in versions of the middle row
corresponding to the areas which are marked by purple and green bounding boxes. The rectified
epipolar line (yellow dotted line) depicts the alignment for a pair of corresponding points (in red)
after stabilization
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Fig. 17.5 Stabilization result of Albuquerque dataset. Top: two raw WAMI images, with size of
6600×4400 pixels (frame #0 at left, frame #100 at right). Middle: geoprojection of the raw frames
after stabilization using the proposed approach. Bottom: Zoomed-in versions of the middle row
corresponding to the areas which are marked by purple and green bounding boxes. The rectified
epipolar line (yellow dotted line) depicts the alignment for a pair of corresponding points (in red)
after stabilization
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(a)

(b)

Fig. 17.6 Stabilized sequence of Los Angeles (California) dataset using the proposed method.
The high resolution WAMI imagery (with the image size of 6600 × 4400) along with initial
metadata were provided by Transparent-Sky (http://www.transparentsky.net). Despite presence of
strong parallax induced by the tall buildings, our method managed to smoothly stabilize the WAMI
images. (a) Original images (frames #0 and #100). (b) Stabilized and geoprojected images (frames
#0 and #100)

17.6 Conclusions

We proposed a stabilization and geoprojection method which is able to use
available sensor metadata (i.e. GPS and IMU) to register airborne video in a
robust and seamless manner. This became possible by deriving a set of analytical
homography transformations and defining a metric cost function over a dominant
2D Euclidean ground plane in the scene. The solution has been formulated such
that no RANSAC (any random-based iterative techniques) is used, in contrary
to most existing approaches. The robustness in our work is achieved by defining
an appropriate (robust) cost function which allows to implicitly marginalize the
outliers automatically within the optimization process. Our approach has been

http://www.transparentsky.net
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tested over a very challenging dataset of DARPA, known as VIRAT. Unlike the
imagery component of this dataset is very rich and has been frequently used in
different algorithms by several well-known research groups, its metadata component
is extremely challenging. We know no group or research work which could have
relied on the metadata in this dataset and used it in a SfM or stabilization method, as
the available sensor measurements are highly inaccurate. Nevertheless, our approach
has been tested on this dataset where the challenging metadata was directly utilized
to perform a smooth and seamless stabilization on the video sequence. In addition to
VIRAT dataset, two high resolution WAMI datasets corresponding to the downtown
areas of Berkeley and Los Angeles were successfully tested and stabilized in our
experiments.
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Chapter 18
Visual Servo Controllers for an UAV
Tracking Vegetal Paths

Jorge A. Sarapura, Flavio Roberti, Juan Marcos Toibero,
José María Sebastián, and Ricardo Carelli

Acronyms

ExG-ExR Excess green minus excess red vegetation index
GPS Global positioning system
IMU Inertial measurement unit
RMSE Root mean square error
TLS Total least squares algorithm
UAV Unmanned aerial vehicles

18.1 Introduction

In recent years, due to advances in computer technology and robotics, autonomous
aerial vehicles (UAVs) have found numerous applications, such as search and rescue,
forest fire monitoring, surveillance, remote inspection, and precision agriculture.
This last, is an upcoming technology with a great value to modernize the agriculture
applications and their purpose is not only to apply robotic technologies in the
field of agriculture, but also to develop new techniques and systems to adapt
to contemporary agricultural challenges. As most agricultural environments have
large semi-structured open spaces, autonomous vehicles have experienced great
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interest since the advancement of autonomous robotic technologies has promoted
the possibility of sending unmanned vehicles to operate in these large areas [2].

In general, the aerial robots use a global positioning system (GPS) or an inertial
measurement unit (IMU) as sensors to measure the position and speed of the vehicle,
required by the internal controllers and for the planning of the trajectories during an
autonomous flight. However, the GPS cannot be used in some environments such
as indoor environments or near buildings and trees, as it has large errors due to
different sources such as obstructed signals, signals with multiple routes in crowded
environments, and jammed or denied receptions. On the other hand, an IMU used as
position sensor for navigation employs accelerometers and gyros to find the linear
and angular movement from the starting point; but their measurements suffer from
accumulated error over time and even with a small drift error it will accumulate up
to a large value over time [1, 21].

In the real-world scenario of agriculture when the UAV will be flying close to
vegetation, the use of sensors and techniques based on artificial vision allows to
overcome the above-mentioned problems, improving the estimation of the vehicle
position during navigation in such environments due to its greater capacity to capture
the environment information [4, 6]. Numerous works have proposed control systems
using only visual information for the control of autonomous aerial vehicles [3, 18].

Other works use camera-based artificial vision systems as complementary
devices. In [10, 11] are presented laser-based scanning systems that allow precise
measurements of the distance to the objects under observation or the vitality of the
agricultural vegetation, respectively. The complementary use of the vision system
with the laser allows quick measurements to be obtained when working with a
non-redundant amount of information.

A main topic for the visual servoing is the image processing for the automatic
detection of crops [5, 7, 8, 13, 14]. In this work a vegetation index was used because
it accentuates a particular color such as the greenness of the plants which is intuitive
for human comparison, and is less sensitive to variations in lighting as well as to
different residues backgrounds [12]. Based on the image obtained with the vegetation
index, a simple and fast algorithm was developed capable of detecting a crop line
and providing references to the quadcopter for its autonomous navigation.

Among the agricultural tasks addressed by precision agriculture is the inspection
and data collection in structured rows of crop plantations, navigating at low-altitude
above the objects to be inspected. In this area, works based on artificial vision are
found such as [18] with a visual control system of an UAV to navigate along rows of a
crop field using the concept of oriented textures; or the one in [3] where a kinematic
servo-visual controller is presented for tracking paths with references extracted by
means of an artificial vision algorithm.

In order to achieve controllers with high performance, their design should consider
the dynamics of the UAV and be theoretically validated through stability proofs. In
[17] the authors have presented the first version of a visual servoing controller for
following straight paths based on passivity properties of the visual and controller
systems.
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In addition to the robustness and stability properties, the controller should satisfy
with a good performance regarding the response speed and the magnitude of the
control actions. To this we propose in this work three visual servo controllers based
on different design principles (including the one based on passivity properties), and
compare their performance when applied to an UAV following vegetal lines.

The main contribution of this work is the development of the image based
controller using passivity properties of the system, the stability and robustness
analysis, and the comparative performance with the other controllers. This study
is of practical value when designing UAVs visual servoing for a specific application.

18.2 UAV Models

The kinematic and simplified dynamic models of a quadcopter type UAV, Fig. 18.1,
is now presented. These models have been used for the controller design.
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Fig. 18.1 System reference frames
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18.2.1 Kinematic Model

This model is expressed by four speeds ẋb = [ẋb, ẏb, żb, ψ̇b]T expressed in the
frame 〈b〉 of the vehicle, transformed in the inertial frame 〈w〉 through a matrix
F(ψ) [16]. Each linear velocity (ẋb, ẏb and żb) produces a displacement on an axis
of 〈b〉 and the angular velocity ψ̇b a rotation around the axis zb. Therefore the UAV
movements can be described by

ẋw = Fẋb, (18.1)

where ẋw = [ẋ, ẏ, ż, ψ̇]T are the velocities in 〈w〉 and the F(ψ)matrix is given by

F(ψ) =
[

R(zw, ψ) 0
0 1

]
=

⎡

⎢
⎢
⎣

cψ −sψ 0 0
sψ cψ 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , (18.2)

where R(zw, ψ) and ψ represents a rotation matrix and yaw angle around the axis
zw, respectively, zw is the zw axis unit vector and c∗

.= cos(∗), s∗ .= sin(∗). In this
transformation, the angles of rotation around the x and y axes are neglected and
considered small for a smooth navigation condition.

18.2.2 Dynamic Model

The simplified dynamic model here considered is [15]

ub = Aẍw + Bẋw, (18.3)

where ẋw = [ẋ, ẏ, ż, ψ̇]T y ẍw = [ẍ, ÿ, z̈, ψ̈]T are the speeds and accelerations
of the UAV in 〈w〉; and ub = [ux, uy, uz, uψ

]T the control actions in 〈b〉. Matrices
A and B are given by

A = (FKu
)−1
, (18.4)

B = AKv. (18.5)

For the ArDrone quadcopter, the positive definite diagonal matrices containing
the dynamic parameters have been identified as given by
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Ku =

⎡

⎢
⎢
⎣

4.72 0 0 0
0 6.23 0 0
0 0 2.65 0
0 0 0 2.38

⎤

⎥
⎥
⎦ , (18.6)

Kv =

⎡

⎢⎢
⎣

0.28 0 0 0
0 0.53 0 0
0 0 2.58 0
0 0 0 1.52

⎤

⎥⎥
⎦ . (18.7)

The model (18.3) can be rewritten in 〈b〉 as

ub = Hẍb + Cẋb, (18.8)

where H = K−1
u and C = K−1

u Kv are positive definite symmetric matrices and
ẋb = [ẋb, ẏb, żb, ψ̇b]T y ẍb = [ẍb, ÿb, z̈b, ψ̈b]T are the speeds and accelerations
of the UAV in 〈b〉.

18.3 Vision System

The modelling of the vision system provides the equations that relate the line to
follow in the 3-D space by the UAV and its corresponding projection in the image
plane. It is considered that the camera, with associated frame 〈c〉, is mounted on the
quadcopter base on a gimbal type stabilizer device so that it takes images always
parallel to the ground plane, as shown in Fig. 18.1.

18.3.1 Image Processing

The vision system was implemented using a single board computer Raspberry Pi
II with a Raspicam camera. The camera captures color images in RGB format of
640× 480 px at a rate of 30 fps. The processing of the images acquired by the vision
system was done with the OpenCV image processing library and can be described
in five stages, as shown in Fig. 18.2, which includes the processing times.

In the first stage an RGB color image of the crop row is captured, Fig. 18.3a.
Then, a segmentation of the image is made for discriminating by color the plants
from the rest of the soil, by selecting a color space and an optimal vegetation index
[12]. The result of this stage is an almost binary gray image, Fig. 18.3b.

In the third stage, the gray image obtained is thresholded with a simple zero
value due to the choice of the improved excess green minus excess red vegetation
index (ExG–ExR). In the next stage, a filtering of the binary image is performed using
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Fig. 18.2 Image processing algorithm

several morphological transformations and by means of techniques of shape analysis,
it is completed the discrimination between the treetops and the soil, Fig. 18.3c.

Finally, in the last stage, the centroids of the detected trees are found and, using a
total least squares algorithm, the best line passing through them is estimated as the
line that describes the row of trees, Fig. 18.3d. In addition, in this estimate continuity
constraints are imposed to discriminate treetops in contiguous rows.

18.3.2 Kinematics of the Vision System

The way forward for the UAV, without loss of generality, is a straight line Lx
coinciding with the xw axis (line yw = 0 in 〈w〉) of the 3-D space defined by a
skew-symmetric matrix Plücker’s [9] given by
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(a) (b)

(c) (d)

Fig. 18.3 Results of the stages of image processing. (a) Real image. (b) Almost binary image. (c)
Binary image. (d) Centroids and estimated line

Lx = P1PT2 − P2PT1 =
(
x1 − x2

)

⎡

⎢⎢
⎣

0 y 0 1
−y 0 0 0
0 0 0 0
−1 y 0 1

⎤

⎥⎥
⎦ , (18.9)

where P1 = [x1, y, 0, 1]T y P2 = [x2, y, 0, 1]T are the homogeneous coordinates
of any two points on the line Lx , and the coordinate y = 0 to consider the line
yw = 0. Whereas the center of the frame 〈c〉 matches the center of the UAV
frame, since a kinematic calibration has been carried out between both frames, and
negligible values have been obtained in relation to the height at which the UAV
navigates. The camera matrix Kcam = KH0gcw, with normalized image coordinates
in the unknown depth and then in metric coordinates, is given by the product of the
matrices of intrinsic parameters of the camera K, of perspective projection H0 and
homogeneous transformation gcw of the frame 〈w〉 to the frame 〈c〉 as
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Kcam = f
⎡

⎢
⎣
sψ −cψ 0 cψyob − sψxob
−cψ −sψ 0 cψxob + sψyob

0 0 − 1
f

zob
f

⎤

⎥
⎦ , (18.10)

where f represents the focal length of the camera and xob , yob , and zob represent the
x − y − z coordinates of the frame center 〈b〉 expressed in the frame 〈w〉.

Using Eq. (18.10), the line Lx is mapped to the image plane on the line

l = KcamLxKTcam. (18.11)

The Cartesian expression (l : ax + by + c = 0) of the line l in the image plane is
given by the 3× 1 matrix lcartesian = [a, b, c]T

lcartesian = f
(
x1 − x2

)[
cψzob , sψzob , −f

(
yob − y

)]T
. (18.12)

Using the expression (18.12) and the transformations between the coordinate
frames, the following vector of image characteristics is proposed

xI =
[
d

ψI

]
=
[
xvcψ

ψ

]
=
[
fyob
zob

ψ

]

, (18.13)

where d is the distance from the line l to the origin of the image plane and ψI is
the angle between the line and the yI axis of the plane. Note that ψI = ψ and d is
a signed distance when it is calculated as d = xvcψ to determine which side of the
real line in 3D space is the quadcopter, where xv is the intersection of the line l with
the xI axis of the image plane, see Fig. 18.4.

Fig. 18.4 Line and features
in the image plane
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Considering that the height (zob ) of the UAV is kept constant due to the action
of an independent controller (żob ∼= 0), the temporal derivative of the vector xI is
given by

ẋI =
[
ḋ

ψ̇I

]
=
[
f
zob

0

0 1

][
ẏob
ψ̇

]
= JẋwT , (18.14)

where

J =
[
f
zob

0

0 1

]

, (18.15)

represents the Jacobian image matrix and ẋwT =
[
ẏob , ψ̇

]T represents the truncated
speed vector of the UAV in 〈w〉.

18.4 Kinematic Visual Servoing Controllers

This section presents three different visual servoing controllers, first one is a position
based controller while the other two are image based controllers. It is important to
remark that the design of the last proposal is based on the passivity properties of the
system [17].

18.4.1 Position Based Controller

For the design of this controller, control errors are defined as: x̃w = xwd − xw =
[x̃w, ỹw, z̃w, ψ̃w]T = [xwd − xw, ywd − yw, zwd − zw, ψwd − ψw]T , where the
component x̃w of the vector x̃w is zero because it is a path controller, see Fig. 18.5.

F−1ννν+ UAV Robot

Pose Estimation Vision System

xw
d

[
yw
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]
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x̃w uc
ref
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Fig. 18.5 Position based visual servoing control
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To satisfy the control objective x̃w(t) = [0, ỹw, z̃w, ψ̃w]T → 0, when t →∞;
the following servo-visual position based control law is proposed

ucref = F−1[ẋwd + f (x̃w)
] = F−1ν, (18.16)

where ẋwd = [ẋwmaxcψ̃w/
(

1 + |ỹw|
)
, 0, 0, 0]T is the desired speed to follow the

path bounded by the control errors to the maximum value ẋwmax along the line,
cψ̃w

.= cos(ψ̃w) and f (∗) is a function of the x̃w control errors. Then, the auxiliary
control function ν has the form

ν =

⎡

⎢⎢⎢
⎣

ẋwmaxcψ̃w

1+|ỹw |
Ky tanh(ỹw)
Kz tanh(z̃w)
Kψ tanh(ψ̃w)

⎤

⎥⎥⎥
⎦
, (18.17)

where K∗ > 0 are the gains of the controller.

18.4.1.1 Controller Analysis

Considering a perfect tracking of speed, that is ẋw = Fucref, the closed loop equation
of the system results

ẋw = F
(
F−1ν

) = ν, (18.18)

i.e.,

˙̃xw − f (x̃w) = 0. (18.19)

Considering a perfect tracking of speed, that is x̃wt = [ỹw, z̃w, ψ̃w]T , the
candidate function Lyapunov’s is defined

V = 1

2
x̃wt
T x̃wt =

1

2

(
ỹw

2 + z̃w2 + ψ̃w2)
. (18.20)

whose time derivative is given by

V̇ = −ỹwKy tanh(ỹw)− z̃wKz tanh(z̃w)−
− ψ̃wKψ tanh(ψ̃w).

(18.21)

The function V̇ is negative definite because it is a sum of terms less than or equal
to zero. It is then concluded that x̃wt (t)→ 0 when t →∞; therefore, the equilibrium
point x̃wt = 0 is asymptotically stable.
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18.4.2 Image Based Controller

For the design of the controller, the image feature vector xI defined in (18.13) is used
and the control errors are defined as x̃I = xId − xI = [d̃, ψ̃I ]T = [−d, −ψI ]T , the
reference vector of image characteristics xId = 0 since the task defined for the UAV
is to navigate on the line with the same orientation of it, see Fig. 18.6.

The following control law is then proposed

ẋwTref
= J−1[ẋId +KI x̃

I
] = J−1KI x̃

I , (18.22)

where KI = diag(kd, kψ) is a positive definite gain matrix, ẋId = 0 is the temporal
derivative of the vector xId , and J is the Jacobian image matrix defined in (18.15).

The control actions of the x and z axes of the UAV are proposed as:

ẋworef
= ẋ

w
maxcψ̃I

1+ |x̃v| +KyỹI , (18.23)

żworef
= Kz tanh(z̃w) ; (18.24)

where x̃v = 0 − xv is the error of intersection of the line l with the xI axis of the
image plane, z̃w = zwd − zw is a height error of the UAV and the term KyỹI = 0
since it is a path controller.

Grouping Eqs. (18.22) and (18.23) the final control action sent to the UAV is
given by

ucref = F−1ν, (18.25)

where the auxiliary control function ν has the form

[
ẋw
oref

J−1KI
I+ +

Kinematic Controller

+

F−1ννν UAV Robot

Vision System

xI
d

xI

x̃I uc
ref

z̃w

xw

xw

zw

zw
d

Fig. 18.6 Image based visual servoing control
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ν =

⎡

⎢⎢⎢⎢
⎣

ẋwmaxcψ̃I
1+|x̃v |
zwob
f
kd d̃

Kz tanh(z̃w)
kψψ̃I

⎤

⎥⎥⎥⎥
⎦
. (18.26)

Following the procedure similar to that performed with the position-based
controller, it can be proved that the image errors converge to zero, and consequently
the position errors of the UAV.

18.4.3 Passivity Based Controller

In this section, the control system of Fig. 18.7 is proposed to consider the problem of
regulation in the image plane, where the control errors are defined in the same way
as for the image based controller of Sect. 18.4.2, i.e. x̃I = xId − xI with xId = 0.

By defining ν x̃I = JTK(x̃I )x̃I it can be shown that the mapping ẋwT → ν x̃I is
passive by designing the positive definite gain matrix K(x̃I ) such that ν x̃I ∈ L∞ for
any value of the image characteristics, see Appendix.

In this way, the following control law is proposed to follow a straight path

ẋwref = −Kcν x̃I = −KcJTK(x̃I )x̃I , (18.27)

with Kc > 0.
In addition, assuming for the moment a perfect speed tracking (ẋwT = ẋwref), it can

be shown that the mapping ν x̃I →−ẋwT (the controller) is strictly input passive, see
Appendix.

Then, the proposed control system is formed by the interconnection of passive
systems as shown in Fig. 18.7.

−Kc +

+

F−1ννν UAV Robot

+ Vision SystemJTK(x̃I)

νννx̃I uc
ref xw

z̃w

zw
d

zw

xw

xIx̃I

xI
d

Fig. 18.7 Passivity based visual servoing control
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18.4.3.1 Controller Analysis

Adding Eqs. (18.53) and (18.55) of Appendix

0 ≥ −V (0)+ λmin(Kc)
∫ T

0
‖ν x̃I ‖2dt, (18.28)

i.e.,
∫ T

0
‖ν x̃I ‖2dt ≤ V (0)

λmin(Kc)
. (18.29)

which implies that ν x̃I ∈ L2e. Remembering also that K(x̃I ) is designed such
that ν x̃I ∈ L∞, and that ν̇ x̃I ∈ L∞ because the speeds of the robot are bounded (by
the definition of the controller), it can be concluded by Barbalat’s Lemma [20] that

ν x̃I (t)→ 0 with t →∞. (18.30)

Now, assuming that the line describing the path is outside any singularity and
remembering that ν x̃I = JTK(x̃I )x̃I , the previous condition implies that

x̃I (t)→ 0 with t →∞. (18.31)

In this way, the objective of control in the plane of the image is achieved.

18.5 Compensation of UAV Dynamics

Ignoring the assumption of perfect speed tracking, a speed controller was designed
considering the simplified dynamics of the UAV and it was included in each of the
proposed control systems, see Fig. 18.8. This dynamic controller causes the aerial
robot to reach the reference speed calculated by the kinematic controller with good
performance, which is important to improve the whole performance of the control
system.

The proposed control law is given by

ubr = H
(

ẍcref +Kd ˙̃x
)
+ Cẋb, (18.32)

where ẍcref = u̇cref, ˙̃x = ucref− ẋb is the speed error, ucref is the control action generated
by any of the kinematic controllers of the previous sections, and u̇cref their temporal
derivative; H and C are the matrices of the dynamic model defined in (18.8) and Kd
is a gain positive definite symmetric matrix.
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Kinematic
Controller++

+

Dynamic
Compensator UAV Robot

Vision SystemPose Estimation

xd

x

x̃ uc
ref ub

r

z̃w

xw

xw

zw

zw
d

xI

Fig. 18.8 Visual servoing control with dynamic compensation

18.5.1 Controller Analysis

Replacing ubr in the dynamic model yields the closed loop equation of the system

¨̃x+Kd ˙̃x = 0, (18.33)

Since Kd is positive definite symmetric, it is concluded that

˙̃x(t)→ 0 with t →∞. (18.34)

Now, consider the following positive definite function

V = 1

2
˙̃xTH ˙̃x, (18.35)

and its time derivative in the trajectories of the system

V̇ = ˙̃xTH ¨̃x = −˙̃xTHKd ˙̃x = −˙̃xTK′d ˙̃x, (18.36)

the term −˙̃xTK′d ˙̃x is negative definite, therefore V̇ < 0. Then, it is concluded that
˙̃x ∈ L∞.

On the other hand, integrating V̇ over [0, T ]

V (T )− V (0) = −
∫ T

0

˙̃xTK′d ˙̃xdt, (18.37)

i.e.,

− V (0) ≤ −λmin
(
K′d
) ∫ T

0

˙̃xT ˙̃xdt, (18.38)
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Or
∫ T

0
‖˙̃x‖2dt ≤ V (0)

λmin
(
K′d
) ∀T ∈ [0, ∞). (18.39)

Then, it is also concluded that ˙̃x ∈ L2. After proving that ˙̃x ∈
(
L2 ∩L∞

)
, it can

be noticed that ˙̃xw = ẋwref− ẋwT = F ˙̃x also ∈
(
L2 ∩L∞

)
because F is a homogenous

transformation matrix.
Now, eliminating the hypothesis of perfect speed tracking, that is, considering

a speed error different from zero ˙̃x = ucref − ẋb, the control error x̃I (t) must be
analyzed. This speed error and the kinematic controller are introduced in

−
∫ T

0
νT

x̃I
ẋwT dt = −

∫ T

0
νT

x̃I

(
ẋwref − ˙̃xw

)
dt =

= −
∫ T

0
νT

x̃I
ẋwrefdt +

∫ T

0
νT

x̃I
˙̃xwdt =

= −
∫ T

0
νT

x̃I
Kcν x̃I dt +

∫ T

0
νT

x̃I
˙̃xwdt,

(18.40)

adding the previous expression with

∫ T

0
νT

x̃I
ẋwT dt ≥ −V (0), (18.41)

is obtained

λmin(Kc)
∫ T

0
νT

x̃I
ν x̃I dt ≤ V (0)+

∫ T

0
νT

x̃I
˙̃xwdt, (18.42)

Or

λmin(Kc)‖ν x̃I ‖2
2,T ≤ V (0)+ ‖ν x̃I ‖2,T ‖˙̃xw‖2,T ∀T ∈ [0, ∞). (18.43)

Then, remembering that ˙̃xw ∈ L2, the previous inequality only remains if
‖ν x̃I ‖2,T < ∞, which implies that ν x̃I ∈ L2. This conclusion implies that the
property ν x̃I ∈ L2 remains valid after including the dynamic speed controller when
the assumption of a perfect tracking speed is eliminated. Recalling also that ν x̃I ∈ L∞
and ν̇ x̃I ∈ L∞, then the control objective is reached, that is,

x̃I (t)→ 0 with t →∞. (18.44)
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18.6 Simulation Results

Different simulation experiments were carried out to evaluate the performance of the
proposed controllers. The control schemes based on position, image, and passivity
are represented in the different figures with blue, red, and black curves, respectively.
The path following task starts with the UAV at rest at certain pose and it is desired
to follow the crop line with a maximum speed ẋwmax = 2.5 m/s. The gains of the
kinematic controllers were adjusted experimentally in such a way that the response
trajectories of the UAV during the task are as fast as possible without generating
saturations of the real UAV speeds (Table 18.1).

Figure 18.9 shows the trajectory of the UAV during the path tracking when a
kinematic controller is used without compensating the dynamics; Figs. 18.10, 18.11,
18.12 show the controlled pose variables.

When the dynamics of the UAV are not compensated, large oscillations are
generated and the task of following the line suffers large delays due to these errors,
and as can be seen in Figs. 18.9, 18.10, 18.11 and 18.12, the controller based on
the position is the slower of the three. These effects are accentuated by generating

Table 18.1 Gain of kinematic controllers without compensation

Position Image Passivity

Ky = 0.76 KI =
[

0.245 0

0 2.3

]

K(x̃I ) =
⎡

⎣
1.0

0.1+|d̃| 0

0 1.0
0.1+|ψ̃ |

⎤

⎦

Kz = 0.6 Kz = 0.6 Kc =
[

4.0 0

0 1.8

]

Kψ = 2.8 Kz = 0.6

Position based.
Image based.

Passivity based.

Fig. 18.9 UAV trajectory without dynamic compensation
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Position based.
Image based.

Passivity based.

Fig. 18.10 Position x of the UAV without dynamic compensation

Position based.
Image based.

Passivity based.

Fig. 18.11 Position y of the UAV without dynamic compensation

large control actions to try to correct the oscillations in the control errors as shown
in Figs. 18.13, 18.14, and 18.15. In these figures, it should be noted that the image-
based controller generates the largest control actions and the passive produces actions
comparable to those of the position-based controller despite its greater response
speed in the correction of the UAV pose. It is also important to emphasize that
the three controllers (designed considering only the aerial robot kinematics) finally
manage to reduce the control errors to values very close to zero in a real robot;
showing a great robustness to satisfy, for practical purposes, the control objectives
despite being used in a robot whose dynamic model differs from that used for its
design.
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Position based.
Image based.

Passivity based.

Fig. 18.12 Orientation ψ of the UAV without dynamic compensation

Position based.
Image based.

Passivity based.

Fig. 18.13 UAV pitch command without dynamic compensation

On the other hand, when inserting the dynamic compensator in cascade with any
of the kinematic controllers, faster trajectories are obtained and without oscillations
as shown in Fig. 18.16, where the gains of the kinematic controllers were adjusted
with the same criterion previously used and the gains of the dynamic compensators
were adjusted to the value of Kd = 10diag(1, 1, 1, 1) (Table 18.2).

Figures 18.17, 18.18, and 18.19 show the pose evolution when the vehicle
dynamics are compensated. In these figures it can be seen how the exact compensation
of the dynamics of the UAV considerably improves the performance of the kinematic
controllers allowing them to generate the correct control actions to achieve the control
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Position based.
Image based.

Passivity based.

Fig. 18.14 UAV roll command without dynamic compensation

Position based.
Image based.

Passivity based.

Fig. 18.15 UAV yaw command without dynamic compensation

objectives, since the system formed by the dynamic compensator and the dynamic
model of the UAVs behave in front of the kinematic controller as an aerial robot with
a kinematic model and its dynamics compensated.

It can further be seen that the image-based controller exhibits the slowest response
in the correction of robot pose variables, while the controller designed with passivity
techniques produces a higher response speed with similar control actions as compared
with the ones of the position based controller, which exhibits the smallest control
actions, see Figs. 18.20, 18.21, and 18.22.
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• Position based.
• Image based.

• Passivity based.

Fig. 18.16 UAV trajectory with dynamic compensation

Table 18.2 Gain of kinematic controllers with compensation

Position Image Passivity

Ky = 3.35 KI =
[

0.67 0

0 1.15

]

K(x̃I ) =
⎡

⎣
1.27

0.01+|d̃| 0

0 0.135
0.05+|ψ̃ |

⎤

⎦

Kz = 1.0 Kz = 1.0 Kc =
[

10.0 0

0 10.0

]

Kψ = 1.59 Kz = 1.0

Position based.
Image based.

Passivity based.

Fig. 18.17 Position x of the UAV with dynamic compensation
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• Position based.
• Image based.

• Passivity based.

Fig. 18.18 Position y of the UAV with dynamic compensation

• Position based.
• Image based.

• Passivity based.

Fig. 18.19 Orientation ψ of the UAV with dynamic compensation

The observed results allow to conclude that the controller based on passivity
presents a better performance during the task of tracking tree lines than the other
controllers (even when the dynamics of the UAV are not compensated) when a fast
correction of the vehicle pose is desired both to position and navigate crops from the
moment of takeoff. Also when correcting the position with respect to plant lines in
the face of environmental disturbances that directly affect the robot such as the wind
or the vision system under lighting changes that can cause errors in the detection
and discrimination of trees with respect to the rest of the soil. This last passivity-
based driver characteristic is justified with the robustness analysis, see Appendix.
Another notable feature of this design is that it presents moderate control actions,
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• Position based.
• Image based.

• Passivity based.

Fig. 18.20 UAV pitch command with dynamic compensation

• Position based.
• Image based.

• Passivity based.

Fig. 18.21 UAV roll command with dynamic compensation

very desirable in the field of mobile robots to reduce the energy consumed by the
robot during the task and achieve greater flight autonomy.

Table 18.3 shows the root mean square error (RMSE) of the pose variables and
the energy (

∫ T
0 u

2(t)dt) of the control actions in the systems with compensation
and without dynamic compensation. The RMSE shows that in steady state, the
performance of all the schemes is very similar. However, the compensation of
the dynamics decreases the energy consumption, being lower in the image based
controller.
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• Position based.
• Image based.

• Passivity based.

Fig. 18.22 UAV yaw command with dynamic compensation

Table 18.3 RMSE and energy

Type Position based Image based Passivity based

Without
compensation

RMSEy = 1.75

RMSEz = 0.95

RMSEψ = 0.34

Eux = 74.89

Euy = 1.99

Euz = 1.42

Euψ = 3.17

RMSEy = 1.72

RMSEz = 0.95

RMSEψ = 0.34

Eux = 99.26

Euy = 1.77

Euz = 1.42

Euψ = 3.13

RMSEy = 1.75

RMSEz = 0.95

RMSEψ = 0.34

Eux = 99.35

Euy = 1.83

Euz = 1.42

Euψ = 4.47

With
compensation

RMSEy = 1.86

RMSEz = 1.13

RMSEψ = 0.40

Eux = 49.02

Euy = 12.51

Euz = 2.98

Euψ = 0.85

RMSEy = 2.03

RMSEz = 1.13

RMSEψ = 0.41

Eux = 44.65

Euy = 9.03

Euz = 2.98

Euψ = 0.73

RMSEy = 1.90

RMSEz = 1.13

RMSEψ = 0.39

Eux = 51.37

Euy = 12.57

Euz = 2.98

Euψ = 1.30

18.7 Conclusions

In this work we have presented the design of three servo-visual kinematic controllers
oriented to the task of the precision agriculture field in following vegetable lines, one
based on position and two based on image. The main contribution of this development
was focused on the design of one of the image-based controllers, for which passivity
theory concepts were used, and the demonstration of their best performance against
other designs. A dynamic compensator was also designed to improve the performance
of the kinematic controllers when they are used to control a real aerial robot where
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the effects of its dynamics cannot be ignored. In the design of all the controllers,
a stability analysis was included, showing that the control objectives are achieved.
Also, a robustness analysis for the passivity-based controller is confirmed with a
better performance in comparison with the other controllers when attenuating the
effects of disturbances, non-modeling dynamics, and estimation errors. In addition,
a description of the operation of the vision system used, both as a pose sensor and
to generate the references of the designed controllers, was presented during the task
of following tree lines.

The performance of the three kinematic visual servo controllers has been
compared for the agricultural task of navigating and following a trajectory along
plant rows compensating and without compensating the dynamics of the vehicle.
The results of this comparison show clearly the superior performance of the system
when the dynamic effects of the aerial robot are compensated. In addition, when
the nature of the task gives priority to a fast response speed to correct the UAV
pose while maintaining moderate control actions to reduce energy consumption, the
results showed that the controller based on passivity has a higher performance and
robustness compared to other designs based on more conventional techniques, even
when the dynamics of the robot are not compensated, but with a slightly higher
energy consumption. Therefore, the results developed in this work can be of interest
when selecting the most appropriate controller for a specific task in the field of
precision agriculture such as following vegetable lines.

Appendix

This appendix shows some passivity properties of the systems and a robustness
analysis of some of the controllers.

Passive Property of the UAV Dynamic Model

Considering the following positive definite function

V = 1

2
ẋb
T

Hẋb, (18.45)

and its time derivative

V̇ = ẋb
T

Hẍb = ẋb
T

ub − ẋb
T

Cẋb. (18.46)

Integrating V̇ over the range [0, T ]

V (T )− V (0) =
∫ T

0
ẋb
T

ubdt −
∫ T

0
ẋb
T

Cẋbdt. (18.47)
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Neglecting the term V (T )

− V (0) ≤
∫ T

0
ẋb
T

ubdt − λmin
(
C
) ∫ T

0
‖ẋb‖2dt, (18.48)

i.e.,
∫ T

0
ẋb
T

ubdt = 〈ẋb, ub〉 ≥ −V (0)+ λmin
(
C
)‖ẋb‖2

2T , (18.49)

where λmin
(
C
)

represents the minimum eigenvalue of C.
Then, it can be concluded that the mapping ub → ẋb is strictly output passive [19].

Passive Property of the Vision System

It is shown that the passivity property of the vision system is maintained considering
the positive definite function

V =
∫ xI

T

0
ηTK(η)dη, (18.50)

where K(x̃I ) is a positive definite symmetric gain matrix, defined to avoid saturations.
Then the time derivative of the V function is

V̇ = x̃I
T

K(x̃I ) ˙̃xI = x̃I
T

K(x̃I )
(
JẋwT

)
. (18.51)

Integrating V̇ over the range [0, T ]
∫ T

0
V̇ dt =

∫ T

0
x̃I
T

K(x̃I )
(
JẋwT

)
dt, (18.52)

and defining ν x̃I = JTK(x̃I )x̃I , the following expression is obtained

∫ T

0
νT

x̃I
ẋwT dt ≥ −V (0). (18.53)

It is then concluded that the ẋwT → ν x̃I mapping is passive. The matrix K(x̃I )
should be designed such that ν x̃I ∈ L∞ for any value of the image characteristics.



622 J. A. Sarapura et al.

Passive Property of the Kinematic Passivity Based Controller

Considering a perfect tracking of speed, that is ẋwT = ẋwref (controller based only on
the vehicle’s kinematics)

∫ T

0
νT

x̃I
ẋwT dt = −

∫ T

0
νT

x̃I
Kcν x̃I dt

≤ −λmin(Kc)
∫ T

0
νT

x̃I
ν x̃I dt,

(18.54)

or,
∫ T

0
νT

x̃I
(− ẋwT

)
dt ≥ λmin(Kc)

∫ T

0
‖ν x̃I ‖2dt. (18.55)

Then, it can be concluded that the mapping ν x̃I →−ẋwT , that is, the controller is
strictly input passive [19].

Robustness Analysis of the Passivity Based Controller

The controller calculation assumes a perfect knowledge of the speed of the robot, but
in practice this speed will be measured or estimated by sensors. From this estimation,
the problem of analyzing the effect on the control errors immediately arises.

In this analysis, the profit performance L2-criterion will be used. The velocity
error ˙̃xw will be considered as part of an external disturbance w and it will be proved
that the mapping w → x̃I has a finite L2-gain, i.e.,

∫ T

0
‖x̃I‖2dt < γ 2

∫ T

0
‖w‖2dt ∀T > 0. (18.56)

Consider the external disturbance as w = ˙̃xw and assume that it is bounded. Then,
considering that the speed is not perfectly known, the expression of the controller is
modified as

∫ T

0
νT

x̃I
ẋwT dt =

∫ T

0
νT

x̃I

(
ẋwref + ˙̃xw

)
dt

=
∫ T

0
νT

x̃I
˙̃xwdt −

∫ T

0
νT

x̃I
Kcν x̃I dt,

(18.57)
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i.e.,
∫ T

0
νT

x̃I
ẋwT dt = −

∫ T

0
νT

x̃I
Kcν x̃I dt +

∫ T

0
νT

x̃I
wdt. (18.58)

Subtracting the previous expression from
∫ T

0 νT
x̃I

ẋwT dt ≥ −V (0)

0 ≥ −V (0)+
∫ T

0
νT

x̃I
Kcν x̃I dt −

∫ T

0
νT

x̃I
wdt. (18.59)

Then,

λmin(Kc)
∫ T

0
νT

x̃I
ν x̃I ≤ V (0)+

∫ T

0
νT

x̃I
wdt, (18.60)

or defining ε = λmin(Kc) and remembering the definition of product in L2e,

ε‖ν x̃I ‖2
2,T ≤ 〈ν x̃I , w〉T + V (0). (18.61)

Adding to the second term of the previous expression, the positive term
1
2

〈
1√
ε
w−√ενT

x̃I
, 1√

ε
w−√ενT

x̃I

〉

T
. After some algebraic operations

ε‖ν x̃I ‖2
2,T ≤

〈
νT

x̃I
, w
〉

T
+ 1

2ε
〈w, w〉T + ε

2

〈
νT

x̃I
, νT

x̃I

〉

T

−
〈
νT

x̃I
, w
〉

T
+ V (0),

(18.62)

‖ν x̃I ‖2
2,T ≤

1

ε2
‖w‖2

2,T + V (0). (18.63)

Now, for ‖w‖2
2 such that ‖ν x̃I ‖2

2 is bounded by its saturation value; and replacing
ν x̃I = JTK(x̃I )x̃I in the previous expression

‖x̃I‖2
2,T ≤

1

λmin(M)ε2 ‖w‖2
2,T + V (0), (18.64)

where M = KT (x̃I )JJTK(x̃I ).
Integrating the previous expression over the interval [0, T ]; it can be concluded

that the mapping w → x̃I has finite L2-gain smaller or equal to γ = 1
λmin(M)ε2 . That

is to say, the proposed control system is robust to w according to the performance
L2-criterion (attenuation of disturbance in L2-gain standard or energy attenuation).
In this context, the parameter γ can be considered as an indicator of the performance
of the system in the presence of estimation errors.
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ABAC Adaptive binary arithmetic coding
AFV-SPECK Adaptive fovea centralis set partitioned embedded block codec
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AWFV-Codec Adaptive wavelet/fovea centralis-based codec
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bpp Bits per pixel
CDF9/7 Cohen–Daubechies–Feauveau wavelet
CIF Common intermediate format
CMYK Cyan magenta yellow black color space
CWT Continuous wavelet transform
dB Decibel
DCT Discrete cosine transform
DWT Discrete wavelet transform
FWT Fast wavelet transform
FVHT Fovea centralis hierarchical trees
GIF Graphics interchange format
HEVC High efficiency video coding
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iDCT Integer discrete cosine transform
iSPECK Inverse SPECK
iLWT Inverse LWT
JBIG Joint bi-level image group
JPEG Joint photographic experts group
JPEG2000 Joint photographic experts group 2000
LCL Lossless compression limit
LIP List of insignificant pixels
LIS List of insignificant sets
LSP List of significant pixels
LWT Lifting wavelet transform
MPEG Moving picture experts group
MSE Mean squared error
PCX Personal computer exchange
pixel Picture element
PNG Portable network graphics
ppi Pixels per inch
PSNR Peak signal to noise ratio
RAR Roshal archive file format
RGB Red green blue color space
RLE Run length encoding
ROI Region of interest
SPECK Set partitioned embedded block codec
SPIHT Set partitioning in hierarchical tree
sRGB Standard red green blue color space
SSIM Structural similarity index
WebP WebP
WT Wavelet transform
Y’CBCR Luma chrominance color space
ZIP .ZIP file format

19.1 Introduction

The problem of storing images appeared along with the devices that allowed to
capture and represent data in the form of visual information. Devices like image
scanners (1950) and graphic processing units (1984) along with graphic manipulation
software made possible to capture, create, and display images as digital images on
a computer. A digital image is a numeric representation of a captured or software
created image. This numeric representation is a discretization value made from a
digital scanner device. The digital image can be represented as a two-dimensional
numeric matrix. Each element of the matrix represents a small picture element
(pixel). Such images are also known as raster images. Computer software such
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as Adobe Photoshop1 or Gimp2 allow to create raster images. Also, most capturing
devices like cameras and image scanners capture the image as a raster image [38, 39].

Compression algorithms are encapsulated with its decompression counterpart on
digital image formats. A digital image format or standard specifies the following:
a compression algorithm, a decompression algorithm, which color space is used
for representing the image, how the data is stored inside a binary file and headers
with metadata for image software [28]. Digital image formats that use only one
two-dimensional matrix are used for storing black and white images or gray scale
images. Digital color images on the other hand require more than one matrix in order
to represent color. Usually, the number of matrices used are three for color spaces
such as Red Green Blue color space (RGB) [20], Luma Chrominance color space
(Y ′CBCR) [33], and derivatives or four matrix for spaces such as Cyan Magenta
Yellow Black color space (CMYK) [47]. Each matrix is known as a color channel. A
common practice when using integer representation is to use one matrix of elements
of 32 bits. The bits of each 32-bit element are split into four sets of 8 bits. Each 8-bit
set is related to one color channel. When using a three channel color space, usually
the four most significant bits set is either discarded as in RGB (or Blue Green Red
color space (BGR) representation [62]) or used as a transparency information as
in the Standard Red Green Blue color space (sRGB) format [20]. There are other
digital image representations of an image such as vector images [48, 57]. However,
this chapter will be focused only on raster type images. From now on the term image
will be used to refer to digital raster images unless otherwise stated. Usually, the
quality of an image grows as the amount of pixels taken per inch grows. This is
known as pixels per inch (ppi).

Lossless compression is the best way to reduce the space needed to store a high
quality image. Examples of such lossless compression algorithms are the Personal
Computer Exchange (PCX) file format and the Graphics Interchange Format (GIF)
file format. Nevertheless, it has been shown that the upper limit for an ideal lossless
compression algorithm is around 30% [28]. Therefore, image file formats based
on lossless compression algorithms are less convenient as the image increases
in size. In consequence, new file formats were designed that take advantage of
lossy compression algorithms. Lossy compression algorithms take into account the
sensibility of the human visual system (HVS) in order to drop some of the details
of the image when compressing. As a result, the reconstructed image is not the
original image but a close representation of it. The aim of lossy compression is
to build an algorithm that when reconstructing the image using the compressed
stream, the reconstructed image will look almost the same for the user. Several lossy
compression algorithms for images have been proposed; however, most of them are
based on mathematical transformations that take the image matrix of color intensities
and map it into a different space. The most common space used is the frequency
space also known as frequency domain. When using the frequency domain, a matrix

1http://www.adobe.com.
2http://www.gimp.org.

http://www.adobe.com
http://www.gimp.org
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representing the intensity of each pixel of an image is considered to be in a spatial
domain.

The Joint Photographic Experts Group (JPEG) and the JPEG2000 standards
are examples of image lossy compression using a transform function [1, 50, 59].
Hybrid codecs based on the discrete cosine transform (DCT) are designed to attain
higher compression ratios by combining loss and lossless compression algorithms.
A modified version of the DCT is used in H.264/AVC (Advanced Video Coding)
and H.265/HEVC (High Efficiency Video Coding) standards [6, 60, 63]. Algorithms
based on the DCT are the one used in the JPEG file format [59] and the one used in
the lossy definition of the WebP file format.3 The DCT is widely used because of its
low computational complexity and its high quality when used for lossy compression.
However, the wavelet transform (WT) shows better image reconstruction quality
when used for lossy compression [5, 30]. By using the HVS based on fovea centralis,
coding the quality of the reconstruction may be improved [12, 24, 40, 41]. Nowadays,
few image formats use the WT for image compression. An example of these formats
is the JPEG2000 file format [1].

There are several proposals for improving classic algorithms for current wavelet-
based image compression methods such as the ones proposed in [13, 25]. However,
there is no ideal algorithm that produces the best image reconstruction quality for
any kind of image in any given application [3]. The reason is that when doing lossy
compression, the algorithm must choose which details must be dropped in order to
reach a given compression ratio. The main problem lies in which details to drop. For
video compression, the problem of storage increases because a digital video is a set
of several images, called frames, that represent a state of a taken video at a specific
instant. Also, video file formats must store the information of sound, increasing the
need of efficient lossy compression algorithms for images even if the sound is also
compressed. Because sound compression is a related but different problem to image
compression, from now on the rest of this chapter the term video compression will
be used to refer only to the compression of the visual information or frames.

19.2 Data Compression

Lossless compression algorithms exploit the statistical behavior of the data to be
compressed. The original data can be recovered perfectly after decompression.
Lossless compression is used for generic data compression regardless of what
the data represents images, sound, text, and so on. Current formats for data
file compression like .Zip file format (ZIP) [44] and Roshal Archive file format
(RAR) [45] use lossless compression algorithms. There are two main classifications
of lossless compression: dictionary and statistical methods. These methods require
data information. Information is an intuitive concept that deals with the acquisition

3https://developers.google.com/speed/webp/?csw=1.

https://developers.google.com/speed/webp/?csw=1
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of knowledge. This acquisition can be done in several ways such as through study,
experience of past events, or in the form of a collation of data [3]. Thereof, an
important aspect to take into account is how to measure data. Quantifying information
is based on the observation of the content of a given message and evaluating how
much it is learned from a previous pool of knowledge. The value of how much
information is gained depends on the context. Claude Shannon, the precursor of
information theory [18], proposed a way to measure how much information is
transmitted or gain after transmitting a string of characters. Given an alphabet �,
the amount of information H (entropy) from a string s is expressed in terms of the
probability of each symbol where each symbol can be seen as a value of a random
variable. The amount of information indicates how easily a set of data, in this case
the given string, can be compressed. The entropy is expressed as

H(s) = −
n∑

i=1

Pi log2 Pi (19.1)

where n is the amount of symbols in the alphabet of s calculated as n = |�| and Pi
is the probability of the i-th symbol.

Equation (19.1) can be interpreted as the amount of information gained from
a string. This is known as the data entropy. The term entropy was coined by
Claude Shannon [45]. The name entropy was chosen because the same term is
used in thermodynamics to indicate the amount of disorder in a physical system. The
meaning in the thermodynamics field can be related to the information theory field
by expressing the information gained from a string s as the different frequencies each
symbol of the alphabet appears on the string s. Using Eq. (19.1), the redundancy of
R in the data is defined by the difference between the largest entropy of a symbol set
and its actual entropy [44] defined by

R(s) = log2 n+H(s). (19.2)

How much a data stream can be compressed is defined in terms of its redundancy
R. If the stream has a redundancy R = 0, the data cannot be further compressed.
Thus, the aim of a lossless compression algorithm is, from a given data stream with
R > 0, to create a compressed data stream where its redundancy R = 0. The main
theorem of Shannon of source coding states that [45] a stream of data cannot be
compressed further to a limit without lossless. Such limit defined in this chapter by
lossless compression limit (LCL) denoted by ρ is defined using Eq. (19.1) as follows.

ρ(s) = mH(s) (19.3)

where m is the amount of different symbols that appear on string s.
Dictionary and statistical coding algorithms use different approach to reduce

the redundancy of a data stream. Dictionary methods encode the data by choosing
strings and encoding them with a token. Each token is stored in a dictionary and is
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associated with a particular string. An example of this is to use a numerical index
for each word on a dictionary. For a dictionary of length of N , it will be needed
an index with a size close to 'log2N( bits. Dictionary methods perform better
as the size of the data stream to be compressed tends to infinity [46]. There are
popular methods of dictionary source coding such as LZ77, LZ78, and LZW [43].
A common implementation of LZ77 is the DEFLATE algorithm used by the Unix
operating system. The statistical methods for compression use a statistical model of
the data to be compressed. It assigns a code to each of the possible symbols of the
stream. The performance of the algorithms is determined by how such codes are
assigned. These codes are variable in size, and usually the shortest one is assigned
to the symbol with the higher frequency on the data stream. There are different
variable size codes that allow to assign codes to each symbol without ambiguity.
One of the most popular methods is the Huffman code. The Huffman code uses
the statistical model of the data in order to assign a unique variable size code to
each symbol. Huffman code is used in current standards such as JPEG and Portable
Network Graphics (PNG). However, Huffman code only produces ideal size codes
when the probabilities of each symbol are a negative power of two [45]. Arithmetic
encoding on the other hand is known for its better performance against the Huffman
codes [44].

The main disadvantage of lossless coding is that it is bounded by Shannon’s
theorem (see Eq. (19.3)). However, a consequence of the Shannon’s theorem is that
if a data stream is compressed beyond the LCL, the new data stream begins to lose
information and a reconstruction of the original data cannot be made [46]. As a
result, lossy algorithms must be designed in order to select which data will be lost
in the compression and how to get a close representation of the original data using
the compressed data stream. The data selected to be discarded is usually the one that
contains the fewer information possible about the data stream. Thereof, lossy coding
algorithms are designed for specific data sets in order to be able to select which data
is significant and which data will be discarded. There are several ways to design lossy
compression algorithms. There are lossy algorithms that operate over the original
mathematical domain of the given stream such as the run-length encoding (RLE) for
images. However, the best algorithms known are those that its output is calculated
when using a mathematical transform.

A mathematical transform is a function that maps a set into either another set or
itself. Mathematical transforms used in lossy compression, specifically on sound and
image compression, are projections from one space to another. The inverse of the
chosen transform must be invertible in order to reconstruct a close approximation of
the original data. The use of mathematical transform for compression is also known as
transform coding. Transform coding is widely used in multimedia compression and is
known as perceptual coding. The preferred transformations for perceptual coding are
the ones that present graceful degradation [3]. This property allows to discard some
of the data on the projected space while the inverse of the transform can reconstruct a
close approximation of the original data. The most common functions for perceptual
coding are the ones related to the Fourier transform. When using a Fourier-related
transform, it is said that the transform translates the original data from the spatial
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Fig. 19.1 Structure of the human eye

or time domain into the frequency domain. Being the data on the frequency domain
which allows to discard some of the frequencies that are imperceptible to human
perception. Hence the name of perceptual coding. Also, Fourier-related transforms
degrade gracefully when decimal precision of some coefficients is lost. This allows
to reduce the arithmetic precision of certain coefficients, thus reducing the number
of bits required for its representation while retaining the most of the information of
the original data. This process is known as quantization. The quantization method
depends on how the data is represented by the transform on the frequency domain.
There are several quantization algorithms for a given transform. The performance
of the lossy compression algorithm depends on its transform and the quantization
method. Several transforms have been proposed for multimedia coding such as the
previously discussed DCT or the discrete WT (DWT).

Another common method used in lossy compression is the selection of regions
of interest (ROIs) at different compression ratios. This feature mitigates such loss
by conserving the details over a specific area. The ratio between the size of the
compressed stream and the uncompressed stream is known as compression ratio
[44]. In current standards such as MPEG4 and JPEG2000, ROIs can be defined
[1, 19]. ROI-based algorithms are commonly used on image and video compression,
and their main purpose is to assign more screen resources to a specific area [10]. ROIs
are areas defined over an image selected by a given characteristic. ROI compression
is when areas of the image are isolated using different desired final quality [19].

19.2.1 Fovea Centralis

The structure of the human eye (see Fig. 19.1) can also be exploited for compression.
In applications wherever ROI is isolated, a selected part of the human eye called
fovea centralis is utilized to increase the image quality for the human eye around ROI
areas [49]. There are two main bodies on the tissue layer, particularly cones and rods.
The number of cones in every eye varies between half a dozen and seven million.
They are placed primarily within the central portion of the tissue layer, referred
to as the fovea centralis, and are highly sensitive to color. The number of rods is
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much larger, some seventy five to one hundred fifty million are distributed over the
retinal surface. In Fig. 19.1, the circle between the points b′ and c′ marks wherever
the cones reside, such area is termed fovea centralis. The larger area of distribution
and the fact that several rods are connected to a single nerve reduce the amount of
detail discernible by these receptors. The distance x in Fig. 19.1 is the area where
the perception of an user would be the most acute, where the size of x is determined
by the distance d between the observer and the image, and the distance d ′ between
the retina and the back of the eye where the rods and cones reside. Anything outside
of such area will be perceived with fewer details. This aliasing is exploited in fovea
centralis compression. Fovea centralis compression can be applied over images with
ROI; the use of fovea centralis around defined ROI improves the image quality for
the human eye [15, 16, 24].

19.3 Wavelet Transforms

Fourier analysis is an useful tool for signal analysis. Fourier analysis is the study
of general functions represented by using the Fourier transform [34]. The analysis
is done by representing any periodic function as series of harmonically related
sinusoids. It is useful in numerous fields, however it has some limitations [14].
Many of these limitations come from the fact that the Fourier basis elements are not
localized in space. It is said that the basis of a transform is localized in space when
its energy is concentrated around a given point. Accordingly, elements of the basis
beyond certain radius will be 0 valued or close to 0. A basis that is not localized
does not give information about how the frequency changes in relation to its position
in time or space. There are refined tools that extend the capabilities of the Fourier
transform in order to cover its weakness such as the windowed Fourier transform [27].
One mathematical tool that is able to analyze a signal and the structure of a signal at
different sizes, thus yielding into information about the changes of frequency related
to its position in time or space is the wavelet transform [2]. Time-frequency atoms
are mathematical constructions that help to analyze a signal over multiple sizes.
Time-frequency atoms are waveforms that are concentrated in time and frequency.
The set of time-frequency atoms used for analyzing a signal is known as dictionary
of atoms denoted by D. The wavelet transform builds this dictionary from a function
ψ(t) ∈ L2(R), where L2 is the Lebesgue space at power of 2, R is the set of real
numbers, and ψ(t) denotes a wavelet function. ψ has several properties, it has zero
average [27]

∫ ∞

−∞
ψ(t)dt = 0. (19.4)

It is normalized ||ψ || = 1 and centered in the neighborhood of t = 0. ψ is
known as the mother wavelet. In order to create a dictionary D, ψ is scaled by # and
translated by u, namely [27]
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D =
{
ψ#,u(t) = 1√

#
ψ

(
t − u
#

)}

u∈R,#>0
(19.5)

The atoms remain normalized ||ψ#,u|| = 1. The constant 1√
#

is for energy
normalization. The continuous wavelet transform (CWT) ω of f (t) ∈ L2(R) at
time u and scale # is

ω#,u(f ) = 〈f,ψ#,u〉 =
∫ ∞

−∞
f (t)

1√
#
ψ∗
(
t − u
#

)
dt (19.6)

where ψ∗ is the complex conjugate of the mother wavelet ψ and 〈·, ·〉 denotes an
inner product.

Because images are two-dimensional signals, a two-dimensional wavelet trans-
form is needed. Let ψ̄#,u be

ψ̄#,u(t) = 1√
#
ψ∗
(
t − u
#

)
, (19.7)

extending Eq. (19.6) to two dimensions, the wavelet transform at parameters uv , #v ,
uh, #h of f (t, x) ∈ L2(R2) yields into

ω2
#v,uv,#h,uh

(f ) = 〈〈f, ψ̄#v,uv 〉, ψ̄#h,uh〉

=
∫ ∞

−∞

∫ ∞

−∞
f (t, x)ψ̄#v,uv ψ̄#h,uhdtdx.

(19.8)

where ω is the wavelet operator. Also, because digital images are stored as a discrete
finite signal, a discrete version of the CWT is needed. Let f [n] be a discrete signal
obtained from a continuous function f defined on the interval [0, 1] by a low-pass
filtering and uniform sampling at intervals N−1. The DWT can only be calculated
at scales N−1 < # < 1. Also, let ψ(n) be a wavelet with a support included in
[−K/2,K/2]. For 1 ≤ # = aj ≤ NK−1, a discrete wavelet scaled by aj is defined
by [27]

ψj [n] = 1√
aj
ψ
( n
aj

)
. (19.9)

The DWT is defined by a circular convolution with ψ̄j [n] defined as ψ̄j [n] =
ψ∗j [−n] with DWT described as

ωaj f [n] =
N−1∑

m=0

f [m]ψ∗j [m− n] = f ∗ ψ̄j [n] (19.10)

where ∗ is the convolution operator. Also, signal f is assumed to be periodic of
length N in order to avoid border problems.
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In order to speed up the computation of the wavelet coefficients, a second approach
that simplifies the DWT is referred to as the lifting scheme. The lifting scheme [32, 51]
is another way of looking at the DWT, where all the operations are performed in
the time domain [1]. Computing the wavelet transform using lifting steps consists of
several stages. The idea is to compute a trivial wavelet transform (the lazy wavelet)
and then improve its properties by alternating the dual lifting or prediction step and
the primal lifting or updating step [44]. The lazy wavelet only splits the signal into
its even and odd indexed samples, namely

(even[n− 1], odd[n− 1]) = Split (f [n]). (19.11)

where f [n] is a given discrete signal, even and odd are the even and odd signals
of the lazy wavelet, and Split is the split function. A dual lifting step consists of
applying a filter to the even samples and subtracting the result from the odd ones.
This is based on the fact that each value f [n]2#+1 of the next decomposition level in
the odd set is adjacent to the corresponding value f [n]2# in the even set, where # is
the decomposition level. Thus, the two values are correlated and any can be used to
predict the other. The prediction step is given by

d[n− 1] = odd[n− 1] − P(even[n− 1]). (19.12)

where d is the difference signal of the odd part of the lifting wavelet and the result
of the prediction P operator applied to the even part of the lazy wavelet. A primal
lifting step does the opposite: applying a filter to the odd samples and adding the
result to the even samples. The update operation U follows the prediction step. It
calculates the 2[n− 1] averages s[n− 1]# as the sum

s[n− 1] = even[n− 1] + U(d[n− 1]). (19.13)

where U is defined by

s[n− 1]# = f [n]2# + d[n− 1]#
2

. (19.14)

The process of applying the prediction and update operators is repeated as many
times as needed. Each wavelet filter bank is categorized by its ownU operator and the
amount of rounds of the process. The calculation process of U is described in [26].
This scheme often requires far fewer computations compared to the convolution-
based DWT, and its computational complexity can be reduced up to 50% [1, 11, 53].
As a result, this lifting approach has been recommended for implementation of the
DWT in the JPEG2000 standard.4

4JPEG2000 draft at http://www.jpeg.org/public/fcd15444-1.pdf.

http://www.jpeg.org/public/fcd15444-1.pdf
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19.4 Image Compression

Image data compression is concerned with coding of data to minimize the number
of bits used to represent an image. Current image compression standards use a
combination of lossless and lossy algorithms. These can be used over the same
data set because both algorithms exploit different properties of the image. On the
one hand, lossless-based compression exploits data redundancy, but on the other
hand, lossy-based compression exploits its transform properties and quantization.
The simplest quantization equation used in image coding is defined as [4, 17]

Cq =
⌊

1

	q
C
⌋

(19.15)

where �·� is the floor operation, 	q > 1 is known as the quantization delta, C is
the matrix of coefficients obtained from applying a transform to the given image,
and Cq is the matrix of quantized coefficients. Spatial redundancy takes a variety
of different forms in an image. For example, it includes strongly correlated repeated
patterns in the background of the image and correlated repeated base shapes, colors,
and patterns across an image. The combination of lossy and lossless compression
allows achieving lower compression ratios. Figure 19.2 shows a block diagram of
the classic lossy/lossless image coding scheme [4, 17].

In Fig. 19.2, the image is interpreted as a matrix I, then the coefficients matrix
C of the chosen transform is calculated. Subsequently, the quantized coefficient
matrix Cq is calculated and the final lossless compressed stream S is calculated
on the entropy coding block. The color space used for image compression is often
the Y ′CBCR color space. This color space is chosen because it has been found
that the human eye is more sensitive to changes on the luma channel (Y’) than on
the color channels (CBCR) [33]. This allows compressing at lower ratios the color
channels than the luma channel. As a result, compression algorithms are evaluated
over the luma channel only. Thereof, all the analyses of the algorithms presented in
this chapter are evaluated on the luma channel. The equation used for calculating
Y ′CBCR from other common color space RGB suggested in [17] is the following:

⎡

⎣
Y ′
CR

CB

⎤

⎦ =
⎡

⎣
0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 0.515 0.100

⎤

⎦

⎡

⎣
R

G

B

⎤

⎦ (19.16)

Fig. 19.2 Block diagram of the classic image coding scheme [17]
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where R,G,B are the values for each channel on the RGB color space of a given
pixel. From Eq. (19.16), the luma is calculated as

Y ′ = 0.299R + 0.587G+ 0.114B. (19.17)

One of the foremost image compression algorithms is the JPEG image coding
standard (see Fig. 19.3). Outlined in [59], JPEG framework defines a lossy
compression and a lossless compression algorithm used in tandem. The lossy
compression algorithm of JPEG uses the DCT. However, in order to reduce the
complexity of the algorithm [4], the image is split into non overlapping blocks of
8×8 pixels. Each block is referred to as macroblock. Processing macroblocks requires
less computation and allows the algorithm to optimize transmission by sending the
data of processed macroblocks while processing the rest of the images [19].

In Fig. 19.3, the RGB image is transformed into theY ′CBCR color space. Then, the
image is split into macroblocks. Then, the DCT macroblock applies the transform to
each macroblock individually. After the transformation of a macroblock is calculated,
the coefficients are quantized by a fixed ratio. JPEG standard defines a quantization
matrix. Because each coefficient has a different significance on the reconstruction
of the image, the quantization matrix stores a quantization ratio for each of the
coefficient of a macroblock. The standard provides with values for the quantization
matrix. However, some manufacturers defined its own quantization matrices in order
to improve the quality of the algorithm. After quantization, the next step is resorting
each macroblock into zigzag order. This allows to exploit the entropy of the lower
diagonal of the macroblocks [1]. The last block of the algorithm applies lossless
compression to the quantized sorted coefficients. Early versions of the algorithm
define RLE and Huffman coding as the lossless algorithms for JPEG. However,
the last version of JPEG [45] also includes arithmetic coding in order to reduce
the compression ratio. The final overall quality of JPEG is mostly given by the

Fig. 19.3 Block diagram of the JPEG2000 standard [59]
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quantization matrix, however it is not possible to precalculate the final compression
ratio [43].

It is well-known that in compression applications, wavelet-based approaches
outperform the block-DCT methods [22, 35]. This is due to the fact that
wavelet-based approaches can reduce the blocking artifacts, provide better energy
compaction because of the multi-resolution feature of wavelet basis, and have better
correspondence with the HVS system [58]. Therefore, wavelet-based compression
algorithms have been recommended for the JPEG2000 standard [17, 45].

19.4.1 Foveated Images

Images with a non-uniform resolution that have been used in image and video
compression are known as foveated images. Equation (19.18) shows a representation
of a foveated image [9].

I 0
x =

∫
Ixc

−1(x)s

(
t − x
ω(x)

)
dt (19.18)

where c(x) =
∥∥∥s
( −x
ω(x)

)∥∥∥, Ix is the pixel at position x of a given image, ω(x) is
a weight function, and I 0

x is the foveated image. The function s is known as the
weighted translation of s by x [24]. A variation of the fast wavelet transform (FWT)
is reported in [7] that operates over the wavelet transform. For an image I , its
foveation is given by

I 0 = 〈I,�#0,0,0〉 +
∑

uv,#v,uh,#h

ckj [#v, uh]〈I,$uv#v,uh,#h〉$
uv
#v,uh,#h

(19.19)

where �#0,0,0 is the father wavelet, and $uv#v,uh,#h is the mother wavelet scaled and
translated with uv = {h, v, d} and the operator 〈·, ·〉 is the convolution operator.
ckj [#v, uh] is defined as

ckj [#v, uh] = 〈T$uv0,#v,uh
, $

uv
0,#v,uh

〉

=
∫ ∞

−∞
dy

∫ ∞

−∞
dx$

uv
0,#v,uh

(x, y)

∫ ∞

−∞
dt

∫ ∞

−∞
ds$

uv
0,#v,uh

(s, t)gω(x,y)(s, t)

(19.20)
where T is the fovea centralization operator and gω(x,y)(s, t) is the smoothing
function defined as

gω(x,y)(s, t) := 1

ω(x, y)2
g

(
s − x
ω(x, y)

,
t − y
ω(x, y)

)
. (19.21)
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where the weight function ω(x, y) is defined by

ω(x, y) = α||(x, y)− (γ1, γ2)||2 + β (19.22)

where α is the rate, γ = (γ1, γ2) is the fovea centralis, and β is the fovea centralis
resolution [7].

19.5 Video Compression

Because video is just a sequence of several images called frames, video coding
algorithms or video codecs use image compression extensively. To achieve high
compression ratios is suitable to combine lossy and lossless compression algorithms.
Classic video coding frameworks have three main algorithms (see Fig. 19.4), namely
intra-frame coding (spatial transform and inverse spatial transform), inter-frame
coding (motion estimation and compensation), and variable length coding (variable
length coder).

In intra-frame coding, which uses the information of previous or future frames, a
frame of a video stream is normally compressed using lossy algorithms. The encoder
should work out the variations (prediction error) between the expected frame and
the original frame. The first step in the motion compensated video coder is to
create a motion compensated prediction error of the macroblocks. This calculation
requires only a single frame to be stored in the receiver. Notice that for color
images, motion compensation is performed only for the luma component of the
image. The decimated motion vectors obtained for luma are then exploited to form
motion compensated chroma components. The resulting error signal for each of the
components is transformed using DCT, quantized by an adaptive quantizer, entropy

Video
Source

Motion
Compensation

Motion
Estimation

Variable Length
Coder

Variable Length
Coder

Transmission

Inverse Spatial
Transform

Spatial
Transform

+

–
Prediction

Prediction
Error

Fig. 19.4 Block diagram of the classic video coding framework [6]
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encoded using a variable length coder, and buffered for transmission over a fixed-rate
channel. The main problem of the block matching motion compensation is its high
computational complexity.

Most video coding standards such as the H.264 [36] or the newest proposed
standard H.265/HEVC codec [52] rely on the DCT for lossy intra-frame coding
applied to macroblocks of a dimension of 4 × 4. The smaller macroblock allows
reducing artifacts on the reconstructed image [37]. However, in order to improve the
speed of the algorithm, the transform used is the integer discrete cosine transform
(IDCT) [8]. The IDCT is an approximation of the DCT used in JPEG standard.
Instead of calculating a convolution, two different matrices are defined that are an
approximation of the base of the DCT.

19.6 An Approach to Image Compression Based on ROI and
Fovea Centralis

Image compression within the frequency domain based on real-valued coefficients
is carried out through coefficient quantization. In this process of quantization, these
coefficients become integer-valued for further compression employing either a RLE
or an arithmetic encoding algorithms, which are known as variable quantization
algorithms. The variable quantization algorithm exploits the fovea centralis result
of the HVS based on a fovea centralis window, which is focused at a given fixation
point to see a way to quantize each wavelet coefficient [15]. A modified version of
the set partitioning in hierarchical tree (SPIHT) algorithm is utilized to quantize and
compress these coefficients.

Figure 19.5 shows the block diagram of the compression approach based on ROIs
and fovea centralis called here fovea centralis hierarchical tree (FVHT) algorithm.
Assuming a video stream with frames Fi , the applied blocks can be described as
follows [15]. In the Motion estimation block, the fovea centralis points are estimated
using video frames Fi and Fi−1. The ROI estimation block outputs an array of
fovea centralis points as ROIi , where each pixel different of 0 is taken as a fovea
centralis. The fovea centralis cutoff window is described in [15]. The Lifting Wavelet
Transform (LWT) block generates the coefficients denoted as C(·)i (see Sect. 19.3).
The Quantization block maps to integers the coefficients C(·)i into C(·)qi using a
fixed quantization for compression. Finally, the FVHT block outputs a compressed
stream of the quantized coefficients C(·)qi using the information of the estimated
fovea centralis points ROIi .

Note that the fovea centralis pointsROIi are input parameters to the FVHT rather
than using the motion estimation block. The window parameters and the cutoff
window are calculated as long as there is a fixation point [15, 24]. The reported
method permits defining ROIs of variable size around the fixation point that retains
the best quality. Further details on the approach described here can be found in [15].
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Fig. 19.5 Block diagram of compression approach based on ROI and fovea centralis [15]

19.6.1 FVHT Algorithm

The compression bit rate can be computed by assessing the decaying window function
on each algorithm pass at each coefficient coordinate as it is proposed in the FVHT
algorithm [15]. First, the coefficient is encoded whether the current bit rate is lower
than wavelet subband, otherwise it is discarded. The sorting pass is modified in
order to classify the coefficients according to its distance to the scaled fovea centralis
and the cutoff window. Each time an attempt to add a coefficient to the list of
significant pixels (LSP ) is done, the assigned bits per pixel (bpp) is calculated, and
the coefficient is classified. However, it should be noted that on the significance pass,
the positions of the coefficients are discarded from the list of insignificant pixels
(LIP ) and on the refinement pass, they are discarded from the LSP . The list of
insignificant sets (LIS) will remain the same as in the SPIHT algorithm [15, 42]. The
execution time of the algorithm was analyzed using Big O notation, concluding that
the complexity of the algorithm is linear (O(n)) [15]. The memory usage was also
analyzed, yielding a size of 71

64n. The FVHT is memory intensive when compared
with classic methods based on the DCT transform that can be computed using no
extra storage.

19.6.2 Simulation Results

The FVHT algorithm is assessed using standard non-compressed 512×512 images.
The fovea centralis is defined at the center pixel (256,256) with two parameters,
namely a radius of the ROI and the power law function (the ramp function), which
are defined in [15]. As stated in the JPEG2000 standard and for a fair comparison,
the biorthogonal Cohen–Daubechies–Feauveau (CDF) 9/7 is considered using four
levels of decomposition [1]. The reported results are compared against the SPIHT
algorithm. Figures 19.6 and 19.7 show the reconstructed wavelet coefficients of the
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Fig. 19.6 Reconstructed
image (“cameraman”) using
SPIHT algorithm at 1 bpp
compression ratio [15]

Fig. 19.7 Reconstructed
image (“cameraman”) using
FVHT compression algorithm
at 0.06–1 bpp compression
ratio [15]. Fovea centralis at
(256,256)

cameraman image at 1 bit per pixel (bpp) with both SPIHT and FVHT, respectively.
The same reconstructed wavelet coefficients at 1 bpp as its higher compression ratio
and 0.06 bpp as its lower compression ratio are shown in Fig. 19.7. It is observed that
the FVHT algorithm has better performance than SPIHT algorithm particularly over
small areas around the fovea centralis or those closer to the fixation point. Further
details on this approach can be found in [15].
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19.7 Wavelet-Based Coding Approaches: SPECK-Based
Codec and Adaptive Wavelet/Fovea Centralis-Based
Codec

Two wavelet-based coding approaches based on the LWT [27] are described in
this section [16]. The first called Set Partitioned Embedded bloCK (SPECK)-based
codec (SP-Codec) is shown in Fig. 19.8 [31]. In the Z-order block, all coefficients
position are organized and mapped from 2D to 1D using the Z-transform. The
quantization step is carried out on LWT and SPECK blocks. The adaptive binary
arithmetic coding (ABAC) block, which is a lossless compression algorithm, allows
compressing a data stream while at the same time computes the statistical model
(see Sect. 19.7.1) [31]. The inverse LWT (iLWT) and inverse SPECK (iSPECK) are
applied to the compressed stream generated in the SPECK block, and finally the
motion compensation and estimation blocks compute the motion vectors based on
the block matching algorithm for each inter-frame.

The second proposal referred to as adaptive wavelet/fovea centralis-based codec
(AWFV-Codec) reported in [16] aims to further increase the quality of the decoded
frames (see Fig. 19.9). The reported adaptive fovea centralis-SPECK (AFV-SPECK)
algorithm defines a center, a ROI area radius, and a decaying window [15, 16] and
as a result various compression ratios may be considered. An external subsystem
is assumed that computes the fovea centralis point of one observer, which is later
provided to the AFV-SPECK coding algorithm.

19.7.1 Adaptive Binary Arithmetic Coding

The adaptive binary arithmetic coding (ABAC) is a version of the arithmetic coding
algorithm applied to an alphabet with only two elements � = 0, 1 [64]. This
application is commonly used for bi tonal images [23]. Also, it does not require a
previously calculated statistical model. Each time a symbol is read, the statistical

Fig. 19.8 Video coding framework SPECK-based codec (SP-Codec) [16]
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Fig. 19.9 Video coding framework AWFV-Codec [16]

model is updated. The adaptive part of the algorithm decreases its performance
when compared against a static approach. However, the main advantage is that the
input data is not preprocessed. As a result, the efficiency of the transmission of the
compressed stream increases because there is no wait time for the calculation of
the statistical model. There are several applications for ABAC as in JPEG and Joint
Bi-level Image Group (JBIG)5 when dealing with black and white images. However,
because SPECK encodes per bit, it makes ABAC suitable to compress the output
of SPECK. In order to increase the computing time performance of the proposed
framework, ABAC is included as its variable length encoder. Listing 19.1 shows the
pseudocode for adaptive binary arithmetic coding.

Listing 19.1 ABAC algorithm
f u n c t i o n Ar i t hme t i cCod i ng ( s )

f q ← 1
r ← 0
l← 0
u← 1
f o r a l l s ∈ s do

r ← r + 1
i f s = 0 t h en

l′ ← 0
u′ ← P

r

f q ← f q + 1
e l s e

l′ ← f q
r

u′ ← 1

5http://jpeg.org/jbig/index.html.

http://jpeg.org/jbig/index.html
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end i f
d = u− l
u = l + d · u′
l = l + d · l′

end f o r
r e t u r n l

end f u n c t i o n
In classic arithmetic coding, the interval used for arithmetic compression is [0, 1).

The function receives a string s to be compressed. The variable fq will store the
frequency of the symbol 0. Because there are only two symbols on the alphabet, it
is only needed to store one of the frequencies and compute the other by

P1 = 1− P0 (19.23)

where P1 is the probability of the symbol i. The probability of the symbol 0 is given
by

P0 = f q
r

(19.24)

where r is the amount of read symbols. The algorithm stores the lower bound of the
main interval on l and the upper bound on u. Each time a symbol is read, the counter
r is increased on 1 and the interval for the input symbol is updated by using the
frequency of the symbol 0 stored on f q. If a 0 is read, the frequency f q is increased
in 1. After updating the statistical model, the new main interval is computed and the
next symbol is read. The process stops when there are no more symbols to read on s
and the statistical model P . P is a set that contains the probabilities of all different
symbols s of the alphabet of s.

19.7.2 AFV-SPECK Algorithm

In the AFV-SPECK algorithm, every time a new coefficient is categorized as
significant it will also be tested for its individual compression ratio using the cutoff
window for each wavelet decomposition subband [16] (see Fig. 19.10). Note that
the main loop remains the same as with SPECK. The input is the set of quantized
coefficients, while the output is stored on S (assessed for significance by the function
ProcessS), and the sorting of the LSP set is also added. If S is significant and only
has one element (x, y), the sign of quantized coefficient is stored on S and the set
is removed from LIS. The function ProcessI evaluates I for its significance. As with
FVHT, the computational complexity of AFV-SPECK will be expressed in terms
of the Big O notation. The AFV-SPECK algorithm has a computational complexity
of O(n). The analysis of the memory usage yielded that AFV-SPECK uses more
memory when implemented as proposed in [31]. Further details can be found in [16].
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Fig. 19.10 Flowchart of the
main AFV-SPECK algorithm
loop [16]

19.7.3 Simulation Results

To assess the reviewed video coding frameworks, SP-Codec and AWFV-Codec
standard test images and video sequences were used6 [16]. For intra-frame coding,
H.265 standard based on the IDCT using a 4×4 pixel block size is compared against
SPECK and AFV-SPECK algorithms. Both binary streams were further compressed
using the ABAC algorithm. The delta used for quantization was set to 	 = 40, see
e.g.,[52]. Note that the chosen quantization delta and other parameters were used as
input for SPECK and AFV-SPECK algorithms [16]. This is due to the fact that the
compression ratio of the H.265 cannot be specified beforehand.

It is well-known that there is no analytic method to represent the exact perception
of the HVS [56]. As a result, there are different metrics for image quality metrics [55].
In this work, the peak signal-to-noise ratio (PSNR) is used as performance metric
[37]. The PSNR is defined in terms of the mean squared error (MSE) given by the
equation

6https://media.xiph.org/video/derf/.

https://media.xiph.org/video/derf/
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MSE(I,K) = 1

mn

m−1∑

i=0

n−1∑

j=0

[
Ii,j −Ki,j

]2 (19.25)

where m denotes the rows and n the columns of original image matrix, I is the
matrix of the original image, and K represents the reconstructed image matrix.
Using Eq. (19.25), the PSNR is given by

PSNR(I,K) = 10 log10

[
MAX2

I

MSE(I,K)

]

(19.26)

where MAX2
I is the square of the maximum value that a pixel of the image I can

take. Such value depends on the amount of bits used per channel. Commonly, an
image of 8 bits per channel has MAX2

I = 2552. PSNR is measured in decibels (dB).
Usually, it is considered that a reconstructed image with a PSNR of 40 dB or higher
is of good quality for an average user [44]. However, trained users should require
higher PSNR values. The 40 dB threshold is only a convention and has not been
proved. Expected values of good reconstructions are between 20 dB and 50 dB [44].

As stated in the standard JPEG2000 and for a fair comparison, we use the
biorthogonal CDF9/7 with four levels of decomposition [1]. Two metrics are
used to assess the performance of the reported algorithms, namely PSNR and
structural similarity index (SSIM) [54, 61]. This metric indicates that a reconstructed
image with high quality should give a SSIM index closer to 1. Table 19.1 depicts
comparisons in images for various video sequences using H.265, SPECK and AFV-
SPECK algorithms, where CIF stands for common intermediate format. This table
shows that the SPECK algorithm has a high PSNR (see e.g., [29]). It also observed
that since the reported AFV-SPECK algorithm is based on ROIs and fovea centralis,
it is expected that the result of these metrics to be equal or lower than the SPECK
algorithm. Further details on these comparisons and other sequences are reported
in [16].

Table 19.1 Comparisons between SPECK, AFV-SPECK and H.265 (see [16])

H.265 SPECK AFV-SPECK
Name BPP PSNR SSIM PSNR SSIM PSNR SSIM
Lena gray 512 1.32 29.37 0.83 37.07 0.96 35.00 0.95
Lake 1.33 29.24 0.83 32.93 0.93 31.56 0.91
Peppers gray 1.27 29.31 0.81 34.04 0.92 32.77 0.90
Cameraman 1.28 28.93 0.75 40.07 0.97 34.59 0.94
Akiyo cif 1.19 28.96 0.78 35.42 0.94 33.12 0.92
Paris cif 1.28 28.79 0.76 30.45 0.85 29.53 0.83
Soccer cif 1.37 29.33 0.74 34.89 0.93 32.23 0.92
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19.8 Conclusions

In this chapter, two wavelet-based algorithms were reviewed, namely FVHT and
AFV-SPECK. Such algorithms exploit the HVS in order to increase the quality
of the reconstructed image for an observer. The algorithms were assessed against
classic compression algorithms such as the JPEG base algorithm and the algorithm
used on the H.265 standard. Simple wavelet compression shows better performance
when compressing images allowing to reach compression ratios of 0.06 bpp while
retaining a good visual quality. The reported algorithms show similar behavior
while increasing the quality of the compressed image over designed areas. However,
when evaluated for overall quality, the reported algorithms show less performance
than its non-fovea-based counterparts. This makes necessary an external subsystem
that calculates the fixation point of the observers. Additionally, two wavelet-based
video coding frameworks were surveyed, namely SP-Codec and AWFV-Codec [16].
The revised video frameworks increase the key frame reconstruction using wavelet-
based compression that is also applied to motion compensation reconstruction. Fovea
centralis coding also increases the quality of the reconstructed video as in AWFV-
Codec, and in some cases, increases the quality of the reconstructed frames against
non-fovea-based frameworks like SP-Codec. The reported AWFV-Codec is a viable
choice for fast video streaming but it also reduces the utility of the stream when
recorded. This is due to the fact that the video would be recorded without possibility
of recovering the information discarded outside the fovea centralis. However, when
stream recording is needed SP-Codec yields into better reconstruction quality than
classic methods such as the H.265/HEVC video coding frameworks [15, 16]. The
reported image compression algorithms FVHT and spatial transform AFV-SPECK
require extra storage besides the wavelet coefficients. Methods will be investigated
for in place computation for quantization in order to decrease the memory usage of
both reported algorithms and for automatic foveation such as in [21].
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vAOV Vertical angle of view
VH Vertical histogram

20.1 Introduction

Stairway detection has been widely studied in the field of image processing. In this
regard, this set of research has solved different kind of problems such as ascending
or descending stairways to solve for example the case of disaster situations, as well
as personal and assistive applications. Examples of this development are unmanned
ground vehicle for exploration and surveillance and implementation of passive alarm
systems intended for blind and visually impaired people.

The development of stair localization and recognition application has a great
importance to solve problems faced by blind or visually impaired persons. To solve
the current problem, researchers propose partly solving the problem by separating
outdoor and indoor cases. In addition, in most of the cases, the region where the
stairs appear has been usually evaluated in predefined region of interest [1–8].

Authors in [1] use geometrical properties and vertical vanishing point to solve
the detection problem. To test the algorithm, the system should follow some criteria
such as the camera coordinate position, distance between the camera and the stairs.
In that sense, the algorithm will encounter difficulties at the moment to deal with
outdoor environments. In [2], the authors develop the idea of using the stereo vision.
Hence, the authors presented a lightweight idea to update the stair model. Although
the method shows good performance, the algorithm will encounter problems with
stairs located far from the camera. Researchers in [3] proposed a method based on
depth information using supervised learning models.

In recent years, convolutional neural networks (CNN) has been proposed as
suitable method for object detection in the exploration of indoor environments for
robots and for visually impaired people using different approaches from image
segmentation with CNN, to faster R-CNN and finally to pretrained deep convolutional
neural network (CNN) [9–12]. One example of the latter is documented in Bashiri
et al. which introduced the MCIndoor dataset which contains a large-scale fully
labeled image dataset for doors, stairs, and hospital signs and experimented with
a pretrained deep convolutional neural network (CNN) model AlexNet and fine-
tuned to their image datasets, and furthermore, compared their results with classical
techniques such as support vector machines (SVM), k-nearest neighbors (KNN) and
naïve Bayesian classifiers [13, 14].

In this chapter, the initial results from the ongoing research belonging to stair
recognition for both indoor and outdoor stairs are presented. This is an important
task due to the fact that there are many different types of stairs with problems of
illumination, shade problems, and problems given by the shapes and designs. Based
on these considerations, it has been proposed to develop a system using deep learning
for stair image analysis to classify within the indoor, outdoor, not stair, or structure
classes. Taking into account that the presented idea is an ongoing research, the next
step deals with the stair features given from the stairway edge.
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20.2 Algorithm Description

In this section, the proposed algorithm for determining the cognitive properties of
stairways has two main stages: (1) convolutional neural network model description
and (2) feature extraction of stairways (see Fig. 20.1).

20.2.1 Convolutional Neural Network Model Description

Images coming from the indoor, outdoor, and structures datasets (see Fig. 20.2) were
queried against a state-of-the-art deep learning model NASNet-Large [15]. NasNET
is an Auto-ML CNN model developed by Google comprising 1041 convolutional
layers distinguished into Normal and Reduction layers and 88.9 millions of
parameters pretrained on the Large Scale Visual Recognition Challenge 2012
(ILSVRC2012) image classification Imagenet dataset [16].

The Imagenet dataset is composed of 1.2 million images representing 1000 classes
of images or labels. Regarding the classification challenge in hand, Imagenet does not
provide a high-level descriptor for stairs, ladder or staircases; however, it provides
one label “n02788148” corresponding a prominent features in stairs representing
“bannister, banister, balustrade, balusters, handrail.” So the prediction task involves,
passing the image through the convolutional layers of the pre-trained network and
then assessing if among the resulting predicted class labels, the class banister is
among the top-n results.

Fig. 20.1 Flowchart of the implemented algorithms for stairway recognition. On the top right
part of the image, the convolutional neural network approach and, on the bottom part, the
feature extraction methodology are shown. A dashed arrow connecting both methods describes
the ensemble method that will be considered in future works
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Fig. 20.2 Image dataset. The first row shows the indoor stair categories. The second row shows
the outdoor categories. The third row shows other structure dataset

20.2.2 Stairway Detections

Since our efforts focus on helping blind or visually impaired people with reduced
mobility, the stairways are previously detected within a defined region. This stairways
detection algorithm can be summarized as follows.

First, from a given image [17, 18], the true horizon or maximum distance of
plain ground (MDPG) is detected. This is done by finding the pixel position that
can discard the area located in the horizon vision within the image. The horizon is
computed according to the following equations:

d = h

tan δ + α (20.1)

α = tan−1
(
y − yc

f

)
(20.2)

fp =
fmm − Imgp

CCDmm
(20.3)

where d is the distance between the camera and the target object, h is the height of the
camera above the ground, and δ is the angle between the optical axis of the camera
and the horizontal projection, α is the angle formed by scanning the image from top
to bottom with respect to the center point of the image, y is the pixel position of the
target on the y axis, yc is the pixel position on the image center, fp is the focal length
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Fig. 20.3 Testing image sets for finding the MDGP with different camera height values, from up to
down the height value were 1 m, 075 m, and 0.50 m above the ground plane. (a) Input images, the
red line indicated where the MDGP was localized. (b) Output image after removing the information
above the horizon line

in pixels, fmm is the focal length in millimeters, Imgp is the image width in pixels,
and CCDmm is the sensor width in millimeters.

Figure 20.3 shows the results of the MDGP stage in our testing image sets. Those
images were taken with the camera set at three different heights above the ground
plane. The heights were 1.00 m, 0.75 m, and 0.50 m, respectively. The red line in the
input images is the localization of the discontinuity after scanning the images from
top to bottom. Finally, this step is done in order to get a more efficient system and,
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consequently, reduce the time required for all the computational process, which is
nowadays of paramount importance in real-time applications which consist mainly
of extracting the information surrounding the ground plane.

Second, by using Gabor filter [19–22], the information related to the stairs is
estimated. This is done using the equation:

G(x,y,λ,θ,φ,σ,γ ) = exp

(
x′2+γ 2+y′2

2σ

)

cos 2π
x′

y
+ φ (20.4)

x′ = x cos θ + y sin θ (20.5)

y′ = −x sin θ + y cos θ (20.6)

where x and y specify the position intensity value along the image, λ represents the
wavelength of the sinusoidal factor, q represents the orientation, θ is the phase shift,
and φ is the standard deviation of the Gaussian envelope along the x and y axes. In
addition, γ is the spatial aspect ratio and specifies the ellipticity of the support of the
Gabor function. Figure 20.4 shows the result of the Gabor filter in the synthesized
image sets.

Third, the line segments within the image are extracted by using a three-chain
rule, represented as

T = f (x + 1, y ± dφ) , g (x, y) =
{

0, f (x, y) = T
1, f (x, y) #= T (20.7)

where x and y specify the position intensity value along the image f, T is the
pixel value of the pixel which is located in the actual position, dφ represents the
pixel orientation, and g(x, y) represents the new image based on the neighborhood
information. The set of candidates are extracted by applying a horizontal and vertical
histogram of the edge image.

The horizontal histogram (HH) determines the numbers of candidates. The
vertical histogram (VH) determines the number of lines within the candidates
extracted from HH. The algorithm is then able to determine the number of lines and
pixels belonging to each line segment. Second, based on the probability analysis,
the proposed method evaluated the candidate area (PA) as well as the number of
lines (PL) and number of pixels (PP) in each respective area. The probability of the
estimates is defined as follows:

PE = NE

N
(20.8)

where NE is the number of areas, lines segments, and pixels in E, and N is the total
number of area, line segments, and pixels in the image. Figure 20.5 shows the result
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Fig. 20.4 Result of the Gabor filter in our synthesized image sets with different distance value
between the camera position and the stairways, from up to down the approximate distance values
were 4.25 m, 6 m, 9 m, 13 m, and 15 m. (a) Source image. (b) Result of the Gabor filter after
binarization. Note that most of the line segments were extracted from the area where the stairway
was located

of this step applied in a set of synthesized images, where the stair is located at a
different distance from the camera by applying a statistical analysis in horizontal and
vertical positions.

Fourth, the correspondence between two consecutive images is computed by using
the normalized cross-correlation, expressed as follows:
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(a)  (b) (c)

Fig. 20.5 Synthesized image stair set. The stair is located at different distances from the camera.
(a) Input images. (b) Gabor filter results. (c) Stair candidate area

rs =
∑

i (xi −mx)
(
yi −my

)

∑
i (xi −mx)

2∑
i

(
yi −my

)2 (20.9)

where rs is the cross-correlation coefficient, xi is the intensity of the i-th pixel in
image within the frame t, yi is the intensity of the i-th pixel in image in the frame t+ 1,
and mx and my are the means of intensity of the corresponding images. A correlation
coefficient matrix is computed for every displacement between the regions. After the
stairway candidate region is obtained by proposed algorithm, proceed with estimated
trajectory to infer the actual localization of the stairway. The aim of this stage is to
estimate the localization of the stairways into the 3D plane. The process established
under the previous step so far is recursively repeated until the extraction of the set of
targets. In order to calculate the bottommost line segment (BLS) distance according
to the configuration of the camera system, consider the measured limit as 1.30 m
from the center of the camera. On the image plane, this distance is found on the y-axis
at the bottommost pixel position, which was approximately equal to 240. Based on
the above information, the process will stop when the bottommost line segments are
located at the 230 pixel on the y-axis. From the last step, one is able to define the
stairway properties.
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The proposed algorithm needs to calculate the vertical angle of view (vAOV) as
follows:

vAOV = 2tan−1
(

CCDmm

2fmm

)
(20.10)

BSL = tan−1
(

h

δ + vAOV

)
(20.11)

where vAOV is the vertical angle of view of the camera which describes the angular
extent of a given scene that is imaged by a camera, fmm is the focal length in
millimeters, h is the height of the camera above the ground, CCDmm is the sensor
width in millimeters, and BSL is the blind spot distance according to the camera
coordinate system.

20.3 Experimental Results

For this first experiment of convolutional neural network model description, the
Google Colaboratory cloud was used. Keras and Tensorflow Models written in
the Python programming language were directly run in the cloud instance on a
NVIDIA® Tesla® K80 GPU card with 13 Gb of GDDR5 VRAM. The indoor,
outdoor, and structure image sets were queried against NasNET obtaining the average
class labels described in Tables 20.1, 20.2, and 20.3, respectively. As the expected
results for the indoor dataset were found to be the most accurate with the network
successfully classifying the image into the “banister” class in most cases, inferred
with a probability of at least 70%.

Table 20.1 Localization of the stairway candidate results for indoor dataset

D NIS L LF AP
Group 1 47 Banister 47 0.81
Group 2 23 Banister 23 0.70
Group 3 57 Banister 57 0.79
Group 4 50 Banister 47 0.73

Prison 3 0.46
Note: D stands for dataset, NIS stands for number of image in the set, L stands for label (top-1),
LF stands for label frequency, and AP stands for average probability. Dataset from group 1 belongs
to image taken during the daylight with the stair located in front of the camera. Image in group
2 belongs to image taken during nightlight with the stair located in front of the camera. Group 3
belongs to images where the image is located at the right part of the camera, and group 4 belongs
to images where the stair is located at the left part of the camera
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Table 20.2 Localization of
the stairway candidate results
for outdoor dataset

D NI L LF AV
Outdoor 62 Banister 18 0.70

Library 10 0.77
Bell cote 7 0.81
Patio 7 0.47
Suspension bridge 4 0.86
Maze 4 0.62
Planetarium 3 0.88
Triumphal arch 3 0.33
Park bench 3 0.30
Lakeside 3 0.42
Palace 3 0.31
Bookshop 2 0.59
Obelisk 2 0.49
Brass 2 0.27
Unicycle 2 0.37
Organ 2 0.38
Limousine 2 0.11
Motor scooter 2 0.42
Stupa 2 0.13

Note: D stands for dataset, NIS stands for number
of image in the set, L stands for label (top-1),
LF stands for label frequency, and AP stands for
average probability

Table 20.3 Localization of
the stairway candidate results
for structure datasets

Dataset NI L LF AP
Structure dataset 5 Banister 1 0.18

Maze 2 0.58
Limousine 1 0.17
Horizontal bar 1 0.15

Notable exceptions, although with low probability, were in the cases that the
algorithm inferred the “prison” class, most likely related to the angle-of-view of the
image and the similarity of the metal banister and the prison bars. Also, an interesting
result was when the algorithm inferred the “scabbard” class, for a close-up of the
stairs, mostly suggesting or taking into account the high-level features of the image
such as roughness or surface of the stairs in the likeness of a sword sheath.

For the outdoor dataset results were mixed, inferring the banister class on 29%
of the examples of the class with a probability of 70%. Other labels appear but
mostly alluding the fact that other objects appear in the image including buildings
(“planetarium,” “palace,” “arch”) or even vehicles (“unicycle,” “limousine,” “motor
scooter”).
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For the cases of Structures, banister is inferred with marginal probability of 0.18.
Also, among the predictions other unrelated labels classes of structural elements
(horizontal bar and maze) and vehicles (limousine) are found. Taken together the
results for outdoor and structures datasets suggest that the approach of passing
the image through the convolutional layers of the NASnet pre-trained network and
comparing the resulting predicted labels, is working modestly well. More importantly
for the task in hand, on average, the probabilities for predicting the label “bannister”
for the indoor dataset, are well over 70%.

In order to fully evaluate the performance of the proposed features extracting
stairway algorithm, four different image datasets were created. This data consisted
of 75 color images with a resolution of 320 × 240. This database is formed by
photographing one stairway with both day- and nightlighting conditions. Different
properties, such as orientation with respect to the camera position, and illumination
conditions were observable. Below are some example results for the stairway
algorithm for the three first loops (Figs. 20.6, 20.7, 20.8, and 20.9). Table 20.4
shows the respective results using said algorithm.

The results of the proposed method supported in Table 20.4 suggest that the
approach presented in this dissertation has a good performance of finding the
stairway localization into the image plane. However, the difficulties with the
distance estimation stage are due to the constraint in forward motion. Consequently,
improvements to the performance were done by adding information about the camera
rotation in the 3D world (such information is important because nonplanar surfaces
affect the result).

20.4 Conclusions

This approach offers the following contributions. First, the research helps to define
an approach for stairway detection. This information is important and necessary in
order to localize stairways in unknown environments. It is also a fundamental step
for the implementation of autonomous stair climbing navigation and passive alarm
systems intended for blind and visually impaired people. Second, our results using
the CNN approach are well over the 70% of identification, suggesting the possibility
of assessing high-level features, by inferring the class label “banister.” This approach
can be used in robust real-time identification of high-level features or can be used in
an ensemble learning approach along with traditional methods. Third, these findings
can support a case study in order to evaluate the applicability of this approach in
real-time implementation.

Further changes can be made to the implementation by fine-tuning the last layers
of network with training examples of stairs, which often results in higher probability
accuracy. Also, other directions can be explored, such as the development of Multi-
task Cascaded Convolutional Networks as has been proposed for face-like features
[23], but for the detection of specific high-level feature of stairs.
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Fig. 20.6 Frontal image dataset at daylight. (a) Source image at time t and t + 1. (b) Extracting
the area of interest for ROI_1 and ROI_2. The white block represents the ROI_1, using a 20 × 10
pixel size for each block extracted at time t; the numbers show the order of extraction. The blue
block represents the ROI_2, using a 40 × 20 pixel size for each block extracted at time t + 1. (c)
The yellow block shows the stairway candidate area
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Fig. 20.7 Frontal image dataset at nightlight. (a) Source image at time t and t + 1. (b) Extracting
the area of interest for ROI_1 and ROI_2. The white block represents the ROI_1, using a 20 × 10
pixel size for each block extracted at time t; the numbers show the order of extraction. The blue
block represents the ROI_2, using a 40 × 20 pixel size for each block extracted at time t + 1. (c)
The yellow block shows the stairway candidate area
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Fig. 20.8 Right image dataset. (a) Source image at time t and t + 1. (b) Extracting the area of
interest for ROI_1 and ROI_2. The white block represents the ROI_1, using a 20× 10 pixel size for
each block extracted at time t; the numbers show the order of extraction. The blue block represents
the ROI_2, using a 40 × 20 pixel size for each block extracted at time t + 1. (c) The yellow block
shows the stairway candidate area
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Fig. 20.9 Left image dataset. (a) Source image at time t and t + 1. (b) Extracting the area of
interest for ROI_1 and ROI_2. The white block represents the ROI_1, using a 20× 10 pixel size for
each block extracted at time t; the numbers show the order of extraction. The blue block represents
the ROI_2, using a 40 × 20 pixel size for each block extracted at time t + 1. (c) The yellow block
shows the stairway candidate area
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Table 20.4 Localization of
the stairway candidate used in
Table 20.1

Data Loop RD (m) DE (m) RE (%) T (ms)
Group 1 1 3.80 3.68 3.16 30

2 3.75 3.74 0.27 30
3 3.70 3.55 4.05 30

Group 2 1 2.20 1.94 11.95 30
2 2.15 1.92 10.74 40
3 2.10 1.86 11.43 30

Group 3 1 4.30 4.26 0.93 30
2 4.25 3.95 7.06 30
3 4.20 3.88 7.64 30

Group 4 1 4.30 3.67 14.65 20
2 4.15 3.80 8.43 20
3 4.20 3.74 −10.95 20

Note: This information is obtained by using the coordinate
system of the camera. rd is the real distance in meter, de is
the distance estimation, re is the relative error, and t is the
computational time

Furthermore, the ensemble method of both convolutional neural network model
description and feature extraction of stairways will be considered for future works.

Finally, the main contribution of this chapter is the fact that the proposed algorithm
gave an estimate of information about the stairways, such as localization with respect
to the coordinate system of the camera. This information is imperative and absolutely
necessary in order to localize stairways in unknown environments.
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Chapter 21
Advanced Phase Triangulation Methods
for 3D Shape Measurements in Scientific
and Industrial Applications

Sergey Vladimirovich Dvoynishnikov, Ivan Konstantinovich Kabardin,
and Vladimir Genrievich Meledin

Abbreviations

3D Three dimensional
IT SB RAS Institute of Thermophysics Siberian Branch of Russian academy of

Science
RFBR Russian Fund of Basic Research
RMS Root mean square

21.1 Introduction

Methods of complex 3D object geometry measurement via the triangulation principle
using phase triangulation and structured illumination are actively developed and
improved [1]. A wide range of practical application of methods in such areas as
mechanical engineering, medicine, biology, archeology, and modeling [2–8] is due
to the low cost of the optical-electronic components of the system and its high
reliability.

At the same time, modern development of phase triangulation methods focuses on
different areas, including reducing measurement time [9, 10] to enable measurement
of the geometry of moving objects [11, 12], developing fast and convenient
calibration methods [13–15], and increasing the measurement accuracy using various
methods and approaches [16].

Nevertheless, there are a number of problems associated with the complexity
of using the existing phase triangulation methods for high-precision measurements
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under varying ambient light, narrow dynamic range of sources and receivers of
optical radiation, limited depth of field image of a photodetector, and arbitrary light
scattering of the measured object surface properties. A review of new methods of
phase triangulation is presented. These methods allow measuring three-dimensional
geometry under conditions of arbitrary measured object surface light scattering
properties, varying measurement setting external illumination, and optical elements
limited depth of field of the optical radiation source and receiver. There are five
sections in the chapter. The first section presents the steady method for decoding
phase images via arbitrary phase shifts. The second section describes the method
for the optical radiation source–receiver path nonlinearity compensation in 3D
measurements based on phase triangulation. The third section contains methods
comparison for structured images decoding under conditions of nonlinearity of
the optical radiation source–receiver path. The fourth section includes methods for
expanding the dynamic range of phase triangulation measurements. The fifth section
describes the method for estimating the spatial modulation optimal frequency in
phase triangulation measurements.

21.2 The Steady Method for Decoding Phase Images
with Arbitrary Phase Shifts

The intensity of the observed image at implementing the phase triangulation method
may be described by the following expression:

I (x, y) = A (x, y) (1+ V (x, y) cosϕ (x, y)) , (21.1)

where I(x, y) is the phase image intensity distribution; A(x, y) is the distribution
of background intensity; V(x, y) is the average visibility; and ϕ(x, y) is the desired
distribution of the wave fronts phase difference. The illumination intensity in each
point of the structured image is a function of three unknown parameters: background
intensity A(x, y), average visibility V(x, y), and difference in phase between wave
fronts ϕ(x, y).

To decode phase images with arbitrary incremental shifts, there are several
known approaches, based on solving a system of transcendental equations [17, 18].
Expression (21.1) in vector form is as follows:

I = AR + (AV cos φ)C + (AV sin φ) S, (21.2)

where R = (1, . . . , 1)T, C = (cosδ0, . . . , cosδN − 1)T, S = (sinδ0, . . . , sinδN − 1)T,
and the vector dimensions can be determined by the quantity of phase shifts. It can
be shown that

AV sinφ = I · C⊥
S · C⊥ , (21.3)
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AV cosφ = I · S⊥
C · S⊥ , (21.4)

where S⊥ and C⊥ are the vectors orthogonal to vectors S, R and C, R, respectively.
Given the properties of the scalar product, we obtainS · C⊥ = C · S⊥. Then

φ = arc tan
I · C⊥
I · S⊥ (21.5)

or

φ = arc tan
I⊥ · C
I⊥ · S . (21.6)

In the latter case, the vector I⊥ is only needed. The matrix operator I⊥ =M · I is
an appropriate use in this case. The transformation matrix M must meet the following
requirements: (M�I)I = 0 and M�R = 0.

For example, with three phase shifts, the skew symmetric matrix satisfies these
conditions:

M =
⎡

⎣
0 1 −1
− 1 0 1
1 −1 0

⎤

⎦ . (21.7)

Then from (21.6), we obtain the following decoding algorithm:

φ = arc tan
(MI) · C
(MI) · S = arc tan

(I1 − I2) c0 + (I2 − I0) c1 + (I0 − I1) c2

(I1 − I2) s0 + (I2 − I0) s1 + (I0 − I1) s2 ,
(21.8)

where ci = cos δi, si = sin δi are the corresponding components of vectors C and S.
The matrix M is obtained by symmetrically continuing the matrix (21.8) for an

odd number of phase shifts larger than 3:

M =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 1 −1
− 1 0 1
1 −1 0

...

...

...

1 −1 1
− 1 1 −1
1 −1 1

. . . . . . . . . . . . . . . . . . . . .

−1 1 −1
1 −1 1
− 1 1 −1

...

...

...

0 1 −1
− 1 0 1
1 −1 0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

. (21.9)
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With an even number of phase shifts, the matrix M may be represented as:

M =
[

0 B

− B 0

]
, B =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

−1 1
1 −1

...

...

−1 1
1 −1

. . . . . . . . . . . . . . .

−1 1
1 −1

...

...

−1 1
1 −1

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

. (21.10)

With four phase shifts, we obtain the following algorithm:

φ = arc tan
(I2 − I3) (c1 − c0)+ (I1 − I0) (c2 − c3)

(I2 − I3) (s1 − s0)+ (I1 − I0) (s2 − s3) . (21.11)

The described algorithm for decoding phase images with a step-by-step shift
provides interpretation of phase images at arbitrary phase shifts. However, this
method does not fully take into account the additive and multiplicative noise in phase
patterns. Therefore, this method cannot minimize the error of phase determination
in the presence of noise in the analyzed images. For practical application of this
method, the authors, as a rule, use preliminary filtering of the initial phase images,
or this method is used for a limited class of objects.

To solve the scientific and technical problem of measuring three-dimensional
geometry of large-sized objects by triangulation methods with structured lighting,
it is necessary to develop robust approaches for processing and decoding structured
images. The authors propose a new method for decoding phase images that minimizes
inaccuracy in phase calculation in structured images.

Expression (21.1) can be written in the form:

Ii = A+ B · sin (δi)+ C · cos (δi) , (21.12)

ϕ = −arc tan

(
B

C

)
, (21.13)

V =
√
B2 + C2

A
. (21.14)

The coefficients A, B, and C can be calculated from finding the functional
minimum of the discrepancy between the experimental and theoretical data S(A,
B, C):

S (A,B,C) =
N∑

i=1

(Ii − A− B · sin (δi)− C · cos (δi))
2. (21.15)
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The minimization condition for S(A, B, C) is the equality of all partial derivatives
to zero:

∂S

∂A
= 0,

∂S

∂B
= 0,

∂S

∂C
= 0. (21.16)

As a result, we have the system of three linear equations:

⎧
⎨

⎩

k1 · A+ k2 · B + k3 · C = k7

k2 · A+ k4 · B + k5 · C = k8

k3 · A+ k5 · B + k6 · C = k9

, (21.17)

where k1 . . . k9 can be determined from the following equations:

k1 = N;
k2 =∑N

i=1 cos (δi) ;
k3 =∑N

i=1 sin (δi) ;

k4 =∑N
i=1cos2 (δi) ;

k5 =∑N
i=1 cos (δi) · sin (δi) ;

k6 =∑N
i=1sin2 (δi) ;

(21.18)

k7 =∑N
i=1Ii

k8 =∑N
i=1Ii · cos (δi) ;

k9 =∑N
i=1Ii · sin (δi) ;

Solving the system of linear Eq. (21.17), we obtain the following expressions for
A, B, and C:

A = −k
2
5 · k7 − k4 · k6 · k7 − k3 · k5 · k8 + k2 · k6 · k8 + k3 · k4 · k9 − k2 · k5 · k9

−k2
3 · k4 + 2 · k2 · k3 · k5 − k1 · k2

5 − k2
2 · k6 + k1 · k4 · k6

,

(21.19)

B = −k3 · k5 · k7 − k2 · k6 · k7 − k2
3 · k8 + k1 · k6 · k8 + k2 · k3 · k9 − k1 · k5 · k9

k2
3 · k4 − 2 · k2 · k3 · k5 + k1 · k2

5 + k2
2 · k6 − k1 · k4 · k6

,

(21.20)

C = −−k3 · k4 · k7 − k2 · k5 · k7 − k2 · k3 · k8 + k1 · k5 · k8 + k2
2 · k9 − k1 · k4 · k9

k2
3 · k4 − 2 · k2 · k3 · k5 + k1 · k2

5 + k2
2 · k6 − k1 · k4 · k6

,

(21.21)

where ϕ is calculated from expression (21.13). Standard deviation of the measured
intensity S(A, B, C) and that of the phase σ (A, B, C) can be estimated by the following
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equations:

S (A,B,C) = 1

N

√
N

�
i=1
(Ii − A− B · sin (δi)− C · cos (δi))2, (21.22)

σ (A,B,C) = 1

N

√
N

�
i=1

(
arc cos

(
Ii − A√
A2 + B2

)
+ arc tan

(
B

C

)
− δi

)2

.

(21.23)

The method of determining the phase shift is based on the classical harmonic
regression. The harmonic regression is a variation of the least squares method.
The least squares method is based on minimizing the functional of the discrepancy
between experimental and theoretical data by varying the desired parameters in
a limited range of their possible values. Therefore, the proposed method for
determining the phase shift gives a stable solution of the system of Eq. (21.3).
That is, it guarantees the minimization of the phase calculation error even in the
presence of noise, having zero expectation M and constant variance D in the sample
corresponding to certain coordinates (x, y):

M (x, y) = M ({Ii (x, y)} , i ∈ 1 . . . N) = 0 (21.24)

D (x, y) = D ({Ii (x, y)} , i ∈ 1 . . . N) = const (21.25)

From expression (21.13), it follows that phase ϕ does not depend on the
distribution of background intensity A. That is why the proposed method minimizes
the determination error ϕ in the presence of noise with constant expectation and
variance.

A necessary and sufficient condition for determining the phase ϕ is the non-
degeneracy of the system of linear Eq. (21.17) is:

rank

⎛

⎝
N

∑N
i=1 cos (δi)

∑N
i=1 sin (δi)∑N

i=1 cos (δi)
∑N
i=1cos2 (δi)

∑N
i=1 cos (δi) · sin (δi)∑N

i=1 sin (δi)
∑N
i=1 cos (δi) · sin (δi)

∑N
i=1sin2 (δi)

⎞

⎠ = 3.

(21.26)

Since expression (21.26) depends only on δi and N, it determines the necessary
and sufficient conditions for finding the solution of the system of Eq. (21.3) by
the proposed method depending on the values of the introduced shifts δi and their
number N.

The algorithmic complexity of the proposed method for determining the phase
shift depending on the parameter N is the sum of the complexity of all the steps in
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determining the phase. Given that there is a linear dependence on N in the formulas
for coefficients, the complexity of the whole method can be estimated as O(N).

Next, we verify the proposed method. To do this, we compare the result of the
presented method for determining the phase shift based on harmonic regression
and the generalized algorithm for decoding phase images based on the vector
representation of expression (21.3) [19]. The result of the work based on the deviation
of the phase measured value from the known initial value can be calculated as:

ε = ψ − ϕ, (21.27)

where ε is the discrepancy between the measured phase and the original one; ψ
is the phase value obtained using the corresponding method; and ϕ is the initial
phase. The initial phase is set by simulating the typical intensity distribution in
phase patterns. The shifts in the generation of phase patterns are calculated like a
set of random variables with a uniform distribution in the interval [0, 2π ). Phase
patterns are maiden with background intensity A = 10 and visibility V = 0.5. The
phase pattern intensity distribution is set according to Eq. (21.2) with the addition
of noise (Figs. 21.1 and 21.2). Noise has Gaussian distribution. The noise level is
presented by the background intensity standard deviation.

Let us examine whether the error of both methods depends on the value of the
found phase ϕ with constant noise and the same number of phase patterns N. To do
this, we build the dependence of deviation ε between the measured phase value and
the initial phase for different values of ϕ given in the interval [0, 2π ). The number
of phase patterns N = 50. Standard deviation of the noise is 1% of the value of the
background intensity A in expression (21.2).

Two hundred different sets of phase patterns were used for the reducement of
the stochastic nature of the graphs. The calculated deviations of the measured phase
maximum were recorded in the graph. Figure 21.3 shows the obtained dependences

Fig. 21.1 Dependence of
intensity in the phase image
on the phase shift without
adding noise

 



682 S. V. Dvoynishnikov et al.

Fig. 21.2 Dependence of
intensity in the phase image
on the phase shift with added
noise

Fig. 21.3 Deviation of the
phase, measured by the
method of processing phase
images, based on the vector
representation of the system
of equations (dashed line) and
a steady method for
determining the phase shift
based on harmonic regression
(solid line) at different values
of the phase ϕ

0.5 1 1.5 2 2.5 3

10-2







of ε on ϕ. It can be seen that the proposed stable method provides at least an order
of magnitude smaller deviation of the obtained phase, independent of the measured
value of the initial phase ϕ.

In practice, phase patterns, as a rule, contain noises of additive nature. Therefore,
it is useful to estimate the phase error, depending on the level of additive noise in
phase images.

Let us estimate the deviation of the measured phase value from the initial ε,
depending on the level of noise superimposed on the intensity distribution in the
phase pattern with a constant number of shifts. Since the value of the initial phase
ϕ does not affect ε, it is chosen equal to 0.5 radians. The number of phase patterns
N = 50. H is noise standard deviation from the applied to the intensity distribution.
H takes values in the range of 0–100% of the background intensity A(2).
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The resulting dependence of the measured phase deviation on the noise level
is shown in Fig. 21.4. For the method of phase images processing, based on the
vector representation of the system of Eq. (21.3), the error exceeds 100% with noise
variance of more than 10%. The method of phase pattern processing based on the
vector representation of the system of Eq. (21.3) gives unreliable results when the
noise dispersion is over 10% of the background intensity. The proposed method for
determining the phase shift based on harmonic regression provides an error of less
than 50% for noise variance of less than 20%.

The number of implementations of phase images N is always limited in the
experiment. The optimal number of realizations is required for decoding phase
patterns with a given error. We conduct a comparative analysis of the methods in
the case of phase recovery from a set of N phase image realizations. The error in
determining the phaseψ is analyzed depending on the number N. The additive noise
level was set constant with the standard deviation of 5% background intensity level.
The phase value to be determined is unchanged and is set at 0.5 radians.

The results of the analysis methods are presented in Fig. 21.5. The error
in determining the phase by an algorithm based on the vector representation
of a system of transcendental equations does not qualitatively decrease with
increasing N.

Even for small N (N > 5), the error of the method of decoding phase patterns based
on the vector representation of the system of Eq. (21.3) is several times higher than
that of the presented steady method based on harmonic regression. The simulation

Fig. 21.4 Deviation of the
measured phase: the image
processing method based on
the vector representation of
the system of Eq. (21.3)
(dashed line) and a steady
method for determining the
phase shift based on harmonic
regression (solid line)

Fig. 21.5 Deviation of the
measured phase from the
number of shifts: the method
of image processing based on
the vector representation of
the system of Eq. (21.3)
(dashed line) and the steady
method for determining the
phase shift based on harmonic
regression (solid line)
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results generally demonstrate the stability of the proposed method to noise, its small
error when working with a limited set of phase images and practical value.

Thus, a steady method for decoding the structured images has been proposed. It
minimizes the measurement error of three-dimensional geometry in the presence of
noise in the analyzed images. We consider a generalized algorithm that allows us
to obtain a solution to the system of transcendental Eq. (21.3) with arbitrary phase
shifts of the probing signal.

The stability of the method is shown in the presence of noise in a series of
measurements of intensity of structured images at one point with constant variance
and mathematical expectation. An estimate of the standard and measured deviations
of the observed image is given to evaluate the reliability of the results. The necessary
and sufficient condition for solving the problem by the proposed method is shown.
The complexity of the algorithm is estimated depending on the number of photos
with various structured images. A comparative analysis of the method presented in
this work and the generalized algorithm for decoding phase images based on the
vector representation of a system of transcendental equations is carried out. The
results of the analysis demonstrate several times lower measurement error when
working with a limited set of images.

The proposed method for processing images with spatially modulated phase
illumination allows minimizing the error in determining the shift of the initial
phase of the probing sinusoid. The received images of the measured object have
the form of phase images with a stepwise shift of the initial phase of the probing
sinusoid. The steady method for decoding the structured images allows minimizing
the measurement error of three-dimensional geometry by the triangulation method
with object surface arbitrary light scattering properties measured in a phase-
inhomogeneous medium.

21.3 Method for Nonlinearity Compensation
of the Source–Receiver Path of Optical Radiation in 3D
Measurements Based on Phase Triangulation

The power characteristics of many input devices, printing, or visualization of images
corresponds to a power law:

s = crγ , (21.28)

where Ô and γ are the positive constants. Often, Eq. (21.28) is written as

s = c(r + ε)γ , (21.29)

in order to introduce the shift, that is, the initial brightness, when the photodetector
input receives a zero optical signal. Devices used by the author as a source and
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receiver of optical radiation also have a power type of energy characteristics. The
graphs of dependences of s on γ for various values are shown in Fig. 21.6.

Most modern imaging devices have power dependence with an exponent ranging
from 1.8 to 2.5. This trend originates from cathode ray tube monitors, in which the
luminance brightness has power dependence on voltage. Figure 21.7 shows an image
of a linear halftone wedge, which is fed to the monitor input. The image on the
monitor screen is darker than it should be.

Obviously, when using the method based on phase triangulation, it is necessary
to control the linearity of the receiving-transfer path between the source of optical
radiation and the image receiver. The presence of a nonlinear receiving-transfer
characteristic of the path between the source and the receiver of spatially modulated
illumination can cause difficult-to-predict systematic errors, which will depend on
the magnitude of the phase shift (Fig. 21.8).

Now there are compensation methods that are based on serial or parallel
compensating nonlinearity inclusion, introduction of the compensating nonlinear
feedback and linear corrective devices synthesized on the invariance theory.

Fig. 21.6 Graphs for
equations s = crγ , for
different values of γ (Ô = 1 in
all cases)

Fig. 21.7 Halftone image with linear wedge (left) and monitor response to linear wedge (right)
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Fig. 21.8 Type of sinusoidal
signal after power conversion

The simplicity of implementation is advantage of sequential or parallel inclusion
of compensating nonlinearity method. However, this method assumes the availability
of information about the nonlinearity of characteristics of the receiving-transfer path,
which in our case depends on the measured object reflective properties, external
lighting, and the internal parameters of the optical radiation source and receiver.
Therefore, the method of nonlinearity compensation on the basis of sequential or
parallel inclusion of compensating nonlinearity is not applicable in our case.

The nonlinearity compensation method based on compensating nonlinear
feedback is inappropriate to our problem. The feedback implies the presence of
information about the distribution of structured illumination in the received images.
The definition of illumination is the primary task of the optical triangulation method.

The method of modification by additional correction is proposed for compensation
for the source–receiver path nonlinearity of optical radiation in 3D phase
triangulation measurements.

The dependence of the intensity observed in the image on the intensity emitted
by the light source can be represented by some nonlinear function K as follows:

I = K(U). (21.30)

where U is the spatially modulated light intensity emitted to a small area of the
investigated object; and I is the pixel intensity of the image the center of this small
area is projected into.

If the object light scattering properties, the ambient lighting parameters, and the
internal parameters of the structured illumination modulator and receiver do not
change during the measurement process, the K function is identical for each pixel in
the image. The inverse function K−1 can be calculated if K is smooth and continuous
in the accepted values range.

Let us consider the nonlinearity compensation method of the optical radiation
source–receiver path in 3D phase triangulation measurements. First, the calibration
of the specified path is carried out. Then, to determine the function K, the measured
object is lightened with a series of parallel halftone sinusoidal bands. The object
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under study is consistently illuminated, providing uniform spatial modulation of the
radiation source (the illumination intensity is uniform over the entire area of the
radiator). The illumination intensity is changed linearly:

U0(i) = U0
0 + (i − 1) dU0 (21.31)

where i is the serial number of uniform illumination, i = 1 . . . .M; U0
0 is the

intensity of the first implementation of illumination; and dU0 is the increment step
of illumination intensity.

The dependence of the intensity of the optical radiation source on the observed
intensity in such an image is constructed for each point on the received images:

I (x, y) = K (x, y,U) . (21.32)

A function characterizing the nonlinearity of the source–receiver path of optical
radiation is obtained. Then, the inverse function K−1 is built to restore the radiation
intensity true value by the value of the registered intensity of the image at the point:

U = K−1 (x, y, I (x, y)) . (21.33)

It is possible to restore the intensity of the modulated optical radiation on the
basis of the function K−1, after obtaining investigation object images which are
illuminated by parallel sinusoidal bands,

Y (x, y) = K−1 (x, y, I (x, y)) . (21.34)

Here Y(x, y) is the light intensity distribution that is projected onto the measured
object. The use of function Y(x, y) instead of I(x, y) in the decoding phase images
method in phase triangulation eliminates the systematic phase measurement error of
the testing sinusoid.

For the verification of the proposed method, we compare the results obtained
by the steady decoding phase image method with and without compensation of the
optical radiation source–receiver path. The results of the measured phase deviation
from the known initial phase is estimated:

ε = |ψ − ϕ| , (21.35)

where ψ is the phase found by compensation method.
Let us set the phase ϕ at initial position with taking into account typical intensity

distribution in the phase images. Since the compared methods can work at arbitrary
δt, shifts in the generation of phase images will have the format of an occasional set
in the interval [0, 2π ). Phase images are formed with intensity of background A= 10
and visibility V = 0.5.
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The intensity distribution in the phase images is set according to (21.28) with the
addition of noise. Noise has random character with normal distribution. The level
of noise will be estimated by the mean square deviation (RMS) from the intensity
of background. We introduce a new parameter T: window width, where we will set
different phase shifts in (0, 2π ) interval. At T = 2π , the phase shift can take all
possible values. The introduction of the parameter T is due to the limitations of the
photodetector range, which in the presence of non-switchable hardware and software
adaptation automata can lead to uncertain results of intensity measurement in some
areas of the formed phase shift values (see Fig. 21.9).

In practice, phase images, as a rule, contain noise of additive nature, imposed
by the recording photodetector and elements of the receiving path. Therefore, it is
useful to estimate the accuracy of phase determination depending on the level of
additive noise.

Let us try to find the deviation ε of the phase from the initial one depending on
the noise level imposed on the distribution of the intensity in the recorded phase
images with known shift number and T = 0.875π . Recorded phase pattern number
N = 50; parameter γ = 1.5; and RMS noise H imposed on the distribution of
intensity is 0–100% of intensity of background. To decrease the stochastic character
of the presented graphs, we use 200 different sets of recorded phase images and put
the maximum acquired errors of the measured phase on the graph. Such procedure
is followed in all the experiments described below.

The results presented in Fig. 21.9 show that in both cases the character of the
phase error growth depending on the noise level ε(H) in the interference patterns has
a linear trend. However, at small values of noise level, this error taking into account
the path nonlinearity compensation tends to zero, in contrast to the error of phase
definition without compensation. If we do not compensate for the nonlinearity of the
source–receiver path of optical radiation, then at μ < 2π the method of decoding
phase images with arbitrary step-by-step shifts can give unreliable estimates.

Different sources and receivers of optical radiation have different parameters
γ , determining the energy characteristics of the device according to (21.28). We

Fig. 21.9 Deviation of the
value of phase from the level
of noise in the distribution of
intensity: the method of
decoding images without
nonlinearity compensation
(dashed line) and that with
nonlinearity compensation of
the source–receiver path of
optical radiation (solid line)
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estimate the deviation ε depending on the level γ at constant number of shifts
N = 50, noise level H = 10%, and the parameter T = 0.875π .

Dependence ε(γ ) (see Fig. 21.10) shows that applying the method of the path
nonlinearity compensation allows obtaining reliable values of the measured phase
at any γ . In addition, from Fig. 21.11, it follows that in the vicinity of γ = 1, the
compensation method cannot be used since in this vicinity the signal type after the
power conversion remains unchanged (Fig. 21.12).

In experiments, the phase image realization number N is always limited. It is
important to know the required number N for decoding phase images with a given
accuracy. We perform a comparative analysis of methods in the case of phase recovery
from a limited number of images N. We analyze the accuracy of phase determination
depending on N (Fig. 21.10). The noise level will be a constant variable equal to
10% of background intensity of a standard deviation, the phase window T = 0.875π ,
and the parameter γ = 1.5. From graphs in Fig. 21.10, it follows that when using
the method of decoding phase images without compensation for nonlinearity of
the source–receiver path of optical radiation, the phase measurement error (i.e.,
deviation ε) decreases with increasing N, but converges to a value of about 0.34
radians, which is more than 10% of the measurement range. When compensating

Fig. 21.10 Deviation of the
phase for various number of
shifts: the method of
decoding images without
nonlinearity compensation
(dashed line) and that with
nonlinearity compensation of
the source–receiver optical
radiation path (solid line)

Fig. 21.11 Deviation of the
phase from the value γ : the
method of decoding images
without nonlinearity
compensation (dashed line)
and that with nonlinearity
compensation of the
source–receiver path of
optical radiation (solid line)
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Fig. 21.12 Deviation of the
measured phase at different
window sizes T: the method
of decoding phase images
without compensation of the
path nonlinearity γ 1 = 1.5
(large dotted line), γ 2 = 2.5
(small dotted line) and that
with compensation for
nonlinearity of the
source–receiver path of
optical radiation (solid line)

for the path nonlinearity, ε converges to a value of about 0.05 radians or 1.5% of the
measuring range.

We estimate the phase measurement error for different window sizes T and
constant values γ 1 = 1.5; γ 2 = 2.5; H = 10%, N = 50. The results of estimations
are shown in Fig. 21.10. At T < 1 rad, ε tends to 50% of the measurement range with
and without nonlinearity compensation. At the given parameters H, N, and T < 1, the
system (21.3) becomes degenerate and has no stable solution. At T > 4.8 radians, the
error in determining the phase with and without compensation is almost the same.
At 2 < T < 5, the decoding phase image method without nonlinearity compensation
leads to obtaining significant systematic errors.

Thus, the proposed method of nonlinearity compensation of the source–receiver
path of radiation in 3D optic measurements based on structured light and phase
triangulation minimizes the error of the phase measurements with arbitrary stepwise
shifts in the presence of noise and power characteristics of the receiving-transfer
devices. Comparison of the steady method of decoding interferograms and method
proposed above shows that for T in the range 2 < T < 5, the nonlinearity compensation
improves the accuracy of phase triangulation at accidental phase shifts and random
noise. The method of nonlinearity compensation allows to reduce the error in several
times and to significantly increase the safety of 3D measurement results based on
optical phase triangulation with structured light. It allows using modern inexpensive
household devices, including those equipped with non-switchable hardware and
software adaptation machines, as sources and receivers.

21.4 Comparing Methods of Structured Image Decoding
at Nonlinearity of the Source–Receiver Path of Optical
Radiation

In the measurement of a 3D profile using the phase triangulation in the images, there
is often additive noise. In addition, most modern devices used to generate and input
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images have an amplitude characteristic corresponding to the power law, often called
“gamma correction” (21.28).

Several approaches are used to compensate for the nonlinearity of the source–
receiver path of optical radiation in 3D measurements based on phase triangulation.
The first is the use of a matched pair of the source and receiver of optical radiation,
for which the nonlinearity of the transfer function is obviously absent, that is, γ = 1
in (21.28). This approach is found in specialized optoelectronic devices that use a
single-frame decoding of a three-dimensional setting.

Another and more common approach is based on the application of the four-step
phase triangulation method. The method works as follows. Four illuminations are
projected on the surface of the measured object. The linear phase shift by adjacent
images is π /2. Without taking into account the power transfer function, we obtain:

In (x, y) = Ib (x, y)+ Im (x, y) · cos
(
ϕ (x, y)+ (n− 1)

π

2

)
, n = 1 . . . .4.

(21.36)

The phase ϕ(x, y) can be calculated by the formula:

ϕ (x, y) = arc tan

(
I4 − I2
I1 − I3

)
. (21.37)

Next, we take into account the power transfer function in the form of a second-
degree polynomial

In (x, y) = a0 + a1Sn (x, y)+ a2S
2
n (x, y)+ α, (21.38)

where a0, a1, a2, and α are the coefficients and S is the received intensity of the phase
image with power correction of brightness in accordance with expression (21.28).
Given the properties of trigonometric functions, from expressions (21.35), (21.37),
(21.38), the following can be obtained:

ϕ (x, y) = arc tan

(
S4 − S2

S1 − S3

)
. (21.39)

This method is resistant to additive noise and automatically compensates for
nonlinear distortions in the measurement results. The disadvantage of the method is
the need for all four measurements to fit in the dynamic range of the optical radiation
receiver, which is not always possible. For example, in the case of measuring objects
with complex profiles and arbitrary light scattering properties in a wide range of
values, it is almost impossible to match the source and receiver of radiation. In
practice, the used number of phase shifts is often larger than 4. In this case, the
obtained phase images are analyzed in fours having successive shifts by π /2 relative
to each other, and the results of the measured phase are averaged. The result will be
a fairly accurate and reliable measurement method.
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The third approach is more universal. It is based on the phase image decoding
method, which allows discarding unreliable measurements and performing phase
recovery in the images at an arbitrary set of phase shifts of the probing phase image
[20]. The phase value φ(x, y) can be represented as

φ (x, y) = ϕ (x, y)+ δ (x, y) , (21.40)

where δ(x, y) is the initial phase shift at the formed spatial illumination. Then the
expression (21.2) can be presented as:

I (x, y) = Ib (x, y)+ Icos (x, y) cos (δ)+ Isin (x, y) sin (δ) , (21.41)

ϕ (x, y) = −arc tan

(
Isin (x, y)

Icos (x, y)

)
. (21.42)

The value of the phase ϕ(x, y) is determined from the condition of minimization
of the residual function between theoretical and experimental data:

S (Ib, Isin, Icos) =
N∑

i=1

Ii − Ib − Icos cos (δi)+ Isin sin (δi) , (21.43)

∂S

∂Ib
= 0; ∂S

∂Isin
= 0; ∂S

∂Icos
= 0. (21.44)

This method requires direct compensation for nonlinearity of the source–receiver
path of optical radiation. Otherwise, its application will lead to systematic deviations
of the measured phase [21]. With the help of calibration of the source–receiver path
of optical radiation, the transfer function is set in the form of dependence:

Y (x, y) = K−1 (x, y, I (x, y)) , (21.45)

where Y(x, y) is the light intensity distribution that is projected onto the measured
object. The use of function Y(x, y) instead of I(x, y) allows excluding the systematic
measurement error of the phase of the probing sinusoid. Since the dependence Y(x, y)
automatically compensates for the background illumination Ib(x, y), the expressions
(21.43) and (21.44) will be reduced to the following form:

S (Isin, Icos) =
N∑

i=1

(
K−1 (x, y, Ii (x, y))− Icos (x, y) cos (δi)+ Isin (x, y) sin (δi)

)
,

(21.46)
∂S

∂Isin
= 0; ∂S

∂Icos
= 0. (21.47)
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This method is much more laborious, since it requires an additional procedure of
calibration of the source–receiver path of optical radiation, but it is more versatile and
reliable compared to the four-step method.

For its substantiation, it is required to analyze the error of phase determination in
decoding phase images on the basis of iterative four-step method and steady method
of decoding phase images with compensation of nonlinearity of the source–receiver
path of optical radiation.

The main sources of measurement error of the phase triangulation method are
noise on phase images and insufficient dynamic range of the optical radiation receiver.
Since in the case of radiation intensity that does not fall within the dynamic range, the
recorded intensity in the phase image is unreliable, such data will be discarded, and
the phase shift will be calculated from the rest set of reliable measurements.

It is shown in [22] that the phase determination error can be estimated as:

θ = 	I√
N · I , (21.48)

where N is the number of phase shifts, and 	I/I is the relative error of the intensity
measurement by the optical radiation receiver.

Below are the results of analysis of the phase measurement error in decoding phase
images based on iterative four-step method and steady method of phase image decoding
with compensation for nonlinearity of the source–receiver path of optical radiation.
The analysis was performed at different noise levels in phase images, different values of
the gamma correction coefficient, and different consistency parameters for sensitivities
of the source and receiver of optical radiation.

Let the intensity of the radiation source scattered on the surface of the measured
object vary in the range [0 . . . 1] in relative dimensionless units. The operating range
of the optical radiation receiver is [a, b]. Parameter a takes the values [−1 . . . 1], and
parameter b takes the values [0 . . . 2]. Figure 21.13 gives examples of the source
intensity (a) and the observed receiver intensity (b, c, d) at different values of
parameters a and b and at the noise level of 5% on the received images. Changes
in all parameters allow estimating the measurement error at different light scattering
properties of the measured object surface.

Figure 21.14 presents the theoretical error of phase measurement in the absence of
noise in phase images. It is obvious that under ideal conditions the measurement error
will be zero. In addition, the graph shows that in the area where the inequality a > b is
performed, the measurements lose their physical meaning because the dynamic range
of the radiation receiver takes an incorrect value.

Figures 21.15, 21.16, 21.17, and 21.18 show estimates of the error of phase
determining at the noise level of 5% in the phase images and Figs. 21.19, 21.20,
21.21, and 21.22 at a noise level of 10%. Each graph shows measurement errors by
a four-step method (darker surface) and a steady method of decoding phase images
(lighter surface). The vertical axis and the surface color indicate the standard deviation
of the measured phase, and the horizontal axes show the values of parameters A and B,
reflecting characteristics of consistency of the source and receiver of optical radiation
at the measurement point. Errors are shown at parameter γ = 0.25, γ = 0.5, γ = 1,
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Fig. 21.13 Examples of intensity of the source (a) and the observed intensity of the receiver with
various values of parameters a and b (b, c, d)
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Fig. 21.15 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in phase images of 5%,
γ = 0.25
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Fig. 21.16 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 5%,
γ = 0.5
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Fig. 21.17 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 5%,
γ = 1
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Fig. 21.18 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 5%,
γ = 2
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Fig. 21.19 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 10%,
γ = 0.25
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Fig. 21.20 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 10%,
γ = 0.5
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Fig. 21.21 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 10%,
γ = 1
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Fig. 21.22 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation A and B; noise level
in the phase images of 10%,
γ = 2
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and γ = 2. The measurement results show that in the region where the operating range
of the optical radiation receiver is consistent with the range of the emitted intensity,
the error of the methods is approximately the same. When leaving the consistency
area, the error of the four-step method increases significantly faster than that of the
steady method of decoding phase images.

Figures 21.23, 21.24, 21.25, and 21.26 show three-dimensional surface sections
(Fig. 21.22) at γ = 2 and the noise level of 10% in phase images. The results in the
graphs show that for all the values of consistency parameters of the receiver and the
radiation source, the method based on the steady decoding of phase images provides
the measurement error that is, at least, not worse than that in the four-step method.

Figures 21.27 and 21.28 show the accuracy of phase determination by the four-
step method and the steady method of phase image decoding at different consistency
parameters of the receiver and source of radiation A and B, for small values of noise
of 2% and 10% in the phase images. These graphs show that the error of the measured
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Fig. 21.23 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation by four-step method
(solid line) and steady method
of phase image decoding
(dashed line). Noise level in
the phase images of 10%,
γ = 2, B = 1
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Fig. 21.24 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation by four-step method
(solid line) and steady method
of phase image decoding
(dashed line). Noise level in
the phase images of 10%,
γ = 2, ¥ = 1.5
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Fig. 21.25 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation by four-step method
(solid line) and steady method
of phase image decoding
(dashed line). Noise level in
the phase images of 10%,
γ = 2, £ = 0
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Fig. 21.26 An error of phase
determination from the
consistency parameters of the
receiver and source of
radiation by four-step method
(solid line) and steady method
of phase image decoding
(dashed line). Noise level in
the phase images of 10%,
γ = 2, £ = −0.5
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Fig. 21.27 An error of phase
determination by four-step
method (solid line) and steady
method of phase image
decoding (dashed line) from
the consistency parameters of
the receiver and source of
radiation A and B at noise
level in the phase images of
2%
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Fig. 21.28 An error of phase
determination by four-step
method (solid line) and steady
method of phase image
decoding (dashed line) from
the consistency parameters of
the receiver and source of
radiation A and B at noise
level in the phase images of
10%
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phase depends on the noise level in the phase patterns. Moreover, in the field of
consistency, both methods have almost identical level of error. This is confirmed by
the graphs in Figs. 21.3 and 21.4.

Based on the results obtained and the experiments carried out, the following
conclusion can be drawn. It is necessary to calculate the initial phase shift only
by a set of reliable measurements when measuring by phase triangulation in a limited
dynamic range of the receiver and with arbitrary light scattering properties of the
measured object surface.

21.5 Methods for Expanding the Dynamic Range of Phase
Triangulation Measurements

One of the disadvantages of the phase step method is the limited range of measured
coordinates. Phase values over the image can be unambiguously restored only within
the period.

Currently, the problem of phase ambiguity has not been solved. There are many
known phase field expansion algorithms [23], using known data on the investigated
phase field to calculate the full phase, that is, full period number corresponding to the
wave path difference, for example:

– Sign of phase change in the transition through the period
– Approximate values of the full phase obtained from other measurement sources

and type of measured wave front (smoothness, continuity of derivatives)
– Change in the band color in interferometers with the same wave paths, change in

the band contrast, etc.
– Difference in phases obtained from several measurements of one object with

changed band value

Most of the phase ambiguity elimination algorithms are based on the analysis of
the spatial structure of the phase field. The full phase is determined by its expansion,
that is, by successive addition or subtraction of 2π to or from the phase value at the
adjacent point, if the difference between them exceeds a certain threshold (Fig. 21.29).
This procedure is based on the assumption that there are no sharp jumps (more than a
period) at the points of transition through the period. To trace the transition boundary,
the number of periods has to be an order of magnitude smaller than that of points in
the detector array. This is only possible when analyzing a smooth phase front. The
addition of 2π can be considered as an extrapolation process. At that phase shift at the
previous restored points is considered for determining the phase shift at the following
points. The hypothesis of the phase transition existence at some point of the phase
field is accepted depending on the results of the analysis of its vicinity.

There is a known method for measuring the phase shift on interferograms using
an equivalent wavelength. Information about the wavelength of light sources is used a
priori.
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Fig. 21.29 Wave front
measured on module 2π

Optical differences of wave path at any point of the field (x, y) are determined from
expressions:

�a + 2πn = 2π

λa
OPX, (21.49)

at wavelength λa and

�b + 2πn = 2π

λb
OPX, (21.50)

at wavelength λb. Deducting (21.50) from (21.49) and selecting the optical difference
of wave path, we obtain:

OPX = �a −�b
2π

λeq + (na − nb) λeq, (21.51)

where

λeq = λaλb

|λa − λb| . (21.52)

Thus, it is possible to determine the phase front with a period equal to the equivalent
wavelength λeq.

The above-mentioned methods of increasing the measurement range are not suitable
for the problem of measuring 3D geometry of large objects based on the spatiotemporal
modulation of the optical radiation source, since there is no a priori information about
the 3D geometry of the measured object.

Below we consider the method of the full phase recovery using the integer analysis,
which does not use a priori information about the measured object. The method is
based on a series of measurements at different values of interference bands. The band
value is determined by the difference in the optical wave path, in which the interference
bands change for a period. The band value depends on the angle between the interfering
beams, the transmittance of the medium, or the wavelength of the light source.

This work applies a modification of the full phase recovery method using the integer
analysis.
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The modification consists of the fact that the measured object is consecutively
illuminated by a series of phase images with a multiple of the phase period. The phase
transition is sought only within one period. Then, in the presence of a set of phase
images with multiple periods and images where the phase shift does not transit through
the period (this is determined by the depth of the measuring setting), it is possible to
restore the value of the phase shift in the phase images with the smallest period.

Let the phase images be measured and the phase values are decoded for five fields
that have multiple periods N1 . . .N5 of a probing sinusoid:

N2 = 2N1, N3 = 2N2, N4 = 2N3, N5 = 2N4. (21.53)

Let ϕ1 . . .ϕ5 be phase values at one point in five fields corresponding to different
periods of the probing sinusoid N1 . . .N5. Then the value of the resulting phase φres
can be calculated by the following algorithm:

φ2 = ϕ2 + 2π · INT

(
(2 · ϕ1)− ϕ2

2π

)
, (21.54)

φ3 = ϕ3 + 2π · INT

(
(2 · φ2)− ϕ3

2π

)
, (21.55)

φ4 = ϕ4 + 2π · INT

(
(2 · φ3)− ϕ4

2π

)
, (21.56)

φres = ϕ5 + 2π · INT

(
(2 · φ4)− ϕ5

2π

)
, (21.57)

where function INT(Ø) takes the following values:

⎧
⎨

⎩

INT(x) = 1, 0.5 ≤ x < 1
INT(x) = 0,−0.5 < x < 0.5
INT(x) = 1,−0.5 > x ≥ −1

. (21.58)

The obtained phase field φres provides a measurement range to correspond to the
period of the probing sinusoid N5 and the sensitivity to correspond to the period N1.

The proposed method of expanding the dynamic range of phase measurements
provides an increase in the dynamic range to the limits due to the resolution of the
source and receiver of spatially modulated optical radiation.



21 Advanced Phase Triangulation Methods for 3D Shape Measurements. . . 703

21.6 Method for Estimating the Optimal Frequency
of Spatial Modulation in Phase Triangulation
Measurements

In the phase triangulation method, the phase error depends on the number of phase
images N and the relative error of the photodetector 	I/I. The measurement error of
Z coordinate (setting depth), according to [24], can be estimated as follows:

	z = 	ϕ · p
2π · tan θ

= 	I · p
2π · I · √N · tan θ

, (21.59)

where p is the spatial modulation period of radiation, and θ is the angle of triangulation.
It follows from expression (21.59) that the error in determining the z coordinate is

proportional to spatial modulation period of radiation. To minimize the measurement
error by the phase triangulation method, it is necessary to minimize the spatial
modulation period of optical radiation.

It is obvious that as the spatial modulation period of radiation decreases, the range
of the setting depth measurement decreases as well. Over the image, the phase values
can be unambiguously restored only within one period. To increase the measurement
range by the phase triangulation method, various methods of phase field expansion are
actively used in interferometry. There are known algorithms for phase field expansion,
using a priori data on the object under study to determine the full phase, that is, the
number of full periods [18]. There are also some known algorithms for restoring the
full phase using integer analysis when the object is illuminated by phase image series
with different multiples of the spatial modulation of radiation [19]. The most coming
triangulation methods for 3D measurements using structured light illumination are
the methods of expanding the measurement range using phase steps and the method
of binary coding of pixels [25, 26]. These approaches provide the best measurement
accuracy when projecting the least number of structured illuminations.

There are fundamental limitations on the resolution of the image formed by the
optical elements of the measuring system. Due to the nonlinear distortion of the optical
elements of the measuring system, the limited depth of field of the optical elements
of the system, it is impossible to obtain an absolutely sharp image. Therefore, it is
necessary to choose the frequency of spatial modulation of radiation based on the
following considerations. First, the maximum frequency of spatial modulation in the
received image must be less than the frequency of the equivalent low-pass filter,
which is the optical system of the meter. Second, in order to achieve the minimum
measurement error, the frequency should be maximized.

This chapter presents a method for estimating the optimal frequency of spatial
modulation of radiation for three-dimensional measurements based on phase
triangulation, which provides the smallest error in measuring a given depth z.

The dependence of the image on the photodetector on the intensity distribution
formed on the object surface by the radiation source can be represented as a convolution
of the pulse response function of the system and the intensity distribution function of
the image formed on the surface of the measured object by the radiation source:
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g (x, y) =
∫∫

h (x − x1, y − y1) f (x1, y1) dx1dy1 + n (x, y), (21.60)

where g is the image formed on the photodetector, h is the pulse response of the optical
system or the scattering function of the point source, f is the distribution function of
the intensity of the image formed on the surface of the measured object by the radiation
source, and n is the noise in the image. The noise function n in the image in addition
to the noise of the photodetector includes the background brightness distribution of
the measured object. Since the intensity of the generated illumination is significantly
higher than the background brightness of the measured object and, especially, than the
noise of the photodetector, the inequality is performed:

∫∫ ∫∫
h (x − x1, y − y1) f (x1, y1) dx1dy1dxdy �

∫∫
n (x, y) dxdy,

(21.61)

where integration is done throughout the image. In the frequency space, expression
(1.19) takes the form:

G(u, v) = H (u, v) F (u, v)+N (u, v) . (21.62)

Since the formed structured illumination has a pronounced modulation direction
(the radiation intensity is modulated along the selected, as a rule, horizontal
coordinate), then we limit ourselves to considering the one-dimensional case.

A standard approach can be used to experimentally determine the pulsed response
function of the optical system. Spatial low-frequency binary grid in the form of several
wide white light lines is projected on the surface of the object. The photodetector
detects the brightness distribution G0(u). The function F0(u) characterizes the intensity
distribution on the surface of the measured object in the absence of noise and any
optical distortion. The value of the function F0(u) is obtained from a priori information
about the illumination formed on the surface of the measured object using the obtained
functionG0(u).

For example, the function F0(u) can be obtained as follows:

F0(u) = sign (φLow (G0(u))) , (21.63)

where the function sign gives 1, if the value is positive, and−1 if it is not positive. The
function φLow is the linear low-frequency filter whose cutoff frequency is obviously
higher than the spatial frequency of the observed binary grid, projected onto the surface
of the measured object.

Then the function H can be defined as:

H(u) = G0(u)−N(u)
F0(u)

. (21.64)

http://dx.doi.org/10.1007/978-3-030-22587-2_1


21 Advanced Phase Triangulation Methods for 3D Shape Measurements. . . 705

According to expression (21.59), the optimal spatial period of radiation modulation
will be at the minimum value (p/I) or (1/wI), where w is the frequency of spatial
modulation of radiation, and I is the amplitude of the signal in the received images.
Since the ideal infinite harmonic signal in the frequency representation is expressed
by the delta-function, then

Gw(u) = H(u)δw(u) = H(w), (21.65)

δw(u) is the delta function equal to 1 at point w, and Gw(u) is the intensity
dependence formed on the photodetector at illumination in the form of a harmonic
signal with frequency w. Then the amplitude of the harmonic signal with frequency
w, observed in the images, will be proportional to the value of H(w). The problem
of determining the optimal spatial frequency of radiation modulation is reduced to
determining the frequency w, at whichH(w) · w→ max.

Since the noise frequency distribution N(w) is unknown, it is impossible to
calculate the function H(w) using expression (21.64). Ignoring the noise in this case is
impossible, because high-frequency components will inevitably increase when divided
into high-frequency component of the “ideal” signal F0(u).

The following approach is used to estimate the function H(w). The point blur
function, which describes the dependence H(w), has to sufficiently accurately repeat
the normal distribution:

H(u) = Ae− u2

σ2 . (21.66)

Then expression H(w) · w→ max at

w = σ√
2
. (21.67)

From (21.64), we obtain:

G0(u)

F0(u)
= Ae− u2

σ2 + N(u)

F0(u)
. (21.68)

We further assume that the noise distribution N(u) has a substantially smaller
amplitude than H(u). Then the expression N(u)

F0(u)
in the low-frequency region will be

significantly less than H(w). Therefore, in the low-frequency domain, a function G0(u)
F0(u)

can be used to estimate H(u).
Based on the assumption that the parameter A in expression (21.66) is equal to

H(0), and using the least squares method, we obtain:

σ =
∫
√

log
(
G0(0)
F0(0)

)
− log

(
G0(u)
F0(u)

)
· du

∫
u · du . (21.69)
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Here integration is carried out only over the low-frequency part of the spectrum.
On the basis of expressions (21.67) and (21.69), we can obtain an estimate of the
optimum frequency of the harmonic signal.

The practical implementation and verification of the proposed adaptive phase
triangulation method for 3D measurements based on structured lighting were
performed experimentally. NEC VT570 digital projector with a spatial resolution
of 1024 × 768 was used as a source of spatially modulated radiation. Digital camera
Logitech C910 with a resolution of 1920 × 1080 was used as a receiver of optical
radiation. The projector formed illumination on the surface of the measured object in
the form of a set of several light lines equidistant on the flat surface. The aim of the
experiment was to determine the optimal spatial frequency of the projected signal for
this measurement scheme based on the adaptive phase triangulation method.

As a result of the analysis of the recorded images on the surface of the measured
object, the function G(u)/F(u) has been obtained and the point blur function H(u) has
been found (Fig. 21.30). The optimal period of the probing signal for this measuring
configuration has been found to be 38 pixels in our experiments.

Then a similar experiment was carried out, but with especially decreased sharpness
of the optical recording system. The analyzed signals in the first and second
experiments are shown in Fig. 21.31. It can be seen that the brightness signal fronts
along the horizontal direction in the images in the second experiment are substantially
tumbled down. The optimal period of the harmonic signal for this configuration of the
optical measuring circuit should be significantly longer than in the first case.

The obtained function G(u)/F(u) and the found point blur function H(u) are
presented in Fig. 21.32. The optimal period of the harmonic signal observed by
the photodetector for this configuration of the optical system was 105 pixels.

The results shown prove the usefulness and availability of the proposed method for
estimation of the best radiation modulation frequency for measuring three-dimensional
geometry using phase triangulation and structured radiation. In the case of defocusing
the optical elements of the measuring system, the optimal spatial modulation frequency
of the radiation will be significantly lower than in the case of a well-coordinated and
focused optical system of the meter.

Fig. 21.30 Dependence
G(u)/F(u) in the frequency
representation (solid line) and
the found blur function of the
system point (dotted line)
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Fig. 21.31 Fragments of the
analyzed intensity
dependences in the case of a
well-focused system (solid
line) and in the case of a
defocused system (dotted
line)

Fig. 21.32 Dependence
G(u)/F(u) in the frequency
representation (solid line) and
the found blur function of the
system point (dotted line) for
the case of defocused optical
system

21.7 Conclusion

This section presents the methods of phase triangulation, providing higher metrological
characteristics of measuring systems, as well as expansion of the functionality and
range of applications of optoelectronic systems for geometric control in production
conditions. The use of a steady method of phase image decoding will minimize
the measurement error of three-dimensional geometry by phase triangulation using
structured lighting. The method of nonlinearity compensation reduces the error several
times and significantly increases the reliability of the results of 3D measurements
based on phase triangulation and allows using modern inexpensive household devices,
including those equipped with non-switchable hardware and software adaptation
machines, as sources and receivers. The proposed method of expanding the dynamic
range of phase measurements provides an increase in the dynamic range to the
limits conditioned by the resolution of the source and receiver of spatially modulated
optical radiation. The proposed method for estimating the optimal frequency of spatial
radiation modulation for 3D measurements based on phase triangulation and structured
lighting minimizes the error of phase determination for the used optoelectronic
elements.
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Chapter 22
Detection and Tracking of Melt Pool
in Blown Powder Deposition Through
Image Processing of Infrared Camera
Data

Sreekar Karnati and Frank F. Liou

Abbreviations

AM Additive manufacturing
BPD Blown powder deposition
CCD Charge coupled device
CNC Computer numerical control
IR Infra-red
JSR Just solidified region
LoG Laplacian of Gaussian

22.1 Introduction

Additive Manufacturing (AM) is a component fabrication methodology where the
desired geometries are built by selectively adding material in a layer by layer
fashion. This approach is complementary to conventional subtractive fabrication
methodologies where the desired geometries are machined to shape by removing
material from a starting block of material. AM has been theorized to offer cost-
effective means to fabricate complex geometries which are otherwise challenging to
produce. Through various implementations, AM processes are being developed and
commercialized for several materials such as plastics, metals, ceramics, and even
organic materials. The avenues offered through AM are often cited to be exciting
and groundbreaking.
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Among the different modalities of AM, metal-based AM is of great interest
to the industries such as bio-medical [1], aerospace [2], defense [3], automobile
[4], and construction industries [5]. AM is known to provide cost-efficient means
of fabricating components with low buy to fly ratios and shorter lead times. The
capability of AM to fabricate complex geometries can eliminate the need for
assembly and thereby improve manufacturing and functioning efficiencies. AM has
also been used to repair, recondition, and remanufacture existing components [6].
Such a revival of the end of life components can lead to immense cost savings and
thereby growth in the industry [7].

While the benefits of AM are obvious, the process is very complicated and
the outcome from the process is dependent on various factors. Depending on the
modality, the factors of influence are subject to change. Metal-based AM modalities
differ in terms of power source, the form of feedstock, types of process variables,
and capabilities [8]. For the sake of clarity and brevity, discussion in this chapter
will be limited to blown powder deposition.

Blown Powder Deposition (BPD) is a variant of laser metal deposition [8]. In
this process, a moving melt pool is created on a substrate material by the use of a
laser and a motorized worktable. A stream of powder is introduced into the melt
pool through a feed tube; this powder is melted and then consolidated on to the
substrate material. By moving the melt pool in a pre-planned fashion, the material
is deposited in a layer by layer sequence. Upon successful deposition of such layers,
the components of required geometries are fabricated. A schematic diagram of BPD
is shown in Fig. 22.1.

The quality and properties of components obtained through BPD are dependent on
process variables such as laser power, scan speed, powder feed, and layer thickness
[9–11]. Creating and sustaining a melt pool capable of producing material with

Fig. 22.1 A schematic
diagram of a front view of a
BPD process indicating the
relative positions of the laser
beam, the powder feed tube,
and the substrate. The red
lines indicate the layer
boundaries from the
preplanned deposition path

Powder 
feed tube 

Laser

Deposit 
with layer 
boundaries 

Moving 
substrate
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required properties while ensuring successful fabrication of the required geometry
is a challenging problem [12]. In the aim of understanding the influence of process
parameters on material properties, researchers have mostly relied on experimentation
and subsequent testing [10]. The composition of the material under discussion
also influences the interaction and influence of the process parameters. This forces
researchers to repeat similar studies on every new material.

Analysis from destructive testing of deposits only yields information on the final
outcome and leaves in-process phenomenon to speculation. In order to realize the
in-process phenomenon, researchers have often resorted to numerical analysis such
as finite element modeling [13], cellular automaton [14], molecular dynamics [15],
and phase field modeling [16]. Researchers have used such techniques to model,
cooling rate [17], melt pool characteristics [18], temperature profile microstructure
[19, 20], residual stresses [21], etc. In order to establish the validity of these models,
the attributes of deposits such as melt pool dimensions, microstructure features,
residual strain, and the temperature during deposition have been used. While such
approaches have known to be successful, wide-scale incorporation of these models
is not feasible. Often times these studies are limited in their scope due to assumptions
necessary to facilitate successful calculation, loss of relevancy due to change in setup
or limitations on computational resources.

Vision-based real-time monitoring of the deposition processes and closed loop
control is a potential solution for realizing in-process phenomenon and performing
a controlled deposition process. Real-time monitoring and potential closed-loop
control of AM processes have been a topic of study for a while. Song et al. have
successfully developed a system of three CCD cameras and a pyrometer for real-
time tracking and control of deposition height. While doing so they were also able
to measure and control the melt pool temperature [22]. The required control actions
were performed by manipulating the power value during deposition. Similar process
monitoring techniques have been developed for another localized heating process,
i.e., welding. Real-time monitoring and correction during plasma welding and laser
welding were achieved to study weld pool diameter, the surface of the weld pool,
the weld plume size, etc. Kovacevic et al. utilized a CCD camera to capture a
laser illuminated weld pool for information on surface detail. By its study, they
were able to perform real-time correction during the process [23]. This camera
was configured to capture light in the wavelength range of the irradiating laser.
Manipulation of arc current, shield gas flow rate, and feed speed were used as a means
to perform the required control. Zhang et al. utilized a spectrometer to analyze the
plasma-developed laser lap welding. Simultaneously, a CCD camera was used to co-
axially monitor the shape of the weld pool [24]. The intensity of characteristic peaks
pertaining to constituent elements was observed to understand the welding practice.
By integrating image processing and edge detection methods, they identified potential
defects during the process. Huang et al. utilized an IR camera to acquire temperature
information and implement interference analysis on their hybrid laser and TIG
welding system. By doing so, they were successful in tracking the weld seam during
the process [25]. Similarly, multiple systems were developed using pyrometers,
CCD cameras, acoustic sensors, etc. to monitor the process [26–29]. The above-
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mentioned control and monitoring setups were dedicated to observing a characteristic
feature such as the size of melt or weld pool, temperature, the shape of weld plume,
etc. Decision criteria based on this information were established through iterative
experimentation. However, the analysis did not involve decoupling the monitored
data to understand the solidification process. These setups were validated through
qualification of final geometry. In this chapter though, a processing methodology for
obtaining representative insight into the process of solidification is discussed. The
influence and capacity of feedback systems are presented.

22.2 Influence of Feedback Systems

The authors theorize, controlling and maintaining a fixed melt pool size and ensuring
consistent material deposition is central to setting up a robust deposition process.
Incorporation of feedback mechanisms for compensating in-process inconsistencies
and ensuring consistent layer thickness could be an approach for reliable fabrication.
Pan and his colleagues at Missouri S&T developed a BPD system with two feedback
systems aimed at managing the energy within the deposit and ensuring consistent
material buildup [30].

Due to the localized heating in BPD, there are steep temperature gradients
within and around the melt pool. Also, due to the large melting points of most
metals, the melt pool is visibly hot and distinguishable. This enables the prospect
of incorporating vision-based process monitoring systems based on cameras, both
visible and infrared. Such cameras are excellent choices for gathering spatial and
thermal information. However, these cameras yield large amounts of data. Feedback
systems based on camera data are often slow due to the computational overhead
originating from the need for massive data processing. For a fast and dynamic process
such as BPD, incorporating camera-based feedback systems is still a challenging
problem. However, vision-based sensing is still viable with analog high-speed sensors
such as photodiodes and pyrometers. Due to the low-resolution aspect of these
sensors, decoupling complex concurrent phenomenon can be challenging. There is
a need for capturing such sensor data under various known conditions to establish
process signatures.

In this section, the fabrication of AISI 316 stainless steel thin wall structures using
BPD under the influence of two closed-loop feedback systems is discussed. Stainless
powder in the particle size range of −100/+325 mesh was used to perform the
deposition. A 1 kW fiber laser with a wavelength of 1064 nm was used in combination
with a CNC worktable to perform these depositions. The CNC deposition system
involved the use of stepper motors to achieve actuation. The process of micro-
stepping was used to achieve smooth motion during deposition.

A FLIR A615 thermal infrared camera was used to monitor the deposition process.
The A615 is a longwave infrared camera, which involves the use of micro-bolometers
as the sensors. It is sensitive to infrared light in the spectrum range of 7.5–13.5 μm.
The camera has a maximum resolution of 640 × 480 pixels. Under the calibrated
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conditions, the camera is capable of sensing temperature up to a resolution of 50 mK.
The lens used for the current set of analyses had a field of view of 25◦. The camera
was capable of reaching a frame rate of 200 frames per second.

Pan’s feedback systems were used during these depositions. These systems can
be classified as an energy management system and a height control system. These
systems have been proven to successfully fabricate thin wall structures that met the
design requirements [30]. Incorporation of these control systems facilitated near
constant bead thickness, reliable material build, and good surface quality. Deposits
fabricated with and without the influence of these control systems are shown in Fig.
22.2. The deposit fabricated under the influence of the control systems is visually
better and has more consistent geometric features. The surface roughness was also
better when fabricating under the influence of the control systems. The logic and
setup of these control systems are discussed in sections below.

22.2.1 Energy Management System

From Planck’s law, the spectral radiance of a black body at a constant temperature can
be analytically modeled. The spectral radiance of a black body at a given wavelength
can be calculated from Eq. (22.1).

Bλ (λ, T ) = 2hc2

λ5

1

e
hc
λkBT − 1

(22.1)

Fig. 22.2 Thin wall deposits fabricated without (left) and with (right) the control of feedback
systems
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Where, Bλ(λ, T) is the spectral radiance observed at a wavelength λ, T is the
absolute temperature of the blackbody, kB is the Boltzmann constant, h is the Plank’s
constant, and c is the speed of light in the medium. From Wein’s law, the peak of
the spectral radiance curve occurs at wavelengths that is inversely proportional to
the temperature of the black body. From these laws, it can be inferred that for a fixed
shape and fixed thermal gradient the total spectral radiance in a given spectral range
should be fixed. The energy management system monitors and attempts to control
this radiance. This control is expected to indirectly correlate with the melt pool. In
order to maintain the required radiance value, the system manipulates the input power
during deposition. In case the measured radiance value is high, the control system
drives the power down and vice versa. The logic flow of the energy management
system is shown in Fig. 22.3.

While the radiance of the deposition site was monitored, the significance of the
numerical value was not analyzed as a part of this study and setup. There is merit
in understanding the contribution of each source, i.e., molten material and the just
solidified material. However, this requires a more specialized investigation which
goes beyond the scope of this work. For the current study, the optimized setting for

Enter 
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Start of deposition

Read 
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data

End of 
deposition

Yes
Stop

No

Sensor value 
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Decrease power

Increase power

Yes No

Fig. 22.3 Flowchart detailing the workflow of the energy management system
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the energy management system was evaluated experimentally through trial and error.
The optimal condition was chosen based on the size of the high temperature region
during deposition. The outcome material quality was also inspected to ensure good
bonding between successive layers and no porosity.

22.2.2 Height Control System

For the purposes of distance measurement, triangulation methods are often used in
industrial environments using automation and vision-based sensing [31, 32]. The
process typically involves lasers and light sensors to calculate the distance between
two points. Extensions of this implementation have been used to even create 2D
and 3D topographic profiles. There is a benefit to using such implementations in
additive manufacturing. Monitoring build height enables reliable part fabrication
and in-process correction [33, 34]. A similar implementation was used in the current
setup as well. Instead of a laser-based setup, a temperature sensor based setup was
used for triangulation.

The height control system is used to monitor and control the building height
during BPD. The feedback system employs a non-contact temperature sensor to
keep track of the top of the deposit. This sensor was a dual color pyrometer procured
from WilliamsonIR. The camera was capable of measuring temperatures above
900 ◦C. Due to the dual color implementation, the pyrometer can bypass the issues
of emissivity variance. The system uses a temperature threshold to assess the material
buildup. The system employs a go/no go strategy to ensure the required build height
during deposition. The control system manipulates the motion system to go forward
when the intended buildup is attained and slows down or stops motion when the
material buildup is below the requirement. These decisions are taken along the
entire deposition tool path. A flowchart detailing the workflow of the height control
system is shown in Fig. 22.4.

The energy management system and the height control system work in conjunction
to facilitate reliable deposition during BPD. One of the biggest issues in BPD
that leads to problems during deposition is capture efficiency. In order to maintain
consistent layer thickness, the capture efficiency of the melt pool has to remain
constant. In case the efficiency is more than nominal, the material buildup will be
larger than the layer thickness. If the efficiency is lower than nominal, the buildup
will be lower than the layer thickness. The pileup of these differences will lead to
unsuccessful deposition. Under the right conditions, when the capture efficiency is
close to nominal and the right power, feed rate, and scan speed are set, the deposition
reaches a steady state and doesn’t need any intervention.

Typically, the right deposition conditions are evaluated using a lengthy and
expensive design of experiments study. However, in this case, the energy management
system and the height control system can be used to tune the machine settings
and obtain the right deposition parameters. While identifying a domain of viable
parameters settings is made easy, picking the best setting by visually inspecting the
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Fig. 22.4 Flowchart detailing the workflow of the height control system

deposit quality is not optimal. The complex interaction of the energy management
system and height control system could lead to largely varying thermal conditions
which could lead to inhomogeneity in material properties [10, 35, 36]. While many
factors influence the material properties, thermal history can be considered as one of
the most influential factors. Using thermal cameras to capture and analyze thermal
history during deposition could serve as an evaluation tool to pick the appropriate
process parameters.

A schematic drawing of the deposition setup is shown in Fig. 22.5. The IR camera
was oriented normal to the deposit in order to capture the deposition process from
a front view perspective. In this orientation, the camera is capable of recording a
longitudinal view of the active region during deposition. The IR thermography is
a surface measurement technique and does not provide insight into the variation of
these measurements along the thickness of the deposit. The temperature gradients
beneath the surface cannot be measured using this technique.

The variation in the total area of the high temperature region was used as a metric
to assess the influence and difference with varying control system parameters. The
high temperature region was defined as the region whose radiance is above a threshold
value. The chosen threshold was set to the value corresponding to a temperature of
50◦ lower than the solidus temperature of 316 stainless steel. This was supposed to
imply that the area on the deposit meeting the threshold criteria would constitute the
material that had just solidified. However, that is not the case. The above equations
and discussions pertaining to radiance are limited to that of a black body. In reality,
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Fig. 22.5 Schematic side
view diagram illustrating the
setup of the feedback systems
on the BPD system

Energy 

management 

system

Height control 

system

Laser

Deposit

CNC work table

IR camera

most materials do not behave like a black body. Their radiance at a given temperature
is a partial fraction of that of a black body at a similar temperature. These bodies
are referred to as grey bodies. The radiative powder (W) from a grey body at a
temperature (T) with a surrounding temperature (Tc) can be defined as Eq. (22.2).
This equation, the Stefan–Boltzmann Law, is obtained by integrating the Plank’s law
for all wavelengths. Emissivity (ε) is used to account for the lower radiation values
of grey bodies. The value of the emissivity for grey bodies falls between 0 and 1.
The “σ” is the Stefan–Boltzmann constant.

W = εσA
(
T 4 − Tc

4
)

(22.2)

The infrared cameras measure the radiative power given off a grey or black body.
Under the right setup conditions and setup calibration, these power values can be
processed and interpreted as temperatures. Multiple sources contribute to the total
radiative power value measured by the IR camera (Wcamera). The breakdown of
different sources contributing to the total radiative power measured by the IR camera
is shown in Fig. 22.6. The body of interest, hot body, is shown in red. The temperature
of the hot body is THB. The emissivity of the hot body is ε. The black body radiative
power from the hot body is WHB. The reflected temperature is TRT and the radiative
component is WRT. The atmospheric temperature is Tatm and the radiative power
component is Watm. The transmissivity of the atmosphere is τ . The makeup of the
total radiative power as measured by the IR camera is expressed as Eq. (22.3). The
emissivity and transmissivity values are used to decouple the radiative power values
measured by the camera. The decoupled power components are used to estimate the
absolute temperature values.

Wcamera = ετWHB + (1− ε) τWRT + (1− τ)Watm (22.3)
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Fig. 22.6 Illustration demonstrating the breakdown of the total radiative powder measured by the
IR camera

These power measurements are also influenced by the setup conditions and
are sensitive to the range of temperature under study. The calibration of the
camera and measurement setup is therefore essential for obtaining true temperature
measurements. The complexity and sensitivity of the calibration and setup process
make it challenging to obtain true temperature values. However, these challenges
are minimized when used for purposes of differential thermography. The analysis
discussed in this chapter involves the use of differential thermography and not
absolute temperature measurement. A calibrated setup is doable in cases where the
range of measured temperatures is small and the emissivity values are also known.
However, the emissivity values for a given material are subject to change with
temperature, wavelength, and phase change. Typically, the emissivity of metal drops
when a phase change happens from solid to liquid state. This is attributed to the rise
in reflectivity of the molten material. The same is true for the case of 316 stainless
steel. In the case of BPD, the range of temperatures seen is very large and the process
also involves phase change. Adding to this complexity, depending on the setup, the
region of interest can be moving with the field of view. By the definition set for the
high temperature region in the above paragraphs of discussion, this region could
include portions or all of the melt pool. Further discussion on the constitution of the
high temperature region will be continued in the next sections of the chapter.

22.2.3 Variation in the High Temperature Region

The deposition of 25 mm× 25 mm 316 stainless steel thin wall structures under the
control of feedback systems for different powder feed settings was monitored using
the IR camera. For a fixed threshold value on the energy management system and
layer thickness, the deposition was performed at three different powder feed settings.
A powder feed rate of 10, 30, and 50 gm/min was used for deposition. Argon gas
was used to shield the deposition from oxidation.

A snapshot of the BPD process during the fabrication of a thin wall 316 stainless
steel structure is shown in Fig. 22.7. This was generated using a false color rendering
to realize the variation in temperature, where purple indicates the lower end of the



22 Detection and Tracking of Melt Pool in Blown Powder Deposition Through. . . 721

Powder feed tube
High temperature region

Deposit

Fig. 22.7 Infrared thermograph of BPD of 316 stainless steel captured from a front view
perspective. The green color represents the high temperature region

data and yellow indicates the higher end of the data. The deposit and powder feed
tube can be seen within the picture. The thermal data was processed to identify the
pixels that met the threshold criteria for the high temperature region. The pixels
corresponding to the high temperature region are highlighted in green as shown in
Fig. 22.7.

During deposition, the height control system checks to ensure sufficient material
buildup. In case the required level was not reached, the control system slows down
or stops the movement. By doing so, the material deposition is continued in the same
location and when the required material buildup is attained the deposition system
moves on to the next position along the tool path. In situations where the worktable
is slowed down or stopped, continuous heating by the laser in the same location
leads to heat retention. This can lead to slower cooling rates and in extension weaker
material. These issues are supposed to be eliminated through the intervention of
the energy management system. In cases of heat buildup, the energy management
system lowers the power of the laser and attempts to mitigate heat retention. While
this is the expected outcome from the control systems, the final outcome needs to be
investigated. Typically destructive testing is employed to draw estimations of cooling
rate and heat retention during deposition. However, with the IR camera incorporation,
the size of a high temperature region can be monitored to more reliably visualize and
optimize the deposition process. The evolution of the size of the high temperature
region for each of the powder feed settings can be seen in Fig. 22.8.

From Fig. 22.8, there is a definite variation in the total area of the high temperature
region with varying powder feed rate. At the lowest powder feed rate of 10 gm/min,
the overall trend in the area of the high temperature region was found to be increasing.
However, as the powder feed rate was increased, say for 30 gm/min, the overall
value of the high temperature region was substantially reduced. However, steep
rises and drops similar to those seen in the case of 10 gm/min still persisted. Upon
further increasing powder feed rate to 50 gm/min, the overall area value stayed more
consistent and the rises/drops in the values were also reduced. Among the considered
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Fig. 22.8 Variation in the total area of the high temperature region during BPD with varying
powder feed (P.F.) rate

powder feed rates, 50 gm/min yielded the most consistent values for the area of the
high temperature region.

The overall rise in the area of the high temperature region for the 10 gm/min
feed rate was suspected to be the intervention of the height control system. Due to
the lower powder feed rate, meeting the requirements for material buildup would be
slower in the case of 10 gm/min when compared to 30 and 50 gm/min feed rates.
This implies that when the height control system slows down the deposition, there
is a rise in heat retention. While the energy management system does lower the
power, its intervention is insufficient in avoiding the overall increase in the area of
the high temperature region. With the increase in powder feed rate to 30 gm/min,
the intervention of the height control system seems to have been reduced and this
is reflected in the total area data. However, the energy management system is still
not entirely successful in eliminating issues of heat retention. This suggests at this
powder feed value, the issue could be from cumulative error. The control system is
suspected to be unable to sense minute differences in the material buildup. These
differences can stack up over layers and warrant intervention from the height control
system. In that instance, while there is a rise in the total area of the high temperature
region, the intervention of the energy management system is successful in bringing
down the overall value. The power feed rate of 50 gm/min appears to be near optimal.
The control systems managed to keep the area of the high temperature region near
consistent. Therefore, the optimal powder feed setting among the three settings was
concluded to be 50 gm/min.

While deposits made at all the powder feed settings met the required geometric
criteria, without the IR camera monitoring, the influence of the control systems would
have been challenging to analyze. The analysis of the area of the high temperature
region led to valuable insights into the process. However, further dissection of the
thermal data is possible. The variation of the emissivity values caused by phase
change can help break down the thermal data into the just solidified region and melt
pool region.
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22.3 Melt Pool Identification

The emissivity of the solid 316 stainless is higher than the emissivity of the liquid
phase [23, 37]. Also, the emissivity of 316 stainless with an oxidized surface is
higher than that of one with a shiny metallic finish. Therefore, from Eq. (22.3), at
solidus temperature, the radiation from the melt pool in BPD will be lower than the
radiation from the solid metal. If the pixels corresponding to solid and liquid weren’t
identified and the appropriate emissivity values were not assigned, the temperature
measurements from the IR camera can be misleading. For example, if the emissivity
for the entire field of view in Fig. 22.7 was set to 0.95, the pixels corresponding to
the melt pool would appear colder than the material at solidus temperature. While
this, in reality, is not true, this phenomenon can be leveraged to identify the pixels
constituting the melt pool.

In an image, a sharp difference in contrast stemming from differences in details is
referred to as an edge. By employing edge detection techniques, the pixels in the IR
image corresponding to the melt pool could be identified. Since 316 stainless steel is
not a eutectic composition, it has a freezing range. Over this range of temperatures,
the material gradually transitions from solid to liquid and it is referred to as mushy
zone. In BPD, a vague boundary can be seen between the completely liquid phase
and the completely solid phase. However, due to the low magnification and resolution
of the IR camera (640 × 120) in the current setup, resolving this fuzzy boundary is
not expected to be feasible. Therefore, a step-like transition from solid to liquid and
vice versa is expected. Due to this lack of distinction between melt pool and mushy
zone, from here on the melt pool and the mushy zone are collectively referred to as
the melt pool.

eJust solidified region > eMelt pool+mushy zone > eAmbient region (22.4)

WJust solidified region > WMelt pool+mushy zone > WAmbient region (22.5)

Figure 22.9 shows a schematic representation of the boundaries formed during
deposition and the comparison of the emissivity values. Boundaries in Fig. 22.9
indicate the edges that are possible due to the emissivity differences. Due to the
variation in emissivity values, the effective radiative power values and thereby the
calculated temperature values also vary and follow the same trend. The effective
radiative power is the power value as measured by the camera. The descending order
of emissivity and radiative power values are shown in Eqs. (22.4) and (22.5). Through
edge detection, these characteristic regions such as the Just Solidified Region (JSR)
and the melt pool can be identified. The presence of these differences can be
realized by performing a discrete thermal gradient analysis across the horizontal
and vertical directions of the thermograph. The peaks observed in these gradients
were expected to bear correlation with the transitions in the material’s emissivity
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Fig. 22.9 An illustration of boundaries between different regions of interest and corresponding
differences in emissivity

values. The evaluated vertical and horizontal gradients of temperatures (Fig. 22.7)
during deposition are shown in Figs. 22.10 and 22.11. The equations used to calculate
the discrete gradient are Eqs. (22.6) and (22.7). xi, j represents the pixel value in the
(i, j) positions of an image.

Discrete gradient in y = xi,j − xi,j−1 (22.6)

Discrete gradient in x = xi,j − xi−1,j (22.7)

Figure 22.10 indicates peaks in the discrete vertical gradient of thermal data
from Fig. 22.7; these peaks are expected to represent the vertical transition from
the ambient region to deposit. Peaks around the melt pool can also be noticed.
Figure 22.11 depicts the discrete horizontal gradient of the thermal data from Fig.
22.7. The peaks in this plot are expected to show the horizontal transitions from
the ambient region to deposit and vice versa. The transitions around the melt pool
can also be seen in this gradient plot. Laplace edge detection technique was used
to isolate the location of these transitions in the deposit. Standard functions from
python libraries were implemented to identify these edges. The foreseen edges were
captured after a series of smoothing, gradient and edge detection operations. The
detailed implementation of processing is presented below.
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Fig. 22.10 Peaks occurring around the melt pool and the top edge of the deposit in the surface plot
of the discrete gradient of the thermal data along the vertical direction
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Fig. 22.11 Peaks occurring around the melt pool and the top edge of the deposit in the surface plot
of the discrete gradient of the thermal data along the horizontal direction
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1. Moving median
Figure 22.12 shows a false color rendering of the output generated after applying
a moving median filter. The iron color palette was chosen for rendering, where
black is the lowest value and white is the highest value. The moving median was
performed by picking the median values among every five consecutive frames.
The moving median operation was expected to remove powder particles, oxidation
flashes, and Johnson noise. Equation (22.8) details the moving median operation.
The xi, j, t is the pixel value at the (i, j) position in an image acquired at time t.
mxi, j, t is the median value gathered across pixels in the same position across five
consecutive time steps. This median data was used for further processing.

mxi,j,t = Median
(
xi,j,t−5, xi,j,t

)
(22.8)

2. Gaussian blur and Laplacian transform
A function to perform the Gaussian blur and the Laplace transform (see Eq.
(22.9)) was implemented on data outputted in the previous step. The Gaussian
blur minimizes spatial noise across the pixels of the image. This operation is
necessary since the second derivative operations are very sensitive to noise.
Typically these operations are implemented through convolution operations with
pre-calculated kernels. The output image is shown in Fig. 22.13. This data from
here on is referred to as LoG (Laplacian of Gaussian).

A more localized search was then performed by limiting the search domain to
the region inside the deposit boundary. A search for edges with a lower threshold
yielded the melt pool boundary solidified region. The processed image with melt
pool (red), just solidified region (yellow), and the deposit boundary (blue) shown
in Fig. 22.15.

Fig. 22.12 False color image post moving median operation

Fig. 22.13 Spatial variation in double discrete deviate of the thermal data from Fig. 22.12
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L (x, y) = ∂
2I (x, y)

∂x2
+ ∂

2I (x, y)

∂y2
(22.9)

3. Edge detection
The LoG data was analyzed for identifying edges, and an appropriate threshold
value was set to eliminate noise and capture only the most significant changes.
The presence of an edge is realized as a zero crossing in the LoG data. A change
in sign across consecutive pixels was used to identify these zero crossings. The
edges that were identified are shown as a binary image (see Fig. 22.14). The site
of an edge was set as 1 and the rest were set to zero. The identified boundaries
were found to be those of the deposit and the powder feed tube. While the deposit
boundaries were easily identified, the melt pool boundaries were not captured. The
transitions corresponding to the melt pool boundary were not substantial enough
to meet the set threshold. Thereby the melt pool boundary was not captured at
this stage.

Implementing the above steps of image processing led to the generation of data
which are visualized in Fig. 22.16 for better understanding. Figure 22.16 shows the
first layer of the deposition before the steady state was obtained. As discussed in
the previous section, the variation in the just solidified region is substantial before
steady state was achieved. This expected due to the intervention of the control
systems. Figure 22.17 show snapshots from during deposition after steady state was
achieved. The size of the melt pool and the just solidified region remained almost
constant post steady state.

Fig. 22.14 The edges of the deposit and powder feed tube (red)

Fig. 22.15 The melt pool (red) and just solidified region (yellow) boundary of the deposit (sky
blue)
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Fig. 22.16 The first layer of deposition, melt pool (white), just solidified region (yellow), and
deposit boundary (red), left to right progression in the deposition

Fig. 22.17 Melt pool (white), just solidified region (yellow), and deposit boundary (red) after a
steady state was achieved by the control system, left to right progression of deposition

Fig. 22.18 Illustration of
thin wall substrates used for
line scan depositions

Substrate 

Height of 
thin wall 

Length of thin wall 

22.3.1 Sensitivity and Repeatability

In order to assess the sensitivity of this technique, depositions on substrates machined
to the shape of thin wall structures were analyzed. These substrates were machined to
have different lengths and heights of the thin wall structure. The shape of these thin
wall substrates is defined in Fig. 22.18. These experiments involved four layers of an
end to end deposition on each of the substrates. These depositions were monitored
using the IR camera to capture the thermal history. To simplify the complexity of
the process, these depositions were carried out without the control of the feedback
systems.

The analysis of IR data from these deposits indicated a definite impact of substrate
length and thin wall height. This influence was theorized to be a consequence of
different degrees of heat retention. The difference in heat retention was attributed
to the difference in the size of these thin walls and the resulting differences in
conduction losses. Larger sizes of high temperature regions were seen on substrates
with a smaller length. Due to the small track length, heat retention was observed to
be prominent. On the other hand, the deposits with low thin wall heights showed very
small sizes of melt pool and just solidified region. The close proximity of the melt
pool to the substrate due to the small height of the thin wall leads to low levels of heat
retention and in extension small sizes of melt pool and just solidified regions. The
analysis of thermal data from deposits on substrates with taller thin walls was also in
agreement with this conclusion. Due to the large thin wall heights and distance from
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Fig. 22.19 Variation in areas of just solidified regions and melt pool on a thin wall substrate

the substrate, the heat retention was observed to be significant. Consequently, the
total area of the melt pool and just solidified region were observed to be substantially
higher. These subtle differences in sizes of melt pool were registered and identified
using this monitoring methodology. Analysis of replications of these depositions
yielded similar conclusions reliably [38].

The rise and drops in the total area of the high temperature region seen in Fig.
22.8 were attributed to the rise in heat retention. These fluctuations are suspected to
be the consequences of thin wall geometry. At the edges of the thin wall, the total
area of the melt pool was observed to increase. This phenomenon was observed to
be more prominent with increasing heat retention. At the edges, due to the localized
heating of BPD, an increase in the size of the melt pool resulted in a corresponding
decrease in the size of the just solidified region. However, the overall high temperature
region was seen to increase. Previously, this observation was not apparent from only
monitoring the high temperature region from the temperature data. Identification of
melt pool data is necessary to understand the complete picture during BPD. The
variation in the area of the regions of interest is shown in Fig. 22.19.

22.4 Conclusions

Acquisition of thermal history through an IR camera was identified to be a viable
method for monitoring blown powder deposition process. A methodology was laid
out for qualitative analysis of the thermographic data acquired from the IR camera.
Monitoring the total area of the material meeting a temperature based criterion was
found to be instrumental in assessing the influence of closed loop feedback systems.
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An image processing methodology based on edge detection was developed to
analyze the IR data. The difference in emissivity values of the solid and liquid
phases of metal resulted in sharp changes in the IR data. Edge detection techniques
were used to successfully identify these phase transitions. Identification of these
transitions led to successful identification of the melt pool.
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23.1 Introduction

Fault detection and isolation (FDI) typically uses measured data and machine vision
in conjunction with identification, optimization, or soft computing algorithms [1–3].
There are two broad types of faults: single faults and gradual faults. Single faults
are typically preceded by a sharp change in the signal. Gradual faults lead to a
slow change in the signal which can be approximated with a linear variation. These
signals can be viewed as images acquired by machine vision. For example, stereo
vision systems [4] and noise removal systems [5] play an important role in structural
and condition monitoring of systems. Mohan and Poobal [6] provide a recent review
of crack detection in image processing. Such approaches typically use images along
with optimization methods and pattern recognition tools to isolate the system fault.

The gas turbine is a machine which is widely used for power generation. It is used
for aircraft engines, and therefore automated processes which detect and isolate faults
in this machine are of great interest. Algorithms developed for FDI of such machines
based on image processing filters are discussed in this chapter. These algorithms
have applicability to all machines where sensor data is available in the form of 1D
images.

Typical signals used for gas turbine machine diagnostics are exhaust gas
temperature (EGT), fuel flow (WF), high rotor speed (N1), and low rotor speed (N2).
These four basic sensors are present in almost all jet engines. The signals considered
for gas turbine machine diagnostics are called “measurement deltas” which are
deviations between sensor measurements of a “damaged” engine compared to a
“good” engine. For an ideal undamaged engine, the measurement deltas are zero.
The measurement deltas obtained from operational machines are typically non-zero
and are also contaminated with noise. Fault detection and isolation (FDI) algorithms
are used to detect and isolate the machine fault. Here “detection” is the process of
identifying if a fault is present or not. Errors in detection can lead to false alarms.
Also, “isolation” is the process of identifying the type of fault. Typically, fingerprint
charts are used for fault isolation and these relate the measurement deltas produced to
a given change in the machine state. For example, Table 23.1 presents the fingerprint
chart for a 2% deterioration in the efficiency of the engine modules [7].

Fingerprint charts represent a linearized model evaluated at a selected engine
operating point. Such tables are obtained from thermodynamics and are available
with aircraft engine manufacturers.

Table 23.1 Fingerprints for selected gas turbine machine faults for η = −2%

Module faults/measurement deltas 	EGT (C) 	WF% 	N2% 	N1%
High pressure compressor (HPC) 13.60 1.60 −0.11 0.10
High pressure turbine (HPT) 21.77 2.58 −1.13 0.15
Low pressure compressor (LPC) 9.09 1.32 0.57 0.28
Low pressure turbine (LPT) 2.38 −1.92 1.27 −1.96
Fan −7.72 −1.40 −0.59 1.35
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Fig. 23.1 Schematic representation of jet engine and its four key measurements

Figure 23.1 shows the engine modules and basic measurements for a typical
turbofan engine. At the most basic level, fault isolation would indicate if the fault is
present in the fan, high pressure compressor, low pressure compressor, high pressure
turbine, or low pressure turbine module. These are coupled faults within the major
modules of the engine. Other system faults such as handling and ECS (environment
control system) bleed leaks and failures, variable stator vane malfunctions, TCC
(turbine case cooling) malfunctions as well as certain instrumentation faults can also
be considered as single faults [2]. We will only consider module faults to create the
ideal signal for damaged engine in this study. Such faults can emanate from different
physical processes but the signature is shown through the sensor measurement deltas.
Once the fault is isolated to the module level, the maintenance engineer can then
focus only on these modules for repair work.

The accuracy of FDI algorithms improves if noise is removed from the gas path
measurement signals while preserving features indicating a single fault such as
sharp trend shifts [8, 9]. Typical linear filters such as the moving average filter and
exponential average filter can perform as good smoothers for gas turbine signals.
The moving average filter is a simple FIR (Finite Impulse Response) filter with equal
weights and the exponential average is an IIR (Infinite Impulse Response) filter.
While linear filters can remove noise, they smooth out the sharp trend shifts which
can indicate a single fault event. Thus, machine signals are more akin to images than
typical 1D signals as there is a need for edge preservation and smoothing filters.

Therefore, nonlinear filters originating from image processing area such as the
median filter were proposed for noise removal from gas turbine signals [8]. Other
computational architectures for noise removal from jet engine signals include the
auto-associative neural network [10], radial basis neural networks [9], myriad filter
[11], and recursive median (RM) filter [12]. The RM filter is an efficient alternative
to the median filter and converges rapidly to the root signal when compared to the
simple median (SM) filter. The SM filter can take many passes before converging to
the root signal. However, the RM filter can lead to a phenomenon called “streaking,”
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which involves creation of artificial step-like artifacts in the signal. This problem
can be removed by introducing weights, resulting in the weighted recursive median
(WRM) filter.

The WRM filters have integer weights and the optimal calculation of these weights
for a given application is an important problem in filter design. The design space
of the weights of WRM filters is multimodal (shows the presence of several local
minima) and an exhaustive search of the design space can be used to find the weights
[7]. However, this exhaustive search approach is very computationally intensive and
there is a need for more efficient algorithms for solving this filter weight optimization
problem. In this chapter, ACO is used to design a WRM filter for use as a data
smoothing preprocessor in gas turbine diagnostics. A schematic of this procedure
is shown in Fig. 23.2. We focus on the “noise reduction” aspect of gas turbine
diagnostics shown in Fig. 23.2.

Few researchers have addressed the problem of optimization of median filter
weights. Algorithms for calculating the integer weights of weighted median filters
were proposed [13]. Both recursive and non-recursive filters were considered but
the study focused on center weights. A numerical approach for the optimization of
recursive median filters was presented in Arce and Paredes [14]. Uday and Ganguli
[7] searched over the low integer space (1, 2, and 3) to find the optimal weights. They
found that higher integer weights led to duplication in the filter and the low integer
space was sufficient for the given problem.

Filter design spaces are often multimodal, implying that there can be more than
one minimum point. Therefore, use of gradient-based numerical optimization can
lead to a local minimum point. To address this issue, the application of global
optimization methods in filter design has grown substantially. Particle swarm
optimization was applied to solve the parameter estimation problem of nonlinear
dynamic rational filters [15]. Genetic algorithms were used for optimizing stack
filters using a root mean square error norm [16]. Ant colony optimization was used
for the design of IIR filters [17]. Since the error surface of IIR filters is typically
multimodal, global optimization methods such as ACO are amenable for their design.
ACO is a relatively new approach for solving combinatorial optimization problems.
The main characteristics of ACO are positive feedback, distributed computation, and
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Fig. 23.2 Schematic representation of gas turbine diagnostics system
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the use of a constructive greedy heuristic [18]. Note that a heuristic method is an
approach to solving problems that employs a practical sequence of steps which is not
guaranteed to be optimal, but is sufficient for obtaining useful results for applications.
Heuristics can be called rules of thumb or educated guesses. Since ACO is a heuristic
method, it gives satisfactory solutions for many difficult optimization problems, but
these solutions may not prove to be optimal in the mathematical sense. Furthermore,
the convergence of heuristic methods cannot be guaranteed.

In this chapter, we address the problem of finding the integer weights of WRM
filters using ACO to design a useful image processing filter. The algorithm is
demonstrated for signals simulating jet engine single (abrupt) and gradual faults.
Some image processing filters are discussed next. These filters are widely used in
2D image processing and can be easily used for 1D image processing. This chapter
is based on an earlier work by Raikar and Ganguli [19].

23.2 Image Processing Median Filters

The mean and the median represent simple measures of central tendency. The mean
of a set of number is an FIR filter with uniform weights. The median filters are based
on the median operation, typically performed over an odd sample of numbers. The
SM (simple median) filter with length of window of N = 2n + 1 can be represented
as [20]:

yk = median (xk−n, xk−n+1, . . . , xk, . . . , xk+n−1, xk+n) (23.1)

Here xk and yk are the kth sample of the input and output sequences,
respectively, and n represents integers ensuring that the window length N is odd
for easy calculation of the median. The calculation of the median needs that
these numbers be sorted from lowest to highest and then the central number
be selected as the median output. The SM filter needs a large number of
iterations to converge to a desired output. A 5-point SM filter can be written as
yk = median(xk − 2, xk − 1, xk, xk + 1, xk + 2) since N = 5 ⇒ n = 2. The 5-point SM
filter has a window length of 5 and a two-point time lag as it needs measurements
at the time points k + 1 and k + 2 to predict the output at k. Since most current jet
engines have many data points available during each flight, a two-point time lag for
image processing is acceptable.

Since median filters took many iterations to converge, researchers came up with
the recursive median filter which has memory. A recursive median (RM) filter for
window length N = 2n + 1 can be represented as:

yk = median (yk−n, yk−n+1, . . . , xk, . . . , xk+n−1, xk+n) (23.2)

RM filters converge fast compared to SM filters. A 5-point RM filter can be written
asyk = median(yk − 2, yk − 1, xk, xk + 1, xk + 2), where the use of previously filtered
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output values yk − 1 and yk − 2 point to the recursive nature of this filter. Again,
this filter has a two-point time delay. However, RM filters suffer from streaking or
introduction of step-like artifacts in the signal.

The WRM filter is a modified version of RM filter, where integer weights are
assigned to each data point in the filter window. The output of a weighted recursive
median filter with window length N = 2n + 1 is given by:

yk =median (w−n ◦ yk−n,w−n+1 ◦ yk−n+1, . . . , w0 ◦ xk, . . . ,
wn−1 ◦ xk+n−1, wn ◦ xk+n)

(23.3)

Here ◦ stands for duplication and w are the integer weights. Duplication means
that a particular sample xk is repeated wk times before taking the median of
the array. For example, (4 ◦ x1) is the same as (x1 x2 x3 x4), i.e., the value x1
is duplicated four times. As an example, consider a 5-point WRM filter given
as yk = median(2 ◦ yk − 2, yk − 1, 3 ◦ xk, xk + 1, 2 ◦ xk + 2). This is identical to
yk =median(yk − 2, yk − 2, yk − 1, xk, xk, xk, xk + 1, xk + 2, xk + 2). Again, this filter will
have a two-point time delay. The filter in Eq. 23.3 has weight set (w−n, w−n + 1, . . . ,
w0, . . . , wn − 1, wn), where there are N = 2n + 1 weights. For a 5-point filter, the
weight set is (w−2, w−1, w0, w1, w2). The weights often have considerable influence
on the filter performance.

23.3 Gas Path Measurement Images

A turbofan jet engine in general consists of five modules: fan (FAN), low pressure
compressor (LPC), high pressure compressor (HPC), high pressure turbine (HPT),
and low pressure turbine (LPT), as shown in Fig. 23.1. Air sucked into the engine
is compressed in the FAN, LPC, and HPC modules; combusted in the burner; and
then expanded through the HPT and LPT modules to produce power. This power is
the main deliverable of the gas turbine machine and needs to be supplied without
problems. Sensors are placed on this machine to observe its state at any given time.
The four sensors N1, N2, WF, and EGT represent low rotor speed, high rotor speed,
fuel flow, and exhaust gas temperature, respectively. These measurements provide
information about the condition of these modules and are used for engine condition
monitoring. In this chapter, an ideal root signal 	EGT with implanted HPC and/or
HPT faults is used for testing the filters. Similarly, root signals for 	N1, 	N2, and
	WF can be derived. Here the delta “	” refers to the deviation from the baseline
“good” engine.

Test signals for faults in jet engines were used to demonstrate the optimal WRM
filter [7]. For a new undamaged engine, the measurement delta is zero. For a typical
engine which goes into service, the measurement deltas slowly increase with time
due to deterioration as the number of flights increase. While deterioration increases
gradually as flight hours and cycles accumulate, single faults lead to sudden, abrupt,
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or step changes in the signal. For this study, a step change in measurement deltas of
2% or more is regarded as a large enough trend to be interpreted as a single fault event
[2]. Gaussian noise is added to the simulated measurement deltas using the typical
standard deviations for 	EGT (deviation in exhaust gas temperature from a good
baseline engine) as 4.23 ◦C. These values are obtained by a study of typical engine
measurement deltas. Measurement deltas are created using: z = z0 + θ , where is
the noise θ and z0 is the baseline measurement delta without any fault (ideal signal).
Thus, z is the simulated noisy signal. Therefore, a filter ϕ is required to eliminate
noise from data and return a filtered signal ẑ for accurate condition monitoring:
ẑ = φ(z) = φ (z0 + θ).

Three different types of signals are considered for designing the WRM filter
using ACO. Though these signals are outlined for gas turbine diagnostics, they are
applicable for any general machine FDI problem as the abrupt fault and long-term
deterioration are characteristics of all signals used for condition monitoring. These
signals are:

1. Step signal (abrupt fault or single fault)
2. Ramp signal (gradual fault)
3. Combination signal (comprising of both abrupt and gradual fault)

Each of the signals contains 200 data points which represent a time series of
engine data available for signal processing. The data comes in at each epoch k (Fig.
23.3) and the filtered value is calculated using the N-point WRM filter. Figure 23.3
therefore represents an image for a single fault.

The filter of window length N processes the data as it comes into the information
processing system with a time lag of n (Eq. 23.3). We use a 5-point filter in this
chapter. So the WRM filter works on a stream of 200 data points (x1, x2, x3, . . . ,
x198, x199, x200) to yield filter output (y1, y2, y3, . . . , y198, y199, y200) as given below:

Fig. 23.3 Image representing
a single fault and its repair
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k = 1, y1 = x1

k = 2, y2 = x2

k = 3, y3 = median (w−2 ◦ y1, w−1 ◦ y2, w0 ◦ x3, w1 ◦ x4, w2 ◦ x5)

k = 4, y4 = median (w−2 ◦ y2, w−1 ◦ y3, w0 ◦ x4, w1 ◦ x5, w2 ◦ x6)
...

k = 100, y100 = median (w−2 ◦ y98, w−1 ◦ y99, w0 ◦ x100, w1 ◦ x101, w2 ◦ x102)
...

k = 198, y198 = median (w−2 ◦ y196, w−1 ◦ y197, w0 ◦ x198, w1 ◦ x199, w2 ◦ x200)

k = 199, y199 = x199

k = 200, y200 = x200

(23.4)

We see that at k = 3, to get y3 requires x4 and x5. So the filter has a two-point
time delay. Also, for the last two points in the time series we use the input value of
the data. However, in normal operation, the data points continue to stream in as the
aircraft engine continues to accrue flights. The data point to be processed for fault
detection is thus available with a two-point time delay. This data point can be used
by trend detection algorithms which are typically based on derivatives [12]. So fault
detection occurs with only a two-point time delay for the 5-point filter.

The ideal signal in Fig. 23.3 represents a single fault that may be due to any
damage. Data point k = 60 represents the onset of this fault. The damage caused is
identified as a 2% fall in HPC efficiency and the HPC module is repaired at point
k = 140. This signal is created based on the fingerprint chart given in Table 23.1. In
Fig. 23.4, the development of the HPT fault is illustrated by use of the ramp signal
and the image corresponds to a gradual fault.

This fault differs from the HPC fault since it does not occur suddenly as it develops
due to engine deterioration. Again, the maximum value of EGT here corresponds to
a 2% fall in HPT efficiency. Here, the growth is gradual and is approximated by a

Fig. 23.4 Image representing
a gradual fault followed by its
repair
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linear function from points k = 40–120. From k = 120 the HPT fault remains steady
and is finally repaired at k = 140. The step and ramp signals represent the two types
of faults considered individually.

Now, Fig. 23.5 shows a combination signal, wherein both types of faults may occur
one after the other. This is a more practical case since any jet engine is susceptible
to both these faults.

A signal to noise ratio of 1.5 is used for the numerical results. A 5-point WRM
filter is considered and this filter processes the 200 point measurement delta signal
with a window of 5 points and a time delay of two points.

23.3.1 Objective Function

To get a quantitative idea of noise reduction, the mean absolute error (MAE) is
considered for each signal (N = 200) and M = 1000 random realizations are used
to get an estimate of the error. These random realizations can be considered to be
simulated signals of noisy data. These random signals are z= z0+ θ and are obtained
by adding a different noisy sample to the ideal measurement for each case. These
noisy signals are generated via Matlab which is also used for all the results in this
chapter. We illustrate the ACO algorithm for a filter of window length equal to five.
For finding the optimum weights of this filter, we have to minimize the objective
function:

f (w) = f (w−2, w−1, w0, w1, w2) = 1

M

M∑

i=1

1

N

N∑

j=1

∣∣∣ẑj − z0
j

∣∣∣ (23.5)

Since the weights w = (w−2, w−1, w0, w1, w2) are integer design variables, the
problem is a combinatorial optimization problem. Also, in Eq. (23.5) ẑ is the WRM

Fig. 23.5 Image representing
single fault and its repair
followed by gradual fault and
its repair
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filtered signal and z0 is the ideal or root signal. By minimizing the function in Eq.
(23.5), we want to identify the weights which minimize the difference between the
ideal signal and the noisy signal over a large number of noisy points. Note that the
objective function with the 1000 random samples is only created to find the optimal
filter weights. Once the filter weights are found, the filter can be tested and used on
new random samples.

23.4 Ant Colony Optimization

ACO is a biologically inspired stochastic method which is highly appropriate for
combinatorial optimization problems [21]. Such problems have a finite number of
solutions with discrete design variables. Ants are able to find the shortest paths
needed to travel from their nest to a food source by using stigmergy, which is a
form of indirect communication conducted by changing the environment. Ants use
sign-based stigmergy where an individual ant leaves markers on the path. While
these markers do not solve the problem by themselves, they modify the behavior of
other ants in a way that helps them in problem solution.

The motivation for the ACO algorithm came from some experiments performed
on Argentine ants which unraveled the science behind their optimal path finding
capabilities. An innovative experiment was performed using a double bridge between
an ant nest and a food source. Here each bridge is of the same length as shown in
Fig. 23.6.

If the bridges are of identical length, after some time, the ants start to take one
of the bridges to the food source. If the experiment is repeated several times, it is
found that the probability of selection of any one bridge is about 0.5. The biological
explanation of the ant behavior is as follows. Once the ants leave the nest, they will
move randomly around their starting location until some find the bridge. Some ants
will randomly start on bridge A while others will randomly start on bridge B. Now,
ants deposit a chemical called pheromone when they travel along a path. They prefer
to follow a path with higher pheromone deposits. Since, there is no pheromone

Ant Nest
Food

A

B

Fig. 23.6 Two-bridge experiment with ants for bridges of equal length
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initially on either bridge A or B, the probability of ants taking either bridge is equal
at 0.5. Once the ants discover the food source, they will pick up some food and
return back to the nest. This process will lead to ants traveling on both bridges until
through random chance; a few more ants take, say, bridge A. After this point, the
pheromone trail on bridge A will strengthen, making it more attractive for the ants.
Another important point to appreciate is that pheromone keeps evaporating and so
the pheromone trail on bridge B will weaken. After some time, almost all ants will
take bridge A.

Of course, taking only one bridge to the food source when two bridges of equal
length are available is not very smart from the optimization viewpoint, though it may
have other reasons based on sociology. However, ants are prisoners of their swarm
intelligence which becomes very useful in the situation where two paths of different
lengths are present, as shown for the two bridges in Fig. 23.7.

In this case, the ants again start out initially in a random manner and take both
the bridges with equal probability assuming that the lengths are too large to be
estimated by their vision. The ants which choose the shorter bridge B reach the
food source first. When the ant wants to return to its nest, it comes to point 2 and
finds that bridge B has a higher level of pheromone because of less evaporation. The
probability of choosing bridge B therefore becomes more. As this process continues,
the positive feedback effect means that more pheromone is put on bridge B and
less evaporation of pheromone takes place on bridge B. A positive feedback loop is
created and after some time, most ants will travel by bridge B to the food source. We
can see that ants are capable of a high degree of self-organization using the stigmergy
principle. By modifying the environment using pheromones, they can collectively
perform complex functions despite their poor vision. In fact, some species of ants
are completely blind but are still able to find the shortest path.

Ant Nest
Food

A

B

2

Fig. 23.7 Two-bridge experiment with ants for bridges of unequal length
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The behavior of ants could be used for optimization algorithms which involve
finding good paths through graphs [18, 22]. In ACO, several generations of artificial
ants search for good solutions. Note that “good” may not be “optimal” in a
mathematical sense but will be a practical and useful outcome. We use the word
“ant” to refer to the “artificial ant” in the ACO algorithm in further discussions.
Every ant of a generation constructs a solution in a step by step manner while going
through several probabilistic decisions. In general, ants that find a good solution mark
their paths through the decision space by putting some amount of pheromone on the
edges of the path. The ants of the next generation are attracted by the pheromone
trail left behind by the earlier ants, so they search the solution space near good
solutions. In addition to the pheromone values, the ants are also guided by some
problem-specific heuristics (a rule of thumb specific to the problem being solved).
The ACO amalgamates a priori information about a promising solution with a
posteriori information about previously obtained good solutions.

ACO was used to solve combinatorial optimization problems [21, 23]. An
assignment problem is a combinatorial optimization problem where a set of items
or objects is assigned to a set of resources or locations. Such assignments can be
represented as a mapping from a set I to a set J. The objective function to be
minimized is a function of the assignment done. Consider the pair (i, j) where i is an
item and j is a resource. The pheromone trail τ ij is the desirability of assigning i to j.

We can see that the WRM filter optimization is an assignment problem, wherein
integer weights are assigned to a particular data point of a WRM filter with the
objective of minimizing the mean absolute error over M samples. We seek to find the
weight vector w which minimizes Eq. 23.5. Consider the 5-point WRM filter with
weightsw = (w−2, w−1, w0, w1, w2). We want to assign weights from set of integers
(1, 2, 3, 4) to minimize the error in Eq. 23.5.

23.4.1 Ant Colony Algorithm

This section describes the various components of ACO.
Set of initial solutions: This set is created using solutions that are not repeated

and no two solutions in this set can be converted into each other by swapping of
elements.

Pheromone trail matrix: A key feature of ACO is the pheromone trail
management. Along with the objective function, pheromone trail values are applied
to construct new solutions from the existing ones. Pheromone trail values measure
the desirability of having an element in the solution. These are maintained in a
pheromone matrix T with elements τ ij.
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23.4.2 Filter Weight Optimization

This section discusses about the application of ACO to WRM filter optimization
problem.

Initialization of solution: Initially, every ant k is allotted a randomly selected
solution wk such that no two ants have the same initial solution. A total of m ants
are used. Each initial ant solution is improved using a local search procedure and the
best solution is labelled as w∗ .

Pheromone trail initialization: Pheromone matrix component τ ij measures the
desirability of allotting weight wi to a jth data point in the N-point filter. In the
weight assignment problem, T matrix size is N × Max, where N is the number of
points in the WRM filter and Max is the maximum positive integral value that a
weight can be assigned. Here Max = 4 and N = 5 are considered. The pheromone
matrix T is created by setting all the pheromone trails τ ij to the same initial value
τ 0. The pheromone trails determine the quality of the solution obtained, hence τ 0
must take a value that depends on value of the solution. Therefore, we chose to set
τ 0 = Q/f (w∗), where w∗ represents the best initial solution and Q is a constant to be
found from numerical experiments.

Solution construction: Pheromone trail based modification is applied by every
ant to its own solution wk. It consists of the following steps. Any arbitrary filter data
point r of the N-point filter is selected and then a second point s is chosen such that
s #= r and the weights wr and ws are swapped in the current solution w. The second
index s is selected such that the value of τrws + τswr is maximum. By exploiting the
pheromone trail, a new solution ŵk is obtained for each ant, which gives the most
desirable path with the highest pheromone value.

Local search modification: Local search involves exploring of the neighborhood
of current solution ŵk . It involves changing weights wr while keeping the other
weights constant to produce ŵk . The improvement is recorded as	

(
ŵk, r, s

)
which

is the difference in objective function f (w) when weight wr is changed with s, where
s can be any integral weight excluding wr. This procedure is repeated for all the data
points of the filter. Using the objective function as a measure, we find the optimum
solution w̃k . If no improvement is found, then no change is made to the earlier
solution ŵk obtained by the ants.

Pheromone trail modification: There are several different pheromone update rules.
For the current problem, we use the ant colony system (ACS) pheromone update.
Each ant applies this update:

τij = (1− α) τij + ατ 0 (23.6)

Here, α is a parameter that controls pheromone evaporation and is named the
pheromone evaporation rate (0 < α < 1).

Terminating condition: The termination condition is reached when a predefined
number of ant generations (niter) finish completing their search in the solution space.

The different steps of algorithm are enumerated as pseudocode below.
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Generate m ants with each ant being given different
weight permutation wk.

/∗Initialization∗/
Generate all possible different non-arranged

permutations and randomly assign them to m ants.
Improve the weights w1, w2, w3,· · · wm by the local

search procedure. Let w∗ be the best solution.
Initialize the pheromone matrix T
/∗ main loop ∗/
For i = 1 to niter

/∗ solution construction ∗/
For each permutation wk(i) (1 ≤ k ≤ m) do
Apply r pheromone trail swaps to wk(i) to obtain ŵk(i)
Apply the local search procedure to ŵk(i) to obtain

w̃k(i)

End For
/∗ pheromone trail updating ∗/
Update the pheromone trail matrix
End for if /∗ terminating condition ∗/

The parameters Q, niter, m, and α are obtained from numerical experiments.

23.5 Numerical Experiments

The ACO was tested for different parameter setting of Q, number of iterations niter,
number of ants m, and pheromone evaporation rate α for 100 noisy ramp input
signals. The number of ants m was varied from 2 to 10 while number of iterations
niter was varied from 1 to 10. The evaporation rate was varied from 0.1 to 0.9 and a
rate of 0.4 was found to be good.

The number of ants is the main parameter for a good quality solution. The
solutions improve with increasing number of ants as seen from Table 23.2 for one
case with three iterations. The optimum number of ants is 8–10. Therefore, ten ants
are selected for finding out best value of number of iterations.

The optimum number of iterations was found to be three on the basis of solution
quality and simulation time as seen from Table 23.3. The final parameter settings are
selected to be: α = 0.4, Q= 0.1, niter = 3, and m= 10. Numerical experimentation
shows that the parameters obtained are not dependent on the type of noisy signal
used. The ACO algorithm is finally applied to the three different types of noisy test
signals.

The optimal filter weights obtained using ACO are shown in Table 23.4. The
performance of WRM filter is compared with the performance of SM and RM filters
in Table 23.5. These comparisons are for a different set of 1000 noisy data points
compared to those used for finding the filter optimal weights.
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Table 23.2 Change in
objective function with
number of ants (niter = 3)

No. of ants MAE value Best weight
1 0.3209 [1 4 3 1 3]
2 0.2899 [3 3 2 2 4]
3 0.3206 [3 1 3 4 1]
4 0.2854 [3 1 2 1 3]
5 0.2854 [4 1 2 1 4]
6 0.2854 [3 1 2 1 3]
7 0.3206 [3 1 3 4 1]
8 0.2817 [4 1 2 2 3]
9 0.2854 [4 1 2 1 4]
10 0.2771 [4 1 2 2 3]

Table 23.3 Change in
objective function with
number of iterations (m = 10)

Iteration MAE value Weight
2 0.2795 [3 1 2 1 3]
3 0.2771 [4 1 2 2 3]
4 0.2771 [4 1 2 2 3]
5 0.2795 [3 1 2 1 3]

Table 23.4 Optimal WRM
filter weights

Signal type w−2 w−1 w0 w1 w2

Step 4 2 3 1 4
Ramp 4 1 2 2 3
Combination 3 1 2 1 3

Table 23.5 Mean absolute
error for the filters

Signal type SM filter RM filter WRM filter
Step signal 0.3638 0.3031 0.2426
Ramp signal 0.3856 0.3739 0.2773
Combination signal 0.3999 0.3930 0.3027

To quantify the advantage of using the optimal WRM filter for noisy data, we
define a noise reduction measure as follows:

ρ = 100
MAEnoisy −MAEfiltered

MAEnoisy (23.7)

Table 23.5 shows the improvement shown by the WRM filters. The WRM filter
with weights given in Table 23.4 provides a noise reduction of about 52–64%. In
contrast, the RM filter yields noise reduction of 41–55% and the SM filter shows a
noise reduction of only 40–46%. Note that the RM filter could be considered as a
WRM filter with unit weights. The improvement between SM and RM filter results
is due to the introduction of recursion in the RM filter. The improvement between the
RM and WRM results takes place because of optimal weights obtained using ACO.
The values of noise reduction in Table 23.6 clearly justify the improved performance
of WRM filters over SM and RM filters as illustrated by the simulated signals from
gas turbine diagnostics.
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Table 23.6 Noise reduction for simple median, recursive median, and ant colony designed
weighted recursive median filters

Signal type ρSM ρRM ρWRM

Step signal 45.87 54.90 63.90
Ramp signal 42.49 44.23 55.13
Combination signal 40.04 41.07 51.94

The WRM filter provides a noise reduction of about 52–64%. In particular,
compared to the noisy signal, the noise reduction is 64%, 55%, and 52% for the
step signal, ramp signal, and the combination signal, respectively. Therefore, ACO
represents an effective approach for the development of WRM filters.

23.6 Conclusions

Removing noise from gas turbine measurement signals before subjecting them to
fault detection and isolation algorithms is an important component of machine
diagnostics. Nonlinear filters such as the WRM filter are attractive for these problems
as they do not smooth out the step changes in signals which typically indicate the
onset of a single fault. However, filters such as the WRM filter proposed for gas
turbine machine diagnostics need to be optimized for the specific application.

The problem of finding optimal integer weights of WRM filters using ACO is
addressed in this chapter. An analogy between the WRM filter weight optimization
problem and the quadratic assignment problem is discovered. Images simulating
abrupt and gradual faults are contaminated with noise and then used to find the
WRM filter weights which minimize the noise. Numerical experiments are used to
find the best parameters required for the ACO application. The WRM filters presented
in this show noise reductions of 52–64% relative to the noisy signal compared to 41–
55% for the RM filter, which uses unit weights. For the step, ramp, and combination
images considered, noise reduction gains of about 9, 11, and 10% are obtained
through filter optimization due to the use of weights obtained by ACO.

Acknowledgement The author thanks Mr. Chintan Raikar, Undergraduate Student from IIT
Mumbai for running the simulations in this chapter.
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SWNT Single-walled nanotube
VNA Vector network analyzer

24.1 Introduction

24.1.1 Context

To drive the progress of the miniaturization of electronic circuits, new metrological
issues related to the dimensional and electrical characterization of nanoelectronic
devices must be addressed [1]. In addition, the electrical characterization of high-
impedance 1D or 2D based nanodevices in the microwave regime is still challenging
[2]. A typical high-frequency (HF) device characterization is built up with a
vector network analyzer, a probe station equipped with a pair of microwave GSG
probes aligned manually through a microscope or a camera system onto calibration
substrates and test devices [3, 4]. Conventional HF test structures require probing
pads around 50 × 50 μm2 to accommodate the probe tip geometry (center-to-
center pitch of 100 μm, contact area of 20 × 20 μm2). The extrinsic parasitic
capacitance associated with the pad in the range of 50 fF is therefore not compatible
to address the metrology of nanodevices. Furthermore, actual visualization and
displacement/positioning techniques are not accurate enough to ensure a repeatable
contact between the probe tips and the pads at the micro- and nanoscale.

Intensive research has been described in the literature to address RF metrology at
the nanoscale. In 2005, the first measurements of the high-frequency conductance of
a metallic single-walled nanotube (SWNT) with resistance below 200 k� inserted
in a coplanar waveguide (CPW) transmission line were performed up to 10 GHz [5].
In 2008, an on-wafer technique and calibration method are developed for broadband
electrical characterization of GaN nanowires up to 40 GHz [6]. In 2010, to improve
the vector network analyzer (VNA) sensitivity, an individual SWNT is inserted in a
specific high impedance Wheatstone bridge helps to reduce the impedance mismatch
between the VNA and the high-impedance nanodevice [7]. Other indirect measure-
ments including nanotube transistors acting as resonators [8] or microwave detectors
[9] have been proposed to demonstrate their GHz operation. Despite these pioneering
works, in the era of shrinking GSG probing structures, a gap between commercially
available probes and those required to characterize nanodevices still remains.

The objective of this work is to develop a new generation of on-wafer
probing instrumentation dedicated to HF quantitative characterization of micro-
and nanodevices. At such scale, visualization, accuracy of alignment, positioning,
and repeatability require suited techniques. In the solution proposed, the probes are
mounted on nanopositioners, and the visualization is ensured by a scanning electron
microscopy (SEM) rather than optics. This method suffers from measurement
repeatability and accuracy issues. Consequently, we have developed a unique
instrument that is a compromise between conventional on-wafer probe station and
microscopy tools. We have fabricated microelectromechanical system (MEMS)
technology-based miniaturized microwave ground-signal-ground (GSG) probes
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[10]. In contrast to conventional macroscopic on-wafer probing structures, micromet-
ric CPW test structures have been designed and fabricated to accommodate the minia-
turized probes and to ensure quasi-transverse electromagnetic (quasi-TEM) mode
propagation to the nanoscale devices embedded in the test structures [11]. The probes
are mounted on nanopositioners, and imaging is ensured by an SEM. A detailed study
on the development of the nanorobotic on-wafer probe station is given in [12].

24.1.2 Short Description of the SEM

The SEM [13] (Fig. 24.1) consists of observing the topography of a surface (a
substrate). Its operation relies essentially on the detection of the secondary electrons
(1) emerging from the observed surface (2) under the impact of a primary electron
beam (3) which scans it. The images obtained from the substrate (Fig. 24.2) have a
separating power often less than 5 nm and a great depth of field.

Without going into details of the internal functioning of the SEM, the general idea
of this work consists of positioning a probe consisting of three aligned points on an
element (pattern) of the substrate (Fig. 24.2). It is therefore a system with four degrees
of freedom requiring the control of the displacements of three nanopositioners
SmarAct™ (Fig. 24.3) [14] in X, Y, and Z and the control of one nanopositioner
around an axis of rotation θ .

Sample
Holder

Rotany
Axis

(2)

(1) (3) (1)

Receiver Receiver

Electron
Beam

Fig. 24.1 Schematic layout of the SEM



754 A. Taleb et al.

Fig. 24.2 SEM image of the substrate

(a) (b)

(c) (d)
Fig. 24.3 (a) SEM image of the probe. (b) Probe nanopositioning platform. (c) Scanning electron
microscope Tescan Mira XMU. (d) SEM image of the measuring probe which is in contact with a
test structure
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24.1.3 Specifications

Our specifications are as follows:
First, we propose to model and control any linear nanopositioners. In this study,

we focus on three linear nanopositioners X, Y, and Z (Sect. 24.2).
Both linear nanopositioners X and Y can be controlled by taking into account a

minimum response time. The linear nanopositioner Z must be controlled without
overshooting the set point (in order to avoid any crashing of the probe tips on the
DUT).

Section 24.3 provides an approach for controlling the nanopositioner in θ in order
to align the probe on the image.

Finally, a simple approach for detecting points of interest (Harris method) allows
determining the set point value of each nanopositioner in X, Y, or Z (Sect. 24.4).

The overall process allows us to position the probe accurately at any point of the
substrate.

24.2 Modeling and Control of a Linear Nanopositioner Using
LabVIEW™

24.2.1 Central Idea of This Study

The main idea of this study is to fully master the nanomanipulator control chain from
two elementary blocks using LabVIEW™ (Fig. 24.4) [15, 16]:

– A set point or control block
– A block for acquiring the actual position of the nanopositioner

These two elements allow a real-time interaction with the nanopositioner
(Fig. 24.5).

So we can use a conventional control loop to control the nanomanipulator
(Fig. 24.6). A HIL (Hardware-In-the-Loop) test is thus carried out.

Fig. 24.4 Blocks used with LabVIEW™: (a) Set point block. (b) Position acquisition block

Fig. 24.5 Control of a
nanopositioner with
LabVIEW™
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Fig. 24.6 Control loop for the nanopositioner, where e(t) represents the required position of
the nanopositioner—it is the set point; s(t) is its measured/actual position; the PID controller
continuously applies a correction based on proportional, integral, and derivative terms from the
error value ε(t) which is the difference between the required position (the set point e(t)) and the
measured/actual position s(t)

Fig. 24.7 Open-loop transfer function of the nanopositioner, where E(s) is the Laplace transform
of the required (desired) position e(t); S(s) is the Laplace transform of the actual position s(t); T(s)
is the transfer function of the nanopositioner. T(s) represents the Laplace transform of the impulse
response of the nanopositioner

In order to obtain an accurate control of the nanomanipulator, we must identify
its transfer function. We considered that the system is linear. This assumption is not
contradicted by the experiments.

We propose to identify its linear transfer function using a (or some) basic
identification method(s).

24.2.2 Modeling

After testing two open-loop identification methods, we propose a more accurate
closed-loop identification technique.

24.2.2.1 Identification of the Open-Loop Transfer Function
of the Nanopositioner

First, let us try to identify the open-loop transfer function of the nanopositioner (Fig.
24.7).

For instance, the set point value is fixed at 1000 nm. Figure 24.8 shows the
required position (in red) and the actual position (in blue) of the nanopositioner with
respect to time. For a greater clarity of the curves, the X-axis is graduated in tenths
of a second

(
1 unit = 1

10 s
)
, which represents the sampling period of the measured

position.
The nanopositioner reacts globally as a pure integrator. This property allows us

to assume that the closed-loop permanent error (difference between the output and
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Fig. 24.8 Open-loop response with a set point of 1000 nm of the nanopositioner

Fig. 24.9 Closed-loop response of the nanopositioner for a set point of 1000 nm

the set point for a constant set point value when t →∞) is zero. This is confirmed
by the actual closed-loop response (Fig. 24.9) without PID controller (or with a
proportional controller with a gain factor equal to 1).

A proportional correction seems sufficient (Fig. 24.10).
The identification of the nanopositioner transfer function can be performed only

by the hypothesis of a mathematical expression.
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Fig. 24.10 A proportional correction of the nanopositioner

First hypothesis
If we consider that the nanopositioner behaves as a pure integrator, its transfer
function is as follows:

T (s) = K
s

(24.1)

From the identification, we obtain K = 1.05.
However, the closed-loop nanopositioner shows that for some values of Kc, there

is an overshoot of the set point value (e.g., Fig. 24.9).
Consequently, the first hypothesis must be rejected, in favor of a second-order

model at least.

Second hypothesis
The transfer function is as follows:

T (s) = K

s (1+ τs) (24.2)

The expression “(1 + τ s)” will have a preponderant role only when t → 0 and it
can be considered as a time delay (dead time τ ), using the Taylor series expansion:
e−τs ∼ 1

1+τs .
From the previous identification, τ = 1 unit= 100 ms. The transfer function thus

becomes

T (s) = 1.05

s (1+ s) (24.3)

However, the closed-loop responses of the model (Fig. 24.11) and the real system
(Fig. 24.9) are too distinct to consider the model to be correct.

We can conclude that the method used to identify the open-loop transfer function
is not accurate, given the sampling period of 100 ms. We have therefore chosen to
identify the parameters K and τ differently using an identification of the closed-loop
transfer function.
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Fig. 24.11 Closed-loop response of the model (Eq. 24.3) for a set point of 1000 nm

24.2.2.2 Nanopositioning in Closed Loop

Taking into account the second hypothesis for the open-loop transfer function T (s) =
K

s(1+τs) and a proportional controller with a gain factor equal to Kc, the closed-loop
transfer function of the nanopositioner is as follows:

H(s) = S(s)

E(s)
= 1

1+ 1
KKc

s + τ
KKc

s2
(24.4)

We can rely on the well-known equations of the automatic control of a linear
system:

– The canonical form of a second-order transfer function

H(s) = S(s)

E(s)
= K

1+ 2z
ωn
s + 1

ω2
n
s2

(24.5)

where K is the gain, z is the damping factor, and ωn is the undamped natural
frequency.

– The first overshoot with respect to the damping factor

D = e
−πz√
1−z2 (24.6)



760 A. Taleb et al.

– The period of the pseudo-oscillation with respect to the damping factor and the
undamped natural frequency

T = 2π

ωn
√

1− z2
(24.7)

From Eqs. (24.4)–(24.7), the parameters τ and K can be determined as functions
of T and D.

Comparing Eqs. (24.4) and (24.5), we obtain

K = 1; ωn =
√
K.Kc

τ
; z = 1

2
√
τ.K.Kc

(24.8)

By multiplying ωn by z, we get τ , that is,

τ = 1

2.ωn.z
(24.9)

From Eqs. (24.7) and (24.9), we obtain

τ = 1

2. 2π

T
√

1−z2
. z

(24.10)

And using Eq. (24.6),

τ = −T

4.ln D
(24.11)

The above equation allows determining τ .
By dividing ωn by z from Eq. (24.8),

K.Kc = ωn

2.z
(24.12)

From Eq. (24.7), ωn = 2π

T .
√

1−z2
and from Eq. (24.6), z = − 1

π

√
1− z2 ln D. So

we get

ωn

z
= − 2.π2

T .
(
1− z2

)
. ln D

(24.13)

From Eq. (24.6), we also have

z2 = (ln D)2

π2 + (ln D)2 (24.14)
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Substituting z2 in Eq. (24.13),

ωn

z
= − 2.

(
π2 + (ln D)2)
T . ln D

(24.15)

And therefore, from Eq. (24.12)

K.Kc = −π2 + (ln D)2

T .ln D
(24.16)

In conclusion, Eqs. (24.11) and (24.16) can be used to determine the parameters
K and τ from:

– The identification of the parameters T and D of the step response of the closed-
loop nanopositioner

– The knowledge of Kc of the controller fixed by the user

Experimentally, the closed-loop nanopositioner is subject to a gain Kc = 1.
We identified the following parameters: an overshoot D of 25% and a period of
oscillations T = 800 ms (i.e., 8 units). From Eqs. (24.11) and (24.16), we get

τ = 1.443 units = 144.3 ms and K = 1.0632 (24.17)

The transfer function of the open-loop nanopositioner is thus

T (s) = 1.0632

s (1+ 1.443s)
(24.18)

Finally, the closed-loop responses of the model (Fig. 24.12) and the real
nanopositioner (Fig. 24.9) are strictly identical.

24.2.3 Control with LabVIEW™

For all tested values of Kc, the closed-loop responses of the model and the
nanopositioner are strictly identical.

Some values of Kc are as follows:

– For Kc = 0.33, the nanopositioner has a minimal response time, that is, the
damping factor of the closed-loop nanopositioner is z = 1√

2
(Fig. 24.13a)

– For Kc = 0.163, there is no overshoot of the nanopositioner, that is, z = 1 (Fig.
24.13b)

Whatever the set point and gain Kc, in the physical limits of the nanopositioner,
the closed-loop responses of the real nanopositioner (Fig. 24.14a) and the model
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Fig. 24.12 Closed-loop response of the model (Eq. 24.18) for a set point of 1000 nm

 
(a)

 

(b)   

.  

Fig. 24.13 Control of the nanopositioner: (a) Kc = 0.33; (b) Kc = 0.163

(Fig. 24.14b) are strictly identical. As an example, the responses to a set point of
2000 nm and Kc = 1 are given below.

We can conclude that the nanopositioner has been correctly modeled. The minimal
response time of this one is obtained for Kc = 0.33.

Depending on the Z axis, the nanopositioner must not overshoot the set point
value, otherwise the probe may be crushed (thus breaking) onto the substrate. Just
set Kc = 0.163. The controls in X and Y can be realized in minimal response time
(Kc = 0.33).
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Fig. 24.14 (a) Nanopositioner response, (b) model response; set point = 2000 nm and Kc = 1

Line aligned with the three probe tips

Control in 

Fig. 24.15 Principle of alignment of probe tips with the patterns

24.3 Angular Control: Feasibility Study with Matlab™

In this section, we propose to determine a simple real-time method for aligning the
substrate patterns on an imaginary line (blue line in Fig. 24.15) through the three
probe tips, by using an angle control of the sample holder.

This feasibility study is based on simple and efficient image processing, which
can be performed under Matlab™.

Figure 24.15 shows a depth image whose pixels are gray levels (0 for black,
corresponding to a distant pixel; 255 for white, corresponding to the closest pixel).

An exhaustive solution consists of scanning all the possible rotations of the image
(function imrotate(image, theta) under Matlab™) and retaining the one for
which the sum of the gray levels on the imaginary blue line is maximum. There is
thus a maximum of white pixels on this line (Fig. 24.16).
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Fig. 24.16 Alignment of
probe tips with the patterns

Another solution would be to use the gradient method to obtain a local maximum
that corresponds to a locally optimal angle. The general idea of this method is to
perform a rotation as long as the sum of the gray levels is higher than in the previous
iteration.

The implementation of these solutions (exhaustive method and gradient method)
is not problematic and will allow one to control the sample holder in real time.

24.4 Determining Set Points of the Nanopositioners on X, Y,
and Z Axes

In this section, we propose a simple image processing allowing the detection of
forms on the one hand, and the detection of points of interest on the other hand. The
coordinates of these points of interest will represent the set point values of the three
linear nanopositioners X, Y, and Z.

24.4.1 Detecting the Patterns

The general idea is to transform a grayscale image into a binary image. A threshold
of the gray levels allows to obtain a black and white image. This threshold can be
determined as the median of the gray levels of the initial image.

If the resulting binary image is too noisy, a filtering can be carried out by
neglecting, for instance, all solid forms made up of fewer than P pixels (function
bwareaopen(bw_image, P) under Matlab™).

P is a parameter that must be much smaller than the size (number of pixels) of
the patterns, so that they are not removed in this filtering operation. P must also be
large enough to provide efficient filtering.
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Fig. 24.17 Detection of the
patterns

Figure 24.17 shows the result obtained by this simple method from the image of
Fig. 24.16.

24.4.2 Detecting a Point to Reach

In order to detect areas of interest in the grayscale image, a Harris method can
easily be used [17, 18] (e.g., function corner(bw_image, Nb_corners) under
Matlab™).

This method is used, for instance, to extract the corners of the contours. It is based
on the derivative of the gray levels to locate the points where the intensity varies
strongly in one or more directions.

For a given pixel (u, v), let us consider

– Its pixel intensity I(u, v)
– Its neighborhood w(u, v)—Harris and Stephens propose the use of a smooth

circular window as a Gaussian filter w(u, v) = exp (−(u2 + v2)/(2σ 2))

The average change of intensity for a small displacement (x, y) is

E (x, y) =
∑

u,v

w (u, v) .(I (x + u, y + v)− I (u, v))2 (24.19)

Consider the Taylor expansion of the intensity function I over the area (u, v)

I (x + u, y + v) = I (u, v)+ x δI
δx
+ y δI

δy
+ o

(
x2, y2

)
(24.20)

where δI
δx

and δI
δy

are the partial derivatives of I.
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We obtain the following relation:

E (x, y) =
∑

u,v

w (u, v) .

(
x
δI

δx
+ y δI

δy
+ o

(
x2, y2

))2

(24.21)

By neglecting the term o(x2, y2) for small displacements, E(x, y) can be expressed
in the form

E (x, y) = Ax2 + 2Cxy + By2 (24.22)

with A = δI
δx

2 ⊗ w; B = δI
δy

2 ⊗ w; C =
(
δI
δx
δI
δy

)
⊗ w, where ⊗ is the convolution

function.
E(x, y) can also be expressed in the form

E (x, y) = (x, y)M(x, y)t (24.23)

withM =
(
A C

C B

)
. M is called the structure tensor. It is a symmetrical and positive

matrix.
The matrix M characterizes the local behavior of the function E.
Indeed, the eigenvalues of this matrix correspond to the principal curvatures

associated with E:

– If the two eigenvalues are large, then the intensity varies strongly in all directions.
We have a corner.

– If the two eigenvalues are small, then the region under consideration has an
approximately constant intensity. We have a homogeneous area.

– If the two eigenvalues are very different, we are in the presence of an outline.

Instead of using eigenvalues, Harris and Stephen propose to detect corners based
on the following formula:

R = Det(M)− k.trace(M)2 = λ1λ2 − k(λ1 + λ2)
2 (24.24)

where Det(M) = A. B − C2 and trace(M) = A + B.
k is an empirically determined constant; k ∈ [0.04; 0.06].
The values of R are positive close to a corner, negative near a contour, and weak

in an area of constant intensity.
The search for corners in an image therefore consists of finding the local maxima

of R.
This approach gives excellent results on the SEM images (Fig. 24.18).
The coordinates of these points of interest represent the X, Y, and Z set point

values of the nanopositioners.
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Fig. 24.18 Detecting the points to reach

24.5 Conclusions

This chapter presented an interdisciplinary approach to the control of nanomanipu-
lators. First, we used classical automatic linear tools to identify the transfer function
of a system of three nanopositioners along the X, Y, and Z axes. This part allows the
precise control of any nanomanipulator in LabVIEW™, with overshoot (according
to a minimal response time in X and Y) or without overshoot (in order to avoid
crushing of the probe tips on the substrate in Z) of the required set point. Second,
we designed an angular control methodology (under Matlab™) to align the probe
tips with the component. Finally, the detection of points of interest (use of the Harris
detector) makes it possible to fix the set point value of each nanopositioner in X, Y,
and Z.
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Abbreviations

AlexNet AlexNet is the name of a well-known convolutional
neural network designed by Alex Krizhevsky, which
is the champion of the competition called ImageNet
Large Scale Visual Recognition Challenge held in
2012

Back Propagation (BP)
algorithm

BP algorithm is a famous method used in artificial
neural networks to calculate weights between a
large number of neurons. The BP algorithm is a
generalized delta rule for multi layered neural net-
works, in which chain rules are applied to iteratively
calculating the weights based on gradients and errors
in the network
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Caffe Caffe means convolutional architecture for fast
feature embedding, which is one of famous deep
learning frameworks developed at University of
California, Berkeley. Caffe is an open source library
written in C++

Convolutional Neural
Network (CNN)

A convolutional neural network called CNN is a
class of deep neural networks, which has been most
commonly applied to image recognition. The CNNs
are typical applications based on the concept of deep
learning and are known as one of the most powerful
structures for image recognition

MATLAB MATLAB is a high performance computing envi-
ronment provided by MathWorks. In particular,
MATLAB enables us to conduct matrix manipu-
lations, plotting of data, implementation of algo-
rithms, design of user interfaces, and development
of application software written in standard lan-
guages such as C++, C#, Python, and so on

ReLU ReLU means a rectified linear unit function. In the
structure of recent deep neural networks, the ReLU
is one of effective activation functions superior to
conventional sigmoid functions, which is defined
with only positive part of the input argument

Sequential Minimal
Optimization (SMO)
Algorithm

SMO is an effective algorithm to solve quadratic
programming (QP) problems. The QP is one of
nonlinear programming methods. The SMO was
proposed by John Platt in 1998 and has been used
to train support vector machines

Support Vector Machine
(SVM)

In machine learning, the support vector machine
called SVM is one of supervised learning models
associated with learning algorithms which can
analyze training data used for classification and
regression problems. A binary class SVM model is a
hyper plane that can clearly separate two categorized
points in space. The hyper plane is drawn so that the
points can be divided into two domains by a clear
margin as large as possible

TensorFlow TensorFlow is an open source software library which
can be used for the development of machine learning
software such as neural networks. TensorFlow was
developed by Google and released from 2015
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25.1 Introduction

Recently, deep learning techniques are gathering attention from researchers and
engineers all over the world due to the high performance superior to conventional
shallow neural networks. In this decade, several software development environments
for deep neural networks (DNN) such as Caffe [1] and TensorFlow [2] have been
introduced to researchers and engineers. In those development environments, C++ or
Python is well used for development. Deep convolutional neural networks (DCNN)
are typical applications based on the concept of DNN and are known as one of
the most powerful structures for image recognition. However, for example, it may
be difficult for students and junior engineers to develop and implement a practical
DCNN using programming languages such as C++ or Python and to utilize it for
anomaly detection in actual production systems. Generally speaking, it seems that the
availability of user-friendly software that facilitates such applications without using
programming languages skills, such as C++ or Python, have not been sufficiently
developed yet.

Hence, this paper presents the development of user-friendly application develop-
ment environment based on MATLAB system [3, 4] that facilitates two applications
using DCNNs and support vector machines (SVMs). An application of DCNN for
anomaly detection is developed and trained using many images to inspect undesirable
defects such as crack, burr, protrusion, chipping, spot, and fracture phenomena which
appear in the manufacturing process of resin molded articles. Automation of visual
inspection process has been demanded from many different kinds of industrial fields
because it is not easy to reduce the increase of undesirable human error associated
with the length of successive working hours.

Besides DCNN, SVMs are supervised learning models with associated learning
algorithms that analyze data sets used for classification and regression analysis. Not
only have a linear classification ability based on the idea of margin maximized
hyperplanes, but also SVMs have promising characteristics to efficiently perform a
nonlinear classification using what is called the kernel trick, by implicitly mapping
input data into high-dimensional feature spaces [5].

In the fields of measurement systems, for example, Flores-Fuentes et al. proposed
a combined application of power spectrum centroid and SVMs to improve the
measurement capability in optical scanning systems [6]. The energy signal center is
found in the power spectrum centroid, in which the SVM regression method is used
as a digital rectified to increase measurement accuracy for optical scanning system.
Then, a technical research of an opto-mechanical system for 3D measurement was
reported in detail, in which a multivariate outlier analysis was implemented to detect
and remove atypical values, in order to improve the accuracy of artificial intelligence
regression algorithms [7]. Also, although the architecture is not deep structure,
Rodriguez-Quinonez et al. surveyed the dominant laser scanner technologies, gave
a detailed description of their 3D laser scanner, and adjusted their measurement
error by a once trained feed forward back propagation (FFBP) neural network with
a Widrow-Hoff weight/bias learning function [8]. Surface measurement systems
(SMS) allow accurate measurements of surface geometry for three-dimensional
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computational models creation. There are cases where contact avoidance is needed;
these techniques are known as non-contact surface measurement techniques. To
perform non-contact surface measurements, there are different operating modes and
technologies, such as lasers, digital cameras, and integration of both. Each SMS is
classified by its operation mode to get the data, so it can be divided into three basic
groups: point-based techniques, line-based techniques, and area-based techniques.
Real et al. provided useful topics about the different types of non-contact surface
measurement techniques, theory, basic equations, system implementation, actual
research topics, engineering applications, and future trends [9]. The description
seems to be particularly beneficial for students, teachers, researchers, and engineers
who want to implement some visual inspection system.

In this paper, two kinds of SVMs are, respectively, incorporated with the two
trained DCNNs to classify sample images with high recognition rate into accept
as OK or reject as NG categories, in which compressed features obtained from the
DCNNs are used as the input for the SVMs. The two types of DCNNs used for
generating feature vectors are our designed sssNet and the well-known AlexNet
[10, 11]. The designed applications of the SVMs and their evaluation are introduced.
The usability and operability of the proposed design and training application for
DCNNs and SVMs are demonstrated and evaluated through design, training, and
classification experiments.

25.2 Design and Training Application for DCNNs and SVMs

A large number of image files with different kinds of defect features and their
paired labels for classification are needed to construct a reliable DCNN-based
anomaly detection system with generalization ability. To deal with this serious need,
a dialogue-based application named the similar image generator was first developed
that can easily produce a lot of similar images with sequential number from an
original image for training. For example, similar images with fracture defect can be
generated as shown in Fig. 25.1 by rotating, translating, scaling an original image,
changing the brightness, the resolution, or the file format such as JPG, BMP, PNG,
and so on.

Then, a DCNN and SVM design application as shown in Fig. 25.2 was developed
using App Designer provided by MATLAB. Deep Learning Toolbox (Neural
Network Toolbox), Statistics and Machine Learning Toolbox, Parallel Computing
Toolbox, Computer Vision System Toolbox, and Image Processing Toolbox were
optionally installed for the development on MATLAB. Main DCNN design
parameters on number of layers, filter size, pooling size, padding size, and width of
stride can be easily given through the user-friendly dialogue. As an example, Fig. 25.3
shows a designed DCNN composed of three convolution layers. The first layer is
positioned for input images with a resolution of 200×200×1 given by a matrix
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Fig. 25.1 Examples of generated images with a defect of fracture for training

Fig. 25.2 The developed design and training application for DCNNs and SVMs
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Fig. 25.3 An example of DCNN for five classifications designed by using the application shown
in Fig. 25.2

with zerocenter normalization. The second, fifth, and eighth layers are convolution
ones which severally have 32 filters. It is known that convolution layers perform
the translation invariance and compositionality required for computer vision. In the
convolution layers, the filters are applied to each image while sliding from the left
top to the right bottom in the image based on the value of the stride. Note that each
filter has channels as many as the number of feature maps in the previous layer.
Activation functions called rectified linear unit (ReLU) are located at third, sixth,
ninth, and twelfth layers. The ReLUs are given by

f (u) = max(0, u) (25.1)

f ′(u) =
{

1 (u > 0)
0 (u ≤ 0)

(25.2)

In the context of deep neural networks, ReLU have been actively used as one of the
most effective activation functions for back propagation algorithms. The 4th, 7th,
and 10th layers are max pooling ones to reduce the dimensions of feature maps for
computational efficiency. The sizes of pooling, stride, and padding are given as [3
3], [2 2], and [0 0 0 0], respectively. If the nth image for training is given to the
input layer, then the 14th softmax layer produces the probability pni(i = 1, 2, . . . , 5)
called the score for five categories. The probability pni(i = 1, 2, . . . , 5) generated
from the 14th softmax layer for five categories is calculated by

pni = eyni
∑5
k=1 e

ynk
(25.3)
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where yn = [yn1 yn2 yn3 yn4 yn5]T is the output vector from the 13th fully connected
layer corresponding to the nth input image. In this case, the loss function called cross
entropy is calculated by

Ē = − 1

N

N∑

n=1

5∑

k=1

tnklog(ynk) (25.4)

where tn = [tn1 tn2 tn3 tn4 tn5]T means the nth desired output vector for five
categories, i.e., [1 0 0 0 0]T , [0 1 0 0 0]T , [0 0 1 0 0]T , [0 0 0 1 0]T , or [0 0 0 0 1]T .
N is the total number of image samples in the training set. The cross entropy is also
used to tune the values in each filter in back propagation algorithm during iterative
training process.

25.3 Review of Back Propagation Algorithm for
Implementation

The authors of this chapter have implemented the back propagation algorithm into
some systems [12–15]. The first system designed for a feedforward force controller
learned the contact motion which was the relation between the contact force and
the velocity at the tip of robot arm[12]. The second system named the effective
stiffness estimator was developed for a desktop NC machine tool with a compliant
motion capability. The estimator finally allowed the machine tool to generate a
desired damping needed for a stable force control system without undesirable large
overshoots and oscillations [13, 14]. Further, the third system was considered to
deal with the problem concerning the learning performance to large scale teaching
signals, so that a simple and adaptive learning technique for sigmoid functions could
be proposed. The validity and control effectiveness of the learning technique were
verified through simulation experiments using the dynamic model of PUMA560
manipulator with six degrees of freedoms. In this section, the important back
propagation (BP) algorithm for training is reviewed for an easy implementation in
software development using a simple three-layered neural network with two inputs
and two outputs as shown in Fig. 25.4, in which a standard sigmoid function is
applied as an activation function of each neuron. It is known that BP algorithms
are also applied to the training of filters in CNNs. The sigmoid function and its
derivative are generally given by

f (s) = 1

1+ e−s (25.5)

f ′(s) = f (s){1− f (s)} (25.6)
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Fig. 25.4 Three-layered neural network to review the back propagation algorithm

where s is the state of a neuron. Weights between the last hidden layer and the output
layer are updated through the calculations based on the generalized delta rule. The
weights in this example are actually updated based on the rule as written by

e31 = d1 − y31 (25.7)

e32 = d2 − y32 (25.8)

w23
11 = w23

11 + ηf (s21)f (s31){1− f (s31)}e31 (25.9)

w23
12 = w23

12 + ηf (s21)f (s32){1− f (s32)}e32 (25.10)

w23
21 = w23

21 + ηf (s22)f (s31){1− f (s31)}e31 (25.11)

w23
22 = w23

22 + ηf (s22)f (s32){1− f (s32)}e32 (25.12)

w23
31 = w23

31 + ηf (s23)f (s31){1− f (s31)}e31 (25.13)

w23
32 = w23

32 + ηf (s23)f (s32){1− f (s32)}e32 (25.14)

where d1 and d2 are the components in the desired output vector to be trained.
y3 = [y31 y32]T is an output vector from the network. e3 = [e31 e32]T is the error
vector between the desired and the actual outputs. wpqij is the weight between the ith
unit in pth layer and the j th unit in qth layer. x1 = [x11 x12]T is the input vector
to be directly s1 = [s11 s12]T . η is the learning rate. Also, for example, the state s31
and s32 are linearly calculated by
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s31 = w23
11f (s21)+ w23

21f (s22)+ w23
31f (s23) (25.15)

s32 = w23
12f (s21)+ w23

22f (s22)+ w23
32f (s23) (25.16)

Next, update process of weights between the hidden layer and the input layer is
explained. The calculation of error epi for pth layer, ith unit in the hidden layer is a
little bit more complex. For example, e21, e22, and e23 are obtained by

e21 = w23
11f (s31){1− f (s31)}e31 + w23

12f (s32){1− f (s32)}e32 (25.17)

e22 = w23
21f (s31){1− f (s31)}e31 + w23

22f (s32){1− f (s32)}e32 (25.18)

e23 = w23
31f (s31){1− f (s31)}e31 + w23

32f (s32){1− f (s32)}e32 (25.19)

so that, the weight w12
11 , w12

12 , w12
13 , w12

21 , w12
22 , and w12

23 are calculated by

w12
11 = w12

11 + ηf (s11)f (s21){1− f (s21)}e21 (25.20)

w12
12 = w12

12 + ηf (s11)f (s22){1− f (s22)}e22 (25.21)

w12
13 = w12

13 + ηf (s11)f (s23){1− f (s23)}e23 (25.22)

w12
21 = w12

21 + ηf (s12)f (s21){1− f (s21)}e21 (25.23)

w12
22 = w12

22 + ηf (s12)f (s22){1− f (s22)}e22 (25.24)

w12
23 = w12

23 + ηf (s12)f (s23){1− f (s23)}e23 (25.25)

25.4 Design and Training Experiments of Designed DCNN

25.4.1 Test Trial of Design and Training of a DCNN for Binary
Classification

Table 25.3 tabulates the main parameters of DCNN training in case of two categories,
which are non-defective and defective articles named OK and NG, respectively. The
category of NG includes the defects of burr, protrusion, and crack. The training was
conducted by using a single PC with a Core i7 CPU and a GPU (NVIDIA GeForce
GTX 1060). In this DCNN training, it first took about several minutes until the
categorization accuracy reached to 0.95. The accuracy is the result of discriminant
analysis obtained by dividing the number of correctly classified images by that
of images in the entire data set. Then, the DCNN was additionally fine-trained to
enhance the accuracy to 1. It also took several minutes to the completion. After the
DCNN was trained, the classification result of the training set was checked based on
the scores from the softmax layer. Figure 25.5 shows the scores of classification of
OK and NG using all the images in training set (total number of images is 2040).
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Table 25.3 Parameters
designed for DCNN training

Filter size in convolution layers 5 × 5 × 1
Padding of convolution layers [2 2 2 2]
Stride of convolution layers [1 1]
Pooling size [3 3]
Padding of max pooling layers [0 0 0 0]
Stride of max pooling layers [2 2]
Max epochs 30
Mini batch size 200
Learning rate 0.002 to 0.0001
Desired categorization accuracy 0.999
Number of OK images 1020
Number of NG images 1020

Fig. 25.5 Scores of classification of OK and NG using the all images in the training set (the total
number of images = 1020 + 1020)

As can be seen, it is observed that all the 2040 images in the training set can be well
discriminated with each score more than 0.97. Next, the generalization of the trained
DCNN was simply evaluated using the test images with a feature of burr, protrusion,
or crack as shown in Fig. 25.6 which were not included in the training set. Figure 25.7
shows the classification scores evaluated using the ten test images including a feature
of defect, in which it is observed that “image2.jpg” and “image9.jpg” are not well
categorized. To cope with this problem, we considered to pinpointedly improve the
recognition ability to these two types of defects. Figure 25.8 shows the additional 10
training images a little bit deformed from “image2.jpg” in Fig. 25.6.

To enhance the classification ability further to the images shown in Figs. 25.6
and 25.8, the pretrained DCNN was additionally retrained using the reorganized
training set consisting of original 2040 images, additional 20 OK ones, 10 NG ones
in Fig. 25.6, and 10 NG ones in Fig. 25.8. After the additional training, the training
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Fig. 25.6 Test images with a feature of NG which were not included in the training images

Fig. 25.7 Scores of classification of NG test images shown in Fig. 25.6

Fig. 25.8 Additional 10 training images with a protrusion which is a little bit deformed from
“image2.jpg” shown in Fig. 25.6



780 F. Nagata et al.

Fig. 25.9 Check of scores of categorization OK and NG using the images in training set (total
number of images = 1040 + 1040), in which images shown in Figs. 25.6 and 25.8 are included

situation was checked based on the scores of categorization OK and NG using the
images in reorganized training sets (total number of images = 1040 + 1040) including
the images in Figs. 25.6 and 25.8. Figure 25.9 shows the result. It is observed that the
recognition ability to additional images can be improved efficiently and pinpointedly.
The additional training function introduced in this section is effective to reconstruct
an updated DCNN when miscategorized images are found in training test process.

25.4.2 Test Trial of Design and Training for Five Categories

The DCNN designed for the binary classification of resin molded articles is extended
and applied to classifying images into typical five defective categories as shown in
Fig. 25.3, in which the category of NG is subdivided into typical defects seen in resin
molding process such as crack, burr, protrusion, and chipping. An epoch means a
full pass through the entire training data set, i.e., 5100×5 = 25,500 images are
used for training process. First, a pretraining using randomly initialized weights is
conducted through the period from the first epoch to sixth one, where the desired
categorization accuracy is set to 0.999. Then, a fine training using the pretrained
weights is successively conducted through the period from the seventh epoch to
tenth one, where the desired categorization accuracy is increased to 0.9999. After
the fine training, it is confirmed from the experiments that the designed DCNN with
15 layers shown in Fig. 25.3 can be well trained to classify resin molded articles into
five categories, through the training process using 25,500 gray scale image samples
with the resolution of 200×200.
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Fig. 25.10 Examples of four kinds of defects which are seen in production process of resin molded
articles

Finally, after further adding 300 images with different features into each training
set, the trained DCNN is additionally trained, i.e., by using the 5400×5 = 27,000
images. Then, to simply check the generalization ability of the trained DCNN, a
training test set consisting of 100 images×5 categories are prepared. Figure 25.10
shows some of the images in the training test set. After the testing, it is confirmed
that the categorization accuracy to the test images is 492/500 = 98%, so that it is
concluded that the obtained DCNN can perform satisfactory generalization.

25.5 Support Vector Machines Based on Trained DCNNs

In the previous section, two types of DCNNs for two or five classification are
designed, trained, and evaluated using the proposed DCNN design application. In
this section, another approach using two types of support vector machines (SVMs)
is introduced. It is expected that the DCNN designed in the previous section may
be able to give more characterized feature vectors to the SVMs. Actually, the most
important function which is required to a defect inspection system is to remove
defective products from all products. It is not allowed that any defective product is
mixed into lots of non-defective products. To cope with this serious need, two types
of SVMs shown at the lower parts in Figs. 25.11 and 25.12 are tried to be designed
and trained using the proposed application shown in Fig. 25.2. It is expected that the
trained SVMs will be able to classify input images into OK or NG category including
a small defect such as crack, burr, protrusion, chipping, spot, and fracture.

As for the first SVM, our designed DCNN named sssNet is used to extract the
feature vector x = [x1, x2, x3, . . . , x32]T from each inputted image. Figure 25.11
illustrates the designed SVM for binary classification whose input is the feature vector
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Fig. 25.11 The proposed SVM for binary classification to which feature vectors generated from
our designed DCNN named sssNet are given

Fig. 25.12 The proposed SVM for binary classification to which feature vectors generated from
AlexNet are given

generated from the 1st fully connected layer (11th layer) in the sssNet. Gaussian
kernel function is used for one class unsupervised training of the SVM, in which 5100
OK images used in the pretraining in the Sect. 25.4.2 are reused. Sequential minimal
optimization (SMO) algorithm [16] is applied to solve the quadratic programming
(QP) of SVM. It took about several minutes for training the SVM. After training
the SVM, a classification experiment was conducted to check the generalization
ability to unlearned NG images. Figure 25.13 shows the classification results using



25 Development of Design and Training Application for Deep Convolutional. . . 783

Fig. 25.13 Classification results using the SVM shown in Fig. 25.11, in which horizontal and
vertical axes denote the output from the SVM trained with our designed sssNet and the number of
image samples, respectively

the SVM shown in Fig. 25.11. The horizontal and vertical axes denote the output
values from the SVM trained with our designed sssNet and the number of image
samples, respectively. It is observed from Fig. 25.13 that the SVM can discriminate
NG images from OK ones.

As for the second SVM, well-known DCNN called AlexNet is used to extract
the feature vector x = [x1, x2, x3, . . . , x4096]T from each inputted image. The
AleNnet trained using one million images can classify test images into 1000 object
categories such as a keyboard, mug, pencil, many kinds of animals, and so on.
It is known that the AlexNet learned abundant feature representations of images
covering a wide range of objects. If the trained AlexNet receives an image with
the resolution of 227×227×3, then the label of an object featuring in the image
and the probability, i.e., score of the categorized object, are produced. Figure 25.12
illustrates another binary class SVM whose input is the feature vector generated from
the 2nd fully connected layer (20th layer) in the AlexNet. Similarly, 5100 OK images
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Fig. 25.14 Classification results using the SVM shown in Fig. 25.12, in which horizontal and
vertical axes denotes the output from the SVM trained using AlexNet and the number of image
samples, respectively

used in the pretraining in the Sect. 25.4.2 were reused for one class unsupervised
training of the SVM. It also took about several minutes for training. After training
the SVM, a classification experiment was conducted to check the generalization
ability to unlearned NG images. Figure 25.14 shows the classification results using
the SVM shown in Fig. 25.12. It is observed from Fig. 25.14 that the SVM with
AlexNet can also discriminate NG images from OK ones with the almost same
reliability as the SVM with sssNet. Actually, lengths of feature vectors generated
from sssNet and AlexNet are quite different as 32 and 4096; however, almost the
same discrimination ability can be obtained. In the case of the target features as
shown in Figs. 25.1, 25.6, 25.8, and 25.10, the feature vector with 4096 components
given to SVM seems to be somewhat redundant.
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25.6 Conclusions

In this decade, deep learning, in particular, DCNN has been eagerly focused on
by researchers and engineers in order to apply to various kinds of inspection
systems. However, it seems that user-friendly design and training tools without using
programming languages such as C++ and Python have not been well provided yet. In
this chapter, a design and training application for DCNNs with multiple classification
and SVMs with binary classification is presented. As the first application test trial,
a DCNN is designed using the application to detect defects such as crack, burr,
protrusion, chipping, and fracture phenomena seen in the manufacturing process
of resin molded articles. A similar image generator is also proposed to efficiently
generate a large number of images transformed from original ones by rotating,
scaling, and changing brightness, etc. After the designed DCNN is pretrained using
those images, classification experiments are conducted using test images in order
to simply check the generalization. Based on the results, an additional fine training
method is applied and evaluated to cope with mis-classified images, so that the
classification ability can be efficiently and pinpointedly improved to a desired
level of categorization accuracy. Generally, the objective of training in machine
learning is to enhance the ability of generalization to unlearned environments. The
additional training introduced in this chapter may proceed to the opposite direction
of the objective of training or cause different kinds of problems. However, in daily
production process, it will be effective for the construction of a practical visual
inspection system. Here, the practicality means that the additionally trained DCNN
will never miss the defects which have been misrecognized once. As the second
application test trial, two kinds of SVMs with trained DCNNs, i.e., our designed
sssNet and well-known AlexNet, for binary classification are designed, trained, and
evaluated to discriminate NG sample images from OK ones, so that it is confirmed
that the SVM with our designed sssNet can perform almost the same recognition
ability as that with AlexNet in spite of the much shorter feature vector.

Finally, the authors apologize that unfortunately this chapter cannot show real
photos including defective plastic parts due to the obligation of confidentiality with
a joint research and development company.
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Chapter 26
Computer Vision-Based Monitoring
of Ship Navigation for Bridge Collision
Risk Assessment

Xiao-Wei Ye, Tao Jin, and Peng-Peng Ang

Acronyms

IPT Image process technology
DL Deep learning
SHM Structural health monitoring

26.1 Introduction

Since the 1990s, the tonnage of the ship is getting bigger, more and more ships
are in the same channel. So the possibility of the bridge pier being struck by ships
increases. Developed water transport brings a serious problem, namely the bridge
collision problem, while promoting economic development. At present, due to the
large-scale construction of bridges across rivers, the scale of navigation vessels,
coupled with changes in bridge environment (such as flow rate, wind speed, curve,
erosion, and siltation), have caused bridge–ship crashes, which often bring huge
loss of life and property. Research focusing on the protection of bridges has been
conducted by scholars or engineers all around the world.

Bridge reinforcement is one way to improve the bridge viability, especially for
aged bridges. Vu and Stewart [1] developed an empirical formula of the ampere
density for the corrosion of chloridion and carried out research on the whole life
cycle reliability of reinforced concrete bridges under the corrosion of chloridion.
Choe et al. [2] established a probability degradation model of load-carrying capacity
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for reinforced concrete bridges under chloridion corrosion and studied the seismic
vulnerability of the model. Li et al. [3] implemented experimental study on the
influence of corrosion on reinforced concrete piers. Simon et al. [4] investigated
the influence of chloridion corrosion on the seismic response and vulnerability of
reinforced concrete bridges. Alipour et al. [5] carried out experimental study on the
influence of chloridion corrosion on the anti-seismic property of reinforced concrete
continuous beam bridges with different spans, pier heights, and diameters.

At present, the measures for the bridge to deal with ship collision are mainly
passive anti-collision, that is, when designing the bridge structure, the designer
should reasonably consider the ability of the bridge to resist the impact of the
ship or adopt passive anti-collision measures to reduce the direct effect of ship
collision on the bridge. Passive anti-collision measures are expensive. Many experts
are carrying out the anti-collision design of the bridge pier, and the purpose of
the anti-collision design of the bridge pier is to prevent the bridge pier from being
damaged due to the excessive impact force of the ship and to ensure the safety of the
bridge structure. By adopting different types of anti-collision facilities, it is possible
to effectively reduce or prevent the force of the ship on the bridge pier, thereby
ultimately protecting the bridge. In recent years, researchers in many countries are
studying the bridge pier anti-collision maintenance devices, such as shield system,
support pile system, floating tether system, artificial island and reef protection, and
floating protection system. But these methods can only reduce the damage of the
pier struck by ships, it does not fundamentally solve the problem that the bridge
pier being struck by ships. Through research, human error is the primary cause of
ship collision accidents, including operational errors, lack of necessary navigation
information (non-navigable holes), lack of skills, and controller misconduct.

Simulation or test research on ship–bridge collision problem was widely
conducted by many groups. Zhu et al. [6] proposed an innovative foam-filled lattice
composite bumper system with fiber-reinforced polymer skins and a foam-web
core as protective structures for bridge piers against ship collision. Guo et al. [7]
researched the optimal sensor placement for damage detection of bridges subject to
ship collision, an optimal sensor placement method targeting post-collision damage
detection of bridges was proposed. Fang et al. [8] proposed an innovative large-
scale composite bumper system for bridge piers against ship collision. Liu and
Gu [9] simulated whole ship–bridge collision process by nonlinear dynamic finite
element method, a scenario of a 40,000 DWT oil tanker colliding with a bridge
across the Yangtze River was designed for simulation. Minorsky [10] investigated
the relationship between the deformation of steel structures and energy transition by
multi ship–bridge collision tests, based on a collision accident of a nuclear power
ship against a bridge. Meir-Dornberg [11] conducted scale ratio collision test to
obtain the impact force, impact energy, and deformation of ship prow. Sha and Hao
[12] built a detailed finite element model of a barge and simulated the damage feature
during the process of collision with a single pier and discussed the influence of ship
velocity, mass, pier size, and impact location. Fan and Yuan [13] considered the pile
soil interaction in the simulation and also investigated the influence of material and
initial stress. Wan et al. [14] conducted the numerical simulation and quasi-static
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compression test of simplified bow model to study the static stiffness characteristic
of the ship bow for comparison. Jiang and Chorzepa [15] assessed energy absorption
capacity of the floated collision-prevention device made of fiber-reinforced plastic
on several bridges. Simulations or prevention measures or energy was investigated
by more groups worldwide [16–21].

Anti-collision piers or similar passive measures might protect the bridge at a very
high cost for manpower or money, the best way to protect the bridge is to reduce
the collision probability. With the development of computer vision technology and
image acquisition equipment, vision-based techniques have been developed and
applied in practical application [22–28]. This technology is increasingly popular
among scholars and engineers due to the advantages including long range, non-
contact, high accuracy, time saving, low cost, multi-function, etc. It is much easier
for computer vision technology to be deeply integrated with other techniques like
signal processing, automation, and artificial intelligence. Also, it is easier to be
carried out on other platforms like submersibles, vehicles, airplanes, or satellites.
Computer vision technology will take pictures or videos of the desired area by
cameras and apply image process technology (IPT) or deep learning (DL) methods to
track or identify the target for purposed parameters like displacement, location, size,
etc. Thanks to the possible large visual field, cost-effective realization of tracking
purpose for large areas is financially feasible. Vision-based techniques have been
applied to a variety of structural health monitoring (SHM) tasks for bridges including
deflection measurement [29], bridge line shape measurement [30], evaluation of
carrying capacity [31], calibration of finite element model [32], modal analysis
[33], damage identification [34], cable tension monitoring [26], and assistance for
weigh-in-motion system [35].

The detection methods of ships with the help of IPTs have been explored by
several groups. Jiao et al. [36] developed a densely connected multiscale neural
network for ship detection, feature maps were densely connected, and reduction of
the weight for easy examples was implemented. Liu et al. [37] established an inshore
ship detection method by shape and context information; an active contour model
was developed for segmenting of water and land target. Li et al. [38] proposed an
inshore ship detection method by ship head and body information, ship head features
were obtained by transformed domain of polar coordinates, and ship boundary
was detected by the saliency of directional gradient. Liu et al. [39] proposed a
ship detection framework by using convolutional neural networks, aiming at the
prediction of bounding box for ship with orientation angle information. Liu et al.
[40] developed a two-stage detection approach for automatic ship target detection;
mean-shift smoothing algorithm and hierarchical ship target detection were adopted
in the two stages, respectively. Lin et al. [41] inserted a task partitioning model in a
fully convolutional network to deal with the problem of inshore ship detection; also,
a ship detection framework was established to improve the robustness of detection.
The establishment of an active anti-collision system, proactively reminding the ship
of illegal operation, real-time assessment of ship collision risk, and active warning of
ship collision hazard can avoid the occurrence of ship collision accidents or reduce
the severity of ship collision accidents to the greatest extent.
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This chapter presents a computer vision-based ship–bridge anti-collision system
for an ancient arch bridge across the Beijing–Hangzhou Grand Canal in Hangzhou,
China. The structural condition of the arch bridge is analyzed, and the passing ships
are investigated and classified into three levels. IPTs are adopted for tracking of
incoming ships to obtain the target parameters including velocity, direction, etc.
The ship–bridge collision risk is assessed by a comprehensive multifactor method.
Pretest is conducted on a river before the implementation on the ancient bridge
where construction nearby is strictly controlled for the protection of the bridge and
the scenic spot around.

26.2 Engineering Background

26.2.1 Bridge Introduction

The Gongchen Bridge was built in the year of 1631 in Ming Dynasty, and it is a
mark of the destination for the Beijing–Hangzhou Grand Canal, as shown in Fig.
26.1. It is an arch pedestrian bridge connecting the east and west shores of the Grand
Canal, with a total length of 92 m, covering three spans and a height of 16 m. The
bearing structure is the arch ring, and soil was filled inside the bridge. The main
span is 15.8 m, and other two spans are 11.9 m. The width is 5.9 m in the mid-span
and 12.8 m at the two ends. The main structure is made of boulder strips which are
rare nowadays, leading to the difficulty to repair or replace it, and the foundation was
made of spiling. Due to the precious historical value and social value, the bridge was
granted as a provincial cultural relic for better protection in 2005 and was promoted
to be an important heritage site under state protection in 2013. This place near the
bridge was set to be a scenic spot attracting thousands of tourists every year.

(a) (b)

Fig. 26.1 The Gongchen Bridge. (a) Side view. (b) Front view
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26.2.2 Navigation Condition

Ever since ancient times, the Grand Canal served as a significant path for the
transportation of passengers and cargo. Although the status is not comparable to
the past nowadays, it still serves as an important local passageway for commercial
cargo transportation or visiting purpose. The channel where the Gongchen Bridge
locates is a V level channel which allows the ships under 300 tons to go. The ships
travel under the bridge could roughly be divided into three classes: the ship for
cargo transportation is around 300 tons, the sightseeing boat for visiting traveling
is around 100 tons, and the other small ships including maritime ships or privately
owned fish boats. The cargo ships could be as long as 45 m and as wide as 11 m, and
in practical loading, they might be heavier. The small ships will not threat the safety
of the bridge, so it is beyond discussion. The typical types of the two large ships are
shown in Fig. 26.2.

26.2.3 Collision Incidents Analysis

Due to the famous status for sight visiting and the important role for local
transportation, the traffic on the channel for either traveling or cargo transportation is
very heavy. However, the main span is only 15.8 m, and the arch ring is quite slender
compared to the ship or the size of the bridge. The cargo ship drivers will have to
be quite cautious to drive, and they have to stand in a line to go through the bridge.
Compared to the cargo ships, the precious bridge is small and vulnerable, as shown
in Fig. 26.3. As is shown in Fig. 26.3(b), when the cargo ship passes through the
main span, the distance between the arch ring and the ship is so close that careless
driving or irregular current could lead to collision incidents.

(a) (b)

Fig. 26.2 Typical ships in the channel. (a) Sightseeing boat. (b) Cargo ship
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(a) (b)

Fig. 26.3 Heavy traffic under the bridge. (a) Fleet of cargo ships. (b) Passing circumstances

Fig. 26.4 Damage of arch
ring

Plenty of collision accidents have happened in recent years, among them, there
are several relatively serious incidents that show how the situation is like. In August
1996, the arch ring of the main span was hit twice that created cracks in the stone
ring. In October 1998, the south east corner of the main span was hit so heavy that a
stone strip with a length of 3 m long and 0.65 m width weighting 1.4 tons was broken
into three pieces. In June 2007, four anti-collision piers were constructed to protect
the bridge. However, on September 26, 2005, and November 23, 2005, the same
place in the northeast corner was hit twice, leading to the wrecking of a stone strip.
In 2008, a cargo ship hit the southeast anti-collision pier and slanted it. On August
31, 2008, a cargo ship hit the southeast anti-collision pier and nearly wrecked it. On
January 6, 2016, the northeast corner was hit, and a stone strip was broken into two
pieces, leading to bridge repair construction. Figure 26.4 illustrates the arch ring that
has been hit plenty of times by passing ships. As shown in Fig. 26.4, there are wide
cracks that reduce the structural strength, also the plenty of abrasion marks stand for
the many small collision incidents that frequently happen. The anti-collision piers
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did help to protect the bridge, but they will have to be repaired frequently to maintain
protection capacity. Construction under water is more expensive and less reliable,
and it might disturb the navigation.

26.2.4 Significance of the System

Due to the significant role for historical value, social vale, and tourism value, it is
necessary to build an anti-collision system to protect the bridge. Anti-collision piers
have been constructed as a passive defense measure to protect the bridge, but it is
not able to reduce the impacting incidents. The piers have to be repaired or even
rebuilt as have already happened each time after the collision, leading to the cost
of lots of money and manpower as well as the blocking of the channel for hours
or days. Computer vision-based system is an initiative measure to alter the passive
defending condition to active defending condition by monitoring the incoming ships
and alerting actively. On the one hand, by the reduction of collision incidents, the
bridge will be protected better. On the other hand, by reducing the incidents caused
by the carelessness of the shipowners, the shipowners could potentially save the
punishment fine. Also, the experience of development and implementation of the
computer vision-based anti-collision system could be a reference for other cases in
anti-collision action for bridges.

26.3 Ship–Bridge Anti-Collision System

The computer vision-based ship–bridge anti-collision system mainly consists of a
monitoring and tracking system, a risk assessment and early warning system, and
a post recording system, as shown in Fig. 26.5. The tracking system will track the
incoming ships to obtain the ship type, velocity, and direction for risk evaluation.
The risk assessment and early warning system will evaluate the risk levels and warn
accordingly. The post recording and evaluation systems are applied to record the
possible collision and evaluate the intensity for post measures. By the combination
of these three systems, an active anti-collision system is established to reduce the
probability of collision. The workflow of the computer vision-based ship–bridge
anti-collision system is shown in Fig. 26.5. The design goals of the bridge–ship
anti-collision monitoring and early warning system include (1) 24-h continuous
monitoring of sailing ships within a certain range upstream of the bridge, including
navigable and non-navigable areas; (2) identify the size, position, speed, direction,
track, and quantity of the ship within the monitoring range and carry out the bridge–
ship anti-collision warning according to the identified result; (3) after the occurrence
of the early warning event, it is possible to communicate and alarm the ship by
means of sound, light, communication, etc.; (4) the user interface is simple, easy
to use, and user-friendly; (5) after accumulating a certain amount of data, ship
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Sailing ship

Ship monitoring and tracking system

Ship speed Ship heading Ship size Ship location

Bridge collision risk assessment and early warning system

Sailing ship risk
assessment

Acoustic,optical and 
electri warnings to
naviagte the ship

Warning information to
the maritime department

Fig. 26.5 Workflow of the system

transient prediction warning and active warning shall be carried out; (6) provide
warning information to the maritime department and cooperate with the maritime
department to deal with illegal navigation ships.

26.3.1 Monitoring and Tracking System

The theoretical core of the computer vision-based monitoring of ship navigation
for bridge collision risk assessment method is the ship tracking method, including
image pre-processing and target tacking method. The image pre-processing method
mainly comprises image graying, image enhancement, image binarization, and image
filtering steps. The general steps are as follows: implement graying to the input
image to facilitate subsequent image processing; enhance image contrast by gray
scale stretching; binarize the image to segment the background and objects; and
apply median filter to eliminate image interference and noise.

The target tracking method consists of the frame difference method and the
background learning algorithm. The basic principle of the frame difference method
is that after the pre-process of the images, the gray values of the corresponding pixels
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of two images at the adjacent time step are obtained. During the continuous tracking
of moving targets, the dynamic change of gray values of the continuous image of
moving targets is obtained by the frame difference method. The tracking of moving
targets could then be realized by the change of gray values.

First, the sequent images f1, f2, . . . , ft are collected for a continuous time period
for background extraction. Assume that fk(x, y), fk+1(x, y), and fk+2(x, y) are adjacent
three frames of sequent images (1 ≤ k + 2 ≤ t) and that (x, y) are the coordinates of
the corresponding frame image, as shown in Fig. 26.6. The k-th frame is adopted as a
background image. Subtracting the k-th frame with the (k + 1)-th frame, and we can
get the difference image of adjacent images and mark M1 for the center of the image,
shown in Fig. 26.7(a). Subtracting the k-th frame with the (k + 2)-th frame, we can
get the difference image of adjacent images and mark M2 for the center of the image,
as shown in Fig. 26.7(b). Thus, continuous difference image is continuously obtained
by the frame difference method, and continuous centroids of the difference image
are obtained, achieving the continuous tracking of moving targets. The calculation
method of the centroid points M1, M2 coordinates (X, Y ) is:

X =
∑
x
∑
y ·X · f (x, y)

∑
x
∑
y · f (x, y) (26.1)

(a) (b) (c)

Fig. 26.6 Adjacent images. (a) k-th frame. (b) (k + 1)-th fame. (c) (k + 2)-th frame

Fig. 26.7 Frame difference
method. (a) k-th and
(k + 1)-th frame. (b) k-th and
(k + 2)-th frame M1 M2

(a) (b)
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Y =
∑
x
∑
y · Y · f (x, y)

∑
x
∑
y · f (x, y) (26.2)

The basic idea of the background learning algorithm is to model the background of
the image. When the background model is established, the current image is compared
with the background model, and the moving target could be detected according to the
comparison result. The background model used in this system is the single Gaussian
background model.

The basic idea of the single Gaussian background model is: the gray value of
each pixel in the image is regarded as a random process and the probability that the
gray value of a pixel of the point is subject to a Gaussian distribution. Let I(x, y, t)
denotes the pixel gray value of the pixel point (x, y, t) at time t, then

P (I (x, y, t)) = 1√
2πσt

e
− (x−ut )2

2σt 2 (26.3)

where μt and σ t are the expected value and standard deviation of the Gaussian
distribution of the gray value of the pixel at time t, respectively. The background
model for each pixel consists of an expected value μt and a deviation σ t.

For illustration, an image of the scene on a river was obtained as the background
image. The real-time tracking of the sailing vessel can be obtained by the background
learning algorithm and the setting of the appropriate threshold, as shown in Fig. 26.8.
Figure 26.8(a) is the video monitoring image, and Fig. 26.8(b) is the target tracking
image processed by the background learning algorithm. There are influencing factors
like clouds and hills. Hills remain static while clouds will move, and the system is
still able to detect the coming ships.

(a) (b)

Fig. 26.8 Test results of background learning algorithm. (a) Original image. (b) Extraction of
ships
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26.3.2 Risk Assessment and Early Warning System

26.3.2.1 Warning Area Division

The width of the Grand Canal around the bridge is 80 m. The bridge has three spans,
allowing small ships to pass in two spans in two directions simultaneously, while
cargo ships could only go through the main span one by one. The nearest bridge in
the north direction is 650 m away, and the nearest bridge in the south direction is
450 m away. Given a comprehensive consideration of the bridge condition, channel
condition, ship types, ship velocity, and hardware for the computer vision system,
the monitoring area for the bridge is 250 m in both sides.

According to the potential collision risk and navigation channel, the monitoring
area was divided into four parts: traffic zone, danger zone, warning zone, and tracking
zone. The traffic zone is an area with a width of 12.8 m centering on the center line
of the navigation channel. The danger zone is within 50 m to the bridge and 0.5 m
to the edge of the arch ring. Warning zone has a length of 150 m beyond the danger
zone and 1.5 m from the arch ring.

For ships entering the tracking zone, the tracking system automatically tracks
their dynamic navigation tracks. The risk assessment and early warning system are
based on the measured data including the distance, speed, heading, nearest meeting
point, and nearest meeting time of the ship in the bridge area. Also, the tracking
system will monitor whether the ship has risky phenomenon, such as overspeed,
yaw, etc. When the ship’s illegal operation behavior is found, the system will take
the initiative to issue a reminder to avoid the ship collision accident caused by the
ship’s illegal operation.

For ships entering the warning zone, risk assessment and early warning system
will assess the ship collision risk in real time. The ship collision risk model consists
of the minimum safety encounter distance and the shortest maneuver time. The
minimum safe encounter distance and the shortest maneuver time are determined
by the ship speed, ship type, tonnage, scale, and the environmental conditions of
the ship’s circumference. The risk assessment and early warning system receives
the measured data such as the distance, speed, heading, nearest meeting point, and
nearest meeting time of the tracking system in the bridge area and will continuously
compute the minimum safety meeting distance and the time that the minimum safety
is reached, and dynamic judgment of whether there is a danger of ship collision in
real time.

For ship entering the danger zone which is in danger of collision, it will take
the initiative to issue a ship collision warning and notify the ship to take evasive
measures to avoid the ship collision accident to the greatest extent. The ship’s illegal
reminder or ship collision warning will be issued through the walkie-talkie or horn.
Of course, it is extremely difficult to completely avoid a ship collision accident.
When a ship collision accident is unavoidable, risk assessment and early warning
of bridge–ship collision system automatically issues a ship collision warning and
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strives for the personnel on the bridge and ships under the bridge to avoid casualties
as much as possible.

26.3.2.2 System Warning Trigger Method

When the ship enters the warning zone, the system automatically initiates a transient
prediction warning. The transient prediction warning is based on the current
navigation state of the ship and the trajectory of the past short time to predict
the behavior state and movement position of the ship in a short time and is based
on the predicted result; it is determined whether the current warning level needs to
be improved, so as to obtain more alarm response time. Active prediction warning
is based on the navigational trajectory, speed, heading, and other information of the
ship in the monitoring area to extract the navigation characteristics of the ship and
proactively predict the ship collision probability and provide early warning. The
system warning trigger classification is shown in Fig. 26.9.

26.3.2.3 Early Warning Event Risk Assessment

Bridge–ship collision warning should consider the possibility and danger of bridge–
ship collision. The possibility of bridge–ship collision is considered by the relative
position of the ship from the bridge. The risk of a bridge–ship collision is related to
the ship weight, speed, and direction of impact of a particular structure. It is difficult
to obtain accurate data on the weight of the ship through vision monitoring, so the

Fig. 26.9 System warning trigger classification
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length of the ship is used instead of the weight of the ship to evaluate the risk of ship
collision.

When an early warning event occurs, the system will obtain the corresponding
risk assessment score based on the location of the early warning event, ship size,
speed, heading, and other information and then perform weighted summation to
calculate the early warning score and determine the warning level in a short time.

The system obtains the corresponding risk assessment score based on the
information such as the position of the ship, the size of the ship, the speed, and
the heading and then performs weighted summation to calculate the early warning
score. The specific formula is as follows. The risk score of the monitoring area, ship
size, navigation speed, and ship navigation direction are shown in Table 26.1.

Q =
4∑

i=1

Ai · ωi (26.4)

where Q is the warning score, Ai is the characteristic risk score of the warning event
behavior, as shown in Table 26.1, and ωi is the feature weight of the warning event
behavior, as shown in Table 26.2.

Then, according to the above-mentioned ship early warning score, the warning
level of the bridge–ship collision is determined and the corresponding early warning
measures are taken, as shown in Table 26.3.

Table 26.1 Risk score

Dangerous
situation Risk score Early warning score calibration
Monitoring
area

A1 1 Primary area

0.5 Secondary area
0.25 Tertiary area

Ship size A2 Ship size definition Ship tonnage Ship length
1 Large >1000 t >61 m
0.5 Middle 500 t∼1000 t 47∼61 m
0.25 Small >50 t∼<500 t 20∼47 m
0 Very small <5 t <20 m

Sailing speed A3 Ship speed definition Ship speed
1 Fast ≥5 km
0.5 Slow <5 km

Ship sailing
direction

A4 Ship heading definition Ship heading

1 Near the bridge ±71.5◦ (the direction in which
the ship is facing forward)

0.5 Away from the bridge Other
directions
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Table 26.2 Analysis weights of different factors

Serial number Monitoring area Ship size Sailing speed Ship sailing direction
Weights ωi 0.3 0.3 0.1 0.3

Table 26.3 Warning score and warning measures

Serial number Interval of warning score Alert level
1 [0, 0.7] No warning
2 (0.7, 0.8] Primary warning
3 (0.8, 0.9] Intermediate warning
4 (0.9, 1] Emergency warning

26.3.3 Post Recording System

The post recording system is combined with the intelligent video monitoring system
to help the recording of potential collision. Video cameras were mounted on the
bridge. When the tracking system detected abnormal tracks, it will trigger the
recording system to record the scene happening. It helps to retain evidence for
post collision process.

Due to the recording purpose, the hard disk of the recording system shall be
large enough to restore video for around 2 weeks. The resolution of the camera
shall be around 1920 × 1080 pixels to demonstrate clear details of the ships and
bridge in case there is a collision incident. Accordingly, cameras with Ethernet port
are adopted for its fast transmission speed. Also, due to the outdoor environment,
the camera shall be robust enough to withstand temperature change. Considering
the summer and winter temperature here, the working temperature shall be between
−20 and +65 ◦C.

26.4 Field Test

Due to the strict law for protecting the scenic area around the Gongchen Bridge,
a field test was conducted in another area for validation of the system, before the
implement on the ancient bridge. The investigated bridge is located on the main
channel of the ship import and export in Taizhou, China. The tides near the bridge
area are urgent, and the ship flow is large with complicated ship types. There are
many docks and berths, and the navigation environment is complicated. The bridge
area is 1700 m wide, and the main channel is 900 m wide. According to the measured
traffic volume of the maritime department, there are 272 ships per day in the waters
of the bridge area. Due to the complexity of the navigation environment, this site
selection can better verify the effectiveness of the active ship anti-collision system.
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26.4.1 System Summary

The system is a bridge–ship anti-collision intelligent video monitoring system based
on computer vision technology and IPTs. The hardware platform was built by video
monitoring technology which mainly includes several industrial cameras, zoom lens,
and a computer. The advanced digital IPTs are adopted as the core of video signal
analysis theory. This computer vision-based ship–bridge anti-collision system is built
to achieve the main objectives of static and dynamic identification, real-time data
display, track description, database preservation, and multi-level intelligent alarm
system. The system is shown in Fig. 26.10.

26.4.2 Monitoring Interface

The tracking system is part of the multi-stage active anti-collision system, and
its system software has the following functions: real-time ship monitoring, ship
navigation depiction, monitoring data display, warning information display, data
storage, report generation, instant help, and system parameter configuration.

The monitoring images of the three cameras can be displayed simultaneously in
real time, as shown in Fig. 26.11. Three levels of monitoring areas, separated by
yellow and red lines, can be displayed in the picture, and static and dynamic ships
can be locked in real time with a rectangular frame if the identified ship is visible.
In addition, three monitoring picture windows can be scaled as shown in Fig. 26.11.

The three cameras can display the route trajectory of the ship moving in real time,
and the background color of the track map also shows three levels of monitoring areas.
In addition, the track map has coordinate display, and the coordinate value range can
be calibrated and input according to the actual value. As shown in Fig. 26.12, the

(a) (b)

Fig. 26.10 Field test of the system. (a) Cameras. (b) Computer and software
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Fig. 26.11 Real-time monitoring interface

Fig. 26.12 Ship track depiction

three cameras track the number of identified ships, and the data of each ship’s size,
coordinates, speed, and direction can be displayed in real time.

26.4.3 Warning System

According to the size, speed, direction, and monitoring area of the ship monitored
by the three cameras, the weighted sum is used to obtain the early warning score,
and the warning score is displayed in real time. At the same time, the warning
score is divided into three levels (primary warning, intermediate warning, and
emergency warning), and respectively light the lights of different colors through the
corresponding threshold, as shown in the following figure. When it is an emergency
warning, the alarm ringtone is automatically triggered to alarm, as shown in Fig.
26.13.

As shown in Fig. 26.13, the data recognized by camera 1 is weighted to obtain a
final warning score of 0.72, which is within the primary warning range, so the green
light is on; the data recognized by camera 3 is weighted to obtain a final warning
score of 1, which is within the emergency warning range, so the red light is on. The
restricted area can be artificially defined in the three camera monitoring screens,
as shown in the blue rectangle of Fig. 26.14. When the monitoring ship enters the
restricted area, it automatically lights up red and directly triggers the alarm sound.
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Fig. 26.13 Warning information display

Fig. 26.14 Restricted area setting

Fig. 26.15 Calibration ship

26.4.4 Ship Identification

The size of the calibration ship is about 3 m× 20 m, the speed is about 2 m/s, and it
is basically kept at a constant speed. The video picture is shown in Fig. 26.15. The
system requires calibration and test to facilitate static and dynamic identification.
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According to the site environment, the debugged camera monitors the ships parked
on the river surface, and the software system can identify multiple mooring ships,
as shown in Fig. 26.16. The static ships are far away from the bridge, yet the system
could still detect the existence of them. This allows sufficient time to identify the
coming target and makes a potential warning in time.

According to the site environment, the debugged camera monitors the ships
sailing on the river, and the software system can identify multiple ships that are
sailing, as shown in Fig. 26.17. The results indicated that multi-ships on the river
could be tracked steadily, it is important for practical application when there are
more incoming ships.

(a) (b)

Fig. 26.16 Static monitoring. (a) Monitoring area. (b) Identification result

(a) (b)

Fig. 26.17 Dynamic monitoring. (a) Monitoring area. (b) Identification result
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26.5 Conclusions

A computer vision-based system was developed for ship–bridge collision protection.
The system features are mainly reflected by (1) introducing intelligent video
monitoring into the field of bridge engineering, actively monitoring the navigation of
the waters in the bridge area, and actively reminding the ship of illegal operation and
proactively alerting the ship to danger, maximally avoiding ship collision accident;
(2) when a ship collision accident occurs, an alarm is issued in time to take the
initiative to evacuate the personnel, personnel on the bridge and ships under the
bridge could be alerted in advance to avoid casualties; (3) when a ship collision
accident occurs, the recording camera system is used to record the whole course
of the ship collision accident, so that the bridge owner or manager takes an active
advantage in the ship collision accident claim. Also, the system has the functions of
multilevel warning zone, an active reminder of ship violation operation, real-time
assessment of ship collision risk, ship collision risk active warning, and ship collision
accident automatic alarm.

The system utilizes all-round monitoring and active early warning to maximize the
avoidance of ship collision accidents or reduce the severity of ship collision accidents.
It avoids or reduces the direct or indirect losses to the economy and society caused
by potential ship collision accidents, obtaining the economic and social benefits.
Active anti-collision systems have significant cost advantages over passive collision
avoidance systems. Therefore, the multistage active anti-collision system not only
reduces direct or indirect losses but also saves bridge collision avoidance costs. With
the construction of a bridge over the rivers and the development of shipping business,
there will be an increasing risk of potential collision incidents. With the help of such
a computer vision-based ship–bridge anti-collision system, active measures could
be taken to reduce the collision risk and remarkable social and economical benefit
will be obtained.
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MVS, 5
numerical experiments, 746–748
preprocessing, 201
ROS stereo, 475
segmentation, 201

Image processor (IP), 91, 95, 111, 116, 119
Image registration, 580, 581, 585
Image sensor

CMOS, 6
consumer digital photography, 4
fabrication, 15
Foveon X3, 7
machine vision (see Machine vision)
passive imaging technology, 62
performance metrics, 7–8
photosensor material, 5
ROIC, 24

Infinitesimal rotation
lie algebra, 297–300
parameterize, 318
quadratic approximation, 302

Infrared (IR) thermography, 7189
Inorganic-based imaging systems

crosstalk, 12
DR, 10
illuminant variation, 11
image sensors, 8
incompatibility, 11
low bandgap, 12
weak light absorption, 10

Integer discrete cosine transform (iDCT), 643,
649

Integrated colour pixel (ICP), 7, 8
Intelligent transportation scheme

mechanical design and kinematic model,
525, 526

SLAM, 523–524
Intensity transformation, 92–96, 98–100, 105,

119

K
Kalman filter (KF)

Bayes filter and belief update, 274–275
Bayesian rule, 271–273
EKF linearization technique, 275
MLE, 270–271
probabilistic inference, 271–273
UKF stochastic linearization technique,

275
Kinematic mode, 162–167
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L
LabView™

control, 761–763
idea, 755–756
nanopositioning, 759–761
open-loop transfer function, 756–759

Landmarks, 503–504
Laser metal deposition, 712
Lie algebra

angular velocity, 294–296
BA, 314–317
exponential expression of rotation, 296–297
infinitesimal rotations, 297–300
matrix computation, 309–314
maximum likelihood, 303–308
optimization of rotation, 300–303
parameterization of rotation, 294
rotation matrices, 294
small rotations, 294–296
3D pose computing, 293

Linear dynamic range (LDR), 9, 10
Localization sensors

GPS, 512–513
wheel encoders, 510–512

Local planning
navigation, 437
optimal trajectory synthesis, 438–439
reactive methods, 437–438
3D environment representation, 439–440
velocity/control space methods, 438

M
Machine vision

actuation, 202
agricultural applications (see Agricultural

machine vision applications)
applications, 198–199
DCNN (see Deep convolutional neural

networks (DCNN))
definition, 198
digital cameras, 5–7
experimental ground vehicle platform,

236–237
image

acquisition, 200–201
processing (see Image processing)
sensing, 4–5
sensor photodiodes, 7–8

orchard management, 199
peach orchard navigation (see Peach

orchard navigation)
robotics (see Robotics)

scene constraints, 200
stereo imaging, 199
SVM (see Support vector machines (SVM))
visual feedback system, 234–235

Map building, 504–506
Mapping sensors

kinect, 508–510
LiDAR, 507–508

Mathematical operators, 96–97
Matlab™, 763–764
Maximum likelihood estimator (MLE),

270–271
lie algebra, 318
rotation estimation, 303–308

Melt pool
boundaries, 724
BPD, 723
edge detection techniques, 723, 727
Gaussian blur, 726–727
JSR, 723
Laplacian transform, 726–727
peaks, 724, 725
repeatability, 728–729
sensitivity, 728–729
solidified region, 727
spatial variation, 726

Microwave measurement, 813
Mixed sensor processors

continuous-discrete automation, 90
DOEP, 91
EMs, 89
MAAM and MHAM, 89
mutual 2D function, 88
OE-VLSI circuits, 90
optical learning, 90
self-learning, 89
VMO ADC, 91

Mobile autonomous robots (MAR)
amplitude jump of signals, 190–195
echo signals (see Echo signals)
EMW, 171, 176–179
GPS, 171
navigation, 172–176
radiofrequency range, 172

Mobile industrial robots, 495
Mobile robots, 360–362

applications, 511
dynamic model, 350–351
FOV, 457
geometric description, 380
localization process, 505
machine vision (see Machine vision)
model, 380–381
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Mobile robots (cont.)
navigation, 473
omnidirectional cameras, 34
passivity-based control laws, 348
pioneer 3-AT, 417
radar antenna, 174
self-contained vision sensor, 35
trajectory, 365
vision-based, 258

Modulated light scanners, 686
Multi-camera models, 254–256
Multivision systems

multi-camera models (see Multi-camera
models)

SVS, 259–260
trinocular vision models (see Trinocular

vision models)

N
Nanopositioners

in closed loop, 759–761
LabView™ (see LabView™)
linear, 755
open-loop transfer function, 756–758
patterns detection, 764, 765
points, 765–767
probes, 753
set points, 764

Navigation
benchmarking, 468–469
experiments

campus world, 472, 473
office world, 472, 473
review of outcomes, 473–475
sector world, 471–472

FR (see Flying robots (FR))
machine vision (see Machine vision)
MAR, 172–176
robot, 36, 50
robotic group (see Robotic group)
scenario configuration, 466–468
SLAM, 513–518
SVS, 259
3D sensing (see 3D sensing)
UAV, 204
in vision-based aerial imaging, 15
world synthesis, 465–466

Neuron-equivalentor (Neqs), 119
Neuroscience, 440–442
Nonlinear analysis

filters, 228, 735, 748
processing, 275
transformations, 97–98

O
Object detection (OD)

applications in robotics, 80
digital elevation map, 501
Gaussian model, 828
geometry-based clusters, 502
image processing, 167
and matching, 153–155
pairwise and combinatorial matching,

581
position determination, 155–161
probabilistic occupancy map, 500, 501
scene flow segmentation, 501, 502

Object isolation alternate method
car, 230
conclusion, 233
spatial mapping, 230–233
stereo camera operation, 231–232

Object tracking
autonomy, 347
classified, 348
color-based, 46
feature selection, 381–383
kinematic image-based, 161–162
module, 37
passivity-based proposals, 348
principles, 156
time aspects, 148

Omnidirectional vision, 39
On-wafer probe station, 752, 753
Optoelectronics

dual analog neuron-equivalentors, 119
geometric control, 707
integration, 8
OPD, 19
optics, 20
signal processing, 541–546

Orchard management
machine vision system, 199
navigation (see Navigation)
RGB values, 209
sample image, 208
system models (see System models)
theoretical analysis, 349

Organic photodetectors (OPDs)
active 3D imaging, 18–19
AK-SHB 810 model camera, 15
baseline, 18
broadband/narrowband, 14
chemical structures, 13–14
CMOS image sensors, 15
colour sensing systems, 14
depth measurement technology, 17–19
disruptive technology, 13
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electronics cost, 16
image sensors, 15
Si-photodiodes, 13

P
Parallax

image registration technique, 581
magnitude, 586
occlusion, 580, 581
stereo vision system, 62

Passivity based controller
analysis, 609
kinematics, 622
robustness analysis, 622–623
UAV dynamic model, 620–621
vision system, 621
visual servoing control, 608

Passivity-based visual controller design
compensation, 356–357
kinematic-based controller, 353–356
robustness analysis, 358–359
simulation and experimental results

mobile manipulator, 362–371
mobile robot, 360–362
robotic manipulator, 371–376

vision system, 352–353
Path planning

A* algorithm, 519–520
D∗ algorithm, 520–522
secondary objectives placement, 405–406
technical vision system, 403–405

Path tracking, 332–337
Peach orchard navigation

agricultural operation, 233
experimental ground vehicle platform,

236–237
visual feedback system, 234–235

Peripheral vision, 50–52
Phase triangulation

dynamic range, 700–702
nonlinearity compensation, 684–690
optical radiation source–receiver path, 676
phase measurement error, 690
proposed method, 690
spatial modulation, 703–707
steady method, 676–684
structured image decoding, 690–700
3D object geometry measurement, 675

Photodetectors, 8–10
electrical analog inputs, 95
harmonic signal, 705
in image sensing (see Organic

photodetectors (OPDs))

intensity distribution, 703
materials/image processing technologies, 5
performance metrics, 9
transmission of light, 7

Photogrammetry, 135
Photo-sensing material

conventional imaging (see Conventional
imaging systems)

image sensor, 8
OPT platform, 23
organic–inorganic hybrid layer, 23

Phototransistors, 21–24
Planning in perception space (PiPS)

collision checking, 445–450
egocylindrical perception space, 451–454
modifications, 444–445
navigation, 442–444
trajectory scoring (see Trajectories)

Plant identification application
image processing (see Image processing)
over-constraining the sample data, 227–229
yield estimation

statistical and probabilistic results, 226
transition, 220
weight values, 221–226

Pose estimation, 287
Position based controllers

analysis, 606
visual servoing control, 606

Powder feed, 712, 720–722, 727

R
Radar detection, see Mobile autonomous

robots (MAR)
Radiometrics

autonomous and noise-cancel FR, 539–541
correlation-extreme navigation

decisive function, 546–547
RM and CENS, 541–546

FR, 538
impact analysis, 542–554

Region of interest (ROI), 635, 636, 646, 658,
668–671, 720

Risk assessment
bridge collision, 796
early warning event, 800–802
post recording system, 802
system warning trigger method, 800
warning area division, 799–800

Robotic group
autonomous vehicles, 390
data transferring networks (see Data

transferring)
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Robotic group (cont.)
effectiveness, 423–424
nature swarm adaption, 390–392
swarm projects, 394–397
tasks, 392–394

Robotic image-assisted total stations
coaxial layout, 137
correction function, 139
eccentric layout, 137, 138
IATS, 136
principle layout, 137
Trimble S7, 138
working principles (see Electronic distance

measurement (EDM))
Robotics

conventional vision technology, 60
medical, 60
MIS, 60
3D image construction

dynamic vision, 68–70
sensor, 62
shape from shading, 66–68
stereo vision, 62–66

UAV (see Unmanned aerial vehicles (UAV))
Robotic total stations (RTS)

accuracy, 135
angles and distances, 134
optics and mechanics, 134
science community, 135
tachymeter, 134–135
theodolites/total stations, 136

Robots
autonomy, 33–34
biological vision, 34
hardware of the sensor, 37–38
hybrid field of view, 35
natural evolution, 34
related work, 36–37
self-contained perception unit, 35
software and calibration (see Calibration)

S
Scale-invariant feature transform (SIFT), 151

detector step, 151
detector/descriptor pair, 53
feature matching procedures, 50
features, 588
image-based object recognition, 151
Sparse stereo, 54
and SURF, 153

Scanning electron microscopy (SEM), 752–754
Self-driving car, 4, 60, 495

Self-learning equivalent convolutional neural
structures (SLECNS), 92–96, 122

Sensors
hardware, 37–38
hybrid (see Hybrid sensor)
image intensity transformation (see Image

intensity transformation)
machine vision (see Machine vision)
robotics (see Robotics)

Ship-bridge collision
anti-collision system, 795–796
monitoring and tracking system, 796–798
multifactor method, 792
vision-based system, 807

Signal processing
computer vision technology, 791
RM channel CENS, 541–546
theory, 72
time-pulse, 90

Signal sensor, see Machine vision
Simultaneous localization and mapping

(SLAM)
control flow process, 523, 524
diagram, 523, 524
multi-robot map alignment, 256
navigation

control, 513–518
and mapping, 268

nonlinear problems, 275
robot localization problem, 79

Smart campus
kinematic model, 525, 526
mechanical design, 525, 526
SLAM, 523–525

Speeded-up robust feature (SURF)
algorithm, 151–153
feature matching procedures, 50

Stairways detection
CNN, 658
experimental results, 665–667
Gabor filter, 662, 663
HH, 662
localization and recognition, 658, 664
MDPG, 660
proposed algorithm, 665
synthesized image stair set, 664
testing image sets, 661

Stereo
distance measurements, 43
OPDs, 17–18
perspective camera, 38
photometric, 67
virtual camera, 38
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vision, 62–66
See also Stereoscopic vision systems (SVS)

Stereo cameras, 463–464, 475–478
Stereoscopic vision systems (SVS)

angles and coordinates, 248
artificial biological applications, 256–258
constraint

collinearity, 278–280
coplanarity, 280–282

biological processes, 243
depth information, 243
digital scene reconstruction, 242
epipolar geometry, 276, 280–282
extended KF, 276
feature extraction, 242
images acquisition, 242
localization approach, 286–287
multivision applications, 259–260
pattern matching, 243
perspective projection, 278–280
pose tracking, 284–286
system geometry, 242
3D

point, 247
reconstruction stage, 278

trinocular applications, 258–259
uncertainties, 282–284
unscented KF, 277

Stereo vision-based scanners
binocular, 62, 63
depth, 63
dynamic vision, 68–70
energy minimization function, 64–65
epipolar geometry, 280–282
extended Kalman filter, 276
feature-based methods, 66
local methods, 64
matching algorithms, 63–64
OPDs, 17–18
perspective projection, 278–280
semi-global method, 65
shape from shading, 66–68
SLAM algorithm, 276
ToF sensors, 60
vehicle detection system design, 398

Structural health monitoring (SHM)
bridges, 791
implementation of approach, 422
SVS, 257
3D coordinates, 242

Structured image decoding
error of phase, 695–699
intensity of the source, 694
nonlinear distortions, 691

power transfer function, 691
probing phase image, 692
source–receiver path, 692
substantiation, 693
theoretical error, 693
3D profile, 690–691
three-dimensional surface sections, 697
3D profile, 690–691

Structured light scanners
classes, 73
constrained (indoor)/unconstrained

(outdoor), 61
depth measurement sensors, 74–75
dynamic vision, 70
3D measurements, 703
system architecture, 76

Structure from motion (SfM), 78–79
Support vector machines (SVM)

binary classification, 483
classification results, 784, 785
DCNN (see Deep convolutional neural

networks (DCNN))
regression method, 772
on trained DCNNs, 782–785

Surface characterization, 329–331
Surface mapping

data exchange, 416–420
modeling system structure, 415–416
objects extraction, 420–422
simulation frameworks, 413–415

System models
kinematic, 351–352
mobile robot, 350–351
nomenclature, 349
robotic manipulator, 350

T
Target tracking, 147–148
Technical vision system

data reduction, 400–402
historical background, 398
structure and working principles,

399–400
3D active imaging system

advantages, 71
OPDs, 18–19
SfM, 78–79
structured light, 73–78
ToF, 71–73

3D measurements
double-baseline stereo algorithm, 259
high-accuracy, 257
high-speed sensor, 509
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3D measurements (cont.)
optical radiation, 691
opto-mechanical system, 772

3D sensing
characteristics, 304
complementary roles, 432, 433
global path, 433
mobile robot navigation, 434
navigation (see Navigation)

3D vision system
development, 523
robotic group, 397–398

Time-of-flight (ToF), 71–73
high-quality depth maps, 19
light source/transmitter, 71
OPDs, 19
photosensor, 72
single-photon detection, 73
spot scanner, 73
surface points, 19, 71
3D dense data sources, 439
ultrasonic wave receiver, 490

Tracking
automated reflector-based target

recognition, 144–146
IATS, 148–156
object module (see Object tracking)
particle filter, 53
path-generation, 323–325
principles, 135
simulation results, 612–619
UAV (see Unmanned aerial vehicles (UAV))
UKF and stereo vision, 286

Traffic signs, 502–503
Trajectories

arbitrary shapes, 322
cost functions

global path, 457
goal point, 461–462
obstacle, 459–460
path, 462–463
scoring, 458
simplification, 458

CSM, 325–328
egocircle measurements, 455–457
experimental validation, 337–343
geodesic mapping, 322–323
heat-induced deformations, 323
internal controllers, 598
length, 418, 419
path-generation, 323–325
propagation, 455–457
robot’s end effector, 378

storage, 455–457
time derivative, 610
tracking

maneuver, 323–325
problem, 322

Trinocular vision models
arbitrary, 254
divergent, 253, 254
parallel model, 251–252
right triangular, 250–251
surrounding, 253
SVS, 258–259

U
UKF-based image filtering

feature correspondence extraction, 268, 269
SFM, 268
SLAM, 268
3D model, 268

Unmanned aerial vehicles (UAV)
agricultural environments, 597–598
controller analysis, 610–611
and IMU, 598
models

dynamic, 600–601
kinematic, 599

robustness and stability properties, 599
visual servoing, 598

V
Video compression, 632, 642–643
Video stabilization, see Homography
Vision system

binocular stereo, 62, 63
image

processing, 601–602
sensing, 4–5

kinematics, 602–605
machine vision (see Machine vision)
omnidirectional, 39
robotic, 23
SVS (see Stereoscopic vision systems

(SVS))
trajectories (see Trajectories)

Visual servoing controllers
biological artificial SVS, 258
dynamic compensation, 610
passivity properties, 598
position based (see Position based

controllers)
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W
Wavelet-based coding approaches

ABAC, 646–648
AFV-SPECK algorithm, 648, 649
simulation results, 649–650

Wavelet transforms
classic algorithms, 632
compression algorithms, 631
data compression, 632–635

digital image, 630
DWT, 637–638
Fourier analysis, 636
fovea centralis, 635–636
HVS, 631
JPEG, 632
prediction, 638
two-dimensional signals, 637
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